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A BSTRACT

As a consequence of the widespread industrial and agricultural applications of organotin 

compounds, contamination of various ecosystems has occurred in recent decades. 

Understanding how these compounds interact with cellular membranes is essential in 

assessing the risks of organotin pollution. The organotins, tributyltin (TBT) and 

trimethyltin (TMT) and inorganic tin, Sn(IV), were investigated for their physical 

interactions with non-metabolising cells and protoplasts of the yeast, Candida maltosa, 

an organism that is often associated with contaminated environments. Sn(IV) and TBT 

uptake occurred by different mechanisms. TBT uptake resulted in cell death and 

extensive K+ leakage, while Sn(IV) uptake had no effect. TMT did not interact with 

cells. Of the three compounds, TBT alone altered the membrane fluidity of cells, as 

measured by the fluorescence anisotropy of 1 ,6 -diphenyl-1,3,5 -hexatriene incorporated 

into cells. To further examine the contribution of lipophilic interactions, the influence of 

pH and NaCl concentration on TBT and triphenyltin (TPT) uptake and toxicity was 

assessed. Solution pH and ionic composition influence the chemical speciation and 

toxicity of organotins in the aquatic environment. Organotin compounds may exist as 

both hydrated cationic species and neutral hydroxides in solution, with the formation of 

chloride species in the presence o f NaCl. The uptake and toxicity o f TBT and TPT by C. 

maltosa was investigated between pH 3.5 and 7.5 and in concentrations of up to 500 

mM NaCl. A theoretical model was used to predict the speciation and overall octanol- 

water distribution ratios (Dow)- TBT and TPT toxicity was correlated with Dow values, 

corresponding to increasing pH and NaCl concentration and implicating compound 

lipophilicity as a toxicity determinant.
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CHAPTER 1: INTRODUCTION

Organotin compounds comprise organometallic moieties characterised by a Sn atom 

covalently bound to one or more organic substituents. Chemically, these compounds are 

represented by the formula RSnX3, R2SnX2, RaSnX and R4Sn, where R is an alkyl or 

aryl group and X is an anionic species such as halide, oxide or hydroxide. The toxic 

effect of organotins has been recognised as far back as 1954, when an attempt to use 

organotin compounds for treatment of staphylococcal infections resulted in the death of 

102 people (Zuckerman et al., 1978). Their industrial applications and use as general 

biocides have resulted in widespread environmental pollution. The following sections 

aim to provide a comprehensive review of the interactions of organotins with 

microorganisms and to introduce the experimental objectives of this work.

1.1 Organotin concentrations in the environment

Organotin compounds are ubiquitous in the environment and have a wide range of 

industrial and agricultural applications. Organotins have been detected in water, 

sediments and biota of both freshwater and estuarine environments (Fent and Hunn 

1991; Schebeck et al., 1991; Weurtz et al., 1991), as a contaminant of wastewater and 

sewage sludge (Fent and Muller, 1991) and have also been detected in soil as a result of 

dumping of sewage sludge or from use as agrochemicals (Fent 1996a). The introduction 

of organotins into the environment and their concentrations in ecosystems are discussed 

below.

1.1.1 Organotin applications and entry into the environment

Organotins have diverse industrial and biocidal applications (Table 1.1) and tin 

may have more of its organometallic derivatives in use than any other element (Blunden 

et al., 1984). Monoalkyltins and dialkyltins are mainly utilised for nonbiological 

purposes with the major application (approximately 70% of the total organotin use) as 

heat and light stabiliser additives in PVC processing (Hoch 2001).
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Table 1.1 Applications of organotin compounds0

Applications Compounds
Non-biological uses:

Biological uses:

Thermal and UV-stabilisers for rigid and semi-rigid 

PVC

Catalysts for production o f polyurethane foams, 

silicones and transestérification reactions

Precursor for forming S n0 2 films on glass

RSn(SCH2.C O .O O cty  (R = Me,Bu,Oct)

(BuSnS 1.5)4

R2Sn(SCH2.CO.OOcti) 2 (R = Me,Bu,Oct) 

(R2Sn(O.CO.CH:CH.CO.O)n (R = Bu,Oct) 

R2Sn(O.CO.CH:CH.CO.OR’) 2 (R = Bu, R’ = Oct) 

(Bu2SnO)2 

{Bu2Sn(0)0H }n 

BuSn(OH)2Cl 

BuSnCl3

MeSnCl3 (2 0 %) + Me2SnCl2 (80%)

Me2SnCl2

Agrochemicals :

Fungicides

Acaricides

Antifeedants

Ph3SnX (X=OH, OAc) 

(CyHex)3SnOH 

{(PhMe2CCH2)3Sn}20  

Ph3SnX (X=OH,OAc)



Applications Compounds
Antifouling paint biocides Ph3SnX (X=OH,OAc, F, Cl, S.CS.NMe2) 

Ph3SnO.CO.CH2CBr2.CO.

OSnPh3

Bu3SnX (X=F,Cl,OAc)

(Bu3Sn)20

Wood preservative fungicides (Bu3Sn)20

B u3 Sn(naphthenate)

(Bu3Sn)3P0 4

Stone preservation (Bu3Sn)20

Disinfectants Bu3SnO.CO.Ph

(Bu3Sn)20

Molluscicides Bu3SnF

(Bu3Sn)20

Anthelmintics for poultry feeds Bu2Sn(O.CO.CiiH23)2

"Compiled from Blunden et al. (1984) and Cooney and Wuertz (1989).

b Notations used throughout include: Me = Methyl, Et = Ethyl, Pr = Propyl, Bu = Butyl, Ph = Phenyl and CyHex = cyclohex, Ac = acetate. 

c These compounds are used in combination with the corresponding R2S11X2 derivatives.



Triorganotins are exploited for their fungicidal, bactericidal, algicidal and acaricidal 

properties with approximately 23% of the total worldwide organotin production used as 

agrochemicals and as general biocides (Fent 1996b). A few divalent organotins also 

exist but they are insignificant because they have no practical use (Hoch 2001)

Tributyltin (TBT) pollution has received the most attention and is related to its 

use in antifouling paints. Toxicity towards non-target organisms has led to legislation 

restricting its use. Growing production of tributyltin is also related to its use as 

preservative for timber, wood, textiles, paper and leather (Fent, 1996b). Since the early 

1960s, triphenyltin (fentin) hydroxide and triphenyltin acetate have been used in 

agriculture, where they are used as fungicides to protect crops, including potato, celery, 

sugar beet, and rice and to prevent tropical diseases in peanuts, pecans, coffee and cocoa 

(Hoch 2001). Triphenyltin (TPT) has also been employed as a cotoxicant with TBT in 

some antifouling paints (Fent and Hunn, 1991).

The possible routes of entry and dispersal of organotins in the environment are 

summarised in Fig 1.1. Although the agricultural and biocidal uses o f organotins 

comprise only a fraction of the total consumption, they give rise to the largest proportion 

o f free organotins in the environment, due to direct introduction into soil, air and water 

(Blunden et al., 1984). TBT compounds are directly introduced into aquatic systems via 

leaching from antifouling paints and this route is still of paramount importance. 

Organotins also enter the environment as a result of agricultural applications, where run­

off and leaching from soil can lead to contamination of nearby rivers and streams (Fent 

and Hunn 1991). Leaching and normal weathering of PVC products can lead to inputs of 

methyltins and butyltins into the aquatic and terrestrial environment (Fent 1996a). Other 

less important routes of entry result from disposal of materials manufactured with 

organotins in landfills, from treated surfaces of preserved materials or air emissions 

from municipal waste incineration or during application of agrochemicals (Fent 1996a).
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Incineration

t
Industrial Applications 

(PVC, catalysts, biocides)

Figure 1.1 Organotin entry routes into the environment (modified from Fent 1996a.)

1.1.2 Tributyltin legislation

Research on tributyltin has mainly focused on its use in antifouling paints, which are 

used to coat structures exposed to an aquatic environment, including ships, pleasure 

boats, buoys, pilings, sea walls, oil rigs, cables and water intake pipes (Cooney et al., 

1994). The use of antifouling paints on ships prevents the build-up of nuisance 

organisms, which results in greater hull friction and increased fuel usage and reduces the 

spread of invasive (non-native) species across the world’s oceans. The biocide is 

released from the paint with time, resulting in the formation of a thin layer of 

concentrated TBT in the immediate vicinity of the painted surface, which repels or kills 

nuisance organisms such as barnacles (Huggett et al., 1992). However, TBT can diffuse 

further, leading to contamination of adjacent water and sediments and exposure to
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nontarget organisms. The toxic effects of TBT on nontarget organisms have led to 

restrictions on its use in antifouling paints.

France was the first country to implement restrictions when, in 1982 the use of 

TBT-containing paints on boats shorter than 25m in length was banned (Huggett et al., 

1992). The reasoning behind this was that smaller boats spend more time in harbours 

and closer to the shore, where TBT is more likely to accumulate in sediments, while 

larger vessels spend the majority of their time at sea resulting in dilution of the biocide 

in the greater volume of water. Aluminium boats were exempted, as the alternative 

copper-based paints would result in severe corrosion. Britain was next to introduce 

legislation in 1985, which was aimed at controlling the release rate o f TBT from paints. 

In the United States the "Organotin Antifouling Paint Control Act of 1988" regulates the 

use of TBT. This restricts painting of vessels shorter than 25m (aluminium hulls 

exempted) and required paints to leach at a rate of no greater than 4.0jng/cm2/day 

(Huggett at al, 1992).

TBT can be toxic at extremely low concentrations, with molluscs, bivalves and 

gastropods as the most sensitive species (Table 1.2). As a result, the International 

Convention on the control of harmful antifoulant systems on ships was adopted by the 

International Maritime Organisation in October 2001. Under the terms of the convention 

the use of TBT-based antifoulants will be banned by January 2003 with a complete 

prohibition on the presence of the chemical in marine paints by 1st January 2008.

Table 1.2 Summary of the toxic effects of TBT on marine organisms (adapted from 

Alzieu, 1998)

Concentration of TBT Effect observed

Less than 1 ng L ' 1 Appearance of imposex in gastropods

Exceeding 1 ng L' 1 Limit of cell division in phytoplankton and reproduction of

Zooplankton

Exceeding 2 ng L ' 1 Shell calcification anomalies in the oyster Crassostrea gigas

Exceeding 20 ng L' 1 Disturbances in the reproduction of bivalve molluscs

1-10 jug L ' 1 Effects on fish reproduction

1-1000 jixg L' 1 Disturbed fish behaviour
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1.1.3 Organotin pollution o f  aquatic systems

Detection of organotins in aquatic systems has mainly focused on TBT and its 

degradation products, dibutyltin (DBT) and monobutyltin (MBT). Evidence exists to 

indicate that legislation governing TBT use in antifouling paints has led to a reduction in 

organotins in the aquatic environment. There have been several reports on declining 

levels of TBT in coastal waters (Evans et al., 1995). Tin tissue burdens have declined in 

oysters and mussels, there has been substantial improvement in the health of oyster 

populations and oyster farming has recovered (Evans et al., 1995). In Lake Lucerne, 

Switzerland, TBT concentrations in freshwater boat harbours declined from 470 ± 190 

ng L ' 1 in 1988 to 50 ± 40 ng L ' 1 in 1993 (Fent and Hunn, 1995). Between this period 

TPT was detected at levels up to 50 ng L"1. Distribution of organotins in UK rivers has 

also declined (Dowson et al., 1994). O f 12 freshwater sites in the Norfolk Broads, UK, 

which had previously been found to be contaminated with TBT only one site had 

detectable butyltin concentrations in the water column, at 13 ng L"1.

Based on this evidence, it has been argued that a total ban on TBT is premature 

and should not be enforced until an environmentally and economically sound alternative 

is developed (Evans 1999, Evans et al., 2000). However, recent surveys indicate that 

concentrations still exceed the environmental quality standard value of 2 ng L '1, set by 

the UK (Fent, 1996b). TBT pollution is also still a problem in French waters, where the 

initial reduction in concentrations after the introduction of legislation has ceased (Michel 

and Averty, 1999). Of 237 measurement points sampled, 75% of the dissolved TBT 

concentrations were above the threshold of 1 ng L '1, while 25% of measurements 

exceeded 21.4 ng L"1. In countries where no regulations have been implemented, levels 

are in the same range as other countries prior to legislation (Fent, 1996b). This is evident 

in Asia, Africa and South America.

In contrast to the apparent reduction in organotin concentrations in the water 

column, organotins often persist at high concentrations in sediments. As degradation 

rates are in the order of years (Astruc et al., 1989; De Mora et al., 1989; Dowson et al., 

1993b), sediments remain contaminated for longer time periods. In the top layer 

sediment from Lake Lucerne, Switzerland, TBT and TPT were found at concentrations 

of 2.8 and 0.38 jug (g dry wt.)"1, respectively, with very little degradation products



detected (Fent and Hunn, 1995). Between 1990 and 1993, TBT concentrations in 

sediments from Lake Geneva remained between 1.56 and 2.47 |Ltg (g dry wt.)"1 (Becker- 

van Slooten and Tarradellas, 1995). In contrast, concentrations in surficial sediments 

from freshwater sites (East Anglia, UK) had reduced since the introduction of legislation 

(Dowson et al., 1994). TBT detected in the range 0.01-1.3 jug Sn (g dry wt. ) -1 in 1987, 

was reduced to <0.003-0.069 |ig Sn (g dry wt.)'1.

Distribution of organotins in the water and sediment layers may determine 

bioavailability and toxicity to organisms. In freshwater, MBT and to a lesser extent 

TBT, is partitioned towards the particulate phase, while DBT exhibits an approximate 

50:50 partitioning between particulate and solution phases (Dowson et al., 1993a). In 

estuarine waters, MBT will almost exclusively be absorbed onto particulates, TBT will 

be predominantly in the solid-phase fractions, with 10-30% remaining in solution, while 

DBT is solubilised. TBT sorption is reversible (Dowson et al., 1993a), indicating that 

contaminated sediments may release TBT. Mechanical operations such as dredging and 

natural disturbances such as storms or bioturbation may facilitate the release of TBT into 

the overlying water column.

The lipophilic nature conferred to organotins by the alkyl groups facilitates their 

bioaccumulation by living organisms. Of growing concern is the possibility of the 

compounds being concentrated through the food chain as a result of bioaccumulation. 

Bioconcentration factors (BCF) may range between 100 -  500 000 for microorganisms, 

macroalgae, invertebrates, fish, birds and mammals (Laughlin, 1996). Organotins still 

occur at elevated levels in higher organisms, even after legislation (Fent, 1996b). O f 38 

species of Japanese gastropods surveyed, 30 species were affected by imposex 

(Horiguchi et al., 1995). Occurrence rates in rock shells, Thais clavigera and T. bronni 

were 100% at almost all sites surveyed and were positively related to both TBT and TPT 

concentrations. Butyltin residues have also been detected in marine mammals. Hepatic 

butyltin concentrations in finless porpoise from the Seto Island Sea, Japan as high as 10 

000 ng (g wet wt.) ’1 have been reported, while other cetaceans from the Japanese 

coastline had butyltin concentrations ranging from 110 - 5 200 ng (g wet wt. ) '1 (Tanabe 

et al., 1998).
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1.1.4 Organotin pollution o f  terrestrial environments

Reports of organotins in environments other than aquatic systems are scarce. Effluent 

from municipal water treatment systems, released into the Rhine river was found to 

contain inorganic tin, dimethyltin (DMT), MBT and DBT, in the concentration ranges 

153 - 200, 0.8 -2, 9 and 5 - 8 ng Sn L '1, respectively (Schebeck et al., 1991). Input into 

the municipal plants likely results from direct industrial use of these compounds or from 

the industrial or private use of articles containing tin, for example PVC drain pipes.

In a wastewater treatment system organotins become primarily associated with 

the particulate phase and are removed mainly by sedimentation in the primary clarifier. 

In a Swiss municipal wastewater treatment plant organotins were detected at levels 

ranging from 136 - 564 ng MBT L '\  127 - 1026 ng DBT I / 1, and 64 - 217 ng TBT L‘‘ 

(Fent and Muller, 1991). After primary sedimentation, 73% of the total organotins had 

been removed, while levels in digested sludge were 0.78 ± 0.19 mg (kg dry wt. ) '1 MBT, 

0.98 ± 0.3 mg (kg dry wt.) ’1 DBT and 0.99 ± 0.91 mg (kg dry wt. ) '1 TBT. As organotins 

become concentrated in sludge, the risks associated with disposal need to be assessed.

Despite the use of TPT in agrochemicals, there is very little information 

concerning concentrations in soils. Total phenyltin concentrations (mono-, di-, and 

triphenyltin) in foliage and soils of pecan orchards immediately after application of 

TPTOH was 72 and 26 jug Sn (g dry w t)'1, respectively (Kannan and Lee 1996). The 

persistence of TPT in soils has been demonstrated with triphenyltin acetate remaining in 

the top layer ( 1 - 1 0  cm) of the soil column a year after application and less than 4  % of 

the applied TPT leaching from the soil (Loch et al., 1990).

Bioconcentration of organotins along the food chain may lead to high levels in 

food for human consumption. Also, a wide variety of organotins, including octyltin, 

butyltin and phenyltin derivatives, are in direct contact with food due to their use as 

stabilisers in plastic products. Organotin agrochemicals and the use o f sludge amended 

soils could also lead to direct transfer to agricultural produce. Organotins have been 

detected in seafood and other foodstuffs, although concentrations detected have been 

reported to cause negligible risks (Kannan et al., 1995; Cardwell et al., 1999; Keithly et 

al., 1999; Takahashi et al., 2000; Belfroid et al., 2000). However, a world-wide effective 

value for an acceptable daily intake (ADI) does not exist.

10



1.2 Toxicity towards microorganisms

1.2.1 General considerations

The concentration and form of tin in the environment determines its toxicological 

effects. The general rule that tetraorganotins (R4Sn) and inorganic tin are not toxic does not 

always apply (Cooney, 1995). Toxicity of inorganic tin to the cyanobacteria, 

Synechocystis aquatilis is dependent on pH with toxic effects occurring under extreme 

alkali conditions (Pawlik-Slowronska et al., 1997). At pH 7, neither Sn(II) nor Sn(IV) 

exhibited any inhibiting effects at concentrations up to 10 mg Sn L '1, while at pH 9.0, 

both the growth of the cyanobacteria and chlorophyll a content were reduced. Addition 

of organic moieties to inorganic tin makes the compounds more lipid soluble, thereby 

altering their toxic effects. The number and nature of the groups bonded to the tin atom 

influences toxicity. The toxicity of organotins generally decreases in the order tri- (R3S11X) 

> di- (R2SnX2) > mono- (RS11X3) substituted compounds (Hallas and Cooney, 1981a). 

However, this series does not hold for all microorganisms. For example, MBT was more 

effective than DBT at causing K+ leakage from yeast (Cooney et al., 1989) and MBT and 

inorganic tin were more effective than TBT or DBT in inactivating bacteriophage T4 

(Doolittle and Cooney, 1992).

Organotin toxicity correlates with total molecular surface area (TSA) (Eng et al., 

1988). In this case, butyl-, propyl-, phenyl-, and pentyl-substituted compounds should be 

most toxic, while ethyl- and methyl-substituted organotins are expected to have less effect. 

There was a high correlation between TSA values of triorganotins and their toxicity 

towards E. coli and an alga, Selenastrum capricornutum  (Eng et al., 1991). Toxicity 

increased in the order Me3SnCl < Et3SnCl < Pr3SnCl < Ph3SnCl < B^SnCl. Toxicity also 

increases with hydrophobicity (Laughlin et al., 1985). Toxicity of organotins to the mud 

crab, Rhithropanopeus harrisii was a function of the hydrophobic characteristics conferred 

by the number and structure of the organic ligands.
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The toxicity of organotins to microorganisms appears to be species-dependent 

(Table 1.3) and can also be reduced by morphological attributes such as the presence of 

melanised hyphae or chlamydospores (Gadd, 2000). Sensitivity of yeast to organotin and 

organolead compounds varied from strain to strain but TBT was the most toxic compound 

examined, followed by TPT and MBT (Cooney et al., 1989). Mono- and dimethyltins were 

the least toxic. Of nine organotin compounds tested towards the marine yeast, 

Debaromyces hansenii, only Pl^SnCl and butylated compounds induced significant K+ 

release from cells (Laurence et al., 1989). The order of toxicity of the butylated tins, as 

determined by K+ release agreed with the findings of Cooney et al. (1989), the toxicity 

sequence being BusSnCl > BuSnCh > Bu2SnCl2. The overall toxicity of Pt^SnCl was 

similar to BusSnCl. In contrast, MeSnCh, Me2SnCl2, MesSnCl, EtsSnBr, and Et2SnCb 

were shown to have little or no effect. Toxicity of organotins towards the cyanobacteria, 

Plectonema boryanum , as determined by photosynthesis inhibition, decreased in the 

following order: BusSnCl > Pr3SnCl > Bu2SnCl2 > Ph3SnCl > Et3SnCl > Me3SnCl > 

BuSnCl3 (Avery et al., 1991). A similar order of toxicity was reported for Anabaena 

cylindrica, although this organism was shown to be more sensitive (Avery et al., 1991).

Methanogens respond quite differently than aerobes. The effect of organotins on 

three methanogenic bacteria (Methanococcus thermolithotrophicus, M. deltae and 

Methanosarcina barkeri) contrasted with results for aerobic organisms (Boopathy and 

Daniels, 1991). I C 5 0  values (concentration at which 50% inhibition occurs) were inversely 

proportional to the total surface area of the alkyltin molecules. Moreover, this was not due 

to tests being performed in reduced sulphide-containing media as the same procedures, 

when performed on E. coli under both aerobic and anaerobic conditions, yielded an 

inhibition pattern clearly resembling that reported by Eng et al. (1988). The toxicity of 

butytlin, phenyltin and inorganic tin compounds to three strains of sulfate-reducing 

bacteria, isolated from TBT-polluted sediment and identified as Desulfovibrio sp, also 

decreased with TSA (Lascourreges et al,. 2000). Toxic effects on suspended anaerobic 

cultures were apparent at concentrations between 500 - 600 \iM for SnCU, 55 - 260 jiM for 

tri-, 3 0 - 90  j l x M  for di- and 1 - 6  jiM for mono-organotins.
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Table 1.3 Toxicity of organotin compounds to microorganisms

Observed effect Organism Organotin Reference
50% inhibition of Plectonema boryaum 1.2 |iM TBT Avery et al.

photosynthesis by 11 juM DBT (1991)

cyanobacteria

Anabaena cylindrica

13 jiM TPT 

1 \M  TBT 

9 jjM  DBT 

5 \M  TPT

50% inhibition of A. cylindrica 1 joM TBT Avery et al.

nitrogenase activity by 3 \M  DBT (1991)

cyanobacteria 2.5 [M  TPT

50% inhibition of Dunaliella tertiolecta 84 (iM TPT Mooney and

photosynthesis by marine Skeletonema 80 nM TPT Patching

microalgae costatum (1995)

ICS7  of yeast growth Aureobasidium 18 fiM MMT Cooney et al.

determined using density pullulans 14 mM DMT (1989)

gradient plates 16 |iM TMT 

18 jiM MBT 

27 jiM DBT 

10 |jM TBT 

51 \M  TPT

IC50 of organotins Natural population (i) 98 juM MMT Pettibone and

(i) determined by viability from Boston Harbour 64 jiM DMT Cooney (1988)

counts sediments 33 jiM TMT

(ii) determined by (ii) 38 |iM MMT

thymidine uptake 205 jiM DMT 

152 jiM TMT
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Observed effect Organism Organotin Reference
I C 5 0  of TBT to bacterial Clostridia : Jude et al.

strains from sediment of Harbour 2.1 \M  TBT (1996)

Arcachon Harbour or nc. env. 2.3 [iM TBT

noncontaminated Pseudomonads :

environments (nc. env.) Harbour 

nc. env. 

Enterobacteria: 

Harbour 

nc. env.

70 \M  TBT 

70 \M  TBT

3 mM TBT 

3 mM TBT

I C 5 0  values of tin Methanococcus 9 |uM MPT Boopathy and

compounds for deltae 520 \M  DPT Daniels (1991)

methanogenic bacteria

Methanococcus

thermolithotrophicus

Methanosarcia

barkei

>2 mM TPT 

5 nM MPT 

440 |iM DPT 

>2 mM TPT 

21 juM MPT 

500 jiM DPT 

>2 mM TPT

G R 2 5 °  values of Desulfovibrio sp. 55-170 \M  TBT Lascourrèges et

organotins to three 60-260 \M  TPT al., (2 0 0 0 )

sulfate-reducing bacteria 30-70 (iM DBT 

40-90 jiM DPT 

1.4-4 [iM MBT 

0.3-6 jiM MPT 

500-600 jiM SnCl4

a MIC, minimum inhibitory concentration

b IC50, concentration at which 50% inhibition occurs

Q GR25, concentration at which 25% reduction in mean growth rate occurs
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1.2.2 Effect o f  external factors on toxicity

The availability of organotins to microorganisms is a key determinant for uptake, 

bioaccumulation and toxicity. Environmental variables, including temperature, pH and 

ionic composition can alter toxicity.

Organotin toxicity to microorganisms is altered considerably by changes in pH 

and NaCl concentrations. This is due to both changes in organotin solubility and 

speciation and alterations in microorganism physiology. Inorganic tin is toxic to the 

cyanobacteria, Synechocystis aquatilis only under extreme alkali conditions (Pawlik- 

Slowroriska et al., 1997). Similarly, toxicity of TBT to Aureobasidium pullulans  and 

Rhodotorula rubra  (Cooney et al., 1989) and release of K+ from Debaromyces hansenii 

induced by butylated organotins and TPT (Laurence et al., 1989) is dependent on 

external pH. Organotin toxicity has generally been reported to decrease in the presence 

of NaCl. NaCl reduces the rate and extent of TBT-induced K+ release from Z  rouxii 

(Cooney et al. 1989), while the toxicity of MBT, TBT and TPT to D. hansenii is reduced 

at salinity approximating to seawater levels (Laurence et al., 1989).

Media constituents can also influence organotin toxicity (Cooney and Wuertz, 

1989; Cooney, 1995). Serine and hydroxyflavone enhance inorganic tin toxicity, while 

gelatin and humic acids increase resistance of estuarine microorganisms to inorganic tin 

(Hallas et al., 1982a). Complexation of tin with the smaller molecules (serine and 

hydroxyflavone) may facilitate transport across the membrane while larger molecules 

may be excluded on a size basis. When N aN 03 and K N O 3  were substituted for NaCl and 

KC1 as the medium inorganic salts, a three-fold increase in cell viability was reported 

(Hallas et al., 1982a). The choice of solidifying agent used in microbiological media can 

also influence apparent toxicity (Hallas et al., 1982a).

Different methods for measuring toxicity can lead to discrepancy between results 

(Jonas et al., 1984). The relative toxicity o f methyltins is lower when determined by 

thymidine uptake as opposed to viability counts (Pettibone and Cooney, 1988). Methods 

that depend on the diffusion of compounds through agar cannot be used to compare the 

toxicity of different organotins, due to differences in solubility and therefore diffusion 

rates (Cooney et al., 1989).
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1.3 Mechanisms of toxicity

Toxicity of organotins can occur as a result of interaction at the external cell surface or 

within the cell. Consequently, organotins may be regarded as membrane-active 

compounds with the cytoplasmic membrane as an obvious initial site of action or they 

may act intracellularly, following dissolution through the cytoplasmic membrane. The 

inhibition of microbial processes by organotins has been recorded with main effects 

occurring within membranes and chloroplasts or the mitochondria in eukaryotes (Gadd, 

2000).

Disruption of membrane integrity may occur due to organotin binding or as a 

consequence of insertion into the membrane. Release of K+ from cells, arising from 

increased cytoplasmic membrane permeability, has been used to monitor organotin toxicity, 

implicating the cytoplasmic membrane as the site of action (Cooney et al., 1989; Laurence 

et al., 1989; Tobin and Cooney, 1999). Effects on bacteria include dissipation of proton 

gradients and inhibition of ATPase, oxidation of substrates, glycolysis, solute transport and 

energy-linked transhydrogenase (Cooney and Wuertz, 1989).

The effects of TBT on six enzymes: ATPase, NADH oxidase, P-galactosidase, 

alkaline phosphatase, glucose dehydrogenase and glucose-6 -phosphate dehydrogenase, on 

four bacteria, two Pseudomonads and two Bacillus sp., indicates the interactions of TBT 

are specific for the microorganism (Tseng and Cooney, 1995). For example, the membrane- 

bound ATPase activity in intact cells of Bacillus sp. MC24S was inhibited by TBT while 

the periplasmic-confined alkaline phosphatase was not affected in either Pseudomonas 

species. Glucose-6 -phosphate dehydrogenase, contained in the cytosol, was not affected 

significantly in intact cells of Pseudomonas sp. BP-4, but it was inhibited in the cytosol 

fraction, suggesting that, in this organism, TBT does not cross the cytoplasmic membrane 

to reach the enzyme in the cytosol. In contrast, TBT can stimulate the cytosolic enzyme of 

Bacillus sp. MC-24S in both intact cells and the cytosol fraction. In comparison with 

Pseudomonas sp. BP-4, the action of TBT on intracellular enzymes of Bacillus sp. MC-24S 

may be related to the relative sensitivity o f this organism, as the pseudomonad had a 2 0 0 - 

fold greater EC50 value (concentration that causes a 50% effect).
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Organotins increase the permeability of model lipid membranes. TBT increased the 

permeability of liposomes formed from egg phosphotidylcholine, causing efflux of 

dimethylarsinic (Cullen et al., 1997), while desorption of praseodymium ions from 

liposomes increased with organotin concentration (Gabrielska et al., 1997). Among the 

trialkyltins, the longer the alkyl chains of the compounds, the greater the level of Pr3+ 

release. Organotin compounds also caused membrane depolarisation of planar bilayer lipid 

membranes (Radecka et al., 1999). The increased length of alkyl chains of triorganotins 

resulted in a higher degree of membrane depolarisation, with the sequence being: methyl < 

ethyl < propyl < butyl < phenyl.

Organotins may become embedded at different levels in lipid bilayers, as evidenced 

by alterations in membrane fluidity (Ambrosini et al., 1996). TPT, DBT, and MBT affected 

the fluorescence anisotropy of two probes embedded at different sites in liposomes. TPT, at 

concentrations as low as 5 |liM, had an effect only on the probe, 1,6-diphenyl-1,3,5- 

hexatriene (DPH), which is localised in the hydrophobic core of the bilayer, while 40 jliM 

TPT affected the fluorescence of l-(4-trimethylaminophenyl-6-phenyl-l,3,5-hexatriene) 

(TMA-DPH) at the membrane surface. In contrast, DBT acted only at the membrane 

surface, while MBT was effective at each level. The hydrophobic core region has been 

suggested as the site of action of TBT in liposomes. Alteration in the thermotrophic 

characteristics of dipalmitoyl phosphotidycholine liposomes by TBT was more pronounced 

in the hydrophobic core region (Ambrosini et al., 1991a). Also, the action of TBT on the 

fluorescence polarisation of DPH and TMA-DPH in multilamellar liposomes was more 

marked in the core that in the head-group region (Ambrosini et al., 1991b).

Organotins also act intracellularly and processes dependent on intact internal 

organelles, including respiration and photosynthesis, may be disrupted (Avery et al., 1991; 

Mooney and Patching, 1995; Table 1.3). Triorganotins may interact with mitochondrial 

membranes in three ways (Blunden et al., 1984): (i) by causing gross swelling and 

disruption of mitochondrial membranes (ii) by acting as ionophores, facilitating hydroxyl- 

anion exchange and (iii) by interfering with the ATP synthase and hydrolase system.

Inhibition of nitrification by four heterotrophic bacteria, two Bacillus sp., an 

unidentified Gram positive rod and a Pseudomonas sp., occurred at nanomolar levels of
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TBT, DBT and MBT (Miller and Cooney, 1994). In these organisms nitrification is 

independent of growth and is assumed to follow the pathway: 

NH4+->NH20H^^N02"->N03'
For each of the four organisms, TBT inhibited growth, NH4+ uptake, and accumulation of 

NH2OH and NO2". Effects on NH4+ uptake were deemed to be as a result of general toxicity 

and not due to direct inhibition of process steps. DBT inhibited NH4+ uptake and 

accumulation of NH2OH and NO2’ at concentrations that did not inhibit cell growth, 

suggesting that the effects are not merely secondary effects of general toxicity.

TPT inhibition of respiration and photosynthesis by the marine algae, Skeletonema 

costatum and Dunaliella tertiolecta was dependent on intracellular accumulation (Mooney 

and Patching, 1995). This was particularly noticeable in the less sensitive organism, D. 

tertiolecta, where inhibition of photosynthesis and respiration was often progressive over a 

period of 90 minutes after addition of TPT, suggesting that the slower uptake in this 

organism is related to greater resistance. DPT had less effect on the processes in both 

organisms. D. tertiolecta was resistant to DPT up to the limit of its solubility (0.84 mM), 

while DPT inhibitory levels for S. costatum were over one to two orders of magnitude 

higher than for TPT.
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1,4 Biotransformation of organotins

Biotransformation of organotins largely determines their persistence and environmental 

fate. Both méthylation and dealkylation of tin compounds can occur in nature and may 

result in alteration in toxicity of the compounds. No link between detoxification and 

resistance has been observed, although such resistance mechanisms have been reported for 

other organometals, most notably methylmercury (Misra, 1992). Organotins can give rise 

to one another by disproportionation reactions (Cooney, 1995):

2R3SnX <-» R2S11X2 + R*Sn 

Such reactions greatly complicate transformation studies and their interpretation.

1.4.1 Méthylation

Méthylation of tin compounds occurs by both abiotic and biotic mechanisms. Méthylation 

of tin can lead to enhanced or reduced toxicity and also contributes to the biocycling of tin 

in the environment. Toxicity studies on microorganisms isolated from Chesapeake Bay 

indicated that tetramethyltin is non-toxic, while toxicity of the less methylated organotins 

increases with degree of méthylation (Hallas and Cooney, 1981a). In general, méthylation 

of tin increases the volatility, toxicity, lipid solubility and adsorptivity o f tin and possible 

mobility in the environment (Cooney, 1988).

Biomethylation of tin occurs under many conditions. It has been reported in both 

pure and mixed cultures derived from natural sources, in nutrient medium and in a mixture 

of natural water plus sediment and under both anaerobic and aerobic conditions (Cooney, 

1988). In most cases the reaction is slow with reaction times in the order of weeks required 

for completion.

(CH3)3SnOH in anoxic estuarine sediments mixed with seawater from San 

Francisco Bay was converted to (CH3)4Sn by both biologically active and autoclaved 

samples (Guard et al., 1981). After 80 days, 2.4% of 75 mg L' 1 (CH3)3SnOH was converted 

to (CH3)4Sn by active sediments, 2.7 times the amount produced in autoclaved controls. A 

mixed inoculum of microorganisms from Chesapeake Bay sediments transformed 

inorganic tin (SnCL^HhO) to organotin compounds (Hallas et al., 1982b) and the presence 

of (CH3)2SnH2 and (CH3)3SnH was demonstrated after 14 days incubation at 25°C. The
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butylmethlytins, Bu3MeSn and Bu2Me2Sn were detected in aquatic sediments from Ontario 

(Maguire, 1984). Since tetraalkyltins are mainly used as intermediates for the synthesis of 

lower organic moieties and have no uses that directly lead to their dispersion in the 

environment, their presence is indicative of in situ partial degradation of butyltins, followed 

by methylation. A coculture of two Bacillus species isolated from Boston harbour 

sediments methylated CH3SnCl3 (Makkar and Cooney, 1990). (CH3)3SnX was first 

detected after 21 days incubation and following 55 days incubation at 30°C, the reaction 

appeared to be complete, with 35% of the original 0.17 [iM CH3SnCl3 being detected as 

(CH3)3SnX.

To date, the biochemical mechanisms of tin compound methylation remain unclear. 

Methylcobalamin (CH3CoBi2) has been proposed as the methylating agent (Blunden et al., 

1984), although it has been suggested that the conditions for the methylcobalamin- 

mediated reactions are not met in the natural environment (Cooney, 1988). Methylating 

agents that can function under conditions found in the environment include CH3I, (CH3)3S+ 

I 'and (CH3)3N+CH2COO_ (Guard et a l, 1981).

1.4.2 Dealkylation

Organotin degradation involves sequential removal of organic groups from the tin atom, 

which does not necessarily lead to reduced toxicity towards microorganisms. Generally, 

abiotic degradation can occur by four mechanisms: UV irradiation, chemical cleavage, 

gamma irradiation and thermal cleavage (Blunden et al., 1984), though only the first two 

are of environmental significance (Clark et al., 1988). Photolysis in the environment occurs 

at a very slow rate, with reported half-lives of greater than 89 days, while chemical 

cleavage can occur by either nucleophilic or electrophilic attack (Clark et al., 1988). 

Although microbe-mediated dealkylation of organotins has been reported, little is 

understood about the mechanisms involved.

TBT was metabolised by microorganisms grown from an enrichment of soil and 

canal organisms, which were identified as the bacterium, Pseudomonas aeruginosa and 

fungal strains, Coniophora puteana , Trametes versicolor and Chaetomium globosum  

(Barug, 1981). P. aeruginosa degraded 40% of 2.5 mg L' 1 TBTO, with monobutyltin 

derivatives as degradation products. The organism was not able to degrade MBT. While
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TBT is bound strongly by sterile Toronto Harbour sediment with a desorption half-life of at 

least 10 months at 20°C, it can be taken up from sediment and degraded by oligochaetes 

(Maguire and Tkacz, 1985). A sequential debutylation pathway at 20°C in Toronto Harbour 

water and water-sediment mixtures with half-lives of 5 and 4 months respectively was 

reported.

TBT-degrading microbes may be enriched in TBT-contaminated sites. The 

degradation rates of TBT in harbour water from San Diego Bay were lower for clean water 

(<0.03 (.iM TBT) than those corresponding to a contaminated site (0.49 fiM TBT and 0.28 

jiM DBT) (Seligman et al., 1986). The principal degradation product was DBT, with MBT 

present to a lesser extent. Complete mineralisation proceeded slowly with a half-life of 50- 

75 days. TBT degradation rates were slightly longer under dark conditions, suggesting that 

metabolism by algae may have occurred. Higher concentrations, which would be toxic to 

microorganisms, were not degraded in sunlight indicating that photolysis was not 

occurring.

Microalgae play an important role in TBT degradation in the aquatic environment. 

Half-lives of TBT added to estuarine samples ranged from 3-13 days with degradation rates 

higher for light incubations, implicating the involvement of algae (Lee et al., 1989). The 

half-life of TBT in nitrate-supplemented water was reduced to 1-2 days in sunlight. The 

dominant algae species were the diatoms Skeletonema costatum  and S. tropicum . The 

dinoflagellate Procentrum triestinum also degraded TBT while, the green alga, Dunaliella 

tertiolecta and chlorophytes, Isochrysis galbana and Cricosphaera ricoco showed limited 

degradation capability (Lee et al., 1989). S. costatum converted more than 50% of 1 jag L' 1 

TBT to DBT in culture medium after 96h incubation at 4°C (Reader and Pelletier, 1992). 

The half-life of TBT incubated with Chlorella vulgaris and Chlorella sp. was 60 h and 80 

h, respectively (Tsang et al., 1999). C. vulgaris converted 27 and 41% of the original TBT 

to DBT and MBT, respectively, while Chlorella sp. resulted in 26% of TBT being 

converted to DBT with no MBT being detected.

A TPT-degrading bacterial strain has been isolated (Inoue et al., 2000). 

Pseudomonas chloraphis rapidly degraded 130 juM TPT, with 40 juM DPT detected after 

48 h. TPT degradation was catalysed by a low molecular weight compound detected in the 

extract. Other fluorescent pseudomonads also showed similar TPT degradation activity,
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suggesting that the extracellular compound that is produced by fluorescent pseudomonads 

could function as a catalyst to cometabolise TPT.

In the aquatic environment, TBT degradation is more rapid in water than in 

sediment (Table 1.4). This disparity may be caused by the inhibition of microbial activity at 

the higher TBT concentrations found in sediment layers, or even the absence of oxygen 

(Clark et al., 1988). In anaerobic sediments, with TBT contamination ranging from 449 to 

1290 ng g"1, no decrease in TBT or increase in its breakdown products was evident over a 

330 day period (Dowson et al., 1993b). In contrast, TBT half-life in the aerobic sediment 

ranged from 360-775 days. As TBT is not completely adsorbed to particulate matter, slow 

release into overlying waters may occur (Stewart and de Mora, 1990). Operations such as 

dredging or natural disturbances such as storms may facilitate this process by transporting 

the sediment and resuspending it in the water column.

The mechanism(s) of organotin dealkylation by microorganisms are not known. In 

fish and crustaceans TBT is metabolised in two phases (Lee, 1996). The phase-one 

reactions involve a cytochrome P450 dependent system that hydroxylates TBT to alpha-, 

beta-, gamma- and delta-hydroxydibutyltin derivatives. In phase-two, these hydroxylated 

derivatives are conjugated to sugars and sulphate to form highly polar compounds that can 

be rapidly eliminated from the animal. There is some evidence to suggest the formation of 

hydroxybutylated intermediates by microorganisms. Hydroxylated metabolites resulted 

from the incubation of diatom cultures with TBT (Lee et al., 1989). Products were 

tentatively identified as (S-hydroxybutyl)dibutyltin, (y-hydroxybutyl)dibutyltin and (0 - 

hydroxybutyl)dibutyltin.
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Table 1.4 TBT degradation in the environment

Study Initial TBT Comments TBT half-life
Natural waters

Seligman et al. (1986) 0.55-2.0 (ig L ' 1 Spiked seawater from clean site, San Diego Bay

light incubation: 9-13 days

dark incubation: 12-19 days

Spiked seawater from yacht harbour

light incubation: 6  days

dark incubation: 7 days

Lee et al. (1989) 0.4-1.6|xgL‘l TBT-spiked estuarine seawater 3-13 days

Maguire and Tkacz (1985) Seawater from Toronto Harbour

<0 .1  u g L ’1 unspiked: 20±5 weeks

1 0 0 0  u g L ' 1 spiked: 35±8 weeks

Seligman et al. (1988) 0.23 |ig L ' 1 Degradation of TBT in unspiked seawater 6±1.5 days

2 ^g L' 1 Degradation of radiolabelled TBT in spiked seawater 6-7 days

Harino et al. (1997) 9.3 H gl/ 1 Spiked estuarine water incubated in the dark 15 days



Study Initial TBT
Sediments

(i) Tank experiments

Waldock et al. (1990) 

Maguire and Tkacz (1985) 

Stang and Seligman (1986) 

Dowson et al. (1993c)

(ii) In situ core studies

Sarradin et al (1995)

Dowson et al. (1993b) 

Astruc et al. (1989)

449-1290 ng g"1 

449 ng g' 1

De Mora et al. (1989)



Comments TBT half-life

TBT degradation in marine sediments 

TBT degradation in Toronto lake sediments 

Degradation of TBT in San Diego Bay sediments 

Degradation of TBT in surficial freshwater and 

estuarine marina sediments 

Unspiked freshwater sediment

TBT profiles in sediment from a marina, Oleron 

Island, France

TBT profiles in sediment cores from East Anglia, 

UK.

TBT profiles in sediment cores from Arcachon Bay, 

France

TBT profiles in sediment from a marina, Auckland, 

NZ.

28-76 weeks 

16±2 weeks 

23 weeks 

360-775 days

360 days

2.1  years 

0.91-5.21 years 

360 days 

1.85 years



1.5 Organotin-resistant microorganisms

Despite the fact that organotins are used as biocides, very little is known about resistance in 

microorganisms. Whether the presence of tin in an environment selects for the presence of 

tin-resistant organisms is of importance. There was no significant correlation between total 

tin concentrations in sediments from Chesapeake Bay and numbers of microorganisms 

resistant to inorganic tin, indicating that the presence of the contaminant does not select for 

resistant populations (Hallas and Cooney 1981b). Similar results were reported for TBT- 

resistance of microorganisms isolated from TBT-polluted and nonpolluted estuarine 

sediments (Wuertz et al., 1991) and from contaminated coastal sediments (Jude et al., 

1996). In contrast, microorganisms isolated from a TBT-polluted freshwater site were more 

resistant than those isolated from a nonpolluted site (Wuertz et al., 1991).

In artificially polluted seawater systems, enrichment of resistant organisms was 

achieved and the number of TBT-tolerant bacteria increased with exposure time (Suzuki et 

al., 1992). In water samples containing 40 ppm TBTC1, 90% of the viable bacteria were 

tolerant to TBTC1 within one week. In contrast, no TBTCl-resistant organisms were 

present in the control sample lacking TBTC1. In water spiked with 40ppm Cd2+, 50% of the 

population exhibited TBT-tolerance after 2 weeks, suggesting that there may be a
o I

relationship between TBT and Cd resistance.

Plasmids play an important role in determining heavy metal resistance (Silver,

1992). The possibility of organotin resistance being plasmid-mediated was suggested when 

8 of 10 estuarine and 12 of 19 freshwater isolates contained plasmid DNA (Wuertz et al., 

1991). Furthermore, when plasmid pUM505, which contains genes encoding chromium 

resistance, was transferred from Pseudomonas aeruginosa to a Beijerinckia sp. the TBT- 

tolerance of the Beijerincka sp. increased 100-fold, from 8.4 mM to 840 mM TBT on a 

solid medium (Miller et al., 1995). Some TBT-resistant transconjugants lost both the 

plasmid and TBT-tolerance when transferred to medium lacking TBT. Among 

organometals, only resistance to organomercury has been previously reported to be 

plasmid-mediated (Misra et al., 1992).

An efflux system has been implicated in the TBT-resistance of an Alteromonas sp., 

which grew in a medium containing 125 mM TBT (Fukagawa et al., 1992). TBT-uptake by
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the Alteromonas sp., and a TBT-sensitive organism, Shewanella putrefaciens, was 

complete after 1 h incubation. Unlike the TBT-sensitive organism, the Alteromonas sp. 

continued to thrive and the uptake of TBT decreased with growth. Protein profiles showed 

that 30 kDa and 12 kDa polypeptides increased dramatically when the strain was cultured 

in the presence of TBT. Analysis tentatively suggested that these proteins were localised in 

the cell membrane. The gene(s) responsible for resistance are chromosomal. A gene 

involved in resistance was cloned from this bacterium and one of the clones was sequenced 

(Suzuki and Fukagawa, 1995). The predicted protein sequence of this clone had domains in 

common with transglycosylases, indicating that a transgycosylase may be involved in 

TBT-resistance.

1.6 Uptake of organotin compounds

Organotins may act as both cationic metal ions, i.e. having a positive ionic charge, and as 

organic compounds in solution. Consequently, microbial uptake of organotins may occur as 

a result of cationic metal or lipophilic interactions. Inorganic metal uptake by 

microorganisms has been reviewed extensively (Hughes and Poole, 1989; Gadd, 1990; 

Volesky, 1990, Blackwell et al., 1995). Cell surfaces are predominantly anionic due to the 

presence of ionised groups such as carboxylate, hydroxyl and phosphate in the cell wall 

polymers. Such groups act as ligands, binding metals to the cell surface. Uptake is 

essentially a biphasic process. In the initial metabolism-independent step, termed 

biosorption, binding can be attributed to ion-exchange, adsorption, complexation, 

precipitation, and crystallisation within the multilaminate, microfibrillar cell wall structure 

(Tobin et al., 1984). Following biosorption, bioaccumulation, a metabolic-dependent 

transport of the metal across the membrane to the interior may occur.

As organic compounds, organotins also exhibit lipophilic interactions with cellular 

membranes. Uptake of lipophilic organic metal complexes by membrane diffusion 

mechanisms occurs in addition to or in place of the facilitated uptake of the free metal ion. 

The passive absorption of neutral, non-polar complexes of ionic metals is the same 

mechanism by which hydrophobic organic compounds are taken up (Hudson, 1998). 

Passive metal absorption is best known for the neutral chloride and to a lesser extent
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hydroxide, complexes of Hg2+ and CH3Hg+ ions. Passive uptake of uncharged lipophilic 

chloride complexes is the principal accumulation route of both methylmercury and 

inorganic mercury in the diatom Thalassiosira weissflogii (Mason et al., 1996). Lipophilic, 

organic chelates of several divalent metal ions can also diffuse through cellular membranes. 

Uptake of lipophilic, organic-Cu metal complexes by T. weissflogii was attributed to 

diffusion (Phinney and Bruland, 1994). Two mechanisms were proposed to be involved: (i) 

diffusion of the lipophilic complex across the membrane followed by (ii) dissociation of the 

metal from the ligand and binding of the metal to intracellular binding sites. 

Hydrophobicity of metal complexes can be reported by KoW values which may be used to 

predict membrane interactions. The KqW values of HgC^ and CHsHgCl are estimated to 

be 3.33 and 1.7, respectively (Mason et al., 1996), while Kow values of Cu(DDC)2° 

(neutral, diethyldithiocarbamate-Cu complex) and Cu(Ox)2° (neutral, 8 - 

hydroxyquinoline-Cu complex) were 2.8 and 2.6, respectively (Phinney and Bruland, 

1994). The high Kow of these compounds reflects their lipophilic character which allows 

diffusion though cellular membranes to occur. The KoW of TBT is of similar magnitude 

with values from 2.3 to 4.1 between pH 4 and 7 (Arnold et al., 1997). Consequently, 

uptake by diffusion and lipophilic interactions should be expected tp play a significant 

role in TBT uptake mechanisms.

Cell wall biosorption has been suggested as the main uptake mechanism of 

organotins by microorganisms. Accumulation of TBT by a Pseudomonas sp., was not 

influenced by the metabolic activity of the cells and the majority of bound TBT was 

located in the cell envelope (Blair et al., 1982). TBT uptake by Aureobasidium pullulans 

(Gadd et al., 1990) and the cyanobacteria, Synechocystis PCC 6803 and Plectonema  

boryanum  (Avery et al., 1993) occurred rapidly, and uptake was attributed primarily to 

adsorption to the cell surface with little or no intracellular accumulation. Adsorption 

isotherms fitted the Langmuir model (Langmuir, 1918) indicating apparent deposition of 

a single layer of solute molecules on the cell surface. However, TBT biosorption by the 

microalga, Chlorella emersonii, occurred in two phases (Avery et al., 1993). A rapid 

initial phase of cell wall adsorption was followed by a slower uptake. This was 

attributed to exposure of intracellular binding sites as a result of cell lysis.
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Maximal uptake capacities were 564, 525, and 1050 nmol B^SnCt (mg dry wt. ) '1 

for Synechocystis PCC6803, P. boryanum  and C. emersonii, respectively (Avery et al.,

1993). These values are considerably lower than those reported for the fungus A. pullulans 

at 3.6 and 1.3 mmol BusSnCl (mg dry wt.)*1 for melanic and albino strains, respectively 

(Gadd et al., 1990). Greater biosorptive capacity of the pigmented strain was attributed to 

the presence of melanin.

Candida maltosa adsorbed TBT and TPT to maximum values of 0.51 and 0.65 

|iimol (g cells) ' 1 respectively, which was accompanied by complete cell death and high 

levels of K+ leakage (Tobin and Cooney, 1999). MBT and MPT were adsorbed to a lower 

degree, less than 0.1 mmol (g cells) ' 1 in each case, with negligible changes in cell viability 

and K+ release.

The extent of biosorption of triorganotins by the cyanobacteria Synechocystis 

PCC6803 and Plectonema boryanum and the microalga Chlorella emersonii increased with 

molecular mass, in the order triphenyltin > tributyltin > tripropyltin > trimethyltin > 

triethyltin (Avery et al., 1993). This correlates with the order of relative toxicity of the 

compounds to cyanobacteria, as previously reported (Avery et al., 1991). In contrast, in the 

butyltin series, uptake of the less toxic dibutyltin exceeded that of tributyltin in all three 

organisms and uptake of monobutyltin was greater than that of the more toxic tripropyltin.

Uptake of TBT is influenced by solution pH and salinity (Avery et al., 1993). For 

cyanobacterial species, TBT uptake was reduced at pH values greater than or lower than 

pH 5.5-6.5 (Avery et al., 1993). No inhibition of BusSnCl biosorption was observed 

between 0.05 and 50 mM NaCl, but a 55-65% reduction resulted from increasing NaCl 

concentration from 50-500 mM. TBT uptake by A. pullulans  was unaffected by external 

pH between pH 3.5 and 6.5, while an approximate 20% decrease in TBTC1 biosorption 

resulted at pH 2.5 (Gadd et al., 1990).
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1.7 Introduction to experimental work

The experimental work undertaken in this thesis serves to add to the knowledge 

available in the literature in a number of ways. Uptake by microorganisms has largely 

been overlooked when considering the fate and effect of organotins. It is important to 

understand such interactions because microorganisms are at the base of the food web 

and mediate a number of important environmental processes, including degradation of 

many toxic compounds. Few studies have focused on the uptake of organotins despite 

the fact that accumulation is a prerequisite for any subsequent toxic effects. More 

importantly, microbial uptake and accumulation are frequently the first step in transfer 

of organotins along the food chain. As organotins have been detected in both freshwater 

and marine ecosystems, the influence of pH and salinity on uptake and toxicity is of 

importance in assessing the risks of organotin pollution.

A major objective of this research was to determine the principal uptake 

mechanisms of inorganic tin and organotins by Candida maltosa and to elucidate their 

subsequent toxic effects. The influence of organotin speciation on these interactions is 

discussed in detail. The yeast Candida maltosa, an isolate from an asphalt refinery and 

its associate watershed was chosen as a model organism (Turner and Aheam, 1970). 

Organotin contamination in aquatic systems occurs principally in regions with high 

shipping, harbours and shipyards. These are regions also associated with hydrocarbon- 

polluted environments, where enrichment of C. maltosa occurs (Mauersberger et al., 

1996).

The first goal of this research was to compare the uptake of Sn(IV), TBT and 

TMT by C. maltosa at low, environmentally significant concentrations. A hydride 

generation atomic absorption technique was developed for the detection of the tin 

compounds. Toxicity of the compounds was assessed in terms o f loss in cell viability 

and membrane damage, as indicated by K+ release and changes in membrane fluidity. In 

all experiments organotin uptake and toxicity were determined after 30 minutes 

exposure. This time point was chosen on the basis that studies have shown that 

microbial organotin uptake is rapid and almost all occurs within the first 5 min of 

contact (Avery et al., 1993; Gadd et al., 1990). Previous published work on organotin
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uptake by C. maltosa also used this cell exposure time (Tobin and Cooney, 1999) so 

selection of a 30 min period facilitated direct comparison. A single time point was 

chosen, as the focus of this work was to examine the influence of environmental factors 

on tin uptake, toxicity and resulting morphological changes. Examination of time course 

data was beyond the scope of this work but would merit future study.

The influence of the external environment on organotin interactions was also 

assessed. Aqueous speciation and lipophilicity of organotins varies with both pH and 

NaCl concentration. A model developed by Arnold et al. (1997) was adapted to 

determine organotin speciation and overall octanol-water distribution ratios (Dow) 

between pH 3.5 and 7.5 and in 0-500 mM NaCl. The influence of pH and NaCl on TBT 

and TPT toxicity and the contribution of the various organotin species are discussed in 

detail. The following sections introduce in more detail the background to the work 

undertaken.

1.7.1 Analysis o f organotin compounds

Reliable and sensitive analytical techniques are required to determine the trace 

environmental levels and to elucidate and understand the fate and effects of pollutants. 

The most sensitive methods for analysis o f organotins involve the conversion to alkyl 

derivatives or volatile hydrides and determination with specific detectors (Fent 1996b). 

In the research conducted throughout this thesis, cells were exposed to organotin 

concentrations between 5 and 100 juM. Consequently, a sensitive, reproducible and rapid 

method was required for organotin analysis. Metals are routinely analysed using atomic 

absorption spectrometric (AAS) detection. However, the conventional AAS method of 

aspirating a sample into an air-acetylene flame has limited effectiveness for organotin 

analysis due to the inherent insensitivity of the technique. A significant increase in 

analytical sensitivity is obtained when tin compounds are analysed by flame AAS 

following conversion to volatile hydrides, a technique known as hydride generation 

AAS (HGAAS). A sensitive HGAAS method was developed for analysis of Sn(IV), 

TBT and TMT. Conversion of TPT to the hydride form is poor and therefore HGAAS 

analysis is not suitable. Instead, TPT was analysed using a polarographic method.
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The use o f HGAAS for the determination of several hydride-forming elements is 

well established. It offers high sensitivity, low cost, reliability, high speed, convenience 

and simplicity. The technique allows the selective separation of the analyte from the 

matrix enabling most interfering species to be avoided and pre-concentration of the 

analyte to occur. This results in greater sensitivity and suppression of interference during 

atomisation.

The hydride technique can be divided into three steps: hydride generation and 

release, hydride transport and hydride atomisation.

Hydride generation and release can be defined as the conversion of an analyte in 

the acidified sample to the corresponding hydride and its transfer to the gaseous phase. 

The reaction can be classified as either metal/acid reduction or sodium tetrahydroborate 

(NaBH4)/acid reduction. The latter reduction method is the most popular and the 

reaction occurs as follows:

NaBH4 + 3H20  + HC1 => H3BO3 + NaCl + 8 H + Em+ => EHn + H2 

where, E is the analyte element and m may or may not equal n.

For acidification, HC1 is generally used. Optimum conditions for hydride generation 

depend on type of analyte and the valency of the element. Parameters such as volume 

and concentration of acid and reducing agent, type o f atomisation cell and its 

temperature all affect the signal obtained.

There are two modes of hydride transfer: direct transfer and collection. In direct 

transfer, including continuous flow, flow injection and batch, the hydride release from 

the sample solution is directly transferred to the atomiser. In collection mode, the 

hydride is collected in a collection device until the evolution is complete and then it is 

transferred to the atomiser. In flow injection hydride generation AAS, acid and reducing 

solution flow continuously at a constant rate to the gas/liquid separator and a limited 

volume of sample is injected into the acid stream. The signal produced is transient. The 

flow injection method offers the advantages of being very simple, rapid and precise.

The atomisation of hydride takes place in the optical beam of the AAS. 

Externally heated quartz tubes are by far the most common mode of atomisation as the 

technique is simple and sensitive.
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For this study, flow injection HGAAS was chosen as the desired method of 

organotin analysis. A conventional AAS system was adapted as shown in Figure 1.2. 

Reduction of tin occurs at the T-piece and the reaction is completed by the time the flow 

reaches the gas/liquid separator. At this point, the liquid products flow via a U-tube to a 

free running drain, while the gaseous products are purged by argon into the atomisation 

cell.

NaBH

HC1

T  piece 
mixer

Sample
injection
loop

Argon Gas
 4—

AAS

Waste

Figure 1.2 Schematic of a flow injection hydride generation AAS system

1.7.2 Fluorescence anisotropy as an indicator o f  membrane flu id ity  

Release of K+ from cells, arising from increased cytoplasmic membrane permeability, 

has been used to monitor organotin toxicity, implicating the cytoplasmic membrane as a 

site of action (Laurence et al., 1989; Tobin and Cooney, 1999). Alterations in membrane 

fluidity, as indicated by changes in anisotropy of fluorescent probes embedded in 

membranes, may also be used as an indicator of membrane interactions and gives an 

indication of the localisation of compounds within membranes.

1.7.2.1 Theory o f  fluorescence anisotropy and membrane flu id ity  

Membrane fluidity can be described as the various motions, as well as the degree of 

packing of the membrane components. Methods available for determining membrane 

fluidity include fluorescence polarisation, Raman spectroscopy, electron spin resonance
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and nuclear magnetic resonance. In this study, the anisotropy of the fluorescent probes, 

DPH and TMA-DPH were used to monitor membrane fluidity. The fluorescence 

polarisation technique has several advantages. It can be readily applied to complex 

systems including cellular membranes, the polarised signal is highly sensitive and 

reproducible and data are promptly interpretable (Shinitsky and Barenholz, 1978). The 

method involves labelling membranes with the fluorophores and then exciting the 

molecules with polarised monochromatic light. According to the movement o f the 

probe, which is dependent on the fluidity of the immediate surroundings, the emitted 

light will be partially depolarised with respect to the plane of polarisation o f the 

excitation light (Figure 1.3).

Excitation beam Emission beam
polariser polariser

(behind plane) ^behind nlane)

From excitation To emission
monochromator monochromator

Figure 1.3 Schematic of an optical system for measurement o f fluorescence anisotropy

In order to measure fluorescence anisotropy, a sample is excited with vertically 

polarised light. The emission intensity is measured parallel, Iw  and perpendicular, IvH to 

the vertical plane of the polarisation of the excitation light.

When a non-polarising sample is excited with horizontally polarised light, the emission 

components, Ihv and Ihh should be equal and hence,
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Ihv= emission intensity of vertically polarised light perpendicular to the plane of 

excitation and

Ihh= emission intensity of horizontally polarised light parallel to the plane of 

excitation.

However, the effect of the instrument response is to cause the ratio to deviate from unity 

to a value, G, the instrument correctional factor. This is measured by exciting the sample 

with horizontally polarised light and measuring the parallel and perpendicular 

components. G is given by the equation

G =

where,

I Hh h

Fluorescence anisotropy can then be calculated by the following equation

Iv -G I V
A =

I vv + 2G IVh

where,

Ivv = emission intensity of vertically polarised light parallel to the plane of excitation 

and

Ivh = emission intensity of horizontally polarised light perpendicular to the plane of 

excitation.

For vertical excitation light, Iyv will decrease and IyH increase if rotation of the probe 

occurs. Hence, the greater the extent of rotation of the fluorophore during the lifetime of 

its electronic state, the smaller will be the observed fluorescence intensity. 

Consequently, an inverse relationship exists between membrane fluidity and anisotropy.

1.7.2.2 Fluorescent probes -  D PH  and TMA-DPH

The use of DPH and its charged derivative, TMA-DPH, as fluorescent probes for 

monitoring membrane fluidity is widely documented (Kuhry et al., 1983 and 1985; 

Shinitsky and Barenholz, 1978). DPH is one of the most efficient fluidity probes
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available for the hydrocarbon region of lipids and the fluorescence anisotropy reflects, 

almost exclusively, the angular displacement of the molecular axis (Shinitsky and 

Barenholz, 1978). DPH can be dispersed in aqueous media to form microaggregates, 

which are practically void of fluorescence. When such a dispersion is mixed with a 

lipid-containing system, the probe incorporates into the hydrophobic domain which 

results in a sharp increase in the fluorescence signal. DPH is generally used with isolated 

membranes but may be used with protoplasts (Alexandre et al., 1994) and intact cells 

(Baut et al., 1994; Swan and Watson, 1997). In cells, DPH is distributed between the 

hydrophobic region of lipidic membranes (Kuhry et al., 1983) and DPH anisotropy 

reflects the average fluidity of all cellular membrane lipids (Swan and Watson, 1997).

The cationic derivative of DPH, TMA-DPH is incorporated rapidly into the 

cytoplasmic membrane of cells and remains restrictively localised in the hydrophilic 

head region of lipids (Kuhry et al., 1983). The length of the hydrophobic part of TMA- 

DPH is less than that of a 10-carbon aliphatic chain, so it is less sensitive to modification 

at the hydrophobic core membrane bilayers.

TBT, TPT, DBT and MBT affected the fluorescence anisotropy of DPH and 

TMA-DPH embedded at different sites in liposomes (Ambrosini et al., 1991a; 

Ambrosini et al., 1996). Similar fluorescence probe studies have demonstrated that

inorganic metals may influence plasma membrane fluidity (Fodor et al., 1995; Aßmann
2 +

et al., 1996). Cd caused a prolonged fluidisation of energised Schizosaccharomyces 

pom be  cells (Aßmann et al., 1996). In contrast, membrane fluidity of deenergised cells 

remained stable, indicating that the inorganic metal exerted its effect only after 

metabolic-dependent accumulation. Investigation of the interactions of organotins and 

intact cells, as opposed to liposomes, is undertaken to determine if organotins can 

interact with the cytoplasmic membrane solely as a consequence of their lipophilic 

nature. The use of two probes located at different levels in the cytoplasmic membrane 

will elucidate the localisation of organotins within membranes.

1.7.3 Uptake and toxicity o f  inorganic tin and organotins

Knowledge of the effects of tin compounds at low, environmentally relevant 

concentrations is generally lacking, as previous reports have mainly focused on

35



concentrations in the range 0.08-5 mM (Gadd et al., 1990; Avery et al., 1993; Tobin and 

Cooney, 1999). Since TBT legislation was introduced, maximum concentrations rarely 

exceed 100 ng L ' 1 along the English Channel and Atlantic coasts and 200 ng L"1 along 

the Mediterranean coast (Alzieu, 1998). However, TBT persists at high concentrations 

in sediments where degradation rates are often in the order o f years. In harbour 

sediments average concentrations generally range between 1 and 2  mg (kg dry wt.)"1 

(Alzieu, 1998). Mechanical operations such as dredging and natural disturbances such as 

storms and bioturbation may facilitate release of TBT into the overlying water.

One of the purposes of this work was to compare the toxicity and sites o f action 

of inorganic tin, Sn(IV) and two organotins with very different total molecular surface 

area at concentration ranges approximating those found in polluted waters. Also, the 

importance of cell wall binding versus lipophilic diffusion of organotin compounds was 

examined by comparison of intact cells and protoplasts. Initial tin concentrations ranged 

from 5 jiM to 100 juM. For TBT, these concentrations ranged from non-toxic to levels 

that result in complete loss in cell viability, allowing the fate and effect in viable cells to 

be determined.

1.7.4 Influence o f  environmental conditions on organotin interactions 

The assessment of metal pollution requires an understanding of the various processes 

that influence the bioavailability and toxicity of the contaminant. Solution pH, ionic 

composition and strength and temperature influence the chemical speciation of 

organotins in the aquatic environment. TBT and TPT solubility also varies with pH, with 

a minimum solubility in the range pH 6 -8  and decreases with increasing salt 

concentration (Table 1.5).
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Table 1.5 Aqueous solubility of TBT and TPT at 25°C (adapted from Inaba et al., 1995)

Compound Solvent

pH 5a

Solubility (fiM) 

Minimum^ pHminc

TBTC1 Distilled water 625 134 7.9

Seawater 17.9 8.9 7.3

TPTC1 Distilled Water 35.7 7.1 7.2

Seawater 8.9 2.7 7

a Solubility at pH 5.0

b Minimum solubility value

c pH at which minimum solubility was determined

One of the main aims of this research was to examine the influence of solution pH and 

NaCl concentration on the uptake and toxicity of the triorganotins, TBT and TPT. 

Organotin compounds undergo pH-dependent hydrolysis when introduced into water:

R 3Sn + + * R 3SnOH + H  + 

where the hydrolysis constant, Ka is given by

[ R 3S n O H ] [ H + ]
a

[ R , S n + ]

Thus, the formation of cationic and neutral species in solution varies with pH, with the 

fraction of cationic species dominating below the pKa and fraction of neutral hydroxide 

species above the pKa. The pKa values of TBTOH and TPTOH have been reported as 

6.25 and 5.20 respectively, while the pKa of TMT is in the range 5.79 to 6.60 (Arnold et 

al., 1997).

In seawater, TBT is composed of tributyltin chloride (TBTC1), tributyltin 

hydroxide (TBTOH), and an aquo complex (TBTOH2+) (Laughlin et al., 1986). The 

equilibrium distribution is influenced by Cl" concentration, dissolved C 0 2 and pH. The 

presence of a tributyltin carbonato (TBT0H C02‘) species has been suggested (Laughlin 

et al., 1986), but this is questionable due to the low concentration of HCO3' in seawater
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and is assumed to be an impurity in the original solution (Arnold et al., 1997). A model 

has been described for prediction of the aqueous speciation and Dow of TBT and TPT 

under different ionic and pH conditions (Arnold et al., 1997). For the work described 

here, this model was used to predict organotin speciation and Dow between pH 3.5 and

7.5 and in concentrations of up to 500 mM NaCl at pH 5.5.

Generally, it has been reported that interactions between TBT and 

microorganisms are reduced in the presence of NaCl and at low and high pH (Laurence 

et al., 1989; Cooney et al., 1989; Gadd et al., 1990; Avery et al., 1993). NaCl may alter 

organotin toxicity in three ways: (i) Na+ can reduce interaction of the organotin with the 

cell surface by competing for binding sites or interacting with the compound itself 

(Cooney et al., 1989), (ii) The membrane-lipid composition may be altered, making the 

cells more resistant to membrane-acting compounds (Cooney et al., 1989) and (iii) Cl" 

can inhibit the solubility of tributyltin compounds by association with the cation to form 

covalent organotin chloride (Blunden et al., 1984). In seawater (~ 0.5 M NaCl) the 

solubility of TBT and TPT is less than 20 jiM (Inaba et al., 1995). Despite this, most of 

the reports to date have examined concentrations greater than 50 jiM which exceed the 

limit o f solubility (Cooney et al., 1989; Laurence et al., 1989; Avery et al., 1993). 

Consequently, the reduction in TBT toxicity and uptake which has been attributed to the 

presence of NaCl, may be due to the formation of insoluble tributyltin chloride which 

would reduce the availability of TBT in solution.

In the present work, the variation in TBT and TPT uptake and toxicity between 

pH 3.5 and 7.5 and in concentrations of up to 500 mM NaCl was investigated. These 

compounds were chosen for two reasons. Firstly, they are among the most toxic of 

organotin compounds and are routinely detected in the environment. Secondly, they are 

structurally very different (Figure 1.4) but have similar lipophilic properties. The total 

molecular surface area (TSA) of TBT is 348 A2 compared to 330 A2 for TPT while the 

log Kow values of the hydroxide species are 4.10 and 3.53 for TBTOH and TPTOH, 

respectively (Arnold et al., 1997). The toxicity of the individual TBT and TPT species 

and the influence of lipophilicity, as determined by the model of Arnold et al., (1997) on 

interactions are discussed in detail. The implications of these findings on the 

understanding and prediction of organometal toxicity are also assessed.
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Figure 1.4 Chemical structure o f TMT, TBT and TPT. Total molecular surface area 

(TSA) values were obtained from Eng et al (1991).
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CHAPTER 2: M ATERIALS AND METHODS

2.1 Organism, culture conditions, reagents and metal analysis

2.1.1 Candida maltosa culture conditions

Candida maltosa R42 was supplied by S.A. Crow of Georgia State University (Atlanta, 

GA) and was routinely maintained on a yeast extract-peptone medium (YEPD), pH 5.5, 

which contained (g L '1): yeast extract, 5; bacteriological peptone (Oxoid, Hampshire, 

UK), 5; glucose, 10; and No. 1 bacteriological agar (Oxoid, Hampshire, UK), 17.

For experimental purposes, C. maltosa was grown in 100 ml YEPD (less agar) in 

250 ml Erlenmyer flasks at 30°C on a rotary shaker at 150 rpm. Cells were harvested in 

the exponential phase by centrifugation (300 x g, 5 min) and washed three times with 

deionised water. Cells were used within three hours of harvesting.

2.1.2 Reagents

All chemicals were obtained from Sigma-Aldrich (Dorset, UK) unless stated otherwise. 

SnCl4.5 H2 0 , tributyltin chloride [(^ H ^ S n C l]  and triphenyltin chloride [^ H s^ S n C l]  

stock solutions were prepared in methanol (HPLC grade, Labscan Ltd., Ireland), while 

trimethyltin chloride [(CHs^SnCl] was prepared in deionised water. Fresh 1% (w/v) 

sodium tetraborohydrate solution was prepared daily by dissolving NaBH4 in 1% (w/v) 

NaOH and filtering through a 0.45 jam membrane filter (Cellulose nitrate membrane 

filters, Whatman, Maidstone, UK). Fluorescent probes, 1,6 -diphenyl-1,3,5-hexatriene 

(DPH) and l-(4-trimethylaminophenyl-6-phenyl-l,3,5-hexatriene) (TMA-DPH) were 

prepared as 2x10‘4 M stock solutions in N,N-dimethylformamide, stored at 4°C and used 

within one month. KC1 and NaCl salts were reagent grade from Riedel-de-Haen (Seelze, 

Germany). 2-(Ar-morpholino)ethanesulfonic acid (MES), piperazine-A^,A^,-bis(2- 

ethansulfonic acid) (PIPES) and Tris(hydroxymethyl)amino-methane (Tris) were used 

for buffer solutions.

41



2.1.3 M etal analysis

2.1.3.1 I f  analysis (AAS)

K+ was analysed using a Perkin-Elmer 3100 atomic absorption spectrophotometer 

(Perkin Elmer, Nerwalk, Ct., USA), fitted with a 10 cm single slot burner head, with an 

air-acetylene flame. K+ concentrations were determined, after dilution to a suitable 

concentration, by reference to appropriate standard solutions.

2.1.3.2 Sn(IV), TBT and TM T analysis (HGAAS)

TBT, Sn(IV) and TMT concentrations were determined using a flow injection hydride 

generation system in combination with a Perkin-Elmer 3100 AAS. The hydride system 

was based on that described by Dunne (1994) and consisted of the following (Fig. 1.2): 

two peristaltic pumps, a 3-way connector T-piece mixer (Omnifit, Cambridge, UK), a 

gas/liquid separator (Plasma-Therm, London, UK) and a manual sample injection valve 

with 0.5 ml sample loop, consisting of Teflon tubing of 1 mm i.d.(Omnifit). This tubing 

was also used throughout the flow injection system. The tube lengths from the sample 

injection loop to the T-piece mixer and from the T-piece to the separator were 27 and 16 

cm, respectively. 1% (w/v) Sodium tetraborohydrate and 1 M HC1 were pumped at 4.0 

and 4.8 ml m in'1, respectively. The AAS burner head was modified to allow a silica 

atomisation cell (T-shaped silica tube, 150x2 mm i.d.) to be supported in an air- 

acetylene flame approximately 5 mm above the slot o f a 10 cm single-slot burner head. 

Argon (Air Products, Ireland) was used as the carrier gas to purge the hydrides from the 

separator into the T-tube. Samples were diluted with an equal volume of 2 M HC1 prior 

to injection and tin concentrations were determined by reference to corresponding 

standard solutions. A minimum of 1 ml sample diluted with 1 ml 2M HC1 was required 

for analysis.

In the hydride generation system, reduction of tin by sodium tetrahydroborate 

occurs at the T-piece and the reaction is completed by the time the flow reaches the 

gas/liquid separator. At this point, the liquid products flow via a U-tube to a free- 

running drain, while the gaseous products are purged by argon into the atomisation cell. 

In the operation of the system, two sampling cycles were used. In the first, the acid and
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NaBH4 streams were allowed to mix at the T-piece and the peak height signal set to 

zero. During this period, the hydrogen generated enabled a blank level to be monitored. 

The second period involved the injection o f the sample via a four-way rotary valve into 

the acid carrier stream. The peak height signal was measured and recorded. At the end of 

this period, the rotary valve was switched back to the injection position and the cycle 

was repeated. This sequence of events does not include a specific time period for 

washing the system, as experimentation had shown that, in the period immediately after 

the analysis, the signal had returned to the baseline. This ensured that the blank level 

was achieved between each cycle and that within each cycle, the analyte was measured 

above the blank level.

2.1.3.3 TPT analysis (differential pulse polarography)

TPT concentrations were determined using a model 394 electrochemical trace analyser 

with a 303A static mercury drop electrode (EG&G Instruments, Princeton Applied 

Research). Differential pulse polarography (pulse amplitude 50 mV) and a hanging 

mercury drop working electrode (HMDE) were employed for analyses and the peak for 

TPT was obtained at a half-wave potential of approximately -0.69 V.

Samples (maximum of 5 ml) were diluted to 50 ml in support electrolyte 

consisting of 0.16 M NH4CI in 40% (v/vaq) ethanol and adjusted to pH 2.5 using 2M 

HCL. For analysis, samples were deaerated by purging with N2 for 3 min and each 

sample was analysed three times with a 30 s N2 purge between each reading. TPT 

concentrations were determined by reference to appropriate standard solutions.

2.1.3.4 TBT and TPT solubility

The effect of NaCl and pH on the solubility of TBT and TPT was determined using the 

method of Inaba et al (1995). Excess amounts o f organotin was added to flasks 

containing test solutions and equilibrated by shaking at 150 rpm. After dissolution 

equilibrium was established samples were centrifuged for 5 min at 2500 x g. Samples 

were diluted and the concentration of soluble organotin analysed. Solubility at pH 5.5 in 

0 and 500 mM NaCl and at 7.5 was determined.
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2.2 Uptake and toxicity of Sn(IV), TBT and TM T at pH 5.5

Uptake o f Sn(IV), TBT and TMT by intact cells and protoplasts o f C. maltosa at pH  5.5 

was compared. Subsequent loss in cell viability was assessed. Interactions o f the 

organotins with cellular membranes was also investigated by monitoring iC  release and 

membrane fluidity.

2.2.1 Preparation o f protoplasts

Yeast cells (-0.5 g wet weight) were suspended in 4 ml of 10 mM tris-HCl, 10 mM 

dithiothreitol, 5 mM EDTA, pH 8 buffer. The suspension was incubated at 37°C for 30 

min on an orbital shaker at 150 rpm. Cells were centrifuged (2500 x g, 5 min) and 

washed three times with 5mM PIPES, 1.2 M sorbitol, pH 6.5 buffer. Cells were 

incubated in the same buffer with 10 mg ml' 1 Novozym-234 (Calbiochem- 

Novobiochem, Nottingham, UK) and incubated at 25°C on an orbital shaker at 120 rpm. 

Protoplast formation was monitored by comparing the optical density at 610 nm of 

samples diluted with deionised water and was complete within 3 h. Protoplasts were 

collected by centrifugation (2500 x g, 5 min) and suspended in 10 mM MES, 1.2 M 

sorbitol, pH 5.5 buffer. Conversion of whole cells to protoplasts was confirmed to be > 

99% by counting with a haemocytometer the number of intact cells remaining after 

dilution in deionised water and comparing this to the number o f cells after dilution with 

sorbitol-MES buffer.

2.2.2 Organotin uptake experiments

Both protoplasts and intact cells were washed three times with 10 mM MES, pH 5.5 

buffer (containing 1.2 M sorbitol in the case o f protoplasts) and suspended in 50 ml 

buffer to an approximate cell density of l x l 0 7 cells ml*1. After 30 min equilibration by 

shaking at 150 rpm at room temperature, organotin (from a stock solution) was added to 

the desired concentration. Tin-free methanol controls were also investigated, as TBT and 

SnCU stock solutions were prepared in methanol. 2 % (v/vaq) methanol, corresponding to 

the highest concentration present in tin solutions, was examined. After 30 min 

incubation, 5 ml samples were removed and the biomass separated by centrifugation 

(2500 x g, 5 min). Supernatants were retained for K+ and tin analysis. In the case of
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protoplasts, cell pellets were retained for viability determination using methylene blue 

staining. For determination of intact cell viability, 1 ml cell suspension samples were 

removed from flasks.

2.2.3 Cell viability measurements

2.2.3.1 Viability o f intact cells

In all experiments, viability of intact cells was monitored by growth on YEPD plates. 

Suspension samples were serial diluted in sterile 1% bacteriological peptone, pH 5.5, 

and plated in duplicate on YEPD agar. Colonies were counted after incubation at 30°C 

for 48 h. Viability was defined as the ratio of experimental to control counts, expressed 

as a percentage.

2.2.3.2 Viability o f protoplasts

Protoplast viability was determined using a modified methylene blue staining technique. 

The staining solution was prepared in the following manner: 0.01 g of methylene blue 

was dissolved in 10  ml deionised water, to which 1 g o f tri-sodium citrate and 21.87 g o f 

sorbitol was added. A further 60-70 ml of water was added, the solution mixed and 

filtered through Whatman No.l filter paper and made up to 100 ml with deionised water.

Protoplast pellets were washed twice with MES-sorbitol buffer and resuspended 

to a suitable cell density. 0.5 ml of protoplast suspension was mixed with 0.5 ml staining 

solution and incubated for 5 min prior to counting with an improved Neubauer 

haemocytometer. Dead cells stained blue while viable cells remained clear. For all 

experiments, viability of original protoplast suspensions exceeded 99%, so cell viability 

was expressed as the percentage of clear cells to total number of cells counted. A 

minimum of 250 cells was counted in all cases.

2.2.4 Membrane fluidity measurements

Membrane fluidity was monitored by measuring the steady-state fluorescence anisotropy 

of TMA-DPH or DPH incorporated into intact cells or protoplasts, using a Perkin Elmer
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LS 50 Luminescence Spectrometer (Buckinghamshire, UK) fitted with horizontal and 

vertical polarisers.

Intact yeast cells and protoplasts were suspended in 50 ml of 10 mM MES, pH

5.5 buffer (containing 1.2 M sorbitol in the case of protoplasts) to an approximate cell 

density of lxlO7 cells m l'1. TMA-DPH or DPH, from 0.2 mM stock solutions in 

dimethylformamide, was added to cell suspensions to a final concentration o f 0 .5  [iM. 

After 30 min equilibration by shaking at 150 rpm, tin from a stock solution was added to 

the desired concentration. Controls with 2 % methanol, less metal were also examined. 

Fluorescence intensity and anisotropy readings were recorded after 30 min incubation. 

The excitation and emission wavelengths for both probes were 360 and 450 nm, 

respectively.

To ensure that steady state fluorescence was measured during the time range of 

the experiments, partitioning of the probe molecules in cells was monitored 60 min. 

Cells, prepared as outlined in section 2.1, were suspended in 50 ml 10 mM MES, pH 5.5 

to a cell density of l x l 0 7 cells ml’1. Probe was added and fluorescence intensity and 

anisotropy monitored at regular intervals. The contribution o f light scattering to 

fluorescence measurements was determined as described by Kuhry et al. (1985). Briefly, 

the scattered light intensity and anisotropy were determined by measuring an unlabelled 

control under the same conditions as the sample. The contribution of light scattering was 

calculated as outlined in Section 3.2.

2.3 Influence of pH on TM T uptake and toxicity

C. maltosa was grown in 100 ml YEPD in 250 ml Erlenmyer flasks at 30°C on a rotary 

shaker (150 rpm). Cells were harvested in the exponential phase by centrifugation (300 

x g, 5 min) and washed twice with deionised water followed by three washings with 10 

mM MES (pH 3.5, 4.5 and 5.5) or 5 mM PIPES (pH 7.5) buffers. Yeast cells were 

suspended in 50 ml of the corresponding MES or PIPES buffers to an approximate cell 

density of lxlO7 cells m l'1. After 30 min equilibration by shaking at 150 rpm at room 

temperature, TMT (from a stock solution) was added to the desired concentration. After 

30 min incubation, 5 ml samples were removed and the biomass separated by
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centrifugation (2500 x g, 5 min). Supernatants were retained for K+ and tin analysis. Cell 

suspension samples were also obtained for viability studies.

2.4 Influence of pH and NaCl concentration on TBT and TPT uptake and toxicity

Accumulation o f TBT and TPT by C. maltosa and toxic effects under various aqueous 

conditions was examined. The influence o f pH  (between pH  3.5 and 7.5) and the effect 

o f NaCl, up to 500 mM, at pH  5.5 were investigated. Initial organotin concentrations in 

test solutions ranged up to the limit o f solubility as determined under the specified 

conditions.

2.4.1 Preparation o f biomass

C. maltosa was grown in 100 ml YEPD as described previously. Cells were harvested in 

the exponential phase by centrifugation (300 x g, 5 min) and washed twice with 

deionised water followed by three washings with 10 mM MES (pH 3.5, 4.5 and 5.5) or 5 

mM PIPES (pH 7.5) buffers. Where specified, NaCl was added to the desired 

concentration prior to washing cells.

2.4.2 Effect o f  NaCl on C. maltosa

The effect of NaCl itself on C. maltosa was determined. After harvesting, cells were 

washed three times with 10 mM MES, pH 5.5 buffer and suspended in 50 ml buffer to a 

cell density of l x l 0 7 cells m l'1. After 30 min shaking on an orbital shaker at 150 rpm at 

room temperature, NaCl was added to give the desired concentration. After 30 min 

incubation, 5 ml samples were removed and the biomass separated by centrifugation 

(2500 x g, 5 min). Supernatants were retained for K+ and Na+ analysis. Cell suspension 

samples were also obtained for viability studies.

The influence of NaCl on fluorescence anisotropy of DPH and TMA-DPH was 

also examined. Cells were suspended in 50 ml 10 mM MES, pH 5.5 buffer to a 

concentration of l x l 0 7 cells ml"1. DPH or TMA-DPH was added to a final concentration 

of 0.5 juM. After 30 min, NaCl was added to give a concentration of 50 or 500 mM NaCl 

and incubated for a further 30 min. Fluorescent anisotropy was determined as described 

in section 2.2.4.
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2.4.3 Exposure to organotins

Yeast cells were suspended in 50 ml 10 mM MES or 5 mM PIPES buffers (with NaCl 

added where specified) to an approximate cell density of l x l 0 7 cells ml’1. After 30 min 

equilibration by shaking at 150 rpm at room temperature, TBT or TPT (from stock 

solutions) was added to the desired concentration. After 30 min incubation, 5 ml 

samples were removed and the biomass separated by centrifugation (2500 x g, 5 min). 

Supernatants were retained for K+ and tin analysis. Cell suspension samples were also 

obtained for viability studies.

2.4.4 Membrane fluidity measurements

Cells were harvested in the exponential phase by centrifugation (300 x g, 5 min) and 

washed twice with deionised water followed by three washings with 10 mM MES (pH 

3.5, 4.5 and 5.5) or 5 mM PIPES (pH 7.5 and 8.0) buffers. Where specified, NaCl was 

added to the desired concentration prior to washing cells. Yeast cells were suspended in 

either 50 ml 10 MES or PIPES buffers to an approximate cell density of l x l 0 7 cells ml’1. 

The influence of NaCl and pH on the effects of TBT on DPH and TMA-DPH anisotropy 

was assessed using the procedure outlined previously (Section 2.2.4).
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Using the following model (adapted from Arnold et al.t 1997) the aqueous spéciation 

and 1-octanol-water distribution ratio o f TBT and TPT could be calculated as a function 

o f pH and anion concentration.

2.5.1 Aqueous Spéciation

The fractions a R Sn+, a R3$n0H, and a R̂SnX of different triorganotin (TOT) species present 

at a given pH and solution composition may be expressed as:

2.5 Theoretical considerations: Aqueous spéciation and 1-octanol-water

partitioning of TBT and TPT

V&i* l + 10pH~pK' + ^ K | [ X i"] ^

|Q P H -p K 'a

a R 3S n ° H  =  1  +  1 0 P H - P K „  + £ K ; [ X - ]  [ 2 J

i

a RSnX= _______ K. M _______  [3]
3 1  l + 1 0 pH"pKa + ^ K j[ X , ']

Here, K a is the mixed acidity constant of the dissociation reaction:

R 3Sn+ (aq) <-> R 3SnOH + H + [4]

and is given by

_ [ R 3 SnOH]{H+ } ^  / RClS„* rei
a K a PJ

[R 3 Sn ] / R"jSn0H

where Ka is the mixed acidity constant at infinite dilution, {H+} is the activity of the 

proton and / 0 + and / n are the activity coefficients of R3Sn+ and RsSnOH,
R 3 Sn R 3 SnOH

respectively, for the given solutions conditions.

The Kj values represent the formation constants of R3SnXj due to exchange o f a water 

molecule by Xj", a monovalent anion (excluding OH'):
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v  • [R 3 SnX f / RjS„* A , -
1 1 n ^

[R 3 S n + ][X j " ] / R"jSnXj

where, Kj is the corresponding equilibrium constant at infinite dilution and t h e /  values 

are the activity coefficients of the species under the given solution conditions.

For any charged species i (i.e. R3Sn+, XQ the activity coefficient in aqueous solution can 

be estimated using the Davies equation:

R 3Sn + (aq) + X ' <h> R3SnX,. + H 20  [6]

K j is defined as

l o g / ;  =
- z : V7

2— L
c -0.31 [8]

1 + / I

where, / c is the activity coefficient of the charged species /, z, is its charge and I  is the 

ionic strength.

For uncharged TOT species (i.e. RsSnOH, RsSnXj) the effect of a given salt on the 

activity coefficient in w a te r /n, can be determined by

f  n = 1 q K s [salt] |-9 j

where, K is the Setschenov or salting constant for a given electrolyte and [salt] is the 

total molar concentration of the electrolyte.

2.5.2 Dow (Overall octanol-water distribution ratio) o f TOT compounds

The partitioning of TOT can be described by the overall distribution ratio (Dow)> that is 

defined as the quotient of the sum of the concentrations of the different charged and 

neutral species in 1-octanol, [TOT]totai, oct and water, [TOT]totai, aq, respectively.

Dow values of a given TOT may be expressed by

[TOT] totaI oct
^  ow =  = a R,  SnOH K  0W(R 3 SnOH) +  a  R 3 SnX 8 ^  ow(R 3SnXt )

L J total, aq i
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coefficients at given solution conditions of the hydroxide complex and of the neutral 

complexes formed with other monovalent anions X¡' (excluding OH') and a R Sn0H and

a R3snx are fracti°ns ° f  foe respective species in the aqueous phase and are calculated 

as described previously.

where, K ow(RiSnOH) and Kow(R;(SnXj) are the conditional 1-octanol-water partition

i
K 0w is related to its Kow at infinite dilution (i.e. the reference state) by

K ow = [TQT] "* = K  —  ^  [11]
[TOT] aq / T0T (org)

where, f  T0T (aq)and f  T0T (org) are the activity coefficients of the species in the

aqueous and organic phase, respectively. It is assumed that / T0T (org) does not change

significantly with electrolyte and TOT concentrations and, therefore, can be set equal to 

1 (the effect of ionic strength on the water content of octanol is considered to be 

negligible).

Therefore,

[TOT]

K °w = [T O T P  = K °»/ tot (aq) tl2]

The contribution of the TOT cations (R3Sn+), negatively charged complexes with 

multivalent anions and possible TOT di- or oligomers are neglected. The significance of 

partitioning of TOT cations can be assumed to be negligible (Arnold et al., 1997). 

Concentrations of free TOT cations between 0.02 and 2 jj,M in 1-octanol were predicted 

for a typical TOT(aq) concentration of 10 |iM at pH 4 and 0.1 mM Cl'(aq). Under the 

same conditions, TBTC1 and TPTC1 concentrations of 230 and 70 jiM, respectively, in 

1-octanol were calculated. The partitioning o f TOT cations is not expected to differ 

significantly in the presence of other counterions. Thus, even at 0.1 mM ionic strength, 

the partitioning of TOT cations can be assumed to be negligible.
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Using the following data, aqueous speciation and Dow of TBT and TPT as a function of 

pH and Cl' concentration were predicted using the previous equations.

Table 2.1 Acidity constants, octanol-water partition constants, formation constants and 

Ks values of some RsSnXj species (from Arnold et al., 1997).

TBT TPT

Acidity constant (pKa) of RjSnOH 6.25 5.20

log KqW (R3SnOH) 4.10 3.53

log Ko«, (R3SnCl) 4.76 4.19

Formation constant, log Ki(R3SnCl) 0 .6 0 .6 6

Ks (R3SnOH) in M ' 1 for NaCl 0.61 0.36
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CHAPTER 3

RESULTS
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Chapter 3: Results

3.1 Tin analysis

3.1.1 Sn calibration curves using AAS

Tin is routinely analysed using AAS at two wavelengths, 224.6 and 286.3 nm. For 

inorganic tin, absorbance readings were higher at 286.3 nm (Fig. 3.1.1) and this 

wavelength was used for all further analysis. Standard curves ranged up to 1.26 mM Sn. 

This necessitated the development o f other detection systems as a detection limit o f less 

than 1 \xM was required for experimental purposes.

[Sn] mM

Figure 3.1.1 Sn calibration curves using AAS. Absorbance readings were obtained with 

wavelength settings o f 224.6 nm (open symbols) and 286.3 nm (closed symbols). 

Standards were prepared in duplicate and each sample was read in triplicate. Mean 

values are shown and standard deviations were smaller than the symbols used.
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3.1.2 Optimisation ofHGAAS

The oxidant and fuel ratio and HC1 and NaBH4 concentrations were optimised for 

Sn(IV), TBT and TMT analysis using HGAAS. By varying the ratio o f  air and 

acetylene, the atomisation cell temperature was varied. At air settings above 6 there was 

noise in the system and the baseline fluctuated while the flame was found to quench 

when the fuel was set below 2. No significant difference was found between these ratios 

so it was decided to use air and acetylene settings o f  5 and 2, respectively.

The effect o f HC1 concentration on TBT detection is shown in Table 3.1.1. 

Absorbance readings increased with HC1 concentration so 1 M HC1 was chosen for 

further analysis. 1% (w/v) NaBH4 was chosen as the optimum reducing agent 

concentration. At higher concentrations the reaction between NaBH4 and HC1 was more 

vigorous, which resulted in greater error between readings, while lower concentrations 

were less sensitive (Table 3.1.2).

Table 3.1.1 Effect o f acid concentration on determination o f 10 (iM TBT using 1% 

NaBH4. Standards were prepared in duplicate and mean values o f three determinations 

are shown.

[HC1] mM Absorbance ± sd

0.1 0.023±0.002

0.5 0.086±0.005

1 0.093±0.002

Table 3.1.2 Effect o f NaBH4 on the determination o f 10 |liM TBT using 1 M HC1. 

Standards were prepared in duplicate and mean values o f  three determinations are 

shown.

%NaBH ( w /v )____________Absorbance ± sd

0.5 0.059±0.002

0.8 0.084±0.003

1 0.093±0.002

1.5 0.111±0.01
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3.1.3 HGAAS detection limits and sensitivity

Typical standard curves achieved using HGAAS under optimum conditions are shown

(Fig. 3.1.2). Sensitivity and detection limit for each compound were calculated

according to the Perkin Elmer 3100 AAS instruction manual (1982). Sensitivity was

defined as the concentration o f an element required to produce a signal o f 1% absorption

(0.0044 absorbance units) and was determined from the standard curves in Fig. 3.1.2.

The detection limit was determined as follows: for each compound two concentrations

were prepared with one concentration twice that o f the other. Both standards were read

alternatively, with a blank reading (using 1 M HC1) obtained immediately before and

after each. This was repeated 10 times. The two blank readings for each standard were

averaged and subtracted from the standard reading. The concentration corresponding to

each reading was determined from a suitable standard curve and the mean and standard

deviation o f each set o f ten readings calculated. For the two concentrations, the detection

limit was determined from the following equation:

^  _ . . Ideal concentration x 2 s d
Detection Limit = ----------------------------------

mean concentration

where, the ideal concentration was the actual prepared value and mean and standard 

deviation (sd )  were calculated for the 10 determinations. The detection limit o f  each 

compound was then defined as the mean o f these two values. All detection limits and 

sensitivities were below 1 jiM with detection limits decreasing in the order TBT < 

Sn(IV) < TMT

Table 3.1.3 Detection limit and sensitivity o f Sn(IV), TBT and TM T analysis using 

HGAAS under optimum conditions. Mean detection limits ± SD are shown. Sensitivity 

was defined as the concentration corresponding to 0.0044 absorbance units and was 

determined from Fig. 3.1.2.

Compound Detection limit (uM) Sensitivity (|iM)
Sn(IV) 0.158 ±0 .064 0.081

TBT 0.386 ± 0 .087 0.271

TMT 0.040 ±0.011 0.023
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0.14

[Sn] *iM

Figure 3.1.2 Sn(IV), TBT and TM T calibration curves using HGAAS. Param eters were set as follows: 1 M HC1 at a flowrate o f  4.8 

ml m in '1, 1% N aB H 4 at a flowrate o f  4.0 ml min"1, w avelength o f  286.3 nm and air and acetylene settings o f  5 and 2, respectively. 

Standards were prepared in triplicate and each standard was analysed three times. M ean values ±  SD are shown where these exceed 

the dim ensions o f  the symbols.



3.1.4 TPT analysis

TPT is not detected by HGAAS as conversion to hydrides is poor, so differential pulse 

polarograhy was used for analysis. A typical TPT calibration curve is shown below (Fig. 

3.1.3). Standards were prepared in triplicate in 0.16 M N H 4 C I ,  40% ethanol and adjusted 

to pH 2.5. Each standard was analysed three times and TPT peaks were obtained at a 

half-wave potential o f approximately -0.69 V.

Concentration TPT (f̂ M)

Figure 3.1.3 TPT calibration curve using differential pulse polarograpy. M ean values 

from triplicate determinations are shown and standard deviations were smaller than the 

symbols used.
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3.1.5 TBT and TPT Solubility

The solubility o f TBT and TPT in various buffers was assessed by the method described 

by Inaba et al. (1995). Excess levels o f organotin was added to solutions and the soluble 

concentration analysed. For TBT, approximately 200 (iM was added to pH 5.5 and pH

7.5 buffers and 100 jiiM TBT to 500 mM NaCl, pH 5.5 buffer. 50 |iM  TPT was added to 

pH 5.5 buffer and 30 jliM to pH 7.5 and 500 mM NaCl, pH 5.5 buffers. An insoluble 

precipitate was clearly visible in all buffers except for 200 |iM  TBT at pH 5.5. After 

mixing for 30 min, samples were centrifuged (2500 x g, 5 min) and the concentration o f 

the supernatants determined. In all cases TPT was less soluble than TBT. Organotin 

solubility was reduced at pH 7.5 compared to 5.5, while there was also a considerable 

decrease in solubility in the presence o f 500 mM NaCl. To ensure that the following 

experiments involved soluble organotin concentrations, cells were exposed to maximum 

concentrations o f 100 \xM TBT between pH 3.5 and 7.5 and 50 fiM TBT in NaCl buffer. 

For TPT, 30 jiM TPT was the maximum exposure concentration between pH 3.5 and 5.5 

and 10 pM  TPT at pH 7.5. In NaCl, TPT concentrations did not exceed 20 jiM. Sn(IV) 

and TM T were soluble at all required concentrations so the solubility limits were not 

determined.

Table 3.1.4 TBT and TPT solubility levels in buffered solutions. Excess organotin was 

added to solution and mixed for 30 min. After centrifugation, the soluble tin 

concentration was determined. Mean values ±  SD from triplicate determinations are 

shown.

Buffer Solubility (pM)

TBT TPT

10 mM  MES, pH 5.5 > 2 0 0 37.2 ± 2 .7

10 mM MES, 500 mM NaCl, pH 5.5 65.7 ±2.1 24.2 ±  0.5

5 mM PIPES, pH 7.5 149 ± 6 .9 12.5 ± 0 .3
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3.2 Localisation of DPH and TMA-DPH in intact cells and protoplasts

The time required for DPH and TMA-DPH to reach steady state in intact cells and 

protoplasts was monitored by recording the fluorescence intensity and anisotropy o f  the 

probes as they were incorporated into the cells. DPH reached steady state after 30 min in 

intact cells, and after 10 min in protoplasts (Fig. 3.2.1). In contrast, TM A-DPH was 

rapidly localised in both intact cells and protoplasts (Fig. 3.2.2). In all cases, both probes 

remained stable for at least 70 min after incubation.

Anisotropy readings were higher for intact cells compared to protoplasts, 

indicating that removal o f the cell wall resulted in greater membrane fluidity. For DPH, 

the average steady-state anisotropy between 30 and 70 min was 0.133 for intact cells and 

0.096 in protoplasts. For TMA-DPH, average anisotropy readings within this time 

period were 0.269 and 0.229 for intact cells and protoplasts, respectively. The 

membrane order parameter, S was also determined. S has a value between 0 and 1 and 

indicates how ordered a membrane is, with a value o f one corresponding to a fully 

ordered membrane. S = (r/r0)° 5, where r0 is the theoretical limiting anisotropy in the 

absence o f rotational motion and r is the steady state anisotropy measured in the 

membrane (Gille et al., 1993). For the probes used here, r0 is equal to 0.362 for DPH 

(Shinitsky and Barenholz, 1978) and 0.395 for TMA-DPH (Gille et al., 1993). Using the 

steady state values reported above the membrane order parameter for both intact cells 

and protoplasts was determined (Table 3.2.1). Lower readings were calculated for DPH, 

indicating that DPH was located within a more fluid region than TMA-DPH.

Table 3.2.1 The membrane order parameter, S, for intact cells and protoplasts o f C. 

maltosa  determined using DPH and TMA-DPH. Mean S values recorded between 30 

and 70 min after incubation from three replicate determinations ± SEM are shown.

Membrane order parameter, S

DPH TMA-DPH

Intact cells 0.606 ± 0.005

Protoplasts 0.515 ± 0.003 0.761 ±0.004

0.825 ±0.01
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Figure 3.2.1 Incorporation o f DPH into intact cells (closed symbols) and protoplasts 

(open symbols) o f C. maltosa. Mean values o f triplicate determinations o f (a) 

fluorescent intensity and (b) anisotropy readings o f DPH recorded in cells at specified 

time intervals are shown. SEM values were smaller than the dimensions o f the symbols.
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Figure 3.2.2 Incorporation o f TMA-DPH into intact cells (closed symbols) and 

protoplasts (open symbols) o f C. maltosa. Mean values o f triplicate determinations o f

(a) fluorescent intensity and (b) anisotropy readings o f DPH recorded in cells at 

specified time intervals are shown. SEM values were smaller than the dimensions o f the 

symbols.
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The contribution o f  light scattering to fluorescence measurements was 

determined as described by Kuhry et al. (1985). Scattering o f  light from the excitation 

source to the measured light at the observed wavelength may occur and needs to be 

taken into account if  the fluorescence intensity is low due to the probe concentration. 

Both intensity and anisotropy are influenced according to:

1 measured ~  ^ fluo ^ scatter 

^  measured ~  f t  fluo  ̂ f  )  ^  scatter

Where, /  (a balanced fluorescence intensity factor) = [fluo / (I\fluo + Iscatter)- I\fluo and tjiuo 

correspond to the intensity and anisotropy o f the labelled sample, respectively. The 

scattered light intensity {[scatter) and anisotropy (rscatter) were determined by measuring an 

unlabelled control under the same conditions as the sample.

At the cell concentrations used in these experiments, [ s c a tte r  was determined to be 

less than 10 for both intact cells and protoplasts. As the fluorescence intensity o f 

samples always exceeded 200, light scattering accounted for less than 5% o f the 

measured intensity and the correction for light scattering was not included in any other 

measurements.
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3.3 Comparison of interactions of Sn(IV), TBT and TMT with C. maltosa at pH 5.5

3.3.1 Uptake o f  Sn(IV), TBT and TMT

Removal o f  inorganic tin (SnCL*) and the organotins, TBT and TMT from solution by C. 

maltosa at pH 5.5 was investigated (Fig 3.3.1). Uptake o f Sn(IV) and TBT increased 

with increasing initial solution concentration. TBT uptake levels were similar for both 

intact cells and protoplasts with most o f  the organotin being removed from solution at 

all initial concentrations. Maximum uptake, from an initial concentration o f 100 |iM  

TBT, was approximately 90 \imo\ (1010 cells)'1. Sn(IV) uptake levels differed for intact 

cells and protoplasts. Removal o f the cell wall resulted in an approximate 2-fold 

decrease in Sn(IV) uptake capacity. M aximum uptake o f Sn(IV) was reduced from 40 

|imol Sn (1010 cells)'1 for intact cells to 19 fimol Sn (1010 cells)'1 for protoplasts. 

Removal o f TMT from solution at initial concentrations up to 100 |^M, was negligible 

with supernatant concentrations after exposure to cells within 5% o f initial levels.

3.3.2 Effect ofSn(lV), TBT and TM T on cell viability

The viability o f intact cells and protoplasts after contacting with Sn(IV), TBT or TMT 

was recorded. Viability o f  intact cells was determined by the standard plate count 

method, while protoplasts were assessed by a modified methylene blue staining 

technique. 2 %  methanol, corresponding to the maximum concentration added from tin 

stock solutions, had no effect on viability o f  either intact cells or protoplasts (data not 

shown).

Uptake o f Sn(IV) did not alter the viability o f either intact cells or protoplasts 

(Fig. 3.3.2a). In contrast, cell viability decreased with TBT (Fig. 3.3.2b). At initial 

concentrations greater than 70 jiM, 100% loss in viability o f intact cells occurred. TBT 

toxicity was marginally greater in protoplasts, where 50 (iM TBT resulted in total loss o f 

cell viability. However, there was little difference in viability o f  intact cells and 

protoplasts after exposure to 20 |iM  TBT. TMT had no effect on viability o f  either intact 

cells or protoplasts (Fig. 3.3.2c).
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Figure 3.3.1 Uptake of (a) Sn(IV), (b) TBT and (c) TMT by intact cells (closed symbols) and protoplasts (open symbols) of C.

maltosa at pH 5.5. Mean values ± SEM are shown where these exceed the dimensions of the symbols.
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Figure 3.3.2 Viability of intact cells (closed symbols) and protoplasts (open symbols) after exposure to (a) Sn(IV), (b) TBT and (c)

TMT. Mean values ± SEM are shown where these exceed the dimension of the symbols.



3.3.3 Sn(IV)-, TBT- and TMT-induced tC  release

The levels o f K+ release from metal-free controls were greater in protoplasts than intact 

cells (Fig. 3.3.3). 2% methanol, had no effect on K+ release from cells (data not shown). 

Inorganic tin, at initial solution concentrations up to 100 pM, did not cause any net 

change in K+ release (Fig. 3.3.3a) while exposure to TBT resulted in extensive K+ 

leakage from both intact cells and protoplasts (Fig. 3.3.3b). K+ release from intact cells 

increased almost linearly with TBT concentration, to a maximum level o f 228 jumol K+ 

(1010 cells)'1. In contrast, K+ release from protoplasts reached an equivalent maximum 

level at a lower initial concentration o f 50 [iM TBT. TMT did not affect the levels o f 

extracellular K+ and levels in solution remained at concentrations equivalent to metal 

free control values. This is consistent with the absence o f  viability loss and negligible 

uptake. No interactions between TMT and cells were apparent at pH 5.5.

3.3.4 Influence o f  Sn(IV), TBT and TM T on membrane flu id ity

Prior to experiments, the time required for DPH and TMA-DPH to reach steady-state 

fluorescence anisotropy in cells was established (Section 3.2). Both probes were 

restrictively localised in cells during the 30 min tin exposure time. The effects o f TBT, 

TM T and Sn(IV) on the anisotropy o f DPH and TMA-DPH were reported as the 

difference in anisotropy between cells contacted with tin and tin-free controls. 2% 

methanol had a negligible effect on DPH and TMA-DPH anisotropy.

Uptake o f TBT resulted in an increase in the fluorescence anisotropy o f DPH in 

intact cells and protoplasts, reflecting a decrease in membrane fluidity (Fig. 3.3.4). 

Changes in DPH anisotropy were greater in protoplasts as compared to intact cells at 

lower initial organotin concentrations. 20 |iM  TBT had little effect on anisotropy in 

intact cells, while anisotropy in protoplasts increased by approximately 0.014 units. 

However, at an initial concentration o f 100 jiM TBT, anisotropy changes reached 

similar levels o f approximately 0.023 units in both intact cells and protoplasts. 

Anisotropy o f TMA-DPH, which is located at the surface o f the cytoplasmic membrane, 

was not altered by TBT (Fig. 3.3.5). Neither Sn(IV) nor TM T had any effect on 

fluorescence anisotropy (Fig. 3.3.4 and 3.3.5). The absence o f membrane interactions is 

consistent with the lack o f K+ leakage and change in cell viability.
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Figure 3.3.3 K+ release from intact cells (closed symbols) and protoplasts (open symbols) of C. maltosa at pH 5.5. Cells were exposed

to (a) Sn(IV), (b) TBT and (c) TMT. Mean values ± SEM are shown where these exceed the dimensions of the symbols.
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Figure 3.3.4 Influence o f Sn(IV) (A) ,  TBT ( • )  and TM T (■ ) and on the fluorescence 

anisotropy o f  DPH in (a) intact cells and (b) protoplasts o f  C. maltosa  at pH 5.5. Mean 

values ± SEM are shown where these exceed the dimensions o f the symbols.
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Figure 3.3.5 Influence o f  Sn(IV) ( a ) ,  TBT ( • )  and TM T (■ ) and on the fluorescence 

anisotropy o f  TMA-DPH in (a) intact cells and (b) protoplasts o f C. maltosa  at pH 5.5. 

Mean values ± SEM are shown where these exceed the dimensions o f the symbols.
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3.4 Influence of pH on TMT uptake and toxicity

Uptake o f TMT by intact cells was examined between pH 3.5 and pH 7.5 (Fig. 3.4.1). 

M aximum TMT uptake was 7 pmol (1010 cells)"1 from an initial concentration o f  100 

|iM  at pH 4.5. In all other cases, the levels o f TMT remaining after exposure to cells for 

30 min were comparable to initial concentrations, indicating the absence o f TMT 

uptake. TMT did not affect the levels o f extracellular K+, which were comparable to 

those o f  organotin free controls and there was no significant change in cell viability. 

TM T did not interact with intact cells and solution pH did not influence results.
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Figure 3.4.1: Influence o f pH on TMT uptake and toxicity. TM T uptake ( • ) ,  K+ release 

(■) and % viability (A )  was measured after exposure to TMT at (a) pH 3.5, (b) pH 4.5, 

(c) pH 5.5 and (d) pH 7.5. Results from duplicate experiments ± SEM are shown.
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3.5 Influence of pH on spéciation and interactions of TBT and TPT with C. maltosa

3.5.1 Variation in TBT and TPT speciation and Dow with pH

The fraction o f  hydrated cation species, R3Sn(H20 ) 2+, represented here as TBT+, TPT+ 

or R3Sn+, and neutral hydroxide species, R3SnOH, present under various solution 

conditions was predicted using equations 1-2 in Section 2.5. At pH 3.5, in the absence o f 

other ions, R3Sn+ species were dominant, with 0.2% TBT and 2% TPT present as the 

neutral species, respectively (Fig. 3.5.1). The acidity constant (pKa) o f  TPT is 

approximately one unit below that o f  TBT so TPT cationic species predominate below 

pH 5.2, while TBT cationic species are dominant below pH 6.25. At higher pH values, 

hydroxide species are dominant. Greater than 95% o f TPT was calculated to be present 

as TPTOH above pH 6.5, with 64% o f TBT existing as TBTOH, increasing to 95% at 

pH 7.5.

The octanol-water distribution ratio o f organotins also changes with solution 

composition. An increase in the fraction o f  neutral species with pH corresponds to 

greater Dow values (Fig. 3.5.2). At pH 3.5, the Dow o f TBT and TPT was calculated as 

1.36 and 1.83, respectively. The Dowo f TBT increased to a maximum o f 4.1 at pH 7, 

while the Dovv o f TPT reached a maximum o f 3.53 at pH 6. Above these pH values, the 

Dow ratios remained constant.
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Figure 3.5.1 Variation in (a) TBT and (b) TPT spéciation with pH. The predicted 

species are based solely on solution pH and do not take the presence o f other anions into 

account.
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Figure 3.5.2 Dependence o f  the octanol-water distribution ratio (Dow) o f  TBT (closed 

symbols) and TPT (open symbols) on solution pH.
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3.5.2 Influence o f  p H  on the interactions o fT B T  and TPT with C. maltosa  

Prior to experiments, cell suspensions were washed with either 10 mM MES or 5 mM 

PIPES buffer, adjusted to the appropriate pH. Comparison o f results for cells analysed in 

the absence o f organotin demonstrated that solution pH, between pH 3.5 and 7.5, had 

little effect on the viability, K+ leakage or membrane fluidity o f  cells.

3.5.2.1 Influence o f  p H  on TBT and TPT uptake

There was little difference in TBT uptake between pH 4.5-7.5 (Fig. 3.5.3a). After 

exposure to initial concentrations up to 100 \.iM TBT, almost all o f the organotin was 

removed from solution. Maximum uptake levels were 97, 93 and 100 (imol (1010 cells)'1 

at pH 4.5, 5.5 and 7.5 respectively. In contrast, TBT uptake, at all initial concentrations 

was reduced at pH 3.5. Maximum uptake after exposure to 100 jiM TBT was 66 |imol 

(1010 cells)'1.

TPT uptake was also lowest at pH 3.5, with a maximum uptake level o f 12.3 

jimol (1010 cells)'1 from an initial concentration o f 30 jiM (Fig. 3.5.3b). There was little 

difference in uptake at pH 4.5, 5.5 and 7.5 after exposure to 5 and 10 ^M  TPT. At higher 

concentrations, uptake was greater at pH 5.5 compared to pH 4.5. M aximum uptake at 

pH 5.5 was 21.8 jumol (1010 cells)'1, compared to 15.0 jimol (1010 cells)'1 at pH 4.5. Due 

to the reduced solubility o f TPT at pH 7.5, 10 jaM was the highest concentration 

examined and no differences in uptake levels compared to pH 4.5 and 5.5 were apparent.

Uptake o f TPT was less than TBT in all cases. At initial concentrations o f 20 (iM 

TBT, 10.6 (amol (1010 cells)*1 was removed at pH 3.5, while TBT uptake levels were 

approximately 20 |imol (1010 cells)"1 at pH 4.5 and 5.5. In contrast, TPT uptake levels at 

the corresponding initial concentration were 4.6, 11.4 and 13.8 jimol (1010 cells)'1 at pH

3.5, 4.5 and 5.5, respectively.
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Figure 3.5.3 Influence o f pH on the uptake o f (a) TBT and (b) TPT. Organotin uptake 

was measured at pH 3.5 (A),  4.5 (■), 5.5 ( • )  and 7.5 (A). Mean values from three 

replicate determinations are shown ± SEM where they exceed the dimensions o f  the 

symbols.
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3.5.2.2 Influence o f  p H  on TBT and TPT toxicity

Organotin-induced cell death increased with external pH (Fig. 3.5.4 and 3.5.5). At the 

highest TBT concentration examined, cell viability was reduced to 27% at pH 3.5 and 

6 %  at pH 4.5. In contrast, complete loss in cell viability occurred at concentrations 

greater than 70 and 50 jiM TBT at pH 5.5 and 7.5, respectively. At 30 |iM  TPT, cell 

viability was reduced to 81, 70 and 62% at pH 3.5, 4.5 and 5.5, respectively. Toxicity o f  

TPT was marginally greater at pH 7.5 compared to 5.5. Exposure to 10 jiM TPT, the 

highest concentration examined at pH 7.5, resulted in 77 and 69 % cell viability at pH

5.5 and 7.5, respectively.

Buffer pH had little effect on K+ release from cells with levels o f approximately 

1 5 - 4 5  jumol (1010 cells)'1 occurring in the absence o f organotin. TBT-induced K+ 

leakage was greatest at pH 5.5 and decreased above and below this pH (Fig. 3.5.4). At 

pH 3.5, there was very little membrane leakage, with a maximum K+ level o f 48 (xmol 

(1010 cells)'1 resulting at 100 jiM TBT. In the absence o f TBT, the external K+ 

concentration was 33 fimol (1010 cells)’1. Maximum K+ release, after exposure to 100 

jiM TBT was 139 and 117 jimol (1010 cells)’1 at pH 4.5 and 7.5, respectively. In 

contrast, an approximate 2-fold increase in K+ leakage was apparent at pH 5.5, with 230 

(imol K+ (1010 cells)’1 released. At lower concentrations, the influence o f pH, between

4.5 and 7.5, was not as pronounced. Exposure to 50 jiM TBT resulted in K+ release 

levels o f 90, 104 and 99 jimol (1010 cells)’1 at pH 4.5, 5.5 and 7.5, respectively. At the 

same initial TBT concentration, K+ release only reached 38 jimol (1010 cells)'1 at pH 3.5.

K+ leakage in the presence o f TPT increased with external pH (Fig. 3.5.5). At pH

3.5, K+ release levels reached 59 |omol (1010 cells)’1 after exposure to 30 jiM TPT, 

compared to 45 jumol (1010 cells)'1 in the absence o f organotin. At pH 4.5, exposure to 

30 p,M TPT resulted in an increase o f K+ leakage from 17 to 51 |amol (1010 cells)“1. At 

all TPT concentrations, K+ release was greater at pH 5.5 compared to 4.5. The 

maximum K+ release at pH 5.5 was 132 (imol (1010 cells)'1, after exposure to 30 jiM 

TPT. K+ release at pH 7.5 was marginally greater than at pH 5.5. K+ leakage increased 

from 41 to 114 jimol (1010 cells)"1 at pH 7.5 and from 30 to 83 \imo\ (1010 cells)'1 at pH

5.5, after exposure to 10 jaM TPT.
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Figure 3.5.4 Influence o f pH on the effect o f TBT on the cell viability (■) and K+ 

release (A )  o f C. maltosa. Cells were exposed to a range o f TBT concentrations in (a) 

pH 3.5, (b) 4.5, (c) 5.5 and (d) 7.5 buffered solutions. Mean values from three replicate 

determinations are shown ± SEM where they exceed the dimensions o f the symbols.
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Figure 3.5.5 Influence o f pH on the effect o f TPT on the cell viability (■) and K+ 

release (A )  o f C. maltosa. Cells were exposed to a range o f TPT concentrations in (a) 

pH 3.5, (b) 4.5, (c) 5.5 and (d) 7.5 buffered solutions. Mean values from three replicate 

determinations are shown ± SEM where they exceed the dimensions o f the symbols.
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Different uptake levels complicated comparisons between TBT and TPT 

toxicity. Uptake o f  TPT was less than TBT in all cases. Thus, differences between TBT 

and TPT toxicity at the same exposure levels may be due to differing uptake levels or 

actual differences in toxic effects o f  the compounds after removal from solution. 

However, at pH 4.5 and 5.5, the effect o f the organotins on cell viability were clearly 

similar at equivalent uptake levels. At pH 4.5, uptake o f 15 jamol TPT (10l° cells)'1, 

from an initial concentration o f 30 |iM , resulted in 70% viability. Similarly, exposure to 

20 jiM TBT caused 64% cell viability, with most o f the organotin being removed from 

solution. At pH 5.5, maximum uptake o f TPT to 21.8 jumol (1010 cells)-1 resulted in 62% 

viability while removal o f  20 fiM TBT from solution corresponded to 51% viability. At 

pH 3.5, however, TPT was more toxic. Uptake o f 12.3 jimol TPT (1010 cells)’1, from an 

initial concentration o f  30 pM , corresponded to 81% viability whereas exposure to 20 

|iM  TBT resulted in an uptake level o f 10.6 |umol (1010 cells)'1 and 94% viability. At 

pH 7.5, no comparison could be made due to the low solubility o f  TPT.

K+ release levels were higher after exposure to TPT compared to TBT at pH 5.5 

and 7.5. At pH 5.5, a difference in K+ leakage o f  101 jLimol (1010 cells)'1 before and after 

exposure to 30 |^M TPT occurred at an uptake level o f 21.8 (imol TPT (1010 cells)’1. In 

comparison, K+ release increased from 17 to 60 jimol (1010 cells)'1 after exposure to 20 

|iM  TBT. TBT-induced K+ release was reduced at pH 7.5 whereas TPT had a greater 

effect. K+ release levels increased from 41 to 114 jimol (1010 cells)'1 and 30 to 84 jLtmol 

(1010 cells)'1 after exposure to 10 \iM  TPT and 20 jj,M TBT, respectively. K+ leakage 

was reduced at pH 4.5 with TBT and TPT causing similar effects at equivalent uptake 

levels. Uptake o f 15 jimol TPT (1010 cells)'1 resulted in a difference in K+ leakage o f 34 

(imol (10]0 cells)'1 while an identical level occurred after exposure to 20 fj-M TBT. There 

was no discernible difference at pH 3.5, with very little membrane leakage at all 

concentrations examined.
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3.5.2.3 Influence o fp H  on the effects o fT B T  and TPT on membrane flu id ity  

The effects o f TBT and TPT on the anisotropy o f DPH and TM A-DPH were dependent 

on pH (Fig. 3.5.6 and Fig. 3.5.7). At pH 3.5 and 7.5, at concentrations up to 100 ^M, 

TBT had no effect on membrane fluidity. There was negligible difference between DPH 

or TMA-DPH anisotropy, in the presence or absence o f TBT. TBT altered membrane 

fluidity to different degrees at pH 4.5 and 5.5. At pH 4.5, TMA-DPH anisotropy 

decreased with a maximum change o f 0.029 units at 50 (iM TBT, while DPH anisotropy 

was unaltered. This indicated that the fluidity o f the hydrophilic surface o f  the 

cytoplasmic membrane increased in the presence o f TBT. In contrast, DPH anisotropy 

values increased with TBT concentration at pH 5.5, while TMA-DPH anisotropy was 

unaltered. Change in DPH anisotropy increased to a maximum o f 0.024 units at 100 (iM 

TBT. This reflected a decrease in the fluidity o f the hydrophobic core o f  membrane 

lipids.

There was no change in either DPH or TMA-DPH anisotropy after exposure to 

TPT at pH 3.5 and 4.5 (Fig. 3.5.7). At pH 5.5, DPH anisotropy increased with organotin 

concentration, to a maximum change o f 0.042 units at 20 jiM TPT. There was no change 

in TM A-DPH anisotropy, indicating that TPT only affected the fluidity o f the inner core 

o f membrane lipids. A similar effect was observed at pH 7.5, with DPH anisotropy 

altered to the same degree. After exposure to 10 jiM TPT, the anisotropy o f  DPH 

increased by 0.026 units at pH 5.5 and 7.5.

Comparing Fig 3.5.6 and 3.5.7 shows that TBT and TPT have different effects 

on membrane fluidity. At pH 4.5, TBT caused a decrease in TMA-DPH anisotropy, 

while TPT had no discernible effect. However, changes in TMA-DPH anisotropy only 

occurred after exposure to 20 |iM  TBT, where most o f  the TBT was removed from 

solution, while maximum TPT uptake, from an initial concentration o f 30 fj,M, was to a 

level o f  15 \xmo\ (1010 cells)'1. These trends are similar to those for K+ leakage, where 

similar low K+ release levels occurred after exposure to 20 |iM  TBT and 30 |aM TPT 

and greater membrane-damaging effects were associated with higher TBT 

concentrations. Both organotins had a similar effect at pH 5.5, with changes in DPH 

anisotropy associated with an overall decrease in fluidity at the hydrophobic core o f 

membrane lipids. However, TPT altered DPH anisotropy to a greater extent. At 20 jxM
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Figure 3.5.6 Influence o f pH on the effect o f TBT on the membrane fluidity o f  C. 

maltosa. Cells were exposed to TBT at (a) pH 3.5, (b) 4.5, (c) 5.5 and (d) 7.5 and the 

effects on anisotropy o f either DPH (closed symbols) and TMA-DPH (open symbols) 

was monitored. Change in anisotropy was calculated as the difference between the 

anisotropy o f  cells in the presence and absence o f  organotin. Mean values from three 

replicate determinations are shown ± SEM where they exceed the dimensions o f the 

symbols.
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Figure 3.5.7 Influence o f pH on the effect o f TPT on the membrane fluidity o f C. 

maltosa. Cells were exposed to TPT at (a) pH 3.5, (b) 4.5, (c) 5.5 and (d) 7.5 and the 

effects on anisotropy o f either DPH (closed symbols) and TMA-DPH (open symbols) 

was monitored. Change in anisotropy was calculated as the difference between the 

anisotropy o f  cells in the presence and absence o f organotin. M ean values from three 

replicate determinations are shown ± SEM where they exceed the dimensions o f the 

symbols.
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TPT, DPH anisotropy increased by 0.042 units, while TBT only had an effect above this 

concentration. This too was consistent with K+ leakage results where TPT uptake 

resulted in greater release levels than TBT. TPT-induced changes in membrane fluidity 

were similar at pH 7.5 compared to 5.5 which corresponded with K+ release levels. 

However, at pH 7.5, TBT had no effect on membrane fluidity. This was also in 

agreement with reduced TBT-induced K+ leakage at pH 7.5 compared to 5.5. At pH 3.5, 

results were similar, with negligible membrane-damaging effects occurring.

3.5.3 Relationship between organotin toxicity, p H  and Dow

The relationship between pH and organotin toxicity was investigated further (Fig. 3.5.8 

and 3.5.9). Cytotoxicity was expressed as organotin concentrations resulting in 20 and 

50% inhibition o f cell viability, for TBT and TPT, respectively. Organotin toxicity 

increased between pH 3.5 and 5.5. There was a 3-4 fold difference in TBT IC50 and TPT 

IC20 values within this pH range (Fig. 3.5.8a and 3.5.9a). Toxicity at pH 7.5 was similar 

to that at pH 5.5 with TBT IC50 values o f 20.4 and 18 jiM and 8.25 and 6.9 jiM for TPT 

at pH 5.5 and 7.5, respectively.

Increased cell toxicity corresponded to an increase in the presence o f  neutral 

R^SnOH species. The influence o f compound lipophilicity, expressed as Dow values on 

cytotoxicity was assessed. There was a clear correlation between Dow and cell death. The 

correlation was better for TPT than TBT with linear regression coefficients o f 0.983 and 

0.811, respectively. The toxicity o f TBT at pH 5.5 was very similar to 7.5, even though 

there was only 15% neutral species present compared to 95% at the higher pH.
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Figure 3.5.8 Variation in IC50 o f TBT with (a) pH, (b) Dow- IC50 were calculated from 

Fig. 3.5.4.

PH lQg D ow

Figure 3.5.9 Variation in IC20 o f TPT with (a) pH, (b) Dow. IC20 were calculated from 

Fig. 3.5.5.
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3.6 Influence of NaCl on speciation and interactions of TBT and TPT with C. 

maltosa at pH 5.5

3.6.1 Variation in TBT and TPT speciation and Dow with NaCl

The fraction o f R3Sn+, RsSnOH and RsSnCl species present in aqueous solution at pH

5.5 was predicted between 0 and 500 mM NaCl using the equations in Section 2.5.1. 

The presence o f Cl" ions resulted in the formation o f RsSnCl species in solution (Fig.

3.6.1). At pH 5.5, in the absence o f NaCl, TBT consisted o f 85% TBT+ and 15% 

TBTOH, while 33 % o f TPT was present as TPT+, with 67% TPTOH. In 500 mM NaCl, 

the fractions o f TBT+ and TBTOH were reduced to 62 and 4%, respectively, with 34% 

o f TBT present as TBTC1. 35% of TPT was calculated to be present as TPTC1, with 

36% TPT+ and 29% TPTOH. For TPT, the total o f neutral TPT species remained 

relatively constant (67-63%) over the NaCl concentration range with TPTC1 being 

formed in place o f TPTOH. For TBT, both the fractions o f total neutral and chloride 

species increased with NaCl, with 15 and 38% neutral species present in 0 and 500 mM 

NaCl, respectively. In the following experiments, cells were exposed to organotins at 

pH 5.5. This pH was chosen to allow a broad range o f organotin species to be examined 

with increasing NaCl concentration.

The Dow values o f TBT and TPT increased with NaCl concentration (Fig. 3.6.2). 

This corresponded to the increasing presence o f RsSnCl species, which is more 

lipophilic than RsSnOH. At pH 5.5, the Dow o f TBT was 3.28 and TPT was 3.35, in the 

absence o f NaCl, increasing to 4.6 and 3.94, respectively, in 500 mM NaCl.
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log.o [Cl ]

F igure  3.6.2 Variation in Dow values o f TBT (closed symbols) and TPT (open symbols) 

with Cl' concentration (M).
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3.6.2 Influence o fN a C l on the interactions o fT B T  and TPT with C. maltosa 

To allow the effects o fN aC l on C. maltosa to be determined, cell suspensions were pre­

washed with 10 mM  MES, pH 5.5 buffer and then equilibrated with buffer for 30 min 

before the addition o f NaCl. In subsequent experiments, cells were pre-washed with 

buffer containing the corresponding concentration o f NaCl and then equilibrated with 

this buffer before exposure to organotin compounds. This allowed the effects o f  NaCl on 

organotin-yeast interactions to be determined without having to take any NaCl-related 

cell changes into account.

3.6 .2 . 1  Interactions o f  NaCl with C. maltosa

NaCl, at initial concentrations up to 500 mM, had no effect on viability o f  C. 

maltosa  after incubating for 30 min at pH 5.5 (Fig. 3.6.3). In contrast, K+ release 

increased with NaCl concentration, to a maximum o f 130 jimol K+ (1010 cells)'1 in 500 

mM NaCl. Na+ uptake was minimal, with less than 5% o f the initial concentrations 

being removed from solution.

The presence o f NaCl had no effect on the membrane fluidity o f  C. maltosa 

(Table 3.6.1). There was no significant change in anisotropy o f  either DPH or TMA- 

DPH after 30 min incubation in 50 or 500 mM NaCl, with all values within 2% o f the 

control samples.
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Initial NaCl (mM)

Figure 3.6.3 Uptake and toxicity o f NaCl in 10 mM MES, pH 5.5 buffer. Na+ uptake 

( • ) ,  K+ release (■) and cell viability (A ) was recorded after exposure for 30 min. Mean 

values from three replicate determinations are shown ± SEM where they exceed the 

dimensions o f the symbols.

[NaCl]mM Anisotropy ± SEM

DPH TM A-DPH

0 0.131 ± 0 .002 0.267 ± 0.002

50 0.128 ±0.001 0.266 ± 0.002

500 0.130 ± 0 .004 0.271 ±  0.003

T able 3.6.1 Effect o f 50 and 500 mM NaCl on membrane fluidity o f C. maltosa. The 

anisotropy o f  DPH and TMA-DPH was monitored after exposure to 50 and 500 mM 

NaCl for 30 min. Mean values ± SEM from triplicate determinations are shown.
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3.6 .2.2 Influence o fN aC l on the uptake and toxicity o fT B T  and TPT  

Organotin toxicity, as reported by cell viability and K+ release, increased in the presence 

ofN aC l. For TBT, this was not due to changes in organotin uptake levels. NaCl had no 

effect on TBT uptake with most o f the organotin removed from solution at all initial 

concentrations. The TBT concentration in supernatants after exposure to cells was less 

than 2 jiM, with TBT only being detected in samples which had initial exposure 

concentrations above 50 fiM. There was a marginal increase in TPT uptake with NaCl 

concentration (Fig. 3.6.4). After exposure to 20jnM TPT, uptake levels o f 13.8, 16.5,

17.1 and 17.2 pmol (1010 cells)'1 were recorded in 1, 50, 250 and 500 mM NaCl, 

respectively.
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Initial TPT (fiM)

25 30

F igure  3.6.4 TPT uptake at pH 5.5 in 0 ( • ) ,  50 (■), 250 (▼) and 500 (A) mM  NaCl. 

Mean values from three replicate determinations are shown ± SEM where they exceed 

the dimensions o f  the symbols.
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Loss in cell viability was enhanced considerably in NaCl (Fig. 3.6.5a and 

3.6.6a). For TBT, complete cell death occurred at concentrations o f 70, 50, 35 and 20 

jiM TBT in 0, 10, 50 and 500 mM NaCl, respectively. Exposure to 20 jiM TPT resulted 

in 69, 39, and 6% cell viability in 0, 50 and 250 mM NaCl, respectively. In 500 mM 

NaCl, complete cell death resulted at concentrations greater than 10 jiM TPT.

As mentioned in Section 3.6.2.1, the effects o f NaCl itself on K+ leakage cannot 

be discounted. These complicate K+ results, as initial release from cells in 250 and 500 

mM NaCl was consistently higher than at lower salinity, so no direct comparison 

between final release levels could be made. Also, representing values as the difference 

in K+ release before and after exposure proved inaccurate as organotin-induced 

K+ leakage did not follow a linear profile. Under certain conditions, K+ release reached a 

level o f 230 - 260 jimol (1010 cells)'1, which appeared to be the maximum possible level 

o f K+ leakage. Therefore, expressing K+ release as the difference between initial and 

final concentrations would underestimate K+ leakage under these conditions. However, 

taking this into account, an increase in organotin-induced K+ leakage with increasing 

NaCl concentration was evident. For TBT, maximum K+ release in the absence o f NaCl 

occurred at 100 |uM, while a similar level occurred at 50 and 20 jiM TBT in the presence 

o f 50 and 500 mM NaCl (Fig. 3.6.5b). Increased K+ leakage was apparent even at low 

NaCl concentration, with higher K+ levels in 10 mM NaCl compared to the absence o f 

NaCl at all TBT concentrations. TPT-induced K+ leakage also increased in the presence 

o f NaCl (Fig. 3.6.6b). After exposure to 20 jaM TPT, K+ release levels reached 120, 200, 

246 and 249 ^m ol (1010 cells)'1 in 0, 50, 250 and 500 mM NaCl.
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Initial Sn (|iM )

F igure 3.6.5 Influence o f NaCl on the toxicity o f TBT at pH 5.5. Cells were exposed to 

TBT in 0 ( • ) ,  10 (A) ,  50 (■) and 500 (A) mM NaCl solutions and the resulting (a) loss 

in cell viability and (b) K+ release was recorded. Mean values from three replicate 

determinations are shown ± SEM where they exceed the dimensions o f the symbols.
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Initial Sn (|uM)

F igure 3.6.6 Influence o f NaCl on the toxicity o f TPT at pH 5.5. Cells were exposed to 

TPT in 0 ( • ) ,  50 (■), 250 (▼) and 500 (A) mM NaCl solutions and the resulting (a) loss 

in cell viability and (b) K+ release was recorded. Mean values from three replicate 

determinations are shown ± SEM where they exceed the dimensions o f the symbols.
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3.6.2.3 Influence o fN a C l on the effects o fT B T  and TFT on membrane flu id ity  

The effects o f TBT and TPT on DPH anisotropy were reduced in the presence o f NaCl 

(Fig. 3.6.7 and 3.6.8). This was more apparent for TPT, as overall, it had a greater effect 

on DPH anisotropy. DPH anisotropy increased by 0.042 units after exposure to 20 jiM 

TPT in the absence o f  NaCl. In comparison, the change in DPH anisotropy was reduced 

to 0.033, 0.019 and 0.017 in 50, 250 and 500 mM NaCl. At 50 |iM  TBT, the highest 

concentration examined in NaCl, a change in DPH anisotropy o f 0.010 units was 

recorded in the absence o f  NaCl. This corresponded to changes o f 0.009, 0.006 and 

-0.002 units in 10, 50 and 500 mM NaCl, respectively. In all cases there was no 

significant difference in TM A-DPH anisotropy.

There was no direct relationship between organotin-induced K+ release and 

changes in membrane fluidity. TBT- and TPT-induced K+ leakage increased with NaCl 

concentration. In contrast, changes in DPH anisotropy were reduced with increasing 

salinity, while TM A-DPH was unaffected.
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In itial Sn (}iM)

Figure 3.6.7 Influence o f NaCl on the effect o f TBT on the anisotropy o f (a) DPH and 

(b) TMA-DPH. Cells were exposed to TBT in 0 ( • ) ,  10 (A),  50 (■) and 500 (A) mM 

NaCl solutions and the resulting change in anisotropy was recorded. Mean values from 

three replicate determinations are shown ± SEM where they exceed the dimensions o f 

the symbols.
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In itia l Sn (p.M)

Figure 3.6.8 Influence o f NaCl on the effect o f TPT on the anisotropy o f (a) DPH and

(b) TMA-DPH. Cells were exposed to TPT in 0 ( • ) ,  50 (■), 250 ( T )  and 500 (A) mM 

NaCl solutions and the resulting change in anisotropy was recorded. M ean values from 

three replicate determinations are shown ± SEM where they exceed the dimensions o f 

the symbols.
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3.6.3 Relationship between organotin toxicity, NaCl and Dow

The relationship between organotin toxicity and NaCl concentration was examined. 

Cytotoxicity, as represented by 50 and 20% inhibitory concentrations o f TBT and TPT, 

respectively, was compared to chloride concentration and Dow- Inhibitory concentrations 

were calculated from Fig. 3.6.5a and 3.6.6a. A linear relationship was found between 

logio [Cl'] and IC values, with linear regression coefficients o f 0.993 and 1.000, 

calculated for TBT and TPT, respectively (Fig. 3.6.9a). Cell toxicity was also related to 

lipophilicity, with a linear correlation between TBT and TPT inhibitory concentrations 

and Dow values (Fig. 3.6.9b). Regression coefficients o f 0.956 for TBT and 0.988 for 

TPT were calculated.

lo g l0 [Cl ] log  D ow

F igure 3.6.9 Variation in organotin cytotoxicity with (a) Cl' (M) and (b) Dow- TBT IC50 

values (closed symbols) and TPT IC20 values (closed symbols) were determined from 

Fig. 3.6.5a and 3.6.6a, respectively.
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3.7 Relationship between organotin toxicity and lipophilicity

The overall relationship between organotin toxicity and lipophilicity, as determined by 

the species present in solution, was investigated further. Firstly, the variation in 

inhibitory concentrations with Dow, as predicted under different pH and NaCl 

concentrations were analysed (Fig 3.7.1). IC50 was used for TBT (from Fig 3.5.8b and 

3.6.9b) while IC20 was used for TPT (from Fig 3.5.9b and 3.6.9b). The reason for this 

was that TPT was less soluble and for the majority of experimental conditions, 50% 

inhibition of cell viability was not reached. For TBT, IC20 was not suitable for 

determination of toxicity with varying NaCl concentrations as the concentrations of TBT 

resulting in 20% inhibition could not accurately be determined from Fig. 3.6.5. Hence, 

in order for all the experimental data for each compound to be compared different IC 

points had to be selected. There was a clear correlation between Dow and cytotoxicity 

with regression coefficients of 0.860 and 0.975 for TBT and TPT, respectively. This also 

serves to underline the importance of speciation in assessing organotin toxicity. Dow is 

an indication of how lipophilic an aqueous solution is, but it also reflects the fraction of 

neutral species present in solution.

Finally, all results were combined to investigate whether the relationship was 

specific for each compound or if there was a direct correlation between toxicity of both 

compounds and Dow (Fig 3.7.2). Where possible, I C 2 0  and I C 5 0  values were determined 

for both compounds from Fig 3.5.4, 3.5.5, 3.6.5 and 3.6.6. Both I C 2 0  and I C 5 0  were 

reduced with increasing with Dovv values with linear regression coefficients of 0.803 and 

0.852 respectively. These results indicate that a direct correlation exists between toxicity 

and overall lipophilicity, regardless of which compound was present in solution.
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Figure 3.7.1 Relationship between (a) TBT and (b) TPT toxicity and Dow values. TBT 

toxicity was determined as IC50 values and TPT toxicity as IC20 values. Open and closed 

symbols represent data calculated from pH and NaCl results, respectively. The Dow 

values were determined at the corresponding experimental salinity and pH values. IC50 

and IC20 correspond to the concentration of organotin causing 50 and 20% inhibition in 

cell viability, respectively.
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Figure 3. 7.2 Overall correlation between organotin toxicity and D o w - I C 2 0  values were 

calculated from all TBT and TPT data, while I C 5 0  values were determined from all TBT 

data and NaCl data for TPT. Open and closed symbols represent those points calculated 

from TPT and TBT results, respectively.
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Chapter 4: Discussion

4.1 T in  analysis

4.1.1 Set-up o f  tin detection systems

The most sensitive methods for analysis o f organotins involve the conversion to alkyl 

derivatives or volatile hydrides and determination with specific detectors (Fent 1996b). 

For analysis o f Sn(IV), TBT and TMT, a system using hydride generation followed by 

detection using A AS was developed based on that described by Dunne (1994) for the 

determination o f arsenic compounds. Flow injection HGAAS was used with a 0.5 ml 

sample loop. The system had the advantages o f being inexpensive with an analysis time 

o f approximately 1 min for each sample and small sample volumes (~2 ml) were 

required. Using this system under optimum conditions (1 M HC1 at a flowrate o f 4.8 ml 

m in '1; 1% NaBH 4 at 4.0 ml m in '1; wavelength o f 286.3 nm and air and acetylene settings 

o f 5 and 2, respectively) detection limits o f less than 0.4 [iM were achieved. The 

detection limit considers both the signal amplitude and the baseline noise and is the 

lowest concentration that can be clearly differentiated from zero. Lower detection limits 

may be obtained by using larger injection volumes or altering the carrier gas flowrate. 

However, detection limits were adequate for the experiments described here.

TPT can not be detected using HGAAS, as conversion to hydrides is poor. 

Hence, TPT was analysed using differential pulse polarography. Organotin analysis 

using this method has been documented (Gadd et al., 1990; Avery et al., 1993) and TPT 

detection was sensitive enough for the purpose o f these experiments. However, detection 

o f TBT using differential pulse polarography was less sensitive, necessitating the use o f 

HGAAS. Compared to polarography, smaller sample volumes were required for 

HGAAS (minimum o f 2 ml compared to 30 ml) and the analysis procedure was more 

rapid and less tedious. Also, greater sample dilution was required for polarographic 

analysis to obtain the correct concentration o f  supporting electrolyte.
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4.1.2 TBT and TPT solubility

In the absence o f other ions, organotins exist as either RsSn+ or R3SnOH species, which 

have different solubility levels in solution. The solubility o f TBT and TPT in distilled 

water varies with pH and shows a minimum in the pH range 6 -8  (Inaba et al., 1995). To 

ensure that experiments were designed so that only soluble concentrations were 

examined, TBT and TPT solubility was determined at pH 5.5 and pH 7.5 (Table 3.1.4). 

Accordingly, the highest organotin concentrations examined were 100 [iM TBT between 

pH 3.5 and 7.5, 30 (iM TPT up to pH 5.5 and 10 jiM TPT at pH 7.5. Overall, solubility 

values were higher than those previously reported (Inaba et a l ,  1995). The reason for 

this was the inclusion o f methanol (up to 4%) as a co-solvent, as TBT and TPT were 

added from methanol stock solutions. The contribution o f other solvents can only be 

discounted if  the final concentration is less than 0 . 1 % (Schwarzenbach and Gschwend, 

1993).

When considering saline environments, the effects o f the dissolved inorganic 

salt(s) on the aqueous solubility o f organic compounds has to be taken into account. For 

neutral, nonpolar compounds, ionic species predominantly found in natural waters (i.e. 

Na+, K+, Ca2+, Mg2+, Cl", SO42", HCO 3") decrease aqueous solubility (Schwarzenbach 

and Gschwend, 1993). If one salt compound predominates in a salt mixture, as for 

example NaCl in seawater, it is acceptable to use the properties o f that compound in 

place o f the whole mixture. Organotin solubility decreased in the presence o f NaCl. At 

pH 5.5, in 500 mM NaCl, the solubility o f TBT and TPT was reduced to 65 and 24 |aM 

respectively. As a result, 50 |iM TBT and 20 jiM TPT were the highest concentrations 

examined.

Despite the low solubility levels calculated here and those previously determined 

(Inaba et al., 1995), most o f the reports to date have examined higher organotin 

concentrations, which may be insoluble under the specified experimental conditions 

(Cooney et al., 1989; Laurence et al., 1989; Avery et al., 1993). Hence, in these reports, 

the effect o f pH and NaCl on organotin solubility can not be discounted when 

considering effects on organotin-microorganism interactions.
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4.2 Localisation of DPH and TMA-DPH in intact cells and protoplasts

The time-dependent incorporation o f TM A-DPH and DPH in C. maltosa was monitored 

by recording fluorescent anisotropy and intensity o f the probes over a 70 min time 

period (Fig 3.2.1 and 3.2.2). DPH anisotropy reached steady-state after 30 min in intact 

cells and 10 min in protoplasts. TMA-DPH was rapidly localised in both cell systems. 

Anisotropy readings were stable between 30 and 70 min. Average readings o f 0.133 and 

0.096 for DPH and 0.269 and 0.229 for TMA-DPH were determined for intact cells and 

protoplasts, respectively. This confirmed that the probes were restrictively localised in 

cells during the time course o f exposure to tin compounds in all experiments.

The membrane order o f C. maltosa, expressed as the order parameter, S, which 

reflects the orderliness o f membrane phospholipids, was calculated. S values o f 0.825 

and 0.761 for intact cells and protoplasts, was determined using TMA-DPH. The value 

for intact cells is similar to the range reported for Schizosaccharomyces pom be  (S = 0.87 

-  0.90) and Saccharomyces cerevisiae (S = 0.83 -  0.87) using the same probe (Gille et 

al., 1993). The membrane order at the location o f DPH was less, at 0.606 and 0.515 for 

intact cells and protoplasts, respectively confirming that DPH was located at a more 

fluid region within the membrane. Overall, anisotropy o f  both TMA-DPH and DPH in 

protoplasts was lower than that in intact cells, indicating that the membrane fluidity o f 

protoplasts was greater.

DPH and TMA-DPH are localised at different regions in cellular membranes. 

DPH is distributed between the hydrophobic region o f lipidic membranes (Kuhry et al., 

1983) and anisotropy reflects the average fluidity o f all cellular membrane lipids (Swan 

and Watson, 1997). The charged derivative o f DPH, TM A-DPH remains anchored at the 

head region o f the phospholipid bilayer (Kuhry et al., 1983). In both intact cells and 

protoplasts, TMA-DPH anisotropy reflects the fluidity at the surface o f the cytoplasmic 

membrane. As the fluorescent probes are localised at different sites, they are suitable for 

detecting interactions at different levels within the cell.
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4.3 Comparison of interactions of TBT, TMT and Sn(IV) with C. maltosa at pH 5.5

The uptake o f TBT, Sn(IV) and TMT by C. maltosa and subsequent toxic effects were 

compared at pH 5.5. TBT and Sn(IV) were removed from solution and interacted with 

C. maltosa by different mechanisms while, TMT did not become cell associated and no 

interactions were apparent. In intact cells, uptake o f TBT by C. maltosa was twice that 

o f Sn(IV). Moreover, uptake o f inorganic tin had no effect on either cell viability or K+ 

release, while TBT accumulation resulted in toxicity at all concentrations examined. For 

example, uptake o f Sn(IV) to 40 jumol (1010 cells)'1 was not toxic while a similar TBT 

uptake level resulted in greater than 70% reduction in viability o f both intact cells and 

protoplasts (Fig. 3.3.1 and 3.3.2).

Uptake o f  Sn(IV) was two-fold greater in intact cells than protoplasts (Fig.

3.3.1), indicating that cell wall binding was a dominant uptake mechanism. M aximum 

uptake levels were 40 and 19 pmol (1010 cells)'1 for intact cells and protoplasts, 

respectively. The maximum level o f uptake observed for whole cells is consistent with 

the lowest uptake values reported in biosorption studies conducted over a range o f 

generally higher tin concentrations (Tobin and Cooney, 1999). As Sn(IV) forms various 

cationic species in solution (Baes and Mesner, 1976) whole cell binding may be 

attributed to interactions with cell wall functional groups. In the absence o f the cell wall, 

Sn(IV) may bind to charged groups on the surface o f the cytoplasmic membrane, 

including carboxylate groups o f membrane proteins. Less binding sites are available at 

the cytoplasmic membrane, leading to a reduction in uptake in protoplasts compared to 

intact cells.

K+ release was unaffected by the presence and concentration o f Sn(IV) in 

solution, suggesting that cytoplasmic membrane damage did not occur. The lack o f cell 

death supports the view that cell integrity was not compromised. This is consistent with 

previous studies o f the toxic effects o f inorganic tins. At concentrations up to 0.8 mM, 

neither Sn(II) or Sn(IV) caused viability loss or K+ leakage o f C. maltosa  at pH 2 or pH 

3-4 (Tobin and Cooney, 1999). Similarly, inorganic tin was only toxic to the 

cyanobacteria, Synechocystis aquatilis under alkaline conditions (Pawlik-Skowronska et 

al., 1997). At pH 9.0, 10 mg L '1 Sn(II) and Sn(IV) suppressed both the growth o f the
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cyanobacteria (by 54 and 26%, respectively) and the chlorophyll a content (by 58 and 

24%, respectively), whereas, neither Sn(II) nor Sn(IV) exhibited any inhibiting effects at 

pH 7.0.

The finding that TBT uptake by whole cells and protoplasts, from initial TBT 

concentrations up to 100 |nM, was essentially uniform was unexpected. Microbial 

biosorption o f inorganic metals occurs primarily at the cell wall and groups such as 

carboxyl, phosphate and sulphydral are involved (Tobin et al., 1984). It would be 

anticipated that the removal o f the cell wall would diminish TBT uptake in proportion to 

the contribution o f cationic binding to negatively charged cell wall groups. However, 

TBT uptake was associated with extensive K+ leakage and cell death indicating that 

membrane interactions resulting in structural damage were occurring. Similarly, TBT 

caused an increase in the fluorescence anisotropy o f DPH in both intact cells and 

protoplasts, indicating a decrease in membrane fluidity. There was no discernible 

difference in TM A-DPH anisotropy. DPH anisotropy reflects the average fluidity o f all 

cellular membrane lipids, while TMA-DPH only reports on the surface o f  the 

cytoplasmic membrane. Hence, TBT interactions were not confined to the surface o f the 

membrane, but resulted in alterations in membrane fluidity within the phospholipid 

bilayer. Sn(IV) and TMT did not affect either probe, which confirms the absence o f 

cytoplasmic membrane interactions.

Previous studies have focused on the interactions o f TBT with model lipid 

membranes rather than whole cells. TBT increased the permeability o f liposomes 

formed from egg phosphotidylcholine, causing efflux o f dimethylarsinic acid (Cullen et 

al., 1997) while desorption o f praseodymium ions from liposomes increased with TBT 

concentration (Gabrielska et al., 1997). The results presented here indicate that TBT 

uptake by yeast cells was not restricted to the cell wall and interactions within 

membrane lipids occurred. A similar site o f action o f TBT in liposomes has been 

suggested. Alteration in the thermotropic characteristics o f dipalmitoyl 

phosphtidylcholine liposomes by TBT was more pronounced in the hydrophobic core 

region (Ambrosini et al., 1991a). Also, the action o f TBT on the fluorescence 

polarisation o f DPH and TM A-DPH in multilamellar liposomes was more marked in the 

core than in the head-group region (Ambrosini et al., 1991b).
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Cell wall biosorption has previously been suggested as the main uptake 

mechanism o f TBT by microorganisms (Blair et al., 1982; Gadd et al., 1990; Avery et 

al., 1993;). TBT uptake by Aureobasidium pullulans (Gadd et al., 1990), the 

cyanobacteria, Synechocystis PCC 6803 and Plectonema boryanum  and the microalga, 

Chlorella emersonii (Avery et al, 1993) was attributed to adsorption to the cell surface 

as uptake was rapid and metabolism-dependent intracellular accumulation would have 

been inhibited by the high TBT concentrations. In these studies, cells were exposed to 

high organotin concentrations, between 0.5 and 1 mM. In the present work, organotin 

concentrations did not exceed 100 and diffusion mechanisms played a predominant 

role in TBT uptake as evidenced by similar uptake levels in protoplasts and intact cells. 

This indicated that cell wall biosorption is not necessary for uptake while the effects on 

membrane fluidity confirm the membrane-acting effects o f TBT. In addition, as non­

metabolising cells were examined over a short time period o f 30 minutes, metabolic- 

dependent uptake can be discounted.
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4.4 Influence of pH on TMT uptake and toxicity

TMT uptake, between pH 3.5 and 7.5, was negligible, while no effects on cell viability 

or membrane permeability were evident. The pKa values reported for TM T range from 

5.79 to 6.60 (Arnold et al., 1997). Hence, both the TMT cationic (TMT+) and neutral 

hydroxide species were considered to be present in the pH range investigated.

The lack o f interaction between yeast cells and both species was unexpected. 

Biosorption o f TM T+ would be anticipated as TM T+ forms complexes with different 

organic and inorganic cellular ligands such as amino acids, carboxylic acids and 

phosphate groups (Arnold et al., 1997). However, these results are consistent with 

previous work in which TMT, between pH 4.7 and 5.4, at concentrations up to 0.8 mM, 

did not interact with C. maltosa (Tobin and Cooney, 1999). Also, uptake o f TMT, from 

an initial concentration o f 0.5 mM at pH 5.5, by the cyanobacteria Plectonema 

boryanum  was negligible (Avery et al., 1993). TMT was also the least toxic organotin 

towards E. coli with LC50 values (concentration at which 50% reduction in growth 

occurred) o f 337, 1.32 and 2.86 jj,M for TMT, TBT and TPT, respectively (Eng et al., 

1991). At higher pH, lipophilic interactions between neutral TMT species and cells 

would also be expected. However, TMT has the least effect on planar lipid bilayers, with 

organotins o f increased alkyl chain length resulting in a higher degree o f membrane 

depolarisation (Radecka et al., 1999). Similarly, methyltins have little or no effect on 

membrane permeability o f Debaryomyces hansenii (Laurence et al., 1989).
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4.5 Influence of pH on spéciation and interactions of TBT and TPT with C. maltosa

Knowledge o f the aqueous speciation o f organotins is essential in assessing 

bioavailability and toxicity o f these compounds. Organotins may undergo pH-dependent 

hydrolysis when introduced into water. Cations are dominant at pH less than pKa and 

these monovalent organometallic cations behave as weak acids, while at pH above pKa, 

neutral species dominate. The variation in TBT and TPT speciation with pH (Fig. 3.5.1) 

was predicted using data from Arnold et al. (1997). R^SnOH species were assumed to be 

the only neutral species present in solution as all other monovalent anions form 

relatively weak complexes with both TBT and TPT (Arnold et al., 1997). For example, 

formation constants (log Kj) for Cl" (organotins were added as chloride salts) and NO 3' 

(HNO3 was used for pH adjustment o f buffers) are 0.60 and 0.62 for TBT and 0.66 and 

0.26 for TPT (Arnold et al., 1997). In contrast the log Kj values for TBTOH and TPTOH 

are 7.75 and 8.80, respectively.

The Dow values o f organotins also vary with pH (Fig 3.5.2). At pH 3.5, where 

few neutral species are present, the Dow o f TBT and TPT were 1.36 and 0.82, 

respectively. These increased to a maximum o f  4.1 at pH 7 for TBT and 3.53 at pH 6 for 

TPT and remained constant above these pH values. The Dow values that were predicted 

below pH 5.5 are slightly lower than those determined experimentally by Arnold et al. 

(1997). This is likely due to their experimental aqueous solution containing 10 mM 

NaC104, which would contribute to formation o f neutral species at low pH and also alter 

the ionic strength used in calculations.

The variation in organotin uptake and toxicity with pH and the relationship with 

compound lipophilicity was examined. The contribution o f the individual R^Sn* and 

R3SnOH species as influenced by pH was also assessed. Organotin uptake and effects on 

viability and membrane integrity varied considerably with external pH. TBT uptake 

levels were similar between pH 4.5-7.5, but were reduced at pH 3.5, while uptake o f 

TPT increased from pH 3.5 to 5.5. Organotin-induced cell death and K+ release 

increased with pH. Increased toxicity was not necessarily due to higher uptake levels, 

but was also dependent on the organotin species present in solution. Changes in external 

pH can influence the uptake and toxicity o f metals in at least two ways: (i) by affecting
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metal speciation and (ii) by its effect on the cell surface. The contribution o f these two 

factors was assessed at each pH.

Uptake and toxicity o f  TBT and TPT were reduced considerably at pH 3.5. At 

this pH, greater than 98% RsSn+ species are present and D0w values are low. 

Consequently, uptake mechanisms similar to biosorption o f cationic metals would be 

expected. Uptake o f cationic metals in non-metabolising systems is generally attributed 

to ion exchange, adsorption, complexation, precipitation and crystallisation to the cell 

surface (Tobin et al., 1984; Gadd 1993). The adsorptive capacity o f the yeast cell for 

metals is determined by the degree o f dissociation o f the negatively charged functional 

groups. As the surface o f  the cell alters with pH, the effect o f this on uptake has to be 

taken into account. A pH between 4.0 and 8.0 is widely accepted as being optimal for 

metal uptake, while below this pH, protonation o f possible binding sites becomes 

significant and adsorption is reduced (Blackwell et al., 1995). Uptake o f both TBT and 

TPT was reduced considerably at pH 3.5, compared to 4.5, implying that competition 

with H+ ions was significant and resulted in a reduction in uptake.

TBT interactions differed considerably between pH 3.5 and 4.5. TBT uptake 

levels and toxicity, as indicated by loss in cell viability and K+ release were higher at pH

4.5. One reason for this is the effect o f pH on the cell surface resulting in greater uptake 

at higher pH, as discussed above. However, the difference in toxicity is not due solely to 

increased uptake. Cell death and K+ release differed even at similar uptake levels. 

M aximum uptake at pH 3.5 o f 66 |amol (1010 cells)'1 from an initial concentration o f 100 

(iM TBT resulted in 27% cell viability and in a difference in K+ release, before and after 

exposure, o f  15 jimol (1010 cells)’1 (Fig. 3.5.4). In contrast, uptake o f 70 jamol TBT (1010 

cells)'1 at pH 4.5 resulted in 16% cell viability and a change in K+ leakage o f 103 jimol 

(1010 cells)'1. Also, TBT had no effect on fluorescent anisotropy at pH 3.5, while TMA- 

DPH anisotropy decreased at pH 4.5 (Fig. 3.5.6). As TM A-DPH is located at the surface 

o f  the cytoplasmic membrane, this indicated that TBT uptake disrupted membrane 

integrity at this region at pH 4.5. The lipophilicity o f TBT increased with pH, with Dow 

values o f 1.36 and 2.34 at pH 3.5 and 4.5, respectively. Thus, cytoplasmic membrane 

binding sites were more readily accessed at the higher pH, resulting in increased 

membrane fluidity and cell toxicity.
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TPT uptake was less than TBT at pH 4.5. M aximum uptake o f TPT was 15 jimol 

(1010 cells)"1 from a 30 jxM solution, while most o f TBT was removed at all initial 

concentrations. However, effects on cell toxicity were similar at equivalent uptake 

levels. Comparisons between membrane fluidity effects could not be made due to the 

low concentrations o f TPT examined. Effects o f TBT on fluorescence anisotropy were 

only apparent after uptake o f 20 (imol (1010 cells)'1, while maximum uptake o f TPT was 

15 jimol (1010 cells)’1.

Organotin toxicity increased at pH 5.5. For TPT, viability was reduced to 81, 70 

and 62% after exposure to 30 j iM  TPT, at pH 3.5, 4.5 and 5.5, respectively (Fig. 3.5.5). 

M embrane interactions were greater, with extensive K+ release at pH 5.5 compared to 

minimal changes in external K+ concentrations at lower pH. DPH anisotropy also 

increased with TPT concentration at pH 5.5, indicating a reduction in fluidity at the 

hydrophobic core o f membrane lipids (Fig. 3.5.7). The change in TPT toxicity 

corresponded to the increase in neutral hydroxide species present in solution. Between 

pH 4.5 and 5.5, the neutral fraction o f TPT increased from 16 to 66%, while Dow 

increased from 2.75 to 3.35. Consequently, greater membrane interactions and 

subsequent cell death were associated with the increased level o f lipophilic species 

present in solution.

A similar variation in TPT toxicity occurred at pH 7.5, where 99.5% o f TPT was 

present as TPTOH and a Dow o f 3.53 was predicted. However, comparison with other 

pH values was only possible at low organotin concentrations due to the reduction in 

solubility. At pH 7.5, 10 jiM TPT resulted in a slight increase in cell death and K+ 

release compared to pH 5.5 while there were similar changes in DPH anisotropy.

Toxicity o f TBT was greater at pH 5.5 than 4.5 despite the similar uptake levels. 

TBT also had a very different effect on membrane fluidity at the higher pH. At pH 5.5, 

the anisotropy o f DPH increased at concentrations above 20 pM while TMA-DPH 

anisotropy was unaltered. This indicated that at pH 5.5, TBT disturbed the hydrophobic 

core o f membranes, while there was no interaction with the surface o f the cytoplasmic 

membrane. At pH 5.5, 15% o f TBT was present as neutral TBTOH, with a Dow value o f

3.28 compared to 2% TBTOH and a Dow o f 2.24 at pH 4.5. The higher lipophilicity and 

presence o f greater neutral species would enable greater membrane interactions.
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T h e  i n c r e a s e  i n  T B T  t o x i c i t y  a t  p H  7 . 5  c o m p a r e d  t o  p H  5 . 5  w a s  l e s s  t h a n  t h a t  

w h i c h  w o u l d  b e  p r e d i c t e d  b y  a q u e o u s  s p e c i a t i o n  c o n s i d e r a t i o n s .  A t  p H  5 . 5 ,  1 5 %  

T B T O H  w a s  p r e s e n t ,  i n c r e a s i n g  t o  9 5 %  a t  p H  7 . 5 ,  w h i l e  t h e  Dow o f  T B T  i n c r e a s e d  f r o m

3 . 2 8  t o  4 . 1 .  I f  T B T O H  w e r e  m o r e  b i o l o g i c a l l y  a c t i v e  t h a t  T B T + , a  s u b s t a n t i a l  i n c r e a s e  i n  

c e l l  d e a t h  w o u l d  b e  e x p e c t e d .  T h e r e  w a s  a  s l i g h t  c h a n g e  i n  c e l l  v i a b i l i t y ,  w i t h  c o m p l e t e  

c e l l  d e a t h  o c c u r r i n g  a t  7 0  a n d  5 0  p M  T B T  a t  p H  5 . 5  a n d  7 . 5 ,  r e s p e c t i v e l y .  H o w e v e r ,  

m e m b r a n e  i n t e r a c t i o n s  w e r e  a c t u a l l y  r e d u c e d  a t  p H  7 . 5 .  A b o v e  5 0  | i M  T B T ,  K +  l e a k a g e  

w a s  l e s s  a t  t h e  h i g h e r  p H ,  w h i l e  t h e r e  w a s  n o  e f f e c t  o n  m e m b r a n e  f l u i d i t y .  T h e s e  

f i n d i n g s  s u g g e s t  t h a t  a l t h o u g h  s i m i l a r  t o x i c i t y  r e s u l t e d ,  t h e  c o m b i n a t i o n  o f  T B T + a n d  

T B T O H  s p e c i e s  p r e s e n t  a t  p H  5 . 5  i n t e r a c t e d  d i f f e r e n t l y  w i t h  c e l l s  c o m p a r e d  t o  T B T O H  

a t  p H  7 . 5 .

T o  s u m m a r i s e  t h e  e f f e c t  o f  p H  o n  o r g a n o t i n  t o x i c i t y ,  t h e  v a r i a t i o n s  i n  I C 50 a n d  

I C 20 f o r  T B T  a n d  T P T ,  r e s p e c t i v e l y ,  w e r e  c a l c u l a t e d .  T w o  i n h i b i t i o n  p e r c e n t a g e s  w e r e  

c h o s e n  a s  50% c e l l  d e a t h  d i d  n o t  o c c u r  a f t e r  e x p o s u r e  t o  T P T  a t  t h e  c o n c e n t r a t i o n s  

a l l o w e d  b y  i t s  l o w  s o l u b i l i t y .  T h e  i n c r e a s e  i n  T P T  t o x i c i t y  w i t h  p H  w a s  c l e a r l y  a p p a r e n t ,  

w i t h  o v e r  a  f o u r - f o l d  d e c r e a s e  i n  I C 20 b e t w e e n  p H  3 . 5  a n d  7 . 5  ( F i g .  3 . 5 . 9 ) .  T h e  

r e l a t i o n s h i p  b e t w e e n  t o x i c i t y  a n d  l i p o p h i l i c i t y ,  a s  i n d i c a t e d  b y  Dovv w a s  a l s o  

i n v e s t i g a t e d .  T h e r e  w a s  a  l i n e a r  c o r r e l a t i o n  b e t w e e n  Dow a n d  I C 20. T h i s  c l e a r l y  

d e m o n s t r a t e d  t h a t  T P T  t o x i c i t y  w a s  d e p e n d e n t  o n  s p e c i a t i o n ,  w i t h  T P T O H  b e i n g  m o r e  

t o x i c  t h a n  T P T + . T h e  r e l a t i o n s h i p  b e t w e e n  T B T  t o x i c i t y  a n d  p H  w a s  n o t  a s  s i m p l e  a s  

t h a t  o f  T P T .  I C 50 d i d  d e c r e a s e  w i t h  p H  b u t  t o x i c i t y  a t  p H  5 . 5  w a s  s i m i l a r  t o  p H  7 . 5  w i t h  

I C 50 o f  2 0  a n d  1 8  ju M ,  r e s p e c t i v e l y  ( F i g .  3 . 5 . 8 ) .  T h i s  w a s  u n e x p e c t e d  a s  t h e  f r a c t i o n  o f  

n e u t r a l  s p e c i e s  i n c r e a s e d  f r o m  1 5  t o  9 5 %  b e t w e e n  p H  5 . 5  a n d  7 . 5 .  C o n s e q u e n t l y ,  t h e  

c o r r e l a t i o n  b e t w e e n  Dow a n d  I C 50 w a s  a l s o  n o n - l i n e a r .  F u r t h e r m o r e ,  t h e s e  r e s u l t s  

u n d e r l i n e  t h e  l i m i t a t i o n s  i n  u s i n g  p a r t i t i o n i n g  m o d e l s  a s  t o x i c i t y  i n d i c a t o r s .  T h e  1 -  

o c t a n o l - w a t e r  s y s t e m  i s  s u i t a b l e  f o r  a s s e s s i n g  t h e  p a r t i t i o n i n g  b e h a v i o u r  o f  n e u t r a l  

o r g a n i c  c o m p o u n d s  b e t w e e n  n a t u r a l  o r g a n i c  p h a s e s  a n d  w a t e r  ( S c h w a r z e n b a c h  a n d  

G s c h w e n d ,  1 9 9 3 )  a n d  h a s  b e e n  u s e d  t o  e s t i m a t e  b i o c o n c e n t r a t i o n  i n  o r g a n i s m s  ( M a c k a y ,  

1 9 8 2 ) .  H o w e v e r ,  i n  t h e  p r e s e n t  s y s t e m  c h a r g e d  s p e c i e s  a r e  n o t  a c c o u n t e d  f o r  i n  t h e  

p a r t i t i o n i n g  c a l c u l a t i o n s .  B i o l o g i c a l  s y s t e m s  e x h i b i t  b o t h  d i s t i n c t  h y d r o p h o b i c  a n d  

h y d r o p h i l i c  r e g i o n s  w h e r e  i o n i c  a n d  n e u t r a l  s p e c i e s  o f  a  c o m p o u n d  m a y  i n t e r a c t  b y
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different mechanisms. Octanol-water partition coefficients exclude the contribution o f 

charged species, so in this case the toxicity o f the combination o f TBT+ and TBTOH at 

pH 5.5 would be underestimated.

There is limited research on the influence o f pH on the biological activity o f 

organotins. Results are conflicting and comparisons are hampered by the different 

experimental systems employed (Table 4.5.1). Many studies use microorganisms 

exposed to organotins in the presence o f  glucose so metabolic-dependent interactions 

can not be discounted, while exposure to organotins in complex media does not take the 

influence o f possible ligands into account. However, TBT uptake by microorganisms 

has been shown to vary with pH (Avery et al., 1993). M aximum uptake o f 500 [xM TBT 

by the cyanobacteria, Synechocystis PCC 6803 and P. boryanum  occurred between pH 

5.5-6.5. Reduced uptake below pH 5.5 was attributed to the competition with H+ for 

binding sites, while the TBT hydroxide species was suggested to have decreased 

biological activity, resulting in less uptake above pH 6.5. This is in direct contrast with 

the results presented here, where TBT uptake levels were similar above pH 4.5, albeit at 

lower exposure concentrations. Insolubility o f TBT at the higher pH could account for 

the decreased uptake levels, as cells were exposed to 500 |.iM TBT (Avery et al., 1993). 

TBT has a solubility o f 134 j.iM in distilled water at pH 7.9, when added as a pure 

solution (Inaba et al., 1995) and the solubility level did not exceed 150 jliM at pH 7.5 

when added from a methanol stock solution (Table 3.1.4).
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Table 4.5.1 Summary of the effect of pH on organotin interactions.

Experimental system Effect observed Ref.
Effect o f TBT on growth of A. A. pullulans: TBT toxicity Cooney et al.,

pullulans (between pH 5.5-7) decreased from pH 5.5 to 7.0. 1989

and R. rubra  (between pH 7.2- R. rubra : TBT least toxic at pH

8.4) on two-dimensional 

gradient plates.

7.7-7.9.

Exposure of Debaromyces Maximum K+ release at pH 6.5 Laurence et al.,

hansenii to 50 jiM organotin in for TBT, MBT and TPT and at 1989.

pH 4-9 buffers containing 

glucose.

pH 5.0 for DBT.

Growth of A. pullulans  in media TBT was more toxic at pH 4.0 Gadd et al.,

containing 0.3 (iM TBT. compared to pH 5.2. 1990

Uptake of 1 mM TBT by A. TBT uptake unaffected between Gadd et al.,

pullulans from liquid media, at pH 3.5-6 .5, Maximum uptake 1990

between pH 2.5 to 6.5. was reduced by 20% at pH 2.5.

Uptake of 0.5 mM TBT by the Maximum uptake by Avery et al.,

cyanobacteria, Synechocystis Synechocystis and P. boryanum 1993

PCC6803 and P. boryanum  and occurred at pH 5.5 and 6.5,

the microalga, C. emersonii after respectively. No effect on

30 min incubation in pH 4.5-8 .5 

buffered solutions.

uptake by C. emersonii.

Exposure of Daphnia magna  to Bioconcentration and toxicity of Fent and Looser,

TBT at pH 6  and pH 8 . TBT was significantly enhanced 

at pH 8 compared to pH 6 .

1995

Bioconcentration of TBT, TPT The bioconcentration factor Looser et al.,

and tetrabutyltin (TeBT) in the (BCF) of both TBT and TPT 1998

sediment organism, Chironomus was higher at pH 8 compared to

riparius at pH 5 and 8 . pH 5. No difference for TeBT.
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R3S11OH species have been shown to be more biologically active than R3Sn+ 

species. TBT uptake rates, bioaccumulation and mortality are significantly higher in 

Daphnia at pH 8 than 6  (Fent and Looser, 1995). Similarly, increased bioconcentration 

o f TBT and TPT in the sediment organism, Chironomus riparias at pH 8 compared to 5 

is explained by the greater uptake of R3SnOH species (Looser et al., 1998). 

Bioconcentration of TeBT, which does not dissociate in water, is not influenced by pH, 

confirming that the H+ concentration has no significant influence at the lower pH. 

However, the difference in bioconcentration is less than that predicted by the octanol- 

water partition model. As discussed above, the Kow model is often used to estimate the 

uptake of organic compounds (Schwarzenbach and Gschwend, 1993) but fails to take 

into account the interaction of charged species with biological membranes. Similarly, in 

the results presented here TBT uptake levels were independent of speciation and Dow 

values between pH 4.5 and 7.5, underlining the limitations of using Dovv values for 

predicting interactions.

Organotin effects on membrane fluidity, as monitored by DPH and TMA-DPH 

anisotropy, varied with pH and speciation. Fluorescence anisotropy reports the rotational 

diffusion of the probes, which depends on the relative mobility of the phospholipid acyl 

chains in the immediate region. TPT had no effect at pH 3.5 or 4.5 but caused an 

increase in DPH anisotropy at pH 5.5 and 7.5. This implies that TPT+ did not alter 

membrane fluidity while TPTOH caused an increase in order of the fatty acyl chains in 

the hydrophobic core of the bilayer. In comparison, localisation of TPT in the 

hydrophobic core of the phospholipid bilayer has been suggested, with TPT, at 

equivalent concentrations to those investigated here, causing an increase in DPH 

anisotropy in liposomes (Ambrosini et al., 1996). This is similar to the effect of 

organophosphorus insecticides (Blasiak, 1995; Antunes-Madeira et al., 1996). The 

membrane location of the insecticides facilitate hydrogen bonds or dipole-dipole 

interactions between the compounds and the fatty acyl chains resulting in a decrease in 

lipid spacing and hence, increased ordering of the membrane. This ordering of the fatty 

acyl chains would alter the physical state of the boundary lipid that surrounds membrane 

proteins and consequently protein conformation and function. However, adsorption of 

TPT to the membrane lipid/water interface with limited disturbance of the hydrophobic
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interior has been suggested (Langner et al., 1998, 2000a and 2000b). In the results 

presented here, the absence of TPT interactions at the surface of the cytoplasmic 

membrane is evident with no changes in TMA-DPH anisotropy detected at exposure 

concentrations of up to 30 \xM.

The action of TBT on membrane fluidity was more complicated. At pH 4.5, TBT 

caused a decrease in TMA-DPH anisotropy, reflecting an increase in membrane fluidity 

at the headgroup region. At this pH, greater than 98% of TBT is present as TBT+ and an 

increase in fluidity is consistent with partial insertion of the alkyl chains of TBT in the 

phospholipid bilayer. Compounds that adsorb at the lipid-water interface, with partial 

penetration of the lipid bilayer cause a marked fluidisation effect (Rozycka-Roszak et 

al., 2000). At pH 5.5, TBT caused an increase in DPH anisotropy, although to a lesser 

degree than TPT. The highest levels of TBT-induced K+ release also occurred at this pH. 

In contrast, at pH 7.5, with greater than 95% of species as TBTOH, there were no 

membrane fluidity effects.

TBT and TPT hydroxide species interacted differently with cells. TPTOH 

caused a decrease in fluidity at the hydrophobic core, whereas the lack of TBTOH 

effects suggests that it does not accumulate in the cytoplasmic membrane. Diffusion of 

TBTOH across the cytoplasmic membrane may account for the absence o f membrane 

fluidity effects and reduction in K+ release. Dissolution of lipophilic organic metal 

complexes in the membrane, followed by diffusion across the lipid bilayer and 

distribution among cellular compartments has been demonstrated (Phinney and Bruland, 

1994). The steric constraints of the phenyl groups of TPTOH may prevent diffusion of 

TPT through the membrane (Langner et al., 2000a).
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Based on the pH-dependent speciation profiles presented for TBT and TPT, altered 

toxicity in differing aqueous environments would be expected. For example, greater 

bioaccumulation in marine species compared to freshwater species has been reputed 

(Meador, 2000). This may be due partly to the fact that the pH of freshwater is generally 

lower than that of marine waters so higher levels of RoSnOH species in marine waters 

would lead to higher bioaccumulation. However, this analysis does not take the presence 

of other ions into consideration. In this section, the influence of NaCl, the most 

dominant ion in marine systems, on organotin-yeast interactions was assessed.

In aqueous solution, triorganotins dissociate to form R^Sn* and R^SnOH species. 

In the presence of NaCl, RsSnCl species may also form. Using the data provided by 

Arnold et al., (1997) the speciation of TBT and TPT under various ionic conditions at 

pH 5.5 was predicted. This pH was chosen so that a broad variation in speciation over 

the NaCl concentration range would result, allowing the contribution of the individual 

species to be assessed. At higher pH values, RsSnOH is predominant and a higher 

concentration o f NaCl would be required for formation of RsSnCl, while a lower pH 

would favour formation of cationic species and the presence of H+ ions would have to be 

taken into account. At pH 5.5, in the absence of NaCl, it was predicted that TBT would 

be composed of 85% TBT+ and 15% TBTOH with TPT present as 33% TPT+ and 67% 

TPTOH (Fig. 3.6.1). Increasing the NaCl concentration resulted in the formation of 

chloride species. In 500 mM NaCl, 62% TBT+, 4% TBTOH and 34% TBTC1 and 36% 

TPT+, 35% TPTOH and 29% TPTC1 was predicted.

The variation in organotin species also alters Dow values (Fig. 3.6.2). Chloride 

species are more lipophilic than the corresponding hydroxide species with log Kow of 

4.76 and 4.10 for TBTC1 and TBTOH and 4.19 and 3.53 for TPTC1 and TPTOH, 

respectively (Arnold et al., 1997). Consequently the formation of neutral chloride 

species results in increased Dow values. In the absence of NaCl at pH 5.5, the Dow of 

TBT and TPT was calculated as 3.28 and 3.35, respectively, whereas, in 500 mM NaCl, 

values of 4.60 for TBT and 3.94 for TPT were determined.

4.6 Influence of NaCl on speciation and interactions of TBT and TPT with C.

maltosa at pH 5.5
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The effect of NaCl on C. maltosa was assessed prior to investigation of the 

influence of NaCl on organotin-yeast interactions. After 30 min exposure, NaCl, at 

concentrations up to 500 mM, had negligible effect on cell viability and membrane 

fluidity, while K+ release to a level o f approximately 130 jumol (1010 cells) ' 1 was 

induced. This was attributed to the non-specific leakage of ions from the cytosol due to 

osmotic changes in the cell. Active transport of K+ across the membrane could be 

discounted as experiments were performed with non-metabolising cells. Generally, NaCl 

is not toxic to yeast below 1 M (Aguiar and Lucas, 2000) so no loss in viability would 

be expected. Alteration in membrane composition o f cells grown in the presence o f 

NaCl, resulting in increased fluidisation has been observed (Hosono, 1992; Khaware et 

al., 1995). However, membrane adaptation mechanisms were not expected here as cells 

were exposed for only 30 min in the absence of a carbon source. The similarity between 

anisotropy values of DPH and TMA-DPH after exposure to 0, 50 and 500 mM NaCl 

confirmed the absence of membrane fluidity changes. These results indicate that in the 

following experiments, the influence of NaCl on organotin toxicity was due to the 

changes in organotin-yeast interactions and deleterious effects of NaCl on the yeast 

could be discounted. Only in the case of K+ release had the action of NaCl to be 

accounted for, as K+ leakage levels in the absence of organotin increased with NaCl 

concentration.

There was little difference in TBT uptake between 0 and 500 mM NaCl at pH

5.5 with almost complete removal of concentrations of up to 50 |iM from solution. 

There was a marginal increase in TPT uptake between 0 and 50 mM NaCl, but there was 

no discernible difference at higher concentrations. Maximum uptake levels of 13.8, 16.5,

17.1 and 17.2 (imol (1010 cells) ' 1 were determined in 1, 50, 250 and 500 mM NaCl. This 

result was expected, as there would be very little competition between Na+ and RsSn+ 

for potential binding sites as organotin concentrations were well below those that would 

result in saturation of sites. Uptake of TBT and TPT by C. maltosa did not reach 

saturation from initial concentrations o f up to 0.4 mM (Tobin and Cooney, 1999). NaCl 

would have little influence on uptake of neutral species, as different interaction 

mechanisms would be expected. In contrast, the only other study to consider the effect 

of NaCl on organotin uptake reported a reduction in TBT uptake levels in 500 mM NaCl
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(Avery et al., 1993). Uptake of 500 (j,M TBT by Synechocystis PCC 6803, P. boryanum 

and C. emersonii at pH 5.5 was reduced by 55-65% in 500 mM NaCl (Avery et al.,

1993). In this case reduced uptake may be due to the effect of Cl' on solubility, as the 

initial organotin concentration was ten times the limit of solubility reported here. TBT 

was added from an ethanol stock solution, with final ethanol concentrations of 1-3 %, so 

similar solubility levels would be expected.

Organotin-induced cell death was enhanced considerably in the presence of 

NaCl, even though uptake levels were similar (Fig. 3.6.5a and 3.6.6.a). As the effects of 

NaCl itself could be discounted, enhanced toxicity was associated with the combination 

of organotin species, as influenced by salinity. The change in toxicity with NaCl 

concentration may be due to either the overall increased fraction of neutral species as the 

less toxic cationic fraction is reduced or the difference in biological activity of the 

individual species. For TPT it was predicted that the fraction of neutral TPT species 

(TPTOH and TPTC1) remained relatively constant (67-63%) as TPTC1 was formed in 

place of TPTOH. This indicates that it was the increasing fraction of chloride species 

that resulted in enhanced toxicity. For TBT, both the fractions of total neutral and 

chloride species increased with NaCl concentration, with 15 and 38% neutral species in 

0 and 500 mM NaCl, respectively. However, TBT was more toxic in 500 mM NaCl, pH

5.5, where the fraction of TBTOH was reduced to 4% with 34% TBTC1, than at pH 7.5, 

where 95% TBTOH was present. Complete loss in cell viability occurred at 20 pM TBT 

in 500 mM NaCl, pH 5.5, compared to 50 pM at pH 7.5, which suggests that TBTC1 

was more toxic than TBTOH. Thus, for TBT and TPT, the fraction of species present in 

solution influenced cell toxicity with the neutral species being more toxic than the 

cationic species and chloride species being more toxic than the hydroxide species.

Organotin-induced K+ release increased with NaCl concentration, irrespective of 

the higher NaCl control release levels. K+ release levels reached approximately 104, 

121, 209, 264 (j.mol K+ (1010 cells) ’1 after exposure to 50 jiM TBT in 0, 10, 50 and 500 

mM NaCl (Fig. 3.6.5). After exposure to 20 jiM TPT in 0, 50, 250 and 500 mM NaCl, 

K+ release levels reached 120, 200, 246 and 249 (imol (1010 cells) ' 1 (Fig. 3.6.6). K+ 

release results were complicated by the higher control K+ release levels in the presence 

of NaCl so no direct correlation between K+ leakage effects and salinity could be made.
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Even so, these results show that the action of organotins on membrane permeability was 

considerably enhanced in the presence of NaCl. In contrast, organotin-induced K+ 

leakage from D. hansenii (Laurence et al., 1989) and Z  rouxii (Cooney et al., 1989) was 

reduced in the presence of 1.5 and 3% NaCl at pH 6.5. However, in those works the 

reduction in K+ leakage may be attributed to the effect of NaCl on solubility o f 50 |iM 

organotin at pH 6.5, while the influence of metabolism-dependent interactions could not 

be discounted as cells were exposed to organotins in the presence of glucose.

Organotin effects on DPH anisotropy were reduced in the presence of NaCl. This 

was more apparent for TPT, as overall, it had a greater effect on DPH anisotropy. At pH

5.5, in the absence of NaCl, 20 |iM TPT resulted in an increase in DPH anisotropy by 

0.042 units, implicating the action of TPT at the hydrophobic core of membrane lipids. 

Under these conditions, it was predicted that TPT consisted of 33% TPT+ and 67% 

TPTOH. This effect may be attributed to the action of TPTOH because TPT+ did not 

alter membrane integrity, as evidenced by the absence of membrane fluidity changes at 

pH 3.5 and 4.5. As the NaCl concentration increased, corresponding to the formation of 

TPTC1 in place of TPTOH, the effect of 20 juM TPT on DPH anisotropy was reduced, 

with changes of 0.033, 0.019 and 0.017 in 50, 250 and 500 mM NaCl (Fig. 3.6.8). This 

indicates that TPTCI and TPTOH have different effects on membrane lipids. TPTOH 

interacted with lipids at the hydrophobic core of the phospholipid bilayer, as evidenced 

by the greatest effect on DPH anisotropy in the absence o f NaCl. In contrast, TPTCI did 

not affect DPH anisotropy, as indicated by a reduction of the overall effect with 

increasing Cl" concentration. A similar interaction was observed for TBT, although this 

was not as apparent as overall TBT had less effect on DPH anisotropy at pH 5.5 (Fig. 

3.6.7). However, the absence of TBTC1 effects on membrane fluidity was clearly 

obvious.

The difference in organotin effects on K+ release and membrane fluidity, as 

reported by changes in DPH and TMA-DPH anisotropy suggests that there is no exact 

relationship between these two parameters in monitoring membrane interactions. 

Anisotropy of fluorescent probes only relates to the fluidity of the immediate region 

where they are located. DPH intercalates between the lipids in the hydrophobic tail 

region of the phospholipid bilayer (Shinitsky and Barenholz, 1978) while TMA-DPH is
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restricted to the hydrophilic surface (Kuhry et al., 1983). Consequently, only interactions 

altering the physical state o f lipids in these regions will be detected. In contrast, in non­

metabolising cell systems, K+ release will occur as a result of any interaction that alters 

cytoplasmic membrane permeability. Moreover, accumulation of organic compounds 

within membranes is not always accompanied by changes in membrane fluidity 

(Engelke et al., 1996).

A linear relationship existed between NaCl concentration and TBT and TPT 

concentrations that resulted in 50 and 20% inhibition of cell viability, respectively (Fig 

3.6.9a). Organotin toxicity was related to lipophilicity as indicated by the linear 

correlation between Dow values and inhibition of cell viability (Fig. 3.6.9b). As the KoW 

values of TBTC1 and TPTC1, 4.76 and 4.19, respectively, are higher than that of TBTOH 

(4.10) and TPTOH (3.53), greater overall lipophilicity results as the fraction of chloride 

species increases. The linear relationship between Dow and cell death suggests that TBT 

and TPT toxic effects were related to interactions with the cell membrane. 

Consequently, the difference in toxicity between chloride and hydroxide species can be 

attributed to the lipophilic properties of the compounds.

The limited reports on the influence of NaCl on organotin uptake and toxicity 

have suggested that organotin interactions are reduced in the presence of NaCl (Cooney 

et al., 1989; Laurence et al., 1989; Avery et al., 1993). This reduction in toxicity has 

been attributed to three main causes: (i) Na+ may reduce interaction of organotins with 

the cell surface by competing for binding sites or interacting with the compound itself 

(Cooney et al., 1989), (ii) the membrane lipid composition may be altered, making the 

cells more resistant to membrane-acting compounds (Cooney et al., 1989) and (iii) Cl" 

can inhibit the solubility of organotin compounds by association with the cation to form 

covalent organotin chloride (Blunden et al., 1984). For the experiments described here, 

these reasons can be discounted. Firstly, Na+ did not inhibit uptake of either TBT or TPT 

so competition for binding sites did not occur and alteration in toxicity was not due to 

different uptake levels. Secondly, cells were only exposed to NaCl for a short time 

period and in the absence of a carbon source so any NaCl-related membrane changes 

could be discounted. The similarity between anisotropy values after exposure of cells to 

0, 50 and 500 mM NaCl, confirmed the lack of change in membrane fluidity. Finally,
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the maximum concentrations of organotins examined were selected so as not to exceed 

the solubility limit predetermined for 500 mM NaCl (Section 4.1.2). Alteration in 

toxicity was concluded to be due to a different factor, namely the difference in toxic 

effects of the organotin species.

The variation in TBT and TPT toxicity with speciation is consistent with that 

proposed for inorganic and methymercury. The speciation of mercuric compounds, as 

influenced by pH and NaCl concentration governs toxicity in the diatom, Thalassiosira 

weissflogii (Mason et al., 1996). The effect of mercury compounds on the growth rate of 

T. weissflogii increased with the fraction of neutral chloride species (HgCh and 

CH3HgCl) present in solution. For example, at 10%o salinity, with 23% of inorganic 

mercury present as HgCh, phytoplankton growth was completely inhibited, while no 

inhibition was detected at 20%o salinity, with the HgCh fraction reduced to 7 .5 %.

Organotins are usually present at low concentrations in polluted environments 

(Section 1.1), at levels well below solubility limits. In this case, the influence o f NaCl on 

toxicity is of utmost significance. Contrary to previous reports, the present results 

demonstrate that toxicity of TBT and TPT was enhanced with increasing NaCl 

concentration. This increased toxicity was attributed mainly to the formation of chloride 

species with toxicity o f the organotin species increasing in the order R3Sn+ < R3SnOH < 

RsSnCl. Consequently, the toxicity of organotins and their interactions with 

microoganisms will be governed by the chemical properties of the environment. In 

seawater (pH~8 , ionic strength~0.5 M) 93% of the TBT in solution is predicted to be 

TBTOH with 2-3% TBTC1 and 4-5% TBT+ and TPT is predicted to be present almost 

exclusively as TPTOH (>99%) (Arnold et al., 1997). However, TPT and TBT pollution 

is also associated with rivers and estuaries where pH may vary below pH 5 in heavily 

polluted conditions and salinity will have to be taken into account. Under these 

conditions, organotin toxicity will be heavily influenced by the species present in 

solution.
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4.7 Relationship between organotin toxicity and lipophilicity

The Cl' and pH-dependent speciation of organotins has consequences for the partitioning 

between aqueous and organic phases and plays a pivotal role in the physicochemical 

basis o f their toxicity to microorgansisms. Although the theoretical basis is given 

(Meador, 1996), there is, however, a lack of experimental data on the influence of 

chemical speciation on organotin toxicity to microorganisms. From the results presented 

here it is clear that pH and Cl' concentration influences organotin-yeast interactions and 

this relationship is based on the organotin species present in solution. To further 

elucidate the relationship between organotin speciation and toxicity, the variation in 

toxicity with lipophilicity, as indicated by Dow values was examined.

The Dow values of TBT and TPT under the different pH and NaCl conditions 

were calculated. Organotin toxicity was determined as IC50 and IC20 for TBT and TPT, 

respectively, corresponding to each experimental condition. There was a linear 

correlation between TBT Dow and IC50 (r2 = 0.860) and TPT Dow values and IC20 (r2 = 

0.975) (Fig 3.7.1). This confirmed that there was a direct relationship between toxicity 

and the overall lipophilicity of the species present in solution. For both compounds there 

was over a 30-fold difference in IC values between the highest and lowest Dow- 

Lipophilicity, as reflected by Kow values, of structurally distinct di- and trisubstituted 

organotins, with up to six carbon atoms per substituent also correlates with toxicity 

toward fish cell cultures (Bruschweiler et al., 1995). Other physiochemical parameters 

such as total molecular surface area and steric characteristics have been correlated with 

toxicity towards aquatic organisms including algae and bacteria (Wong et al., 1982; Eng 

et al., 1991) and mudcrabs (Laughlin et al., 1985). However, this is the first time that the 

actual Dow of an individual compound, as determined by the species present in solution, 

has been correlated with toxicity.

The overall relationship between organotin toxicity and lipophilicity was 

examined further by combining the results for both compounds. IC20 values were 

calculated from all TBT data and combined with TPT IC20 results. Similarly, TPT IC50 

values, which were only available for NaCl-containing systems, were combined with all 

TBT IC50 data. There was a clear correlation between inhibitory concentrations and Dow>
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as determined for both IC20 and IC50 (Fig 3.7.2). For the compounds examined 

individually, the increase in Dow values is indicative of the greater presence of neutral 

species in solution so increased toxicity may be due to either the Dow or toxicity 

differences in the actual species. However, consideration of the pooled Dow data for both 

compounds also shows that a linear relationship between increasing toxicity and 

lipophilicity exists. It is evident that toxicity of TBT and TPT is a function of the 

hydrophobicity o f the compounds in solution. This relationship may be extended to 

include other organometal compounds, provided that there is no solubility problem.

There was no correlation between Dow and organotin uptake. As discussed 

previously (Section 4.5) the Dow model does not take biosorption of cationic organotins 

to the cell surface into account. Also, the concentrations examined here were well below 

those at which saturation would occur and under most conditions no variation in uptake 

levels was observed. However, the correlation of toxicity with lipophilicity indicates that 

toxic effects were dependent on dissolution in cell membranes. Uptake of lipophilic 

metal complexes by diffusion mechanisms has been described elsewhere. The transport 

of mercury across biological membranes is attributed to rapid diffusion of neutral 

species with no facilitated transport mechanisms being documented (Pelletier, 1996). 

Similarly, passive uptake of neutral chloride complexes is the principal accumulation 

route o f both methylmercury and inorganic mercury in phytoplankton (Mason et ah, 

1996). Uptake of lipophilic, organic-Cu metal complexes, Cu(DDC)2° 

(diethyldithiocarbamate-Cu complex) and Cu(Ox)2° (8 -hydroxyquinoline-Cu complex) 

by T. weissflogii occurs by diffusion (Phinney and Bruland, 1994). In this case, two 

mechanisms are proposed to be involved. First, the lipophilic organic metal complex 

may partition into the cytoplasmic membrane, diffuse across the lipid bilayer into the 

cytoplasm and become distributed among the cellular compartments as a complex. 

Secondly, once the compound has diffused into the cytoplasm, the metal may dissociate 

from the chelate and bind to intracellular binding sites. Similarly, mercury accumulation 

and toxicity depends on the reactivity of each form of mercury with intracellular ligands 

in addition to passive diffusion of hydrophobic species across the cell membrane 

(Mason et al., 1996). The lipophilicity of these metal complexes, as indicated by KoW is 

of the same magnitude to those of TBTOH, TBTC1, TPTOH and TPTC1. The Kow values
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of HgCb and CHsHgCl are estimated to be 3.3 and 1.7, respectively (Mason et al., 

1996), while Kovv values of Cu(DDC)2° and Cu(Ox)2° were 2 .8  and 2 .6 , respectively. 

These findings also support the conclusion that diffusion and lipophilic interactions play 

a significant role in TBT and TPT uptake mechanisms.
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CHAPTER 5

CONCLUSION
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Chapter 5: Conclusion

The general objectives of this research were to determine the principal interaction 

mechanisms between organotins and yeast. Initially, the uptake and toxicity of inorganic 

tin and the triorganotins, TBT and TMT at pH 5.5 were compared. In order to assess 

removal of these compounds from solution at low, environmentally significant 

concentrations, a flow injection HGAAS system was developed for tin analysis. Toxicity 

of the compounds was assessed in terms of cell viability and membrane damaging 

effects. Membrane integrity was analysed by K+ release and fluorescence anisotropy of 

DPH and TMA-DPH. Generally, these fluorescent probes are used to monitor the effects 

of organotins on model lipid membranes (Ambrosini et al., 1991a and Ambrosini et al., 

1996) and this is the first time that they have been used to assess organotin interactions 

with yeast cells. The importance of cell wall binding was assessed by comparison of 

intact cells and protoplasts.

The present study demonstrates that while both Sn(IV) and TBT are taken up 

by C. maltosa, the uptake mechanisms are different. Sn(IV) uptake was consistent with 

cationic interactions with functional groups on the cell surface and resulted in no K+ 

leakage or viability loss. TMT, at concentrations up to 100 juM, did not become cell 

associated and no interactions were apparent between pH 3.5 and 7.5. TBT uptake levels 

were similar for intact cells and protoplasts and accumulation resulted in toxicity at all 

concentrations examined. Uptake resulted in extensive K+ release and alteration in 

membrane fluidity, implicating lipophilic interactions as an uptake mechanism. At low 

initial concentrations all of the TBT may be removed from solution by microbial uptake. 

As microorganisms are at the base of the food web, direct accumulation in higher 

organisms may ensue.

To further examine the significance of lipophilic interactions, the influence of 

external pH and NaCl concentration on uptake and toxicity of TBT and TPT was 

investigated. Generally, a reduction in organotin-microorganism interactions with 

increasing pH or NaCl concentration has been suggested (Avery et al., 1993; Cooney et 

al.7 1989; Laurence et al., 1989). However, in these reports, organotin insolubility, 

leading to a reduction in uptake levels and toxicity, can not be discounted. Here, TBT
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and TPT concentrations were chosen so that they were below predetermined solubility 

levels.

Organotin interactions varied considerably between pH 3.5 and 7.5. Uptake and 

toxicity of TBT and TPT was lowest at pH 3.5. This was due to protonation of cell wall 

binding sites, resulting in reduction in R3Sn+ biosorption. In both cases, K+ release and 

membrane fluidity changes were negligible, confirming the absence of membrane 

interactions. TPT toxicity increased with pH and was associated with the presence of the 

neutral hydroxide species (TPTOH) in solution. Effects on membrane integrity were 

also enhanced at the higher pH with a decrease in membrane fluidity o f lipids in the 

hydrophobic tail region occurring at pH 5.5 and 7.5. The relationship between TBT 

toxicity and pH was not as simple. TBT uptake was reduced only at pH 3.5 with similar 

uptake levels at the higher pH. The effect of TBT on cell viability increased from pH 4.5 

to 5.5 with very different membrane effects occurring. At the lower pH, TBT caused an 

increase in membrane fluidity at the surface of the cytoplasmic membrane. In contrast, 

at pH 5.5, there was an increase in DPH anisotropy, indicating a reduction in fluidity at 

the hydrophobic core of membrane lipids. However, at pH 7.5, TBT effects on 

membrane fluidity were not detected, with K+ release levels less that at pH 5.5. It is 

proposed that TBTOH can traverse the cytoplasmic membrane, entering the cytosol, 

similar to the passive diffusion of organic metal complexes (Phinney and Bruland,

1994).

Organotin toxicity increased with NaCl concentration. This corresponded to the 

increasing fraction of the lipophilic R3SnCl species in solution. The general toxicity of 

the individual organotin species increased in the order R3Sn+ < R3SnOH < R3SnCl. 

These results have implications for prediction of organotin behaviour in marine and 

estuarine systems. The chemistry of the aqueous environment will have a key role in 

determining organotin toxicity with the formation of cationic (R3Sn+) and neutral 

(R3SnOH and R3SnCl) species in solution.

Previous studies on TBT interactions neglect to take uptake by diffusion 

mechanisms into account, with cell wall biosorption proposed as the principal uptake 

mechanism. However, these results clearly demonstrate that lipophilic interactions play 

an essential role in organotin toxicity. Due to the low concentrations examined,
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differences in uptake levels were not apparent. There was a linear correlation between 

organotin toxicity and compound lipophilicity, as indicated by Dow values. This 

relationship existed for both TBT and TPT examined individually and also when the 

data for both compounds were pooled.

These results indicate that the physicochemical interactions between organotins 

and microorganisms will be predicted largely by the organotin species present in 

solution. Organotins have been detected in a wide variety of ecosystems, including both 

freshwater and estuarine water and sediment. Seawater consists of a number of ionic 

species including Cl', Na+, K+, Ca2+, Mg2+, SO42' and HCO3', while these ions are found 

to a lesser extent in estuaries. An understanding of the composition of the external 

environment and its influence on speciation is key to assessing organotin pollution as 

these ions will play a pivotal role in their interactions with microorganisms.
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