
Performance Controls for Distributed
Telecommunication Services

Conor J M cA rd le B Eng

This thesis is submitted in partial fu lfillm ent o f

the requirements o f the degree o f

PhD in Electronic Engineering

November 2004

Thesis Supervisor

Professor Thomas Curran

DCtJ
Dublin City University

School of Electronic Engineering

Acknowledgments

I wish to thank my supervisor Professor Thomas Curran for his help and guidance during the

course of the PhD Thanks also to Rob Brennan and Brendan Jennings for their help and

encouragement I would also particularly like to thank my wife Annemane and all my family

and fnends for their love and support over my years of study

Thesis Declaration

I hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of PhD m Electronic Engineering, is entirely my own work and
has not been taken from the work of others save to the extent that such work has been cited
and acknowledged within the text of my work

Signed _ ID No 97971146

Date 21st January 2005

Table Of Contents

TABLE OF TABLES VIII

A BSTRACT IX

LIST OF ABBREV IA TIO N S AND ACRONYM S X

C HAPTER 1 INTROD U CTIO N 1

1 1 O v e r v ie w o f t h e R e s e a r c h A r e a 1

1 2 T h e sis A im s a n d O b je c t iv e s 1

1 3 T h e sis O r g a n is a t io n 4

CHAPTER 2 BA CKG RO U N D AND LITERATU RE REVIEW 5

2 1 I n t r o d u c t i o n 5

2 2 T e le c o m m u n ic a t io n S e r v ic e A r c h i t e c t u r e s 6

2 2 1 The Intelligent Network 7

2 2 2 TINA 9

2 2 2 1 Access Session Related Computational Objects 10

2 2 2 2 Service Session Related Computational Objects 12

2 2 2 3 Communication Session Related Computational Objects 12

2 2 3 TINA in Use 12

2 3 O v e rv ie w o f C O R B A 13

2 4 I n t e r w o r k i n g N e t w o r k s a n d IN/CORBA 15

2 4 1 OMG IN/CORBA Interworking Specification 18

2 4 2 Components o f the IN/CORBA Gateway and CORBA-based SCP 18

2 4 3 IN/CORBA Gateway and TINA Service Components 19

2 5 P e r f o r m a n c e C o n t r o l o f T e le c o m m u n ic a t io n S e r v i c e s N e t w o r k s 20

2 5 1 Load Control in Intelligent Networks 21

2 5 2 Network-Centric IN Load Control 24

2 5 3 Performance Control m TINA 26

2 5 3 1 Comments on TINA Performance Approaches 29

2 6 D is t r ib u t e d Sy s t e m s P e r f o r m a n c e 30

2 61 Introduction to Performance Models o f Distributed Systems 30

2 6 2 Performance Metrics fo r Distributed Systems 35

2 6 3 Optimising Distributed Systems Performance 36

2 6 4 Scheduling in Distributed Systems 37

2 6 4 1 Task Allocation 38

2 6 4 2 Dynamic Task Allocation 45

2 6 4 3 Load Sharing 45

2 6 5 Component Allocation 47

TABLE OF FIGURES VII

u

2 7 P erfo rm a n ce Co n tro l of D istributed T elecom m unica tion Service Platform s 52

2 71 Performance Requirements 53

2 7 2 Approaches to Performance Control fo r Distributed Telecommunication Services 54

2 7 3 Proposed Approaches 55

2 7 4 Detailed Research Objectives 57

2 8 Ch apter Sum m ary 58

CH A PTER 3 M ETH OD S AND TOOLS 59

3 1 An a ly tic a l M etho ds for N etw ork P erfo rm a n ce Analysis 59

3 1 1 Basic Probability Theory 59

3 1 1 1 Random Variables and Distribution Functions 60

3 1 1 2 Moments o f a Random Variable 60

3 1 1 3 Independent Random Variables 61

3 1 2 Stochastic Processes 61

3 12 1 Stationary Processes 62

3 1 3 The Markov Process 62

3 13 1 Markov Chains 63

3 13 2 Birth-Death Processes 63

3 13 3 The Poisson Process 64

3 1 4 Bernoulli Trials 64

3 15 Queuing Theory 65

3 1 6 Analysing Networks o f Queues 66

3 16 1 Product Form Networks 66

3 16 2 Mean Value Analysis (MVA) 67

3 16 3 Approximate Mean Value Analysis 69

3 1 7 Layered Queuing Networks (LQNs) 69

3 1 8 Solution Methods for LQNs 70

3 18 1 Method o f Surrogate Delays 70

3 18 2 Stochastic Rendezvous Networks (SRVNs) 70

3 18 3 Method o f Layers 71

3 1 9 The Layered Queuing Network Solver (LQNS) 71

3 2 S im u l a t io n M e t h o d s fo r N e t w o r k P e r f o r m a n c e A n a l y s is 73

3 2 11 Discrete vs Continuous Models 74

3 2 12 Probabilistic vs Deterministic Models 75

3 2 13 Trace-driven vs Stochastic driven Models 75

3 2 14 Stochastic Discrete-Event Simulation 75

3 2 15 The OPNET Simulator 76

3 3 M a th em atical P rogram m ing M ethods for N etw ork P erfo rm a n ce Co n tro l 78

3 3 1 Mathematical Programming 78

3 3 2 Linear Programming 78

3 3 3 Linear Programming Solution Methods 79

3 3 3 1 The Standard Simplex Method 79

3 3 3 2 The Dual Simplex Method 81

i n

3 3 3 3 Efficiency o f Simplex Methods 82

3 3 3 4 Intenor-Point Methods 82

3 3 4 Mixed Integer Programming 83

3 3 5 Mixed Integer Solution Methods 83

3 3 5 1 Branch and Bound 83

3 3 5 2 Branch and Cut 83

3 3 5 3 Efficiency o f M IP Solution Methods 84

3 3 6 Mathematical Programming Solvers 84

3 4 M a r k et-Based M ethods for N etw ork P erfo rm a n ce Co n tro l 84

3 5 Ch apter Sum m a r y 86

CHAPTER 4 M ODEL OF A DISTRIBU TED
TELECO M M U NICA TION S SERVICE PLA TFO R M 87

4 1 Sim ulation M o d el D escriptio n and R a tional 87

4 2 The Netw ork M o d el 88

4 3 M o d ellin g the G atew ay and Service Com po n en ts 90

4 3 1 Gateway Components 90

4 3 2 Service Components 91

4 4 D istributio n o f Co m pu ta tio n a l O bjects 92

4 5 D istributed Call M o d el 93

4 5 1 Execution Semantics 93

4 5 2 Message Processing Times 93

4 6 Specification of T est Services 94

4 61 Service A Virtual Private Network 96

4 6 2 Service B Ringback 96

4 6 3 Service C Restricted Access Call Forwarding 97

4 6 4 Message Details fo r Test Services 97

4 6 5 Traffic and Loading Scenarios 98

4 7 Sim ulation M o d el Im plem entation 98

4 71 Messages 98

4 7 2 The Network 102

4 7 3 Processes 102

4 7 4 IN Traffic Modellers 103

4 75 Operation o f Simulated Performance Controls 104

4 8 Ch apter Sum m ary 106

4 9 Ch apter 4 A ppendix - T est Service D etails 107

CH A PTER 5 COM PUTATIONAL OBJECT A LLO C A TIO N AND
PERFO RM AN CE CONTROL STRATEGIES 113

5 1 O ptim al A lgo rithm s for O b ject D istribution and Load Co n tro l 113

5 1 1 Strategy Overview 113

5 1 2 Model Notation 114

5 12 1 Messages and Computational Objects 115

IV

5 12 2 Processing Costs 115

5 1 2 3 Workflows 116

5 1 3 Users and Service Requests 117

5 1 4 Optimising Object Placement 117

5 1 5 Optimising Object Placement with Installation Costs 119

5 1 6 Optimising Random Splitting and Admission Control 120

5 1 7 Optimising Network Revenue with Fairness 122

5 17 1 Adjustment to Revenue Optimisation Algorithm 123

5 2 C o -o p e r a t iv e M a r k e t -B a s e d A l g o r it h m f o r L o a d C o n t r o l 124

5 21 Strategy Overview 124

5 2 2 Notation 126

5 2 3 Load Control Agent Bids 127

5 2 4 The Auction 127

5 2 4 1 Expected Marginal Cost for Initiating Tokens 127

5 2 4 2 Expected Marginal Cost for Non-Initiating Tokens 128

5 2 4 3 Expected Marginal Gam for Initiating Tokens 128

5 2 4 4 Expected Marginal Gain for Non Initiating Tokens 129

5 2 4 5 Expected Marginal Utilities 129

5 2 4 6 The Auction Algorithm 129

5 2 5 Token Spending for Initiating Tokens 130

5 2 6 Token Spending for Non-Initiating Tokens 132

5 3 C h a p t e r Su m m a r y 132

CH APTER 6 ANALYSIS OF SERVICE PLATFORM AND
PER FO RM AN C E CONTROLS 133

6 1 O p t im a l A l l o c a t io n o f C o m p u t a t io n a l O b je c t s 13 3

6 1 1 Implementation o f the CO Placement LP/MIP 133

6 1 1 1 Coefficient Matrix Construction 135

6 1 1 2 Algorithm Outputs 137

6 1 2 Basic Results for Optimised CO Placements 138

6 1 3 Load Imbalance 140

6 1 4 CO Installation Costs 141

6 1 5 Scalability and Bottlenecking 147

6 2 C o m p a r is o n t o M in im is a t io n o f C o m m u n ic a t io n s C o s t s 150

6 3 S im u l a t io n M e t h o d o l o g y a n d V a l id a t io n w it h a n A n a l y t ic M o d e l 152

6 3 1 Analytic Model o f the Service Platform 153

6 3 11 Model Assumptions 153

6 3 12 Execution Patterns 154

6 3 13 Modelling Open Traffic Sources 155

6 3 14 Modelling Requests-Replies and Message Execution 155

6 3 15 Modelling Random Splitting 157

6 3 16 Modelling SSP Delays 158

6 3 17 Modelling Concurrent Execution 159

6 3 18 Modelling Multiple Service Types and Overall Model 160

v

6 3 2 Verification o f Simulator with Analytic Solutions 161

6 4 P erfo rm a n ce o f D ynam ic Controls 163

6 41 Internal Performance Control 163

6 4 2 Internal and External Controls 164

6 4 3 Dynamic Performance Controls - Implementation Note 167

6 5 R evenue O ptim isatio n and Fairness 168

6 5 1 Note on Two-Phase Revenue Optimal Heuristic 170

6 6 T he M a r k e t- b a s e d I n t e r n a l P e r f o r m a n c e C o n t r o l A lg o r i th m 171

6 7 D ynam ic C ontrols U nder H igh Load and Varied Service M ix 173

6 8 Ch a pter Sum m ary and Co nclusions 176

C H A PTER 7 CONCLUSIONS AND FUTU RE WORK 178

7 1 Contributions to the A rea o f R esearch 178

7 2 P roperties o f the O ptim a l Co m po n en t A llocation 180

7 3 Pr operties of D ynam ic Controls 180

7 4 P roperties of the M a rk et-based A pproach 181

7 5 Fu tu re W ork 182

THESIS PUBLICATIO NS 183

REFEREN CES 184

v/

Table of Figures

F igure 2.1: Fu n c tio n a l E n tities in the IN D istribu ted Fu n c tio n a l P la n e .. 8

F igure 2.2: A Sc hem atic V iew o f th e D ifferen t L a yers of T IN A ..10

F igure 2.3: R elationships betw een COs and D o m a in s ... 11

F igure 2.4: TINA-based In t e r w o r k in g .. 13

F igure 2.5: OMG R eferen ce M odel A r ch itec tu r e .. 14

F igure 2.6: O bject R eq u est B roker Ar c h it e c t u r e ... 15

F igure 2.7: IN and CORBA - The P508 V is io n ... 16

F igure 2.8: G atew ay to CORBA based Service P l a tfo r m ...17

F igure 2.9: T he Interw o rk in g G a t e w a y ...19
F igure 2.10: O verload D etectio n and T hrottling in an In tellig en t N e t w o r k22

F igure 2.11: M u lti-SCP In tellig en t N e tw o r k ...25

F igure 2.12: M o d el of TINA Service Co m p o n e n t s .. 26

F igure 2.13: A T ask A llocation Sch ed u le ..39

F igure 2.14: St o n e ’s G raph Cu ttin g M e t h o d ...41

F igure 3.1: A n E xam ple Stochastic P r o c ess .. 62

F igure 3.2: State T ransition R ate D ia gra m for the B ir th -Dea th P r o c e ss 63

F igure 3.3: R elationship betw een D ifferen t Classes o f Stochastic P r o c e ss e s65

F igure 3.4: A S im ple L ayered Qu eu ing N e t w o r k .. 72

F igure 3.5: Sim ultaneous R esource P ossession in an L Q N ..73

F igure 3.6: A n E xam ple OPNET P r o c ess .. 77

F igure 3.7: G eneral M a r k et E q u il ib r iu m ...85

F igure 4.1: IN/C ORB A In ter w o rk in g Sc e n a r io ..88

F igure 4.2: M odelling of IN /CO RBA Interface Co m p o n e n t s ...90

F igure 4.3: Com pu ta tio n a l O bjects Requ ired for a T ypical IN Se r v ic e ..91

F igure 4.4: M essage P r o c essin g ... 94

F ig u re 4.5: C o m p u ta t io n a l Objects f o r S e rv ic e A ...95

F igure 4.6: Com pu ta tio n a l Objects for Service B ...95

F igure 4.7: Co m pu ta tio n a l O bjects for Service C ...96

F igure 4.8: Service P latform Sim u l a t o r .. 100

F igure 4.9: A ssum ed Ex tern a l Controller In teractio n w ith IN O verloa d Co n t r o l 105

F igure 4.10: M SC for Service A ..107

F igure 4.11: M SC for Service B ..108

F igure 4.12: M SC for Service C ... 109

F igure 5.1: N etw ork M o d e l ..115

F igure 5.2.a : M essage P rocessing T im es ... 116

Figure 5.2.b: W o r k f lo w N o t a t i o n ... 116

F igure 5.3: Con str a in t (C2): W orkflow B alance R e q u ir e m e n t ... 119
F igure 5.4: E xam ple o f Token U se Du r in g a Service Se s s io n .. 125

F igure 6.1: CO s and Interactio n E dges (Service A) ...135

F igure 6.2: R eduction of T h r oug hpu t w ith R ed u ced CO Insta lla tio n Co s t s 146

F igure 6.3: In crease in System T hroug hpu t as P rocessing N odes are A d d e d 147

F igure 6 .4(a -e): Service E xecution P a t t e r n s .. 155

F igure 6 .5(a -c): Co nv ersio n of Open to C losed A rrivals in th e L Q N ...155

F igure 6 .6(a ,b): M odelling Req u ests-Replies and M essage Ex e c u t io n ... 156

F igure 6.7: R andom Splittin g to T hree P r o c e ss o r s ... 157

F igure 6.8: LQ N for R andom Splittin g to Three P r o c e ss o r s ..158

F ig u re 6 9 D e la y s M o d e l le d a s LQ N I n f in i te S e r v e r s 159

F igure 6 10 M o d ellin g D eterm inistic Pa rallel Ex ecution 160

F ig u r e 6 11 O v e r a l l LQ N M o d e l 161

F igure 6 12 Sim u la ted Versu s A n a ly tic Pr o c esso r U tilisa tion 161

F igure 6 13 Sim ulated Versus A nalytic A verage Service T im es 162

F igure 6 14 Loa d in g when T raffic M ix Changes and R andom Splittin g is F ixed 163

F igure 6 15 Load ing w hen T raffic M ix Changes and R andom Splittin g is D yna m ic 164

F igure 6 16 To ta l System L oad with Interna l and Ex ter n a l Con tro ls in O peration 165

F igure 6 17 A verage Serv ice D elay s w ith Interna l and E x ter n a l Controls 166

F igure 6 18 R edu ced T hr oug hpu t of S im ple L o a d -B ala n cin g A lgo rithm 167

F igure 6 19 In crease in Service D elays of Sim ple Lo a d -Ba la n cin g 168

F igure 6 20 M axim um System R evenue D ependen ce on F airness Co effic ien t 169

F igure 6 21 A ccepted A rrivals for each Service w hen F airness is L ow 170

F igure 6 22 A c cepted A rrivals for each Service w ith M o derate F airness 170

F igure 6 23 L oad ing for M ark et In ter n a l and E x ter n a l Co n tro ls 171
F igure 6 24 M arket Service D elays Co m pared to the Optim um 172

F ig u re 6 25 M a r k e t S y s tem R e v e n u e C o m p a re d t o F a i r O p tim a l w h e n A r r i v a l s E q u a l 173

F ig u re 6 26 T h r o t t l i n g o f e a c h S e rv ic e Type by t h e M a r k e t A lg o r i th m 173

F igure 6 27 System R evenue w ith Va r y in g Service M ix

for H igh F airness R ev en u e-Optim a l A lgorithm 174

F igure 6 28 System Rev en ue w ith Va ryin g Serv ice M ix

for M o derate F airness R ev en u e-Optim a l Algo rithm 175

Table of Tables

Table 4 1 A n E xam ple O b ject D istributio n 93

T a b le 4 2 M e ssa g e D e ta i l s f o r S e rv ic e A 110

T a b le 4 3 M e ssa g e D e ta i l s f o r S e rv ic e B 111

T a b le 4 4 M e ssa g e D e ta i l s f o r S e rv ic e C 112

T able 5 1 Su m m a r y of O ptim isatio n M o d el Variables 117

T a b le 6 1 LP/M IP C o n s t r a in t s M a t r i x 137

T a b le s 6 2 (a) O p tim a l CO A l l o c a t i o n S o lu t io n f o r E q u a l A r r i v a l R a te s a l l S e rv ic e s 139

T a b le s 6 2 (b) O p tim a l CO A l l o c a t i o n S o lu t io n f o r E q u a l A r r i v a l R a te s a l l S e rv ic e s 139

T a b le 6 2 (c) O p tim a l CO A l l o c a t i o n s f o r E q u a l A r r i v a l R a te s a l l S e rv ic e s 140

T a b le s 6 3 (a sb ,c) O p tim a l CO A l l o c a t i o n s f o r S e rv ic e A A r r i v a l R a te s = 8 x B = 8 x C
(N o i n s t a l l a t i o n c o s t l im i t a n d no minimum CO t r a f f i c lim it) 143

T a b l e s 6 4 (a , B j C) O p tim a l CO A l l o c a t i o n s f o r S e rv ic e B A r r i v a l R a te s = 8 x A = 8 x C

(N o i n s t a l l a t i o n c o s t l im i t a n d no minimum CO t r a f f i c lim it) 144

T a b l e s 6 5 (a,b>c) O p tim a l CO A l l o c a t i o n s f o r S e rv ic e C A r r i v a l R a te s = 8 x A = 8 x B

(N o i n s t a l l a t i o n c o s t l im i t a n d no minimum CO t r a f f i c lim it) 145

T a b le s 6 6 (a ,b ,c) O p tim a l CO A l l o c a t i o n s f o r E q u a l A r r i v a l R a te s

M axim um I n s t a l l a t i o n c o s t s = 60 COs, with minimum CO t r a f f i c l im i t o f 0 1 148

T a b le s 6 7 (a ,b ,c) O p tim a l CO A l l o c a t i o n s f o r E q u a l A r r i v a l R a te s
M axim um I n s t a l l a t i o n c o s t s = 80 COs, with minimum CO t r a f f i c l im i t o f 0 l 149

T ables 6 8 (a 5b ,c) O ptim al CO A llocations for Co m m unica tion s Cost M in im isation 151

V I11

Performance Controls for Distributed
Telecommunication Services

Conor J McArdle

Abstract

A s the Internet and Telecom m unications dom ains merge, open telecom m unication
service architectures such as TINA, PA RLAY and PINT are becom ing prevalent
D istributed Com puting is a com m on engineering com ponent in these technologies and
prom ises to bring im provem ents to the scalability, reliability and flexibility of
telecom m unications service delivery system s This d istnbuted approach to service
delivery introduces new perform ance concerns As service logic is decom posed into
softw are com ponents and distnbuted across network resources, significant additional
resource loading is incurred due to inter-node com m unications This fact m akes the
choice o f distribution o f com ponents in the network and the distribution o f load between
these com ponents critical design and operational issues which m ust be resolved to
guarantee a high level o f service for the custom er and a profitable network for the service
operator

Previous research in the com puter science dom ain has addressed optim al placem ent of
com ponents from the perspectives o f m inim ising run tim e, m inim ising com m unications
costs or balancing o f load between network resources This thesis proposes a more
extensive optim isation model, w hich we argue, is more useful fo r addressing concerns
pertinent to the telecom m unications domain The model focuses on providing optim al
throughput and profitability o f network resources and on overload protection whilst
allowing flexibility in term s o f the cost o f installation o f com ponent copies and
differentiation in the treatm ent o f service types, m term s o f fairness to the custom er and
profitability to the operator Both static (design-tim e) com ponent distribution and
dynam ic (run-tim e) load distribution algorithm s are developed using L inear and M ixed
Integer Program m ing techniques An efficient, but sub-optim al, run-tim e solution,
em ploying M arket-based control, is also proposed

The perform ance o f these algorithm s is investigated using a sim ulation model o f a
distributed service platform, which is based on TINA service com ponents interacting
w ith the Intelligent N etwork through gateways Simulation results are verified using
Layered Queuing N etwork analytic m odelling R esults show significant perform ance
gam s over sim pler m ethods o f perform ance control and dem onstrate how trade-offs in
netw ork profitability, fairness and network cost are possible

IX

List of Abbreviations and Acronyms

AE Application Entity

ANSI American National Standards Institute

API Application Program Interface

ASN 1 Abstract Syntax Notation One

BILP Binary Integer Linear Program

CCF Call Control Function

CO Computational Object

CORBA Common Object Request Broker Architecture

CSM Communication Session Manager

CTI Computer Telephony Integration

DPE Distributed Processing Environment

ETSI European Telecommunications Standards Institute

FIFO First In First Out

GA Genetic Algorithm

GW Gateway
GWSN Gateway Service Node

IA Initial Agent
IDL Interface Definition Language
IN Intelligent Network
INAP Intelligent Network Application Part

INCM Intelligent Network Conceptual Model

IOP Interoperability Protocol
IP Intelligent Peripheral

ITU International Telecommunications Union
JIDM Joint Inter-domain Management

LAN Local Area Network
LP Linear Program
LQN Layered Queuing Network

LQNS Layered Queuing Network Solver

MIP Mixed Integer Program
MOL Method of Layers
MSC Message Sequence Chart
MVA Mean Value Analysis
NCCE Native Computing and Communications Environment
NMF Network Management Forum

NP Non-determmistic Polynomial
ODL Object Definition Language
OMG Object Management Group

ORB Object Request Broker

OSL Optimisation Solutions Library

PA Provider Agent

PINT PSTN Internet Interworking

PSTN Public Switched Telephone Network

PT Percentage Thinning

QoS Quality of Service
ROS Remote Operation Service

RPC Remote Procedure Call
RR Rejection Ratio

RTT Round Trip Time

SC Service Component

SCEF Service Creation Environment Function

SCF Service Control Function

SCFP Service Control Function Proxy

SCP Service Control Point

SDF Service Data Function

SDP Service Data Point

SF Service Factory

SLA Service Level Agreement

SMF Service Management Function
SN Service Node
SRF Service Resource Function

SRVN Stochastic Rendezvous Network

SS 7 Signalling System No 7

SSF Service Switching Function

SSM Service Session Manager

SSP Service Switching Point
TCAP Transaction Capabilities Application Part
TCSM Terminal Communication Session Manager

TINA Telecommunications Information Network Architecture
TINA-C Telecommunications Information Network Architecture Consortium
UA User Agent
UAP User Application

UQP Unconstrained Quadratic Binary Program

USM User Service Session Manager

VPN Virtual Private Network

X I

Chapter 1. Introduction

Chapter 1 introduces the research area of this thesis The thesis goals are stated in §1 2 and an

overview of the remainder of the thesis is given in §1 3

1.1. Overview of the Research Area

As the Internet and Telecommunications domains merge, open telecommunication service

architectures are becoming prevalent Traditional service delivery systems, such as the

Intelligent Network, are moving towards more open service architectures such as TINA,

PARLAY and PINT Distributed Object Computing is a common engineering component for

these technologies and promises to bring improvements to the scalability, reliability and

flexibility of service delivery systems However, a distributed approach to system design

introduces new performance concerns As service logic is decomposed into software

components and distributed across network resources, significant additional resource loading

is incurred due to inter-node communications This makes the choice of distribution of

components in the network and the distribution of load between these components critical

design and operational issues which must be resolved to guarantee a high level of service for

the customer and a profitable network for the service operator

Telecommunications service systems and software normally operate to very stringent

performance criteria as system downtimes and overloads are expensive occurrences for the

service operator Rejected service attempts dunng such events cause a direct loss of revenue

to the operator In addition, service agreements with business customers often specify that any

revenue loss to the service subscriber, due to system non-performance, is to be reimbursed by

the operator Apart from direct revenue losses, service subscribers expect a high level of

service from telecommunications networks As competition m the domain increases, the

quality of service delivered to the customer has become a more important issue Customers

now differentiate between service providers based on quality of service and so loss of

customers to alternative service providers, due to poor service performance, is a growing

business concern

1

Control of system performance and protection of system revenues pose particular technical

challenges for the operator Telecommunication service networks are normally protected with

robust performance control mechanisms In particular, much effort has been focused on load

control for traditional Intelligent Network service platforms (Service Control Points) When

tightly integrated service platforms are replaced with more open distributed systems

implementations, it becomes a more challenging problem to provide the same high level of

performance control Protection of nodes from overload and assurance of high system

throughput and revenue in such environments, are more difficult goals to achieve than in

traditional centralised systems due to the increased complexity of multiple service

components interacting over multiple network nodes

Much research has already been done in the area of general distnbuted systems performance,

however, performance objectives for general-purpose distnbuted systems differ from those of

dedicated telecommunications systems Distnbuted systems performance optimisation

normally focuses on minimising delays or inter-node communications time in the system

This is commonly a design-time problem with the objective being that, under average traffic

patterns at run-time, request processing times may be as short as possible However, absolute

speed is generally not the main concern for processing of telecommunications services

Human user interaction times determine maximum allowable delays and these times are

typically long compared to computer processing speeds Once delay is bounded to an

acceptable (human) level, of more concern are protection from overloads, minimisation of the

rejection rate of user requests and maximisation of system throughput Recently, revenue

optimisation has also become a direct objective of performance controls As a wider range of

diverse service offerings is introduced to a service platform, it is often deemed important to

differentiate between service types, giving more important services pnontised access to

system resources

In general-purpose distnbuted systems, coupled with design-time performance considerations,

simpler dynamic load shanng schemes are implemented to account for changes in traffic

patterns at run-time Currently, dynamic controls generally assume simplified interactions

between software components Although software design tools are increasing in capabilities,

and can now produce detailed execution timing information for an application, this

information is normally only used for deciding application partitioning and static assignment

of components to network nodes and is not used for design of run-time load controls With

the need for tighter performance control in telecommunications systems it may be of

advantage to leverage detailed application execution information to produce more effective

run-time performance controls

2

In order that distributed service platforms deliver the promised advantages of ease o f software

design, software reuse and flexibility and potentially greater scalability and higher

performance, it is necessary to consider the performance of the underlying distributed system

from a telecommunications perspective This will involve applying telecommunications

performance sensibilities to the performance methodologies that have emerged from the

general computer science domain In this thesis, we investigate both the traditional

telecommunications and the more general computer science approaches towards performance

control Drawing on ideas from both domains, we propose performance approaches for

emerging and future telecommunications service networks

1.2. Thesis Aims and Objectives

The overall goal of the work undertaken in this thesis is to develop a set of controls and

techniques for assuring performance of telecommunication services executing in a distributed

object computing environment Ideas are to be tested and evaluated though service platform

simulations, verified with analytic results The detailed aims and objectives for the thesis are

listed below

• Investigation of literature in the area of load control techniques for traditional
telecommunication service platforms

• Investigation of existing performance improvement techniques for general-puipose

distributed systems

• Identification of prevalent performance concerns for distributed platforms in a

telecommunications environment and identification of desirable performance control

features for such systems

• Development and analysis of suitable design-time optimisation for assignment of
software components to network nodes

• Development and analysis of suitable run-time load distribution and load control
approaches

• Consideration of the following m relation to proposed control schemes

System throughput and revenue maximisation

System overload protection

Multiple service type systems

Consideration of distributed system communications costs

Generality of approach and applicability to future networks

• Investigation of scenarios for distributed computing platforms for telecommunications
services, in particular in relation to Intelligent Network evolution

3

f
• Construction of a detailed model of a representative distributed service platform to allow

analysis of proposed approaches and comparison to existing methods

• Verification of the simulated system implementation with an analytic model

1.3. Thesis Organisation

Chapter 2 {Background and Literature Review) gives an introduction to the evolution of

telecommunications service platforms towards distributed systems Discussed are IN, TINA

and IN/CORBA inter-working The area of performance control in IN and TINA is reviewed

Next, an introduction to distributed systems, from a performance perspective, is given We

review literature in the area of optimising performance of distributed systems, namely

scheduling, task allocation, load sharing, load balancing, admission control, overload control

and component allocation Having considered the literature, requirements for performance

controls are identified and possible approaches to our problem area are considered The

chapter concludes with specific objectives for performance controls considered in the thesis

Chapter 3 (Methods and Tools) reviews mathematical and software tools encountered in the

thesis, namely, probability and queuing theory, analysis of product-form and non product-

form networks of queues, simulation methods for network performance analysis, Linear

Programming, Mixed Integer Programming, and Market-based problem formulations

Chapter 4 (Model o f a Distributed Telecommunications Service Platform) develops a model

of a distributed telecommunications service platform and describes the simulation model and

test services used for assessment of performance control techniques developed in the thesis

Chapter 5 (Computational Object Allocation and Performance Control Strategies) develops a

general set of performance control strategies for telecommunications services operating in

distributed object environments The approaches proposed are based on the system

performance requirements identified in Chapter 2 A method for optimal allocation of

software components to network nodes, which considers component copy installation costs

and network revenue maximisation, is presented Optimal run-time controls are developed A

sub-optimal market-based algorithm is also developed as a run-time control

Chapter 6 (Analysis o f Service Platform and Performance Controls) investigates the

efficiency of our proposed methods developed in Chapter 5 and draws comparison with

existing methods An analytic model is developed, using Layered Queuing Networks, and the

accuracy of the simulator is verified

Chapter 7 (Conclusions and Future Work) assesses our work in terms of our original aims and

objectives and more generally in terms of contributions to this area of research Potential

improvements on the work are identified and possible further research is suggested

4

Chapter 2. Background and Literature
Review

This chapter gives an overview of the evolution and future of telecommunications services.

Related technologies and initiatives, namely Intelligent Networks, TINA, CORBA,

IN/CORBA and TINA/IN inter-working, are reviewed. The state-of-the-art in performance

control for Intelligent Networks and TINA is examined and related literature in the area of

general distributed systems performance is reviewed. The necessity for effective performance

control of future distributed service platforms is identified and the requirements for such

performance control mechanisms are discussed. The related work to-date in this area is

reviewed and the need for further work is identified. Finally, we define detailed research

objectives for the thesis.

2.1. Introduction
Over recent years, telecommunication service and system design has seen much change. The

introduction of open and distributed architectures has become prevalent in both research and

industry. Distributed architectures have been seen as attractive as they promote a separation

o f concerns, allowing services and the network to be treated independently.

Telecommunication systems are becoming more complex due to continuing increases in

power and functionality. Many technological areas such as computing technology,

information technology, network management, integration with the Internet and Web servers

are involved in service development and deployment. As new technologies and elements are

introduced into telecommunication services, to resolve particular problems or to introduce

new service features, an increase in complexity and incompatibility has resulted. As more and

more services are introduced, deployment and inter-working of new and existing scrviccs has

become a resource intensive and time-consuming problem. Effort has been focused on these

issues, detracting from the actual effort devoted to developing new services.

5

Driven by these factors, there is an increasing orientation in the telecommunications society

towards an open software creation and standard computing environment Service

Architectures based on middleware technologies, such as CORBA, are increasingly seen as

the appropriate infrastructure m a value-added telecommunications network The reasons for

this move towards the adoption of middleware technology include

• the increased ability to cope with system scalability issues,

• the ability to leverage commercial off-the-shelf IT technologies,

• the advantages of an open standards process of middleware such as CORBA,

• the ease of system integration with existing working systems,

• the ability to leverage new technologies as they emerge and

• the avoidance of technology and vendor lock-in

Although the object-oriented, distributed computing model provided by middleware promises

to be beneficial for expanding currently deployed service systems such as the Intelligent

Network, by increasing scalability, reliability, flexibility and providing interfacing to other

service networks such as the Internet, fundamental questions have been identified as requiring

careful investigation

• software and data partitioning,

• performance control overload control and load distribution and

• middleware performance

In the past, much effort has been concentrated on providing effective load control and

overload protection schemes for nodes in existing Intelligent Network systems Similar efforts

are required if new middleware based systems are to succeed in providing similar or greater

levels of system reliability and efficiency and if the benefits offered by distributed object

computing technologies are to be maximised In the following sections of this chapter we give

an overview of current and future telecommunication service architectures and then review

the approaches that have been taken towards performance

2.2. Telecommunication Service Architectures

Early telecommunication services were embedded into the call switching network which

typically consisted of a hierarchy of switches, e g a local exchange level, an intermediate

exchange level and a transit exchange level When services were situated at the transit (top)

level, there was a large overhead incurred for their use as a large number of switches and

related trunks needed to be accessed in order to use a service For this reason, services were

6

migrated to lower levels of the hierarchy, reducing overhead In the extreme case, each local

exchange level switch contained the service logic and data meaning that every service must

be loaded into every switch’s software before it could be used Thus service maintenance and

addition was very difficult, especially as the number of services contained in each switch

increased Consequently, the addition of new services occurred very rarely As a single

company was responsible for running an exchange and all of the services it offered there was

no competitive market for service provision since the company running the exchange was the

only service provider Lack of competition led to lack of innovation, and so service provision

did not progress [Haqu, 1994]

2 2 1 . The Intelligent Network

To resolve these issues, the Intelligent Network (IN) was developed in the 1980s The IN

concept was to separate the service processing from the switches so as to ease and speed the

deployment of new services and reduce the then escalating complexity of exchanges There

was also a desire to share service data, distnbute processing among dedicated service network

elements so as to meet an increasing demand for more sophisticated telecommunication

services and allow for scalability The intention of IN was also to standardise interfaces and

protocols so as to enable an open platform for uniform service creation, implementation and

management allowing multiple service vendors to participate in a competitive market IN

standardisation has taken place in ANSI [1999], ETSI [1994] and the ITU-T [1997] and has

been widely deployed

A general framework for creating international standards for INs, known as the Intelligent

Network Conceptual Model (INCM), was developed to provide a framework for the design

and description of the target IN architecture [ITU-T, 1993a] As a self-contained model, it

captures the whole engineering process of the IN At the functional level of the INCM model,

services are implemented by functional entities (Figure 2 1) These functional entities are

realised as corresponding physical entities (normally corresponding to network nodes) in the

physical plane The cate gone s of functions and their corresponding physical entities can be

differentiated as

Basic call-handling functions The Connection Control Function (CCF) resides at the switch

and provides the functionality for basic call processing In the physical plane, the Service

Switching Point (SSP) provides the platform for running the CCF

Service execution functions The Service Switching Function (SSF) contains the logic for

controlling switch resources dunng execution of a service It also provides a service-

independent interface to the Service Control Function (SCF) which controls network

resources dunng service execution In the physical plane the SSP provides the platform for

7

running the SSF and the Service Control Point (SCP) provides the platform for the SCF The

Service Data Function (SDF) contains both customer-related and network-related data and

provides standardised access methods, enabling the SCF to use this data The SDF is

implemented on the Service Data Point (SDP) in the physical plane The SRF provides

service-related functions such as collecting dialled digits or playing service announcements

The SRF is normally implemented by an Intelligent Peripheral (IP) in the physical plane In

addition to the call-related functional entities, the SMF and SCEF provide management and

service creation functions

Acronyms
SMF Service Management Function SCEF Service Creation Environment Function
SCF Service Control Function SDF Service Data Function
SRF Service Resource Function SSF Service Switching Function
CCF Call Control Function CCAF Call Control Agent Function

Figure 21 Functional Entities m the IN Distributed Functional Plane

By way of example, an invocation of an IN service starts by the detection of a trigger event,

at a predefined point within the call For example, dialling a 1800 number will tngger a

service for translating the dialled digits into a ‘real’ telephone number When a trigger is

detected, normal call processing is suspended, and a query is sent to the SCP The query is

expressed as an Intelligent Network Application Part (INAP) message sent to the SCP over

the signalling network, the Signalling System No 7 (SS 7) [ITU-T, 1993] The SCP processes

this query and can either return a set of instructions to the SSP at the switch, or execute its

own service logic, possibly communicating with other entities such as the SDP and IP In the

case o f the 1800 number example, the SCP quenes the SDP for the 'real5 number and returns

it to the SSP for call routing in the switch

Although IN is a huge step forward from early embedded service logic schemes and has

enjoyed a large degree of success, it is still limited by a number of deficiencies [Blair et a l ,

2001] IN services have limited user interfaces Service processing is dependent on the

8

detection of a trigger in the context of a call prior to connection set-up 1 e services are

invoked for the end user by the transport provider Within the switch, the call is modelled by a

Basic Call State Model, which is strongly telephony oriented and inflexible The SCP has a

standardised, generic, connection view of the call processing resources an IN switch offers

This standard model, while enabling some switch vendor independence, offers little in the

way of transport technology independence

The physical separation of the SSP and the SCP, attempted to provide the reliability required

for telecommunication services by provisioning expensive centralised facilities IN did not

attempt to distribute the service itself by endeavouring to build a reliable system by

redundantly deploying relatively cheap and unreliable facilities, or by any other means This

was reasonable given the state of the art in distributed systems at the outset of IN

standardisation, but ultimately it leaves the IN looking like a legacy centralised system, by its

nature more prone to catastrophic failure than a counterpart with distributed intelligence

While the importance of management aspects was acknowledged, the IN initiative

concentrated standardisation effort on service switching and control It was only later that

telecommunication service architectures recognised the need to support the concurrent

development of services and their management facilities

However, while failing to achieve a complete logical separation between a service and its

underlying communications technology, IN nevertheless established a physical separation

between a service and its delivery that provided a useful basis for further service modelling

work

2 2 2 TINA

In 1993 the Telecommunications Information Network Architecture Consortium (TINA-C)

was founded The consortium aimed to define a Telecommunications Information Networking

Architecture (TINA) which would enable the efficient introduction, delivery and management

o f telecommunication services beyond that provided by the IN [TINA-C, 1997] Due to the

rapid convergence of telecommunications and computing, the focus of attention moved away

from the physical network to software-based systems Essentially TINA provides a set of

concepts and principles for specification, design, implementation, operation and management

of software systems for telecommunication networks, with a view to leveraging the

advantages of object oriented design methodologies and distributed object platform

technologies The use of object-oriented principles for service modelling is expected to

improve the interoperability of services allow the re-use of software and to allow flexible

deployment strategies for software in the network The use of distributed middleware

platforms, such as the Common Object Request Broker Architecture (CORBA) [Schmidt,

9

1997], allow hiding of distribution concerns from applications The types of services

supported by TINA range from voice-based services to multi-media, multiparty services

In the TINA service architecture, a service is described as a set of interacting objects called

Service Components (SCs) Each SC consists of one or more Computational Objects (COs),

which are executed in a Distributed Processing Environment (DPE) The DPE shields the

services from the distributed nature of the system, taking care of communication between

objects and maintaining location and communication transparency in the system The DPE in

turn rests upon the Native Computing and Communications Environment (NCCE), the native

systems software that controls a hardware platform A schematic view of TINA from a

computational viewpoint is shown in Figure 2 2 below

\
CO

J
CO CO

Distributed Processing Environment (D P E)

NCCE

H W

NCC E

H W

NCCE

H W

Figure 22 A Schematic View o f the Different Layers o f TINA

The Computational Object (CO) in TINA is the mam entity at the functional level

encapsulating service data and functionality Each service consists of a number of COs

interacting through their prescribed interfaces Some COs are service specific, while others

are common TINA components COs reside m different domains, according to which role

they take m the service (Figure 2 3) User Domain objects are either users of services or

otherwise closely tied to the user whilst Provider Domain objects are related to service

provisioning

TINA Computational Objects are organised in terms of the session concepts to which they

relate in TINA, namely, the Access Session, Service Session or Communication Session

2 2 21 Access Session Related Computational Objects

User Application (UAP) The UAP is the user domain representation of a service application

A UAP allows a user to both create and join existing sessions UAPs belong to the User

Domain

Provider Agent (PA) The PA is a service independent CO and is defined as the user’s end­

point of an access session It allows the setup of trusted relationships between a user and a

10

provider, by interaction with an Initial Agent (described below) During an access session a

PA conveys requests to and from the user to the rest of the system PAs belong to the User

Domain

Initial Agent (IA) The IA is both a user and service independent CO that is defined as the

initial access point to a domain It has the capability to set up trusted relationships between

domains by interaction with a PA These access sessions can be either anonymous or not, in

the former case the User Agent (below) is accessed as an anonymous user agent IAs belong

to the Provider Domain

User dom ain A P c w d e rd o m a in

m OpcUliohal îhlclface

E G Stiearo Interface

---------- Stieairi Connection

” Opeution i rwocaVioh/teply

-® - - CO instantiation

J J TINA Computational Object (CO)

Figure 2 3 Relationships between COs and Domains

User Agent (UA) The UA represents the user in the provider’s domain It is the provider

domain’s end-point of an access session with a user and is accessible from the user’s domain

regardless of that domain’s location A UA acts on the behalf of the user, and may be seen as

11

an intelligent agent-like component. UAs reside in the provider domain. UAs can be both

Named and Anonymous (both subtypes inherit the properties of the UA). Named UAs are

used when a user is a subscriber to the provider’s domain, and can be used for further

authentication if needed. Anonymous UAs are used when a user does not or can not disclose

its identity to a provider. An anonymous UA might for instance be used when calling from a

phone booth or other places where user identity cannot be completely assured.

2,22.2, Service Session Related C om putational Objects

Service Factory (SF): A service specific CO that can create service session components for a

specific service type. It also assembles the resources necessary for the existence of a

component that it creates. The SF resides in the Provider Domain.

User Service Session Manager (USM): The USM is a service specific CO that contains

information about service capabilities, that are local to a user. For instance it keeps track of

local resources used by a user. In the case of suspension and resumption of a service session,

the USM maintains the local state for a user. It resides in the Provider Domain.

Service Session Manager (SSM): The SSM is a service specific CO that contains the service-

specific and generic session control logic for a service. An SSM supports services that are

shared among users in a session. In the case of suspension of a service, the SSM maintains the

state of the session until it is activated again. The SSM supports accounting and resides in the

Provider Domain.

2.2.2.3. C om m unication Session Related C om putational O bjects

Communication Session Manager (CSM): The CSM is a service independent CO that

manages end-to-end stream bindings between stream interfaces. It resides in the Provider

Domain.

Terminal Communication Session Manager (TCSM): The TCSM is a service independent

CO that manages the local intra-node connections in the user’s domain. It answers to requests

from a CSM to setup, modify or remove stream connections. It resides in the Provider

Domain.

2.2.3. TINA in Use

Numerous papers and reports have been published on TINA since the architecture was

introduced in 1995. Sebastiano et al. [1998] provide a survey on how TINA service

architectures and distributed processing platforms may be used to develop third-generation

mobile systems. Alexandre et al. [1999] discuss how mobility could be incorporated into

TINA services. Juan et al. [1998] present a brokerage architecture, which focuses on the

12

development of electronic commerce in TINA environments Several authors have also

advocated the TINA component model for replacing the Intelligent Network SCP, for

example in [Herzog & Magedanz, 1997] and [Mampaey, 2000] Capellmann [2000] reports

on prototypes for TINA based SCPs inter-operating with the Intelligent Network through an

Adaptation Unit An OMG standard [OMG, 1999] has already been defined for inter-working

of IN and CORBA which would facilitate building of such Adaptation Units in a standard

way Mampaey [2000] discusses the benefits of such an approach for IN and states that a

TINA-based IN can offer standardised and service-independent interfaces to prevalent

technologies, such as Computer Telephony Integration (CTI) applications and Internet-based

applications such as Internet call waiting He sees a generic TINA framework as providing

inter-working in a structured way across different technologies (Figure 2 4)

Service X Service Y Service Z

TINA Generic Framework

Web Client IN Adaptation Camel
Adaptation

Adaptation

JVM INAP GSM Technology

Figure 2 4 TINA-based Interworking

Although the uptake of complete end-to-end TINA solutions has been slow, it can be seen in

the literature that the elements of the TINA service architecture have merits for structuring of

general service provisioning platforms In Chapter 4, we propose a model consisting of the

components of the standardised IN/CORBA gateway (acting as the Adaptation Unit)

interacting with a set of TINA Service Components, which provide the functionality of the

Intelligent Network SCP

We will next examine the underlying motivation for use of Distributed Object Computing for

telecommunication service provisioning platforms and give details of the IN/CORBA inter­

working methodology Firstly, we give a brief overview of CORBA before examining IN-

CORBA inter-working in detail

2.3. Overview of CORBA

The Common Object Request Broker Architecture (CORBA) is an open Distributed Object

Computing infrastructure, standardised by the Object Management Group (OMG) [OMG,

1995] CORBA automates many common network programming tasks such as object

registration, location, and activation It also manages error-handling and parameter

•\
1 3

marshalling and demarshalling Figure 2 5 illustrates the main components of the OMG

Reference Model Architecture

Object Services - These are domain-independent interfaces that are useful to any type of

CORBA application For example, a service providing for the discovery of other available

services is almost always necessary regardless of the application domain Two examples of

Object Services that fulfil this role are (1) The Naming Service, which allows clients to find

objects based on names, (2) The Trading Service, which allows clients to find objects based

on their properties

Figure 2 5 OMG Reference Model Architecture

Common Facilities - Common Facilities are onented towards end-user applications An

example of such a facility is the Distributed Document Component Facility (DDCF), a

compound document Common Facility based on OpenDoc

Domain Interfaces - These interfaces fill roles similar to Object Services and Common

Facilities but are onented towards specific application domains For example, one of the first

OMG Domain Interfaces was the Product Data Management (PDM) enablers for the

manufactunng domain Other OMG Domain Interfaces have been defined in the

telecommunications, medical, and financial domains

Application Interfaces - These are interfaces developed specifically for a given application

Because they are application-specific, and because the OMG does not develop applications

(only specifications), these interfaces are not standardised The mam elements of the CORBA

architecture are shown in Figure 2 6

Object Implementation - This defines operations that implement a CORBA IDL interface

Object implementations can be wntten in a vanety of languages including C, C++, Java,

Smalltalk, and Ada

Client - This is the program entity that invokes an operation on an object implementation

Accessing the services of a remote object should be transparent to the caller Ideally, it should

1 4

be as simple as calling a method on a local object The remaining components in the

architecture help to support this level of transparency

Object Request Broker (ORB) - The ORB provides a mechanism for transparently

communicating client requests to target object implementations The ORB simplifies

distributed programming by de-coupling the client from the details of the method invocations

This makes client requests appear to be local procedure calls When a client invokes an

operation, the ORB is responsible for finding the object implementation, transparently

activating it if necessary, delivering the request to the object, and returning any response to

the caller

Client
in args

Object
Implementation

operationO ^

return
^ out args

i r t
IDL Stub IDL Skeleton

ORB

Figure 2 6 Object Request Broker Architecture

CORBA IDL Stubs and Skeletons - CORBA IDL (Interface Definition Language) stubs and

skeletons serve as the “glue" between the client and server applications, respectively, and the

ORB The transformation between CORBA IDL definitions and the target programming

language is automated by a CORBA EDL compiler The use of a compiler reduces the

potential for inconsistencies between client stubs and server skeletons and increases

opportunities for automated compiler optimisations

2.4. Interworking Networks and IN/CORBA

As mentioned in the previous section, two software technologies are candidates for extensive

use m the telecom market (i) object-onented design and programming, which well suits the

need for reusable, open components for telecom applications, and (11) distributed processing,

which suits application to the highly distributed nature of telecom systems This has led to the

definition of a middleware software layer enabling telecom-tailored distributed processing

based on an object-onented approach

Capellmann [2000] notes that the adoption of IT technologies m Intelligent Network systems,

has already occured Current SCP platforms from many vendors are already structured

following a client/server model, m which different UNIX based servers are connected through

high-speed data networks, with front end and back end distnbuted computing Distnbuted

processing environment standards, such as CORBA, are already implemented for service

1 5

management and are under evaluation for real-time applications within IN and wireless

network elements

Much of the formal investigation into the future application of CORBA to IN systems has

been initiated by the Eurescom P508 project [Eurescom, 1997], the goal of which was to

determine the options for evolving from legacy systems towards TINA in a graduated

manner Possibilities for migration from current control and management architectures to

TINA had been previously investigated One major result was that the gradual introduction of

TINA DPE technology, 1 e CORBA technology enhanced with real-time capabilities, into the

existing environments, represents the fundamental prerequisite for such an evolution

Particularly, the evolution of Intelligent Networks was an important study item of the P508

project In the course of these studies, two White Papers [OMG, 1996] and [OMG, 1997]

have been produced by the Object Management Group’s Telecom Domain Task Force, in

order to support the emerging OMG work activities on IN/CORBA interworking These

White Papers are targeted at providers of information technology solutions and have the

purpose of stimulating their interest towards telecommunication operator specific needs They

analyse a small subset of the problem area the introduction of middleware into the Intelligent

Network

Service Components
CORBA compliant resources
Resource Adapters

Event based Service Session,
Notification Service
SS7/CORBA Gateway

Naming Service
Event Channel Service

Telcom CORBA ORB
(RT flexible timeout)

SS 7 based
Kernel Transport Network (kTN)

?

Figure 2 7 IN and CORBA - The P508 Vision

The central idea put forward in [OMG, 1997] is that of introduction of a middleware software

layer into application and data servers, and eventually also into switching systems, enabling a

component-based, distributed intelligence replacing the traditional monolithic Intelligent

Network functional entities The switched transport network ensures transfer of user

information across connections, on which calls are established The middleware platform

enables realisation of IN functions in a distributed way, that is by a set of application and data

servers interacting via the platform corresponding to IN functional entities This platform is

based on CORBA whereby, CORBA servers containing CORBA objects act as reusable

16

service components Communications at the middleware platform level is based on an

Interoperability Protocol (IOP) [OMG, 1995] and the application-level signalling network,

ensuring communication among platform nodes, is termed the Kernel Transport Network

(kTN) It should rely on the existing SS 7 signalling network [ITU-T, 1993], which fulfils

important requirements for telecom applications, such as high reliability Interoperability with

legacy IN elements and services is ensured by a CORBA to SS 7 gateway

On top of the middleware layer, three types of entities are deployed (1) Service / Service

feature components - the service logic, implementing a wide range of services and service

features by means of reusable components, (2) CORBA-compliant special resources -

resources, such as bridges, databases and so on that have been designed in such a way that

they can be directly plugged in on the middleware layer, (3) Adapters for special resources

that interact with the exterior with a different paradigm than that of the distributed computing

middleware, for example, with proprietary protocols

Taking IN legacy systems into account leads to the issue of defming which profile of the

protocol stack must be used, and of building a gateway between the IN and the CORBA

domains based on SS 7

application-level gateway object that provides a CORBA/IDL interface (API) to the objects

on the CORBA side and an SS 7 interface towards the signalling network on the other side

(Figure 2 8) This means that an IN SSP communicates with other network entities using

SS 7/INAP, while on the CORBA side invocations of IDL interfaces are used for

communication The gateway, located in between, is in charge of transparently adapting both

types o f communication The most likely realisation of such a gateway suggested by the P508

report [Eurescom, 1997] is a TCAP/CORBA gateway This is a generic application-level

gateway defined for all TCAP or ROS (Remote Operation Service) Users (of which INAP is

one example) by providing translation algorithms for converting between ROS constructs

defined in Abstract Syntax Notation One (ASN 1) and the corresponding CORBA constructs

using IDL

CORBA Services
IN/CORBA Gateway

SS7 ORB

SSP
Distributed CORBA

Objects supporting IN
Services

Figure 2 8 Gateway to CORBA based Service Platform

In order to enable CORBA objects to control IN SSPs it is necessary to define a dedicated

1 7

Once the gateway from IN to CORBA is defined, it is possible to introduce CORBA as the

distributed processing platform into the intelligent layer to enable the service logic to be

structured as service components, which correspond to objects on the CORBA platform This

component-based approach enables dynamic service composition, 1 e the flexible assembling

of pre-existing components to form a particular service

2 4 1 OMG IN/CORBA Interworking Specification

Interest in these OMG white papers led to the completion o f an IN/CORBA inter-workmg

specification The primary design goal of the specification [OMG, 1999] is to provide

interworking mappings and supporting CORBA services that enable traditional IN systems,

whose interfaces are defined using the ASN 1-based Intelligent Network Application Part

(INAP) and use the SS 7 protocol stack for communication These are to inter-work with

CORBA-based implementations of IN systems, whose interfaces are defined in OMG IDL

and use the OMG-defmed protocols for communication The interworking mappings produce

IDL for a CORBA object model in the CORBA domain that provides interfaces to legacy IN

systems from the CORBA domain and also provides interfaces to CORBA-based IN

applications to legacy IN systems This object model may be used to build a gateway, which

provides protocol conversion and alignment of execution semantics between the IN and

CORBA domains, allowing full IN-CORBA interworking Supporting CORBA objects are

defined by the specification that allow application naming, addressing, location and

instantiation in the two domains to be aligned

2 4 2 Com ponents of the IN/CORBA Gateway and CORBA-based SCP

The application interworking described above may be categorised into Specification

Translation and Interaction Translation The specification translation is an extension of the

JIDM specification translation specification [X/OPEN, 1995] which has been adopted by The

Open Group / NMF JIDM defines mappings for ASN 1 basic constructs to OMG IDL The

extensions allow full translation of further ASN 1 constructs, used to define INAP, into OMG

IDL Interaction Translation is provided by a set of CORBA interfaces, which support the

run-time interactions between CORBA-based IN implementations and legacy IN

implementations Figure 2 9 shows the major interfaces defined and how they interact to

provide an interworking function (gateway) between the IN and CORBA domains

In Figure 2 9, a “legacy” SSP interacts with a CORBA-based service implementation using

the IN/CORBA object model Note that only interactions initiated from the IN domain are

shown here although the model proposed is general and may also support interactions that are

initiated from the CORBA domain The objects shown in grey are CORBA objects whose

interfaces are defined in OMG IDL in accordance with the Interaction and Specification

18

Translations specified by the standard The Gateway Administration object (GWAdmin)

performs the functions of name translation and object location between the two domains

Messages arriving from a legacy SSP are addressed to a particular SS 7 Application Entity

(AE), identified by a particular AE title The GWAdmin provides an interface for translating

the AE title to the CORBA object reference of a Service Factory object, which may create

instances of the Service Interface Object

IN/CORBA Gateway CORBA-based SCP

Figure 2 9 The Interworking Gateway

In order to represent the SSP in the CORBA domain, a SSF Proxy object is required This

object provides an IDL interface for invocation of INAP operations on the SSF from the

CORBA domain and performs the protocol translation and communication with the SS 7

stack The SSF Proxy Factory provides a standardised means o f instantiating a SSF Proxy

The Service Interface Object provides a complementary IDL interface for invocation of INAP

operations from the SSF to the CORBA-based SCP Protocol translation for these invocations

is provided in the gateway The association between SSF Proxies and Service Interfaces is

maintained implicitly by a particular implementation of the gateway - one instance of a

Service Interface Object may be used for several instances of a service session or each new

service instance may create a new Service Interface Object The same is true for SSF Proxies

This design provides implementation flexibility in terms of scalability and distribution

2.4 3 IN/CORBA Gateway and TINA Service Com ponents

In Chapter 4, we will propose a CORBA-based SCP model denved from the IN-CORBA

Gateway Components and the TINA Service Components This model will form the basis for

our investigations in this thesis Several authors have also advocated the TINA component

model for replacing the SCP in the IN (for example Herzog & Magedanz [1997] and

Mampaey [2000]) through use of an IN-TINA Adaptation Unit Although many proprietary

Adaptation Units have been proposed, we have chosen to base our component model on the

standard IN/CORBA gateway

1 9

Having considered past, present and future architectures for telecommunication service

provisioning, we next turn our attention to the related performance issues

2.5. Performance Control of Telecommunication
Services Networks

All telecommunication systems have a finite capacity that limits the volume of requests that

they can successfully process at any one time If the usage of the network by end-users

exceeds its capacity, an overload condition can occur During long periods of overload,

service requests join long queues at busy network processors As a result, service response

times can become unacceptably long This problem may be compounded by end-users

abandoning service attempts after a long wait and issuing new service requests As messages

from earlier abandoned attempts remain in processor queues and new reattempts are made,

the offered load to processors grows even more, leading to even higher abandonment rates

and resulting m an unstable positive feedback scenario The number of service attempts that

actually complete service (and earn money for the operator) decreases rapidly and the

network becomes less profitable

Thus overloads are highly undesirable for both the end-user and the network operator

Therefore, it is essential that steps are taken to minimise the impact overload has on network

performance Performance Control refers to strategies and mechanisms used to manage

network traffic so that network resources are efficiently used and service completion rates are

maximised in all traffic conditions, and in particular dunng overload A broad spectrum of

load controls have been proposed and implemented for telecommunication service networks,

particularly in relation to the Intelligent Network where the focus is mainly on protecting the

Service Control Point (SCP) from overload

Developers of future service networks consider Distributed Processing Environments as a

suitable paradigm for provisioning of new services In this case, a user’s service request is no

longer executed on a single SCP node but is distributed across multiple processing nodes

where processing at each node is required to complete servicing of the request In this

scenario, an overload occumng on any one processor in the system can cause a bottleneck in

service execution Long delays at this node alone may cause the user to abandon the service

request However, to further compound the problem, processing that has already been

completed for this service request on other nodes is then ‘wasted’, as a reattempt by the

service user will require the same processing to be repeated In this respect, performance

control of individual nodes in a distributed environment is even more critical than in an

Intelligent Network, as one poorly performing node can impact heavily on a system that may

be otherwise only lightly loaded Many solutions to balancing of load to prevent such

2 0

bottlenecks have been proposed in the area of general distributed systems research However,

very few solutions have been investigated specifically for telecommunication services and we

propose that this is a worthwhile area of research

When we consider inter-working of the Intelligent Network and a distributed service

platform, we propose that we must also consider performance control at network interfaces as

well as load balancing internally in the distributed system An IN/CORBA gateway in this

scenario behaves very much like a SCP, when viewed from the Intelligent Network side

Thus, it is natural that the gateway should accurately represent the load situation in the entire

distributed system as if it were a SCP This allows existing Intelligent Network performance

control mechanisms to operate normally without the need for knowledge of the load situation

on individual nodes in the distributed system Thus, we contend that Intelligent Network

performance controls could provide overload protection for the distributed platform as a

whole Performance controls operating through such gateways have not been studied, as far as

we are aware, and we propose that research m this area is a worthwhile endeavour We

contend that it is desirable that the internal performance controls (load balancing in the

distnbuted system) and external performance controls (at the gateway) should be integrated

and co-ordinated in an optimal way to provide the most benefit to the service user and

network operator That is, the performance controls should, at the very least, keep system

response times at an acceptable level and maintain a profitable system for the operator We

propose other desirable properties of the performance control later in this chapter (in §2 7)

In the remainder of this section (§2 5) we consider existing work in the area of Intelligent

Network performance control, as it impacts on functioning of performance controls at the

gateway and generally reveals the thinking and methodologies behind performance control

from a telecommunications perspective We contend that methods in Intelligent Network

performance control may also be of use in distnbuted systems We also review the literature

in the area of performance control in TINA as it impacts on performance controls in our

scenanos In the next section (§2 6) we review the broader area of distnbuted systems

performance in detail, as this impacts greatly on optimising performance controls for

distnbuted service platforms

2.5 1 Load Control in Intelligent Networks
In a typical Intelligent Network scenano, multiple Service Switching Points (SSPs)

communicate with a single Service Control Point (SCP) dunng service execution (Figure

2 10) As the SCP is the central controller and executor of service logic, its protection against

overload has been studied widely IN specifications mandate only a minimal degree of load

control functionality and equipment vendors and network operators are therefore afforded a

good deal of freedom when implementing IN load controls

2 1

Numerous approaches have been proposed and compared in the literature The approaches

taken can be broadly categorised into two types, active and reactive [Lodge, 2000] In active

strategies the SSPs detect SCP overload based on local measurements, such as response delay

of messages sent to the SCP If an overload condition is detected, new traffic to the SCP is

throttled (reduced or limited by some means) until SCP overload abates In reactive strategies

the SCP detects overload itself, by means of an overload detection algorithm and notifies the

SSPs of its overload status The SSP then implements a load throttling algorithm until it is

notified by the SCP that overload has abated

Figure 2 10 Overload Detection and Throttling in an Intelligent Network

Most research, on single SCP scenarios, has focused on reactive strategies and differs mainly

in terms of the types of overload detection and load throttling algorithms used A range of

SCP overload detection algorithms, making use of different performance metrics, have been

proposed and investigated

• Queue Length Control when the SCP input queue length exceeds a threshold value the

SSPs are notified of an onset of an overload condition

• Processor Utilisation The proportion of time the SCP central processor spends on
processing service-related messages is measured or estimated over a set interval and
compared to threshold values When employed, the aim is typically to keep utilisation in a

pre-defined range, or close to but below some target capacity

• Incoming Message/Session Rate The number of messages or new sessions arriving at
the SCP over a set interval is compared to a threshold

• Average Response Delay The average time spent by messages in the SCP, from

placement in the input queue to the end of processing, is measured over a set interval and

compared to a threshold

• Dropped Messages SCPs typically drop messages if they have been in the input queue

for a longer than specified time The number of dropped messages over an interval is

compared to a threshold value to indicate an overload condition

2 2

Note that these metrics are used for notifying the SSPs of both detection of onset of an

overload and abatement from an overload condition

Jennings [2001] makes some observations on the relative pros and cons of controls based on

these metrics Queue length control has the advantage of reacting very quickly to overload

onset but can lead to unnecessary over-control caused by random fluctuations in arrival rates

Session rate control assumes that session counts will be directly proportional to the session’s

processing requirements, however this will not be the case if the SCP supports heterogeneous

services, each with different processing requirements He also notes that response delay

schemes suffer from the same difficulties m heterogeneous service He sees dropped

messages and processor utilisation metncs as giving better defined performance objectives

A number of load throttling algorithms that reduce the acceptance rate of IN service requests

in response to SCP overload indications have also been investigated, of which the most

common are

Percentage Thinning With percentage thinning a specified proportion of requests arriving

dunng a time interval are accepted The decision as to whether or not a particular request is

accepted can be based on Bernoulli tnals (refer to §3 1 4), where the probability of success is

the Percentage Thinning coefficient indicated by the SCP

Call Gapping This limits the number of requests accepted in a certain interval to a specified

number The throttle operates by enforcing a minimum time spacing between call acceptances

where no additional requests can be accepted while the gap timer is active Various call

gappmg based schemes have been proposed for example in [Pham and Betts, 1992], [Smith,

1995], [Hacand Gao, 1998]

The relative merits of load throttles have been examined by Kihl and Nyberg [1997], Lodge

[2000] and Jenmngs [2001] The general consensus is that Percentage Thinning is more

dynamic than Call Gapping, in that the Percentage Thinning coefficients are dynamically

computed to provide the necessary reduction in expected traffic dunng the coming control

interval In general it is found that both throttles are approximately equal in terms of

protecting the SCP, albeit under the assumption that Call Gapping gap intervals are

appropriate to the particular network structure Percentage Thinning is seen to exhibit fair

treatment of users, because all SSPs throttle the same proportion of traffic, regardless of their

size For the same reason Percentage Thinning is a scalable throttle not only is it independent

of SSP size, it is also independent of the number of SSPs in the network On the other hand,

Lodge [2000] notes that a significant advantage of Call Gapping is that it places a stnct upper

limit on the number of accepted sessions and therefore is not susceptible to sudden increases

in amval rates, as is Percentage Thinning

2 3

2 5.2. Network-Centric IN Load Control

Although the above schemes can be deployed in multiple SCP scenarios, they function so that

each SCP protects itself independently without regard for the load situation in other parts of

the network There has been recent interest in network-centnc, as opposed to node-centnc,

approaches to load control, which aim to optimise loading across the whole network

Lodge [2000] has formulated a network-centnc strategy that involves the formulation of

Linear Programming problems (refer to §3 3 2), whose solution defines the optimal threshold

values to be used by a Percentage Thinning load throttle residing at SSPs The optimisation

involves the maximisation of generated service revenues subject to load constraints on SCPs

and SSPs, as well as constraints to ensure that pre-defined weightings (similar to priorities)

between service types are reflected in the Percentage Thinning coefficients These weightings

are representative of the relative importance of successfully setting up a session of a given

service type in comparison to a session of other service types In the strategy specification,

weights are calculated using information regarding service session revenue, processing

requirements and service level agreements Specifically the weight of service type j at

resource x (SSP or SCP), denoted cox}, is given by

) = \

where R} is the set-up revenue associated with service type j , q} is the numerical quality -

of-service level of service type j , eXJ is the number of messages in a type j service that are

processed by resource x, juXJ is the service rate of service type j messages at resource x

and J is the number of services supported by resource x Quality-of-service levels are

arbitrarily set by the network operator, on the basis of factors such as acceptable delays,

customer importance or financial penalties associated with non-adherence to service level

agreements

The use of agent technology for multi-SCP networks has been investigated by Patel et al

[2000] They describe a multi-agent system realising an artificial computational market in

which the processing capacity of SCPs is ‘sold’ to SSPs in a manner that maximises global

utility, which in this case is generated profit Davidsson et al [2000] describe an approach

based on mobile broker agents, which sell SCP processing capacity to SSPs on an

autonomous basis, that is, not in the context of an auction (§3 4 gives a summary of market-

based control techniques)

Jennings et al [1999] derived a multi-service globally optimal co-operative market strategy

for controlling load in a multi-SCP network Similar to Lodge [2000], each service has a

2 4

particular revenue generating capacity and a profit optimal solution is sought. Arvidsson et al.

[1997] have also considered profit optimal congestion control in INs based on an estimate of

round trip delay and using baysian decision theory for solution.

Figure 2.11: Multi-SCP Intelligent Network

We describe [Jennings et al., 1999] here as some of the ideas are used as a basis for

formulating our market-based strategy in Chapter 5. In this strategy, load control in a multi -

SCP IN is carried out by means of tokens, which are ‘sold’ by ‘providers’ (the SCPs) and

‘bought5 by ‘consumers’ (SSPs). The amount of tokens sold by a SCP controls the load

offered to it and the amount of tokens bought by a SSP determines how many service requests

it can accept. ‘Trading’ of tokens in an ‘auction’ is carried out such that the common good is

maximised, hence they describe their scheme as a co-operative market strategy.

All SSPs contain a number of pools of tokens, one for each SCP and service class pairing.

Each time an SSP sends a service request to a SCP, one token is removed from the relevant

pool. An empty pool indicates that the associated SCP cannot accept more requests of that

type from the SSP. Tokens are periodically assigned to pools by a central auction algorithm

which calculates appropriate token allocations based on bids from all SSPs and SCPs in the

network. SCP bids consist of unclaimed processing capacity for the coming control interval

and the processing requirements of each service class. In a similar manner, SSP bids consist

of the number of expected service requests for each service class over the next control

interval. These estimates are simply set as the number of arrivals in the previous interval.

The objective of the auction process is to maximise expected network profit over the next

control interval. To do this, the auction maximises the increase in expected ‘marginal utility’,

measured as the ratio of ‘marginal gain’ and ‘marginal costs’. The expected marginal gain

associated with allocating an additional token to a SSP is defined as the profit associated with

consuming it times the probability that it will be consumed over the next interval. The

expected marginal cost associated with issuing a token from a SCP is defined as the ratio of

the processing time consumed and the remaining processing time. In this manner, tokens will

typically be allocated to SSPs with higher bids, i.e. those expecting greater numbers of

2 5

requests for higher profit services over the control interval. The net effect of the auction

process is that tokens are allocated in a manner that balances the arriving traffic load across

all SCPs, subject to maximising the overall network profit.

2.5.3. Performance Control in TINA

There has been a considerable amount of research published on TINA networks in general but

relatively little of it relates to performance issues. Parhar & Rumsewicz [1995] have done

some initial investigations of performance issues in TINA. Sperryn et al. [2000] present a

technique to assess performance metrics for objects executing in the TINA DPE. Kihl et al.

[1998, 1999] and Widell et al [1999] have investigated feasible load balancing algorithms

and overload control mechanisms for TINA, and study how the distribution of computational

objects affects the performance of the TINA network. Kihl et al. [1997] have identified the

impact of Computational Object (CO) placement on performance in TINA networks through

simulations. They conclude that network performance is highly sensitive to how the COs are

distributed among network nodes. Choo et al. [2002] review the area but mainly reference the

work of Kihl. However, they report on how this work has been implemented in the SATINA

[Sperrin, 2000] trial platform.

We review Kihl’s work here ([Kihl et al., 1997, 1998, 1999], [Widell, Kihl etal., 1999]) as it

is the only substantial work, as far as we are aware, detailing TINA performance control

mechanisms and their evaluation and is directly related to work undertaken in this thesis.

SC3 sc4

SC5

sc6

sc7 sc8

TINA DPE

Figure 2.12: Model o f TINA Service Components

In [Kihl et al., 1997, 1999] and [Widell, Kihl et al., 1999], the authors consider a model of a

set of TINA processing nodes with each node hosting a set of communicating TINA Service

Components (SCs). The DPE below the SC layer provides communication and location

transparency between SCs. Thus the same SCs can be placed on several nodes. However, SCs

are not permitted to migrate between nodes. Due to the multiple instances of a SC on different

nodes, it is feasible to apply load-balancing algorithms in the TINA network to improve the

throughput and delay during heavy traffic. If a particular node suffers from heavy traffic, the

other nodes can relieve the situation by sending traffic elsewhere in accordance with some

load balancing decision. Five different load-balancing algorithms are investigated in their

2 6

papers These algorithms use different load detection metrics at each node to decide a course

of action, with measurements being evaluated and decisions made at the end of discrete

control intervals The algorithms proposed are

Random A SC instance is chosen randomly and fairly from the set of nodes hosting that

particular SC type

Shortest Queue The SC instance is chosen from the node with the shortest processor queue

Acceptance Probabilities Two metrics are used for each node Ntot (/) , the number of

messages sent to node i and N (i) , the number of signals sent to node i that have been

rejected The estimated acceptance probability of node ; is then given as

m = [N to , U - N re]{i))lNtot{,)

Acceptance probabilities are calculated for each node and an SC instance is then chosen on

node j with probability

P(j) = A{i) ^ ,4(z) where V is the set of nodes that hosts the particular SC
/ VieV

Load Status Values Each node uses a metric L(i) which denotes load status of node / L(i) is

decreased by one when there are any messages rejected on node i, by the end of a control

interval, otherwise it is increased by one An SC instance is chosen on node / with the

probability

P(i) = L(i) ^ L(i) where V is the set of nodes that hosts the particular SC
/ V ie V

Ant Based Special objects, ants, on all nodes make queries to surrounding nodes at random

intervals The round trip times for the queries for each node j are collected and a

corresponding weighing W(i) calculated W(i) is derived from the reciprocal of the round top

times and taken as a measure of load That is, the assumption is made that the load on a target

node is inversely proportional to the ant round trip time for that node The routing probability

for node / is then calculated as

P(i) = W(i) /^W(i) where V is the set of nodes that hosts the particular SC
/ VieV

The authors investigate the performance of these algorithms in a simulation environment The

simulation model consists of 10 processing nodes hosting 5 different SCs Communication

patterns between SCs are based on a simple TINA service representing the equivalent of an

ordinary telephone call Execution times of SCs are chosen more or less arbitrarily DPE

2 7

costs, for SCs communicating across the network, are accounted for by multiplying the SCs’

execution times by 5 (again an arbitrarily chosen value) Transmission times in the network

are modelled as extra execution time in the sending and receiving node New arrivals to the

network are modelled as Poisson streams and evenly distributed amongst object instances

representing the system users Each node is modelled as a single server system with infinite

First In First Out (FIFO) job queues They investigate a low traffic and a high traffic scenario

Two different SC allocations in the network are examined The first, balanced, has SCs

distributed between their hosts in an even manner The second, focused, has a majority of SCs

concentrated on a few nodes Their results show that for all algorithms high load in the

focused scenario performs worst in terms of throughput with Shortest Queue and Load Status

performing better than the others in this scenano

The authors also make the distinction between internal and external performance controls in

TINA networks Internal Overload Control has the objective of protecting each node

individually in the network from overload External Overload Control has the objective of

optimising the overall network performance When an overload condition is detected within

the network, new requests are rejected at the ingress point to the network That is, service set­

up messages are rejected before they can enter an overloaded network

The above load control schemes may be categorised as internal overload controls With

external overload control m mind, Kihl et al [1998] derived a simple control that rejects new

calls at the ingress point to the network when rejections are detected internally Also, further

to their previous observations on the cnticality of proper assignment of SCs to network nodes,

they derive a Mixed Binary Integer programming problem and apply it to finding the optimal

distribution of computational objects in a TINA network The objective is to maximise the

overall network throughput whilst maintaining processor load at or below a given level

A network of N fully connected nodes is considered There are M Computational Object (CO)

types, all of which are required to execute a single service The arrival rate of new service

requests to the network, A, is to be maximised, with the constraint that load on each node

must remain below a level of p t The binary decision variable y mn is defined such that it is

equal to one if object type m is located on node n and is zero otherwise Objects may be

duplicated across any number of nodes and the total count of an object’s copies in the

network is given as

b = Y N ym / J n_j J mn

which gives one of the problem constraints It is assumed that an object has an associated

processing load of x m during execution of a service session and it is also assumed that load is

2 8

shared equally among all copies of a component, 1 e the load caused by component m on a

node is equal to X xm/bm This gives the processing constraint

Z 1 y™ xmlbm< P tT where T = 1/A

The objective function is then to maximise T, the system throughput The resulting solution

values of the decision variables y mn give the placement of COs in the network It is only

when y mn is equal to one that a copy of CO type m is placed on node n

2 5 31 Comments on TINA Performance Approaches

We see considerable commonality between interests displayed m work done on TINA

performance and our focus on performance of inter-working between Intelligent Networks

and distributed service platforms We see the areas of common interests as

(i) Internal Performance Control In this thesis, we base our model of a distnbuted service

platform on TINA computational objects Thus the objectives of internal load controls in our

scenario are akin to those in TINA However, we note that the simple algorithms investigated

by Kihl et al aim to protect individual nodes and are not globally optimal There is no direct

load detection metric considered by the control, rather it is estimated indirectly only from

locally available knowledge (with the exception of the queue length algorithm) Of course,

this method has an advantage in that no load status related traffic is required in the network

(except in the case of the ant based strategy, which is deemed to be very small m terms of

traffic volumes) However, this will tend to make the controls less effective as the controller

only has an approximate estimate of the load situation in the network on which to base

decisions We propose that a globally optimal strategy with a more direct control over

network performance parameters would be desirable

(n) External Performance Control The need for an external control for TINA networks has

also been recognised and Kihl [1998] has shown the benefits in terms of network throughput

However, as we have stated earlier, it is desirable that the internal performance controls and

external performance controls (at the gateway in our case) should be integrated and co­

ordinated in an optimal way to provide the most benefit to the service user and network

operator TINA performance work has as yet not taken this approach

(in) Placement o f Computational Objects As investigated by Kihl et a l , objects need correct

assignment to network processors m order to guarantee high network throughputs However,

we note that the model presented in [Kihl, 1998] does not account for the cost of remote

communications, which is a major performance factor in middleware systems Also, the

model assumes that all component copies process the same amount of requests This

2 9

assumption restricts possible solutions considered and, in general, will not give an optimal

solution. Also other aspects such as differentiation between service types, and thence fairness

to user types and profit optimality, have not been considered. We contend that the

optimisation model should include these aspects as they have been of considerable

importance in Intelligent Network load control ([Jennings, 1999] and [Lodge, 2000]).

In general we subscribe to these approaches for TINA performance, namely the importance of

optimal component placement and of internal and external controls, however, we believe that

better solutions are required, based on the following premise. If load can be balanced

optimally internally, then rejection of messages should only be necessary at the ingress points

to the network and not internally. This assumes that delays may be kept at low enough values

so that users do not abort service sessions and that users do not abort for other (non delay

related) reasons. Further, if an optimised external control operates to only reject the initial

service setup requests at the ingress points, there will be no ‘wastage’ due to partially

completed service sessions being prematurely ended (due to message rejection by the external

control). The internal and external controls must also be optimally co-ordinated so that the

external control functions to reliably maintain the loading in the network below some given

threshold.

Optimisation of distributed software has been much researched in the wider field of

distributed systems performance. To progress our investigations we now review this area.

2.6. Distributed Systems Performance
There is already a large volume of research in the performance of general distributed systems,

much of which is also relevant to distributed telecommunication service networks. We review

the literature here and examine issues relating to the telecommunication services domain and

in particular identify the salient issues relating to work undertaken in this thesis.

2.6.1. Introduction to Performance M odels of D istributed System s

Generally, Distributed Computing Systems are complex and display a range of properties

associated with parallel processing, that are not associated with sequential processing. This

makes control and analysis of their performance more difficult. Unlike sequential processing

systems, distributed systems pose the problems of design of the parallel algorithm for the

application, partitioning of the application into tasks, co-ordinating communication and

synchronisation, and scheduling of the tasks onto the machines. Given these complexities,

achieving performance improvements or optimisations in such systems, by controlling system

design and execution, is a difficult problem. To formulate useful models that are also

tractable, we need to capture the salient features of the overall system whilst assuming certain

3 0

levels of abstraction in terms of the constituent components and the behaviours of the system.

Here we discuss these components and behaviours along with the simplifying assumptions

generally made in modelling.

In a distributed system model, the execution system is assumed to be a network of processing

nodes each with its own local memory unit so that processing nodes do not share memory and

communication relies solely on message-passing over a network. The main elements and

behaviours of the general systems model, and how they may impact on overall distributed

system performance, are:

Processing Nodes: A processing node is a collection of physical devices including CPUs,

buses, memory units, storage devices and network interface devices. Processing node

performance will have an obvious impact on overall system performance. In particular the

number, structure and speeds of processors on each processing node, amount of available

memory, OS operation and general machine architecture will impact on the effective

processing power available to a distributed application. For the purposes of constructing a

manageable distributed systems models, the details of the interaction of these internal

physical devices are normally ignored. Usually of primary concern in modelling are the

overall processing speeds of processing nodes and the behaviour of message queues at the

nodes.

The processor speed determines the times required to execute modules of a parallel program

and ultimately impacts on the overall system response time and throughput. The probability

distribution of this processor service rate may be considered in the model or simply the mean

service rate may be considered.

How message queues behave will also impact on performance. It is normally assumed that

messages arriving for processing at a node may be added to a buffer if the processor is busy

serving another message and that queued messages are then served according to some strict

discipline, such as first in first out (FIFO). As buffers consume system memory, there may be

a limit set in the model on the number of messages in the buffer or on the total memory

consumed by queued messages. It can be appreciated that the average and maximum length of

queues and the queuing disciplines impact on overall system performance.

The behaviour of each processing node in the system may be considered to be identical in

terms of performance and capabilities (a homogeneous system) or nodes may be modelled as

having differing performance levels and capabilities (a heterogeneous system).

The Network: Processing nodes are connected by an interconnection network. Performance

of the network is dependent on transmission times or bandwidth, physical structure and

topology, routing policies and data and network protocol behaviours. As distributed

3 1

applications need to communicate across a network dunng their execution, the performance

properties of the network will be a determining factor in overall system performance The

details of the network are not generally considered in the broader distributed systems model

Normally the network behaviour is considered in simple terms, for example, a constant time

delay for message transmission over a network hop is assumed to be incurred The network

topology may also be considered in determining the number of hops, and thus the overall

transmission time, for messages between processing nodes

Remote Procedure Calls and Middleware A remote procedure call (RPC) mechanism

provides encoding and decoding of messages between processes executing on different

processing nodes In a middleware environment, such as CORBA, invocation of an RPC is

provided by means of local procedure calls on a set of stub processes on the local machine

On the remote machine a similar set of processes receives and decodes RPC messages, which

are then presented to an application as a local procedure call From the applications

perspective the call resembles an ordinary local procedure call, however, some additional

processing on both the local and remote machines is incurred due to encoding and decoding

of messages for transport over the network This additional processing can cause significant

performance degradation in the system when a large number of messages are passed dunng

application execution

The behaviour of RPCs is influenced by the particular middleware design Client-server

systems, such as CORBA, exhibit certain behaviours depending on modes of operation

selected by the application designer Blocking type calls halt execution of the client process

until a return is received from the server Non-blocking calls do not wait for a server response

before resuming execution These resource contention behaviours may or may not have a

large impact on overall performance depending on the operation of the internal parallelisms at

a processing node For example, threading all blocking client calls effectively renders the

calls as non-blockmg, as duplicate client threads may execute in parallel to blocked threads

Additionally, server processes may be multi-threaded so that blocking calls can be executed

in parallel at the server Of course, threads have overheads, which must also be considered

The exact client-server behaviour will depend on the particular middleware product and OS

details and detailed behaviours may or may not be included in a performance model It is

often assumed, for example, that client-server calls may be modelled as purely non-blockmg,

as high performance systems normally try to avoid blocking behaviour, and thus the

behaviour can be assumed to be equivalent to a simple message passing scheme with queuing

of messages at the server-side Other research has included client-server paradigms in detailed

analytic models, such as Layered Queuing Network modelling, discussed in §3 1 9

3 2

The Distributed Application A distributed application is a collection of units of work which

are required to be executed on processors in the network in order to perform some overall

function Certain work units of the same application may be executed on different processing

nodes in parallel in order to gam an overall performance advantage The way in which such

an application is decomposed into work units, how their execution is shared amongst

processing nodes and the degree of communication between work units during application

execution are central issues for distributed systems performance Regarding these units of

work, we further qualify their assumed behaviour and make a distinction between jobs, tasks

and distributed objects

Jobs Jobs are indivisible units of work, that is, their execution cannot be divided among

processors Different jobs are considered independent of each other, that is, there are no

structured execution relationships between them other than possible sharing of processing

time and processor queues For example, a simple distributed application execution may be

modelled by a collection of such jobs were all jobs must be executed but in no particular order

and with no data sharing required between jobs A collection of jobs may also model a

number of different mdependent applications executing in parallel on the same set of

processing nodes

Tasks Like jobs, tasks are units of work that are atomic in that their execution may not be

pre-empted nor distributed across processing nodes They normally model small units of logic

that perform operations when executed in the system, for example a task may represent the

processing required on receipt of a remote procedure call Unlike jobs, sets of tasks relating to

the same application normally have a data and precedence dependency 1 e the tasks may need

to share data to complete execution of a distributed application and may need to execute in a

particular order In practice sharing of data and execution control is effected by means of

RPCs between processes executing different tasks A distributed application may be modelled

as a collection of interacting tasks It is normally assumed that the communication pattern and

data dependencies between tasks during execution of an application are well defined (for

example by means of class diagrams and related Message Sequence Charts (MSCs))

Distributed Objects In a middleware architecture, such as CORBA, distributed objects are

defined in terms of an interface which describes a collection of method calls on the object

Effectively this notion of a distributed object, from a performance modelling point of view,

implies a collection of related tasks (the object’s method calls) which are not distributable

(1 e must all reside at the node where the distributed object is instantiated) Distributed

objects of an application are normally interdependent in that an object’s tasks are executed in

relation to the execution of the tasks of other distributed objects

3 3

Partitioning and G ranularity of Tasks: How an application is partitioned into distributable

tasks will have a large impact on achievable system performance. Generally speaking,

partitioning into many fine-grained tasks will increase the ability to take advantage of

execution concurrency across the network. However, this advantage may be offset by

increased communication requirements between tasks. Partitioning into large sized tasks may

reduce communication requirements but also reduces flexibility in task distribution and

parallelism. Given a particular partition of an application, the actual system performance

realised is determined by the distributed scheduling scheme.

Distributed Scheduling: Scheduling is concerned with where and/or when tasks or jobs

should be executed on network nodes. Scheduling is an important issue as a poorly designed

schedule causes inefficient use of processing and memory resources and introduces software

and hardware bottlenecks. Subsequently the system performance can deteriorate. Scheduling

is a large class of complex problems that encompasses related sub-problems such as load

balancing, load sharing and task and job allocation.

General Task Scheduling: This is the ordering and allocation of tasks, communication and

data to processors. The schedule normally has an application centric performance objective

such as minimising application execution time and is performed once at design time.

Mapping or Task Allocation: Assignment of tasks to processors to gain a performance

advantage without regard for order of execution amongst tasks. This is a sub-problem of

general task scheduling but is normally driven by a system centric performance measure such

as minimal processor utilisation, minimal communications, or maximal system throughput.

Load Sharing: Load sharing is similar to task allocation but normally involves assigning

jobs, rather that inter-dependent tasks, to processors at run-time with the aim of achieving

some dynamic performance goals, such as equalising queue lengths in the system.

Overload Control: The goal of overload control is to prevent system performance from

degrading in an uncontrolled fashion under heavy load. As a system’s load increases towards

saturation, response times typically grow very large. Under such conditions, it is often

desirable to shed load in some controlled manner rather than cause all users to experience

unacceptable response times. Admission Control is a specific form of overload control where

a proportion of traffic is rejected at the entry point of the system when some performance

threshold is exceeded. Traditionally, overload control is a telecoms domain concept employed

to guarantee a certain level of Quality of Service (QoS) to users but it has rarely been seen

implemented in generic distributed systems, However, we consider it an important factor in

providing high performance distributed systems for telecom service execution and include it

here as a desirable distributed systems behaviour.

3 4

Application Users and Workload Characteristics Application users may be considered as

part of the distributed system behaviour as they generate demand for application execution

and may interact with the application during its execution Service requests may be in the

form of simple independent jobs or require a set of related tasks to be executed There may be

a number of different application types in the system, which require different job types or task

sets to be executed Users that execute different jobs or task sets are referred to as belonging

to different customer classes

The stochastics of service request arrivals and user interaction periods can impact on

distributed application performance As mean service request arrival rates increase it is

expected that average service times in the system will increase due to increased queue lengths

in the system Generally, service request arrivals with large inter-arnval variance or arrivals

that are bursty in nature will produce longer delays in the system Often simple stochastic

models are assumed when modelling random externally driven events such as arrivals For

example, the Poisson process has been used extensively to model service requests from large

populations of independent users

2.6 2 Performance Metrics for D istributed System s

Performance metrics for distributed systems are required in order to assess system

performance and to provide goals for performance optimisation measures, such as scheduling

There are several m common use

• Speed Up This is a measure of parallelism efficiency and may be taken as the ratios of

the execution times in a single processor system and in a system of multiple similar

processing nodes This gives an indication of how a network scales as the number of
processors is increased Ideally, speed up should increase in proportion to increase in the

number of processing nodes in a distributed system

• Communication to Computation Ratio of a parallel program is defined as the ratio of

the average communication time and average processing time for an application This is

similar to speed up and indicates the efficiency of a given application distribution scheme

• Processor Load The fraction of time a processor is busy processing tasks Generally of
most concern in distributed systems is a load sharing metric with gives a measure of load

imbalance across processors This may be stated simply as the difference of maximum
and minimum loads This is a useful measure as often load imbalances are more an

indicator of expected performance than the average system load

• Make-Span This is the total application run time in the system It does not account for

queuing delays but does include time that tasks are blocked waiting for other tasks to

execute If there is no blocking involved, then make-span is simply computed as the total
execution time of all application tasks

3 5

• Throughput We define throughput as the number of application sessions, completed per

second When there are no losses m the network, due to lost messages during congestion

or overload conditions, the throughput will be equal to the offered traffic intensity This
metnc is most useful when assessed in conjunction with system load or system delay

Often of interest is the throughput achievable for a given maximum load or delay

• Round Trip Delay This measure gives the average time for completion of an application

session It thus includes all task processing times and waiting times due to queuing of

messages in the system It is an important metnc as it determines the Quality of Service

that may be offered to users in terms of responsiveness of a system

• Queue Length Queue lengths m the system are sometimes used as an indirect indication

of load and delay m a system

2 6 3 O ptim ising D istributed System s Performance

The performance of a distnbuted system is largely determined by the available resources and

technologies (processing nodes, network infrastructure, operating systems, middleware) and

on the design and deployment of the distnbuted software and data Given that the available

physical resources and technologies are generally fixed due to cost or technical constraints,

the distnbuted application design, particularly in relation to optimisation of partitioning and

scheduling, offers the main opportunity for improving the system’s performance Even when

the amount of physical resources are not constrained, it is largely the efficiency of the

partitioning and scheduling schemes that determine whether or not a performance gam

commensurate to expenditure on resources can be achieved Indeed, until an application is

partitioned and scheduled onto a network, it may be difficult to predict how much processing

power and network bandwidth is required to achieve a required system performance

Partitioning of applications for distnbution has a strong effect on possible system

performance Partitioning may be optimised by deciding the appropnate level of granulanty

for a distributed application The granulanty at which an application is divisible impacts on

the potential for improving the performance of its distribution as the number of potential

distnbutions is inversely related to the distnbution granulanty If the number of distnbutions

is insufficient, none may offer good performance However, if the granulanty is too small, the

tasks of partitioning an application and realising the distnbution may become prohibitively

expensive Optimised partitioning schemes based on minimising communications costs have

been investigated in Purao et al [2002] Systems have been developed, for example COIGN

[Hunt & Scott, 1999], which automatically partition applications at compile-time, but use of

such methods is not common practice

Although partitioning and scheduling impact on each other and thus should ideally be

considered together, this is not generally the case and scheduling is normally treated

3 6

separately having first decided on an appropriate partition of the application Indeed, m the

case of telecom service applications, systems are generally based on prescribed sets of service

components (for example TINA ODL interfaces) which may restrict or predetermine

application partitioning into distributable objects For these reasons, in this thesis we solely

focus on optimisation of scheduling of distributed systems and do not consider partitioning

The next section reviews in detail the area of distributed system scheduling

2.6.4, Scheduling in Distributed System s

This thesis is primarily concerned with issues relating to task allocation and load sharing

which are problem areas in the wider field of scheduling We give a brief overview of the

general area and then focus on scheduling in distributed systems, our main concern The

computational complexity of scheduling problem solutions is an important practical issue and

is also considered here

There is a large body of literature relating to scheduling problems, extending over a long

period of time and applying to many application areas Unsurprisingly, the terminology in the

literature is variable A number of unified taxonomies for scheduling algorithms have been

proposed (Casavant & Kuhl [1988], Wang & Morns [1985], amongst others) but there still

remains an overall vanance in terminology We do not try to align the differences here, but

have chosen a terminology sufficient for our discussions

The general scheduling problem may be described as that of optimally assigning a set of tasks

to a set of resources given the execution costs of tasks and the execution precedence

dependencies between tasks The objective of a solution is normally a performance related

goal, such as that of minimising the average time required to process tasks There are two

aspects to scheduling allocation and sequencing Allocation may be considered as answenng

the question Where should tasks be executed? Sequencing answers When should tasks be

processed in relation to the processing of other tasks Both allocation and sequencing may be

unified in the same scheduling problem, or they may be considered separately

In computer systems, scheduling problems can be broadly categonsed according to the nature

of the processing system being scheduled A distinction can be made between scheduling of a

single processor and scheduling of multi-processor and distributed processing systems On a

single processor, scheduling is concerned with the assignment of processor time-slices to

tasks (processes) which are waiting to execute This is refereed to as local scheduling In

contrast, multi-processor and distnbuted systems are concerned with global scheduling which

decides the allocation of entire tasks to different processors in order to achieve performance

goals for the system as a whole Global scheduling thus considers the course grain properties

of the system (e g processor speeds and network topology) and the properties of the tasks

3 7

being scheduled (e g mean processing time required for each task and inter-task

communication costs) Global and local scheduling concerns are normally considered to be

separable and their interaction is generally not considered

There are also differences in approach between global scheduling in multi-processor and in

distnbuted systems and these can be attributed to the nature of the coupling between

processors m the system Multi-processor systems are generally considered to be tightly

coupled as they have an efficient communications mechanism, such as a shared memory

Distnbuted systems provide communication between processing nodes via message-passing

over a network and are considered loosely coupled Tightly coupled systems can synchronise

the parallel execution of tasks on their processors and scheduling normally considers task

execution sequencing and timing, as well as allocation, to gam further performance

advantages Loosely coupled systems cannot accurately or practically synchronise the timing

of tasks due to vanable communications latencies introduced by the network and the problem

of scheduling is generally restncted to that of allocation alone

The distinctions, an sing from the nature of multi-processor and distnbuted systems, divide

global scheduling into two quite disparate areas of study that of allocation with sequencing

(often refereed to simply as scheduling) and that of allocation alone Each area has its own set

o f related performance goals, system assumptions and solution methodologies There is a

large body of research pertaining to allocation with sequencing for multi-processors and a

literature review may be found in [Baumgartner & Wah, 1990] As we are pnmanly

concerned with performance of distnbuted systems, and not with tightly coupled systems, we

direct our attention towards problems of allocation alone

2 6 4 1 Task Allocation

Task allocation is simply the choice of a mapping of a set of tasks to a set of processors so as

to achieve some pre-defined performance goal This goal is usually represented as some

objective function that may include a combination of several cntena such as equal load

shanng between processors, maximisation of the degree of parallelism, minimisation of the

amount of communications between processors, etc Several different aspects of the

distnbuted system may be represented in the problem task execution times, amount of inter­

task communication, topology of communications network, processor capacities, allowable

processor load skew, etc In task allocation problems, these parameters are considered to be

deterministic and known a pnori This type of scheduling is thus termed deterministic and

static That is, the schedule is determined at design-time and only considers expected values

for task processing times and amval rates to the system We next descnbe the static task

allocation problem in detail and review solution methods from the literature

3 8

Static Task Allocation

To give an insight into the static task allocation problem, we consider a representation of a

generic distributed system depicted in Figure 2 13 The key elements in the system are a set of

tasks to be processed, a set of processors which communicate over a network and a scheduler

which allocates tasks to processors The tasks are considered to be dependent, in that they act

together to perform some overall service and, in order to co-ordinate their execution, they

must communicate with each other This relationship is usually expressed as an undirected

connected graph where nodes represent tasks and edges represent communication

dependencies between them Note that the precedence of execution of tasks is not considered

in the task allocation problem

r

cE)
J

Cn

©
Cl 3 +Cl

© A

Q ,
Figure 2 13 A Task Allocation Schedule An undirected task graph (left) specifies execution times

fo r tasks and remote communications costs for task pairs The scheduler assigns tasks to processors

(right)

It is assumed in the model that tasks allocated to the same processor do not incur any inter­

task communications costs When tasks are assigned to different processors, substantial costs,

associated with remote procedure call overhead and network latency, are incurred The

system model may also stipulate that each task has a different execution time on each

processor and that there are limits on processing and link capacities The goal of the scheduler

is then to make an allocation of tasks to processors such that some performance measure

(derived from the communications costs and execution costs in the system) is optimised As

the scheduler is assumed to have knowledge of task execution times and communications

costs a pnon, this problem is described as static task allocation

There can be a number of competing objectives that will affect overall performance of the

system Intuitively, to minimise the communications costs in the network, all tasks could be

allocated to one processor so that there is no inter-processor communication We could

further stipulate that the processor that gives the lowest total execution time over all tasks

3 9

should be chosen O f course, this approach neglects the performance advantages of

processing tasks in parallel on different processors so that overall throughput can be

increased However, allocating tasks to different processors will also increase

communications costs that will in turn cause some decrease in throughput Other constraints,

such as limited link capacities and balancing of load, may also need to be included in the

problem The scheduling decision thus becomes a balancing act between a number of

competing goals

Several approaches have been taken to formulating and solving static task allocation

problems The mam approaches may be categorised as graph theoretic, mathematical

programming, heuristics and approximation approaches, although there is some crossover

between these categories in many of the solutions proposed in the literature Given that

allocation problems are generally NP-Hard combinatorial optimisation problems

[Papadimitnou & Steiglitz, 1982] and thus are unlikely to have polynomial-time solutions,

algorithms often aim for sub-optimal, but efficient, solutions when the problem size is large

Approximation approaches may be used to achieve fast sub-optimal solution methods with

known solution accuracy Heuristic approaches can also provide fast sub-optimal algorithms

but generally do not give any guarantees on solution accuracy Graph theoretic and

mathematical programming approaches can also be used in combination with heuristics or

approximation For problems of sufficiently small size, exact solution methods can achieve an

optimal solution in reasonable (low order exponential) time Both exact graph theoretic and

mathematical programming approaches have been employed in optimal solution methods We

review the various approaches below

Graph Theoretic Approaches

The birth of the graph theoretic approach to task allocation may be attributed to Stone et a I ,

[1977] who use the max Jlow-mm cut theorem from graph theory [Diestel, 1997] to search for

an optimal allocation of tasks to processors Stone’s objective for the problem is to minimise

the sum of execution and communications costs

An undirected connected graph is constructed where nodes represent both tasks and

processors (Figure 2 14) An edge between two tasks is weighted with the corresponding

inter-task communication cost For instance, this cost may be taken as the volume of data

exchanged between two tasks dunng execution of the task graph An edge between a task and

a processor is weighted with the execution time of the task on the other processor A potential

assignment of tasks to processors is given by a cut of the graph where the cut creates two

disjoint subsets with PI and P2 in different subsets The sum of the edge weights crossing the

cut gives the total execution and communications costs for the allocation Thus the problem is

to find the minimum cost cut This may be found in polynomial time for two processors by

4 0

application of the max-flow min-cut theorem and the Ford-Fulkerson max-flow algorithm

(see [Papadimitnou & Steiglitz, 1982]) This formulation may be extended to an n-processor

system However, Stone notes that the solution involves application of an n-dimensional min-

cut algorithm, which becomes computationally intractable for even moderately large n

i
*

Shen and Tsai [1985] propose a more efficient graph matching approach to the n-processor

problem They formulate the problem as two separate graphs representing the set of tasks and

the set of processors in the system Sets of weights on the task graph nodes represent task

execution times at each processor Edge weights in the task graph represent communications

costs between tasks In the processor graph, edges represent connectivity between processors

Each graph match then corresponds to a possible task allocation An A* Search method

[Nilson, 1971] is used to reduce the possible number of matchings considered and an optimal

solution is found with relative efficiency up to about n=20 Lo [1988] proposes a sub-optimal

efficient heunstic method for Stone’s n-processor problem A “grab” phase first produces a

partial optimal assignment by employing a mapping from the n-processor system to a set of

two-processor systems to which Stone's solution method is applied Two further sub-optimal

‘greedy5 phases assign the remaining tasks with the goal of minimising communications

Ramaknshnan et a l , [1993] solve the problem using a combination of A* Search and Lo’s

“grab” method to achieve an optimal solution method with better efficiency than Shen and

Tsai’s algorithm Kfil & Ahmad [1998] also propose a similar A* Search graph matching

algorithm which is suitable for execution on a parallel machine and report the added benefit

of reduction of the algorithm's memory requirements

Mathematical Programming Approaches

Several mathematical programming approaches have also been proposed to finding an

optimal solution to the task allocation problem (Refer to §3 3 for a review of mathematical

4 1

programming) The classical formulation is proposed by Chu et ai [1980] who uses a 0-1

programming approach The set of m tasks is to be assigned to n processors Processing costs

are defined as the matnx E={etJ}, j~1, m, j =J, n where e,; represents the execution cost of

task i on processor j Communication costs are defined by the matrix C={clkj, i,k=J m,

where clk represents the communication cost incurred when task i and task k are assigned to

different processors Communication cost is zero if tasks are assigned to the same processor

The binary decision variable xXJ is defined and is equal to one when task / is assigned to

processor j and zero otherwise The processing and link capacities are not constrained As

with Stone’s problem, the objective is to minimise execution and communications costs Total

execution cost is given as

Since the sum in parentheses is one and the summation of the remaining clk is a constant, the

first group of terms may be removed from the objective function Thus adding execution and

communication costs the minimisation problem is

which stipulate that each module be assigned to exactly one processor Chu notes that this

general problem has the form of a quadratic binary programming problem which may be

linearised, to a binary integer linear program (BILP), by a change of variable and addition of

appropriate constraints The BILP may then be solved with standard techniques for integer

linear programming such as a branch and bound method

Billionet et al [1992] consider the same problem as Chu and propose a more efficient

solution technique They consider the quadratic form of the cost function (as above) and note

that without constraints, and by relaxing the decision variables to be real, the problem is

m n

And the total communication cost is given as

,= 1 J =] k = l + 1

minimise Z Z ew * . , - Z Z Z c. ^ , * <'I k \] x k j
,= 1 J = \ lc= 1+1

Subject to the constraints

n

] =1 V 7 = 1, ,m

4 2

efficiently solvable by considering it as a max-flow problem m a bipartite graph (see

[Papadimitnou & Steiglitz, 1982]) The authors then construct a branch and bound method to

solve the original problem, which works on a Lagrangian relaxation of the original

constraints They report an algorithm efficient enough for large problems (20 processors and

50 tasks) Recently, Lewis et al [2004] have shown how the same problem may be re­

formulated as an unconstrained quadratic binary program (UQP) which has an exact solution

method with even better computational properties

Bastamca et al [1998] consider a similar problem where the objective is to minimise the

overall communication cost That is, only the quadratic part of Chu’s objective function is

included They add storage and link constraints to the problem Each task is assumed to

consume a given amount of storage on a node and the total storage on each node is

constrained The total amount of communications between nodes is limited to a given link

bandwidth value where the network is assumed to be fully connected so that any two nodes

communicate via a single link Similarly to Chu, the authors linearise the objective function to

form a BILP They employ a generic branch and bound integer linear program solver and

discuss the complexity of an exact solution to their problem They note that current branch

and bound solvers can run in near linear time in the number o f integer variables allowing

problems with over 1000 integer variables to be solved routinely under current (circa 1998)

computing power

Heuristic Approaches

Most graph theoretic and mathematical programming approaches state the problem in such a

way that it may be solved exactly, provided that the execution time of the algorithm is

reasonable With larger problems in mind, researchers have proposed sub-optimal, efficient

heuristic solutions to the task allocation problem

Efe [1982] proposes a heuristic algorithm whereby tasks are ‘clustered5 together in such a

way that communication cost between the resulting clusters is minimised Whole clusters are

then assigned to processors in an iterative manner in order to achieve load balance between

processors Chu [1980] has proposed a similar approach whereby tasks are clustered until the

number of clusters is equal to the number of processors whilst attempting to cluster tasks with

heaviest communication together Tasks are then moved from processor to processor so that a

load balance is achieved Senar et al [1998] propose an approach whereby task clustering is

first used to contract the task graph The second stage takes the contracted graph and tnes to

successfully match it to the network of processors The objective is to minimise both

processing and communications costs Bowen et al [1992] propose a hierarchical clustering

and allocation method that aims for improvement on overall communication cost whilst

satisfying upper and lower bounds on processor usage Sadayappen et al [1990] have also

4 3

proposed a clustering type solution based on the efficient Kermighan-Lin graph bisection

heuristic [Kermighan & Lin, 1973].

More general random heuristic techniques have also been applied to this area. Simulated

annealing has been applied to the task allocation problem by a number of researchers. Kazuo

[2001] notes that although simulated annealing can perform effectively and avoids local

optima traps in static task allocation problems, the standard method can take a long time to

converge to a solution. They construct a standard simulated annealing model and then modify

it by incorporating heuristics based on achieving load balancing and reduction of inter­

processor communications. This method shows a speed up and they show that their algorithm

has a solution close in accuracy to the standard simulated annealing method. Lee & Bic

[1989] present evidence that, with a regular network topology, there are no significant local

minima in the space of possible solutions. Hence, a faster form of simulated annealing called

‘quenching’ becomes appropriate for the task allocation problem. Quenching performs a rapid

cooling schedule, rather than the normal slow cooling, which gives faster convergence to a

minimum.

Genetic algorithms are another general random method that has been applied to task

allocation. The idea of a genetic algorithm (GA) is to follow an evolution process based on

operators such as mutation, inversion, selection and crossover. These operators are applied to

find successively better local minima. The procedure continues evolving until it remains

trapped in a local minimum. Singh & Youssef [1996] have formulating the task allocation

problem in GA terms, and then evaluated various genetic algorithm parameters for obtaining

best performance. Talbi & Muntean [1991] have proposed a GA that is suitable for

implementation as a parallel program. They aim to solve for a task allocation that minimises a

weighted sum of communication costs and the variance of load imbalance. Having optimised

their algorithm parameters, they report good solution accuracy and performance when

compared to hill climbing and simulated annealing. Park [1997] has applied a genetic mean-

field annealing algorithm to the problem, which is a hybrid of GA and mean field annealing.

They show that the hybrid algorithm combines the benefit of both methods and gives

improved performance.

Other heuristic algorithms have been applied to the problem. Elsadek & Wells [1999]

construct a heuristics model which aims to minimise inter-process communication time and

balance processing load. They construct a greedy, locally optimised algorithm and also

consider a randomised algorithm, which achieves more optimal solutions. Aguilar & Gelenbe

[1997] propose a random neural network model for solving the problem and show comparable

performance to standard genetic and simulated annealing algorithms.

4 4

In summary, the main difference in approach to solving static task allocation problems is in

whether an exact or inexact (sub-optimal or approximate) solution is achieved. Although the

problem is NP-hard, relatively efficient exact solution methods for reasonably large problems

have been demonstrated using binary integer linear programming with branch and bound

solution methods. Large scale problems have been tackled using heuristic approaches based

on graph theoretic methods with heuristics, clustering heuristics, simulated annealing, genetic

algorithms, neural networks and greedy algorithms. Exact graph theoretic methods (those that

do not use heuristics) have not yielded efficient solutions. Apart from the solution methods

employed, the approaches in the literature differ in terms of their objectives. Minimum

communications costs, load balance and maximum loading have mainly been considered.

2.6.4.2. Dynamic Task Allocation

When all of the relevant system characteristics are known at compile-time, the allocation

problems, like those discussed above, are known as static task allocation problems. In

contrast, dynamic task allocation relates to task allocation (and re-allocation) during program

execution that moves workload amongst processors in response to changes in system-state

information, such as current request volumes and current processor loading.

Note that, unlike in static task allocation, dynamic task allocation implies that the processes

executing tasks may migrate from node to node at run-time or that the same task may be

available for execution on multiple nodes simultaneously thus allowing the movement or

sharing of load. In static task allocation, each task is permanently assigned to a processing

node. These additional complexities in the model fundamentally change the nature of the

problem and make it more difficult to find optimal solutions. The majority of research

pertaining to dependent tasks (as opposed to independent jobs) has concentrated on static

allocation. Only recently has dynamic allocation been examined and then mainly in relation to

process migration strategies. This recent interest may be accounted for by the recent

proliferation of Distributed Object Systems, whose properties, such as location transparency,

more easily allow relocation of objects in a network. Optimal distributed object allocation

problems, which include the dynamics of task migration, are mentioned in §2.6.5.

2.6.4.3. Load Sharing

Load Sharing is a method of assigning jobs to processors with the aim of achieving some

performance goals such as equalising queue lengths in the system or minimising queuing

delays. This form of scheduling normally relates only to independent job models rather than

systems of communicating tasks. Load Balancing strategies are a specific form of load

sharing where the aim is to distribute the jobs in the system so that all processors perform an

equivalent amount of work. Often the two terms are used interchangeably in the literature.

4 5

Load sharing schemes may consider probabilistic models of arrivals and service times to

arrive at optimal scheduling decisions, whereas task allocation normally assumes only

average values for task execution times From the perspective of the deterministic task

allocation model, an increase in the frequency of execution of a set of tasks on the system

processors will predict a linear increase in processor loading, for a given allocation of tasks to

processors Choosing an optimal allocation is thus independent of user traffic volumes On

the other hand, load sharing may consider the input traffic volume and the stochastics of the

input traffic and the execution time of tasks In this case, the system performance metnc

(normally queuing delay or queue length) is non-hnearly dependent on input traffic volumes,

and traffic volumes become part of the problem definition This type of stochastic problem

has been studied by a number of authors and the pertinent literature is reviewed below Note

that this section references some queuing theory concepts The reader is referred to Chapter 3

of this thesis for a review of queuing theory

Tantawi and Towsley [1985] consider a network of connected heterogeneous processors,

which may process any of a set of jobs arriving to the network All jobs are considered

identical in terms of their processing requirements 1 e there is only one customer class in the

system Any processor may receive a job and may subsequently choose to process it or pass it

to another processor A job may only be passed off once and a communications delay is

assumed when this occurs They consider the response time of a job m the system as

consisting of a delay at the node due to queuing and processing and a delay due to any

communication costs if jobs are passed It is assumed that the mean node delay is a function

of the load of the node and that this function is increasing and convex It is also assumed that

the network is a product-form queuing network, so that they may form a simple expression

for the total mean response time of a job The goal of the load sharing strategy is then to find

the transfer rates of jobs between nodes that minimises the mean response time (queuing,

communications and execution times) of a job in the system There are no constraints placed

on network links or processor loads They formulate and solve this problem as a non-linear,

but convex, optimisation problem The output of the optimisation gives random splitting

probabilities at each node for processing and forwarding in order to achieve the minimum

response time

Similar forms of this stochastic static job scheduling have been studied by other authors Ross

& Yao [1991] have considered an extension of this problem, where there is more that one job

type in the system each with its own independent generally distributed execution time The

service time distribution may vary with the job type and with the host processing the job

Similarly to Tantawi and Towsley, they also require a convex and increasing delay function in

order to achieve a solution Borst [1995] examines a similar problem accounting for different

4 6

customer classes He formulates the problem specifically as a network of M|G| 1 nodes and

finds the optimal assignment of customers to servers that minimises the mean total waiting

time for customers Wolf & Yu [2001] consider a similar problem in the form of minimising

overall response time in a Clustered Web Farm The web farm consists of a number of web

servers and a number of web sites, which may be duplicated and distributed across the

servers The web sites are computationally independent of each other and so can be

considered jobs m our terminology They model queuing delay, by defining a response time

function for each server This is an arbitrary function of overall traffic intensity at a server

which may be obtained from simulation or measurement but is required to be differentiable,

convex and increasing so as to achieve a tractable numencal solution method They formulate

a non-linear optimisation problem with the objective of minimising the sum of all response

functions over all servers whilst also maintaining server loads below a given value This is a

separable convex resource allocation problem that they solve using methods based on

Tantawi and Towsley’s work Cardellmi et al [1999] have applied a similar method for

optimising web clients choosing between replicated hosts

Many forms of dynamic job scheduling have also been extensively discussed in the literature

Generally dynamic schemes are based on relatively simple heuristics Some examples of well

known schemes are Shortest Queue - an incoming job is assigned to the processor that

currently has the least number of queue messages, Least loaded - the currently least loaded

processor is assigned to the job Various other schemes have addressed migration of jobs

between processors and have vanous objectives such as minimising queue lengths,

minimising overall delay or balancing load Literature reviews may be found in [Bemardt et

al, 1992] and [Yue ta l, 1986]

2.6 5 Com ponent A llocation

Classic scheduling problems focus on allocation of jobs or tasks to network processors With

the more recent interest in Distributed Object Computing, scheduling mechanisms have been

extended to deal with the allocation of distributed software components across a network The

component model may be viewed as an extension of the task model and component allocation

schemes in the literature have generally been based on earlier work on task allocation,

particularly in relation to the graph theoretic and mathematical programming approaches We

review the literature in this section in some detail as it is directly related to work undertaken

in this thesis

For the purposes of our discussion here, we define a component as a software module that

exposes interfaces allowing execution of its methods remotely A component may also be the

source of remote method calls on other components We assume that a component is atomic

4 7

and may not be decomposed into smaller distributable objects For example, a component

may represent a single CORBA object or a group of collocated CORBA objects Often in

component allocation problems, method calls are not represented individually in the model

but all communication between two components is amalgamated into a single flow or

optimisation variable which represents some aspect of the total communication volume

between two components The processing load associated with this communication flow

between two components may also be the focus of the allocation problem Usually these flow

problems may be represented as equivalent mathematical programming problems to obtain a

solution

A number of authors have tackled the component allocation problem in different forms The

scope of the problems differ in terms of the objective of the optimisation, the main

optimisation variable chosen, whether or not multiple customer classes are considered,

consideration of duplication of components, consideration of network topology and the

solution methods employed

A comprehensive and quite general model of the component placement problem is proposed

m [Anagnostou, 1998] The mam focus is optimal placement of components in order to

minimise communication costs in the network The problem is constructed as a linear

mathematical programming problem with communication flow between distributed

components as the mam optimisation variable Their model takes into account the following

aspect of the distributed system

• A set of communicating components that may be duplicated arbitrarily across processing
nodes

• A network of processors An arbitrary network topology is allowed and a cost function
associated with each network link is defined

• A set of service users of different customer classes with a set of associated demands they
create for different service types Users are assumed to be fixed at certain nodes in the
network

The model is composed of (1) G(V, E) a network topology graph where V is the set of nodes

and E the set of links, (11) G(C,F) a service graph where C is a the set of components and F

the set of edges representing communication between them and (111) A a set of edge labels

associated with F which denote the traffic volume exchanged between components per unit

traffic offered by a user to the network

The graph of all possible allocations of components to nodes is then constructed 1 e G(C, F)

where C = C x V is the set of all components copied to all nodes and F is the set of all

possible interactions between them

4 8

A set of constraints is then required to govern the communication flows inside G(C, F) as

follows If (c} c2)e C and (<c2 c3) e C are two pairs of components, with A'e A and /lMe A

as their associated labels, then the sum of the traffic to/from all copies of C; to any copy of c2

divided by the sum of traffic to/from all copies of c3 to the same copy of c2 should equal

/L//T

A second set of constraints is required to associate the flows in the network with traffic flows

from users This is done by equating all flows involving the initiating components with the

user demand flow Finally, the objective function is defined as minimising the product of the

network flows and their corresponding distances over all possible edges, thus minimi sing

total communications costs The authors illustrate how multiple customer classes may be

accommodated by adding new service graphs to the formulation

It is noted by the author that it may be more reasonable to allow an inequality constraint to

associate user demand and network flows so that the solution for the network flows need not

meet all the demand from users (eg in an overload situation all user demand cannot be meet)

This would be an important modification if a node capacity constraint (which is suggested as

a possible addition) were incorporated into the model Otherwise, when the user demand

exceeds a certain level there is no solution satisfying both constraints However, the equality

constraint of network flows meeting user demand is the only constraint in the original

problem which drives the solution away for the zero vector and the author notes that the use

of the inequality constraint must be coupled with some addition to the cost function or an

additional constraint to avoid the zero solution The author suggested that a cost is added to

the objective which increases with the amount of unsatisfied user demand These issues are

not frilly addressed in the paper and we feel that a clearer and cleaner solution could be

devised The authors also suggest a method to add component installation costs but state that

this method would make the problem a hard combinatorial problem

Bastarnca et al [1998] also consider the problem of deploying software components in a

network so that the overall remote communications cost is minimised The constraints

considered are the available storage on each node and available bandwidth on links in the

network It is assumed that each component is assigned to one and only one node The

network is assumed to be fully connected so that any two nodes communicate via a single link

and thus network routing costs are not considered Each pair of communicating components

are assumed to generate a given amount of traffic and the bandwidth of links between nodes

is constrained to given values Each component, when instantiated on a node, consumes a

given amount of storage on that node The amount of storage is constrained on each node

The authors formulate this problem as a mixed binary integer programming problem with the

objective of minimising the total amount of communication in the network

The authors do not give an interpretation of their ‘storage’ variable but it can be seen that it

may directly represent memory, disk space or, maybe more usefully, processing capacity

This is a somewhat simpler model and more akin to a classic task allocation problem in that

components are not allowed to be duplicated and the model is not driven by user traffic

volumes from different customer classes

Kihl et al [1998] develop a simple mixed binary integer programming problem and apply it

to finding the optimal distribution of Computational Objects in a TINA network The

objective is to maximise overall network throughput whilst maintaining processor load at or

below a given level

A network of N fully connected nodes is considered There are M computational object types

all of which are required to execute a single service The arrival rate of new service requests

to the network, X , is to be maximised, with the constraint that load on each node must remain

below a level of p t The binary decision vanable y mn is defined such that it is equal to one if

object type m is located on node n and is zero otherwise Objects may be duplicated across

any number of nodes and the total count of an object’s copies in the network is given as

b = Y N vm ¿ _^ n_] y mn

This gives one of the problem constraints It is assumed that an object has an associated

processing load of xm during execution of a service session and it is also assumed that load is

shared equally among all copies of a component, 1 e the load caused by component aw on a

node is equal to X xm /bm This gives the processing constraint as

Y ! i=xymn xm/bm < p J where T = 1/A

The objective function is then to maximise T, the system throughput

This approach differs from others in that load is the focus rather than communications costs

The solution will tend towards load balancing across processors, however, the model does not

account for the costs of remote communications This will generally tend to give too much

distribution and non-optimal communication patterns between components All component

copies are assumed to process the same amount of requests which restricts possible solutions

considered and, m general, will not give an optimal solution

Avramopoulos and Anagnostou have considered the problem of optimal allocation of

components to network nodes in the case where some of the components are fixed and some

are mobile agents which may migrate from node to node as communication patterns change

[Avram & Anag , 2002] In this work, the authors adopt a graph theoretic approach and seek

5 0

to minimise the network traffic that is incurred dunng component communications and during

component migration The solution methods are formulated as a Mixed Binary Integer

Programming problem The first problem they solve is that of locating a single copy of each

component in the network in an optimal way The second problem considered is that of

optimally migrating mobile components in order to reduce mter-component communication

costs when communication patterns between components change

In the first problem, a network of nodes, denoted as the set V, and a set of interacting

components C are considered A subset of these, Cx, are fixed components that are pre-

v assigned to certain network nodes and the remaining set of components Cm are considered

mobile and are to be optimally assigned to nodes A graph G(C, F) is then constructed where

the set of nodes C represents the set of components and the graph edges F represent messages

passed between components Labels are assigned to edges to denote the volume of

messages exchanged between components The cost of communication between components

residing on different network nodes is considered to be the product of this traffic volume and

distance between the corresponding nodes, denoted d(v,v’), where d is some distance

function d V x V W The authors consider the problem of finding the assignment of

mobile components Cm to the set of nodes V such that network traffic is minimal, that is

minimisation of the cost function

C = S k „ d (v y)]D f
fzF

where Df is a binary decision variable, defined over all possible assignments of components

to nodes, 1 e C x V , which indicates whether or not two particular assigned components

interact The following constraints are then added to the problem

• Only one copy of each component may be assigned in the network

• Only one pair of assigned components may have a non-zero flow between them and

• A component must be assigned a to node for there to be non-zero flows associated with it

The possible locations of mobile components are not constrained (although this is possible)

There are no constraints relating to network bandwidth, processing capacity, etc

In the second problem, re-configuration of the component configuration is sought by means

of migrating components from one node to another, when communication patterns between

components change Migration is considered to occur only at the end of a phase Dunng each

phase the component communication pattern is constant and migration occurs in response to a

change in anticipated communication patterns for the next phase Each mobile component is

considered to have a size and an associated cost is incurred if it migrates to another node The

5 1

optimal routes for migration of components is sought, such that the overall cost of

communication and the transportation costs are minimised Note that the first problem

solution may be applied to the problem of finding an initial component configuration for

components at design-time whose locations will thence remain fixed The second problem is

only applicable to components that may migrate at run-time

The model does not consider different service classes, or limits on processor loading or

network bandwidth Both problems are mixed binary integer programming problems The

authors show that it is NP-Hard for N>2 Although a NP-Hard design-time problem may be

tolerable, from a complexity point of view, it is uncertain if such a problem would be

applicable to the dynamic run-time migration problem

Silaghi & Keleher [2001] consider a somewhat similar scenario to Avramopoulos &

Anagnostou but apply simple heuristic decision policies, rather than optimal programming

models, to achieve a solution They also consider a network where only one copy of a given

component may be active at any time but this component instance is allowed to migrate from

one processor to another The algorithm operates as follows the target processor of each

message to be sent is evaluated as a potentially new host for the message’s source component

This produces a heuristic measure of affinity for a particular component to a particular

processor Components are then migrated from over-loaded to under-loaded processors in a

way that best satisfies the affinity measures for all components and processors but also

considers the cost of component migrations The objective of the decision criteria is to

balance load and achieve minimal network communications traffic Results are given but not

compared to any optimal methods This problem more resembles a dynamic load sharing

problem than an allocation problem

2.7. Performance Control of Distributed Telecommunication
Service Platforms

We have identified the importance of scheduling methods for maximising the efficiency and

performance of general distnbuted applications and have reviewed literature in the area,

namely task allocation, load sharing and component allocation methods In this section, we

consider the requirements of scheduling specifically in the context of telecommunication

services executing on distnbuted platforms, with a view to applying scheduling methods for

performance control In particular, we wish to find suitable solutions to the problem areas of

optimal internal and external performance controls and optimal placement of Computation

Objects in an IN/CORBA inter-working network, by considenng suitable general distnbuted

system methods We also require that these solutions take into account performance

requirements specific to telecommunication services

5 2

Telecommunication services have a number of specific requirements in terms of performance

From the user’s perspective services are expected to display the following attributes

• Responsiveness Users generally expect telecommunication services to be highly
responsive and long delays m accessing a service or slow response during service usage
are not tolerable

• Stability and Reliability Each time a service is accessed, a similar performance is
expected Consistency in the responsiveness of a service gives the user an impression of
quality Only very small downtimes are tolerable as customer satisfaction is heavily
influenced by even very infrequent service failures

• Fairness As all users generally pay the same amount for the same service, all users
expect to be treated equally and experience the same responsiveness and reliability Also,
users generally expect the performance of more costly service offerings to be better

From the service operator’s perspective, the service network is expected to display the

following attributes

• Responsiveness Delays need to be kept low to avoid aborted sessions and subsequent
loss of revenue for the operator

• Stability and Reliability Apart from wishing to keep customers satisfied for good will
and direct monetary reasons, large expenses may be incurred by the operator if regular
maintenance is required due to unreliability of performance control mechanisms

• Optimality, Efficiency The performance control solution is expected to achieve the most
efficient use of resources possible, maximising return on investment in service
infrastructure

• Profitability Ideally a performance control mechanism should be able to relate resource
usage and profitability of service types, whereby high profit (or high cost to the customer)
services are assigned a greater proportion of resources, increasing the network capacity
for processing high profit services or increasing service responsiveness

• Scalability and Flexibility of solution The performance control solution should not be
closely tied to particular technologies and network topologies Upgrading of
infrastructure should be possible without major remvestment in performance control
solutions Solutions would ideally be general and applicable across different platforms

Scheduling and load control solutions for telecommunication services should be mindful of

these requirements in their design and applicability Considering these requirements, a

number of technical aspects are implied for suitable performance control schemes We review

these below particularly in relation to existing scheduling methods discussed previously

2 71. Performance Requirements

5 3

2.7 2 Possib le Approaches to Performance Control for D istributed
Telecom m unication Services

Solutions to performance optimisation have generally focused on static deterministic

scheduling schemes due to complexity issues The added complexity of component model

interactions over the simpler job or task model has dissuaded researchers from considering the

stochastics of service times and user traffic This is justified, as existing stochastic job

allocation models are already complex in nature even with tight requirements on the product

form nature of the model

A salient feature of work done on the stochastic job scheduling problem is that queuing delay

variables must be separable, which is valid when jobs are independent (for example in

[Tantawi and Towsley, 1985] and [Ross & Yao, 1991]) This aids formulation of a tractable

optimisation problem Also, some reasonable conditions placed on the individual delays in the

system ensure that the overall system response time is convex increasing These conditions

allow solution with efficient numerical solution methods However, due to the added

complexity of resolving queuing delay in networks with interdependent distributed

components (and thus dependent queuing delays), even to an approximate degree, the

problem of optimally assigning components based on an accurate estimation of queuing delay

is not simple We are not aware of any attempts to do this and we discount stochastic schemes

from investigation of optimal scheduling in component-based systems However, our hope for

a responsive system is not all lost, as system delays may at least be influenced by balancing of

load or maximising throughput in the network and, as we have seen from component

allocation literature, these problems are linear and generally efficiently solvable

Several such component allocation schemes have been reviewed, however, none meets all our

requirements Kihl [1998] does not account for the cost of remote communications, which can

be a major performance factor in middleware systems Also, the model assumes that all

component copies process the same amount of requests This assumption restricts possible

solutions considered and, in general, will not give an optimal solution Anagnostou [1998] has

a more comprehensive model, however, it is oriented towards minimising communications

delays rather than limiting processor loading, which is our central concern He considers the

cost of installation of multiple copies of components, which we consider to be a useful ideal

Bastarnca et al [1998] do consider limits on loading but do not allow duplication of objects

(which we consider a desirable feature) Their scheme is more akm to a classic task allocation

problem Avramopoulos & Anagnostou [2002] also do not consider component copies in the

network The scheme of Silaghi & Keleher [2001] is heuristic based and so non-optimal

Most authors consider minimisation of some simple communications metric rather than

maximisation of throughput and load limiting Processing costs associated with protocol

5 4

encoding/decoding have not been explicitly included in previous schemes None has

considered biases for service profitability or user fairness

Dynamic scheduling has been considered in the literature mainly in the context of load

sharing in job models This relates generally to what we have termed internal performance

control However, due to the added complexity of dynamic schemes (readjusting the schedule

m real-time) task allocation has generally not been considered in a dynamic context

However, it is desirable that load control could somehow adapt to changing user demand m

order to meet our requirements for stability, reliability and flexibility of the solution Little

work has been done on this in relation to optimal dynamic scheduling in component

architectures with the exception of component migration schemes, for example in

[Avramopoulos & Anagnostou, 2002] However, optimal component migration schemes

involve solution of NP-Hard problems at runtime and it is our view that more efficient

methods are essential for practical solutions A lower complexity, optimal solution is

required We consider the simple schemes of Kihl et al [1997, 1999] as too far from optimal

for our purposes

Admission control {external performance control) has received relatively little attention in

distributed systems literature but has been a focus of performance in telecommunication

service networks (e g Intelligent Network load control) for a long time Admission control in

a telecommunications environment is essential to ensure reliability and particularly stability

dunng high load situations In the distributed systems domain, some recent work has

considered application of admission control to web servers Chen & Mohapatra [2003]

implement a dynamic weighted fa ir sharing (DWFS) scheduling algorithm specifically for

controlling overloads in web servers Similar work has been done by Iyer et al [2000]

The issue of optimising profitability of a network by favouring high profit services has

received some attention in the IN community but has escaped attention in the general

distributed systems area In Intelligent Networks, several profit optimal schemes have been

proposed, m relation to admission control schemes Jennings et al [1999] have considered a

co-operative market and ant-based algorithms for optimising network profit based on service

discrimination dunng over loads in ENs Arvidsson et al [1997] have also considered profit

optimal congestion control in INs based on an estimate of round tnp delay It would seem

natural to also apply such profit optimisation to component-based systems

2 7 3 Proposed Approaches

Having considered the general requirements and related work in the area, we consider the

specifics of requirements for performance controls m distnbuted object-based

telecommunication services

5 5

■ Internal and External Performance Controls Admission control (external control) is

traditionally viewed as an essential performance measure for telecommunication services

and must be included in the performance control scheme An efficient internal control is

also essential for proper functioning of the distributed platform As stated earlier, this

external control should be integrated and co-ordinated in an optimal way with the internal

control in order to meet the performance requirements

■ Profit Oriented Optimisation Profit optimisation is now seen as a desirable property of a

performance control m Intelligent Networks and should be included in performance

schemes of future distributed object based networks However, profit optimisation should

be balanced against fairness to users

■ Dynamic Controls Changing demand from users or changing network conditions are

expected to be handled in a controlled fashion in telecommunication services networks

and this issue should be addressed Both internal and external performance controls

should be dynamic, however, in order to be of practical use, they need to be

computationally efficient and easily implemented

■ Flexibility of Application Flexibility of the performance controls is important in respect

to the following aspects Duplication of components (multiple component copies) in the

system model should be allowed in order to gam the benefits of fault tolerance and load

balancing There should be no artificial constraints on load balancing between duplicated

components, for example by stipulating that all component copies receive the same load

Multiple service classes with independent processing requirements should be considered

Cost of component deployment, when there are multiple duplicated components, should

be considered Aspects of component architectures, such as relationships between service

specific components and common service independent components, should be

considered The control should not be tied to a specific network topology or structure, that

is, heterogeneity in node processing capacity and user traffic should be accommodated

■ Accuracy of Control It is important that the main factors impacting on performance be

included in the model to produce an accurate control For example, communication costs

associated with protocol encoding and decoding times are significant in distributed

systems and their impact should be included in models

■ Load Centric Approach Telecommunication service performance generally considers

optimisation of loading in networks, as opposed to considering communication delays

This approach is dictated by the importance of avoiding overloads in environments with

unpredictable and widely varying user service demands It is normally assumed (in

Intelligent Network load controls for example) that the network is reliable (over-

56

capacitated and properly protected) and that the focus of attention should be efficiency

and protection of processing nodes, rather than on the network infrastructure We apply

this principle of separation of concerns and require that a load centric approach would

also be desirable in component-based systems

These proposed approaches define a new set of performance problems for which we seek
<

solutions in this thesis

2.7.4. D etailed Research O bjectives

Our mam research objectives in this thesis are as follows

• Development of suitable solutions to the proposed performance control approaches
outlined above

• Verification that solutions to the proposed optimal approaches meet our original
performance requirements for distributed telecommunication service platforms Critical
examination and identification of deficiencies in this respect

• Comparison of our optimal approaches to our own best-effort non-optimal approaches
and to existing methods to verify that a substantial gam is being achieved by the proposed
optimal approach

In order to perform critical verification and comparisons the following related objectives are

defined

• Development of a detailed component model for IN/CORBA inter-working that
accurately expresses the architectures of the IN/CORBA gateway inter-working with a
distributed telecommunication service architecture, namely the TINA service architecture

• Translation of this component model into suitable simulation and analytic models at an
appropriate level of detail, in order to obtain quantitative verification and companson of
results These models should accurately express the salient performance issues in such
architectures, namely processor loading and overloading, throughput, profitability, user
fairness and service response times

5 7

We have given an overview of the evolution and future of telecommunication services and

identified that technological and business drivers are moving service platform

implementations towards the distributed computing model We have examined initiatives in

this area, particularly in relation to inter-working with the Intelligent Network for medium

term solutions and progression towards long term solutions The value of the TINA service

architecture for structuring such solutions has been identified

Existing performance control methods for IN and TINA have been examined and the driving

factors and requirements for telecommunication service performance controls identified

Deficiencies in the area of performance control for distributed component-based

telecommunication services have been identified Solutions to these deficiencies are sought in

the general distributed systems performance literature and a number of useful methods

identified Based on these methods we have proposed desirable telecom-centnc properties of

performance controls, which have not been seen m previous controls This essentially defines

our problem area We conclude the chapter by stating our research objectives of finding

suitable solutions and examining the solution behaviour in an IN/CORBA inter-working

environment

2.8. Chapter Summary

5 8

Chapter 3. Methods and Tools

This thesis is primarily concerned with performance analysis and performance control of

distributed telecommunication service networks This chapter introduces the mathematical

and simulation methods and software tools used for the performance analysis conducted in

Chapter 6 of this thesis Network performance is evaluated using discrete-event simulation

techniques and supported by results from client-server analytic modelling These methods are

described in §3 2 and §3 1 respectively Mathematical methods for the development of

algorithms for network performance control are also outlined Control algorithms developed

in Chapter 5 are based on mathematical optimisation techniques (Linear Programming and

Mixed Integer Programming) and Market-based control techniques These methods are

descnbed in §3 3 and §3 4 respectively

3.1. Analytical Methods for Network Performance Analysis

Analytic network modelling is based on the application of queuing theory, a branch of

mathematics which applies the theory of stochastic processes to the analysis of the behaviour

of queuing systems This section provides a brief introduction to stochastic analysis and

queuing theory with particular focus on methods suited to the analysis of client-server based

systems Detailed introductions to stochastic analysis and queuing theory may be found in

[Papoulis, 1984] and [Kleinrock, 1975] respectively

3.1.1 Basic Probability Theory

Probability theory concerns itself with describing random events The notion of statistical

regularity is central to the theory This dictates that, under certain conditions, it is possible to

make very precise statements about large collections of random events For example, if an

unbiased com is tossed many times, one expects that the outcome will be heads in

approximately half of the cases In fact, the probability of a heads outcome, for an ideal

unbiased coin, is exactly V2

More generally, consider an experiment having n possible outcomes, denoted o{, ,on,

where the outcome of the experiment cannot be predicted m advance An experiment of this

kind is called a random experiment and the set of all its outcomes is called the sample space,

JP

denoted 0 - {ox, ,on} An event is the result of a single random experiment and comprises a

subset A of the sample space A probability measure of event A , denoted P[A] , is a non­

negative number indicating the likelihood of the occurrence of that event as the result of a

single experiment, or alternatively, the expected frequency of occurrence of the event over

multiple experiments Probabilities are defined so that the sum of the probabilities of all

possible outcomes of an experiment sum to one, P [0] = 1

3 1 1 1 Random Variables and Distribution Functions

It is often the case that some value relating to an outcome is of more interest than the outcome

itself This leads to the concept of a random variable The random variable X is a function,

defined on the sample space O , which takes a value X(o) for each oeO Random variables

can be classed as continuous or discrete, depending on whether their range (the set of values

they can take on) is discrete or continuous The probability that a random variable takes a

certain value x is denoted P [X = x] For discrete random variables this leads to the

description of a probability mass function (pmf), denoted p (x) , as follows

p(x) = P [X = x]

Another convenient form for expressing the probabilities associated with a random variable is

the cumulative distribution function (cdf) The cdf of a random variable X is defined as

Fx (x) = P [X < x]

and expresses the probability that X takes on a value less than or equal to x Where Fx (x)

has a continuous derivative everywhere, a related function, the probability density function

(pdf), can be defined as follows

f x {x)
JxK ’ dx

Note that

r f x {x)dx= i
J — oe

Thus the pdf is a function which, when integrated over an interval, gives the probability that

the random variable X takes on a value in that interval

3 1 1 2 Moments of a Random Variable

The probability distribution of a random variable is often charactcnscd by a series of related

parameters, called moments In most practical applications of probability theory, only the first

6 0

two moments are sought in order to approximate the characteristics of a random variable.

Informally, the first moment gives the average value of the random variable and the second

gives the spread of values around this average. In general, the k th moment of a random

variable X , denoted E[Xk], is defined by:

E[Xk}:= r xkf x (x)dx
J -oo

The first moment of a random variable X , denoted E[X] or X , and known as the

expectation, or mean, or average value of X , is given by:

E[X]:= f " xfx (x)dx
J — oo

The second moment, the variance of a random variable X , denoted V[X] or <JX, is given

by:

V[X] = a 2x = j j x - X) f x (x)dx

3.I.I.3. Independent Random Variables

If we consider two random variables, X and Y , defined for some sample space, then the

extension of the cdf for the two variables is defined as:

Fxr(x,y):=P[X<xJ < y]

Associated with this function is a joint pdf, defined as:

JxrK * dxdy

X and Y are said to be independent if and only if:

fxY ix*y)= fx(x)fr iy)

3.1.2. Stochastic Processes

A stochastic process (or random process) is a function X(t,o), commonly denoted simply

X(t) , of both time and probability space. For a fixed value of t it becomes a function of

probability space, i.e. a random variable, whereas for a fixed value of o it is a function of

time and is referred to as a sample function of the process. Stochastic processes are widely

used to model the behaviour of telecommunication systems, for example, the number of

callers on hold in a call centre queue can be modelled as a stochastic process (Figure 3.1).

6 1

♦ N(0

Figure 3.1: An Example Stochastic Process - The Number o f Customers in a Queue over Time

The cdf of a stochastic process, denoted Fx (x,r) is defined as follows:

Fx (x,t):=P[X(t)<x]

Furthermore, for n allowable values of t , {tl9t2,...,tn} , a joint cdf may be defined for the

process as follows:

Fxl,x2....,xn (* i »*2 »•••»*» »*1 >*2 v > 0 := — x\ >^(^2) - - * „]

The joint cdf is commonly denoted using the vector notation Fx (x;t) . In order to completely

specify a stochastic process the values of Fx (x;t) must be specified for all possible subsets

of {*.}, {i(} and all n. However, for many interesting and useful stochastic processes it is

possible to provide this specification in very simple terms. In the following sections we list

some classifications of stochastic processes based on their properties.

3.I.2.I. Stationary Processes

A stochastic process X(t) is said to be stationary if Fx (x,t) is invariant to shifts in time for

all values of its arguments:

Fx (x;t + r)=F x (x;t)

where t + r is defined as the vector (f, +T,t2 +r,...,tn + t) .

All stochastic processes discussed in this thesis are considered to be stationary.

3.1.3. The M arkov Process

The Markov process is the most important class of stochastic processes used in the analysis of

telecommunication systems. It is a simple stochastic process in which the distribution of

future states depends only on the present state and not on how it arrived in the present state.

This simplification allows relatively easy analysis and yet the model is powerful enough to

accuratcly model many aspects of performance in telecommunication systems. The most

useful sub-classes of this process, which apply to this thesis, are described in the following

sections.

62

Formally, a stochastic process is classified as a Markov process if and only if its next state is

dependent only on its current state and not on any previous values This can be expressed

mathematically as follows

W „ +.) = * „ +1| * (0 = xtM t 2) = * 2, , X (Q = x „] = P[X{ t „J = xn+i\X (0 = r j

3 1 3 1 Markov Chains

A Markov process with a discrete state space is referred to as a. Markov chain Markov chains

can be either discrete-time or continuous-time For a discrete-time Markov chain the instants

at which the state changes are preordained (a state transition takes place at each instant even if

the state does not change as a result of the transition) For a continuous-time Markov chain

the state transitions can take place at any instant in time Of particular interest is the random

variable describing how long a Markov chain remains in its current state before a transition to

another state occurs For a discrete-time Markov chain this time can be shown to be

geometrically distributed, whilst for a continuous-time Markov chain it is exponentially

distributed

3 1 3 2 Birth-Death Processes

A birth-death process is a (discrete- or continuous-time) Markov chain in which state

transitions only take place between neighbouring states If, with no loss of generality, the set

of integers is chosen as the discrete state space then the birth-death property requires that if

X n= i, then Xn+l= i - 1, / or z + 1 and no other value Birth-death processes play an

important role in queuing theory, since they provide a means of modelling a queuing system

where the time intervals approach zero (a continuous-time process), so that only a single

event, an arrival or a departure, can occur during an interval Figure 3 2 illustrates the process

m ^ m*

Figure 3 2 State Transition Rate Diagram fo r the Birth-Death Process

The probability of a birth-death process being in a particular state k at time t is denoted by

Pk (0, where

Pk (t + At) = Pk (0 - U k + jik)A tPk (t) + \ _ XA tPkA (0 + JUkAtPk+x (0 + o(t) k > 1
P0(i + At)= P a (0 AiP0 (0 + //,A tPs (0 + o(i) k = 0

6 3

where Ak is the birth rate (or arrival rate), representing the rate at which births (arrivals)

occur when the population (number in the system) is k , and juk is the death rate (or

departure rate), representing the rate at which deaths (departures) occur when the population

(number m the system) is k The above equations can also be written in the form

—~lp~ = W*-. (0 - W* + Mt)Pk (0 + (0, k > 1dt

^ ^ = - V o (0 + / / , i i (0 , £= 0dt

313 3 The Poisson Process

A special case of the birth-death equations above, m which the amval rate Xk is constant and

the departure rate fik is zero in all states (l e Xk = X, juk = 0 V k), yields the solution

P (i)= id ^ le-* /c>0 t> 0
* Arl

This is known as the Poisson distribution and describes a Poisson process The Poisson

process is widely used in queuing theory for the modelling of amval processes such as the

sequence of times at which calls are originated by users of a telephony network

For a Poisson process, the average number of arrivals in (0,0 is At and the variance of the

number of arrivals in the same time interval is also equal to At The mteramval times of a

Poisson arrival process are exponentially distributed, i e the pdf of the mterarnval times is

given by f(t) = Xe~*i , t> 0

The mean of the exponential mteramval time distribution is x/ x , while its variance is y# The

exponential distribution also exhibits the memory less property, whereby the distribution of the

time until a future amval is independent of the time since the last amval Therefore if, at

some random time t , an estimate of the time that will elapse until the next amval is evaluated

then the result will be independent of the time that has elapsed since the last amval

3.1 4 Bernoulli Trials

Bernoulli trials are a stochastic process widely used to model a sequence of independent

generic trials that can result m two outcomes, success or failure, where the probability of

success is p and the probability of failure is (1-/?) Analytically we can describe the Bernoulli

trials process with a sequence of indicator random variables ,In> where the j th

indicator variable is used to describe the outcome of trial j Therefore we have

P [Ij= l] = p, P [/,= 0] = (!-/>)

6 4

Figure 3.3: Relationship between Different Classes o f Stochastic Processes

3.1.5. Q ueuing Theory

Queuing theory involves the study and analysis o f the behaviour o f queuing systems, where a

queuing system is any system in which arrivals place demands upon a finite-capacity resource

[Kleinrock, 1975]. Queuing theory is concerned with estimating values such as the mean

queue size, mean waiting time or length o f idle period, which are key metrics used for the

evaluation of the performance of many systems.

In general, the length o f a queue depends on the mean arrival rate (of customers), the mean

rate at which arrival demands are serviced (the service rate) and on the statistical fluctuations

of these rates. Clearly, when the mean arrival rate exceeds the system capacity the queue will

grow in an unbounded manner. However, even where the mean arrival rate is less than system

capacity, queues will sometimes grow due to clustered arrivals and/or variations in demands.

The effect of these variations will be greater when the arrival rate approaches the maximum

capacity o f the system. We now introduce some of the basic terminology used in queuing

theory.

In order to completely specify a queuing system the stochastic processes that describe the

arrivals to the system and the structure and discipline o f the servers must be described. The

arrival process to a queue is typically described in terms o f the probability distribution o f the

interarrival times o f requests, denoted ,4 (0 , where:

A(t) = P[time between arrivals < t]

The mean arrival rate to the queue is denoted A , giving the mean interarrival time as yx .A n

arrival stream may be comprised o f more than one class of arrivals, which may be described

by different interarrival distributions.

The server process o f a queue is typically described in terms o f the probability distribution of

the service times o f request processed by the queue, denoted B{ x) , where:

B(x) ~ ^[service time < x]

65

The mean service rate of the queue is denoted ju, giving the mean service time It is

possible for a queue to contain more than one server and it is possible that the distribution of

service times will differ for each server

A useful definition is that o f offered load (denoted a) which is defined as the product o f the

arrival rate and the mean service time a = ^ The offered load is a dimensionless quantity

that provides a measure o f the demand placed on the system It is normally expressed in units

called Erlangs A related quantity, the load o f a queue, denoted p , is a measure of the

proportion o f time the queue server is busy, it is calculated as p = y M

An important structural description of a queue is that o f the queuing discipline, which

describes the order in which requests are taken from the queue and allowed into service

Some common queuing disciplines are First-In-First-Out (FIFO) and Last-In-First-Out

(UFO) Some queuing disciplines distinguish between classes of request arrivals on the basis

o f priority, with higher priority requests being granted preferential access to the server The

extent o f storage capacity available in the queue to hold waiting requests may also be limited

A fundamental result in queuing theory is Little ’s Law , which states that the mean number o f

requests in a queuing system (denoted N) is equal to the mean arrival rate o f requests to the

system (A), times the mean time spent by requests in the system (denoted T) N = AT

Queues can be classified according to the widely used shorthand notation A ! B i n , where A

describes the queue’s mteramval time distribution, B describes its service time distribution

and n is the number o f servers in the queue Values which A and B can take on include

Markovian (1 e exponential) (M), Deterministic (D), Erlangian (E) and General (G)

Solutions to many combinations of mteramval time, service time distribution and queuing

discipline are known for a single queue [Klemrock, 1975] However, when queues are

connected to form a network, analysis becomes more difficult

3 1 6 Analysing Networks of Queues

In general, analytic models in which jobs departing form one queue amve at another, or

possibly the same queue, are called queuing networks [Gelenbe, 1999] Unlike single queues,

there is no simple notation for specifying the type o f a queuing network Certain subsets of

the general queuing network have been identified and efficient exact analysis techniques

developed For more general networks, however, approximate techniques are the only

practical solution These topics are outlined below

3 1 6 1 Product Form Networks

The simplest queumg network is a series o f M single-server queues with exponential service

time and Poisson arrivals It has been shown by Jackson [1963] that each individual queue m

66

this series can be analysed independently o f other queues The joint probability o f the queue

length o f M queues can be computed simply by multiplying individual probabilties for each

queue The queuing network is therefore termed a product fo rm network

In general, the term applies to any queuing network in which the expression for the joint

probability o f queue lengths o f M queues has the following form

MJ XVI
P (nu n 2, ,n M) = — — T [^ n^

J=j

where f t (n ,) is some function o f the number of jobs at the ith facility and G(N) is a

normalisation constant (see [Gelenbe, 1999]) and a function o f the total number of jobs in the

system This property o f product form networks renders them the simplest to analyse

Important early work has shown that arbitrarily connected networks o f queues, under certain

assumptions, have product form solutions Jackson, Baskett, Chandy, Muntz and Palacios

([Baskett et a l , 1975]) and Denning & Buzen [1978] have identified important classes of

networks with product form solutions

At present, product form networks are the only class of queuing networks which have an

exact solution in an explict form Furthermore, more general network models, such as the

client-server model that has been investigated in this thesis, do not belong to this class

However, product form networks do provide the basis for approximate algorithms which may

be used to solve more general non-product form models These appoximate algorithms are

descnbed below

3 1 6 2 Mean Value Analysis (MVA)

Mean Value Analysis (M V A) is a simple solution technique that allows analysis o f complex

product-form queuing networks It is outlined here as it forms the basis for Approximate

M V A , which is the core component o f the analysis methods used in this thesis to solve

complex non-product form networks

M V A gives only mean performance measures (mean delay and mean throughput) It can be

applied to networks with a variety o f service disciplines and service time distnbutions and can

accommodate both single customer class and multiple class models Load dependent and load

independent servers may also be represented

The M V A algorithm uses three key equations that are denved from L ittle 's Law and the

A rr iv a l Instant Theorem Little’s law states that the mean number o f requests m a queuing

system (N) is equal to the mean arrival rate o f requests to the system (/ I) , times the mean

time spent by requests in the system (T) That is N = XT

6 7

The Arrival Instant Theorem states that, in a product-form queuing network, the queue length

(Ac k) seen by a customer o f class c on amval at a service centre k is equal to the mean queue

length Qk there with the arriving customer removed form the network That is,

Ack(N) = Qk (N - \ c) (3 11)

where N = {Nl9 , NC) is the workload intensity vector consisting o f all class population sizes

(Nc) and N - \ c is the population N with one customer o f class c removed The three

equations from which the M V A algorithm is derived are

1 The service centre residence time for each chain

Rc>(») = Dck{l + Ack(N)) (3 12)

where Dc k is the total demand o f class c at centre k i e the product of mean service time and

visit frequency

2 Applying Little’s Law to the queuing network as a whole, the throughput (X c) for each

class is

W = P - _ (3 13)
Ze + ̂ R ek(N)

k=1

where Zc is the think time for class c and Nc is the number o f customers for class c

3 Applying Little’s Law to each service centre, the mean queue length Qck for class c at

centre k as well as the total mean queue length Qk at centre k are

OckW) = Xe{N)Rek{N)

Qk(N) = j ^ Q ck{N) , (3 14)

The M V A algorithm consists o f finding an amval-instant queue length Ac k and using this

queue length to find the residence time (equation 3 1 2) The residence time is then used to

derive the throughput (equation 3 1 3) Finally, from this throughput a new queue length may

be found (equation 3 1 4)

There are two approaches to evaluating the equations, exact and approximate, which differ in

the way the amval instant queue lengths are computed In the exact method, applicable only

to product form networks, equation 3 1 1 is evaluated exactly The trivial solution o f the

network for population 0 is used and applied to equations 3 12 and 3 1 4 From equation

68

3 1 4 the queue length for the next largest population is obtained The computation proceeds

recursively over increasing populations until the target population is reached More detailed

descriptions of exact MVA may be found in [Jain, 1991] and in [Lazowska et a l , 1984]

3 1 6 3 Approximate Mean Value Analysis

As exact MVA requires an evaluation at every possible population, the computational

complexity increases with the number of job classes and service centres An approximate

method often becomes more practical for larger problems since it does not require evaluation

of equations 3 12 and 3 1 4 for all populations Instead, the arrival instant queue lengths Ac k

are estimated based on the time averaged queue lengths at the service centres with the full

customer population N and iteration is used to improve the estimate Many different

functions may be used to estimate the arnval instant queue length The most commonly used

is the Bard-Schweitzer approximation which assumes that Ack(N) is proportional to

Qck(N) The formulation for the approximation is

Ack(N) = Qk(f r \ c) = ^ - Q ck(N) + 0 1 5)
r*C ;=1 J*C

This method has been studied in [Wang & Sevcik, 2000] and its accuracy compared to that of

exact MVA For networks with 3 job classes and 20 service centres, the error m queue length

is reported at 1 45% while the error in response time is 1 04% Approximate MVA is a widely

used analysis method and is a core component for solving sub-models in the Layered Queuing

Networks model (discussed in next section), which has been used as the basis for analytical

methods employed in this thesis

3 1 7 Layered Q ueuing Networks (LQNs)

Multi-tier client-server systems considered in this thesis pose particular problems for

performance analysis methods descnbed thus far The Layered Queuing Network model

(LQN) [Woodside, 1996] extends the product-form model to reflect interactions between

client and server processes The blocking nature of the remote procedure call m client-server

systems causes problems for standard mean value performance analysis The remote

procedure call is a type of simultaneous resource possession the requesting task and the

serving task are both held by the same customer while the remote procedure call is in

progress Furthermore, should the server continue to execute after the remote procedure call

replies (a second phase of service), a second customer is effectively created These conditions

preclude the direct application of the product-form model If the effect of simultaneous

resource possession were ignored, the throughput estimates from a performance model would

6 9

be overestimated because the time needed to acquire resources would not be accounted for

The LQN model allows these behaviours and permits layers of interacting clients and servers

to be modelled

3 1 8 Solution M ethods for LQNs

As mentioned above, multi-tier client-server application systems cannot be modelled directly

using mean value analysis because the synchronisation blocking from nested sub-services is a

form of simultaneous resource possession The problem can be solved using the Method of

Layers (MOL) [Rolia & Sevcik, 1995] or the Stochastic Rendezvous Network (SRVN)

[Woodside et al 1995] method The features of both have been combined in the Layered

Queuing Network Solver (LQNS) [Franks & Woodside, 1998] These methods are described

below

3 1 8 1 Method of Surrogate Delays

The Method of Surrogate Delays is a key concept in solving of replicated models of the type

described below The method, [Jackson & Lazowska, 1982], is an approximate solution

technique for queuing network models which have resources that are accessed simultaneously

or have an overlap in possession Basically, the queuing network is split into multiple models

In each model, a delay is obtained for a particular resource, modelled as a queuing station,

while the other resources are represented by delay servers The method iterates the queuing

delay estimates between the models until convergence

318 2 Stochastic Rendezvous Networks (SRVNs)

The Stochastic Rendezvous Network (SRVN), proposed by Woodside et al [1995], is used

mainly to model a system with software queuing and rendezvous, although hardware elements

may also be included in the model The model consists of an acyclic graph of clients and

servers Clients and servers are collectively referred to as tasks, which are used to model

users, devices, and software processes Requests from one task to another use the remote

procedure call paradigm l e clients are blocked until the server responds The SRVN model is

solved by first constructing a set of sub-models each consisting of only one server and a set of

clients and their surrogate delays Next, the overall model is solved by applying MVA to each

of the sub-models A variation of the Bard-Schweitzer MVA approximation is used where the

waiting time expression is modified so that the queue length is found using arrival instant

probabilities instead of simply scaling based on a fraction of customers in the system

Throughput results from each sub-model are then used to adjust the surrogate delays in all of

the other sub-models The solution iterates among all the sub-models until convergence

criteria are met *

7 0

3 1 8 3 Method of Layers

The Method of Layers (MOL) [Rolia & Sevcik, 1995] solves client-server queuing networks

by decomposing the network into a set of two-level MVA sub-models Each sub-model forms

a conventional product form queuing network where the servers form the stations and the

clients form the customers The MVA sub-model is constructed by splitting the input model

into two sub-models, one for hardware contention and the other for software contention The

MOL algorithm then estimates the performance of the system under study by iterating among

the various sub-models It begins by solving the software sub-models from sub-model 1 to

sub-model N-\ (There is no software sub-model //because the pure servers at level N make

no requests) Once the software sub-models have converged, the performance results are used

to set the think and service times for the tasks in the hardware model The performance

estimates from the solution of the hardware model are then used to set the service times for

the various software sub-models This sequence continues until the desired convergence

criteria are met Note that, unlike SRVN, the layering of servers is strict i e a server may only

interact with servers in the next lowest layer

3 1 9 The Layered Q ueuing Network Solver (LQNS)

The analysis methods employed in the Layered Queuing Network Solver (LQNS) [Franks &

Woodside, 1998], combine the strengths of SRVN and MOL techniques to broaden the

modelling scope and to improve the accuracy of solutions to Layered Queuing Networks

(LQNs) The LQNS combines previous methods discussed i e the SRVN model and the

Method of Layers LQNs are solved using surrogate delays to solve the simultaneous resource

possession problem arising from the nested calling pattern in the system being modelled This

goal is accomplished by partitioning the input queuing network into a set of smaller MVA

sub-models, then iterating among these sub-models until convergence in waiting times The

solver software takes the LQN model specifications as input, m the form of task, entry and

processor specifications, and returns a solution for the throughputs of tasks in the systems

We describe the model elements briefly below

LQN models consist of layers of tasks, which are interconnected by their call patterns forming

an acyclic task graph Tasks represent interacting entities in the model that carry out

operations and can also take on the properties of resources, including a queue, a discipline and

a multiplicity Tasks may represent hardware and software objects that may execute

concurrently and are the central modelling entity in LQNs

A task has one or more entries, which represent different operations that the task may

perform Calls are requests for service from a task entry to an entry of another task and

demands are the total average amount of host processing and average number of calls

required to complete a given entry Calls may have asynchronous or synchronous behaviours

7 1

Asynchronous calls do not wait for a reply from a called task whilst synchronous calls block

the calling thread until it receives a reply

A task may have an associated host processor, which models the physical entity that carries

out operations Tasks with a multiplicity greater than one can be used to represent multi­

threading Tasks that do not receive any requests are called reference tasks and may be used

to represent traffic sources or system users They cycle endlessly, creating requests to other

tasks Tasks that do not have an associated processor, but merely model workload aspects of

an object, are referred to as pseudo tasks More than one task may be associated with the same

processor, in which case all such tasks share a common queue

Figure 3 4 shows a simple LQN model The larger parallelograms represent tasks and the

smaller ones are the task’s entries Circles represent physical resources, such as processors

Directed arrows represent calls, with solid arrows of the type shown representing

synchronous, or “rendezvous”, calls In the task graph shown, TO is a reference task with a

multiplicity of 10, which may be considered as representing 10 individual, but identically

behaved, users connected to the system Task TO (a user) generates calls to entry el of task 77

at a given rate, and blocks until el has executed Task 77 is associated with processor PI and

takes on the properties of the resource, namely a queue and queuing discipline Task 77 has

multiplicity 1 in this case (is single threaded) and thus represents a simple queue and service

centre Note that, under certain assumptions, this LQN merely represents a closed product-

form queuing network, which could be solved exactly by other means

In Figure 3 5 below, a non-product form LQN model is shown In this case, a call from the

user executes el which subsequently executes e2 whilst still blocking task 77 In this case,

processors PI and P2 are bemg held by the same customer until e2 has completed execution,

that is, there is simultaneous resource possession in the system The effective service rates of

the processors are not independent and thus the queuing network is not product-form The

LQNS may be used in this case to obtain an approximate solution

Figure 3 4 A Simple Layered Queuing Network

7 2

Note that LQNs may model tasks that receive and generate calls to/from multiple other tasks

Thus fork-jom behaviour may be modelled and solved Systems with fork-join behaviour

violate the fixed customer and routing assumptions in a closed queuing network and thus

cannot be solved as a product-form network The model of interest to this thesis, given in

Chapter 6, displays fork-jom behaviour and an LQN model has been constructed to obtain a

solution

Figure 3 5 Simultaneous Resource Possession m an LQ N

Note that LQNs can represent a finer level of detail within tasks, activities Activities are

connected together to form a connected graph which represents one or more execution

scenarios Execution may branch into parallel concurrent threads of control, which may or

may not execute in parallel on the target system Execution may also choose randomly

between different paths In Chapter 6, we use activities for modelling fork-joins and to

represent choosing randomly between entries that a task may call This allows modelling of

load sharing behaviour in the system

3.2. Simulation Methods for Network Performance Analysis
In general, simulation modelling is the process of designing a model of a real system and

conducting expenments with this model for the purposes of

• understanding the behaviour of the real system

• aiding in the design or validation of the system

• determining strategies for effective operation and management of the system

• evaluating the performance of the system

• performing optimisation of the system

7 3

In the context of computer and telecommunication systems, a simulation is usually the

execution of a model, in the form of a computer program, which gives information about the

system being investigated Computer simulation is a technique that has gamed widespread use

in industry and is of fundamental importance in the design and evaluation of many types of

systems

In this thesis, we are mainly concerned with simulation for evaluation of performance rather

than with the system design process Specifically, simulation is used to evaluate and compare

various algorithms for network performance control Performance investigations that are

undertaken through simulation include, identification of system bottlenecks, analysis of

steady-state behaviour of the system, analysis of the stability of the system and optimisation

of system control parameters

Simulation is often used in conjunction with an analytic approach to performance evaluation,

rather than as an alternative Analytic modelling often requires simplifying assumptions that

render the results suspect until they have been corroborated by other techniques Simulation

may also provide a wider range of performance metrics than is possible with mathematical

analysis An almost arbitrary level of detail may be included in a simulation model whereas

more complex analytic models may become intractable The down side to simulation is that it

is often more time consuming to simulate than to analyse Also, simulation results are usually

inexact, lying within some confidence interval rather than being exact values The following

sections give a bnef outline of common types of simulation model and identify a suitable

method for simulation of computer and telecommunication systems

3 211 Discrete vs Continuous Models

In continuous-valued simulation, the system state at any point in time is described by a set of

continuous-valued state variables The evolution of the system state m time is usually

characterised by a set of partial differential equations To implement a continuous-valued

model as a simulation program, these differential equations are approximated by difference

equations When time is incremented in the model, the simulation program computes new

values for all system state vanables Often iteration is required to converge to a solution for

the new values Discrete-event simulation takes a fundamentally different view of how a

system evolves The two most important differences are that 1) the system state vanables only

take on discrete values and 2) time may advance by fixed or van able amounts but state

vanables do not change within any interval over which time advances in a single step

Discrete models are usually most useful for modelling of computer systems because the

changes in system states (such as the arrival or departure of packets to and from a service

station) occur at discrete points in time

7 4

If random vanables are present, the model is probabilistic An appropriate density function

must be specified for each random variable If vanable values are always exactly known, then

the model is deterministic Probabilistic models are normally the most useful for modelling

computer systems as many of the underling processes (such as the arrival of customers to a

system) are stochastic by nature and can be accurately modelled by standard probability

distributions

3 2 1 3 Trace-driven vs Stochastic-dnven Models

In trace-driven simulation, the model inputs are derived from a sequence of observations

made on a real system The advantage of trace-driven simulation is that the model inputs are

real world They are not approximations whose accuracy may be questionable Of course,

such data is not always readily available In stochastic simulation, the system workload or the

model input is characterised by various probability distributions During simulation

execution, these distributions are used to produce random values, which are the inputs to the

simulation model It is common in telecommunications modelling to assume that system

inputs behave according to some standard stochastic process, such as a Poisson process

3 2 1 4 Stochastic Discrete-Event Simulation

Stochastic discrete-event simulation is normally the most suitable for modelling of

telecommunication systems and is the method employed in this thesis As mentioned above,

discrete-event simulation deals with system models in which changes happen at discrete

instances m time, rather than continuously For example, in a model of a computer

communications network, the arrival of a message at a router corresponds to a change in the

state of the model The model state in the interval between successive message arrivals

remains constant Since nothing of interest happens to the model between these changes, it is

not necessary to observe the model’s behaviour except at the time a change occurs

In a discrete-event model, events correspond to state changes and occur instantaneously The

evolution of the simulation is descnbed by a sequence of events and the times at which those

events occur The change takes zero time i e each event is the boundary between two stable

periods m the model’s evolution (periods during which the state vanables do not change), and

no time elapses in making the change The model evolves as a sequence of events and to

descnbe the evolution of the model, we need to know when the events occur and what

happens to the model at each event

The heart of an event-dnven simulation is the event set This is a set of (event, time) pairs,

where event specifies a particular type of state change and time is the point in simulation time

3 212 Probabilistic vs Deterministic Models

7 5

at which the event occurs The event set is often implemented as a list, maintained in time-

sorted order The first entry has an event time that is less than or equal to the event times of

all other events in the list An event-driven simulation also maintains a simulated time clock,

the value of which is the (simulated) time of the most recent event that has occurred The

basic operation of an event-dnven simulation, with the event set implemented as a sorted list,

is as follows

1 Set the simulation clock to 0 Place a set of one or more initial events in the event list, m
time-sorted order

2 Fetch the event E consisting of the ordered pair (E type, E time) at the head of the event
list If the event list is empty, terminate the simulation

3 Set the simulation time to E time If E time is greater than the maximum simulation time
specified for the execution of the simulation model, terminate the simulation

4 Use the event identifier E type to select the appropriate event-processing code

5 Execute the selected code During this execution, an event may update system
information held in global data structures, and it may cause a new events E' (with E' time

> E time) to be inserted in the event list Note that it does not change simulation time

6 At the completion of execution of the event code, go to 2

A key point is that events never change the simulation time directly They can only affect

simulation time by the creation of new events that are inserted into the event list A more

detailed description of discrete-event simulation may be found m [Banks, 1998]

3 2 1 5 The OPNET Simulator

OPNET Modeller™ is a hierarchical, object-oriented development environment that is

designed specifically for the modelling and analysis of communication networks It is based

on the principles of stochastic discrete-event simulation described above It provides a

hierarchical graphical interface for model specification in which network, node, process and

link models are combined to realise a complete system model It also provides a range of tools

for the specification of simulation inputs and filtering and analysis of outputs

OPNET network models define the position and interconnection of communicating entities,

or nodes Each node is descnbed by a block structured data flow diagram, or OPNET node

model, which typically depicts the interrelation of processes, protocols and subsystems Each

programmable block in a node model has its functionality defined by a process model, which

is defined by means of C programming code encapsulated within a graphical state-transition

diagram Specification of processes in C is facilitated by an extensive library of support

functions providing a range of simulation services All simulation models descnbed in this

7 6

thesis were implemented using the OPNET simulation environment Further details of the

simulator are available on the Web [OPNET, 2004]

An example of a process model (the core structure of OPNET model behaviour) is shown m

Figure 3 6 below This example shows the main elements of a simulation model of a simple

queuing system that has been realised in the OPNET simulation environment

(1s e rv e r_ b u s y tfc in s e r t_ o k) ('QUEUE_EMPTY)

Figure 3 6 An Example OPNET Process

The model shown represents a simple First In First Out queue The circles represent system

states and arrows represent transitions between states The system may only be in one state at

any given instant and may only move to a new state via a transition Each transition has an

associated condition that must be fulfilled in order to change state Transitions may be

dependent on system events (such as arrival of a packet or completion of service of a packet)

Each state may execute instructions when entered and exited This code may effect a change

in state variables in order to affect which transition is taken out of the current state An

example of a state variable in our example is QUEUEEMPTY

The idle state is often central to the model Generally, a system will remain in an idle state

until an event occurs In this case, the events are (ARRIVAL) which indicates and arrival of a

packet and (SVC_COMPLETION) which indicates that a packet has completed service The

arrival event is generated by an external process not shown here When an arrival occurs, the

model makes a transition to the arrival state and processes the arriving packet If the server is

idle, then the packet is processed immediately in the (svc_start) state, otherwise the packet is

queued to be processed later and the system returns to the idle state Processing of the packet

simply involves setting an event some time in the future for the end of the service time Once

this is done the system returns to the idle state and waits for the end of service event,

(SVC_COMPLETION)

7 7

3.3. Mathematical Programming Methods for Network
Performance Control

This section describes the mathematical programming methods that are used to formulate and

solve the optimal object placement and network control problems of Chapter 5 Specifically,

these problems fall into the categories of Linear Programming and Mixed Integer

Programming A general survey of the methods is given in this section As the methods are to

be applied to real-time control problems, consideration is also given to the practicality and the

complexity of solution computation Suitable software tools for problem solution are also

discussed

3 3.1. Mathemahcal Programming

In a mathematical programming or optimisation problem, we seek to minimise or maximise a

real-valued function of real or integer variables, subject to a certain set of constraints on the

variables The function to be optimised is referred to as the objective function The possible

values of the objective function, subject to the set of constraints, form a feasible region An

optimisation problem solution gives values of the problem variables, which produce a

maximum or minimum value of the objective function in the feasible region, if such a value

exists Optimisation problems are generally classified as linear or non-linear A problem is

classified as linear if the objective function and all constraints are linear All problems

considered in this thesis are linear Linear problems that have all real variables are referred to

as Linear Programming (LP) problems while linear problems with both real and integer

variables are referred to as Mixed Integer Programming (MIP) problems Details of LP and

M1P problems and their solution methods may be found in [Walsh, 1985] and [Schnjver,

1986]

3.3.2 Linear Programming

The general linear programming problem may be expressed in vector-matnx notation as

minimise or maximise

Z = c0x 0> (3 3 1)

subject to the constraints

A0x0 <, = ,> b (3 3 2)

and to the non-negativity restrictions

x 0 > 0 , (3 3 3)

7 8

where c 0 is a «-component row vector of real constants, x0 is a «-component column vector

of real variables (the problem or decision variables), A0 is a m x n matrix of real coefficients

and b is a w-component column vector of real constants, z is referred to as the objective

junction. Note that vector inequalities are applied on a component by component basis. In

principle, all problems of this form can be solved in finite time, provided that a solution

exists. It is possible that problems of this form are infeasible (do not have a solution in the

feasible region) or are unbounded (the value of the objective function may increase or

decrease arbitrarily within the feasible region).

3.3.3. Linear Programming Solution Methods

Three principal mathematical methods exist for the solution of LP problems. The simplex

method, devised by Dantzig [1953], is the basis of most LP solution methods available today.

Although the theoretical efficiency is poor (an exponential-time algorithm), in practice the

method performs efficiently for most practical problems and may be efficiently implemented

on a computer system. Indeed research has shown, as discussed in [Lagarias & Todd, 1990],

that a probabilistic analysis reveals the practical efficiency of the simplex method to be

polynomial.

The ellipsoid method, devised by Khachiyan (see [Aspvall etal . , 1980]), is a polynomial-time

algorithm but is generally considered impractical to implement as the operations performed

by the algorithm would require a precision higher than that normally available on a computer

system. Also, in contrast to the simplex method, the number of iterations required to solve a

problem is very close to the theoretical upper bound, so that in practice it may not perform

significantly better than the simplex method.

The more recent interior-point methods, [Karmarkar, 1984], provide an efficient alternative to

the simplex method and are generally preferred for implementing very large-scale problems.

3.3.3.1. The Standard Simplex Method

The simplex method is an iterative procedure for solving the general linear programming

problem. A geometric interpretation of the simplex method is that, given that the feasible

region represents a polyhedron, the algorithm moves from vertex to vertex along edges until

an optimal vertex is reached. The main elements of the method are described below. Further

detail may be found in [Walsh, 1985].

The first step of the simplex method is to change all inequality constraints in (3.3.2) into

equality constraints, A slack variable is added to the left-hand side of < inequality

constraints and, similarly, a surplus variable is subtracted from the left-hand side of >

inequality constraints. Assuming that the original problem is rearranged so that the first a

79

constraints are <, the next b constraints are > and the remaining (m - a - b) are equality

constraints, the constraint equations of (3 3 2) may be written in the form

A0x0 +
a

0 - I
0 0

x =b, (3 3 4)

where xs = [xn+u ,x„+fl+fe] is the vector of surplus and slack variables, \ a and l b are unit

matrices of orders a and b The non-negativity restrictions of (3 3 3) are now

xo - 0, x >0

and the objective function of (3 3 1) becomes

z = c0x0+csxs

(3 3 5)

(3 3 6)

where is the zero vector with (a + b) components The problem of maximising the

objective function of (3 3 6) subject to (3 3 4) and (3 3 5), is equivalent to the original

problem defined by (3 3 1), (3 3 2) and (3 3 3) The original problem may therefore be

expressed in the form

Maximise

subject to

z = cx,

Ax=b and x>0. (3 3 7)

where
o ^ / \ *0 V

> o O -I» IIw IIu

°

O

This form of the problem gives the starting point for the simplex algorithm Note that if m, the

number of constraints, is equal to N, the number of variables, and if rank(A) = m, then

equations (3 3 7) have the unique solution x = A‘]b and there is no optimisation problem

The feasible region, if it exists, consists of a single point Also, if m > N and rank (A) = N,

then (m - N) of the constraint equations are redundant and again equations (3 3 7) have a

unique solution However, assuming that m < N and rank(A) = m, then the problem forms an

optimisation problem where equations (3 3 7) may have a non-unique solution (the feasible

region is some region greater than a single point)

Algorithm Iteration

Assuming an optimisation problem as desenbed above, if m linearly independent column

vectors of A are chosen, and if (N - m) variables corresponding to the remaining columns of

A are set equal to zero, then the resulting set of m equations has a unique solution, termed the

8 0

basic solution The m vanables of the basic solution are termed basic variables while the

remaining (N - m) vanables are termed non-basic vanables The column vectors of A

corresponding to the basic vanables together compnse the basis matnx It has been proven

that in searching for an optimal feasible solution of the general problem, it is only necessary

to consider basic feasible solutions The simplex algonthm progresses by moving from one

basic feasible solution to another that gives an improvement in (or the same value of) the

objective function Eventually the iterations lead to an optimal basic feasible solution, if one

exists Note that it is also possible that the problem is unbounded, whereby there is no upper

bound on the objective function

In order to progress from a basic feasible solution to a better one the following procedure is

applied 1) Determine which non-basic vanable will increase the objective function value

most swiftly if allowed to take on a positive value This vanable is moved to the set of basic

vanables 2) Allow this new basic vanable to increase in value until one of the basic vanables

is forced to zero This vanable is moved to the set of non-basic vanables The solution of the

new basis, formed by the above steps, gives the new basic feasible solution for the next

iteration Iteration is stopped when there is no non-basic vanable that, if allowed to become

positive, would increase the value of the objective function (assuming a feasible solution

exists)

Algorithm Initialisation

To commence iteration of the algonthm, an initial basic feasible solution is required If the

basis of the initial problem of (3 3 7) has a feasible solution, simplex iteration commences

from this solution These problems are referred to as single-phase problems If there is no

feasible solution then an additional phase is required to find an initial basic feasible solution

An auxiliary problem is formulated whereby artificial variables are added to the constraint

equations In the two-phase method, the artificial vanables are given a pnce coefficient of 1

for a minimisation problem or -1 for a maximisation problem and all other vanables are given

a pnce of zero The objective function becomes the sum (or negative sum) of the artificial

vanables An initial feasible solution to the auxiliary problem is readily available and the

simplex calculations are applied to produce a basic feasible solution This completes Phase 1

of the method In Phase 2, the non-artificial vanables are then reassigned their onginal cost

coefficients (c vector) and simplex calculations proceed normally Several vanations of this

method have been devised for example theM-method, [Chames, 1953]

3 3 3 2 The Dual Simplex Method

Normally an initial basic feasible solution is required to initiate the simplex method This can

consume a considerable amount of computation if the introduction of artificial vanables is

81

necessary The dual simplex method has the advantage of allowing initiation with a non-

feasible basic solution The fundamental idea behind the method is that the choice of basic

and non-basic variables to be exchanged is determined by criteria applied to the current dual

tableau (see [Walsh, 1985]) Once these variables have been chosen, the usual simplex

transformation equations are used Generally, duality is useful in the following situations 1)

There are more constraints than variables The dual basis matrix is then smaller than the

primal basis matrix and so computation is reduced, 2) The dual constraints are all of the <=

type A basic feasible solution for the dual problem can then be written down immediately 3)

It is required to add a further constraint to a problem already solved The additional primal

constraint becomes merely a further variable in the dual problem, with a value of zero at the
1*

time it is added Further details of the dual simplex method and its applications are available

in [Walsh, 1985]

3 3 3 3 Efficiency of Simplex Methods

As mentioned previously, the simplex method is an exponential-time algorithm i e in the

worst case the number of possible arithmetic steps required to reach a solution increases

exponentially with the number of problem variables However, it has been shown that the

probable average running time of the simplex method is much better (polynomial-time

bounded) In practice, the simplex method is generally considered efficient when applied to

large practical problems and indeed most current software implementations for the solution of

industnal-scale linear programming problems are still based on the simplex method The use

of the dual simplex method is often applied judiciously by software implementations to

reduce computation in two-phase problems

3 3 3 4 Intenor-Point Methods

Recently mtenor-pomt methods, a new class of polynomial-time methods for the solution of

linear programming problems, have been the subject of much research Since its original

inception, [Karmarkar, 1984], refinements of the method have been studied and implemented

on computer systems and are reportedly competitive with the best simplex methods available

For very large-scale problems, mtenor-pomt methods may even outperform simplex methods

The general idea behind mtenor-pomt methods is that the algonthm generates iterates that lie

in the mtenor of the feasible region (rather than stnctly on the boundary as simplex methods

do) The iteration then progresses toward the boundary of the region and towards an optimal

solution Although intenor-point methods promise improved efficiency for very large-scale

LP problems, the problems in this thesis are considered small enough m scale to be handled

efficiently by simplex methods

82

When a programming problem has decision variables, which may only take integer values, it

is referred to as an Integer Programming problem When some, but not all of the decision

variables are restricted to integers, the problem is referred to as a Mixed Integer Programming

(MIP) problem The usual LP solution methods cannot be applied directly to such problems

and often far more computation is required than for the same problem without integer

constraints The sections below describe relatively efficient solution methods for such

problems (Note that all MIP problems considered in this thesis are linear)

3 3 5. M ixed Integer Solution M ethods

The most common approaches to the optimal solution of MIP problems are the branch and

bound and the branch and cut methods These methods rely on LP solution methods (such as

the simplex method) to solve sub-problems, which have had the integer constraints relaxed

Further details of these methods may be found m [Schnjver, 1986]

3 3 51 Branch and Bound

The most widely used method for solving integer and mixed integer programs is branch and

bound This method begins by finding the optimal solution in the absence of the integer

constraints If it happens that in this solution the decision vanables whose values are

constrained to be integers already have integer values, then no further work is required If one

or more integer vanables have non-integral solutions, the branch and bound method chooses

one such vanable and “branches”, creating two new sub-problems where the value of that

vanable is more tightly constrained These sub-problems are solved and the process is

repeated, “branching” as needed on each of the integer decision vanables, until a solution is

found where all of the mteger vanables have integer values (to within a given tolerance)

Hence, the branch and bound method may solve many sub-problems, each one of which is an

LP problem The “bounding” part of the branch and bound method is designed to eliminate

sets of sub-problems that do not need to be explored because the resulting solutions cannot be

better than the solutions already obtained

3 3 5 2 Branch and Cut

With the branch and cut method, a lower bound is provided by the LP relaxation of the

mteger program If the optimal solution to the LP problem is not integral, this algonthm

searches for a constraint, which is violated by this solution, but is not violated by any optimal

mteger solutions This constraint is called a cutting plane When this constraint is added to the

LP the new optimal will be different, potentially providing a better lower bound Cutting

planes are evaluated iteratively until either an integral solution is found or it becomes

3 3.4 Mixed Integer Programming

8 3

impossible or too expensive to find another cutting plane In the latter case, a branch

operation is performed and the search for cutting planes contmues on the sub-problems

3 3 5 3 Efficiency of MIP Solution Methods

Unlike LP problems, M IP problems generally exhibit an extremely large (combinatorial)

increase in the number o f possible solutions as the problem size increases However, the

branch and bound method needs only to enumerate a fraction o f the feasible solutions to reach

an optimal integer solution Also, i f integer variables are restricted to binary (0-1) variables,

computation may be further reduced All M IP problems in this thesis are formulated with

only binary vanables The branch and bound method is generally regarded as the most

efficient method for these problems and is the one adopted here Branch and bound solving

software, such as that described below, often includes proprietary refinements, which further

reduce solution complexity

3 3 6 M athematical Programming Solvers

A great number o f implementations o f programming solvers exist at present The IB M

Optimisation Solutions and Library (OSL) was chosen from amongst these because

• it provided efficient implementations for all problem types that were encountered

• it is easily integrated with other software (e g simulations) via a C language API

• it is well recognised in industry, is well documented and is relatively easy to use

The OSL compnses o f an optimal set o f functions for easily creating, manipulating, solving

and analysing linear, mixed-integer and quadratic programming models The LP problem

solver includes simplex method and mtenor-point solvers The simplex method solver was

chosen, as the problems encountered were relatively small-scale The M IP problem solver

uses the branch and bound method o f solution Further details o f the OSL may be found on

the Web [OSL, 2004]

3.4. M arket-Based M ethods for N etw ork
Perform ance Control

Market-based control is a distributed resource allocation and control technique, which aims to

achieve some overall coherent global behaviour o f a system, through the use o f economic

models The resources (and the use o f resources) in the system are modelled by supplier and

consumer agents, which have individual goals A consumer attempts to optimise its

performance criteria by obtaining the resources it requires, without concern for system-wide

performance A supplier’s goal is to optimise its individual profit, based on its choice of

resource allocations to consumers, again without concern for system-wide performance

8 4

Economic models often introduce money and pricing as the technique for co-ordinating the

selfish behaviour of the agents The price a supplier charges for a resource is determined by

its supply and by the demand from the consumers for the resource Typically, each agent

participates in an iterative auction process where it faces a set o f prices and replies with a

demand/supply message From the total demand/supply o f the market, a new set of prices is

computed This is iterated until supply is equal to demand for each commodity, referred to as

the general equilibrium o f the market (illustrated in Figure 3 7 below)

Volume

Figure 3 7 General Market Equilibrium

An alternative to the pnce-onented approach is the resource-oriented approach In this case,

the general equilibrium is expressed as the allocation o f resources such that each agent is

willing to pay the same price for an additional small amount of resource The auctioneer sets

the allocation of commodities to agents at each iteration and agents report how much they are

prepared to pay for an additional small amount o f each commodity The auctioneer then takes

these declarations into account when changing the allocation in the next iteration - agents

with high willingness to pay get more, the others less The algorithm terminates when, for all

commodities, all agents are willing to pay the same price for an additional small amount of

the commodity

In order to model the bidding behaviour o f agents, utility functions, which encapsulate the

preferences o f a consumer, are employed A utility function is essentially a preference

ordering, where a high value o f the utility function for some consumption bundle means that

such a bundle is preferred over a bundle with a lower utility function value I f a number of

agents can trade commodities in such a manner that all agents have higher utility after the

trade, then the agents are motivated to trade commodities with each other I f trading is

performed in the context o f a price-based market (every commodity is evaluated in terms of

another commodity or using a monetary unit) each agent will face the optimisation problem

o f how to maximise its utility given the prevailing market prices and utility function For the

resource-oriented approach, only the utility functions are required to perform the auction

process

8 5

Market-based approaches to resource allocation hold the advantages of the decentralised

control approach They can facilitate resource allocation with very little information e g

pnce A coherent global behaviour may be achieved through very simple interactions e g

trading and auctioning Agents require only very limited knowledge of each other and are thus

more dynamic than a centralised controller However, the market-based approach doesn’t

generally guarantee an optimal solution but can achieve adequate results A review of market-

based control for resource allocation may be found in [Clearwater, 1996]

In Chapter 5, a resource-oriented market strategy is developed and applied to resource

allocation problems on distributed service platforms Utility functions are derived from the

revenue value generated for successful service sessions and resources are allocated in order

that overall network profit is maximised

3.5. Chapter Summary

The chapter has detailed the methods and tools required to perform the analysis and

simulation work undertaken in this thesis In particular, a suitable analysis model (LQNs) has

been chosen for application to the analysis of client-server systems Also a suitable simulation

method (discrete-event simulation) and simulation tool (OPNET) have been identified

Mathematical programming methods, that are applied to the network optimisation and control

problems of Chapter 5, have also been discussed An overview of the Market-based methods

applied in Chapter 5 have been given Various other concepts which arise in the thesis (basic

probability theory, stochastic processes and queuing theory) have been outlined

86

Chapter 4. M odel of a Distributed
T elecommunications
Service Platform

In this chapter we develop a simulation model of a distributed CORBA-based service

platform executing three different IN services This model is employed to study the

performance controls developed in Chapter 5 The service platform model is based on an

IN/CORBA Computational Object model, which we describe here We give our modelling

assumptions and describe the operation of the simulation model in detail This service

platform model is also used to derive an analytic model in Chapter 6

4.1. Simulation Model Description and Rational

The primary motivation for the simulation model is to investigate how loading and delay

associated with a CORBA-based service platform vanes as a function of incoming traffic

intensity, Computation Object placement, and external and internal performance controls

The simulation model structure is based on TINA-IN and IN/CORBA inter-working, as are

described in Chapter 2 The basis of the model is the replacement of the Intelligent Network

Service Control Point (SCP) and Service Data Point (SDP) with a network of service nodes

which host software objects communicating via a remote method call mechanism, i e via the

CORBA Object Request Broker (ORB) In this scenano, the IN Service Control Function

(SCF) and Service Data Function (SDF) are no longer encapsulated within single functional

entities, but are decomposed into fine-grained Computational Objects (COs) which use the

ORB for communication These objects communicate with entities in the legacy Intelligent

Network via IN/CORBA Gateways Thus, the service logic programs and data that normally

reside at the SCP and SDP are distnbuted across a multi-node network It is the performance

of this distnbuted SCP/SDP that is the pnmary target of investigation Figure 4 1 shows the

general network configuration in the CORBA-based SCP/SDP scenano and how it may

interconnect to a legacy Intelligent Network

8 7

In order to determine performance characteristics of such a network with accuracy, a certain

level of detail is required in the model The performance effects of distributed communication

between objects in the CORBA domain, which provide IN services, are of primary

importance Thus, individual procedure calls between distributed objects are modelled in

detail As loading is heavily dependent on the nature of the service being executed in the

network, attention has been paid to accurately representing a number of real IN services in the

model These considerations allow an accurate representation of loading and how it is

distributed in the network In order to accurately determine delays in the network and the

overall delays experienced by users, the effects of queuing in processing nodes needs to be

modelled The semantics of message processing by the ORB have been taken into account in

determining the server model The remainder of this chapter details these model elements and

states the assumptions made in amving at their particular representations A description of

how the model was implemented in OPNET is also given

Figure 4 1 1N/CORBA Interworking Scenario

4.2. The Network Model

The network configuration chosen for study consists of a network of ten CORBA processing

nodes Two of these ten nodes have an interface to the SS 7 domain These two nodes are

referred to here as Gateway Service Nodes (GWSNs) The remaining eight CORBA Service

Nodes (SNs) do not interface directly with the SS 7 domain The motivation for the number

of SNs and GWSNs chosen is based on the following considerations

• It is assumed that the CORBA service network will replace one collocated fault-tolerance
pair of SCP nodes that interact with one SDP in a legacy Intelligent Network

88

• Apart from the gateway function of the GWSNs, GWSNs and SNs are considered
identical and all ten service nodes are assumed to have equal processing capacities

• It is assumed that individual CORBA service nodes have somewhat less processing
capacity than a purpose-built SCP/SDP as they would likely consist of less costly, generic
Pentium based architectures It is assumed that the processing capacity of a single service
node is 0 4 times the processing capacity provided by one SCP interacting with the SDP

• It is also assumed that service execution in the CORBA domain requires considerably
more processing time than in an SCP/SDP due to the additional processing required for
distnbuted calls and the added complexity of the service architecture We assume that
each CORBA node has only 50% the efficiency of one SCP/SDP

Given these assumptions, 10 service nodes are required to provide approximately the same
processing capacity of the original two legacy SCPs and one SDP Numerically
(0 4 x 0 5 x 1 0 SNs = 2 SCP/ SDPs)

Furthermore, given that this network of service nodes replaces two SCPs, it was considered
reasonable that each legacy SCP would be replaced by one GWSN

The following additional assumptions were made regarding the network

• The service nodes are assumed to be fully connected by a highly redundant network with
low transmission times

• It is assumed that delays in network transmitter queues and transmission times in the
network are negligible compared to delays due to marshalling and de-marshalling of
CORBA method calls between nodes Experiments with an IN/CORBA prototype have
shown [McArdle et a l , 2000] that marshalling and de-marshalling times for the
IN/CORBA IDL used for this model are typically an order of magnitude greater than
transmission times over a fast LAN As service session IDL is similarly complex, we
assume that this is also the case for the service COs

• It is assumed that the transport is reliable, i e there is no message loss

• The legacy IN entities (the SCP and IP) and the SS 7 network are not modelled explicitly
but are viewed as an amalgamated source and sink of messages arriving to and departing
from the GWSN nodes Messages sent to the SSP are simply delayed before a return to
the gateway is made

• As the service network performs functions normally provided by the IN SDP, it is
assumed that no legacy SDPs are required in the SS 7 domain and interactions with
legacy IN SDPs are not modelled

• It is assumed that all Intelligent Peripheral (IP) functions remain in the SS 7 domain as
these are normally tightly coupled to the switching network (SSPs) Communication with
these is modelled (for services that require the IP)

8 9

4.3. Modelling the Gateway and Service Components

In order to define message sequences for service execution m the model, we start by defining

the objects required at the gateway and in the CORBA domain and consider their interactions

during execution of a service session The model of the gateway and service components

defined here has been derived from the TINA-IN and IN/CORBA inter-working studies

detailed in Chapter 2

4.3 1 Gateway Com ponents

The GWNS nodes execute the functionality required for inter-working between SSPs and IPs

in the SS 7 domain and the CORBA-based SCP/SDP It is assumed that the Gateway function

consists of the standard IN/CORBA inter-working components [OMG, 1999], described in

§2 4 2 The IN/CORBA Gateway function is modelled by considering only the core inter­

working components necessary for communication between the IN and CORBA domains

during a service session i e the SSF Proxy, the IP Proxy and the SCF Proxy objects (Figure

4 2) The factory objects and the semantics of object creation are not modelled as it is

assumed that this process can be handled efficiently with little impact on performance For

example, a pool of SCF Proxies may be created in advance

IN/CORBA Gateway CORBA-based SCP/SDP

Figure 4 2 Modelling o f IN/CORBA Interface Components

Considering interactions between the proxy objects, the SSF and IP Proxies accept INAP

operations from the SSPs and IPs, via the SS 7 stack interface, and translate them to CORBA

invocations on the SCF Proxy The SCF Proxy accepts INAP IDL invocations from other

objects in the CORBA domain, transferring them to the SSF and IP Proxy objects, which

translate them to the corresponding INAP operations on the SSFs and IPs It is assumed that,

all of these proxy objects use the standard Q1218IN_3 DefAc IDL interface for

communication, which is defined by the mapping of the ITU-T Q1218 INAP specification to

IDL as per [OMG, 1999] All messages and message processing times used m the model, as

9 0

described in §4 5, have been based on this IDL specification Note that the SSF Proxy, IP

Proxy and the associated functions required to interface to the SS 7 stack, are not considered

to be distributable in the CORBA domain and are thus modelled as a single computational

object, the Gateway (GW) object

4 3 2. Service Com ponents

It is assumed that the IN service logic and data, residing on the CORBA platform, is realised

by a subset of the computational objects composing the TINA Service Architecture [TINA-C,

1997]

A similar approach to that given in [Herzog & Magedanz, 1997] is adopted, which defines

methods for modelling IN services executing in a TINA environment Here it is assumed that

all calls originate and terminate on the IN side so that neither the calling nor called party uses

a TINA end-system and thus, is not modelled as a TINA user This is appropriate for the

CORBA-based SCP scenario as all SSPs resides in the IN domain and these are the only

onginators of calls As a result, the IN service capabilities may be encapsulated entirely

within the TINA Service Session COs The TINA Access Session is not required and the COs

that provide this functionality are not required

With this approach, all calls are established through the Gateway (GW) under the supervision

of the TINA Service Session Manager (SSM) The service capabilities are modelled within a

User Application (UAP), interacting with an SSM, which makes use of a service specific IN

Service Support Object (SSO), e g a database containing number translation tables As there

is no call-party specific access session, the User Agent (UA) is anonymous and acts on behalf

of all IN users The Provider Agent (PA) is also generic in this case Figure 4 3 below shows

the COs required, and their dependencies, for an implementation of a typical IN service

(Virtual Private Network)

Figure 4 3 Computatwnal Objects Required fo r a Typical IN Service

9 1

For any service session, on receipt of the initial service request from the SSP, the GW passes

the initial call to the UAP via the SCF Proxy (SCFP), which in turn initiates a corresponding

TINA service session via the PA The PA interacts with a UA in order to perform a generic

access session for service session establishment Once the SSM has been created and

initialised by the Service Factory (SF), a control relationship is established between the IN

SSF and the TINA SSM The interactions between components are thence dependent on the

specific service m execution Note that the GW, SCFP, PA, UA and GSEP are not specific to

a particular service, whilst the SF, UAP, SSM and the SSO are all service specific

4.4. Distribution of Computational Objects

Having defined the network and the software objects being modelled, the following

assumptions are made regarding the assignment of computational objects to SNs and

GWSNs

• With the exception of the GW computational object, there is no restriction on assignment
of computational objects to network nodes The GW may only be instantiated on the
GWSNs

• COs are assumed to be atomic That is, they may not be decomposed into smaller objects
and distnbuted between nodes

The assignment of specific COs to specific SNs and GWSNs is determined by a set of optimal

methods developed in Chapter 5 The resulting optimal assignments are detailed m Chapter 6

An example of an optimal distribution for a ten-node network supporting three different

services is shown in Table 4 1 below

Table 41 An Example Object Distribution

9 2

4.5. Distributed Call Model

It is assumed that all communication between COs during a service session uses the remote

method call mechanism of the CORBA ORB The following sections detail the assumed

behaviour and processing times associated with the ORB

4.5.1. Execution Sem antics

It is assumed that an asynchronous invocation mechanism is used for all calls 1 e a process

making a CORBA client call does not block while waiting for a response from a server (This

is achievable in many commercial ORBs by use of ‘call-backs5 or multi-threading of client

calls)

Regarding processing, execution of a call on the client side consists of processing for the

appropriate client processing time, then processing for the appropriate protocol encoding time

(marshalling) if the message is to be sent to a different node After these times the message

has left the client node and the processor may commence processing the next message m the

client-side queue On the server side, at this same instant, the message is added to the server

queue for processing These processing times are detailed in the next sections It is assumed

that all objects execute in one server, served by a single FIFO job queue

4 5 2 M essage Processing Times

Each message passed between two COs has associated with it (i) a CORBA marshalling

(protocol encoding) time on the client-side node, (11) a CORBA de-marshalling (protocol

decoding) time on the server-side node and (111) a processing time for completion of some

service specific task on both the client and server side nodes

Figure 4 4 shows execution times for messages passed between COs In the right hand figure,

two COs are executing on different processors The processing times T Cp (client processing

time) and TCo (ORB marshalling time) gives the total processing time at the client node

associated with this message Similarly, TSo (ORB de-marshalling time) and TSP give the total

processing time at the server node In the left hand figure, both COs are executing on the

same processor so the total processing time is given by T Cp and T Sp

Marshalling, de-marshalling and processing times are assumed to remain constant for a

particular message over all sessions of a service If the communicating COs are located on the

same node, the marshalling and de-marshalling times are not included in the overall

processing time for the message as it is assumed that the ORB is not required for

communication (1 e the call is a local function call)

9 3

Client CO Server CO Client COClient CO ORB Network ORB Server CO

u *
T.so

T,sp

Figure 4 4 Message Processing

The marshalling and de-marshalling times used for the simulation model are denved from

times we measured on a commercial ORB (Visibroker 3 3 running on a Sparc Ultra 5) The

IDL used for determining timing measurements is based on the EN/CORBA specification and

the TINA Retailer Reference Point specification [TINA-RET, 1999] so that each message has

associated with it the appropriate marshalling and de-marshalling times Processing times for

actual service related tasks are based on the processing times for the service executing on a

legacy SCP These times are based on those reported in [Jennings, 1999] All processing

times in the model are deterministic

4.6. Specification of Test Services

We specify three standard IN services for execution in the model

• Service A Virtual Private Network

• Service B Rmgback

• Service C Restricted Access Call Forwarding

These services have varying levels of complexity Service C is the simplest with 32 messages

in total and one user interaction phase Service A is more complex with 36 messages and two

user interaction phases Service B is a high complexity service with 66 messages and four

user interactions The following aspects of service execution are modelled

• The correct sequencing of messages during a successful session It is assumed that service
users never abandon ongoing service sessions and thus it is not necessary to implement
the signalling required for premature session termination Exception messages due to
error conditions are also ignored

• The processing load for each message processed dunng a service session (as described in

• An estimate of the delays incurred during a session due to actions on the service user (e g
conversation time, digit entry) These delays are modelled as draws from a negative
exponential probability distribution with an appropriate mean value

§4 5)

94

• An estimate of interaction times with the SSP (other than during user interaction) These
times are similarly modelled as draws from a negative exponential probability distribution

with an appropriate mean value

The objects required to execute each of the three services are shown in the Figures 4 5-4 7
below COs are shown as graph nodes and COs which interact during a service session are
joined by an edge In these diagrams, components that are subscripted by the letters A, B and
C are specific to Service A, Service B and Service C respectively Components that are not
subscripted are used by all services

Figure 4 6 Computational Objects fo r Service B

9 5

4.6,1. Service A. Virtual Private Network

Service Description The Virtual Private Network service creates a logical sub-network

spanning a single or multiple IN network domains which appears to a specific group of users

as a private network, providing the types of services normally associated with private

exchanges In this scenario, all calls are normally controlled by a SCP, which provides

facilities such as number translation and call monitoring

Figure 4 10 (in Section 4 9) presents the message sequence chart (MSC) for a successful

session of this service, as implemented using the CORBA-based SCP/SDP It also defines the

user interaction phases for the session The duration of the User Interactions A1 and A2

(conversation) are to be drawn separately for each service session from a negative exponential

distribution with a mean of 100 seconds

Table 4 2 (in Section 4 9) provides details of the processing times associated with each

message

4 6.2. Service B Ringback

Service Description The Ringback service allows a calling party, upon receipt of an engaged

tone for a specific called party, to request that a call be automatically initiated to that called

party once his/her current call has terminated To realise this service in a conventional IN, the

SCP signals the SSP to report when the called party’s current call terminates, after which it

signals the SSP to initiate a call between the calling and called parties

Figure 4 11 (in Section 4 9) presents the MSC for a successful session of this service, as

implemented using the CORBA-based SCP/SDP It also defines the user interaction phases

for the session Note that, for clarity, interactions with the IP are shown as using a separate IP

Proxy In reality the SCF and IP Proxies are the same object

The duration of the User Interaction B1 (play announcement) is to be drawn separately for

each service session from a negative exponential distribution with a mean of 5 seconds

The duration of the User Interaction B2 (conversation) is to be drawn separately for each

service session from a negative exponential distribution with a mean of 100 seconds

The duration of the User Interactions B3 and B4 (phone ringing) are to be drawn separately

for each service session from a negative exponential distribution with a mean of 5 seconds

The duration of the CTR message to the SSP returning with ARI to the gateway is to be

drawn separately for each service session from a negative exponential distribution with a

mean of 10 ms

Table 4 3 (in Section 4 9) details the processing times associated with each message

9 6

4 6.3. Service C: Restricted Access Call Forwarding

Service Description Basic call forwarding allows a user to redirect incoming calls to a

different number transparently to the calling party A variation of this, m which the calling

party must enter a specified PIN number before the call is forwarded to the other number is

modelled here

Figure 4 12 (in Section 4 9) presents the MSC for a successful session of this service, as

implemented using the CORBA-based SCP/SDP It also defines the user interaction phases

for the session Note that, for clarity, interactions with the IP are shown as using a separate IP

Proxy In reality the SCF and IP Proxies are the same object

The duration of the User Interactions Cl (prompt and collect user information) are to be

drawn separately for each service session from a negative exponential distribution with a

mean of 5 seconds

The duration of the CTR message to the SSP returning with ARI to the gateway is to be

drawn separately for each service session from a negative exponential distribution with a

mean of 10ms seconds

Table 4 4 (in Section 4 9) provides details of the processing times associated with each

message

4 6 4 M essage D etails for Test Services

Details of the messages for the three test services are given in Tables 4 2-4 4 (in Section 4 9)

Each message has associated with it message execution tunes which have been used in the

simulation The message numbers match with message numbers in the MSCs (Figures 4 10—

4 12, in Section 4 9) The first column of times gives the protocol encoding times in the

client The second column gives protocol decoding times in the server The third column

gives processing times for service related tasks in the client and the fourth gives service

related processing for the server

4.6 5 Traffic and Loading Scenarios

The source of traffic for new service session initiation (ImtialDP messages) is generated at

the entry point to the GWSN node m the simulation We make the assumption that this traffic

has exponentially distributed inter-amval times and can accurately represent the amalgamated

traffic from all SSPs connected to the GWSN Apart from the initial message traffic, all other

messages involving interaction with the SSP or service users are modelled independently, as

given in the service descnptions above The mean traffic volumes of initial requests presented

to each GWSN may be varied independently according to service type The specific loading

scenarios used for performance investigations are described in Chapter 6

9 7

4.7. Simulation Model Implementation

Here we describe the OPNET discrete-event simulation that was developed for performance

modelling of the distributed service platform We describe m detail how the computational

model maps to the simulation model and describe how performance control algorithms are

implemented in the simulator

A schematic of our distributed service platform simulation model is shown in Figure 4 8 The

mam elements of the model are a message model, a network model and a node process model

An overview of the model function is as follows Application procedure calls dunng service

execution are represented by messages, which are routed by the network Node processes

represent CORBA servers (which can also make client calls) Node processes hold messages

for the appropriate processing times and also send and receive messages between each other

This process behaviour represents procedure calls between COs dunng execution of a service

As many service sessions may be in progress simultaneously, the simulation must keep track

of which messages belong to which service sessions For simplicity, this is done by stonng

state information in the messages rather than at the nodes Traffic to and from the Intelligent

Network is modelled by IN Traffic Modellers, which generate new service sessions (of the

three different service types) The IN Traffic Modellers simulate processing and return of

messages from/to the SSF They also collect round tnp time (RTT) and rejection ratio (RR)

statistics Details of each of the model elements are given below

4 71 . M essages

Local and remote function calls between COs are represented as simple message passmg in

the simulator A remote call is represented as two messages - one for function invocation and

one for function return Local calls are represented as a single message and remain internal to

node process Messages contain fields (Figure 4 8 bottom) which are required for proper

routing and processing of remote function call messages dunng the simulation Address fields

allow function invocation/return messages to be sent and received over the network between

node processes ‘Type’ fields identify a particular message as relating to a given function

invocation/return for a given service type Session related fields store information about the

particular session that the function invocation/return message relates to A time stamp field is

used to calculate network delays The five message fields and their associated protocol

function are as follows

(1) The GWAddress field records the address of the source Gateway Node that initiated the

service session The Traffic Generator sets this field when the first message (InitialDP) of a

new service session is created This field is copied into all subsequent messages relating to

this session This information allows messages to be sent back to the conect service user (IN

Traffic Modeller)

9 8

Simulated Processing Node

P ro c e s s o r

Idle

P o ll Q u e u e
fo r N ew

M e s s a g e

F IF O
M e s s a g e

Q u e u e

D e co d e
T im e s

Lo o ku p

S e rv e r
T im e s
Lo o ku p

M e s s a g e

S e q u e n c e an d
L o a d B a la n c e
L o o k u p T a b le

C lie n t
T im e s
Lo o k u p

E n c o d e

T im e s
Lo o k u p

Service Specifications

Network In

IN T ra f f ic M o d e lle rs
T ra f f ic G e n e ra to rs

a n d M e s s a g e S in k s

S ta ts C o lle c to r

Simulated
Network

Network Out

= G a te w a y +

E x te rn a l L o a d

C o n tro lle r

= In com ing

T ra ff ic Th ro tt le

Simulator Message Format

Figure 4 8 Service Platform Simulator

9 9

(2) The Destination Address allows basic routing of messages from node to node and back

and forth from the IN Traffic Modeller This address is initially set m the traffic generator to

be the address of the processing node to which it connects Subsequently, it is modified in

node processes for re-routing of the message Node processes may also create new messages

(at forking points in the MSC) and must set the destination address appropriately The

destination that is set or modified in node processes will be determined by the internal

performance controller (load balancing algorithm) and the session state information (see

below) The load-balancing scheme has knowledge of placement of all COs in the network

and so will only route a message towards a node that hosts the target CO

(3) The service type (Svc Type) and (4) message type (Msg Type) fields simply identify

which function invocation/return of a particular service the message represents This

information is required by the node process so that the correct message encoding/decoding

and processing times may be applied These times are as per the message details tables given

in §4 9

(5) Session State field To reduce the complexity of the node process, messages store service

session state information so that the node process does not need to hold state information on

all sessions currently active (Hus is not intended to represent how a distributed system would

function in reality but it is functionally equivalent to storing state in the process and will have

no impact on simulated performance) Any new messages, created in the context of a

particular session, copy all information m the Session State field from the previous message

This preserves the state across all messages of the session

The Session State field is expanded in Figure 4 8 (bottom) The Session ID sub-field records

the particular session to which the message belongs This ID is set by the Traffic Generator

and incremented for every new session created This allows all active sessions to be correctly

tallied The Session ID is primarily used, in conjunction with the Time Stamp field, to

calculate service session completion times (RTTs)

The Session ID field also contains a list of CO addresses (the CO Addr sub-fields) The

purpose of this is to maintain correct session execution semantics That is, once a particular

CO instance (at a particular node) has been invoked during a service session, it must be used

for the remainder of that session (Otherwise the implication is that, in a real distnbuted

system, different CO instances would be able to somehow share state during a service session

- which isn’t normally the case) Each time a CO type is called for the first time during a

service session, a CO Addr field is added to the list and set with the ID of the CO (which is

known system wide) and the destination address of the node hosting the CO This information

is then searched if the same CO type is required later in the session If there is no record of its

previous use, then the load balancing lookup table is used to select a node that hosts the CO

100

(6) The Time Stamp field is set by the Traffic Generator when the first message in the session

is created This time stamp is copied to all subsequent messages in that session This time

stamp may be subtracted from the service session ending time in order to compute the RTT

for the session

As service sessions do not end at the IN Traffic Modeller, but instead internally to the service

platform, a special message is sent from the network to the traffic modeller after processing of

the last service message has finished This message has zero processing times and reaches the

modeller in zero simulation time This allows all RTT data to be collated at the traffic

modeller

4.7.2. The Network

The network’s function is simply to route messages between nodes without delays As

discussed earlier, it is assumed that protocol encoding/decoding times are considerably larger

than network transmission times We assume that the network is over-capacitated so that even

when nodes are under heavy load, network processors and queues are still lightly loaded and

do not contribute significant delay

4.7.3. Processes

Each processing node in the network has an identical processor model as shown in Figure 4 8

(top) The mam elements of the node model are a FIFO input message queue, a queue polling

mechanism, a number of processing stages, a message generator and a set of service

specifications, one for each service type

Messages arriving from the network are queued until the queue is polled When polled, the

message at the head of the queue is removed and processed in the ORB Decode Processor

The message is held for the appropriate de-marshallmg time, which is specific to the message

type (identified by the Msg Type and Svc Type message fields) The message is then passed

on for a message specific server-side processing holding time in the Server Processor At the

end of processing the message is evaluated by the Message Generator and Switch This

evaluation is based on a combination of the appropriate MSC for the particular message, the

Session State, and the load balance lookup values, as descnbed below

Firstly, the next message(s) in the message sequence and the corresponding target CO(s) for

the message are looked up If there is a fork at this point in the MSC, more than one new

message/target-CO pair are generated and these are internally queued in the Message

Generator and Switch The target CO for each new message is then evaluated in terms of the

Session State information This may determine that a message should be (a) processed locally

(if the target CO has been called previously in this session and resides locally) or (b)

101

processed at a particular remote node (if the target CO has been called previously in this

session and resides remotely) If there is no information on the session state of the target CO,

then the load balancing table is looked up to choose a destination node This may m turn

result in (a) or (b) For (a) the message is processed locally and the processing time is the sum

of the server and client processing times for the message type, as illustrated in Figure 4 4

earlier After local processing the message is returned to the Message Generator and Switch

for further evaluation and retrieval of the next message/target-CO This may lead to a cycle of

local message processing until the end of the service or until a remote call is required For (b)

the outgoing message then receives appropriate client-processing and ORB-encoding

processing and is then sent out to the network for routing to its target CO

Note that the processing stages (circles) in Figure 4 8 together represent a single process That

is, only one may be processing at any given time Thus, a processing cycle initiated by an

incoming message will continue without interruption until all messages generated by the

incoming message are processed and exit the node or until the last message of the service is

finished execution At this point the input queue is polled for a new message and the cycle

repeats (if the queue is not empty) This condition is signalled to the polling switch as soon as

the process (all processing stages) becomes idle (We assume there is no delay due to the

polling mechanism)

Note that although outgoing messages represent remote method calls, we assume that these

calls are fully asynchronous (i e they do not put the process into a blocked state whilst

waiting for return messages for the call)

4 7 4 IN Traffic Modellers

The IN Traffic Modellers both create initial service requests from the SSF and respond to

messages sent to the SSF Thus they model the IN side of the network As mentioned

previously, traffic for new service requests (the ImtialDP INAP messages) has exponentially

distributed inter-arnval times Traffic sources for each service and from each traffic generator

are independent (i e there are six independent Poisson sources in the simulation) The mean

rate of traffic generation can be varied independently for each service type and each traffic

source node When the Traffic Modeller receives a request destined for the SSF, it starts a

timer, to model the length of the interaction with the SSF This may be a user interaction time

or solely a processing time at the SSF These times are also exponentially distributed with

mean values as stated m §4 6

Gateway Nodes

As shown in Figure 4 8, the IN Traffic Modellers each connect to a single node, the gateway

node (GWSN) The gateway nodes are the only nodes to host the Gateway CO (GW) but are

102

otherwise normal processing nodes, that may host any other computational objects The

gateway nodes also host the External Load Controller (described below)

Performance Data Collection

Several statistics are collected periodically by the Stats Collectors

Load Each node process keeps a running account of the amount of time it is busy processing

messages over a given statistics collection time interval At the end of this time interval the

processor load is calculated as the busy time divided by the length of the statistics collection

interval and is sent to the Stats Collector This process is repeated for each consecutive

interval

Rejection Ratios The IN Traffic Modellers keep a count of all service session initiation

messages (InitialDPs) that are accepted and rejected by the External Load Controllers over

the statistics collection interval The rejection ratio is calculated at the end of the k?h interval

as

 re je c ts ^) -------------------------

rejects t (k) + accepts t (k)

where rejectst(£) and acceptst (k) are the number of rejected and accepted sessions

respectively at the ith gateway dunng the kth interval

Round Trip Time The RTT is the time from session start to session end and is calculated at

the IN Traffic Modeller at the end of each service session The RRT for each session is sent to

the Stats Collector along with the relevant session information (the service type and

originating gateway address)

4 7.5 Operation of Simulated Performance Controls

Both external and internal performance controls are implemented in the simulation These

operate by use of lookup tables, which are updated periodically by the performance control

algorithms Different algorithms may be plugged into the simulation

The internal performance control (load balancing) is implemented by periodically updating

the Load Balance Lookup Table, which is referenced by the Message Generator and Switch

This lookup table contains a list of target COs each with a list of their corresponding host

nodes and splitting probabilities Entries in the table thus have the following form

CO_ID { (NODE__ID_l P_SPLIT_1) (NODE_ID_2 P_SPLITJ2) (NODE_ID_N P_SPLIT_N) }

A node from this list is chosen according to a Bernoulli Trial where the probability of

choosing n o d e _ i d _ n is given by P _ S P L IT _ N For each CO entry the sum of all splitting

1 0 3

probabilities must be equal to one This method allows any of the internal performance

controls investigated in this thesis to be ‘plugged-in’ to the simulator

The external performance control requires that offered traffic to the network is limited dunng

periods of high load The External Load Controllers at the gateway nodes implement this

function by considering the load values collected by the Stats Collectors To justify our

simulation of our external controls, we consider how the External Load Controller could

interact with the IN Overload Control

We assume that the IN Overload Detection (§2 4 1) is implement in the SS 7 stack processes,

which are locally accessible to the Gateway Object The IN Overload Detection and the

External Load Controller may thus communicate directly Rather than detecting load

independently, the IN Overload Detection module is given the current highest expected load

value of the processors in the CORBA service platform by the External Load Controller This

value is resent at the end of each control interval, which is assumed to be at least as long as

the statistics collection penod This average load value is taken as being equivalent to an SCP

processor utilisation value in a normal Intelligent Network and the Overload Detection

module signals the SSPs to throttle according to the assumed SCP utilisation The function of

the External Load Controller would be simply to detect the highest processor load on the

CORBA service platform and pass it to the IN Overload Detection module

Figure 4 9 Assumed External Controller Interaction with IN Overload Control

Note that we do not explicitly model the SSPs or the IN Overload Control algorithms In our

simulation we assume that the IN Overload Control will act instantaneously to throttle (or call

gap) traffic from the SSP at the required rate We assume that this can be modelled by

1 0 4

throttling input traffic between the traffic generator and the gateways This function is earned

out by the incoming traffic throttles (Figure 4 8) which are controlled by the particular

external performance control in operation in the simulation

4.8. Chapter Summary

The chapter has desenbed the computational object model and simulation model of the

distnbuted service platform under study in this thesis New strategies for CO distnbution on

the platform and external and internal performance controls are proposed m the next chapter

and in Chapter 6 we use the simulation model, venfied by an analytic model, to investigate

performance

1 0 5

4.9. Chapter 4 Appendix - Test Service Details

(Specification of message sequences and message processing details for simulation test

services)

SSF Gateway SCF Proxy

(1) InltlaiDP

(14) Connect

(18) RRBCSME

(2) InltiaIDP

(13) Connect

(17) RRBCSME

(3) Initial DP
(4) slflrt_service

(6) initial.message

(12) Connect

(16) RcquestReportBCSMEvent

User Memctïon A i

(19) ERBCSM

(26) Continue

(20) ERBCSM

(25) Continue

(21) ERBCSM

Usar interaction A i

(27) TDsconnect.

.(34) Release Call

(2B)TDisconnec>

.(33) Release Call

(29) TDisconnect

(22) callee answered

(24) Continue

(30) callee_disconnected

(32) Release Call

(5) start service
(6) creaie_sessio^

(6a)It
(7) Initialise

(11) connect

(15) monitor_callee.answer

(23) conilnue_call

(31) release cal

(35) end session notification
T

(36) end session_notiflcation

(9) query

^10) (query resulti

Figure 410 MSC fo r Service A

1 0 6

O it «way 8CP Proxy UAP PA UA SP 85M

(1) Initial DP

(12) CTR

(28) RRBCSME

(2) InftiaIDP

(14) ARI

(4) start service

(B) initial menane

(10) ConnectToReiourte

(20) RgyAnnounceroant

(22) SpeoateedRetowceRepoft

(27) RRBCSME

wi)

(16) rwou ree _ corn acted

(18) PlayAn noun cement

(24) announcement confirmation

(26) RequertRapoftBCSM Event

(29) ERBCSME

U&ótìtttasattian S?

(30) ERBCSME

(36) Connect

(41) ERBCSM

(36) Connect

(39) RRBCSME

(31) ERBCSME
(32) call completed

(34) Conned

(38) RequertReportBCSM Event

ÙsvrtotwtKtìantfo

(42) ERBCSM

(47) Connect

(43) ERBCSM
(44) c»leo_tntwered

(46) Connect

(50) RequetlReportBCSM Event

(64) Conbnu*

(59) Continue

(63) Continue

(55) ERBCSM
(56) caller_answed

(SB) Continue

(62) Continue

(5) rtart_iervlce
(6) erette « « a o j

(7) ini &« lite

(9) connect to resource

(17) play announcement

m .PI ay An noun cement

at
(21) SpecttKzedRetourcaReport

(23) SpeclallzedReaourceReport

(25) montor_catlee. terminate

03. connect to cattee

(37) monitor caPee answer

(45) connect to caller

(48) monitor_caller.

continue to caller

(61) contlnua_to_cade

(65) end_ «eiiion notification

I end gestion notification

Figure 411 M SCfor Service B

1 0 7

6SF Gateway SCP Proxy UAP G8EP UA SP 860 IP Proxy IP

(12) CT8

(30) Connact

(2) initlalOP

(14) ARI

(4) start_«arvlca

(10) ConnactToRasourca

(16) ARI

(20) PromptAndCollactUaarlnfa

(22) SpaciaBzadRasourcaRaport

(16) rasourca_connactad

(13) PromptAndCottactUiarinfo

(24) collacl info .con firm ah on

(2B) Connact

larvice^

_2*U1

(6) craata . s a t t ly i
(7) inftlalha

(9) connact _to rasourca

(17) PromptAndColtactUaarinfo

(27) connact

(31) and_iattlon notification

(32) and_t>ttlon notification

(19) PromptAndCoBactU sa rl n fo

JmtactfonCf

(21) SpaciallzadRatourcaReport

(23) SpaclalgadRatourcaRaport

(25) quary

^6)tOJ«ry result]

Figure 412 M SCfor Service C

108

Service A (VPN) Message Details P rocessing Time O RB

(ms)

P rocess ing Time Serv ice

(ms)

Message # C lien t Object Server Object Interface M essage C lien t Server C lien t Server

1 SS F Gateway TCAP ImtialDP NA NA NA 1 00

2 Gateway SCF Proxy Q1218_3 DefAc ImtalDP 0 50 1 50 0 25 0 50

3 SCF Proxy UAP Q1218_3 DefAc ImtialDP 2 00 1 50 0 50 0 50

4 UAP PA i_paUAP start_semce 2 00 1 50 0 50 0 50

5 PA UA i_u a Access start_service 200 1 50 0 5 0 0 50

6 UA SF i_sfCreate create_session 2 5 0 200 0 5 0 2 0 0

7 SF SSM i_ssmlnitiahse initialise 250 200 0 5 0 2 00

6a SF UA i_sfCreate [create_ses$ion return] 250 200 0 5 0 1 00

5a UA PA i_uaAccess [start_seivice return] 250 200 0 50 1 00

4a PA UAP i_paUAP [start_service return] 1 50 2 00 0 50 1 00

a UAP SSM not defined mitial_message 2 00 1 50 0 50 3 00

9 SSM SSO not defined query 1 50 1 00 250 5 5 0

10 sso SSM not defined query_result 1 00 1 50 350 3 50

11 SSM G S EP not defined connect 1 50 1 00 0 50 0 50

12 G SE P SCF Proxy Q1218_3 DefAc Connect 2 0 0 1 50 0 50 0 50

13 S C F Proxy Gateway Q1218_3 DefAc Connect 2 00 0 75 0 50 0 25

14 Gateway SSF TCAP Connect NA NA 0 50 NA

15 SSM G S EP not defined momtor_caflee_ansvser 1 50; 1 00 0 5 0 1 00

16 G SE P SCF Proxy Q1218_3 DefAc RequestReportBCSMEvent 2 00, 1 50 0 50 0 50

17 S C F Proxy Gateway Q1218_3 DefAc RequestReportBCSMEvent 2 00 0 50 0 50 0 25

10 Gateway SSF TCAP RequestReportBCSMEvent NA NA 0 50 NA

19 SSF Gateway TCAP EventReportBCSM NA NA NA 0 50

20 Gateway SCF Proxy Q1218J3 DefAc EventReportBCSM 0 50 1 50 0 25 0 50

21 S C F Proxy UAP Q1218_3 DefAc EventReportBCSM 2 0 0 1 50 0 50 0 50

22 UAP SSM not defined ca!lee_answered 1 50 1 00 0 50 1 00

23 SSM G S EP not defined conttnue_ca!I 1 50 1 00 0 50 0 50

24 G S EP SCF Proxy Q1218_3 DefAc Continue 1 50 1 00 0 50 0 50

25 S C F Proxy Gateway Q1218_3 DefAc Continue - 1 50 0 50 0 50 0 25

26 Gateway SS F TCAP Continue NA NA 0 50 NA

27 SS F Gateway TCAP TDisoonnect NA NA NA 0 50

28 Gateway SCF Proxy Q1218_3 DefAc TDisconnect 0 50 1 50 0 25 0 50

29 S C F Proxy UAP Q1218_3 DefAc TDisconnect 2 00 1 50 0 50 0 50

30 UAP SSM not defined cal lee_d iscon nected 1 50 1 00 0 50 1 00

31 SSM G S EP not defined release_call 1 50 1 00 0 50 0 50

32 G S E P SCF Proxy Q1218_3 DefAc ReleaseCalt 1 50 1 00 0 50 0 50

33 S C F Proxy Gateway Q1218_3 DefAc ReleaseCall 1 50 0 50 0 50 0 25

34 Gateway SS F TCAP ReleaseCall NA NA 0 50 NA

35 SSM UA i_usSM Event end_session_notification 1 50 1 00 0 50 0 50

36 SSM UAP i_UAPEvent end_session_notification 1 50 1 00 0 50 0 50

Table 4 2 Message Détails fo r Service A

109

Service B (R ing Back) - M essage D eta ils
Processing Time ORB

(ms)
Processing Time Service

(ms)

Message # C lien t O bject Server O bject Interface Message C lien t Server C lient Server

1 SSF Gateway TCAP InitialOP NA NA NA 1.00

2 Gateway SCF Proxy Q1218_3::DefAc InitiaIDP 1.00 1.50 0.25 0.50

3 SCF Proxy UAP Q1218_3::DefAc InitialOP 2.00 1.50 0.50 0.50

4 UAP

PA

PA i_paUAP start_service 2.00 1.50 0.50 0.50

5 UA l_uaAccess start_service 2.00 1.50 0.50 0.50

6

7

UA
SF

SF i_sfCreate create_session 2.50 2.00 0.50 1.00

SSM i_ssm Initiaise initialise 2.50 2.00 0.50 1.00

6a SF UA i_sfCreate [create_session return] 1.50 2.00 0.50 0.50

5a UA PA i_uaAccess [start_serv<ce return) 1.50 2.00 0.50 0.50

4a PA UAP LpaUAP (start_ser\ice return) 1.50 2.00 0.50 0.50

8 UAP SSM not defined initial_message 2.00 1.50 0.50 1.00

9 SSM GSEP not defined connect_to_ resource 1.50 1.00 0.50 1.00

10 GSEP SCF Proxy Q1218_3::DefAc ConnectToResource 2.00 1.50 0.50 0.50

11 SCF Proxy Gateway Q1218_3::DefAc ConnectToResource 2.00 0.50 0.50 0.25

12 Gateway SSF TCAP ConnectToResource NA NA 0.50 NA

13 SSF Gateway TCAP AssistRequestlnstructions NA NA NA 0.50
14 Gateway SCF Proxy Q1218_3::DefAc Assist Request Instructions 0.50 1.50 0.25 0.50

15 SCF Proxy UAP Q1218_3::DefAc AssistRequestlnstructions 2.00 1.50 0.50 0.50

16 UAP SSM not defined resource_connected 1.50 1.00 0.50 1.00
17 SSM UAP not defined play_announcement 1.50 1.00 0.50 0.50

18 UAP IP Proxy Q1218_3::DefAc PlayAnnouncement 2.00 1.50 0.50 0.50
19 IP Proxy Gateway Q1218_3::DefAc PlayAnnouncement 2.00 0.50 0.50 0.25

20 Gateway IP TCAP PlayAnnouncement NA NA 0.50 NA
21 IP Gateway TCAP SpeclaJteedResourceReport NA NA NA 0.50
22 Gateway IP Proxy Q1218_3::DefAc SpecializedResourceReport 0.50 1.00 0.25 0.50

23 IP Proxy UAP Q1218_3::DefAc Spec ializedResource Report 1.50 1.00 0.50 0.50
24 UAP SSM not defined announcement_confirmation 1.50 1.00 0.50 0.50
25 SSM GSEP not defined monitor_callee_terminate 1.50 1.00 0.50 1.00

26 GSEP SCF Proxy Q1218_3::DefAc RequestReportBCSM Event 2.00 1.50 0.50 0.50

27 SCF Proxy Gateway Q1218_3::DefAc Request Report BCSM Event 2.00 0.50 0.50 0.25

28 Gateway SSF TCAP RequestReportBCSM Event NA NA 0.50 NA
29 SSF Gateway TCAP EventReportBCSM NA NA NA 0.50
30 Gateway SCF Proxy Q1218_3::DefAc EventReportBCSM 0.50 1.50 0.25 0.50
31 SCF Proxy UAP Q1218_3:.DefAc EventReportBCSM 2.00 150.00 50.00 50.00
32 UAP SSM not defined call_completed 1.50 100.00 50.00 100.00
33 SSM GSEP not defined connect_to_callee 1.50 1.00 0.50 0.50
34 GSEP SCF Proxy Q1218_3::DefAc Connect 2.00 1.50 0.50 0.50
35 SCF Proxy Gateway Q1218_3::DefAc Connect 2.00 0.50 0.50 0.25
36 Gateway SSF TCAP Connect NA NA 0.50 NA

37 SSM GSEP not defined monltor_callee_answer 1.50 1.00 0.50 0.50
38 GSEP SCF Proxy Q1218_3::DefAc RequestReportBCSM Event 2.00 1.50 0.50 0.50
39 SCF Proxy Gateway Q1218_3::DefAc RequestReportBCSM Event 2.00 0.50 0.50 0.25
40 Gateway SSF TCAP RequestReportBCSM Event NA NA 0.50 NA
41 SSF Gateway TCAP EventReportBCSM NA NA NA 0.50

42 Gateway SCF Proxy Q1218_3::DefAc EventReportBCSM 0.50 1.50 0.25 0.50
43 SCF Proxy UAP Q1218_3::DefAc EventReportBCSM 2.00 1.50 0.50 0.50
44 !UAP SSM not defined callee_answered 1.50 1.00 0.50 1.00
45 SSM GSEP not defined connect_to_caller 1.50 1.00 0.50 0.50
46 GSEP SCF Proxy Q1218_3::DefAc Connect 2.00 1.50 0.50 0.50
47 SCF Proxy Gateway Q1218_3::DefAc Connect 2.00 0.50 0.50 0.25
48 Gateway SSF TCAP Connect NA NA 0.50 NA
49 SSM GSEP not defined monitor_caller_answer 1.50 1.00 0.50 0.50
50 GSEP SCF Proxy Q1218_3::DefAc RequestReportBCSM Event 2.00 1.50 0.50 0.50
51 SCF Proxy Gateway Q1218_3::DefAc RequestReportBCSM Event 2.00 0.50 0.50 0.25
52 Gateway SSF TCAP RequestReportBCSM Event NA NA 0.50 NA
53 SSF Gateway TCAP EventReportBCSM NA NA NA 0.50
54 Gateway SCF Proxy Q1218_3::DefAc EventReportBCSM 0.50 1.50 0.25 0.50
55 SCF Proxy UAP Q1218Ji::DefAc EventReportBCSM 2.00 1.50 0.50 0.50
56 UAP SSM not defined caller_answered 1.50 1.00 0.50 1.00
57 SSM GSEP not defined continue_to_caller 1.50 1.00 0.50 0.50
58 GSEP SCF Proxy Q1218_3::DefAc Continue 1.50 1.00 0.50 0.50
59 SCF Proxy Gateway Q1218_3::OelAc Continue 1.50 0.50 0.50 0.25
60 Gateway SSF TCAP Continue NA NA 0.50 NA
61 SSM GSEP not defined continue_to_callee 1.50 1.00 0.50 0.50

62 GSEP SCF Proxy Q1218w3::DefAc Continue 2.00 0.50 0.50 0.50
63 SCF Proxy Gateway Q1218_3::DefAc Continue 2.00 0.50 0.50 0.25
64 Gateway SSF TCAP Continue NA NA 0.50 NA
65 SSM UA i_usSM Event end_session_notificatlon 1.50 1.00 0.50 0.50
66 SSM UAP LUAPEvent end_session_notificatlon 1.50 1.00 0.50 0.50

Table 4.3: Message Details fo r Service B

110

î)

Service C (Restricted A ccess Cali Forwarding) Message Details Processing Time 0R 8
(ms)

Processing Time Service
(msj

Message # Client Object Server Object Interface Message Client Server Client Server

1 SSF Gateway TCAP ImtialDP NA NA NA 1 00

2 Gateway SCF Proxy Q1218_3 DefAc ImtialDP 0 50 1 50 0 25 0 50

3 SCF Proxy UAP Q1218_3 DefAc ImtialDP 2 00 1 50 050 0 50

4 UAP PA LpaUAP start_service 2 00 1 50 0 50 0 50

5 PA UA l^uaAccess start_servlce 2 00 1 50 0 50 0 50

6 UA SF i_sfCreate create_session 2 50 2 00 0 50 1 00

7 SF SSM i ssmlmbaise initialise 2 50 2 00 0 50 1 00

6a SF UA i sfCreate [create_session return] 1 50 2 00 0 50 0 50

5a UA PA i_uaAccess [start_service return] 1 50 2 00 0 50 0 50

4a PA UAP LpaUAP |start_servlce return] 1 50 2 00 0 50 0 50

8 UAP SSM not defined imtial_message 2 00 1 50 0 50 0 50

9 SSM GSEP not defined connect_to_resource 1 50 1 00 0 50 1 00

10 GSEP SCF Proxy Q1218_3 DefAc ConnectToResource 2 00 1 50 0 50 0 50

11 SCF Proxy Gateway Q121B_3 DefAc ConnectToResource 2 00 0 50 0 50 0 25

12 Gateway SSF TCAP ConnectT oResource NA NA 0 50 NA

13 SSF Gateway TCAP AssistReq uestlnstructions NA NA NA 0 50

14 Gateway SCF Proxy Q1218_3 DefAc AssistRequestlnstructons 0 50 1 50 0 25 0 50

15 SCF Proxy UAP Q1218_3 DefAc AssistRequestl nstructions 2 00 1 50 0 50 0 50

16 UAP SSM not defined resource_connected 1 50 1 00 0 50 0 50

17 SSM UAP not defined PromptAndCollectUserlnfo 1 50 1 00 0 50 0 50

18 UAP IP Proxy Q1218_3 DefAc PromptAndCollectUserlnfo 2 00 1 50 0 50 0 50

19 IP Proxy Gateway Q1218_3 DefAc PromptAndCollectUserlnfo 2 00 0 50 0 50 0 25

20 Gateway IP TCAP PromptAndCollectUserlnfo NA NA 0 50 NA

21 IP Gateway TCAP Special izedResourceRe port NA NA NA 0 50

22 Gateway IP Proxy Q1218_3 DefAc SpeclalizedResourceReport 0 50 1 50 0 25 0 50

23 IP Proxy UAP Q1218_3 DelAc SpeclalizedResourceReport 2 00 1 50 0 50 0 50

24 UAP SSM not defined collect Info confirmation 1 50 1 00 0 50 0 50

25 SSM SSO not defined query 1 50 1 00 2 50 5 50

26 SSO SSM not defined query_result 1 00 1 50 3 50 3 50

27 SSM GSEP not defined connect 1 50 1 00 0 50 0 50

28 GSEP SCF Proxy Q1218_3 DefAc Connect 2 00 1 50 0 50 0 50

29 SCF Proxy Gateway Q1218_3 DefAc Connect 2 00 0 50 0 50 0 25

30 Gateway SSF TCAP Connect NA NA 0 50 NA

31 SSM UA l_usSM Event e nd_sessionj,iotrf icaton 1 50 1 00 0 50 050

32 SSM UAP i_UAP Event end session notification 1 50 1 00 0 50 0 50

Table 4 4 Message Details fo r Service C

111

Chapter 5. Computational Object
Allocation and Performance
Control Strategies

This chapter presents a method for optimising the placement of software objects on network

nodes, for multi-service distributed application networks Also presented are an optimal

method for load distribution and load throttling in these networks (§5 1 6) and a sub-optimal

market-based solution to the same problems (§5 2)

5.1. Optimal Algorithms for Object Distribution and
Load Control

This section presents a new method for optimising the placement of software objects on

network nodes, for multi-service distributed applications Also addressed are the related

problems of optimal distribution of traffic between distributed software object instances and

optimal admission control for the network The object placement problem is formulated as a

Mixed Integer Programming (MIP) flow problem The solution yields the placement of

application objects that gives the maximum allowable arrival intensities to the network under

the constraints of processor load limits and object installation costs Given the optimal object

placement, a further method is developed for optimising routing between object instances to

maximise network revenue when arrival intensities vary over time from the original design

point This problem is formulated as a Linear Programming (LP) problem that is constrained

by the solution of the original MIP problem The solution gives the basis for a load

distribution and load control algorithm for the optimised network

5 1.1. Strategy O verview

The model under study consists of a network of fully-connected processors of non-uniform

capabilities and processing capacities, serving multiple customer classes Service execution in

the network consists of message passing between instances of Computational Objects residing

on network processors Flow costs in the network are denved from processing and protocol

encoding/decoding times for these service messages Processing times for objects are allowed

to vary across processors so that multi-processor nodes may be included in the model

112

The placement of objects on processors in the network, is a critical distributed system design

decision that determines the maximum service rate of the network as a whole This is

especially true when a significant amount of processing is required to distribute messages

(Protocol encoding/decoding times have been compared to service processing times for

telecom services, executing on a distributed platform, in [McArdle et a1, 2000]) The object

placement problem has been undertaken in [Anagnostou, 2000] where the total

communication cost in the network is minimised given the set of flows between all object

instances and given the service demand volumes from users This problem is reformulated (in

§5 1 4) so that the total allowable user demand is maximised given the relative volumes of

requests from users Also, to limit the costs of replicating objects on processors, linear

installation costs are added to the problem (§5 15) This formulation effectively maximises

network throughput and has the advantage of balancing load between processors which in

turn ensures the maximum amount of spare processing capacity is available when the network

is under-loaded (A simple optimisation model for TINA service components, also focusing

on throughput maximisation, has been presented in [Kihl, 1997] In this work, it was assumed

that component copies share traffic evenly This is not assumed here Also, protocol

encoding/decoding times are not taken into account in [Kihl, 1997]) As this approach

determines the maximum allowable demand, it is suitable as the basis of an admission control

strategy Such a strategy is given in §5 1 6 This is then extended to revenue maximisation

admission control in Section §5 1 7 Revenue maximisation for Intelligent Networks has been

studied in [Lodge, 1999] A similar objective is adopted here for use with the distributed

system model However, a fairness constraint is added to the revenue problem to allow the

bias towards high revenue customers to be damped at the cost of lower system revenues

The following section describes the model formally and introduces some notation for the

network and service topologies This model is used in the subsequent sections for defining the

object placement, random splitting and admission control optimisation problems

5 1 2 M odel Notation

The system model consists of a set of heterogeneous processors N Each processor is

connected to all other processors in the system by a network A set of processors Nuser c N

has connections to a set of system users, which generate new service requests to the system

Each service request to the system belongs to the set of service types S Requests of type seS

require a sequences of messages Qs to be passed between processors, and between processors

and the user in order to complete service The execution of Qs is referred to as a service

session of type s The set of distinct messages m the sequence Qs is denoted M s The set of all

messages is denoted M = u M s over Vse S

113

5 1 2 1 Messages and Computational Objects

The set of all computational objects C is defined next Each computational object c,eC is

defined as the capability to send the set of messages M fienl <= M and to receive the set of

messages Mtserver c M, where M?ient n A/"”*' = 0

The set of processors that support the computational object c,e C is denoted N ,q N That is, if

neN„ it is said that an instance of computational object c, may be allocated to processor n

Note that this implies that a processor n may send a message keM?bent if and only if nt. Nt and

a processor m may receive a message keMjServer if and only if me Nj

Figure 5 1 Network Model

The set of all objects required to execute a service session of type s is denoted Csq C

For each object c,eC, let the set of objects whose instances may exchange messages with an

instance of c} be denoted as

C, = {CjG C 1(. n Mferver) u (M/"ew n M “™) * 0 }

We also denote the set of all possible pairings of objects whose instances may exchange

messages during a service session of type s as

P s = {(c„Cj)e C \ c te C and Cts)

where Cts is equal to the set C, n Cs

Finally, for each pair of computational objects (c„c;)g? s, let the set of all messages that are

exchanged between instances of c, and c}, during execution of a service session of type s, be

denoted as

sMtJ = (M?'mi n Af"™”) u (Mfhem n M,xrver)

5 1 2 2 Processing Costs

Each message £eMthat is passed from processor neN to processor meN has the following

associated execution workloads

Ì14

êncode ̂ execution time for protocol encoding of message k on processor n

ĉhent ̂ execution time for client-side processing of message k on processor n

.̂decode ̂ execution time for protocol decoding of message k on processor m

execution time for server-side processing of message k on processor m

The total processing time on processor n due to all communication between an instance of

computational object ct on processor n and an instance of computational object c; on processor

iTi during one service session of type s is denoted as

W = Z { C " de w + < ,,e" 'w }+
V k e ^ ¡ / {ciUri) V k e *M c/ ien,er)

where sM f d,en° = SM,} n M f ' eM and * M ^ se™r) = ¥ , n M ,“ ™r

Note that, in the above, encoding and decoding times, when computational object instances

are executing on the same processor, may or may not be zero dependmg on the application

and communication protocol implementation details The total processing time on processor

m for the same pair of object instances is similarly defined and denoted We denote the

sum of these times as

s _ nm s ^ .n , sT = T + T y ij m y n j i

node«

I
nodem

messaged

node n node m

s nm
x u m

Ck) m y

Figure 5 2a Message Processing Times

5 1 2 3 Workflows

Figure 5 2 b Workflow Notation

We define sw”m as the total processing time in the system, per unit volume of service

requests of type ̂offered to the network, due to all messages passed between the instance of

object Cs on processor n and the instance of object Cs on processor m during service

sessions of type s We denote the associated bi-directional work flow as

sw™ s £ nm — v
V s-nm (type i sessions per second)

115

5 1 3 . Users and Service Requests

All service requests to the system originate from instances of service initiating objects, the set

of which is denoted Cxm c C Each service type seS has exactly one associated initiating

object <fmteC tmt This object may be considered as representing all users of service type s

where an instance of the object on a processor represents one or more such users connected to

that processor Thus, workflows from csimt represent the total of all traffic from the set of users

it represents All processing costs for the processor, that are associated with users requesting

and interacting with other objects during service sessions, must be accounted for in the

relevant processing times defined in §5 1 2 2

Given that all the flows involving c\mt are included in the formulation of sx™, the total

volume of type s service requests to the system, from an instance of n C 1) on

processor ne N is denoted as

sx nm
A" = V — — where d =

VmeNj u Vĉ eCf
Vc,gC;

Table 51 Summary o f Optimisation Model Variables

S set of all service types

c set of all computational objects in network

c 5 set of all objects required to execute a service session of type s is denoted

C, set of objects whose instances may exchange messages with an instance of object cl

C ' set C, n C8

c mu set of service initiating computational objects

p s set of all possible pairings of objects whose instances may exchange messages during a
service session of type s

N set of all processors in network

N1 y user set of processors that supports direct connections from system users

set of processors that support the computational object c,e C
s m
n j! total processing time on processor n due to all communication between an instance of

computational object c, on processor n and an instance of computational object c, on
processor m dunng one service session of type s

s Ynm
y bi-direcUonal work flow - type s sessions per second - mam optimisation vanable

A", the total volume of type s service requests to the system

5 1 4 O ptim ising Object Placement

The problem of optimally assigning object instances to system processors may be summarised

as follows Given a system consisting of a set of connected processors N, a set of

116

computational objects C and a set of service graphs M specifying interactions between objects

for each service, find the set of flows {^ J”} that maximises the total service request volume

to the system under the following constraints

• fractional volumes of accepted requests from each user are a given value (Cl)

• work flows between all object instances are conserved (C2)

• each processor’s utilisation must not exceed a given limit (C3)

The optimal allocation of objects to processors may be easily determined by examining the

set of solution flows for this problem The problem formulation initially assumes that any

object instance may exist on any processor, with the exception of instances of the initiating

objects whose location is fixed according to user connections If, in the solution, all flows

associated with an object instance are zero, then that object may be eliminated from the

processor

The objective of maximising the service request volume ensures that the maximum system

throughput is obtained The set of constraints (Cl) may be expressed as

where -1 (Cl)
v«Vi

If it is assumed that the location of object instances is a permanent design choice, it is

necessary to specify the service mix { a ns } in accordance with careful consideration of the

expected, long-term user demands as object allocation can have a large impact on the

achievable performance of the system

The set of constraints (C2) are necessary to relate the set of flows T*™} between instances

of objects and between users of the system Firstly, we define the set of all objects that are

common to object pairs

C common ~ C | ^ P 1,1 ^ J }

The constraint equations to enforce balancing of all flows m the system may now be written

by taking each object instance c} in the system and equating the total flows between this

object instance and all instances of two other objects c, and ct

£ = Z S, Vc, e C scommon, V(c„c,)e C, , V/ne N (C2)
V«eiVf VneAf,

The set of constraints (C3) is determined by limiting the total processing time at each

processor for all object instances residing on the processor

A"5 ~<x"
I A",

Vi e£

117

Z Z Z
V ie s V c jeC 1 VcyeC/ VmeNj

\ /n e N (C3)

where the p ^ ax is the maximum allowable utilisation of processor n As the objective

function and all constraints are linear, the problem may be formulated as the following LP

problem

Maximise V A"
j . run i S

Subject to

VueAT«
VseS

(C1),(C2),(C3), V sx,T - 0

(Ml)

node 1 node 1

Figure 5 3 Constraint (C2) Workflow Balance Requirement

Flows on left must balance with flows on right Flow balance is specified by relating flows between a

component and two other components with which it communicates

5 1 5 . O ptim ising Object Placement w ith Installation Costs

Generally, the solution to the previous problem yields a large number of object instances

distributed across the processors This is mainly due to object instances tending to cluster on

processors to avoid the added costs associated with inter-processor communication Also, in

order to achieve the maximum service request volume, the largest possible amount of

processing capacity in the system tends to be used by distributing these clusters to as many

processors as possible This situation may be limiting in practice if the costs of installation,

licensing and maintenance of software components are high Also, the solution can give

instances of objects, which have very low utilisation and subsequently the cost of installation

may outweigh their benefit to the system To address these issues, an installation cost is

associated with each object instance in the system A constraint may then be formulated to

limit the total installation cost for the network, which has the effect of limiting the number of

object instances in the system

118

The presence or absence of object instances on processors is represented as a set of 0-1

integer variables (decision variables) and is defined by the set

Y={y?e {0 ,l} |VcleC>V«eA;}

We define the set of related installation costs as

{£?,"€ 911 Vc,GCsV«GiVz}

The total flow between object instance c} on processor n and all other object instances is

calculated as

:-" = Z I Z s nm

Each binary variable is related to the corresponding total flow, giving the set of constraints

(C4) below Note that the threshold value xthreshold allows object instances with very low

utilisation to be eliminated from the system

y "
0 x :< x thnM

1 X/ ^ X threshold

Limiting the total installation costs to a desired value E, gives the constraint

Z Z < y : ^ E (cs)
VqeC VneN,

Note that there is a lower bound on E beyond which there is no feasible solution Adding

constraints (C4) and (C5) to the original problem gives the MIP problem

Maximise 'S' A”jyim
VseS (MZ)

Subject to (Cl), (C2), (C3), (C4), (C5), V > 0

5 1 6 O ptim ising Random Splitting and A dm ission Control

The solution obtained from problem (Ml) or (M2) gives the optimal distribution of flows

between object instances for the given relative input traffic levels specified by (Cl) In order

to maintain the system at the optimum, it is necessary to (a) limit the service request volumes

by rejecting a portion of new service requests so that the solution input traffic levels are

maintained and (b) ensure that the optimal flows between object instances arc maintained

Condition (a) is restrictive and may lead to large proportions of service requests being

119

rejected when the relative input traffic levels vary from (Cl) over time This restriction may

be alleviated by dynamically re-optimising the system periodically This generates a new

problem (M3) where the object instance locations are fixed by the solution of either (Ml) or

(M2) and the flows are re-optimised given an estimate of the current offered input traffic

intensities The solution also generates the re-optimised maximum input traffic levels The

(M3) problem is a variation of (Ml) where all sets of object instance locations N, are fixed by

the solution of (Ml) or (M2) and constraint set (Cl) is modified as follows

A" - * s(k) V n e N user, s e S (Cl)’

VjeJ

where {A”{k)} is the set of estimates of the offered traffic intensities from users expected

over the next T seconds This may be estimated simply as {A” (A:)} = {X's(k - 1)} where

{A”(& -l)}is the set of actual offered traffic intensities measured over the previous T

seconds The optimisation (M3) is run at the start of each control penod kT, having received

{¿"(£-1)} from initiating objects, and the resulting solution is distributed to processors as

follows

(a) Each initiating object cte(C,mt n C) receives the set of acceptance probabilities

{acptPs W) f°r new service requests of type s over the next T seconds where

acpt /> ;w =

so lK tt)
sot K W < A s (k)

Xs(k)

i solK (k) > T s (k)

and where {5o/ A”(fc)} is the solution set of {A"} at time kT These probabilities are used to

implement Percentage Thinning (PT) of arrivals over the next T seconds

(b) Each object instance receives the set of optimal flows (the solution value of

sx™ at time kT) between itself and all other object instances with which it may

communicate The optimal flow solution is implemented by an object instance as follows

When an object instance c, on processor n is required to send a service message to an instance

of an object cp in order to continue a service session of type s, it chooses a processor

according to Bernoulli trials where the probability of choosing c} on processor m is

determined by the random splitting probability

split F I] V 'v Y i
ZuS0lXij \K)

V m e A /.

120

This choice applies only to the first time during a service session that object c} is required All

subsequent messages requiring c} during the same service session are sent to the same object

instance This scheme will maintain average flows at the correct values

5.1 7. O ptim ising Network Revenue w ith Fairness

In a multi-service network it is often desirable that service requests should receive priority in

relation to the revenue generating ability of the service types However, implementing

revenue weightings can lead to unfair treatment of customers when the offered arrival

volumes for each service are disproportionate to their respective weightings These issues are

taken into account with a modification to the cost function to allow revenue weighting and a

modification to constraint set (Cl)5 to allow a degree of fairness to be specified

Normally, in revenue maximisation problems, the probability of acceptance of service

requests is the optimisation variable (such as in [Lodge, 1999] for Intelligent Network load

control) and the maximisation takes the following form

Here, rs is the revenue weighting associated with completing a service session of type s,

As(k) are the expected traffic intensities for period k for service s and P*CCePt 1S the

probability of a service session of type s being accepted The objective is thus to maximise the

Maximise
âccent W _accept V i

expected total revenue for the network A similar objective is employed here but the

probability of acceptance is expressed in terms of the flow variable 5x™ of our original

problem The probability of acceptance in the flow variable is

and the new objective function for the problem may be stated as

VneAf™, Asijc)

Ans j 0 < — ^ < \
Ans(k)

This objective and constraint may be rewritten as

s t Ans <Ans(k),V'x™>0 (C6)
VneNmrVseS

121

where {r5 e 9t1 s e S} are the revenue weightings associated with completed service sessions

and A”(k) is the expected traffic intensity for the next T seconds As the relative traffic

volumes can no longer be constant, constraint set (Cl)’ is modified to

■n
S r < / - ^ — < — V n e N ^ r, s e S where 0 < S f <lJ / V An user ■>

^ J U k) Z A” ~ 5j

V i e S 1 V j e i

(Cl)”

where 8f controls the amount by which the relative traffic volumes may vary from the

expected relative volumes of offered traffic Values of 8 / close to 1 ensure a fair treatment of

customers whilst values close to 0 potentially allow unfair treatment but higher total revenue

for the system The objective and all constraints are linear thus giving an LP problem

Maximise 'V reA"j ™ Lu s s
xv VneJV̂

subject to (Cl)'’, (C2), (C3), (C6) V > 0

Note that, again, all sets of object instance locations Nt are fixed by the solution of (Ml) or

(M2) The solution distribution and implementation strategy is as described in the previous

section Note also that the revenue optimisation constraint and objective function may be

applied to the formulation for optimisation of object placement in problems (Ml) and (M2)

However, such a modification is not considered here as it is assumed that the network is

dimensioned so that it operates in the under-loaded region a large proportion of the time and

revenue optimisation is advantageous only when offered traffic would cause the desired

network load to be exceeded It could be employed to the allocation problem if the normal

operating point of the network is at offered loads higher than the throttling levels

5 1 7 1 Adjustment to Revenue Optimisation Algorithm

Unlike m the throughput maximisation problems (Ml, M2 and M3), the revenue

maximisation algorithm constrains the maximum amval rates to be less than or equal to the

expected arrivals When amval rates are low compared to the maximum network throughput,

the optimisation problem (M4) will not tend to dnve all nodes to full capacity and the

resulting random splitting may give uneven loading across processors Our view is that load

balance is a desirable property once it does not artificially constrain the maximum network

throughput (This has been the case with the throughput maximisation problems) We assert

that it is not possible to assure load balance, by addition of further linear constraints to the

above problem, without reducing the possible total system revenue Thus, we make an

122

adjustment to the optimisation algorithm, in the form of a simple two phase heuristic, to

restore the tendency for load balance in the solution

PHASE 1

solution = solve (M3)

^ A" (*) =*"&) Vne Nuser, s e S then goto END

PHASE 2

solution = solve (M4)

END

The non-revenue problem (M3) is solved If all arrivals are accepted in the solution, then the

solution is revenue optimal and fair, regardless of revenue or fairness weightings, and there is

no need to solve (M4) If not, then (M4) is solved and gives the final revenue-optimal

solution Only solving (M4) when throttling is required will tend to drive the solution towards

load balance Note that, assuming that the network operates at less than capacity for the

majority of the time, PHASE 2 will be called relatively infrequently and on average the

algorithm complexity does not increase substantially

5.2. Co-operative Market-Based Algorithm for Load Control

In the previous section a method of optimising object placement and load control was

introduced This section describes an alternative sub-optimal market-based strategy for

distributing load and load limiting in a network of optimally placed computational objects

This method was originally used for control of Intelligent Networks [Jennings, 2001] but has

been adapted and extended here to control in distributed object scenanos

5 2 1 Strategy O verview

Load sharing and admission control in this method is effected by means of tokens A token

type is associated with each pair of communicating computational object instances If, during

the course of a service session, an object instance requires communication with another object

in order to continue the session, it must posses a token of the relevant type to do so See

Figure 5 4 below This token is then considered ‘spent5 and is removed from a pool of

available tokens Tokens are consumed on a per-session basis That is, once an object has

‘spent’ a token to allow communication with another object, it may continue message passing

with this object to complete that service session but may not reuse it during any future

session

Thus, each new service-initiating request from a user requires a certain set of tokens within

the network in order to complete the service session This set of tokens is referred to as a

123

token chain Note that the first token in a chain (referred to as the initiating token) will apply

to acceptance or rejection of the initial service request from the user That is, if a token of this

type is not available, the request is immediately rejected Otherwise the service session is

accepted As will be explained below, tokens are allocated in such a manner that, once a

session is accepted, sufficient tokens exist to complete it

U se r O b je c t 1 O b je c t 2 O b je c t 3 O b je c t 4

Figure 5 4 Example o f Token Use During a Service Session

A token is required to allow sending of the first forward message in a session from one object to
another A token is not required to receive this message nor to send or receive any subsequent
messages m the session

In order to co-ordinate token usage, each processor in the network has an associated load

control agent that maintains a pool of tokens of various types on behalf of the computational

objects that the processor executes The ‘spending’ of a token has associated with it a

processing cost on the processors that host the associated objects Thus, by limiting the

collection of tokens associated with a processor during a certain control period, it is possible

to limit mean processor utilisation Also, the distribution of tokens across the network

processors can be used to control the distribution of load and the admission of new requests

into the network

In order to maintain a desired number of tokens in the token pools, a central auction is run

every T time units At the beginning of this auction process, load control agents submit bids,

which consist of the average arrival rate of new service session requests, for each service

type, expected over the next control period It is assumed that the auction process has

knowledge of the average available processing capacity on each processor and the processing

124

requirements associated with each possible token type The auction process then executes

with this information as input parameters and allocates sets of tokens to each processor’s load

control agent for use dunng the next control period

Dunng the auction process, tokens are allocated in chains That is, an initiating token is

chosen first and then all remaining tokens required to complete a session of this service class

are chosen The choice of tokens is governed by a market-based auction algorithm, which

allocates the most profitable tokens available each time The process continues until all

possible processing capacity is used for the next T seconds Pools of tokens are then

distnbuted to the load control agents for spending over the next T seconds Note that it is

assumed that the auction process completes in a time much less than T, so that processors do

not wait any significant amount of time for token pools to be refilled Note also that when a

pool is refilled, any existing tokens from the previous control period are removed These

bidding and auctioning processes are described more formally below

5 2 2 Notation

In order to describe the market-based algorithm in detail the following notation is defined

• There are K types of computational objects in the network Let k denote an arbitrary
object

• There are I load control agents in the system, each associated with one processor Let /
denote an arbitrary agent

• There are J different service classes Let j denote an arbitrary service class

• Each service class j has associated with it a profit value r(j), 1 e each successfully
completed service session of type j earns r(j) profit units for the network

• Tokens in the system are denoted by the tuple (k,k\j,i\j) This denotes a token that
permits an object of type k9 residing on node i, to communicate with an object of type k \
residing on node i \ for the purpose of completing one service session of service class j
Node ; is designated as the initiating node and node /’ as the target node for this token

• Dunng the auction, a tally is kept of the amount of capacity that remains unused on each
processor Let m, denote the remaining processing capacity on processor i at any stage
during the auction process

• A record is kept of the satisfied demands (in terms of tokens granted) for each processor
Let n(k,k\i,i\j) denote the number of (k,k\i,i\j) type tokens allocated, at any instance
during the auction process

• A record is also kept of the number of class j token chains allocated that have their
initiating token on processor i Let n(ij) denote the number of such tokens which have
been allocated, at any stage during the auction process

125

• The set CtJ is defined as the set of all allocated class j tokens in all chains which
originated from initiating tokens on processor i

• The quantity p,(k,k\i,i\j) is defined as the processing cost incurred on node i due to a
(k,k\i,i\j) token being spent Similarly, the quantity p t{k,k\i,i\j) is defined as the
processing cost incurred on node / ’ due to a (k,k\i,i\j) token being spent These
processing costs may be derived from message processing and protocol
encoding/decoding times, similar to the methods given in § 5 1 2 2 for estimating the

initiation requests of service type j, over the next T time units

5 2 3 Load Control A gent Bids

Load control agents submit bids to the auction agent every T time units in order to receive

tokens for use over the next control period The bid for agent i consists of its available

processing capacity over the coming period of T time units, denoted c„ and the rate of new

service requests expected from users to this processor, X{i,j) The available processing

capacity may be given any desired value in order to maintain loading at or below a desired

value The expected rate of new service requests may be estimated by the relevant agents by

simply taking the average measured rate over the previous control period

5 2 4. The Auction

In order to choose the most profitable tokens to assign, the auction calculates an expected

marginal utility of each additional token that may be allocated dunng an auction The

expected marginal utility is the ratio of the expected marginal gam to the expected marginal

cost of a token These are defined below

5 2 41 Expected Marginal Cost for Initiating Tokens

The expected marginal cost associated with allocating an additional initiating token of type

(k,k\i,i\j) is defined as the estimated processing cost, relative to the remaining processing

capacities on the relevant processors, that would be spent in the network when executing the

entire token chain resulting from this token being used to accept a new service session The

total processing cost is estimated by taking the average total cost over all previously allocated

chains which onginated from tokens of type (k,k\i,i\j) This cost is calculated as

quantities ¿T," and ‘„r”

• The quantity A(i,j) is defined as the expected rate of arrivals to node i for service

v(** rr 7)e cTj \

/

126

If no token chains originating from token type (k,k\i,i\j) have previously been allocated, then

this quantity is calculated from the costs associated with the initiating token only That is

v(k ,k W , j) = p -ik’k' ^ ’j) +
mi mt

5 2 4 2 Expected Marginal Cost for Non-Initiating Tokens

The expected marginal cost associated with allocating an additional non-initiating token of

type (k,k\i,i\j) is defined as the total processing cost expended by the network, if the token is

consumed, relative to the remaining processing capacities on the relevant processors This

marginal cost is calculated as follows

* k , k W , j) = p '{k’k'’’A j) +mx mi

5 2 4 3 Expected Marginal Gain for Initiating Tokens

The expected marginal gain associated with allocating an additional initiating token of type

(k,k\i,i\j)y given the amounts of tokens of this type that have already been allocated dunng an

auction, is defined as the profit associated with consuming it times the probability that it will

be consumed over the next control interval This probability is equivalent to the probability

that there that there will be at least n(ij)+l class j arrivals over the next T time units at

processor / If we assume that the arrival process of new service initiating requests to a

processor is a Poisson process, we may calculate this probability as follows

Given that the probability of a class j arrivals in T time units for a Poisson process will be

n (r) (Ml,j)T)°

then the probability that there will be at least n(ij)+1 class j arrivals over T time units is

calculated as

P [a > « 0 ,;) + l]= £ (J (;’y)7 y
o = n (i ;) + l a

The expected marginal gam of an initiating token may now be defined as

a=n(t ; > t l °

This calculation of marginal gain is identical to that described in [Jennings, 1999]

127

5 2 4 4 Expected Marginal Gain for Non-Initiating Tokens

Given that the initiating token for a chain is assigned before any other tokens m the chain, the

probability of consuming any other token in the chain is 1 In this case, the expected marginal

gain associated with allocating an additional non-initiating token may be any constant value

A constant value of 1 is chosen

5 2 4 5 Expected Marginal Utilities

The expected marginal utility of allocating an additional token of type (ktk \u \ j) may now be

defined as the marginal gain per marginal cost of such an allocation and is defined as

S(k,k',t,i',j) =
v(k,k',i,i',j)

where S (k ,k \i , i \ j) expresses the derivative of the utility function with respect to the

relative processing required for a (k,k\i,i\j) token allocation The auction algorithm aims to

maximise total overall utility by distributing the resources in a series of allocations such that

each allocation results in a maximal increase in overall utility The best allocation in each step

is thus the one with the highest derivative The auction algorithm is described in detail in the

following section

5 2 4 6 The Auction Algorithm

1) Initialisation

Reset token allocations n(k,k\i,i,j) = 0 for all k,k\i,i\j

Reset initiating token counts n(ij) ~ 0 for all i j

Set processing capacities remaining m, = c, for all i

Set marginal gains for initiating tokens

withn{ij) = 0, u(k,k',i,i',j)\ „0]>0 = r (j) [\ - e -H’1)T) '

Set marginal gains for non-initiating tokens u(k,k\iii',j)= 1

Set marginal costs v(k,k',i,i',j) for all tokens

0 = 1

Noting that =r(j)

a o , J)T) ° lo 1)T

' W > , j) T Y -J(, ,) T i) T

a - 0

- e

= 1)T]

128

2) Allocate an Initiating Token

Find all initiating tokens that maximise S(k,k\i,i',j) = u(k,k',i,j\j)/v(k}k ',i,i\j)

Choose token (k,k',i,i',j) from these at random

Update token allocations n(k,ic',i,i',j) = n(k,ic'9i , i ' , j) + \

Update initiating token count n{i,j) =n(i,j) + \
A A A A

Recalculate marginal gains u(k,k\i ,i'9j) of all initiating tokens for updated n (i j)
A A a A A A A ^ a A

Update remaining capacities mt = mj - p t (k9k\i , i \ j) and mi =/w - p t (k,k\i 9i \ j)

Recalculate marginal utility for chosen token type

3) Allocate Remaining Tokens in Token Chain

While there are remaining tokens to allocate in this token chain

Find all token types that maximise $(k,k\i,i'ij) = u{k,k\i,i\j)fv(k,kl,i,i',j)
A A /\ A A

Choose token type (k,k',i,i',j) from these at random

Update token allocations n(k,k',i,i\j) = n(k,k\i,i',j) + \

Update remaining capacities mt = mt - p t (k,k\i , i \ j) and

m , = m , ~ P ,

Recalculate maiginal utility for chosen token type

end while loop

4) Loop

do while not 0 tokens allocated in last pass and all m, not 0

goto step 1)

5) Distribute Tokens

Distribute allocated tokens of type (k ,k \ i9i \ j) to load control agent on node /

5 2.5. Token Spending for Initiating Tokens

Initiating tokens control acceptance or rejection of new service control sessions entering the

network over the course of a control period Under heavy load there are not an adequate

number of tokens available to accept all service sessions during the control period Under

these conditions, tokens will tend to exhaust early during a control period causing undesirable

traffic patterns (burstiness) within the network To avoid this, a rationing strategy is required t
1

to spread the available tokens more evenly over the control period The rationing process used

129

here is adopted from Jennings [2001] and employs Percentage Thinning (PT) to regulate the

acceptance of service requests At sub-intervals of the control interval PT coefficients for

each service type are updated, using estimates of the number of requests that will arrive

before the end of the control interval and the number of remaining tokens Arriving service

requests are subjected to a PT throttle using the relevant PT coefficient as parameter This

parameter is calculated as follows

Let T denote the length of the sub-intervals, T is chosen such that T = A r , where A is some

integer Let a s (\,A) denote the current sub-interval number Let y*{]) denote the estimated

number of arrivals of requests for service type j until the end of the control interval and let

n'(j) denote the number of tokens remaining for service type j Let m^a) denote the

number of requests for service type j that arrived during sub-interval a and let {a)

denote the number of these that were accepted Finally let p a(j) denote the probability of

acceptance of a request for service type j (the PT coefficient) The algorithm contains two

steps the first (Initialisation) is executed at the start of the control interval and the second

(Update PT coefficients) is executed at the start of each sub-interval

1) Initialisation

Set a = 1

For all service types j - 1, ,J do

Set y'(j) = qk (j) , where qk(j) is the number of requests for service type j
that arrived over the duration of the previous control interval

Set n'(j) = nk(j) , m'(j) = 0

Set />°0) = mm(l, n'(j)/y'(j))

2) Update PT coefficients

For all service types j = 1, , J do

Set n'(j) = r i{j)-m 'j {a)

Set (a1)
a 7*

Set p ‘(]) = mm(\,ri(j)ly'(j))

Set a = a +1

Having calculated the PT coefficient, acceptance or rejection of a new service session request

is decided as follows

Select a random number X uniformly distributed in the range (0 0,1 0)

if X < p a(j) then Service request is accepted, else Service request is throttled

130

5.2.6 Token Spending for N on-Initiating Tokens

If, dunng the course of a service session, an object instance requires communication with

another object in order to continue the session, it must posses a token of the relevant type to

do so This token is then considered ‘spent’ and is removed from the pool of available tokens

for that node There may be more than one token type to choose from 1 e there may be tokens

in the pool for a target object available on multiple different nodes In this case a token is

chosen at random in proportion to the number of mitial allocations Note that there is no need

to ration non-initiating tokens over the duration of the control penod, as there will always be

adequate tokens to complete a service session This is ensured by the auction process

5.3. Chapter Summary

This chapter has presented general approaches to optimal object allocation and performance

controls suitable for application to the service platform model described in Chapter 4 The

object placement solution described can be applied to obtain optimal placements of COs on

service platform nodes This is done in Chapter 6 and the resulting placements are analysed

The optimal random splitting and admission controls developed can be employed as internal

and external performance controls This approach is investigated in Chapter 6 Also

investigated m the next chapter, is the performance of the sub-optimal market algorithm

compared to the optimal controls

131

Chapter 6. Analysis of Service Platform
and Performance Controls

In this chapter, the performance properties of the algorithms proposed in Chapter 5 are

examined The properties of the Computational Object allocation method are examined and a

distribution is chosen to complete the service platform definition An analytic model is

developed and the accuracy of the simulator verified The performance of the optimal and

market internal and external performance controls is examined and compared to the results for

a simple load-balancing scheme

6.1. Optimal Allocation of Computational Objects

An allocation of COs to processing nodes is required to complete the definition of the service

platform model for simulations and analysis Here we describe the implementation and

examine the properties of the optimal static CO allocation strategy developed in §5 1 and then

choose an allocation for examination of the dynamic algorithms (optimal and market-based

random splitting and admission control) We have assumed that, once assigned, the CO

allocation is fixed and do not consider mobility of the COs at runtime However, splitting

between the allocated CO copies and the Percent Thinning coefficient values of the gateway

throttles are variable and are determined by the dynamic algorithms (Optimal and Market)

These are discussed in the remainder of this chapter We first describe the implementation of

the CO allocation problems This implementation also relates in part to the optimal internal

control

6.1.1. Im plem entation o f the CO Placement LP/MIP

The Linear Programs of §5 1 generate quite large problem spaces that would be difficult to

construct ‘by hand5 Thus, C language code has been wntten for the purpose of this thesis,

which takes as input the specification for the service platform and the CO interaction details

It constructs the linear programming problem matrices programmatically and formats the

problem for input to IBM’s OSL solver (see §3 3 6) The OSL software package provides a

132

runtime library that is linked with our LP/MIP matrix construction code so that one

executable may be obtained When the solution vector is returned by OSL, some post

processing is done to extract the pertinent information and the solution is presented as simple

text output We give a description of the functioning of our code here Firstly, the inputs to

the program are specified as follows

Nodes The number of nodes and their operating speeds As messages are specified with

respect to their nominal execution times rather than number of instructions, processor speeds

are specified in terms of relative processing speeds e g a processor of speed 2 executes a

message in half its nominal execution time

Services The number of service types and a textual description of each

Computational Objects A list of COs This is a numbered list with a textual description of

each CO, which is used on output to aid legibility of the solution

CO Installation Costs An optional input that specifies the relative cost of installing a CO on

a given node

Minimum CO Utility An optional input that specifies the minimum traffic volume a CO must

serve before it is allowed to be allocated in the network

CO Allocation Constraints We wish to constrain the placement of the GW objects as these

are collocated with the SS 7 stack in the service platform and cannot be replicated arbitrarily

in the network This condition may be specified on input as a list of fixed CO assignments for

the problem

CO Interactions To formulate the relationships between the main workflow variables of the

LP/MIP, the code requires knowledge of the COs that interact dunng each service This is

specified as a list of CO pairs for each service For example, referring to Figure 6 1, the CO

interactions for Service A would be (ssp, gw) , (gw, scfp) , (scfp,gsep) , etc Note that

lists for different services may contain common components (e g the GSEP) as well as

service specific ones

Work Flow Description We also require a specification for work-flows between all object

instances This relates to message specification in the LP/MIP (§5 12 1) Each message

passed between COs generates work on their processors For each CO pair, defined above,

this work is specified in the input as lists of messages passed dunng a service session and

their corresponding processing times The input is of the form

[Source_CO, CO_Pair_ID , CO_l_ORB_t1 me, CO_l_proces s in g _ t 1 me,

CO_2_ORB_ORB_t 1 me, CO_2_proce s s m g _ t 1 me]

133

Note that ‘orb time’ may be either encoding or decoding time depending on the message

direction, which is specified by stating the source CO Beyond this, the message direction

itself is not required to construct the problem as the network flows (in the optimisation

problem space) are bi-directional Thus, for example, it is equivalent to specify the target CO

as the message source and reverse the order of CO J and CO_2 processing times in the list

Note also that, in the implementation we assume that the same message, on different

processors of the same speed, executes in the same time This time is then linearly scaled

according to the specification of processor speeds This simplifies the implementation,

however, note that it is not a requirement of the general strategy where each message on each

processor may have an independent set of processing times (see §5 12 1)

Figure 61 COs and Interaction Edges (Service A)

Service Users and Relative Traffic Volumes The LP/MIP is driven by maximisation of a set

of input flows from users to the network (where the ‘users’ in our case represent groups of

SSPs connected to the GW) A description of the service users is specified on input as a

source CO and a per-service traffic value for a CO pair that contains the source CO, for

example (s s p , g w) This is in the form

[s o u r c e _ C O , C O _ p a i r , s e r v i c e _ l _ t r a f f i c , s e r v i c e _ 2 _ t r a f f i c ,

s e r v i c e _ 3 _ t r a f f i c]

Note that the source CO (the SSP) is automatically assumed to be a fixed-location CO That

is, we assume that traffic sources are not mobile The target CO of the pair may or may not be

fixed, depending on the CO allocation constraints (as describe above) The traffic volume is

inputted in units of service sessions per second A list of such sources and their traffic

volumes is specified on mput

6 1 1 1 Coefficient Matrix Construction

Having received the inputs, the program constructs the matnx coefficients and constraints for

the LP/MIP These are as follows

134

Total Work Flow The workflow description from the input is processed to obtain the total

‘local’ and ‘remote’ workflow for each CO pair ‘Local’ workflows relate to collocated

objects and exclude ORB time whilst ‘remote’ workflows include it In either case, this

workflow is representative of the total execution time expended in the network by a pair of

CO copies, during execution of one service session (see §5 12 3)

Input Traffic Constraints All user flows are fixed relative to each other with a set of real-

vanable equality constraints The input traffic specification is transformed to the workload

flow variable by normalising it with respect the work flow value of the user CO pair For

example, in a single service network, the input specifies 2 sources as follows 1 session per

second from sspi to gwi and 2 sessions per second from SSP2 to GW2 And the total work flow

during a service session for (sspi,gwi) is 0 5 seconds and the total workflow for

(SSP2 ,GW2) is 0 2 seconds The constraint is thus 5 x (sspi,gwi) = (SSP2 ,GW2)

Constraints are created to relate each source for each service type in the network Any one of

these source flow vanables may be chosen as the objective function for maximisation as this

will maximise the total arrival rate

Interaction of Edge Pairs The program constructs the pairings of flows between COs, so

that each flow in the graph can be inter-related with all others by specifying constraints (as

per §5 1 2 1) This is a construction of a list of pairs of CO pairs for each service, for example

in the form

[service_l (<SSP,GW),(GW,SCFP)) (<GW,SCFP),(SCFP,GSEP))]

This list must include all edge pairs in the service interaction graph (Figure 6 1 is an example

of the service graph for Service A) (Redundant pairs will make the problem space larger

unnecessarily and are avoided) From this graph, all edges in the service interaction graph are

inter-related by constructing one real-vanable equality constraint for each pair of pairs, and

for each allocation of non-common COs to each network node (see §5 1 4) These constraints

are specified as per the total workflows Either local or remote workflow values are used

depending on whether the particular constraint relates to objects on the same or different

nodes Note that the user traffic pairs are also included m the graph, so that all flows are

directly or indirectly related to the input traffic

Node Capacity Constraints These are inequality constraints, limiting the total workflows

associated with a node (representing the utilisation of the node) as per §5 1 4

Installation Costs Finally the installation costs as per §5 1 5 are added to the constraints

These relate real vanables to integer vanables If constraints are not specified m the input

then the problem is constructed as an LP otherwise it is constructed as a 0-1 MIP

135

A general overview of the LP/MIP coefficient matnx is shown in Table 6 1 Note that this is

only an estimate of the constraint dimensions, as there are some subtleties dependent on the

user input For example, if fixed-location COs are specified, then they do not appear in all

edge pair constraints (Their flows may instead be set to zero using column constraints, where

appropriate) Note that, although this is a large matnx it is sparse and problems with several

thousand vanables solve in the order of seconds

Real Variables Integer Variables

Edge 1 Edge 2 Edge E CO 1 CO C

1 2 N 1 2 N 1 2 N 1 2 N 1 2 N

[N * S input traffic constraints in real variables]

[tf*E edge pair constraints m real variables]

[N node capacity constraints m real variables]

[N+C installation cost constraints in mixed variables]

Table 61 LP/M IP Constraints Matnx

6 1 1 2 Algorithm Outputs

Having received a solution from the OSL Solver in the form of a row vector giving the

network flow solution, some post-processing is done to extract the pertinent information The

flows relating to each potential CO copy on the network nodes are examined If all flows are

zero, then the CO is not assigned to that particular node The objects remaining give the

solution CO allocation

The solution flows are also used to calculate random splitting probabilities between objects

These are required to achieve the optimal flows in the network for the given user traffic mix

To do this, the work-flows between a given CO copy and all copies of another CO in the

network (which is part of the same service interaction) are examined As splitting

probabilities are required only at points in service where a new CO type is needed to continue

service execution, the splitting points of the solution flows must be interpreted in the order

that the COs are encountered dunng a service session At these points, the solution flows

between the source CO and target CO are normalised to give the set of random splitting

probabilities

In practice, there are relatively few splitting points of interest because the problem solution

tends to collocate objects as much as possible to reduce communications overhead Thus we

136

filter out all splits from the program output that only involve collocated COs

The solution flows for user traffic are transformed back to a sessions per second measure thus

giving the arrival rates in the optimised network that produce maximum possible loading in

the network, 1 e maximum throughput

6,1.2 Basic Results for O ptim ised CO Placements

We first examine the output of the optimisation for the following service platform

specification

• There are 10 processing nodes all with relative processing speeds of 1

• Services, COs and messages are as per the test service MSCs and message details given in
Chapter 4

• There are two sources (SSPs) connected to two gateway nodes

• Relative traffic volumes are all equal, i e each gateway receives the same traffic volume
for each service and the total traffic at the two gateways is also equal

(Note that this specification is the same as that of the Service Platform Model, described in

Chapter 4, in terms of number of processors, service MSCs and SSP connections)

The optimised output is shown in Tables 6 2(a) and 6 2(b) below Table 6 2(a) gives the

optimal assignment of COs to nodes Note that the GWs have been fixed to nodes 1 and 2 (an

arbitrary choice made in the input specification) SSPs are not shown as they are assigned to

their own GWand cannot split traffic

No
de

GW SCF
 P

rox
y

PA UA GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)

SF
(B

)
SF

(C
)

SSM

(A
)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SSO

(C
)

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X

4 X X X X X X X X X X X

5 X X X X X X X X X X X X

6 X X X X X X X X X X X

7 X X X X X X X X X X X

8 X X X X X X X X

9 X X X X X X X X X X X

10 X X X X X X X X

Tables 6 2 (a) Optimal CO Allocation Solution fo r Equal A rriva l Rates a ll Services

137

Table 6 2(b) shows the optimal splitting between objects for each service For example, the

first two rows for Service A show that the GW on Node 1 splits 0 2894 of its traffic with the

SCFP on Node 9 and 0 7106 of its traffic with the SCFP on Node 10, for Service A traffic

By examining the splitting probabilities we see that all objects required for each service, apart

from the GWs, have been grouped together with the SCFP and the group copied to all nodes

This is evidenced by the fact that there are no other splittings, apart from GW-SCFP Also,

groupings are collocated with the GW:s as far as possible, to reduce communications time We

note, however, that the SCFP group on node 1 receives only a relatively tiny amount of traffic

but is still required by the optimal solution These low-utilisation objects can be eliminated

from the solution by setting minimum CO utilities (discussed below)

Random Splitting Probabilities

S e rv ic e S o u rc e C O T a rg e t C O
S o u rc e

N o d e
T a rg e t N o d e

S p l it t in g

P r o b a b i l i t y

A

G W SC FP 1 9 0 2 8 9 4

G W SC FP 1 10 0 7 1 0 6

G W SC FP 2 5 0 2 8 5 7

G W SCFP 2 6 0 7 1 4 3

B

G W SC FP 1 1 0 0 0 1 9

G W SC FP 1 6 0 0 0 3 4

G W SC FP 1 7 0 5 9 1 3

G W SC FP 1 9 0 4 0 3 4

G W SCFP 2 2 0 0 0 1 9

G W SCFP 2 3 0 6 7 5 7

G W SC FP 2 4 0 3 2 2 4

C

G W SC FP 1 7 0 1111

G W SC FP 1 8 0 8 8 8 9

G W SC FP 2 4 0 4 6 4 9

G W SCFP 2 5 0 5351

Tables 6 2 (b) Optimal CO Allocation Solution fo r Equal A rriva l Rates a ll Services

To verify the allocation, the service platform was simulated2 using the optimal splitting

probabilities given above These were employed as the internal performance controller

splitting probabilities and are static throughout the simulation Thus we have a static internal

control to compare to dynamic schemes (in later sections of this chapter) The traffic mix was

also the same as at the design point - equal arrivals from all sources Note that there is no

throttle implemented at the gateway (External Performance Control) in this simulation

scenario Table 6 2(c) shows the results that were obtained from the simulator as follows

The throughput measure is a total over all arnvals to the network and was obtained by

increasing the arrival rate until the load on the heaviest loaded processor averaged 90%

2 Note that verification of the simulator and the methodology for assessing simulation results is
discussed in §6 3 below Simulation results given here were obtained according to that methodology

138

(±1%) (In results obtained later, we set the throttle at 90% so aiming for this value here

allows comparison) Note that the total throughput given is split between sources according

to the relative traffic volumes specified for the optimisation, in this case equally

T h ro u g h p u t a t M a x Load= 90% 1 22 (s e s s io n s s 1)

In s ta lla t io n C o s t (1 c o s t un it p e r C O co p y) 9 7

S e rv ic e D e la y s - L o w Lo a d (20% o f M ax) 9 3 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 481 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 8 9 2 8 8 0 8 8 5 8 9 0 8 8 1 9 0 3 8 7 6 8 8 1 8 9 1 9 0 1

Table 6 2 (c) Performance o f Optimal CO Allocations fo r Equal A rriva l Rates a ll Services

Each CO copy allocation is deemed to cost 1 unit so the Installation Cost simply gives the

total number of copies in the allocation Note that there was no limit set on the CO installation

costs for the optimisation

Average service delays are measured for a low and a high arrival rate that nominally give

20% and 90% utilisation respectively The required arrival rate for high load is the same as

that given for the throughput The required arrival rate for low load is calculated as

2 _ 20%
'ho -

Where p 9Q is the 90% throughput Note that the service delay was measured as the total time

a service session spends in the service platform It does not include processing or user

interaction times at the SSP, which are not related to service platform performance To obtain

the service delay, the total average SSP time is subtracted from the average session Round

Trip Time measured by the simulator This gives a measure indicative of response times to a

user’s requests

Finally, the average utilisation of each processor is given in the last row of the table Note that

the allocation has given full utilisation on all processors, balancing load Similar results given

in the following sections were obtained as have been described here

6.1 3 Load Imbalance

Here we consider the allocations and splitting produced by the optimal placement algorithm

when the service demand is not balanced between services We consider the traffic mix

scenarios given below These values give the relative traffic mixes for input to the

optimisation program All other inputs are the same as m the previous equal traffic mix

scenario The results are given in Tables 6 3 to 6 5 below Note that, again, the optimal

splitting probabilities were used in each case and the service mixes to the simulator were the

same as the input traffic mixes to the optimisation program

139

SI GW1 SI GW2 S2 GW1 S2 GW2 S3 GW1 S3 GW2

Scenario 1 Relat ive Arrival Rates 8 8 1 1 1 1

Scenario 2 Relat ive Arrival Rates 1 1 8 8 1 1

Scenario 3 Relative Arrival Rates 1 1 1 1 8 8

The results for Scenario 1 (Table 6 3) show that, as expected, the Service A COs have been

replicated across nodes more than for Service B or C’s B’s COs are still quite heavily

replicated as B is the most complex (and with the longest execution time) service B’s COs

are also collocated with the GW as much as possible as communication is heavier Again all

processor loads are maximal A slightly higher throughput is attained due to the high

proportion of Service A traffic which is a simpler service There is also a corresponding

decrease in service times compared to the equal loading scenario

In Scenario 2 (Table 6 4), the high-load Service B has its am vais increased As expected,

Service B components are the most heavily replicated with service B specific COs on 7

remaining nodes The total throughput has decreased as the average service time is greater

compared to the equal loading scenario Average service delays have also increased

accordingly Again load is balanced across processors

Scenario 3 (Table 6 5) has increased amvals for Service C, which is the service with the

shortest execution time A higher average throughput and lower service delays are attained

Note that Service B COs are still quite heavily replicated as it is the highest load service

The optimisation achieved load balance and thus full usage of available resources for all three

loadmg scenarios Delays are reasonably low at high arrival rates in each case However, all

three scenarios display a relatively large amount of component duplication Noting that there

are 16 CO types in the network, on average there are approximately 5 5 copies of each

component deployed This may be undesirable for cost and logistical reasons We next

consider limiting the total installation costs of components to reduce replication

6.1 4 CO Installation Costs

The optimisation program allows specification of a maximum CO installation cost This cost

is the CO installation cost multiplied by the number of its copies, summed over all COs Here,

we examine the effect of reducing the maximum cost of the allocations produced In the

experiments, we assume an installation cost of 1 unit for each CO type Thus, the resulting

cost gives a count of the total number of CO copies installed Service traffic mixes are set

equal and we compare with the results in Table 6 2 (which had the same offered traffic mix

but with no installation cost constraint)

140

(a) Computational Object Distribution

N
o

d
e

GW SCF
 P

rox
y

PA

vn GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)
SF

(B
)

SF
(C

)
SSM

(A

)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SSO

(C
)

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X X X X X X X X

4 X X X X X X X X

5 X X X X X X X X

6 X X X X X X X X

7 X X X X X X X X X X X X X X X

8 X X X X X X X X

9 X X X X X X X X

10 X X X X X X X X

(b) Random Splitting Probabilities

Service Source CO Target CO
Source
Node

Target Node
Splitting

Probability

A

G W S C F P 1 7 0 1 3 6 3

G W S C F P 1 8 0 2 9 3 5

G W S C F P 1 9 0 2 9 3 5

G W S C F P 1 10 0 2 7 6 7

G W S C F P 2 3 0 1 1 9 6

G W S C F P 2 4 0 2 9 3 5

G W S C F P 2 5 0 2 9 3 5

G W S C F P 2 6 0 2 9 3 5

B

G W S C F P 1 1 0 4 6 6 7

G W S C F P 1 3 0 0651

G W S C F P 1 7 0 4 6 8 2

G W S C F P 2 2 0 4 6 6 7

G W S C F P 2 3 0 5 3 3 3

C
G W S C F P 1 2 1 0 0 0 0

G W S C F P 2 7 1 0 0 0 0

(c) CO Distribution Performance

T h ro u g h p u t a t M a x Load= 90% 1 28 (s e s s io n s s 1)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 9 4

S e rv ic e D e la y s - L o w Lo a d (20% o f M ax) 8 6 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M a x) 431 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 91 6 8 9 2 8 9 3 9 0 5 8 8 1 8 8 2 8 9 3 8 8 0 8 9 4 8 7 9

Tables 6 3 (a,b,c) Optimal CO Allocations for Service A Arrival Rates = 8 x B = 8 x C (No

installation cost limit and no minimum CO traffic limit)

141

(a) Computational Object Distribution

No
de

GW SCF
 P

rox
y

PA UA GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

<
b
GO

CDs»/
h
00 SF

(C
)

SSM

(A
)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SSO

(C
)

1 X X X X X

2 X X X X X

3 X X X X X X X

4 X X X X X X X

5 X X X X X X X X X X X X

6 X X X X X X X

7 X X X X X X X

8 X X X X X X X X X X X

9 X X X X X X X

10 X X X X X X X

(b) Random Splitting Probabilities

Service Source CO Target CO Source
Node

Target Node
Splitting

Probability

A
G W S C F P 1 5 1 0 0 0 0

G W S C F P 2 5 1 0 0 0 0

B

G W S C F P 1 6 0 2 9 6 3

G W S C F P 1 7 0 1 850

G W S C F P 1 8 0 2 2 2 4

G W S C F P 1 9 0 2 9 6 3

G W S C F P 2 3 0 2 9 6 3

G W S C F P 2 4 0 2 9 6 3

G W S C F P 2 7 0 1 1 1 1

G W S C F P 2 10 0 2 9 6 3

c

G W S C F P 1 5 1 0 0 0 0

G W S C F P 2 5 0 1191

G W S C F P 2 8 0 8 8 0 9

(c) CO Distribution Performance

T h ro u g h p u t at M a x Load= 90% 100 (s e s s io n s s 1)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 7 5

S e rv ic e D e la y s - L o w L o a d (20% o f M a x) 1 09 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 6 6 3 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 9 0 1 8 8 7 9 0 0 8 9 2 8 8 6 8 8 1 8 9 3 8 8 8 8 9 5 9 0 3

Tables 6 4 (a,bfc) Optimal CO Allocations for Service B Arrival Rates = 8 xA = 8 x C (No

installation cost limit and no minimum CO traffic limit)

142

(a) Computational Object Distribution

No
de

GW SCF
 P

rox
y

PA

vn GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)
SF

(B
)

SF
(C

)

SSM

(A
)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SSO

(C
)

1 X X X X X X X X

2 x X X X X X X X

3 X X X X X X X X X X X

4 X X X X X X X X X X X

5 X X X X X X X X

6 X X X X X X X X X X X X

7 X X X X X X X X X X X

8 X X X X X X X X

9 X X X X X X X X

10 X X X X X X X X X X X X

(b) Random Splitting Probabilities

Service Source CO Target CO Source
Node

Target Node Splitting
Probability

A
G W S C F P 1 10 1 0 0 0 0

G W S C F P 2 6 1 0 0 0 0

B

G W S C F P 1 1 0 4 0 5 0

G W S C F P 1 3 0 0 3 2 5

G W S C F P 1 7 0 5 6 2 5

G W S C F P 2 2 0 4 0 4 5

G W S C F P 2 4 0 5 9 5 0

c

G W S C F P 1 7 0 2 2 7 6

G W S C F P 1 8 0 3 0 1 6

G W S C F P 1 9 0 3 0 1 6

G W S C F P 1 10 0 1 6 9 2

G W S C F P 2 3 0 2 9 7 3

G W S C F P 2 4 0 2 2 3 3

G W S C F P 2 5 0 3 0 1 6

G W S C F P 2 6 0 1 7 7 8

(c) CO Distribution Performance

T h ro u g h p u t a t M a x Load= 90% 141 (s e s s io n s s 1)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 97

S e rv ic e D e la y s - L o w Lo a d (20% o f M ax) 7 2 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 361 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 8 8 6 8 8 1 8 8 0 8 7 3 8 8 7 9 0 6 8 7 9 8 9 1 9 0 2 8 8 7

Tables 6 5 (afb,c) Optimal CO Allocations for Service C Arrival Rates = 8 xA - 8 x B (No

installation cost limit and no minimum CO traffic limit)

143

Table 6 6 (below) gives the results for a maximum installation cost of 60 units and a

minimum CO utility value of 0 1 traffic units The installation cost limit has hampered the

optimisation significantly and on average the network is only 77% utilised with Node 5 not

used at all Some CO groupings have also split in two at the SCFP-UAP boundary This is

explained by the reduced replication sought, as traffic must split to reach the more centralised

COs For example, only one copy of the UAP(B) is allocated Even though the average

throughput has decreased due to the lower processor utilisation, average delay has increased,

as there is significantly more remote communication cost and more queues are encountered

during a service session Note, however, that the low utility COs have been eliminated from

the solution

As the above installation cost constraint resulted in effectively a 9-node network, it is

interesting to compare this to an optimisation on a 9-node network (rather than 10) that has no

installation cost constraint The resulting 9-node network gives a throughput of 110 sessions

per second and a total installation cost of 78 That is, throughput has increased by

approximately 17% but cost has increased by approximately 32% So, there may still be

utility m the cost-constrained network, from a throughput/cost perspective Note that the

scenario generally demonstrates the performance effects of disallowing duplication of COs

Even a relatively small restriction in duplication can have a large effect on the maximum

performance achievable

Figure 6 2 shows the trade-off between maximum achievable throughput and installation

costs Note that there is a region (between CO costs of 78 to 97) over which costs may be

reduced with little loss of throughput

Figure 6 2 Reduction o f Throughput with Reduced CO Installation Costs

We give the solution at the boundary point in Table 6 7 (cost of 78) and note that the

performance is very similar to the original optimised network (Table 6 2) However, the

144

installation cost has been reduced from 97 to 78, a reduction of 19 6% We considered this to

be the best trade-off when we are primarily concerned with throughput rather than cost Thus,

this cost constrained CO placement has been used to complete the specification of the

simulated Service Platform (Chapter 4) We will run dynamic random splitting schemes

(rather than the thus far static ones) on this platform, which adjust to the incoming arrival

rates These results are described in later sections of this chapter We will refer to the

completed service platform with this CO allocation as the reference platform

As an observation, note that, it is difficult to relate the costs of CO installation to losses due to

reduced throughput in a linear manner For this reason this has not been attempted in the

optimisation formulation However, as illustrated above, installation costs can be used to

reduce unnecessary CO copies without loss of performance and we propose this approach as a

useful network design method

6.1.5. Scalability and Bottlenecking

We examine the effect of varying the allowable number of nodes in the network (Figure 6 3)

Up to 12 nodes, there is a linear relationship between maximum achievable throughput and

the number of nodes The linear optimisation approach ensures scalability, as throughput (and

thus profitability) of the network scales linearly with the cost of deploying new processing

nodes In a non-optimised network, the effect to increasing processing nodes may be difficult

to predict Thus, the optimal approach may be a useful network dimensioning design tool

Figure 6 3 Increase m System Throughput as Processing Nodes are Added to the Network

Beyond 12 nodes the return on investment in processing power decreases This is due to the

gateways starting to bottleneck the system beyond this point To gain more throughput, it

would be necessary to split traffic across additional gateway nodes or to increase gateway

processing power We can conclude however, that two IN/CORBA GWs running on generic

nodes can still efficiently drive a network with 6 times their combined processing power

145

(a) Computational Object Distribution

No
de

GW SC
F P

rox
y

PA UA GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)
SF

(B
)

SF
(C

)

SSM

(A
)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SS
O(

C)

1 X X

2 X X

3 X X X X X X X X

4 X X X X X X X X

S
6 X X X X X X X X

7 X X X X X X X X

8 X X X X X X X

9 X X X X X X X X

10 X X X X X X X X

(b) Random Splitting Probabilities

Service Source CO Target CO Source
Node

Target Node
Splitting

Probability

A G W S C F P 1 1 0 4 0 0 2

G W S C F P 1 6 0 2 5 3 4

G W S C F P 1 7 0 3 4 6 4

G W S C F P 2 2 0 4 0 0 2

G W S C F P 2 4 0 2 9 5 8

G W S C F P 2 7 0 3 0 4 0

S C F P U A P (A) 1 6 1 0 0 0 0

S C F P U A P (A) 2 4 1 0 0 0 0

B S C F P U A P (B) 1 8 1 0 0 0 0

S C F P U A P (B) 2 8 1 0 0 0 0

C G W S C F P 1 3 0 5 9 4 2

G W S C F P 1 10 0 4 0 5 8

G W S C F P 2 9 0 6 4 4 9

G W S C F P 2 10 0 3551

(c) CO Distribution Performance

T h ro u g h p u t a t M a x Load= 90% 9 4 (s e s s io n s s ’)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 5 9

S e rv ic e D e la y s - L o w Lo a d (20% o f M ax) 9 6 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 5 1 0 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 87 1 8 9 8 7 6 0 9 0 2 0 0 8 9 0 8 8 5 7 4 5 8 8 3 9 0 3

Tables 6 6 (a,b,c) Optimal CO Allocations for Equal Arrival Rates Maximum Installation costs =

60 COs, with minimum CO traffic limit o f 0 1

146

(a) Computational Object Distribution

No
de

GW SCF
 P

rox
y

PA UA GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)
SF

(B
)

SF
(C

)

SSM

(A
)

SSM

(B
)

SSM

(C
)

SSO

(A
)

SSO

(C
)

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X X

4 X X X X X X X

5 X X X X X X X X

6 X X X X X X X X

7 X X X X X X X X

8 X X X X X X X X

9 X X X X X X X X

10 X X X X X X X

(b) Random Splitting Probabilities

Service Source CO Target CO
Source
Node

Target Node
Splitting

Probability

A G W S C F P 1 3 0 6 4 3 4

G W S C F P 1 7 0 3 5 6 6

G W S C F P 2 7 0 3 4 9 6

G W S C F P 2 9 0 6 5 0 4

B G W S C F P 1 1 0 2561

G W S C F P 1 4 0 7 4 3 9

G W S C F P 2 2 0 2561

G W S C F P 2 10 0 7 4 3 9

C G W S C F P 1 5 0 3 1 3 7

G W S C F P 1 6 0 6 8 6 3

G W S C F P 2 5 0 3 7 2 6

G W S C F P 2 8 0 6 2 7 4

(c) CO Distribution Performance

T h ro u g h p u t a t M a x Load= 90% 121 (s e s s io n s s 1)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 7 8

S e rv ic e D e la y s - L o w Lo a d (20% o f M a x) 91 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 4 7 2 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 88 8 8 9 2 9 0 0 8 8 6 8 9 0 9 0 4 8 9 1 9 0 3 9 0 1 8 8 5

Tables 6 7 (afb,c) Optimal CO Allocations fo r Equal A rriva l Rates Maximum Installation costs =

80 COsf with minimum CO traffic lim it o f 01

In conclusion, we have seen that the throughput optimisation tends to collocate objects as

much as possible, which will tend to reduce the number of queues that the service messages

encounter (as well as reducing processing due to encoding/decoding) Thus, although the

objective is to maximise throughput a desirable side effect is that delays are kept at reasonable

levels Also, in each scenario examined, loading has been balanced across processors

147

6.2. Comparison to Minimisation of Communications Costs

The majority o f current optimal allocation problems aim to minimise communications costs

rather than maximising throughput (for example [Anagnostou, 1998], [Bastarnca et al 1998]

and [Avramopoulos & Anagnostou, 2002]) We apply a communications minimisation

objective to the model and examine differences in results to our throughput maximisation

approach

Using the notation already defined in §5 1 we define the communications cost, JC,", as the

total ORB encoding/decoding time on processor n and processor m due to all communication

between an instance of computational object cx on processor n and an instance of

computational object c} on processor m during one service session of type s

2 C " * (*) + Z T» COie W V n * m

s / i n _
m y —

Vit G X ' (C/if*} V k e *M cJ ixrver)

V n = m

Thus m5C," gives a communications costs in terms o f the same encoding/decoding times used

in the throughput maximisation model, allowing a fair comparison between the problem

solutions The problem objective is

Minimise T V m/ ̂ ™ y y

i e to minimise all times relating only to remote communications costs between COs The

flow balance, processor limit and user location constraints are as defined for the original

throughput optimisation (§5 14) In this case, the user demands are fixed values (otherwise

the solution would tend to zero) This constraint replaces the relative arrival rate constraints of

the original throughput problem and may be stated as

A” =As V « e N user, s e S

where As are the assumed arrival rates for the system A solution to an instance of this

problem is shown in Tables 6 8 (a) and (b) The solution was obtained for the following set of

arrival rates {A”}

Service A Service B Service C

GW (Node 1) 4 (session s]) 32 (session s]) 4 (session s ’)

GW (Node 2) 4 (session s]) 32 (session s !) 4 (session s ’)

Î48

(a) Computational Object Distribution

No
de

[GW SCF
 P

rox
y

PA

vn GS
EP

UA
P

(A
)

UA
P

(B
)

UA
P

(C
)

SF
(A

)

SF
(B

)

SF
(C

)

SSM

(A
)

SSM

(B
)

SSM

(C
) (V) OSS SSO

(C

)

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X X

4 X X X X X X X

5 X X X X X X X X X X X X X X X

6 X X X X X X X X X X X X X X X

7 X X X X X X X X X X X

8 X X X X X X X

9 X X X X X X X

10

(b) Random Splitting Probabilities

Service Source CO Target CO Source
Node

Target Node Splitting
Probability

A

G W S C F P 1 7 1 0 0 0 0

G W S C F P 2 5 0 6 6 9 6

G W S C F P 2 6 0 3 3 0 4

B

G W S C F P 1 1 0 0 0 2 3

G W S C F P 1 3 0 4 1 6 9

G W S C F P 1 4 0 4 1 6 9

G W S C F P 1 5 0 1 6 4 0

G W S C F P 2 2 0 0 0 2 3

G W S C F P 2 6 0 2 2 2 0

G W S C F P 2 7 0 2 4 5 6

G W S C F P 2 8 0 4 1 6 9

G W S C F P 2 9 0 1131

C
G W S C F P 1 6 1 0 0 0 0

G W S C F P 2 5 1 0 0 0 0

(c) CO Distribution Performance

T h ro u g h p u t a t M a x Load= 90% 7 6 (s e s s io n s s ’)

In s ta lla t io n C o s t (1 c o s t un it p e r C O) 8 5

S e rv ic e D e la y s - L o w Lo a d (20% o f M ax) 112 (m s)

S e rv ic e D e la y s - H ig h L o a d (90% o f M ax) 6 8 2 (m s)

P r o c e s s o r % U til is a t io n (N o d e s 1 to 10) 89 4 8 8 0 9 0 6 8 8 3 8 8 4 8 8 1 8 9 4 8 8 8 2 2 0 0 0

Tables 6 8 (a,b,c) Optimal CO Allocations fo r Communications Cost Minimisation

Note that the traffic mix is the same as for results Table 6 4 where Service B traffic is eight

times heavier than A or C The total traffic intensity was choscn to give a maximum processor

load of approximately 90% The results show (Table 6 8) that the minimum communication

cost optimisation is not driven to use all processing capacity, as throughput maximisation is

149

The minimum communications cost solution will not balance load unless the arrival intensity

causes loading on all nodes to be maximal Simulation results are given in Table 6 8 (c) Node

10 has no COs allocated at all and Node 9 is only loaded to 22% As expected, Service B is

the most heavily replicated with COs on 9 remaining nodes Apart from load-balance, the

solution displays similar properties in terms of object grouping as the throughput

maximisation solution (Table 6 4)

There are potential setbacks to this approach As loading on nodes will not necessarily be

balanced in the solution, there is a larger variation in delay when a service may be processed

on either a high or low loaded node Also, on average it is likely that the delay will be greater

than if the same amount of load is shared equally amongst nodes (as delay is generally an

increasing function of load) Also, as too high arrival intensities will cause an infeasible

problem space, it is not suited to admission control optimisation Throughput maximisation

thus has several advantages

Regarding application to dynamic sharing algorithms, as nodes may be loaded to 90% even

when the system is relatively lightly loaded, there is no ‘head-room’ to accommodate sudden

increases in traffic This is especially important for dynamic controls, which may not update

random splitting information fast enough to cope with transients Thus, with communications

minimisation solutions, the processor may be m danger of overload even under low system

load conditions

6.3. Simulation Methodology and Validation with an
Analytic Model

We make a note here regarding simulation methodology before examining further results for

the dynamic internal and external controls In order to gain accurate simulation results for the

service platform we have used the following methods for ensuring high confidence

Simulations are run until the customer population in the system has stabilised and the output

measure we require has reached close to its final value The output trace for the required

measure is examined and the average values over each of two consecutive periods at the end

of the simulation run are compared The length of each of these intervals is 5% of the total

simulation run time The averages are required to be within 2 % of each other to indicate that

the simulation has settled If not, the simulation run is elongated until the settling condition

has been reached To ensure confidence in the results, a number of simulation runs are

executed in accordance with the steady state condition The number of simulation runs is

increased until not worse than 95% confidence intervals of ±2% are achieved in the measure

of interest In order to validate the functioning of the simulator, we compare results to those

obtained with an analytic model, described below

150

In this section a Layered Queuing Network (LQN) model is developed to obtain an analytic

solution for mean processor loads and mean service execution delays for the reference

platform The objective is to verify the simulation model with analytic results The Layered

Queuing Network Solver (LQNS) has been used to obtain solutions to the LQN Layered

Queuing Networks and the LQNS have been described in §3 1 9

6 3 1 1 Model Assumptions

The model is based on the CO allocation of the reference platform (Table 6 7 (a)) There are

four main distributable object types on the platform, the GW and the group of collocated

service components for each of the three services For example, the collocated components

for Service A are {SCF Proxy, PA, UA, GSEP, UAP(A), SF(A), SSM(A), SSO(A)} This

grouped service-specific object is referred to here simply as the SCF The SCF encapsulates

all COs that are grouped together and the execution times for message calls on its interface

are based on local communication times between the encapsulated COs Messages received

by an SCF are processed as a single message, where the processing time takes into account

only local processing between grouped COs It is assumed that messages between COs occur

as native function calls within the same thread of execution

Firstly, a general model is developed which allows two fixed-location GW objects and SCF

copies to be placed on any of the network nodes This model is then used to obtain a solution

to the specific SCF placements and random splitting specified by the reference platform A

model for a single service type is first developed This is then extended to a multi-service

network

All assumptions made for the service platform model (Chapter 4) also hold for the analytic

model In summary

• There is one queue and one server on each of 10 processing nodes in the network

• Messages are asynchronous i e the calling process does not block waiting for a reply

• Arrivals and user interaction times at the SSP are exponentially distributed

• Service times are deterministic, as given in the message detail charts in Chapter 4

6 3 1 2 Execution Patterns

We may decompose the service MSCs into a number of specific execution patterns so that the

model may be built-up from smaller, simpler modules Figure 6 4 below shows the set of five

interactions that make up any of the three services on the reference platform They are as

follows

6.3.1. Analytic Model of the Service Platform

151

Open Traffic Sources. We require six independent Poisson traffic sources to drive the model,

one for each gateway/service combination. The mean arrival rate of each source is variable.

Request-Reply: The main interaction pattern in the MSC we wish to model is an

asynchronous request-reply. Referring to Figure 6.4(b), a call sent form the GW to the SCF

returns immediately (does not block the GW task). Message el is queued and eventually

executed on the SCFs processor and a message returned, again, freeing the SCFs processor as

soon as the message is sent.

SSP Pure Delays. We do not model queuing in the Intelligent Network. However, we do

wish to model user interaction times (e.g. conversion time during a call) and also take account

of delay due to other message processing at the SSP (i.e. the CTR/ARI message pair in

Services 2 and 3). These delays may be modelled as an infinite server with exponentially

distributed service times, i.e. a pure delay.

SSF GW

Arrivals
wrh

e .n

(a) Open Traffic Sources

GW (PI) SCF (PI)

SSF

el 3
e2

GW SCF SSP GW SCF

e2

el

P Delay

(b) Request-Reply

SSF

SCF (P2) SCF (P3)

)
OR ► r-oR-n

e2

T T

OR

el

e2

(c) SSP Pure Delays

GW SCF

e3

el

e2

T T
(d) Random Splitting (e) Forking to Multiple Threads of Control

Figure 6.4(a-e): Service Execution Patterns

Random Splitting. In order to model the internal performance control, we require a

mechanism to model the random distribution of incoming service requests. According to the

optimal splitting solutions, this is done by splitting the request stream at the GW to multiple

SCFs (Figure 6.4(d)).

152

Concurrent Execution At some points in the MSCs a service continues execution in parallel

For example, referring to Figure 6 4(e), having processed message el, the SCF makes a call

on entry e3 of the GW task, but then immediately continues processing entry e2 on its own

processor

We derive each of these model elements below and then construct the overall system model

of the service platform from the constituent parts

6 3 1 3 Modelling Open Traffic Sources

We require a LQN sub-model for the MSC of Figure 6 5(a) External arrivals to task T1 are

generated by a Poisson process with an inter-amval rate of k The MSC can be expressed as

an open arrival LQN model as in Figure 6 5(b) However, the LQNS analytic solver is

primarily onented towards solving queuing models with finite customer populations whereas

our system is open In this case, the method given m [Shousha et a l , 1998] is used to convert

open models to closed In this method, the open arrival is replaced with N ‘pure5 client tasks

which each cycle continuously (i e ‘arrive to the system5) on average Z times per second If N

is very large, a value of Z may be chosen (appropriately large) such that an effectively open

arrival process of rate k ~ NjZ is achieved That is, we approximate an infinite population

with a very large one Note that, the clients must make synchronous (rendezvous) calls on task

77, so that they receive a reply and return to the client pool, ready to ‘arrive’ again Otherwise

the client pool would eventually exhaust

6 3 1 4 Modelling Requests-Replies and Message Execution

In order to model the interaction pattern of Figure 6 6(a), we note that an LQN must be

specified as an acyclic task graphs This is to prevent deadlock occumng However, the

service MSCs are cyclic in nature - a call is made to an object, which processes and then calls

back to the original caller The transformation to an acyclic LQN is shown within the dashed

box of Figure 6 6(b) Each message in the original sequence is modelled as a separate

‘pseudo-task’ with one entry corresponding to the call These tasks have no associated

X
Rendezvous

(C)

Figure 6 5(a-c) Conversion o f Open to Closed Arrivals in the LQ N

153

processor and their entries have zero delay Calls are chained together with rendezvous calls,

so that each message must finish processing before the next begins

To represent the resource aspects of the service, tasks with associated processors are required

In the sub-model shown, the GW object is assigned to one processor (PI) and the SCF to

another (P2) Their associated tasks, PI exec and P2 exec allow modelling of the resource

demands of calls on the GW and SCF When an entry of a pseudo-task is called, a rendezvous

call is immediately made on the corresponding entry of the processor task This call blocks

until the entry has queued and been executed On return, the task then continues with a call to

the next pseudo-task, which represents the next message in the sequence And so the chain

continues, blocking and waiting for execution of each message before continuing Note that

all message pseudo-tasks in the chain behave as if they are ‘infinitely threaded’ That is, any

number of messages can be in the system and blocked-waiting for access to the processors

These calls are all queued and executed in FIFO order

GW (PI) SCF (P2)

el

e3

e2

e4

(a) (b)

Figure 6 6(a,b) Modelling Requests-Rephes and Message Execution

Note also that, as all calls are rendezvous, the original call from the client pool is blocked

until the end of the message chain (after e4 executes in this case) At this point it is returned

to the client pool Note that there is only one (single threaded) task per processor so that each

message is cxecutcd sequentially (Multiple tasks on a processor would share processor time

by time-slicing, which is not our required behaviour) Thus the processor task must have an

entry, with appropriate workload parameters, for each message that can be executed on the

154

processor Thus the model gives the required execution semantics That is, (1) calls do not

block the calling process as it is threaded This, effectively, gives asynchronous call

behaviour (2) Each processor is a single process with one FIFO message queue (3) The

required sequence of calls and their execution is maintained (4) Each message has it own

execution time (modelled as a deterministic service time according to message times given in

the appendix to Chapter 4)

6 3 1 5 Modelling Random Splitting

We require a model for the random splitting that occurs at the gateway, that is, creation of a

new thread of execution on a different processor, chosen according to a set of splitting

probabilities The MSC pattern, for a three-processor system, is shown in Figure 6 7 and the

corresponding transformation to an LQN sub-model is shown in Figure 6 8 (Note that, in

Figure 6 8, processor tasks and all their entnes are simply represented by their corresponding

processor, a labelled circle)

An activity model element with branching point is used to perform the splitting With this

construct one of the paths is chosen according to the set of probabilities {pi, p2 , p3} (In

practice, there will be a probability associated with each potential host) Note that the

branching task has no delays or associated processor and does not make calls to the processor

tasks It merely performs the splitting to different message chains Having chosen a branch,

the relevant message chain is started with a call to entry el Each message chain then executes

the service either on the GW processor (PI) or, the GW processor and one other processor

(either of P2 or P3) In the case of local processing on PI , the GW and SCF objects are

amalgamated (conceptually) into one distributed object This object has consecutive messages

grouped into single messages, where each message ends on a call to the SSF (not shown in

Figure 6 8) or end of service Otherwise, the original messages in the MSC would be

modelled as exiting and re-entering PI via its queue For this reason, the splitting is decided

before execution of el

GW (PI) SCF (PI)

SCF (P2) SCF (P3)

Figure 6 7 Random Splitting to Three Processors

155

arrivals

Figure 6 8 LQ N fo r Random Splitting to Three Processors

6 3 1 6 Modelling SSP Delays

We do not consider queuing in the SSP and model calls to the SSF as pure delays This is

modelled with the LQN infinite server construct Calls made to it are accepted immediately

and block for a negative exponentially distnbuted time period and then return The server task

has one entry for each delay required (e g User Interaction B1 requires a mean delay of 5

seconds) The delay tasks are employed similarly to ordinary processor tasks in the model

SSP GW (PI) SCF

<------

el

e2

Figure 6 9 Delays Modelled as LQN Infin ite Servers

156

Parallel execution occurs when a message is sent to another processor but the sending thread

then continues its own execution An example of this pattern and its corresponding LQN is

shown in Figure 6 10 (The example shown occurs at the end of each service session Similar

patterns are treated in the same manner) An inter-task Fork-Join interaction (see [Franks,

1999]) has been used to start concurrent execution of entries e2 on processor P2 and e3 on

processor PI The last task does not complete until both e3 and e2 have called it Note that,

again tasks in the dashed box are pseudo-tasks and have zero delay

6 3 1 7 Modelling Concurrent Execution

Figure 610 Modelling Deterministic Parallel Execution

6 3 1 8 Modelling Multiple Service Types and Overall Model

The overall model is constructed from the sub-models discussed above The general model

(that allows splitting to all 10 processors) is shown m Figure 6 11 Six separate traffic sources

are required, one for each (GW, Service) pair Each (GW, Service) source drives a separate

message sequence module, composed of a branching point, which splits to one of 10 message

sequence chains (si to slO) Each of these sequences execute on the GW processor and (at

most) one other processor corresponding to the sequence number For example, sequence slO

executes on PIO and the GW processor GW1 is deemed (arbitrarily) to execute on PI and

GW1 on P2 Thus, for example, si of the left-most module only executes on PI (but may also

call the pure delay server Dl) All other sequences in this module execute on PI and their

correspondingly numbered processor The server pool contains one processor task for each

157

processor and a genenc pure delay task which has entries for all required delay times for all

services

Note that this is the general case For modelling the optimal allocations (which give random

splittings to only a few SCFs from each GW), only a fraction of the sequences and processor

task entries are required Note also that the model allows processors to be heterogeneous in

the sense that each processor has independent processing times for a particular service

message However, in our experiments, times are set equal for a given message across all

processors, as was the case for the simulations

Source (GW1,S1) Source (GW1 S2) Source (GW2 SI) Source (GW2, S2)
i i i i
i ! Splitting and Message i i
i i Sequence Modules i i

i
sl

— I — 11—

X ! !Ail
1 s2 slO i 1i ii i

A
s l s2 -- s

----1 1—

J-
10 1 <1 1 1 t

A
s 1 s2 si

— , i--------------- j ---------

! ! X!! A
10 i 1 s l s2 - - s

_____ J
■ I11

V' V V 1r v 1 r 1 1 . , v I .\r

! ?\ j ! vi j j vò j ! ?a j ! ?$! j V6 j ! vi i i ! j ^ j j ™ j / m /

Processor Tasks and Pure Delay Tasks

iz l j - l j i i I
Task Entries

Service 1
Message Set

Processor Exec Tasks

Task Entries
Service 1

Message Set

I I I LJ
Task Entries

Service 1
Message Set

Local GW
Processing

I I I- UJ—
Task Entries for

User Interactions and SSF
Message Processing

Pure Delay Task

Figure 611 Overall LQNM odel

6 3 2 Verification of Simulator w ith Analytic Solutions

To verify the operation of the simulator, an LQN model was constructed for a system with

equal arrival rates for all services The object placements and random splitting probabilities

are as given in Table 6 7 This scenario was also simulated and the results for average

processor loading and service session delays compared to the analytic results Comparison of

system loading is given in Figure 6 12 There is good correlation between the simulation and

analytic solution over the range Figure 6 13 compares total service delays in the system

There is good correlation between the two with a small discrepancy in the delay values at

higher arrival rates Note that, due to the approximate nature of the analytic solution method,

some variation between simulation and analytic results is expected The simulation results are

expected to be most accurate

158

Total amvals per second

Figure 612 Simulated Versus Analytic Processor Utilisation

Figure 613 Simulated Versus Analytic Average Service Times

159

In §6 2 we have considered the optimal static placement of COs on network nodes and

explored the related performance issues by simulating at the design point with the optimal

random splitting as an internal performance control In this section, we consider optimal

internal and external dynamic controls We compare our controls to a simple intuitive load

balancing mechanism to assess the merits of optimising the controls

6.4.1. Internal Performance Control

Thus far, we have not considered performance when service traffic mixes vary from the

optimal design point To illustrate this scenario, consider the simulation traces in Figure 6 14

below Shown are the loads on the most and least loaded nodes in the network over time,

where the traffic mix changes from the design point m the central region of the graph The

network has been optimised for equal arrival rates for all services and is running using the

resulting optimal random splitting probabilities as an internal control Service arrival rates are

20 sessions per second for each service At time t=500s the demand for Service B doubles and

remains at this rate for a period It can be seen from the graph that once the service mix is

changed the random splitting fails to perform optimally Indeed the highly loaded node is in

danger of overload even though the average network load is relatively low (about 60% in this

instance)

6.4. Performance of Dynamic Controls

Figure 6 14 Loading when Traffic M ix Changes and Random Splitting is Fixed

In §5 1 6 we have proposed applying an LP to periodically update the random splitting

probabilities given the arrival rates in the previous control period This problem is similar to

the previous optimisation problem with the exception that the COs are now fixed and the

desired traffic mix is estimated from a measure of the arrival intensities over the previous

control interval, rather than being fixed arbitrarily at design time The objective is still to

160

maximise throughput and a new set of splitting probabilities is produced at the end of each

control period, which should be optimal for the current traffic

Figure 6 15 shows the results of employing this dynamic control to the same scenario as

before Shown are the loads on the same two nodes Although, the load has again increased

due to the increase in Service B arrivals, load is quite evenly distributed In fact, load on all

10 nodes over the high load period was measured to be within 3% of the average

In the next section, we consider the broader performance properties of the internal control

when coupled with the external control

Figure 615 Loading when Traffic M ix Changes and Random Splitting is Dynamic

6 4 2 Internal and External Controls

Part of the solution to the LP in §5 1 6 is a set of maximum session arrival rate thresholds for

the network In order to maintain the system at the optimum, it is necessary to limit the

service request volumes at the gateway when arrival rates exceed these thresholds (the

external control) When coupled with the internal control, the aim of the algonthm is to limit

the load on all nodes in the network and to maximise throughput

The LP solution returned at the end of the control penod contains both the random splitting

probabilities, discussed above, and a set of acceptance probabilities for new amvals at the

gateways These probabilities are used by the Percentage Thinning algonthm (described in

§5 2 5) to decide when to reject messages Note that only the first message of the service

session may be rejected as otherwise processing time would be lost in the network due to

sessions being aborted by the controller midway through execution

We use the reference platform, which has been optimised for equal service mix, to examine

the combined internal and external controls However, in order to test the controls operating

161

away from the design point, we change the service mix so that there is twice the average

arrival rate from Service B as from Service A or C We have chosen Service B as the

dominant service as the CO allocation results have shown that this service is the most difficult

to optimise, due to its longer service processing times

The simulation setup for the experiments that follow is

• Both dynamic internal and external controls are run on the reference platform setup

• The control periods are 20 seconds long

• Control information is disseminated instantaneously at the end of the control penod

The relative arrival rates of each traffic source are as follows

Service A Service B Service C Service A Service B Service C
SSP1________ SSP1________ SSP1________SSP2__________ SSP2______ SSP2

1 2 1 1 2 1

The amval rates are constant over each simulation run and the maximum processor utilisation

is 90% Load throttles are implemented by Percentage Thinning

Figures 6 16 and 6 17 give the simulated processor utilisation and the service delay over a

range of arrival rates for the internal and external controls operating together Note that the

amval rates given are totals over all traffic sources and the total load figure applies to the

system as a whole (i e it is equivalent to average processor utilisation over all 10 nodes)

From the processor utilisation, it can be seen that the throttles achieve close to the target of

90% load and that they are stable in the throttling region Note that all processors individually

had utilisation within 1 7% of the 90% limit at an amval rate of 150 sessions per second

From the service session delay time, it can be seen that delay is bounded by the throttle and

that this upper bound is reasonably short compared to the minimum delay

1

0 9

0 8

0 7

T3 0 6n o
i 05 (0o
k04

0 3

02

01

0 20 40 60 80 100 120 140 160 180 200
Total arrivals per second

Figure 616 Total System Load with Internal and External Controls in Operation

15=**+

/

/
/

r/ /

162

6 0 0

500

I 400

300

8
»200
S’2
I

100

/

r

/

/
y

0 20 40 60 80 100 120 140 160 180 200
Total arrivab per second

Figure 617 Average Service Delays with Internal and External Controls in Operation

To assess the merits of the optimal scheme we compare it to a simple load-balancing

algorithm This algorithm operates by calculating the random splitting probabilities in

proportion to the remaining processor utilisation, which is sent from all processors, every 20

seconds The splitting probabilities and the acceptance probabilities for admission control are

calculated as

5
split Pij W ~~

l - p a (k- l)

acpt r sPs (k) = p n(k - 1)
1

p n̂ < p n(k - D

p l x > p n{ k - 1)
V n e N ^ V s e S

where p n(k - \) is actual processor utilisation measured over the previous control interval

and where a is a damping coefficient that allows damping of the response to rapid changes

in processor load between control periods /?”ax is the load limit on gateway node n and is set

to a value of 0 9 The scheme was implemented to adhere to the CO locations of the reference

platform and operated over the same 20 second control period as the optimal algorithm

Acceptance probabilities for the Percentage Thinning are calculated from the acceptance

probabilities as per usual The value of a was tuned to achieve a stable control but was not

otherwise found to affect the results to a significant extent

The comparison between the loading and delay for the optimal and simple load-balancing is

given in Figures 6 18 and 6 19 The simple algorithm performs poorly as an internal control,

as there arc too many distributed requests made, which incur additional encoding/dccoding

processing times This increases load and delay Also, there are a larger number of queues

163

encountered during a service session, service session times become very long at high arrival

rates The simple algorithm was effective m limiting load at its 90% threshold value and

individual processors were well load-balanced (within 2%) However, this comparison

illustrates that it is not enough to aim only for load balance and to prevent overloads The

complexity of the system requires more than a simple greedy approach

6 4 3 Dynamic Performance Controls - Im plem entation Note

Much of the implementation of the dynamic performance controls is similar to that of the

optimal CO allocation program, descnbed in §6 1 However, the LP program needs to be

called from the simulation rather than from the command line To enable this, our code is

compiled with the OSL Solver headers to an object rather than an executable and an OPNET

executable is made which links this object and the OSL Solver library During the simulation,

the simulation calls the optimal controller code (sending the current arrival rate estimates) at

the prescribed intervals to retrieve the new set of splitting probabilities with which it updates

its load balancing lookup tables Note that this all occurs in zero simulation time All static

data such as the number of nodes, COs and workload details etc is hard coded into the

controller for efficiency The controller also returns the desired values of the arrival rates,

which the external load controller uses to throttle traffic

Total arrivals per second

Figure 618 Reduced Throughput o f Simple Load-Balancing Algorithm

164

Total arrivals per second

Figure 619 Increase in Service Delays o f Simple Load-Balancing

6.5. Revenue Optimisation and Fairness

Throughput optimisation is extended to optimisation of network revenue with the algorithm

proposed in §5 1 8 The aim is to consider the profitability of successful service sessions for

the operator where each service type generates different revenues Rather than throttling all

service types equally dunng periods of high arrival intensities, services are throttled

differentially to achieve a higher overall utility for the network In the algorithm, profitability

is offset by a simple ‘fairness’ coefficient, which may be set to limit the maximum attainable

revenues but giving a fairer treatment across different service types dunng throttling

Figure 6 20 shows the total system revenue dunng throttling as am vais to the network

increase Relative amval rates for all services are equal and service types are assigned the

following revenues, in arbitrary units of revenue Service A 7 umts, Service B 1 unit and

Service C 3 units All other aspects of the system are as per the reference service platform

The system revenues have been obtained for three different fairness coefficients When the

fairness has a value of 1, service types are throttled stnctly in proportion to their expected

amval rates for the next control penod Thus the control operation is identical to the previous

throughput maximisation algorithm When the fairness coefficient is decreased total revenue

increases Lower revenue services are rejected more than higher revenue ones As throughput

increases in each case, system revenue levels off as the network’s throughput is reached for

the optimal service mix that is being accepted Note that, for any value of fairness, processor

loads are maintained closc to the 90% threshold as with the throughput maximisation

algonthm

165

Figure 6 20 Maximum System Revenue Dependence on Fairness Coefficient

Figures 6 21 and 6 22 show the fraction of arrivals accepted for each service for two values of

fairness coefficient simulated in Figure 6 20 above The acceptance ratio measure is obtained

from the rejection ratio measure given by the simulation and is calculated simply as 1 less the

rejection ratio for each service For a low value of fairness (Figure 6 21), low revenue service

(Service B) is immediately throttled as increasing arrival intensities cause the system

utilisation to approach 90% The two higher revenue services (A and C) are not throttled until

the arrival rate has further increased By this stage Service B is approaching complete

rejection At high amval rates the acceptances ratios are decreasing approximately linearly,

indicating that the system revenue has saturated Note that although Service C is less than half

as profitable as Service A, it is not throttled by very much more than A This is accounted for

by the fact that C requires less processing than A and so the revenue per unit processing

power is comparable for both services

In Figure 6 22, the fairness constraint has been tightened by specifying a higher value fairness

coefficient (0 6) In this case, the low revenue Service B is again throttled first but not as

deeply as before The lower revenue service of the remaining two, Service C, is throttled

more heavily as a result in order to maintain loading at 90% The high revenue service

maintains a high acceptance ratio as, with a fairness coefficient less than 1, the algorithm is

still partially dnven by revenue maximisation Overall, however, the throttling is fairer to

Service B than before

166

Total arrivals per second

Figure 6 21 Accepted Arrivals fo r each Service when Fairness is Low

Total arrivals per second

Figure 6 22 Accepted Arrivals fo r each Service with Moderate Fairness

6 5 1 Note on Two-Phase Revenue Optimal Heuristic

In §5 1 8 1, it was noted that, when arrival rates are low compared to the maximum network

throughput, the revenue optimisation problem will not tend to drive all nodes to full capacity

and the resulting random splitting may give uneven loading across processors A two-phase

approach was proposed where the revenue optimal objective and constraints are used only

when throttling is required In the single-phase approach the revenue optimal objective and

constraints are always applied We examine the improvement achieved when the two-phase

approach is employed

167

The following low-load see nano is used Amval rates from all sources are equal with total

arrivals to the network of 42 sessions per second The resulting simulated processor loads for

the single and two-phase approach are as follows

N1 N 2 N 3 N 4 N 5 N 6 N 7 N 8 N 9 N 1 0

P ro c e s s o r % U til is a t io n (S in g le P h a s e) 8 9 2 9 0 0 4 6 3 9 60 0 00 0 00 0 00 4 8 5 1 7 6 1 7 3

P ro c e s s o r % U til is a t io n (Tw o P h a s e) 31 9 3 2 1 31 3 31 5 3 2 1 32 1 31 7 31 2 32 0 31 1

The two-phase approach has achieved load-balance at approximately 32% loading on all

processors, whilst the single-phase approach displays large load imbalances, from 0% to 90%

This load imbalance condition of the single-phase approach has the same drawbacks as

displayed by the communications cost optimisation and should be avoided

6.6. The Market-based Internal Performance Control
Algorithm

A sub-optimal market-based approach to the internal performance control problem was

proposed in §5 2 In this case, internal and external controls are effected by means of tokens

Token pools are easily mapped to Percentage Thinning coefficients and random splitting

probabilities as discussed in §5 2 6 Thus in terms of implementation in the simulator, the

methods are the same An auction takes place every 20 seconds, assigns the token pools and

maps these to Percentage Thinning coefficients and random splitting probabilities, which are

implemented by the simulator in the usual way

0 20 40 60 80 100 120 140 160 180 200
Total arrivals per second

Figure 6 23 Loading fo r Market Internal and External Controls

We first compare throughput and service session delay to the previous results for the fair

optimal algorithm (fairness coefficient is 1) and the simple load balance algorithm, where

168

relative arrival rates for each service are equal Figure 6 23 gives the load characteristics for

the simple load balancing, market and optimal algorithms Again the 90% throttle has not

been exceeded and is stable for high arrival rates The market algorithm achieves

approximately 82% of the throughput of the optimal algorithm under the equal loading

scenario

The average service session delay (Figure 6 24) shows a reasonably good delay characteristic

with delays less that twice that of the optimal algorithm for any arrival rate The delay is

bounded at a relatively low value for higher throughputs As the market algorithm is throttling

the high load Service B more than A or C, the delay is relatively less at high loads compared

to the fair optimal algorithm

Total arnvafs per second

F ig u r e 6 2 4 M a r k e t S e r v ic e D e la y s C o m p a r e d to th e O p tim u m

We compare system revenues, in the high load region, to the optimal algorithm with a fairness

coefficient of 1 (Figure 6 25) All relative arrival rates are again equal The market algorithm

compares favourably to a fair algorithm in terms of revenue optimisation Of course, the

optimal algorithm will perform better when the fairness constraint is relaxed, however the

result is still encouraging considering the market-based approach is a simpler heuristic

algorithm

The corresponding acceptance ratios for the market algorithm are given in Figure 6 26 and

give some insight into algorithm operation Throttling starts much earlier than for the optimal

algorithm as the market algorithm is not as efficient and approaches the 90% load threshold

earlier The relative throttling rates are similar to the optimal case for a fairness coefficient of

0 6, so the algorithm is behaving reasonably fairly The discrimination between services

follows relative values of the service revenue values, as in the optimal case

1 6 9

F ig u r e 6 2 5 M a r k e t S y s te m R e v e n u e C o m p a r e d to F a ir O p t im a l w h e n A r r iv a ls a re E q u a l

Market

F ig u r e 6 2 6 T h ro ttlin g o f e a c h S e r v ic e T y p e b y th e M a r k e t A lg o r i th m

6.7. Dynamic Controls Under High Load and
Varied Service Mix

We have thus far not examined the behaviour of the optimal and market internal and external

controls when traffic mix is vaned greatly from the design point Preliminary loading and

delay results were found for a 1 2 1 traffic mix Initial investigations of the revenue optimal

algorithms were conducted at the design point (111 traffic mix) Here we examine the

revenue maximisation algorithms at a wider range of mixes from 1 1 1 to 10 1 1, 1 10 1 and

1 1 1 0 The market and optimal algorithms are compared in a high-load scenario Arrival rates

have been chosen so that the revenue return from the network has saturated Thus we are

1 7 0

examining maximum revenue achievable under different traffic mixes We also look at two

values of fairness for the optimal algorithm and compare with the market algorithm

Figure 6 27 shows, total system revenue for different service mixes The service mix is

indicated on the x-axis where, for example, at a value of 5 for the curve labelled B, the

revenue value indicates total system revenue for a traffic mix of 1 5 1 The arrival intensities

in all cases are high enough to saturate the system revenue at the given service mix The set of

graphs (A, B and C) in Figure 6 27 are for the optimal algorithm with a fairness coefficient of

1 A similar set, for a fairness coefficient of 0 6, is shown in Figure 6 28

Revenue returns for the market algorithm were found to be relatively invariant, only spanning

a range of approximately ±6%, regardless of traffic mix Thus, we simply express the average

for the market algorithm in Figure 6 27 and 6 28

From Figure 6 27 it is observed that the effect o f changing traffic mix for the optimal

algorithm is determined by the relative revenue values for each service In the case of a large

proportion of high-revenue Service A arrivals, most revenue is obtained Conversely for a

large proportion of low-revenue Service B arrivals, the total revenue decreases The market

algorithm can return more revenue in this case, as it is not acting fairly It will throttle Service

B arrivals and C arrivals in whatever proportions are necessary to achieve maximum revenue

Thus, the market algorithm does not display sensitivity to traffic mix The average revenue

over all service mixes for the fair optimal algorithm is approximately 465 profit units, whilst

the average for the market algorithm is 391 units

Market Average and Optimal Revenues for Fairness=1

F ig u r e 6 2 7 S y s te m R e v e n u e w ith V a ry in g S e r v ic e M ix

f o r H ig h F a irn e s s R e v e n u e -O p tim a l A lg o r i th m

1 7 Ì

Figure 6.28 shows the optimal algorithm with the fairness constraint relaxed. A fairness

coefficient of 0.6 has been set in this case. The average revenue over all service mixes has

increased to 558 profit units and the revenue at any given service mix has increased. The

market average is still higher on average than the case where Service B accounts for a high

proportion of the traffic.

Note that in each traffic-mix for the optimal algorithm, close to 100% of the available

processing capacity on all nodes was utilised. It can be concluded that the dynamic algorithm

can function for a wide range of service mixes that are far from the design-point splitting

probabilities of the static component placement. For the market algorithm, not all mixes gave

100% utilisation, although the system revenue was maintained constant. However, over the 28

service mixes simulated, only 4 showed ‘wastage’ of processing power of more than 20%.

Market Average and Optimal Revenues for Fairness=0.6

F ig u r e 6 .2 8 : S y s te m R e v e n u e w ith V a ry in g S e r v ic e M ix f o r

M o d e r a te F a irn e s s R e v e n u e -O p tim a l A lg o r i th m

To make an accurate comparison with the market algorithm, we compare revenue optimality

at the same level of fairness. As the fairness coefficient does not relate to the market

algorithm, the following independent measure, fairness index [Jain etal., 1984], is used.

Fairness Index =

where xi is the ratio of actual throughput to the throughput under fair conditions for each

service type i and n is the number of services. The throughput under fair conditions was taken

as the total throughput proportioned fairly according to the given service mix. The results are

as follows:

1 7 2

The market algorithm has a fairness index of 0 63, averaged over the range of traffic mixes

With an appropriately chosen fairness coefficient, the optimal algorithm also has a fairness

coefficient of 0 63, averaged over the range of traffic mixes At this level of fairness, the

optimal algorithm produces 573 units of revenue, whilst the market revenue is 391 units On

this basis, the market algorithm is 68% efficient

6.8. Chapter Summary and Conclusions

In this chapter, the properties of the throughput optimal CO allocation method has been

examined and a distribution chosen, giving a reference platform for examination of the

dynamic algorithms The allocation method was found to be efficient under different traffic

mixes, producing allocations that fully utilised processing power in the network and produced

low service time delays The issue of installation cost of CO copies was examined and it was

found that cost could be reduced to some degree without limiting throughput Networks with

varying numbers of processing nodes were tested and it was found that throughput increased

linearly with processing capacity to the point where the gateway nodes became bottlenecks

Also in this chapter, the throughput optimal solution has been compared to a communications

cost minimisation approach It was found that there are potential set backs to this approach, as

loading on nodes will not necessarily be balanced in the solution This means that there is a

tendency for higher and more vaned service times in the network and that some nodes are in

danger of overload even when the network as a whole is under-loaded As the problem does

not have a viable solution for certain values of arrival rates, it would be difficult to implement

an admission control with the minimal communications cost approach

The effects of variation in service mix when the random splitting probabilities are fixed

demonstrated the need for dynamic controls The performance of the optimal and market

dynamic internal and external performance controls was examined and compared to the

results for a simple load-balancing scheme The simple load-balancing scheme performs

poorly in comparison and illustrates that it is not sufficient to aim only for load balance and to

prevent overloads The complexity of the system requires more than a simple greedy

approach It can be inferred that other simple algorithms (join-the-shortest-queue and round

robin etc), that rely solely on estimates of load levels of processors in the system and have no

a prion knowledge of message processing times, would also fail to achieve good solutions It

is necessary to consider remote communications costs or service times to achieve optimal

solutions in distributed environments where communications is resource intensive

The revenue optimal algorithm was examined and it was found to throttle service requests in

accordance with the presenbed service revenue values and overall was effective in increasing

1 7 3

network revenues The simple fairness coefficient was found to be useful for limiting

disproportionate throttling of low revenue services while still allowing a substantial increase

in overall system revenues

The two-phase revenue optimal algorithm was found to have an advantage over the single­

phase version The load imbalance condition introduced by the single-phase approach has the

same drawbacks as displayed by the communications cost optimisation and should be avoided

for that reason

Both the optimal and market algorithms were subjected to a wide range of service mixes at

high traffic intensities and found to be stable in terms of overload protection of the network

(limiting node utilisation to close to 90%) and in terms of maintaining system revenues at

high levels In the case of the optimal algorithm, close to 100% of allowed processing

capacity on all nodes was utilised The market algorithm maintained utilisation within 20%

below the allowed utilisation When compared at the same level of fairness the market

algorithm was found to be approximately 68% efficient in terms of maximising network

revenue It was also effective m bounding delays to within approximately twice that of the

optimal algorithm

1 7 4

Chapter 7. Conclusions and Future Work

This chapter gives our conclusions in terms of (1) the relation to and the impact on the general

area of research, (11) the properties of the proposed optimal component allocation schemes,

(111) the properties of the dynamic controls proposed and (iv) the properties of the Market-

based approach proposed In conclusion, potential topics for future work are identified

7.1. Contributions to the Area of Research

Previously proposed software allocation strategies in the area of distributed systems research

have assumed simple models of the underlying system m order that tractable problems may

be constructed Methods for optimally minimising delay in networks have been limited to

systems to which product-form queuing models apply For more complex systems, where

product form assumptions no longer hold, the simpler approach of minimising a generic cost

associated with overall communications flow is normally applied Component placement

problems, which stipulate a particular type of interaction between communicating entities, are

a relatively new addition to the performance control area and have thus far considered a quite

small set of performance metrics and constraints There has been little attention to overload

protection for distributed systems m the literature with the exception of web server overload

protection, which is generally specific to the technologies involved

With regard to dynamic load shanng controls, much of the distributed systems research has

focused on scheduling for an independent job model of the workload rather than on load

shanng between dependent communicating components Some simple load shanng schemes

have been proposed for TINA but dynamic optimal schemes for inter-dependent components

have not previously been considered

From the IN literature, it is evident that network-centnc approaches, rather than node centnc

approaches, are gaining in populanty and revenue optimisation has becomc an important

consideration for performance optimisation Overload control is also an important theme and

is a prerequisite for most approaches

1 7 5

Considering the state-of-the-art in the area, as outlined above, the optimisation models

proposed in this thesis combine the following features giving a more comprehensive and

flexible optimisation model for performance control of distributed telecommunication

services than those previously proposed:

• A telecom-centric objective of throughput or network revenue maximisation is applied.

• Internal and external controls are integrated to give optimal network-wide load balance

and overload protection.

• Multiple service types are considered in the model, as differentiation between service

types is an important aspect of telecommunications service provisioning.

• The optimisation model allows more detail of the communications costs to be included.

Separate client/server costs are allowed, as opposed to simpler generic communications

costs seen in other models.

• Component installation costs may be bounded by limiting the number of component

copies in the network.

• Multiple component copies can be modelled in the network.

With regard to fulfilling performance requirement for telecommunications services, the

controls have been demonstrated to perform in the following areas:

• Responsiveness: Although minimisation of delay was not a direct objective, the controls

were demonstrated to bound delays to reasonable levels as a desirable side effect of the

throughput maximisation objective.

• Stability and Reliability: Overload controls were seen to maintain loads below desired

levels and were stable at high offered loads.

• Profitability and Fairness: The possibility in trading-off overall network revenue and

fairness to customers has been demonstrated.

• Optimality. The solutions are optimal in terms of usage of processing capacity in the

network and maximisation of revenue.

• Scalability and Flexibility o f Solution: The solutions to the component placement and

internal and external controls were found to utilise all available resources under varying

traffic mixes under high loads. The models have been kept general and may be applied to

many inter-working scenarios where the network acccss points arc controlled by the

operator, for example, gateways from other access technologies (the Web, mobile

networks) to a telecommunications service provisioning platform.

1 7 6

7.2. Properties of the Optimal Component Allocation

The following conclusions are made with regard to new work undertaken here in the area of

optimal component placement

Existing ideas for optimising software component placement have been found to be useful in

the development of more telecom-centnc performance approaches for distributed platforms

In particular, methods for descnption of the problems in terms of Linear Programming

problems have given an efficient solution method to relatively complex problem

constructions Furthermore, with the addition of integer variables to the problems, Mixed

Integer Programming has proved flexible for capturing a wide range of competing

performance objectives and constraints, which is a required design objective of this work We

have found the optimal computational component placement solutions we proposed to have

the following properties

• The component placement strategy was found to be robust in terms of allocating

resources for multiple services types with different arrival rates into the system

• The throughput of the system was found to scale linearly with processing power to the

point where fixed location components introduce bottlenecks Thus analysis with

optimisation may be used to identify bottlenecking and to assess the requirements for

processing power in the network, given the capacity of the access nodes

• Installation cost limits, associated with multiple component copies, will reduce system

throughput if too stringent However, imposing moderate cost limits can reduce the

number of component copies without reducing throughput Thus installation costs are

useful even in the case where maximum throughput is the main concern

• When the components are relatively fine-grained (as in the case for TINA COs), the

optimisation can also produce a good partitioning scheme, by tending towards assigning

components to nodes in groups

7.3. Properties of Dynamic Controls

With regard to internal and external dynamic controls for the system an optimal approach has

been found to have the following properties and advantages

• The solution to the problem gives both an internal control, through specification of

random splitting probabilities, and an external control, via maximum achievable arrival

rates Thus, the approach is integrated and all nodes may be protected from overload with

the use of throttles only at the gateways The optimality of the approach means that

rejection of messages internal to the system, and the associated performance degradation,

may be avoided

1 7 7

• Although the static placement of components ultimately determines the maximum

performance return, we have found that optimal dynamic random splitting can cope with

traffic that vanes widely from the design point Thus, limitations of the initial placement

can be avoided

• Balancing load without consideration of throughput does not ensure an efficient network

Nor can load limits placed on processors alone ensure reasonable delays Throughput
\

maximisation will tend towards balancing load, and will generally give reasonable

average delays

• Balancing of load with throughput maximisation means that full utilisation of processing

resources under high load may be achieved Although load balance is achieved under high

load with communications cost minimisation, the usual objective for component

placement strategies, dunng low average network load some processors may be fully

utilised whilst others are almost idle and so there will be no headroom for sudden

increases in traffic dunng the control penod

• The profit optimisation approach allowed differential treatment of service types whilst

fully maximising utilisation of processing resources in the system The scheme was found

to be adaptable to varying mixes of input traffic, retaining the preferred order of customer

pnonties The fairness parameter employed was effective in allowing trade off between

maximum profit and more fair treatment of customers, whilst keeping the problem linear

and easily solvable

7.4. Properties of the Market-based Approach

With regard to the market-based approach, the control has been found to perform well in

terms of throughput, on average delivenng approximately 80% of the throughput of the

optimal algonthm It can deliver more consistent revenue returns under varying traffic mixes

(although substantially lower on average) than the optimal algonthm, whilst maintaining a

degree of fairness in customer treatment The market-based approach has the advantage of

allowing non-linear constraints, which can be used to advantage The profit optimal LP

problem was found to have a limitation when dealing with low load situations, which leads to

uneven loading in the network A correction was required in the form of a two-phase

approach This is not necessary with the market algonthm, which allows non-linear

constraints Thus the market-based algorithm may be a more natural choice for profit

optimisation, although lower overall returns are expected than for the optimal method The

market algonthm is also somewhat less complex than the LP and may be more easily

implemented and is expected to have shorter execution times

1 7 8

7.5. Future Work

Issues concerning the efficient implementation of complex control algorithms have not been

addressed here and this is left for future work. A suggested technique for reducing complexity

is to run the algorithms off-line over a range of loading scenarios. The resulting set of

solutions may then be used by the controller to choose random splitting and throttling levels

appropriate for the current load situation. Note that solutions could also be held at each node,

which would then only receive an account of the load situation at the end of control intervals

and choose the appropriate control parameters from local information. This scheme could be

enhanced with an interpolation algorithm for increased accuracy.

It has been assumed here that the control algorithms have exact knowledge of execution times

for message flows in the network. If the estimates are inaccurate, the load control will not

perform optimally. A solution may be to adjust the assumed processing times in accordance

with variations between load values predicted by the controller and the measured load. A

simple control might vary message-processing times linearly to attempt to minimise the error.

This could be implemented as a Linear Programming problem. If processing times in the

network are assumed to be stochastic, a linear predictive filter may be of use. More complex

schemes that do not assume linearity might attempt application of a Neural Network solution.

This may be an interesting control problem in its own right as there is complexity in the

interaction of the predictive control and the original optimisation problem.

A further area of research might be to consider optimising the initial distribution of objects

with respect to the service mix distributions during high load rather than simply the average

expected traffic volumes for each service. Although the initial CO allocation was found not to

be limiting in our case, it may be so depending on the nature of the application and the

network. In the suggested scheme, we would presume that the service types have a known

joint probability distribution (possibly estimated from traffic studies) describing the

likelihood of any particular ratio of traffic from the services occurring. We could then apply

stochastic techniques to achieve a component allocation scheme that is optimal in terms of the

service mix distribution, rather than simply in terms of the average service mix expected. This

approach would be most valuable when the service mix is highly variable. A suggested

method for applying this approach is to form a search space for maximising expected

throughput. Assessment of each point in the space would require solution to the allocation

problem for the corresponding service mix and the resulting solution for maximum

throughput would be weighted by the probability of that service mix occurring. An efficient

random algorithm, for example a Gcnctic Algorithm, could be employed to find the

maximum.

1 7 9

Thesis Publications

The following articles were produced from the work done in this thesis

[1] C McArdle, R Brennan, N Jones, J Vasic and T Curran, “Implementation Experience
with the OMGIN/CORBA Interworking Specification”, Proceedings of 6th International
Conference on Intelligence in Networks (ICIN 2000), Bordeaux, January 2000

[2] C McArdle, Niklas Widell, C Nyberg, E Lilja, J Nystrom and T Curran, “Load
Balancing for a Distributed CORBA-Based SCP”, Proceedings of Telecommunications
and IT Convergence Towards Service E-volution, 7th International Conference on
Intelligence and Services in Networks (IS&N 2000), Athens, Greece, pub Spnnger, pp
33-48, February 2000

[3] R Brennan, B Jennings, C McArdle and T Curran, “Evolutionary Trends in Intelligent
Networks”, IEEE Communications Magazine, Volume 38, No 6, pp 86-93, June 2000

[4] R Brennan, B Jennings, C McArdle and T Curran, “Intelligent Networks A
Discussion of Current Developments”, in Gerald Grant (ed) Managing
Telecommunications and Networking Technologies in the 21st Century, pub Idea Group
Publishing, pp 1-20, 2001

[5] C McArdle and T Curran, “Optimal Object Placement, Load Distribution and Load
Control for Distributed Telecommunication Service Applications”, Proceedings of 17th
International Teletraffic Congress Teletraffic Engineering in the Internet Era (ITC 17),
Salvador, Brazil, pub Elsevier, pp 371-382, December 2001

[6] C McArdle and T Curran, “Performance Controls for Distributed Telecommunications
Services”, to be submitted to the Journal of Performance Evaluation, pub Elsevier,
January 2005

180

References

[Aguilar & Gelenbe, 1997]

[Anagnostou, 1998]

[ANSI, 1999]

[Arvidsson et a l , 1997]

[Asensio et a l , 1998]

[Aspval et a l , 1980]

[Avramopoulos &
Anagnostou, 2002]

[Banks, 1998]

[Baskett e t a l , 1975]

[Bastamca et a l , 1998]

[Baumgartner & Wah, 1990]

[Billionnet et a l , 1992]

[Blair et a l , 2001]

J Aguilar, E Gelenbe, “Task Assignment and Transaction Clustenng
Heuristics for Distributed Systems”, Journal of Information Sciences,
vol 97, No 1& 2, pp 199-219,1997

M E Anagnostou, “Optimal Distnbution of Service Components”,
Proceedings of the 5th International Conference on Intelligence in
Services and Networks (IS&N98), Antwerp, Belgium, May 1998

Amencan National Standards Institute (ANSI), “Intelligent Networks”,
1999

A Arvidsson, S Pettersson, L Angelin, “Profit Optimal Congestion
Control m Intelligent Networks”, Proceedings of the 15th International
Teletraffic Congress, pp 911-920, pub Elsevier Science B V ,1999

J I Asensio, V A Villagra, J I Moreno, J Berrocal, “An Approach
to Electronic Brokerage in TINA Environment”, Proceedings of the
5th International Conference on Intelligence in Services and Networks,
Belgium, pp 339-350, 1998

B Aspval, R E Stone, “Khachiyan’s Linear Programming
Algonthm”, Journal of Algorithms, vol 1, no 1, pp 1-13,1980

I C Avramopoulos, M E Anagnostou, “Optimal Component
Configuration and Component Routing”, IEEE Transactions On
Mobile Computing, Vol 1, No 4, October - December 2002

J Banks (ed), “Handbook of Simulation Principles, Methodology,
Advances, Applications and Practice”, pub John Wiley & Sons Inc ,
1998

F Basket, K M Chandy, R R Muntz and F G Palacios, “Open,
Closed and Mixed Networks of Queues with Different Classes of
Customers”, Journal of the ACM, vol 22, pp 248-260,1975

M C Bastamca, A A Shvartsman, S A Demuqian S r , “A Binary
Integer Programming Model for Optimal Object Distnbution”,
Technical Report CSE-TR-98-1, Department of Computer Science and
Engineenng, University of Connecticut, Apnl 1998

K M Baumgartner, B W Wah, “Computer Scheduling Algonthms
Past, Present, and Future”, First Workshop on Parallel Processmg,
National Tsmg Hua University, Taiwan, December 1990

A Billionet, M C Costa, A Sutter, “An Efficient Algonthm for a
Task Allocation Problem”, Journal of the Association of Computing
Machinery, vol 29, No 3, pp 502-518, July 1992

G S Blair, G Coulson, M Clarice, N Parlavantzas, “Performance and
Integnty in the OpenORB Reflective Middleware”, Reflection, 2001,
pp 268-269,2001

181

[Bowen e t a l y 1992]

[Capellmann & Pageot, 1999]

[Cardellini et a l , 1999]

[Casevant & Kuhl, 1998]

[Chames, 1953]

[Chen & Mohapatra, 2003]

[Choo et a l , 2002]

[Chu e t a l , 1980]

[Clearwater, 1996]

x.

[Dantzig, 1953]

[Davidsson et a l , 2000]

[Borst, 1995]

[Denmng & Buzen, 1978]

S C Borst, “Optimal Probabilistic Allocation of Customer Types to
Servers”, Proceedings of 1995 ACM SIGMETRICS joint International
Conference on Measurement and Modeling of Computer Systems,
Ottawa, Ontario, Canada, pp 116-125, 1995

N S Bowen, C N Nikolaou, A Ghafoor, “On the Assignment
Problem of Arbitrary Process Systems to Heterogeneous Distnbuted
Computer Systems”, IEEE Trans Computers, Vol 41, No 3, pp 197-
203, March 1992

C Capellmann, J M Pageaot, “A TINA Service Platform Integrated
with Current Intelligent Network Systems”, Proceedings of TINA’99,
Turtle Bay, Hawaii, pp 295-301, Apnl 1999

V Cardellim, M Colajanm, P S Yu, “Dynamic Load Balancing on
Web-Server Systems”, IEEE Internet Computing, Vol 3, No 3, pp
28-39, 1999

T Casevant, J Kuhl, “A Taxonomy of Scheduling in General-Purpose
Distnbuted Computing Systems”, IEEE Transactions of Software
Engineering, Vol 14, pp 141-154, February 1988

A Chames, W W Cooper, A Henderson, “An Introduction to Linear
Programming”, pub John Wiley and Sons Inc , 1953

H Chen, P Mohapatra, “Overload Control in QoS-aware Web
Servers”, Computer Networks The International Journal of Computers
and Telecommunications Networking, Vol 42, Issue 1, pp 119-133,
May 2003

C L Choo, M Kihl, L S Wei, I Chai, “Performance and Load Issues
m TINA Networks”, TINA Workshop, Kuala Lumpur, Malaysia,
2002

W W Chu, L J Holloway, M T Lan, K Efe, “Task allocation in
distributed data processing”, Computer, Vol 13, Issue 11,pp 57-69,
November, 1980

S H Clearwater (ed), “Market-based Control A paradigm for
Distnbuted Resource Allocation’, pub World Scientific Publishing
C o ,1996

G B Dantzig, “Computational Algonthm of the Revised Simplex
Method”, Report RM 1266, The Rand Corporation, Santa Momea,
California, 1953

P Davidsson, B Carlsson, S Johansson and M Ohlin, “Using Mobile
Agents for IN Load Control”, Proceedings of 2000 IEEE Intelligent
Network Workshop (IN’2000), F J Scholtz (ed), Cape Town, South
Afnca, May 2000

P J Denning, J P Buzen, “The Operational Analysis of Queueing
Network Model Models”, ACM Computing Surveys, vol 10, pp 225-
262, 1978

182

[Efe, 1982]

[Elsadek& Wells, 1999]

[ETSI, 1994]

[Eurescom, 1997]

[Franks & Woodside, 1998]

[Franks, 1999]

[Gelenbe, 1999]

[Hac & Gao, 1998]

[Haiju, 1994]

[Herzog & Megdanz, 1997]

[Hunt & Scott, 1999]

[ITU-T, 1993]

[ITU-T, 1997]

piestel, 1997]

[ITU-T, 1993a]

R Diestel, “Graph Theory”, Graduate Text in Mathematics, Volume
173, Second Edition, Spnnger-Verlag, New York, 1997

K Efe, “Heuristic Models of Task Assignment Scheduling in
Distributed Systems”, IEEE Transaction on Computers, pp 50-56,
June 1982

A A Elsadek, B E Wells, “A Heuristic Model for Task Allocation in
Heterogeneous Distributed Computing Systems”, The International
Journal of Computers and their Applications, Vol 6, No 1, March
1999

European Telecommunications Standards Institute (ETSI), “Intelligent
Network (CS1) Core INAP Protocol Specification”, ETS 300 374-1,
ed 1, September 1994

EURESCOM, "Introduction to Distributed Computing Middleware in
Intelligent Networks A Eurescom P508 Perspective”, OMG DTC
Document orbos/97-09-11, September 1997

R G Franks, C M Woodside, “Performance of Multi-level Client-
Server Systems with Parallel Service Operations”, Proceedings of First
International Workshop on Software and Performance (WOSP98), pp
120-130, Santa Fe, October 1998

R G Franks, “Performance Analysis of distributed server Systems”,
PhD Thesis, Carleton University, Ontario, Canada, 1999

E Gelenbe, G Pujolie, “Introduction to Queueing Networks”, 2nd
edition, pub John Wiley & Sons Inc , 1999

A Hac, L Gao, “Analysis of Congestion Control Mechanisms in an
Intelligent Network”, International Journal of Network Management,
vol 8, pp 1841, 1998

J Harju, T Karttunen, O Martikainen, “Intelligent Networks”,
Chapmen & Hall, 1994

U Herzog, T Magendanz, “From IN toward TINA - Potential
Migration Steps”, Proceedings of 4th International Conference on
Intelligence in Services and Networks, pub Spnnger, Cemobbio, Italy,
May, 1997

G C Hunt, M L Scott, “The Coign Automatic Distributed
Partitioning System”, Proceedings of Third Symposium on Operating
System Design and Implementation (OSDI), 1999

ITU-T, Rec Q 721 -Q 766, “Specifications of Signalling System No
7”, March 1993

ITU-T, Rec Q1221, “Introduction to Intelligent Network Capability
Set 2”, September, 1997

ITU-T, Rec Q 1201, “Principles of Intelligent Network Architecture
Recommendation”, 1993

1 8 3

[Jackson, 1963]

[Jacobson & Lazowska, 1982]

[Jain, 1991]

[Jain et al., 1984]

[Jennings et al., 1999]

[Jennings, 2001]

[Karmarkar, 1984]

[Kazuo, 2001]

[Kermighan & Lin, 1973]

[Kill & Ahmad, 1998]

[Kihl & Nyberg, 1997]

[Kihl e t a l , 1999]

[Iyer et al., 2000]

[Kihl e ta l, 1997]

R. Iyer, V. Tewari, K. Kant, “Overload Control Mechanisms for Web
Servers”, Performance and QoS of Next Generation Networks,
Nagoya, Japan, pp. 225-244, Nov 2000.

J. R. Jackson, “Jobshop like Queueing Systems”, Management
Science, vol. 10, pp. 131-142,1963.

P. A. Jacobson, E. D. Lazowska, “Analysing Queueing Networks with
Simultaneous Resource Possession”, Communications of the ACM,
vol. 25, No. 2, pp. 142-151, February 1982.

R. Jain, “The Art of Computer Systems Performance Analysis”, pub.
John Wiley & Sons Inc., 1991.

R. Jain, W. Hawe, D. Chiu, “A Quantitative Measure of Fairness and
Discrimination for Resource Allocation in Shared Computer Systems,”
DEC-TR-301, September 26, 1984.

B. Jennings, R. Brennan, R. Gustavsson, R. Feldt, J. V. Pitt, K.
Prouskas and J. Quantz, “FIPA-compliant Agents for Real-time
Control of Intelligent Network Traffic,” Computer Networks (The
International Journal of Computer and Telecommunications
Networking), Vol. 31, No. 19, pp. 2017-2036, August 1999.

B. Jennings, “Network-Oriented Local Control for SS.7/IN”, PhD
Thesis, School of Electronic Engineering, Dublin City University,
2001.

N. Karmarkar, “A New Polynomial-time Algorithm for Linear
Programming”, Combinatorica, Vol. 4, pp. 373-395,1984.

T. Kazuo, K. Kenzo, “Temperature Parallel Simulated Annealing and
its Applications”, IPSG SIG Notes, Mathematical Modelling and
Problem Solving, Abstract No.011-001,2001.

B. Kemighan and S. Lin, “An Effective Heuristic Procedure for
Partitioning Graphs”, The Bell System Technical Journal, pp. 291-308,
Feb 1970.

M. Kafil, I. Ahmad, “Optimal Task Assignment in Heterogeneous
Distributed Computing Systems”, IEEE July-Sept 1998.

M. Kihl, C. Nyberg, “Investigation of Overload Control Algorithms
for SCPs in the Intelligent Network”, IEEE Proceedings, Vol. 144, No.
6, pp. 419-424, December 1997.

M. Kihl, N. Widell, C. Nyberg, “Load Balancing Algorithms for TINA
Networks”, Proceedings of the 16th International Teletraffic Congress,
Vol 3b, pp. 999-1008, Edinburgh, Scotland, 1999.

M. Kihl, C. Nyberg, H. Warne, P. Wollinger, “Performance Simulation
of a TINA Network”, Proceedings Of IEEE Globecom'97, Phoenix,
USA, 1997.

184

[Kleinrock, 1975]

[Laganas & Todd, 1990]

[Lazowska e ta l, 1984]

[Lee & Bic, 1989]

[Lewis et a l, 2005]

[Lo, 1988]

[Lodge, 2000]

[Mampaey, 2000]

[McArdle et al, 2000]

[Nilson, 1971]

[OMG, 1995]

[OMG, 1996]

[OMG, 1997]

[Kihl, 1998]

[OMG, 1999]

M Kihl, “On Overload Control in a TINA Network”,
Telecommunications 1998, Conference Publication No 451, IEEE,
1998

L Kleinrock, “Queueing Systems, Volume 1 Theory”, pub Wiley-
Interscience, 1975

J Laganas, M Todd, “Probabilistic Analysis of the Simplex-Method”,
Contemporary Mathematics, vol 114, pp 21-34,1990

E D Lazowska, J Zahoqan, G S Graham, K C Sevcik,
“Quantitative System Performance Computer System Analysis Using
Queueing Network Models”, pub Prentice-Hall, 1984

C Lee, L Bic, “On the Mapping Problem using Simulated
Annealing”, Computers and Communications, Proceedings of 8th
Annual International Phoenix Conference, 1989

M Lewis, B Alidaee, G Kochenberger, “To Model and Solve the
Uncapacitated Task Allocation Problem”, Operations Research Letters,
Vol 33, Issue 2, pp 176-182, March 2005

V M Lo, “Heunstic Algonthm for Task Assignment m Distnbuted
Systems”, IEEE Transaction on Computers, Vol 37, No 11, pp 1384-
1397, November 1988

F Lodge, “An Investigation into Intelligent Network Congestion
Control Techniques”, PhD Thesis, Dublin City University, Ireland,
2000

M Mampaey, “TINA for Services and Advanced Signaling and
Control in Next-Generation Networks”, IEEE Communications
Magazine, October 2000

C McArdle, R Brennan, N Jones, J Vasic, T Curran,
“Implementation Expenence with the OMG/CORBA Interworking
Specification”, Proceedings of 6th International Conference on
Intelligence in Networks (ICIN 2000), Bordeaux, January 2000

N J Nilson, “Problem Solving Methods in Artificial Intelligence”,
McGraw - Hill, New York, 1971

Object Management Group, “Object Management Architechture
Guide”, Revision 3 0,1995

Object Management Group, “Intelligent Networking with CORBA”,
OMG DTC Document telecom/96-12-02, December 1996

Object Management Group, “White Paper on CORBA as an Enabling
Factor for Migration from IN to TINA A P508 Perspective”, OMG
DTC Document telecom/97-01-01, January 1997

Object Management Group, “IN/CORBA Interworking”, OMG
document /dtc/99-12-02, December 1999

185

[OPNET, 2004] Opnet Modeler Home Page, www opnet com, last visited June 2004

[OSL, 2004]

[Papadimitnou &
Steglitz, 1982]

[Papoulis, 1984]

[Parhar & Rumsewicz, 1995]

[Park, 1997]

[Patel et a l , 2000]

[Pham & Betts, 1992]

[Pinto et a l , 1999]

[Purao et a l, 2002]

[Ramaknshnan et a l , 1993]

[Rolia & Sevcik, 1995]

[Ross & Yao, 1991]

[Schmidt, 1997]

[Schnjver 1986]

IBM OSL Home Page, www research lbmcom/osl/, last visited June
2004

C Papadimitnou, K Steglitz, “Combmatonal Optimization”,
Prentice Hall, Englewood Cliffs, New Jersey, 1982

A Papoulis, “Probability, Random Variables, and Stochastic
Processes”, 2nd edition, pub McGraw-Hill, 1984

A Parhar, M P Rumsewicz, “Cntcal Congestion Issues in the
Evolution of Common Channel Signalling Networks”, Proceedings of
the 14th International Teletrafific Congress, Juan-Les-Pins, France,
1994

K Park, “A heunstic approach to task assignment optimization in
distnbuted systems”, Systems, Man, and Cybernetics, 1997
“Computational Cybernetics and Simulation”, IEEE International
Conference, 1997

A Patel, K Prouskas, J Bama, J Pitt, “A Computational Economy
for IN Load Control using a Multi-Agent System”, Journal of Network
and Systems Management, vol 8, No 3, September 2000

X H Pham, R Betts, “Congestion Control for Intelligent Networks”,
Proceedmgs of 1992 International Zunch Seminar on Digital
Communications, Intelligent Networks and their Applications, Zunch,
1992

A S Pinto, E J Olivera, L F Faina, E Caradozo, “TINA - based
Environment for Mobile Multimedia Services”, TINA International
Conference, Hawaii, pp 54-65, 1999

S Purao, H K Jain, D L Nazareth, “ODE a tool for distnbuting
object-onented applications”, Information and Management, Vol 39,
No 8, pp 689-703, September 2002

S Ramaknshnan, L Dunning, T Nitsch, “An Integrated Optimal Task
Assignment Policy”, ACM-SAC, 1993

J Rolia, K Sevcik, “The Method of Layers”, IEEE Transactions on
Software Engineenng, Vol 21, No 8, pp 689-700, August 1995

K W Ross, D D Yao, “Optimal Load Balancing and Scheduling in a
Distnbuted Computer System”, Journal of the ACM, Vol 38, No 3,
A pnl1985

D C Schmidt, “Distnbuted Object Computing”,
IEEE Communications Magazine, February 1997

A Schnjver, “Theory of Linear and Integer Programming”, pub
Wiley-Interscience, 1986

186

[Shen & Tsai, 1985]

[Shousha etal., 1998]

[Silaghi & Keleher, 2001]

[Singh & Youssef, 1996]

[Smith, 1995]

[Sperry nei al., 2000]

[Stone et al., 1997]

[Talbi & Muntean, 1991]

[Tantawi & Towsley, 1985]

[TINA-C, 1997]

[TINA-RET, 1999]

[Trigila etal., 1998]

[Vandeibei, 2001]

[Senar et al., 2003]

[Walsh, 1985]

M. A. Senar, A. Ripoll, A. Cortes, E. Luque, “Clustering and
Reassignment-based Mapping Strategy for Message-Passing
Architectures”, Journal of Systems Architecture: the EUROMICRO
Journal Archive, Vol. 48, Issue 8-10, pp. 267-283, March 2003.

C. C. Shen, W. H. Tsai, “A Graph Matching Approach to Optimal
Task Assignment in Distributed Computing Systems using a Minimax
Criterion”, IEEE Transactions on Computers, vol. C-34, No. 3, March
1985.

C. Shousha, D. Petriou, A. Jalnapurkar, K. Ngo, “Applying
Performance Modelling to a Telecommunication System”, WOSP98,
Santa Fe, N.M., 1998.

Silaghi, Keleher, “Object Distribution with Local Information”,
Proceedings of 21st International Conference on Distributable
Computing Systems, Mesa A.Z., U.S.A., April 2001.

H. Singh, A. Youssef, “Mapping and Scheduling Heterogeneous Task
Graphs Using Genetic Algorithms”, Proceedings of 5th IEEE
Heterogeneous Computing Workshop (HCW 96), 1996.

D. E. Smith, “Ensuring Robust Call Throughput and Fairness for SCP
Overload Controls”, IEEE/ACM Transactions on Networking, Vol. 3,
No. 5, 1995.

J. Spenyn, S. Mohapi, R. Achterberg, H. E. Hanrahan, “Performance
Issues and Load Monitoring in the TINA DPE”, Proceedings of TINA
2000 Conference, Paris, p 13, September 2000.

H. S. Stone, “Multiprocessor Scheduling with the Aid of Network
Flow Algorithms”, IEEE Transactions on Software Engineering. SE-
3,1, pp. 85-93, January 1997.

E. G. Talbi, T. Muntean, “A New Approach for the Mapping Problem:
A Parallel Genetic Algorithm”, 2nd Symposium on High Performance
Computing, Montpellier, North Holland, pp. 71-82, Sep. 1991.

A. N. Tantawi, D. Towsley, “Optimal Static Load Balancing in
Distributed Computer Systems”, Journal of the Association for
Computing Machinery, Vol.32, No. 2, pp. 445-465, April 1985.

TINA-C, “TINA Service Architecture”, Version 5.0, 16 June, 1997.

TINA-C, “Retailer Reference Point (Ret)”, Version 1.1, Jan 1999.

S. Trigila, F. U. Bordoni, K. Raatikainen, B. Wind, P. Reynolds,
“Mobility in Long-Term Architectures and Distributed Platforms”,
IEEE Personal Communications, pp. 44-55, August 1998.

R. J. Vandeibei, “Linear Programming: Foundations and Extensions”,
2nd edition, pub. Kluwer Academic Publishers, 2001.

G. R. Walsh, “An Introduction to Linear Programming”, 2nd edition,
pub. Wiley-Interscience, 1985.

187

[Wang & Sevcik, 2000]

[Wang & Moms, 1985]

[Widell et al, 1999]

[Wolf & Yu, 2001]

[Woodside et a l , 1995]

[Woodside, 1996]

[X/OPEN, 1995]

[Yu et a l , 1986]

H Wang, K C Sevcik, “Experiments with Improved Approximate
Mean Value Analysis Algorithms”, Performance Evaluation, Vol 39,
No 1-4, pp 189-206, February 2000

Y T Wang, R J T Moms, “Load Sharing in Distributed Systems”,
IEEE Trans On Computers, Vol C-34, No 3, pp 204-217, March
1985

N Widell, M Kihl, C Nyberg, “Measuring Real-time Performance in
Distributed Object Onented Systems”, Proceedings of Performance
and Control of Network Systems III, SPIE Photonic East ’99, Boston,
USA, September 1999

J L W olf, P S Yu, “On Balancing the Load in a Clustered Web
Farm”, ACM Transactions on Internet Technology (TOIT) Archive,
Vol 1, Issue 2, pp 231-261, November 2001

C M Woodside, J E Neilson, D C Petnu, S Majumdar, “The
Stochastic Rendez-Vous Network Model for Performance of
Synchronous Chent-Server-like Distributed Software”, IEEE
Transactions on Computers, Vol 44, No 1, pp 20-34, January 1995

C M Woodside, “Performability Modelling for Multi-Layered Service
Systems”, Proceedings Third Intemation Workshop on Performability
of Computer and Communications Systems, Bloomingdale, Illinois,
USA, September 7th-8th, 1996

X/OPEN, “Inter-Domain Management Specifications Specification
Translation”, X/Open Preliminary Specifications, Draft August 9,
1995

P S Yu, S Balsamo, Y H Lee, “Dynamic Load Sharing in
Distribution Database Systems”, IEEE Proceedings of 1986 Fall Joint
Computer Conference, pp 675-683,1986

188

