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Analysis of 8-oxo-7,8-dihydroGuanine Formation and Oxidation Mediated
by

Fenton Reaction Induced DNA Oxidative Stress

DNA undergoes an estimated 10,000 oxidative hits per day. Oxidative 
DNA damage caused by reactive oxygen species (ROS) can result in multiple 
base modifications, which have been implicated in mutagenesis, disease and 
aging. The primary product of G oxidation is 8-oxo-7,8-dihydroguanine (8- 
oxoG), which is considered by many as a biomarker for oxidative DNA damage. 
8-oxoG has an oxidation potential about 0.5 V lower than G, and so can be 
accurately quantified using electrochemical (EC) detection. EC detection 
coupled to HPLC resulted in a sensitive and accurate mode of detection for 8- 
oxoG without requiring any preconcentration or removal of undamaged G, which 
was simultaneously detected by UV detection.

The aim of this investigation was to measure the rate of 8-oxoG 
formation in DNA subjected to continuous oxidative attack. The hydroxyl 
radical, the most aggressive ROS, was generated via the iron-mediated Fenton 
reaction, and used to generate 8-oxoG in both free G and double stranded DNA. 
HPLC-UV-EC was utilised for the quantitative analysis of both G and 8-oxoG 
concentrations with respect to incubation time with the hydroxyl radical. The 
concentration of 8-oxoG was observed to oscillate with respect to time. After 
approximately 18 min incubation with Fenton reagents, a maximum 8-oxoG 
concentration of 0.68 was detected in DNA. Thereafter, however, there was 
an overall decrease in 8-oxoG concentration over time. 8-oxoG concentration 
was not found to be proportional to the level of oxidative damage which 
occurred. The concentration of G was also observed to decrease with increasing 
DNA oxidation, so that as oxidation continued, both G and 8-oxoG were 
oxidised.

Copper, another important biological metal ion, binds tightly to DNA, 
inducing significant oxidative DNA damage. It was also investigated as a metal 
catalyst for the Fenton reaction-mediated DNA oxidation. Again, 8-oxoG 
concentration was found to oscillate with increasing oxidation of DNA. There 
were significant differences between the iron- and copper-mediated oxidation of 
DNA. Oscillation periods for copper-mediated oxidation were shorter, with 
greater concentration amplitudes. A maximum 8-oxoG concentration of 4.2 fiM 
was detected after 35 min oxidation. Overall, however, the trend was again 
towards oxidation of both G and 8-oxoG with increasing oxidation of DNA.

8-oxoG is a hotspot for further oxidation. It was observed in both studies 
outlined above to be further oxidised during DNA oxidation by the Fenton 
reaction. The final products of 8-oxoG oxidation were determined using HPLC- 
MS/MS. Oxidised guanidinohydantoin (oxGh) was identified as the primary 
product of 8-oxoG oxidation, when both iron and copper catalysts were used. A 
mechanism for the formation of oxGh by hydroxyl radical attack of 8-oxoG was 
also proposed.
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Chapter One

Oxidative DNA Damage: 

A Literature Survey



1.1 Introduction

The Human Genome Project, completed in 2003, was a 13-year project 

whose primary aim was to identify all the approximately 20,000-25,000 genes in 

human DNA and to determine the sequences of the 3 billion chemical base pairs that 

constitute human DNA.1 A gene is a segment of DNA, located in a specific position, 

whose base sequence contains the information necessary for protein synthesis. 

Damage to DNA, which could affect the base sequence, can potentially lead to 

disease or an increased susceptibility to disease. Four significant endogenous 

processes that lead to DNA damage are oxidation, methylation, deamination and 

depurination.2 One of the more investigated processes that leads to DNA damage is 

oxidation, one of the reasons being that DNA has been reported to be subjected to 

approximately 10,000 oxidative hits per day, based on urine analysis.3

This literature review begins with a broad outline of the structure of DNA, 

and the types of damage to base pairs in the DNA sequences (which may lead to 

mutations during DNA replication) that may occur. Long-range charge transfer, as a 

potential mechanism for the altering of both the nature of the damage to the DNA, 

and the position in the DNA sequence where the mutation occurs, is presented. A 

primary product of DNA damage, 8-oxo-7,8-dihydroGuanine, is discussed in terms 

of its formation and its mutagenic effects within DNA. Problems associated with the 

use of 8-oxo-7,8-dihydroGuanine as a primary indicator of DNA damage are 

discussed. The second part of this literature survey presents the primary mechanisms 

that generate oxidative DNA damage, with particular emphasis on reactive oxygen 

species (ROS) produced in vivo which lead to such damage. In the final section, the 

predominant methods used for detection of oxidative DNA damage are discussed. 

Two main approaches, direct and indirect, are examined. The direct approach 

involves the identification of the amount and identity of the oxidised DNA bases 

generated. The indirect approach measures the number of strand breaks that are 

caused to the DNA strand either by damaging agents themselves, or by DNA repair 

enzymes which, depending on the specificity of the substrate and the enzyme, should 

nick the DNA at a specific oxidised DNA base.
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1.2 Introduction to DNA

1.2.1 DNA within the cell

Cells are the fundamental working units of every living system. All the 

instructions needed to direct their activities (their genetic material) are contained 

within their DNA (deoxyribonucleic acid). A eukaryote is an organism whose cells 

each have a distinct membrane-bound nucleus, within which DNA is contained. In 

such cells, the DNA double helix is packaged by special proteins called histones (a 

set of simple basic proteins - HI, H2A, HZB, H3, H4), to form a protein/DNA 

complex called chromatin. The DNA coils around a histone octamer,4 so that the 

structure resembles a bead on a string, as shown in Fig. 1.1. The DNA octamer 

complex is called a nucleosome, which is the structural unit of chromatin. Each 

nucleosome contains about 146 base pairs of DNA and 60 base pairs of spacers 

between core particles. The individual nucleosomes then coil around another 

histone, H I, to form a “coiled-coil structure”, the chromatin fibre. This is 30 nm 

wide, and each turn contains 6-8 nucleosomes. The higher order structure of the 

chromatin fibre in the cell is not known in detail.5

Nucleosome

Fig. 1.1: Chromatin fibre showing DNA coiled around histone octamer beads, 

(reproduced from McGill University website6)
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1.2.2 Structure of DNA

The biological role of DNA is to store and code genetic information. It 

determines the nature of the cell, controls cell growth and division, and directs 

biosynthesis of the enzymes and other proteins required for all cellular functions. 

The structure of DNA, first described by James Watson and Francis Crick in 1953,7 

is illustrated in Fig. 1.2.

Fig. 1.2: DNA double helical structure, (reproduced from Lertola, J.8)

There are four DNA bases, two purines guanine (G) and adenine (A) and two 

pyrimidines cytosine (C) and thymine (T), as shown in Scheme 1.1. Also illustrated 

is the sugar-phosphate backbone, with 2-deoxyribose sugar joined at both the 3 - 

hydroxyl and 5-hydroxyl groups to phosphate groups in ester links, also known as 

"phosphodiester" bonds. DNA nucleoside (base plus deoxyribose sugar) and 

nucleotide (base plus sugar phosphate) structures are also shown. DNA consists of 2 

polymer backbones running in opposite directions, 5'- to 3'- from top to bottom. 

These chains wind around each other to form a right-handed double helical structure, 

with about 10 nucleotide pairs per helical turn. Each spiral strand, composed of a

3



sugar phosphate backbone and attached bases, is connected to a complementary 

strand by hydrogen (H) bonding between paired bases; A with T (two H bonds) and 

G with C (three H bonds). Each helical turn contains about ten bases and is 34 Â in 

length and 20 Â in diameter.

base

r
5’ end

sugar-phosphate
backbone

chain 
direction 
5' to 3'

v  purines

■\

v  pyrimidines

Y  ° y f
° T ° n  " T 

!!
nucleoside

0H 3’ end

Scheme 1.1: DNA bases adenine (A) depicted in red, guanine (G) depicted in blue, 

cytosine (C) depicted in pink and thymine (T) depicted in green, and the DNA 

nucleoside (base plus deoxyribose sugar) and DNA nucleotide (base plus sugar 

phosphate) structure.

DNA carries information by means of the linear sequence of its nucleotides. 

Genetic information, contained in the nucleotide sequence, is copied by a process 

called replication. During this process, the DNA strands in the double helix are 

separated and each strand serves as a template for production of a new 

complementary strand. DNA replication is extremely accurate, with fewer than one 

mistake in 109 nucleotides added.9 When a DNA base has been damaged such that 

the incorrect base is incorporated opposite it, a mistake, called a mutation, does 

occur, however. The consequences of this error can be significant, depending on the

4



function of the DNA in which they occur. A number of mutations can occur, 

including insertion of a nucleotide into the DNA sequence, deletion of a nucleotide 

from the sequence, or a point mutation of a single DNA nucleotide within the 

sequence. A substitution point mutation, when a base pair is exchanged for a 

different base pair, can be either a transition mutation (where the purine/pyrimidine 

orientation on a given strand remains the same) or a transversion mutation (where 

the purine/pyrimidine orientation on a given strand is changed).10

1.2.3 Charge transport through DNA

Long range charge transport (LRCT) through DNA has the potential to alter 

both the nature and the position of the damaged DNA base, and therefore the nature 

and position of the substitution mutations which occur during replication in DNA, 

which can in turn alter the consequence of the mutation. Therefore, the extent to 

which LRCT occurs has been examined in detail in recent years. LRCT is a very 

controversial subject among scientists. Several recent publications have shifted the 

debate from whether charged species can be transported over long distances, to how 

it takes place.11 This debate has yielded some very interesting and contentious 

theories.12 Underlying the majority of hypothesis proposed for charge transfer are 

two fundamental mechanisms: superexchange (tunnelling) and thermally induced 

hopping (TIH). Superexchange charge transfer involves the transfer of charge 

through DNA bases with a high degree of electronic contact, where the bridge 

orbitals of intervening DNA bases couple electron donor and electron acceptor. This 

charge transfer occurs on a nanosecond timescale and its rate, fi, decays 

exponentially with increasing distance. TIH on the other hand displays a very weak 

dependence on this distance over which the charge transfer occurs, and 

characterisation of this dependence by f i  is misleading. In this instance, the electron 

coupling of the DNA bases between the initial charge donor and acceptor is 

significantly less than for superexchange, and charge transfer occurs primarily by 

hopping of the charges along DNA bases, towards the acceptor. Charge transport can 

involve either electron transport, which involves excess electron propagation 

through unoccupied DNA orbitals (LUMOs), or hole transport, which involves
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propagation of electrons through DNA HOMOs (highest occupied molecular 

orbitals).13 Hole migration involves electron transfer from neutral G to neighbouring 

G+* (G cation radical), as G has the lowest ionisation potential of the four DNA 

bases (having the lowest HOMO)14, as shown in Table 1.1.15

Table 1.1: Redox potential o f the four DNA bases. 15

DN A base Redox potential vs.

NHE

Guanine +1.29 V

Adenine +1.42 V

Cytosine +1.60 V

Thymine +1.70 V

Most of the theories that have evolved to explain LRCT involve the 

participation of these two mechanisms to varying degrees, with a level of agreement 

emerging that superexchange occurs over less than 4 base pairs, while TIH is the 

predominant mechanism over longer base sequences. One such theory of LRCT, 

which incorporates both superexchange and TIH, called “the hopping mechanism” 

was put forward by Giese et al.16 In this mechanism a cation radical (e.g. G+*) is 

generated and injected into the DNA double helix. It then “hops” from G base to G 

base until it reaches a site of lowest ionisation energy. This was found to be the 5’-G 

in a GG cluster.17 As the HOMO resides primarily on the 5’-G of the GG cluster, its 

ionisation potential (IP) drops from 1.07 V (IP of isolated G) to 0.95 V and its 

oxidation is enhanced by a factor of 12.18 The low IP of the 5’-G of the GG cluster 

makes migration out of it slow, and so the hole is fixed at the cluster for further 

oxidation. Therefore, at 5’-G, G+# is trapped and oxidative damage occurs here, as 

shown in Scheme 1.2.

6



5 ’ 3 ’ 5 ’ 3 ’  5 ’  3 ’ 5 ’ 3 ’

hm&\ - £ 7  a-
-M&- —G+°ÉU- -mm- m "
-m ^ Oxidation Charge

Migration
m *

m * -m*- (H ." 0 - 8 oG J P -

-m o~ -mm- M  m

-m*- m *
3 ’ 5 ’  3 ’ 5 ’

G
rA
rC
rT

5 ’  3 ’ 5 ’

Scheme 1.2: Long range charge transport via the hopping mechanism, (reproduced
17from Giese et al. )

Damage occurs primarily at G, as G+# oxidises primarily G bases. The cation radical 

is transported by hopping between G bases only. A:T base pairs impede charge 

transfer, with sequences containing five or more sequential A:T base pairs 

completely inhibiting the charge transport. LRCT in the hopping mechanism is 

therefore a series of short-range tunnelling processes (superexchange), and is 

consequently dependant on the sequence of interspersed base pairs, with the overall 

rate determining steps of this transport being the largest hop between neighbouring 

G bases.19 The overall distance dependence, therefore, is not described by the 

superexchange mechanism; instead the overall efficiency of the multistep reaction 

has an algebraic dependence on the number of hopping steps. LRCT was since 

shown, however, to occur over DNA base sequences of more than five sequential 

A:T base pairs, and so it was proposed that a change in reaction mechanism, namely 

from superexchange to TIH, occured.21 It was proposed that where G was separated 

by long A:T sequences, endothermic transfer of the positive charge from G+# to 

adjacent A bases becomes faster than direct transfer to the nearest (but distant) G. A 

thermally induced hole is injected from G+# to A, followed by hopping between A 

bases.22 In this way, hole hopping between G bases connected by an (AT)n bridge 

was proposed to occur by superexchange for n>3, but by TIH for n<3.23
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In contrast to the hopping mechanism proposed above by Giese et a l , where 

superexchange only occurs over a short number of bases, Barton et al.24 proposed a 

“superexchange 7t-way”, where superexchange charge transfer is proposed as the 

predominant LCRT mechanism over the entire DNA duplex. Central to this theory 

are the electron clouds of the bases in the DNA double helix. The arrangement of 

these bases allows for electrons shared by multiple atoms to inhabit donut-shaped 

electron clouds (rc-orbitals) above and below each ring of bases within the helix.25 In 

this way, the DNA helix can be seen as a stack of rc-orbitals, which are in electrical 

contact with each other, as in Fig. 1.3.

Fig. 1.3: DNA base pairs form a n-stack, shown left looking through the centre o f 

the double helix, and shown right looking along the double helix, (reproduced from  

Barton et al.25)

Barton et al.26 proposed that this 7t-stack acts as a “wire” for electron 

transfer, having a continuous, delocalised molecular orbital. The Ruthenium (Ru) 

and Rhodium (Rh) complexes Ru(phen’)(bpy)(dppz)2+ and Rh(phi)2bpy3+ * were 

intercalated with the double helix and both complexes oxidised G bases far removed 

from the site of intercalation, with very little dependence on the distance between the

* phen, phenanthrene; bpy, 4-butyric acid-4’-methylbipryidine; dppz, dipyridophenazine; phi, 
phenanthrene diimine quinone
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metal intercalator and the G site,24 in extremely fast timescales. The charge could 

travel over 40 Â in less than 1 ns. G oxidation was, however, profoundly sensitive to 

the extent of intercalation of the electron donor and the stacking of the DNA bases, 

with significant reduction of oxidative damage detected when base mismatches were 

incorporated into the DNA duplex.27 It was therefore proposed that LRCT had the 

potential to sensitively detect perturbations in base stacking. The rate of charge 

transport through the DNA double helix was subsequently found to depend on the 

energy of the charge donor, with the 71-stack, being extremely sensitive to base stack 

structure and dynamics, able to act as both an insulator and a molecular wire.28 Low 

temperature analysis revealed that tunnelling (superexchange) was not solely 

responsible for the charge transport observed; conformational motion of the DNA 

duplex was also required. Due to the sensitivity of charge transport to the dynamic 

structure of DNA, LRCT was proposed to proceed via a process of “domain 

hopping” -  hopping along DNA domains defined dynamically as stacked regions
9Qwithin the duplex through which charge is delocalised along the extended 7i-orbital.

Charge delocalisation is also central to a hypothesis outlined by Schuster et 

al., where charge transport was proposed to occur by “phonon-assisted polaron 

hopping”.30 (A polaron is a radical ion self-trapped by structural distortion of its 

containing medium.) A cation radical is formed by irradiation of an anthraquinone 

derivative, which can result in either electron transfer to the DNA double helix, or in 

hydrogen atom abstraction. However, the dominant pathway was shown to be that of 

electron transfer to the double helix.31 The cation radical is injected into the double 

helix, where it forms a base cation radical, e.g. G+# (as in the hopping mechanism). 

G+* is electron deficient and so the positive charge is stabilised by its delocalisation 

onto adjacent bases, i.e., by bringing neighbouring bases closer by changing their 

angle of inclination, and/or unwinding the double helix. This structural distortion of 

the bases surrounding the radical ion is called a polaron. Thermal (phonon) 

activation causes base pairs in and near the distortion to join or leave the polaron, 

and so movement of the charge through the helix is analogous to that of compression 

in a coiled spring, causing the phonon-assisted polaron hopping, as illustrated in

9



Scheme 1.3. The hop size of the polaron will be determined by the number of bases 

required to stabilise the cation charge. The three or four bases involved in the 

polaron do have ft-electron overlap, and so superexchange can occur between these 

bases, but, Schuster asserts, this is the extent to which the double helix behaves like 

a molecular wire for electron transport. In contrast to Giese, charge transport was 

determined to be independent of sequence, and it was concluded that structural 

averaging of DNA occurs.32 The DNA double helix was found to be a dynamic 

structure with an almost liquid-like internal structure, resulting in a mixing of both 

tunnelling and hopping mechanisms. It was concluded that polaron hopping between 

GG clusters connected by an (A)n bridge was proposed to occur by superexchange 

for n<3, where the charge was delocalised on the entire bridge; but TIH 

predominated for n>4, where the bridge was now an intermediate complex and A 

bases participated as chemical intermediates.33

Polaron-like
distortion

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Four base
Hop Polaron-like

distortion

• • • • • #

1 2 3 4 5 6 7 8 9 10 11 12 13

Scheme 1.3: Schematic representation o f DNA showing a four base hop o f a polaron 

(reproduced from Schuster et a i30) Vertical (blue) lines represent the base pairs, 

and the horizontal (red) lines represent the sugar-phosphate backbone.

While agreeing that superexchange was the predominant mechanism for 

charge transfer for short bridges (less than three base pairs), Renger and Marcus 

proposed that for longer bridges, TIH was not sufficient to explain the LRCT

10



observed.34 They proposed that TIH occurred via two channels, partly delocalised 

(reorganisation energy of the local hole state, X < electronic coupling) and localised 

(X > electronic coupling) states. The two channels are an approximation for the 

actual situation in DNA, where one channel exists that contains partly delocalised 

states, but takes into account a dynamic localisation of states by so-called self­

trapping.

A consensus is beginning to emerge between the different mechanisms 

proposed to explain LRCT. It is now accepted that both superexchange and TIH 

occur, although the extent of the participation of these two mechanisms is disputed. 

LRCT is sensitive to the base stack structure, and can be severely impeded by 

oxidised bases or mismatched base pairs.

1.2.4 DNA damage product 8-oxo-7,8-dihydroGuanine

DNA is of limited stability, and undergoes hydrolysis, oxidation and non- 

enzymatic methylation at significant rates in vivo.35 It has been estimated that human 

cellular DNA undergoes over 10,000 oxidative hits per day (~ 9*104 hits/cell/day), 

based on urine analysis of oxidised G products (the validity of which remains to be 

verified).36 Ubiquitous DNA repair processes counteract this damage, but in spite of 

these, significant steady state levels of damage have been recorded. Steady state 

levels of oxidative damage are one or more orders of magnitude higher than those of 

non-oxidative adducts.3 As discussed in Section 1.1.3, G has the lowest IP of the 

four DNA bases,15 and LRCT delivers the charged species, which is capable of 

inflicting oxidative damage, to G sites in DNA. Its ease of oxidation, coupled with 

its accessibility via LRCT, make G bases in the DNA double helix the most probable 

sites for oxidative damage. One of the most potent and well documented (over 1500 

publications to date) oxidised G species is 8-oxo-7,8-dihydroGuanine (8-oxoG), 

which has been linked to mutagenesis, disease and aging.
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8-oxoG* was first reported in 1984 by Kasai and Nishimura.38 Hydroxyl free 

radicals (*OH) mediate the formation of 8-oxoG via the Udenfriend system (ascorbic 

acid, Fe11, EDTA, 0 2). By using *OH, 8-oxoG was very straightforward to 

synthesise, its two main differences from its parent base G being that it was slightly 

less soluble in water due to its additional OH group,39 and had an ionisation potential 

about 0.5 V lower than G.40

The tautomeric forms of 8-oxoG are shown in Scheme 1.4. The 6,8-diketo 

form is in the lowest energy state, i.e., is the most stable form of the molecule.41 The 

6-enol, 8-keto form is only slightly less stable, while the 6-keto, 8-enol form is the 

least stable of the tautomeric forms.

6-keto, 8-enol form 6,8-diketo form 6-enol, 8-keto form

Scheme 1.4: Chemical structures o f 8-oxoG, with the most stable form depicted in 

purple. 41

The oxidation of G to form 8-oxoG has been well studied, and based on 

electrochemical studies, it has been concluded that it involves a two proton (2 H+), 

two electron (2 e ) oxidation.42 It was also observed that oxidation to 8-oxoG occurs 

over a wide pH range, from pH 2.5 to pH 10.0. The initial reaction involves 1 H+, 1 

e' oxidation of G to give the free radical, G«, which undergoes further oxidation to 

give 8-oxoG. The initial step was studied by Weatherly et a/.,43 who concluded that 

both the proton and the electron were removed in a single step, i.e., that it was a 

proton-coupled electron transfer (PCET) reaction. G could transfer its proton to the

* also known as 8-hydroxyguanine [8-OHG] or 6,8-dihydroxy-6-aminopurine, or in nucleoside form 
it is normally referred to as 8-oxo-7,8-dihydro-2’-deoxyguanosine [8-OH-dG]
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solvent from within the double helix on a time scale that allowed for the coupling of 

the electron and proton transfers. When G oxidation occurred in a medium that did 

not accept protons the reaction was slowed dramatically, as it was forced to form a 

protonated cation radical. A proposed scheme for the two step, 2 H+, 2 e‘ oxidation 

of G is outlined in Scheme 1.5. Once G has been converted to 8-oxoG, the 8-oxoG is 

incorporated into the double helix with very few structural perturbations 44 There is 

no steric interaction of the 8-oxygen with the phospho-deoxyribose backbone, and 8- 

oxoG readily forms Watson-Crick base pairs, where the C is opposite it.

O

N

8-oxoGuanine

Scheme 1.5: Proposed scheme fo r guanine (depicted in blue) oxidation to 8-oxo-7,8- 

dihydroGuanine (depicted in purple).42

1.2.5 Mutation effects of 8-oxo-7,8-dihydroGuanine

Three years after they first reported 8-oxoG, in 1978, Kasai and Nishimura 

were involved in a study to determine if 8-oxoG incorporation led to misreading of 

the DNA template 45 They found that 8-oxoG directed the insertion of A, T, G or C 

(point mutations, both transversion and transition substitution mutations) with 

almost equal frequencies. Therefore, 8-oxoG completely lacked base pairing 

specificity. A 1991 publication by Shibutani et al.46 contradicted the earlier findings, 

suggesting that only C (the correct base pair for G) and A (which would result in a 

transversion mutation during replication) were incorporated opposite 8-oxoG. It 

concluded that the Klenow fragment (a DNA polymerase, used to synthesise 

complimentary strands of DNA in vitro), which was used by the earlier researchers 

was not suitable for synthesis of double stranded DNA from single stranded 

templates that incorporated 8-oxoG. A year later a research group including Kasai 

and Nishimura also found that 8-oxoG directed the incorporation of A and C only.47
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Scheme 1.6: Watson-Crick base pair C:G and base pair A:8-oxoG in helical DNA.44

It was found that in 99% of cases, C was incorporated opposite 8-oxoG, and 

so in these cases there were no long-term effects of G oxidation. In approximately 

1% of cases, however, A was incorporated opposite 8-oxoG, which leads to a G:C 

—> T:A transversion mutation47 (also written as a G —» T substitution mutation), 

which has been implicated in carcinogenesis 48 The reason for the misincorporation 

of A opposite 8-oxoG is that the oxidation of G alters the hydrogen bonding 

functionality of the base, so that it now has the same pattern of hydrogen bond 

acceptors/donors as T, as shown in Scheme I.6.44

8-oxoG, one of the primary oxidation products of G, can be formed and has 

mutagenic effects, albeit at a low frequency. This, along with the fact that it is 

straightforward to measure and is present in sufficient quantities to allow for 

sensitive measurement, have helped it to become a biomarker for oxidative DNA 

damage.2
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1.2.6 8-oxo-7,8-dihydroGuanine reliability as an oxidative DNA damage 

biomarker

Even before the isolation of 8-oxoG in 1984, it was observed that oxidative 

damage to DNA might play a major role in cancer, heart disease and aging.49 By 

1989, 8-oxoG had become a biological marker (biomarker) for oxidative DNA 

damage.50 Electrochemical detection of the compound in urine using liquid 

chromatography represented a non-invasive, selective and sensitive means of 

measurement. It was felt by the authors to be a highly accurate measurement of 

overall levels of 8-oxoG in the body, as oxidised DNA was being continually 

repaired, and then the oxidised bases excreted in urine. The validity of urine analysis 

has yet to be determined, however. During normal cellular function, 8-oxoG is 

excised instead of being incorporated during DNA replication, and this significant 

source of 8-oxoG could not reflect DNA oxidation. During the above analysis, 

however, this source of 8-oxoG was not considered. Enzymatic and chemical 

oxidation of 2’-deoxyguanosine (dG, G nucleoside) was felt to be unlikely as 

cytosolic enzymes and cytochrome P-450 did not catalyse its oxidation. Urinary 

levels of the base 8-oxoG and the nucleoside 80HdG (8-oxo-7,8-dihydro-2’- 

deoxyguanosine, 8-oxoG nucleoside) were found to be independent of diet.51 

Control experiments were performed, where radio-labelled deoxyguanosine (dG) 

was injected intravenously and urine analysed consequently.50 This did not result in 

any radio-labelled 8-OHdG; however, no experiments were recorded to test for the 

presence of the radiolabel in other excreted compounds. When radio-labelled 8- 

OHdG was injected intravenously, 66% was recovered in urine within 24 hours. The 

location of the remaining 34%, or the possibility that it could have been degraded 

was not considered. Based on this analysis it was concluded that humans excreted an 

average 178 8-OHdG residues per cell per day. A 1990 commentary by Floyd41 

acknowledged that there was very little experimental evidence directly linking 8- 

oxoG to cancer. He did, however, show a striking correlation between formation of 

8-oxoG and carcinogenesis. A range of known cancer-causing agents, from asbestos 

to radiation to exposure to tumour promoters all resulted in a several-fold increase in
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levels of 8-oxoG, often dose dependant. In 1991 it was shown that humans excrete 

approximately 200 pmol 8-OHdG/kg/day using a more sensitive method of detection 

than in 1989.52 As discussed in the next section, however, the levels of human 

urinary 8-oxoG as detected by HPLC-EC have varied by up to four orders of 

magnitude.

There are problems, however, with the idea of 8-oxoG as a biomarker for 

DNA damage. One such problem is that it may be subject to artifactual oxidation,

i.e., during sample preparation and pre-concentration G may be oxidised to 8-oxoG 

to give an artificially high concentration.53 This has been of huge significance in 

GC-MS analysis where derivatisation has created considerable amounts of 

artifactually oxidised 8-oxoG.54 Hydrolysis of G nucleotides in the DNA precursor 

pool has been proposed as a possible source of urinary 8-oxoG, which would not 

reflect DNA oxidation.55 Measuring solely 8-oxoG as a marker for oxidative DNA 

damage can be misleading. It is only one of about 60 products of DNA oxidation 

formed, and is not always one of the main oxidative products produced, in which 

case an increase in oxidative damage would not be highlighted as the levels of 8- 

oxoG may not increase.56 It must also be considered that a decrease in 8-oxoG levels 

excreted may not necessarily be due to a decrease in oxidative damage; it could also 

indicate an increased rate of oxidative damage repair, e.g. ascorbate intake may 

stimulate DNA repair, and so lower steady state levels of 8-oxoG. Also worth noting 

is that while 8-oxoG can mediate G -> T substitutions during DNA replication, this 

is not the only pathway by which these mutations can occur. In addition, a question 

of critical importance which has yet to be answered is that of cause and effect: does 

oxidative DNA damage initiates the disease process or is just a by-product of the 

disease?57 Another major problem utilising 8-oxoG as a biomarker for DNA damage 

is also coming to light. As a base adduct with a lower IP than all four unmodified 

bases, it is most easily oxidised. When incorporated into the DNA double helix, it 

has been identified as a ‘hot spot’ for further DNA oxidation.58 The products of 8- 

oxoG oxidation will be discussed further in Chapter 4.
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1.3 DNA damage resulting from initial oxidation

Oxidative damage to DNA can occur from a variety of sources, including y- 

iiradiation, photoionisation, reactive oxygen species (ROS) and a variety of 

chemicals, some of which are only toxic when metabolised in the human body. A 

number of oxidative lesions are produced as a result of these oxidative stresses. It is 

necessary, therefore, to examine each of the oxidative stresses individually, and 

ascertain what lesions are formed and what damaging effects they exert on DNA. It 

must be remembered, however, that there is as yet no direct and compelling 

evidence that oxidative DNA damage is a biomarker for cancer development.

1.3.1 Photoionisation

It is well established that solar radiation is a genotoxic agent.59 Ultraviolet 

(UV) radiation is the most harmful and mutagenic component of the solar radiation 

spectrum, and can be divided into three sections: UVA (315-400 nm), UVB (280- 

315 nm) and UVC (100-280 nm). UVB is particularly damaging, as DNA bases 

directly absorb incident UVB photons.60 UVA light has also been shown to cause 

cytotoxic (weakly poisonous to living cells) and mutagenic (induce genetic 

mutations) effects. UVA radiation causes significant oxidative DNA damage, which 

can generate 8-oxoG by two mechanisms, Type I and Type II.61 In Type I reactions a 

base cation radical (particularly G+#) is formed by electron transfer from the base to 

an excited photosensitiser. Type II mechanisms can be divided into two subsections, 

major pathways and minor pathways. The major pathway involves the formation of 

singlet oxygen ( ^ 2) by energy transfer from an excited photosensitiser to molecular 

oxygen. The electron transfer to molecular oxygen generates O2’ and hydroxyl 

radicals (*OH) via the minor pathways. Direct production of *OH is rarely observed, 

but may be generated by electron transfer, which can generate O2', followed by 

formation of H2O2 and its subsequent decomposition to form •OH.62
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In Type I mechanisms the large range of excited photosensitisers that act as 

electron acceptors can include riboflavin (Vitamin B2)63 and pterins.64 When calf 

thymus (ct) DNA was exposed to visible light in the presence of riboflavin, 8-oxoG 

was generated. Subsequent experiments which utilised *02 and *0H scavengers did 

not decrease the levels of 8-oxoG produced, suggesting that neither of the ROS were 

involved in its formation.63 The presence of FapyG (along with 8-oxoG and 

Oxazolone, Oz) also excluded ^  as a potential ROS 65 A later investigation of 

photoirradiated DNA in the presence of riboflavin also showed the generation of 8- 

oxoG.66 In this study, however, 8-oxoG was established as only a minor product of 

the oxidation, with Imidazolone, Iz, which was subsequently shown to be a 

precursor to Oz,67 identified as the major product formed. When DNA was exposed 

to 365 nm light in the presence of pterin, 6-carboxypterin, biopterin, neopterin and 

folic acid; 8-oxoG was again generated.64 8-oxoG formation was specific to G 

located 5 ’ to G, which is often considered a signature for LRCT within DNA,68 and 

so a Type I mechanism was proposed as the probable mechanism for the 8-oxoG 

lesions formed. Indeed photoirradiation of DNA was used by Giese,16 Schuster30 and 

Barton24 to probe for long-range electron transport. Barton was also involved in a 

study of photoirradiation of DNA in the presence of ethidium bromide, which binds 

to the major groove of DNA.69 This also resulted in a Type I mechanism for 8-oxoG 

formation.

Type II mechanisms involve ROS, primarily *02. UV irradiation of ct DNA 

at 254 nm produced a dose dependant generation of 8-oxoG, up to a concentration of 

approximately 2.5% of G present.70 When *OH scavengers were used, an increase in 

the level of 8-oxoG detected was observed, and the use of deuterium oxide (D2O), 

which prolongs the half-life of lC>2, also substantially increased the 8-oxoG yield. It 

was therefore concluded that l 0 2  was the major oxidation pathway, with oxidation 

by *OH possibly a minor pathway.37 Type II photooxidation was shown to result in 

4R* and 4S* diastereoisomers of spiroiminodihydantoin (Sp), cyanuric acid (Cy) 

and Oz during 80HdG oxidation, but oxaluric acid (Oxa) and its precursor parabanic 

acid (Para) were generated when DNA itself was oxidised. 60
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UVB radiation results in a range of dimeric pyrimidine lesions produced by 

direct absorption of incident photons.60 The major lesions were 

cyclodibutadipyrimidines, caused by the cycloaddition of C5-C6 double bonds of 

adjacent pyrimidine bases.71 These were found to be mutagenic ‘hot-spots’ for 

C:C—>T:T transversions.59 8-oxoG was also formed, but was at least two orders of 

magnitude lower than by major type II pathways.

1.3.2 y-irradiation

In 1985, a year after it was first reported in DNA, 8-oxoG was isolated and 

characterised from y-irradiated G, 2-deoxyguanosine-5’-monophoshate (5’-dGMP, 

G nucleotide) and DNA.72 Samples were irradiated in a ^C o y source. The same 

source was used to irradiate female mice, after which HeLa cells from their liver 

were isolated and analysed for 8-oxoG lesions.73 A yield of 0.032 8-oxoG/105 

G/krad was recorded for in vivo y-irradiated samples. This was three orders of 

magnitude lower than in vitro y-irradiated samples, however, suggesting that there 

must be mechanisms for the prevention of 8-oxoG and/or its repair in intact cells. 

Further evidence for in vivo repair was the fact that 8-oxoG produced in liver DNA 

by the y-irradiation of mice decreased with time, i.e., as the time between irradiation 

and liver isolation increased, the level of 8-oxoG decreased.

Unlike photoionisation, the major mechanistic pathway of y-irradiation is not 

the oxidation of the G base. 5-hydroxy-5-methylhydantoin, thymine glycol, 5- 

hydroxyhydantoin, 5-(hydroxymethyl)uracil, 5,6-dihydroxycytosine, cytosine 

glycol, 4,6-diamino-5-formamidopyrimidine (FapyA), 8-oxo-7,8-diydroadenine (8- 

oxoA), and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) in addition to 

8-oxoG have been isolated from chromatin of y-irradiated cultured human cells.74 

Yields of G derived bases (FapyG and 8-oxoG) constituted about 45% of the net 

modified bases, the rest of which consisted of A, C and T derived bases in 

approximately equal quantities. The modified bases were typical of those normally 

produced by *OH attack on DNA bases, indicating its possible involvement. The G 

derivative FapyG is produced by G80H» reduction, whereas 8-oxoG is generated on
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oxidation of G80H*. A study comparing the yields of both in y-irradiation75 

concluded that the presence of oxygen favoured the formation of 8-oxoG at the 

expense of FapyG. Purging with nitrogen to remove oxygen increased the levels of 

FapyG at the expense of 8-oxoG. 8-oxoG incorporation into oligodeoxynucleotides 

was shown to result in damage ‘hot-spots’ for y-irradiation,58 i.e., when irradiated 

with ^Co, most of the ensuing damage occurred at 8-oxoG. During these 

experiments, the DNA was in the form of a dry film, and not in solution.

1,3.3 Chemical oxidation

Chemical oxidation can occur via chemicals that exist in the human body, or 

via chemicals that can enter the human body that are themselves toxic or can be 

metabolised to a toxic form in vivo. The naturally occurring amino acid 3,4- 

dihydroxyphenylalanine (DOPA) was shown to mediate DNA damage. Exposure 

of ct DNA to free DOPA, insulin-bound DOPA and BSA-bound DOPA caused no 

significant damage, but when Cu(II) was added to the reaction mixture a significant 

formation of 8-oxoG and 5-hydroxycytosine was recorded. Investigations indicated 

that DOPA triggered the reduction of Cu(II) to Cu(I), catalysing the generation of 

•OH. Estrogens with a catechol structure, shown in Scheme 1.7, were also shown to 

induce DNA damage in a number of ways.77 These estrogens were shown to enhance 

endogenous DNA adducts, generate free radicals by redox cycling between their 

quinone and hydroquinone forms, and induce free radical damage to DNA such as 

single strand breaks, and the formation of 8-oxoG.

OH

Scheme 1.7: Structure o f L-DOPA, 4-hydroxy estrogen, catechol, estriol. 76
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Estrogens retaining the catechol structure were also shown to induce strand breaks in 

plasmid DNA and ct DNA, and to generate 8-oxoG when in the presence of EDTA- 

Fe(II).78 No significant damage was caused, however, in the presence of ADP-Fe(II), 

possibly due to the stronger chelation agent. Estrogens which did not contain the 

catechol structure caused no significant damage. Catecholamines were also found, in 

the presence of chromium, to generate oxidative DNA damage.79 Transition 

elements, particularly copper, were also responsible for enhancing the oxidative 

DNA damage generated by a number of carcinogenic chemicals, including 4- 

aminobiphenyl (rubber antioxidant),80 ethylbenzene (air pollutant)81 and acetamide 

(solubiliser and plasticiser).82 A number of chemicals may also be metabolised to 

toxic forms in vivo, including DEB (diepoxybutane, used in rubber production),83 

HAAs (heterocyclic aromatic amine, mutagen caused by cooking proteinaceous 

food)84 and styrene.85,86

1.3.4 Reactive Oxygen Species

Oxygen is essential for normal respiratory function; however, it has many
on

toxic effects. Many of the damaging effects of oxygen can be attributed to the 

formation of O2 radicals in vivo™ In its natural state, the two outermost electrons of 

0 2 are unpaired and are located singly in two 7t* 2p orbitals, and so have parallel 

spins. An input of energy can cause the two electrons to reside in a single n* orbital, 

resulting in the generation of singlet oxygen (*0 2 ). Two forms of *02 are possible, 

however, the higher energy triplet state (3£ g~) is only observed in gaseous molecules, 

and so the lower energy state (!Ag) is normally only considered for aqueous 

solutions.89 This highly oxidising molecule is very unstable and rapidly decays back 

to 0 2. If O2 accepts a single electron, that electron enters one of the te* orbitals to fill 

it. The other 7t* orbital still has a lone electron. This compound is known as 

superoxide and is a weak oxidising agent. If another electron is added the second n* 

orbital is filled and no unpaired electrons remain. The resulting peroxide ion, 0 2 2’ is 

immediately protonated at physiological pH to form hydrogen peroxide, e.g. by the 

action of superoxide dismutase. Scheme 1.8 outlines the electron configuration for 

the various states.
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Scheme 1.8: Electron configuration fo r  various states o f diatomic oxygen. 8

H2O2 decomposes upon heat or ionising radiation to produce two hydroxyl 

radicals (*OH), according to Reaction 1.1;

H 10 1 - £ - > 2  HO • (Reaction 1.1)

With the availability of ROS via normal cellular metabolism in vivo, antioxidant 

defences have evolved to protect against ROS. Oxidative stress therefore only occurs 

when these defence mechanisms do not fully protect against ROS. Of critical 

importance is the level of oxidative stress produced.90 Very low levels may be 

efficiently repaired, while very high levels may lead to cell death, so that initiated 

cells (the first step of carcinogenesis) do not remain in the organism. Intermediate 

levels of oxidative base lesions are therefore more likely to have a mutagenic effect. 

Another important feature of ROS is that, by reaction with non-radical species they 

generate new radicals, and so start chain reactions.91 In a recent study, ROS were 

found to attack the ROS-generating cell in order to increase 8-oxoG formation in a 

study with leukaemia cells. Therefore 8-oxoG formation could be induced in cellular 

DNA without the need to add considerable amounts of ROS.92 ROS have also been 

implicated in 60-70% of DNA strand breaks in radiation-induced carcinogenesis.93
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DNA isolated from cells and tissues has provided information about the 

nature of ROS involved in the damage to DNA in vivo, e.g., DNA isolated from 

people suffering from Alzheimer type senile dementia were shown to have a pattern 

of purine and pyrimidine damage that suggested attack by »OH, while cells isolated 

from Parkinson’s disease patients showed selective oxidation of G,55 which 

indicated that ^  damage may have occurred.

1.3.4.1 Hydroxyl Radical

•OH is probably the most noxious of the ROS generated from O2, reacting 

directly with all known biomolecules at diffusion limited rates (~ 107-1010 M 'V 1).94 

It is the most electrophilic radical to which DNA is normally exposed.95 It is also the 

only oxygen radical that has a strong tendency for both addition across a double 

bond and hydrogen abstraction. *OH also has high thermokinetic reactivity, i.e., 

when it reaches a reaction site such as a DNA base, it has the thermokinetic energy 

to add to it. All components of the highly electron dense DNA are subject to *OH 

attack: the deoxyribose backbone, the purine bases and the pyrimidine bases.91 At 

least four types of damage may be generated by this radical, including oxidised 

bases, abasic sites, strand breaks and DNA-protein cross links.96

About 20% of »OH radicals attack the deoxyribose sugars of the DNA 

backbone, extracting hydrogen from the carbon atoms, with extraction at the C4 

position probably the most important process.97 This causes single strand breaks, 

which are usually not lethal to the cell, but may cause a mutagenic effect.

The numerous lesions to all four DNA bases have become a signature for its 

attack. In Thymine there are two sites for *OH addition, the C5-C6 double bond.98 

The »OH binds preferentially at C5, (approximately 60% of addition takes place 

here) as this is the site of highest electron density. However, the methyl group 

sterically hinders addition at C5, and so a relatively high level (-3 1 % ) of addition 

takes place at C6. The remaining 9% of »OH abstracts H+ from the methyl group.
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Different oxidative lesions are formed under both anaerobic and aerobic 

conditions,97 as seen in Schemes 1.9 and 1.10 respectively.
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Scheme 1.9: Thymine lesions generated under anaerobic conditions by attack o f
97•OH. Bases depicted in purple are also generated in aerobic systems: bases 

depicted in blue are only generated under anaerobic conditions.

Under anaerobic conditions the major C50H  adduct is further oxidised at C6 

and the resulting cation quenched with water to generate 5,6-dihydroxy-5,6- 

dihydrothymine (thymine glycol), or a proton is abstracted from DNA to give 5- 

hydroxy-5,6-dihydrothymine. The minor C60H lesion is reduced to form 6- 

hydroxy-5,6-dihydrothymine. The radical formed by proton abstraction from the 

methyl group (methyleneuracil radical) is oxidised to generate 5- 

hydroxymethyluracil.
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Scheme 1.10: Thymine lesions generated under aerobic conditions by attack o f 

•OH.97 Bases depicted in purple are also generated in anaerobic systems; bases 

depicted in red are only generated under aerobic conditions.

Under aerobic conditions, thymine glycol and 5-hydroxymethyluracil are 

again observed. The C50H, C60H and methyieneuracil intermediates can also be 

decomposed to give 5-hydroxy-5-methylhydantoin and 5-hydroxymethyluracil.

Cytosine chemistry is quite similar to that of Thymine. C5-C6 is again the 

predominant site for proton or »OH addition, but the double bond between N3 and 

C4 is also a potential additional reaction site ." As with Thymine, different lesions 

were formed under anaerobic and aerobic conditions, as shown in Scheme 1.11. No 

evidence for addition at C4-N3 was found. Again the C5 position of the C5-C6 was 

found to be the preferential reaction site, with approximately 87% of additions 

taking place here. The C5 radical was found to have reducing properties while the 

C6 radical is a weak oxidant.
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Scheme 1.11: Cytosine lesions generated under anaerobic and aerobic conditions by 

attack o f  •OH 97 Bases depicted in purple are generated in both systems, bases 

depicted in red are generated in aerobic systems only, bases depicted in blue are 

formed in anaerobic systems only.

In both systems the major product formed is 5,6-dihydroxy-5,6- 

dihydrocytosine (cytosine glycol), which is formed in an analogous manner to 

thymine glycol. This dehydrates to 5-hydroxycytosine. Under anaerobic conditions 

5-hydroxy-5,6-dihydrocytosine is formed, again by analogy to Thymine. This 

rapidly deaminates to 5-hydroxy-5,6-dihydrouracil (not shown in Scheme 1.11). In 

oxygenated systems cytosine glycol can deaminate to give uracil glycol, which in
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acidic conditions can lose water to form 5-hydroxyuracil. As with Thymine, 

hydroperoxides may be formed that decompose to 5,6-dihydroxyuracil and 5- 

hydroxyhydantoin.

A large number of lesions have also been reported for the purine bases 

Adenine and Guanine. Purine OH adducts, however, demonstrate a phenomenon 

called “redox ambivalence”, i.e., they are mesomeric structures that are easily
i onoxidised and reduced. Therefore the relative yields of each lesion formed cannot 

be obtained using a mass balance. O H  adds to C4, C5 and C8 of guanine. C80H is 

probably the most studied adduct, and exhibits redox ambivalence. Reduction of 

C80H gives a formamidopyrimidine (FapyG), while oxidation results in 8-oxoG. 

Interestingly, the adducts formed at C4 and C5 may decay back to form the original 

base, in a type of “auto-repair” mechanism, as a minor reaction.97 In addition, 

oxidation products such as Imidazolone and Oxazolone are generated as a major 

reaction of the neutral radical G(-H)v101 Due to the minor repair reaction therefore, 

although addition at C8 can account for just 25% of the O H  addition,100 it can 

generate a significantly higher amount of base lesions. H extraction from a Guanine 

sugar at C5 can cause a cyclic adduct with the Guanine base itself, 8,5’-cyclo-2’- 

deoxyguanosine. In the presence of 0 2, however, this reaction is suppressed, as it 

reacts with the sugar radical before it can cyclise.97 Intermediates and adducts of 

Adenine are analogous to that of Guanine, though their redox properties differ 

slightly.100 *OH radicals have been found to add to C4 (82%) and C8 (18%). As with 

G, the C40H adduct regenerates the base itself. C80H, also redox ambivalent, 

reduces to form FapyA and 8-oxoA. A cyclic adduct analogous to Guanine, 8,5’- 

cyclo-2’-deoxyadenosine, is also generated, but again this is a minor product under 

aerobic conditions.97 The lesions generated by O H  addition to Guanine are shown 

in Scheme 1.12.

•OH on average travels of maximum of 3 nm in vivo (about 5-10 molecular 

diameters) before it reaches a molecule with which to react, and cannot cross 

biological membranes.94 Therefore it can only inflict damage on DNA if it is
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generated in very close proximity to the double helix. H2O2, a precursor for *OH, 

can, however, cross biological membranes, and so if a metal catalyst is localised 

very close to DNA, *OH can be generated close enough to inflict oxidative 

damage.90 The major endogenous source of *OH within cells is the transition metal- 

mediated Fenton reaction. H2O2 is ubituous in the human body as it is a biproduct of 

enzymatic reactions.

N ' 'N '  "N 
Guanine

J ^n^ nh2
Imidazolone

0

'2'w N ' ’NH2 
Oxazolone

N
Guanine

N-V V —  ^ Y v 0H
1ST 'N n N' 'N

C80H

reduction oxidation

NT '1ST N 
8-oxoG

Scheme 1.12: Guanine lesions generated by attack of*OH. 97
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1.3.4.1.1 Fenton reaction

The Fenton reagent is so called after H. J. H. Fenton reported in 1894 that 

ferrous iron and H2O2 reacted with various organic compounds, presumably via the 

formation of *OH. In 1975 Walling re-examined this reaction as a primary source of 

•OH-mediated damage to organic substrates.102 The following model of a Fenton 

oxidation reaction was proposed, where R is an organic species:

H 20 2 + Fe(II) — »Fe(lII) + HO'  + HO • (Reaction 1.2) k, = 76 [m o l's '

HO • +Fe(II) — »Fe{IlI) + HO~ (Reaction 1.3) k2 = 3 x l ( f  Im of's'1 

HO ■ +RH —^ -> H 20  + R ■ (Reaction 1.4) k3 = 107-10w Im ot’s 1

K +Fe(M)  —^—> Fe( I I ) + product (Reaction 1.5)

2R -------2— > product(dim er) (Reaction 1.6)

R ■ +Fe(II) — Fe(III)  + RH  (Reaction 1.7)

The overall rate limiting step in this reaction is the generation of *OH. Once formed, 

it reacts at diffusion limited rates, both with further iron(II), and with the organic 

species, R. R* then can react with ferric and iron(II), and with other R#. It can also 

react with O2 as follows:

R + 02 R 0 2 — f-̂ R O ~ 2 + Fe(III) (Reaction 1.8)

•OH is also capable of reacting with the two starting compounds, as shown:88

HO • +Fe(lI) -> Fe(III) + HO '  (Reaction 1.9)

HO • +H20 2 -»  H 20  + H ++ 0 “ (Reaction 1.10)

01  + Fe(III) -> Fe(II) + 0 2 (Reaction 1.11)

29



If the organic species is guanine, Reaction 1.4 would result in the loss of an electron 

and a proton, to generate G+#, which has been reported as the initial compound 

generated by one-electron oxidation of G.43 G+* oxidation in Reaction 1.5 could lead 

to 8-oxoG, while reduction in Reaction 1.7 could lead to FapyG.97 Reaction 1.6 

involves two radicals reacting with each other to form a dimeric complex. Goyal et 

al.42 reported a dimer generated by the reaction of G+# and 8-oxoG+\  as shown in 

Scheme 1.13.

G+ 8-oxoG+ Dimer

Scheme 1.13: Proposed dimer formation from G+* and 8-oxo G+#.42

According to Reaction 1.8, a peroxyl radical may also be formed. While none have

been isolated to date, Cadet et al.96 suggest that they may be generated from

reactions involving the C40H intermediate. When reactions were carried out in

solution saturated with l8C>2, the ,80  atom was incorporated in some of the final

oxidation products. This reaction could not be measured by pulse radiolysis,
7 1 1however, suggesting that it occurred at a rate very much slower than 10 lmol' s' .

For the Fenton reaction to mediate DNA damage in vivo, both H2O2 and 

iron(II) must be available to react, and must be located adjacent to the DNA base, as 

the *OH will react with the first biomolecule it encounters.90 Zastawny et al. 103 

examined mammalian cells exposed to exogenous iron(II). The *OH scavenger 

DMSO was ineffective in inhibiting its formation, leading to the conclusion that 

•OH-mediated damage was caused by a site specific mechanism which involved 

metal ions bound to the DNA double helix itself. Henle et al.104 showed that Fenton 

reaction-mediated damage to DNA caused strand breaks selectively at G triplets at
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H2O2 concentrations of 5-50 mM, and at TGA or TGG sequences at concentrations 

of 0.05-2.5 mM H2O2. It was proposed that the sequence selectivity was due to 

preferential iron binding at these sequences. This would result in »OH generation 

also occurring preferentially at these sequences, and therefore any »OH damage 

would be only be caused in this vicinity. N7 of G is the strongest possible chelation 

site for transition metals due to its high electronegativity. This binding would be 

supported by adjacent G bases, and would place the iron in close proximity to the 

deoxyribose sugar, allowing for strand cleavage to occur. Similarly if the iron bound 

to the N7 of G in a major groove next to T, it would be close enough to the 

2’-deoxyribose sugar to cause strand cleavage without having to distort the double 

helix. This theory was also supported by an in depth NMR study by Rai et al.105

The formation of *OH via the Fenton reaction (Reaction 1.2) has not been 

universally accepted, however. A 1994 kinetic study of the Fenton oxidation 

mechanism concluded the reaction of iron(II) and H20 2 lead to two intermediates; 

neither exhibiting the reactivity of »OH.106 Scheme 1.14 outlines the mechanism 

proposed. Initial reaction of the iron(II) and H2O2 generated a metal containing 

oxidant (kj), termed X, which was found to be more selective than *OH. This 

intermediate was then depleted by the competitive reactions of second order 

processes (k2) and unimolecular decay (k3). The decay of X (which is rate limiting) 

proceeds via a second metal containing oxidising intermediate, Y, which 

subsequently decays to form Fe(III). Both X and Y were found to be capable of 1 

electron oxidation and therefore could be mistaken for *OH. Based on the reactivity 

of both species, it was proposed that X was probably a peroxo complex, e.g. 

Fe(II)(OOH), and Y an iron(IV)oxo complex, e.g. F e02+.

(e.g. Fe02+)  Fe(lll)
Fe(ll)+H20 2^= ^X [e .g . Fe(ll)(O O H )]<T

Scheme 1.14: Proposed mechanism fo r  reaction o f  iron(Il) and H2O2.106
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A subsequent publication in 1995 examined the feasibility of the Fenton
| f\n

reaction on thermodynamic grounds. It found that the familiar outer sphere 

mechanism used to represent the Fenton reaction (Reaction 1.2) was 

thermodynamically unfavourable and therefore it was felt that it was unlikely to 

occur. The kinetic likelihood of the reaction occurring was not considered. Instead, 

an inner sphere mechanism involving the formation of a transient ferrous peroxide 

complex was proposed, as in Reaction 1.12. This could still result in the formation 

of O H , however, as shown in Reaction 1.13 -  Reaction 1.15. The effect of the 

ligand, L, on the nature of the final oxidation product was not investigated in detail.

L -  Fe(II) + H 20 2 L -  Fe(H 20 2)2+ (Reaction 1.12)

L -  Fe(H 20 2)2+ L -F e { III)  + OH + OH (Reaction 1.13) 

or —» L - Fe(IV) + 2 OH '  (Reaction 1.14)

or + R L -  Fe(III) + OH '  + ROH  (Reaction 1.15)

Where the compound R is one that can be directly oxidised by Fe(H2C>2)2+, the 

mechanism may be altered so that very little O H  is produced. Whether »OH is 

formed depends, however, on the solution composition. O H  generation is usually 

preceded by reactive intermediates, and it is extremely difficult to discern whether 

free O H  or a reactive intermediate is generated.108 Reaction 1.2, the Fenton 

reaction, is nonetheless generally accepted as a probable mechanism for the 

production of »OH in vivo.83 Differences between the reaction products of O H  

generated by the Fenton reaction and by y-irradiation of water have been attributed 

to the presence of a reducing species, i.e., iron(II) in the Fenton reaction.109

1.3.4.2 Singlet oxygen

Singlet oxygen, 10 2, has also been implicated in ROS-mediated damage to 

DNA. Unlike O H , lesions have not been reported for all four bases; instead G is the 

main target for ]Û2 attack, where it preferentially undergoes cycloaddition. 8-oxoG
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is the main adduct reported, a mechanism proposed for its generation is outlined in 

Scheme 1.15.62

-OOH
N

Guanine Guanine-1,4- 8-hydroperoxy-guanine 8-oxoguanine
endoperoxyde

Scheme 1.15: Proposed mechanism fo r  8-oxoG formation by 10 2  attack, G depicted 

in blue and 8-oxoG depicted in purple. 62

It was subsequently proposed that 8-oxoG was not the final product of *02 oxidation, 

but underwent further reaction with {C>2 to generate oxaluric acid via a 

guanidinohydantoin intermediate, as shown in Scheme 1.16.110

nV w  nA / K _  ° K nVj l  L / = ° — T Ip >=° —- V| — -  if T  >=0
8-oxoG

O

HO

5-hydroperoxy-8-oxoG 

0;

-CO,

rV* -
0  0  °  N N n u  H,N N N

Parabanic acid unOxaluric acid ’ “ v',u oxidised Guanidinohydantoin

Scheme 1.16: Proposed mechanism fo r Oxa formation from 8-oxoG by 7 02 attack, 8- 

oxoG depicted in purple, intermediate oxidised Guanidinohydantoin depicted in

orange and final oxidation products depicted in green. 110

In 1990 Floyd et al. noted that they had recently discovered that methylene 

blue plus light generated 8-oxoG.37 Because of the absolute dependence on oxygen 

and the strong D2O effect it was proposed that *02 was involved in the 8-oxoG 

formation. They subsequently showed that single strand breaks were also generated, 

but their frequency was approximately 17-fold less than the frequency of 8-oxoG. 

•OH radicals were ruled out as possible reactants during the oxidation.111 ^ 2  was
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demonstrated to selectively target G bases for oxidation in a study of *02 induced 

mutations in mammalian cells.112 98.4% of the mutations induced involved G:C base 

pairs. G:C-»T:A transverions were the most frequent mutation (50.8%), followed by 

G:C-»C:G transversions (32.8%).112

DNA was irradiated by 254 nm light in a study by Wei et a/.,70 which found 

that 8-oxoG was formed in a dose-dependant fashion. Again *OH was ruled out as 

the major pathway for the base lesion formation; instead it was proposed that *02 

was the main mechanism by which damage occurred. (*OH may have been a minor 

oxidation pathway.) This is in agreement with Type II photoirradiation, which 

proposes that ROS are involved in oxidative DNA damage by UV light, with *02 the 

major pathway and *OH the minor pathway (see Section 1.3.1). Hickerson et al.m  

demonstrated that when 8-oxoG was incorporated into a DNA strand, reactions with 

*02 resulted in oxidation primarily with the 8-oxoG with little sequence selectivity. 

The reaction was thought to occur via cycloaddition, though no oxidised species 

were proposed. Oxaluric acid was suggested as a final oxidation species in 2000 by 

Duarte et a /.110 It was proposed that *02 oxidation of 8-oxoG occurred via 

cycloaddition to form 5-hydroperoxy-8-oxoG, which decomposed to give 

guanidinohydantoin. This was oxidised to parabanic acid, and on further oxidation 

yielded oxaluric acid, the final product of the *02 oxidation.

1.3.4.3 Peroxyl Radical

Very little study has been carried out on peroxyl radicals (RO O ) to date, 

even though they are present in normal cells at high steady state concentrations, and 

have a long biological half-life in comparison to the other ROS.114 R O O  generates 

adducts with all four DNA bases, though it does not generate as many adducts as 

•OH, as it is a weaker, more specific oxidant. It oxidises pyrimidines with slightly 

greater ease than purines. ROO* reacts with the major groove of DNA, avoiding any 

steric hindrance from Watson-Crick base pairing in the double helix. Reaction with 

pyrimidines forms the monohydroxy and dihydroxy derivatives. Reaction with the 

purine bases generates primarily 8-oxoG and 8-oxoA. Adenine-6-hydroxylamine,
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production which had not been detected during #OH attack, was also formed via 

ROO-mediated oxidation, shown in Scheme 1.17. It was therefore proposed as a 

biomarker for R O O  oxidation.

Adenine 8-oxoAdenine Adenine-6-hydroxylamine

Scheme 1.17: Adenine adducts generated by peroxyl radical attack.114

1.3.4.4 Superoxide and Hydrogen Peroxide

Superoxide and hydrogen peroxide have been reported not to undergo any 

chemical reactions with DNA and therefore cannot be involved in direct attack.90 

They can, however, catalyse the formation of other radicals, such as »OH, that can 

react directly with DNA, and so they should be considered to be of potential danger 

to the integrity of the double helix. Superoxide, for example, is reported to be 

formed from 1-2% of total 0 2 consumption, during respiration. This can dismutate 

(via superoxide dismutases) to yield H2O2. The reactivity of H2O2, a ubiquitous 

oxidative species, is primarily due to its reactions with metal ions to produce »OH, 

which directly react with DNA.91 It can cross biological membranes, unlike *OH, 

allowing for O H  formation in close proximity to the double helix. A study of H2O2 

interactions with DNA disagreed that it did not directiy inflict any damage, 

concluding that it was a very weak oxidant.115 It concluded that the adduct adenine 

N-l-oxide was formed by ionic oxidation by H2O2 and not by »OH, as it was not 

formed during hydroxyl radical attack on DNA.
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1.4 Methods of detection of DNA damage generated by oxidation

Two main approaches, indirect and direct, have been developed to detect 

DNA damage.116 The indirect approach keeps DNA intact, and the oxidative damage 

is measured using one of two techniques. The first uses biological methods such as 

Comet or ELISA assays to detect damaged DNA bases by inducing strand breaks 

where the damaged DNA bases occurred. The second subjects the DNA to repair 

enzymes, which nick the DNA where adducts have been formed. Gel sequencing 

techniques are then used to quantify the number of strand breaks. A significant 

advantage of indirect techniques is the reduced amount of cells required for 

analysis.117 The direct approach uses either acidic hydrolysis to release the bases or 

enzymatic hydrolysis to release nucleosides or nucleotides. The lesions are then 

separated from unmodified bases and subjected to analysis. A range of techniques 

can be used for direct analysis, including mass spectrometry, amperometry, and
'I'y

radio-activity ( P-postlabelling). For direct analysis, a sensitivity of at least 1 

lesion/106 DNA bases is required.75

1.4,1 Voltammetric techniques

The electrochemical oxidation and reduction of nucleic acids has become an 

invaluable tool in the detection of DNA damage.118' 120 Detection of DNA damage 

involves the immersion of an electrode, which has double stranded DNA 

immobilised onto its surface, in a solution known to induce DNA damage. The 

electrode is then immersed in a solution containing complexes that enhance the 

voltammetric signal generated by the damage. Although electrochemical methods 

are also capable of measuring base reduction, in the literature two strands of DNA 

damage detection have emerged, with single strand breaks (SSBs) detected using 

supercoiled (sc) DNA with mercury electrodes, while base adducts are detected 

using calf thymus or salmon testes DNA. 121
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sc DNA, immobilised onto a hanging mercury drop electrode (HMDE)* to 

test for strand cleaving agents, can detect a single strand break in the DNA sugar- 

phosphate backbone.118 For example, a sc DNA-modified electrode was immersed 

into a solution containing the iron Fenton reagents.122 *OH-mediated single strand 

breaks were generated in the sc DNA, which caused it to unwind from its tightly 

bound closed circular form to a much looser open circular (oc) or nicked form. This 

oc DNA had a much higher a.c. voltammetric response than sc DNA when measured 

by linear sweep or square wave voltammetry (SWV). The sensitivity of this method 

was not determined either qualitatively or quantitatively, however, by using any 

other analytical method, y-irradiated DNA samples were also nicked to form oc 

DNA on HMDE electrodes. ‘ Adsorptive transfer stripping a.c. voltammograms 

revealed the presence of a third peak at approximately -1.4 V vs. SCE when the 

single-strand nicks had been introduced into sc DNA on the electrode surface. When 

iron was replaced by copper the third peak of the transfer stripping voltammogram 

was also observed.124

Two approaches have emerged for the detection of base adduct formation. In 

the first approach, linear DNA, either calf thymus or salmon testes, is immobilised 

onto the surface of a carbon electrode. The electrode is then immersed into suspected 

toxic chemicals, and subsequently dipped into a solution of DNA intercalators. 

These intercalators function in one of two ways. Firstly, the intercalators can 

catalyse the oxidation of damage caused to DNA, so that an increase in voltammetric 

signal is generated when damage occurs to the double helix which causes single 

strand breaks or unwinding of the double helix.125 Secondly, they can bind

preferentially with double stranded DNA so that a decrease in signal is recorded for
126damaged DNA. For the second approach, DNA and a metal catalyst are 

immobilised on the electrode surface, and immersed in the suspected toxic chemical. 

Damage to DNA causes an increase in the electrochemical signal of the metal 

catalyst, detected by SWV.127 Rusling et al. have worked extensively on such

* as mercury is a highly toxic material in modern analysis a suitable alternative to HMDE electrodes 
should be explored.
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sensors, using the toxic compound styrene oxide as a model for their
r  125,128.129 systems.

The information gained by these voltammetric techniques is limited, 

however, in that the type of oxidative DNA damage caused can only be quantified. 

The position of the SSBs in sc DNA or the identity of the base adducts cannot be 

ascertained. Dennany et a/.,130 however, have recently incorporated Osmium, which 

specifically oxidises 8-oxoG,131 into polymer films, which are layered with DNA 

films on modified electrodes, and so have successfully identified both the nature and 

extent of 8-oxoG generated by the Fenton reaction.

1.4.2 Electrochemical detection with chromatography & electrophoresis

For the separation of 8-oxoG in damaged DNA, two main chromatographic 

techniques have emerged: high performance liquid chromatography (HPLC) and 

capillary electrophoresis (CE). Both HPLC and CE techniques have been coupled to 

electrochemical detectors (EC), with varying degrees of success. EC detection is 

based on the fact that 8-oxoG has an ionisation potential about 0.5 V lower than G,40 

which itself has the lowest ionisation potential of the four DNA bases.15 Coupling of 

EC to HPLC is straightforward, and does not require any interface, as the EC can be 

connected in series to the UV detector and the eluent flows from the column through 

both detectors. Coupling to CE, however, is significantly more problematic. 

Separation by CE is based on a voltage in the order of up to 40 KV being applied to 

the capillary, while EC detection typically occurs at a potential of less than 1 V (vs. 

Ag/AgCl). This has resulted in commercial CE systems being completely unsuitable 

for EC detection. So called “in-house”, i.e., homebuilt, systems must be constructed, 

and the EC detection cell fitted to the capillary in such a way that it remains 

unaffected by the separation voltage. CE does, however, have a higher separation 

efficiency than HPLC, and only one extraction step is needed for urine analysis in 

comparison to the multiple steps needed for HPLC.132 In addition, CE-EC has the 

potential to be developed as a microfluidic device, as it does not require any pumps
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or elaborate set ups, and both the separation and detection units have successfully 

been miniaturised separately. This is one of the reasons driving the inherendy more 

difficult CE-EC system.133’134

1.4.2.1 HPLC-EC

ID
Two years after it was reported by Kasai and Nishimura,' 8-OHdG, in the 

presence of dG, was sensitively detected in the presence of unmodified bases for the 

first time by Floyd et a /.,135 using HPLC-EC at approximately 0.5 V vs. Ag/AgCl. 

Also in 1986, 8-OHdG was detected at a background level of 0.6 -  1.4 8-OHdG/lO5 

dG (= 1.3 -  3.1 8-OHdG/lO5 nucleosides) in DNA of HeLa and mouse liver cells.73 

Three years later in 1989, 8-OHdG in urine was detected by Shigenaga et a l using 

HPLC-EC for the first time.50 A series of solid phase extraction (SPE) steps were 

carried out prior to analysis to separate the 8-oxoG from other urinary constituents. 

Using this assay it was estimated that humans excrete 168 8-OHdG lesions per cell 

per day (~ 5.1*1015 8-OHdG/day -  130-300 pmol/kg/day).

Ravanat et a l 136 determined that the background level of 8-oxoG in rats to 

be 2 -  5 8-oxoG/106 DNA bases, with limit of detection (LOD) of approximately 1 

8-oxoG/106 DNA bases. The background level of 8-oxoG in human cells is probably 

between 0.3 -  4.2 8-oxoG/106 DNA bases, although the levels measured by HPLC- 

EC have fluctuated from 0.35 -  2000 8-OHdG/lO6 nucleosides.137 HPLC-EC is also 

used for the determination of urinary levels of 8-OHdG. The LOD of 8-OHdG, at

0.4 nM, is over ten fold lower than the reported range in human urine (6.2 -  37.9 

nM).138 Due to the strong interference of uric acid in urine, however, the sensitivity 

of 8-oxoG detection by HPLC-EC is still too high, with a LOD of 80 nM. Tagesson 

et al.139 successfully utilised HPLC-EC to examine the levels of 8-OHdG in urine in 

cancer patients, considering it to be the most sensitive technique to date for 

quantifying low levels of the lesion. 8-OHdG levels in cancer patients, 

approximately 40% higher than in healthy individuals, were found to increase by 

approximately 20% after therapy oncological onset.
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1.4.2.2 CE-EC

CE-EC is a recent development, with very few research groups developing 

in-house systems. Two that have are those of Lunte et a l  132 and Inagaki et al. 140 In 

2000, Weiss and Lunte132 reported the detection of 8-oxoG in urine using only a 

single SPE step. This was the first time that nanomolar quantities (approximately 1 

8-oxoG/106 DNA bases) had been detected using CE-EC. A LOD of 50 nM (S/N=3) 

8-OHdG was reported, and the level of 8-OHdG in human urine using the system 

was measured to be 42 ± 26.9 nM (despite a LOD of 50 nM), using a potential 

across the electrochemical cell of 0.50 V vs. Ag/AgCl. A year later Inagaki et al. 

reported the detection of dG, 8-OHdG and N2-ethyl-dG using CE-EC.140 The 

amperometric detector was set to 1.0 V vs. Ag/AgCl. LODs of l.OxlO'6 mol/1 for 

dG, 5.9xl0"7 mol/1 for 8-OHdG, and 7.9xl0 '6 mol/1 for N2-ethyl-dG were reported. 

This represented a sensitivity about 10-fold lower than that of Weiss and Lunte. This 

was attributed to the fact that a higher detection potential was used to detect for dG 

as well as 8-OHdG, hence lowering the S/N. With an LOD of 4.3 nM, (ten fold 

higher than HPLC-EC) the CE-EC detection of urinary 8-OHdG was successfully 

demonstrated, concluding that 8-OHdG levels are twice as high in smokers (31.4 ± 

18.9 nM) than in non smokers (14.4 ± 7.6 nM).141

1.4.3 Mass spectrometry

Mass spectrometry (MS) is normally coupled to either HPLC or gas 

chromatography (GC) for the detection of DNA damage adducts generated from 

oxidation. It has the potential to detect all DNA lesions formed, and can provide 

information about the mass of the lesion and its structure, and so is a much more 

powerful technique than chromatography alone. In 1985 Dizdaroglu142 detected not 

only the four unmodified DNA bases, but also the adducts 5-hydroxy-5,6- 

dihydrothymine, thymine glycol, 5-hydroxyuracil, 5-hyroxy-5,6-dihydrouracil, 5,6- 

dihydroxyuracil, 8-oxoG, FapyG, 8-oxoA and FapyA from a single GC-MS run of y- 

irradiated ct DNA. In all cases trimethylsilyl (TMS) derivatives were used for MS 

detection. Subsequently this technique was used to probe for •OH-mediated damage
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to DNA in mammalian chromatin.143 GC-MS allowed this analysis without the need 

to isolate the DNA from the chromatin. In addition to detecting the base lesions of 

•OH attack outlined in Section 1.3.4.1, this method also identified damage caused to 

the sugar backbone of DNA. An LOD of 1 adduct/106 nucleotides was achieved, 

with a sensitivity of approximately 5 fmol/adduct. This method was enhanced with 

the use of isotope-dilution mass spectrometry to quantitatively assess oxidative DNA 

damage, where stable isotope-labelled analogues were used as internal standards.144 

The labelled isotope of 8-oxoG, for example, was 8-oxoG-1,3-15N2-(5-amino-15N)-2- 

13C. By using the isotope 8-[4,5,6,8-13C4]oxoG, the level of 8-oxoG in commercial G 

was measured as 7.7 + 1.76 8-oxoG/106 DNA bases.145 This experiment also 

highlighted one of the biggest problems with GC-MS: artifactual 8-oxoG formation 

during derivatisation with TMS (also applicable to other base adducts). When the 

derivatisation temperature increased from 23 °C to 140 °C, the level of 8-oxoG 

recorded in G soared to 431.4 ± 41.36 8-oxoG/106 DNA bases. In a comparison 

between HPLC-EC and GC-MS, a 50-fold higher level of background 8-oxoG was 

recorded for GC-MS,54 even though both systems have comparable LODs (approx 1 

8-oxoG/lO6 nucleotides). The unreliability of GC-MS was further illustrated by its 

failure to detect dose response induced 8-oxoG.137

Recently HPLC-MS has emerged as an excellent technique for detecting 

DNA adducts, being the first technique that allowed for the accurate detection and 

quantification of dimeric cyclobutadipyrimidines, the primary products of UVB 

radiation.71 It avoids the derivatisation process and the artifactual oxidation that 

accompanies it. An interface is required, however, to ionise the liquid adducts prior 

to MS analyses. Two techniques, electrospray ionisation (ESI) and atmospheric 

pressure chemical ionisation (APCI) are commonly used for this ionisation 

process.146,147 Comparing HPLC-MS and GC-MS in 2001, Dizdaroglu et al. 148 

found that the sensitivity of the latter was much greater, even when HPLC-MS/MS 

(tandem MS) was used. In a separate publication the same year, however, the author 

reported that the sensitivity of both methods were comparable, with both techniques 

capable of quantifying base adducts at a level of 1 adduct/106 bases, even though
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GCMS suffers from significant artifactual oxidation, as previously discussed.149 

Gangl et a /.150 increased the LOD significantly of standard MS detection, also in 

2001. Using capillary liquid chromatography/microelectrospray mass spectrometry, 

a LOD approaching 1 adduct/109 bases was observed, 1000 times lower than that of 

previous HPLC-MS or GC-MS (or HPLC-EC), comparable to that of 32P- 

postlabelling. DNA adducts caused by chemical oxidation by heterocyclic aromatic 

amines (HAAs) (chemicals found in cigarette smoke and cooked proteinaceous food 

that may cause genetic damage) were detected using this system. DNA from monkey 

liver was isolated and enzymatically digested for this analysis, with SPE prior to 

injection. HPLC-MS/MS, however, is emerging as the method of choice for 

measurement with enhanced sensitivity, as shown in a 2002 publication by Paehler 

et al. 84 The dual MS detectors result in a massive reduction in background noise, 

with a concurrant increase in sensitivity. HAA-mediated adducts were again being
ft | c |

measured, and a LOD of 1 adduct/10 bases was reached. Weimann et al. reported 

the level of 8-oxoG in urine as 212 nmol/day using HPLC-MS, a value comparable 

to that reported using HPLC-EC. As with CE-EC, however, the LOD for the 

detection of urinary 8-OHdG, at 3.5 nM, was ten fold higher than HPLC-EC, but 

still adequate for background 8-OHdG detection.152

1.4.4 32P-postlabelIing

32P-postlabelling is one of the most sensitive and widely accepted methods of 

oxidative DNA damage detection.153 In 32P-postlabelling, DNA is enzymatically 

digested to 3’-monophosphates of unmodified nucleosides and adducts, which are 

then 5’-labeled with 32P by a polynucleotide kinase and [y-32P]ATP. The adducts are 

separated using thin layer chromatography (TLC) followed by autoradioactivity,154 

which is capable of detecting 1 adduct/107 nucleotides.155 Analysis of y-irradiated 

DNA resulted in a similar sensitivity.156 These LODs are several orders of 

magnitudes higher than the theoretical LOD of 32P-postlabelling of 1 adduct/109' 10 

nucleotides. The main reasons for this discrepancy are the poor separation of TLC, 

and the high 32P background.157 To reduce the practical LOD, HPLC was used for 

separation in preference to TLC. This resulted in an increase in sensitivity to 26 8-
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oxoG/108 bases. With enrichment of adducts prior to 32P-postlabeling, an LOD of 1 

adduct/109' 10 nucleotides is achievable.158 32P-postlabelling also suffers, however, 

from artifactual oxidation due to radioactive decay of the radioactive labels, which 

has been shown to oxidise neighbouring DNA bases.159

1.4.5 Biological assays

Biological techniques used for the determination of DNA adducts include the 

enzyme linked immunosorbent assay (ELISA) immunoassay and the single-cell gel 

electrophoresis assay (Comet assay).137 In 1992 a monoclonal antibody was raised 

against 8-oxoG, 8-OHG and 8-OHdG.160 The resulting immunoaffinity column was 

unsuitable for detecting these adducts in enzymatic digests of DNA, however, as it 

had a high cross-reactivity to dG. This limited its use to quantifying the biomarkers 

in biological fluids. A competitive enzyme-linked immunosorbent assay (ELISA) 

was developed in 1995 for the determination of 8-OHdG.161 Two monoclonal 

antibodies were raised against the lesion, but both were found again to cross-react 

with dG, and several structurally related derivatives. Levels of the 8-OHdG 

measured by this ELISA were approximately 6 times higher than when measured 

with HPLC-EC. If, however, urine samples were subjected to preparative HPLC 

prior to analysis by ELISA, a good correlation was observed between the HPLC-EC 

and ELISA for levels of 8-oxoG present.162 The preparative HPLC removes any 

substances which might cross-react with the 8-oxoG lesion.

The single-cell gel electrophoresis assay is used to measure single strand 

breaks and alkali labile sites in individual cells. It is commonly known as the 

comet assay because DNA with increased damage exhibits increased migration from 

the nucleus of the cell, appearing like a comet tail. In the comet assay, cells are 

mixed with agarose and then placed on a microscope slide coated with agarose. The 

cells are lysed and then the DNA migrates out of the cell during electrophoresis 

which can subsequently be visualised after staining with a fluorochrome dye. This 

assay can measure as low as 200 strand breaks per cell. This assay was used to 

demonstrate that nickel chloride at a concentration of 250-1000 pM induced
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significant damage to DNA in human lymphocytes.164 The comet assay was 

compared to HPLC-EC in 2002 by Gedik et al. 165 When measuring 8-oxoG induced 

by radiation both methods were shown to be equally efficient at detecting the lesions 

generated, with a good correlation between the mean values recorded for the 

different samples. There was no correlation, however, between individual values. 

Formamidopyrimidine DNA gylcosylase (FPG) was used to induce strand breaks at 

8-oxoG sites. FPG is not specific to 8-oxoG, however, and also induces SSBs at sites 

of ring opened pyrimidines (FapyG and FapyA). Therefore, if there is a significant 

amount of FapyG or FapyA in the DNA, this will lead to an overestimation of the 

level of 8-oxoG present.165
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1.5 Conclusions and Thesis Outline

Oxidative DNA damage has been the subject of intensive research, from a 

range of viewpoints. The endogenous methods by which it may be created have been 

investigated, with a number of ROS, including »OH and *02 subjected to an in depth 

analysis. The Fenton reaction was shown to be one of the primary methods by which 

•OH could be generated in vivo. A primary product of oxidative DNA damage by 

such ROS was found to be 8-oxo-7,8-dihydroGuanine, which was formed from the 

oxidation of the DNA base Guanine. 8-oxo-7,8-dihydroGuanine has been 

investigated in detail, and it was found to have a lower ionisation potential than any 

of the unmodified DNA bases, and serves as a ‘hotspot’ for further DNA oxidation. 

Studies are being carried out to investigate the oxidation products of 8-oxo-7,8- 

dihydroGuanine in DNA under continuing oxidative stress. To date, however, no 

studies have been undertaken to determine the rate of 8-oxo-7,8-dihydroGuanine 

oxidation under these conditions.

A number of techniques to detect the products of oxidative DNA damage 

including 8-oxo-7,8-dihydroGuanine, both directly and indirectly, have also been 

developed. While the indirect approach has the advantage of requiring significantly 

less DNA for analysis, the direct approach offers unrivalled information of the 

quantity, nature and structure of any oxidative DNA adducts generated. Of the direct 

approaches, HPLC, with its ease of coupling to a number of modes of detection, has 

emerged as the primary method for separating the unmodified DNA bases and any 

oxidised products generated. The modes of detection used in conjunction with HPLC 

include EC, MS and 32P-postlabelling. EC can detect 8-oxo-7,8-dihydroGuanine in 

the presence of significantly higher quantities of other DNA bases, while MS can be 

used to detect all potential DNA adducts, and can also be used to obtain structural 

information about the compound being analysed.

The aim of this thesis was to investigate the rate at which 8-oxo-7,8- 

dihydroGuanine is both generated and further oxidised when DNA was subjected to
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continuing oxidative stress, and to identify what, if any products were formed from 

8-oxo-7,8-dihydroGuanine oxidation. The Fenton reaction was used to subject DNA 

to oxidative attack, as this was one of the primary methods suspected of generating 

ROS in vivo. HPLC-EC, as a recognised sensitive and selective technique for the 

measurement of 8-oxo-7,8-dihydroGuanine, was used to monitor the concentration 

of 8-oxo-7,8-dihydroGuanine with increasing oxidation. HPLC-MS was used to 

identify any products of 8-oxo-7,8-dihydroGuanine oxidation.

In Chapter 2, DNA was subjected to oxidative stress, via the iron(H)- 

mediated Fenton reaction, which generated »OH. The concentration of 8-oxo-7,8- 

dihydroGuanine was monitored with continuing incubation of the DNA with the 

Fenton reagents. Although overall, its concentration was found to decrease with 

increasing incubation time, this decrease was not linear, but occurred via a series of 

oscillations in 8-oxo-7,8-dihydroGuanine concentration. Guanidinohydantoin was 

identified as a potential product of 8-oxo-7,8-dihydro Guanine oxidation. In Chapter 

3 , DNA was again subjected to oxidative stress, with the copper(II)-mediated Fenton 

reaction. Again, the concentration of 8-oxo-7,8-dihydroGuanine was found to 

oscillate with increasing incubation time, but these oscillations differed both in 

magnitude and period to those observed for the iron(II)-mediated Fenton reaction. It 

was proposed that the copper(II) Fenton reaction did not generate *OH, but rather 

*02. In Chapter 4 , the products of both iron(II) and copper(II) Fenton reaction 

mediated oxidation of 8-oxo-7,8-dihydroGuanine were investigated using HPLC- 

MS. It was found that it both cases, oxidised Guanidinohydantoin was the primary 

product formed, and that it was formed in similar magnitudes for both reactions. It 

was therefore proposed that a similar reactive species was responsible for the 

oxidation of 8-oxo-7,8-dihydroGuanine in both reactions, and therefore that iron(II) 

and copper(II) Fenton reactions generated the same reactive species. In Chapter 5, 

oscillatory reactions, which have been investigated in detail in the literature, are 

discussed. A possible mechanism for the oscillatory behaviour of 8-oxo-7,8- 

dihydroGuanine with continuing oxidation is proposed, which consists of two 

competing processes controlled by the concentration of [#0H ].
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Chapter Two

8-oxo-7,8-dihydroGuanine Formation and 

Oxidation During Iron-Mediated Hydroxyl

Radical Attack



2.1 Introduction

Few lipifigart g«i8pH8a§ p88es§e§ M lead m §NA toap m
oxidation, methylation, deamination and depurination.1 One of the more investigated 

processes that leads to DNA damage is oxidation. It has been reported, based on 

urinary analysis, that DNA is subjected to approx. 10,000 oxidative hits per day, and 

steady state levels of oxidative damage are one or more orders of magnitude higher 

than non-oxidative adducts.2 Oxidative damage can occur from a variety of sources, 

including y-irradiation,3,4 photoionisation,5’6 chemical oxidation7'9 and attack by 

reactive oxygen species (ROS).10-12

The hydroxyl radical (#OH) is the most noxious of the ROS, reacting direcdy 

with all known biomolecules at diffusion limited rates (~1010 M 'V 1).7 Hydroxyl 

radicals are efficiently generated from hydrogen peroxide (H2O2) by reaction with 

Fe(H) according to Reaction 2.1, also known as the Fenton reaction:13

H 20 2 + Fe(U )—^ F e ( U l )  + HO~ + HO kj = 76 Im o l's1 (Reaction 2.1)

The Fenton reaction is often used as a model for in vivo oxidative damage.14 

H2O2 is ubiquitous in cells; therefore to minimise the risk of Fenton reaction 

occurring, intracellular levels of Fe(II) are very tightly regulated.15 There is, 

however, a physiological demand for easily accessible iron that can be incorporated 

into a very wide range of iron-containing proteins.16 This is accommodated by a low 

molecular weight pool of weakly chelated iron that passes rapidly through the cell, 

called a labile iron pool (LEP). The iron for the LIP is delivered from a variety of 

sources, both extracellular and intracellular, as shown in Fig. 2.1 and Fig. 2.2 

respectively.

62



TBI pathway
Apo-TnO) QjO Q&

Fig. 2.1: Extracellular origins o f cellular Labile Iron Pool include the non 

transferrin bound pathway (NBTI pathway) and the transferrin bound pathway (TBI 

pathway).16 (reproduced from Kruszewski, M .16) Non transferrin bound iron (NBTI), 

transferrin bound iron (TBI), duodenal cytochrome B (DCYTB), divalent metal 

transporter 1 (DMPI), ceruloplasmin (CP), transferrin (Tn), transferrin receptor 1 

(TR1), transferrin receptor 2 (TF2).

Extracellular sources of labile iron, shown in Fig. 2.1, include both 

transferrin bound iron (TBI) and non transferrin bound iron (NTBI). Transferrin (Tn) 

bound iron is taken up via receptor-dependent endocytosis. Apo-Tn binds Fe(III) in 

blood serum to give diferric holo-Tn, which is bound by the protein Transferrin 

Receptor (TR), present on the cell surface. The complex is internalised and at 

reduced pH, Fe(II) ions are released from the holo-Tn and reduced by endosomal 

ferric reductase-like activity. The actual nature of the reductase is as yet unknown; 

however, a probable candidate is a duodenal cytochrome B (DCYTB). DCYTB is 

the protein that facilitates the divalent metal transporter, DMP1. The reduced iron 

ions are transported to the cytoplasm by DMP1, where it is released into the LIP.17 

Non transferrin bound iron (NTBI) also enters cells via DMT1, facilitated by 

DCYTB (which reduces the Fe(III) generated by the copper binding glycoprotein 

ceruloplasmin (CP)), and so can also be released into the LIP.
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Fig. 2.2: Intracellular origins o f cellular Labile Iron Pool from iron-containing 

proteins.16 (reproduced from Kruszewski, M.16). Iron sulphur cluster (4Fe4S), 

ferritin (FT), ferritin receptor (FTR), heme oxygenase (HO).

In addition to the extracellular iron uptake, there are a number of potential 

intracellular sources of LIP, shown in Fig. 2.2. The best known is ferritin (FT), an 

iron sequestering protein, which is capable of storing 3,500 iron ions per molecule. 

Although it normally acts an iron sequestering protein protecting cells from iron 

toxicity, it appears that protein degradation in lysosomes is the prevalent mechanism 

of iron release from FT. Another potential source of iron for the LIP is heme, which 

can enter cells as a heme-hemopexin complex. To prevent any toxic action of heme 

under oxidative stress, heme oxygenase (HO) is introduced. This oxidises heme to 

release Fe(III), which enters the LIP. Non heme iron proteins, such as iron-sulphur 

proteins, e.g. 4Fe4S, are sensitive to oxidative stress, and upon reaction with H2O2 

release iron into the LIP. The availability of both iron and H2O2 in human cells 

means that the Fenton reaction, which generates O H , is possible in vivo.
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•OH is the most noxious radical to which DNA is normally exposed.18 O H  

reacts with both the DNA backbone and with all four DNA bases, so that a variety of 

damaged DNA products may be generated, including oxidised bases, abasic sites, 

strand breaks and DNA-protein cross links.19 Over 60 different nucleoside adducts 

have been identified, and these numerous lesions to all four DNA bases have 

become a signature for its attack. Guanine (G) has the lowest ionisation potential of 

the four DNA bases,20 although it should be remembered that O H  is capable of 

oxidising all four DNA bases. One of the primary oxidised G species is 8-oxo-7,8~ 

dihydroGuanine (8-oxoG), which has been linked to mutagenesis, disease and
91aging. 8-oxoG is one of the primary lesions formed during O H  attack. It is 

considered a biomarker for oxidative DNA damage.22*23 8-oxoG is not, however, the 

final product of G oxidation. Instead it is itself readily further oxidised, at a lower 

potential than even its parent base G.24 (The oxidation products of 8-oxoG oxidation 

will be discussed in more detail in Chapter 5.) The ease of 8-oxoG oxidation may 

complicate the interpretation of steady state concentrations of 8-oxoG, if the 

oxidation of G, and therefore of 8-oxoG, is site specific, so that there is an increased 

likelihood of further 8-oxoG oxidation. If the oxidation of 8-oxoG is effective, a low 

steady state concentration could indicate a number of possible scenarios. It could 

simply show a low formation of 8-oxoG, or a high rate of both 8-oxoG generation 

and further oxidation; indeed it could even indicate some intermediate level of both 

generation and oxidation. Within living systems it could also mean that 8-oxoG 

repair mechanisms are very effective. In short, without information regarding the 

rates both of 8-oxoG formation and oxidation, no meaningful conclusions can be 

drawn from steady state concentrations of 8-oxoG.

The aim of this research was therefore, using the Fenton reaction as a model 

for in vivo oxidative damage, to investigate the generation of 8-oxoG by O H  attack, 

and to analyse the extent to which it is further oxidised. This was then used to 

compare the levels of 8-oxoG formation and further oxidation in the free base G and 

in double stranded DNA, to investigate whether charge transport along the DNA 

double helix in any way affected either of these rates.
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Free G and 8-oxoG were incubated with the Fenton reagents for a range of 

incubation times. The concentrations of both free G and 8-oxoG were measured 

simultaneously, using HPLC separation with ultraviolet (UV) and electrochemical 

(EC) detection, respectively. Polyguanylic acid (PolyG) and double stranded DNA 

were hydrolysed in 88% formic acid to release the unmodified DNA bases and 8- 

oxoG. The individual DNA bases were then separated using HPLC-UV-EC. 8-oxoG 

was immediately generated from free G, PolyG and DNA on incubation with the 

Fenton reagents Fe(II) and H2O2. The concentration of 8-oxoG was found to 

oscillate with increasing oxidation. In the case of free G, a maximum concentration 

of 0.68 |xM 8-oxoG was observed after 15 min incubation; thereafter the overall 

trend was towards a decrease in 8-oxoG concentration. A similar pattern was 

observed for both PolyG and DNA. The rate of oxidation of 8-oxoG itself was 

observed to be far higher than the rate of G oxidation. Guanidinohydantoin (Gh) was 

identified by HPLC-MS as a probable product of 8-oxoG oxidation.
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2.2 Materials and Methods

2.2.1 Materials

2.2.1.1 Chemicals

8-oxo-7,8-dihydroGuanine (2-amino-6,8-dihydroxypurine) (8-oxoG) 

(R288608), guanine (G) (G0381), uracil (U) (U0570), cytosine (C) (C3506), 

thymine (T) (T0376), adenine (A) (A8626), polyguanylic acid potassium salt 

(PolyG) (P4404), calf thymus DNA sodium salt (D1501) and salmon testes DNA 

sodium salt (D1626) [2,000 av. base pairs, 41.2% G/C] and 88% formic acid 

(399388), were purchased from Sigma Aldrich (Dublin, Ireland). 30% (v/v) 

hydrogen peroxide (H2O2) solution was purchased from Merck (Dublin, Ireland). 

Deionised water was treated with a Hydro Nanopure system to specific resistance > 

18 mi2-cm. LC-MS Chromasolv water (39253) and LC-MS Chromasolv methanol 

(34966) were purchased from Riedel-de-Haen (Dublin, Ireland). HPLC grade 

methanol was purchased from Labscan Ltd. (Dublin, Ireland). All other chemicals 

were of analytical grade and were used without further purification.

Silver/silver chloride (Ag/AgCl) electrodes (RE-6) were purchased from 

Bioanalytical Systems (BAS) Ltd. (Cheshire, UK). Restek reversed phase Ultra C18 

5 \xxn 4.9 x 250 mm column (9174575-700), Ultra C l8 4 x 10 mm guard cartridge 

(917450210), Trident XG-XF 10 mm guard cartridge fitting (25026) and 4 mm x 2 

(im cap frits (25022) were purchased from Restek Ireland (Belfast, Northern 

Ireland). Supelcosil reversed phase LC-18 5 pm 2.1 x 250 mm column (57935) was 

purchased from Supelco, Sigma Aldrich. 1 ml Pierce hydrolysis tubes were 

purchased from Medical Supply Co. (Dublin, Ireland). 47 mm Nylaflo nylon 

membranes with 0.45 pm pore size and 25 mm Acrodisc GF syringe filters with 0.45 

pm pore size were purchased from Pall (MI, USA). UN-SCAN-IT digitising 

software was purchased from Silk Scientific (UT, USA).
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2.2.1.2 Buffers

The mobile phase for gradient HPLC-EC consisted of 50 mM ammonium 

acetate with 50 mM acetic acid in 5% methanol. For HPLC-MS, the mobile phase 

consisted of 17 mM ammonium acetate with 20 mM acetic acid in 5% methanol. For 

this analysis, LC-MS Chromasolv water and methanol were used. All mobile phases 

were vacuum filtered using 47 mm Pall Nylaflo nylon membranes with 0.45 pm 

pore size and stirred overnight prior to use.

2.2.2 Apparatus

2.2.2.1 HPLC Instrumentation

The HPLC system consisted of a Waters (Waters Millipore, Milford, MA) 

Model 600E pump, and a Waters Lambda-Max model 481 LC-spectrophotometer. 

UY and EC chromatograms were generated using Hewlett Packard 3395 integrators. 

UN-SCAN-IT digitising software was used to digitise integrator chromatograms, 

which were then imported into KaleidaGraph or MS Office Excel. A Restek Ultra 

C-18 reversed phase column (4.6 x 250 mm, particle size 5 pm) with Trident XG-XF 

10 mm filter and guard column was used. The running buffer comprised of 50 mM 

ammonium acetate with 50 mM acetic acid in 5% methanol, pH 5.5, run under 

isocratic conditions at a flow rate of 1 ml/min. For UV detection of unmodified 

bases, a wavelength of 254 nm was used.

The electrochemical detector was coupled in series with the UV detector. It 

consisted of a CC-4 electrochemical cell (BAS) and a LC-4C amperometric detector 

(BAS). An Ag/AgCl reference electrode and a glassy carbon working electrode were 

used. The potential across the cell was set at +550 mV vs. Ag/AgCl. Sensitivity was 

set to 5 nA.
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2.2.2.2 Mass Spectrometry

For Mass Spectrometry, a Micromass Quadropole II was used with a Restek 

Ultra C-18 reversed phase (2.1 mm id x 150 mm) with 1 cm guard column. A flow 

rate of 0.3 ml/min was used with a mobile phase of 17 mM ammonium acetate with 

20 mM acetic acid in 5% methanol (reduced salt concentration to prevent ionisation 

suppression). Full scan spectra were taken at a cone voltage of 15 V using positive 

electrospray ionisation (ESI).

2.2.3 Methods

2.2.3.1 Oxidation of Guanine

A stock solution of lOmM Guanine was prepared daily in 0.1 M NaOH, pH

11. 800 pi 10 mM 8-oxoG was incubated with 200 pi 1.5 mM iron(II) sulphate 

(FeS0 4 *6H2 0 ) and 200 jxl 0.5 M H2O2 at 37 °C with constant stirring. Duplicate 100 

pi aliquots were taken after various incubation times. 50 pi 10 mM Uracil (prepared 

daily in 0.1 M NaOH) was added as an internal standard and the reaction was 

quenched with 1 ml 200 proof cold ethanol. The solution was dried immediately 

under a stream of nitrogen gas. The dried hydrolysates were refridgerated at 4 °C 

until further use. Immediately prior to analysis by HPLC, they were redissolved in 

100 pi 10 mM NaOH and 900 pi 50 mM ammonium acetate buffer, pH 5.5, and 

filtered through a 25 mm Pall Acrodisc GF syringe filter with 0.45 pm pore size 

prior to injection. The final concentration of G was 0.8 mM.

2.2.3.2 Oxidation of 8-oxo-7,8-dihydroGuanine

A stock solution of 2.4 mM 8-oxo-7,8-dihydroGuanine (8-oxoG) was 

prepared in 0.1 M NaOH, pH 11. It was divided into 1 ml aliquots and frozen until 

required. Aliquots were defrosted immediately prior to use, to prevent 

decomposition of 8-oxoG. 800 pi 2.4 mM 8-oxoG was incubated with 200 pi 1.5 

mM iron(D) sulphate and 200 pi 0.5 M H2O2 at 37 °C with constant stirring. Final 

concentrations in the reaction flask were 2 mM 8-oxoG, 150 pM iron(II)sulphate and
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50 mM H2O2. Duplicate 100 pi aliquots were taken after various incubation times. 

50 |il 10 mM Uracil was added as an internal standard and the reaction was 

quenched with 1 ml 200 proof cold ethanol. The solvent was evaporated to dryness 

under a stream of nitrogen gas. The dried hydrolysates were refridgerated at 4 °C 

until further use. Immediately prior to analysis by HPLC, they were redissolved in 1 

ml 10 mM NaOH and filtered through a 25 mm Pall Acrodisc GF syringe filter with 

0.45 pm pore size prior to injection. The final concentration of 8-oxoG was 200 pM.

2.2.3.3 Oxidation of PolyGuanylic Acid

A stock solution of 0.20 mg/ml PolyGuanylic acid (PolyG) was prepared in 

50 mM ammonium acetate buffer, pH 5.5. 800 |i! 0.20 mg/ml PolyG was incubated 

with 200 pi 1.5 mM iron(II) sulphate and 200 jil 0.5 M H2O2 at 37 °C with constant 

stirring. Duplicate 100 pi aliquots were taken after various incubation times. 50 |il 

10 mM Uracil was added as an internal standard and the reaction was quenched with 

1 ml 200 proof cold ethanol. The solvent was evaporated to dryness under a stream 

of nitrogen gas.

2.2.3.4 Oxidation of DNA

A stock solution of 2.0 mg/ml DNA was prepared in 50 mM ammonium 

acetate buffer, pH 5.5. It was stored at 4 °C overnight prior to use to allow the DNA 

dissolve completely. 800 pi 0.20 mg/ml DNA was incubated with 200 pi 1.5 mM 

iron(II)sulphate and 200 pi 0.5 M H2O2 at 37 °C with constant stirring. Duplicate 

100 pi aliquots were taken after various incubation times. 50 pi 10 mM Uracil 

(prepared daily in 0.1 M NaOH) was added as an internal standard and the reaction 

was quenched with 1 ml 200 proof cold ethanol. The solvent was evaporated to 

dryness under a stream of nitrogen gas.

2.2.3.5 PolyG and DNA Hydrolysis

Both PolyG and DNA were hydrolysed prior to HPLC analysis. The oxidised 

PolyG or DNA sample was hydrolysed by adding 600 pi 88% (v/v) formic acid in
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evacuated and sealed Pierce hydrolysis tubes and heating at 140 °C for 30 min in a 

vacuum. The solvent was evaporated to dryness under a stream of nitrogen gas. The 

dried hydrosylates were refrigerated at 4 °C until further use. Prior to analysis they 

were redissolved in 1 ml 50 mM ammonium acetate buffer, pH 5.5, and filtered 

through a 25 mm Pall Acrodisc GF syringe filters with 0.45 jxm pore size prior to 

injection. The final concentration of DNA was 160 ng/ml.
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2.3 HPLC Method Development

2.3.1 Acid hydrolysis

Prior to analysis by HPLC-UV-EC, DNA must be hydrolysed to remove the 

bases from the DNA backbone. This can affect the quantitative results of the 

analysis. In one extreme it can result in less than 100% release of 8-oxoG. It can also 

result, however, in the artifactual oxidation of G to 8-oxoG. Two main methods of 

DNA hydrolysis were examined in the literature: enzymatic hydrolysis, which yields 

nucleosides and acidic hydrolysis which releases bases. Enzymatic digestion was not 

favoured initially as the retention time of the nucleosides was about one hour,25 

whereas DNA bases eluted in under 15 min. Tris buffer, used during enzymatic 

hydrolysis, was found to compete with DNA for *OH, so that the radical had an 

extra reaction pathway, resulting in a lower yield of 8-oxoG, which would possibly
9 7obscure any pattern of 8-oxoG formation that might emerge. Moreover, Helbock et

9 fia l  found that the nuclease PI or alkaline phosphatase used in enzymatic hydrolysis 

(which takes at least 24 hours) may not release all the 8-hydroxydeoxyguanosine (8- 

OHdG) in DNA, and that the true levels may be underestimated by up to 30%. Acid 

hydrolysis was examined in detail by Ravanat et a/.28 DNA was incubated with 60% 

formic acid at 130 °C for 30 min. After 45 min, however, artifactual oxidation was 

deemed to occur after this time. At hydrolysis times of less than 45 min, however, it 

was concluded that 100% release of 8-oxoG occurred in the complete absence of 

artifactual oxidation. Based on this knowledge, it was decided that acid hydrolysis 

would be the method of choice for this work. It yields 100% 8-oxoG in 30 min and 

the resulting HPLC separation was complete in less than 15 min. It should be noted, 

however, that although 30 min of acid hydrolysis yields 100% of the purine bases G, 

A and 8-oxoG, 3 hours hydrolysis is required to yield 100% of the pyrimidine bases 

T and C.
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2.3.2 HPLC Mobile Phase Optimisation

Carmicheal et al.29 have examined the levels of 8-oxoG and DNA crosslinks 

caused by a variety of transition metals acting as Fenton reagents. Ravanat et al.30 

detailed an extensive method development for the detection and measurement of 8- 

oxoG. Both groups used a HPLC mobile phase consisting of 50 mM ammonium 

acetate with 50 mM acetic acid in 5% methanol and a flow rate of 1 1/min.
9QCarmicheal et al. achieved good baseline separation of the nucleosides with a low 

limit of detection using a 70 min runtime, while Ravanat et al. obtained baseline 

separation of the DNA bases within a 25 min runtime. As an isocratic buffer, it 

serves to eliminate baseline drift in EC detection that is caused by the use of gradient 

buffers.31 Unlike phosphate or citrate, it is suitable for mass spectrometric analysis. 

At a pH of approx. 5.5, this slightly acidic mobile phase would be expected to give 

reproducible separation of DNA bases. This mobile phase was chosen for this 

research.

2.3.3 HPLC Column Selection

As a reference for column selection, the four DNA bases A, C, G and T were 

initially separated using the mobile phase of 50 mM ammonium acetate with 50 mM 

acetic acid in 5% methanol and a flowrate of 1 ml/min and using a Supelco reversed 

phase Supelcosil LC-18 column, which accompanied the HPLC instrumentation. 

The 4 DNA bases were separated with baseline resolution, but the separation 

resulted in huge tailing of A, which significantly lengthened the analysis time as 

illustrated in Fig. 2.3. Moreover, G, a peak of particular interest, showed some peak 

splitting. Peak tailing grew successively worse with repeat injections, although the 

retention times were reproducible. The tailing of A would be detrimental to the 

lifetime of the HPLC column, as such dramatic tailing could lead to a build up of A 

in the column over time, thereby deteriorating the quality of the column and the data 

obtained using it.
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Retention time (min)

Fig. 2.3: HPLC separation o f the 4 base standards C, G, T and A (as eluted) with 

UV detection at 254 nm using a Supelcosil C l8 reversed phase column with mobile 

phase o f 50 mM ammonium acetate with 50 mM acetic acid in 5% methanol and a 

flowrate o f 1 ml/min. (Shoulder on G not identified.)

32Zhou' extensively investigated a number reversed phase HPLC columns for 

DNA analysis, including Aquasil C l8, Metachem ODS2 (C l8), Supelcosil LC-18, 

Supelco Discovery HS F5-5 and Restek Ultra C-18 columns. The two columns with 

the highest carbon load (20%), Metachem ODS2 and Restek Ultra C-18, resulted in 

maximum separation, with the fully endcapped Restek column further reducing 

tailing. A 25 cm completely endcapped Restek column, Ultra C-18, with Trident™ 

Direct 10 mm filter and guard column, resulted in excellent baseline resolution of 

the 4 bases, with virtually no tailing of A. Fig. 2.4 shows the HPLC separation with 

UV detection obtained using this column.
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Retention time (min)

Fig. 2.4: HPLC separation o f C, G, T and A with UV detection at 254 nm using a 

Restek Ultra C-28 fully endcapped column with mobile phase o f 50 mM ammonium 

acetate with 50 mM acetic acid in 5% methanol and a flow rate o f 1 ml/min.

The overall analysis time (14 min) was the same for all columns. However, 

with the Restek column, the A peak returned to the baseline by the end of the 

analysis. There was no significant tailing for any of the bases as they eluted using 

this column. All four peaks were symmetric, with very little peak broadening and 

with good resolution between the four peaks. This column was therefore chosen for 

all studies. The Trident™ Direct 10 mm filter and guard column were also fitted to 

the column. This guard column had the same bonded phase as the main column. 

Both the guard column and the filter contributed slightly to an increase in the overall 

run time, but served to protect the main column from highly retentive particles and 

compounds, and so extended its lifetime considerably.



2.3.4 Internal Standard

As illustrated in Fig. 2.4, there are gaps of up to 2 min between the elution of 

consecutive bases. This allowed for the easy addition of an internal standard to the 

analysis. The use of an internal standard was desirable to increase the accuracy of 

the analysis, as there was considerable pre-treatment of samples prior to separation 

by HPLC. It should also compensate for possible drift between samples. The internal 

standard should not be present in the sample, by its addition it should not 

contaminate the sample, it should be chemically and physically compatible with the 

sample and should not introduce interfere with the modes of detection.33 In this 

analysis, G and A are purines, while T and C are pyrimidines. Two close structural 

species, xanthine (X), a purine, and uracil (U) a pyrimidine, are readily available and 

have similar chemical properties. Both were considered for use as an internal 

standard. Scheme 2.1 illustrates the structure of the four DNA bases, and X and U.

DNA bases

Internal
standards

H »
Xanthine

l_l i i w N O
Guanine Adenine Thj mine Cytosine

Scheme 2.1: Structure o f DNA bases guanine, adenine, thymine and cytosine, and 

potential internal standards xanthine and uracil.

X was initially investigated as a possible internal standard. However, it 

coeluted with G, and was therefore unsuitable. As shown in Fig. 2.5, however, U 

eluted approx 0.5 min after C and was clearly separated from both C and G. Thus U 

was used as an internal standard in all work.
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Fig. 2.5: HPLC separation o f DNA bases and internal standard U separation with 

UV detection at 254 nm using a Restek Ultra C-28 fully endcapped column with 

mobile phase o f 50 mM ammonium acetate with 50 mM acetic acid in 5% methanol 

and a flow rate o f 1 ml/min.

2.3.5 Optimisation of Electrochemical Detection

Electrochemical (EC) detectors only detect species that are electrochemically 

active. This detection method operates by oxidising or reducing electroactive 

analytes and measuring the current produced. The amount of current produced is a 

quantitative indicator of the concentration of that species present in the solution. The 

species being analysed in this thesis is 8-oxoG. It has a lower oxidising potential 

than any of the unmodified bases C, G, T and A. In order to optimise the EC detector 

for the detection of 8-oxoG, the voltammetric behaviour of this analyte must first be 

examined. The current generated by 8-oxoG oxidation was measured as a function 

of applied potential over the range +350 mV to +650 mV vs. Ag/AgCl. The data was 

plotted as a hydrodynamic voltammogram (HDV), shown in Fig. 2.6. At 450 mV 8-
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oxoG began to be oxidised. The oxidation current increased steadily until +525 mV, 

where the curve levelled off. At +550 mV, 8-oxoG was almost completely oxidised. 

This potential was much lower than the oxidation potential of G (850 mV vs. 

Ag/AgCl). It should also be significantly lower than the oxidation potentials of all 8- 

oxoG oxidation products that could potentially interfere with the analysis of 8-oxoG 

itself. The potential chosen for the EC detector was therefore +550 mV vs. Ag/AgCl.
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Fig. 2.6: Hydrodynamic voltammogram o f 8-oxoG oxidation at a glassy carbon 

electrode from  +550 mV to +600 mV vs. Ag/AgCl.

Fig. 2.7 shows the chromatogram generated by the EC detector at a potential 

of +550 mV vs. Ag/AgCl and a sensitivity of 5 nA. The large solvent front at 3 min 

is typical for EC detection. 8-oxoG elutes at approx. 7 min and is clearly resolved 

from the solvent front. As can be seen from Fig. 2.5, however, G is still eluting at 7 

min retention time. The two peaks of G and 8-oxoG therefore coelute. Control 

studies, however, showed no current generated at +550 mV for G, therefore this 

technique is suitable for the quantitative detection of 8-oxoG in the presence of G. 

The small peak at approx. 11 min may correspond to a T oxidation product, which is
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also electrochemically active. It is frequently reported in the literature as a second 

oxidation product of DNA oxidation detectable by electrochemical means.34 As it is 

not of interest in this study, may not be fully released from the DNA backbone 

during the acid hydrolysis, and may be unstable in acid hydrolysis it was not 

quantified at this point.

Retention time (min)

Fig. 2.7; HPLC separation with EC detection o f 8-oxoG at a potential o f +550 mV  

vs. Ag/AgCl using a Restek Ultra C-28 fully endcapped column with mobile phase o f 

50 mM ammonium acetate with 50 mM acetic acid in 5% methanol and a flow rate o f 

1 ml/min. Sensitivity 5 nA.

2.3.6 UV and EC detector Calibration

The UV detector was calibrated over a range of 0.1 to 1 mM G. 0.5 mM U 

was added as an internal standard. The calibration curve for G was plotted, as shown 

in Fig. 2.8. With a correlation coefficient (R2) of 0.99, the calibration plot was 

clearly linear from 0.1 to 1 mM concentrations of G. (Error bars are included, but 

are smaller than the diameter of data points themselves.) The EC detector was
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calibrated in an analogous manner over a range of 1 to 5 |iM 8-oxoG. The resulting 

calibration curve is plotted in Fig. 2.9. The R2 value, at 0.98, was lower than the 

preferred value of 0.99. However, the plot is linear, and as the limit of detection of 

the EC detector is being approached, it was deemed acceptable.

Concentration (mM)

Fig. 2.8; Calibration curve fo r G from 0.1 to 1 mM, with internal standard U, 254 

nm, Restek Ultra C-28 fully endcapped column with mobile phase o f 50 mM 

ammonium acetate/50 mM acetic acid in 5% methanol andflowrate o f 1 ml/min.
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Fig. 2.9: Calibration curve fo r  8-oxoG from 1 to 5 /uM, with internal standard U 

using a Restek Ultra C-18 fully endcapped column with mobile phase o f 50 mM 

ammonium acetate with 50 mM acetic acid in 5% methanol and a flow rate o f 1 

ml/min. Sensitivity 5 nA.

2.3.7 HPLC Method for analysis of DNA bases

The optimised method is as follows: A mobile phase of 50 mM ammonium 

acetate with 50 mM acetic acid in 5% methanol at a flow rate of 1 ml/min was used 

to separate analytes using a completely endcapped Restek column, Ultra C-18, with 

a 1 cm online guard column. Unmodified bases were detected using UV detection at 

254 nm. For UV detection of 8-oxoG, the detector was set to 280 nm, while for the 

detection of potential further oxidation products of 8-oxoG oxidation it was set to 

214 nm. 8-oxoG was detected using EC detection with a cell potential of +550 mV 

vs. Ag/AgCl and a sensitivity of 5 nA. U was added as an internal standard for 

quantitative analysis, with 0.5 mM being added to each sample.
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2*4 Results

2*4.1 Rate of 8-oxoG formation and oxidation in Guanine

The iron-mediated Fenton reaction was used to oxidise G to 8-oxoG in order 

to observe the rate of 8-oxoG formation and G degradation. Free base G (0.8 mM) 

was incubated with 150 iron(II)sulphate and 50 mM H2O2 at 37 °C, as described 

in Section 2.2. Samples were taken at five min intervals from 0 to 120 min and 

analysed using HPLC-UV-EC. The concentration of 8-oxoG within the G samples 

was monitored with increasing incubation time is illustrated in Fig. 2.10.

Incubation time (min)

Fig. 2.10: Concentration o f 8-oxoG in free G from 0 -  120 min incubation with 150 

fxM iron(II)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f +550 

mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate with 50 

mM acetic acid in 5% methanol and aflowrate o f 1 ml/min.
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There was an immediate generation of 8~oxoG, which doubled in 

concentration (0.19 |iM to 0.38 jiM) within the first five min of incubation. An even 

sharper increase in concentration was observed from ten to fifteen min, where a 

maximum concentration of 8-oxoG (0.68 jiM) was reached after 15 min incubation 

with Fenton reagents. For the next 35 min the overall trend was for a decrease in 

concentration, although this decrease was not linear. A surge in concentration again 

occurred from 50 to 55 min, but on this occasion the maximum concentration 

reached was only about 70% of the previous maximum at 15 min. After 60 min 

incubation, the concentration decreased once more. The concentration of 8-oxoG, as 

plotted in Fig. 2.10, does not increase linearly with increasing incubation time. 

Instead it oscillated with respect to time, with an overall trend towards a decrease in 

concentration after a concentration maximum at approx. 15 min incubation. In order 

to observe these oscillations more closely, the time period from 0 to 20 min, where 

the maximum concentration of 8-oxoG occurred, was studied in more detail, with 

samples taken at 1 min intervals, shown in Fig. 2.11.

There was a residual level of 8-oxoG in the sample was taken when Fenton 

reagents were added and aliquots were taken immediately, so that 8-oxoG was found 

to be generated immediately on addition of the Fenton reagents. Control samples of 

free G did not contain a detectable amount of 8-oxoG. 8-oxoG was generated for 4 

min, whereafter the concentration dropped sharply until about 9 min incubation. 

After 9 min incubation, the concentration again increased. This increase continued 

up to 15 min incubation. After 15 min the concentration of 8-oxoG again decreased, 

and continued to decrease for the next three min incubation. After 18 min it once 

again began to be generated. This oscillating pattern of 8-oxoG formation followed 

by a drop in concentration was repeated continually, but overall the concentration 

decreased after 15 min.
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Incubation time (min)

Fig. 2.11: Concentration o f 8-oxoG in free G, from 0 - 2 0  min incubation with 150 

fiM iron(ll)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f +550 

mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate with 50 

mM acetic acid in 5% methanol and a flow  rate o f 1 ml/min. (n-6)

The concentrations of both G (blue) and 8-oxoG (red) in free G from 0 to 20 

min are plotted in Fig. 2.12. The concentration of G decreased immediately on 

incubation with the Fenton reagents; however, as with 8-oxoG, this decrease was not 

linear. Subtle oscillations with significantly smaller amplitudes than their 8-oxoG 

counterparts can be seen as the incubation time was increased. The concentration of 

free G decreased from 0 to 4 min incubation with Fenton reagents. After 4 min 

incubation the concentration of G returned to its initial concentration; thereafter the 

overall pattern was towards its decrease, presumably by oxidation to 8-oxoG. At this 

point it was noted that G, on incubation with the Fenton reagents iron(II)sulphate 

and H2O2, was observed to decrease; though not linear, this decrease continued with 

incubation time. After 15 min the concentration of 8-oxoG was also seen to 

decrease. This meant that, after 15 min incubation, the concentrations both of G and
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8-oxoG decreased, so both species were being consumed, presumably oxidised, by 

the Fenton reagents.

Incubation time (Min)

Fig. 2.12: Concentration o f G and 8-oxoG in free G, from 0 - 2 0  min incubation 

with 150 fiM iron(II)sulphate and 50 mM H2O2 at 37 °C, UV detection at 254 nm, 

EC detection at a potential o f 550 mV  vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 

50 mM ammonium acetate with 50 mM acetic acid in 5% methanol and a flow rate o f 

1 ml/min. (n-6)

To examine whether the oscillations in 8-oxoG concentration were 

dependent on the concentration of G in the reaction, two free G solutions, one 800 

HM as usual, and one 8 pM, were incubated simultaneously with the Fenton 

reagents. Samples were taken at five min intervals from 0 to 60 min. The 

concentration of 8-oxoG in both samples was measured and plotted in Fig. 2.13. (For 

comparison, values for 8 pM free G are multiplied by 100 so that the effective initial 

concentration of both data sets is the same, i.e., 800 |iM.)
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Fig. 2.13: Concentration o f 8-oxoG in 800 fuM free G (red) and, in 8 juM free G 

(purple)* 100 from 0 - 6 0  min incubation with 150 fiM iron(lI)sulphate and 50 mM  

H2O2 at 37 °C, EC detection at a potential o f +550 mV  vs. Ag/AgCl, sensitivity 5 nA, 

mobile phase o f 50 mM ammonium acetate with 50 mM acetic acid in 5% methanol 

and a flow rate o f 1 ml/min. (n -6)

With the exception of the concentration of 8-oxoG at 15 min, there is a 

striking correlation between the oscillations observed at the two concentrations of 

free G. Given the reproducible nature of the oscillations in 8-oxoG concentration 

between the two free G concentrations, it would appear as though the pattern o f 

oscillations in 8-oxoG concentration might be independent of G concentration for 

the concentration range 8 \jM  to 800 ^M.

2.4.2 Rate of 8-oxoG formation in PolyGuanylic Acid

Incubation of free G with Fenton reagents generated 8-oxoG, where its 

concentration was observed to oscillate with increasing incubation time. In vivo G
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does not exist as a free base, but is normally covalently bound to the DNA 

backbone. To investigate what, if any, effect the polymer backbone would have on 

the oscillations of 8-oxoG concentration, PolyGuanylic acid (PolyG) was incubated 

with the Fenton reagents iron(II)sulphate and H2O2.

Incubation time (min)

Fig. 2.14: Concentration o f 8-oxoG in PolyG, from 0 - 2 0  min incubation with 150 

fuM iron(ll)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f +550 

mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate with 50 

mM acetic acid in 5% methanol and a flowrate o f 1 ml/min. (peak area plotted as 

integrated peak area, not normalised with internal standard) (n=6)

Samples were taken after 0, 2, 4, 5, 6, 8, 10, 15 and 20 min incubations, and 

the changes in 8-oxoG concentration with increasing incubation time were plotted in 

Fig. 2.14. The resulting plot looks similar to that of Fig. 2.13, which shows the 

concentration of 8-oxoG in free G over the same time frame. Again the 

concentration of 8-oxoG increased up to 5 min incubation, only to drop sharply 

before increasing again to a maximum concentration at approx. 15 min incubation. 

The polymer backbone appears to have no effect on the oscillatory nature of 8-oxoG
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concentration with increasing incubation time with the Fenton reagents, or indeed to 

affect the frequency of the oscillations.

2.4.3 Rate of 8-oxoG formation and oxidation in double stranded DNA

8-oxoG was shown to be generated by the iron-mediated Fenton oxidation of 

free G (Section 2.2.1) and of PolyG (Section 2.2.2). Oxidation of both free G and 

PolyG resulted in similar oscillating patterns of 8-oxoG concentration over the 

examined incubation time of 20 min. This demonstrated that the polymer backbone 

of PolyG did not influence the mechanism of oxidation of G to 8-oxoG. The next 

step in this analysis was the Fenton oxidation of G within the DNA double helix. 

Double stranded (ds) DNA was incubated with the Fenton reagents. 8-oxoG was 

formed immediately. As with free G and PolyG, its concentration was found to 

oscillate. This is shown in Fig. 2.15.

The concentration of G was also monitored. It was observed to decrease 

immediately. From 0 - 2  min there was a sharp decrease in its concentration, 

indicating its immediate consumption. The rate of G decrease slowed significantly 

after this point, though as with free G (Fig. 2.12), the overall trend was for its 

decrease over time. Again, as for free G, this decrease was not a linear one. Instead, 

the concentration was found to oscillate with increasing incubation time. 

Corresponding to the initial decrease in G concentration, there was an immediate 

increase in 8-oxoG concentration on incubation with the Fenton reagents. This is 

illustrated in more detail in Fig. 2.16.
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Incubation time (min)

Fig. 2.15: Concentration o f G and 8-oxoG in ds DNAfrom 0 - 2 0  min incubation 

with 150 ixM iron(Il)sulphate and 50 mM H2O2 at 37 °C. (n-4)

Incubation time (min)

Fig. 2.16: Concentration o f 8-oxoG in ds DNAfrom 0 - 2 0  min incubation with 150 

pM  iron(II)sulphate and 50 mM H2O2 at 37 °C. (n=4)
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The same oscillatory pattern was observed for 8-oxoG concentrations in 

DNA as had been observed for free G (Fig. 2.11). From 0 to 2 min incubation there 

was a steady increase in 8-oxoG concentration. After a slight dip in concentration by 

4 min, the concentration was observed to increase until 8 min incubation. This first 

concentration maximum occurred slightly later than with free G, which was 

expected, due primarily to the shielding effect of the DNA double helical structure. 

Again, as with free G, the concentration dropped sharply after this maximum, only 

to increase and reach a second concentration maximum at 18 min. This is also 

slightly later than the free G maximum, which was observed at 15 min. This pattern 

differs from the free G pattern in that the second concentration maximum of 8-oxoG 

is slightly less than the initial maximum; for free G the second maximum was 

significantly greater than the first. After 18 min, the overall level of 8-oxoG 

decreased, indicating that 8-oxoG was consumed in the continuing presence of the 

hydroxyl radical.

2.4.4 Rate of 8-oxoG oxidation

Having a lower oxidation potential than G, 8-oxoG is readily oxidisable. 

Given the trend of decreasing 8-oxoG concentration after approx. 15 min incubation 

with the Fenton reagents in the previous results, it would appear that is it readily 

oxidisable by the Fenton reagents. In order to investigate whether 8-oxoG was 

readily oxidised in the presence of the Fenton reagents, 8-oxoG std was incubated 

with 150 |iM iron(II)sulphate and 50 mM H2O2. 8-oxoG should be easily oxidised, if 

it were consumed in an oscillatory fashion, however, this could be one of the factors 

that caused the oscillations in 8-oxoG concentration and the trend towards an overall 

decrease in concentration after its initial formation, i.e., that as it was formed and its 

concentration increased, it was further oxidised by the same reagents that were 

involved in its generation. As can be seen from Fig. 2.17, it was immediately 

oxidised, with 95% consumption after just 5 min incubation.
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Incubation time (min)

Fig. 2.17: Concentration o f 8-oxoG from 0 - 9 0  min incubation with 150 /uM 

iron(II)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f  +550 mV  

vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate with 50 

mM acetic acid in 5% methanol and aflowrate o f 1 ml/min. (n -6 )

The oscillatory pattern repeatedly observed for G, PolyG and DNA oxidation 

was not observed here whatsoever. Neither, however, was all the 8-oxoG consumed 

as the incubation period increased. After 50 min incubation there was still a 

significant concentration of 8-oxoG (0.28 |jM). Given the rapid decrease of 8-oxoG 

initially, it was expected that 8-oxoG would have been completely oxidised by this 

stage. While it was possible that all the Fenton reagents were consumed, this was 

unlikely given the excess of the H2O2 (50 mM) during the reaction, and the 

relatively low rate of reaction (76 M 'V 1). Nonetheless, based on the initial levels of 

8-oxoG oxidation, and the initial levels of 8-oxoG formation observed previously in 

this study (from free G in Fig. 2.11), it was concluded that the rate of 8-oxoG 

oxidation is far greater than that of G oxidation.
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2.4.5 Rate of 8-oxoG formation and oxidation induced by H20 2

H2O2 spontaneously degrades in solution. The Fenton reaction is simply the 

iron-catalysed decomposition of H2O2. It may be possible that the spontaneous 

degradation of H2O2, i.e., breakdown of H2O2 other than by the Fenton reaction, may 

account for the patterns of 8-oxoG concentration oscillations observed. In order to 

investigate whether these reactions were the cause for the oscillations observed, 

control incubations were carried out. These incubations were analogous to those 

previously described, except that only 50 mM H2O2 was added, and the 150 yM 

iron(II)sulphate was omitted. These incubations were carried out for both free G and 

DNA solutions. The results for free G incubations are illustrated in Fig. 2.18.

Incubation time (min)

Fig. 2.18: Concentration o f G and 8-oxoG from 0 - 9 0  min incubation o f G with 

H2O2 only at 37 °C, UV detection at 254 nm, EC detection at a potential o f +550 mV 

vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate with 50 

mM acetic acid in 5% methanol and a flow  rate o f 1 ml/min. (n -6)
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As can be seen from Fig. 2.18, a residual concentration of 8-oxoG was 

generated by this reaction. However, there was no increase in the concentration of 8- 

oxoG present as the incubation time with H2O2 increased and the concentration of 8- 

oxoG did not oscillate with increasing incubation time. Neither was there any 

consumption of free G as the incubation time increased, nor any oscillations in its 

concentration. Therefore it can be concluded that it is not the products of 

spontaneous degradation of H2O2 with G base which leads to the oscillatory pattern 

observed when G was incubated with the Fenton reagents H2O2 and iron(II)sulphate.

This control incubation was then repeated, this time using DNA, to eliminate 

G oxidation by the products of spontaneous degradation of H2O2 as a possible cause 

of the oscillatory pattern of 8-oxoG concentration during incubation with the Fenton 

reagents. The results are illustrated in Fig. 2.19.

o <D0.4 2.

Fig. 2.19: Concentration o f G and 8-oxoG from 0 - 9 0  min incubation o f ds DNA 

with H2O2 only at 37 °C, UV detection at 254 nm, EC detection at a potential o f 

+550 mV  vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate 

with 50 mM acetic acid in 5% methanol and aflowrate o f 1 ml/min. (n=4)
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As shown in Fig. 2.19, 8-oxoG is generated to a small extent in this reaction. 

The highest concentration reached is only 0.1 }iM, which is significantly less than 

that generated by the Fenton reaction (as shown in Fig. 2.15). In fact, most of the 8- 

oxoG concentrations are close to the detection limit (shown as the solid black line at 

0.03 |xM), with an average concentration of 0.0625 ± 0.025 |jM. The amount of 8- 

oxoG found in untreated DNA was 0.06 ± 0.02 pM, the same as that generated by 

this reaction. It can be concluded therefore, that the incubation of ds DNA with H2O2 

alone did not contribute either to the generation of 8-oxoG or to its oscillation in 

concentration as observed for the Fenton mediated oxidation of G within ds DNA. G 

concentration was also observed to oscillate slightly in Fig. 2.18. This oscillation 

was probably caused by the slight amount of G oxidation that was expected from the 

spontaneous degradation of H20 2. The level of G oxidation was significantly less 

than that observed for the Fenton-mediated oxidation of G, as shown in Fig. 2.15. 

The oxidation of G on the incubation of ds DNA with H2O2 alone did not 

significantly contribute to the oxidation of G.

2.4.6 Mass Spectroscopic analysis of 8-oxoG oxidation in DNA

The results of the investigation indicate that although 8-oxoG is generated 

initially, as the reaction continues its concentration oscillates with an overall trend 

towards a decrease. It is highly probable therefore that 8-oxoG is readily consumed 

by further oxidation. In order to investigate possible oxidation products of 8-oxoG 

oxidation, HPLC-MSMS was used to probe for new species. Unlike either UV or EC 

detection, mass spectrometry (MS) allows structural information about a species to 

be obtained, enabling identification without the need for commercial standards. Use 

of MSMS facilitates even more in depth structural analysis, as species of interest can 

be further fragmented. Fig. 2.20 shows the extracted ion chromatograms for m/z 152 

([G + H]+), m/z 168 ([8-oxoG + H]+), and m/z 158 ([Gh + H]+) for the HPLC 

separation of salmon testes (st) DNA hydrolsyates incubated with the Fenton 

reagents for 60 min.
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Fig. 2.20: Extracted ion chromatograms (a) m/z 158 ([Gh + H]+), (b) m/z 168 ([8- 

oxoG + H]+), and (c) m/z 152 ([G + H]+) fo r  DNA incubated fo r  60 min with 150 

pM  iron(lI)sulphate and 50 mM H2O2 at 37 °C, flow  rate o f 0.3 ml/min, mobile 

phase o f 17 mM ammonium acetate with 20 mM acetic acid in 5% methanol. Full 

scan spectra were taken at a cone voltage o f 15 V using positive electrospray 

ionisation (ESI).

Due to different operating conditions used in HPLC-MS/MS, i.e., column 

length and flow rate, the retention times of the DNA bases differed from those of the 

HPLC-UV-EC. For DNA oxidised for 60 min with Fenton reagents, at a retention 

time of approx. 2.9 min, a peak m/z 152, which would correspond to protonated G 

ions was observed to elute. To investigate for 8-oxoG oxidised products, extracted 

ion chromatograms (EIC) for potential products of 8-oxoG oxidation were extracted 

from the Total Ion Chromatogram (TIC). Potential products considered were Gh 

(MW 157)35 Spiroimidinohydantoin (Sp)36 and Imidazolone (Iz)37 which, according 

to literature were the most likely products of one electron oxidations, such as that of 

the Fenton reaction. Ion chromatograms for m/z 184, corresponding to [Sp + H]+ 

ions, m/z 158 corresponding to [Gh + H]+ ions and m/z 113 corresponding to [Iz +
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H]+ were extracted from the TIC recorded. From these EICs, a peak corresponding 

to an elution of ions at m/z 158 was detected, suggesting the presence of 

guanidinohydantoin (Gh). The [Gh + H]+ ions eluted with [G + H]+ ions, and had a 

relative intensity of just 2.5% of the protonated G ions. No evidence of Sp or Iz ions 

was detected. Based on this data, it was concluded that Gh was possibly a product of 

DNA oxidation by the Fenton reaction.

EICs were also extracted at a m/z of 168, the mass to charge ratio 

corresponding to protonated 8-oxoG, i.e., [8-oxoG + H]+. No peak for this product 

was observed under any ionisation conditions, despite the EC chromatogram 

indicating its presence (see Fig. 2.15). Although the ionisation parameters were 

optimised with 8-oxoG standard, no 8-oxoG could be detected under any ionisation 

conditions. The absence of 8-oxoG therefore did not indicate the absence of this 

species; it merely demonstrated the ease at which it was further oxidised, even when 

using ‘soft’ ionisation techniques. Often, however, when a species itself is unstable 

during the electrospray ionisation process, its potassium (+39) and sodium (+23) 

adducts are significantly more stable and can be found in the resulting mass spectra. 

Fig. 2.21 shows the mass spectrum at 2.9 min of the TIC from the HPLC-MS. In 

addition to the ions of m/z 152, and m/z 158, there are also two ions of m/z 174 and 

m/z 190. These correspond to the ions [G + Na]+ (m/z 174) and [8-oxoG + Na]+ (m/z 

190). It is also possible that the ion of m/z 190 could correspond to the [G + K]+ ion, 

which would have the same mass as [8-oxoG + Na]+. To exclude this possibility, the 

mass spectrum of free G was analysed. The ion of m/z 190 was not present in the 

sample of free G only. However, the ion of m/z 190 was present when 8-oxoG was 

present; this confirms the peak of m/z 190 to be that of [8-oxoG + Na]+. This was the 

sole peak which confirmed the presence of 8-oxoG.
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Mass to charge ratio (M/z)

Fig. 2.21: Mass spectrum o f the ion fraction eluting at 3.0 min o f acid hydrolysed 

DNA incubated with iron(Il)sulphate and H2O2 fo r  60 min at 37 °C, flow rate o f 0.3 

ml/min, mobile phase o f 17 mM ammonium acetate with 20 mM acetic acid in 5% 

methanol. Full scan spectra were taken at a cone voltage o f 15 V using positive 

electrospray ionisation (ESI).
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2.5 Discussion

In this study G was oxidised by #OH (generated by the Fenton reaction, as 

described in Reaction 2.1), as shown in Scheme 2.2. The first step involves the 

addition of the *OH radical at the C8 position. This radical then undergoes a further 

loss of an electron and a proton, to form 8-oxo-7,8-dihydroGuanine.

Guanine GOH> 8-oxoGuanine

Scheme 2.2: Proposed scheme fo r guanine oxidation to 8-oxo-7,8-dihydroGuanine,
'iO

with guanine depicted in blue, and 8-oxo-7,8-dihydroGuanine depicted in red.

In order to measure the rate at which G was oxidised by »OH, and also the rate 

at which 8-oxoG was generated, free G was incubated with Fenton reagents, and 

samples taken at regular time intervals. An increase in 8-oxoG concentration and a 

corresponding decrease in G concentration would have been expected due to the 

oxidation of G and generation of 8-oxoG. As illustrated in Fig. 2.10, however, 

neither behaviour was observed. Although 8-oxoG was immediately generated, and 

its concentration increased from 0 to 15 min incubation with the Fenton reagents, 

this increase was not linear. From 0 to 5 min incubation, there was a significant 

increase in the concentration of 8-oxoG with increasing oxidation, with its 

concentration increasing from 0.2 |jM  to almost 0.4 juM. However, from 5 to 10 min 

incubation there was actually a slight decrease in concentration. From 10 to 15 min 

the 8-oxoG concentration increased at a higher rate than from 0 to 5 min, reaching 

almost 0.7 |iM. From 15 to 45 min incubation, however, the concentration of 8-oxoG 

dropped dramatically, almost back to its level prior to incubation with the Fenton 

reagents. As this point the cycle began again, with the concentration of 8-oxoG 

increasing from 45 to 60 min incubation, only to fall sharply once more, so that after 

70 min incubation, 8-oxoG concentration returned to its level at 45 min. The pattern

98



emerging was not towards a steady state; instead oscillations in 8-oxoG 

concentration that repeated with increasing incubation time were observed. Although 

until 15 min incubation, the overall trend was towards an increase in concentration; 

as the reaction progressed, 8-oxoG was consumed in free G, presumably by further 

oxidation, and so an overall decrease in concentration was observed.

As with 8-oxoG, the concentration of G also oscillated as incubation time 

increased, as shown in Fig. 2.12. It is possible that these oscillations could be 

ascribed to the regeneration of G during its oxidation, which is a minor pathway for 

G(-H)». »OH can add to G at the C4, C5 and C8 positions. Approx. 25% of O H  adds 

to C5, which results in the formation of 8-oxoG. However, the adducts formed at C4
39and C5 decay back to form the original base, in a type of “auto-repair” mechanism. 

However, the amplitudes of G oscillations were considerably lower than those of 8- 

oxoG. In the case of G concentration, it was considered that the regeneration of the 

parent base G via the “auto-repair” mechanism outlined above would not be 

sufficient to result in significant regeneration of G. Instead the minor oscillations 

that were observed are far more likely to have been caused by experimental error 

during sampling, so that overall the concentration of G was just observed to decrease 

with increasing incubation time. As the Fenton reaction with free G progressed, both 

G and 8-oxoG were consumed. In the absence of one of the Fenton reagents, the 

concentration of free G remained constant, i.e., G was not consumed, as illustrated in 

Fig. 2.18. It can therefore be concluded that the O H , and not one of the starting 

Fenton reagents, reacted with G. 8-oxoG has an oxidation potential approx. 0.3 V 

lower than G,40 and is also readily oxidised by O H , as shown in Fig. 2.19. It can be 

concluded therefore that the overall decreases in G and 8-oxoG concentrations with 

increasing incubation time was caused by their oxidation by O H .

This availability of two species, having different oxidation potentials, to be 

oxidised by O H  might be a possible reason for the oscillations in 8-oxoG observed. 

Fig. 2.12 plots the concentration of free G and 8-oxoG in a sample of free G as the 

incubation time with O H  increased. 8-oxoG was observed to be generated
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immediately on incubation of G with «OH-generating agents. From 0 to 4 min, there 

was an excess of G over 8-oxoG in the sample, so that G, and not 8-oxoG, was 

preferentially oxidised by »OH. By 4 min, there was a substantially higher 

concentration of 8-oxoG available for further oxidation, and the level of G had also 

decreased somewhat. At this point, the rate of 8-oxoG oxidation was faster than the 

rate of 8-oxoG formation, and so there was an overall decrease in concentration until 

10 min. As 8-oxoG was consumed, there was a decrease in the level of 8-oxoG 

available for *OH attack, and so *OH once again preferentially reacted with G (so 

that the rate of oxidation of 8-oxoG was dependant on its concentration). This 

caused a decrease in the rate of oxidation of 8-oxoG, as its concentration decreased 

with its oxidation. This in turn allowed for an increase in the rate of 8-oxoG 

formation as *OH increasingly reacted with G and not 8-oxoG, which had the effect 

of further increasing the concentration of 8-oxoG, from 10 to 15 min. This reached a 

maximum concentration of approx. 0.68 pM at 15 min. At this point the 

concentration of 8-oxoG was sufficiently high for the rate of 8-oxoG oxidation to 

exceed the rate of G oxidation, and so, after 15 min incubation the concentration of 

8-oxoG again decreased, just as after 4 min, as 8-oxoG was oxidised further. With 

increasing incubation time, this oscillating pattern of 8-oxoG formation/oxidation 

continued. After 15 min incubation, however, the overall trend was for a decrease in 

the rate of 8-oxoG concentration. The consumption of G as the reaction progressed 

lead to a decrease in the rate of 8-oxoG formation over time. The 8-oxoG 

concentration decreased whenever the rate of its formation exceeded the rate of its 

consumption. As the rate of formation decreased, an ever lower rate of consumption 

(oxidation) exceeded it with every wave oscillation. Therefore, over time, the level 

of 8-oxoG in the sample was seen to decrease.

The oscillations were more than likely governed by the relative 

concentrations of both G and 8-oxoG and their relative rates of oxidation. This is 

illustrated in Fig. 2.14, which graphs the oscillations in 8-oxoG concentration for 

two G samples, one with a concentration of 8 |iM, and one with a concentration of 

800 |iM. Although one sample was 100-fold more concentrated, both generated
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proportionally the same concentration of 8-oxoG relative to their G concentration. 

Moreover, the oscillations in 8-oxoG concentration with increasing incubation time 

were almost identical within experimental error (apart from the samples at 15 min 

incubation), demonstrating that the oscillation mechanism is also independent of the 

initial concentration of G over the concentration range 8 jiM to 800 \iM. In this 

concentration range therefore, the pattern of 8-oxoG concentration oscillations are 

independent of initial G concentration. Moreover, it is highly probable that even at 8 

jiM, G is in excess, and the reaction between G and »OH is a pseudo-first-order 

reaction.

The trend of the Fenton-mediated oxidation of G was for an overall decrease 

in both the concentration of G and 8-oxoG. Fig. 2.22 shows the ratio [8-oxoG]/{ [8- 

oxoG]+[G]}. After an initial peak at 5 min, peaks repeated with a frequency of 

approx. 15 min. If 8-oxoG were the only product, the denominator of the ratio (i.e., 

the total concentration of G and 8-oxoG) would remain constant, and overall this 

ratio would increase, regardless of the oscillations. However, from 20 - 100 min, the 

overall trend underlying the concentration oscillations was a decrease with time, 

suggesting that 8-oxoG is just an intermediate in an overall reaction, or at any rate, 

not the only product formed during G oxidation by •OH.
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Incubation time (min)

Fig. 2.22: Ratio o f [8-oxo-7,8-dihydroGuanine]/{[8-oxo-7,8-

dihydroGuanine]+[guanine]I fo r  800 juM G incubated with 150 juM iron(lI)sulphate 

and 50 mM H2O2 at 37 °C.

G in DNA was expected to react in a similar manner on exposure to *OH 

(generated by the Fenton reaction) as free G, as the »OH has been shown to attack G 

bases (as well as the other DNA bases and the backbone).19

Fig. 2.16 graphs the concentration of 8-oxoG in a DNA sample which has 

been oxidised by Fenton reagents. The concentration profile of 8-oxoG was seen to 

oscillate in an analogous manner to that observed for free G (Fig. 2.10), with an 

overall trend for repeating oscillations of 8-oxoG concentration over time. After the 

maximum 8-oxoG concentration of approx. 0.3 |oM at 8 min, there was an overall 

decrease in its concentration over time. As the oscillations repeated the maximum 8- 

oxoG concentration continually decreased. No steady state level of 8-oxoG 

concentration was achieved over the time period examined. The concentrations of 8- 

oxoG for the first and second maxima differed for both G and DNA. In the case of 

free G, the second concentration maximum was greater than the first; this was not
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the case for DNA, where both concentration maxima were approx. equal, within 

experimental error. The maximum concentrations of 8-oxoG in DNA (Fig. 2.16) 

occurred around 3 min later than for free G, at approx. 8 and 18 min. This delay was 

expected, because of the shielding effect of the phosphodiester sugar backbone of 

DNA. The double helix of DNA is like a winding staircase with the bases protected 

between the two polymer backbones. *OH attacks all biomolecules, and so the initial 

•OH generated may not attack the bases directly, but instead abstract hydrogens 

from the sugars of DNA, which are on the outer layer of the double helix. This 

accounts for the slightly slower rate of 8-oxoG formation. (About 20% of #OH 

attack the 2’-deoxyribose sugars of the DNA backbone, extracting hydrogen 

from the carbon atoms, with extraction at the C4 position probably the most 

important process.39) Fig. 2.13 illustrates the oscillations observed when PolyG (G 

covalently attached to a polymer backbone, but not protected within a double helical 

structure) was oxidised by Fenton reagents. 8-oxoG concentration maxima occurred 

at 4 and 15 min, just as with free G, demonstrating that the polymer backbone of 

itself did not cause a delay in the maxima observed. The polymer backbone only 

restricted the oxidation of bases within the double helix. In this case, as observed by 

Lloyd et a/.,41 *OH also reacts with the DNA backbone by breaking one or both of 

the strands (by abstracting hydrogens from the sugar backbone) in addition to adding 

to the DNA bases themselves.

As with free G, there was also a decrease in the ratio [8-oxoG]/{ [8- 

oxoG]+[G]} over time for DNA, as shown in Fig. 2.23. This again indicates that 8- 

oxoG was not the only product of *OH-mediated G damage (this time within DNA), 

or that it is merely an intermediate in this oxidation pathway.

103



Incubation time (min)

Fig. 2.23: Ratio o f [8-oxo-7,8-dihydroGuanine]/{[8-oxo-7,8-

dihydroGuanine]+[guanine]} fo r  DNA incubated with 150 fJM iron(II)sulphate and

50 mM H20 2 at 37 °C.

The results clearly indicate the formation of further oxidation products. 

However, apart from 8-oxoG, no other direct oxidation products of G itself (e.g. 

FapyG, Imidazolone) were considered during this analysis. Instead the study 

focussed on the concentration of 8-oxoG, due to its importance as a biomarker as 

outlined in Chapter 1. The results of this study, however, imply the formation of 

other products besides those of 8-oxoG and G. Figs 2.22 and 2.23 demonstrate that 

there was a decrease in the ratio [8-oxoG]/{ [8-oxoG]+[G]} as the incubation time 

with the Fenton reagents increased, which is consistent with the oxidation of 8- 

oxoG.

HPLC-MS was used to analyse DNA samples which had been incubated 

with the Fenton reagents for 60 min, to investigate what, if any, other oxidised 

products of G oxidation were generated. 60 min incubation time was chosen as by 

this time, at least two complete oscillations should have occurred, so that 8-oxoG
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oxidation products should be present in solution. A number of compounds emerged 

from the literature as potential final oxidation products. In double stranded DNA, 

Guanidinohydantoin (Gh) was observed as the main product by a number of 

authors38,42 and was found to be generated via a 5-OH intermediate of 8-oxoG. The 

product 2,5-diaminoimidazolone (Iz) also emerged as possible oxidation products of 

Gh oxidation.37

For the initial MS analysis, the oxidation products of Gh oxidation were not 

considered. This oxidation, according to literature, is far slower, with the half life of 

Gh reported to be approximately 10 hr.35 As the incubation period was only 60 min, 

Gh oxidation was deemed highly unlikely to have taken place. Even taking long 

range charge transfer into account, the continuing presence of 8-oxoG in solution, 

which has a lower oxidation potential than Gh, would not have favoured its 

oxidation.

For MS analysis, samples were firsdy ionised, using positive electrospray 

ionisation. The operating conditions were optimised using G and 8-oxoG standards. 

With the 8-oxoG standard however, the protonated ion (m/z 168) was not be 

detected. The sodium adduct ion was detected at m/z 190, with control experiments 

implying that that it was [8-oxoG + Na]+ and not the [G + K]+ ion. (which would 

have had the same mass). As Gh was more stable than 8-oxoG, at the very least the 

sodium adduct ion, if not the protonated ion, would be detected. However, an 

indepth optimisation of the MS ionisation was not carried out at this stage. This may 

have lead to the detection of m/z 168, but as UV and EC detection already confirmed 

the presence of this product, it was deemed unnecessary at this point.

The protonated form of Gh was expected to have a mass to charge ratio (m/z)

158. The extracted ion chromatograms plotted in Fig. 2.9 showed peaks at m/z 152 

[G + H*] at a retention time of 2.9 min and m/z 158 [Gh + H*] at 3.1 min. This 

confirmed the presence of G and also suggested the presence of Gh in the DNA 

sample. The peak area of protonated Gh ions corresponded to just 2.5% of the
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relative intensity of protonated G ions, and co-eluted with the G ions. Without a 

available standard with which to calibrate the instrument, however, it could not be 

assumed that the relationship between the relative intensities of both species was 

proportional to their relative concentrations. In this instance therefore, although 

HPLC-MS7MS is capable of quantitative measurement, it could not be used in that 

capacity for the purpose of determining the concentration of Gh in the DNA samples 

analysed.

As discussed, the absence of a peak of m/z 168 did not correspond to a lack 

of 8-oxoG in the sample. The mass spectrum obtained from the TIC between 2.9-3.1 

min (where both G and Gh eluted) illustrated in Fig. 2.21, showed peaks at m/z 152, 

and m/z 158, and also peaks at m/z 174 and m/z 190. The latter two peaks 

corresponded to the ions [G + Na]+ (m/z 174) and [8-oxoG + Na]+ (m/z 190), 

confirming the presence of 8-oxoG. From this HPLC-MS analysis, the species Gh 

was suggested as a possible oxidation product of 8-oxoG oxidation.
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2.6 Conclusions

The rate of 8-oxoG formation and oxidation, both in free G and in ds DNA, 

was investigated in this study. During in vitro analysis, 8-oxoG was shown to be 

generated immediately on incubation with reagents iron(II)sulphate and H2O2; 

reagents which produce O H  via the Fenton reaction. The concentration of 8-oxoG 

was observed to oscillate repeatedly with increasing incubation time, though with an 

overall trend towards a decrease. G was shown to be oxidised immediately, with a 

sharp initial drop in concentration recorded on incubation with the Fenton reagents. 

Its concentration also oscillated over the incubation time studied. As with 8-oxoG, 

its concentration also tended towards a decrease.

For free G, a maximum concentration of 0.68 \\M was observed after 15 min 

incubation with the Fenton reagents. Thereafter, for 8-oxoG, the repeating 

oscillations, which occurred with a frequency of approx. 15 min, resulted in an 

overall decrease in 8-oxoG concentration, with each maximum smaller than its 

predecessor. For ds DNA a maximum concentration of 0.3 jiM was observed at 8 

min. In the case of free G, the second concentration maximum was greater than the 

first; this was not the case of DNA. The difference in concentration between the two 

maxima in DNA is sufficiently small, however, as to be within experimental error. 

Oscillations in the ratio [8-oxoG]/{ [8-oxoG]+[G]} were superimposed on a general 

decreasing trend as the incubation time with the Fenton reagents increased, 

consistent with the oxidation of 8-oxoG. Overall, both the concentrations of G and 

8-oxoG were observed to decrease as the oxidation reaction progressed. The 

decrease in concentrations of both G and 8-oxoG were not linear, but oscillated with 

increasing incubation time with the Fenton reagents. Of the two species, the 8-oxoG 

oscillations were more pronounced in amplitude. Furthermore, underlying these 

oscillations was a trend of initial 8-oxoG oxidation (no 8-oxoG initially in free G) 

followed by its further oxidation.
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To investigate the 8-oxoG oscillations more fully, a number of parameters 

were then explored. Interactions with the products of possible spontaneous 

decomposition of H2O2 were eliminated as possible causes of 8-oxoG oxidation 

during this reaction. The role of the polymer backbone of DNA was also analysed, 

and it was concluded that it protected the DNA within the double helical structure. 

The oscillations in 8-oxoG concentration were found to be independent of the initial 

concentration of G over a concentration range 8 |xM to 800 pM. It is highly probable 

that even at 8 |iM, G is in excess, and the reaction between G and »OH is a pseudo- 

first-order reaction.

These results are consistent with a competitive consecutive process in which 

G is oxidised to 8-oxoG, which is itself further oxidised, possibly to Gh. A simple 

competitive reaction is outlined in Section 2.4; it is unfortunately unlikely to lead to 

oscillating concentrations of 8-oxoG.43 Oscillating reactions studied in detail 

typically have very complex pathways, e.g. the chlorite-iodide reaction has 13 

elementary steps44 and the reaction of NADH with O2 catalysed by peroxidases has 

37 elementary steps.45 The reaction outlined does however highlight the inherent 

instability of 8-oxoG in the continuing presence of the oxidising reagents such as 

•OH.

On the basis of this investigation, and the ease of oxidation of 8-oxoG, 8- 

oxoG may not be a viable biomarker for DNA damage. Its concentration depends 

not only on the amount of oxidative damage caused to DNA, but also to the length 

of time it was exposed to the damaging reagent, which also potentially has the 

ability to oxidise 8-oxoG. The products of 8-oxoG oxidation, such as Gh, should be 

investigated in more detail, as they may emerge as more suitable biomarkers of 

oxidative DNA damage. Unless the reaction is highly site-specific, however, it 

should be remembered that in all likelihood, further oxidation of 8-oxoG in DNA is 

extremely unlikely.
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Chapter Three

Investigation o f Copper as a Catalyst in 

Fenton Reaction-Mediated Oxidative DNA

Damage



3.1 Introduction

In Chapter 2, G was oxidised by »OH generated by the iron catalysed Fenton 

reaction. Iron, however, is not the only transition metal available which is believed 

to generate oxidative DNA damage via the Fenton reaction.1 A series of publications 

by Lloyd et al.2 4 examined in detail the Fenton reaction-mediated damage to DNA, 

investigating the transition metals copper(H), cobalt(II), nickel(II), chromium(VI), 

chromium(IH), iron(II), vanadium(III), cadmium(II) and zinc(II) as possible 

catalysts, with the number of DNA lesions recorded shown in Table 3 .1.4

Table 3.1: comparison o f oxidative lesions and strand breaks generated by the 

Fenton reaction.4

transition metal ion oxidative lesions per 
10 nucleosides

strand breaks

copper(II) 85.6 +++
chromium(VI) 25.1 +

cobalt(E) 47.5 -

iron(II) 21.7 ++
nickel(II) 26.2 -

vanadium(HI) 17.1 ++
cadmium(II) - +

chromium(III) n/a +++
zinc(II) - -

Zinc(II), chromium(III) and cadmium(II) did not generate oxidative DNA 

lesions, while chromium(VI), cobalt(II) and nickel(II) generated levels of DNA 

lesions which either reached a steady state or continued to increase with increasing 

concentrations of metal. In the case of copper(II), iron(II) and vanadium(III), 

however, the trend with increasing metal concentration from 25 to 1000 jiM was 

quite different. The levels of oxidative DNA damage were observed to fluctuate with 

increasing metal concentration, with maximum oxidative DNA damage observed at 

approx. 200 pM, but no damage recorded at maximum metal concentration (1 mM).

* +, minimal strand breaks; ++, moderate strand breaks; +++, extensive strand breaks; no strand 
breaks
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These oscillations in DNA damage were not explored during the course of the 

investigations into the effects of transition metal on oxidative DNA damage. In light 

of the oscillations in oxidative DNA damage measured for iron(II)-mediated Fenton 

reaction in Chapter 2, however, one possible explanation could be that similar 

oscillations in copper(II) and vanadium(III) mediated damage could be the cause of 

the fluctuating levels of DNA damage recorded.

Along with iron, copper is one of the most important transition metals in 

vivo, and is a constituent of a number of important enzymes.5 The adult human body 

contains approx. 80 of copper. The main source of copper is dietary, where it is 

absorbed probably as complexes or small peptides. Copper complexes enter the 

blood, where most of it binds tightly to serum albumin in equilibrium with a small 

pool of copper complexes. The total blood concentration of copper is about 16 jiM.6 

In the liver, copper is incorporated into a glycoprotein ceruloplasmin (CP), and then 

released into circulation. Unlike iron in transferrin, CP does not exchange copper or 

bind extra copper readily. Cells must take up and degrade CP to obtain copper. 

Along with iron, copper can also become available in vivo for Fenton reactions to 

occur, as it is present in blood plasma as metalloproteins and as a number of 

transport and storage complexes. Copper also exists, however, in the cell nucleus 

where it may be involved in the condensation of DNA-histone fibres into higher
7 Q

order chromatin structures. * There is therefore a possibility that endogenous DNA- 

associated copper may be able to promote oxidative DNA damage to DNA. Copper 

can associate with DNA either by intercalation or by complexation to purine bases, 

especially to the N7 of G.9

The aim of this research was to determine whether the oscillations in 8-oxoG 

concentration observed in Chapter 3 were unique to iron, or whether they also 

occurred for other transition metals. Copper was chosen as an alternative catalyst to 

iron for the Fenton reaction mediated oxidation of DNA, as it was also an essential 

trace metal element in vivo, and had previously mediated oxidative DNA damage, as 

discussed above.
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This work describes the copper-catalysed oxidation of G, 8-oxoG, PolyG and 

ds DNA. Free G and 8-oxoG were incubated with Q 1SO4 and H2O2 for a range of 

incubation times, according to the protocol outlined in Chapter 2. The concentrations 

of both G and 8-oxoG were measured simultaneously, using HPLC separation with 

UV detection to monitor G and U, and using EC detection to monitor the 

concentration of 8-oxoG. PolyG and ds DNA were hydrolysed in 88% formic acid to 

release the unmodified DNA bases and 8-oxoG, which were then also analysed by 

HPLC-UV-EC.

In the case of free G, an oscillatory pattern of 8-oxoG concentration with 

increasing incubation with Fenton reagents was detected, and the concentration of G 

was observed to decrease. Similarly, 8-oxoG concentration oscillations were 

observed for PolyG incubations. For DNA incubations with the copper Fenton 

reagents, 8-oxoG was observed, again in an oscillatory pattern. The oscillations had 

a greater amplitude and narrower periodicity than those observed for analogous iron 

Fenton reactions, discussed in Chapter 2. The oxidation state of the copper ions 

involved in the oxidation of DNA was investigated. Finally the nature of the ROS 

generated when DNA was incubated with Cu(II) and H2O2, including the possibility 

that O H  was not involved, was discussed.
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3.2 Materials and Methods

3.2.1 Materials

3.2.1.1 Chemicals

All chemicals were obtained as described in Chapter 2 in Section 2.2.1.1.

3.2.1.2 Buffers

The mobile phase for gradient HPLC-EC was prepared as described in 

Chapter 2 in Section 2.2.1.2.

3.2.2 Apparatus

3.1.1.1 HPLC Instrumentation

The HPLC system consisted of a Varian ProStar 230 solvent delivery 

module, with a Varian ProStar 310 UV-VIS detector. The system was operated using 

Varian ProStar 6.0 chromatography software. UV chromatograms were recorded 

using this software, while EC chromatograms were generated using a Shimadzu 3.1 

Integrator. All other parameters were as described in Chapter 2 in Section 2.2.2.1.

3.2.3 Methods

3.2.3.1 Oxidation of Guanine

A stock solution of lOmM Guanine was prepared daily in 0.1 M NaOH, pH 

11. 800 10 mM 8-oxoG was incubated with 200 jul 1.5 mM copper(II) sulphate

and 200 jil 0.5 M H2O2 at 37 °C with constant stirring. Duplicate 100 fil aliquots 

were taken after various incubation times. 50 jxl 10 mM Uracil (prepared daily in 0.1
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M NaOH) was added as an internal standard and the reaction was quenched with 1 

ml 200 proof cold ethanol. The solution was dried immediately under a stream of 

nitrogen gas. The dried hydrolysates were refridgerated at 4 °C until further use. 

Immediately prior to analysis by HPLC, they were redissolved in 100 jllL 10 mM 

NaOH and 900 pi 50 mM ammonium acetate buffer, pH 5.5, and filtered through a 

25 mm Pall Acrodisc GF syringe filter with 0.45 pm pore size prior to injection. The 

final concentration of G was 0.8 mM.

3.2.3.2 Oxidation of 8-oxo-7,8-dihydroGuanine

A stock solution of 2.4 mM 8-oxo-7,8-dihydroGuanine (8-oxoG) was 

prepared in 0.1 M NaOH, pH 11. It was divided into 1 ml aliquots and frozen until 

required. Aliquots were defrosted immediately prior to use, to prevent 

decomposition of 8-oxoG. 800 pi 2.4 mM 8-oxoG was incubated with 200 pi 1.5 

mM copper(II) sulphate and 200 pi 0.5 M H20 2 at 37 °C with constant stirring. Final 

concentrations in the reaction flask were 2 mM 8-oxoG, 150 pM copper(II)sulphate 

and 50 mM H2O2. Duplicate 100 pi aliquots were taken after various incubation 

times. 50 jul 10 mM Uracil was added as an internal standard and the reaction was 

quenched with 1 ml 200 proof cold ethanol. The solvent was evaporated to dryness 

under a stream of nitrogen gas. The dried hydrolysates were refridgerated at 4 °C 

until further use. Immediately prior to analysis by HPLC, they were redissolved in 1 

ml 10 mM NaOH and filtered through a 25 mm Pall Acrodisc GF syringe filter with 

0.45 jam pore size prior to injection. The final concentration of 8-oxoG was 200 pM.

3.2.3.3 Oxidation of PolyGuanylic Acid

A stock solution of 0.20 mg/ml PolyGuanylic acid (PolyG) was prepared in 

50 mM ammonium acetate buffer, pH 5.5. 800 pi 0.20 mg/ml PolyG was incubated 

with 200 pi 1.5 mM copper(II) sulphate and 200 pi 0.5 M H2O2 at 37 °C with 

constant stirring. Duplicate 100 pi aliquots were taken after various incubation 

times. 50 pi 10 mM Uracil was added as an internal standard and the reaction was
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quenched with 1 ml 200 proof cold ethanol. The solvent was evaporated to dryness 

under a stream of nitrogen gas.

3.2.3.4 Oxidation of DNA

A stock solution of 2.0 mg/ml DNA was prepared in 50 mM ammonium 

acetate buffer, pH 5.5. It was stored at 4 °C overnight prior to use to allow the DNA 

dissolve completely. 800 pi 0.20 mg/ml DNA was incubated with 200 pi 1.5 mM 

copper(U)sulphate and 200 pi 0.5 M H2O2 at 37 °C with constant stirring. Duplicate 

100 pi aliquots were taken after various incubation times. 50 pi 10 mM U (prepared 

daily in 0.1 M NaOH) was added as an internal standard and the reaction was 

quenched with 1 ml 200 proof cold ethanol. The solvent was evaporated to dryness 

under a stream of nitrogen gas.

3.2.3.5 PolyG and DNA Hydrolysis

Both PolyG and DNA were hydrolysed prior to HPLC analysis. The oxidised 

PolyG or DNA sample was hydrolysed by adding 600 pi 88% (v/v) formic acid in 

evacuated and sealed Pierce hydrolysis tubes and heating at 140 °C for 30 min in a 

vacuum. The solvent was evaporated to dryness under a stream of nitrogen gas. The 

dried hydrosylates were refrigerated at 4 °C until further use. Prior to analysis they 

were redissolved in 1 ml 50 mM ammonium acetate buffer, pH 5.5, and filtered 

through a 25 mm Pall Acrodisc GF syringe filters with 0.45 pm pore size prior to 

injection. The final concentration of DNA was 160 pg/ml.
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3.3.1 Rate of 8-oxoG formation and oxidation in free G

The concentration of G and 8-oxoG from 0 to 90 min in free G incubated 

with 150 pM copper(II)sulphate and 50 mM H2O2 at 37 °C was measured using 

HPLC-UV-EC. The amount of 8-oxoG generated and G consumed was measured at 

five min intervals. The unmodified base G and internal standard U were monitored 

using UV detection, while 8-oxoG was simultaneously measured with EC detection, 

as described in Section 3.2. An immediate generation of 8-oxoG, and a 

corresponding decrease in free G concentration was expected, as had occurred for 

the analogous iron incubations in Chapter 2.

The results are illustrated in Fig. 3.1. The concentration of free G was 

observed to decrease, although not in a linear manner. However, as previously 

observed, when iron was utilised as the catalyst for the Fenton reaction (Chapter 2), 

these very minor oscillations were deemed to have occurred due to experimental 

error, and were not generated by regeneration of G base. The limit of detection 

(LOD) of the electrochemical detector was 0.05 pM, and only on 5 occasions did the 

levels of 8-oxoG produced exceed this level. The maximum 8-oxoG concentration, 

reached at 5 min., was approx. 0.54 pM. For the analogous iron-catalysed oxidation 

of free G (Fig. 2.4), the maximum 8-oxoG concentration, which was reached at 4 

min., was approx. 0.57 pM. In terms of the maximum concentrations therefore, the 

two transition metal systems were comparable. However, the minimum 

concentrations observed varied drastically between both systems. The minimum 8- 

oxoG concentration recorded for iron did not fall below 0.2 pM at any measured 

incubation time, whereas for the copper system being analysed here, the minimum 

concentrations were undetectable and therefore less than 0.05 pM. During the iron 

analysis, the oscillations in concentration were observed to gradually increase and 

decrease with increasing incubation time. This was again observed for the copper

3.3 Results
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analysis, however, in this case, the minimum 8-oxoG concentrations fell below the 

LOD of the EC detector.

20 40 60
Incubation time (min)
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Fig. 3.1: Concentration o f G (blue) and 8-oxoG (red) from 0 - 9 0  min incubation o f 

free G with 150 juM copper(II)sulphate and 50 mM H2O2 at 37 °C, UV detection at 

254 nm, EC detection at a potential o f +550 mV vs. Ag/AgCl, sensitivity 5 nA, 

mobile phase o f 50 mM ammonium acetate with 50 mM acetic acid in 5% methanol 

and aflowrate o f 1 ml/min. (n=6)

3.3.2 Rate of 8-oxoG formation in PolyGuanylic Acid

Chapter 2 demonstrated that the polymer backbone of PolyG did not affect 

the iron catalysed Fenton reaction. However, given the different behaviour observed 

for the copper catalysed Fenton reaction of G in Section 3.2.1, it was necessary to 

investigate the effect of the polymer backbone once more. PolyG was incubated with 

copper(II)sulphate and H2O2. Samples were taken every 5 min from 0 to 60 min, and 

the results are illustrated in Fig. 3.2.
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Incubation time (min)

Fig. 3.2: Concentration o f 8-oxoG (red) in PolyG from 0 - 6 0  min incubation with 

150 fxM copper(ll)sulphate and 50 mM H2O2 at 37 °C, UV detection at 254 nm, EC 

detection at a potential o f +550 mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 

mM ammonium acetate with 50 mM acetic acid in 5% methanol and a flow  rate o f 1 

ml/min. (n-4)

It can be seen from Fig. 3.2 that only very low levels of 8-oxoG were 

generated during oxidative attack on PolyG. Only after 45 min incubation with 

Fenton reagents did the level of 8-oxoG produced exceed 0.05 pM, which was the 

smallest amount which could be measured using the HPLC-EC system. After 45 min 

incubation the concentration of 8-oxoG was comparable to that recorded for free G 

in Fig. 3.1, but did not exceed 0.55 |iM at any stage during the copper-mediated 

oxidative attack on PolyG.
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3.3.3 Rate of 8-oxoG formation and oxidation in double stranded DNA

8-oxoG was generated in oscillating concentrations during the copper- 

mediated oxidation of free G (Section 3.2.1) or PolyG (Section 3.2.2), but the 

minimum concentrations during oscillations were below the LOD of the detector. 

The next advancement in this analysis was the oxidation of G within DNA. Similar 

results, i.e., the formation of 8-oxoG at intermittent incubation times, but without 

any apparent overall pattern, were expected. 0.16 mg/ml ds DNA was incubated 

with 150 jiM copper(H)sulphate and 50 mM H2O2 at 37 °C with constant stirring. 

Samples were taken at five min intervals from 0 to 50 min. The concentration of 8- 

oxoG detected during this analysis is illustrated in Fig. 3.3.

Incubation time (min)

Fig. 3.3: Concentration o f 8-oxoG in ct DNA from 0 - 5 0  min incubation with 150 

juM copper(II)sulphate and 50 mM H2 O2 at 37 °C, EC detection at a potential o f 

+550 mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate 

with 50 mM acetic acid in 5% methanol and a flowrate o f 1 ml/min. (n=4)
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In this case, 8-oxoG was generated immediately. The concentration was seen 

to drop at 5 min, only to have increased to -3  pM at 10 min. This concentration is 

approx. 6-fold higher than the concentration recorded for the analogous iron- 

mediated oxidation (Fig. 2.7). From this point until about 30 min, sampling every 5 

min, the overall trend was for a decrease in concentration, although this decrease 

was not linear. The concentration of 8-oxoG was seen to increase again with a 

second maximum of equal intensity at 40 min, whereafter the concentration was 

again seen to decrease. From 0 to 50 min therefore, there was a very significant 

generation of 8-oxoG, with the concentration appearing to oscillate as the incubation 

time increased. This was in contrast to the results previously observed for copper- 

mediated oxidative attack on free G and PolyG, were significantly lower levels of 8- 

oxoG were detected under equivalent sampling conditions. In order to ascertain 

whether this oscillatory pattern continued with increasing incubation time, this study 

was extended to a time period of 3 hours. Fig. 3.4 plots the concentration of 8-oxoG 

over this extended time frame.

Oscillations were seen to continue with further maxima at -68, 88, 125 and 

150 min. This oscillating pattern of an increase in 8-oxoG concentration followed by 

a decrease in 8-oxoG concentration was repeated. Overall, the trend observed was a 

decrease in the amplitude of these oscillations, where at 150 min, the height of the 

oscillation is only about one third the height observed initially. At 25 min, 110 min 

and 170 min, secondary oscillations were observed, up to ten-fold lower than the 

primary oscillations.
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Fig. 3.4: Concentration o f 8-oxoG (red) in et DNAfrom 0 - 1 8 0  min incubation with 

150 juM copper(ll)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f 

+550 mV vs. Ag/AgCl sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate 

with 50 mM acetic acid in 5% methanol and aflowrate o f 1 ml/min. (n=4)

The 5 min sampling frequency was previously found to be adequate for the 

analysis of 8-oxoG generated during the iron-generated oxidation of G, with 

multiple data points recorded for each oscillation, so that the sampling frequency 

was more than twice the period of the oscillations. This sampling frequency was, 

however, inadequate for a complete picture of all oscillations that were occurring 

during analysis of the analogous copper-generated oxidation of G. It was therefore 

decided to increase the sampling frequency to 1 min intervals. Fig. 3.5 shows the 8- 

oxoG concentration in et DNA incubated with CuS04 and H2O2 from 20 to 60 min. 

This timeframe was chosen as both a secondary oscillation at 25 min, and a primary 

oscillation at 40 min were observed to occur when a sampling frequency of 5 min 

was used.
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However, when a sampling frequency of 1 min was used, 3 primary 

oscillation maxima were recorded at 30, 35 and 40 min. The width of these 

oscillations was far narrower than was expected based on the previous experiments, 

with a complete oscillation taking under 5 min to occur. The maximum 

concentrations were even greater than those recorded for 5 min sampling intervals, 

reaching over 4 pM at 35 min.

A broad trend can be observed for these oscillations. A secondary maximum 

of approx. 0.84 jiM occurred at 25 min. The next (primary) maximum at 30 min was 

of much higher concentration, at 3.35 fiM, with the following maximum at 35 min 

even greater, with a concentration of 4.29 |oM. This was the greatest 8-oxoG 

concentration observed over this timeframe. Concentration maxima of subsequent 

oscillations decreased sequentially. At 40 min incubation the maximum 

concentration was 3.19 jiM, and at 45 min the maximum had decreased significantly, 

to 1.42 fiM. There was an overall trend towards increasing 8-oxoG concentration 

with successive maxima until 35 min incubation; beyond this time, the overall trend 

was towards a decreasing 8-oxoG concentration.
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Fig. 3.5: Concentration o f 8-oxoG in ct DNA from 0 - 6 0  min incubation with 150 

juM copper(II)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f 

+550 mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate 

with 50 mM acetic acid in 5% methanol and a flow  rate o f 1 ml/min. (n-4)

The data in Fig. 3.4 shows a secondary oscillation at approx. 25 min and an 

oscillation maximum of over 3 jjM at 40 min. In contrast, the data in Fig. 3.5 plotted 

3 oscillation maxima greater than 3 pM at 30, 35 and 40 min. Even taking the 

sampling frequency into account, this difference in 8-oxoG concentrations would 

appear to question the reproducibility of the copper-mediated oxidation of DNA in 

this investigation. In Fig. 3.6, however, the data from Fig. 3.4, with a 5 min 

sampling frequency (blue trace), and the data from Fig. 3.5, with a 1 min sampling 

frequency (red trace) are overlaid, showing this not to be the case.

Incubation time (min)
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Fig. 3.6: Concentration o f 8-oxoG in et DNAfrom 0 - 6 0  min incubation with 150 

fjM copper(ll)sulphate and 50 mM H2O2 at 37 °C, EC detection at a potential o f 

+550 mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium acetate 

with 50 mM acetic acid in 5% methanol and a flow  rate o f 1 ml/min. (n=4)

Different stocks of all solutions, including that of et DNA were used to collect the 

data plotted in Figs 3.4 and 3.5. Based on Fig. 3.6, however, there was a high level 

of reproducibility evident, even though different sampling frequencies were used for 

both experiments. Of the 7 data points which overlapped, there was only a 

significant deviation, i.e., greater than 5% RSD, between just 2 data points (25 and 

55 min).

It was clear from Fig. 3.6 that the 5 min sampling time is inadequate, as it 

only records one of three oscillation maxima that were observed during the one min 

oscillations. For accurate data collection, the sampling frequency should be at least 

twice the period of the oscillations. The sampling frequency of 1 min, however, 

appeared to be sufficient, as oscillations took at least 2 min to complete.
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3.3.4 Rate of 8-oxoG oxidation

In the previous section, 8-oxoG was observed to be generated in 

concentrations of up to 4 fiM when DNA was oxidised by the copper-mediated 

Fenton reaction. On each occasion where 8-oxoG was generated, however, it was 

rapidly consumed, with complete consumption within two min. It would therefore 

appear that 8-oxoG is readily oxidised by copper-mediated oxidation. In order to 

investigate if that were the case, 10 pM 8-oxoG standard was incubated with the 

Fenton reagents, with samples taken at 1 min intervals from 0 to 20 min. The results 

are illustrated in Fig. 3.7.
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Fig. 3.7: Concentration o f 8-oxoG in 8-oxoG standard from 0 -20  min incubation 

with 150 fiM copper(H)sulphate and 50 mM H2O2 at 37 °C, EC detection at a 

potential o f +550 mV vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM 

ammonium acetate with 50 mM acetic acid in 5% methanol and a flow  rate o f 1 

ml/min. (n=6)
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95% of the free 8-oxoG was oxidised within 2 min of oxidative attack. The 

8-oxoG was not entirely consumed, however. The 8-oxoG concentration did reach a 

steady state concentration at 12 min incubation, suggesting that the Fenton reagents 

could have been completely consumed and that this was may have been the reason 

for the continuing presence of 8-oxoG in the sample. The excess of H2O2 used 

during the reaction should mean that this was not likely to occur, however. From 2 

min incubation with the copper-generating oxidants until steady state at 12 min 

incubation, the level of 8-oxoG was observed to decrease.

3.3.5 Investigation of copper oxidation state during the Fenton reaction

During the Fenton mediated 8-oxoG oxidation, iron is oxidised from Fe(II) to 

Fe(III) (Reaction 2.1). If copper reacts in an analogous manner to iron, it too should 

be oxidised. Only metal catalysts in their lower oxidation state were previously 

observed to behave as a Fenton reagent.10 In the case of copper, this would imply 

that Cu(I), and not Cu(II), is the initial oxidation state of copper during the Fenton 

reaction, where it generates *OH as shown in Reaction 3.1, as generation of the 

higher oxidised form of copper, Cu(III) is extremely rare.

H 20 2 + C u(I)— ^—̂ C u(II) + H O ' + HO • (Reaction 3.1)

For the Fenton reaction to occur therefore, the copper ion must first be reduced to 

Cu(I). Coordination of Cu(II) to a G-C base pair in DNA has been shown to result in 

the oxidation of G with concomitant reduction of Cu(II) to Cu(I), which could 

explain the ease of reduction of Cu(II).11 The Cu(I) is then oxidised to Cu(H) as it 

catalyses the decomposition of H2O2. If this is the case, then similar patterns of 8- 

oxoG oxidation should be generated for both Cu(I) and Cu(II) starting complexes. 

To investigate this, ct DNA was oxidised in two parallel incubations. In the first 

reaction, ct DNA was incubated with copper(I)chloride (Cu(I) ion) and H2O2, while
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in the second reaction ct DNA was incubated with copper(II)chloride (Cu(II) ion) 

and H2O2.

Incubation time (min)

Fig. 3.8: Concentration o f 8-oxoG in ct DNA from 0 -20  min incubation with 150 

piM copper(II)chloride and 50 mM H2O2 (blue trace) and with 150 /uM 

copper(l)chloride and 50 mM H2O2 (red trace) at 37 °C, EC detection at a potential 

o f  +550 mV  vs. Ag/AgCl, sensitivity 5 nA, mobile phase o f 50 mM ammonium 

acetate with 50 mM acetic acid in 5% methanol and a flow  rate o f 1 ml/min. (n~6)

Fig. 3.8 plots the levels of 8-oxoG generated when the metal catalyst copper 

is added to the Fenton reaction as Cu(I) (red) and as Cu(13) (blue). Both were 

observed to generate 8-oxoG immediately on incubation with DNA. At 0 min and 1 

min incubations the concentrations were almost identical, increasing from 0.64 |iM 

to 0.87 jiM for Cu(II) and from 0.64 |iM to 0.86 pM for Cu(I). There appeared to be 

no delay in the Fenton-mediated oxidation of 8-oxoG when the copper catalyst was 

added as Cu(II) instead of Cu(I). This would imply that Cu(II) was immediately 

oxidised to Cu(I), with possible reasons for this ease of oxidation outlined in Section 

3.4. As the incubation time increased, the pattern of 8-oxoG oscillations differed 

slightly between the two analyses. The magnitude of 8-oxoG generated for both
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systems was comparable, however, so it could be concluded that the same level of 8- 

oxoG was generated for both Cu(I) and Cu(II).

Both oxidation states of copper yielded different coloured compounds, with 

Cu(I) green in solution and Cu(II) blue in solution. These coloured solutions were 

used for a simple colorimetric analysis of the oxidation states of copper that were 

generated during the Fenton reaction oxidation of DNA. Solutions were prepared of 

copper(I)chloride, copper(II)chloride, H2O2 and 8-oxoG. Copper(I)chloride was 

green with a fine precipitate, while copper(II)chloride was pale blue with no 

precipitate observed. H2O2 and 8-oxoG were colourless solutions.

The effect of adding H2O2 to both copper solutions is shown in Fig. 3.9 (a) 

and (b). Its addition to copper(13)chloride (a) did not change the colour of the 

solution; therefore it was assumed that neither did it change the oxidation state of the 

copper ions. Addition of H2O2 to copper(I)chloride (b), however, caused the solution 

to change from green to yellow, indicating the formation of copper(I)hydroxide.12 

Significant effervescence was observed in both cases.

Fig. 3.9: Images o f the addition o f H2O2 to solutions o f (a) copper(II)chloride and 

(b) copper(I)chloride.
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8-oxoG was then added to both solutions (without H2O2), which resulted in 

changes in colour for only the copper® solution, as shown in Fig. 3.10. Addition of 

8-oxoG to copper(II)chloride (a) resulted in an immediate colour change from pale 

blue to deep turquoise green with accompanying precipitate. This colour change 

corresponded with the reduction of copper from Cu(II) to Cu(I). When 8-oxoG was 

added to copper(I)chloride (b), the solution remained green, indicating the 

continuing presence of Cu(I).

Fig. 3.10: Images o f the addition o f 8-oxoG to solutions o f (a) copper(II)chloride 

and (b) copper(I)chloride.

Finally, both H2O2 and 8-oxoG were added to both solutions, which resulted 

in changes in colour for both solutions, as shown in Fig. 3.11. For copper(II)chloride 

(a), an immediate colour change resulted, with the solution turning a dark yellow, 

with instant effervescence and generation of a substantial amount of precipitate. For 

copper(I)chloride (b), the solution again turned a dark yellow. In further agreement 

with copper(II)chloride, instant effervescence and generation of precipitate were also 

observed. There was significantly less precipitate generated for the copper(I)chloride 

reaction with H2O2 and 8-oxoG than for the analogous copper(II)chloride reaction. 

This analysis illustrated that the presence of the organic substrate 8-oxoG appeared 

to cause the reduction of copper ions from Cu(II) to Cu(I), as evidenced by the 

immediate colour change to green, indicative of Cu(II). There was no reduction of 

the copper ions by H2O2. Both Cu(I) and Cu(II) mediated oxidation of 8-oxoG 

yielded substantial amounts of effervescence and precipitate.
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Fig. 3.11: Images o f the addition o f H2O2 and 8-oxoG to solutions o f (a) 

copper(II)chloride and (b) copper(I)chloride.
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3.4 Discussion

When Guanine was incubated with iron(II)sulphate and H2O2, there was 

immediate formation of 8-oxoG. As incubation time increased, the concentration of 

8-oxoG was observed to oscillate. 8-oxoG has an oxidation potential approx. 0.3 V 

lower than G,13 and is readily oxidised by »OH. It was therefore assumed that 8- 

oxoG generated by the oxidation of G could also be readily oxidised further when 

incubated with Fenton reagents, and that this contributed significantly to the 

oscillatory pattern whereby 8-oxoG was continually generated and consumed. 

Copper was expected to act in an analogous manner to iron (as Cu(I) reaction with 

H2O2 has been reported to be significantly faster than Fe(II)),14 and so catalyse the 

formation of *OH and hence the generation of 8-oxoG. It was therefore expected that 

the incubation of G standard with copper(II)sulphate and H2O2 would result in 

similar oscillatory patterns of 8-oxoG concentration, assuming that Cu(II) could be 

readily reduced to Cu(I) to facilitate the initiation of the reaction.

Fig. 3.1 shows the concentration of G and 8-oxoG in free G. The expected 

pattern of 8-oxoG formation and oscillation was detected, however, the minimum 

concentrations of 8-oxoG were below the LOD of the detector, and so for the 

minimum concentrations during the oscillations, no 8-oxoG was detected. There are 

two possible causes for this lack of 8-oxoG. The first is that no oxidative damage 

occurred, or that significantly lower levels of 8-oxoG concentration were generated 

for the copper system than for the iron system. 8-oxoG is generated by the oxidation 

of free G. Therefore, the concentration of free G at a given time should indicate its 

level of oxidation to 8-oxoG. In Fig. 3.1, the concentration of free G dropped 

drastically with increasing copper-catalysed oxidation. After 20 min incubation, the 

concentration of free G was 0.35 mM (from an initial concentration of 0.8 mM). For 

the analogous iron incubation (Fig. 2.4), the free G concentration at 20 min was 

significantly higher, at 0.59 mM. An increased amount of free G was oxidised using 

the copper system; therefore an increased concentration of 8-oxoG would have been 

expected. With the high levels of free G oxidation (with respect to iron-catalysed
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oxidations), the possibility that lower levels of 8-oxoG were generated was deemed 

highly unlikely to occur. In fact, significantly greater concentrations of 8-oxoG 

would have been expected from the copper incubations.

The second alternative is that any 8-oxoG generated was immediately 

consumed before it could be detected. If 8-oxoG was easily consumed before any 

chance of detection, however, it seems unlikely that it would have emerged as a 

leading potential biomarker. The mechanism of formation of *OH when Cu(II) is 

incubated with H2O2 could determine the plausibility of the rapid oxidation of 8- 

oxoG as a potential cause for the absence of significant levels of 8-oxoG. For the 

copper-mediated oxidation of free G, two main possibilities for the generation of 

•OH emerged. The first possibility was that the copper ions complexed to the N7 of 

G .15 If this were the case, the «OH would have been generated in very close 

proximity to G, and therefore be likely to oxidise G to 8-oxoG. In this situation, the 

generation of further »OH would have been expected to occur as soon as the copper 

ion reduced back to Cu(I) and could react with another H2O2 molecule. Further 

oxidation of 8-oxoG would therefore have been expected to take place very rapidly. 

In this instance, it would be expected that 8-oxoG would be rapidly further oxidised, 

and so have a very short lifetime in solution. In this way it was possible that 8-oxoG 

generated was immediately consumed before it could be detected. The second 

possibility was that *OH was generated from copper ions in solution, which were not 

complexed to any free G. Such formation of O H  might not have necessarily caused 

either the formation or the oxidation of 8-oxoG; however, consumption of G was 

observed, suggesting G oxidation had occurred. As the reaction was constantly 

stirred, 8-oxoG generated by this method would not be automatically subjected to 

further oxidation upon copper reduction. No MS analysis was carried out to try to 

detect 8-oxoG oxidation products.

The oscillations in 8-oxoG concentration observed in Fig. 3.1 were quite 

different to those observed for the analogous iron-mediated oxidation. The 

oscillating pattern for iron-mediated 8-oxoG generation and oxidation observed in
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Chapter 2 plotted not only the maximum and minimum levels of 8-oxoG 

concentration, but also intermediate levels of 8-oxoG as the concentration increased 

towards the maximum or decreased towards the minimum levels. Even if the 

minimum 8-oxoG concentrations were below the LOD of the EC detector, 

intermediate concentrations of 8-oxoG were expected to be observed approaching 

the 8-oxoG that was detected. This did not occur, however, suggesting that the 

period of the oscillations, in addition to the amplitude of the oscillations, was 

different from the iron-mediated generation of 8-oxoG concentration oscillations.

To determine whether a polymer backbone would have any effect on the 

copper-catalysed oxidation of G, PolyG oxidation was analysed. The polymer 

backbone could have a number of consequences on the oxidation of G. Firstly the G 

would no longer be free in solution, but covalently attached to the polymer 

backbone. This would concentrate G in one particular area, and so in this area of the 

reaction vessel there should be an increase in the rate of reaction between G and the 

Fenton reagents, with a corresponding increase in both G and 8-oxoG oxidation. 

Secondly the backbone itself could react with O H . O H  reacts with all 

biomolecules, and in the case of DNA about 20% of the radical reacts with the 

polymer backbone while the remainder attacks the DNA bases.16 In this instance the 

presence of the polymer backbone would serve to decrease the rate of reaction 

between G and the Fenton reagents. There was no 8-oxoG detected upon incubation 

of PolyG with copper(II)sulphate and H2O2, as illustrated in Fig. 3.2. Only after 45 

min was a significant amount of 8-oxoG detected, which did not increase with 

increasing incubation time. From 0 to 40 min incubation with the copper-mediated 

Fenton reaction, no 8-oxoG was detected. Again the two main possibilities to 

explain this lack of 8-oxoG would be that either no 8-oxoG was generated, or that 

any generated was immediately consumed. In the case of free G, the formation of 8- 

oxoG via copper ions complexed to the N7 of G could cause the formation and 

further oxidation of 8-oxoG in rapid succession. When G with complexed copper 

was covalently bound to the polymer backbone, however, *OH generated from this 

copper now not only had the potential to damage the G to which it was complexed,
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but also adjacent G along the backbone. »OH generated by this mechanism therefore 

had greater oxidising power for PolyG than for free G. This is potentially a reason 

why no 8-oxoG was detected for the first 40 min of incubation, as a greater amount 

of 8-oxoG generated was immediately further oxidised, and so did not remain in 

solution long enough to be detected.

The investigations with both free G and PolyG yielded maximum 8-oxoG 

concentrations of less than 0.6 |iM in both cases. This magnitude of 8-oxoG 

concentration is comparable to that generated for iron-mediated Fenton oxidation. 

The oscillations in 8-oxoG concentration observed for iron(II) were not detected in 

this study, however.

Based on the results for free G and PolyG, ct DNA incubations with 

copper(II)sulphate and H2O2 were not expected to generate any 8-oxoG. As 

illustrated in Fig. 3.3, however, this was clearly not the case. 8-oxoG was 

immediately detectable, and in significantly higher concentrations than in previous 

studies with iron. Up to 3 pM 8-oxoG was measured, which represents about a 6- 

fold increase on the maximum concentrations observed with iron. The 8-oxoG 

oscillatory pattern was comparable, however, to the iron study, in that the 

oscillations were dependant on incubation time. 8-oxoG was generated immediately 

and appeared to be consumed until about 5 min, where after the concentration 

increased to -  3 |iM at 10 min. From 10 to 20 min this concentration again 

decreased, only to increase again to -  1 pM at 25 min. The concentration then 

decreased at 30 min, only for a second major generation of 8-oxoG of ~ 3 pM, 

which reached a maximum concentration at 40 min incubation. Thereafter, the 

concentration of 8-oxoG was again observed to decrease. When the incubation time 

was increased until 180 min, as plotted in Fig. 3.4, the oscillations continued. This 

time, however, each of the successive maxima after 40 min incubation was 

significantly lower in concentration. The maxima at 120, 150 and 170 min appeared 

to show a reaction that is approaching equilibrium. The reaction appeared to be 

approaching a steady state concentration of 8-oxoG of approximately 0.7 jiM.
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A 5 min sampling frequency was adequate for the analysis of iron-catalysed 

oxidation, as evidenced by the significant number of data points per period, shown 

in Chapter 2. Due to the absence of intermediate levels of 8-oxoG during the 

oscillations observed in Fig. 3.4, however, it was possible that a complete illustration 

of the concentration oscillations that are occurring in this reaction was not elucidated 

using a 5 min sampling frequency. In order to obtain a complete picture of 8-oxoG 

concentration oscillations, it was felt that a 1 min sampling frequency was necessary 

to study the oscillatory pattern. The results of this study were illustrated in Fig. 3.5. 

Three primary oscillations were recorded at 30, 35 and 40 min. Only one of these 

was detected using a 5 min sampling frequency. The characteristic intermediate 

levels of 8-oxoG concentration between successive maxima were detected during 

this analysis, however, and it was found to take two min for a complete oscillation to 

occur. Sampling at 1 min intervals was therefore acceptable for accurate data 

collection.

Fig. 3.8 plots the levels of 8-oxoG generated when copper was added to the 

reaction as Cu(I) (copper(I)chloride) and as Cu(II) (copper(II)chloride). The increase 

in concentration from 0 to 1 min incubation with both catalysts was almost identical. 

This suggested that initially the rate of 8-oxoG formation for both systems was the 

same. As the concentrations of both DNA and H2O2 were equal (aliquots of the same 

solution), the copper moiety in both systems must have behaved in an analogous 

manner. A quantum chemical study of the interactions between Cu(II) and DNA in 

the literature provided an insight into the nature of the complex formed.11 It was 

found that coordination of Cu(II) to a GC base pair within the DNA double helix 

could induce an oxidation of GC with concurrent reduction of the copper ion to 

Cu(I). The ability of Cu(II) to oxidise the GC base pair depends inversely on the 

number of water molecules directly interacting with it. Therefore the local 

environment of Cu(II) would determine its oxidising power. It was illustrated in Fig. 

3.10 that the addition of 8-oxoG, which would also have an N7 available for 

complexation with copper ions, to copper(II)chloride immediately resulted in the 

reduction of Cu(II) to Cu(I). This reduction, in the absence of any obvious reducing
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agents, suggests that the reduction of Cu(II) via its coordination of the N7 of 8-oxoG 

is a viable mechanism for the generation of Cu(I) used in the copper-mediated 

Fenton oxidation of DNA. 11 This reduction of Cu(II) to Cu(I) also causes the 

oxidation of the base to which it is complexed, namely G. The one electron 

oxidation of G leads to the cation radical G+*. This is readily hydrated to form 

G80H*. This radical can be further oxidised to form 8-oxoG, or can be reduced to 

form FapyG. In the copper-mediated reaction used in this study therefore, it is 

probable that the oxidation is not generated by either the ROS O H  or 'C^, but 

instead is initiated by the one electron oxidation of G. One electron oxidation can be 

distinguished from both the ROS generated by analysing the final products 

generated. ^ 2  forms 8-oxoG, but not FapyG, from G and does not oxidise any other 

DNA bases. O H  damages all four DNA bases, causing over 60 products. One 

electron oxidation forms both 8-oxoG and FapyG. Therefore the analysis of FapyG 

and of Thymine adducts can be used for identify the oxidation mechanism involved.

The nature of the oxidising mechanism generated by Cu(II) and H2O2 has 

previously investigated by a number of groups. DNA damage induced by Cu(II) and 

H2O2 was studied by Yamomoto and Kawanishi, to identify the nature of the 

oxidising species involved. They concluded that Cu(U) bound to DNA but that Cu(I) 

participated in the DNA damage, based on the inhibition of damage by the Cu(I)
17scavenger bathocuproine. Scavanging reactions indicated that O H  was not the 

primary oxidative species. An oxidising species similar to O H , e.g. a bound O H , 

such as a copper-hydroperoxo complex was suspected to be involved, as all four 

DNA bases were damaged to some extent. Singlet oxygen (*0 2 ) was considered as 

the possible oxidant due to the 102-like pattern of damaged DNA bases which was 

detected. It was ruled out as the primary reactive species, however, because no 

enhancement in DNA damage was detected when the reaction was carried out in 

D20 , where the lifetime of *02 would be increased approx. 30-fold.18 This implied 

that an oxidant similar to *0 2 , such as a bound *0 2 , again a copper-peroxide 

complex, could cause the damage recorded. The following reaction mechanism
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(Scheme 3.1) was proposed, where the interconversion of Cu(I) and Cu(II) was 

important for DNA damage to occur:

/  Cu(ll)

DNA +  Cu(ll)    DNA
^ C u ( l l )

/C u ( l l )  ^ C u l l l ) - - .  -
DNA +  h .O , ---------► DNA ?  +  H"

Cu(ll) '"C uO D .A
H

^C u (ll)  .  ...

DNA ?  n N A ^ ®
' v C u ( l l ) - - '° -   ~  ° NA\  +  ° *  +  H+

' '  H Cu(l)

   ^CuOJOOH
‘ +  H20 2    DNA

Cu(l) ^C u(l)

^CufOOOH
DNA

"'Cud)
DNA damage

Scheme 3.1: Proposed mechanism fo r  DNA damage induced by Cu(ll) and H2O2/ 7

A subsequent study confirmed that copper-induced DNA damage was site 

specific, occurring only at sites where copper ions were bound to the DNA 

backbone.19 It was found that the Cu(II) was quickly reduced to Cu(I), which then 

bound to DNA with high affinity. H2O2 then entered the DNA-Cu(I) coordination 

complex oxidising Cu(I) and modifying bases. The rate of DNA base damage was 

far slower than the rate of DNA- Cu(I) oxidation however, suggesting the formation 

of an intermediate oxidising species, e.g. Cu(HI) or a copper-oxo complex, which 

reacted slowly with DNA bases. The ease at which Cu(II) could be converted into 

Cu(I) was illustrated in an EPR spectrometry study.20 The spectra generated by 

Cu(II) incubated with H2O2 was found to be analogous to that generated by Cu(I) 

incubated with H2O2, leading to the conclusion by the author that in all probability 

the Cu(II) had been reduced to Cu(I) almost instantly upon incubation.
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The nature of the copper-hydroperoxo intermediate was investigated in the 

analysis of oxidative DNA damage by catechol in the presence of copper(I).21 The 

nature of the intermediate is illustrated in the scheme shown in Reaction 3.2:

H 20 2 + DNA -  Cu(I) —> DNA -  Cu(I)OOH + H + -»  H O ' + DNA -  Cu(Il)OH

(Reaction 3.2)

By comparing the damage patterns caused by catechol in the presence of 

copper to those caused by free *OH, free *02 and hydroxyl radical produced from the 

decomposition of DNA-copper-peroxide intermediates, the authors concluded that 

this intermediate was the cause of the damage found in their investigation. Suspected 

•OH generated by the degradation of the copper-hydroperoxo intermediate was not 

detected by scavenging reagents; instead it was proposed that this »OH was not 

released into the bulk medium but reacted immediately with DNA.

Further analysis of the degradation of DNA bases by copper in the presence 

of H2O2 again lead to the conclusion that the ROS species involved was not O H .9 

The DNA base damage generated from y-irradiation (known to form O H ) was 

compared to that of Cu(I)/H202 induced oxidative damage. (In this way, the problem 

with ROS scavenging experiments, namely the possibility that the ROS generated by 

DNA-Cu complexes reacting directly with H2O2 reacts with DNA before it can be 

scavenged, was overcome.) A number of differences between the two systems were 

observed. The level of G adducts accounted for 51% of oxidised bases in y-irradiated 

DNA, but this rose to 82% for the Cu(I) system. In addition, a 7-fold increase in 

DNA damage was recorded when the Cu(I) reaction was carried out in D20 . As ]02 

oxidises predominantly G, and its lifetime is enhanced in D2O, it was proposed that 

it was predominantly responsible for the oxidative damage detected, being generated 

in situ via a DNA-copper-hydroperoxo complex. The presence of T and A adducts 

however, suggested that O H  was possibly a minor pathway for oxidative DNA 

damage induced by Cu(I)/H202. The compound methional scavenges not only O H ,
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but also weaker oxidants of similar activity. It partially inhibited DNA damage for a 

number of Cu(I)-hydroperoxo complexes, where »OH scavengers had no effect, also 

indicating the presence of a weaker •OH-like oxidant.7 22

Recently, a reaction mechanism for the oxidation caused by the Cu(I)/H202 

system was proposed in the literature.23 This was elucidated in part by monitoring 

the concentration of H2O2 as the reaction progressed by titration with KMn0 4 . For a 

low concentration of copper, the following mechanism, Reactions 3.3-3.7, was 

proposed:

Cu(II) + H 20 2 —> Cu(I)OOH+ + H + 

Cu(I)OOH + Cu(I) + o ;  + h  +

Cu(I) + H 20 2 —» Cu(I) + OH ~ +  HO'

h o '+  h 2o 2 -> h 2o + o ;  + h +

°2 + H 20 2 -> 0 2 + 0 H  + HO'

(Reaction 3.3) 

(Reaction 3.4) 

(Reaction 3.5) 

(Reaction 3.6) 

(Reaction 3.7)

The copper-hydroperoxo complex Cu+*OOH was generated in Reaction 3.3, which 

subsequently decomposed as shown in Reaction 3.4, leading to the reactions in 

Reactions 3.5 and 3.8. The rate determining step was the decomposition of 

Cu(I)OOH, in Reaction 3.3. If there is an increased concentration of copper 

however the rate determining step was no longer the unimolecular decay of the 

copper-hydroperoxo complex, but instead its bimolecular decomposition, shown in 

Reaction 3.8.

2Cu(l)O O H + —s- ^ —̂ 2C u(l)  + H 20 2 + 0 2 (Reaction 3.8)

If the concentration of copper was sufficiently high (120 pM), the superoxide 

species, instead of reacting with H2O2 as shown in Reaction 3.7, could react with 

Cu(II), as shown in Reaction 3.9.

0 2 + Cu(II) 0 2 + Cu(I) (Reaction 3.9)
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In this way the Cu(II) could be regenerated completing the catalytic cycle. In this 

proposal however, Cu(I) reacted with H2O2 via the Fenton reaction to yield O H , in 

Reaction 3.5. This was in contradiction to all the investigations discussed previously, 

where it was shown by a multitude of experiments that the reaction of Cu(I) with 

H2O2 yielded a copper-hydroperoxo complex. The exact fate of this complex is 

uncertain, but it either reacts or its degradation products react as a ‘bound’ 10 2 -like 

species, which also exhibits partial ‘bound’ O H -like behaviour. It is generally 

accepted, based on the extensive investigations outlined in this section, that Cu(I) 

oxidation does not proceed via the formation of *OH. The mechanism outlined in 

Reactions 3.3 to 3.9 is therefore unlikely to represent the pathway by which Cu(I) 

results in oxidative stress to DNA. Instead, *02 or a 102-like species is more likely to 

be generated during Cu(I) oxidation.

In *02 oxidation in DNA (not in the free nucleoside), G is the main target for 

attack, where it preferentially undergoes cycloaddition, generating 8-oxoG as the 

main adduct, with the mechanism in Scheme 3.2 proposed:24

v J U d i l l i l c  v j u a i i i i i c  11“

endoperoxyde
Scheme 3.2: Proposed mechanism fo r  8-oxo-7,8-dihydroGuanine formation by O2 

attack.24

As with 8-oxoG generated by O H , 8-oxoG generated by *02 is not the final 

species of the oxidation. It is thought to undergo further reaction with *02 to 

generate oxaluric acid via an oxidised guanidinohydantoin intermediate, as shown in 

Scheme 3.3.25 It was proposed that l02 oxidation of 8-oxoG occurred via 

cycloaddition to form 5-hydroperoxy-8-oxoG which decomposed to give 

guanidinohydantoin. This was oxidised to parabanic acid, and on further oxidation
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yielded oxaluric acid, the final product of the *02 oxidation. Elsewhere cyanuric acid 

was proposed as the final product of *02 oxidation of 8-oxoG 26

o o
Oxaluric acid oxidised Guanidinohydantoin

Scheme 3.3: Proposed mechanism fo r  oxaluric formation from 8-oxo-7,8- 

dihydroGuanine by l0 2 attack, 8-oxo-7,8-dihydroGuanine depicted in red,

intermediate complexes depicted in orange and final oxidation products depicted in 

green.25

Further oxidation products of 8-oxoG oxidation by *OH are still a matter of 

debate, with a number of species and potential mechanisms proposed. At pH 7.0 it 

was proposed that guanidinohydantoin (Gh) was the product formed, via a 5-OH 

intermediate.27 It was subsequently demonstrated that Gh itself was further oxidised, 

and so was not the final product of G oxidation.28 Scheme 3.4 summarises the 

variety of oxidation products proposed for the 8-oxoG oxidation by »OH and *02.

H2N
oxidised 2
Guanidinohydantoin 2,5-diam inoim idazoloneIm inoallantoin

H
Parabanic acid

O
Oxaluric acidCyanuric acid Oxazolone

Scheme 3.4: Proposed oxidation products o f *OH and '0 2 oxidation, depicted in 

blue.
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It is, however, probable that, as previously discussed, neither ROS are 

involved, and that one electron oxidation of G, yielding G+\  takes place when Cu(II) 

is reduced to Cu(I). As discussed previously, this is a probable route to generate 

Cu(I); therefore it is highly likely that G+* is also generated during this spontaneous 

reaction, and that copper causes DNA damage via one electron oxidation.

All three mechanisms of DNA damage (one electron oxidation, *02 and 

•OH) have in common that they generate 8-oxoG and then further oxidise it via the 

formation of a Gh or oxGh intermediate. In the case of *OH, 8-oxoG is only one of 

about 60 oxidative adducts formed, but in the case of *02, 8-oxoG is the main adduct 

generated in DNA and in the case of one electron oxidation, 8-oxoG and FapyG are 

the main adducts generated. All three systems could have caused the 8-oxoG 

concentration patterns observed in this chapter during the investigation into copper- 

catalysed oxidation of free G, PolyG and DNA, but the most likely mechanism is 

that of one electron oxidation, because of the ability of Cu(II) to complex with G and 

generate G+*.
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3.5 Conclusions

In this study, the rate of 8-oxoG formation and oxidation by the copper- 

catalysed Fenton reaction was investigated in free G, PolyG and ds DNA. For free G 

incubations, 8-oxoG was only generated intermittently, at a concentration of approx.

0.55 pM. The oscillations in concentration observed for the iron catalysed oxidation 

of free G in Chapter 2 were again detected, but with lower minimum concentrations 

than previously observed. Free G was shown to be oxidised immediately, with a 

drop in concentration recorded on incubation with the Fenton reagents, and an 

overall decrease in concentration with increasing incubation time, which was 

interpreted as a linear decrease within experimental error.

PolyG was also subjected to copper-mediated oxidative stress. For the first 40 

min of incubation, no 8-oxoG was detected. After this incubation time, what 

appeared to be a steady state concentration of 8-oxoG was detected, again at a 

concentration of 0.55 pM. For both free G and PolyG, a sampling frequency of 5 

min was used. This was subsequently shown to lead to incomplete oscillation 

patterns, but could not explain the lack of 8-oxoG detected in both systems.

The incubation of ds DNA with the copper Fenton reagents leads to 

significantly different results to those recorded for free G and PolyG. A comparable 

incubation to the earlier analyses, with 5 min sampling intervals, lead to the 

detection of 8-oxoG which oscillated with increasing incubation time. For 

subsequent analysis with a 1 min sampling frequency, concentration maxima were 

detected at concentrations greater than 3 pM, with a maximum concentration of 3.2 

pM observed.

The oxidation state of copper which was involved in the oxidation of DNA 

was studied briefly. In the first study, parallel DNA incubations were carried out, 

one with copper(I)chloride (Cu(I)), and one with copper(II)chloride (Cu(II)). The 

concentration of 8-oxoG generated by both systems was then measured. It was found
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that the initial rate of 8-oxoG formation in both cases was identical. Further 

colorimetric analysis of the two solutions, based on the green colour of Cu(I) and the 

blue colour of Cu(II) also leads to the conclusion that Cu(II) was readily reduced to 

Cu(I) to participate in the generation of ROS for the oxidation of DNA. This was 

supported by literature analysis, which concluded that Cu(II) formed a complex with 

G, such that it was instantly reduced with concurrant oxidation of G. Based on this 

data, and the results observed in this thesis, G oxidation in this case therefore 

appears to be initiated by one electron oxidation and not by addition of O H .

The exact nature of the ROS generated by Cu(II) and H2O2 was discussed in 

detail based on published literature, with a copper-hydroperoxo complex, 

Cu(I)OOH, emerging as the probable complex resulting from the interaction. Where 

Cu(H) and H2O2 were incubated with DNA, the copper ion first bound to the DNA, 

probably to the N7 of G, and then reacted with H2O2 to yield the Cu(I)OOH 

complex. Simply the coordination of Cu(II) and GC base pair was shown to be 

capable of reducing the copper ion to Cu(I), so that it was available for reaction with 

the H2O2. Therefore, Cu(U) initiated the formation of 8-oxoG by one electron 

oxidation, and not via the production of either ROS. The final species of 8-oxoG 

oxidation were also discussed.

On the basis of this investigation, and the different patterns of 8-oxoG 

oxidation that emerged between this work and that in Chapter 2, the copper and iron 

catalysed oxidation of DNA does not appear to proceed via the same mechanism. 

Copper(II) and H2O2 do not seem to react via the Fenton reaction, nor to generate 

•OH. Instead one electron oxidation probably occurs, the oxidising properties of 

which are more similar to '02 oxidation than *OH oxidation.
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Chapter Four

Identification o f the Products o f  Iron- and 

Copper-mediated 8-oxo- 7,8-dihydro Guanin e

Oxidation



4.1 Introduction

In Chapters 2 and 3, free G, PolyG and ds DNA were oxidised by iron- and 

copper-mediated Fenton reagents respectively. 8-oxoG was generated in all cases, as 

the primary oxidation product of G oxidation. As the incubation time with the 

oxidants increased, however, the concentration of 8-oxoG tended towards a decrease 

in concentration with increasing oxidation. This implies that 8-oxoG is not the final 

product of guanine oxidation, but is probably readily further oxidised. It has a lower 

oxidation potential than any of the unmodified DNA bases, including Guanine 

itself,1 and has been identified as a “hotspot” for further oxidation.2 (This is 

important when considering oxidants only capable of oxidising to a certain extent, 

but does not apply to strong oxidants such as *OH, which are capable of oxidising all 

DNA bases.) 8-oxoG may not induce all G“>T transversions, and is not responsible 

for G->C.3 This also indicates that other species, as well as 8-oxoG, are generated 

during G oxidation.

The exact nature of the final product of 8-oxoG oxidation is a matter of 

debate and seems to be dependent on the nature (e.g. nucleoside, singe-stranded 

oligomer, double-stranded oligonucleotide) and environmental conditions (pH, 

temperature) of the substrate, as well as the nature of the oxidising species. Cr(V)- 

Salen complex oxidation of 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) lead to 

the formation of two products, Guanidinohydantoin (Gh) and Spiroiminodihydantoin 

(Sp).4 When 8-OHdG was incorporated within a ds oligonucleotide, only Sp was 

generated. An in depth analysis of the factors affecting Gh and Sp formation was 

studied using NaIrCl6, a one electron oxidant that was selective towards 8-OHdG.5 

Oxidising 8-OHdG at pH 4 lead to 100% Gh. Increasing the pH to 7, however, lead 

to an overwhelming generation (90%) of Sp, at the expense of Gh. ss and ds 

oligonucleotides containing 8-OHdG were also oxidised at this pH. This resulted in 

55% Gh and 40% Sp in ss oligonucleotides, but 95% Gh in ds oligonucleotides. 

Temperature also affected the final oxidation products. At 22 °C, the products of
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8-OHdG oxidation in ss oligonucleotides were 55% Gh and 45% Sp. At 4 °C the Gh 

yield increased to 95% at the expense of Sp, while at 50 °C, the Sp yield increased to 

95% at the expense of Gh. Whether Gh or Sp was formed depended on pH, 

temperature and the nature of 8-oxoG. All three oxidation products were proposed to 

be formed via a 5-OH-8-OHdG intermediate, as shown in Scheme 4.1.

Spiroimidinohydantoin

Scheme 4.1: Formation o f Sp and Gh via 5-OH-8oxoG, guanine depicted in blue, 8- 

oxo-7,8-dihydroGuanine depicted in red, and intermediate complexes depicted in

pH 5.8 was assigned as the pKa of 5-OH-8-OHdG, the common intermediate

below pH 5.8, 5-OH-8-OHdG was protonated and electrophilic attack by H2O was 

favoured, leading to formation of Gh. Above pH 5.8, 5-OH-8-OHdG was 

deprotonated, which favoured the formation of Sp. The protonation state of 5-OH-8- 

OHdG dictated the nature of the final oxidation product of 8-OHdG oxidation.

O O

Guanine 8-oxo-7,8-dihydroGuanine

5-OH-8-oxoG

orange and green.5

of Gh and Sp, during peroxynitrite oxidation of 8-OHdG.6 It was proposed that
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Guanosine (dG) oxidation by *02 (generated by Type II photooxidation) 

yielded 95% Sp.7 Oxidation of 8-OHdG, however, did not lead to Sp, but to 50% 

cyanuric acid and 35% imidazolone (Iz), which degraded to oxazolone (Oz), with 

less than 10% Sp detected.8 O2 oxidation of ss oligonucleotides also generated Iz.9 

The yield of Iz was 5 -  10% of dG decomposition, which corresponded to approx. 

50% of 8-OHdG generated. Chemical induction of *02 by DHPN02 resulted in 

oxaluric acid (Oxa), via the decomposition of oxidised guanidinohydantoin (oxGh), 

as shown in Scheme 4.2.10 (Parabanic acid (Pa) is unstable and spontaneously breaks 

down to Oxa.)11 Recently, low temperature (-78 °C) photooxidation was shown to 

yield 5-OH-8-OHdG, which rearranged to Sp on warming to room temperature.12 

•OH oxidation of dG and DNA under reducing conditions resulted in the formation 

of Oz,13 however, for *OH oxidation induced by Fe(II) ions, further oxidation of 8- 

oxoG was expected to be prevented.14 y-irradiation of solid state DNA, also known 

to generate »OH, resulted in the formation of Pa and Oxa.15

n- ' S i^ n

8 ° xoG 5-hydroperoxy-8-oxoG

Q

HO

-co2

v y n h -  *  z h - x x y * -0 0 ü  N N N H2N ^ ^ N  n
Oxaluric acid Parabanic acid oxidised Guanidinohydantoin

Scheme 4.2: Formation o f Oxa via oxGh degradation, 8-oxo-7,8~dihydroGuanine

depicted in red, intermediates depicted in green and final oxidation products

depicted in blue.10

oxGh and Iz were also generated from G oxidation without the formation of 

8-oxoG, by 2 electron oxidation with MnTMPyP/KHS0 4 .16 It should be remembered 

therefore that the formation of these products does not automatically imply the 

formation of 8-oxoG. However, most of the studies outlined above begin with the 

oxidation of 8-OHdG, and not dG, proving that 8-OHdG oxidation can produce the 

products outlined.
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8-oxoG was shown to bind in Hoogsten mode to A, and so cause G»T->T»A 

transversion mutations, shown in Scheme 4.3.9 Iz could bind to G (also in Hoogsten 

mode), causing G*T->OG transversions.

Scheme 4.3: Binding o f 8-oxoG (8oG in scheme fo r  clarity) and Iz within ds DNA9

Iz slowly isomerises to form Oz, which gave rise to predominantly G~>T 

transversions, and to a much lesser extent G“>C transversions, and also blocks DNA 

synthesis.17 Sp resulted in a 2:1 preference for insertion of A instead of G opposite 

it, which resulted in G->T and G->C transversions. Gh caused G->C transversions. 

With mutation frequencies of approx. 100%, both Sp and Gh demonstrated a more 

dramatic effect than 8-oxoG, which had a mutation frequency of -  3%. Sp was
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shown to be a much stronger block to DNA synthesis than Gh.18 Oxa lead to G->C 

and G->T transversions, and was also a block during DNA synthesis.3 The products 

generated when 8-oxoG is subjected to oxidation all incorporated the wrong base 

opposite them with a higher frequency than 8-oxoG itself. Further oxidation may 

therefore serve to increase the mutagenicity (during replication) of DNA which has 

undergone oxidative stress and so final products of oxidative attack on DNA need to 

be fully elucidated.

The aim of this study was to investigate what, if any, oxidation products are 

generated from the iron(II)- and copper(II)-mediated Fenton attack on 8-oxoG. 8- 

oxoG was incubated with iron(II) and H2O2, copper(H) and H2O2, or water (control 

samples). It was then separated from its oxidation products using HPLC and 

analysed using UV and MS detection. For both the iron- and copper-mediated 

Fenton oxidation of 8-oxoG, oxidised Guanidinohydantoin (oxGh) was detected as 

the primary oxidation product. It was generated immediately, and did not degrade 

significantly, even after 96 hr incubation with Fenton reagents. Oxaluric acid (Oxa) 

was detected after this time as a final oxidation product of oxGh oxidation. It was 

shown that oxGh was not generated from 8-oxoG degradation in the absence of 

Fenton reagents. A mechanism was proposed for the oxidation of 8-oxoG via a 5- 

OH-8-oxoG intermediate to oxGh.
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4.2 Materials and Methods

4.2.1 Materials

4.2.1.1 Chemicals

Parabanic acid (P209) and cyanuric acid (185809) were purchased from 

Sigma Aldrich. 30% (v/v) hydrogen peroxide (H2O2) solution was purchased from 

Merck. Oxaluric acid was synthesized by hydrolyzing parabanic acid. All other 

chemicals were obtained as described in Chapter 2 in Section 2.2.1.1.

4.2.1.2 Buffers

The mobile phase for gradient HPLC-EC was prepared as described in 

Chapter 2 in Section 2.2.1.2.

For MS analysis, LC-MS Chromasolv water and methanol were used. For 

HPLC-MSMS, Eluent A consisted of 10 mM ammonium acetate buffer, pH 5.5, and 

Eluent B 50/50 methanol/water. All mobile phases were vacuum filtered using 47 

mm Pall NylafJo nylon membranes with 0.45 jim pore size and stirred overnight 

prior to use.

4.2.2 Apparatus

4.2.2.1 HPLC Instrumentation

All HPLC-EC separations were performed on a Varian ProStar 230 solvent 

delivery module, with a Varian ProStar 310 UV-VIS detector as described in 

Chapter 3 in Section 3.1.1.1.
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4.2.2.2 Mass Spectrometry

For Mass Spectrometry, a Bruker Daltonics Esquire 3000 LC-MS (ion trap) 

was used with a Supelco Supelcosil LC-18 reversed phase column (2.1 mm id x 250 

mm, particle size 5 pm). Eluent A consisted of 10 mM ammonium acetate buffer, pH 

5.5; Eluent B 50/50 methanol/water. A flow rate of 0.2 ml/min was used with a 

linear gradient elution of 0 - 10% B from 0-22 min, 10 - 0% B from 22 - 25 min. 

Full scan spectra were taken at a cone voltage of 15 V using both positive and 

negative electrospray ionisation (ESI). ESI conditions were optimised using 

accompanying software.

4.2.3 Methods

4.2.3.1 Oxidation of 8-oxo-7,8-dihydroGuanine

8-oxo-7,8-dihydroGuanine (8-oxoG) was oxidised by iron(II)sulphate as 

described in Chapter 2 in Section 2.2.3.2, and was oxidised by copper(II)sulphate as 

described in Chapter 3 in Section 3.2.3.1.
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4.3 Results

8-oxoG was incubated with iron(II)sulphate and H2O2 as described in Chapter 2, and 

samples were taken every 30 s from 0 to 5 min. Fig. 4.1 illustrates the HPLC 

separation with UV detection at 280 nm of 8-oxoG incubated for 0 min and for 5 

min with the iron Fenton reagents.

4.3.1 Iron-catalysed 8-oxo-7,8-dihydroGuanine oxidation

Retention time (min)

Fig. 4.1: HPLC separation with UV detection at 280 nm o f 2.4 mM 8-oxoG 

incubated fo r  0 min (red) and 5 min (green), showing Product 1 eluting at 4.6 min, 

and 8-oxoG eluting at 8.2 min. (MS mobile phase as described in Chapter 2: Eluent 

A 10 mM ammonium acetate buffer, pH  5.5, Eluent B 50/50 methanol/water).

There was a dramatic decrease in the concentration of 8-oxoG, accompanied 

by a new peak at 4.6 min (Product 1). As shown in Fig. 4.2, Product 1 was 

immediately generated upon incubation with iron(II) and H2O2.
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incubation time (min)

Fig. 4.2: Concentration o f Product 1 (green) and 8-oxoG (red) fo r  0 - 5  min 

incubation o f 8-oxoG with iron(Il)sulphate and H2O2. (n -6)

The concentration of 8-oxoG was observed to oscillate as the incubation time 

with the Fenton reagents increased, as previously found in Chapter 2. Although the 

concentration of Product 1 did not increase linearly with incubation time, overall 

there was an increase in its concentration. The oscillations observed for 8-oxoG 

concentration were not observed for Product 1 concentration. There did not appear 

to be a direct relationship between 8-oxoG and Product 1 concentrations, but the 

general trend was towards an increase in Product 1 concentration and a decrease in 

8-oxoG concentration. As shown in Fig. 4.3, Product 1 continued to be generated as 

the incubation time with iron(II)sulphate and H2O2 increased up to 12 hr. After 2 hr, 

8-oxoG was no longer detected. From 8 to 12 hr, the level of Product 1 appeared to 

be decreasing slightly, at a steady rate. After 96 hr incubation with the Fenton 

reagents, Product 1 could still be detected using UV detection.
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Incubation time (hr)

Fig. 4.3: Concentration o f Product 1 (green) and 8-oxoG (red) fo r  0 -  12 hr 

incubation o f 8-oxoG with iron(II)sulphate and H2O2. (n=6)

4.3.2 Copper-catalysed 8-oxo-7,8-dihydroGuanine oxidation

8-oxoG was incubated with copper(II)sulphate and H2O2, and again samples 

were taken every 30 s from 0 to 5 min. As with the iron-mediated oxidation (Fig. 

4.1), Product 1 was immediately generated. The results are illustrated in Fig. 4.4. 

The same magnitude of Product 1 was generated for both copper(II)- and iron(II)- 

mediated oxidation of 8-oxoG. Again, the concentration of 8-oxoG was observed to 

oscillate with increasing incubation with the Fenton reagents. However, the overall 

trend towards decreasing concentration of Product 1 and decreasing concentration of 

8-oxoG was detected.
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Fig. 4.4: Concentration o f Product 1 (green) and 8-oxoG (red) fo r  0 - 5  min 

incubation o f 8-oxoG with copper(ll)sulphate and H2O2. (n=6)

As with the iron analysis, 8-oxoG was then incubated with 

copper(II)sulphate and H2O2 for incubation periods of up to 12 hr (data not shown), 

to investigate whether Product 1 was the final product of 8-oxoG oxidation, or 

would itself be further oxidised. Product 1 continued to be generated as the 

incubation time with copper(II)sulphate and H2O2 increased up to 12 hr. From 8 to 

12 hr, the level of Product 1 decreased slightly over this timeframe. As was observed 

for the shorter incubation period, the same magnitude of Product 1 was observed for 

both iron(II)- and copper(n)-mediated reactions, with no 8-oxoG detected as the 

incubation time increased. From 8 to 12 hr, the level of Product 1 appeared to be 

decreasing slightly, at a regular rate.
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4.3.3 8-oxoG oxidation without Fenton reagents

To exclude the possibility that Product 1 was not generated by the Fenton- 

catalysed oxidation of 8-oxoG, 8-oxoG was incubated with deionised water for 96 

hr, under analogous conditions to the Fenton incubations. No Product 1 was 

observed, even after 96 hr incubation. This product is solely generated by the Fenton 

reaction. The concentration of 8-oxoG decreased slighdy with increasing incubation 

time, but the magnitude of the degradation was significantly less than 8-oxoG 

oxidation by Fenton reagents, and was attributed to the inherent instability of 8- 

oxoG.

4.3.4 Mass Spectrometric Analysis of Product 1

To identify the nature of Product 1, it was analysed using HPLC-ESI ion trap 

MS. Table 4.1 outlines the suspected final oxidation products of 8-oxoG oxidation, 

based on literature publications outlined in Section 4.1. 8-oxoG oxidation might 

result firsdy in the formation of 5-OH-8oxoG, as this had been observed as a 

precursor to Gh and Sp. Along with oxGh, these have been detected as the 

precursors to Pa and Oxa, Cy, Iz and Oz. Therefore, initially 5-OH-8oxoG, Gh, 

oxGh and Sp were the only products expected.

Table 4.1: suspected final oxidation products o f 8-oxoG oxidation

Oxidised Product Molecular Weight

5-OH-8-oxoG 183

guanidinohydantoin (Gh) 157

oxidised guanidinohydantoin (oxGh) 155

spiroimidinohydantoin (Sp) 183

parabanic acid (Pa) 114

oxaluric acid (Oxa) 132

cyanuric acid (Cy) 129

imidazolone (Iz) 1 1 2

oxazolone (Oz) 130
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Using 8-oxoG standard, electrospray ionisation (ESI) parameters (positive 

mode) were optimised using the accompanying software. The nebuliser pressure was 

set to 50 psi, the drying gas 8.001 m in'1, and the drying temperature to 350 °C. (Full 

acquisition parameters listed in Appendix 1) 8-oxoG samples from 0 - 5  min iron- 

and copper-mediated 8-oxoG oxidation were analysed using HPLC-MS. Ion 

chromatograms (EIC) were extracted from the Total Ion Chromatograms (TIC) of 

both sample data sets. The ions in both sets were the same, i.e., ions of m/z (mass to 

charge ratio) 128, 129, 156, and 168 were detected in both samples. Fig. 4.5 plots 

the TIC and the EIC of ions with m/z 128, 129, 156, and 168 for 8-oxoG incubated 

for 90 s with copper(II)sulphate and H2O2.

The ion of m/z 168 corresponded to the [8-oxoG + H]+ ion, the protonated 

ion of undamaged 8-oxoG. The ion of m/z 156 eluted at 5.6 min, which 

corresponded to the retention time of Product 1. In order to obtain structural 

information about this ion, MS/MS, which would give the fragmentation pattern of 

this ion, was carried out. ESI-MS/MS of the ion m/z 156.1 resulted in fragments of 

139.1, 113.1 and 114.1, as illustrated in Fig. 4.6.
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Fig. 4.5: TIC, EICs fo r  8-oxoG incubated fo r  90 s with copper(II)suphate and H2O2.
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m /z113.1

Fig. 4.6: ES1-MSMS o f ion m/z 156.1 (Product 7, which elutes at 5.6 min) showing 

fragments 139.1, 113.1 and 87.2 (present in background eluent).

Product 1 was found to have a m/z of 156, which was proposed to be the 

protonated ion, so that Product 1 had a molecular weight of 155.1. Product 1 was 

therefore proposed to be oxidised Guanidinohydantoin, oxGh, and the ion of m/z 156 

corresponded to the [oxGh + H]+ ion. oxGh has a molecular weight of 155.1, as 

shown in Scheme 4.4. The fragment ion of m/z 139.1 represents the loss of NH3 

from oxGh. The fragment ion of m/z 113.1 represents a compound of mass 112.1. A 

possible structure of this compound is proposed in Scheme 4.4.

oxGh 155.1 FW 113.1

Scheme 4.4: Proposed structures o f compound 155.1 and o f fragment compounds

112.1 and 113.1.
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Due to the overwhelming evidence of Sp formation as the main product of 

8-OHdG oxidation, (with Gh being formed preferentially in 

oligodeoxynucleotides4), Sp was expected to be generated in this study. It was not 

detected, however, and it so was concluded that Sp was not formed, or at the very 

least, was not a significant product of oxidation, during 8-oxoG oxidation by either 

iron or copper and H2O2.

4.3.5 Mass Spectrometric Analysis of Product 2, Product 3.

As illustrated in Fig. 4.5, two ions of m/z 128.1 and 129.1 were also 

detected in significant quantities during MS analysis of 8-oxoG, which was 

incubated both with copper- and iron-mediated Fenton reagents. These ions did not 

correspond to any of the expected oxidation products listed in Table 4.1. As 

illustrated in Fig. 4.7, the levels of these products, which also had a UV absorbance 

at 280 nm, did not increase with increasing incubation time. Moreover, they also 

appeared at the same magnitude in the control samples. Therefore they were deemed 

not to be products of Fenton oxidation, and were possibly impurities in the 8-oxoG 

standard, which was not further purified prior to use. The ions of m/z 128.1 and

129.1 corresponded to the protonated ions of Product 2 and Product 3, which 

therefore probably had molecular weights of 127.1 and 128.1 respectively.
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Fig. 4.7: Concentration o f Product 2 (purple) and Product 3 (pink) fo r  0 - 5  min 

incubation of8-oxoG with copper(II)sulphate and H2O2. (n -6 )

4.3.6 Further oxidative species

oxGh was observed during this analysis to be the product of 8-oxoG 

oxidation by iron- and copper-mediated Fenton oxidants. It was found by Cadet et 

al., however, to further degrade to Pa and finally Oxa during ^ 2  oxidation.10 

Hydration of oxGh formed by the one electron oxidation of Gh also lead to the 

formation of Pa,19 raising the possibility that oxGh may be another intermediate in 

the overall oxidation mechanism of 8-oxoG. Therefore, although it appeared not to 

be decreasing in concentration with increasing incubation time, which would be 

expected if it were an intermediate species, incubated samples were analysed for the 

presence of further oxidative species, which have been outlined in Table 4.1 and are 

shown in Scheme 4.6.
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Scheme 4.6: Oxidation products o f oxGh (final oxidation products o f 8-oxoG 

oxidation) depicted in blue.

using Pa, Cy and Oxa standards and each of the incubated samples were analysed for 

the presence of any of the above species. Only for samples incubated for 96 hr with 

Fenton reagents were any of the above compounds detected. EIC for the 

deprotonated Oxa ion at mJz 131, plotted in Fig. 4.8, shows a peak of approx 4% of 

the overall intensity of the TIC at 3.3 minutes (eluting with the solvent front) for 8- 

oxoG incubated for 96 hr with iron(II)sulphate and H2O2. This peak was not present 

in the control sample; it did, however, appear in samples incubated with 

copper(II)sulphate and H2O2, although ion intensities observed were about one third 

lower than for corresponding iron incubations. The MS of this peak, plotted in Fig.

4.9 shows the [Oxa- H] ion at m/z 131. EICs for the deprotonated Cy ion at mJz 128 

were inconclusive; apparent Cy ion peaks were not reproducible. It was therefore 

concluded that Oxa was probably generated after 96 hr incubation of 8-oxoG with 

both iron and copper Fenton reagents. That oxGh should be quantitatively oxidised 

to Pa and subsequently to Oxa, is in agreement with an overall decrease in its 

concentration with increasing incubation time with the Fenton reagents. It is possible 

that at pH 11, the products were formed, but were instantly degraded, so that they 

were only detected in trace amounts after 96 hr incubation.

HPLC mobile phase pH and ESI (negative mode) was optimised
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Fig. 4.8: EIC fo r suspected deprotonated Oxa ion at m/z 131 fo r  8-oxoG incubated 

fo r  96 hr with iron(II)sulphate and H2O2.

m/z 112.9
100 m/z 131

MS 131

80 100 120 140 160 180 200

Fig. 4.9: MS o f suspected deprotonated Oxa ion at m/z 131 fo r  8-oxoG incubated fo r  

96 hr with iron(II)sulphate and H2O2.
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4.3.7 8-oxo-7,8-dihydroGuanine degradation product

In control samples, where 8-oxoG was incubated with deionised water, the 

concentration of 8-oxoG was observed to decrease as incubation time increased, 

presumably by the degradation of 8-oxoG to another species. There was no 

corresponding increase, however, in the concentration of oxGh; this was not the 

product of 8-oxoG degradation in the absence of Fenton oxidants. After 96 hr 

incubation in water, a new peak was found, which eluted before 8-oxoG, as shown 

in Fig. 4.10. MS analysis of this peak revealed an ion of m/z 167. ESI-MSMS of this 

ion did not yield any fragmentation patterns, as shown in Fig. 4.11. This product was 

one unit more than 8-oxoG itself, plotted in Fig. 4.12. No structure was elucidated 

for this compound during this investigation.

1.5(0 
E
Ec
o00CM 1

•96 hr 8oxoG control

10 15
Retention time (min)

20 25

Fig. 4.10: HPLC separation o f 8-oxoG incubated fo r  96 hr with water (control) with 

UV detection at 280 nm showing a new peak eluting at 8.1 min.
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Fig. 4.11: ESI-MSMS o f ion m/z 166.9, the ion generated upon 8-oxoG degradation.
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Fig. 4.12: ESI-MSMS o f ion m/z 166.9, the deprotonated 8-oxoG ion [8-oxoG - H]
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4.4 Discussion

A new species, Product 1, which eluted at 5.6 min, as illustrated in Fig. 4.1, 

was generated immediately on incubation of 8-oxoG with iron(H)sulphate and H2O2, 

shown in Fig. 4.2. Product 1 was identified as oxidised guanidinohydantoin, oxGh. 

The concentration of 8-oxoG oscillated with increasing incubation, as had 

previously been observed in Chapter 2. The concentration of oxGh generated was 

also observed to fluctuate to a minor extent with increasing incubation time. This 

fluctuation was significantly less than the 8-oxoG concentration oscillation, 

however. Overall it was observed that the concentration of 8-oxoG decreased and 

the concentration of oxGh increased inititally, but then slowly decreased with 

increasing incubation with the iron(II) Fenton reagents. This is expected, as oxGh is 

unstable and is further oxidised to both parabanic acid (Pa) and oxaluric acid (Oxa). 

A quantitative decrease in oxGh concentration with a concurrant increase in Pa 

concentration was expected. The absence of Pa may have been due to the alkaline 

pH (pH 11) that was used for this analysis, so that its absence should not imply that 

it was not generated. As illustrated in Fig. 4.3, from 8 to 12 hr incubation with the 

Fenton reagents, the concentration of oxGh tended towards a steady but slow 

decrease in concentration. After 2 hr incubation, no 8-oxoG was detected in any 

sample.

The nature of the oxidant generated by copper(n)-mediated Fenton reaction 

was expected to behave as a one electron oxidant, as discussed in Chapter 3. This 

was in contrast to the »OH generated from the iron(II)-mediated Fenton reaction 

discussed in Chapter 2. Due to the differing nature of the oxidising species therefore, 

different oxidation products of 8-oxoG were expected. However, the oxidised 

species generated by oxidation of 8-oxoG by copper(II)sulphate and H2O2 was also 

identified as oxGh, the same species observed for the iron(II) system. Furthermore, 

the magnitude of oxGh generated using copper(II) as a catalyst was the same as that 

generated using iron(II). The overall trend was for oxGh increase and 8-oxoG
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decrease during increasing incubation with Fenton reagents. Increasing the 

incubation time to 12 hr, again a steady state oxGh concentration was observed.

Both iron- and copper-mediated oxidation of 8-oxoG lead to the immediate 

formation of oxGh, which did not degrade significantly, even after 96 hr incubation 

with the Fenton reagents. One electron oxidation previously only yielded oxGh on 

further oxidation of Gh; Gh was initially formed and only degraded to oxGh over a 

time frame of several hr, Gh having a half life of 23 hr at room temperature at pH 

10.19 In the Fenton oxidation of 8-oxoG in this research, no Gh was found, even at 

the initial stages of incubation, i.e., from just 30 s incubation. Instead oxGh was 

generated immediately, without any Gh first being formed. This implied that the 

formation of oxGh did not proceed via further oxidation of Gh, and therefore that 

one electron oxidation of Gh did not occur during the Fenton reaction, ^ -m ed ia ted  

oxidation of 8-oxoG in single stranded DNA had previously been observed to 

generate oxGh via the unstable 5-OOH-8oxoG intermediate, as illustrated in Scheme 

4.2.10 In that mechanism, oxGh was the first stable intermediate of 8-oxoG 

oxidation, therefore its immediate detection would be likely, ^ -m ed ia ted  oxidation 

of 8-oxoG could therefore yield significant oxGh as the primary product of 8-oxoG 

oxidation, as was observed for both iron and copper catalyzed oxidation in Fig. 4.2 

and 4.4 respectively. During both iron and copper Fenton oxidation only oxGh, but 

not 5-OOH-8oxoG, was observed. 5-OOH-8oxoG was shown to be an unstable 

intermediate, however, that was readily further oxidised. Lack of detection of this 

species did therefore not exclude ^ -m ed ia ted  oxidation as a possible mechanism 

for the generation of oxGh. The only ROS known to generate oxGh directly is *02; 

this implied that ‘02, or a ^ - l i k e  species, was involved in the oxidation of 8-oxoG 

in both iron(II)- and copper(II)-mediated Fenton reagent oxidation of 8-oxoG.

Although the concentration of oxGh did not decrease significantly with 

increasing incubation time, based on previous studies outlined in Section 4.1, further 

oxidation of oxGh was expected to occur. When DNA was subjected to !02- 

mediated oxidation, the oxidation of 8-oxoG was observed to occur via oxGh
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intermediate, finally yielding Pa and Oxa.10 O H  oxidation of dG and DNA resulted 

in the formation of Oz.13 y-irradiation of solid state DNA, also known to generate 

•OH, resulted in the formation of Pa and Oxa.15 One electron oxidation of 8-oxoG 

and 8-oxoG oligonucleotides was found to result in Sp or Gh, which was shown to 

be further oxidised to Pa.19 Samples incubated for 48 and 96 hr with Fenton reagents 

were therefore analysed for the presence of these species. As shown in Fig. 4.7, Oxa 

was detected after 96 hr incubation of 8-oxoG with iron-mediated Fenton reagents. It 

was also detected in the copper-mediated Fenton reaction, but at lower 

concentrations. Detection of Oxa as a final oxidation product of 8-oxoG oxidation 

therefore implied that O H  or a *OH like species, or ^ 2, or a ’02-like species, was 

involved in the oxidation of 8-oxoG.

When 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-OHdG) was subjected to 

iron- and copper- catalysed oxidation, however, the oxidation product was not oxGh, 

but Sp.20This may have been due to the reduced pH (pH 7) at which the reaction 

occurred. This was in line with previous studies, where its oxidation by one electron 

oxidants,5 Cr(V),4 10212,21 and peroxynitrites6,22 all resulted in Sp formation. The 

8-oxoG oxidation product of these oxidants, however, was found to be Gh when an 

oligonucleotide substrate was oxidised. Recently, a possible reason for the 

differences in oxidation product during peroxynitrite oxidation of 8-OHdG was
O'?proposed. It was observed during this oxidation that at low pH, the formation of 

Gh predominated, but at higher pH, Sp yield increased at the expense of Gh. 

5-OH-8-OHdG, the common intermediate of Gh and Sp, was found to have a pK* of 

5.8. It was proposed that below pH 5.8, 5-OH-8-OHdG was protonated at N7. This 

caused the amide group to undergo hydrolysis, followed by decarboxylation, leading 

to formation of Gh. Above pH 5.8, 5-OH-8-OHdG was deprotonated, so that 

electrophilic attack by H2O was not favoured, and 5-OH-8-OHdG rearranged to 

form Sp. The protonation state of 5-OH-8-OHdG dictated the nature of the final 

oxidation product of 8-OHdG oxidation. This is not the intermediate proposed for 

the formation of oxGh, however. Instead 5-OOH-8-OHdG was proposed as the 

reactive intermediate. It is possible, however, that both Sp and oxGh are formed via
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this intermediate, and that the pH of this intermediate determines whether oxGh or 
Sp is formed.

The exact nature of the ROS involved in the oxidation of DNA and DNA 

bases by metal-mediated Fenton reactions has been the subject of much debate and 

research. As previously discussed in Chapter 2, iron(II) and H2O2 are reported to 

generate *OH via the Fenton reaction according to Reaction 4.1.

H 20 2 + Fe(II)—S—>F e(lll) + H O + H O -  kj = 7 6 lm o r 's ' (Reaction4.1)

A recent study by Wink et al„ however, questioned this generation of *OH.24 

They found that the reaction of iron(II) and H2O2 lead to two intermediates; neither 

being *OH. Instead they proposed that the first intermediate (X) was probably a 

peroxo complex, e.g. Fe(II)(OOH), and the second intermediate (Y) an iron(IV) oxo 

complex, e.g. F e02+. Scheme 4.8 outlines the mechanism proposed:

Y (e.g. Fe02+) --------► Fe(lll)
Fe(ll)+H20 2= ^ X  [e.g. Fe(ll)(OO H)]<"7

Scheme 4.8: Proposed mechanism fo r  reaction ofiron(Il) and H2O224

A subsequent publication examined the feasibility of the Fenton reaction on 

thermodynamic grounds. It was found that the familiar outer sphere mechanism 

used to represent the Fenton reaction (Reaction 4.1) to be thermodynamically 

extremely unfavourable and therefore unlikely to occur. Far more likely was an 

inner sphere mechanism where a ferrous peroxide complex was generated. However,

this could still result in the formation of O H . The DNA damage induced by Cu(II)
26and H2O2 has also been investigated. It was concluded that Cu(II) was the species 

which bound to DNA but that Cu(I) participated in the DNA damage. Scavanging 

reactions indicated that »OH was not the primary oxidative species, but a “bound 

•OH”, such as a copper-peroxide complex may be involved. In a similar manner *02 

was ruled out as a primary reactive species, but a “bound *0 2 ”, again a copper-
9 7peroxide complex, could cause the damage recorded. A publication by Frelon et al.
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analysed the degradation of DNA bases by copper in the presence of H2O2 and again 

concluded that the ROS species involved was not O H . Instead the authors 

concluded that lC>2 was instead predominantly responsible for the oxidative damage 

that occurred, with *02 being generated in situ via a DNA-copper-hydroperoxo 

complex. A recent investigation demonstrated how the Cu(D)/H202 system 

generated a very effective oxidation. It concluded that the Cu(II)/H2C>2 system was 

unlikely to proceed via the Fenton mechanism, but the copper-hydroperoxo complex 

Cu(I)OOH, and proposed a reaction scheme for this oxidation.29 From Chapter 3 in 

this thesis, one electron oxidation was proposed for the Cu(II) oxidation of G to 

yield the cation radical G+#, which subsequently formed 8-oxoG.

The results of 8-oxoG oxidation carried out during this investigation 

indicated that both copper and iron generate the same 8-oxoG oxidation product 

(oxGh), and quantitative analysis showed that a similar magnitude of OxGh is 

generated by both metal systems. This investigation analysed the oxidation of 8- 

oxoG, and therefore excluded any influences of binding of the metal to the DNA 

chain, and intermediates that might be generated as a consequence of this binding. It 

had previously been proposed that the iron-mediated Fenton reaction generated O H , 

but that the copper-mediated Fenton reaction proceeded via one electron oxidation. 

Whereas one electron oxidaiton primarily oxidises G, O H  generates over 60 

oxidation products, oxidising all 4 DNA bases. This analysis was confined to the 

oxidation of 8-oxoG, and so the other DNA bases A, T and C were not considered. 

Potential damage to those bases was therefore not analysed. If damage had occurred 

to those bases, it would have indicated that O H  was also generated by the copper- 

mediated Fenton reaction, whereas absence of damage, specifically at the 5’-G of a 

GG doublet would have implied that one electron oxidation was involved. The role 

of *02 in copper-mediated Fenton oxidation has also been proposed. In order to 

investigate this, the product generated from G80H* reduction, i.e., FapyG, should be 

analysed. This is formed during one electron oxidation, but not during *02 mediated 

oxidation, so that its presence would indicate that one electron oxidation was 

involved.
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4.5 Conclusions

The products of 8-oxoG oxidation were investigated in this study. During 

analysis, a new product, oxidised guanidinohydantoin (oxGh), was shown to be 

generated immediately on incubation with reagents iron(II)sulphate and H2O2 and 

with reagents copper(II)sulphate and H2O2. The concentration of 8-oxoG was 

observed to oscillate with increasing incubation time, with an overall trend towards 

its decrease. The concentration of oxGh was also observed to oscillate slightly with 

increasing incubation time, but these oscillations were significantly less than those 

observed for 8-oxoG, and could be within experimental error. The overall trend was 

towards its slow but steady decrease. For both metal systems, the overall trend with 

increasing incubation time was towards an increase of oxGh with a corresponding 

decrease in 8-oxoG, with a similar magnitude of oxGh generated by both systems.

Mass spectrometry was used to identify the product of 8-oxoG oxidation as 

oxGh. Analysis of the fragmentation pattern of oxGh confirmed the identity of this 

8-oxoG oxidation product. Mass spectrometry operated in negative mode was 

utilised to investigate whether any products of oxGh oxidation were present. These 

were expected due to the unstable nature of oxGh. Oxaluric acid was detected after 

96 hr incubation of 8-oxoG with both iron- and copper-mediated Fenton reagents. 8- 

oxoG incubated without Fenton reagents for 96 hr was found to result in the 

formation of a product of molecular weight one a.m.u. greater than 8-oxoG. It was 

not identified, and fragmentation patterns did not give any insight into possible 

structures.
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Chapter Five

Development o f  a Kinetic Model describing 

8-oxo-l y8-dihydroGuanine Oscillations



5.1 Introduction

In Chapters 2, 3 and 4, the concentration of 8-oxoG was observed to oscillate 

repeatedly on incubation with both the iron and copper Fenton reagents. The aim of 

this chapter is to elucidate a mechanism to explain the oscillations observed.

In 1973, Briggs and Rauscher reported an oscillating ‘iodine-clock’ reaction, 

suitable for undergraduate investigation. 1 Using potassium iodate, hydrogen 

peroxide, perchloric acid, malonic acid, manganese(II) sulphate and starch, they 

observed striking cyclic colour changes from colourless to gold to blue. This 

reaction, subsequently named the Briggs-Rauscher (BR) reaction, is the oxidation of 

malonic acid by hydrogen peroxide and iodate, catalysed by the manganese(II) ion .2

In 1982, De Kepper and Epstein proposed a mechanism to explain the 

oscillations observed,3 based on ten elementary steps, as follows, where MA and 

IMA represent malonic acid and iodomalonic acids, respectively.

2 H ++ r  + i o ;  = h o i  + h io 2 (Reaction 5.1)

H ++ H I 0 2 + T  = 2HOI (Reaction 5.2)

HOI + 1~ + H + = I 2 + H 20 (Reaction 5.3)

h i o 2 + io ;  + h + = no2 + h 2o (Reaction 5.4)

2H I0 2 = HOI + 10~ + H  + (Reaction 5.5)

102 + Mn(II) + H 20  = H I02 + Mn(III )OH2+ (Reaction 5.6)

H 20 2 + M n(Ill)O H 2+ = H 0 2 + M n(ll) + H 20  (Reaction 5.7)

2 H 0 2 = H 20 2 + 0 2 (Reaction 5.8)

/ 2 + MA = IMA + 1 +  H + (Reaction 5.9)

HOI + H 20 2 = r  + 0 2 + H + + H 20  (Reaction 5.10)
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Reactions 5.1 to 5.3 result in the consumption of iodide, I \  and the generation of 

iodine, I2. HIO2 (highlighted in yellow) is formed in Reaction 5.1, and is then 

consumed in Reaction 5.2 and Reaction 5.4 and decomposed in Reaction 5.5. The 

autocatalytic production (i.e., the formation of a product that is a reactant in previous 

steps) of HIO2 is achieved in Reaction 5.6, while Reaction 5.7 regenerates Mn(II). 

Reactions 5.9 and 5.10 regenerate I' through the consumption of fc. This completes 

the cycle, allowing the mechanism to begin again. During the course of this 

mechanism, two steady states exist, high iodide concentration, [T], and low iodide 

concentration, [I ]. Switching between these steady states depends on whether or not 

[F] is high enough so that HIO2 reacts preferentially via the non radical Reaction 5.2, 

rather than the radical Reaction 5.4. (Reaction 5.4 leads to the autocatalysis of HIO2 

via the formation of IO2.) Switching between Reaction 5.2 and 5.4 takes places at a
n

critical [T], namely 3.7 x 10 [IO3 ]. The BR reaction, as described by this 

mechanism, therefore has two steady states (bistability), and an autocatalytic step, 

where a key intermediate (HIO2) is consumed and regenerated. The reaction is also 

far from equilibrium and it is described by nonlinear equations (i.e., its reactions are 

higher than first order 4). The mechanism proposed therefore fulfils the four 

parameters required for oscillations to occur.5

The most thoroughly studied chemical oscillator is the Belousov- 

Zhabotinskii (BZ) reaction,6 of which the BR reaction is a hybrid. Both reactions 

involve the oxidation of malonic acid (MA), the BR reaction by hydrogen peroxide 

and iodate catalysed by the manganese(D) ion, and the BZ reaction by hydrogen 

peroxide and bromate, catalysed by the cerium(III) ion. The oscillations in bromide 

concentration, [Br ], and cerium(III) concentration, [Ce(III)] are shown in Fig. 5.1 6 

Initially Br' reacts with BrCV, HB1O 2 and malonic acid and so there is a decrease in 

[Br] (region A-B in Fig. 5.1). Once [Br] has fallen sufficiently, BKV can also react 

with Ce(HI) and HB1O 2 (region B-C). [Br ] drops even more rapidly in this region, 

as it can also react with HOBr and HBr0 2 , which are formed from the reaction of 

B r0 3 with Ce(HI). There then follows an induction period, where [HOBr] and
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[Ce(IV)] remain high and [Br] remains low (region C-D). Bromomalonic acid 

(BrMA) is produced during this time according to Reaction 5.11.

HOBr + MA -»  BrMA + H 20  (Reaction 5.11)

BrMA reacts with Ce(IV) and HOBr to regenerate both Br' and Ce(IH). This 

continues until a critical point, D, in Fig. 5.1, where B1O 3' no longer reacts with 

Ce(IH), but instead reacts with B r. There is a rapid increase in [Br] (region D-E), as 

B1O 3' is not reacting with Ce(III) to produce HOBr and HB1O 2 which consume B r. 

Also in this region [Ce(IV)]/[Ce(III)] falls, as Ce(III) is not reacting with B r03\  But 

[Br ] is being consumed by B r0 3 at a faster rate than it is being generated by BrMA 

(region E-F). At point F, [Br ] has dropped sufficiently that Br0 3 again reacts with 

Ce(III) (region F-G), beginning the cycle again.

0 150 300 450 600 750 900 1050 1200 1350 1500
Tim«/*

Fig. 5.1: Potentiometric traces o f a bromide-sensitive electrode (lower curve) and o f  

a tungsten electrode (upper curve) that responded to cerium(IV). The 0.8 M  

sulphuric acid solution contained malonic acid, potassium br ornate, BrOi, with a 

small amount o f bromide, Br , and cerium(IIl) catalyst. [Reproduced from Moore
6 7and Pearson, which is adapted from  Field, Kôrôs and Noyes. ]

In this reaction, the two bistable states are high [Br ] and low [Br ], and the 

autocatalytic step is the regeneration of HB1O 2. This is analogous to the BR reaction, 

where the bistable states are high [I ] and low [T], and the autocatalytic step is the 

regeneration of HIO2. A ten step elementary reaction mechanism, elucidated by
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Field, Koros and Noyes,7 used this to create a simplified model for the complex 

processes that occur during the reaction, called the Oregonator model, to highlight 

the two steady states and autocatalysis that occur during the mechanism. The 

Oregonator model is described in Reactions 5 .12 -5 .16 .

Process A: A + K -»  X + P (Reaction 5.12)

X  + Y  —» IP  (Reaction 5.13)

Process B: A + X  - * 2 X  + Z  (Reaction 5.14)

2X  —» A + P (Reaction 5.15)

Process C: Z —» JY  (Reaction 5.16)

where A = BrtV , concentration assumed constant, P = HOBr, X = HB1O 2, Y = B r , 

Z = 2Ce(IV) and [H+] and [Ce(III)] are assumed constant. Process A and Process B 

are two competing reactions. Switching between them occurs because they are 

coupled to Process C. Process A consists of a series of nonradical reactions, while 

process P is a series of radical reactions, and includes the autocatalytic regeneration 

of X. Consumption of Y in Process A leads to Process B. After a delay while Z and 

P accumulate, Process C poisons Process B by the production of Y from the 

products of Process B. Through Process C, Ce(IV) is reduced to Ce(IH), completing 

the cycle and allowing for the next oscillation. Use of the Oregonator model 

therefore allows for the mechanistic processes of an extremely complex reaction to 

be exposed.

Models such as the Oregonator have advanced the understanding of 

oscillatory mechanisms and have served as a basis for the development of similar 

models to elucidate the underlying mechanisms for other oscillatory reactions. One 

such model which has been developed is the Urbanalator, created by considering 

only the steps which were observed experimentally during the course of the
o

oscillations. It was developed to explain the Peroxidase-Oxidase (PO) oscillator, the 

only single enzyme system to exhibit oscillations in vitro in homogenous stirred 

solutions.9 The Urbanalator model is shown in Scheme 5.1, where species depicted
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in red are present initially, and blue numbers represent the apparent sequence of 

events which combine to create an oscillatory cycle, as assigned in the Urbanalator 

model. As the PO oscillator only involves a single enzyme, it has become an 

important minimal case for the study of complex behaviour in biochemical systems.

Scheme 5.1: The Urbanalator model o f the Peroxidase-Oxidase reaction.

blue numbers 1-6 represent the apparent sequence o f events which combine to 

create an oscillatory cycle, as assigned in the Urbanalator model. (Arrow depicted 

in green fo r  clarity.) MB = methyl blue; all other abbreviations explained in text.

Peroxidases are a class of enzymes that use hydrogen peroxide to oxidise a 

variety of organic compounds. Some peroxidases can catalyse oxidation using 

molecular oxygen in place of hydrogen peroxide. This type of reaction is called a 

Peroxidase-Oxidase reaction.11 The PO reaction is the oxidation of organic electron 

donors by molecular oxygen, catalysed by Horseradish peroxidase (HRP). When the 

oxidation of nicotinamide adenine dinucleotide (NADH) by molecular oxygen in a 

flow system was carried out, the concentration of both reactants, as well as enzyme

3NAD
r i
,02 o 2,4,o 2v  h ;

2NAD+*

2NAD+* * ^ r e p l
NAD+ NADH 2NADH NAD+

(Reproduced from Olson et al.10) Species depicted in red are present initially, while

188



intermediates, have been observed to oscillate.9,12 The overall reaction mechanism is 

shown in Reaction 5.18.

2NADH  + 0 2 + 2 /T  H*?- >2NAD+ + 2H 20  (Reaction 5,18)

The main redox states of HRP are controlled by the ferric heme group at the 

centre of the enzyme. In its native form the iron is found as iron(III). The removal of 

2 e‘ yields Compoundl (CpI), a free radical compound containing iron(IV). The 

reduction by a single e' produces Compoundll (CpII), which still contains iron(IV). 

Binding of a molecule of oxygen as an axial ligand of iron(HI) yields CompoundHI 

(CpIII). At the heart of the oscillations, therefore, are the higher oxidation states of 

iron, with 2 intermediate states being involved in the catalytic cycle.

As with the BR and BZ oscillation reactions, the PO reaction involves 

switching between two processes, two stable steady states (bistability), namely the 

reaction of NAD» with molecular oxygen and the reaction of NAD« with CpIII. As 

illustrated in Scheme 5.1, NAD« reacts with O2 (Reaction 4). HRP in its native form 

is oxidised to CpIII by its reaction with O2 *, (Reaction 5a) until the native HRP is 

depleted. Disproportion of O2 * to form hydrogen peroxide (Reaction 5b) then 

becomes rate limiting and NAD* begins to react with CpIII (Reaction 6). This is an 

autocatalytic reaction, replenishing NAD*. This also begins a cycle whereby HRP is 

also regenerated in its native form,13 thus completing the oscillatory cycle.

The three examples of oscillatory reactions outlined above, namely the 

Briggs-Rauscher, the Belousov-Zhabotinsky and the Peroxidase-Oxidase reactions, 

represent three of the most thoroughly studied oscillation reactions in the literature. 

The oscillations in each case are based on the existence of two competing processes, 

both of which are capable of generating steady states (bistability). Switching 

between these processes depends on whether a key intermediate, which is consumed 

in one process and autocatalyically regenerated in the other, reacts with one of two 

reagents, whose concentrations vary as the cycle progresses. These systems are far
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from equilibrium, and as equilibrium is approached the oscillations dampen until 

they disappear completely. The reactions in each process are described by equations 

which are nonlinear, i.e., second order or higher. These are the underlying conditions 

which generate the oscillations observed in the above reactions.

For the oscillations observed in Chapters 2 and 3 to occur, the four 

conditions required for oscillations, namely nonlinear reaction equations, systems far 

from equilibrium, bistability and autocatalysis, must be fulfilled. It is assumed that 

the reactions are nonlinear, and that the system is far from equilibrium. The goal of 

this chapter is therefore to identify the two competing processes which lead to 

bistability, and to identify the key intermediate, which is autocatalytically 

regenerated by one of the processes.

The development of a model describing the oscillations observed began with 

a theoretical analysis of the reactions that occur during the iron-mediated Fenton 

reaction as reported in the literature. The classic iron-mediated Fenton reaction, 

which generates *OH, has been investigated in detail, and the rate constants for a 

number of key processes that occur during this reaction have been determined. 

Neither the copper-mediated Fenton reaction nor the iron-mediated Fenton reaction, 

which is assumed to generate a metal peroxide complex, have been investigated in 

this detail in the literature. For this reason, only the classic iron-mediated Fenton 

reaction is considered in the development of the kinetic model outlined in this 

chapter. The reaction rates reported in the literature were used to identify two 

competing processes for the generation and consumption of 8-oxoG, which was 

identified as the key intermediate involved. The parameters which lead to switching 

between both processes were also identified. Eight key reactions were presented as 

the basis for which the oscillations could occur. Finally, two possible biological 

roles for 8-oxoG oscillations are proposed. The first suggests oscillations are a 

method for protecting DNA against oxidative attack, while the second proposal 

suggests oscillations allow the ROS to exist in high enough concentrations for them 

to act as information messengers.
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5.2.1 Reactions in the iron-mediated Fenton oxidation

5.2 Development of a Kinetic Model

Table 5.1: Reactions in the iron-mediated Fenton oxidation of organic substrate RH.

no. Reaction Rale constant 
i M s

Ref.

5.19 H 20 2 + Fe(I l )— k*->Fe(lII) + HO~ + HO ■ k¡9= 76 14

5.20 H 20 2 + Fe(IIl)- -  ~>Fe(//) + H* +HOO k20= 0.002-0.01 15

5.21 Fe(ll) + HO — Fe(IIl) + HO' k2, = 3 x l 0 8 14

5.22 H 0 + R H —^ H 20  + R N> 1! 0 -
J 1 ^5 14

5.23 R ■ +Fe(IU)— ^ —> Fe(II) + Pr oduct. rate N/A 14

5.24 2 R — ^ —>( Dimer) Pr oduct. rate N/A 14

5.25 R ■ +Fe(II) k* ■ >Fe(III) + Product. rate N/A 14

Table 5.1 summarises the main reactions of the iron-mediated Fenton 

reaction, reported in the literature. Reaction 5.19 is the classic Fenton reaction, 

where oxidation of Fe(II) results in the formation of Fe(III) and *OH. The 

corresponding reaction with Fe(III) (Reaction 5.20) occurs 4-5 orders of magnitude 

more slowly. O H , once formed, reacts with Fe(II) (Reaction 5.21), or if one is 

present, with an organic substrate, denoted RH (Reaction 5.22). O H  can add across 

a double bond at 109 -  1010 M 'V 1,14 so that this reaction occurs at a rate 3 - 3 0  times 

faster than the corresponding reaction with Fe(II). Once R» has been generated, it 

can react with a number of species, including Fe(III) (Reaction 5.23), Fe(II) 

(Reaction 5.25) and with another R* (Reaction 5.24). Reaction 5.23 is a primary 

mechanism by which Fe(II) is regenerated in order to further participate in the iron- 

mediated Fenton reaction.16
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5.2.2 G(-H)* and •OH-mediated formation and oxidation of 8-oxoG

•OH reacts with G by adding across the C4-C5 double bond, or at the C8 

position. Approximately 60% of *OH adds to C 4 ,15% to C5 and the remaining 25% 

to C8,17 generating G40H*, G50H* and G80H», respectively, shown in Reaction 

5.26.17

G + H O  — k-^> G AO H  ■ +G50H ■ +G80H k26 = 9.2 x 109 M ' s 1

(Reaction 5.26)

For the purposes of clarity, as they behave in a similar manner,18 G40H* and 

G50H* will only be referred to as G40H* from this point. (This is in keeping with 

previous studies by Cadet et a l , 19 where the only radicals considered as Products of 

Reaction 5.26 were G40H» and G80H*.) G80H» is redox ambivalent, and can be 

either oxidised to from 8-oxoG or reduced to form formamidopyrimidine, FapyG.17 

In an oxidising environment, G80H* is predominantly oxidised to form 8-oxoG. 

This is the first process by which 8-oxoG is generated.

G40H* is readily dehydrated to form the neutral G radical, G(-H)*.18 This is 

the same radical formed from the deprotonation of the G cation radical, G+*. (This 

deprotonation occurs spontaneously at neutral pH, as G+' is a weak acid, with a pKa 

of 3.9.20) G(-H)* is readily reduced, regenerating the parent base G, as illustrated in 

Reactions 5.27,21 5.28 and 5.29.

G ( - H)  • +GSOH — >G + SoxoG (Reaction 5.27)

G( -H)  +SoxoG— ^ -* G  + 8a*oG+ • fe« = 4 .6x  H ^M 'V 1

(Reaction 5.28)

G ( -H )  ■ +Fe(II)  — >G + F e(lll) (Reaction 5.29)
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k,27 is assumed to be greater than k28 as G80H* has a lower oxidation potential than 

8-oxoG.22 Reaction 5.27 is the second process by which 8-oxoG is generated. G(-H)# 

can also be further oxidised, however, and in the absence of reducing species, is 

readily further oxidised in the presence of oxygen to imidazolone (Iz).19

Although a primary product of G oxidation, 8-oxoG readily undergoes 

further oxidation in a similar manner to its parent base, G. G oxidation by *OH has 

been shown to occur at a rate of 9.2 x 109 M“W 7 and 8-oxoG oxidation by an 

analogous manner is expected to occur at an even faster rate, as 8-oxoG is easier to 

oxidise than its parent base G. When subjected to one-electron oxidation, the 

decomposition of 8-oxoG (15% per min) has been determined to be about 4 times 

faster than the decomposition of G (4% per min).20 8-oxoG oxidation by *OH is the 

first process by which 8-oxoG is consumed. As G oxidation by *OH is expected to 

occur at a slower rate than 8-oxoG oxidation by •OH, the net result of these two 

reactions is expected to result in the complete further oxidation of 8-oxoG.

As seen from Reaction 5.28, 8-oxoG is also consumed by the reduction of 

G(-H>. This is the second process by which 8-oxoG is consumed. As G80H* is 

slightly more easily oxidised than 8-oxoG, the net reaction of Reactions 5.27 and 

5.28 should be the formation of 8-oxoG as the reaction progresses.

Based on the previous investigations of the Fenton reaction and of G 

oxidation outlined above, it is proposed that the oscillations in 8-oxoG may be 

generated by the simplified reaction mechanism outlined in Table 5.2.
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Table 5.2: Simplified reaction mechanism generating 8-oxo-7f8-dihydroGuanine 

oscillations during iron-mediated Fenton oxidation o f Guanine.

no. Reaction Rate constant
(M' s  1

Ref.

5.19 H 10 1 + Fe(II)—& -*F e(III) + H O ' + HO k,9= 76 14

5.26 G + HO — k-*->G 40H  +G50H +GW H k26 = 9.2 x 109 17

5.30 G W H  H* — ^->8oxoG rate N/A

5.31 SoxoG + HO — Sa—»5 - O H -  8 oxoG ku > k26 20

5.32 GAOH - H 20  —b*—* G ( - H ) ■ k32= 6 x  103 19

5.27 G ( -H )  ■ +GSOH — ^ —>G + 8 oxoG kl7 > 2̂8 23

5.28 G( H ) ■ +SoxoG— >G + SoxoG* ■ £28 = 4.6 x 108 21

5.23 8oxoG* ■ +Fe(I!I) > Fe(II) + 8oxoG ^. rate N/A 16

The two main processes involved in the proposed mechanism outlined in 

Table 5.2 are the *OH formation and further oxidation of 8-oxoG and the G(-H)* 

formation and oxidation of 8-oxoG. #OH is a stronger oxidant than G(-H)*. This is 

reflected in the reaction rates, with the reaction rate of OH« with G (109 M'V1) one 

order of magnitude higher than the reaction rate of G(-H)* with 8-oxoG (108 M'V1). 

The rate of formation of »OH, however, at 76 M 'V1, is 9 orders of magnitude slower 

than the rate of its consumption. [*OH] is therefore expected to decrease rapidly via 

Reactions 5.26 and 5.31. It is proposed that in the absence of »OH, 8-oxoG 

formation and oxidation by G(-H)« becomes the dominant process. This process 

results in the net formation of 8-oxoG, but also produces an oxidised 8-oxoG 

product, 8-oxoG+\  This radical reacts with Fe(III) to regenerate Fe(II). Fe(II) then 

reacts via the Fenton reaction to regenerate #OH, and so »OH again becomes the 

dominant process.

Elucidation of these two competitive process forms the basis of the proposed 

mechanism for the oscillations in 8-oxoG concentration as the reaction continues. 

The two bistable states proposed are the 8-oxoG formation and further oxidation by
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•OH, and the 8-oxoG formation and oxidation by G(-H)*, which are dominant for 

high [*OH] and low [O H ] respectively. When [O H ] is high, the predominant 

reaction is 8oxG oxidation by O H . When [O H ] diminishes, the system switches to 

G(-H)* reactions, which regenerates the key intermediate 8-oxoG, but also generates 

Fe(II) allowing the Fenton reaction to be renewed, regenerating O H  and switching 

back to first process. The autocatalytic step proposed is the regeneration of 8-oxoG. 

These reactions result in the eight key steps proposed in the simplified mechanism 

for the oscillations in 8-oxoG concentration, which is outlined in Table 5.2.

Table 5.2 is not an exhaustive list of all the reactions that can occur between 

the numerous intermediates and reactive species that are generated during the course 

of the reaction. The reactions contained in this table, however, are the key reactions 

that may generate the oscillations in 8-oxoG concentration observed in Chapters 2 

and 3.
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5.3 Biological Implications for 8-oxoG Oscillations

A number of oscillating reactions have been reported in cellular biology, from 

ovarian systems with period lengths of 28 days to neuronal systems with period 

lengths of 0.01 -  10 s.24 The number of oscillating biochemical processes reported in 

cells has continued to increase as the measurement of metabolites becomes 

increasingly possible.25 While the purpose of metabolic oscillations is not 

completely understood, they may serve to increase the thermodynamic efficiency of 

the metabolism or to protect proteins from otherwise harmful substances that are 

produced during cell metabolism and cell signalling.25

The oscillations in 8-oxoG concentration might also serve a protective 

function, protecting DNA from sustained oxidative damage. According to Reactions 

5.27 and 5.28, 8-oxoG is further oxidised via the regeneration of the G base. 

Therefore, further 8-oxoG oxidation serves to protect DNA from further oxidation, 

and traces of 8-oxoG effectively prevent further oxidative damage from occurring, 

as suggested in Scheme 5.2. As shown, multiple oxidative attacks result only in the 

oxidation of one G base.

Scheme 5.2: Proposed recycling o f G and G(-H)• during 8-oxoG formation and 

further oxidation.

5-OH-8oxoG
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It has also been proposed that oscillation mechanisms can be used for the 

transfer of information during cellular function. ROS such as »OH have recently 

been implicated as cellular messengers, and it has been suggested that they are 

necessary for the transfer of information during normal cellular metabolism.25 

Oscillation reactions allow the ROS to exist at lower concentrations than are 

required for the information to be transferred. The oscillatory reaction allows the 

concentration of the ROS to be increased to the necessary levels for the time period 

required for information exchange to occur, but this high level of ROS is only 

present for a transient time period. Moreover, the oscillation reactions consume the 

ROS, so that they cannot react with other species and so the expected oxidative 

DNA damage does not occur.

The presence of oscillatory reactions may therefore serve two functions, both 

protecting cellular material such as DNA from oxidative damage by the ROS, and 

also allowing the ROS to participate in information exchange necessary for normal 

cellular function.
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Chapter Six

Conclusions and Future Developments



6.1 Future developments in the investigation of Fenton reaction 

oxidation (Chapter 2 ,3  & 4)

In Chapters 2 and 3, the Fenton reaction was shown to generate significant 

oxidative DNA damage, generating 8-oxo-7,8-dihydroGuanine (8-oxoG) as a 

primary oxidation product. In Chapter 4, oxidised Guanidinohydantoin (oxGh) was 

identified as the main product of 8-oxoG oxidation. However, the exact nature of the 

reactive oxygen species (ROS) which induced this damage has not yet been fully 

elucidated. As discussed in the above chapters, iron(II) was believed to generate the 

hydroxyl radical (•OH),1'3 while copper(II) was believed to generate singlet oxygen 

(!02).4"6 These ROS have previously been shown to generate different DNA 

oxidation products. As shown in Chapter 4, however, both iron(II) and copper(II) 

generated oxGh, and in similar magnitudes, when they were used to catalyse the 

Fenton reaction mediated oxidation of 8-oxoG. This implies that a similar ROS was 

generated for both oxidation mechanisms.

Further study of the metal catalysed Fenton reaction should therefore include 

investigation of the ROS generated by both iron(II)- and copper(II)-mediated 8- 

oxoG oxidation. Identification of the ROS involved is important for a number of 

reasons. Individual ROS have been studied extensively in detail, and the ensuing 

damage caused has also been investigated in detail. Identification of the exact nature 

of the ROS involved should therefore increase the understanding of the 

consequences of the Fenton reactant-mediated oxidation to DNA. The results in 

Chapter 4 (Section 4.3) suggest that a similar ROS, if not the same ROS, is involved 

in both the iron- and copper-mediated Fenton reaction. Identification of the exact 

nature of the ROS will increase the understanding of the ROS involved in these 

reactions. This should in turn elucidate the effect of the nature of the transition metal 

on the final oxidative DNA damage that is generated. Moreover, identification of the 

ROS involved in the metal-mediated Fenton reaction should aid in the understanding 

of the underlying mechanism that causes oxidative DNA damage.
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Two main methods are envisaged for the identification of these ROS. The 

first involves the direct detection of the ROS generated, whereas for the second 

method, DNA damage known to be generated solely by that particular ROS is 

detected. l0 2 can be identified by its phosphorescence emission at X = 1270 nm, 

following laser excitation. The emitted light is collected by a germanium photodiode 

array. Certain scavengers can also be employed to aid the identification of the ROS, 

e.g., sodium azide and 1,4-diazabicyclo [2.2.2] octane (DABCO)7 scavenge ^ 2; 

dimethyl sulfoxide (DMSO), ethanol and formate8 scavenge *OH; while methional 

not only scavenges *OH, but also weaker ROS with a similar reactivity. Inhibition of 

DNA damage as a result of these scavengers can be used to identify the nature of the 

ROS involved. However, possible inhibition via chelation with the transition metal 

may interfere with this analysis.9 Moreover, if the transition metal is complexed to 

the DNA, it is also possible that the highly reactive ROS will react with the DNA 

before the reaction can be inhibited by the scavenger, so that lack of inhibition of 

reaction would not necessarily imply that the ROS was not present. Electron 

Paramagnetic Resonance (also known as Electron Spin Resonance, EPR) could also 

be used to differentiate between the ROS generated during the Fenton reaction, as it 

is highly sensitive for the detection of free radicals. The lifetimes of the ROS 

themselves are too short to be observed directly, but they can react with spin traps, 

producing more stable adduct radicals that can be observed. Unfortunately many 

spin traps, e.g. 5,5-dimethyl- 1-pyrroline N-oxide (DMPO) cannot differentiate 

between «OH and *02, as the same adduct is formed for both ROS. Less common 

spin traps can be more selective and therefore more suitable, however. 2,2,6,6- 

tetramethyl-4-piperidone (TMPD) reacts with *02 to form 2,2,6,6,-tetramethyl-4- 

piperidone-N-oxyl (TAN). Although other ROS also react with TMPD, they do not 

result in the formation of TAN, and so this method is specific for !02 detection.

The second method for the identification of the ROS involved in oxidative 

DNA damage involves the analysis of the oxidation products generated, y-irradiation 

of water is known to generate *OH, and the oxidative damage to DNA generated has 

been investigated in detail, with all four DNA bases subject to further oxidation.10 In
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contrast, *(>2 reacts exclusively with guanine base (G), and this is the only base that 

it subject to oxidation.11 Measuring the formation of thymine oxidation products 

could therefore provide insight into whether *OH or *02 was the primary ROS 

involved. The guanine oxidation product FapyG is another oxidative product formed 

by •OH but not by J02.12 However, monitoring of its production is not suitable for 

ROS determination, as it could still be formed by the Fenton reaction, even if ^ 2  is 

the primary ROS, due to the reducing metal species present in solution.13 The 

lifetime of l0 2 is extended up to 30-fold in D20  (58 \xs in D20  as opposed to 2 jas in 

H2O) , 14 and so carrying out the experiments in D2O solutions will therefore increase 

the lifetime of *02 in solution. If ^ 2  is the ROS involved therefore, there will be a 

significant enhancement in the level of oxidative DNA damage that is generated, 

which would also imply that !02 is the ROS generated.

The electrochemical (EC) detection of 8-oxoG in Chapters 2, 3 and 4 was 

hindered slightly by the detection of concentrations which approached the limit of 

detection (LOD) of the detector. This was partly responsible for the significant 

deviations that occurred between duplicate samples (as evidenced by error bars of up 

to 30%). Future development of the analysis employed throughout this thesis should 

therefore include increasing the sensitivity of the EC detector (lowering the LOD). 

The use of polymer modified electrodes should allow for a significant increase in 

sensitivity. This has been investigated in depth for the voltammetric analysis of 

oxidative DNA damage, as discussed in Chapter 1. Modification of the working 

electrode with an osmium polymer has been shown to selectively catalyse the 

oxidation of 8-oxoG, and so increase the current generated by its detection.15 The 

incorporation of this polymer onto the working electrode of the EC detector would 

permit an increase in the signal generated by 8-oxoG, enhancing the sensitivity of 

the detector and allowing for a more accurate monitoring of 8-oxoG concentration.

These error bars could also have been generated by the inefficient quenching 

of the reaction by ethanol, which is a *0H scavenger. As discussed in Chapter 5, the 

oscillations may be due to two competing reactions, one of which involves the
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reaction of two Guanine intermediates. Ethanol would not be expected to quench 

this reaction. The time lag between repeat HPLC analysis might have been sufficient 

to lead to artifactual 8-oxoG oxidation between successive analyses, which could 

have lead to the error bars observed. Duplicate samples were not taken 

instantaneously, due to constraints on the analytical method, instead they were taken 

in quick succession, resulting in a difference of 2 -  4 s between duplicate samples. 

This could also have been a source of the deviations observed. One possible method 

to reduce errors generated in this way would be to sample singly at 15 s intervals, 

which would be possible using the current analytical methodology. This would also 

be very beneficial in analysing the periods of the oscillations in 8-oxoG 

concentration, as the number of sample points per period would be increased 

considerably.

Further development should also include the enzymatic hydrolysis of DNA. 

Acid hydrolysis has solely been used in this thesis to release the DNA bases prior to 

analysis. While it has been established that this does not lead to degradation of 8- 

oxoG,16 its effects on the products of 8-oxoG oxidation have yet to be investigated. 

It is possible therefore, that the use of acid hydrolysis may degrade 8-oxoG 

oxidation products, or may artifactually generate oxidation products. In order to 

investigate whether the use of this technique leads to any of these effects, enzymatic 

hydrolysis should also be used during the analysis, even though this leads to the 

release of DNA nucleosides and not DNA bases, as in the case of acid hydrolysis.

Chapter 4 investigated the products of 8-oxoG oxidation mediated by the 

Fenton reaction, and found that oxidised Guanidinohydantoin (oxGh) was the main 

product of 8-oxoG base oxidation. It cannot be assumed, however, that oxGh is also 

the main product of oxidation of the 8-oxoG nucleoside, or of 8-oxoG within the 

DNA double helix. It has previously been shown that Spiroiminodihydantoin was 

the primary product of Guanosine (guanine nucleoside), but for analogous 

conditions, Guanidinohydantoin was the primary product for Guanosine oxidation 

within DNA.17 Investigations into the oxidation of 8-oxoG should be broadened to
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include the analysis of oxidation products generated from 8-oxoG in G and within 

DNA, just as was undertaken for Chapters 2 and 3.

It was also illustrated in Chapter 4 that Oxaluric acid (Oxa) is a potential 

final product of 8-oxoG oxidation, i.e., that oxGh is itself also an intermediate 

complex and is slowly oxidised to Oxa. In order to examine the nature of the final 

product of oxidative attack on 8-oxoG, and therefore of oxidative attack on G and on 

DNA itself, the substrates 8-oxoG, G and DNA should be incubated with the Fenton 

reagents for extended periods of time (up to 96 hr), to investigate the nature of the 

final products of oxidative attack.

A more biologically relevant model, where DNA will continue to be 

incubated with hydrogen peroxide and various transition metals, should be 

considered for the future development of work carried out to date. This should 

consist of a number of steps. Cellular DNA should be subjected to Fenton reaction 

mediated oxidation, with the DNA isolated and analysed after oxidation had 

occurred. Prosthetic groups from proteins, such as heme centres from cytochrome C, 

should be used to provide the transition metal ion for the Fenton reaction. The use of 

representative prosthetic groups should subsequently be replaced in the model by the 

use of metal prosthetic groups from the misfolded proteins implicated in 

neurodegeneration, which should in turn be replaced by the misfolded proteins 

themselves. This will result in the characterisation of oxidative stress levels and type 

of ROS generated by the misfolded proteins.
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6.2 Chapter 5

In Chapter 5, 8 keys reactions were proposed, which may lead to the 

oscillations in 8-oxoG concentration observed in the preceding chapters. The 

validity of these reactions, and the extent to which they explain the 8-oxoG 

oscillations, has not been investigated, however. The immediate future work in this 

study should involve simulating the concentrations of the reactants, intermediates 

and products generated by the reactions proposed, as the reaction continues. A 

specialised computer simulation program, KinFitSim 2.0 (Iryna Svir, Kharkov 

National University of Radioelectronics, Kharkov, Ukraine) has been purchased for 

this purpose. To date, the only intermediate that has been quantitatively monitored 

over the course of the reaction is 8-oxoG, and the only reactant which has been 

monitored is the parent base, G. The reaction should therefore also be repeated 

experimentally, and the concentration of the start compounds, H2O2 and Fe(II), of 

the intermediates Fe(III), G(-H> and 5-OH-8oxoG, and of end products 8-oxoGox 

and O2 gas evolved. The concentration of these species observed experimentally 

should be compared to the concentrations observed from the simulation.

In Chapter 5, only the key reactions that may contribute to the 8-oxoG 

concentration oscillations were proposed. Oscillation reactions studies in the 

literature, however, have shown a significantly higher number of elementary 

reactions than key reactions, due to the complexity of the processes involved. A 

number of side reactions may also contribute to the patterns of concentration 

observed, including the oxidation of Fe(II) by G(-H)-, consuming the metal before it 

can react with H2O2. Inclusion of these secondary reactions in the kinetic model 

should increase the accuracy of this model.

Finally, the reaction time should be extended beyond the three hours 

analysed to date. Oscillatory reactions normally do not continue indefinitely, but 

slowly come to a steady state. The composition of the steady state, and the time 

taken to achieve this state, should be investigated.
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6.3 Summary and General Outlook

The aim of the research undertaken for this thesis has been the analysis of 8- 

oxoG formation and further oxidation, to provide further insight into the 

mechanisms by which oxidative DNA damage occurs. The results obtained 

complement a growing body of research which highlights the constraints of 8-oxoG 

as a potential biomarker for oxidative DNA damage. The oscillatory nature of 8- 

oxoG and G concentration with continuing oxidative stress underscores the complex 

mechanism by which oxidative DNA damage occurs. One of the primary reasons for 

these oscillations is the regeneration of the parent complex when oxidation occurs at 

the C4 or C5 position of the compound. This regeneration means that any oxidation 

at C4 or C5, which represents approx. 75% of G oxidation, has no long term effect. 

The identification of oxGh as a primary oxidation product of 8-oxoG oxidation is 

also significant. Although it has previously been identified as a product of G 

oxidation,18’19 its detection in this research represents the first time that it has been 

identified as an oxidation product from Fenton mediated oxidation. This research has 

also drawn attention to the similarities between the transition metals iron and copper, 

as catalysts for the Fenton reactant mediated oxidation of DNA, suggesting that they 

could both generate the same reactive oxygen species. The exact nature of these 

species has not been elucidated to date.

On completion of this work proposed in this Chapter, significant 

advancements could be foreseen for the understanding of the role of 8-oxoG and 8- 

oxoG oxidation, and of the Fenton reaction, in oxidative DNA damage. Further 

understanding of the role of 8-oxoG, and of the products of 8-oxoG oxidation, may 

be used to investigate whether oxidative DNA damage is instrumental in initiating 

disease, or is merely a biproduct of the onset of disease. If it is shown to initiate 

disease, its identification may serve as the basis for the early detection of such 

diseases, which would have a very significant impact on the development of 

medicinal devices for disease diagnosis. If oxidative DNA damage is determined not 

to initiate disease, but is merely a biproduct, the stage in the disease progression in
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which the level of oxidative DNA damage increases significantly may also have an 

important medicinal impact. In this case, oxidative DNA damage detection may 

serve as an early detection method for the onset of disease, and may therefore also 

be central to the development of techniques for early disease diagnosis.

A greater understanding of the role of transition metal mediated Fenton 

oxidation of DNA will also have considerable impact. A number of transition 

metals, including iron, copper, nickel and zinc, are essential in vivo. One of the 

primary potential methods by which they are suspected of generating oxidative DNA 

damage is the Fenton reaction. Elucidation of the mechanism by which this 

oxidative DNA damage occurs, especially if it emerges that the transition metals all 

behave in a similar manner, has the potential to lead to methods to detect, repair and 

inhibit such damage.

Oxidative DNA damage has been implicated in heart disease, cancer and 

ageing. The elucidation of the mechanisms by which this damage occurs will play a 

significant part in the clarification of the role played by this damage in disease 

initiation and propagation. This in turn will have a considerable impact on the 

manner in which these diseases are diagnosed and treated, and may ultimately aid in 

the cure and prevention of these diseases.
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Chapter Seven

Appendices



7.1 Appendix la  -  MS Parameters for positive ESI

Mode
Mass Range mode Std/Normal 
Ion Polarity Positive 
Ion Source Type ESI 
Current Alternating Ion Pol N/A 
Alternating Ion Polarity N/A

Detector & Block Vaees
Multiplier Vage 1750 V
Dynode Vage 7.0 kV
Scan Delay 500 us
Skimmer 1 Block 0.0 V
Skimmer 2 Block 300.0 V

Tune Source
Trap Drive 30.8
Skim 1 15.0 V
Skim 2 6.4 V
Octopole RF Amplitude 105.9 Vpp
Octopole Delta 2.40 V
Lens 1 -3.8 V
Lens 2 -47.2 V
Octopole 2.57 V
Capillary Exit 82.9 V
Cap Exit Offset 67.9 V
HV End Plate Offset -638 V
Current End Plate 1108.97 nA
HV Capillary 4000 V
Current Capillary 98.882 nA
Dry Temp (measured) 354 °C
Dry Gas (measured) 8.01 1/min
Nebulizer (measured) 50.56 psi

Trap
Scan Begin 50.00 m/z
Scan End 400.00 m/z
Averages 20 Spectra
Charge Control On
ICC Target 50000
ICC Actual 59913
Accumulation time 100000 ¿is
Max. Accu time 100000 jis

MS/MS Manual Mode
Fast Calc On
ISTD Off

MS/MS Automatic
Auto MS/MS Off

Rollins Averaging
Rolling Off

Comnressed Spectra
Compressed Spectra Off
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7.2 Appendix lb -MS Parameters for negative ESI

Mode
Mass Range mode Std/Normal 
Ion Polarity Negative 
Ion Source Type ESI 
Current Alternating Ion Pol N/A 
Alternating Ion Polarity N/A

Detector & Block Vases
Multiplier Vage 1750 V
Dynode Vage 7.0 kV
Scan Delay 500 fis
Skimmer 1 Block 0.0 V
Skimmer 2 Block -300.0 V

Tune Source
Trap Drive 33.5
Skim 1 -15.0 V
Skim 2 -6.0 V
Octopole RF Amplitude 105.9 Vpp
Octopole Delta -2.40 V
Lens 1 5.0 V
Lens 2 60.0 V
Octopole -2.23 V
Capillary Exit -82.9 V
Cap Exit Offset -67.9 V
HV End Plate Offset -638 V
Current End Plate 1452.47 nA
HV Capillary 4000 V
Current Capillary 89.366 nA
Dry Temp (measured) 355 °C
Dry Gas (measured) 8.01 1/min
Nebulizer (measured) 50.56 psi

Trap
Scan Begin 50.00 m/z
Scan End 400.00 m/z
Averages 20 Spectra
Charge Control On
ICC Target 50000
ICC Actual 6885
Accumulation time 100000 }is
Max. Accu time 100000 \x&

MS/MS Manual Mode
Fast Calc On
ISTD Off

MS/MS Automatic
Auto MS/MS Off

Rollins Averaging
Rolling Off

Compressed Spectra
Compressed Spectra Off
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7.3 Publications

■ Oscillating formation o f 8-oxoguanine during DNA oxidation; Blanaid 

White, Malcolm R. Smyth, James D. Stuart, James F. Rusling (2003). J. Am. 

Chem. Soc.; (Communication) 125(22); 6604-6605

■ Direct electrochemiluminescence detection o f oxidized DNA in ultrathin 

films containing [Os(bpy)2(PVP)w]2+; Lynn Dennany, Robert J. Forster, 

Blanaid White, Malcolm R. Smyth, James F. Rusling (2004). J. Am. Chem. 

Soc,; (Article); 126(28); 8835-8841.

■ Oxidized guanidinodihydantoin (Ghox) and spiroiminodihydantoin (Sp) are 

major products o f iron- and copper-mediated 8-oxoguanine and 8- 

oxodeoxyguanosine oxidation', Blanaid White, Maricar C. Tarun, Nicholas 

Gathergood, James F. Rusling, Malcolm R. Smyth (2005) manuscript 

submitted,
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7.4 Oral Presentations

■ School of Chemical Sciences Research Day

Dublin City University, Glasnevin, Dublin 9, Ireland, 26 March 2003 

“8-oxoguanine formation and oxidation during hydroxyl radical attack ” 

Blanaid White, James F. Rusling, Malcolm R. Smyth

■ Analytical Research Forum incorporating Research and Development 

Topics

Sunderland University, United Kingdom, 21-23 July 2003

“DNA damage -  8-oxoguanine formation and oxidation during hydroxyl

radical attack”

Blanaid White, James F. Rusling, Malcolm R. Smyth

■ Postgraduate Research Topics in Electroanalytical Chemistry

Birkbeck, University of London, United Kingdom, 1 December 2004 

“Electroanalytical detection o f oxidative DNA damage ”

Bldnaid White, James F. Rusling, Malcolm R. Smyth
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7.5 Poster Presentations

■ 2nd Annual Conference on Analytical Sciences in Ireland

Institute of Technology, Tallaght, Dublin 24, Ireland, 4-5 April 2002 

“Development o f a method fo r  early detection o f oxidative DNA damage” 

Blänaid White, James F. Rusling, Malcolm R. Smyth

■ 55th Irish Universities Chemistry Research Colloquium

Trinity College Dublin, Ireland, 14-16 May 2003 

“Oscillating formation o f 8-oxoguanine during Fenton-mediated DNA 

oxidation ”

Blänaid White, James F. Rusling, Malcolm R. Smyth

■ ESEAC 2004 .10th International Conference on Electroanalysis

National University of Ireland, Galway, Ireland, 6-10 June 2004 

“Electrochemical detection o f copper-induced oxidative DNA damage ” 

Blänaid White, James F. Rusling, Malcolm R. Smyth
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