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Performance Controls for Distributed

Telecommunication Services

Conor J McArdle

Abstract

As the Internet and Telecommunications domains merge, open telecommunication
service architectures such as TINA, PARLAY and PINT are becoming prevalent
Distributed Computing 1s a common engineering component 1n these technologles and
promises to bring improvements to the scalability, reliabiity and flexibility of
telecommumecations service delivery systems This distnbuted approach to service
delivery introduces new performance concerns As service logic 1s decomposed 1nto
software components and distributed across network resources, significant additional
resource loading 15 mncurred due to inter-node communications This fact makes the
choice of distribution of components in the network and the distribution of load between
these components critical design and operational 1ssues which must be resolved to
guarantee a high level of service for the customer and a profitable network for the service
operator

Previous research 1n the computer science domain has addressed optimal placement of
components from the perspectives of minimising run time, minimising communications
costs or balancing of load between network resources This thesis proposes a more
extensive optimisation medel, which we argue, 1s more useful for addressing concerns
pertinent to the telecommunications domain The model focuses on providing optimal
throughput and profitability of network resources and on overload protection whilst
allowing flexibility 1in terms of the cost of installation of component copies and
differentiation in the treatment of service types, i terms of faimess to the customer and
profitability to the operator Both static (design-time) component distnbution and
dynamic (run-time) load distribution algorithms are developed using Linear and Mixed
Integer Programming techmiques An efficient, but sub-optimal, run-time solution,
employing Market-based control, 1s also proposed

The performance of these algomthms 1s investigated using a simulation model of a
disinbuted service platform, which 1s based on TINA service components interacting
with the Intelligent Network through gateways Simulation results are verified using
Layered Queuing Network analytic modelling Results show significant perfermance
gams over simpler methods of performance control and demonstrate how trade-offs 1n
network profitabihity, faimess and network cost are possible
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Chapter 1. Introduction

Chapter 1 introduces the research area of this thesis The thesis goals are stated in §1 2 and an

overview of the remainder of the thesis 1s given n §1 3

1.1. Overview of the Research Area

As the Intemmet and Telecommunications domains merge, open telecommunication service
architectures are becoming prevalent Traditional service delivery systems, such as the
Intelligent Network, are moving towards more open service architectures such as TINA,
PARLAY and PINT Distributed Object Computing 1s a common engineering component for
these technologies and promises to bring improvements to the scalability, reliability and
flexibility of service delivery systems However, a distnbuted approach to system design
introduces new performance concerns As service logic 1s decomposed into software
components and distributed across network resources, sigmificant additional resource loading
1s incurred due to mter-node communications This makes the choice of distmbution of
components n the network and the distribution of load between these components critical
design and operational 1ssues which must be resolved to guarantee a high level of service for

the customer and a profitable network for the service operator

Telecommunications service systems and software normally operate to very stringent
performance critenia as system downtimes and overloads are expensive occurrences for the
service operator Rejected service attempts duning such events cause a direct loss of revenue
to the operator In addition, service agreements with business customers ofien specify that any
revenue loss to the service subscriber, due to system non-performance, 1s to be reimbursed by
the operator Apart from direct revenue losses, service subscribers expect a high level of
service from telecommunications networks As competition in the domain increases, the
quality of service delivered to the customer has become a more important 1ssue Customers
now differentiate between service providers based on quality of service and so loss of
customers to alternative service providers, due to poor service performance, 1s a growing

business concemn



Control of system performance and protection of system revenues pose particular technical
challenges for the operator Telecommunication service networks are normally protected with
robust performance control mechanisms In particular, much effort has been focused on load
control for traditional Intelhgent Network service platforms (Service Control Points) When
tightly 1integrated service platforms are replaced with more open distributed systems
implementations, 1t becomes a more challenging problem to provide the same high level of
performance control Protection of nodes from overload and assurance of high system
throughput and revenue 1n such environments, are more difficult goals to achieve than n
traditional centralised systems due to the increased complexity of multiple service

components interacting over multiple network nodes

Much research has already been done 1n the area of general distnbuted systems performance,
however, performance objectives for general-purpose distributed systems differ from those of
dedicated telecommunications systems Distributed systems performance optimisation
normally focuses on minimising delays or inter-node communications time 1n the system
This 1s commonly a design-time problem with the objective being that, under average traffic
patterns at run-time, request processing times may be as short as possible However, absolute
speed 1s generally not the main concern for processing of telecommunications services
Human user interaction times determmne maximum allowable delays and these times are
typically long compared to computer processing speeds Once delay 1s bounded to an
acceptable (human) level, of more concern are protection from overloads, minimisation of the
rejection rate of user requests and maximisation of system throughput Recently, revenue
optimisation has also become a direct objective of performance controls As a wider range of
diverse service offerings 1s introduced to a service platform, 1t 1s often deemed important to
differentiate between service types, giving more mportant services priontised access to

system resources

In general-purpose distributed systems, coupled with design-time performance considerations,
simpler dynamic load shanng schemes are implemented to account for changes n traffic
patterns at run-time Currently, dynamic controls generally assume simplified interactions
between software components Although software design tools are increasing 1n capabilities,
and can now produce detailed execution timing information for an application, this
information is normally only used for deciding application partitioning and static assignment
of components to network nodes and 1s not used for design of run-time load controls With
the need for tighter performance control in telecommunications systems 1t may be of
advantage to leverage detailed application execution information to produce more effective

run-time performance controls



In order that distnibuted service platforms deliver the prommsed advantages of easc of software
design, software reuse and flexability and potentially greater scalability and higher
performance, 1t 1s necessary to consider the performance of the underlying distributed system
from a telecommunications perspective This will involve applymng telecommunications
performance sensibilities to the performance methodologies that have emerged from the
general computer science domam In this thesis, we nvestigate both the traditional
telecommunications and the more general computer science approaches towards performance
control Drawing on ideas from both domains, we propose performance approaches for

emerging and future telecommunications service networks

1.2. Thesis Aims and Objectives

The overall goal of the work undertaken 1n this thesis 1s to develop a set of controls and
techmques for assuring performance of telecommunication services executing 1n a distributed
object computing environment Ideas are to be tested and evaluated though service platform
simulations, venfied with analytic results The detailed aims and objectives for the thests are

listed below

e Investigation of literature 1n the area of load control techmques for traditional

telecommunication service platforms

o Investigation of existing performance improvement techmiques for general-purpose
distributed systems

e Identification of prevalent performance concerns for distributed platforms in a
telecommunications environment and identification of desirable performance control

features for such systems

e Development and analysis of suitable design-time optimisation for assignment of

software components to network nodes

» Devclopment and analysis of suitable run-time load distnbution and load control
approaches

¢ Consideration of the following in relation to proposed control schemes
System throughput and revenue maximisation
System overload protection
Multiple service type systems
Consideration of distributed system communications costs
Generality of approach and applicability to future networks

* Invesngation of scenanos for distnbuted computing platforms for telecommunications

services, n particular n relation to Intelligent Network evolution



I
e Construction of a detailed model of a representative distributed service platform to allow
analysis of proposed approaches and companson to existing methods

¢ Venfication of the simulated system implementation with an analytic model

1.3. Thesis Organisation

Chapter 2 (Background and Literature Review) gives an introduction to the evolution of
telecommunications service platforms towards distributed systems Discussed are IN, TINA
and IN/CORBA inter-working The area of performance control in IN and TINA 1s reviewed
Next, an introduction to distnbuted systems, from a performance perspective, 1s given We
review literature 1n the area of optimising performance of distnbuted systems, namely
scheduling, task allocation, load sharing, load balancing, admission control, overload control
and component allocation Having considered the literature, requirements for performance
controls are 1dentified and possible approaches to our problem area are considered The

chapter concludes with specific objectives for performance controls considered 1n the thesis

Chapter 3 (Methods and Tools) reviews mathematical and software tools encountered 1n the
thesis, namely, probability and queuing theory, analysis of product-form and non product-
form networks of queues, simulation methods for network performance analysis, Linear

Programming, Mixed Integer Programming, and Market-based problem formulations

Chapter 4 (Model of a Distributed Telecommunications Service Platform) develops a model
of a distnbuted telecommunications service platform and descnbes the simulation model and

test services used for assessment of performance control techmques developed in the thesis

Chapter 5 (Computational Object Allocation and Performance Control Strategies) develops a
general set of performance control strategies for telecommunications services operating in
distnibuted object environments The approaches proposed are based on the system
performance requirements identified 1n Chapter 2 A method for optimal allocation of
software components to network nodes, which considers component copy installation costs
and network revenue maximisation, 1s presented Optimal run-time controls are developed A

sub-optimal market-based algorithm 1s also developed as a run-time control

Chapter 6 (Analysis of Service Platform and Performance Controls) nvestigates the
efficiency of our proposed methods developed m Chapter 5 and draws comparison with
existing methods An analytic model 1s developed, using Layered Queuing Networks, and the

accuracy of the simulator 1s venfied

Chapter 7 (Conclusions and Future Work) assesses our work 1n terms of our onginal aims and
objectives and more generally 1n terms of contributions to this area of research Potential

improvements on the work are 1dentified and possible further research 1s suggested



Chapter 2. Background and Literature
Review

This chapter gives an overview of the evolution and future of telecommunications services.
Related technologies and initiatives, namely Intelligent Networks, TINA, CORBA,
IN/CORBA and TINA/IN inter-working, are reviewed. The state-of-the-art in performance
control for Intelligent Networks and TINA is examined and related literature in the area of
general distributed systems performance is reviewed. The necessity for effective performance
control of future distributed service platforms is identified and the requirements for such
performance control mechanisms are discussed. The related work to-date in this area is
reviewed and the need for further work is identified. Finally, we define detailed research

objectives for the thesis.

2.1. Introduction

Over recent years, telecommunication service and system design has seen much change. The
introduction of open and distributed architectures has become prevalent in both research and
industry. Distributed architectures have been seen as attractive as they promote a separation

of concerns, allowing services and the network to be treated independently.

Telecommunication systems are becoming more complex due to continuing increases in
power and functionality. Many technological areas such as computing technology,
information technology, network management, integration with the Internet and Web servers
are involved in service development and deployment. As new technologies and elements are
introduced into telecommunication services, to resolve particular problems or to introduce
new service features, an increase in complexity and incompatibility has resulted. As more and
more services are introduced, deployment and inter-working of new and existing scrviccs has
become a resource intensive and time-consuming problem. Effort has been focused on these

issues, detracting from the actual effort devoted to developing new services.



Driven by these factors, there 1s an increasing orientation 1n the telecommunications society
towards an open software creation and standard computing environment Service
Architectures based on middleware technologies, such as CORBA, are increasingly seen as
the appropnate infrastructure 1n a value-added telecommunications network The reasons for

this move towards the adoption of middleware technology include

e the increased ability to cope with system scalability 1ssues,

o the ability to leverage commercial off-the-shelf IT technologies,

o the advantages of an open standards process of middleware such as CORBA,
o the ease of system integration with existing working systems,

¢ the ability to leverage new technologies as they emerge and

+ the avoidance of technology and vendor lock-1n

Although the object-onented, distnbuted computing model provided by middleware promises
to be beneficial for expanding currently deployed service systems such as the Intelligent
Network, by increasing scalability, reliability, flexibility and providing interfacing to other
service networks such as the Intemet, fundamental questions have been identified as requinng

careful investigation
e sofiware and data partitioning,
* performance control overload control and load distnibution and

¢ middleware performance

In the past, much effort has been concentrated on providing effective load control and
overload protection schemes for nodes 1n existing Intelligent Network systems Simular efforts
are required 1f new middleware based systems are to succeed 1n providing similar or greater
levels of system reliability and efficiency and if the benefits offered by distnibuted object
computing technologies are to be maximised In the following sections of this chapter we give
an overview of current and future telecommunication service architectures and then review

the approaches that have been taken towards performance

2.2, Telecommunication Service Architectures

Early telecommunication services were embedded into the call switching network which
typically consisted of a hierarchy of switches, e g a local exchange level, an intermediate
exchange level and a transit exchange level When services were situated at the transit (top)
level, there was a large overhead incurred for their use as a large number of switches and

related trunks needed to be accessed mn order to use a service For this reason, services were



migrated to lower levels of the hierarchy, reducing overhead In the extreme case, each local
exchange level switch contained the service logic and data meaning that every service must
be loaded into every switch’s software before 1t could be used Thus service maintenance and
addition was very difficult, especially as the number of services contained n each switch
increased Consequently, the addition of new services occurred very rarely As a single
company was responsible for running an exchange and all of the services 1t offered there was
no competitive market for service provision since the company running the exchange was the
only service provider Lack of competition led to lack of nnovation, and so service provision

did not progress [Harju, 1994]

221. The Intelligent Network

To resolve these 1ssues, the Intelhgent Network (IN) was developed in the 1980s The IN
concept was to separate the service processing from the switches so as to ease and speed the
deployment of new services and reduce the then escalating complexity of exchanges There
was also a desire to share service data, distnibute processing among dedicated service network
elements so as to meet an increasing demand for more sophisticated telecommunication
services and allow for scalability The intention of IN was also to standardise interfaces and
protocols so as to enable an open platform for uniform service creation, implementation and
management allowing multiple service vendors to participate 1 a competittve market IN
standardisation has taken place in ANSI [1999], ETSI [1994] and the ITU-T [1997] and has
been widely deployed

A general framework for creating international standards for INs, known as the Intelligent
Network Conceptual Model (INCM), was developed to provide a framework for the design
and description of the target IN architecture [ITU-T, 1993a] As a self-contained model, 1t
captures the whole engineering process of the IN At the functional level of the INCM model,
services are implemented by functional entities (Figure 2 1) These functional entities are
realised as corresponding physical entities (normally corresponding to network nodes) in the
physical plane The categories of functions and their corresponding physical entities can be

differentiated as

Basic call-handling functions The Connection Control Function (CCF) resides at the switch
and provides the functionality for basic call processing In the physical plane, the Service
Switching Point (SSP) provides the platform for running the CCF

Service execution functions The Service Switching Function (SSF) contains the logic for
controlling switch resources dunng execution of a service It also provides a service-
independent interface to the Service Control Function (SCF) which controls network

resources during service execution In the physical plane the SSP provides the platform for



running the SSF and the Service Control Point (SCP) provides the platform for the SCF The
Service Data Function (SDF) contains both customer-related and network-related data and
provides standardised access methods, enabling the SCF to use this data The SDF 1s
implemented on the Service Data Point (SDP) 1n the physical plane The SRF provides
service-related functions such as collecting dialled digits or playing service announcements
The SRF 1s normally implemented by an Intelligent Peripheral (IP) in the physical plane In
addition to the call-related functional entities, the SMF and SCEF provide management and

service creation functions

SCEF

To all network
functions
except CCAF

(cer)
(ccr )——(ccar)

Acronyms

SMF Service Management Function SCEF Service Creation Environment Function
SCF Service Control Function SDF Service Data Function

SRF Service Resource Function SSF Service Switching Function

CCF Call Control Function CCAF Call Control Agent Function

Figure 2 1 Functional Entities in the IN Distributed Functional Plane

By way of example, an invocation of an IN service starts by the detection of a trigger event,
at a predefined point within the call For example, dialling a 1800 number will tngger a
service for translating the dialled digits into a ‘real’ telephone number When a trigger 1s
detected, normal call processing 1s suspended, and a query 1s sent to the SCP The query 1s
expressed as an Intelligent Network Applicanon Part (INAP) message sent to the SCP over
the signalling network, the Signalling System No 7 (SS 7) [ITU-T, 1993] The SCP processes
this query and can either return a set of instructions to the SSP at the switch, or execute its
own service logic, possibly communicating with other entities such as the SDP and IP In the
case of the 1800 number example, the SCP quenes the SDP for the ‘real’ number and returns

it to the SSP for call routing 1n the switch

Although IN 1s a huge step forward from early embedded service logic schemes and has
enjoyed a large degree of success, 1t 1s still imited by a number of deficiencies [Blair ef al |

2001} IN services have hmited user interfaces Service processing i1s dependent on the



detection of a trigger in the context of a call prior to connection set-up 1€ services are
invoked for the end user by the transport provider Within the switch, the call 1s modelled by a
Basic Call State Model, which 1s strongly telephony onented and inflexible The SCP has a
standardised, generic, connection view of the call processing resources an IN switch offers
This standard model, while enabling some switch vendor independence, offers little 1n the

way of transport technology independence

The physical separation of the SSP and the SCP, attempted to provide the reliability required
for telecommunication services by provisioning expensive centralised facilities IN did not
attempt to distribute the service itself by endeavouring to build a rehiable system by
redundantly deploying relatively cheap and unreliable facilities, or by any other means This
was reasonable given the state of the art in distributed systems at the outset of IN
standardisation, but ultimately 1t leaves the IN looking like a legacy centralised system, by 1its

nature more prone to catastrophic failure than a counterpart with distnibuted 1intelligence

While the mmportance of management aspects was acknowledged, the IN itiative
concentrated standardisation effort on service switching and control It was only later that
telecommunication service architectures recognised the need to support the concurrent

development of services and their management facilities

However, while falling to achieve a complete logical separation between a service and 1ts
underlying communications technology, IN nevertheless established a physical separation
between a service and 1ts delivery that provided a useful basis for further service modelling

work

222 TINA

In 1993 the Telecommunications Information Network Architecture Consortium (TINA-C)
was founded The consortrum aimed to define a Telecommunications Information Networking
Architecture (TINA) which would enable the efficient introduction, delivery and management
of telecommunication services beyond that provided by the IN [TINA-C, 1997] Due to the
rapid convergence of telecommunications and computing, the focus of attention moved away
from the physical network to software-based systems Essentially TINA provides a set of
concepts and principles for specification, design, implementation, operation and management
of software systems for telecommunication networks, with a view to leveraging the
advantages of object onented design methodologies and distnbuted object platform
technologies The use of object-oriented principles for service modelling 1s expected to
improve the interoperability of scrvices allow the re-usc of softwarc and to allow flexible
deployment strategies for software in the network The use of distnibuted middleware

platforms, such as the Common Object Request Broker Architecture (CORBA) [Schmidt,



1997], allow hiding of distribution concerns from apphcations The types of services

supported by TINA range from voice-based services to multi-media, multiparty services

In the TINA service architecture, a service 1s described as a set of interacting objects called
Service Components (SCs) Each SC consists of one or more Computational Objects (COs),
which are executed 1n a Distributed Processing Environment (DPE) The DPE shields the
services from the distnibuted nature of the system, taking care of communication between
objects and maintaining location and communication transparency in the system The DPE in
turn rests upon the Native Computing and Communications Environment (NCCE), the native
systems software that controls a hardware platform A schematic view of TINA from a

computational viewpoint 1s shown 1n Figure 2 2 below

co

[COJ (il @

Distributed Processing Environment (DPE)

NCCE NCCE NCCE

HW HW HW

Figure 22 A Schematic View of the Different Layers of TINA

The Computational Object (CO) in TINA 1s the mam entity at the functional level
encapsulating service data and functionality Each service consists of a number of COs
interacting through their prescribed interfaces Some COs are service specific, while others
are common TINA components COs reside n different domains, according to which role
they take in the service (Figure 2 3) User Domain objects are either users of services or
otherwise closely tied to the user whilst Provider Domain objects are related to service

provisioning

TINA Computational Objects are organised 1n terms of the session concepts to which they

relate in TINA, namely, the Access Session, Service Session or Communication Session

2221 Access Session Related Computational Objects

User Application (UAP) The UAP is the user domain representation of a service application
A UAP allows a user to both create and join existing sessions UAPs belong to the User

Domain

Provider Agent (PA) The PA 1s a service independent CO and 1s defined as the user’s end-

point of an access session It allows the setup of trusted relationships between a user and a

10



provider, by interaction with an Jrnal Agent (descnibed below) Dunng an access session a
PA conveys requests to and from the user to the rest of the system PAs belong to the User

Domain

Iminial Agent (IA) The IA 1s both a user and service independent CO that 1s defined as the
mtial access point to a domain It has the capability to set up trusted relationships between
domains by 1nteraction with a PA These access sessions can be either anonymous or not, n
the former case the User Agent (below) 1s accessed as an anonymous user agent IAs belong

to the Provider Domain

Usecdoman A Provider domain
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Figure 2 3 Relationships between COs and Domains

User Agent (UA) The UA represents the user in the provider’s domain It 1s the provider
domain’s end-point of an access session with a user and s accessible from the user’s domain

regardless of that domain’s location A UA acts on the behalf of the user, and may be seen as

11



an intelligent agent-like component. UAs reside in the provider domain. UAs can be both
Named and Anonymous (both subtypes inherit the properties of the UA). Named UAs are
used when a user is a subscriber to the provider’s domain, and can be used for further
authentication if needed. Anonymous UAs are used when a user does not or can not disclose
its identity to a provider. An anonymous UA might for instance be used when calling from a

phone booth or other places where user identity cannot be completely assured.

2,22.2, Service Session Related Computational Objects

Service Factory (SF): A service specific CO that can create service session components for a
specific service type. It also assembles the resources necessary for the existence of a

component that it creates. The SF resides in the Provider Domain.

User Service Session Manager (USM): The USM is a service specific CO that contains
information about service capabilities, that are local to a user. For instance it keeps track of
local resources used by a user. In the case of suspension and resumption of a service session,

the USM maintains the local state for a user. It resides in the Provider Domain.

Service Session Manager (SSM): The SSM is a service specific CO that contains the service-
specific and generic session control logic for a service. An SSM supports services that are
shared among users in a session. In the case of suspension of a service, the SSM maintains the
state of the session until it is activated again. The SSM supports accounting and resides in the

Provider Domain.

2.2.2.3. Communication Session Related Computational Objects

Communication Session Manager (CSM): The CSM is a service independent CO that
manages end-to-end stream bindings between stream interfaces. It resides in the Provider

Domain.

Terminal Communication Session Manager (TCSM): The TCSM s a service independent
CO that manages the local intra-node connections in the user’s domain. It answers to requests
from a CSM to setup, modify or remove stream connections. It resides in the Provider

Domain.

2.2.3. TINA in Use

Numerous papers and reports have been published on TINA since the architecture was
introduced in 1995. Sebastiano et al. [1998] provide a survey on how TINA service
architectures and distributed processing platforms may be used to develop third-generation
mobile systems. Alexandre et al. [1999] discuss how mobility could be incorporated into

TINA services. Juan et al. [1998] present a brokerage architecture, which focuses on the
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development of electronic commerce 1n TINA environments Several authors have also
advocated the TINA component model for replacing the Intelligent Network SCP, for
example 1n [Herzog & Magedanz, 1997] and [Mampaey, 2000] Capellmann [2000] reports
on prototypes for TINA based SCPs inter-operating with the Intelligent Network through an
Adaptation Unit An OMG standard [OMG, 1999] has already been defined for inter-working
of IN and CORBA which would facilitate building of such Adaptation Units in a standard
way Mampaey [2000] discusses the benefits of such an approach for IN and states that a
TINA-based IN can offer standardised and service-independent interfaces to prevalent
technologies, such as Computer Telephony Integration (CTI) applications and Internet-based
applications such as Internet call waiting He sces a genernic TINA framework as providing

mter-working 1n a structured way across different technologies (Figure 2 4)

Service X Service Y Service Z

TINA Generic Framework

Web Chent IN Adaptation Camel Adaptation
Adaptation
JVM INAP GSM Technology

Figure 2 4 TINA-based Interworking

Although the uptake of complete end-to-end TINA solutions has been slow, 1t can be seen n
the hterature that the elements of the TINA service architecture have ments for structurning of
general service provisioning platforms In Chapter 4, we propose a model consisting of the
components of the standardised IN/CORBA pgateway (acting as the Adaptation Unit)
interacting with a set of TINA Service Components, which provide the functionality of the
Intelligent Network SCP

We will next examine the underlying motivation for use of Distributed Object Computing for
telecommunication service provisioning platforms and give details of the IN/CORBA inter-
working methodology Firstly, we give a bnef overview of CORBA before examining IN-
CORBA nter-working 1n detail

2.3. Overview of CORBA

The Common Object Request Broker Architecture (CORBA) 1s an open Distributed Object
Computing infrastructure, standardised by the Object Management Group (OMG) [OMG,
1995] CORBA automates many common network programming tasks such as object

registration, location, and activation It also manages error-handing and parameter
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marshalling and demarshalling Figure 2 5 illustrates the main components of the OMG
Reference Model Architecture

Object Services - These are domain-independent interfaces that are useful to any type of
CORBA application For example, a service providing for the discovery of other available
services 1s almost always necessary regardless of the application domain Two examples of
Object Services that fulfil this role are (1) The Naming Service, which allows clients to find
objects based on names, (2) The Trading Service, which allows clients to find objects based

on their properties

~
( APPLICATION DOMAIN COMMON
INTERFACES INTERFACES FACILITIES J

TTT TT71T T1¢T

OBJECT REQUEST BROKER

- J

OBJECT
SERVICES

Figure 25 OMG Reference Model Architecture

Common Facalines — Common Facilities are onented towards end-user applications An
example of such a facility 1s the Distributed Document Component Facility (DDCF), a

compound document Common Facility based on OpenDoc

Domain Interfaces - These interfaces fill roles similar to Object Services and Common
Facilities but are onented towards specific application domains For example, one of the first
OMG Domamn Interfaces was the Product Data Management (PDM) enablers for the
manufacturing domain Other OMG Domain Interfaces have been defined n the

telecommunications, medical, and financial domains

Application Interfaces - These are mterfaces developed specifically for a given application
Because they are application-specific, and because the OMG does not develop applications
(only specifications), these interfaces are not standardised The main elements of the CORBA

architecture are shown 1n Figure 2 6

Object Implementation - Thts defines operations that implement a CORBA IDL interface
Object implementations can be wntten 1n a vanety of languages including C, C++, Java,
Smalltalk, and Ada

Client - This 1s the program entity that invokes an operation on an object implementation

Accessing the services of a remote object should be transparent to the caller Ideally, it should

14



be as simple as calling a method on a local object The remaining components in the

architecture help to support this level of transparency

Object Request Broker (ORB} - The ORB provides a mechanism for transparently
communicating client requests to target object implementations The ORB simplifies
distnbuted programming by de-coupling the client from the details of the method invocations
This makes client requests appear to be local procedure calls When a client invokes an
operation, the ORB 1s responsible for finding the object implementation, transparently
activating 1t 1if necessary, delivering the request to the object, and retuming any response to
the caller

In args

Client gperahono I Ob]ect
Implementation
return
l < out args ?
IDL Stub IDL Skeleton
ORB

Figure 2 6 Object Request Broker Architecture

CORBA IDL Stubs and Skeletons - CORBA IDL (Interface Definition Language) stubs and
skeletons serve as the “glue" between the client and server applications, respectively, and the
ORB The transformation between CORBA IDL definitions and the target programming
language 1s automated by a CORBA IDL compiler The use of a compiler reduces the
potential for inconsistencies between chent stubs and server skeletons and increases

opportunities for automated compiler optimisations

2.4. Interworking Networks and IN/JCORBA

As mentioned 1n the previous section, two software technologies are candidates for extensive
use 1n the telecom market (1) object-onented design and programming, which well suits the
need for reusable, open components for telecom applications, and (1) distributed processing,
which suits application to the highly distributed nature of telecom systems This has led to the
definition of a middleware software layer enabling telecom-tailored distnibuted processing

based on an object-onented approach

Capellmann {2000] notes that the adoption of IT technologies in Intelligent Network systems,
has already occured Current SCP platforms from many vendors are already structured
following a chient/server model, in which different UNTX based servers are connected through
high-speed data networks, with front end and back end distributed computing Distributed

processing environment standards, such as CORBA, arc already implemented for service
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management and are under evaluation for real-time apphcations within IN and wireless

network elements

Much of the formal investigation into the future application of CORBA to IN systems has
been mtiated by the Eurescom P508 project [Eurescom, 1997], the goal of which was to
determme the options for evolving from legacy systems towards TINA in a graduated
manner Possibilities for migration from current control and management architectures to
TINA had been previously investigated One major result was that the gradual introduction of
TINA DPE technology, 1 ¢ CORBA technology enhanced with real-time capabilities, into the
existing environments, represents the fundamental prerequisite for such an evolution
Particularly, the evolution of Intelligent Networks was an important study item of the P508
project In the course of these studies, two White Papers [OMG, 1996] and [OMG, 1997)
have been produced by the Object Management Group’s Telecom Domain Task Force, n
order to support the emerging OMG work activities on IN/CORBA interworking These
White Papers are targeted at providers of information technology solutions and have the
purpose of stimulating their interest towards telecommunication operator specific needs They

analyse a small subset of the problem area the introduction of middleware into the Intelhgent

Network
Service Components Service Special
CORBA compliant resources Companents Resaurces
Resource Adaplers " G "t ——
i Gateway:
Event based Service Session, o y
Notfication Service Telecom Specific Services
SS7/CORBA Gateway
amng Service
Fvent Channel Service > Generic CORBA Services Legacy
Systems
[Telcom CORBA ORB
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Figure 2 7 IN and CORBA - The P508 Vision

The central 1dea put forward in [OMG, 1997] 1s that of introduction of a middleware software
layer into application and data servers, and eventually also into switching systems, enabling a
component-based, distributed intelligence replacing the traditional monolithic Intelligent
Network functional entiies The switched transport network ensures transfer of user
information across connections, on which calls are established The middleware platform
enables realisation of IN functions 1n a distributed way, that 1s by a set of application and data
servers mtcractmé via the platform corresponding to IN functional entities This platform 1s
based on CORBA whereby, CORBA servers containing CORBA objects act as reusable

16



service components Communications at the middleware platform level 1s based on an
Interoperability Protocol (IOP) [OMG, 1995] and the application-level signalling network,
ensuring communication among platform nodes, 1s termed the Kemel Transport Network
(kTN) It should rely on the existing SS 7 signalling network [ITU-T, 1993], which fulfils
important requirements for telecom applications, such as high reliability Interoperability with

legacy IN elements and services 1s ensured by a CORBA to SS 7 gateway

On top of the middleware layer, three types of entities are deployed (1) Service / Service
feature components - the service logic, implementing a wide range of services and service
features by means of reusable components, (2) CORBA-compliant special resources -
resources, such as bridges, databases and so on that have been designed in such a way that
they can be directly plugged in on the middleware layer, (3) Adapters for special resources
that interact with the exterior with a different paradigm than that of the distnbuted computing

middleware, for example, with proprietary protocols

Taking IN legacy systems into account leads to the 1ssue of defining which profile of the
protocol stack must be used, and of building a gateway between the IN and the CORBA

domains based on SS 7

CCORBA Services

QQQ
O 0O

Distributed CORBA
Objects supporting IN
Services

INFCORBA Gateway

§S7

SSP

Figure 2 8 Gateway to CORBA based Service Platform

In order to enable CORBA objects to control IN SSPs 1t 1s necessary to define a dedicated
application-level gateway object that provides a CORBA/IDL interface (API) to the objects
on the CORBA side and an SS 7 nterface towards the signalling network on the other side
(Figure 2 8) This means that an IN SSP communicates with other network entities using
SS 7/INAP, while on the CORBA side mvocations of IDL interfaces are used for
communication The gateway, located 1n between, 1s in charge of transparently adapting both
types of commumcation The most hikely realisation of such a gateway suggested by the P508
report [Eurescom, 1997] 1s a TCAP/CORBA gateway This 1s a genenc application-level
gateway defined for all TCAP or ROS (Remote Operation Service) Users {of which INAP 1s
one example) by providing translation algonthms for converting between ROS constructs
defined 1n Abstract Syntax Notation One (ASN 1) and the corresponding CORBA constructs
using IDL
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Once the gateway from IN to CORBA 1s defined, 1t 1s possible to ntroduce CORBA as the
distributed processing platform nto the intelligent layer to enable the service logic to be
structured as service components, which correspond to objects on the CORBA platform This
component-based approach enables dynamic service composition, 1 ¢ the flexible assembling

of pre-existing components to form a particular service

241 OMG IN/CORBA Interworking Specification

Interest in these OMG white papers led to the completion of an IN/CORBA mter-working
spectfication The pnimary design goal of the specification [OMG, 1999] 1s to provide
mterworking mappings and supporting CORBA services that enable traditional IN systems,
whose interfaces are defined using the ASN 1-based Intelligent Network Application Part
(INAP) and use the SS 7 protocol stack for communication These are to nter-work with
CORBA-based implementations of IN systems, whose mnterfaces are defined in OMG IDL
and use the OMG-defined protocols for communication The interworking mappings produce
IDL for a CORBA object model in the CORBA domain that provides interfaces to legacy IN
systems from the CORBA domamn and also provides interfaces to CORBA-based IN
applications to legacy IN systems This object model may be used to build a gateway, which
provides protocol conversion and alignment of execution semantics between the IN and
CORBA domains, allowing full IN-CORBA nterworking Supporting CORBA objects are
defined by the specification that allow application namung, addressing, location and

instantiation n the two domains to be aligned

242 Components of the IN/CORBA Gateway and CORBA-based SCP

The application interworking described above may be categorised nto Specification
Translation and Interaction Translation The specification translation 1s an extenston of the
JIDM specification translation specification [X/OPEN, 1995] which has been adopted by The
Open Group / NMF JIDM defines mappings for ASN 1 basic constructs to OMG IDL The
extensions allow full translation of further ASN 1 constructs, used to define INAP, into OMG
IDL Interaction Translation 1s provided by a set of CORBA nterfaces, which support the
run-time interactions between CORBA-based IN implementations and legacy IN
implementations Figure 2 9 shows the major interfaces defined and how they interact to

provide an interworking function (gateway) between the IN and CORBA domains

In Figure 2 9, a “legacy” SSP interacts with a CORBA-based service implementation using
the IN/CORBA object model Note that only interactions initiated from the IN domain are
shown here although the model proposed 1s general and may also support interactions that are
mnated from the CORBA domain The objects shown  grey are CORBA objects whose

interfaces are defined in OMG IDL 1n accordance with the Interaction and Specification
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Translations specified by the standard The Gateway Admunistration object (GWAdmin)
performs the functions of name translation and object location between the two domains
Messages amving from a legacy SSP are addressed to a particular SS 7 Apphcation Entity
(AE), 1dentified by a particular AE title The GWAdmin provides an interface for translating
the AE title to the CORBA object reference of a Service Factory object, which may create
instances of the Service Interface Object

CORBA-based SCP
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Figure 2 9 The Interworking Gateway
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In order to represent the SSP in the CORBA domain, a SSF Proxy object 1s required This
object provides an IDL interface for invocation of INAP operations on the SSF from the
CORBA domain and performs the protocol translation and communication with the SS 7
stack The SSF Proxy Factory provides a standardised means of mstantiating a SSF Proxy
The Service Interface Object provides a complementary IDL interface for invocation of INAP
operations from the SSF to the CORBA-based SCP Protocol translation for these invocations
1s provided 1n the gateway The association between SSF Proxies and Service Interfaces 1s
maintained 1mplhcitly by a particular implementation of the gateway - one wnstance of a
Service Interface Object may be used for several mstances of a service session or each new
service instance may create a new Service Interface Object The same 1s true for SSF Proxies

This design provides implementation flexibility in terms of scalability and distnibution

2.4 3 IN/CORBA Gateway and TINA Service Components

In Chapter 4, we will propose a CORBA-based SCP model denived from the IN-CORBA
Gateway Components and the TINA Service Components This model will form the basis for
our nvestigations in this thesis Several authors have also advocated the TINA component
model for replacing the SCP in the IN (for example Herzog & Magedanz [1997] and
Mampaey [2000]) through use of an IN-TINA Adaptation Uit Although many propnetary
Adaptation Units have been proposed, we have chosen to base our component model on the
standard IN/CORBA gateway
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Having considered past, present and future architectures for telecommunication service

provisioning, we next turn our attention to the related performance 1ssues

2.5. Performance Control of Telecommunication
Services Networks

All telecommunication systems have a fimite capacity that limits the volume of requests that
they can successfully process at any one time If the usage of the network by end-users
exceeds 1ts capacity, an overload condition can occur During long penods of overload,
service requests join long queues at busy network processors As a result, service response
times can become unacceptably long This problem may be compounded by end-users
abandoning service attempts after a long wait and 1ssuing new service requests As messages
from earlier abandoned attempts remain in processor queues and new reattempts are made,
the offered load to processors grows even more, leading to even higher abandonment rates
and resulting 1 an unstable positive feedback scenano The number of service attempts that
actually complete service (and eam money for the operator) decreases rapidly and the

network becomes less profitable

Thus overloads are highly undesirable for both the end-user and the network operator
Therefore, 1t 1s essential that steps are taken to mimmase the impact overload has on network
performance Performance Control refers to strategies and mechanisms used to manage
network traffic so that network resources are efficiently used and service completion rates are
maximsed 1n all traffic conditions, and 1n particular during overload A broad spectrum of
load controls have been proposed and implemented for telecommunication service networks,
particularly i relation to the Intelligent Network where the focus 1s mainly on protecting the

Service Control Point (SCP) from overload

Developers of future service networks consider Distnbuted Processing Environments as a
suitable paradigm for provisioning of new services In this case, a user’s service request is no
longer executed on a single SCP node but 1s distnibuted across multiple processing nodes
where processing at each node 1s required to complete servicing of the request In this
scenano, an overload occurring on any one processor 1n the system can cause a bottleneck 1n
service execution Long delays at this node alone may cause the user to abandon the service
request However, to further compound the problem, processing that has already been
completed for this service request on other nodes 1s then ‘wasted’, as a reattempt by the
service user will require the same processing to be repeated In this respect, performance
control of individual nodes 1 a distnbuted environment 1s even more cntical than in an
Intelligent Network, as one poorly performing node can impact heavily on a system that may

be otherwise only lightly loaded Many solutions to balancing of load to prevent such
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bottlenecks have been proposed 1n the area of general distributed systems research However,
very few solutions have been investigated specifically for telecommunication services and we

propose that this 1s a worthwhile area of research

When we consider inter-working of the Intelligent Network and a distrbuted service
platform, we propose that we must also consider performance control at network interfaces as
well as load balancing internally 1n the distributed system An IN/CORBA gateway n this
scenario behaves very much like a SCP, when viewed from the Intelligent Network side
Thus, 1t 1s natural that the gateway should accurately represent the load situation 1n the entire
distnibuted system as 1f it were a SCP This allows existing Intelligent Network performance
control mechanisms to operate normally without the need for knowledge of the load situation
on individual nodes 1n the distributed system Thus, we contend that Intelligent Network
performance controls could provide overload protection for the distributed platform as a
whole Performance controls operating through such gateways have not been studied, as far as
we are aware, and we propose that research in this area 1s a worthwhile endeavour We
contend that 1t 18 desirable that the nternal performance controls (load balancing i the
distnbuted system) and external performance controls (at the gateway) should be integrated
and co-ordinated 1in an optimal way to provide the most benefit to the service user and
network operator That 1s, the performance controls should, at the very least, keep system
response times at an acceptable level and maintain a profitable system for the operator We

propose other desirable properties of the performance control later in this chapter (in §2 7)

In the remainder of this section (§2 5) we consider existing work 1n the area of Intelligent
Network performance control, as 1t impacts on functioning of performance controls at the
gateway and generally reveals the thinking and methodologies behind performance control
from a telecommunications perspective We contend that methods in Intelligent Network
performance control may also be of use in distributed systems We also review the hterature
in the area of performance control in TINA as 1t impacts on performance controls in our
scenarios In the next section (§2 6) we review the broader area of distnibuted systems
performance n detail, as this impacts greatly on optimising performance controls for

distnbuted service platforms

251 Load Control in Intelligent Networks

In a typical Intelhgent Network scenano, multiple Service Switching Points (SSPs)
communicate with a single Service Control Point (SCP) during service execution (Figure
2 10) As the SCP 1s the central controller and executor of service logic, its protection against
overload has been studied widely IN specifications mandate only a minimal degree of load
control functionality and equipment vendors and network operators are therefore afforded a

good deal of freedom when implementing IN load controls
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Numerous approaches have been proposed and compared in the literature The approaches
taken can be broadly categornised into two types, active and reactive [Lodge, 2000] In active
strategies the SSPs detect SCP overload based on local measurements, such as response delay
of messages sent to the SCP If an overload condition 1s detected, new traffic to the SCP ts
throttied (reduced or imited by some means) until SCP overload abates In reactive strategies
the SCP detects overload itself, by means of an overload detection algonthm and notifies the
SSPs of 1ts overload status The SSP then implements a load throttling algorithm until 1t 1s
notified by the SCP that overload has abated

Overload
Detection

Overload/abatement signal

Throttle

Figure 2 10 Overload Detection and Throttling in an Intelligent Network

Most research, on single SCP scenartos, has focused on reactive strategies and differs mainly
in terms of the types of overload detection and load throttling algonthms used A range of
SCP overload detection algonthms, making use of different performance metrics, have been

proposed and investigated

*  Queue Length Control when the SCP mput queue length exceeds a threshold value the
SSPs are notified of an onset of an overload condition

¢ Processor Utihsation The proportion of time the SCP central processor spends on
processing service-related messages 1s measured or estimated over a set interval and
compared to threshold values When employed, the aim 1s typically to keep utilisation 1n a
pre-defined range, or close to but below some target capacity

¢ Incoming Message/Session Rate The number of messages or new sessions arriving at

the SCP over a set interval 1s compared to a threshold

* Average Response Delay The average time spent by messages in the SCP, from
placement 1n the mput queue to the end of processing, 1s measured over a set iterval and
compared to a threshold

¢ Dropped Messages SCPs typically drop messages 1f they have been 1n the mput queue
for a longer than specified time¢ The number of dropped messages over an interval 1s

compared to a threshold value to indicate an overload condition
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Note that these metrics are used for notifying the SSPs of both detection of onset of an

overload and abatement from an overload condition

Jennings [2001] makes some observations on the relative pros and cons of controls based on
these metrics Queue length control has the advantage of reacting very quickly to overload
onset but can lead to unnecessary over-control caused by random fluctuations in arrival rates
Session rate control assumes that session counts will be directly proportional to the session’s
processing requirements, however this will not be the case 1f the SCP supports heterogeneous
services, cach with different processing requirements He also notes that response delay
schemes suffer from the same difficulties n heterogeneous service He sees dropped

messages and processor utilisation metrics as giving better defined performance objectives

A number of load throttling algonthms that reduce the acceptance rate of IN service requests
in response to SCP overload indications have also been investigated, of which the most

common arc

Percentage Thinning With percentage thinning a specified proportion of requests arrving
dunng a time mterval are accepted The decision as to whether or not a particular request 1s
accepted can be based on Bemoull: tnials (refer to §3 1 4), where the probability of success 1s

the Percentage Thinming coefficient indicated by the SCP

Call Gapping This limits the number of requests accepted 1n a certain interval to a specified
number The throttle operates by enforcing a minimum time spacing between call acceptances
where no additional requests can be accepted while the gap timer 1s active Various call
gappmg based schemes have been proposed for example in [Pham and Betts, 1992], [Smith,
1995}, [Hac and Gao, 1998]

The relative menits of load throttles have been examined by Kihl and Nyberg [1997], Lodge
[2000} and Jenmngs [2001] The general consensus is that Percentage Thinning 1s more
dynamic than Call Gapping, n that the Percentage Thinming coefficients are dynamically
computed to provide the necessary reduction in expected traffic during the coming control
interval In general 1t 1s found that both throttles are approximately equal in terms of
protecting the SCP, albeit under the assumption that Call Gapping gap intervals are
appropriate to the particular network structure Percentage Thinning 1s seen to exhibit fair
treatment of users, because all SSPs throttle the same proportion of traffic, regardless of their
size For the same reason Percentage Thinning 1s a scalable throttle not only 1s 1t independent
of SSP size, 1t 1s also independent of the number of SSPs in the network On the other hand,
Lodge [2000] notes that a significant advantage of Call Gapping 1s that 1t places a strict upper
Iimit on the number of accepted sessions and therefore 1s not susceptible to sudden increases

in armval rates, as 1s Percentage Thinning
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2 5.2. Network-Centric IN Load Control

Although the above schemes can be deployed in multiple SCP scenanos, they function so that
cach SCP protects 1tself independently without regard for the load situation 1n other parts of
the network There has been recent interest in network-centric, as opposed to node-centric,

approaches to load control, which aim to optimise loading across the whole network

Lodge [2000] has formulated a network-centric strategy that involves the formulation of
Linear Programming problems (refer to §3 3 2), whose solution defines the optimal threshold
values to be used by a Percentage Thinning load throttle residing at SSPs The optimisation
involves the maximisation of generated service revenues subject to load constraints on SCPs
and SSPs, as well as constramts to ensure that pre-defined weightings (simular to priorities)
between service types are reflected 1n the Percentage Thinning coefficients These weightings
are representative of the relative importance of successfully setting up a session of a given
service type in comparnson to a session of other service types In the strategy specification,
weights are calculated using information regarding service session revenue, processing

requirements and service level agreements Specifically the weight of service type ; at

resource x (SSP or SCP), denoted @, |, 1s given by
Rqge U
JA4y x)i"x ]
@, ==
ZR}qle-‘l’uxl

=1

where R 15 the set-up revenue associated with service type j, ¢, 1s the numerical quality-

of-service level of service type 7, e, , 1s the number of messages in a type j service that are

J
processed by resource x, 4, 1s the service rate of service type ; messages at resource x
and J 1s the number of services supported by resource x Quality-of-service levels are
arbitranly set by the network operator, on the basis of factors such as acceptable delays,
customer importance or financial penalties associated with non-adherence to service level

agreements

The use of agent technology for multi-SCP networks has been investigated by Patel et al
[2000] They descnbe a multi-agent system realising an artificial computational market 1n
which the processing capacity of SCPs 1s ‘sold’ to SSPs in a manner that maximises global
utility, which 1n this case 1s generated profit Davidsson ef al [2000] descnibe an approach
based on mobile broker agents, which sell SCP processing capacity to SSPs on an
autonomous basis, that 1s, not in the context of an auction (§3 4 gives a summary of market-

based control techmques)

Jennings et al [1999] denved a multi-service globally optimal co-operative market strategy

for controlling load in a multi-SCP network Similar to Lodge [2000], each service has a
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particular revenue generating capacity and a profit optimal solution is sought. Arvidsson et al.
[1997] have also considered profit optimal congestion control in INs based on an estimate of

round trip delay and using baysian decision theory for solution.

Figure 2.11: Multi-SCP Intelligent Network

We describe [Jennings et al., 1999] here as some of the ideas are used as a basis for
formulating our market-based strategy in Chapter 5. In this strategy, load control in a multi-
SCP IN is carried out by means of tokens, which are ‘sold’ by ‘providers’ (the SCPs) and
‘bought5 by ‘consumers’ (SSPs). The amount of tokens sold by a SCP controls the load
offered to it and the amount of tokens bought by a SSP determines how many service requests
it can accept. ‘“Trading’ of tokens in an ‘auction’ is carried out such that the common good is

maximised, hence they describe their scheme as a co-operative market strategy.

All SSPs contain a number of pools of tokens, one for each SCP and service class pairing.
Each time an SSP sends a service request to a SCP, one token is removed from the relevant
pool. An empty pool indicates that the associated SCP cannot accept more requests of that
type from the SSP. Tokens are periodically assigned to pools by a central auction algorithm
which calculates appropriate token allocations based on bids from all SSPs and SCPs in the
network. SCP bids consist of unclaimed processing capacity for the coming control interval
and the processing requirements of each service class. In a similar manner, SSP bids consist
of the number of expected service requests for each service class over the next control

interval. These estimates are simply set as the number of arrivals in the previous interval.

The objective of the auction process is to maximise expected network profit over the next
control interval. To do this, the auction maximises the increase in expected ‘marginal utility’,
measured as the ratio of ‘marginal gain’ and ‘marginal costs’. The expected marginal gain
associated with allocating an additional token to a SSP is defined as the profit associated with
consuming it times the probability that it will be consumed over the next interval. The
expected marginal cost associated with issuing a token from a SCP is defined as the ratio of
the processing time consumed and the remaining processing time. In this manner, tokens will

typically be allocated to SSPs with higher bids, i.e. those expecting greater numbers of



requests for higher profit services over the control interval. The net effect of the auction
process is that tokens are allocated in a manner that balances the arriving traffic load across

all SCPs, subject to maximising the overall network profit.

2.5.3. Performance Control in TINA

There has been a considerable amount of research published on TINA networks in general but
relatively little of it relates to performance issues. Parhar & Rumsewicz [1995] have done
some initial investigations of performance issues in TINA. Sperryn et al. [2000] present a
technique to assess performance metrics for objects executing in the TINA DPE. Kihl et al.
[1998, 1999] and Widell et al [1999] have investigated feasible load balancing algorithms
and overload control mechanisms for TINA, and study how the distribution of computational
objects affects the performance of the TINA network. Kihl et al. [1997] have identified the
impact of Computational Object (CO) placement on performance in TINA networks through
simulations. They conclude that network performance is highly sensitive to how the COs are
distributed among network nodes. Choo et al. [2002] review the area but mainly reference the
work of Kihl. However, they report on how this work has been implemented in the SATINA

[Sperrin, 2000] trial platform.

We review Kihl’s work here ([Kihl etal., 1997, 1998, 1999], [Widell, Kihl etal., 1999]) as it
is the only substantial work, as far as we are aware, detailing TINA performance control

mechanisms and their evaluation and is directly related to work undertaken in this thesis.

sc3 sc4 sc6

SC5 sc7 sc8

TINA DPE

Figure 2.12: Model of TINA Service Components

In [Kihl et al., 1997, 1999] and [Widell, Kihl et al., 1999], the authors consider a model of a
set of TINA processing nodes with each node hosting a set of communicating TINA Service
Components (SCs). The DPE below the SC layer provides communication and location
transparency between SCs. Thus the same SCs can be placed on several nodes. However, SCs
are not permitted to migrate between nodes. Due to the multiple instances of a SC on different
nodes, it is feasible to apply load-balancing algorithms in the TINA network to improve the
throughput and delay during heavy traffic. If a particular node suffers from heavy traffic, the
other nodes can relieve the situation by sending traffic elsewhere in accordance with some

load balancing decision. Five different load-balancing algorithms are investigated in their



papers These algonthms use different load detection metrics at each node to decide a course
of action, with measurements being evaluated and decisions made at the end of discrete

control intervals The algonthms proposed are

Random A SC instance 1s chosen randomly and fairly from the set of nodes hosting that

particular SC type
Shortest Queue The SC nstance 1s chosen from the node with the shortest processor queue

Acceptance Probabiities Two metrnics are used for each node N, (1), the number of

messages sent to node 7 and N, (7), the number of signals sent to node 7 that have been

¢

rejected The estimated acceptance probability of node 7 1s then given as

A(I) = (Ntat (1) - Nre) (z))/Ntot (1)

Acceptance probabilities are calculated for each node and an SC instance s then chosen on

node 7 with probability

P@)= A(z)/ Z A(r)  where Vs the set of nodes that hosts the particular SC

VeV

Load Status Values Each node uses a metnc L(1) which denotes Joad status of node 1 L(1) 1s
decreased by one when there are any messages rejected on node 7, by the end of a control
interval, otherwise 1t 1s increased by one An SC mstance 1s chosen on node 1 with the
probability

P@)= L(z)/ Z L@ where V 1s the set of nodes that hosts the particular SC

VeV

Ant Based Special objects, ants, on all nodes make quenes to surrounding nodes at random
intervals The round tnp times for the quenies for each node 1 are collected and a
corresponding weighing W(i) calculated W(1) 1s derived from the reciprocal of the round trip
times and taken as a measure of load That 1s, the assumption 1s made that the load on a target
node 1s versely proportional to the ant round trip time for that node The routing probability
for node 1 1s then calculated as

PG) = W(z)/ D W() where Vs the set of nodes that hosts the particular SC

VieV

The authors investigate the performance of these algonthms 1n a simulation environment The
simulation model consists of 10 processing nodes hosting 5 different SCs Communication
pattemns between SCs are based on a simple TINA service representing the equivatent of an

ordinary telephone call Execution times of SCs are chosen more or less arbitranly DPE



costs, for SCs communicating across the network, are accounted for by multiplying the SCs’
execution ttmes by 5 (again an arbitranly chosen value) Transmission times in the network
are modelled as extra execution time 1n the sending and receiving node New arnvals to the
network are modelled as Poisson streams and evenly distnbuted amongst object instances
representing the system users Each node 1s modelled as a single server system with infinite
First In First Out (FIFO) job queues They investigate a low traffic and a high traffic scenano
Two different SC allocations in the network are examined The first, balanced, has SCs
distnibuted between their hosts 1n an even manner The second, focused, has a majonty of SCs
concentrated on a few nodes Their results show that for all algonthms high load in the
Jfocused scenario performs worst 1n terms of throughput with Shortest Queue and Load Status

performing better than the others 1n this scenario

The authors also make the distinction between internal and external performance controls in
TINA networks Internal Overload Conirol has the objective of protecting each node
individually 1n the network from overload External Overload Control has the objective of
optimusing the overall network performance When an overload condition 1s detected within
the network, new requests are rejected at the ingress point to the network That 1s, service set-

up messages are rejected before they can enter an overloaded network

The above load control schemes may be categonised as internal overload controls With
extemnal overload control 1n mind, Kihl ef a/ [1998] denived a simple control that rejects new
calls at the ingress point to the network when rejections are detected internally Also, further
to their previous observations on the cniticality of proper assignment of SCs to network nodes,
they denve a Mixed Binary Integer programming problem and apply 1t to finding the optimal
distribution of computational objects in a TINA network The objective 1s to maximise the

overall network throughput whilst mamtaining processor load at or below a given level

A network of N fully connected nodes 1s considered There are M Computational Object (CO)
types, all of which are required to execute a single service The arrival rate of new service
requests to the network, A4, 1s to be maximised, with the constraint that load on each node
must remain below a level of p, The binary decision vanable y,,, 1s defined such that 1t 1s
equal to one 1if object type m 1s located on node » and 1s zero otherwise Objects may be
duplicated across any number of nodes and the total count of an object’s copies in the

network 1s given as
N
by=2, Y

which gives one of the problem constraints It 1s assumed that an object has an associated

processing load of x,, during execution of a service session and 1t 1s also assumed that load 1s
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shared equally among all copies of a component, 1¢ the load caused by component m on a

node 1s equal to A x,, /b,, This gives the processing constraint

]::]ymn xm/bmspt'T whereT=l//1
The objective function 1s then to maximise 7, the system throughput The resulting solution
values of the decision vanables y,, give the placement of COs in the network It is only

when y,.. 1s equal to one that a copy of CO type m 1s placed on node »

2531 Comments on TINA Performance Approaches

We see considerable commonality between interests displayed in work done on TINA
performance and our focus on performance of inter-working between Intelligent Networks

and distnibuted service platforms We see the areas of common interests as

(t) Internal Performance Control In this thesis, we base our model of a distributed service
platform on TINA computational objects Thus the objectives of internal load controls in our
scenano are akin to those in TINA However, we note that the simple algonthms investigated
by Kihl et a/ aim to protect individual nodes and are not globally optimal There 1s no direct
load detection metnic considered by the control, rather 1t 1s estimated indirectly only from
locally available knowledge (with the exception of the queue length algorithm) Of course,
this method has an advantage 1n that no load status related traffic 1s required 1n the network
(except 1n the case of the ant based strategy, which 1s deemed to be very small in terms of
traffic volumes) However, this will tend to make the controls less effective as the controller
only has an approximate estimate of the load situation n the network on which to base
decisions We propose that a globally optimal strategy with a more direct control over

network performance parameters would be desirable

(1) External Performance Control The need for an external control for TINA networks has
also been recognised and Kihl [1998] has shown the benefits in terms of network throughput
However, as we have stated earlier, 1t 1s desirable that the internal performance controls and
external performance controls (at the gateway in our case) should be integrated and co-
ordinated 1n an optimal way to provide the most benefit to the service user and network

operator TINA performance work has as yet not taken this approach

(in) Placement of Computational Objects As investigated by Kihl et al , objects need correct
assignment to network processors i order to guarantee high network throughputs However,
we note that the model presented in [Kihl, 1998] does not account for the cost of remote
communications, which 1s a major performance factor in middleware systems Also, the

model assumes that all component copies process the same amount of requests This
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assumption restricts possible solutions considered and, in general, will not give an optimal
solution. Also other aspects such as differentiation between service types, and thence fairness
to user types and profit optimality, have not been considered. We contend that the
optimisation model should include these aspects as they have been of considerable

importance in Intelligent Network load control ([Jennings, 1999] and [Lodge, 2000]).

In general we subscribe to these approaches for TINA performance, namely the importance of
optimal component placement and of internal and external controls, however, we believe that
better solutions are required, based on the following premise. If load can be balanced
optimally internally, then rejection of messages should only be necessary at the ingress points
to the network and not internally. This assumes that delays may be kept at low enough values
so that users do not abort service sessions and that users do not abort for other (non delay
related) reasons. Further, if an optimised external control operates to only reject the initial
service setup requests at the ingress points, there will be no ‘wastage’ due to partially
completed service sessions being prematurely ended (due to message rejection by the external
control). The internal and external controls must also be optimally co-ordinated so that the
external control functions to reliably maintain the loading in the network below some given

threshold.

Optimisation of distributed software has been much researched in the wider field of

distributed systems performance. To progress our investigations we now review this area.

2.6. Distributed Systems Performance

There is already a large volume of research in the performance of general distributed systems,
much of which is also relevant to distributed telecommunication service networks. We review
the literature here and examine issues relating to the telecommunication services domain and

in particular identify the salient issues relating to work undertaken in this thesis.

2.6.1. Introduction to Performance Models of Distributed Systems

Generally, Distributed Computing Systems are complex and display a range of properties
associated with parallel processing, that are not associated with sequential processing. This
makes control and analysis of their performance more difficult. Unlike sequential processing
systems, distributed systems pose the problems of design of the parallel algorithm for the
application, partitioning of the application into tasks, co-ordinating communication and
synchronisation, and scheduling of the tasks onto the machines. Given these complexities,
achieving performance improvements or optimisations in such systems, by controlling system
design and execution, is a difficult problem. To formulate useful models that are also

tractable, we need to capture the salient features of the overall system whilst assuming certain



levels of abstraction in terms of the constituent components and the behaviours of the system.
Here we discuss these components and behaviours along with the simplifying assumptions

generally made in modelling.

In a distributed system model, the execution system is assumed to be a network of processing
nodes each with its own local memory unit so that processing nodes do not share memory and
communication relies solely on message-passing over a network. The main elements and
behaviours of the general systems model, and how they may impact on overall distributed

system performance, are:

Processing Nodes: A processing node is a collection of physical devices including CPUs,
buses, memory units, storage devices and network interface devices. Processing node
performance will have an obvious impact on overall system performance. In particular the
number, structure and speeds of processors on each processing node, amount of available
memory, OS operation and general machine architecture will impact on the effective
processing power available to a distributed application. For the purposes of constructing a
manageable distributed systems models, the details of the interaction of these internal
physical devices are normally ignored. Usually of primary concern in modelling are the
overall processing speeds of processing nodes and the behaviour of message queues at the

nodes.

The processor speed determines the times required to execute modules of a parallel program
and ultimately impacts on the overall system response time and throughput. The probability
distribution of this processor service rate may be considered in the model or simply the mean

service rate may be considered.

How message queues behave will also impact on performance. It is normally assumed that
messages arriving for processing at a node may be added to a buffer if the processor is busy
serving another message and that queued messages are then served according to some strict
discipline, such as first in first out (FIFO). As buffers consume system memory, there may be
a limit set in the model on the number of messages in the buffer or on the total memory
consumed by queued messages. It can be appreciated that the average and maximum length of

queues and the queuing disciplines impact on overall system performance.

The behaviour of each processing node in the system may be considered to be identical in
terms of performance and capabilities (a homogeneous system) or nodes may be modelled as

having differing performance levels and capabilities (a heterogeneous system).

The Network: Processing nodes are connected by an interconnection network. Performance
of the network is dependent on transmission times or bandwidth, physical structure and

topology, routing policies and data and network protocol behaviours. As distributed
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applications need to communicate across a network during their execution, the performance
properties of the network will be a determining factor in overall system performance The
details of the network are not generally considered 1n the broader distnbuted systems model
Normally the network behaviour 1s considered in simple terms, for example, a constant time
delay for message transmission over a network hop 1s assumed to be incurred The network
topology may also be considered in determining the number of hops, and thus the overall

transmission time, for messages between processing nodes

Remote Procedure Calls and Middleware A remote procedure call (RPC) mechanism
provides encoding and decoding of messages between processes executing on different
processing nodes In a middleware environment, such as CORBA, invocation of an RPC 1s
provided by means of local procedure calls on a set of srub processes on the local machine
On the remote machine a similar set of processes receives and decodes RPC messages, which
arc then presented to an application as a local procedure call From the applications
perspective the call resembles an ordinary local procedure call, however, some additional
processing on both the local and remote machines 1s incurred due to encoding and decoding
of messages for transport over the network This additional processing can cause significant
performance degradation n the system when a large number of messages are passed during

application execution

The behaviour of RPCs is influenced by the particular middleware design Client-server
systems, such as CORBA, exhibit certain behaviours depending on modes of operation
selected by the application designer Blocking type calls halt execution of the client process
until a return 1s recerved from the server Non-blocking calls do not wait for a server response
before resuming execution These resource contention behaviours may or may not have a
large 1impact on overall performance depending on the operation of the internal parallelisms at
a processing node For example, threading all blocking client calls effectively renders the
calls as non-blocking, as duplicate chent threads may execute 1n parallel to blocked threads
Additionally, server processes may be multi-threaded so that blocking calls can be executed

1n parallel at the server Of course, threads have overheads, which must also be considered

The exact client-server behaviour will depend on the particular middleware product and OS
details and detailed behaviours may or may not be included i a performance model It s
often assumed, for example, that client-server calls may be modelled as purely non-blocking,
as high performance systems normally try to avoid blocking behaviour, and thus the
behaviour can be assumed to be equivalent to a sitmple message passing scheme with queuing
of messages at the server-side Other research has included client-server paradigms n detailed

analytic models, such as Layered Queuing Nctwork modelling, discussed in §3 19
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The Distributed Apphcation A distnbuted application 1s a collection of units of work which
are required to be executed on processors 1n the network 1n order to perform some overall
function Certain work units of the same application may be executed on different processing
nodes 1n parallel 1n order to gain an overall performance advantage The way n which such
an application 1s decomposed nto work units, how their execution 1s shared amongst
processing nodes and the degree of communication between work units during application
execution are central issues for distributed systems performance Regarding these units of
work, we further qualify their assumed behaviour and make a distinction between jobs, tasks

and distributed objects

Jobs Jobs are indivisible units of work, that 1s, their execution cannot be divided among
processors Different jobs are considered independent of each other, that 1s, there are no
structured execution relationships between them other than possible sharing of processing
time and processor queues For example, a simple distributed application execution may be
modelled by a collection of such jobs were all jobs must be executed but 1n no particular order
and with no data sharing required between jobs A collection of jobs may also model a
number of different independent applications executing in parallel on the same set of

processing nodes

Tasks Like jobs, tasks are units of work that are atomic 1n that their execution may not be
pre-empted nor distributed across processing nodes They normally model small units of logic
that perform operations when executed 1n the system, for example a task may represent the
processing required on receipt of a remote procedure call Unlike jobs, sets of tasks relating to
the same applhication normally have a data and precedence dependency 1 ¢ the tasks may need
to share data to complete execution of a distributed application and may need to execute 1n a
particular order In practice sharing of data and execution control 1s effected by means of
RPCs between processes executing different tasks A distributed application may be modelled
as a collection of interacting tasks It 1s normally assumed that the communication pattern and
data dependencies between tasks durning execution of an application are well defined (for

example by means of class diagrams and related Message Sequence Charts (MSCs))

Distributed Objects In a middleware architecture, such as CORBA, distnibuted objects are
defined 1n terms of an interface which describes a collection of method calls on the object
Effectively this notion of a distnibuted object, from a performance modelling point of view,
implies a collection of related tasks (the object’s method calls) which are not distributable
(1e must all reside at the node where the distributed object 1s instantiated) Distributed
objects of an application are normally interdependent 1n that an object’s tasks are executed in

relation to the execution of the tasks of other distnbuted objects
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Partitioning and Granularity of Tasks: How an application is partitioned into distributable
tasks will have a large impact on achievable system performance. Generally speaking,
partitioning into many fine-grained tasks will increase the ability to take advantage of
execution concurrency across the network. However, this advantage may be offset by
increased communication requirements between tasks. Partitioning into large sized tasks may
reduce communication requirements but also reduces flexibility in task distribution and
parallelism. Given a particular partition of an application, the actual system performance

realised is determined by the distributed scheduling scheme.

Distributed Scheduling: Scheduling is concerned with where and/or when tasks or jobs
should be executed on network nodes. Scheduling is an important issue as a poorly designed
schedule causes inefficient use of processing and memory resources and introduces software
and hardware bottlenecks. Subsequently the system performance can deteriorate. Scheduling
is a large class of complex problems that encompasses related sub-problems such as load

balancing, load sharing and task and job allocation.

General Task Scheduling: This is the ordering and allocation of tasks, communication and
data to processors. The schedule normally has an application centric performance objective

such as minimising application execution time and is performed once at design time.

Mapping or Task Allocation: Assignment of tasks to processors to gain a performance
advantage without regard for order of execution amongst tasks. This is a sub-problem of
general task scheduling but is normally driven by a system centric performance measure such

as minimal processor utilisation, minimal communications, or maximal system throughput.

Load Sharing: Load sharing is similar to task allocation but normally involves assigning
jobs, rather that inter-dependent tasks, to processors at run-time with the aim of achieving

some dynamic performance goals, such as equalising queue lengths in the system.

Overload Control: The goal of overload control is to prevent system performance from
degrading in an uncontrolled fashion under heavy load. As a system’s load increases towards
saturation, response times typically grow very large. Under such conditions, it is often
desirable to shed load in some controlled manner rather than cause all users to experience
unacceptable response times. Admission Control is a specific form of overload control where
a proportion of traffic is rejected at the entry point of the system when some performance
threshold is exceeded. Traditionally, overload control is a telecoms domain concept employed
to guarantee a certain level of Quality of Service (QoS) to users but it has rarely been seen
implemented in generic distributed systems, However, we consider it an important factor in
providing high performance distributed systems for telecom service execution and include it

here as a desirable distributed systems behaviour.



Application Users and Workload Characteristics Application users may be considered as
part of the distnibuted system behaviour as they generate demand for application execution
and may mteract with the application duning 1ts execution Service requests may be in the
form of simple independent jobs or require a set of related tasks to be executed There may be
a number of different application types in the system, which require different job types or task
sets to be executed Users that execute different jobs or task sets are referred to as belonging

to different customer classes

The stochastics of service request armvals and user interaction perniods can impact on
distributed application performance As mean service request arrival rates increase it 1s
expected that average service times 1n the system will increase due to increased queue lengths
in the system Generally, service request arnvals with large inter-arnval vanance or amvals
that are bursty 1n nature will produce longer delays in the system Often simple stochastic
models are assumed when modelling random externally driven events such as arnvals For
example, the Poisson process has been used extensively to model service requests from large

populations of independent users

2.6 2 Performance Metrics for Distributed Systems

Performance metnics for distnbuted systems are required 1n order to assess system
performance and to provide goals for performance optimisation measures, such as scheduling

There are several :n common use

e Speed Up This 1s a measure of parallelism efficiency and may be taken as the ratios of
the execution times 1n a single processor system and 1n a system of multiple similar
processing nodes This gives an indication of how a network scales as the number of
processors 1s increased Ideally, speed up should increase in proportion to increase in the

number of processing nodes 1n a distnbuted system

o Communication to Computation Ratio of a parallel program 1s defined as the ratio of
the average communication time and average processing time for an application This 1s
simular to speed up and indicates the efficiency of a given application distnbution scheme

e Processor Load The fraction of time a processor 1s busy processing tasks Generally of
most concern 1n distributed systems is a load sharing metric with gives a measure of load
imbalance across processors This may be stated simply as the difference of maximum
and mmimum loads This 1s a useful measure as often load imbalances are more an

indrcator of expected performance than the average system load

e Make-Span Ths 1s the total application run time 1n the system It does not account for
queuing delays but does include time that tasks are blocked waiting for other tasks to
execute If there 1s no blocking involved, then make-span 1s simply computed as the total

execution time of all application tasks
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e Throughput We define throughput as the number of application sessions, completed per
second When there are no losses in the network, due to lost messages during congestion
or overload conditions, the throughput will be equal to the offered traffic intensity This
metnc 1s most useful when assessed 1n conjunction with system load or system delay
Often of interest 1s the throughput achievable for a given maximum load or delay

¢ Round Trnip Delay This measure gives the average time for completion of an application
session It thus includes all task processing times and waiting times due to queuing of
messages 1n the system It 1s an important metric as 1t determines the Quahty of Service

that may be offered to users in terms of responsiveness of a system

* Queue Length Queue lengths in the system are sometimes used as an indirect indication
of load and delay 1n a system

263 Optimising Distributed Systems Performance

The performance of a distributed system 1s largely determined by the available resources and
technologies (processing nodes, network nfrastructure, operating systems, middleware) and
on the design and deployment of the distnbuted software and data Given that the available
physical resources and technologies are generally fixed due to cost or technical constraints,
the distnibuted application design, particularly 1n relation to optimisation of partitioning and
scheduling, offers the main opportunity for improving the system’s performance Even when
the amount of physical resources are not constramned, it 1s largely the efficiency of the
partitioning and scheduling schemes that determine whether or not a performance gamn
commensurate to expenditure on resources can be achieved Indeed, until an application 1s
partitioned and scheduled onto a network, 1t may be difficult to predict how much processing

power and network bandwidth 1s required to achieve a required system performance

Partitoning of applications for distnbution has a strong effect on possible system
performance Partitioning may be optimised by deciding the appropnate level of granulanty
for a distributed application The granulanty at which an application 1s divisible impacts on
the potential for improving the performance of its distribution as the number of potential
distnbutions 1s inversely related to the distnbution granulanty If the number of distnibutions
1s msufficient, none may offer good performance However, 1f the granulanty 1s too small, the
tasks of partitioning an application and realising the distnibution may become prohibitively
expensive Optimised partitioning schemes based on minimising communications costs have
been investigated 1n Purao ef al [2002] Systems have been developed, for example COIGN
[Hunt & Scott, 1999], which automatically partition applications at compile-time, but use of

such methods 1s not common practice

Although partitioning and scheduling impact on each other and thus should 1deally be

considered together, this 1s not generally the case and scheduling i1s nommally treated
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separately having first decided on an appropnate partition of the application Indeed, in the
case of telecom service applications, systems are generally based on prescnibed sets of service
components (for example TINA ODL interfaces) which may restrict or predetermine
application partittoning 1nto distributable objects For these reasons, in this thesis we solely
focus on optimisation of scheduling of distnbuted systems and do not consider partitioning

The next section reviews 1n detail the area of distnbuted system scheduling

2.6.4. Scheduling 1n Distributed Systems

This thesis 1s primanly concerned with 1ssues relating to task allocation and load sharing
which are problem areas in the wider field of scheduling We give a brief overview of the
general area and then focus on scheduling 1n distnbuted systems, our main concern The
computational complexity of scheduling problem solutions 1s an important practical 1ssue and

15 also considered here

There 1s a large body of hiterature relating to scheduling problems, extending over a long
period of time and applying to many application areas Unsurpnisingly, the terminology 1n the
literature 1s vanable A number of umfied taxonomies for scheduling algorithms have been
proposed (Casavant & Kuhl [1988], Wang & Mormns [1985], amongst others) but there still
remains an overall vanance m termmology We do not try to align the differences here, but

have chosen a terminology sufficient for our discussions

The general scheduling problem may be described as that of optimally assigning a set of tasks
to a set of resources given the execution costs of tasks and the execution precedence
dependencies between tasks The objective of a solution 1s normally a performance related
goal, such as that of mimmising the average time required to process tasks There are two
aspects to scheduling allocation and sequencing Allocation may be considered as answering
the question Where should tasks be executed? Sequencing answers When should tasks be
processed 1n relation to the processing of other tasks Both allocation and sequencing may be

unified in the same scheduling problem, or they may be considered separately

In computer systems, scheduling problems can be broadly categonsed according to the nature
of the processing system being scheduled A distinction can be made between scheduling of a
single processor and scheduling of multi-processor and distributed processing systems On a
single processor, scheduling 1s concemed with the assignment of processor time-slices to
tasks (processes) which are waiting to execute This 1s refereed to as local scheduling In
contrast, multi-processor and distributed systems are concerned with global scheduling which
decides the allocation of entire tasks to different processors n order to achieve performance
goals for the system as a whole Global scheduling thus considers the course grain properties

of the system (e g processor speeds and network topology) and the properties of the tasks
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bemg scheduled (¢g mean processing time required for each task and inter-task
communication costs) Global and local scheduling concems are normally considered to be

separable and their interaction 1s generally not considered

There are also differences 1n approach between global scheduling in multi-processor and n
distributed systems and these can be attributed to the nature of the coupling between
processors m the system Multi-processor systems are generally considered to be tightly
coupled as they have an efficient communications mechamsm, such as a shared memory
Distributed systems provide communication between processing nodes via message-passing
over a network and are considered loosely coupled Tightly coupled systems can synchronise
the parallel execution of tasks on their processors and scheduling normally considers task
execution sequencing and timing, as well as allocation, to gain further performance
advantages Loosely coupled systems cannot accurately or practically synchronise the timing
of tasks due to vanable communications latencies introduced by the network and the problem

of scheduling 1s generally restricted to that of allocation alone

The distinctions, ansing from the nature of multi-processor and distributed systems, divide
global scheduling into two quite disparate areas of study that of allocation with sequencing
(often refereed to simply as scheduling) and that of allocation alone Each area has its own set
of related performance goals, system assumptions and solution methodologies There 1s a
large body of research pertaining to allocation with sequencing for multi-processors and a
hiterature review may be found in [Baumgartner & Wah, 1990] As we are prnimanly
concemned with performance of distributed systems, and not with tightly coupled systems, we

direct our attention towards problems of allocation alone

2641 Task Allocation

Task allocation 1s simply the choice of a mapping of a set of tasks to a set of processors 50 as
to achieve some pre-defined performance goal This goal 1s usually represented as some
objective function that may include a combination of several cntena such as equal load
shanng between processors, maximisation of the degree of parallelism, mimmisation of the
amount of communications between processors, etc Several different aspects of the
distributed system may be represented in the problem task execution times, amount of inter-
task communication, topology of communications network, processor capacities, allowable
processor load skew, etc In task allocation problems, these parameters are considered to be
determimistic and known a priort This type of scheduling 1s thus termed determimistic and
static That 1s, the schedule 1s determined at design-time and only considers expected values
for task processing times and arnval rates to the system We next describe the static task

allocation problem in detail and review solution methods from the literature
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Static Task Allocation

To give an nsight into the static task allocation problem, we consider a representation of a
genenc distributed system depicted 1n Figure 2 13 The key elements 1n the system are a set of
tasks to be processed, a set of processors which communicate over a network and a scheduler
which allocates tasks to processors The tasks are considered to be dependent, in that they act
together to perform some overall service and, 1n order to co-ordinate their execution, they
must communicate with each other This relationship 1s usually expressed as an undirected
connected graph where nodes represent tasks and edges represent communication
dependencies between them Note that the precedence of execution of tasks 1s not considered

in the task allocatton problem

Schedule

ciE

€13+t Ca

Figure 2 13 A Task Allocation Schedule Ar undirected task graph (left) specifies execution times

JSor tasks and remote communications costs for task patrs The scheduler assigns tasks to processors

(right)

It 1s assumed 1n the model that tasks allocated to the same processor do not incur any inter-
task communications costs When tasks are assigned to different processors, substantial costs,
associated with remote procedure call overhead and network latency, are incurred The
system model may also stipulate that each task has a different execution time on each
processor and that there are limits on processing and link capacities The goal of the scheduler
1s then to make an allocation of tasks to processors such that some performance measure
(denved from the communications costs and execution costs in the system) 1s optimised As
the scheduler 1s assumed to have knowledge of task execution times and communications

costs a priort, this problem 1s described as static task allocation

There can be a number of competing objectives that will affect overall performance of the
system Intuitively, to mimimise the communications costs in the network, all tasks could be
allocated to one processor so that there 1s no inter-processor communication We could

further stipulate that the processor that gives the lowest total execution time over all tasks
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should be chosen Of course, this approach neglects the performance advantages of
processing tasks in parallel on different processors so that overall throughput can be
increased However, allocating tasks to different processors will also increase
communications costs that will in tumn cause some decrease 1n throughput Other constraints,
such as limited link capacities and balancing of load, may also need to be included in the
problem The scheduling decision thus becomes a balancing act between a number of

competing goals

Several approaches have been taken to formulating and solving static task allocation
problems The main approaches may be categonsed as graph theoretic, mathematical
programming, heuristics and approximation approaches, although there 1s some crossover
between these categories in many of the solutions proposed n the literature Given that
allocation problems are generally NP-Hard combmnatonal optimisation problems
[Papadimitriou & Steightz, 1982] and thus are unlikely to have polynomial-time solutions,
algonthms often aim for sub-optimal, but efficient, solutions when the problem size 1s large
Approximation approaches may be used to achieve fast sub-optimal solution methods with
known solution accuracy Heunstic approaches can also provide fast sub-optimal algonthms
but generally do not give any guarantees on solutton accuracy Graph theoretic and
mathematical programming approaches can also be used 1n combination with heuristics or
approximation For problems of sufficiently small size, exact solution methods can achieve an
optimal solution n reasonable (low order exponential) ime Both exact graph theoretic and
mathematical programming approaches have been employed 1n optimal solution methods We

review the varnious approaches below

Graph Theoretic Approaches

The birth of the graph theoretic approach to task allocation may be attributed to Stone ef al ,
[1977] who use the max flow-min cut theorem from graph theory [Diestel, 1997] to search for
an optimal allocation of tasks to processors Stone’s objective for the problem is to minimise

the sum of execution and communications costs

An undirected connected graph 1s constructed where nodes represent both tasks and
processors (Figure 2 14) An edge between two tasks 1s weighted with the corresponding
inter-task communication cost For instance, this cost may be taken as the volume of data
exchanged between two tasks dunng execution of the task graph An edge between a task and
a processor 1s weighted with the execution time of the task on the other processor A potential
assignment of tasks to processors 1s given by a cut of the graph where the cut creates two
disjoint subsets with P1 and P2 in different subsets The sum of the edge weights crossing the
cut gives the total execution and communications costs for the allocation Thus the problem 1s

to find the minimum cost cut This may be found 1n polynomial time for two processors by
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application of the max-flow min-cut theorem and the Ford-Fulkerson max-flow algonthm
(see [Papadimitriou & Steightz, 1982]) This formulation may be extended to an n-processor
system However, Stone notes that the solution mvolves application of an n-dimensional min-

cut algonthm, which becomes computationally intractable for even moderately large n

*
%

Graph Cut

Figure 2 14 Stone’s Graph Cutting Method

Shen and Tsa1 [1985] propose a more efficient graph matching approach to the n-processor
problem They formulate the problem as two separate graphs representing the set of tasks and
the set of processors 1n the system Sets of weights on the task graph nodes represent task
execution times at each processor Edge weights 1n the task graph represent communications
costs between tasks In the processor graph, edges represent connectivity between processors

Each graph match then corresponds to a possible task allocation An A* Search method
[Nilson, 1971] 1s used to reduce the possible number of matchings considered and an optimal
solution 1s found with relative efficiency up to about n=20 Lo [1988] proposes a sub-optimal
efficient heunstic method for Stone’s n-processor problem A “grab” phase first produces a
partial optimal assignment by employing a mapping from the n-processor system to a set of
two-processor systems to which Stone's solution method 1s applied Two further sub-optimal
‘greedy’ phases assign the remaining tasks with the goal of minimising communications

Ramakrishnan et al , [1993] solve the problem using a combination of A* Search and Lo’s
“grab” method to achieve an optimal solution method with better efficiency than Shen and
Tsar’s algorithm Kfil & Ahmad [1998] also propose a similar A* Search graph matching
algorithm which 1s surtable for execution on a parallel machine and report the added benefit

of reduction of the algonthm’s memory requirements

Mathematical Programming Approaches

Several mathematical programming approaches have also been proposed to finding an

optimal solution to the task allocation problem (Refer to §3 3 for a review of mathematical
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programming) The classical formulation 1s proposed by Chu ef a/ [1980] who uses a 0-1
programming approach The set of m tasks 1s to be assigned to » processors Processing costs
are defined as the matnx E=fe, }, 1=1, m, j=I, n where ¢, represents the execution cost of
task 7 on processor ; Communication costs are defined by the matrix C={c,}, k=1 m,
where ¢, represents the communication cost incurred when task 7 and task & are assigned to
different processors Communication cost 1s zero if tasks are assigned to the same processor
The binary decision vanable x;, 1s defined and 1s equal to one when task 7 1s assigned to
processor 7 and zero otherwise The processing and link capacities are not constrained As
with Stone’s problem, the objective 1s to mimimise execution and communications costs Total

execution cost 1s given as

m n

2200,

1= =l

And the total communication cost 1s given as

m=1 n m m=1 m n m=-1'n m
202 YRESATHID 30 A0 0 5 32 SR
j=1

1=l j=1 k=4l 1=] k=14l =1 y=1 k=141

Since the sum 1n parentheses 1s one and the summation of the remaining ¢, 1s a constant, the
first group of terms may be removed from the objective function Thus adding execution and

communication costs the minimisation problem 1s

n m

m n m=-1
mimise 33, 5, -3 > ez

1=1 j=1 1=1 y=1 k=141

Subject to the constraints

>x,, =1 Vi=l, ,m
=l

which stipulate that each module be assigned to exactly one processor Chu notes that this
general problem has the form of a quadratic binary programming problem which may be
lineansed, to a binary integer linear program (BILP), by a change of vaniable and addition of
appropriate constraints The BILP may then be solved with standard techniques for integer

linear programming such as a branch and bound method

Billionet er al [1992] consider the same problem as Chu and propose a more efficient
solution technique They consider the quadratic form of the cost function (as above) and note

that without constraints, and by relaxing the decision vanables to be real, the problem 1s
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efficiently solvable by considering 1t as a max-flow problem in a bipartite graph (see
[Papadimitriou & Steiglitz, 1982]) The authors then construct a branch and bound method to
solve the original problem, which works on a Lagrangian relaxation of the onginal
constraints They report an algonthm efficient enough for large problems (20 processors and
50 tasks) Recently, Lewis et al [2004] have shown how the same problem may be re-
formulated as an unconstrained quadratic binary program (UQP) which has an exact solution

method with even better computational properties

Bastarrica ef al [1998] consider a stmilar problem where the objective 1s to mimimise the
overall communication cost That 1s, only the quadratic part of Chu’s objective function 1s
included They add storage and link constraints to the problem Each task 1s assumed to
consume a given amount of storage on a node and the total storage on each node is
constrained The total amount of communications between nodes 1s limited to a given link
bandwidth value where the network is assumed to be fully connected so that any two nodes
communicate via a single link Simularly to Chu, the authors lineanse the objective function to
form a BILP They employ a genenc branch and bound integer linear program solver and
discuss the complexity of an exact solution to their problem They note that current branch
and bound solvers can run i near linear time n the number of integer vaniables allowing
problems with over 1000 integer vanables to be solved routinely under current (circa 1998)

computing power

Heuristic Approaches

Most graph theoretic and mathematical programming approaches state the problem 1n such a
way that it may be solved exactly, provided that the execution time of the algorithm 1s
reasonable With larger problems in mind, researchers have proposed sub-optimal, efficient

heunstic solutions to the task allocation problem

Efe [1982] proposes a heurnistic algonthm whereby tasks are ‘clustered’ together n such a
way that communication cost between the resulting clusters 1s mmmised Whole clusters are
then assigned to processors in an iterative manner in order to achieve load balance between
processors Chu {1980] has proposed a similar approach whereby tasks are clustered until the
number of clusters 1s equal to the number of processors whilst attempting to cluster tasks with
heaviest communication together Tasks are then moved from processor to processor so that a
load balance 1s achieved Senar et al [1998] propose an approach whereby task clustering 1s
first used to contract the task graph The second stage takes the contracted graph and tries to
successfully match 1t to the network of processors The objective 1s to minimuse both
processing and communications costs Bowen ef al [1992] propose a hierarchical clustenng
and allocation method that aims for improvement on overall communication cost whilst

satisfying upper and lower bounds on processor usage Sadayappen ef al [1990] have also

43



proposed a clustering type solution based on the efficient Kermighan-Lin graph bisection

heuristic [Kermighan & Lin, 1973].

More general random heuristic techniques have also been applied to this area. Simulated
annealing has been applied to the task allocation problem by a number of researchers. Kazuo
[2001] notes that although simulated annealing can perform effectively and avoids local
optima traps in static task allocation problems, the standard method can take a long time to
converge to a solution. They construct a standard simulated annealing model and then modify
it by incorporating heuristics based on achieving load balancing and reduction of inter-
processor communications. This method shows a speed up and they show that their algorithm
has a solution close in accuracy to the standard simulated annealing method. Lee & Bic
[1989] present evidence that, with a regular network topology, there are no significant local
minima in the space of possible solutions. Hence, a faster form of simulated annealing called
‘quenching’ becomes appropriate for the task allocation problem. Quenching performs a rapid
cooling schedule, rather than the normal slow cooling, which gives faster convergence to a

minimum.

Genetic algorithms are another general random method that has been applied to task
allocation. The idea of a genetic algorithm (GA) is to follow an evolution process based on
operators such as mutation, inversion, selection and crossover. These operators are applied to
find successively better local minima. The procedure continues evolving until it remains
trapped in a local minimum. Singh & Youssef [1996] have formulating the task allocation
problem in GA terms, and then evaluated various genetic algorithm parameters for obtaining
best performance. Talbi & Muntean [1991] have proposed a GA that is suitable for
implementation as a parallel program. They aim to solve for a task allocation that minimises a
weighted sum of communication costs and the variance of load imbalance. Having optimised
their algorithm parameters, they report good solution accuracy and performance when
compared to hill climbing and simulated annealing. Park [1997] has applied a genetic mean-
field annealing algorithm to the problem, which is a hybrid of GA and mean field annealing.
They show that the hybrid algorithm combines the benefit of both methods and gives

improved performance.

Other heuristic algorithms have been applied to the problem. Elsadek & Wells [1999]
construct a heuristics model which aims to minimise inter-process communication time and
balance processing load. They construct a greedy, locally optimised algorithm and also
consider a randomised algorithm, which achieves more optimal solutions. Aguilar & Gelenbe
[1997] propose a random neural network model for solving the problem and show comparable

performance to standard genetic and simulated annealing algorithms.



In summary, the main difference in approach to solving static task allocation problems is in
whether an exact or inexact (sub-optimal or approximate) solution is achieved. Although the
problem is NP-hard, relatively efficient exact solution methods for reasonably large problems
have been demonstrated using binary integer linear programming with branch and bound
solution methods. Large scale problems have been tackled using heuristic approaches based
on graph theoretic methods with heuristics, clustering heuristics, simulated annealing, genetic
algorithms, neural networks and greedy algorithms. Exact graph theoretic methods (those that
do not use heuristics) have not yielded efficient solutions. Apart from the solution methods
employed, the approaches in the literature differ in terms of their objectives. Minimum

communications costs, load balance and maximum loading have mainly been considered.

2.6.4.2. Dynamic Task Allocation

When all of the relevant system characteristics are known at compile-time, the allocation
problems, like those discussed above, are known as static task allocation problems. In
contrast, dynamic task allocation relates to task allocation (and re-allocation) during program
execution that moves workload amongst processors in response to changes in system-state

information, such as current request volumes and current processor loading.

Note that, unlike in static task allocation, dynamic task allocation implies that the processes
executing tasks may migrate from node to node at run-time or that the same task may be
available for execution on multiple nodes simultaneously thus allowing the movement or
sharing of load. In static task allocation, each task is permanently assigned to a processing
node. These additional complexities in the model fundamentally change the nature of the
problem and make it more difficult to find optimal solutions. The majority of research
pertaining to dependent tasks (as opposed to independent jobs) has concentrated on static
allocation. Only recently has dynamic allocation been examined and then mainly in relation to
process migration strategies. This recent interest may be accounted for by the recent
proliferation of Distributed Object Systems, whose properties, such as location transparency,
more easily allow relocation of objects in a network. Optimal distributed object allocation

problems, which include the dynamics of task migration, are mentioned in §2.6.5.

2.6.4.3. Load Sharing

Load Sharing is a method of assigning jobs to processors with the aim of achieving some
performance goals such as equalising queue lengths in the system or minimising queuing
delays. This form of scheduling normally relates only to independent job models rather than
systems of communicating tasks. Load Balancing strategies are a specific form of load
sharing where the aim is to distribute the jobs in the system so that all processors perform an

equivalent amount of work. Often the two terms are used interchangeably in the literature.



Load shanng schemes may consider probabilistic models of arnvals and service times to
amve at optimal scheduling decisions, whereas task allocation normmally assumes only
average values for task exccution times From the perspective of the determimistic task
allocation model, an increase 1 the frequency of execution of a set of tasks on the system
processors will predict a linear increase 1n processor loading, for a given allocation of tasks to
processors Choosing an optimal allocation 1s thus independent of user traffic volumes On
the other hand, load sharing may consider the input traffic volume and the stochastics of the
input traffic and the execution time of tasks In this case, the system performance metnc
(nomally queuing delay or queue length) 1s non-linearly dependent on input traffic volumes,
and traffic volumes become part of the problem definition This type of stochastic problem
has been studied by a number of authors and the pertinent literature 1s reviewed below Note
that this section references some queuing theory concepts The reader 1s referred to Chapter 3

of this thesis for a review of queuing theory

Tantaw1 and Towsley [1985] consider a network of connected heterogencous processors,
which may process any of a set of jobs amving to the network All jobs are considered
identical 1n terms of their processing requirements 1 ¢ there 1s only one customer class in the
system Any processor may receive a job and may subsequently choose to process 1t or pass it
to another processor A job may only be passed off once and a communications delay 1s
assumed when this occurs They consider the response time of a job in the system as
consisting of a delay at the node due to queuing and processing and a delay due to any
communication costs If jobs are passed It 1s assumed that the mean node delay 1s a function
of the load of the node and that this function 1s increasing and convex It 1s also assumed that
the network 1s a product-form queuing network, so that they may form a simple expression
for the total mean response time of a job The goal of the load sharing strategy 1s then to find
the transfer rates of jobs between nodes that mimimises the mean response time (queuing,
communications and execution times) of a job 1n the system There are no constraints placed
on network links or processor loads They formulate and solve this problem as a non-linear,
but convex, optimisation problem The output of the optimisation gives random splitting
probabilities at each node for processing and forwarding 1n order to achieve the minimum

response time

Stmilar forms of this stochastic static job scheduling have been studied by other authors Ross
& Yao [1991] have considered an extension of this problem, where there 1s more that one job
type 1n the system each with its own independent generally distnibuted execution time The
service time distnibution may vary with the job typec and with the host processing the job
Similarly to Tantaw1 and Towsley, they also require a convex and increasing delay function in

order to achieve a solution Borst [1995] examines a similar problem accounting for different
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customer classes He formulates the problem specifically as a network of M|G|1 nodes and
finds the optimal assignment of customers to servers that minimises the mean total waiting
time for customers Wolf & Yu [2001] consider a similar problem in the form of minimising
overall response time 1n a Clustered Web Farm The web farm consists of a number of web
servers and a number of web sites, which may be duplicated and distnibuted across the
servers The web sites are computationally independent of each other and so can be
considered jobs 1n our terminology They model queuing delay, by defining a response time
function for each server This 1s an arbitrary function of overall traffic intensity at a server
which may be obtained from simulation or measurement but 1s required to be differentiable,
convex and increasing so as to achieve a tractable numencal solution method They formulate
a non-linear optimisation problem with the objective of mimimising the sum of all response
functions over all servers whilst also mamntaining server loads below a given value Thisis a
separable convex resource allocation problem that they solve using methods based on
Tantaw: and Towsley’s work Cardellimi et a/ [1999] have applied a similar method for

optimising web clients choosing between replicated hosts

Many forms of dynamic job scheduling have also been extensively discussed 1n the hterature
Generally dynamic schemes are based on relatively simple heunstics Some examples of well
known schemes are Shortest Queue - an mcoming job 1s assigned to the processor that
currently has the least number of queue messages, Least loaded - the currently least loaded
processor 1s assigned to the job Various other schemes have addressed migration of jobs
between processors and have various objectives such as minimising queue lengths,
mimmusing overall delay or balancing load Literature reviews may be found in [Bemardt et
al, 1992] and [Yu et al, 1986]

2.6 5 Component Allocation

Classic scheduling problems focus on allocation of jobs or tasks to network processors With
the more recent interest 1n Distnibuted Object Computing, scheduling mechanisms have been
extended to deal with the allocation of distnbuted software components across a network The
component model may be viewed as an extension of the task model and component allocation
schemes 1n the literature have generally been based on earlier work on task allocation,
particularly 1n relation to the graph theoretic and mathematical programming approaches We
review the literature 1n this section 1n some detail as 1t 1s directly related to work undertaken

in this thesis

For the purposes of our discussion here, we define a component as a software module that
exposes nterfaces allowing exccution of its methods remotely A componcnt may also be the

source of remote method calls on other components We assume that a component 1s atomic

47



and may not be decomposed into smaller distnbutable objects For example, a component
may represent a single CORBA object or a group of collocated CORBA objects Often 1n
component allocation problems, method calls are not represented individually 1n the model
but all communication between two components 1s amalgamated mnto a single flow or
optimisation variable which represents some aspect of the total communication volume
between two components The processing load associated with this communication flow
between two components may also be the focus of the allocation problem Usually these flow
problems may be represented as equivalent mathematical programming problems to obtain a

solution

A number of authors have tackled the component allocation problem 1n different forms The
scope of the problems differ in terms of the objective of the optimisation, the main
optimisation variable chosen, whether or not multiple customer classes are considered,
consideration of duplication of components, consideration of network topology and the

solution methods employed

A comprehensive and quite general model of the component placement problem 1s proposed
in [Anagnostou, 1998} The main focus 1s optimal placement of components in order to
minmmise communication costs in the network The problem 1s constructed as a linear
mathematical programming problem with communication flow between distnbuted
components as the main optimisation variable Their model takes into account the following

aspect of the distnbuted system

* A set of communicating components that may be duplicated arbitranly across processing

nodes

* A network of processors An arbitrary network topology 1s allowed and a cost function

associated with each network hnk 1s defined

» A set of service users of different customer classes with a set of associated demands they
create for different service types Users are assumed to be fixed at certain nodes in the
network

The model 1s composed of (1) G(V, E) a network topology graph where V1s the set of nodes
and E the set of links, (1) G(C, F) a service graph where C 1s a the set of components and F
the set of edges representing communication between them and (111) A a set of edge labels
associated with 7 which denote the traffic volume exchanged between components per unit

traffic offered by a user to the network

The graph of all possible allocations of components to nodes 1s then constructed 1 G(C, F)
where C=CxV 1s the set of all components copied to all nodes and F 1s the set of all

possible interactions between them
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A set of constraints is then required to govern the communication flows mside G(C, F) as
follows If (c,c,)e C and (¢, ¢c;)e C are two pairs of components, with A'e A and A''e A
as their associated labels, then the sum of the traffic to/from all copies of ¢; to any copy of ¢,
divided by the sum of traffic to/from all copies of c; to the same copy of ¢, should equal

22

A second set of constramnts 1s required to associate the flows 1n the network with traffic flows
from users This 1s done by equating all flows involving the initiating components with the
user demand flow Finally, the objective function 1s defined as mimimising the product of the
network flows and their corresponding distances over all possible edges, thus minimising
total communications costs The authors illustrate how multiple customer classes may be

accommodated by adding new service graphs to the formulation

It 1s noted by the author that 1t may be more reasonable to allow an inequality constraint to
associate user demand and network flows so that the solution for the network flows need not
meet all the demand from users (¢ g 1n an overload situation all user demand cannot be meet)
This would be an important modification 1if a node capacity constraint (which 1s suggested as
a possible addition) were incorporated into the model Otherwise, when the user demand
exceeds a certain level there 1s no solution satisfying both constraints However, the equality
constraint of network flows meeting user demand 1s the only constraint in the ongnal
problem which dnves the solution away for the zero vector and the author notes that the use
of the mequality constraint must be coupled with some addition to the cost function or an
additional constraint to avoid the zero solution The author suggested that a cost 1s added to
the objective which increases with the amount of unsatisfied user demand These 1ssues are
not fully addressed 1n the paper and we feel that a clearer and cleaner solution could be
devised The authors also suggest a method to add component 1nstallation costs but state that

this method would make the problem a hard combinatonial problem

Bastarnica et al [1998] also consider the problem of deploying software components in a
network so that the overall remote communications cost 1s mimmised The constraints
considered are the available storage on each node and available bandwidth on links 1n the
network It 1s assumed that each component 1s assigned to one and only one node The
network 1s assumed to be fully connected so that any two nodes communicate via a single link
and thus network routing costs are not considered Each pair of communicating components
are assumed to generate a given amount of traffic and the bandwidth of links between nodes
1s constrained to given values Each component, when mnstantiated on a node, consumes a
given amount of storage on that node The amount of storage 1s constrained on cach node
The authors formulate this problem as a mixed binary integer programming problem with the
objective of mimimising the total amount of communication 1n the network
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The authors do not give an interpretation of their ‘storage’ vanable but 1t can be seen that 1t
may directly represent memory, disk space or, maybe more usefully, processing capacity
This 1s a somewhat simpler model and more akin to a classic task allocation problem 1n that
components are not allowed to be duplicated and the model 1s not dniven by user traffic

volumes from different customer classes

Kihl ef al [1998] develop a simple mixed binary integer programming problem and apply 1t
to finding the optimal distnbution of Computational Objects in a TINA network The
objective 1s to maximise overall network throughput whilst maintaining processor load at or

below a given level

A network of N fully connected nodes 1s considered There are M computational object types
all of which are required to execute a single service The arnival rate of new service requests
to the network, A, 1s to be maximised, with the constraint that load on each node must remain
below a level of p, The bnary decision vanable y,,, 1s defined such that it 1s equal to one 1f
object type m 1s located on node » and 1s zero otherwise Objects may be duplicated across

any number of nodes and the total count of an object’s copies 1n the network 1s given as
N
by=2, Vm

This gives one of the problem constraints It 1s assumed that an object has an associated
processing load of x,, during execution of a service sesston and 1t 1s also assumed that load 1s
shared equally among all copies of a component, 1 ¢ the load caused by component 7 on a

node 1s equal to 4 x,, /b,, This gives the processing constraint as

A:=1ymn xm/bm Spt T Where T=l/l

The objective function 1s then to maximise 7, the system throughput

This approach differs from others 1n that load 1s the focus rather than communications costs
The solution will tend towards load balancing across processors, however, the model does not
account for the costs of remote communications This will generally tend to give too much
distnibution and non-optimal communication patterns between components All component
copies are assumed to process the same amount of requests which restricts possible solutions

considered and, 1n general, will not give an optimal solution

Avramopoulos and Anagnostou have considered the problem of optimal allocation of
components to network nodes 1n the case where some of the components are fixed and some
are mobile agents which may migrate from node to node as communzcation patterns change

[Avram & Anag, 2002]) In this work, the authors adopt a graph theoretic approach and seck
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to minimuse the network traffic that 1s incurred dunng component communications and duning
component migration The solution methods are formulated as a Mixed Binary Intcger
Programming problem The first problem they solve 1s that of locating a single copy of each
component in the network 1n an optimal way The second problem considered 1s that of
optimally migrating mobile components 1n order to reduce inter-component communication

costs when communication pattemns between components change

In the first problem, a network of nodes, denoted as the set V, and a set of interacting
components C are considered A subset of these, C,, are fixed components that are pre-
assigned to certain network nodes and the remaining set of components C,, are considered
mobile and are to be optimally assigned to nodes A graph G(C, F) 1s then constructed where
the set of nodes C represents the set of components and the graph edges F represent messages
passed between components Labels w,, ., are assigned to edges to denote the volume of
messages exchanged between components The cost of communication between components
residing on different network nodes 1s considered to be the product of this traffic volume and
distance between the corresponding nodes, denoted d(v,v'), where d is some distance
function d V' xV —R The authors consider the problem of finding the assignment of
mobile components C,, to the set of nodes ¥ such that network traffic 1s minimal, that 1s

minimisation of the cost function

C=3 e, dop,

feF

where D/ 1s a binary decision vanable, defined over all possible assignments of components
to nodes, 1e CxV, which indicates whether or not two particular assigned components

mteract The following constraints are then added to the problem
¢ Only one copy of each component may be assigned 1n the network

e Only one parr of assigned components may have a non-zero flow between them and

e A component must be assigned a to node for there to be non-zero flows associated wath 1t

The possible locations of mobile components are not constrained (although this 1s possible)

There are no constraints relating to network bandwidth, processing capacity, etc

In the second problem, re-configuration of the component configuration 1s sought by means
of migrating components from one node to another, when communication patterns between
components change Migration 1s considered to occur only at the end of a phase Duning each
phase the component communication pattern 1s constant and migration occurs 1n response to a
change 1n anticipated communication patterns for the next phase Each mobile component 1s

considered to have a size and an associated cost 1s incurred 1f 1t migrates to another node The
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optimal routes for mugration of components 1s sought, such that the overall cost of
communication and the transportation costs are minimised Note that the first problem
solution may be applied to the problem of finding an mmitial component configuration for
components at design-time whose locations will thence remain fixed The second problem 1s

only applicable to components that may migrate at run-time

The model does not consider different service classes, or limits on processor loading or
network bandwidth Both problems are mixed binary integer programming problems The
authors show that 1t 1s NP-Hard for N>2 Although a NP-Hard design-time problem may be
tolerable, from a complexity point of view, 1t 1s uncertain 1f such a problem would be

applicable to the dynamic run-time migration problem

Silaght & Keleher [2001] consider a somewhat similar scenario to Avramopoulos &
Anagnostou but apply simple heunstic decision policies, rather than optimal programming
models, to achieve a solution They also consider a network where only one copy of a given
component may be active at any time but this component instance 1s allowed to migrate from
one processor to another The algorithm operates as follows the target processor of each
message to be sent 1s evaluated as a potentially new host for the message’s source component
This produces a heunstic measure of affimty for a particular component to a particular
processor Components are then migrated from over-loaded to under-loaded processors in a
way that best satisfies the affinity measures for all components and processors but also
considers the cost of component migrations The objective of the decision critenia 1s to
balance load and achieve mimimal network communications traffic Results are given but not
compared to any optimal methods This problem more resembles a dynamic load sharing

problem than an allocation problem

2.7. Performance Control of Distributed Telecommunication
Service Platforms

We have 1dentified the importance of scheduling methods for maximising the efficiency and
performance of general distnbuted applications and have reviewed literature 1n the area,
namely task allocation, load shanng and component allocation methods In this section, we
consider the requirements of scheduling specifically in the context of telecommunication
services executing on distnibuted platforms, with a view to applying scheduling methods for
performance control In particular, we wish to find suitable solutions to the problem areas of
optimal internal and external performance controls and optimal placement of Computation
Objects 1n an IN/CORBA inter-working network, by considering suitable general distributed
system methods We also require that these solutions take into account performance

requirements specific to telecommunication services
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27 1. Performance Requirements

Telecommunication services have a number of specific requirements i terms of performance

From the user’s perspective services are expected to display the following attributes

o Responsiveness Users generally expect telecommunication services to be highly
responsive and long delays i accessing a service or slow response during service usage

are not tolerable

e Stability and Reliability Each time a service 1s accessed, a simular performance 1s
expected Consistency in the responsiveness of a service gives the user an impression of
quality Only very small downtimes are tolerable as customer satisfaction 1s heavily

influenced by even very infrequent service faillures

» Faimess As all users generally pay the same amount for the same service, all users
expect to be treated equally and expenence the same responsiveness and reliability Also,
users generally expect the performance of more costly service offerings to be better

From the service operator’s perspective, the service network 1s expected to display the

following attributes

e Responsiveness Delays need to be kept low to avoid aborted sesstons and subsequent

loss of revenue for the operator

e Stabiity and Reliability Apart from wishing to keep customers satisfied for good waill
and direct monetary reasons, large expenses may be incurred by the operator if regular
maintenance 1s required due to unreliability of performance control mechanisms

e Optimality, Efficiency The performance control solution 1s expected to achieve the most
efficient use of resources possible, maximising return on investment n service
infrastructure

o Profitability Ideally a performance control mechanism should be able to relate resource
usage and profitability of service types, whereby high profit (or lugh cost to the customer)
services are assigned a greater proportion of resources, increasing the network capacity
for processing high profit services or increasing service responsivencss

e Scalability and Flexibility of solution The performance control solution should not be
closely tied to particular technologies and network topologies Upgrading of
infrastructure should be possible without major remnvestment in performance control
solutions Solutions would 1deally be general and applicable across different platforms

Scheduling and load control solutions for telecommunication services should be mindful of
these requirements n their design and applicability Considering these requirements, a
number of techmcal aspects are implied for suitable performance control schemes We review

these below particularly 1n relation to existing scheduling methods discussed previously
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2.7 2 Possible Approaches to Performance Control for Distributed
Telecommunication Services

Solutions to performance optimisation have generally focused on static deterministic

scheduling schemes due to complexity 1ssues The added complexity of component model

interactions over the simpler job or task model has dissuaded researchers from considering the

stochastics of service times and user traffic This 1s justified, as existing stochastic job

allocation models are already complex 1n nature even with tight requirements on the product

form nature of the model

A salient feature of work done on the stochastic job scheduling problem 1s that queuing delay
variables must be separable, which 1s valid when jobs are independent (for example 1n
[Tantaw: and Towsley, 1985] and [Ross & Yao, 1991]) This ards formulation of a tractable
optimisation problem Also, some reasonable conditions placed on the individual delays 1in the
system ensure that the overall system response time 1s convex increasing These conditions
allow solution with efficient numencal solution methods However, due to the added
complexity of resolving queuing delay in networks with interdependent distnbuted
components (and thus dependent queuing delays), even to an approximate degree, the
problem of optimally assigning components based on an accurate estimation of queuing delay
1s not stmple We are not aware of any attempts to do this and we discount stochastic schemes
from investigation of optimal scheduling 1n component-based systems However, our hope for
a responsive system 1s not all lost, as system delays may at least be influenced by balancing of
load or maximsing throughput n the network and, as we have seen from component

allocation hiterature, these problems are linear and generally efficiently solvable

Several such component allocation schemes have been reviewed, however, none meets all our
requirements Kihl [1998] does not account for the cost of remote communications, which can
be a major performance factor in middleware systems Also, the model assumes that all
component copies process the same amount of requests This assumption restricts possible
soluttons considered and, 1n general, will not give an optimal solution Anagnostou [1998] has
a more comprehensive model, however, i1t 1s oriented towards minimising communications
delays rather than limiting processor loading, which 1s our central concem He considers the
cost of nstallation of multiple copies of components, which we consider to be a useful 1deal
Bastarnca ef al [1998] do consider limits on loading but do not allow duplication of objects
(which we consider a desirable feature) Thetr scheme 1s more akin to a classic task allocation
problem Avramopoulos & Anagnostou [2002] also do not consider component copies n the
network The scheme of Silaghm & Keleher [2001] 1s heunstic based and so non-optimal
Most authors consider mimimisation of some simple communications metric rather than

maximisation of throughput and load hmiting Processing costs associated with protocol
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encoding/decoding have not been exphlicitly included n previous schemes None has

considered biases for service profitability or user fairness

Dynamic scheduling has been considered in the literature mainly 1n the context of load
sharing 1n job models This relates generally to what we have termed internal performance
control However, due to the added complexity of dynamic schemes (readjusting the schedule
in real-time) task allocation has generally not been considered in a dynamic context
However, 1t 1s desirable that load control could somehow adapt to changing user demand 1n
order to meet our requirements for stability, reliability and flexibility of the solution Little
work has been done on this in relation to optimal dynamic scheduling in component
architectures with the exception of component migration schemes, for example in
[Avramopoulos & Anagnostou, 2002] However, optimal component migration schemes
mnvolve solution of NP-Hard problems at runtime and 1t 1s our view that more efficient
methods are essential for practical solutions A lower complexity, optimal solution 1s
required We consider the simple schemes of Kihl et al [1997, 1999] as too far from optimal

for our purposes

Admission control (external performance control) has received relatively little attentton 1n
distnbuted systems literature but has been a focus of performance in telecommunication
service networks (e g Intelligent Network load control) for a long time Admussion control n
a telecommunications environment 1s essential to ensure reliability and particularly stability
duning high load situations In the distnbuted systems domain, some recent work has
considered application of admission control to web servers Chen & Mohapatra [2003]
implement a dynamic weighted fair sharing (DWFS) scheduling algonthm specifically for

controlling overloads 1n web servers Similar work has been done by Iyer ef al [2000]

The 1ssue of optimising profitability of a network by favourning high profit services has
recerved some attention in the IN community but has escaped attention in the general
distnbuted systems area In Intelligent Networks, several profit optimal schemes have been
proposed, 1n relation to admission control schemes Jennings ef @/ [1999] have considered a
co-operative market and ant-based algonthms for optimising network profit based on service
discrimination during over loads in INs Arvidsson ef al [1997] have also considered profit
optimal congestion control in INs based on an estimate of round trip delay It would seem

natural to also apply such profit optimisation to component-based systems

273 Proposed Approaches

Having considered the general requirements and related work 1n the area, we consider the
specifics of requirements for performance controls 1n  distributed object-based

telecommunication services
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Internal and External Performance Controls Adnussion control (external control) is
traditionally viewed as an essential performance measure for telecommunication services
and must be included 1n the performance control scheme An efficient internal control 1s
also essential for proper functioning of the distnbuted platform As stated earlier, this
external control should be integrated and co-ordinated in an optimal way with the internal

control 1n order to meet the performance requirements

Profit Oriented Optinusation Profit optimisation 1s now seen as a desirable property of a
performance control in Intelligent Networks and should be included in performance
schemes of future distributed object based networks However, profit optimisation should

be balanced against fairness to users

Dynamic Controls Changing demand from users or changing network conditions are
expected to be handled 1n a controlled fashion in telecommunication services networks
and this 1ssue should be addressed Both internal and external performance controls
should be dynamic, however, in order to be of practical use, they need to be

computationally efficient and easily implemented

Flexibility of Application Flexability of the performance controls 1s important 1n respect
to the following aspects Duplication of components (multiple component copies) n the
system model should be allowed in order to gain the benefits of fault tolerance and load
balancing There should be no artificial constraints on load balancing between duplicated
components, for example by stipulating that all component copies recerve the same load
Multiple service classes with independent processing requirements should be considered
Cost of component deployment, when there are multiple duplicated components, should
be considered Aspects of component architectures, such as relationships between service
specific components and common service independent components, should be
constdered The control should not be tied to a specific network topology or structure, that

18, heterogeneity 1n node processing capactty and user traffic should be accommodated

Accuracy of Control 1t 1s important that the main factors impacting on performance be
included 1n the model to produce an accurate control For example, communicatton costs
assoclated with protocol encoding and decoding times are significant in distnbuted

systems and their impact should be included in models

Load Centric Approach Telecommunication service performance generally considers
optimisation of loading 1n networks, as opposed to considering communication delays
This approach 1s dictated by the importance of avoiding overloads in environments with
unpredictable and widely varying user service demands It 1s normally assumed (in

Intelligent Network load controls for example) that the network 1s rehable (over-
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capacitated and properly protected) and that the focus of attention should be efficiency
and protection of processing nodes, rather than on the network infrastructure We apply
this principle of separation of concemns and require that a load centric approach would

also be desirable 1n component-based systems

These proposed approaches define a new set of performance problems for which we seek

solutions in this thesis

2.7.4. Detailed Research Objectives

Our mam research objectives 1n this thesis are as follows

Development of suitable solutions to the proposed performance control approaches

outlined above

Venfication that solutions to the proposed optimal approaches meet our original
performance requirements for distributed telecommunication service platforms Critical

examination and 1dentification of deficiencies in this respect

Companson of our optimal approaches to our own best-effort non-optimal approaches
and to existing methods to venify that a substantial gain 1s being achieved by the proposed
optimal approach

In order to perform critical venfication and comparisons the following related objectives are

defined

Development of a detalled component model for IN/CORBA inter-working that
accurately expresses the architectures of the IN/CORBA gateway inter-working with a
distributed telecommunication service architecture, namely the TINA service architecture

Translation of this component model into switable simulation and analytic models at an
appropriate level of detail, in order to obtain quantitative venfication and comparnson of
results These models should accurately express the salient performance issues 1n such
architectures, namely processor loading and overloading, throughput, profitability, user

fairness and service response times
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2.8. Chapter Summary

We have given an overview of the evolution and future of telecommunication services and
identified that technological and business dnvers are moving service platform
implementations towards the distributed computing mode! We have examined mitiatives 1n
this area, particularly n relation to mter-working with the Intelhgent Network for medium
term solutions and progression towards long term solutions The value of the TINA service

archutecture for structunng such solutions has been 1dentified

Existing performance control methods for IN and TINA have been exammed and the driving
factors and requirements for telecommunication service performance controls identified
Deficiencies 1n the area of performance control for distnbuted component-based
telecommunication services have been identified Solutions to these deficiencies are sought in
the general distributed systems performance literature and a number of useful methods
identified Based on these methods we have proposed destrabie telecom-centric properties of
performance controls, which have not been seen in previous controls This essentially defines
our problem arca We conclude the chapter by stating our research objectives of finding
suttable solutions and examining the solution behaviour in an IN/CORBA inter-working

environment
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Chapter 3. Methods and Tools

This thesis 1s pnimanly concerned with performance analysis and performance control of
distributed telecommunication service networks This chapter introduces the mathematical
and simulation methods and software tools used for the performance analysis conducted 1n
Chapter 6 of this thesis Network performance 1s evaluated using discrete-event simulation
techniques and supported by results from client-server analytic modelling These methods are
descnibed 1n §3 2 and §3 1 respectively Mathematical methods for the development of
algorithms for network performance control are also outlined Control algonthms developed
in Chapter 5 are based on mathematical optimisation techniques (Linear Programming and
Mixed Integer Programming) and Market-based control techniques These methods are

described n §3 3 and §3 4 respectively

3.1. Analytical Methods for Network Performance Analysis

Analytic network modelling 1s based on the application of queuing theory, a branch of
mathematics which applies the theory of stochastic processes to the analysis of the behaviour
of queuing systems This section provides a bnef mtroduction to stochastic analysis and
queuing theory with particular focus on methods suited to the analysis of client-server based
systems Detailed introductions to stochastic analysis and queuing theory may be found n

[Papoulis, 1984] and [Klemnrock, 1975] respectively

3.1.1 Basic Probability Theory

Probability theory concems itself with descnbing random events The notion of stansncal
regularity 1s central to the theory This dictates that, under certain conditions, 1t 1s possible to
make very precise statements about large collections of random events For example, if an
unbiased comn 1s tossed many tumes, onec expects that the outcome will be heads
approximately half of the cases In fact, the probability of a heads outcome, for an ideal

unbiased coin, 1s exactly %

More generally, consider an expenment having n possible outcomes, denoted o, ,0,,

where the outcome of the experiment cannot be predicted in advance An expenment of this

kind 1s called a random experiment and the sct of all 1ts outcomes 1s called the sample space,

59



denoted O ={o,, ,0,} An event s the result of a single random expernment and comprises a
subset A of the sample space A probability measure of event A, denoted P[A4], 1s a non-
negative number indicating the likelihood of the occurrence of that event as the result of a
single expenment, or alternatively, the expected frequency of occurrence of the event over
multiple expennments Probabilities are defined so that the sum of the probabilities of all

posstble outcomes of an expennment sum to one, P[O]=1

3111 Random Varniables and Distribution Functions

It 1s often the case that some value relating to an outcome 1s of more interest than the outcome
itself This leads to the concept of a random variable The random variable X 1s a function,
defined on the sample space O, which takes a value X(o) for each o€ O Random vanables
can be classed as confinuous or discrete, depending on whether their range (the set of values
they can take on) 1s discrete or continuous The probability that a random vanable takes a
certain value x 1s denoted P[X =x] For discrete random vanables this leads to the

descniption of a probability mass function (pmf), denoted p(x), as follows

p(x) =P[X =x]

Another convenment form for expressing the probabilities associated with a random vanable 1s
the cumulative distribution function (cdf) The cdf of a random varniable X 1s defined as
F,(x) =P[X <x]

and expresses the probability that X takes on a value less than or equal to x Where F (x)

has a continuous derivative everywhere, a related function, the probability density function

(pdf), can be defined as follows

dF, (x)

feln = =22

Note that
[~ fetode=1

Thus the pdf is a function which, when integrated over an interval, gives the probability that

the random varnable X takes on a value 1n that interval

3112 Moments of a Random Vanable

The probability distribution of a random varnable 1s often characterised by a senies of related

parameters, called moments In most practical applications of probability theory, only the first
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two moments are sought in order to approximate the characteristics of a random variable.
Informally, the first moment gives the average value of the random variable and the second
gives the spread of values around this average. In general, the k th moment of a random
variable X , denoted E[XK], is defined by:

E[Xk}:=r xkfx(x)dx

The first moment of a random variable X , denoted E[X] or X, and known as the

expectation, or mean, or average value of X , is given by:

E[X]:= Jf:mxfx (x)dx

The second moment, the variance of a random variable X , denoted V[X] or <IX, is given

by:

V[X]=ag = jjx-X)fx(x)dx

3.1.1.3. Independent Random Variables

If we consider two random variables, X and Y , defined for some sample space, then the

extension of the cdf for the two variables is defined as:

Fxr(x,y):=P[X<xJ<y]

Associated with this function is ajoint pdf, defined as:

XrK  * dxdy

X and Y are said to be independent if and only if:

XY ix*y)= x()fr iy)

3.1.2. Stochastic Processes

A stochastic process (or random process) is a function X(t,0), commonly denoted simply
X(t), of both time and probability space. For a fixed value of t it becomes a function of
probability space, i.e. a random variable, whereas for a fixed value of o it is a function of
time and is referred to as a sample function of the process. Stochastic processes are widely
used to model the behaviour of telecommunication systems, for example, the number of

callers on hold in a call centre queue can be modelled as a stochastic process (Figure 3.1).
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Figure 3.1: An Example Stochastic Process - The Number of Customers in a Queue over Time

The cdf of a stochastic process, denoted Fx (x,r) is defined as follows:

Fx (x,t):=P[X(t)<x]

Furthermore, for n allowable values of t, {tI%2,...,tn}, ajoint cdf may be defined for the

process as follows:

FxIX2..xn(*i Dot 3 > 0 = —X\>"("2) - -0

The joint cdf is commonly denoted using the vector notation Fx (x;t) . In order to completely
specify a stochastic process the values of Fx (x;t) must be specified for all possible subsets
of {*}, {i} and all n. However, for many interesting and useful stochastic processes it is
possible to provide this specification in very simple terms. In the following sections we list

some classifications of stochastic processes based on their properties.

3.1.2.1. Stationary Processes

A stochastic process X(t) is said to be stationary if Fx(x,t) is invariant to shifts in time for

all values of its arguments:

Fx (x;t +r)=Fx(x;t)

where t +r is defined as the vector (f, +T,t2+r,...,tn+t) .

All stochastic processes discussed in this thesis are considered to be stationary.

3.1.3. The Markov Process

The Markov process is the most important class of stochastic processes used in the analysis of
telecommunication systems. It is a simple stochastic process in which the distribution of
future states depends only on the present state and not on how it arrived in the present state.
This simplification allows relatively easy analysis and yet the model is powerful enough to
accuratcly model many aspects of performance in telecommunication systems. The most
useful sub-classes of this process, which apply to this thesis, are described in the following

sections.
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Formally, a stochastic process 1s classified as a Markov process 1if and only 1f its next state 1s
dependent only on 1ts current state and not on any previous values This can be expressed

mathematically as follows

PLX(,.)=x

X)) =x.X(t,)=x,, ,X(t)=x]=P[X(,)=x,

n+l +1 X(tn) = xn]

3131 Markov Chains

A Markov process with a discrete state space 1s referred to as a Markov chain Markov chains
can be either discrete-time or continuous-time¢ For a discrete-time Markov chain the instants
at which the state changes are preordained (a state transition takes place at each instant even 1f
the state does not change as a result of the transition) For a continuous-time Markov chain
the state transitions can take place at any instant in time Of particular interest 1s the random
vanable describing how long a Markov chain remains in 1ts current state before a transition to
another state occurs For a discrete-time Markov chain this time can be shown to be
geometrically distributed, whilst for a continuous-ttme Markov chain 1t 1s exponentially

distributed

3132 Birth-Death Processes

A birth-death process 1s a (discrete- or continuous-time) Markov chain in which state
transitions only take place between neighbouning states If, with no loss of generality, the set
of integers 1s chosen as the discrete state space then the birth-death property requires that 1f
X,=1,then X  =1-1, 1 or 1+1 and no other value Birth-death processes play an
important role 1n queuing theory, since they provide a means of modelling a queuing system
where the time intervals approach zero (a continuous-time process), so that only a single

event, an arnval or a departure, can occur during an interval Figure 3 2 illustrates the process

Ao A Ai A
by M2 K M+t

Figure 32 State Transiion Rate Diagram for the Birth-Death Process

The probability of a birth-death process being 1n a particular state ¥ at time 7 1s denoted by
B, (1), where

P(t+At)=P (1)~ (A, + L)AL () + A, AP (D) + L AP, (D +0(1) k21
Pyt +Ar) = By (1) = A AP (1) + 14, AtP (1) + o(2) k=0
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where A, 1s the birth rate (or arrival rate), representing the rate at which births (armvals)
occur when the population (number in the system) 1s %, and x4, 1s the death rate (or
departure rate), representing the rate at which deaths (departures) occur when the population

(number in the system) 1s ¥ The above equations can also be written n the form

arP, (t
c’;t( ) = A Py (0 = (A + )P () + 1, P (0, k21
df:c;t(’) =~ APy (O)+ 1, P, (D), k=0

3133 The Poisson Process

A special case of the birth-death equations above, in which the arnval rate 4, 1s constant and

the departure rate 4, 1s zeron all states 1e 4, =4, 4, =0 V&), yields the solution

k
Pk(t):%e‘” k>0,120
This 1s known as the Poisson distrbution and describes a Poisson process The Poisson
process 1s widely used 1n queuing theory for the modelling of arrival processes such as the

sequence of times at which calls are onginated by users of a telephony network

For a Poisson process, the average number of arnvals 1 (0,f) 1s A and the variance of the
number of arnvals in the same time 1nterval 1s also equal to A4 The mterarnval times of a
Poisson arnval process are exponentially distributed, 1 ¢ the pdf of the interarrival times 1s
given by f(t)=4e™ ¥ >0

The mean of the exponential interarrival time distnibution 1s ), while 1ts variance 1s %11 The
exponential distnbution also exhibits the memoryless property, whereby the distribution of the
time until a future amval 1s independent of the time since the last arnval Therefore if, at
some random time 7, an estimate of the time that will elapse until the next arnival 1s evaluated

then the result will be independent of the time that has elapsed since the last arnval

3.14 Bernoull:1 Trials

Bernoulli tals are a stochastic process widely used to model a sequence of independent
generic tnals that can result 1n two outcomes, success or faillure, where the probability of
success 1s p and the probability of failure 1s (1-p) Analytically we can describe the Bernoulli
trials process with a sequence of indicator random vanables 1,,1,, ,I,, where the ;“

indicator vanable 1s used to descnbe the outcome of tnal 7 Therefore we have

PlI, =1]=p, PII, =0]=(1- p)
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Figure 3.3: Relationship between Different Classes o f Stochastic Processes

3.1.5. Queuing Theory

Queuing theory involves the study and analysis ofthe behaviour of queuing systems, where a
queuing system is any system in which arrivals place demands upon a finite-capacity resource
[Kleinrock, 1975]. Queuing theory is concerned with estimating values such as the mean
queue size, mean waiting time or length of idle period, which are key metrics used for the

evaluation of the performance of many systems.

In general, the length of a queue depends on the mean arrival rate (of customers), the mean
rate at which arrival demands are serviced (the service rate) and on the statistical fluctuations
of these rates. Clearly, when the mean arrival rate exceeds the system capacity the queue will
grow in an unbounded manner. However, even where the mean arrival rate is less than system
capacity, queues will sometimes grow due to clustered arrivals and/or variations in demands.
The effect of these variations will be greater when the arrival rate approaches the maximum
capacity of the system. We now introduce some of the basic terminology used in queuing

theory.

In order to completely specify a queuing system the stochastic processes that describe the
arrivals to the system and the structure and discipline of the servers must be described. The
arrival process to a queue is typically described in terms of the probability distribution of the

interarrival times of requests, denoted ,4(0, where:
A(t) = P[time between arrivals < t]
The mean arrival rate to the queue is denoted A, giving the mean interarrival time as yx.An

arrival stream may be comprised of more than one class of arrivals, which may be described

by different interarrival distributions.

The server process of a queue is typically described in terms of the probability distribution of

the service times of request processed by the queue, denoted B{x), where:

B(x) ~ ~[service time < X]
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The mean service rate of the queue 1s denoted 4, giving the mean service time %, It 1s
possible for a queue to contain more than one server and 1t 1s possible that the distnbution of

service times will differ for each server

A useful definition 1s that of offered load (denoted a) whuch 1s defined as the product of the
amval rate and the mean service time a = % The offered load 1s a dimensionless quantity
that provides a measure of the demand placed on the system It 1s normally expressed 1n units
called Eriangs A related quantity, the load of a queue, denoted o, 1s a measure of the

proportion of time the queue server 1s busy, 1t 1s calculated as p = %

An important structural description of a queue 1s that of the quewing disciphine, which
describes the order in which requests are taken from the queue and allowed into service
Some common queuing disciplines are First-In-First-Out (FIFO) and Last-In-First-Out
(LIFO) Some queuing disciplines distinguish between classes of request arnvals on the basis
of priority, with higher pnionty requests being granted preferential access to the server The

extent of storage capacity available 1n the queue to hold waiting requests may also be ltmited

A fundamental result in queuing theory 1s Little 's Law, which states that the mean number of
requests 1n a queumng system (denoted N ) is equal to the mean arnval rate of requests to the

system ( A), imes the mean time spent by requests in the system (denoted 7T') N=T

Queues can be classified according to the widely used shorthand notation 4/B/n, where A
descnbes the queue’s interarrival time distnbution, B describes its service time distribution
and » 1s the number of servers 1n the queue Values which 4 and B can take on include
Markovian (1¢ exponential) (M), Determimistic (D), Erlangian (E) and General (G)
Solutions to many combinations of mterarmval time, service time distribution and queuing
discipline are known for a single queue [Klemrock, 1975] However, when queues are

connected to form a network, analysis becomes more difficult

316 Analysing Networks of Queues

In general, analytic models in which jobs departing form one queue arnve at another, or
possibly the same queue, are called queuing networks [Gelenbe, 1999] Unlike single queues,
there 15 no simple notation for specifying the type of a queuing network Certain subsets of
the general queuing network have been identified and efficient exact analysis techniques
developed For more general networks, however, approximate techmques are the only

practical solution These topics are outlined below

3161 Product Form Networks

The simplest queuing network 1s a series of M single-server queues with exponential service

time and Poisson arrivals It has been shown by Jackson [1963] that each individual queue 1n
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this series can be analysed independently of other queues The joint probability of the queue
length of M queues can be computed simply by multiplying individual probabilties for each

queue The queuing network 1s therefore termed a product form network

In general, the term applies to any queuing network in which the expression for the joint

probability of queue lengths of M queues has the following form

1 M

P(n,,ny, ,nM)—-(WIJf,(n,)

where f,(n,) 1s some function of the number of jobs at the ith facility and G(N) 1s a
normalisation constant (see [Gelenbe, 1999]) and a function of the total number of jobs in the
system This property of product form networks renders them the simplest to analyse
Important early work has shown that arbitranly connected networks of queues, under certain
assumptions, have product form solutions Jackson, Baskett, Chandy, Muntz and Palacios
([Baskett ef al, 1975]) and Denning & Buzen [1978] have identified mmportant classes of

networks with product form solutions

At present, product form networks are the only class of queuing networks which have an
exact solution 1n an explict form Furthermore, more general network models, such as the
client-server model that has been mvestigated 1n thus thesis, do not belong to this class
However, product form networks do provide the basis for approximate algorithms which may
be used to solve more general non-product form models These appoximate algorithms are

described below

3162 Mean Value Analysis (MVA)

Mean Value Analysis (MVA) 1s a simple solution technique that allows analysis of complex
product-form queuing networks It i1s outlined here as 1t forms the basis for Approximate
MVA, which 1s the core component of the analysis methods used in this thesis to solve

complex non-product form networks

MVA gives only mean performance measures (mean delay and mean throughput) It can be
apphed to networks with a vanety of service disciplines and service time distributions and can
accommodate both single customer class and multiple class models Load dependent and load

independent servers may also be represented

The MVA algorithm uses three key equations that are derived from Little’s Law and the
Arrival Instant Theorem Little’s law states that the mean number of requests i a queuing
system (N ) 1s equal to the mean armival rate of requests to the system (A), times the mean

time spent by requests in the system (7') That1s N = AT
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The Amval Instant Theorem states that, in a product-form queuing network, the queue length
(A, ,) seen by a customer of class ¢ on armnval at a service centre & 1s equal to the mean queue

length Q, there with the arrving customer removed form the network That 1s,

A, (Ny=0,(N-1,) 311

where N =(N,, ,IV.) 1s the workload intensity vector consisting of all class population sizes
(N,) and N-1_ 1s the population N with one customer of class ¢ removed The three

equations from which the MV A algonthm 1s denived are

1 The service centre residence time for each chain
R, (N)=D,,(1+4, (W) (312

where D, , 1s the total demand of class ¢ at centre k1 ¢ the product of mean service time and

visit frequency

2 Applying Little’s Law to the queuing network as a whole, the throughput (X,) for each

class s
X, (W) =—22e (313)
Zc+ZRck(N_)

k=1

where Z, 1s the think time for class ¢ and N, 1s the number of customers for class ¢

3 Applymng Little’s Law to each service centre, the mean queue length Q,., for class ¢ at

centre k as well as the total mean queue length O, at centre & are

Qck(ﬁ)'__Xc(N)Rck(ﬁ)

— C —
Q,(N)=>"0, . (N) . (314
c=1

The MVA algonthm consists of finding an arrival-instant queue length 4., and using this
queue length to find the residence time (equation 3 12) The residence time 1s then used to
denive the throughput (equation 3 1 3) Finally, from this throughput a new queue length may
be found (equation 3 1 4)

There are two approaches to evaluating the equations, exact and approximate, which differ in
the way the arnval instant queue lengths are computed In the exact method, applicable only
to product form networks, equation 3 1 1 1s evaluated exactly The tnvial solution of the

network for population 0 1s used and applied to equations 312 and 314 From equation
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3 1 4 the queue length for the next largest population 1s obtained The computation proceeds
recursively over increasing populations until the target population 1s reached More detailed

descniptions of exact MV A may be found 1n [Jain, 1991] and 1n [Lazowska et a/ , 1984]

3163 Approximate Mean Value Analysis

As exact MVA requires an evaluation at every possible population, the computational
complexity increases with the number of job classes and service centres An approximate
method often becomes more practical for larger problems since 1t does not require evaluation
of equations 3 1 2 and 3 1 4 for all populations Instead, the amval instant queue lengths A4_,
are estimated based on the time averaged queue lengths at the service centres with the full
customer population N and iteration 1s used to improve the estmate Many different
functions may be used to estimate the arnval instant queue length The most commonly used
1s the Bard-Schweitzer approximation which assumes that A, ,(N) 1s proportional to

Q.,(N) The formulation for the approximation 1s

N, -1

0., (N + D0, (N) (15)

c 1=l g#e

Ack(]v) :Qk(N_lc) =

This method has been studied in [Wang & Sevcik, 2000] and 1ts accuracy compared to that of
exact MVA For networks with 3 job classes and 20 service centres, the error 1 queue length
1s reported at 1 45% while the error in response time 1s 1 04% Approximate MVA 18 a widely
used analysis method and 1s a core component for solving sub-models in the Layered Queuing
Networks model (discussed 1n next section), which has been used as the basis for analytical

methods employed 1n this thesis

317 Layered Queuing Networks (LQNs)

Multi-tier client-server systems considered m this thesis pose particular problems for
performance analysis methods described thus far The Layered Quewing Network model
(LQN) [Woodside, 1996] extends the product-form model to reflect interactions between
chient and server processes The blocking nature of the remote procedure call in client-server
systems causes problems for standard mean value performance analysis The remote
procedure call 1s a type of simultaneous resource possession the requesting task and the
serving task are both held by the same customer while the remote procedure call 1s n
progress Furthermore, should the server continue to execute after the remote procedure call
replies (a second phase of service), a second customer 1s effectively created These conditions
preclude the direct application of the product-form model If the effect of simultaneous

resource possession were 1gnored, the throughput estimates from a performance model would
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be overestimated because the time needed to acquire resources would not be accounted for
The LQN model allows these behaviours and permits layers of interacting clients and servers

to be modelled

318 Solution Methods for LQNs

As mentioned above, multi-tier client-server application systems cannot be modelled directly
using mean value analysis because the synchronisation blocking from nested sub-services 1s a
form of simultaneous resource possession The problem can be solved using the Method of
Layers (MOL) [Rolia & Sevcik, 1995] or the Stochastic Rendezvous Network (SRVN)
[Woodside ef al 1995] method The features of both have been combined in the Layered
Quewing Network Solver (LQNS) [Franks & Woodside, 1998] These methods are descnbed

below

3181 Method of Surrogate Delays

The Method of Surrogate Delays 1s a key concept 1n solving of replicated models of the type
descnbed below The method, [Jackson & Lazowska, 1982], 1s an approximate solution
techmque for queuing network models which have resources that are accessed simultaneously
or have an overlap 1n possession Basically, the queuing network 1s split into multiple models
In each model, a delay 1s obtained for a particular resource, modelled as a queuing station,
while the other resources are represented by delay servers The method iterates the queuing

delay estimates between the models until convergence

3182 Stochastic Rendezvous Networks (SRVNs)

The Stochastic Rendezvous Network (SRVN), proposed by Woodside ef al [1995], 1s used
mainly to model a system with sofiware quewing and rendezvous, although hardware elements
may also be included i the model The model consists of an acyclic graph of clients and
servers Clients and servers are collectively referred to as tasks, which are used to model
users, devices, and software processes Requests from one task to another use the remote
procedure call paradigm 1 e clients are blocked until the server responds The SRVN model s
solved by first constructing a set of sub-models each consisting of only one server and a set of
clients and their surrogate delays Next, the overall model 1s solved by applying MVA to each
of the sub-models A vanation of the Bard-Schweitzer MV A approximation 1s used where the
waiting time expression 1s modified so that the queue length 1s found using armval instant
probabilities instead of simply scaling based on a frachon of customers n the system
Throughput results from each sub-model are then used to adjust the surrogate delays 1n all of
the other sub-models The solution iterates among all the sub-models until convergence

cntena are met °
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3183 Method of Layers
The Method of Layers (MOL) [Rola & Sevcik, 1995] solves client-server queuing networks

by decomposing the network 1nto a set of two-level MVA sub-models Each sub-model forms
a conventional product form queuing network where the servers form the stations and the
clients form the customers The MVA sub-model 1s constructed by splitting the iput model
mnto two sub-models, one for hardware contention and the other for software contention The
MOL algonthm then estimates the performance of the system under study by iterating among
the various sub-models It begins by solving the software sub-models from sub-model 1 to
sub-model N-1 (There 1s no software sub-model N because the pure servers at level N make
no requests) Once the software sub-models have converged, the performance results are used
to set the think and service times for the tasks in the hardware model The performance
estimates from the solution of the hardware model are then used to set the service times for
the vanous software sub-models This sequence continues until the desired convergence
cntena are met Note that, unlike SRVN, the layering of servers 1s strict1 ¢ a server may only

interact with servers in the next lowest layer

319 The Layered Queuing Network Solver (LQNS)

The analysis methods employed n the Layered Quewing Network Solver (LQNS) [Franks &
Woodside, 1998], combine the strengths of SRVN and MOL techniques to broaden the
modelling scope and to improve the accuracy of solutions to Layered Queuing Networks
(LQNs) The LQNS combines previous methods discussed 1¢ the SRVN model and the
Method of Layers LQNs are solved using surrogate delays to solve the simultaneous resource
possession problem ansing from the nested calling pattern 1n the system being modelled This
goal 1s accomplished by partitioning the input queuing network nto a set of smaller MVA
sub-models, then iterating among these sub-models until convergence in waiting times The
solver software takes the LQN model specifications as mput, in the form of rask, entry and
processor specifications, and returns a solution for the throughputs of tasks in the systems

We descnibe the model elements briefly below

LQN models consist of layers of rasks, which are interconnected by their call patterns forming
an acyclic task graph Tasks represent interacting entiies in the model that carry out
operations and can also take on the properties of resources, including a queue, a discipline and
a multiplicity Tasks may represent hardware and software objects that may execute

concurrently and are the central modelling entity in LQNs

A task has one or more entries, which represent different operations that the task may
perform Calls are requests for service from a task entry to an entry of another task and
demands are the total average amount of host processing and average number of calls

required to complete a given entry Calls may have asynchronous or synchronous behaviours
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Asynchronous calls do not wait for a reply from a called task whilst synchronous calls block
the calling thread until 1t recerves a reply

A task may have an associated host processor, which models the physical entity that carnes
out operations Tasks with a multiplicity greater than one can be used to represent multi-
threading Tasks that do not receive any requests are called reference tasks and may be used
to represent traffic sources or system users They cycle endlessly, creating requests to other
tasks Tasks that do not have an associated processor, but merely model workload aspects of
an object, are referred to as pseudo tasks More than one task may be associated with the same

processor, 1n which case all such tasks share a common queue

Figure 3 4 shows a simple LQN model The larger parallelograms represent tasks and the
smaller ones are the task’s entnes Circles represent physical resources, such as processors
Directed arrows represent calls, with solid arrows of the type shown representing
synchronous, or “rendezvous”, calls In the task graph shown, 70 1s a reference task with a
multipheity of 10, which may be considered as representing 10 individual, but identically
behaved, users connected to the system Task 70 (a user) generates calls to entry e/ of task 7'/
at a given rate, and blocks until e/ has executed Task 7/ 1s associated with processor P/ and
takes on the properties of the resource, namely a queue and queuing discipline Task 7/ has
multiplicity 1 1n this case (1s single threaded) and thus represents a simple queue and service
centre Note that, under certain assumptions, this LQN merely represents a closed product-

form queuing network, which could be solved exactly by other means

Figure 3 4 A Sunple Layered Quewing Network

In Figure 3 5 below, a non-product form LQN model 1s shown In this case, a call from the
user executes e/ which subsequently executes e2 whilst still blocking task 7'/ In this case,
processors P/ and P2 are being held by the same customer until e2 has completed execution,
that 1s, there 1s simultaneous resource possession n the system The effective service rates of
the processors are not independent and thus the queuing network 1s not product-form The

LQNS may be used 1n this case to obtain an approximate solution
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Note that LQNs may model tasks that receive and generate calls to/from multiple other tasks
Thus fork-join behaviour may be modelled and solved Systems with fork-join behaviour
violate the fixed customer and routing assumptions i a closed queuing network and thus
cannot be solved as a product-form network The model of nterest to this thesis, given n
Chapter 6, displays fork-jom behaviour and an LQN model has been constructed to obtain a

solution

Figure 3 5 Sumultaneous Resource Possession in an LON

Note that LQNs can represent a finer level of detail within tasks, acfiviies Activities are
connected together to form a connected graph which represents one or more execution
scenarios Execution may branch nto parallel concurrent threads of control, which may or
may not execute 1n parallel on the target system Execution may also choose randomly
between different paths In Chapter 6, we use activities for modelling fork-joins and to
represent choosing randomly between entries that a task may call This allows modelling of

load sharing behaviour in the system

3.2. Simulation Methods for Network Performance Analysis

In general, simulation modelling 1s the process of designing a model of a real system and

conducting expeniments with this model for the purposes of

¢ understanding the behaviour of the real system

¢ aiding 1n the design or validation of the system

e determining strategies for effective operation and management of the system
e cvaluating the performance of the system

e performing optimisation of the system
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In the context of computer and telecommunication systems, a simulation 1s usually the
execution of a model, 1n the form of a computer program, which gives information about the
system being investigated Computer simulation 1s a technique that has gained widespread use
in industry and 1s of fundamental importance n the design and evaluation of many types of

systems

In this thests, we are mainly concerned with simulation for evaluation of performance rather
than with the system design process Specifically, simulation 1s used to evaluate and compare
vanous algorithms for network performance control Performance investigations that are
undertaken through simulation include, 1dentification of system bottlenecks, analysis of
steady-state behaviour of the system, analysis of the stability of the system and optimisation

of system control parameters

Simulation 1s often used in conjunction with an analytic approach to performance evaluation,
rather than as an alternative Analytic modelling often requires simphifying assumptions that
render the results suspect until they have been corroborated by other techniques Simulation
may also provide a wider range of performance metrics than 1s possible with mathematical
analysts An almost arbitrary level of detail may be included 1n a simulation model whereas
more complex analytic models may become intractable The down side to simulation 1s that it
1s often more time consuming to simulate than to analyse Also, simulation results are usually
nexact, lying within some confidence interval rather than being exact values The following
sections give a bnef outlme of common types of simulation model and identify a suitable

method for simulation of computer and telecommunication systems

3211 Discrete vs Continuous Models

In continuous-valued simulation, the system state at any point in time 1s described by a set of
continuous-valued state vanables The evolution of the system state in time 1s usually
charactensed by a set of partial differential equations To implement a continuous-valued
model as a simulation program, these differential equations are approximated by difference
equations When time 1s incremented 1n the model, the simulation program computes new
values for all system state vanables Often iteration 1s required to converge to a solution for
the new values Discrete-event simulation takes a fundamentally different view of how a
system evolves The two most important differences are that 1) the system state vanables only
take on discrete values and 2) time may advance by fixed or vanable amounts but state
vanables do not change within any interval over which time advances in a single step
Discrete models are usually most useful for modelling of computer systems because the
changes 1n system states (such as the arrival or departure of packets to and from a service

station) occur at discrete points in time
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3212 Probabilistic vs Deterministic Models

If random vanables are present, the model 1s probabilistic An appropnate density function
must be specified for each random vanable If vanable values are always exactly known, then
the model 1s determimstic Probabilistic models are normally the most useful for modelling
computer systems as many of the underling processes (such as the arnval of customers to a
system) are stochastic by nature and can be accurately modelled by standard probability

distributions

3213 Trace-driven vs Stochastic-dnnven Models

In trace-driven simulation, the model inputs are denved from a sequence of observations
made on a real system The advantage of trace-driven simulation 1s that the model inputs are
real world They are not approximations whose accuracy may be questionable Of course,
such data 1s not always readily available In stochastic simulation, the system workload or the
model mput 1s characterised by various probability distnbutions Dunng simulation
execution, these distributions are used to produce random values, which are the nputs to the
simulation model It 1s common 1n telecommunications modelling to assume that system

inputs behave according to some standard stochastic process, such as a Poisson process

3214 Stochastic Discrete-Event Stmulation

Stochastic discrete-event simulation 1s normally the most suitable for modelling of
telecommunication systems and 1s the method employed 1n this thesis As mentioned above,
discrete-event simulation deals with system models in which changes happen at discrete
instances 1 tme, rather than continuously For example, 1n a model of a computer
communications network, the armval of a message at a router corresponds to a change n the
state of the model The model state in the interval between successive message arrivals
remains constant Since nothing of interest happens to the model between these changes, 1t 1s

not necessary to observe the model’s behaviour except at the time a change occurs

In a discrete-event model, events correspond to state changes and occur instantaneously The
evolution of the simulation 1s described by a sequence of events and the times at which those
events occur The change takes zero time 1¢ each event is the boundary between two stable
peniods n the model’s evolution (pertods dunng which the state vanables do not change), and
no time elapses in making the change The model evolves as a sequence of events and to
descnibe the evolution of the model, we need to know when the events occur and what

happens to the model at each event

The heart of an event-dnven simulation 1s the event set This is a set of (event, 11me) pars,

where event specifies a particular type of state change and fime 1s the point 1n stmulation time
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at which the event occurs The event set 1s often implemented as a list, maintained 1n time-
sorted order The first entry has an event time that 1s less than or equal to the event times of
all other events in the list An event-driven simulation also maintains a simulated time clock,
the value of which 1s the (simulated) time of the most recent event that has occurred The
basic operation of an event-dnven simulation, with the event set implemented as a sorted list,

1s as follows

1 Set the simulation clock to 0 Place a set of one or more mitial events 1n the event list, in

time-sorted order

2 Fetch the event E consisting of the ordered pair (E type, E time) at the head of the event

list If the event list 1s empty, terminate the stmulation

3 Set the simulation time to E tme If E ime 1s greater than the maximum simulation time

specified for the execution of the simulation model, terminate the simulation
4 Use the event 1dentifier E type to select the appropnate event-processing code

5 Execute the selected code Dunng this execution, an event may update system
information held m global data structures, and 1t may cause a new events E' (with E' time
> E time) to be inserted in the event list Note that it does not change sitmulation time

6 At the completion of execution of the event code, go to 2

A key point 1s that events never change the simulation time directly They can only affect
simulation time by the creation of new events that are inserted into the event list A more

detailed description of discrete-event simulation may be found n [Banks, 1998]

3215 The OPNET Simulator

OPNET Modeller™ 1s a hierarchical, object-onented development environment that 1s
designed specifically for the modelling and analysis of communication networks It 1s based
on the prnciples of stochastic discrete-event simulation described above It provides a
hierarchical graphical interface for model specification in which network, node, process and
link models are combined to realise a complete system model It also provides a range of tools

for the specification of stmulation inputs and filtenng and analysis of outputs

OPNET network models define the position and interconnection of communicating entities,
or nodes Each node 1s described by a block structured data flow diagram, or OPNET node
model, which typically depicts the interrelation of processes, protocols and subsystems Each
programmable block 1n a node model has its functionality defined by a process model, which
1s defined by means of C programming code encapsulated within a graphical state-transition
diagram Specification of processes in C 1s facilitated by an extensive library of support

functions providing a range of simulation services All simulation models described in this
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thesis were implemented using the OPNET simulation environment Further details of the
simulator are available on the Web [OPNET, 2004]

An example of a process model (the core structure of OPNET model behaviour) 1s shown 1n
Figure 3 6 below This example shows the main elements of a simulation model of a simple

queuing system that has been realised in the OPNET simulation environment
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The model shown represents a simple First In First Out queue The circles represent system
states and arrows represent fransitions between states The system may only be 1n one state at
any given instant and may only move to a new state via a transition Each transition has an
associated condition that must be fulfilled in order to change state Transitions may be
dependent on system events (such as armval of a packet or completion of service of a packet)
Each state may execute instructions when entered and exited This code may effect a change
in state variables 1n order to affect which transition 1s taken out of the current state An

example of a state variable 1n our example 1s QUEUE_EMPTY

The 1dle state 1s often central to the model Generally, a system will remamn in an 1dle state
until an event occurs In this case, the events are (ARRIVAL) which indicates and arnval of a
packet and (SVC_COMPLETION) which indicates that a packet has completed service The
arnval event 1s generated by an external process not shown here When an arnval occurs, the
model makes a transition to the arnval state and processes the armving packet If the server 1s
idle, then the packet 1s processed immediately 1n the (svc_start) state, otherwise the packet 1s
queued to be processed later and the system returns to the 1dle state Processing of the packet
simply involves setting an event some time 1n the future for the end of the service time Once
this 1s done the system returns to the idle state and warts for the end of service event,
(SVC_COMPLETION)
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3.3. Mathematical Programming Methods for Network
Performance Control

This section descrnibes the mathematical programming methods that are used to formulate and
solve the optimal object placement and network control problems of Chapter 5 Specifically,
these problems fall into the categones of Linear Programmung and Mixed Integer
Programming A general survey of the methods 1s given 1n this section As the methods are to
be applied to real-time control problems, consideration 1s also given to the practicality and the
complexity of solution computation Suitable software tools for problem solution are also

discussed

3 3.1. Mathematical Programming

In a mathematical programming or optimisation problem, we seek to minimise or maximise a
real-valued function of real or integer vanables, subject to a certain set of constraints on the
vanables The function to be optimised 1s referred to as the objective function The possible
values of the objective function, subject to the set of constraints, form a feasible region An
optimisation problem solution gives values of the problem vanables, which produce a
maximum or mimmum value of the objective function 1n the feasible region, if such a value
exists Optimisation problems are generally classified as linear or non-linear A problem 1s
classified as linear if the objective function and all constraints are linear All problems
considered 1n this thesis are linear Linear problems that have all real vanables are referred to
as Linear Programming (LP) problems while linear problems with both real and integer
vanables are referred to as Mixed Integer Programming (MIP) problems Details of LP and
MIP problems and their solution methods may be found in [Walsh, 1985] and [Schryver,
1986]

3.3.2 Linear Programming
The general linear programmng problem may be expressed 1n vector-matnx notation as

minimise or maximise

Z =X, (331

subject to the constraints

AX, <,=,2b (332

and to the non-negativity restrictions

X, 20, (333)
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where c0 is a «-component row vector of real constants, X0 is a «-component column vector
of real variables (the problem ordecision variables), A0 is a m x n matrix of real coefficients
and b is a w-component column vector of real constants, z is referred to as the objective
junction. Note that vector inequalities are applied on a component by component basis. In
principle, all problems of this form can be solved in finite time, provided that a solution
exists. It is possible that problems of this form are infeasible (do not have a solution in the
feasible region) or are unbounded (the value of the objective function may increase or

decrease arbitrarily within the feasible region).

3.3.3. Linear Programming Solution Methods

Three principal mathematical methods exist for the solution of LP problems. The simplex
method, devised by Dantzig [1953], is the basis of most LP solution methods available today.
Although the theoretical efficiency is poor (an exponential-time algorithm), in practice the
method performs efficiently for most practical problems and may be efficiently implemented
on a computer system. Indeed research has shown, as discussed in [Lagarias & Todd, 1990],
that a probabilistic analysis reveals the practical efficiency of the simplex method to be

polynomial.

The ellipsoid method, devised by Khachiyan (see [Aspvall etal., 1980]), is a polynomial-time
algorithm but is generally considered impractical to implement as the operations performed
by the algorithm would require a precision higher than that normally available on a computer
system. Also, in contrast to the simplex method, the number of iterations required to solve a
problem is very close to the theoretical upper bound, so that in practice it may not perform

significantly better than the simplex method.

The more recent interior-point methods, [Karmarkar, 1984], provide an efficient alternative to

the simplex method and are generally preferred for implementing very large-scale problems.

3.3.3.1. The Standard Simplex Method

The simplex method is an iterative procedure for solving the general linear programming
problem. A geometric interpretation of the simplex method is that, given that the feasible
region represents a polyhedron, the algorithm moves from vertex to vertex along edges until
an optimal vertex is reached. The main elements of the method are described below. Further
detail may be found in [Walsh, 1985].

The first step of the simplex method is to change all inequality constraints in (3.3.2) into
equality constraints, A slack variable is added to the left-hand side of < inequality
constraints and, similarly, a surplus variable is subtracted from the left-hand side of >

inequality constraints. Assuming that the original problem is rearranged so that the first a
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constraints are <, the next b constraints are 2 and the remaming (m — a — b) are equality

constraints, the constraint equations of (3 3 2) may be written 1n the form

I, ©
Agx,+| 0 -1, |x, =b, (33 4)
0 0

where x, =[x,.,, sXpia +»] 15 the vector of surplus and slack variables, I, and I, are umt

matrices of orders @ and & The non-negativity restrictions of (3 3 3) are now

x, 20 (335)
and the objective function of (3 3 1) becomes
z=cyX,+C,X, (336)

where ¢, 1s the zero vector with (@ + &) components The problem of maximising the
objective function of (3 3 6) subject to (33 4) and (3 3 5), 1s equivalent to the onginal
problem defined by (33 1), (332) and (33 3) The ongmnal problem may therefore be

expressed 1n the form

Maximise Z=CX,

subject to Ax=b and x20, (337
I, © X, Co

where A=A, 0 -I,|, x= , €=
0 0 X 0

This form of the problem gives the starting point for the simplex algorithm Note that if m, the
number of constraints, 1s equal to N, the number of vanables, and if rank(A) = m, then
equations (3 3 7) have the unique solution x=A"'b and there 1s no optimisation problem
The feasible region, 1if 1t exusts, consists of a single pont Also, 1if m > N and rank(A) = N,
then (m — N) of the constraint equations are redundant and again equations (3 3 7) have a
unique solution However, assuming that m < N and rank(A) = m, then the problem forms an
optimisation problem where equations (3 3 7) may have a non-unique solution (the feasible

region 1s some region greater than a single point)

Algorithm Iteration

Assuming an optinusation problem as described above, if m lincarly independent column
vectors of A are chosen, and 1f (N - m) vanables corresponding to the remaining columns of

A are set equal to zero, then the resulting set of m equations has a unique solution, termed the
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basic solution The m vanables of the basic solution are termed basic variables while the
remaining (N — m) vanables arc termed non-basic variables The column vectors of A
corresponding to the basic variables together comprise the basis matrix It has been proven
that n searching for an oprimal feasible solution of the general problem, it 1s only necessary
to consider basic feasible solutions The simplex algornthm progresses by moving from one
basic feasible solution to another that gives an improvement in (or the same value of) the
objective function Eventually the iterations lead to an optimal basic feasible solution, 1f one
exists Note that 1t 1s also possible that the problem 1s unbounded, whereby there 1s no upper

bound on the objective function

In order to progress from a basic feasible solution to a better one the following procedure 1s
applied 1) Determine which non-basic varnable will mncrease the objective function value
most swiftly 1f allowed to take on a positive value This variable 1s moved to the set of basic
vaniables 2) Allow this new basic varable to increase 1n value until one of the basic vanables
i1s forced to zero This variable 1s moved to the set of non-basic vanables The solution of the
new basis, formed by the above steps, gives the new basic feasible solution for the next
iteration Iteration 1s stopped when there 1s no non-basic vanable that, if allowed to become
positive, would increase the value of the objective function (assuming a feasible solution

exists)
Algorithm Imtialisation

To commence 1iteration of the algorithm, an 1nitial basic feasible solution 1s required If the
basis of the imtial problem of (3 3 7) has a feasible solution, simplex iteration commences
from this solution These problems are referred to as single-phase problems If there 1s no
feasible solution then an additional phase 1s required to find an 1nitial basic feasible solution
An auxiliary problem 1s formulated whereby artificial variables are added to the constraint
equations In the two-phase method, the artificial vanables are given a price coefficient of 1
for a minimisation problem or -1 for a maximisation problem and all other vanables are given
a price of zero The objective function becomes the sum (or negative sum) of the artificial
vanables An imitial feasible solution to the auxiliary problem 1s readily available and the
simplex calculations are applied to produce a basic feasible solution This completes Phase 1
of the method In Phase 2, the non-artificial vanables are then reassigned their onginal cost
coefficients (¢ vector) and simplex calculations proceed normally Several vanations of this
method have been devised for example the M-method, [Charnes, 1953]

3332 The Dual Sumplex Method

Normally an mtial basic feasible solution 1s required to mmate the simplex method This can

consume a considerable amount of computation 1f the mtroduction of artificial varables 1s

81



necessary The dual simplex method has the advantage of allowing initiation with a non-
feasible basic solution The fundamental 1dea behind the method 1s that the choice of basic
and non-basic vanables to be exchanged 1s determined by criteria applied to the current dual
tableau (see [Walsh, 1985]) Once these vanables have been chosen, the usual simplex
transformation equations are used Generally, duality 1s useful 1n the following situations 1)
There are more constraints than vanables The dual basis matrix 1s then smaller than the
primal basis matrix and so computation 1s reduced, 2) The dual constraints are all of the <=
type A basic feasible solution for the dual problem can then be written down immediately 3)
It 1s required to add a further constraint to a problem already solved The additional prnimal
constraint becomes merely a further variable in the dual problem, with a value of zero at the
time 1t 1s added Further details of the dual simplex method and 1ts applications are available
in [Walsh, 1985]

3333 Efficiency of Simplex Methods

As mentioned previously, the simplex method 1s an exponential-time algonthm 1¢ 1n the
worst case the number of possible anthmetic steps required to reach a solution increases
exponentially with the number of problem vanables However, 1t has been shown that the
probable average running time of the simplex method 1s much better (polynomial-time
bounded) In practice, the simplex method 1s generally considered efficient when applied to
large practical problems and indeed most current software implementations for the solution of
industnial-scale linear programming problems are still based on the simplex method The use
of the dual simplex method is often applied judiciously by software implementations to

reduce computation 1n two-phase problems

3334 Intennor-Point Methods

Recently interior-pomnt methods, a new class of polynomial-time methods for the solution of
linear programming problems, have been the subject of much research Since its onginal
mception, [Karmarkar, 1984], refinements of the method have been studied and implemented
on computer systems and are reportedly competitive with the best simplex methods available

For very large-scale problems, interior-point methods may even outperform simplex methods

The general 1dea behind interior-point methods 1s that the algonthm generates iterates that he
in the intertor of the feasible region (rather than strictly on the boundary as simplex methods
do) The 1teration then progresses toward the boundary of the region and towards an optimal
solution Although intenior-point methods promise improved efficiency for very large-scale
LP problems, the problems n this thests are considered small enough in scale to be handled

efficiently by simplex methods



3 3.4 Mixed Integer Programming

When a programming problem has decision vanables, which may only take integer values, 1t
1s referred to as an Integer Programming problem When some, but not all of the decision
varnables are restricted to integers, the problem 1s referred to as a Mixed Integer Programming
(MIP) problem The usual LP solution methods cannot be applied directly to such problems
and often far more computation 1s required than for the same problem without integer
constramnts The sections below describe relatively efficient solution methods for such

problems (Note that all MIP problems considered 1n this thesis are linear )

3 3 5. Mixed Integer Solution Methods

The most common approaches to the optimal solution of MIP problems are the branch and
bound and the branch and cut methods These methods rely on LP solution methods (such as
the simplex method) to solve sub-problems, which have had the integer constraints relaxed

Further details of these methods may be found 1n [Schmyver, 1986]

3351 Branch and Bound

The most widely used method for solving integer and mixed integer programs 1s branch and
bound This method begins by finding the optimal solution in the absence of the integer
constraints If 1t happens that in this solution the decision vanables whose values are
constrained to be integers already have integer values, then no further work 1s required If one
or more Integer variables have non-integral solutions, the branch and bound method chooses
one such variable and “branches”, creating two new sub-problems where the value of that
vanable 1s more tightly constrained These sub-problems are solved and the process 1s
repeated, “branching”™ as needed on each of the integer decision variables, until a solution 1s
found where all of the integer vanables have integer values (to within a given tolerance)
Hence, the branch and bound method may solve many sub-problems, each one of which 1s an
LP problem The “bounding” part of the branch and bound method 1s designed to eliminate
sets of sub-problems that do not need to be explored because the resulting solutions cannot be

better than the solutions already obtained

3352 Branch and Cut

With the branch and cut method, a lower bound 1s provided by the LP relaxation of the
mteger program If the optimal solution to the LP problem 1s not integral, this algonthm
searches for a constraint, which 1s violated by this solution, but 1s not violated by any optimal
mteger solutions This constraint 1s called a curting plane When this constraint 1s added to the
LP the new optimal will be different, potentially providing a better lower bound Cutting

planes are evaluated iteratively until either an integral solution 1s found or it becomes
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impossible or too expensive to find another cutting plane In the latter case, a branch

operation 1s performed and the search for cutting planes continues on the sub-problems

3353 Efficiency of MIP Solution Methods

Unlike LP problems, MIP problems generally exhibit an extremely large (combinatorial)
increase 1n the number of possible solutions as the problem size increases However, the
branch and bound method needs only to enumerate a fraction of the feasible solutions to reach
an optimal integer solution Also, if integer vanables are restricted to binary (0-1) variables,
computation may be further reduced All MIP problems 1n this thesis are formulated with
only bmary vanables The branch and bound method 1s generally regarded as the most
efficient method for these problems and 1s the one adopted here Branch and bound solving
software, such as that described below, often includes proprietary refinements, which further

reduce solution complexity

336 Mathematical Programming Solvers

A great number of implementations of programming solvers exist at present The IBM

Optimisation Solutions and Library (OSL) was chosen from amongst these because

» 1t provided efficient implementations for all problem types that were encountered
e 1t1s easily integrated with other software (¢ g simulations) via a C language API

» 1t1s well recognised 1n industry, 1s well documented and 1s relatively easy to use

The OSL compnses of an optimal set of functions for easily creating, manipulating, solving
and analysing linear, mixed-integer and quadratic programming models The LP problem
solver includes simplex method and mtenor-point solvers The simplex method solver was
chosen, as the problems encountered were relatively small-scale The MIP problem solver
uses the branch and bound method of solution Further details of the OSL may be found on
the Web [OSL, 2004]

3.4. Market-Based Methods for Network
Performance Control

Market-based control 1s a distnbuted resource allocation and control technique, which aims to
achieve some overall coherent global behaviour of a system, through the use of economic
models The resources (and the use of resources) 1n the system are modelled by supplier and
consumer agents, which have individual goals A consumer attempts to optimise its
performance cnterna by obtaining the resources 1t requires, without concem for system-wide
performance A supplier’s goal 1s to optimise its individual profit, based on its choice of

resource allocations to consumers, again without concem for system-wide performance
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Economic models often introduce money and pnicing as the technique for co-ordinating the
selfish behaviour of the agents The price a supplier charges for a resource 1s determined by
its supply and by the demand from the consumers for the resource Typically, each agent
participates 1n an Iiterative auctton process where 1t faces a set of prices and replies with a
demand/supply message From the total demand/supply of the market, a new set of prices 1s
computed This 1s 1terated until supply 15 equal to demand for each commodity, referred to as

the general equilibrium of the market (illustrated in Figure 3 7 below)

Volume

Supply

/ Equilibnum

Demand

3 Price

Figure 3 7 General Market Equilibrium

An altemative to the price-oriented approach 1s the resource-oriented approach In this case,
the general equilibrium 1s expressed as the allocation of resources such that each agent 1s
willing to pay the same pnce for an additional small amount of resource The auctioneer sets
the allocation of commodities to agents at each iteration and agents report how much they are
prepared to pay for an additional small amount of each commodity The auctioneer then takes
these declarations into account when changing the allocation 1n the next iteration - agents
with high willingness to pay get more, the others less The algorithm terminates when, for all
commodities, all agents are willing to pay the same prnice for an additional small amount of

the commodity

In order to model the bidding behaviour of agents, unlity functions, which encapsulate the
preferences of a consumer, are employed A utiity function 1s essentially a preference
ordenng, where a high value of the utility function for some consumption bundle means that
such a bundle 1s preferred over a bundle with a lower utility function value If a number of
agents can trade commodities 1in such a manner that all agents have higher utility after the
trade, then the agents are motivated to trade commodities with each other If trading 1s
performed 1n the context of a price-based market (every commodity 1s evaluated in terms of
another commodity or using a monetary unit) each agent will face the optimisation problem
of how to maximise 1ts utility given the prevailing market prices and utility function For the
resource-oriented approach, only the utility functions are rcquired to perform the auction

process
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Market-based approaches to resource allocation hold the advantages of the decentralised
control approach They can facilitate resource allocation with very lhitle mmformation e g
price A coherent global behaviour may be achieved through very simple interactions € g
trading and auctioning Agents require only very limited knowledge of each other and are thus
more dynamic than a centralised controller However, the market-based approach doesn’t
generally guarantee an optimal solution but can achieve adequate results A review of market-

based control for resource allocation may be found in [Clearwater, 1996]

In Chapter 5, a resource-onented market strategy 1s developed and applied to resource
allocation problems on distributed service platforms Utility functions are denived from the
revenue value generated for successful service sessions and resources are allocated 1n order

that overall network profit 1s maximised

3.5. Chapter Summary

The chapter has detailled the methods and tools required to perform the analysis and
simulation work undertaken in this thesis In particular, a suitable analysis model (LQNs) has
been chosen for application to the analysis of client-server systems Also a suitable simulation

method (discreteevent simulation) and simulation tool (OPNET) have been 1dentified

Mathematical programming methods, that are applied to the network optimisation and control
problems of Chapter 5, have also been discussed An overview of the Market-based methods
applied in Chapter 5 have been given Various other concepts which arise 1n the thesis (basic

probabuility theory, stochastic processes and queuing theory) have been outlined
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Chapter 4. Model of a Distributed
Telecommunications
Service Platform

In this chapter we develop a simulatton model of a distnbuted CORBA-based service
platform executing three different IN services This model 1s employed to study the
performance controls developed in Chapter 5 The service platform model 1s based on an
IN/CORBA Computational Object model, which we describe here We give our modelling
assumptions and describe the operation of the simulation model in detail This service

platform model 1s also used to dertve an analytic model in Chapter 6

4.1. Simulation Model Description and Rational

The pnmary motivation for the simulation model 1s to mvestigate how loading and delay
associated with a CORBA-based service platform varies as a function of incoming traffic

intensity, Computation Object placement, and external and internal performance controls

The simulation model structure 1s based on TINA-IN and IN/CORBA 1nter-working, as are
described n Chapter 2 The basis of the model 1s the replacement of the Intelligent Network
Service Control Point (SCP) and Service Data Pownt (SDP) with a network of service nodes
which host software objects communicating via a remote method call mechanism, 1€ via the
CORBA Object Request Broker (ORB) In this scenano, the IN Service Control Function
(SCF) and Service Data Function (SDF) are no longer encapsulated within single functional
entittes, but are decomposed nto fine-grained Computational Objects (COs) which use the
ORB for communication These objects communicate with entities in the legacy Intelligent
Network via INNCORBA Gateways Thus, the service logic programs and data that normally
reside at the SCP and SDP are distributed across a multi-node network It 1s the performance
of this distnbuted SCP/SDP that 15 the pnmary target of investigation Figure 4 1 shows the
general network configuration in the CORBA-based SCP/SDP scenario and how it may

interconnect to a legacy Intelligent Network
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In order to determine performance characterstics of such a network with accuracy, a certain
level of detail 1s required in the model The performance effects of distnbuted communication
between objects in the CORBA domain, which provide IN services, are of prnimary
importance Thus, individual procedure calls between distnibuted objects are modelled in
detail As loading 1s heavily dependent on the nature of the service being executed in the
network, attention has been paid to accurately representing a number of real IN services in the
model These considerations allow an accurate representation of loading and how 1t 1s
distributed 1n the network In order to accurately determine delays in the network and the
overall delays expenienced by users, the effects of queuing 1n processing nodes needs to be
modelled The semantics of message processing by the ORB have been taken into account
determining the server model The remainder of this chapter details these model elements and
states the assumptions made 1n ammving at their particular representations A description of

how the model was implemented in OPNET 1s also given

SSP

Figure 4 1 IN/CORBA Interworking Scenario

4.2, The Network Model

The network configuration chosen for study consists of a network of ten CORBA processing
nodes Two of these ten nodes have an interface to the SS 7 domain These two nodes are
referred to here as Gateway Service Nodes (GWSNs) The remaining eight CORBA Service
Nodes (SNs) do not interface directly with the SS 7 domain  The motivation for the number

of SNs and GWSNs chosen 1s based on the following considerations

e It 1s assumed that the CORBA service network will replace one collocated fault-tolerance
pair of SCP nodes that interact with one SDP 1n a legacy Intelligent Network
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Apart from the gateway function of the GWSNs, GWSNs and SNs are considered

identical and all ten service nodes are assumed to have equal processing capacities

It 1s assumed that individual CORBA service nodes have somewhat less processing
capacity than a purpose-built SCP/SDP as they would likely consist of less costly, genenc
Pentium based architectures It 1s assumed that the processing capacity of a single service
node 1s 0 4 times the processing capacity provided by one SCP interacting with the SDP

It 1s also assumed that service execution in the CORBA domain requires considerably
more processing time than in an SCP/SDP due to the additional processing required for
distnbuted calls and the added complexity of the service architecture We assume that
each CORBA node has only 50% the efficiency of one SCP/SDP

Given these assumptions, 10 service nodes are required to provide approximately the same

processing capacity of the onginal two legacy SCPs and one SDP Numencally
(04x05x%x10 SNs=2 SCP/SDPs)

Furthermore, given that this network of service nodes replaces two SCPs, 1t was considered

reasonable that each legacy SCP would be replaced by one GWSN

The following additional assumptions were made regarding the network

The service nodes are assumed to be fully connected by a highly redundant network with

low transmission times

It 1s assumed that delays in network transmitter queues and transmission times in the
network are neghgible compared to delays due to marshalling and de-marshalling of
CORBA method calls between nodes Expenments with an IN/CORBA prototype have
shown [McArdle et al, 2000] that marshalling and de-marshalling times for the
IN/CORBA IDL used for this model are typically an order of magnitude greater than
transmission times over a fast LAN As service session IDL 1s similarly complex, we
assume that this 1s also the case for the service COs

It 1s assumed that the transport 1s reliable, 1 ¢ there 1s no message loss

The legacy IN entities (the SCP and IP) and the SS 7 network are not modelled explicitly
but are viewed as an amalgamated source and sink of messages arnving to and departing
from the GWSN nodes Messages sent to the SSP are simply delayed before a return to
the gateway 1s made

As the service network performs functions nomally provided by the IN SDP, 1t 1s
assumed that no legacy SDPs are required in the SS 7 domain and interactions with
legacy IN SDPs are not modelled

It 1s assumed that all Intelligent Peripheral (IP) functions remain n the SS 7 domain as
these are normally tightly coupled to the switching network (§SPs) Commumnication with
these 1s modelled (for services that require the IP)
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4.3. Modelling the Gateway and Service Components

In order to define message sequences for service execution 1n the model, we start by defining
the objects required at the gateway and in the CORBA domain and consider their interactions
duning execution of a service session The model of the gateway and service components
defined here has been denved from the TINA-IN and IN/CORBA inter-working studies
detailed in Chapter 2

431 Gateway Components

The GWNS nodes execute the functionality required for inter-working between SSPs and IPs
in the SS 7 domain and the CORBA-based SCP/SDP It 1s assumed that the Gateway function
consists of the standard IN/CORBA inter-working components [OMG, 1999], described tn
§2 42 The IN/CORBA Gateway function 1s modelled by considering only the core inter-
working components necessary for communication between the IN and CORBA domains
during a service session 1¢ the SSF Proxy, the IP Proxy and the SCF Proxy objects (Figure
42) The factory objects and the semantics of object creation are not modelled as it 1s
assumed that this process can be handled efficiently with little impact on performance For

example, a pool of SCF Proxies may be created in advance

IN/CORBA Gateway CORBA-based SCP/SDP

SSF/IP Pro f
( Factory h SCF Proxy Factory \
/ @ 7 FQ
~
[} 1
I ]
U
sspp < 557 Stac" -— > Q Q
|nterface

8SFand IP SCF Proxy

\ Proxies / /

Figure 42 Modelling of INCORBA Interface Components

Service
Implementation
Objects

Considenng interactions between the proxy objects, the SSF and IP Proxies accept INAP
operations from the SSPs and IPs, via the SS 7 stack interface, and translate them to CORBA
invocations on the SCF Proxy The SCF Proxy accepts INAP IDL invocations from other
objects in the CORBA domauin, transferring them to the SSF and IP Proxy objects, which
translate them to the corresponding INAP operations on the SSFs and IPs It 1s assumed that,
all of these proxy objects use the standard Q1218IN_3 DefAc IDL interface for
communication, which 1s defined by the mapping of the ITU-T Q1218 INAP specification to
IDL as per [OMG, 1999] All messages and message processing times used m the model, as
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described 1 §4 5, have been based on this IDL specification Note that the SSF Proxy, IP
Proxy and the associated functions required to interface to the SS 7 stack, are not considered
to be distributable 1n the CORBA domain and are thus modelled as a single computational
object, the Gateway (GW) object

4 32, Service Components

It 1s assumed that the IN service logic and data, residing on the CORBA platform, 1s realised
by a subset of the computational objects composmg the TINA Service Architecture [TINA-C,
1997]

A similar approach to that given 1in [Herzog & Magedanz, 1997) 1s adopted, which defines
methods for modelling IN services executing in a TINA environment Here 1t 1s assumed that
all calls onginate and terminate on the IN side so that neither the calling nor called party uses
a TINA end-system and thus, 1s not modelled as a TINA user This 1s appropniate for the
CORBA-based SCP scenano as all SSPs resides in the IN domain and these are the only
onginators of calls As a result, the IN service capabilities may be encapsulated entirely
within the TINA Service Session COs The TINA Access Session 1s not required and the COs
that provide this functionahty are not required

With this approach, all calls are established through the Gateway (GW) under the supervision
of the TINA Service Session Manager (SSM) The service capabilities are modelled within a
User Apphication (UAP), mteracting with an SSM, which makes use of a service specific IN
Service Support Object (SS0), € g a database containing number translation tables As there
1s no call-party specific access session, the User Agent (UA) 1s anonymous and acts on behalf
of all IN users The Provider Agent (PA) 1s also genenc in this case Figure 4 3 below shows
the COs required, and their dependencies, for an implementation of a typical IN service

(Virtual Private Network)

SSP

O

Figure 4 3 Computatwnal Objects Required for a Typical IN Service
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For any service session, on receipt of the imitial service request from the SSP, the GW passes
the imtial call to the UAP via the SCF' Proxy (SCFP), which 1n tum mitiates a corresponding
TINA service session via the PA The PA mteracts with a UA 1n order to perform a generic
access session for service session establishment Once the SSM has been created and
initiahised by the Service Factory (SF), a control relationship 1s established between the IN
SSF and the TINA SSM The nteractions between components are thence dependent on the
specific service m execution Note that the GW, SCFP, PA, UA and GSEP are not specific to
a particular service, whilst the SF, UAP, SSM and the SSO are all service specific

4.4. Distribution of Computational Objects

Having defined the network and the software objects being modelled, the following
assumptions are made regarding the assignment of computational objects to SNs and

GWSNs

e  With the exception of the GW computational object, there 1s no restriction on assignment
of computational objects to network nodes The GW may only be instantiated on the

GWSNs
e COs are assumed to be atomic That 1s, they may not be decomposed into smaller objects
and distrnibuted between nodes
The assignment of specific COs to specific SNs and GW SNs 1s determined by a set of optimal
methods developed 1n Chapter 5 The resulting optimal assignments are detailed in Chapter 6
An example of an optimal distnbution for a ten-node network supporting three different

services 1s shown 1n Table 4 1 below

3 286 . .. .<802¢
Z O LA D O D D P W n A B o®
1 x X X X X X X X
2 x X X X X X X X
3 X X X X X X X
4 X X X X X X X X X X X
5 X X X X X X X X X X X X
6 X X X X X X X X
7 X X X X X X X X
8 X X X X X X X X X X X X
9 X X X X X X X X X X X
10 x x X x X X X

Table 41 An Example Object Distribution
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4.,5. Distributed Call Model

It 1s assumed that all communication between COs dunng a service session uses the remote
method call mechanism of the CORBA ORB The following sections detail the assumed

behaviour and processing times associated with the ORB

4,5,1. Execution Semantics

It 1s assumed that an asynchronous invocation mechanism 1s used for all calls 1€ a process
making a CORBA client call does not block while waiting for a response from a server (This
1s achievable in many commercial ORBs by use of ‘call-backs’ or multi-threading of client

calls)

Regarding processing, execution of a call on the client side consists of processing for the
appropriate client processing time, then processing for the appropnate protocol encoding time
(marshalling) 1f the message 1s to be sent to a different node After these times the message
has left the client node and the processor may commence processing the next message tn the
client-side queue On the server side, at this same 1nstant, the message 1s added to the server
queue for processing These processing times are detailed n the next sections It 1s assumed

that all objects execute 1n one server, served by a single FIFO job queue

452 Message Processing Times

Each message passed between two COs has associated with 1t (1) a CORBA marshalling
(protocol encoding) time on the client-side node, (11) a CORBA de-marshalling (protocol
decoding) time on the server-side node and (1) a processing time for completion of some

service specific task on both the client and server side nodes

Figure 4 4 shows execution times for messages passed between COs In the nght hand figure,
two COs are executing on different processors The processing times Tcp (client processing
time) and Teo (ORB marshalling time) gives the total processing time at the client node
associated with this message Similarly, Tso (ORB de-marshalling time) and Ty give the total
processing time at the server node In the left hand figure, both COs are executing on the

same processor so the total processing time 1s given by Tcp and Tsp

Marshalling, de-marshalling and processing times are assumed to remain constant for a
particular message over all sessions of a service If the communicating COs are located on the
same node, the marshalling and de-marshalling times are not included in the overall
processing time for the message as 1t 1s assumed that the ORB 1s not required for

communication (1 ¢ the call 1s a local function call)
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The marshalling and de-marshalling times used for the simulation model are denved from

Figure 44 Message Processing

times we measured on a commercial ORB (Visibroker 3 3 running on a Sparc Ultra 5) The
IDL used for determining timing measurements 1s based on the IN/CORBA specification and
the TINA Retailer Reference Point specification [TINA-RET, 1999] so that each message has
associated with 1t the appropriate marshalling and de-marshalling times Processing times for
actual service related tasks are based on the processing times for the service executing on a
legacy SCP These times are based on those reported 1n [Jennings, 1999] All processing

times 1n the model are deterministic

4.6. Specification of Test Services
We specify three standard IN services for execution 1n the model

o Service A Virtual Pnivate Network
e Servicce B Ringback

¢ Service C Restnicted Access Call Forwarding

These services have varying levels of complexity Service C 1s the simplest with 32 messages
1n total and one user interaction phase Service A 1s more complex with 36 messages and two
user nteraction phases Service B 1s a high complexity service with 66 messages and four

user interactions The following aspects of service executton are modelled

e The correct sequencing of messages dunng a successful session It 1s assumed that service
users never abandon ongoing service sessions and thus 1t 1s not necessary to implement
the signalling required for premature session termination Exception messages due to

error conditions are also 1gnored

e The processing load for each message processed dunng a service session (as described 1n
§45)

e  An estimate of the delays incurred during a session due to actions on the service user (¢ g
conversation time, digit entry) These delays are modelled as draws from a negative

exponential probability distribution with an appropnate mean value
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¢ An estimate of interaction times with the SSP (other than duning user interaction) These
times are similarly modelled as draws from a negative exponential probability distnbution

with an appropriate mean value

The objects required to execute each of the three services are shown 1n the Figures 4 5-4 7
below COs are shown as graph nodes and COs which interact during a service session are
jomed by an edge In these diagrams, components that are subscnpted by the letters A, B and
C are specific to Service A, Service B and Service C respectively Components that are not

subscripted are used by all services

@

Figure 45 Computational Objects for Service A

Figure 4 6 Computational Objects for Service B

SSF

Figure 4 7 Computational Obyects for Service C
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4.6.1. Service A. Virtual Private Network

Service Description The Virtual Private Network service creates a logical sub-network
spanning a single or multiple IN network domains which appears to a specific group of users
as a private network, providing the types of services normally associated with private
exchanges In this scenario, all calls are normally controlled by a SCP, which provides

facilities such as number translation and call monitoring

Figure 4 10 (in Section 4 9) presents the message sequence chart (MSC) for a successful
sesston of this service, as implemented using the CORBA-based SCP/SDP It also defines the
user interaction phases for the session The duration of the User Interactions Al and A2
(conversation) are to be drawn separately for each service session from a negative exponential

distribution with a mean of 100 seconds

Table 4 2 (in Section 4 9) provides details of the processing times associated with each

message

4 6.2. Service B Ringback

Service Descnption The Ringback service allows a calling party, upon receipt of an engaged
tone for a specific called party, to request that a call be automatically initiated to that called
party once his/her current call has terminated To realise this service in a conventional IN, the
SCP signals the SSP to report when the called party’s current call terminates, after which 1t
signals the SSP to imitiate a call between the calling and called parties

Figure 4 11 (in Section 4 9) presents the MSC for a successful session of this service, as
implemented using the CORBA-based SCP/SDP 1t also defines the user interaction phases
for the session Note that, for clarity, interactions with the IP are shown as using a separate IP

Proxy In reality the SCF and IP Proxies are the same object

The duration of the User Interaction B1 (play announcement) 1s to be drawn separately for

each service session from a negative exponential distnbution with a mean of 5 seconds

The duration of the User Interaction B2 (conversation) 1s to be drawn separately for each

service sesston from a negative exponential distribution with a mean of 100 seconds

The duration of the User Interactions B3 and B4 (phone nnging) are to be drawn separately

for each service session from a negative exponential distribution with a mean of 5 seconds

The duration of the CTR message to the SSP returning with ARI to the gateway 1s to be
drawn separately for each service session from a negative exponential distnbution with a

mean of 10 ms

Table 4 3 (in Section 4 9) details the processing times associated with each message
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4 6.3. Service C: Restricted Access Call Forwarding

Service Description Basic call forwarding allows a user to redirect incoming calls to a
different number transparently to the calling party A vanation of this, in which the calling
party must enter a specified PIN number before the call 1s forwarded to the other number 1s

modelled here

Figure 4 12 (in Section 4 9) presents the MSC for a successful session of this service, as
implemented using the CORBA-based SCP/SDP 1t also defines the user interaction phases
for the session Note that, for clarity, interactions with the IP are shown as using a separate IP

Proxy In reality the SCF and IP Proxies are the same object

The duration of the User Interactions C1 (prompt and collect user nformation) are to be
drawn secparately for each service session from a negative e¢xponential distribution with a

mean of 5 seconds

The duration of the CTR message to the SSP retuming with ARI to the gateway 1s to be
drawn separately for each service session from a negative exponential distribution with a

mean of 10ms seconds

Table 44 (in Section 49) provides details of the processing times associated with each

message

464 Message Details for Test Services

Details of the messages for the three test services are given 1n Tables 4 2-4 4 (in Section 4 9)
Each message has associated with 1t message execution times which have been used 1n the
simulation The message numbers match with message numbers 1n the MSCs (Figures 4 10-
412, 1n Section 4 9) The first column of times gives the protocol encoding times n the
client The second column gives protocol decoding times in the server The third column
gives processing times for service related tasks 1n the chent and the fourth gives service

related processing for the server

4.6 5 Traffic and Loading Scenarios

The source of traffic for new service session mitiation (JmitialDP messages) 1s generated at
the entry point to the GWSN node 1n the simulation We make the assumption that this traffic
has exponentially distnbuted inter-arnval times and can accurately represent the amalgamated
traffic from all SSPs connected to the GWSN Apart from the mnitial message traffic, all other
messages mvolving interaction with the SSP or service users are modelled independently, as
gtven 1n the service descriptions above The mean traffic volumes of imitial requests presented
to each GWSN may be varied independently according to service type The specific loading

scenarios used for performance mvestigations are described 1n Chapter 6
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4.7. Simulation Model Implementation

Here we describe the OPNET discrete-event simulation that was developed for performance
modelling of the distributed service platform We describe mn detail how the computational
model maps to the simulation model and describe how performance control algorithms are

implemented 1n the simulator

A schematic of our distributed service platform simulation model 1s shown in Figure 4 8 The
main elements of the model are a message model, a network model and a node process model

An overview of the model function 1s as follows Application procedure calls during service
execution are represented by messages, which are routed by the network Node processes
represent CORBA servers (which can also make client calls) Node processes hold messages
for the appropnate processing times and also send and receive messages between each other

This process behaviour represents procedure calls between COs duning execution of a service

As many service sessions may be i progress simultaneously, the simulation must keep track
of which messages belong to which service sessions For simplhcity, this 1s done by storing
state information 1n the messages rather than at the nodes Traffic to and from the Intelligent
Network 1s modelled by IN Traffic Modellers, which generate new service sessions (of the
three different service types) The IN Traffic Modellers simulate processing and retum of
messages from/to the SSF They also collect round trip time (RTT) and rejection ratio (RR)

statistics Details of each of the model elements are given below

47 1. Messages

Local and remote function calls between COs are represented as simple message passing in
the simulator A remote call 1s represented as two messages - one for function invocation and
one for function return Local calls are represented as a single message and remain internal to
node process Messages contain fields (Figure 4 8 bottom) which are required for proper
routing and processing of remote function call messages dunng the simulation Address fields
allow function mmvocation/return messages to be sent and received over the network between
node processes ‘Type’ fields identify a particular message as relating to a given function
invocation/return for a given service type Session related fields store information about the
particular session that the function invocation/return message relates to A time stamp field 1s
used to calculate network delays The five message fields and their associated protocol

function are as follows

(1) The GW Address field records the address of the source Gateway Node that imitiated the
service session The Traffic Generator sets this field when the first message (InitialDP) of a
new service session 1s created This field 1s copied into all subsequent messages relating to

this session This mmformation allows messages to be sent back to the correct service user (/N
Traffic Modeller)
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Figure 4 8 Service Platform Simulator
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(2) The Destination Address allows basic routing of messages from node to node and back
and forth from the IN Traffic Modeller This address 1s 1itially set in the traffic generator to
be the address of the processing node to which 1t connects Subsequently, 1t 1s modified 1n
node processes for re-routing of the message Node processes may also create new messages
(at forking points in the MSC) and must set the destination address appropriately The
destination that 1s set or modified in node processes will be determmed by the mnternal
performance controller (load balancing algonthm) and the session state information (see
below) The load-balancing scheme has knowledge of placement of all COs in the network

and so will only route a message towards a node that hosts the target CO

(3) The service type (Sve Type) and (4) message type (Msg Type) fields simply identify
which function nvocation/return of a particular service the message represents This
information 1s required by the node process so that the correct message encoding/decoding
and processing times may be applied These times are as per the message details tables given
in §4 9

(5) Session State field To reduce the complexity of the node process, messages store service
session state nformation so that the node process does not need to hold state information on
all sessions currently active (This 1s not intended to represent how a distributed system would
function 1n reality but 1t 1s functionally equivalent to storing state in the process and will have
no immpact on simulated performance) Any new messages, created in the context of a
particular session, copy all nformation in the Session State field from the previous message

This preserves the state across all messages of the session

The Session State field 1s expanded in Figure 4 8 (bottom) The Session ID sub-field records
the particular session to which the message belongs This ID 1s set by the Traffic Generator
and incremented for every new session created This allows all active sessions to be correctly
tallied The Session ID 1s primanly used, in comjunction with the 7ime Stamp field, to

calculate service session completion times (RTTs)

The Session ID field also contains a list of CO addresses (the CO Addr sub-fields) The
purpose of this 1s to maintain correct session execution semantics That 1s, once a particular
CO mnstance (at a particular node) has been invoked during a service session, 1t must be used
for the remainder of that session (Otherwise the implication 1s that, in a real distributed
system, different CO nstances would be able to somehow share state during a service session
- which 1sn’t normally the case) Each time a CO type is called for the first time during a
service session, a CO Addr field 1s added to the list and set with the ID of the CO (which 1s
known system wide) and the destination address of the node hosting the CO This information
1s then searched 1f the same CO type 1s required later in the session If there 1s no record of its

previous use, then the load balancing lookup table 1s used to select a node that hosts the CO
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(6) The Time Stamp ficld 1s set by the Traffic Generator when the first message 1n the session
1s created This time stamp 1s copied to all subsequent messages in that session This time
stamp may be subtracted from the service session ending time 1n order to compute the RTT

for the session

As service sessions do not end at the IN Traffic Modeller, but instead internally to the service
platform, a special message 1s sent from the network to the traffic modeller after processing of
the last service message has finished This message has zero processing times and reaches the
modeller in zero simulation time This allows all RTT data to be collated at the traffic

modeller

4.7.2. The Network

The network’s function 1s simply to route messages between nodes without delays As
discussed earlier, 1t 1s assumed that protocol encoding/decoding times are considerably larger
than network transmission times We assume that the network 1s over-capacitated so that even
when nodes are under heavy load, network processors and queues are still lightly loaded and

do not contnbute significant delay

4.7.3, Processes

Each processing node 1n the network has an 1dentical processor model as shown 1n Figure 4 8
(top) The mam elements of the node model are a FIFO input message queue, a queue polling
mechanism, a number of processing stages, a message generator and a set of service

spectfications, one for each service type

Messages arriving from the network are queued until the queue s polled When polled, the
message at the head of the queue 1s removed and processed in the ORB Decode Processor
The message 1s held for the appropnate de-marshalling time, which 1s specific to the message
type (1dentified by the Msg Type and Sve Type message fields) The message 1s then passed
on for a message specific server-side processing holding time 1n the Server Processor At the
end of processing the message 1s evaluated by the Message Generator and Switch This
evaluation 1s based on a combination of the appropriate MSC for the particular message, the

Session State, and the load balance lookup values, as described below

Firstly, the next message(s) 1n the message sequence and the corresponding target CO(s) for
the message are looked up If there 1s a fork at this point in the MSC, more than one new
message/target-CO pair are generated and these are internally queued in the Message
Generator and Switch The target CO for each new message 1s then evaluated in terms of the
Session State information This may determine that a message should be (a) processed locally

(if the target CO has been called previously in this session and resides locally) or (b)
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processed at a particular remote node (if the target CO has been called previously in this
session and resides remotely) If there 1s no information on the session state of the target CO,
then the load balancing table 1s looked up to choose a destination node This may i tum
result in (a) or (b) For (a) the message 1s processed locally and the processing time 1s the sum
of the server and client processing times for the message type, as illustrated in Figure 4 4
earlier After local processing the message 1s retumned to the Message Generator and Switch
for further evaluation and retrnieval of the next message/target-CO This may lead to a cycle of
local message processing until the end of the service or until a remote call 1s required For (b)
the outgoing message then receives appropriate client-processing and ORB-encoding

processing and 1s then sent out to the network for routing to 1ts target CO

Note that the processing stages (circles) in Figure 4 8 together represent a single process That
1s, only one may be processing at any given time Thus, a processing cycle iitiated by an
incoming message will continue without interruption until all messages generated by the
incoming message are processed and exit the node or until the last message of the service 1s
fimshed execution At this pont the mput queue 1s polled for a new message and the cycle
repeats (1f the queue 1s not empty) This condition 1s signalled to the polling switch as soon as
the process (all processing stages) becomes 1dle (We assume there 1s no delay due to the

polling mechanism )

Note that although outgoing messages represent remote method calls, we assume that these
calls are fully asynchronous (1e they do not put the process mnto a blocked state whilst

waiting for retum messages for the call)

474 IN Traffic Modellers

The IN Traffic Modellers both create imtial service requests from the SSF and respond to
messages sent to the SSF Thus they model the IN side of the network As mentioned
previously, traffic for new service requests (the IrmnialDP INAP messages) has exponentially
distnbuted nter-arnval times Traffic sources for each service and from each traffic generator
are independent (1 ¢ there are six independent Poisson sources in the simulation) The mean
rate of traffic generation can be vaned independently for each service type and each traffic
source node When the Traffic Modeller receives a request destined for the SSF, 1t starts a
timer, to model the length of the interaction with the SSF This may be a user interaction time
or solely a processing time at the SSF These times are also exponentially distributed with

mean values as stated in §4 6

Gateway Nodes

As shown 1n Figure 4 8, the IN Traffic Modellers each connect to a single node, the gateway
node (GWSN) The gateway nodes are the only nodes to host the Gateway CO (GW) but are
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otherwise normal processing nodes, that may host any other computational objects The

gateway nodes also host the External Load Controller (described below)
Performance Data Collection
Several statistics are collected pertodically by the Stats Collectors

Load Each node process keeps a running account of the amount of time 1t 1s busy processing
messages over a given statistics collection time interval At the end of this time interval the
processor load 1s calculated as the busy time divided by the length of the statistics collection
interval and 1s sent to the Stats Collector This process 1s repeated for each consecutive

mnterval

Rejection Ratios The IN Traffic Modellers keep a count of all service session imtiation
messages (/mtialDPs) that are accepted and rejected by the External Load Controllers over
the statistics collection mterval The rejection ratio 1s calculated at the end of the £ interval

as

rejects, (k)

S rejects, (k) + accepts, (k)
where rejects, (k) and accepts, (k) are the number of rejected and accepted sessions

respectively at the 1" gateway duning the £” interval

Round Trip Time The RTT is the time from session start to session end and 1s calculated at
the IN Traffic Modeller at the end of each service session The RRT for each session 1s sent to
the Stats Collector along with the relevant session information (the service type and

onginating gateway address)

4 7.5 Operation of Simulated Performance Controls

Both external and internal performance controls are implemented in the simulation These
operate by use of lookup tables, which are updated periodically by the performance control

algorithms Different algonthms may be plugged mto the simulation

The ntemnal performance control (load balancing) 1s implemented by periodically updating
the Load Balance Lookup Table, which 1s referenced by the Message Generator and Switch
This lookup table contains a list of target COs each with a list of their corresponding host
nodes and spliting probabilities Entnies in the table thus have the following form

CO_ID  {(NODE_ID_1 P_SPLIT_1) (NODE_ID_2 P_SPLIT_2) (NODE_ID_N P_SPLIT_N) }

A node from this list 1s chosen according to a Bernoulli Trial where the probability of

choosing NODE_ID N 1s given by P_SPLIT_N For each CO entry the sum of all sphtting
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probabilities must be equal to one This method allows any of the mtemal performance

controls investigated 1n this thesis to be ‘plugged-in” to the simulator

The external performance confrol requires that offered traffic to the network 1s limited dunng
periods of high load The External Load Controllers at the gateway nodes implement this
function by considering the load values collected by the Stats Collectors To justify our
simulation of our external controls, we consider how the External Load Controller could

interact with the IN Overload Control

We assume that the IN Overload Detection (§2 4 1) 1s implement 1n the SS 7 stack processes,
which are locally accessible to the Gateway Object The IN Overload Detection and the
External Load Controller may thus communicate directly Rather than detecting load
independently, the IN Overload Detection module 1s given the current highest expected load
value of the processors in the CORBA service platform by the External Load Controller This
value 1s resent at the end of each control interval, which 1s assumed to be at least as long as
the statistics collection period This average load value 1s taken as being equivalent to an SCP
processor utilisation value i a normal Intelhigent Network and the Overload Detection
module signals the SSPs to throttle according to the assumed SCP utilisation The function of
the External Load Controller would be simply to detect the highest processor load on the
CORBA service platform and pass 1t to the IN Overload Detection module

processor load info

v

External Load
Controller

Distrnbuted
Service
Platform

{ Throttle

| Throttle [
t

Throttle

Figure 49 Assumed External Controller Interaction with IN Overload Control

Note that we do not explicitly model the SSPs or the IN Overload Control algorithms In our
simulation we assume that the IN Overload Control will act instantaneously to throttle (or call

gap) traffic from the SSP at the required rate We assume that this can be modelled by
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throttling input traffic between the traffic generator and the gateways This function 1s carmed
out by the mmcoming traffic throttles (Figure 4 8) which are controlled by the particular

external performance control 1n operation in the simulation

4.8. Chapter Summary

The chapter has described the computational object model and simulation model of the
distributed service platform under study 1n this thesis New strategies for CO distribution on
the platform and external and internal performance controls are proposed 1n the next chapter
and in Chapter 6 we use the simulation model, venfied by an analytic model, to investigate

performance
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4.9. Chapter 4 Appendix - Test Service Details

(Specification of message sequences and message processing details for simulation test

services )
SSF Gateway SCF Proxy UAP GSEP PA VA SF SsM $s0
(1) InltialOP 3
| @) mtaie |
(3) Inetial DP
(4) start_semice
(5) start_service )
(6) create_sessiol
(7) Initialise
¢ (6a)[}
Gey(]
(42)[]
8) initial_message
(9) query
ponyeg result]
{11) connect
(12) Connect
{13} Connect
(14) Connect

17) RRBCSME

E[Sq Release Call

(2B} TDisconnect

. (16) RequestReport BCSMEvent

{15) monitor_callee _answer

ed

{23) continue_call

¢ {18) RRBCSME
Liser irfepaction At
(19) ERBCSM 3
{20) ERBCSM 3
(21) ERBCSM 3
(22) callee_answer:
(24) Continue
{25) Continue
(26} Continue
Ueer intergetion AR
(27) TDisconnect

(33) Release Call

(29) TDisconnect

{30) callee_disconnected

(31) release_cal

(32) Retease Call

35) end

Figure 4 10 MSC for Service A
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Service A (VPN) Message Details

Processing Time ORB

Processing Time Service

{ms) (ms)
Message # Client Object | Server Object Interface Message Clrent Server Client Server
1 SSF Gatevay TCAP tnitialDP NA NA NA 100
2 Gateway SCF Proxy Q1218_3 DefAc InitalDP 050 150 025 050
3 SCF Proxy UAP Q1218_3 DefAc InitialDP 200 150 050 050
4 UAP PA _paUAP start_service 200 150 050 050
5 PA UA |_uaAccess start_service 200 150 050 050
6 UA SF |_sfCreate create_session 250 200 050 200
7 SF SSM 1_ssmimthalise intialise 2%0 200 050 200
6a SF UA 1_sfCreate [create_session return}] 250 200 050 100
5a UA PA 1_uaAccess [start_service return] 250 200 050 100,
4a PA UAP I_paUAP [start_service return} 150 200 050 100,
8 UAP SSM not defined initial_message 200 150 050 300
9 SSM SS0O not defined query 150 100 250 550
10 880 SSM not defined query_result 100 180 350 350
11 SSM GSEP not defined connect 150 100 050 050
12 GSEP SCF Proxy Q1218_3 DefAc Connect 200 150 050 050
13 SCF Proxy Gateway Q1218_3 DefAc Connect 200 079 050 025
14 Gateway SSF TCAP Connect NA NA 050 NA
15 SSM GSEP not defined monitor_catiee_answer 150 100 050 100,
16 GSEP SCF Proxy Q1218_3 DefAc RequestReportBCSMEvent 200 150 050 050
17 SCF Proxy Gateway Q1218 3 DefAc RequestReportBCSMEvent 200 050 050 025
18 Gateway SSF TCAP RequestRepartBCSMEvent NA NA 050 NA
19 SSF Gateway TCAP EventReportBCSM NA NA NA 050
20 Gateway SCF Proxy Q1218_3 DefAc EventReportBCSM 050 150 025 050
21 SCF Proxy UAP Q1218_3 DefAc EventReportBCSM 200 150 050 050
22 UAP SSM not defined callee_answered 150 100 050 100
23 SSM GSEP not defined continue_cafl 150 100 0 50, 050
24 GSEP SCF Proxy Q1218_3 DefAc Continue 1580| - 100 050 050
25 SCF Proxy Gateway Q1218_3 DefAc Continue ~ 150 050 050 025
26 Gateway SSF TCAP Continue NA NA 050 NA
27 SSF Gateway TCAP TOrscannect NA NA NA 050
28 Gateway SCF Proxy Q1218 3 DefAc TOisconnect 050 1580 025 050
29 SCF Proxy UAP Q1218_3 DefAc TOIsconnect 200 180 050 050
30 UAP SSM not defined callee_disconnected 150 100 050 1 00|
31 SSM GSEP not defined release_calf 150 100 050 050
32 GSEP SCF Proxy Q1218_3 DefAc RelgaseCalt 150 100 050 050
33 SCF Proxy Gateway Q1218_3 DefAc ReleaseCall 150 050 050 025
34 Gateway SSF TCAP ReleaseCall NA NA 050 NA
35 SSM UA I_usSMEvent end_session_not:fication 150 100 050 050
36 SSM uapP I_UAPEvent end_session_notification 150 100 050 050

Table 42 Message Detads for Service A
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Service B (Ring Back) - Message Details

REBO®FgO N0 »wnNe
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Message #

Client Object

SSF
Gateway
SCF Proxy
UAP

PA

UA

SF

SF

UA

PA

UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM

UAP

IP Proxy
Gateway
P
Gateway
IP Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
IUAP

SSM
GSEP
SCF Proxy
Gateway
SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSM
GSEP
SCF Proxy
Gateway
SSM

SSM

Server Object

Gateway
SCF Proxy
UAP

PA

UA

SF

SSM

UA

PA

UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM

UAP

IP Proxy
Gateway
P
Gateway
IP Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
GSEP
SCF Proxy
Gateway
SSF
Gateway
SCF Proxy
UAP

SSM
GSEP
SCF Proxy
Gateway
SSF
GSEP
SCF Proxy
Gateway
SSF

UA

UAP

Interface
TCAP
Q1218_3::DefAc
Q1218_3:DefAc
i_paUAP
|_uaAccess
i_sfCreate
i_ssm Initiaise
i_sfCreate
i_uaAccess
LpaUAP
not defined
not defined
Q1218_3::DefAc
Q1218_3::DefAc
TCAP
TCAP
Q1218_3::DefAc
Q1218_3::DefAc
not defined
not defined
Q1218_3:DefAc
Q1218_3:DefAc
TCAP
TCAP
Q1218_3::DefAc
Q1218_3::DefAc
not defined
not defined
Q1218_3::DefAc
Q1218_3:DefAc
TCAP
TCAP
Q1218_3:DefAc
Q1218_3:.DefAc
not defined
not defined
Q1218_3::DefAc
Q1218_3::DefAc
TCAP
not defined
Q1218_3::DefAc
Q1218_3::DefAc
TCAP
TCAP
Q1218_3::DefAc
Q1218_3::DefAc
not defined
not defined
Q1218_3::DefAc
Q1218_3::DefAc
TCAP
not defined
Q1218_3:DefAc
Q1218_3:DefAc
TCAP
TCAP
Q1218_3:DefAc
Q1218Ji::DefAc
not defined
not defined
Q1218_3::DefAc
Q1218_3::0elAc
TCAP
not defined
Q1218wa3::DefAc
Q1218_3::DefAc
TCAP
i_usSM Event
LUAPEvent

Message
InitialOP
InitialDP
InitialOP
start_service
start_service
create_session
initialise
[create_session return]
[start_serv<ce return)
(start_ser\ice return)
initial_message
connect_to_resource
ConnectToResource
ConnectToResource
ConnectToResource
AssistRequestinstructions
Assist Request Instructions
AssistRequestlnstructions
resource_connected
play_announcement
PlayAnnouncement
PlayAnnouncement
PlayAnnouncement
SpeclaJteedResourceReport
SpecializedResourceReport
Spec ializedResource Report
announcement_confirmation
monitor_callee_terminate
RequestReportBCSM Event
Request ReportBCSM Event
RequestReportBCSM Event
EventReportBCSM
EventReportBCSM
EventReportBCSM
call_completed
connect_to_callee
Connect
Connect
Connect
monltor_callee_answer
RequestReportBCSM Event
RequestReportBCSM Event
RequestReportBCSM Event
EventReportBCSM
EventReportBCSM
EventReportBCSM
callee_answered
connect_to_caller
Connect
Connect
Connect
monitor_caller_answer
RequestReportBCSM Event
RequestReportBCSM Event
RequestReportBCSM Event
EventReportBCSM
EventReportBCSM
EventReportBCSM
caller_answered
continue_to_caller
Continue
Continue
Continue
continue_to_callee
Continue
Continue
Continue
end_session_notification
end_session_notification

Processing Time ORB

(ms)

Client

NA
1.00
2.00
2.00
2.00
2.50
2.50
1.50
150
1.50
2.00
150
2.00
2.00

NA

NA
0.50
2.00
1.50
1.50
2.00
2.00

NA

NA
0.50
1.50
1.50
1.50
2.00
2.00

NA

NA
0.50
2.00
150
1.50
2.00
2.00

NA
150
2.00
2.00

NA

NA
0.50
2.00
1.50
150
2.00
2.00

NA
1.50
2.00
2.00

NA

NA
0.50
2.00
150
1.50
150
1.50

NA
1.50
2.00
2.00

NA
150
150

Table 4.3: Message Details for Service B
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Server

NA
1.50
1.50
1.50
1.50
2.00
2.00
2.00
2.00
2.00
1.50
1.00
1.50
0.50
NA
NA
1.50
1.50
1.00
1.00
1.50
0.50
NA
NA
1.00
1.00
1.00
1.00
1.50
0.50
NA
NA
1.50
150.00
100.00
1.00
1.50
0.50
NA
1.00
1.50
0.50
NA
NA
1.50
1.50
1.00
1.00
1.50
0.50
NA
1.00
1.50
0.50
NA
NA
1.50
1.50
1.00
1.00
1.00
0.50
NA
1.00
0.50
0.50
NA
1.00
1.00

Processing Time Service

(ms)

Client

NA
0.25
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
NA
0.25
0.50
0.50
0.50
0.50
0.50
0.50
NA
0.25
0.50
0.50
0.50
0.50
0.50
0.50
NA
0.25
50.00
50.00
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
NA
0.25
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
NA
0.25
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50
0.50

Server
1.00
0.50
0.50
0.50
0.50
1.00
1.00
0.50
0.50
0.50
1.00
1.00
0.50
0.25
NA
0.50
0.50
0.50
1.00
0.50
0.50
0.25
NA
0.50
0.50
0.50
0.50
1.00
0.50
0.25
NA
0.50
0.50
50.00
100.00
0.50
0.50
0.25
NA
0.50
0.50
0.25
NA
0.50
0.50
0.50
1.00
0.50
0.50
0.25
NA
0.50
0.50
0.25
NA
0.50
0.50
0.50
1.00
0.50
0.50
0.25
NA
0.50
0.50
0.25
NA
0.50
0.50



Service C (Restricted Access Call Forwarding) Message Details

Processing Time OR8

Processing Time Service

{ms} {ms)
Message # Client Object | Server Object Interface Message Client Server Client Server
1 SSF Gateway TCAP InitraIDP NA NA NA 100
2 Gateway SCF Proxy Q1218 3 DefAc InitialDP 050 150 025 050
3 SCF Proxy UAP Q1218_3 DefAc InitialDP 200 150 050 0 50
4 UAP PA i_paUAP start_service 200 150 050 050
5 PA UA |_uaAccess start_service 200 150 050 0 50|
6 UA SF I_sfCreate create_session 250 200 050 100
7 SF SSM i_ssminibaise initialise 250 200 050 100
6a SF UA |_sfCreate [create_session return)] 150 200 050 050
S5a UA PA |_uaAccess [start_service return] 150 200 Q 50 050
4a PA UAP 1_paUAP Istart_service return} 150 200 050 050
8 UAP SSM not defined Initial_message 200 150 050 050
9 SSM GSEP not defined connect_to_resource 150 100 050 100
10 GSEP SCF Proxy Q1218_3 DefAc [ConnectToResource 200 150 050 050
11 SCF Proxy Gateway Q1218_3 DefAc ConnectToResource 200 050 050 025
12 Gateway SSF TCAP ConnectToResource NA NA 050 NA
13 SSF Gateway TCAP AssistRequestinstructions NA NA NA 050
14 Gateway SCF Proxy Q1218_3 DefAc AssistRequestinstructons 050 150 025 050
15 SCF Proxy UAP Q1218_3 DefAc AssistRequestinstructions 200 150 050 050
16 UAP SSM not defined resource_connected 150 100 050 050
17 SSM UAP not defined PromptAndCollectUserlnfo 150 100 050 050
18 VAP (P Proxy Q1218_3 DefAc PromptAndCollectUsertnfo 200 150 050 050
18 IP Proxy Gateway Q1218_3 DefAc PromptAndCollectUserinfo 200 050 050 025
20 Gateway P TCAP PromptAndCollectUserinfo NA NA 050 NA
21 P Gateway TCAP SpecializedResourceReport NA NA NA 050
22 Gateway IP Proxy Q1218_3 DefAc SpeclalizedResourceReport 050 150 025 050
23 IP Proxy UAP Q1218_3 DefAc SpecializedResourceReport 200 150 050 050
24 VAP SSM not defined collect_info_confirmation 150 100 050 050
25 SSM SSO not defined query 150 100 250 550
26 Sso SSM not defined query_result 100 150 3 50| 3 50|
27 SSM GSEP not defined connect 150 100 050 050
28 GSEP SCF Proxy Q1218_3 DefAc Connect 200 150 Q 50 0 50|
29 SCF Proxy (Gateway Q1218_3 DefAc Connect 200 050 0 50 025
30 Gateway SSF TCAP Connect NA NA 050 Nﬁ
31 SSM UA i_usSMEvent end_session_notificaton 150 100 050 Q50
32 SSM UAP 1_UAPEvent end_session_notficaton 150 100 050 050

Table 4 4 Message Details for Service C
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Chapter 5. Computational Object
Allocation and Performance
Control Strategies

This chapter presents a method for optimising the placement of software objects on network
nodes, for multi-service distributed application networks Also presented are an optimal
method for load distribution and load throttling 1n these networks (§5 1 6) and a sub-optimal

market-based solution to the same problems (§5 2)

5.1. Optimal Algorithms for Object Distribution and
Load Control

This section presents a new method for optimising the placement of software objects on
network nodes, for multt-service distnbuted applications Also addressed are the related
problems of optimal distnibution of traffic between distributed software object instances and
optimal admission control for the network The object placement problem 1s formulated as a
Mixed Integer Programming (MIP) flow problem The solution yields the placement of
application objects that gives the maximum allowable amival intensities to the network under
the constraints of processor [oad limits and object installation costs Given the optimat object
placement, a further method 1s developed for optimising routing between object instances to
maximise network revenue when arnval intensities vary over time from the onginal design
point This problem 1s formulated as a Linear Programming (LP) problem that 1s constrained
by the solution of the original MIP problem The solution gives the basis for a load
distribution and load control algonthm for the optimised network

51.1. Strategy Overview

The model under study consists of a network of fully-connected processors of non-uniform
capabilities and processing capacities, serving multiple customer classes Service execution in
the network consists of message passing between instances of Computational Objects restding
on network processors Flow costs 1n the network are dertved from processing and protocol
encoding/decoding times for these service messages Processing times for objects are allowed

to vary across processors so that multi-processor nodes may be included in the model
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The placement of objects on processors 1n the network, 1s a critical distributed system design
decision that determines the maximum service rate of the network as a whole This 1s
especially true when a significant amount of processing 1s required to distnbute messages

(Protocol encoding/decoding times have been compared to service processing times for
telecom services, executing on a distributed platform, in [McArdle ef a/, 2000]) The object
placement problem has been undertaken 1n [Anagnostou, 2000] where the total
communication cost 1n the network 1s mmmised given the set of flows between all object
instances and given the service demand volumes from users This problem 1s reformulated (1n
§5 1 4) so that the total allowable user demand 1s maximised given the relative volumes of
requests from users Also, to limit the costs of replicating objects on processors, linear
installation costs are added to the problem (§5 15) This formulation effectively maximises
network throughput and has the advantage of balancing load between processors which 1n
turn ensures the maximum amount of spare processing capacity 1s available when the network
1s under-loaded (A simple optimisation model for TINA service components, also focusing
on throughput maximisation, has been presented 1n [Kihl, 1997] In this work, it was assumed
that component copies share traffic evenly This 1s not assumed here Also, protocol
encoding/decoding times are not taken into account in [Kihl, 1997]) As this approach
determines the maximum allowable demand, 1t 1s suitable as the basis of an admission control
strategy Such a strategy 1s given 1n §5 1 6 This 1s then extended to revenue maximisation
admussion control in Section §5 1 7 Revenue maximisation for Intelligent Networks has been
studied in [Lodge, 1999] A similar objective 1s adopted here for use with the distributed
system model However, a faimess constraint 1s added to the revenue problem to allow the

bias towards high revenue customers to be damped at the cost of lower system revenues

The following section describes the mode! formally and introduces some notation for the
network and service topologies This model 1s used 1n the subsequent sections for defiming the

object placement, random splitting and admission control optimisation problems

512 Model Notation

The system model consists of a set of heterogeneous processors N Each processor 1s
connected to all other processors 1n the system by a network A set of processors N, < N

has connections to a set of system users, which generate new service requests to the system

Each service request to the system belongs to the set of service types § Requests of type se §
require a sequences of messages Q; to be passed between processors, and between processors
and the user in order to complete service The execution of Q; 1s referred to as a service
session of type s The set of distinct messages in the sequence Q; 1s denoted M* The set of all

messages 1s denoted M = U M over Vse S
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5121 Messages and Computational Objects

The set of all computational objects C 1s defined next Each computational object c,e C 1s
defined as the capability to send the set of messages M,"*" < M and to receive the set of
messages MlserverCM’ where Mcltent r\]‘Ilserver= @

The set of processors that support the computational object ¢,€ C1s denoted N, ¢ N That 1s, 1f
ne N, 1t 1s said that an instance of computational object ¢, may be allocated to processor »
Note that this implies that a processor # may send a message ke M,”*" 1f and only if ne N, and

a processor m may receive a message k€ M, 1f and only 1f me N,

N fully-connected
service nodes

Figure 51 Network Model

The set of all objects required to execute a service session of type s 1s denoted C°c C

For each object c,e C, let the set of objects whose instances may exchange messages with an

instance of ¢, be denoted as

a = {CJE CI (Mchenz mM’semr) U (Al]chem mMsewer) £ @}

We also denote the set of all possible pairings of objects whose instances may exchange

messages during a service session of type s as
P’ ={(c,c)eC|ceC and ceC'}
where G 1s equal to the set C, N C*

Finally, for each pair of computational objects (c,c,)e P’, let the set of all messages that are
exchanged between instances of ¢, and ¢,, during execution of a service session of type s, be

denoted as

SMJ = (Mclwnf A M,server) 9] (Mc‘henl mM,server)

5122 Processing Costs

Each message ke M that 1s passed from processor ne N to processor me N has the following

associated execution workloads
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encode

T (k) execution time for protocol encoding of message k on processor 7

n

chent

7.°" (k) execution time for client-side processing of message & on processor #

n

74°% (k) execution time for protocol decoding of message & on processor

n

server
Tm

(k) execution time for server-side processing of message k on processor m

The total processing time on processor # due to all communication between an nstance of
computational object ¢, on processor 7 and an instance of computational object ¢; on processor
m during one service session of type s 1s denoted as

Spn — Z {,z.:naode (k) + T;hent (k)} + Z {T:emde (k) + T:erver (k)}

m-y
Yike :szy‘ (cliert) Yke JM:]](JGV\'CI)
fient 1
where SM;“(C 1ent) = SMV ﬁM,C tent and sM;:,(:erver) = sMy nM‘server

Note that, 1n the above, encoding and decoding times, when computational object instances
are executing on the same processor, may or may not be zero depending on the application
and communication protocol implementation details The total processing time on processor
m for the same pair of object nstances 1s simlarly defined and denoted ;7] We denote the

sum of these times as

SoAM _ SN, S .n
T = T T,
noden nodem
encode
T ()
node n node m
,z.clmvl (k) T IS
N X
et
Spn Spm
mz-y nf H
Figure 5 2 a Message Processing Times Figure 52 b Workflow Notation

5123 Workflows

We define *w;" as the total processing time in the system, per umt volume of service
requests of type s offered to the network, due to all messages passed between the instance of
object ¢,e C’ on processor n and the instance of object ¢,e C* on processor m durning service

sessions of type s We denote the associated bi-directional work flow as

5 nm
s nm __ y
X,  =——— (type s sessions per second)
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51 3. Users and Service Requests

All service requests to the system origmate from instances of service initiating objects, the set
of which 1s denoted C,,,, ¢ C Each service type s€§ has exactly one associated itiating
object ¢, €C,y This object may be considered as representing all users of service type s
where an instance of the object on a processor represents one or more such users connected to
that processor Thus, workflows from ¢’,, represent the total of all traffic from the set of users
it represents  All processing costs for the processor, that are associated with users requesting
and interacting with other objects dunng service sessions, must be accounted for in the

relevant processing times defined n §5 12 2

Given that all the flows involving ¢’ are included in the formulation of Sx;"", the total
volume of type s service requests to the system, from an instance of ¢,€(Cye N C7) on

processor n€ N 1s denoted as

anm
Ay= > — whered = )1
vmeN, Ve,eCy
cheC,J

Table 51 Summary of Optinusation Model Variables

S set of all service types

C set of all computational objects 1n network

c’ set of all objects required to execute a service session of type s 1s denoted

C, set of objects whose 1nstances may exchange messages with an instance of object ¢;

o setC,NC

Cinn set of service Imtiating computational objects

P? set of all possible pairings of objects whose instances may exchange messages during a

service session of type s
N set of all processors in network
MNuser  5€1 0f processors that supports direct connections from system users
N, set of processors that support the computational object c.€ C

Sz™ total processing time on processor n due to all communication between an 1nstance of
computational object ¢, on processor n and an instance of computational object ¢, on
processor m during one service session of type s

“x™  bi-directional work flow — type s sessions per second - man optirmisation vanable

the total volume of type s service requests to the system

514 Optimsing Object Placement

The problem of optimally assigning object instances to system processors may be summarised

as follows Given a system consisting of a set of connected processors &, a set of
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computational objects C and a set of service graphs M specifying interactions between objects
for each service, find the set of flows {’x;’"’ } that maximises the total service request volume

to the system under the following constraints

e fractional volumes of accepted requests from each user are a given value (Ch
¢ work flows between all object mstances are conserved (C2)
» cach processor’s utilisation must not exceed a given limit (C3)

The optimal allocation of objects to processors may be easily determined by examining the
set of solution flows for this problem The problem formulation initially assumes that any
object instance may exist on any processor, with the exception of instances of the imtiating
objects whose location 1s fixed according to user connections If, in the solution, all flows
associated with an object instance are zero, then that object may be eliminated from the

processor

The objective of maximising the service request volume ensures that the maximum system

throughput 1s obtained The set of constraints (C1) may be expressed as

A

—=0 Vne N,,.s€ S  where Y a=1 (C1
SK 2 )
VneNy, Vs

VseS

If 1t 1s assumed that the location of object instances 1s a permanent design choice, 1t is
necessary to specify the service mix {&] } 1n accordance with careful consideration of the
expected, long-term user demands as object allocation can have a large impact on the

achievable performance of the system

The set of constraints (C2) are necessary to relate the set of flows {"x;"} between instances
of objects and between users of the system Firstly, we define the set of all objects that are

common to object pairs
Ceommon = {6,€ C” | (eu6))i(c1,6) € P° 1,07 # )}
The constraint equations to enforce balancing of all flows n the system may now be written

by taking each object instance ¢, in the system and equating the total flows between this

object instance and all mmstances of two other objects ¢, and ¢,

Dxm= D Cx'" VseS, Ve eC; Vic,c)eC,,Yme N  (C2)

common ?
VneN, VneN,

The set of constramnts (C3) 1s determined by limiting the total processing time at each

processor for all object instances residing on the processor
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Z Z Z Z m " . "’”_ pmax V"IGN (C3)

VseS VeC' VeeCl VmeN,

where the p.. 1s the maximum allowable utilisation of processor # As the objectrve
function and all constraints are linear, the problem may be formulated as the following LP

problem

Maximise YA,

5
v VneN .,

VseS (Ml)
Subject to (CD,(C2),(C3),V °x," 20

node 2

b
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Figure 53 Constraint (C2) Workflow Balance Requirement

Flows on left must balance with flows on right Flow balance 1s specified by relating flows between a

component and two other components with which 1t communicates

515. Optimising Object Placement with Installation Costs

Generally, the solution to the previous problem yields a large number of object instances
distnibuted across the processors This 1s mainly due to object instances tending to cluster on
processors to avoid the added costs associated with ter-processor communication Also, in
order to achieve the maximum service request volume, the largest possible amount of
processing capacity in the system tends to be used by distnbuting these clusters to as many
processors as possible This situation may be imiting in practice if the costs of installation,
licensing and maintenance of software components are high Also, the solution can give
instances of objects, which have very low utilisation and subsequently the cost of installation
may outweigh their benefit to the system To address these issues, an installation cost 18
associated with each object instance in the system A constraint may then be formulated to
limit the total installation cost for the network, which has the effect of miting the number of

object instances n the system
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The presence or absence of object imstances on processors 1s represented as a set of 0-1

integer vanables (deciston variables) and 1s defined by the set

Y={y"e {0,1} | Vc,eC, Vne N}

We define the set of related installation costs as

{e/'eR|VeeC, Vne N}

The total flow between object nstance ¢, on processor # and all other object mnstances 1s
calculated as

=3 3 X

VseS Vc,eC, YmeN,

Each binary vanable 1s related to the corresponding total flow, giving the set of constraints
(C4) below Note that the threshold value Xumreswow allows object instances with very low

utilisation to be ehminated from the system

0 -;" <_ reshol
yI" _ X ilh hold vy:, cY (C4)

-n
1 Xi 2 Xthreshold

Limiting the total mstallation costs to a destred value £, gives the constraint

> Dle'y'<E (C3)

Ve, eC VneN,

Note that there 1s a lower bound on £ beyond which there 1s no feasible solution Adding

constraints (C4) and (C35) to the ongmnal problem gives the MIP problem

Maximise Z A
'xzm VY neN yr
VseS (Mz)

Subjectto (C1),(C2),(C3),(C4),(C3),Y *x™ 20

516 Optimising Random Splitting and Admission Control

The solution obtained from problem (M1) or (M2) gives the optimal distnbution of flows
between object instances for the given relative input traffic levels specified by (C1) In order
to maintain the system at the optimum, 1t 1s necessary to (a) limut the service request volumes
by rejecting a portion of new service requests so that the solution nput traffic levels are
maintained and (b) ensure that the optimal flows between object instances arc mantained

Condition (a) 1s restnictive and may lead to large proportions of service requests being
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rejected when the relative input traffic levels vary from (C1) over time This restriction may
be alleviated by dynamically re-optimising the system periodically This generates a new
problem (M3) where the object instance locations are fixed by the solution of erther (M1) or
(M2) and the flows are re-opttmised given an estimate of the current offered put traffic
intensiies The solution also generates the re-optimised maximum 1nput traffic levels The
(M3) problem 1s a variation of (M1) where all sets of object instance locations NV, are fixed by
the solution of (M1) or (M2) and constraint set (C1) 1s modified as follows

A, — = ’1‘_(15) Vne N,,,s€ S (C1y
2N ST

VYneNy,., VneN,

VSES VJES“’"

where {A”(k)} 1s the set of estimates of the offered traffic intensities from users expected
over the next T seconds This may be estimated simply as {A7(k)}={A7(k —1)} where
{A;(k—1D}1s the set of actual offered traffic intensities measured over the previous T
seconds The optimisation (M3) 1s run at the start of each control penod 47, having received
{A;(k-1)} from mitiating objects, and the resulting solution 1s distributed to processors as

follows

(a) Each mtiating object c,€(C..r N C) recerves the set of acceptance probabilitics

{acpP: (k)} for new service requests of type s over the next 7' seconds where

sol A'.: (k)

e PIEY =1 AL (R)
1

A" (k) < A (k)

sol

o A (k)2 A5 (k)

and where {,, A} (%)} 1s the solution set of {A}} at ttme k7" These probabilitics are used to

implement Percentage Thinning (PT) of amvals over the next 7" seconds

(b) Each object instance receves the sct of optimal flows _;x;™ (k) (the solution value of

S.nm

x,” at ume kT) between itself and all other object instances with which 1t may
communicate The optimal flow solution 1s implemented by an object instance as follows
When an object nstance ¢, on processor # 1s required to send a service message to an instance
of an object ¢, 1n order to continue a service session of type s, 1t chooses a processor
according to Bernoulli tnals where the probability of choosing ¢, on processor m 1s
determined by the random sphitting probability

% k)

s . nm _ sol ™y
sphlpq (k)_ s _nm

Z sol xq (k)

VmeN_,
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This choice applies only to the first time dunng a service session that object ¢, 1s required All
subsequent messages requiring ¢, dunng the same service sesston are sent to the same object

instance This scheme will maintain average flows at the correct values

5.17. Optimising Network Revenue with Fairness

In a multi-service network 1t 1s often desirable that service requests should receive prionty n
relation to the revenue generating ability of the service types However, implementing
revenue weightings can lead to unfair treatment of customers when the offered arnval
volumes for each service are disproportionate to their respective weightings These 1ssues are
taken 1nto account with a modification to the cost function to allow revenue weighting and a

modification to constraint set (C1)’ to allow a degree of fairness to be specified

(
Nommally, mn revenue maximisation problems, the probability of acceptance of service

requests 1s the optimisation variable (such as in [Lodge, 1999] for Intelligent Network load
control) and the maximisation takes the following form

Maximise Zr amp,/l (k)

Pace
Here, r,1s the revenue weighting associated with completing a service session of type s,
As(k) are the expected traffic intensities for period k for service s and F, ., 1s the
probability of a service session of type s being accepted The objective 1s thus to maximise the
expected total revenue for the network A similar objective 1s employed here but the
probability of acceptance 1s expressed n terms of the flow vanable “x;™ of our ongnal

problem The probability of acceptance in the flow variable 1s

sopt P (k) =— A os_ﬁ\s <1
As (k) As (k)

and the new objective function for the problem may be stated as

Z & /"Ls(k) st 0= A <1

This objective and constraint may be rewritten as

> A st AVSAs(k)Y R 20 (C6)

YV ne Ny,
VsesS
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where {r. e R|se S} are the revenue weightings associated with completed service sessions
and A"(k) 1s the expected traffic intensity for the next 7 seconds As the relative traffic

volumes can no longer be constant, constramnt set (C1)” 1s modified to

7" A
o, /1_(1:) — S—l- Vne N, ,s€S where 0< 8, <1
Sk [ 2A Y
VB vies
(Cl),i

where d; controls the amount by which the relative traffic volumes may vary from the
expected relative volumes of offered traffic Values of d,close to 1 ensure a fair treatment of
customers whilst values close to 0 potentially allow unfair treatment but higher total revenue

for the system The objective and all constraints are linear thus giving an LP problem

Maximise Z r. A\
“xp” VreN e,
Vse§ ( M4)

subject to (C1)",(C2),(C3),(COV *x,” 20

Note that, again, all sets of object instance locations N, are fixed by the solution of (M1) or
(M2) The solution distribution and implementation strategy 1s as described in the previous
section Note also that the revenue optimisation constraint and objective function may be
applied to the formulation for optimisation of object placement in problems (M1) and (M2)
However, such a modification 1s not considered here as it 1s assumed that the network 1s
dimensioned so that 1t operates 1n the under-loaded region a large proportion of the time and
revenue optimisation 1s advantageous only when offered traffic would cause the desired
network load to be exceeded It could be employed to the allocation problem if the normal

operating point of the network 1s at offered loads higher than the throttling levels

5171 Adjustment to Revenue Opttmisation Algorithm

Unlike 1 the throughput maximisation problems (M1, M2 and M3), the revenue
maximisation algonthm constrains the maximum arnval rates to be less than or equal to the
expected armvals When arnval rates are low compared to the maximum network throughput,
the optimisation problem (M4) will not tend to dnve all nodes to full capacity and the
resulting random splitting may give uneven loading across processors Our view 1s that load
balance 1s a desirable property once 1t does not artificially constrain the maximum network
throughput (This has been the case with the throughput maximisation problems ) We assert
that 1t 18 not possible to assure load balance, by addition of further linear constraints to the

above problem, without reducing the possible total system revenue Thus, we make an
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adjustment to the optimisation algonthm, in the form of a simple two phase heunstic, to

restore the tendency for load balance in the solution

PHASE 1

solution = solve (M3)

if A"(k)=A.(k) VneN

sol ‘s

se § then goto END

user

PHASE 2

solution = solve (M4)
END

The non-revenue problem (M3) 1s solved If all arnvals are accepted in the solution, then the
solution 1s revenue optimal and fair, regardless of revenue or faimess weightings, and there 1s
no need to solve (M4) If not, then (M4) 1s solved and gives the final revenuc-optimal
solution Only solving (M4) when throttling 1s required will tend to dnive the solution towards
load balance Note that, assuming that the network operates at less than capacity for the
majonty of the time, PHASE 2 w1ll be called relatively infrequently and on average the
algorithm complexity does not increase substantially

5.2. Co-operative Market-Based Algorithm for Load Control

In the previous section a method of optimising object placement and load control was
introduced This section describes an alternative sub-optimal market-based strategy for
distributing load and load Iimiting 1n a network of optimally placed computational objects
This method was onginally used for control of Intelligent Networks [Jenmings, 2001] but has

been adapted and extended here to control in distributed object scenanos

521 Strategy Overview

Load sharing and admission control 1n this method 1s effected by means of tokens A token
type 1s associated with each pair of communicating computational object instances If, during
the course of a service session, an object instance requires communication with another object
in order to continue the session, 1t must posses a token of the relevant type to do so See
Figure 54 below This token 1s then considered ‘spent’ and 1s removed from a pool of
available tokens Tokens are consumed on a per-session basis That 1s, once an object has
‘spent’ a token to allow communication with another object, it may continue message passing
with this object to complete that service session but may not reuse 1t during any future

S€ss10n

Thus, each new service-initiating request from a user requires a certain set of tokens within

the network 1n order to complete the service session This set of tokens 1s referred to as a
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token chain Note that the first token 1n a chain (referred to as the wunianing token) will apply
to acceptance or rejection of the initial service request from the user That 1s, 1f a token of this
type 1s not available, the request 1s immediately rejected Otherwise the service session 1s
accepted As will be explamed below, tokens are allocated mn such a manner that, once a

session 1s accepted, sufficient tokens exist to complete 1t

User Object 1 Object 2 Object 3 Object 4

service type 1
request (1,2a,a 1) token

required (2,3 ab 1) token

required

2 (34bb 1) token
required

1 — -

Figure 5 4 Example of Token Use During a Service Sesston

A token 1s requured to allow sending of the first forward message 1n a session from one object to
another A token 1s not required to recerve thuis message nor to send or recetve any subsequent
messages 1n the session

In order to co-ordinate token usage, each processor in the network has an associated load
control agent that marntains a pool of tokens of varnous types on behalf of the computational
objects that the processor executes The ‘spending’ of a token has associated with 1t a
processing cost on the processors that host the associated objects Thus, by limiting the
collection of tokens associated with a processor durning a certain control period, it i1s possible
to it mean processor utilisation Also, the distribution of tokens across the network
processors can be used to control the distribution of load and the admission of new requests

nto the network

In order to maintain a desired number of tokens 1n the token pools, a central auction 1s run
every T time umts At the beginning of this auction process, load control agents submuit bids,
which consist of the average amval rate of new service session requests, for each service
type, expected over the next control period It 1s assumed that the auction process has

knowledge of the average available processing capacity on each processor and the processing
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requirements associated with each possible token type The auction process then executes
with this information as nput parameters and allocates sets of tokens to each processor’s load

control agent for use duning the next control period

During the auction process, tokens are allocated in chains That 1s, an 1nitiating token 1s
chosen first and then all remaining tokens required to complete a session of this service class
are chosen The choice of tokens 1s governed by a market-based auction algorithm, which
allocates the most profitable tokens available each time The process continues unti] all
possible processing capacity 1s used for the next 7' seconds Pools of tokens are then
distnbuted to the load control agents for spending over the next 7" seconds Note that it 1s
assumed that the auction process completes 1 a time much less than 7, so that processors do
not wait any significant amount of time for token pools to be refilled Note also that when a
pool 1s refilled, any existing tokens from the previous control penod are removed These

bidding and auctioning processes are descnbed more formally below

522 Notation

In order to describe the market-based algonthm in detail the following notation 1s defined

e There are K types of computational objects in the network Let & denote an arbitrary
object

e There are I load control agents in the system, each associated with one processor Let :
denote an arbitrary agent

e There are J different service classes Let; denote an arbitrary service class

¢ Each service class ; has associated with it a profit value r(j), 1€ each successfully
completed service session of type 7 earns #(j) profit units for the network

e Tokens i the system are denoted by the tuple (kk’,5,7°7) This denotes a token that
permits an object of type £, residing on node 7, to communicate with an object of type &,
residing on node 1°, for the purpose of completing one service session of service class ;

Node 1 1s designated as the nitiating node and node i° as the farget node for this token

¢ During the auction, a tally 1s kept of the amount of capacity that remains unused on each
processor Let m, denote the remaining processing capacity on processor 7 at any stage
during the auction process

e A record 1s kept of the satisfied demands (in terms of tokens granted) for each processor
Let n(k,k’,1,1°,7) denote the number of (k,k°,1,1°,y) type tokens allocated, at any instance

during the auction process

e A record 1s also kept of the number of class ; token chains allocated that have their
mitiating token on processor  Let n(17) denote the number of such tokens which have
been allocated, at any stage during the auction process
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o The set C, 1s defined as the set of all allocated class ; tokens in all chains which

onginated from imtiating tokens on processor

e The quantity p,(k.k’,1,7°)) 1s defined as the processing cost incurred on node : due to a
(kk’,5,1°)) token being spent Similarly, the quantity p,{(k.k’,1,1°) 15 defined as the
processing cost incurred on node :’ due to a (k&’,5,7°7) token being spent These
processing costs may be derived from message processing and protocol
encoding/decoding times, similar to the methods given 1 §5122 for estimating the
quantities 7, and 77

m”iy n'n

¢ The quantity A(s,7) 1s defined as the expected rate of arnvals to node : for service
initiation requests of service type 7, over the next 7 time units

523 Load Control Agent Bids

Load control agents submit bids to the auction agent every T time units 1n order to receive
tokens for use over the next control penod The bid for agent i consists of its available
processing capacity over the coming period of T time units, denoted ¢,, and the rate of new
service requests expected from users to this processor, A(7,7) The available processing
capacity may be given any desired value in order to maintain loading at or below a desired
value The expected rate of new service requests may be estimated by the relevant agents by

simply taking the average measured rate over the previous control penod

524, The Auction

In order to choose the most profitable tokens to assign, the auction calculates an expected
marginal utility of each additional token that may be allocated dunng an auction The
expected marginal utility 1s the ratio of the expected marginal gain to the expected marginal

cost of atoken These are defined below

5241 Expected Marginal Cost for Imtiating Tokens

The expected marginal cost associated with allocating an additional imitrating token of type
(k,k,1,1° 7) 15 defined as the estimated processing cost, relative to the remamning processing
capacities on the relevant processors, that would be spent 1n the network when executing the
entire token chain resulting from this token being used to accept a new service session The
total processing cost 1s estimated by taking the average total cost over all previously allocated

chains which onginated from tokens of type (k,4’,1,1°,7) This cost 1s calculated as

n E,E',_,_',- T E:E"_’-Ia— - -
V(k,k',l,l',j)= Z [p:( 1,1 .]) + p,( 1,1 ])]/n(l,_])
m- g

Yk k 11 )eCy
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If no token chains onginating from token type (k,4’,7,1°,7) have previously been allocated, then

this quantity 1s calculated from the costs associated with the imtiating token only That 1s

k11, )) | p KL ))
m m

1 r

vk, k', gy =L

5242 Expected Marginal Cost for Non-Imtiating Tokens

The expected marginal cost associated with allocating an additional non-initiating token of
type (k,k’,1,1°,7) 1s defined as the total processing cost expended by the network, if the token 1s
consumed, relative to the remaining processing capacities on the relevant processors This

marginal cost 1s calculated as follows

(k’k'il,l".]) + pl (k7k'31,1".])

m, m,

vk, k1,0, ) =22

5243 Expected Marginal Gain for Initiating Tokens

The expected marginal gain associated with allocating an additional wufianing token of type
(k,k’,1,1°,7), given the amounts of tokens of this type that have already been allocated during an
auction, 1s defined as the profit associated with consuming 1t times the probability that it will
be consumed over the next control interval This probability 1s equivalent to the probability
that there that there will be at least rn(1)+1 class y amvals over the next 7 time units at
processor 7 If we assume that the arrival process of new service initiating requests to a

processor 1s a Poisson process, we may calculate this probability as follows

Given that the probability of a class ; arrivals in 7 time umts for a Poisson process will be

Pa(T) = (I(I>JI)T)a e—/T(l nr ,
a

then the probability that there will be at least n(77)+1 class ; arnvals over 7 time units 1s

calculated as

(Z(I:])T)a e—Z(z nT
al

Plazn(, j)+1] = i

a=n(t j)+1

The expected marginal gain of an inrtiating token may now be defined as

u(k,k'1,1', 1) =r(y) i Me-f(uﬂ

asn(i yytl a

This calculation of marginal gain 1s identical to that described 1n [Jennings, 1999]
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5244 Expected Marginal Gain for Non-Initiating Tokens

Given that the mitiating token for a chain 1s assigned before any other tokens n the chain, the
probability of consuming any other token 1n the chain1s 1 In this case, the expected marginal
gain associated with allocating an additional non-mitiating token may be any constant value

A constant value of 1 1s chosen

5245 Expected Marginal Utilities

The expected marginal utility of allocating an additional token of type (k,4°,7,7°,7) may now be

defined as the marginal gain per marginal cost of such an allocation and 1s defined as

u(k,k' 1,1, 7)

ok k11, 7)=
(k,k'1,1,7) ST

where d(k,k',1,1',7) expresses the denvative of the utility function with respect to the
relative processing required for a (k,4°,1,1°,7) token allocation The auction algonthm aims to
maximise total overall utility by distributing the resources 1n a series of allocations such that
each allocation results in a maximal increase in overall utility The best allocation 1n each step
1s thus the one with the highest denvative The auction algorithm 1s descnibed n detail 1n the

following section
5246 The Auction Algonthm
1) Initialisation
Reset token allocations n(k,k’,2,1°,7) = 0 for all k,k°,1,1°
Reset imitiating token counts n(z) = 0 for all 7y
Set processing capacities remaining ¢, = ¢, for all 1
Set marginal gains for initiating tokens

with n(1)) =0, u(k,k',1,1', )| 4 jy=0 =r(J) (l'ej(’m) !

Set marginal gains for non-imitiating tokens  u(k,k',1,i', 7)=1

Set marginal costs v(k,k',1,1', ;) forall tokens

u(k,k',1,1', D ae y=0

=r(j)i (’T(z:c.:,)T)a e—/T(, nr
=]

' Noting that =r(}) [Z (A6 NT) e~ DT _ =26 T
a'

a=0

=r(j)l-e 0
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2) Allocate an Imtiating Token
Find all mitating tokens that maximise &(k,k',1,1', 7)) =u(k,k',1,1', j)[v(k,k',1,1", 1)
Choose token (,&',7,1", ) from these at random
Update token allocations n(k, &',7,1", J) =n(k,k',7,1", ]) +1
Update initiating token count n(7, J) =n(r, ;) +1
Recalculate margmnal gains u(k, ',7,1', 7) of all imtiating tokens for updated (@, J)
Update remaining capacities m =m —p, (lg,lg',f,f',}) and m =m -p, (Ié,lg',f,f',})
Recalculate marginal utility for chosen token type
3) Allocate Remaiming Tokens in Token Chain
While there are remaiming tokens to allocate n this token chain
Find all token types that maximise 8(k,k',1,1', 7) =u(k,k',1,1', ;) /v(k,k',1,1', 1)
Choose token type (lg, IQ',IA K ',}) from these at random
Update token allocations n(lg,lg’,f, )= n(lg,ié',f, 1) +1
Update remaining capacities m =m ~p, (/2,12‘,; 7 ’,}) and
m =m -p, (Ié,lg',f,f',j)
Recalculate marginal utility for chosen token type
end while loop
4) Loop
do while not 0 tokens allocated 1n last pass and all m, not 0
goto step 1)
5) Distribute Tokens

Distnibute allocated tokens of type (k,%',2,1', ) to load control agent on node 7

5 2.5. Token Spending for Imtiating Tokens

Initiating tokens control acceptance or rejection of new service control sessions entering the
network over the course of a control penod Under heavy load there are not an adequate
number of tokens available to accept all service sessions during the control period Under
these conditions, tokens will tend to exhaust early during a control penod causing undesirablc
traffic patterns (burstiness) within the network To avoid this, a rationing strategy is required :

to spread the available tokens more evenly over the control pertod The rationing process used
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here 1s adopted from Jennings [2001] and employs Percentage Thinmng (PT) to regulate the
acceptance of service requests At sub-intervals of the control mterval PT coefficients for
each service type are updated, using estimates of the number of requests that will arnve
before the end of the control interval and the number of remaining tokens Amving service
requests are subjected to a PT throttle using the relevant PT coefficient as parameter This

parameter 1s calculated as follows

Let 7 denote the length of the sub-intervals, 7 1s chosen such that 7= A4 7, where A4 1s some
integer Let ae (1, A) denote the current sub-interval number Let #°(j) denote the estimated
number of arnvals of requests for service type ; until the end of the control interval and let
n'(j) denote the number of tokens remaining for service type ; Let m (a) denote the
number of requests for service type ; that arnved dunng sub-interval a and let m', (a)
denote the number of these that were accepted Finally let p®(y) denote the probability of
acceptance of a request for service type ; (the PT coefficient) The algonthm contains two
steps the first (Initialisation) 1s executed at the start of the control interval and the second
(Update PT coefficients) 1s executed at the start of each sub-interval
1) Imtialisation

Set a =1

For all service types 7 =1, ,J do

Set ¥'(7)=4¢,(7) , where g,(7) 1s the number of requests for service type J
that arrived over the duration of the previous control interval

Set n'(J)=n,(7), m'(;)=0
Set p°(7)=mm(L#'(1)/7"()))
2) Update PT coefficients
For all service types j =1, ,J do
Set n'(7)=n'())—m', (a)
Set ()= (A;a)za:m,(a')
asl

Set p°(;) =mm(L, 7' (})/¥" (1))

Seta=a+1

Hawving calculated the PT coefficient, acceptance or rejection of a new service session request

1s decided as follows

Select a random number X uniformly distnbuted in the range (0 0,1 0)

if X <p,(y) then Service request 1s accepted, else Service request 1s throttled
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5.2.6 Token Spending for Non-Initiating Tokens

If, duning the course of a service session, an object instance requires communication with
another object 1n order to continue the session, 1t must posses a token of the relevant type to
do so This token 1s then considered ‘spent’ and 1s removed from the pool of available tokens
for that node There may be more than one token type to choose from 1 ¢ there may be tokens
1n the pool for a target object available on multiple different nodes In this case a token 1s
chosen at random 1n proportion to the number of itial allocations Note that there 1s no need
to ration non-initiating tokens over the duration of the control period, as there will always be

adequate tokens to complete a service session This 1s ensured by the auction process

5.3. Chapter Summary

This chapter has presented general approaches to optimal object allocation and performance
controls suitable for application to the service platform model descnbed in Chapter 4 The
object placement solution described can be applied to obtain optimal placements of COs on
service platform nodes This 1s done 1n Chapter 6 and the resulting placements are analysed
The optimal random splitting and admission controls developed can be employed as internal
and external performance controls This approach 1s mvestigated in Chapter 6 Also
investigated 1n the next chapter, 1s the performance of the sub-optimal market algonthm

compared to the optimal controls
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Chapter 6. Analysis of Service Platform
and Performance Controls

In this chapter, the performance properties of the algonthms proposed in Chapter 5 are
exammned The properties of the Computational Object allocation method are examined and a
distribution 1s chosen to complete the service platform definition An analytic model 1s
developed and the accuracy of the simulator venfied The performance of the optimal and
market internal and external performance controls 1s examined and compared to the results for

a simple load-balancing scheme

6.1. Optimal Allocation of Computational Objects

An allocation of COs to processing nodes 1s required to complete the definition of the service
platform model for simulations and analysis Here we describe the implementation and
examine the properties of the optimal static CO allocation strategy developed in §5 1 and then
choose an allocation for examination of the dynamic algonthms (optimal and market-based
random sphtting and admussion control) We have assumed that, once assigned, the CO
allocation 1s fixed and do not consider mobility of the COs at runtime However, splitting
between the allocated CO copies and the Percent Thinning coefficient values of the gateway
throttles are vanable and are determined by the dynamic algonthms (Optimal and Market)
These are discussed 1n the remainder of this chapter We first descnbe the implementation of
the CO allocation problems This implementation also relates 1n part to the optimal internal

control

6.1.1. Implementation of the CO Placement LP/MIP

The Linear Programs of §5 1 generate quite large problem spaces that would be difficult to
construct ‘by hand’ Thus, C language code has been wntten for the purpose of this thesis,
which takes as mput the specification for the service platform and the CO interaction details
It constructs the linear programming problem matrices programmatically and formats the

problem for input to IBM’s OSL solver (see §3 3 6) The OSL software package provides a
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runtime hibrary that 1s linked with our LP/MIP matnx construction code so that one
executable may be obtained When the solution vector is retumed by OSL, some post
processing 1s done to extract the pertinent information and the solution 1s presented as simple
text output We give a description of the functioning of our code here Firstly, the inputs to

the program are specified as follows

Nodes The number of nodes and their operating speeds As messages are specified with
respect to their nominal execution times rather than number of instructions, processor speeds
are specified in terms of relative processing speeds € g a processor of speed 2 executes a

message 1n half its nominal execution time
Services The number of service types and a textual description of each

Computational Objects A list of COs This 1s a numbered hist with a textual description of
each CO, which 1s used on output to aid legibility of the solution

CO Installation Costs An optional 1nput that specifies the relative cost of installing a CO on

a given node

Minimum CO Utdity An optional input that specifies the mmimum traffic volume a CO must

serve before 1t 1s allowed to be allocated in the network

CO Allocation Constraints We wish to constrain the placement of the GW objects as these
are collocated with the SS 7 stack 1n the service platform and cannot be replicated arbitranly
in the network This condition may be specified on nput as a list of fixed CO assignments for

the problem

CO Interactions To formulate the relationships between the main workflow vaniables of the
LP/MIP, the code requires knowledge of the COs that interact dunng each service This 1s
specified as a list of CO pairs for each service For example, refernng to Figure 6 1, the CO
interactions for Service A would be (ssp,Gw), (GW, SCFP), (SCFP,GSEP),  etc Note that
hists for different services may contain common components (¢ g the GSEP) as well as

service spectfic ones

Work Flow Descripion We also require a specification for work-flows between all object
instances This relates to message specification in the LP/MIP (§5 12 1) Each message
passed between COs generates work on their processors For each CO pair, defined above,
this work 1s specified in the input as lists of messages passed durning a service session and

their corresponding processing ttmes The mput 1s of the form

[Source_CO, CO_Pair_ID, CO_1_ORB_time, CO_ 1 processing time,

CO_2_ORB_ORB_time, CO_2_processing_time]
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Note that ‘orb time’ may be either encoding or decoding time depending on the message
direction, which 1s specified by stating the source CO Beyond this, the message direction
itself 1s not required to construct the problem as the network flows (in the optimisation
problem space) are bi-directional Thus, for example, 1t 1s equivalent to specify the target CO

as the message source and reverse the order of CO_1 and CO_2 processing times in the list

Note also that, in the implementation we assume that the same message, on different
processors of the same speed, executes 1n the same time This time 1s then linearly scaled
according to the specification of processor speeds This simplifies the implementation,
however, note that 1t 1s not a requirement of the general strategy where each message on each

processor may have an independent set of processing imes (see §5 12 1)

Figure 6 1 COs and Interaction Edges (Service A)

Service Users and Relative Traffic Volumes The LP/MIP 1s dniven by maximisation of a set
of input flows from users to the network (where the ‘users’ 1n our case represent groups of
SSPs connected to the GW) A description of the service users 1s specified on input as a
source CO and a per-service traffic value for a CO pair that contains the source CO, for

example (ssp,cw) This 1s in the form

[source_CO, CO_pair, service_1_traffic, service_2_traffic,

service_3_traffic]

Note that the source CO (the SSP) 1s automatically assumed to be a fixed-location CO That
1s, we assume that traffic sources are not mobile The target CO of the pair may or may not be
fixed, depending on the CO allocation constraints (as describe above) The traffic volume 1s
inputted 1n units of service sessions per second A list of such sources and their traffic

volumes 1s specified on mput

6111 Coefficient Matrix Construction

Having received the inputs, the program constructs the matnix coefficients and constraints for
the LP/MIP These are as follows
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Total Work Flow The workflow descnption from the input 1s processed to obtain the total
‘local’ and ‘remote’ workflow for each CO pair ‘Local’ workflows relate to collocated
objects and exclude ORB time whilst ‘remote’ workflows include 1t In either case, this
workflow is representative of the total execution time expended in the network by a pair of

CO copies, during execution of one service session (see §5 12 3)

Input Traffic Constraints All user flows are fixed relative to each other with a set of real-
vanable equality constraints The nput traffic specification 1s transformed to the workload
flow variable by normalising 1t with respect the work flow value of the user CO pair For
example, 1n a single service network, the input specifies 2 sources as follows | session per
second from ssp1 to gwi and 2 sesstons per second from ssp2 to Gw2 And the total work flow
dunng a service session for (sspi,Gw1) 1s 05 seconds and the total workflow for
(ssp2,6w2) 1s 02 seconds The constraint 1s thus 5 x (SSP1,GW1) = (SSP2,GW2)

Constraints are created to relate each source for each service type in the network Any one of
these source flow vanables may be chosen as the objective function for maximisation as this

will maximise the total armival rate

Interaction of Edge Pairs The program constructs the pairings of flows between COs, so
that each flow in the graph can be inter-related with all others by specifying constraints (as
per §5 12 1) This s a construction of a list of pairs of CO pairs for each service, for example

in the form

[sexrvice_1 ((SSP,GW), (GW,SCFP)) ({(GW,SCFP), (SCFP,GSEP)) 1

This list must include all edge pairs in the service interaction graph (Figure 6 1 1s an example
of the service graph for Service A) (Redundant pairs will make the problem space larger
unnecessarly and are avoided ) From this graph, all edges 1n the service interaction graph are
inter-related by constructing one real-vanable equality constraint for each pair of pairs, and
for each allocation of non~common COs to each network node (see §5 1 4) These constraints
are specified as per the total workflows Either local or remote workflow values are used
depending on whether the particular constraint relates to objects on the same or different
nodes Note that the user traffic pairs are also included in the graph, so that all flows are
directly or indirectly related to the input traffic

Node Capacity Constrasnts These are mequality constraints, limiting the total workflows

assoclated with a node (representing the utilisation of the node) as per §5 1 4

Installation Costs Finally the installation costs as per §5 15 are added to the constraints
These relate real vanables to integer vanables If constraints are not specified in the input

then the problem 1s constructed as an LP otherwise 1t 15 constructed as a 0-1 MIP
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A general overview of the LP/MIP coefficient matrix 1s shown 1n Table 6 1 Note that this 1s
only an estimate of the constraint dimensions, as there are some subtleties dependent on the
user mput For example, if fixed-location COs are specified, then they do not appear 1n all
edge pair constraints (Their flows may instead be set to zero using column constraints, where
appropnate ) Note that, although this 1s a large matnix 1t 1s sparse and problems with several

thousand vanables solve 1n the order of seconds

Real Variables Integer Variables

Edge 1 Edge 2 Edge E Co 1 co C

112 N|1l]|2 N 112 Nll}]2 N 112 N

[N*S 1nput traffic constraints in real variables]

[N*E edge pair constraints 1n real variables]

[N node capacity constraints 1n real variables]

[N*C 1nstallation cost constraints i1n mixed variables]

Table 6 1 LP/MIP Constraints Matrix

6112 Algonthm Qutputs

Having received a solution from the OSL Solver 1n the form of a row vector giving the
network flow solution, some post-processing 1s done to extract the pertinent information The
flows relating to each potential CO copy on the network nodes are examined If all flows are
zero, then the CO 1s not assigned to that particular node The objects remaining give the

solution CO allocation

The solution flows are also used to calculate random splhitting probabilities between objects
These are required to achieve the optimal flows in the network for the given user traffic mix
To do this, the work-flows between a given CO copy and all copies of another CO 1n the
network (which 1s part of the same service interaction) are examined As splitting
probabulities are required only at points n service where a new CO type 1s needed to continue
service execution, the splitting points of the solution flows must be interpreted in the order
that the COs are encountered dunng a service session At these ponts, the solution flows
between the source CO and target CO are normalised to give the set of random sphtting

probabilities

In practice, there are relatively few splitting points of interest because the problem solution

tends to collocate objects as much as possible to reduce communications overhead Thus we
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filter out all splits from the program output that only mnvolve collocated COs

The solution flows for user traffic are transformed back to a sessions per second measure thus
giving the arnval rates in the optimised network that produce maximum possible loading in

the network, 1 ¢ maximum throughput

6.1.2 Basic Results for Optimised CO Placements

We first examine the output of the optimisation for the following service platform
specification

o There are 10 processing nodes all with relative processing speeds of 1

* Services, COs and messages are as per the test service MSCs and message details given in
Chapter 4

¢ There are two sources (SSPs) connected to two gateway nodes

o Relative traffic volumes are all equal, 1 ¢ each gateway receives the same traffic volume
for each service and the total traffic at the two gateways 1s also equal

(Note that this specification 1s the same as that of the Service Platform Model, described 1n

Chapter 4, 1n terms of number of processors, service MSCs and SSP connections )

The optimised output 1s shown in Tables 6 2(a) and 6 2(b) below Table 6 2(a) gives the
optimal assignment of COs to nodes Note that the GWs have been fixed to nodes | and 2 (an
arbitrary choice made 1n the input specification) SSPs are not shown as they are assigned to

their own GW and cannot split traffic

[

3 é agé@gégi;@;@@@
2138 =|5|82|2|13|5|5|5(5|21%(%|83
1T x| x| x| x|x X X X

2 | x [ x x| x]x X X X

3 X [ x| x| x X X X

4 x| x| x| x X | x x | x x | x X
5 X | x| x|{x]x X | x x | x X | x| x
6 X [ x [ x [ x| x| Xx X | x X { x X
7 X | x| x| x X | x X | x x [ x X
8 X | x| x| x X X X X
9 X | x| x| x ] x| x X | x X | x X
10 x x| x| x| x X X X

Tables 6 2 (a) Optimal CO Allocation Solution for Equal Arrival Rates all Services
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Table 6 2(b) shows the optimal sphtting between objects for each service For example, the
first two rows for Service A show that the G/ on Node 1 splits 0 2894 of 1ts traffic with the
SCFP on Node 9 and 0 7106 of 1ts traffic with the SCFP on Node 10, for Service A traffic

By examining the splitting probabilities we see that all objects required for each service, apart
from the GWs, have been grouped together with the SCFP and the group copied to all nodes
This 1s evidenced by the fact that there are no other splittings, apart from GW-SCFP Also,
groupings are collocated with the GWs as far as possible, to reduce communications time We
note, however, that the SCFP group on node 1 rece1ves only a relatively tiny amount of traffic
but 1s still required by the optimal solution These low-utilisation objects can be eliminated

from the solution by setting mmmimum CO utilities (discussed below)

Random Spltting Probabilities
Service Source CO Target CO Source Target Node Splitting
Node Probability
GW SCFP 1 9 0 2894
GW SCFP 1 10 07106
A GW SCFP 2 5 02857
GW SCFP 2 6 07143
GW SCFP 1 1 00018
Gw SCFP 1 6 00034
GwW SCFP 1 7 05913
B GW SCFP 1 9 0 4034
GW SCFP 2 2 00019
GW SCFP 2 3 06757
GwW SCFP 2 4 03224
GW SCFP 1 7 01111
e GwW SCFP 1 8 0 8889
GW SCFP 2 4 0 4649
GW SCFP 2 5 0 5351

Tables 6 2 (b) Optumal CO Allocation Solution for Equal Arrival Rates all Services

To venfy the allocation, the service platform was simulated® using the optimal splitting
probabilities given above These were employed as the internal performance controller
splitting probabilities and are static throughout the simulation Thus we have a static internal
control to compare to dynamic schemes (in later sections of this chapter) The traffic mix was
also the same as at the design point — equal arrivals from all sources Note that there 1s no
throttle implemented at the gateway (External Performance Control) in this simulation

scenano Table 6 2(c) shows the results that were obtained from the simulator as follows

The throughput measure 1s a total over all arnvals to the network and was obtained by

increasing the arrival rate until the load on the heaviest loaded processor averaged 90%

? Note that venification of the simulator and the methodology for assessing simulation results 1s
discussed 1n §6 3 below Simulation results given here were obtained according to that methodology
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(x1%) (In results obtained later, we set the throttle at 90% so aiming for this value here
allows companson ) Note that the total throughput given 1s split between sources according

to the relative traffic volumes specified for the optimisation, 1n this case equally

Throughput at Max Load=90% 122 (sessions s ')
Installation Cost (1 cost umit per CO copy) 97
Service Delays - Low Load (20% of Max) 93 (ms)
Service Delays — High Load (90% of Max) 481 (ms)
Processor % Utilisation (Nodes 11010) | 892 |880]885|890]881[903[876(881 891901

Table 6 2 (c) Performance of Optunal CO Allocations for Equal Arrwval Rates all Services

Each CO copy allocation 1s deemed to cost 1 untt so the Installation Cost simply gives the
total number of copies in the allocation Note that there was no limit set on the CO installation

costs for the optimisation

Average service delays are measured for a low and a high arrival rate that nominally give
20% and 90% utilisation respectively The required arnval rate for high load 1s the same as

that given for the throughput The required arnval rate for low load ts calculated as

20%

Ay = —‘90% Pso

Where pg, 1s the 90% throughput Note that the service delay was measured as the total time
a service session spends i the service platform It does not include processing or user
interaction times at the SSP, which are not related to service platform performance To obtain
the service delay, the total average SSP time 1s subtracted from the average session Round
Irip Ttme measured by the simulator This gives a measure indicative of response times to a

user’s requests

Finally, the average utilisation of each processor 1s given 1n the last row of the table Note that
the allocation has given full utilisation on all processors, balancing load Similar results given

in the following sections were obtained as have been described here

6.1 3 Load Imbalance

Here we consider the allocations and splitting produced by the optimal placement algorithm
when the service demand 1s not balanced between services We consider the traffic mix
scenarios given below These values give the relative traffic mixes for nput to the
optimisation program All other mputs are the same as in the previous equal traffic mix
scenario The results are given 1n Tables 63 to 6 5 below Note that, again, the optimal
splitting probabilities were used 1n each case and the service mixes to the simulator were the

same as the input traffic mixes to the optimisation program
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SIGW1I SIGW2 S2GW1 S2GW2 S3GWI  S3GW2

Scenario 1 Relative Arnival Rates 8 8 1 1 1 1
Scenario 2 Relative Arnval Rates 1 1 8 8 1 1
Scenarto 3 Relative Arnval Rates 1 1 1 1 8 8

The results for Scenario 1 (Table 6 3) show that, as expected, the Service A COs have been
replicated across nodes more than for Service B or C’s B’s COs are still quite heavily
replicated as B 1s the most complex (and with the longest execution time) service B’s COs
are also collocated with the GW as much as possible as communication 1s heavier Again all
processor loads are maximal A slightly higher throughput 1s attaned due to the high
proportion of Service A traffic which 1s a simpler service There 1s also a corresponding

decrease 1n service times compared to the equal loading scenario

In Scenano 2 (Table 6 4), the high-load Service B has 1ts arnivals increased As expected,
Service B components are the most heavily replicated with service B specific COs on 7
remaining nodes The total throughput has decreased as the average service time 1s greater
compared to the equal loading scenario Average service delays have also increased

accordingly Again load 1s balanced across processors

Scenario 3 (Table 6 5) has increased arnvals for Service C, which 1s the service with the
shortest execution ime A higher average throughput and lower service delays are attained

Note that Service B COs are still quite heavily replicated as 1t 1s the highest load service

The optimisation achieved load balance and thus full usage of available resources for all three
loading scenanos Delays are reasonably low at high amval rates 1n each case However, all
three scenanos display a relatively large amount of component duplication Noting that there
are 16 CO types 1n the network, on average there are approximately 55 copies of each
component deployed This may be undesirable for cost and logistical reasons We next

consider imiting the total 1nstallation costs of components to reduce replication

6.14 CO Installation Costs

The optimisation program allows specification of a maximum CO installation cost This cost
15 the CO installation cost multiphed by the number of 1ts copies, summed over all COs Here,
we examine the effect of reducing the maximum cost of the allocations produced In the
experiments, we assume an installation cost of 1 unit for each CO type Thus, the resulting
cost gives a count of the total number of CO copies nstalled Service traffic mixes are set
equal and we compare with the results in Table 6 2 (which had the same offered traffic mix

but with no 1nstallation cost constraint)
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(a) Computational Object Distribution

)
£ R ERIRIRREEEEE
3 i & | a 2l18|e|=s|=islola
3lzlg=l5(8|2|2|2|5|51505|2|2(2)8
1 X | x| x{x]x X X X
2 X X | x X X X X X
3 X | x | x| x| x| x| x| x| x|[x|x]x|x]x]x
4 X | x| x| x| x X X X
5 X | x| x| x| x X X X
6 X | x| x| x| x X X X
7 X | x| x| x| x| x| x| x| x|x]|x|x]|x]|x]|x
8 x | x| x| x| x X X X
9 X [ X | x| x| x X X X
10 X [ x| x| x| x X X X
(b) Random Splitting Probabilities
Service Source CO Target CO Source Target Node Sphitting
Node Probability
GW SCFP 1 7 01363
GW SCFP 1 8 02935
GW SCFP 1 9 02935
A GwW SCFP 1 10 02767
GW SCFP 2 3 01196
GW SCFP 2 4 0 2935
GW SCFP 2 5 02935
GW SCFP 2 6 02935
GW SCFP 1 1 0 4667
GW SCFP 1 3 0 0651
B GwW SCFP 1 7 0 4682
GW SCFP 2 2 0 4667
GW SCFP 2 3 05333
c GW SCFP 1 2 1 0000
GwW SCFP 2 7 1 0000

(c) CO Distribution Performance

Throughput at Max Load=90% 128 (sessions s )

Installation Cost (1 cost unit per CO) 94
Service Delays — Low Load (20% of Max) 86 (ms)
Service Delays — High Load (90% of Max) 431 (ms)

Processor % Utilisation (Nodes 110 10) | 916 892|893 905 [881]882[893880[894 879

Tables 6 3 (a,b,c) Optimal CO Allocatwons for Service A Arrival Rates =8x B=8x C (No

tnstallation cost imit and no mimimum CO traffic mit)
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(a) Computatiwonal Object Distribution

;. Ean) Lo Can) -~~~ Lo ~~
& |8 CzlzlalS|B|EE|C
$ . & Slelel=|==2]alg
3lal8l=|3|8|3(2\2|5|5|5(2|53(2|2|83
1 x| x| x| x| x
2 P x [ x| x| x]x
3 X | x| x| x X X X
4 X | x| x| x X X X
6 X | x| x| x|x X | x X | x x| x| x
6 X | x| x|x X X X
7 X | x| x| x X X X
8 X | X | x| x X | X X | x X | x X
9 X | x| x| x X X X
10 X | x ] x| x X X X
(b) Random Splitting Probabilities
Service Source CO Target CO Source Target Node Splitting
B Node B Probabulity
A GW SCFP 1 5 1 0000
Gw SCFP 2 5 1 0000
GwW SCFP 1 6 0 2963
GW SCFP 1 7 01850
GW SCFP 1 8 02224
B GW SCFP 1 9 02963
GW SCFP 2 3 0 2963
GW SCFP 2 4 02963
GwW SCFP 2 7 01111
GW SCFP 2 10 02963
GW SCFP 1 5 1 0000
Cc GW SCFP 2 5 01191
GW SCFP 2 8 08809
(¢} CO Distribution Performance
Throughput at Max Load=90% 100 (sessions s ')
Installation Cost (1 cost unit per CO) 75
Service Delays — Low Load (20% of Max) 109 (ms)
Service Delays — High Load (90% of Max) 663 (ms)
Processor % Utilisation (Nodes 1to10) | 901 [887] 900892886881 [893 888895903

Tables 6 4 (a,b,c) Optunal CO Allocations for Service B Arrival Rates =8 x A = 8 x C (No

installation cost inut and no mimimum CO iraffic lonit.)
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(a) Computational Object Distribution

i‘ ~~ ~ ~ ~~ ) ~—

E a. $ E E)./ 2 a 6 $ E 9./ g g
< ™ w [ & SlS|2s|=l=lole
2lzlslsls|8|2|2|3|5|5|515|8(2|2]|2
1 X X X | x| x X X X
2 X | X X | x X X X X
3 X | x| x| x X | x X X | x X
4 X | x| x| x x | x X X | x X
6 x| x| x| x X X X
6 X | x| x| x1x X | x X x| x ] x
7 X | x x| x X | x X X | x X
8 x| x| x| x X X X
9 x| x| x]x X X X
10 x| x| x| x| x x | x X x| x| x

(b) Random Splutting Probabiities
Service | SourceCO | TargetCO |  SOUT | ToractNode | SPUling
& Node & Probability
A GW SCFP 1 10 1 0000
GW SCFP 2 6 1 0000
GW SCFP 1 1 0 4050
GwW SCFP 1 3 00325
B GW SCFP 1 7 05625
GW SCFP 2 2 0 4045
GW SCFP 2 4 05950
GW SCFP 1 7 02276
GW SCFP 1 8 03016
GW SCFP 1 9 03016
c GW SCFP 1 10 01692
GW SCFP 2 3 02973
GW SCFP 2 4 02233
GW SCFP 2 5 03016
GW SCFP 2 6 01778

{c) CO Distribution Performance

Throughput at Max Load=90%

141 (sessions s ')

Installation Cost (1 cost unit per CO) 97
Service Delays - Low Load (20% of Max) 72 (ms)
Service Delays — High Load (90% of Max) 361 (ms)

Processor % Utilisation (Nodes 1 to 10)

886|881 [880[873|887|006[879[891]902]887

Tables 6 5 (a,b,c) Optimal CO Allocatons for Service C Arrival Rates =8 xA =8x B (No

installation cost imit and no mimimum CO traffic mit)
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Table 66 (below) gives the results for a maximum installation cost of 60 umts and a
mimmmum CO utility value of 0 1 traffic umts The installation cost limit has hampered the
optimisation significantly and on average the network 1s only 77% utilised with Node 5 not
used at all Some CO groupings have also split in two at the SCFP-UAP boundary This 1s
explained by the reduced replication sought, as traffic must split to reach the more centralised
COs For example, only one copy of the UAP(B) 1s allocated Even though the average
throughput has decreased due to the lower processor utilisation, average delay has increased,
as there 1s sigmficantly more remote communication cost and more queues are encountered
during a service session Note, however, that the low utility COs have been elimmated from

the solution

As the above nstallation cost constraint resulted in effectively a 9-node network, 1t 1s
interesting to compare this to an optimisation on a 9-node network (rather than 10) that has no
installation cost constraint The resulting 9-node network gives a throughput of 110 sessions
per second and a total installation cost of 78 That 1s, throughput has increased by
approxamately 17% but cost has increased by approximately 32% So, there may still be
utility 1n the cost-constrained network, from a throughput/cost perspective Note that the
scenario generally demonstrates the performance effects of disallowing duplication of COs
Even a relatively small restriction in duplication can have a large effect on the maximum

performance achievable

Figure 6 2 shows the trade-off between maximum achievable throughput and installation
costs Note that there 1s a region (between CO costs of 78 to 97) over which costs may be
reduced with little loss of throughput
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Figure 6 2 Reduction of Throughput with Reduced CO Installation Costs

We give the solution at the boundary point in Table 6 7 (cost of 78) and note that the

performance 1s very similar to the ongmal optimised network (Table 6 2) However, the
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nstallation cost has been reduced from 97 to 78, a reduction of 19 6% We considered this to
be the best trade-off when we are pnimarily concerned with throughput rather than cost Thus,
this cost constrained CO placement has been used to complete the specification of the
simulated Service Platform (Chapter 4) We will run dynamic random splitting schemes
(rather than the thus far static ones) on this platform, which adjust to the incoming arrival
rates These results are described 1n later sections of this chapter We will refer to the

completed service platform with this CO allocation as the reference platform

As an observation, note that, 1t 1s difficult to relate the costs of CO installation to losses due to
reduced throughput in a linear manner For this reason this has not been attempted in the
optimisation formulation However, as illustrated above, installation costs can be used to
reduce unnecessary CO copies without loss of performance and we propose this approach as a

useful network design method

6.1.5. Scalability and Bottlenecking

We examine the effect of varying the allowable number of nodes in the network (Figure 6 3)
Up to 12 nodes, there 1s a linear relationship between maximum achievable throughput and
the number of nodes The linear optimisation approach ensures scalability, as throughput (and
thus profitability) of the network scales linearly with the cost of deploying new processing
nodes In a non-optimised network, the effect to increasing processing nodes may be difficult

to predict Thus, the optimal approach may be a useful network dimensioning des:gn tool
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Figure 6 3 Increase m System Throughput as Processing Nodes are Added to the Network

Beyond 12 nodes the return on investment in processing power decreases This 1s due to the
gateways starting to bottleneck the system beyond this pont To gain more throughput, 1t
would be necessary to split traffic across additional gateway nodes or to increase gateway
processing power We can conclude however, that two IN/CORBA GWs running on generic

nodes can still efficiently drive a network with 6 times their combined processing power
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(a) Computatiwnal Object Distribution
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1 (x| x
2 | x| x
3 X | x| x| x X X X X
4 x| x| x| x| x X X X
6
6 X | x| x X X X X X
7 X | x| x| xjix X X X
8 x| x| x| x X X X
9 X | X | X X X X X X
10 X | % X | x X X X X
(b) Random Splitting Probabilities
Service Source CO Target CO Source Target Node Sphtting
Node Probabihity
A GW SCFP 1 1 04002
GW SCFP 1 6 0 2534
GW SCFP 1 7 0 3464
GwW SCFP 2 2 0 4002
GwW SCFP 2 4 02958
GwW SCFP 2 7 03040
SCFP UAP (A) 1 6 1 0000
SCFP UAP (A) 2 4 1 0000
B SCFP UAP (B) 1 8 10000
SCFP UAP (B) 2 8 1 0000
c GwW SCFP 1 3 05942
GwW SCFP 1 10 04058
el SCFP 2 9 0 6449
GW SCFP 2 10 0 3551

(c) CO Dustribution Performance

Throughput at Max Load=90%

94 (sessions s ')

Installation Cost (1 cost unit per CQO) 59
Service Delays — Low Load (20% of Max) 96 (ms)
Service Delays - High Load (30% of Max) 510 {ms)

Processor % Utiisation (Nodes 110 10) | 871|898 [760[902] 00 [890[885]745]|883[903

Tables 6 6 (a,b,c) Optimal CO Allocations for Equal Arrival Rates Maximum Installation costs =
60 COs, with mimumum CO traffic it of 0 1
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(a) Computational Object Distribution

;' ~~ ~~ -~ ~~ Poon) -~
2 MR KN ROR PN PN PN A R A RO A S
< o m | & S| 33| 3|c|o
2lzlsl=|2|8|2|5|2|5|6|5|2|2|4|2|2
1 X | x| x| x| x X X X
2 X | x| x| x]x X X X
3 X | x| x| x| x X X X
4 X | x| x| x X X X
5 X | x| x| x X X X X
6 X | x| x| x X X X X
7 x Px | x| x| x X X X
8 X | x| x| x X X X X
9 x| x| x| x|x X X X
10 x| x {1 x| x X X X
(b) Random Splitting Probabilities
Service Source CO Target CO Source Target Node Splitting
g Node B Probabitity
A GW SCFP ] 3 06434
GW SCFP 1 7 0 3566
GW SCFP 2 7 0 3496
GW SCFP 2 9 06504
B GW SCFP 1 1 02561
GW SCFP 1 4 07439
GW SCFP 2 2 0 2561
GW SCFP 2 10 07439
C GW SCFP 1 S 03137
GW SCFP 1 6 06863
GwW SCFP 2 5 03726
GW SCFP 2 8 06274
(c) CO Dustribution Performance
Throughput at Max Load=90% 121 (sessions s ')
Installation Cost (1 cost unit per CO) 78
Service Delays — Low Load (20% of Max) 91 (ms)
Service Delays — High Load (S0% of Max) 472 (ms)
Processor % Utiisation (Nodes 1t010) [ 888 [ 892|900 | 886|890 904 [891]903]901 [885

Tables 6 7 (a,b,c) Optimal CO Allocations for Equal Arrival Rates Maxunum Installation costs =
80 COs, with nunimum CO traffic limuit of 0 1

In conclusion, we have seen that the throughput optimisation tends to collocate objects as
much as possible, which will tend to reduce the number of queues that the service messages
encounter (as well as reducing processing duc to encoding/decoding) Thus, although the
objective 1s to maximise throughput a desirable side effect 1s that delays are kept at reasonable

levels Also, in each scenario examined, loading has been balanced across processors
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6.2. Comparison to Minimisation of Communications Costs

The majonty of current optimal allocation problems aim to minimise communtcations costs
rather than maximising throughput (for example [Anagnostou, 1998], [Bastarnca ef a/ 1998]
and [Avramopoulos & Anagnostou, 2002]) We apply a communications minimisation
objective to the model and examine differences 1n results to our throughput maximisation
approach

n

y » as the

Using the notation already defined in §5 1 we define the communications cost, ,,C
total ORB encoding/decoding time on processor # and processor m due to all communication
between an nstance of computational object ¢, on processor » and an instance of

computational object ¢, on processor m during one service session of type s

D Mt (I EID 3 i (5 Vnzm

Yke JM‘;',(clbrl) Yke "M,j‘(”n")

sen —
mCu = 9

Thus ,C; gives a communications costs 1n terms of the same encoding/decoding times used
in the throughput maximisation model, allowing a fair companson between the problem
solutions The problem objective 1s

Seon s..nm
Mirimise Z Cy X,

¥
v xp"
[

1¢ to mmmmise all times relating only to remote communications costs between COs The
flow balance, processor limit and user location constraints are as defined for the onginal
throughput optimisation (§5 1 4) In this case, the user demands are fixed values (otherwise
the solution would tend to zero) This constraint replaces the relative arnval rate constraints of

the onginal throughput problem and may be stated as

_n

A, =As Vhne N,,,,5€S

user?>

where A, are the assumed arnval rates for the system A solution to an nstance of this
problem 1s shown 1n Tables 6 8 (a) and (b) The solution was obtained for the following set of

arnval rates {4}

Service A Service B Service C
GW (Node 1) 4 (sessions ') 32 (sessions ') 4 (session's ')
GW (Node 2) 4 (sessions ) 32 (session s ') 4 (sessions ')
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(a) Computational Object Distribution

g REEEARANEEEEE
Tl |y« 8|2|9(2|2(2|223121212]8
Z | QOlalau|[D|O|P2]|P|D|lvn]la|lnn|lvw|lb|v|vn|n
1 x| x| x|[X]x X X X

2 | x| x| x| X]|x X X X

3 x| x| X ] x X X X

4 x| x| X | x X X X

5 X[ x | X | x| x| x| x| x| x|x|x]|x]|x||x]|Xx
6 x| x| X | x| x| xt x| x|[x|x|[x|[x]x}x]x
7 x| x| X | x| x| x X | X x | x X
8 x| x| X | x X X X

9 x | x| X | x X X X

10

(b) Random Sphtting Probabdities

Service Source CO Target CO S:Ig;ze Target Node P?;)l])]r:lt)lllllﬁy
GW SCFP 1 7 1 0000
A GwW SCFP 2 5 0 6636
GW SCFP 2 8 0 3304
GwW SCFP 1 1 00023
GW SCFP 1 3 04169
GW SCFP 1 4 04169
GW SCFP 1 5 0 1640
B GW SCFP 2 2 00023
GW SCFP 2 6 02220
GW SCFP 2 7 0 2456
GW SCFP 2 8 04169
GW SCFFP 2 g 01131
c GW SCFP 1 6 1 0000
GW SCFP 2 S 1 0000
(¢) CO Distribution Performance
Throughput at Max Load=90% 76 (sessions s )
Installation Cost {1 cost unit per CO) 85
Service Delays — Low Load (20% of Max) 112 (ms)
Service Delays — High Load (90% of Max) 682 (ms)
Processor % Utiisation (Nodes 1t010) (894 [880[906]883[884]|881[e94[888]220] 00

Tables 6 8 (a,b,c) Optimal CO Allocations for Communications Cost Minimisation

Note that the traffic mix 1s the same as for results Table 6 4 where Service B traffic 1s eight
times heavier than A or C The total traffic mntensity was chosen to give a maximum processor
load of approximately 90% The results show (Table 6 8) that the mimimum communication

cost optimisation 1s not dnven to use all processing capacity, as throughput maximisation 1s
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The minimum communications cost solution will not balance load unless the arnval intensity
causes loading on all nodes to be maximal Simulation results are given in Table 6 8 (c) Node
10 has no COs allocated at all and Node 9 1s only loaded to 22% As expected, Service B 1s
the most heavily replicated with COs on 9 remaining nodes Apart from load-balance, the
solution displays similar properties 1in terms of object grouping as the throughput

maximisation solution (Table 6 4)

There are potential setbacks to this approach As loading on nodes will not necessanly be
balanced 1n the solution, there 1s a larger variation 1n delay when a service may be processed
on either a hugh or low loaded node Also, on average 1t 1s likely that the delay will be greater
than 1f the same amount of load 1s shared equally amongst nodes (as delay 1s generally an
increasing function of load) Also, as too high arnval intensities will cause an infeasible
problem space, 1t 1s not suited to admission control optimisation Throughput maximisation

thus has several advantages

Regarding application to dynamic sharing algonthms, as nodes may be loaded to 90% even
when the system 1s relatively hightly loaded, there ts no ‘head-room’ to accommodate sudden
increases In traffic This 1s especially important for dynamic controls, which may not update
random sphtting information fast enough to cope with transients Thus, with communications
minimisation solutions, the processor may be in danger of overload even under low system

load conditions

6.3. Simulation Methodology and Validation with an
Analytic Model

We make a note here regarding simulation methodology before examining further results for
the dynamic internal and external controls In order to gain accurate stmulation results for the

service platform we have used the following methods for ensuring high confidence

Simulations are run until the customer population in the system has stabilised and the output
measure we require has reached close to its final value The output trace for the required
measure 15 examined and the average values over each of two consecutive periods at the end
of the simulation run are compared The length of each of these itervals 1s 5% of the total
simulation run time The averages are required to be within 2 % of each other to indicate that
the simulation has settled If not, the simulation run 1s elongated until the settling condition
has been reached To ensure confidence i the results, a number of simulation runs are
executed 1n accordance with the steady state condition The number of simulation runs is
increased until not worse than 95% confidence ntervals of £2% are achieved in the measure
of terest In order to validate the functioning of the simulator, we compare results to those

obtained with an analytic model, described below
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6.3.1. Analytic Model of the Service Platform

In this section a Layered Queuing Network (LQN) model 1s developed to obtain an analytic
solution for mean processor loads and mean service execution delays for the reference
platform The objective 1s to venfy the simulation model with analytic results The Layered
Queuing Network Solver (LQNS) has been used to obtain solutions to the LQN Layered
Queuing Networks and the LQNS have been described in §3 1 9

6311 Model Assumptions

The model 1s based on the CO allocation of the reference platform (Table 6 7 (a)) There are
four mamn distnbutable object types on the platform, the GW and the group of collocated
service components for each of the three services For example, the collocated components
for Service A are {SCF Proxy, PA, UA, GSEP, UAP(A), SF(A), SSM(A), SSO(A)} This
grouped service-specific object 1s referred to here simply as the SCF The SCF encapsulates
all COs that are grouped together and the execution times for message calls on its interface
are based on local communication times between the encapsulated COs Messages received
by an SCF are processed as a single message, where the processing time takes into account
only local processing between grouped COs It 1s assumed that messages between COs occur

as native function calls within the same thread of execution

Firstly, a general model 1s developed which allows two fixed-location GW objects and SCF
copies to be placed on any of the network nodes This model 1s then used to obtain a solution
to the specific SCF placements and random sphitting specified by the reference platform A
model for a single service type 1s first developed This 1s then extended to a multi-service

network

All assumptions made for the service platform model (Chapter 4) also hold for the analytic
model In summary

e There 1s one queue and one server on each of 10 processing nodes in the network

e Messages are asynchronous 1¢ the calling process does not block waiting for a reply

¢ Armnvals and user interaction times at the SSP are exponentially distributed

e Service times are deterministic, as given 1n the message detail charts in Chapter 4

6312 Execution Patterns

We may decompose the service MSCs into a number of specific execution patterns so that the
model may be bwlt-up from smaller, simpler modules Figure 6 4 below shows the sct of five
interactions that make up any of the three services on the reference platform They are as

follows
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Open Traffic Sources. We require six independent Poisson traffic sources to drive the model,

one for each gateway/service combination. The mean arrival rate of each source is variable.

Request-Reply: The main interaction pattern in the MSC we wish to model is an
asynchronous request-reply. Referring to Figure 6.4(b), a call sent form the GW to the SCF
returns immediately (does not block the GW task). Message el is queued and eventually
executed on the SCFs processor and a message returned, again, freeing the SCFs processor as

soon as the message is sent.

SSP Pure Delays. We do not model queuing in the Intelligent Network. However, we do
wish to model user interaction times (e.g. conversion time during a call) and also take account
of delay due to other message processing at the SSP (i.e. the CTR/ARI message pair in
Services 2 and 3). These delays may be modelled as an infinite server with exponentially

distributed service times, i.e. a pure delay.

S eny e F F ey F
Amivels
% el el
e.n
e P Delay
e
(@) Open Traffic Sources (b) Request-Reply
(c) SSP Pure Delays
GNP STFPI
< RSE eny F
o 3 FP) ) 4
R »r-oR-n R
e2 e e e
(d) Random Splitting (e) Forking to Multiple Threads of Control

Figure 6.4(a-e): Service Execution Patterns

Random Splitting. In order to model the internal performance control, we require a
mechanism to model the random distribution of incoming service requests. According to the
optimal splitting solutions, this is done by splitting the request stream at the GW to multiple
SCFs (Figure 6.4(d)).
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Concurrent Execution At some pomts in the MSCs a service continues execution n parallel
For example, referring to Figure 6 4(e), having processed message e/, the SCF makes a call
on entry e3 of the GW task, but then immediately continues processing entry e2 on 1ts own

processor

We dernive each of these model elements below and then construct the overall system model

of the service platform from the constituent parts

6313 Modelling Open Traffic Sources

We require a LQN sub-model for the MSC of Figure 6 5(a) External arnvals to task T1 are
generated by a Poisson process with an inter-arnval rate of 4 The MSC can be expressed as
an open amval LQN model as in Figure 6 5(b) However, the LQNS analytic solver is
pnmarily onented towards solving queuing models with finite customer populations whereas
our system 1s open In this case, the method given in [Shousha ef al , 1998] 1s used to convert
open models to closed In this method, the open arnival 1s replaced with N ‘pure’ client tasks
which each cycle continuously (1€ ‘arnve to the system’) on average Z times per second If N
1s very large, a value of Z may be chosen (appropnately large) such that an effectively open
armnval process of rate A =N/Z 1s achieved That 1s, we approximate an infimte population
with a very large one Note that, the clients must make synchronous (rendezvous) calls on task
71, so that they recerve a reply and retumn to the client pool, ready to ‘arnve’ again Otherwise

the client pool would eventually exhaust

A TO
_7\" Open Amrival N
Rendezvous
A —> —> ‘
[ | :

(@) ®) (c)

Figure 6 5(a-c) Conversion of Open to Closed Arrwals in the LON

6314 Modelling Requests-Rephes and Message Execution

In order to model the interaction pattern of Figure 6 6(a), we note that an LQN must be
specified as an acyclic task graphs This 1s to prevent deadlock occurring However, the
service MSCs are cyclic 1n nature — a call 1s made to an object, which processes and then calls
back to the ongnal caller The transformation to an acychc LQN s shown within the dashed
box of Figure 6 6(b) Each message in the ongmal sequence 1s modelled as a separate

‘pseudo-task’ with one entry corresponding to the call These tasks have no associated
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processor and their entnies have zero delay Calls are chained together with rendezvous calls,

so that each message must finish processing before the next begins

To represent the resource aspects of the service, tasks with associated processors are required
In the sub-model shown, the GW object 1s assigned to one processor (£/) and the SCF to
another (P2) Therr associated tasks, P/ exec and P2 exec allow modelling of the resource
demands of calls on the GW and SCF When an entry of a pseudo-task 1s called, a rendezvous
call 1s immediately made on the corresponding entry of the processor task This call blocks
until the entry has queued and been executed On retum, the task then continues with a call to
the next pseudo-task, which represents the next message in the sequence And so the chain
continues, blocking and waiting for execution of each message before continuing Note that
all message pseudo-tasks in the chain behave as if they are ‘infinitely threaded’ That 1s, any
number of messages can be 1n the system and blocked-waiting for access to the processors

These calls are all queued and executed in FIFO order

GW (P1) SCF(P2)

dl

dl

(@) (®)

Figure 6 6(a,b) Modelling Requests-Replies and Message Execution

Note also that, as all calls are rendezvous, the onginal call from the chient pool 1s blocked
until the end of the message chain (after e4 executes n this case) At this point it 1s retumed
to the client pool Note that there 1s only one (single threaded) task per processor so that each
message 1s cxccuted sequentially (Multiple tasks on a processor would share processor time
by time-slicing, which 1s not our required behaviour) Thus the processor task must have an

entry, with appropnate workload parameters, for each message that can be executed on the
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processor Thus the model gives the required execution semantics That is, (1) calls do not
block the calling process as 1t 1s threaded This, effectively, gives asynchronous call
behaviour (2) Each processor 1s a single process with one FIFO message queue (3) The
required sequence of calls and their execution i1s maintained (4) Each message has it own
execution time (modelled as a deterministic service time according to message times given in

the appendix to Chapter 4)

6315 Modelling Random Sphitting

We require a model for the random sphtting that occurs at the gateway, that 1s, creation of a
new thread of execution on a different processor, chosen according to a set of splitting
probabilities The MSC pattern, for a three-processor system, 1s shown n Figure 6 7 and the
corresponding transformation to an LQN sub-model 1s shown in Figure 6 8 (Note that, in
Figure 6 8, processor tasks and all their entnies are sumply represented by their corresponding

processor, a labelled circle)

GW (P1) SCF (P1)

arvls
—>
el |:| SCF (P2) SCF (P3)
TTOR [ OR
e2 e2 e2

] ] 1 [}
A
Figure 6 7 Random Splitting to Three Processors

An activity model element with branching pomt 1s used to perform the splitting With this
construct one of the paths 1s chosen according to the set of probabilities {p/, p2, p3} (In
practice, therc will be a probability associated with each potential host) Note that the
branching task has no delays or associated processor and does not make calls to the processor
tasks It merely performs the splitting to different message chains Having chosen a branch,
the relevant message chain 1s started with a call to entry e/ Each message chain then executes
the service either on the GW processor (P/) or, the GW processor and one other processor
(erther of P2 or P3) In the case of local processing on P/, the GW and SCF objects are
amalgamated (conceptually) into one distributed object This object has consecutive messages
grouped nto single messages, where each message ends on a call to the SSF (not shown 1n
Figure 6 8) or end of service Otherwise, the onginal messages in the MSC would be
modelled as exiting and re-entering P/ via its queue For this reason, the splitting 1s decided

before execution of e/
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Figure 6 8 LON for Random Spiuting to Three Processors

6316 Modelling SSP Delays

We do not consider queuing 1n the SSP and model calls to the SSF as pure delays This 1s
modelled with the LQN infinite server construct Calls made to 1t are accepted immediately
and block for a negative exponentially distnbuted time period and then return The server task
has one entry for each delay required (¢ g User Interaction Bl requires a mean delay of 5

seconds) The delay tasks are employed similarly to ordinary processor tasks in the model

SSP  GW(P1)  SCF

0
S
ol
—
C

Figure 6 9 Delays Modelled as LON Infinite Servers
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6317 Modelling Concurrent Execution

Parallel execution occurs when a message 1s sent to another processor but the sending thread
then continues 1ts own execution An example of this pattern and its corresponding LQN 1s
shown 1n Figure 6 10 (The example shown occurs at the end of each service session Similar
patterns are treated in the same manner) An mtertask Fork-Join interaction (see [Franks,
1999)) has been used to start concurrent execution of entries e2 on processor P2 and e3 on
processor P/ The last task does not complete until both €3 and €2 have called 1t Note that,
again tasks 1n the dashed box are pseudo-tasks and have zero delay

fad|
[

SSF GW (P1) SCF(P2)

N
T =

1 e3

Figure 6 10 Modelling Deternunistic Parallel Execution

6318 Modelling Multiple Service Types and Overall Model

The overall model 1s constructed from the sub-models discussed above The general model
(that allows splitting to all 10 processors) 1s shown 1n Figure 6 11 Six separate traffic sources
are required, one for each (GW, Service) pair Each (GW, Service) source drives a separate
message sequence module, composed of a branching point, which splits to one of 10 message
sequence chains (s/ to s/0) Each of these sequences execute on the GW processor and (at
most) one other processor corresponding to the sequence number For example, sequence s/0
executes on P70 and the GW processor GWI 1s deemed (arbitrarily) to execute on £/ and
GW1 on P2 Thus, for example, s/ of the left-most module only executes on P/ (but may also
call the pure delay server D1) All other sequences in this module execute on P/ and their

correspondingly numbered processor The server pool contains one processor task for each
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processor and a generic pure delay task which has entries for all required delay times for all

SCIviCces

Note that this 1s the general case For modelling the optimal allocations (which give random
splittings to only a few SCFs from each GW), only a fraction of the sequences and processor
task entnies are required Note also that the model allows processors to be heterogeneous in
the sense that each processor has independent processing times for a particular service
message However, 1n our experniments, times are set equal for a given message across all

processors, as was the case for the simulations

Source (GW1, S1) Source (GW1 S2) Source (GW2 S1) Source (GW2, 52)

Sphtting and Message
Sequence Modules

[ g e ] )

Processor Tasks and Pure Delay Tasks

I J-L b i J- L7 L1 [ LJ L r -7
Task Entnes Task Entries Task Entries Local GW Task Entnes for
Service 1 Service | Service 1 Processing User Interactions and SSF
Message Set Message Set Message Set Message Processing
Processor Exec Tasks Pure Delay Task

Figure 6 11 Overall LON Model

6 3 2 Venfication of Simulator with Analytic Solutions

To venfy the operation of the simulator, an LQN model was constructed for a system with
equal arrival rates for all services The object placements and random splitting probabihities
are as given in Table 6 7 This scenano was also simulated and the results for average
processor loading and service session delays compared to the analytic results Companson of
system loading 1s given in Figure 6 12 There 1s good correlation between the simulation and
analytic solution over the range Figure 6 13 compares total service delays in the system
There 1s good correlation between the two with a small discrepancy in the delay values at
higher arnival rates Note that, due to the approxamate nature of the analytic solution method,
some variation between simulation and analytic results 1s expected The simulation results are

expected to be most accurate
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6.4. Performance of Dynamic Controls

In §62 we have considered the optimal static placement of COs on network nodes and
explored the related performance 1ssues by simulating at the design point with the optimal
random splitting as an internal performance control In this section, we consider optimal
internal and external dynamic controls We compare our controls to a simple intuitive load

balancing mechanism to assess the ments of optimising the controls

6.4.1. Internal Performance Control

Thus far, we have not considered performance when service traffic mixes vary from the
optimal design pomnt To 1illustrate this scenano, consider the simulation traces mn Figure 6 14
below Shown are the loads on the most and least loaded nodes in the network over time,
where the traffic mix changes from the design pont in the central region of the graph The
network has been optimised for equal arrival rates for all services and 1s runmng using the
resulting optimal random splitting probabilities as an intemal control Service arrival rates are
20 sessions per second for each service At time t=500s the demand for Service B doubles and
remains at this rate for a period It can be seen from the graph that once the service mix 1s
changed the random splitting fails to perform optimally Indeed the highly loaded node is in
danger of overload even though the average network load 1s relatively low (about 60% 1n this

mstance)
1
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Figure 6 14 Loading when Traffic Mix Changes and Random Splitting 1s Fixed

In §516 we have proposed applying an LP to peniodically update the random splitting
probabilities given the arnval rates 1n the previous control pennod This problem 1s similar to
the previous optimisation problem with the exception that the COs are now fixed and the
desired traffic mix 1s estimated from a measure of the armval intensities over the previous

control interval, rather than being fixed arbitrarily at design time The objective is still to
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maximise throughput and a new set of sphtting probabilities 1s produced at the end of each

control period, which should be optimal for the current traffic

Figure 6 15 shows the results of employing this dynamic control to the same scenario as
before Shown are the loads on the same two nodes Although, the load has again increased
due to the increase 1n Service B amnvals, load 1s quite evenly distnbuted In fact, load on all

10 nodes over the high load period was measured to be within 3% of the average

In the next section, we consider the broader performance properties of the internal control

when coupled with the extemal control
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Figure 6 15 Loading when Traffic Mix Changes and Random Splitting is Dynamic

64 2 Internal and External Controls

Part of the solution to the LP 1n §5 1 6 1s a set of maximum session arrival rate thresholds for
the network In order to maintain the system at the optimum, 1t 1s necessary to limit the
service request volumes at the gateway when arrival rates exceed these thresholds (the
external control) When coupled with the internal control, the aim of the algonthm 1s to limit

the load on all nodes 1n the network and to maximise throughput

The LP solution returned at the end of the control penod contains both the random splitting
probabilities, discussed above, and a set of acceptance probabilities for new arnvals at the
gateways These probabilities are used by the Percentage Thinning algonthm (descnbed 1n
§5 2 5) to decide when to reject messages Note that only the first message of the service
session may be rejected as otherwise processing time would be lost 1n the network due to

sessions being aborted by the controller midway through execution

We use the reference platform, which has been optimised for equal service mix, to examine

the combined internal and external controls However, in order to test the controls operating
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away from the design point, we change the service mix so that there 1s twice the average
arrival rate from Service B as from Service A or C We have chosen Service B as the
dominant service as the CO allocation results have shown that this service 1s the most difficult

to optimise, due to 1ts longer service processing times

The simulation setup for the experiments that follow 1s

¢ Both dynamic intemal and external controls are run on the reference platform setup
¢ The control periods are 20 seconds long

o Control information 1s disseminated 1nstantaneously at the end of the control peniod

The relative arnval rates of each traffic source are as follows

Service A Service B Service C Service A Service B Service C
SSP1 SSP1 SSP1 SSP2 SSP2 SSP2
1 2 1 1 2 1

The arrival rates are constant over each simulation run and the maximum processor utilisation

1s 90% Load throttles are implemented by Percentage Thinning

Figures 6 16 and 6 17 give the simulated processor utilisation and the service delay over a
range of arrival rates for the internal and external controls operating together Note that the
arnval rates given are totals over all traffic sources and the total load figure applies to the
system as a whole (1¢ 1t 1s equivalent to average processor utilisation over all 10 nodes)
From the processor utilisation, 1t can be seen that the throttles achieve close to the target of
90% load and that they are stable in the throttling region Note that all processors individually
had utihsation within 1 7% of the 90% limut at an arrival rate of 150 sessions per second
From the service session delay time, 1t can be seen that delay 1s bounded by the throttle and

that this upper bound 1s reasonably short compared to the mimmimum delay
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Figure 6 16 Total System Load with Internal and External Controls in Operation
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Figure 6 17 Average Service Delays with Internal and External Controls in Operation

To assess the ments of the optimal scheme we compare 1t to a simple load-balancing
algorithm This algorithm operates by calculating the random splitting probabilities n
proportion to the remaining processor utilisation, which 1s sent from all processors, every 20
seconds The splitting probabilities and the acceptance probabilities for admission control are

calculated as

5 ,.nm 1_ ” k"l)
splztpy (k)= /() ( "k )
ZVneN l_p ( _l)
px:ax n n
— <ptk-1
an Ps (k)= p"(k=1) Fras <"l =1) VneN,,,VseS
1 pt:naxzpn(k'l)

where p”(k —1) 1s actual processor utilisation measured over the previous control interval
and where @ 1s a damping coefficient that allows damping of the response to rapid changes
in processor load between control periods o, 1s the load limit on gateway node » and 1s set
to a value of 0 9 The scheme was implemented to adhere to the CO locations of the reference
platform and operated over the same 20 second control period as the optimal algorithm
Acceptance probabilities for the Percentage Thinning are calculated from the acceptance
probabihities as per usual The value of & was tuned to achieve a stable control but was not

otherwise found to affect the results to a significant extent

The companson between the loading and delay for the optimal and simple load-balancing 1s
given 1 Figures 6 18 and 6 19 The simple algonthm performs poorly as an internal control,
as there arc too many distributed requests made, which incur additional encoding/dccoding

processing times This increases load and delay Also, there are a larger number of queues
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encountered dunng a service session, service session times become very long at high armval
rates The simple algonthm was effective in limiting load at its 90% threshold value and
individual processors were well load-balanced (within 2%) However, this comparison
illustrates that 1t 1s not enough to aim only for load balance and to prevent overloads The

complexity of the system requires more than a simple greedy approach

643 Dynamic Performance Controls - Implementation Note

Much of the implementation of the dynamic performance controls 1s similar to that of the
optimal CO allocation program, descnbed in §6 1 However, the LP program needs to be
called from the simulation rather than from the command line To enable this, our code 1s
compiled with the OSL Solver headers to an object rather than an executable and an OPNET
executable 1s made which links this object and the OSL Solver library During the simulation,
the simulation calls the optimal controller code (sending the current arnval rate estimates) at
the prescribed intervals to retneve the new set of splitting probabilities with which 1t updates
its load balancing lookup tables Note that this all occurs 1n zero simulation time All static
data such as the number of nodes, COs and workload detatls etc 1s hard coded into the
controller for efficiency The controller also retumns the desired values of the arrival rates,

which the external load controller uses to throttle traffic
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Figure 6 18 Reduced Throughput of Sunple Load-Balancing Algorithm
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6.5. Revenue Optimisation and Fairness

Throughput optimisation 1s extended to optimisation of network revenue with the algorthm
proposed 1n §5 1 8 The aim 1s to consider the profitability of successful service sessions for
the operator where each service type generates different revenues Rather than throttling all
service types equally during peniods of high arnval intensities, services are throttled
differentially to achueve a higher overall utility for the network In the algorithm, profitability
1s offset by a simple ‘faimess’ coefficient, which may be set to limit the maximum attainable

revenues but giving a fairer treatment across different service types dunng throttling

Figure 6 20 shows the total system revenue dunng throttling as arnvals to the network
increase Relative armval rates for all services are equal and service types are assigned the
following revenues, in arbitrary units of revenue Service A 7 units, Service B 1 unit and
Service C 3 umits All other aspects of the system are as per the reference service platform
The system revenues have been obtained for three different fairness coefficients When the
faimess has a value of 1, service types are throttled strictly in proportion to their expected
arnval rates for the next control pertod Thus the control operation 1s 1dentical to the previous
throughput maximisation algorithm When the faimess coefficient 1s decreased total revenue
increases Lower revenue services are rejected more than higher revenue ones As throughput
increases n each case, system revenue levels off as the network’s throughput 1s reached for
the optimal service mix that 1s being accepted Note that, for any value of faimess, processor
loads are mamntained closc to the 90% threshold as with the throughput maximisation

algonthm
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Figure 6 20 Maximum System Revenue Dependence on Fairness Coefficient

Figures 6 21 and 6 22 show the fraction of amvals accepted for each service for two values of
fairness coefficient simulated 1in Figure 6 20 above The acceptance ratio measure 1s obtained
from the rejection ratio measure given by the simulation and 1s calculated simply as 1 less the
rejection ratio for each service For a low value of faimess (Figure 6 21), low revenue service
(Service B) 1s immediately throttled as increasing arrival intensities cause the system
utihisation to approach 90% The two higher revenue services (A and C) are not throttled until
the arrival rate has further increased By this stage Service B 1s approaching complete
rejection At high armval rates the acceptances ratios are decreasing approximately linearly,
indicating that the system revenue has saturated Note that although Service C 1s less than half
as profitable as Service A, 1t 1s not throttled by very much more than A This 1s accounted for
by the fact that C requires less processing than A and so the revenue per unit processing

power 1s comparable for both services

In Figure 6 22, the fairness constraint has been tightened by specifying a higher value faimess
coefficient (0 6) In this case, the low revenue Service B 1s again throttled first but not as
deeply as before The lower revenue service of the remaining two, Service C, 1s throttled
more heavily as a result in order to maintain loading at 90% The high revenue service
maintains a high acceptance ratio as, with a famess coefficient less than 1, the algorithm 1s
still partially dnven by revenue maximisation Overall, however, the throttling 1s fairer to

Service B than before
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Figure 6 22 Accepted Arrivals for each Service with Moderate Fairness

651 Note on Two-Phase Revenue Optimal Heuristic

In §5 18 1, 1t was noted that, when arnval rates are low compared to the maximum network
throughput, the revenue optimisation problem will not tend to dnve all nodes to full capacity
and the resulting random splitting may give uneven loading across processors A two-phase
approach was proposed where the revenue optimal objective and constraints are used only
when throtthing 1s required In the single-phase approach the revenue optimal objective and
constraints are always applied Wc examine the improvement achieved when the two-phase

approach 1s employed
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The following low-load scenano 1s used Arnval rates from all sources are equal with total
arnvals to the network of 42 sessions per second The resulting simulated processor loads for

the single and two-phase approach are as follows

N1 [ N2 | N3 | Nd | NS | NG | N7 [ N8 | N9 | N10
Processor % Utilisation (Single Phase) 892|900 (463 |960|/000|000|000)1485|176 (173
Processor % Utilisation (Two Phase) 31913211313 |315(321 321317312320 311

The two-phase approach has achieved load-balance at approximately 32% loading on all
processors, whilst the single-phase approach displays large load imbalances, from 0% to 90%
This load imbalance condition of the single-phase approach has the same drawbacks as

displayed by the communications cost optimisation and should be avoided

6.6. The Market-based Internal Performance Control
Algorithm

A sub-optimal market-based approach to the internal performance control problem was
proposed 1n §5 2 In this case, internal and external controls are effected by means of tokens
Token pools are easitly mapped to Percentage Thinning coefficients and random splitting
probabilities as discussed 1n §52 6 Thus 1n terms of implementation in the simulator, the
methods are the same An auction takes place every 20 seconds, assigns the token pools and
maps these to Percentage Thinning coefficients and random splitting probabilities, which are

implemented by the simulator in the usual way
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Figure 6 23 Loading for Market Internal and External Controls

We first compare throughput and service session delay to the previous results for the fair

optimal algonthm (fairness coefficient 1s 1) and the simple load balance algorithm, where
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relative arnival rates for each service are equal Figure 6 23 gives the load charactenstics for
the simple load balancing, market and optimal algorithms Again the 90% throttle has not
been exceeded and 1s stable for high amval rates The market algonthm achieves
approximately 82% of the throughput of the optimal algonthm under the equal loading

scenaro

The average service session delay (Figure 6 24) shows a reasonably good delay charactenstic
with delays less that twice that of the optimal algonthm for any arnival rate The delay 1s
bounded at a relatively low value for higher throughputs As the market algorithm 1s throttling
the high load Service B more than A or C, the delay 1s relatively less at high loads compared
to the fair optimal algonthm
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Figure 6 24 Market Service Delays Compared to the Optimum

We compare system revenues, in the high load region, to the optimal algonthm with a fairmess
coefficient of 1 (Figure 6 25) All relative armival rates are again equal The market algorithm
compares favourably to a fair algonthm 1n terms of revenue optimisation Of course, the
optimal algorithm will perform better when the faimess constraint 1s relaxed, however the
result 1s stll encouraging considernng the market-based approach 1s a simpler heunstic

algonthm

The corresponding acceptance ratios for the market algonthm are given in Figure 6 26 and
give some 1nsight into algonithm operation Throttling starts much earlier than for the optimal
algorithm as the market algonthm 1s not as efficient and approaches the 90% load threshold
earlier The relative throttling rates are similar to the optimal case for a faimess coefficient of
0 6, so the algonthm 1s bchaving reasonably fairly The discrimination between services

follows relative values of the service revenue values, as in the optimal case
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6.7. Dynamic Controls Under High Load and
Varied Service Mix

We have thus far not examined the behaviour of the optimal and market internal and external
controls when traffic mix 1s vaned greatly from the design point Preliminary loading and
delay results were found for a 1 2 1 traffic mix Imitial investigations of the revenue optimal
algonthms were conducted at the design point (1 11 traffic mix) Here we examine the
revenue maximisation algonthms at a wider range of mixes from 11 1to 1011, 1101 and
1110 The market and optimal algonthms are compared in a high-load scenario Arrival rates

have been chosen so that the revenue retumn from the network has saturated Thus we are
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examining maximum revenue achievable under different traffic mixes We also look at two

values of faimess for the optimal algornithm and compare with the market algonthm

Figure 6 27 shows, total system revenue for different service mixes The service mux 1s
indicated on the x-axis where, for example, at a value of 5 for the curve labelled B, the
revenue value indicates total system revenue for a traffic mix of 1 51 The arrival intensities
1n all cases are high enough to saturate the system revenue at the given service mix The set of
graphs (A, B and C) 1n Figure 6 27 are for the optimal algonthm with a fairness coefficient of

1 A similar set, for a faimess coefficient of 0 6, 1s shown 1n Figure 6 28

Revenue retumns for the market algonthm were found to be relatively invariant, only spanning
a range of approximately £6%, regardless of traffic mix Thus, we simply express the average

for the market algonthm in Figure 6 27 and 6 28

From Figure 6 27 1t 1s observed that the effect of changing traffic mix for the optimal
algorithm 1s determined by the relative revenue values for each service In the case of a large
proportion of high-revenue Service A arrivals, most revenue 1s obtained Conversely for a
large proportion of low-revenue Service B arnvals, the total revenue decreases The market
algorithm can return more revenue 1n this case, as 1t 1s not acting fairly It will throttle Service
B amnvals and C arnvals 1n whatever proportions are necessary to achieve maximum revenue
Thus, the market algonthm does not display sensitivity to traffic mix The average revenue
over all service mixes for the fair optimal algonthm 1s approximately 465 profit units, whilst

the average for the market algonthm 1s 391 units
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Figure 6.28 shows the optimal algorithm with the fairness constraint relaxed. A fairness
coefficient of 0.6 has been set in this case. The average revenue over all service mixes has
increased to 558 profit units and the revenue at any given service mix has increased. The
market average is still higher on average than the case where Service B accounts for a high

proportion of the traffic.

Note that in each traffic-mix for the optimal algorithm, close to 100% of the available
processing capacity on all nodes was utilised. It can be concluded that the dynamic algorithm
can function for a wide range of service mixes that are far from the design-point splitting
probabilities of the static component placement. For the market algorithm, not all mixes gave
100% utilisation, although the system revenue was maintained constant. However, over the 28

service mixes simulated, only 4 showed ‘wastage’ of processing power of more than 20%.

Market Average and Optimal Revenues for Fairness=0.6

Figure 6.28: System Revenue with Varying Service Mixfor

Moderate Fairness Revenue-OptimalAlgorithm

To make an accurate comparison with the market algorithm, we compare revenue optimality
at the same level of fairness. As the fairness coefficient does not relate to the market

algorithm, the following independent measure,fairness index [Jain etal., 1984], is used.

Fairness Index =

where xi is the ratio of actual throughput to the throughput under fair conditions for each
service type i and n is the number of services. The throughput under fair conditions was taken
as the total throughput proportioned fairly according to the given service mix. The results are

as follows:



The market algonthm has a fainess index of 0 63, averaged over the range of traffic mixes
With an appropnately chosen fairness coefficient, the optimal algonthm also has a faimess
coefficient of 0 63, averaged over the range of traffic mixes At this level of faimess, the
optimal algorithm produces 573 units of revenue, whilst the market revenue 1s 391 units On

this basis, the market algorithm 1s 68% efficient

6.8. Chapter Summary and Conclusions

In this chapter, the properties of the throughput optimal CO allocation method has been
exammed and a distribution chosen, giving a reference platform for examination of the
dynamic algonthms The allocation method was found to be efficient under different traffic
mixes, producing allocations that fully utilised processing power 1n the network and produced
low service time delays The 1ssue of installation cost of CO copies was examined and 1t was
found that cost could be reduced to some degree without limiting throughput Networks with
varying numbers of processing nodes were tested and 1t was found that throughput increased

linearly with processing capacity to the point where the gateway nodes became bottlenecks

Also n this chapter, the throughput optimal solution has been compared to a communications
cost minmmisation approach It was found that there are potential set backs to this approach, as
loading on nodes will not necessanly be balanced 1n the solution This means that there 1s a
tendency for higher and more vaned service times in the network and that some nodes are 1n
danger of overload even when the network as a whole 1s under-loaded As the problem does
not have a viable solution for certain values of arrival rates, 1t would be d:fficult to implement

an admission control with the minimal communications cost approach

The effects of vanation 1n service mix when the random splhitting probabilities are fixed
demonstrated the need for dynamic controls The performance of the optimal and market
dynamic intemal and external performance controls was examined and compared to the
results for a simple load-balancing scheme The simple load-balancing scheme performs
poorly in comparison and 1illustrates that 1t 1s not sufficient to aim only for load balance and to
prevent overloads The complexity of the system requires more than a simple greedy
approach It can be inferred that other simple algorithms (join-the-shortest-queue and round
robin etc ), that rely solely on estimates of load levels of processors in the system and have no
a priori knowledge of message processing times, would also fail to achieve good solutions It
1s necessary to consider remote communications costs or service times to achieve optimal

solutions 1n distnbuted environments where communications 1s resource 1ntensive

The revenuc optimal algonthm was examined and 1t was found to throttle service requests in

accordance with the prescnbed service revenue values and overall was effective i increasing
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network revenues The simple faimess coefficient was found to be useful for limiting
disproportionate throttling of low revenue services while still allowing a substantial increase

1n overall system revenues

The two-phase revenue optimal algorithm was found to have an advantage over the single-
phase version The load imbalance condition introduced by the single-phase approach has the
same drawbacks as displayed by the communications cost optimisation and should be avoided

for that reason

Both the optimal and market algorithms were subjected to a wide range of service mixes at
high traffic intensities and found to be stable in terms of overload protection of the network
(hmiting node utilisation to close to 90%) and 1n terms of maintaining system revenues at
high levels In the case of the optimal algonthm, close to 100% of allowed processing
capacity on all nodes was utilised The market algonthm maintained utihsation within 20%
below the allowed utilisation When compared at the same level of faimess the market
algorithm was found to be approximately 68% efficient in terms of maximising network
revenue It was also effective i bounding delays to within approximately twice that of the

optimal algonthm
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Chapter 7. Conclusions and Future Work

This chapter gives our conclusions 1n terms of (1) the relation to and the impact on the general
area of research, (1) the properties of the proposed optimal component allocation schemes,
(1) the properties of the dynamic controls proposed and (1v) the properties of the Market-

based approach proposed In conclusion, potential topics for future work are 1dentified

7.1. Contributions to the Area of Research

Previously proposed software allocation strategies 1n the area of distnbuted systems research
have assumed simple models of the underlying system 1n order that tractable problems may
be constructed Methods for optimally mimimising delay in networks have been limited to
systems to which product-form queuing models apply For more complex systems, where
product form assumptions no longer hold, the simpler approach of minimising a generic cost
associated with overall communications flow 1s normally applied Component placement
problems, which stipulate a particular type of interaction between communicating entities, are
a relatively new addition to the performance control area and have thus far considered a quite
small set of performance metrics and constraints There has been little attention to overload
protection for distributed systems 1n the literature with the exception of web server overload

protection, which 1s generally specific to the technologies involved

With regard to dynamic load sharing controls, much of the distnbuted systems research has
focused on scheduling for an independent job model of the workload rather than on load
sharing between dependent communicating components Some simple load shanng schemes
have been proposed for TINA but dynamic optimal schemes for inter<dependent components

have not previously been considered

From the IN Iiterature, 1t 1s evident that network-centric approaches, rather than node centric
approaches, are gaining in populanty and revenue optimisation has become an important
consideration for performance optimisation Overload control 1s also an important theme and

1s a prerequisite for most approaches
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Considering the state-of-the-art in the area, as outlined above, the optimisation models

proposed in this thesis combine the following features giving a more comprehensive and

flexible optimisation model for performance control of distributed telecommunication

services than those previously proposed:

A telecom-centric objective of throughput or network revenue maximisation is applied.

Internal and external controls are integrated to give optimal network-wide load balance

and overload protection.

Multiple service types are considered in the model, as differentiation between service

types is an important aspect of telecommunications service provisioning.

The optimisation model allows more detail of the communications costs to be included.
Separate client/server costs are allowed, as opposed to simpler generic communications

costs seen in other models.

Component installation costs may be bounded by limiting the number of component

copies in the network.

Multiple component copies can be modelled in the network.

With regard to fulfilling performance requirement for telecommunications services, the

controls have been demonstrated to perform in the following areas:

Responsiveness: Although minimisation of delay was not a direct objective, the controls
were demonstrated to bound delays to reasonable levels as a desirable side effect of the

throughput maximisation objective.

Stability and Reliability: Overload controls were seen to maintain loads below desired

levels and were stable at high offered loads.

Profitability and Fairness: The possibility in trading-off overall network revenue and

fairness to customers has been demonstrated.

Optimality. The solutions are optimal in terms of usage of processing capacity in the

network and maximisation of revenue.

Scalability and Flexibility of Solution: The solutions to the component placement and
internal and external controls were found to utilise all available resources under varying
traffic mixes under high loads. The models have been kept general and may be applied to
many inter-working scenarios where the network acccss points arc controlled by the
operator, for example, gateways from other access technologies (the Web, mobile

networks) to a telecommunications service provisioning platform.



7.2. Properties of the Optimal Component Allocation

The following conclusions are made with regard to new work undertaken here n the area of

optimal component placement

Existing 1deas for optimising software component placement have been found to be useful in
the development of more telecom-centnic performance approaches for distributed platforms
In particular, methods for description of the problems in terms of Linear Programming
problems have given an efficient solution method to relatively complex problem
constructions Furthermore, with the addition of integer vanables to the problems, Mixed
Integer Programming has proved flexible for captunng a wide range of competing
performance objectives and constraints, which 1s a required design objective of this work We
have found the optimal computational component placement solutions we proposed to have

the following properties

e The component placement strategy was found to be robust in terms of allocating

resources for multiple services types with different arrival rates into the system

e The throughput of the system was found to scale linearly with processing power to the
point where fixed location components introduce bottlenecks Thus analysis with
optimisation may be used to i1dentify bottlenecking and to assess the requirements for

processing power 1n the network, given the capacity of the access nodes

e Installation cost limits, associated with multiple component copies, will reduce system
throughput 1if too stnngent However, imposing moderate cost limits can reduce the
number of component copies without reducing throughput Thus installation costs are

useful even 1n the case where maximum throughput 1s the main concern

e  When the components are relatively fine-gramned (as in the case for TINA COs), the
optimisation can also produce a good partitioming scheme, by tending towards assigning

components to nodes 1n groups

7.3. Properties of Dynamic Controls

With regard to internal and external dynamic controls for the system an optimal approach has

been found to have the following properties and advantages

e The solution to the problem gives both an internal control, through specification of
random splitting probabilities, and an extemal control, via maximum achievable arnval
rates Thus, the approach 1s integrated and all nodes may be protected from overload with
the use of throttles only at the gateways The optimality of thc approach mcans that
rejection of messages internal to the system, and the associated performance degradation,

may be avoided

177



e Although the static placement of components ultimately determines the maximum
performance return, we have found that optimal dynamic random splitting can cope with
traffic that vanes widely from the design point Thus, limitations of the miial placement

can be avoided

¢ Balancing load without consideration of throughput does not ensure an efficient network
Nor can load limits placed on processors alone ensure reasonable delays Throughput

N
maximisation will tend towards balancing load, and will generally give reasonable

average delays

¢ Balancing of load with throughput maximisation means that full utilisation of processing
resources under high load may be achieved Although load balance 1s achieved under high
load with commumcations cost mimimisation, the usual objective for component
placement strategies, duning low average network load some processors may be fully
utilised whilst others are almost 1dle and so there will be no headroom for sudden

increases 1n traffic duning the control pernod

o The profit optimisation approach allowed differential treatment of service types whulst
fully maximising utilisation of processing resources 1n the system The scheme was found
to be adaptable to varymg mixes of input traffic, retaining the preferred order of customer
pnonties The fairness parameter employed was effective in allowing trade off between
maximum profit and more fair treatment of customers, whilst keeping the problem linear

and easily solvable

7.4. Properties of the Market-based Approach

With regard to the market-based approach, the control has been found to perform well 1n
terms of throughput, on average delivering approximately 80% of the throughput of the
optimal algonthm It can deliver more consistent revenue returns under varying traffic mixes
(although substantially lower on average) than the optimal algonthm, whilst maintaining a
degree of fairness in customer treatment The market-based approach has the advantage of
allowing non-hnear constramnts, which can be used to advantage The profit optimal LP
problem was found to have a limitation when dealing with low load situations, which leads to
uneven loading 1n the network A correction was required 1n the form of a two-phase
approach This 1s not necessary with the market algonthm, which allows non-linear
constraints Thus the market-based algorithm may be a more natural choice for profit
optimisation, although lower overall retums are expected than for the optimal method The
market algonthm 1s also somewhat less complex than the LP and may be more easily

implemented and 1s expected to have shorter execution times

178



7.5. Future Work

Issues concerning the efficient implementation of complex control algorithms have not been
addressed here and this is left for future work. A suggested technique for reducing complexity
is to run the algorithms off-line over a range of loading scenarios. The resulting set of
solutions may then be used by the controller to choose random splitting and throttling levels
appropriate for the current load situation. Note that solutions could also be held at each node,
which would then only receive an account of the load situation at the end of control intervals
and choose the appropriate control parameters from local information. This scheme could be

enhanced with an interpolation algorithm for increased accuracy.

It has been assumed here that the control algorithms have exact knowledge of execution times
for message flows in the network. If the estimates are inaccurate, the load control will not
perform optimally. A solution may be to adjust the assumed processing times in accordance
with variations between load values predicted by the controller and the measured load. A
simple control might vary message-processing times linearly to attempt to minimise the error.
This could be implemented as a Linear Programming problem. If processing times in the
network are assumed to be stochastic, a linear predictive filter may be of use. More complex
schemes that do not assume linearity might attempt application of a Neural Network solution.
This may be an interesting control problem in its own right as there is complexity in the

interaction of the predictive control and the original optimisation problem.

A further area of research might be to consider optimising the initial distribution of objects
with respect to the service mix distributions during high load rather than simply the average
expected traffic volumes for each service. Although the initial CO allocation was found not to
be limiting in our case, it may be so depending on the nature of the application and the
network. In the suggested scheme, we would presume that the service types have a known
joint probability distribution (possibly estimated from traffic studies) describing the
likelihood of any particular ratio of traffic from the services occurring. We could then apply
stochastic techniques to achieve a component allocation scheme that is optimal in terms of the
service mix distribution, rather than simply in terms of the average service mix expected. This
approach would be most valuable when the service mix is highly variable. A suggested
method for applying this approach is to form a search space for maximising expected
throughput. Assessment of each point in the space would require solution to the allocation
problem for the corresponding service mix and the resulting solution for maximum
throughput would be weighted by the probability of that service mix occurring. An efficient
random algorithm, for example a Genctic Algorithm, could be employed to find the

maximum.
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