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Abstract

Vascular Smooth Muscle Cell (SMC) fate decisions are fundamental features in the 

pathogenesis of vascular disease. We investigated the role of Notch 1 and 3 receptor 

signalling in controlling adult rat SMC growth in vitro. Constitutive expression of 

active Notch receptors, Notch 1 IC. and Notch 3 IC, resulted in significant up- 

regulation of CBF-l/RBP-Jk-dependent promoter activity and Notch target gene 

expression concomitant with significant increases in SMC growth. Moreover, 

inhibition of endogenous Notch mediated CBF-l/RBP-Jk regulated gene expression 

resulted in a significant decrease in cell growth. Furthermore we examined the 

specific role of a Hedgehog (Hh)/vascular endothelial growth factor (VEGF) pathway 

in controlling vascular SMC growth through regulation of Notch signalling. We 

determined that Hh signalling pathway components are constitutively expressed 

VSMC in culture. Moreover activation of Hh signalling with recombinant Shh 

resulted in a significant increase in Hh signalling concomitant with an increase in 

VEGF expression, cell growth and activation of Notch target gene expression in 

SMC. Inhibition of Hh signalling with cyclopamine resulted in a decrease in Hh 

signalling concomitant with a decrease in SMC growth while concurrently decreasing 

Notch target gene expression. Moreover, Shh-mediated stimulation of SMC growth 

was significantly attenuated following inhibition of Notch target gene expression. In 

addition, we investigated the role of cyclic strain in modulating Notch/Hh mediated 

growth of SMC in vitro. Rat SMC cultured under the condition of cyclic strain 

exhibited a temporal and force dependent reduction in Notch and Hh signalling 

concomitant with a decrease in SMC growth. Furthermore we could reverse this 

downregulation of Notch/Hh signalling and subsequent decrease in SMC growth by 

over-expression of Notch 3 IC .To validate these finding we utilized two in vivo 

models of increased biomechanical forces and vascular remodelling where we 

determined that altered mechanical forces significantly downregulate Notch/Hh 

signalling concomitant with decreased growth in vivo. Collectively, these data suggest 

that Hh control of SMC fate via VEGF activation of Notch may represent a novel 

therapeutic target for disease states in which changes in vascular cell fate occur.
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Chapter 1 

Introduction



1.1 Cardiovascular Disease

Cardiovascular disease (CVD) is a term, which describes diseases of the heart 

and blood vessels. The common types include angina, heart attack (myocardial 

infarction), diseases of the heart-valves or heart muscle (cardiomyopathy), heart 

failure, stroke and pain from poor blood flow to the legs (claudication). Overall, CVD 

is the most common health problem for Irish citizens where vascular diseases 

currently account for over 40% of all deaths and of this, ischemic heart disease is by 

far the most, accounting for 25% of all deaths. There have been major improvements 

in recent years and death rates are about 50-70% lower at any age than 30-35 years 

ago (World Health Organisation). However, the number of people affected in Ireland 

has remained the same, although the problem now just occurs at an older age. The 

single most common cause of these diseases is atherosclerosis, which is the 

“hardening” of the arteries. Many risk factors can contribute to this condition such as 

elevated cholesterol levels, particularly low density lipoproteins (LDL), elevated 

blood triglyceride levels, smoking, high blood pressure, diet, lifestyle, obesity and 

stress. In addition, other factors in the development of CVD can include medical 

history, genetic influences, age and ethnicity. At present about 80% of Irish people 

have at least one of these risk factors.

The pathogenesis of many cardiovascular diseases involves changes in 

structure, function and integrity of arterial blood vessels. The arterial blood vessel is 

an active integrate organ composed of endothelial cells (EC), smooth muscle cells 

(SMC) and fibroblasts, which are divided into 3 structural layers termed the tunicas 

intima, tunica media and adventitia. The tunica intima comprises of a simple 

squamous epithelium surrounded by a connective tissue basement membrane with 

elastic fibres. Underlying this is the tunica media, which is comprised primarily of 

SMC. It is the SMC which play a major role in maintaining vascular tone and 

function. Endothelial cells function as a semi-permeable barrier and also as a dynamic 

paracrine and endocrine organ, exerting considerable influence on the underlying 

vascular smooth muscle cells (VSMC).
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Endothelial cells are also involved in maintaining the non-thrombogenic blood -tissue 

interface by regulating thrombosis, thrombolysis, platelet adherence, vascular tone 

and blood flow.

Figure 1: Structure of an Artery and a Vein
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Figure 1: Structure of an Artery and a Vein: Diagrammatic representation of 

Arterial and Venous blood vessel structure, indicating different structural layers.
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1.2 Atherosclerosis

Atherosclerosis is a systemic disease, which involves the intima of large and 

medium arteries including the aorta, the carotid and the peripheral arteries. A 

dysfunctional endothelium, chronic inflammation, lipid accumulation and aberrant 

regulation of VSMC fate decisions (proliferation, apoptosis, differentiation and 

migration) can clinically manifest as an atherosclerotic plaque. An obstructive 

coronary plaque can cause a critical reduction in coronary blood flow and 

subsequently lead to myocardial infarction (Schroeder and Falk et al., 1995).



Figure 2: Atherosclerotic Vessels

1) This is a normal coronary artery. The lumen 
is large, without any narrowing by atheromatous 
plaque. The muscular arterial wall is of normal 
proportion.

2) The coronary artery shown here has 
narrowing of the lumen due to build up of 
atherosclerotic plaque. Severe narrowing can 
lead to angina, ischemia, and infarction.

3) There is a severe degree of narrowing in this 
coronary artery. It is "complex" in that there is a 
large area of calcification on the lower right, 
which appears bluish in this H&Fi stain.

4) There is a pink to red recent thrombosis in 
this narrowed coronary artery. The open, 
needle-like spaces in the atheromatous plaque 
are cholesterol clefts. (Internet Pathology 
library)

Atherosclerosis involves multiple processes including endothelial dysfunction, 

inflammation, vascular proliferation, apoptosis and matrix alteration. The contribution 

of vascular proliferation to the pathophysiology of in-stent restenosis, transplant 

vasculopathy and vein by-pass graft failure is particularly important. Thus, an 

emerging

strategy for the treatment of these conditions is to inhibit cellular proliferation by 

targeting cell-cycle regulation. Hence a greater understanding of the signalling 

pathways and mechanisms that can modulate changes in proliferation, provides new
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perspective for preventative and therapeutic strategies. A key process of 

atherosclerosis involves the proliferation of VSMCs (Ross et al., 1995 and Schwarz et 

al., 2000). One precursor of lesion development is thought to be focal accumulation 

of VSMCs within the intima. VSMC may contribute to the development of the 

atheroma through the production of pro-inflammatory mediators such as monocyte 

chemoattractant protein 1 and vascular cell adhesion molecule and through the 

synthesis of matrix molecules required for the retention of lipoproteins. However, 

VSMC may also be important in maintaining the stability of the plaque through the 

formation of a fibrous cap. In addition, in lipid-laden lesions in which the fibrous cap 

is thin and weak, there is evidence of apoptosis, particularly at the “shoulder” region 

associated with inflammation (Fuster et al., 1994). The local inflammatory milieu can 

induce expression of proteolytic inhibitors, thus rendering the fibrous cap weak and 

susceptible to rupture (Schwarz 2000). However, in advanced lesions, fibroblasts and 

VSMCs with extracellular calcification form a fibrocalcific plaque.

Apoptosis has been observed at many stages of the development of an advanced 

plaque (Kockx et al., 1998). Apoptosis is important in the progression of 

atherosclerotic lesion resulting in the formation of a mature lesion containing a dense 

extracellular matrix (ECM) and a relatively sparse population. Apoptosis is 

concentrated in the lipid-rich core of the plaque and occurs in both macrophage/foam 

cells and VSMCs. However, this high percentage of apoptosis in the lesion does not 

translate to a decrease in tissue volume, therefore it is postulated that the system of 

phagocytosis of apoptotic cells operates poorly in an atherosclerotic plaque. A 

possible reason for this is that the intracellular accumulation of lipids may decrease 

the ability of macrophages and SMC to phagocytose apoptotic cells. Moreover, the 

increase in apoptosis of macrophages in the lesion may decrease the population of 

apoptotic scavenging cells.

The function of the intimal SMC in the natural history of the atherosclerotic lesion 

seems to be to act as a nidus for development of the lesions, perhaps by accelerating 

lipid accumulation or macrophage chemotaxis. VSMC proliferation is more than 

likely an early event followed by a chronic process that provides an essential fibrous
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cap that prevents plaque rupture. Most thrombus formations are due to a fracture in 

the protective fibrous cap of the atherosclerotic plaque, which usually occurs at the 

shoulder region. Therefore it is the integrity of the fibrous cap that fundamentally 

determines the stability of a plaque and its clinical implications. It is now well 

established that the fibrous cap can undergo continuous remodelling, which is largely 

influenced by VSMC (Libby et al., 1995). Therefore apoptosis of VSMC and 

subsequent reduction in cell number can seriously compromise the integrity of the 

fibrous cap. With the realization that this probability of atherosclerotic plaque rupture, 

rather than the severity of plaque stenosis is what determines its clinical 

complications, this has led to the classification of plaques as either stable or 

vulnerable. Furthermore, with most myocardial infarctions occurring in lesions with 

less than 70% stenosis, it is plaque rupture which is believed to be the underlying 

pathological event (Falk et al., 1995). Moreover, with the recognition of the essential 

involvement of VSMC proliferation and apoptosis in the conditions mentioned here, 

an improved understanding of the molecular mechanisms of VSMC proliferation and 

apoptosis has become a major focus of research and development.

1.3 Proliferation

The proliferation of VSMCs plays a crucial role in the formation of vascular 

lesions, such as fibrous plaques in atherosclerosis as described in the previous section 

and intimal thickening after balloon angioplasty (Wang et al., 2002). Accelerated 

VSMC proliferation is also a characteristic feature in arteries of hypertensive patients 

and animals. Therefore, the inhibition of VSMC proliferation represents a potentially 

important therapeutic strategy for the treatment of diseases such as atherosclerosis and 

restenosis. All mitogenic growth factors share a final common signalling pathway; the 

cell cycle. The eukaryotic cell cycle is regulated by cyclins, cyclin-dependent kinases 

(Cdks) and their inhibitors.
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Figure 3: Eukaryotic Cell Cycle

R as-c-m yc 
antisense ODN

G AX/GATA- 6 / p53 
overexpression 

G A T A -6 , G A X , p 5 3

CDK1
antisense ODN

NO

PCNA [ rrL
antisense (p )

ODN j
E2F

decoy

P 2 i c i p i
p 2 7 KIP1

p 2 i C |p l /p 2 7 K|pi
overexpression 

Small molecules: 
flavopirido l 

CVT-313 
R apam ycin

RB
overexpression

Figure 3: The Cell Cycle: Diagrammatic representation of the Cell Cycle

Quiescent (G0) cells enter a gap period (GI), during which the factors necessary to 

DNA replication for the subsequent (S) phase are assembled. After DNA replication 

is completed, the cells enter another gap phase (G2) in preparation for mitosis (M). 

Restriction points at the Gl-S and G2-M interphases ensure orderly cell cycle 

progression (Elledge et al., 1996). Cell cycle phases are co-ordinated by CDKs that 

form holoenzymes with their regulatory subunits, the cyclins. Cyclin-CDK complex 

activity is dependent on the phosphorylation status of the CDKs and the expression 

levels of the cyclins. Phase- specific cyclin-CDK complexes confer specificity and 

orderly progression through the cell cycle. Initial increased accumulation of cyclin D- 

CDK4 and cyclin E-CDK2 complexes, in co-operation with proliferating cell nuclear 

antigen (pCNA), co-ordinates DNA replication by regulating the transition through 

the GI and S phases (Sherr et al., 1995). The subsequent G2-M transition is regulated 

by cyclin A-CDK-2 and cyclin B-CDK1 complexes. In addition, cell cycle 

progression is regulated by CDK inhibitors such as p27KII>1 and p21api, which can bind



to CDKs and prevent their activation. Antimitogenic signals can also activate 

transcription factors such as p53, which induce expression of CDK inhibitors and 

consequently inhibit result in GI-phase arrest. Conversely the E2F family of 

transcription factors controls expression of genes in the S-phase. In quiescent 

conditions, E2F members exist in inactive complexes with retinoblastoma protein 

(RB). However after mitogenic stimulation, the cyclin D-CDK4 and cyclin E-CDK2 

complexes hyper-phosphorylate RB, This leads to the dissociation of E2F, which in 

turn activates the expression of genes which encode cyclins E and A and CDK1. GAX 

and GATA-6 are also integral cell-cycle associated transcription factors in VSMCs as 

GAX, which regulates differentiation, migration and proliferation, is expressed in 

quiesced VSMCs (Smith et al., 1997). Both GAX and GATA-6 stimulate p21CIP1 

expression and induce cell cycle arrest. Nitric oxide also has the ability to inhibit 

proliferation by upregulation of p21CIP1 (Ishida et al., 1997). With the knowledge that 

GAX, GATA-6 and nitric oxide all have antiproliferative effects, it is not surprising 

therefore that they may prove attractive therapeutic targets for vascular diseases 

caused by aggressive VSMC proliferation.

1.4 Apoptosis

1.4.1 Introduction

Apoptosis, or programmed cell death, is recognized as an important 

physiological process, both during development and in the maintenance of 

homeostasis in the adult. This mode of cell death allows for the removal of damaged, 

injured, infected and incompetent cells from the body in both a quick and efficient 

manner. There are two forms of cell death, which are characterized depending on the 

context and cause of death. These two forms of cell death which are termed apoptosis 

and necrosis are defined and contrasted on their individual mechanisms, biochemistry, 

and altered cellular morphology (Hetts 1998). Firstly, apoptosis is an active, 

contained process, which results from stimuli from either an internal or external 

source (Kuan and Passaro, 1998). The apoptotic process is characterized by cell 

shrinkage and subsequent membrane blebbing, chromatin condensation around the 

nuclear membrane, and cleavage of the DNA into regular repeating 180-200 base pair
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units (Yeh, 1997). This then results in the formation of “apoptotic bodies” due to the 

cleavage of the membrane. These apoptotic bodies are then phagocytosed and 

digested by macrophages or neighbouring cells. Since there is no release of cytosolic 

components into the extracellular space, no inflammatory response is initiated (Hetts, 

1998). Apoptosis-inducing stimuli can be either extrinsic or intrinsic and can result in 

apoptosis through the activation of a number of pathways. However in most cases, 

these pathways converge on the caspase system of enzymes to execute their final 

function. Extrinsic triggers of apoptosis include the activation of receptor-mediated 

death signalling pathways. This can include for example the activation of the Fas 

ligand, exposure to DNA damaging substances such as chemotherapeutic agents and 

ionizing radiation (Rich et al., 2000). In addition apoptosis can be induced due to the 

removal of death-inhibiting ligands. VSMCs for example can undergo apoptosis due 

to the removal of growth factors such as insulin-like growth factor and PDGF (Best et 

al., 1999). Intrinsic signals on the other hand include increased oxidative stress, which 

lead to the initiation of apoptosis within the cell (Designer and Martinou, 2000).

The second well-characterized form of cell death is necrosis. In contrast to 

apoptosis, necrosis is a form of passive cell death. Necrosis results from external 

noxious stimuli and is pathologic in that localized injury and inflammation is 

produced. Necrosis is characterized by severe cell swelling, breakdown of the 

membrane barrier and a resulting release of the cellular components into the 

extracellular space with random degradation of nuclear DNAs. The release of 

extracellular kinins results in a localized inflammatory response, edema, capillary 

dilation and macrophage aggregation (Kuan and Passaro, 1998). An example of 

necrosis can include ischemic necrosis of the cardiomyocyte during acute myocardial 

infarction (Yeh, 1997), however although necrosis may be important in acute injury 

and in certain acute inflammatory responses, it is not the normal mechanism for cell 

death.
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1.4.2 Receptor-Mediated Death Signaling Pathways

Death receptors belong to the tumour necrosis factor (TNF) superfamily and 

are responsible for playing a central role in instructive apoptosis (Ashkenazi and 

Dixit, 1998). Members of the death receptor family contain one to five cysteine-rich 

repeats in their extracellular domain, and a death domain (DD) in their cytoplasmic 

tail. This DD is essential for the initiation of the apoptotic signal by these receptors. 

Two such receptors that initiate apoptosis include TNF receptor 1 and Fas. These 

receptors initiate apoptosis once activated by their respective ligands, TNF-a and 

Fas-L, or by agonist-like antibodies (Maclellan and Schneider, 1997; Gupta, 2003). 

Following receptor-ligand interaction, the receptor oligomerizes, recruits adaptor 

molecules, which forms a death inducing signalling complex (DISC). This in turn 

recruits and activates the caspase cascade and can culminate in apoptosis of the cell 

(Yeh, 1997; Gupta, 2003).

1.4.3 Apoptosis due to DNA Damage

Apoptosis, growth arrest and repair are all legitimate cellular responses to 

DNA damage. The choice of cell fate in each instance depends on cell type, location, 

environment, and extent of the damage. p53 is a transcription factor that has been 

implicated in cell cycle arrest and in some forms of apoptosis (Maclellan and 

Schneider, 1997). Under normal conditions, levels of p53 remain at a low level, which 

is due to its interaction with the Mdm-2 protein, which marks it for ubiquitin- 

mediated destruction (Mayo et al., 1997). Phosphorylation of either p53 or Mdm-2 by 

DNA damage prevents the interaction of these two proteins. This leads to the 

stabilization and subsequent activation of p53 (Evan and Littlewood, 1998). As a 

result of DNA damage, p53 levels increase within minutes and subsequent growth 

arrest or apoptosis of the cell can occur (Lundberg and Weinberg, 1999). Several cell- 

cycle regulators can be induced by p53. These include the cyclin-dependent kinase 

inhibitor p21, GADD 45 and members of the 14-3-3 family all of which result in 

growth arrest followed by either DNA repair or cell death (Rich et al., 2000). 

However, p53 alone will not induce apoptosis, but acts as a transcription factor 

activating the expression of numerous apoptosis-mediating genes. These can include
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Fas molecules as well as members of the Bcl-2 family of apoptosis regulators. 

Increased levels of p53 result in the up-regulation of Fas expressed on the cell surface, 

thus rendering the cell susceptible to increased levels of Fas-mediated apoptosis. In 

addition, p53 induces apoptosis by increasing the expression of a pro-apoptotic 

member of the Bcl-2 family, Bax, whilst limiting the expression of anti-apoptotic Bcl- 

2 protein within the cell. The regulation of p53 expression has also been linked to 

cellular myc (c-myc) and E1A proteins, which have been implicated in the regulation 

of apoptosis and proliferation (Evan and Littlewood, 1998).

Figure 4: Central Role of p53 in Controlling Cell Growth and Apoptosis

Figure 4: Schematic representation of the central role of p53 in the regulation of 

cellular growth and apoptosis (Lundberg and Weinberg 1999).

1.5 Effectors of Apoptosis

1.5.1 Caspase cascade

Caspases, which are viewed as the “central executioners” in apoptosis, are an 

evolutionary conserved family of cysteine proteases. Caspases are synthesized as 

enzymatically inert zymogens, which require proteolytic cleavage at an internal 

aspartate residue to induce their activation (Gibbons and Pollman, 2000). These 

zymogens are composed of three domains, an N-terminal pro-domain, and two 

domains termed plO and p20. The activation of caspases results in a serial sequence 

of caspase activation, referred to as the caspase cascade, which commonly ends in 

apoptosis. Caspase activation generally occurs by three mechanisms. These include 

proximity-induced activation, processing by an upstream caspase, and association
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with a regulatory subunit (Hengartner, 2000). Proximity-induced activation occurs in 

the case of caspase 2 and 8. The aggregation of a number of caspase proteins via 

adaptor proteins renders the caspases capable of auto-proteolytic cleavage and 

subsequent activation (Hengartner, 2000). In addition, activation of the initiator 

caspases 8 and 9,results in subsequent cleavage and activation of downstream effector 

caspases such as caspase 3, caspase 6 and caspase 7. It is these effector caspases, 

which are responsible for the induction of the biomechanical and morphological 

changes that are associated with apoptosis.

Caspase 9 is activated through the association with a regulatory subunit, known 

as an apoptosome. The apoptosome consists of cytochrome c, an adapter molecule 

Apaf-1 (apoptosis protease-activating factor), and pro-caspase 9 (Gupta, 2003).

Cytochrome c release is an essential component for the formation of the 

apoptosome, and the subsequent activation of caspases 9 and 3 (Liu et al., 1996). 

Apaf-1, another essential component of the apoptosome, appears to be activated by 

p53 and E1A (Fearnhead et al., 1998; Moroni et al., 2001). Apaf-1 has an N-terminal 

caspase recruitment domain (CARD), adjacent Walker’s A- and B-box sequences, 

and c-terminal to this, twelve WD-40 repeats (Cai et al., 1998). Following binding of 

cytochrome c to these WD-40 repeats, a conformational change of Apaf-1 occurs, 

thus exposing the CARD domain. Pro-caspase 9 subsequently binds to the CARD 

domain, resulting in its activation. Caspase 9 subsequently cleaves and activates 

caspase 3, caspase 6 and a number of other substrates resulting in the biochemical and 

morphological changes associated with apoptosis. These substrates include laminins, 

cytoskeletal proteins and caspase-activated DNase (CAD) among others. It is this 

active nuclease, which is subsequently responsible for the characteristic “DNA 

laddering” of apoptosis. Cleavage of cytoskeletal proteins such as fodrin and gelsolin 

result in overall loss of cell shape. Nuclear laminin cleavage is responsible for the 

characteristic nuclear shrinkage and budding seen in apoptosis

A number of caspase-independent inducers of apoptosis have also been 

identified as central to this process. For example reactive oxygen species (ROS) are 

involved in mitochondrial permeability and release of molecules other than 

cytochrome c which are integral in the execution of apoptosis (Suzuki et al., 1997) 

AIF, apoptosis inducing factor is one such molecule that is released from the 

mitochondria that can induce caspase-independent apoptosis. Once transported to the
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nucleus, AIF can cause ATP- independent large DNA fragmentation and chromatin 

condensation (Gupta 2003).

1.5.2 The Bcl-2 Family

The Bcl-2 family are considered the primary regulators of mitochondria- 

induced apoptosis, controlling mitochondrial membrane permeabilization and 

cytochrome c release (Thompson 1995; Desagher and Martinou 2000; Marsden et al., 

2002). There has been at least 15 member of the Bcl-2 family identified, and these are 

divided into two functional groups, pro-apoptotic and anti-apoptotic Bcl-2 family 

members. Examples of pro-apoptotic family members include Bax, Bad, Bik and Bid, 

whilst examples of anti-apoptotic family members include Bcl-xL, Bcl-2 and Bfl-1. 

Structural analysis of the Bcl-2 family of proteins has identified four conserved 

regions within the family, known as Bcl-2 homology domains (BH1-BH4) 

(Muchmore et al., 1996). All Bcl-2 family members contain at least one of these 

domains, which are formed by a-helices and thus enable different members of the 

family to form either homo- or heterodimers and regulate each other (Oltvai et al., 

1993). In addition the majority of Bcl-2 family members share sequence homology at 

the c-terminal region, with a -20 residue hydrophobic domain, which targets the Bcl-2 

family of proteins to intracellular membranes, most principally the mitochondrial 

membrane. It is the variable sequence homology, which exists between the BH1 to 

BH4 domains, which determine whether a family member acts to promote or prevent 

cell death (Kirshenbaum 2000). The BH4 domain is restricted to anti-apoptotic family 

members thus making this particular domain fundamental in preventing apoptosis. 

Hunter et al., 1996 carried out a number of studies whereby deletion of the BH4 

domain resulted in anti-apoptotic Bcl-2 protein being defective in suppressing 

apoptosis.
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Table 1: Inhibition and Promotion of Apoptosis by Bcl-2 Family Proteins

Protein Rife cl on A  po p  6 0 s is Pro lei n - Pro te i 1 1 1 n le rac ti o n s
Bcl-2 1 Bax, Bak
B c l-x , ' 
Bcl-W

1
1

Bax, Bak

Bax t B cl-2, Bcl-x,
Bad t B cl-2, Bcl-x,
Bak t B cl-2, Bcl-x
B cl-xa* r Bax, Bak
1 A lternatively  sp liced , f  in creases , j  decreases.
T able  1: Pro- and an ti-ap o p to tic  m em bers o f  the B cl-2 fam ily  o f  p ro teins 
T ab le  adapted from  M e L ellan  and  Schneider, 1997.

Cell fate is determined by the ratio of pro-and anti-apoptotic members of the 

Bcl-2 family within any given cell (Reed, 1997). Furthermore the Bcl-2 family can 

delay or prevent apoptosis by a diverse number of death signals, again highlighting 

their potential influence over whether a cell lives or dies. It is however through the 

regulation of mitochondrial potential and corresponding cyctochrome c release where 

the Bcl-2 family primarily exert their pro- or anti-apoptotic influence. Once apoptosis 

has been stimulated, many pro-apoptotic Bcl-2 family members translocate from the 

cytoplasm to the mitochondria. These proteins can then disrupt membrane integrity by 

inserting into the mitochondrial membrane and causing a conformational change. This 

disruption in mitochondrial membrane integrity and subsequent increase in membrane 

potential, results in the release of several mitochondrial proteins fundamental to 

caspase activation and other apoptotic events (Zamzami and Kroemer, 2001). In 

contrast many of the anti-apoptotic Bcl-2 family members are associated with the 

mitochondrial membrane, where they act to inhibit increases in mitochondrial 

membrane potential, and hence prevent apoptosis by maintaining membrane integrity.

Both pro- and anti-apoptotic Bcl-2 family members can also, in part regulate 

each other. Bcl-2 can form a heterodimer with Bax, thus inhibiting the ability of Bax 

to increase mitochondrial membrane potential. Similarly, pro-apoptotic members can 

exert their effect by binding to their anti-apoptotic counterparts. Bad has the ability to 

bind to Bcl-xL for example and hence inhibit its anti-apoptotic function (Ferri and 

Kroemer, 2001). The importance of both pro-apoptotic Bax and anti-apoptotic Bcl-xL 

will form an integral part of this study as we investigate the direct effect of both the 

Notch and Hedgehog signalling pathways on their regulation.
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Figure 5: The Major Apoptotic Pathways in Mammalian Cells
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1.6 Mechanical Forces

1.6.1 Introduction

Haemodynamic forces play an important role in maintaining cardiovascular 

homeostasis. These forces are known to exert both physiological and non- 

physiological effects on the vascular wall and play a critical role on the regulation of 

vascular tone, remodelling and influencing vascular cell homeostasis (Li and Xu,

2000). However, haemodynamic forces can also be pathophysiological factors in 

conditions such as atherosclerosis. The involvement of these haemadynamic forces in 

atherogenesis is manifested by the focal distribution of atherosclerotic lesions in the 

bifurcations and curved regions of the arterial tree where blood flow is disturbed with 

flow separation (Li et al., 1997). In contrast, venous vessels do not develop 

atherosclerosis when maintained in their normal low-pressure environment, however 

atherosclerosis can be observed following arterial vein grafts due to increased 

biomechanical force on the venous vessel (Xu, 2000). Haemadynamic forces 

associated with blood flow have also been implicated in the regulation of VSMC fate. 

It is alterations in VSMC fate decisions, which have been associated with 

pathogenesis of numerous vascular disease states. For example increased proliferation 

of VSMC is central to the pathogenesis of hypertension, intimal hyperplasia, 

atherosclerosis and the arterial response to injury (Vinters and Berliner, 1987; 

Thubrikar and Robicsek, 1995; Traub and Berk, 1998). Furthermore increased 

apoptosis has been proven to have a direct relationship with increased levels of 

haemadynamic forces. Analysis of atherosclerotic lesions in both human and animal 

models have revealed high levels of VSMC apoptosis (Kockx, 1998; Mayr and Xu,

2001). Haemodynamic forces have been implicated in alterations in VSMC 

phenotype, resulting in an altered response of the cells to mechanical forces 

(Cappadona et al., 1999) and subsequent vascular remodelling. Therefore, since 

altered haemadynamic forces play such a critical role in the pathogenesis of vascular 

disease, a greater understanding of the effect of these forces on VSMC fate and the 

subsequent pathways that govern these changes in cell fate, proves a major target in 

the fight against cardiovascular disease.
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1.6.2 Haemodynamic Forces

There are two types of haemodynamic forces, which a normal vessel is 

exposed to. Firstly, a circumferential stretch acting tangentially on the vascular wall 

and directly related to pressure and dimensions of the vessel and secondly, a shear 

stress, acting longitudinally at the blood/endothelium interface which is related to the 

velocity of flow. Both of these factors are essential for the maintenance of a healthy 

vessel. Blood pressure is described as the force that the circulating blood exerts on the 

walls of the arteries. It is the major determinant of vessel stretch, which involves the 

rhythmic distension of the vessel wall. Blood pressure creates strain on the vessel 

wall in a direction perpendicular to the endoluminal surface. These forces are 

counterbalanced by intraparietal tangential forces in longitudinal and circumferential 

directions exerted by different elements of the vessel wall, opposing the distending 

effects of blood pressure. All elements of the arterial wall are exposed to 

circumferential tension, each layer bearing differing degrees of this tension. In 

addition, blood flow exerts a frictional force on the luminal surface of the 

endothelium. This frictional drag is referred to as shear stress and is defined in terms 

of blood viscosity and velocity.

Figure 6: Haemodynamic Forces Experienced by Arterial Blood Vessels

Figure 6: Haemodynamic Forces Experienced by Arterial Blood Vessels.

Diagrammatic representation of the force exerted by shear stress and cyclic strain on 

arterial blood vessels (Davis et al., 1995).
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The relationship between circumferential stress and the structure of the vessel wall 

has been well established. Increases in arterial pressure are associated with SMC 

hypertrophy and increases in ECM production. Conversely decreases in arterial 

pressure result in vessel atrophy (Bomberger et al., 1980). In addition, continual 

mechanical stimulation appears to be essential to maintaining a contractile phenotype 

in SMC. Whilst a certain level of stretching may also be essential for SMC 

maintenance, for over stretching may initiate adaptive processes (Lehoux et al., 1998). 

The fact that endothelial cells are the principal recipients of shear stress does not 

imply that mechanical stretch has no influence on the endothelium. Cyclic stretch 

increases EC sensitivity to shear stress resulting in a lowered threshold level required 

to provoke structural changes and ultimately, both cyclic stretch and shear stress are 

required to produce maximal responses in the vessel (Zhao et al., 1995). Cyclic strain 

is a powerful stimulus and can regulate cell fate decisions. Exposure of vascular 

smooth muscle to cyclic strain leads to apoptosis via a p53 dependent pathway, 

conversely cyclic strain can suppress EC apoptosis via Aktphosphorylation (Mayr et 

al., 2002; Persoon-Rothert et al., 2002; Haga et al, 2003). Similarly cyclic strain has 

been linked to inhibition of proliferation in addition to increases in angiogenesis 

associated with TGF-(3, MMP-2 and VEGF (Rivilis et al., 2002; Zheng et al., 1999; 

Vailhe et al., 1996; Banai et al., 1994). These studies clearly demonstrate the 

importance of cyclic strain in coordinating and regulating cell function by mediating 

changes in gene transcription, signalling molecule activation and release of vasoactive 

compounds.

Shear stress is described as the dragging frictional force resulting from blood 

flow. Under normal physiological conditions, EC are primarily subjected to this 

haemadynamic shear stress. However, under conditions of endothelial dysfunction or 

denudation, shear stress can also exert its affect on the underlying VSMC. Changes in 

shear stress can result from changes in pulse pressure, which is defined as the 

difference between peak systolic and diastolic pressure. EC, which contain shear 

stress response elements, respond to physiological or pathological alterations in shear 

stress by releasing vasoactive agents and pro- or anti-atherogenic substances (Traub 

and Berk 1998). To attempt to elucidate the role of shear stress in atherogenesis, 

studies by (Davies et al., 1995), used flow channels as in vitro systems to study 

functional changes of ECs in response to shear stress. These studies indicated that
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shear stress induces a rapid induction of immediate early genes. These include c-Src 

and RAS, which are important mediators of shear stress activation of mitogen- 

activated protein kinases (MAPKs), including extracellular signal-related kinases 

(ERKs) and c-jun N-terminal kinases (JNKs), also known as stress-activated protein 

kinases, to activate these early genes (Jalali et al., 1997). Other mechanisms have also 

been proposed to explain how EC respond to shear stress, including those via G- 

proteins, integrins and membrane-associated K+channels, which will be explained in 

further detail in the next section. The ability of vessels to detect and respond to 

changes in their heamodynamic environment involves a process, which is referred to 

as mechanotransduction.

1.7.1 M echanotransduction in VSMC

In order for VSMC to respond to alterations in their haemodynamic 

environment, they must first have the ability to detect these changes. 

Mechanotransduction is a process whereby mechanically sensitive receptors present 

in vascular cells can elect a signalling pathway, which then culminates in the 

recruitment of an effector molecule(s), subsequently mediating a cellular response. 

These mechanically sensitive receptors in VSMC include integrins, G-proteins, 

protein tyrosine kinases and ion channels.

Figure. 6: An overview of M echanotransduction
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1.7.2 Integrins

The Integrin family comprise of heterodimeric cell surface receptors most 

widely known for their role as receptors for extracellular matrix proteins. The 

heterodimer comprises of one of eighteen a  and one of eight |3 subunits not including 

splice variants. There are different binding specificity and signalling properties for 

each possible combination of subunits (Giancotti and Ruoslahti, 1999). These 

subunits can form twenty-four different integrins. Sixteen of the known integrins are 

reportedly involved in the vasculature, with seven expressed in EC (Rupp and Little,

2001). The cytoplasmic tail of integrins is generally devoid of enzymatic activity. As 

a result of this, integrins transduce signals via adaptor proteins which connect the 

integrin to the cytoskeleton, cytoplasmic kinases and transmembrane growth factors 

(Giancotti and Ruoslahti, 1999).

1.7.3 G-Proteins

G-proteins signal via a highly sophisticated molecular system with the ability 

to receive, integrate, and process information from extracellular stimuli. The G- 

protein signalling machinery include a G-protein coupled receptor (GPCR), a 

heterotrimeric G-protein complex itself, and effector proteins, in addition to the more 

recently identified regulators of G-protein signalling (RGS-proteins) and activators of 

G-protein signalling (AGS-proteins) (Offermanns, 2003). G-protein signalling is 

known to play a pivotal role in cardiovascular signalling. All of these receptors have 

seven membrane spanning elements that use intracellular loops and their C-terminal 

tails for interaction with heterotrimeric G-proteins, which consist of a , (3 and y 

subunits. The a  and (3 subunit forms an undissociable complex, which represents a 

functional subunit. Ligand activated receptors catalyse the GDP/GTP exchange at the 

a  subunit of a coupled G-protein and promote dissociation of the a  and |3y 

components (Wieland and Mittmann, 2003). The duration of a G-protein activation is 

controlled by the intrinsic GTPase activity of Ga. Following GTP hydrolysis the G a 

subunit returns to the GDP-bound conformation and reassociates with the G(3y 

subunit.
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1.7.4 Ion-channels

Ion-channels, though regulated by G-proteins, can also function as receptor 

molecules themselves. Ther are two different types of mechano-sensitive channels 

which have been identified in vascular cells: shear stress activated potassium channels 

and stretch activated cationic channels. Inhibition of ion channel activation can 

attenuate strain induced SMC proliferation. Stretch activated phospholipase C activity 

was found to involve the influx of calcium via gadolinium sensitive channels. 

Similarly, Ang II activation of mitogen activated protein kinasesis calcium dependent 

in VSMC (Lehoux and Tedgui, 1998). The exact mechanisms by which mechanical 

forces regulate ion channel conformation remains vague, though deformation of the 

cytoskeleton is thought to be an important contributor in this regulation.

1.7.5 Protein Tyrosine Kinases (PTKs)

Signal transduction events once initiated by “shear-stress-sensitive receptors” 

leads to a cascade of downstream signalling events many of which are mediated by 

protein tyrosine kinases. PTKs are crucial in the shear stress regulation of cell shape 

and stress fibers. This can be demonstrated by inhibition of shear stress induced ERK 

and JNK activation by genistein, a PTK inhibitor. Once the kinases are activated they 

relay signals downstream by phosphorylating other protein kinases and transcription 

factors. These kinases are turned off by activation of specific phosphatases. Mitogen 

activated protein kinases (MAPKs) are the most well studied kinases in response to 

haemodynamic forces, and they were first identified as microtubule associated 

kinases, due to their involvement with the cytoskeleton (Berk et al., 1995).
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The Notch Signalling Pathway

1.8.1 Introduction

Notch receptor signalling is a conserved fundamental mechanism controlling 

cell fate during the development of many tissues, through interaction with ligands of 

the delta/serrate family (Weinmaster 2000). Although there have been extensive 

genetic studies performed in Drosophilia and Caenorhabditis elegans, the 

mammalian paralogs have also been characterized to display similar complex 

functions. The main components of the Notch signalling pathway include the Notch 

receptors (Notch 1-4 in vertebrates) and ligands (Delta 1-4, Jagged 1 and 2 in 

vertebrates) among others. The Notch receptor and its ligands were first identified in 

Drosophila and the Notch gene was first cloned by Wharton et al., in 1985). The 

components of the Notch signalling pathway are expressed in a variety of cells and 

tissues (Saxena et al., 2001), including cells of the immune system, the nervous 

system, and the vasculature. Vascular expression of Notch receptors and ligands has, 

to date, been described as being restricted to arterial vessels (Villa et al., 2001). Villa 

et al report that Notch 1, Notch 3, Notch 4, Delta 4, Jagged 1 and Jagged 2 are all 

expressed in arteries and not in veins. In addition, vascular expression of Notch 3 has 

been localized specifically to SMC (Joutel et al., 2000), while Notch 4 (Uyttendaele 

et al., 1996) and Delta 4 (Shutter et al., 2000) have been described as EC specific. 

Components of the Notch signalling pathway are upregulated in injured arteries. This 

was first described in 2001 by Lindner et al., who observed increased expression of 

Notch signalling pathway genes, in both SMC and EC, following balloon catheter 

denudation of rat carotid arteries. Analysis of Notch receptor expression within the 

cell reveals that although Notch is a cell surface protein, the majority of Notch within 

the cell is found intracellularly (Fehon et al., 1991; Aster et al., 1994), and that a 

significant portion of Notch is retained in the endoplasmic reticulum (Aster et al., 

1994; Weinmaster, 1997).

There are two types of signalling primarily employed by the Notch pathway, 

termed lateral signalling and inductive signalling (Simpson, 1998). Lateral signalling 

causes two initially equivalent cells to adopt different fates or differentiate to different 

tissues. This occurs when one cell expressing a Notch receptor is stimulated by
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another cell expressing a Notch ligand. Activation of the receptor in the first cell 

causes it to adopt a specific developmental fate and, through a negative feedback 

loop, suppresses its own Notch ligand expression. The adjacent cell is then exposed 

to less Notch ligand and adopts an alternative differentiation program. This allows a 

single cell or group of cells to be singled out from the surrounding cells, and it is this 

mode of signalling that is involved in preventing neuronal precursors from 

differentiating towards the neuronal lineage (Artavanis-Tsakonas et al., 1995; 

Simpson 1998; Kojika and Griffin 2001). Inductive signalling occurs between non­

equivalent cells and can lead to a specific response at the interface between the two, 

leading to the formation of sharply defined boundaries of gene expression. In this 

case, activation of the Notch receptor promotes production of Notch ligand, thus 

causing increased Notch activation in the adjacent cell (Artavanis-Tsakonas et al., 

1995; Lewis 1998; Simpson 1998). This occurs, for example, along the wing margin 

in Drosophila, where cells on one side of the margin signal via Notch to cells on the 

other side. Notch is only activated in each group by the signal coming from cells on 

the other side. This is possible as the two populations produce a different ligand, and 

the cells are rendered insensitive to the ligand produced by equivalent cells (Simpson 

1998).

1.7.4 Notch Signalling in the Vasculature

There have been at least three identified disorders that are caused by altered 

function of components of the Notch signalling pathway. One of these leads to cell 

transformation and cancer and the two involve changes including defects in the 

cardiovasculature system. Chromosomal breakpoints in the Notch 1 gene have been 

shown to give rise to the over expression of a truncated protein containing the 

intracellular portion of Notch 1, leading to T-cell acute lymphoblastic 

Ieukemias/lymphomas in patients (Pear et al., 1996). Mutations in the human Jagged 

1 gene cause the Alagille syndrome, a genetic disease characterized by liver failure, 

cardiac abnormalities and vertebral arch defects (Li et al., 1997). The incidence of 

this disorder is 1:70,000 live births (Joutel and Tournier-Lasserve 1998), however it is 

likely to be a cause of death in utero, as is evident with homozygous mouse models of 

AGS (Xue et al., 1999). Congenital heart defects, the majority of which affect the
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pulmonary circulation, significantly contribute to mortality in AGS patients. Most 

patients (97%) have a heart murmur and 67% of these have peripheral pulmonary 

stenosis (Loomes et al., 1999). Lastly, the importance of Notch 3 in VSMC was 

highlighted in 1996 when Joutel et al., (1996), through positional cloning, found the 

genetic cause of CADASIL to be point mutations in the human Notch 3 gene. 

CADASIL is a cerebral autosomal-dominant adult onset arteriopathy, with the mean 

onset age being approximately 45 years (Gridley 1997; Joutel et al., 2000). Affected 

individuals exhibit a variety of symptoms including recurrent subcortical ischemic 

strokes, usually in the absence of any vascular risk factors, leading to progressive 

cognitive decline, dementia and premature death (Joutel and Tournier-Lasserve 1998; 

Gridley 2003). Other symptoms include migraine with aura (approx. 30% of 

patients), mood disorders and psychiatric disturbances (approx. 20% of patients) 

(Brulin et al., 2002). The vascular lesions underlying CADASIL are non- 

atherosclerotic, non-amyloid angiopathies preferentially affecting the small arteries 

and arterioles of the brain (Rubio et al., 1997). However, vascular pathological 

changes in CADASIL patients are not only confined to the brain, but are also 

observed in systemic arteries and some veins, as well as in muscle, nerve vessels and 

skin (Brulin et al., 2002). CADASIL is therefore a systemic vasculopathy. The 

identification of the genetic alterations involved in these human diseases indicates that 

perturbation of Jagged/Notch signalling leads to dysfunctional cell and tissue 

behaviour in vivo.

The importance of the Notch signalling pathway in the vasculature is 

highlighted due to the fact that it is involved in multiple aspects of vascular 

development. Recent studies have implicated the Notch signalling pathway in the 

regulation of vasculogenesis and angiogenesis (Tallquist et al., 1999; Gridley 2001; 

Luttun et al, 2002). It is postulated that the Notch pathway contributes to the 

establishment of two distinct sub-populations at different stages of vasculogenesis and 

angiogenesis. These could include EC versus SMC, artery versus vein, pulmonary 

versus systemic vessels, and large vessels versus capillaries (Iso et al., 2003a). In 

addition, mutations of Notch receptors and ligands lead to abnormalities in many 

tissues, including in the vascular system. Similar vascular phenotypes are observed in 

mice with both increased and decreased Notch signalling, suggesting that the level of
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signalling is critical for proper blood vessel development. Alterations in Notch 

signalling produces abnormalities in vessel structure, branching and patterning of the 

vasculature, suggesting that Notch signalling does not function early in 

vasculogenesis, but regulates subsequent events that pattern the vascular network 

(Villa et al., 2001). Mutations in components of the Notch signalling pathway are 

often embryonically lethal. Murine genetic studies generally null mutations of the 

jagged/notch genes have indicated that the vascular system seems to be 

developmentally reliant on intact Notch signalling pathways. This is the case, for 

example, with Jagged 1 null mutant mice displaying profound defects in the 

vasculature (Xue et al., 1999). Furthermore, a Notchl null or processing-deficient 

allele (Huppert 2000), in addition to Notch 1 and 4 double mutants exhibit defects in 

vascular remodelling and angiogenesis (Krebs 2000). Taken together, these 

observations in combination with the vascular defects seen in the human conditions in 

which Notch signalling is impaired suggest that responses to cardiovascular injury 

may also be regulated by Notch gene family members.

1.8.3 Structure of Notch Signalling Pathway Receptors and  Ligands

The Notch receptor in Drosophila is a 300Kda cell surface protein which is 

predicted to transverse the membrane once, which consists of an extracellular, ligand- 

binding domain and a cytoplasmic domain which is required for signal transduction 

(Figure 1.7). Notch receptors are proteolytically processed into heterodimeric 

(180Kda and 120Kda) forms which are presented on the cell surface (Weinmaster et 

al., 1997). In addition to Drosophilia Notch, the Notch receptor family includes LIN- 

12 and GLP-1 in C-elegans, mNotch 1 and mNotch 2 in mouse, as well as Notch 1-4 

in humans. All of these Notch receptors exhibit the same overall structure, however, 

although their general architecture is conserved across species, variances in specific 

domain size can be observed within and among species (Greewald and Rubin, 1992).
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Figure 7: Schematic Representation of the Notch Family of Receptors
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Figure 7: Schematic representation of the Notch family of receptors. The family 

members have the same overall arrangement of structural motifs. The extra-cellular 

domains contain multiple epidermal growth factor (EGF)-like repeats, in addition to 

LIN12/Notch-related region (LNR) and two conserved cysteines. The sub­

transmembrane domain (ST) lies between the transmembrane domain (TM) and the 6 

ankyrin repeats (ANK). A region rich in proline, glutamine, serine and threonine 

(PEST) lies at the C terminal (Weinmaster 1997).

Notch receptors are characterized by their extracellular domains, which 

contain multiple repeats which are related to epidermal growth factors (EGFR) and it 

is these domains, which are thought to be involved in ligand binding. In addition to 

these tandemly arranged EGF-like repeats, Notch ExC domain contain a cysteine-rich 

region termed the LNR (LIN-12/Notch-related region) and a pair of conserved 

cysteines located between the LNR and TM regions (Weinmaster et al., 1997; 

Fleming et al., 1998; Baron et al., 2002). Similarly to Drosophilia Notch, the Notch 1 

and Notch2 proteins contain 36 tandemly arranged EGFRs, while Notch 3 and Notch 

4 contain 34 and 29 tandemly arranged EGFRs respectively. It is interesting to note 

that the order of the EGFRs has been conserved among Notch proteins which suggests 

that the spatial arrangement of these repeats is important for receptor function 

(Weinmaster et al., 1997). The cysteine rich LNR region is located immediately 

downstream of the EGFR domain. The LNR region appears to negatively regulate 

receptor activation. Studies by Greenwald and Seydoux, 1990 and Lyman and Young,
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1993, support this idea whereby deletion of the LNR region or missense mutations in 

this region produces constitutively active receptor proteins. Located between the LNR 

and the TM domain there is a pair of conserved cysteines. Through genetic studies in 

C elegans by Greenwald and Seydoux, 1998, they have been proposed to function in 

receptor dimerization. Moreover, through sequencing analysis, a conserved valine 

residue identified within the TM domain has been established as a cleavage site of 

Notch during receptor activation.

There have been four important functional regions identified with the Notch 

IC domain. These include, the RAM domain which is located in the 

subtransmembrane region, the ANK repeat domain, a transcriptional activator domain 

(TAD) and a PEST (Proline, Glutamate, Serine, Threonine-rich sequence). Two 

nuclear localization sequences are also present in the Notch IC domain and these are 

located on either side of the ANK repeat domain (Stifani et al., 1992; Fortini et al., 

1993). The RAM domain is the main site of CSL interaction (Tamura et al., 1995). 

The ANK repeats are both necessary and sufficient for Notch activity as they provide 

a lower affinity binding site to the CSL proteins. This facilitates the RAM/CSL 

interaction necessary for Notch IC function (Tamura et al., 1995; Roehl et al., 1996). 

In addition the ANK repeat domain provides a binding site for a number of positive 

regulators of the Notch signaling pathway including the Deltex protein (Matsuno et 

al., 1995). The PEST sequence of the Notch receptor has been reported to be involved 

in Notch protein turnover (Greenwald et al., 1994). Deletion of the PEST domain 

results in the inactivation of Notch, however, this deletion does not produce a 

dominant negative form of the receptor as is what is found with all deletions of the 

ANK repeats or sequences which encode the entire cytoplasmic domain (Rebay et a l, 

1993; Lieber et al., 1993). There are different numbers of amino acids between the 

ANK repeats and the PEST sequences among different Notch proteins. These 

variances in amino acid numbers account for the different sizes in cytoplasmic 

domains. These differences may reflect why different Notch receptors can be 

regulated by interaction with different cellular proteins.

Notch receptors are activated by the DSL family of ligands. This family of 

ligands are defined by the invertebrate ligands including Delta and Serrate in
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Drosophilia, Lag-2 in C-elegans and Delta 1-3 and Jagged 1-2 in vertebrates 

(Dunwoodie et al., 1997; Weinmaster et al., 1997; Haddon et al., 1998). The Notch 

family of ligands are similar in structure to Notch receptors as they are also single­

pass transmembrane proteins, which possess multiple EGFRs in their extracellular 

domains. However, in contrast to the Notch receptors, Notch ligands posses a 

characteristic degenerate EGFR-N-terminal to the EGFRs, which is known as the 

DSL domain (Figure 1.8).

Figure 8: Schematic representation of the DSL family of Notch ligands
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Figure 8: Schematic representation of the DSL family of Notch ligands.

The family members have the same overall arrangement of conserved structural 

motifs. Like the Notch/LIN-12/GLP-l receptors, the extracellular domains of the 

ligands contain multiple (2 to 16), tandemly arrayed EGF-like repeats; however, the 

Serrate-like proteins (Serrate, Jaggedl, and Jagged2) have inserts in some of their 

repeats and LAG-2 has two half EGF like repeats. The Serrate-like ligands also have 

an additional cysteine-rich region (CR) between the EGF-like repeats and the single 

transmembrane domain (TM). The cytoplasmic domains do not share significant 

amino acid identities (Weinmaster et al., 1997).

The DSL domain is thought to be required for function in invertebrates 

(Henderson et al., 1994). This DSL domain is a modified EGF-like repeat domain, 

which is believed to be the part of the ligand responsible for receptor activation. Point 

mutations that affect conserved cysteines in this domain have resulted in strong loss-
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of function phenotypes (Henderson et al., 1994). Delta and Serrate have different 

expression patterns and appear to regulate different developmental decisions 

following activation of a Notch receptor (Couso et al., 1995). However, though Delta 

and Serrate are structurally related, Serrate contains additional EGFRs and a cysteine 

region (CR) which may be modulating the binding of the ligand to Notch as cell 

aggregates formed between Delta and Notch expressing cells, are more stable than 

cell aggregates formed between Serrate and Notch expressing cells (Rebay et al., 

1991).

Overall arrangement of structural motifs is conserved across ligand family 

members. As with the Notch receptors, the extracellular domains of the ligands 

contain multiple (2-16) tandemly arranged EGF-like repeats, however, Serrate-like 

proteins (Serrate, Jagged land Jagged 2) have inserts in some of their repeats and 

LAG-2 has two half EGF-like repeats. In addition, these Serrate-like ligands posses 

an additional CR region between the EGF-like repeats and the single transmembrane 

domain. The IC domain of the Notch ligands do not however share significant amino 

acid identities. The IC-domain is relatively short comprising of approximately 70-215 

amino acids in length where no significant homology is evident within or among 

species (Flemming et al., 1998). Mutant forms of Delta and Serrate in which the IC 

domain has been deleted, produced dominant negative phenotypes, which indicate 

that these sequences are required for normal ligand function (Chitnis et al., 1995). In 

addition to the normal transmembrane ligands, proteolytically cleaved, secreted forms 

of the proteins have been identified (Klueg et al., 1998) which served as dominant 

negative molecules. These dominant negative molecules competed with membrane 

bound ligands and hence blocked Notch activation (Sun and Artavanis-Tsakonas, 

1996). However, studies by Wang et al, 1998 have described soluble ligands as 

agonists of the Notch signaling pathway. The question of whether the soluble form of 

the Notch ligand serves as an agonist or antagonist of Notch signaling remains to be 

answered. However the phenotypes produced by the secretion and diffusion of these 

soluble forms not seen with membrane bound ligands, is presumably due to the 

physical restrictions which are imposed by their cell surface localization.
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1.8.4 Processing of the Notch Receptor

The activation of the Notch receptor requires at least three proteolytic cleavage 

events. These three proteolytic cleavage events termed SI, S2 and S3 (Baron et al.,

2002) result in the cleavage of full length Notch protein (300Kda) in to two 

fragments, an N-terminal fragment, Notch ExC that contains most of the extracellular 

domain and a C-terminal fragment, which consists of the TM and IC regions 

(Blaumueller et al., 1997). SI cleavage occurs within the secretory pathway and is 

carried out by Furin, which is a calcium -dependent serine protease. This cleavage 

event results in a processed form of the Notch receptor being transported to the cell 

surface (Bush et al., 2001) and the two resulting subunits of the heterodimer are held 

together at the plasma membrane by non-covalent interactions, which require calcium 

(Rand et a l, 2000). Furin inhibition has been shown to interfere with heterodimer 

formation resulting in diminished ability of Notch to activate CSL transcription 

factors (Jarriault et al., 1998). The binding of a ligand to the Notch receptor induces a 

conformational change in the receptor, which is necessary to facilitate S2 cleavage 

(Weinmaster et al., 1998). The S2 cleavage has been confirmed as a conserved valine 

which is located twelve amino acids N-terminal of the TM region (Brou et al., 2000; 

Mumm et al., 2000).There are two proteins which have been identified as S2 cleavage 

enzymes. TACE (TNF-a-converting enzyme) and Kuzbanian (Kuz) are both 

members of the ADAM (a disintigrin and metalloproteinase) family are both thought 

among other possibilities to be involved in this cleavage event. TACE has been 

identified as being involved in S2 cleavage in both Drosophilia and in vertebrates 

(Brou et al., 2000). This study suggests that Kuz may act at a site distinct to that of 

TACE, however Kuz has been found to be an important element of Notch signaling as 

transgenic mice deficient in either Kuz or Notch 1 have shown to display the same 

phenotype (Mumm et al., 2000). Moreover Kuz RNA knockdown in Drosophilia 

resulted in inhibited S2-like cleavage in vitro proving the importance of this enzyme 

in Notch receptor cleavage (Lieber et al., 2002). However, studies by Qi et al, (1999) 

showed that expression of a dominant negative form of Kuz had no effect on Notch 

processing while additional studies by Mumm et al, (2000) proved proteolytic 

processing was evident in Kuz deficient cells. The membrane tethered Notch product 

produced by S2 cleavage and the resulting strength of the Notch signal may depend
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whether S2 cleavage was carried out by TACE or Kuz (Lieber et al., 2002). The 

cleavage event at S3 which results in an active form of the Notch receptor, Notch IC, 

is performed by Presenilins, y-secretases (Struhl and Greenwald, 1999). There have 

been two forms of presenilins identified, PS 1 and PS 2 (Kojika and Griffin, 2001) 

and several studies have implicated PS 1 to be a requirement for S3 cleavage of Notch 

(De Strooper et al., 1998). Studies by De strooper have shown that dominant-negative 

mutagenesis of PS 1 reduces the extent of S3 cleavage while Ray and co-workers 

(1999) have shown that Notch 1 and PS 1 physically interact in both mammalian and 

Drosophilia cells, however pesenilin-independent signalling has also been 

documented (Berechid et al., 2002). It is important to note that Kadesch et al., 2000 

reported that cleavage of the Notch receptor is a mutually dependent event whereby 

SI cleavage is required prior to S2 cleavage and S2 cleavage is required prior to S3 

cleavage.

1.8.5 Modulators of the Notch Signalling Pathway

The activation of Notch is regulated both by the temporal and spatial 

distribution of the ligands and by the expression of proteins such as Fringe, Scabrous, 

Numb and Wingless among others that can exert either a positive or negative effect 

on the Notch signaling pathway. This was first evident in the developing wing where 

Notch activity results in the expression of genes such as wingless at the dorsoventral 

boundry (Blair et al., 1995). The Wingless-signalling pathway is known to act as a 

negative regulator of the Notch signaling pathway through activation of a cytoplasmic 

protein, Dishevelled. Dishevelled exerts its effect by binding to the carboxy terminus 

of the Notch receptor. Fringe exerts its effectiveness of the interactions between 

Notch and it’s ligands by preventing ser-mediated activation and potentiating Notch 

activation by Delta (Panin et al., 1997). Fringe also impedes the activation of Jagged- 

Notch activation by binding to and modifying the EGF-like repeats of the Notch 

receptor in a cell autonomous manner (Moloney et al., 2000). In addition, the effect of 

Fringe on Delta has the consequence that ventral Delta-expressing cells signal 

primarily to dorsal cells (Doherty et a l, 1996). Other modulators of Notch signaling
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include Numb, which has been shown to block CSL protein translocation to the 

nucleus in response to Notch activation. However, it does not interfere with CSL 

cellular localization in the absence of Notch-receptor ligand interactions (Frise et al., 

1996). Scabrous also acts as a negative regulator of Notch signaling by binding to the 

EGF-like repeats and modulating receptor-ligand binding (Powell et al., 2001). 

Although only a few possible modulators of the Notch signaling pathway have been 

mentioned here, the list continues to grow and this study will hopefully help provide 

further insight into how this signaling pathway is regulated.

Figure 9: Modulators of the Notch Signalling Pathway

Figure 9: Modulators of the Notch signalling pathway. Schematic representation 

of sites of action of some modulators of the Notch signalling pathway (Panin and 

Irvine 1998).

1.8.6 Notch Signalling Transduction

Activation of Notch receptors by their ligands is accompanied by proteolytic 

processing that releases an intracellular fragment, Notch IC, from the membrane. 

Notch IC can then enter the nucleus and interact directly with CBF-1. The presence of 

Notch IC inside a cell stimulates transcription from enhancers containing CBF-1 

binding sites. Initial studies of CBF-1 indicated this mammalian homologue of Su(H)



as a repressor of transcription (Hsieh et al., 1995). However addition of Notch IC in 

cell culture transcription assays converted CBF-1 into a transcriptional activator, thus 

presenting the model that activation of Notch switches CBF-1 from a transcriptional 

repressor to activator. Upon nuclear localization, Notch IC cannot bind directly to 

DNA but forms a tertiary complex with a CBF-1 complex (CSL proteins) and DNA 

(Goodbourn, 1995). A CBF-1 interaction site has been mapped to the RAM23 region 

of Notch IC (Tamura et al., 1995) with a lower-affinity binding site in the ankyrin 

repeat region (Aster et al., 1994). Hence, CBF-1 serves to act as a docking protein 

that directs Notch IC to promoter targets and consequently the transcription of 

downstream genes (Struhl and Adachi, 1998).

CBF-1-mediated transcriptional repression involves the destabilization of the 

transcription factor IID (TFIlD)-transcription factor IIA (TFTIA) interactions (Brulin 

et al., 2002), which result in TFIID being unable to interact with TFIIA and form a 

functional complex (Kadesch, 2000). CBF-1 repression also requires the recruitment 

of a histone deactylase (HDAC) co-repressor complex to the promoter (Zhou et al., 

2000). HDACs cause the reduction of histone acetylation which is linked to repressed, 

transcriptionally inactive chromatin. This has the effect of rendering the chromatin 

less accessible to the transcription machinery (Kadesch, 2000). The HDAC co­

repressor complex is made up of several co-repressors, which have the ability to bind 

to and partially mediate the transcriptional repressor activity of CBF-1. These include 

SKIP (Ski-interacting grotein (Kuroda et al., 1999; Kadesch 2000)), SMRT (silencing 

mediator for retinoid and thyroid receptor, 78,54), N-CoR (nuclear receptor co­

repressor (Lindner et al., 2001)) and CIR (CBF-interacting repressor (Hsieh et al.,

1999)). SKIP acts as both a tethering point for the CBF-1 co-repressor complex in 

order to mediate repression and also as a tethering point for the ankyrin repeat domain 

of Notch IC activation (Zhou et al., 2000). SMRT and N-CoR have both been shown 

to act as co-repressors for a variety of transcription factors and both have been shown 

to bind directly to CBF-1 and antagonize the ability of Notch IC to stimulate CBF-1 

dependent gene expression. Moreover, SMRT and N-CoR can bind directly to SKIP 

and additional co-repressors such as Sin 3A, HDAC and SAP 30 (Lai, 2002).
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Figure 10: CBF-1 Co-Repressor Complex

Vertebrate CBF-1 Co-Repressor Complex
Figure 17: Schematic diagram of the 
vertebrate CBF-1 co-repressor 
complex. CBF-1 binds to promoter 
sequence within the nucleus, and also 
binds a HDAC-containing co-repressor 
complex resulting in a repression of 
transcription (Lai 2001)

Figure 10: CBF-1 Co-Repressor Complex. Schematic representation of the CBF-1

Co-Repressor Complex

Notch IC activation of CBF-1 involves firstly, the loss of CBF-1 mediated 

transcriptional repression and secondly, the activation of gene expression through the 

Notch IC activation domain (Apelqvist et al., 1999; Zhou et al., 2000). In order for 

CBF-1 to be converted from transcriptional repression to activation, SMRT and Notch 

IC must compete for binding to the CBF-1 complex. Hence, both CBF-1 and SKIP 

must exchange the SMRT containing co-repressor complex for the Notch IC 

activation complex (Zhou et al., 2000). As previously mentioned, Notch IC binds to 

CBF-1 via its RAM23 region and bind to SKIP via its Ankyrin repeat domain. Zhou 

et al, (2000) showed that a mutation in the fourth ankyrin repeat of Notch IC served to 

abolish Notch IC-SKIP interaction but not CBF-1 proving that this binding site is 

necessary for Notch IC biological activity.



Figure 11: Model for Notch Activation of CBF-l-repressed Promoters

Figure 11: Model for activation of CBF-1 repressed promoters. CBF-1 binds 

promoter sequence within the nucleus, SKIP interacts with CBF-1. The 

SMRT/HDAC co-repressor complex binds to both SKIP and CBF-1, mediating 

transcriptional repression. Notch IC competes with SMRT for contacts on both SKIP 

and CBF-1. Displacement of the co-repressor complex relieves repression, and Notch 

IC further activates promoter through its transactivational domain (Zhou et al, 2000).

Moreover, Notch’s ability to inhibit muscle cell differentiation was also blocked with 

the co-expression of SKIP antisense in these cells. Once displacement of the co­

repressor complex relieves repression, Notch IC subsequently further activates CBF-1 

promoter activity through the presence of its endogenous activation domain 

(Apelqvist et a l, 1999; Zhou et a l, 2000). Notch IC recruits a co-activator complex 

which includes the nuclear protein Mastermind and histone acetyltransferases 

(HATS) (Baron, 2003). Mastermind is an integral component of Notch signaling as it 

forms a complex with Notch IC and CBF-1, which results in stabilizing the complex 

(Nakagawa et al., 2000). Mastermind recruits HATS to the co-activator complex, 

which is believed to act catalytically to produce an open chromatin conformation, thus
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promoting transcription. (Baron, 2003). It is interesting to note that loss-of- function 

mutations in Drosophilia Mastermind generates a similar phenotype to that of loss-of- 

function of Notch (Iso et al., 2003), further highlighting the importance of this nuclear 

protein in Notch signalling.

Figure 12: CBF-1 Co-Activator Complex

Vertebrate CBF-1 Co-Activator Complex

Figure 12: CBF-1 Co-Activator Complex. Notch IC recruits a co-activator complex 

to facilitate transactivation at the CBF-1 promoter (Lai 2002).

In addition to a signalling pathway which involves members of the CSL family 

of transcription factors as an intermediary, Notch signalling activates an additional 

pathway, one of which does not involve CBF-1.i.e. a CBF-1-independent pathway. It 

has been suggested that the full length (300Kda), uncleaved form of the Notch 

receptor is the mediator of this pathway (Bush et ah, 2001). CBF-1-independent 

signalling can include Notch IC interaction with alternative transcription factors to 

CBF-1. One such mediator of CBF-1-independent signalling is thought to be Deltex. 

Deltex encodes a cytoplasmic protein containing three domains, domain I, a SH3 

binding domain (domain II) and a zinc-finger domain (domain III) (Matsuno et al., 

1998). Studies by Matsuno et al., (1995) has shown that over-expression of deltex 

produces a similar dominant phenotype to that produced with over-expression of 

Notch IC. This study also revealed that deltex binds to the conserved ankyrin repeats 

within Notch via domain I. In addition, deltex exerted a two-fold stimulation of Notch 

target gene expression in cultured cell assays. Notch IC has been shown to antagonize



signalling through a JNK MAP kinase pathway and that this effect is mediated 

through deltex (Ordentlich et al., 1998). However, though these studies do prove 

interesting, a greater deal of research is required to further elucidate the signalling 

relationship between Notch and Deltex.

1.8.7: Notch Target Genes

The activation of CBF-1 by Notch IC leads to the expression of primary Notch 

target genes. These primary target genes of Notch signalling include Hairy/Enhancer 

of Split (Hes) and Hairy Related Transcription Factor (HRT) genes. These genes are 

members of a family of basic helix-loop-helix (bHLH) type of transcriptional 

repressors that act as Notch effectors by negatively regulating expression of 

downstream target genes. The members of the Hes and Hrt families share many 

similarities yet they are still distinct from each other. This is evident, both in their 

similar but distinct structures, and their mechanism of transcriptional repression. Both 

the Hes and HRT proteins contain three functional domains, a basic domain 

containing a conserved proline in the case of the Hes family and a conserved glycine 

at a corresponding position in the case of the HRT family (Iso et al., 2003). Both 

families contain another domain, the orange domain, located carboxy to the bHLH 

region. Furthermore, Hes family members contain a highly conserved tetrapeptide 

(WRPW) motif at or adjacent to the carboxy terminus, whereas this motif is replaced 

in HRT proteins by either a YRPW or YQPW motif (Iso et al., 2001).

To date, there are seven described members in the mammalian Hes family, 

however, only two of these, Hes-1 and Hes-5, are known to be involved in Notch 

signalling (Gridley 1997; Kojika and Griffin 2001; Iso et al., 2003b).In addition, a 

number of studies have described the HRT family as downstream targets of the Notch 

signalling pathway (Maier and Gessler 2000; Iso et al., 2001b). Furthermore, many 

studies have proven that Notch IC activation of both the Hes and HRT promoters 

occurs in a CBF-1 dependent manner. Studies by Iso et al., (2001) showed, for 

example, that the transactivation of Hes-1 and HRT-2 promoters by Notch IC was 

reduced in the presence of the CBF-1 mutants, R218H-RPB-Jk and RY227GS in 

cultured mammalian cells. Moreover, this study also demonstrated that over­

expression of Notch IC failed to induce HRT-2 and Hes-1 mRNA expression in CBF-
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1 deficient cells. Therefore this study proves that CBF-1 is essential for both Hes and 

HRT expression in response to Notch signalling. This study will conclusively show 

that Hrt-1, 2 and 3 are constitutively expressed in adult VSMC and that their 

expression can be enhanced following over-expression of Notch IC

Studies by Leimeister et al., (2000) have indicated that a single Notch ligand 

or receptor can participate in the up-regulation of multiple members of the Hes and 

HRT families, for example, Notch 1 deficient mice have been shown to exhibit a 

decreased expression of Hes-5 and HRT-1-3, but not Hes-1. Furthermore, activation 

of different Notch receptors can result in different levels of transactivation of the 

target gene. Recent studies have shown that Notch 3 IC, in contrast to Notch 1 IC, to 

be a poor transactivator of the Hes-1 and -5 promoters, and that Notch 3 IC can act as 

a repressor of Notch 1 IC mediated Hes activation (Beatus et al., (1999). The Hes and 

HRT families act as Notch effectors by negatively regulating expression of 

downstream target genes such as tissue-specific transcription factors such as Cbfa-1, a 

Drosophila Runt related protein involved in the regulation of a variety of cell 

differentiation events (McLarren et al., 2000), hence showing a role of the Notch 

signaling pathway in determining cell fate decisions . Furthermore, the Hes and HRT 

families have been shown to repress the expression of bHLH transcriptional activators 

that drive the expression of Notch ligands (Kimble et al., 1998; Weinmaster 1998; 

Martinez Arias et al., 2002). Notch signalling can therefore play a role in decreasing 

the expression of its own ligand.

With the abundance of recent studies, the importance of Hes and HRT proteins 

as Notch effectors in the vasculature is increasingly being recognized. The HRT 

family, for example, is expressed in specific regions of the developing heart, 

vasculature, pharyngeal arches and somites, and the periodicity of their expression in 

somatic precursors mirrors that of Notch signalling related molecules (Iso et al., 

2003a). Moreover, members of the Hes/HRT families have been shown to play an 

important role in vasculogenesis, for example, gridlock, the Zebrafish HRT-2 

homologue, has been shown to be required for assembly of the aorta in Zebrafish. 

Studies by Campos et a l, (2002) have described HES and HRT proteins as being 

present and active within adult vascular smooth muscle cells however, their roles 

remain to be fully elucidated. It is the aim of this study to further elucidate the role of 

these Notch target genes within adult VSMC. In addition, if it is Notch IC which
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activates the expression of these primary target genes of Notch signaling, a greater 

understanding of the signaling pathways which affect Notch signaling, will further 

help to bring greater understanding of the role of these target genes in cardiovascular 

disease.

Figure 13: An overview of the Notch Signalling Pathway

Figure 13: The Notch Signalling Pathway. Schematic diagrammatic representation of the Notch 

Signalling Pathway (Biocarta)



1.9: Hedgehog Signalling

1.9.1: Introduction

Hedgehog (Hh) is a secreted signaling molecule that serves multiple roles 

during embryonic development. The full-length protein is autocatalytically processed 

to produce the active amino peptide, which is modified by the addition of cholesterol 

and palmitoyl moieties (Ingham 2001). Release of the Hh signal from the sending cell 

is facilitated by the membrane protein Dispatched (Ma et al., 2002), and a heparan 

sulphate proteoglycan is involved in receipt of the signal (Nybakken and Perrimon

2002). The secreted peptide then binds to its receptor, the 12-membrane pass protein 

Patched 1 (Ptc 1) (Chen and Struhl 1998). This serves to relieve the Ptcl-mediated 

repression of Smoothened (Smo) action. Although the precise manner in which Hh 

binding facilitates activation of the G-protein-like molecule Smo is unknown, 

downstream events focus on the transcription factor Cubitus interuptus (Ci) in 

Drosophilia, and its homologues, the Gli family, in vertebrates. The binding of Hh to 

Ptcl inhibits the cleavage of Ci/Gli to its repressor form, permitting the full-length 

protein to promote expression of mediators of the Hh response. Regulation of Ci/Gli 

processing includes the action of Costal 2, Fused, and Suppressor of Fused, which 

form a scaffold that links Gli to microtubules. In the absence of the Hh signal, the 

kinases protein kinase A, glycogen synthase kinase 3, and casein kinase 1 

phosphorylate Ci/Gli and mediate its degradation to the repressor form (Figure 14). It 

is also interesting to note that one of the genes expressed downstream of Hh signaling 

encodes the Hh receptor Ptc 1, thereby making Ptc 1 expression an indicator of Hh 

responsiveness.

Hh acts upon mesoderm in epithelial-mesenchymal interactions that are 

crucial to the formation of limb, lung, gut, hair follicles and bone (Johnson et al., 

1996; Pepicelli et al., 1997; Ramalho-Santos et al., 2000; St-Jacques et al 1999). 

There are three Hh genes in the mouse: Sonic hedgehog (Shh), Indian hedgehog (Ihh) 

and Desert hedgehog (Dhh). Sonic hedgehog is the most widely expressed during 

development and Shh deficiency in mice is embryonically lethal leading to multiple 

defects beginning in early to mid gestation (Chiang et al., 1996). Indian hedgehog is 

less widely expressed and Ihh-deficient mice survive to late gestation with skeletal
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and gut defects (Ramalho-Santos et al., 2000). Desert hedgehog is expressed in the 

peripheral nerves, male gonads, as well as the endothelium of large vessels during 

development (Bitgood et al., 1995). Dhh-deficient mice are viable but have periperal- 

nerve and male fertility defects (Parmantier et al., 1996). The consensus is that the 

signals encoded by these three Hh genes all activate the same downstream signaling 

cascade, and that the presence of these three genes controlled by separate regulatory 

elements facilitate the expression of the signal at multiple sites and times during 

embryogenesis. Hh signaling is widely used throughout embryogenesis in many 

differentiating tissues to establish cell fate, promote cell proliferation and mediate 

apoptosis. This study will be the first to address these same processes, but in adult 

vascular smooth muscle cells

Figure 14: Hedgehog Signaling Pathway

Figure 14: The Hedgehog Signalling Pathway. Schematic diagrammatic representation of the 

Hedgehog Signalling Pathway (Proteinlounge.com)
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1.9.2: Hedgehog Signalling in the Vasculature

The evidence for Hedghog’s role in vascular development came from the 

observations that zebrafish carrying mutations in components of the Hh signaling 

pathway carry defects in circulation and vascularization (Brown et al., 2000, Lawson 

et al., 2002). During normal development, two trunk axial vessels form the aorta and 

the posterior cardinal vein. Interestingly, the aorta develops immediately adjacent to a 

midline source of Shh. Moreover, the loss of Shh leads to a single large vessel that 

expresses only venous and no arterial markers (Lawson et al., 2002). In a study by 

Vokes et al., 2004, they presented work indicating that Shh is an important factor 

regulating blood vessel assembly and tubulogenesis. Firstly, Shh is expressed in 

endodermal tissues, immediately adjacent to the developing vascular network, as in 

the previous mentioned study, but not in the mesodermal tissue itself. This is 

consistent with previous studies indicating that a signal originating in the endoderm is 

required for vascular tube formation (Vokes and Krieg, 2002a). Furthermore, 

angioblasts, nascent endothelial tubes and cultured endothelial cells express 

Hedgehog transducing molecules, and are therefore capable of responding to 

Hedgehog signaling. In addition, the loss or inhibition of Hedgehog signaling results 

in a dramatic reduction in vascular assembly in the mouse, and completely eliminates 

vascular tube formation in avian embryos. Finally, they found that the implantation of 

beads containing Shh into endodermless avian embryos is sufficient to rescue vascular 

tube formation, and addition of Shh to cultured endothelial cells causes the formation 

of vascular network-like structures. Collectively, these findings provide compelling 

evidence in birds and mammals that Shh, which is produced by the endoderm, is an 

important regulator of vascular tube formation from specified angioblasts. In addition 

the role of Hedgehog signaling in vascular development is further strengthened by the 

evidence that murine embryoid bodies derived from ES cells lacking Smo initially 

express endothelial cell markers but fail to form endothelial enclosed blood islands 

(Byrd et al., 2002), and an initial examination of Smo mutant embryos reported that 

extra-embryonic yolk sac vessels were poorly formed and greatly reduced in number 

(Byrd et al., 2002). In other studies, Zebrafish Shh mutant embryos contain 

angioblasts but do not form vascular tubes in the trunk region of the embryo (Brown 

et al., 2000). Furthermore, overexpression of Shh by injection of Shh mRNA, causes
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the formation of lumenized ectopic vessels (Lawson et al., 2002). Transgenic mouse 

embryos ectopically expressing Shh in the neural tube display hypervascularization 

(Rowitch et al., 1999), and treatment of mouse embryonic neurectoderm explants with 

Ihh is reported to respecify explants to form tissues containing blood vessels (Dyer et 

al., 2001). Finally, in culture, the addition of Shh ahs the effect of promoting 

endothelial cells to assemble into capillary networks (Kanda et al., 2003).

These findings and others continue to add to the growing evidence of the 

fundamental importance of Hh signaling in regulating epithelial/mesenchymal 

interactions during embryonic development. However there is an appreciation that 

signaling pathways so fundamental to vascular development can be recapitulated 

postnatally in adult life. Pola et al., 2001, reported that the Hedgehog-signalling 

pathway is present in adult cardiovasvascular tissues and can be activated in vivo. In 

juvenile and adult mice, they found that Ptcl is normally expressed in cardiovascular 

tissues. In addition, they tested the potential for Shh to act upon the adult vasculature 

and protect against ischemic injury by administering Shh. A sharp increase in limb 

salvage was observed in mice treated with Shh as compared to vehicle controls. In 

parallel studies, Shh was also able to induce robust angiogenesis, characterized by 

distinct larger-diameter vessels.

To complement this study, the same group aimed to investigate whether the 

endogenous Hh pathway is physiologically involved in the revascularization of 

ischemic tissue in adults. For this study they used a murine model of muscle 

regeneration by inducing ischemia of the hindlimb. Following this, they then observed 

the expression pattern of different components of the Hh pathway, including Shh, 

Dhh, Ihh, and Ptcl, and studied the relationship between Hh activation, VEGF 

expression, and angiogenesis. They reported that Shh is activated in the regeneration 

after ischemia and that interstitial cells within the ischemic area strongly express Ptcl, 

indicating the postnatal activity of the Hh signalling pathway. They found that Ptcl 

expression was associated with VEGF production and angiogenesis and that 

inhibition of Shh inhibits endogenous angiogenesis and VEGF production in the 

ischemic hindlimb.

The Hh pathway has been studied and characterized extensively during 

embryogenesis and the vast majority of these prenatal studies have focused on the role 

of Hh family members in the regulation of epithelial-mesenchymal interactions
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crucial to limb, lung, gut, hair follicle, and bone formation, including a possible role 

during vascularization of certain embryonic tissues. In addition, the activation of 

components the Hh pathway during ischemia and the reduced angiogenesis observed 

after inhibition of Hh suggest a crucial role for these morphogens in the 

pathophysiology of muscle regeneration. Collectively, these results may open the 

possibility that members of the Hh family might play a role in the development of 

angiogenesis-related diseases, such as diabetic retinopathy or tumor angiogenesis. 

Therfore, a greater understanding on how Hh signalling interacts with other signalling 

pathways may have important implications for both proangiogenic and antiangiogenic 

therapeutic strategies.

1.9.3 Hedgehog and Notch - A Functional Relationship

To elucidate how the Hh signal interacts with other signalling pathways to 

play a role in vascular development, loss-of-function mutations of a number of genes 

implicated in angiogenesis, which resulted in vascular remodelling defects, were 

studied. One such example, included targeted mutation of the Angl or Tie2 genes 

resulting in severe yolk sac angiogenesis defects by midgestation which was 

reminiscent of the Smo homozygous mutant phenotype (Zhang et al., 2001). This 

observation suggested that this angiogenesis growth factor and its receptor may act in 

the same pathway as Hh. This hypothesis was further supported by a study by Pola et 

al., (2001) which reported that Shh treatment upregulates angiopoietins in adventitial 

fibroblast cells. This study which resulted in an upregulation of vascular endothelial 

growth factor (VEGF) as a result of Shh addition confirmed Hh as been placed 

upstream of these vascular-specific growth factors. Since the identification of VEGF a 

decade ago, its central role in developmental and pathologic vessel growth has been 

definitively elucidated (Ferrara 2000). Gene disruption studies revealed not only an 

absolute requirement for VEGF in vessel development, but also embryonic Lethality 

associated with haploinsufficiency, suggesting stringent dose dependency. Using 

genetic analysis coupled with ectopic gene expression to study development of the 

aorta in the zebrafish, Lawson et al., (2001) placed VEGF downstream of Shh and 

upstream of the Notch pathway in determining the arterial fate of the dorsal aorta. 

Notch signalling has been implicated in blood vessel differentiation, and arrest at the

43



capillary plexus stage is observed in embryos deficient in Notch 1 (Krebs et al.,

2000). Delta- like-4 (D114), the likely vascular Notch receptor, is expressed in arteries 

but not veins, implying a role for this cascade in establishing vessel identity, a key 

step during vascular remodelling (Shutter et al., 2000). Liu et al., (2003), reported that 

expression of both Notch 1 and D114 are upregulated by VEGF in human arterial cells. 

Taken together, these data suggest a regulatory cascade that begins with Hh 

promoting VEGF expression, which in turn promotes Notch expression and 

signalling. In the study carried out by Lawson et al., (2001), Zebrafish mutants 

defective in the Shh signalling pathway and a pharmacological approach to block Shh 

signalling were utilized to demonstrate a direct role of Shh in the induction of VEGF 

expression during vascular development. This study showed that ectopic expression 

of VEGF can rescue aortic differentiation in the Shh mutants, and that VEGF is 

sufficient to induce arterial markers expression in the aorta, independent of Shh 

signalling. However, on the other end of this proposed cascade of Hh-VEGF-Notch, 

disruption of either the Notch receptors or ligands lead to embryonic lethal vascular 

defects (Gridley 2001). Therefore, based on the work by Lawson on the Zebrafish, 

VEGF can restore normal arteriogenesis in the absence of Shh, but not in the absence 

of Notch function. Moreover, addition of Notch can compensate for the loss of VEGF 

activity. However it should be noted that these studies only offer a functional 

connection between Shh, VEGF and Notch in determining arterial fate. It is important 

to elucidate the molecular mechanisms by which Shh-mediated induction of VEGF 

expression can the direct role of Shh in the vasculature be established. Similarly, 

identification of the molecular mechanisms whereby VEGF mediates Notch 

activation. Elucidation of these different molecular pathways will prove a major 

challenge to vascular biologists for the years to follow.
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Figure 15: Shh/VEGF/Notch in the Arterial Vasculature

Figure 15: Shh/VEGF/Notch in the Arterial Vasculature ( D'Aniore 2002). Sonic 

hedgehog (Shh) binding to the receptor complex formed by Patched (Ptc) and 

Smoothened (Smo) can release the inhibition of Smo by Ptc. The derepressed Smo in 

turn activates the Gli family of transcription factors. Shh can upregulate the 

expression of VEGF by mesenchymal cells, but whether the Ptc/Smo/Gli pathway is 

involved in this Shh-mediated VEGF production is still unclear. VEGF acts on its 

specific receptors, includingFlk-1 and neuropilin-l(NP-l) and induces aterial -  

specific EphrinB2 expression on endothelial cells. VEGF-induced EphrinB2 

expression is Notch dependent. Both the Notch receptor family and their ligand (Delta 

and Jagged) families are expressed by the EC and SMC/pericyte in vivo.



1.10 Relevance and Objectives of this study

Vascular smooth muscle cell fate decisions (proliferation, apoptosis, 

differentiation and migration) play an important role in neointimal formation during 

the pathogenesis of hypertension, atherosclerosis and in the arterial response to injury. 

With changes in vascular cell fate being apparent during vascular morphogenesis and 

modelling of the embryonic vasculature, the control of these cell fate decisions in 

adult life, may share similar signalling pathways. Therefore, since it is aberrant cell 

fate, which is a major cause of vascular disease, a better knowledge and 

understanding of the pathways that control these processes, could potentially lead to 

important therapeutical strategies.

Recent studies have demonstrated the importance of the Notch and Hedgehog 

signalling pathways during vascular development. One such example being Hh 

regulation of Notch signalling during arterial endothelial differentiation (Lawson et 

al., 2002). Moreover, mutations in Hh and Notch signalling components result in 

embryonic lethality due to defects in both vasculogenesis and angiogenesis (Xue et 

al., 1999; Schauerte et al., 1998). Furthermore, the recent discovery of Hh and Notch 

signalling components in adult vascular tissue (Pola et al., 2001; Wang et al., 2003), 

combined with their known morphogenic functions in embryonic development, has 

led us to investigate whether these signalling pathways so fundamental to vascular 

development, may also co-ordinate vascular cell fate changes in adult tissues. In 

addition to this, is the well-documented signalling cascade of Hh-VEGF-Notch so 

integral in cell fate decisions during vascular development, recapitulated post-natally 

in controlling vascular SMC fate in vitro.

Therefore, the principal aims of this study are to establish the presence and 

activity of both the Notch and Hh signalling pathways within VSMC. Furthermore to 

establish the role, if any, of these pathways on SMC growth induced by serum 

stimulation or deprivation and following exposure to biomechanical forces both in 

vitro and in vivo. Moreover to elucidate the signalling order in which Notch and Hh 

form a cascade in determining these changes in cell fate. In conclusion, this study 

aims to provide an increased understanding into the regulation of VSMC growth both 

under physiological and pathological conditions, which will ultimately contribute to 

the future research of vascular disease diagnosis, prognosis and therapy.
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Chapter 2 

Materials and Methods



2.0 Material & Methods

All reagents used in this study were of the highest purity commercially 

available and were of cell culture standard when applicable.

2.1 Materials

AGB Scientific (Dublin. Ireland-)

Whatmann Chromatography paper

Amersham Pharmacia Biotech (Buckinghamshire. UK)

Anti-mouse 2° antibody, MRP conjugated 

Anti-rabbit 2° antibody, MRP conjugated 

Anti-goat 2° antibody, HRP conjugated 

ECL Hybond nitrocellulose membrane 

ECL Hyperfilm

Rainbow molecular weight marker, broad range (6-175kDa)

Bio Sciences Ltd (Dim Laoehaire. Ireland)

DMEM

dNTP’s

DEPC-treated water 

Trizol® reagent

BioRAD (Alpha Technologies. Dublin)

Iscript

BD Transduction Laboratories (Oxford. UK)
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All apoptosis related 1° antibodies

Santa Cruz (Heidelberg. Germany)

HRT-1 1° antibodies 

HRT-2 1° antibodies 

HRT-3 1° antibodies 

Patched-1 1° antibodies 

Sonic 1° antibodies 

Indian 1° antibodies

Upstate (Uk)

Notch 1 1° antibodies 

Notch 3 1° antibodies

Calbiochem (San Diego. CA)

PD98059 

Pertussis toxin

Dunn Labortechnik GmBH (Asbach. Germany) 

6-well Bioflex® plates

Flexcell International Corp. ('Hillsborough. NC) 

Flexercell® Tension Plus™ FX-4000T™ system

Invitrogen (Groningen. The Netherlands') 

Lipofectamine reagent 

Lipofectamine 2000 reagent
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Scientific Imaging Systems (Eastman Kodak Group. Rochester, NY)

Kodak ID image analysis software

MWG Biotech (Milton Keynes. UK)

Notch 1 primer set Smo primer set

Notch 3 primer set Ptc 1 primer set

HRT 1 primer set Gli 2 primer set

HRT 2 primer set Bax primer set

HRT 3 primer set Bcl-Xl primer set

HES 1 primer set VEGF primer set

HES 5 primer set GAPDH primer set

JAG 1 primer set HRT 1 siRNA duplex

Shh primer set HRT 2 siRNA duplex

Ihh primer set HRT 3 siRNA duplex

Dhh primer set VEGF siRNA duplex

Scrambled siRNA duplex

Pierce Chemicals (Cheshire. UK)

BCA protein assay kit

Supersignal West Pico chemilumescent substrate

Promeea (Madison. WD 

Taq DNA Polymerase 

MLV-RT 

RNase H
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Oligo dT

R and D Systems (Germany) 

Recombinant Shh Protein

Sarstedt (Drinagh. Wexford, Ireland) 

T25 tissue culture flasks 

T75 tissue culture flasks 

T175 tissue culture flasks 

6-well tissue culture plates

5,10 and 25ml serological pipettes

15 and 50ml falcone tubes

Sicilia Chemical Company (Poole, Dorset. England)

(3-glycerophosphate Methanol

(3-mercaptoethanol Mineral oil

Acetic Acid Monensin

Acetone Penicillin-Streptomycin (lOOx)

Agarose Ponceau S

Ammonium Persulphate Potassium Chloride

Acrylamide/Bis-acrylamide Potassium Iodide

Bovine Serum Albumin p-Nitroaniline

Brefeldin A RPMI-1640

Brightline Haemocytometer Sodium Acetate

Chloroform Sodium Chloride

DMEM Sodium Doecly Sulphate

DMSO Sodium Hydroxide

EDTA Sodium Orthovanadate

EGTA Sodium Phosphate
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Ethidium Bromide Syber Green 

TemedEosin

Foetal Calf Serum Tris Acetate

Glycerol

Glycine

Hanks Balanced Salt Solution

Tris Chloride 

Triton X-100

Trypsin-EDTA solution(lOx) 

Tween 20

Tris Base

Hydrochloric acid 

Isopropanol

Lauryl Sulphate

2.2 Cell Culture Methods

All cell culture techniques were carried out in a clean and sterile environment 

using a Bio air 2000 MAC laminar flow cabinet. Cells were visualized using an 

Olympus CK30 phase contrast microscope.

2.2.1 Culture of Rat Vascular Smooth Muscle Cells (RVSMC)

The cell line used in this study were RVSMC, purchased from Cell 

Applications Inc. (CA, USA) cat no. R-354-05. RVSMC were maintained in RPMI- 

1640, supplemented with 10% foetal calf serum (FCS) and 1% 

penicillin/streptomycin (P/S), and were maintained in a 37°C humidified atmosphere 

of 5% C 02/ 95% air in a Hera water jacketed cell culture incubator. Cells were 

cultured in 175 cm2 or 75 cm2 tissue culture flasks, or in 6-well plates. Only cells of 

passage number 3 to 20 were used in this study. Cells were passaged using a 

trypsinisation method which involved removal of the RPMI-1640 growth media from 

the cells, and two subsequent washes of the cells with Hanks Balanced Salt Solultion 

(HBSS). The cells were then incubated with lx  Trypsin/Ethlyenediamine Tetracetic
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Acid (EDTA), diluted from the lOx stock solultion with HBSS. Typically 1 ml of lx 

Trysin/EDTA was used per 25 cm2 tissue culture flask area. The cells were then 

incubated at 37°C for 5 min, or until the cells had detached from the flask. RPMI- 

1640 growth media was then added to the flask to neutralize the trypsin/EDTA (an 

equal volume of RPMI-1640 growth media to trypsin/EDTA was typically added). 

The cell suspension was then removed from the flask, and centrifuged at 3,500 rpm 

for 5 min. The supernatant was subsequently removed, and the cells were re­

suspended in fresh growth medium. For routine sub-culturing, a 1:2 to 1:4 dilution of 

cells was typically made.

2.2.2 Maintenance of RVSMC

Cells were fed every 3-4 days with RPMI-1640 growth media, and routinely 

sub-cultured at 90-100% confluency, as described in 2.2.1.

2.2.3 Cyclic strain studies

For cyclic strain studies, RVSMCs were seeded into 6-well Bioflex® plates 

(Dunn Labortechnik GmBH - Asbach, Germany) at a density of approximately 6X105 

cells/well, allowed to adhere for 24 hours and grown to confluency. After 24 hours, 

the media was removed and replaced with serum-free media and the cells exposed to 

varying levels of cyclic strain. Bioflex™ plates contain a pronectin-coated silicon 

membrane bottom that enables precise deformation of cultured cells by 

microprocessor-controlled vacuum (Banes et al.,1995). When cells had reached 

approximately 100% confluent, a Flexercell™ Tension Plus™ FX-4000T™ system 

(Flexcell International Corp. - Hillsborough, NC) was employed to apply a 

physiological level of cyclic strain to each plate (0-15% strain, 60 cycles/min, 0-24 h) 

providing equibiaxial tension using the Hearbeat™ Simulation protocol. Control cells
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remained unstrained (0%). Following strain, the cells were washed twice in Ix PBS, 

and harvested for either protein or RNA as described in sections 2.2.5 and 2.6.1 

respectively.

Figure 1: Flexercell Tension Strain Unit

Left: Photograph of the computer- 
driven Flexercell Tension Strain Unit 
with baseplate which holds four 
BioFlex Culture plates.
Below: Schematic of the cyclic strain 
event occurring when SMC are 
subjected to deformation by the 
Flexercell unit.
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2.2.4 Cryogenic Cell Storage and Recovery of Cells

For long-term storage of cells RVSMCs were maintained in liquid nitrogen in 

a cryofreezer unit. Cells to be stored were centrifuged following trypsinisation and 

the resultant pellet was resuspended in 20% (v/v) FBS containing dimetylsulphoxide 

(DMSO) at a final concentration of 10% (v/v). 1ml aliquots were transferred to sterile 

cryovials and frozen in a -80°C freezer at a rate of -l°C/min using a Nalgene cryo 

freezing container. Following overnight freezing at -80°C, the cryovials were 

transferred to a cyrofreeze unit (Thermoylen locator jr. cryostorage system). Cells 

were recovered from longterm storage by rapid thawing at 37°C and resuspension in 

5ml of growth medium followed by centrifugation at 3500rpm for 5 min. The 

resultant cell pellet was resuspended in fresh medium and transferred to a culture 

flask. The following day the media was removed, the cells were washed in HBSS and 

fresh culture media added.

2.2.5 Preparation of Whole Cell Lysates

Following trypsinisation as described in section 2.1.1, the cell pellet was 

washed in IX PBS to remove any trace levels of FBS. The cell suspension was then 

centrifuged at 3500rpm for 5 min. The PBS supernatant was removed and the cells 

were resuspended in IX lysis buffer (20mM Tris, 150mM NaCl; ImM Na2EDTA; 

ImM EGTA; 1% Triton X-100 (v/v); 2.5mM sodium pyrophosphate; ImM 13- 

glycerophosphate; ImM sodium orthovanadate; l(ag/ml leupeptin). The resulting 

lystaes were frozen and thawed three times followed by three cycles of ultrasonication 

for 5 sec on ice using a sonic disembrator (Vibra Cell, Sonics and materials Inc). 

Samples were stored at -20°C for short-term storage or -80°C for long-term storage.
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2.2.6 Bicinchoninic Acid (BCA) Protein Microassay

The bicinchoninic acid protein microassay utilizes the biuret reaction, the 

reduction of Cu++ to Cu+ by protein under alkaline conditions, with the selective 

colourimetric detection of the cuprous cation (Cu+) using a reagent containing 

bicinchoninic acid. This water-soluble complex exhibits a strong absorbance at 562 

nm that is linear with increasing protein concentrations over a broad working range of 

20-2000 jig/ml. The two separate reagents used were supplied in the commercially 

available assay kit (Pierce Chemicals): A, an alkaline bicarbonate solution and B, a 

copper sulphate solution. A working solution was prepared by mixing 1 part reagent 

B with 50 parts reagent A. On a microtitre plate 200 îl of the working solution was 

added to 10 \i\ of the whole cell lysate or Bovine serum albumin (BSA) protein 

standard. The plate was then incubated at 37°C for 30 min. The absorbance of each 

well was then read at 560 nm using a Tecan Spectra plate reader. All samples and 

standards were tested in triplicate. Quantitation was carried out by interpolation from 

a BSA standard curve ( 0 - 2  mg/ml).

2.2.7 Preparation of Competent Cells

A modified Rhubidium chloride (RbCl2) method was employed to prepare 

competent cells. The procedure is an adaptation of one described by Hanahan et al., 

1985 (Altered Sites Mutagenesis Kit Promega). An E.coli strain was streaked from a 

glycerol stock on to an LB agar plate and incubated at 37°C overnight. An isolated 

colony was then picked using a sterile inoculating loop and used to inoculate 5 ml of 

LB broth (1.0% tryptone, 0.5% yeast extract, 1.0% NaCL). This culture was 

incubated in a shaking incubator at 200 rpm overnight 37°C. The resulting culture 

(2.5 ml) was then used to inoculate 250 ml of sterile LB supplemented with 20mM 

MgS04 and incubated in a 1L flask at 37°C until the O.D. of the culture at 640 mm 

was between 0.4 and 0.8 (approximately 4-5 hr). The cells were then transferred to 

two sterile 250 ml centrifuge tubes and pelleted by centrifugation at 4,500 x g, 4°C 

for 5 min. The resulting pellets were resuspended in 0.4 ml original volume ice cold 

buffer (TFB1) (100 ml for 250 ml culture- 50ml/centrifuge tube) and the two pellets
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combined. Cells were kept on ice for all subsequent steps and pipettes tubes and 

flasks were chilled. The resuspendend cells were then incubated on ice at 4°C for 5 

min and pelleted by centrifugation at 4500x g , 4°C for 5 minutes. Cells were then 

gently resuspended in 1/25 of the original volume of ice-cold buffer (TFB2) (For 250 

ml subculture use 10 ml). Cells were then incubated on ice for lhr, aliquoted at 

lOOul/tube for storage at -70°C. Prior to storage the aliquoted cells were snap frozen 

in a dry ice/isopropanol bath. JM109 competent cells prepared by this method are 

stable for 1 year.

2.3 DNA Manipulations

2.3.1 Expression and Reporter Plasmids

Plasmids used throughout this study.

PLASMID GIFT FROM DESCRIPTION

pCM V-EDl -HA 
pCMV-ED4 
pHACS 1

Dr. B ettina  K em pkes, 
G S F -In stitu tc  o f 
C lin ica l M olecular 
B io logy , N euherberg . 
G erm any.

pE D I ex p resses  N otch  1 1C. p E D 4  expresses , 
N otch  1 IC  w ith o u t it 's  R A M  dom ain , 
rendering  it unab le  to in terac t w ith  C B F-1 . 
p H A C S -1 is th e  H A  vec to r in to  w hich N otch  1 
IC  and N otch  1 IC -de lta  R A M  w ere  cloned .

pCMX-Notch 3 1C-HA Dr. U rban Lendahl. 
K aro linska Institu te. 
S tockho lm .
Sw eden.

N otch  3 IC  cD N A  w as c loned  in pC M X - 
po ly linker 2. T he  N otch  3 IC  cD N A  is 
fo llow ed  by a D N A  sequence  en co d in g  a  HA 
iinm uno tag .

pGa50-7
pG a98-l-6

Dr. B ettina K em pkes, 
G S F -ln s titu te  o f  
C lin ical M olecu lar 
B io logy , N euherberg , 
G erm any.

The p G a 9 8 - l-6  reporter co n stru c t was 
genera ted  using  a  50 -bp  o ligonucleo tide  
harboring  both CBF-1 b ind ing  sites o f  the 
EBV T P  I p rom o ter, w hich w as then ligated  as 
a  hexam er into p lasm id  pG a50-7  (M inoguch i 
et al.. 1997).

p G U
pGL3-mHRTl
pGL3-mHRT3

Prof. E ric O lson. 
U n iversity  o f  T exas. 
Sou thw estern  M edical 
C entre , D allas,
T exas.

P lasm id ex p re ss io n  co n stru c ts  fo r H R T -I and 
H R T -3 w ere  p repared  by inserting  partial . 
d igestion  fragm en ts o f  m H R T -l and  -3  
repsective ly  in to  pG L3 basic  luc ife rase  vec to r 
(P rom ega).

pTK-Hes 1-luc 
pTK Hes-5-luc

Dr. U rban L endahl. 
K aro linska  Institu te , 
S tockho lm .

Hes-1 and - 5  p rom o ter fragm en ts w ere 
inserted  in to  p T K -lu c  vecto r.
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pcDNA3RPMS-I D r. Paul J Farrell. 
L udw ig  Institu te  for 
C an cer R esearch . 
Im perial C ollege 
S choo l o f  M edicine 
L ondon ,
U .K.

C on ta in s the full length  R P M S-I cD N A  O R F  
c loned  in to  the pcD N A 3H A  v ec to r 
(In v itro g en ) (S m ith , 2000 )

pCMX-R218H-RBP-Jtc Prof. D iane H ayw ard, 
Jo h n s  H opk ins School 
o f  M edicine, 
B altim ore,
M ary land  2 1 231 ,
U SA.

pC M X -R 218H -R B P -Jtc  is a  dom inan t- 
negative C BF-1 co n ts tru c t. w ith  an  a rg in ine  to 
h is tid ine  m uta tion  at position  218.

pCMV D r. C e line  G elinas , 
U n iversity  o f  
M ed ic ine  and 
D en tis try  o f  New 
Jersey .
N ew  Jersey .
U SA .

pC M V  v ec to r (S tra tag e n e). (le  R oux. 1994)

pTK-Gli-luc D r. E ileen  R edm ond 
D ept o f  Surgery . 
U n iversity  o f  
R ochester. R ochester, 
N ew  Y ork.

Cili p ro m o te r frag m en t w as in se rted  in to  pTK - 
luc v ec to r

pPGKpuro Dr. P eter Laird, 
U n iversity  o f  S outhern  
C alifo rn ia .
K erk School o f  
M edicine,
L os A ngeles, 
C a lifo rn ia .U S A .

Purom ycin  p lasm id  (T u ck er e t a l.. 1996)

mShh1

P ro f C. C hiang  
V anderb ilt U niversity

C o n ta in s  the fu ll leng th  m S hh  cD N A

2.3.2 Transformations

Two hundred microliters of competent cells were placed in a pre-chilled 

microcentifuge tube containing 10(̂ 1. The contents were mixed gently and incubated 

on ice for 30 min, during which time an aliquot of SOC was pre-heated at 42°C. 

After 30 min on ice the cells were heat-pulsed at 42°C for 90 sec followed by 

incubation on ice for a further 2 min. One mililiter of preheated SOC was then added 

to the cells and incubated at 37°C in a shaking incubator for 1 hr 10 min. The cells 

were concentrated by centrifugation following which 800 |il of supernatant was 

removed and discarded. The cells were resuspended in the remaining supernatant and
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plated out with the appropriate controls on LB plates containing ampicillin 

(125ug/ml) or tetracycline (12.5ug/ml) and incubated overnight at 37°C. If the cells 

are transformed they become ampicillin/tetracycline resistant thus only transformed 

cells will yield colonies. These were used to prepare broth cultures by inoculating 5 

ml of LB containing ampicillin (125ug/ml) or tetracycline (lOug/ml), and incubated 

overnight at 37°C and DNA mini preparations were carried out as described in section 

2.3.3.

2.3.3 OIAGEN™ Plasmid DNA Purification Protocol

Plasmid DNA was purified using the QIAGEN-tip 100 solution system from 

Promega. A glycerol stock of the bacteria of interest was streaked out on LB 

ampicillin/tetracycline agar and incubated overnight at 37°C, an isolated colony from 

this plate was used to inoculate a 5 ml LB ampicillin/tetracycline starter culture and 

incubated in a shaking incubator at (300rpm) 37°C for 8 hrs. One millilitre of the 

starter culture was used to inoculate 25 ml of LB (containing the appropriate 

antibiotic) in a 250 ml sterile flask and incubated overnight in a shaking incubator at 

37°C. The O.D. of the culture was monitored at 600 nm until cultures O.D were 

between 1-1.5. The following centrifugation steps were carried out using a JA-20 

rotor in a Beckman centrifuge. The bacteria culture was transferred to a centrifuge 

tube and centrifuged by spinning at 6,000 x g for 15 min at 4°C. The supernatant was 

removed and the pellet was dried by inverting the tube on tissue paper and allowing 

the supernatant to drain off. The bacterial pellet was resuspended completely in 4 ml 

of Buffer PI (provide in kit) containing RnaseA (100(ig/ml), 4 ml of freshly prepared 

Buffer P2 was added and incubated at room temperature for 5 min. Following 

incubation, 10 ml of prechilled Buffer P3 was added, mixed gently by inverting the 

tube 5-6 times then incubated on ice for 20 min. The mixture was then centrifuged 

for 1 hr at 20,000 x g at 4°C.

The Qiagen-tip 100 column was equilibrated by applying 4 ml of QBT buffer and 

allowing the column to empty by gravity. The column does not dry out at this stage 

as the flow of buffer will stop when the buffer reaches the upper filter. After the 

centrifugation step the supernatant was removed immediately from the tube without 

disturbing the pelleted material and applied to the column by filtering through 1mm
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filter paper. The Qiagen-tip was washed with 2 x 10 ml of Buffer QC. DNA was 

then eluted with 5 ml of Buffer QF. DNA was precipitated by adding 0.7 volumes of 

room-temperature isopropanol and centrifuged immediately at 15,000 x g for 30 min 

at 4°C and the supernatant was carefully removed. The resulting pellet was washed 

with 70% (v/v) ethanol, allowed to air dry for 5 min and re-dissolved in a suitable 

volume of TE or dH20. DNA was then quantified by spectrophotometric analysis as 

described in section 2.3.4.

2.3.4 DNA Quantitation and Storage

To determine the concentration of DNA in a sample obtained from the Qiagen 

plasmid midi kit, the sample was diluted 1:100 in lx  sterile TE buffer and 

spectrophotometric analysis carried out using the Shimadzu UV-160A dual 

spectrophotometer, blanked with TE. The sample was measured, usig a quartz 

cuvette, at wavelengths of 260 and 280 nm, and the concentration of the DNA in the 

sample was carried out as follows;

Abs26onm x dilution factor x 50 = concentration of DNA (p,g/ml)

The purity of the DNA was determined by calculating the ratio of absorbance 

at 260 nm to 280 nm, the value of which should be greater than 1.6. All samples were 

tested in triplicate and were kept on ice at all times during the experiment. DNA 

samples were then stored at -20°C, ready for use in transient transfections.

2.4 Transient Transfections

Lipofectamine™ reagent is a polycationic liposome as such it is suitable for 

transfection of DNA into eukaryotic cells (Invitrogen-Groningen, Netherlands). The 

day prior to transfection, 1.5xl06 cells were plated on a T25cm2 flask, and grown 

overnight in RPMI-1640 supplemented with serum and antibiotics.

When cells had reached approximately 70% confluency they were transfected 

with plasmid DNA. For transfection purposes plasmid DNA was diluted in 150 ji\ of 

DMEM without FCS or antibiotics such that there would be \pig of DNA per 10cm2 

of surface area. In a separate tube 10/d of lipofectamine reagent (4/d per 10cm2) was 

diluted in 150/d of DMEM without FCS or antibiotics. The diluted DNA was then
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mixed with diluted lipofectamine reagent and incubated at room temperature for 30 

minutes. This time permits the formation of DNA-liposome complexes.

While the DNA complexes were forming the cells were washed three times in 

HBSS followed by one wash in DMEM. This was to remove any antibiotics and 

serum from the flask, which may impede transfection efficiency. The 

DNA/lipofectamine mixture was made up to a final volume of 2ml, which is just 

enough media to cover the surface area of the flask. The contents of the tube were 

then added to the culture flask. The cells were incubated for 4 hr in transfection 

media, following this, the media was removed and replaced with normal RPMI-1640 

growth media. The cells were allowed to recover overnight and subsequently they 

were exposed to experimental conditions. Cells were routinely co-transfected with 

either a Lac Z ( see section 2.4.1) or green fluorescent protein (GFP) encoding 

plasmid as a means to determine approximate levels of transfection.

2.4.1 p-galactosidase assay

Lac Z a plasmid encoding (3-galactosidase was used to monitor transfection 

levels. Increased levels of (3-galactosidase activity was attributed to successful 

transfection of the gene of interest. Following trasnsfection and cell lysis, a 30//1 

sample was added to 3 jA of 100X Magnesium solution [0.1M MgCl2 and 4.5M (3 

mercaptoethanol], 66 ]A of IX OPNG (o-nitrophenyl-(3-D-

galactopyranosidase)[4mg/ml ONPG in 0.1M sodium phosphate, pH 7.5] and 201/d 

of 0.1M sodium phosphate. The reaction was incubated for 4-6 hours at 37°C until a 

yellow colour developed. The reaction was subsequently stopped with 500 jA of 

Na2C03, and optical density read at 420nm. Suitable positive and negative controls 

were included in this assay.

2.4.2 Luciferase Assay

To analyse transactivation of luciferase tagged reporter genes, cells were 

harvested 18-24 h post transfection. Cells were washed twice in lx  PBS, and 

incubated with lx  Reporter Lysis Buffer (Promega) for 10 min at 37°C in a
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humidified atmosphere, 500 fil/well. Cells were then scraped, transferred to 

eppendorfs, and lysed by freeze-thawing once. The lysates were clarified by 

centrifugation at 3,000 rpm for 2 min, and the supernatants were saved in a fresh tube 

for analysis. Transactivation of the luciferase tagged reporter genes was then 

analysed by luciferase assay, using 40(il sample, and 50[xl luciferase assay buffer at 

room temperature (Promega). Light emission was measured over a period of 60 sec, 

after a lag period of 10 sec. Briefly, the enzyme firefly luciferase, generated due to 

promoter activation on a luciferase tagged plasmid, catalyses the conversion of D- 

luciferin to oxyluciferin, with a concominant production of a photon of light, which is 

measured by the luminometer (Labsystems Luminoskan).

2.4.3 Puromvcin Selection

Alternative to transfection with luciferase tagged reporter genes, cells were 

transfected with Notch 1 IC, Notch 3 IC or the Notch 1 IC mutant, and co-transfected 

with pPGK-puromycin plasmid, which offers puromycin resistance to any transfected 

cells. Following overnight recovery untransfected cells were selected out with 

treatment of cells in RPMI-1640 supplemented with 10% FCS, 100 U/ml penicillin 

and lOOug streptomycin, and 0.8 mg/ml puromycin for 48 h.

2.4.4 Transfection with siRNA

RNA interference (RNAi) is a phenomenon in which the introduction of 

double-stranded RNA (dsRNA) into a diverse range of organisms and cell types 

causes degradation of the complementary mRNA (Figure 2; step 1). In the cell, long 

dsRNAs are cleaved into short 21-25 nucleotide small interfering RNAs, or siRNAs, 

by a ribonuclease known as Dicer (step 2). The siRNAs subsequently assemble with 

protein components into an RNA-induced silencing complex (RISC), unwinding in 

the process (step 3). Activated RISC then binds to complementary transcript by base 

pairing interactions between the siRNA antisense strand and the mRNA. The bound 

mRNA is cleaved (step 4) and sequence specific degradation of mRNA results in 

gene silencing.
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Figure 2: Mechanism of siRNA: Description mi how transfected siRNA duplexes 

results in targeted mRNA cleavage.



2 A £  Design of siRIS A ,duplex

A sequence was selected in the open reading frame of the cDNA which is at 

least 75-100 bp downstream of the start codon. Untranslated regions near the start 

codon may be richer in regulatory protein binding sites, which may interfere with 

binding of the siRNP endonuclease complex. The first AA dimer is located and the 

next 19 nucleotides are recorded. The GC content of the AA-N19 base sequence is 

determined. Ideally the GC content must be greater than 30% and less than 70%. If 

the sequence does not meet these criteria, a sequence further downstream starting with 

an AA dimer is analysed. This is continued until a sequence is found which meets all 

of the above criteria. Subsequently the 21 base sequence is subjected to a blast search 

to ensure that only one gene is targeted.

Table J; siRNA Sequences

Name Sequence of SiRN V Duplex GC
Content

Mol Weight

HRT 1 aa gacggagaggcaucaucga 52% 13204.2g/mol

HRT 2 aa ccaccucucagauuauggc 52% 13208.0g/mol

HRT 3 aa gcgcagagggaucauagag 55% 13372.0g/mol

VEGF aa guucauggacgucuaccag 52% 13220.2g/mol

Control Aa auucuaucacuagcgugac 42% 13373.0g/mol

AT



2.4.6 Transfection of siRNA Duplex:

siRNA was transfected into RVSMCs using lipofectamine™ 2000. siRNA 

was diluted in 5X universal buffer [200mM KC1; 30mM HEPES-KOH pH 7.5; ImM 

MgClJ and RNase free water to a final concentration of 20p,M (20pmoles/pl). The 

following procedure was utilised for transfection in a 6-well format. 8xl05 cells were 

plated per well to achieve 70-80% confluency at time of transfection. 

siRNA/lipofectamine ™ 2000 complexes were prepared as follows:

• 5pl (lOOpmoles/lOcm2) of siRNA was diluted in 395[a1 of DME medium 

without serum or antibiotics, the presence of antibiotics during transfection 

causes cell death. The mixture was then gently mixed.

• Lipofectamine ™ 2000 was mixed prior to use and subsequently 5pil was

diluted in 395p,l of DME medium and incubated for 5 min at room

temperature.

• The two mixtures were then combined and mixed gently. The mixture was

incubated for 30 min at room temperature to allow the formation of

siRNA/lipofectamine ™ 2000 complexes.

• The 800)0,1 of siRNA/lipofectamine ™ 2000 complexes were added to the well 

and mixed gently by slowly rocking the plate back and forward to ensure 

complete coverage of the cells. Cells were incubated for 3 hr at 37°C in a C 02 

incubator.

• After the 3 hr incubation the media was removed and replaced with growth 

medium and cells were recovered overnight. Following recovery, media was 

replaced with fresh growth media and cells and media were harvested 24 hr 

later for analysis.

A non-specific control siRNA sequence (MWG-Biotech) was transfected into control 

cells.
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2.5 SDS-PAGE and Western Blot Analysis

2.5.1 Western Blotting:

SDS-PAGE was performed as described by Laemmli using 10% 

polyacrylamide gels [Laemmli., 1970], 10% resolving and 5% stacking gels were 

prepared as follows:

Resolving Gel: 1.5ml

1.5ml

3 ml

60/d

30/d

7/d

1.5M Tris pH8.8 

40% acrylamide stock 

distilled water 

10% (w/v) SDS

10% (w/v) ammonium persulphate 

TEMED

Stacking Gel: 0.75ml 0.5MTris pH6.8

0.375ml 40% acrylamide stock

1.85ml distilled water

30/d 10% (w/v) SDS

15/d 10% (w/v) ammonium persulphate

7/d TEMED

Cell lysate protein concentration was determined by BCA assay as previously 

described and a equal amounts of protein were resolved on the gel.

Samples were mixed with 4X loading buffer (8% SDS, 20% (3- 

mercatoethanol, 40% glycerol, Brilliant Blue R in 0.32M Tris pH6.8) and boiled at 

95°C for 5 min, then immediately placed on ice. The gel was electrophoresed in 

resevior buffer (0.025M Tris pH 8.3; 0.192M Glycine; 0.1% (w/v) SDS) at 40 

milliamps (mA) per gel using an Atto vertical mini-electrophoresis system until the 

dye front reached the bottom of the gel.

Following electrophoresis the gel was soaked for 15 min in cold transfer 

buffer (0.025M Tris pH8.3; 0.192M Glycine; 15% v/v methanol). Nitrocelluose 

membrane and 16 sheets of Whatmann filter paper were cut to the same size as the gel
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and soaked in transfer buffer. Proteins were transferred to the membrane for 30 min 

at 100V in an ATTO semi-dry transfer system. Following transfer membranes were 

soaked in Ponceau S solution to confirm transfer of protein to the membrane and also 

to normalize for variations in protein loading.

Membranes were blocked for 1 hr in blocking solution [5% (w/v) skimmed 

milk in Tris Buffered Saline [TBS];10mM Tris pH8.0; 150mM NaCl)]. Membranes 

were then incubated either overnight at 4°C or for 3-4 hr at room temperature, with 

primary antibody diluted according to manufacturers instructions in blocking solution. 

The blots were then vigorously washed in three changes of TBST (0.05% (v/v) Tween 

in TBS) and then incubated for 2 hr at room temperature with the appropriate HRP 

linked secondary antibody diluted in TBST. Following incubation in secondary 

antibody, the blots were again washed in three changes of TBST.

Antibody-antigen complexes were detected by incubation in West Pico 

Supersignal reagent (Pierce Chemicals). Briefly, an equal volume of solution A and 

B were mixed and the blot was incubated for 5 min at room temperature. Blots were 

exposed to autoradiographic film (Amersham Hyperfilm ECL) to visualize bands 

present on the blot and subsequently developed (Amersham Hyperprocessor 

Automatic Developer). Bands of interest were identified either by use of an antigenic 

positive control or based on molecular weight markers. Exposure times varied 

depending on the antibody being used but were typically between 1-5 min. Bands on a 

developed film were photographed using a Kodak DC290 digital camera. The image 

generated was then analysed using Kodak ID (version 3.5.4) densitometry imaging 

software. Briefly, a mean densitometric value was generated for each band, these 

values were then corrected using ponceau controls for each lane. The corrected values 

were then expressed as fold increase over negative control (where applicable) and 

graphically expressed using prism.
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Primary and secondary antibodies were diluted to the concentrations outlined in the 

table.

2.5.2 Table 2: Antibody Dilutions

Primary Antibody Dilution Secondary Antibody Dilution

Anti Notch 1 
(Upstate)

1:1000 HRP-Conjugated Anti-rabbit IgG 
(Amersham Biosciences)

1:1000

Anti Notch 3
(Upstate)

1:1000 HRP-Conjugated Anti-rabbit IgG
(Amersham Biosciences)

1:1000

Anti Notch 3 
(Santa Cruz)

1:800 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti Jagged 
(Santa Cruz)

1:800 HRP-Conjugated Anti-rabbit IgG 
(Amersham Biosciences)

1:1000

AntiHRT-1 
(Santa Cruz)

1:500 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti HRT-2 
(Santa Cruz)

1:500 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti HRT-3
(Santa Cruz)

1:800 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti Hes-1 
(Santa Cruz)

1:800 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti He&5 
(Santa Cruz)

1:800 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti B c l- \
(Santa Cruz)

1:500 HRP-Conjugated Anti-rabbit IgG 
(Amersham Biosciences)

1:2000

Anti Bax 
(Upstate)

1:800 HRP-Conjugated Anti-rabbit IgG 
(Amersham Biosciences)

1:1000

Anti Shh 
(Santa Cruz)

1:1000 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti Ihh
(Santa Cruz)

1:1000 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000

Anti Ptc 
(Santa Cruz)

1:1000 HRP-Conjugated Anti-goat IgG 
(Amersham Biosciences)

1:1000
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2.6 Polymerase Chain Reaction (PCR)

2.6.1 Preparation of Total RNA

Total RNA was isolated from RVSMC according to the method of 

Chomczynski and Sacchi (1987) using Trizol® reagent, a mono-phasic solution of 

phenol and guanidine isothiocyanate. Trizol reagent maintains the integrity of RNA 

while disrupting cells and dissolving cell components. Growth media was removed 

and cells were washed with HBSS twice. Cells were then lysed directly by adding 

trizol reagent to the flask, 1 ml per 10 cm2. The lysate was transferred to a falcone 

tube and incubated for 5 min at 15°C to 30°C to permit the complete dissociation of 

nucleoprotein complexes. 0.2 ml of chloroform per 1 ml of trizol was then added, the 

tube was then shaken vigorously for 15 sec and then spun down at 12,000 x g for 15 

min at 2 to 8°C. The resulting aqueous phase was then transferred to a fresh tube. 

RNA was then precipitated by mixing with isopropyl alcohol, 0.5 ml per 1 ml of 

trizol. The samples were then incubated at 15°C to 30 °C for 10 min and spun down at 

12,000 x g for 10 min at 2 to 8 °C. The RNA was then visible as a gel like pellet on 

the side and bottom of the tube. The supernatant was then removed and the pellet 

washed with at least 1ml of 75% ethanol per 1 ml of trizol used. The sample was then 

mixed by vortexing and spun down at 7,500 x g for 5 min at 2 to 8°C. The supernatant 

was removed and the pellet washed again in ethanol. After washing the pellet was air- 

dried and the RNA re-suspended in 30-5^1 of RNase free water. All total RNA 

preparations were stored at -80 °C.

2.6.2 Quantification of Total RNA in Samples

To determine the amount of total RNA in samples obtained in section 2.6.1, the 

sample was diluted 1:500 in sterile water and spectrophotometric analysis carried out 

using the Shimadzu UV-160A dual spectrophotometer, blanked with RNase free 

water. The sample was measured, using a quartz cuvette, at wavelengths of 260 and 

280 nm, and the concentration of the RNA in the sample was carried out as follows;

Abs260nm x dilution factor x 40 = concentration of RNA ((Ag/ml)

68



The purity of the RNA was determined by calculating the ratio of absorbance at 

260nm to 280nm. A ratio of 1.9 to 2.0 was indicative of a highly purified 

preparation of RNA. A ratio lower than this was indicative of protein 

contamination. Absorbance at 230 nm reflected contamination of the sample by 

phenol, while absorbance at 325 nm suggests contamination by particulates or a 

dirty cuvette. All samples were tested in triplicate and were kept on ice at all 

times during the experiment. RNA samples were then stored at -80 °C.

2.6.3 Design of PCR Prim er Sets

A number of web based programs, “Primer 3 Output” and “NCBI/BLAST” 

were utilized to design the primer sets used in this study. The Primer 3 program picks 

primers from the given sequence, and the BLAST program allows multiple sequence 

alignment, which allows primers to be designed from highly conserved areas. Primers 

were designed with ~50% GC content so the annealing temperature for all sets was 

~55°-60°C and are listed in table 3.

69



Table 3: Primer Sequences

Target Gene size
Primer Sequence

pairs)

Annealling 

Temp (”c)

product

(Base

Notchl (rat) for 5’ GAGTCACCCCATGGCTAC 3’ 
rev 5’ GTGGCTGCACCTGCTGG 3’

55
55

550

Notch3 (rat) for 5 ’ GACCGTGTGGCCTCTTTCT 3’ 
rev 5’ GCAGCTGAAGCCATTGACTCT 3’

55
55

390

Hrtl (rat) for 5’ GTCTGAGCTGAGAAGGCTGGT 3* 
rev 5’ GGAATGTGTCCGAGGCCC 3’

55
55

290

Hrt2 (rat) for 5’ CATCAGAGTCAACGCCATGT 3’ 
rev 5’ GACACTGATAACGGTGGGCT 3 ’

55
55

330

Hrt3 (rat) for 5’ GTGGCACAGGGTTCTTTGAT 3’ 
rev 5’ GCTGAGATAGGGTAAGGGGG 3 ’

55
55

340

Hesl (rat) for 5’ GAGAAAAATTCCTCGTCCCC 3’ 
rev 5’ TGATCTGGGTCATGCAGTTG 3’

55
55

280

Hes5 (rat) for 5’ GCTCAGTCCCAAGGAGAAAA 3’ 
rev 5’ GTCGGGGTCTCCTTGACAG 3’

55
55

380

Jaggedl (rat) for 5’ AACAGAACACAGGGATTGCC 3’ 
rev 5’ AGGTTTTGTTGCCATTCTGG 3’

55
55

147

Bax (rat) for 5’ TTGCCCTCTTCTACTTTGCT 3 ’ 
rev 5’ CAAAGATGGTCACTGTCTGC 3’

60
60

207

Bcl-XL (rat) for 5’ TGAAACCACCTAGAGCCTTG 3’ 
rev 5’ AATGACCACCACCTAGAGCCT 3’

60
60

170

Shh (rat) for 5’ GGCCATCATTCAGAGGAGTC 3’ 
rev 5’ CCACGGAGTTCTCTGCTTTC 3’

60
60

210

Ihh (rat) for 5’ TGGAGAAGAGTCCCCTGAGA 3’ 
rev 5’ GCGGCCCTCATAGTGTAAAG 3’

60
60

230

Dhh (rat) for 5’ GACCTCGTCCCCAACTACAA 3’ 
rev 5’ TAGAGCATTCACCCGCTCTT 3’

60
60

180

Smo (rat) for 5’ AATTGGCCTGGTGCTTATTG 3’ 
rev 5’ CTGAAGGTGATGAGCACGAA 3’

60
60

230

Ptcl (rat) for 5’ GCTGGAGGAGAACAAGCAAC 3’ 
rev 5’ CCAGGAGTTTGTAAGCGAGG 3’

60
60

164

Gli2 (rat) for 5’ CGCCTGGAGAACTTGAAGAC 3’ 
rev 5 TTCTCATTGGAGTGAGTGCG 3’

60
60

168

GAPDH (rat) for 5’ TGCTGAGTATGTCGTGGAGT 3’ 
rev 5’ GCATTGCTGACAATCTTGAG 3’

60
60

350
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2.6.4 Reverse Transcriptase Polymerase Chain Reaction fRT-PCR)

All total RNA samples were prepared by the Trizol® method as previously 

described in section 2.6.1. RNA preparations were then quantified by absorbance 

spectroscopy as described in section 2.6.2. Reverse transcriptase was carried out using 

Promega Murine Leukemia Virus Reverse Transcripase (MLV-RT) as follows. The 

initial amount of RNA used for each primer set was determined empirically to ensure 

a semi quantitative analysis section. For the purpose of this protocol 2 pig of RNA 

was transferred to an RNase free microcentrifuge tube. To this 1 [i\ of Promega Oligo 

dT primer was added. This ratio of amount of RNA to Oligo dT remained constant for 

each primer set used. The volume was then made up 12 p,l with RNase free water. The 

tube was heated to 70°C for 5 min to melt secondary structure within the template. 

The tube was cooled immediately to prevent secondary structure from reforming. The 

following cocktail was made up and added to each reaction:

MLV 5x Reaction buffer 5 fxl

dATP, 10 mM 1.25 pi

dCTP, 10 mM 1.25 [xl

dGTP, 10 mM 1.25 pi

dTTP, 10 mM 1.25 pi

MLV-RT 1 \xl

RNase free water 2 ill

The components were mixed by gently flicking the tube. The mix was then 

spun down in a microfuge and incubated for 60 min at 42°C, followed by a 15 min 

incubation at 70°C. 1 pi of RNaseH (2 units/pl) was then added per reaction, and was 

incubated for 20 min at 37°C. A negative control was also carried out with every RT 

reaction. The control contained no reverse transcriptase, any amplification by RT 

PCR from the negative control was indicative of genomic DNA contamination. All 

RT samples were stored at -80°C until needed for PCR.
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2.6.5 Polymerase Chain Reaction (PCR)

PCR was carried out using Promega Taq DNA Polymerase. A PCR mix was 

made up for each sample to be amplified. The mix was made up as follows:

RNase free water 36.5 fxl

Buffer lOx 5.0 (xl

dNTP lOmM 1.0 [i\

MgCl2 25mM 3.0 \xl

Forward primer 10 p,M 1.0 \x\

Reverse primer 10 jo.M 1.0 [il

Taq Polymerase 2.5u/p,l 0.5 fxl

RT sample 2.0 \x\

Mineral oil 50.0 (xl

When the reaction mixture was made up it was placed in the PCR 

thermocycler. All PCR were intiallly carried out in a Hybaid PCR thermocycler 

(SPRT 001), used to optimize conditions for PCR. The program used was optimised 

for each primer set, with the annealing phase being 55°C for the Notch signalling 

pathway primers, and 60°C for the apoptosis primers. For the purpose of this protocol 

the program was as follows:

Denaturing Phase: 94°C -  4 minutes 

Annealing Phase: 55°C/60°C -  2 minutes

Elongation Phase: 72°C -  3 minutes ----

4°C -  Hold

40 cycles

When finished the samples were stored at -80°C until needed for agarose gel 

electrophoresis.
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2.6.6 Agarose gel clcctrophoresis

All DNA gel electrophoresis was carried out using a Gibco BRL Horizon 20.25 

Gel Electrophoresis Apparatus. Before use the gel box was cleaned with ethanol and 

the gel cast was set up as described in the manufacturers instruction manual. A 2.5% 

agarose gel stock was made up by dissolving 12.5 g of agarose in 500 ml of lx  Tris 

Acetate EDTA (TAE) (40 mM Tris-Acetate, 1 mM EDTA). The agarose was 

dissolved by heating in a microwave (700 mHz) at full power for 5 min. 100 ml of the 

liquid agarose was then transferred to a fresh glass beaker. To this 250 (il of 200 

ug/ml of Ethidium Bromide (EtBr) solution was added and mixed thoroughly to give 

a final concentration of 0.5 (j,g/ml EtBr. The agarose was then poured into the cast, the 

comb put into place and the gel allowed to set. Once set the comb was removed and 

the apparatus filled with lx  TAE buffer. The samples were prepared as follows: 13 |i.l 

of PCR product + 5 [xl of 4x loading dye. 8 |il was loaded each well in duplicate. The 

gel was run at 80 V, 110 mA and 150 W until the dye front had migrated the length of 

the gel. When finished the gel was placed on an Ultra Violet Products UV 

transilluminator for visualization. A picture was taken using a Kodak DC290 digital 

camera for documentation. The image generated was then analysed using Kodak ID 

(version 3.5.4) densitometry imaging software. Briefly, a mean densitometric value 

was generated for each band, these values were then corrected using housekeeping 

gene controls (gapdh) for each lane. The corrected values were then expressed as fold 

increase over negative control (where applicable) and graphically expressed using 

prism. The gel was then disposed of in the appropriate EtBr waste container.

2.6.7 Real-Time PCR

Quantitative PCR was also carried out using a Real time Rotor-GeneRG- 

3000™ lightcycler (Corbett Research). The principle of real time amplification 

detection is that the amount of fluorescence is directly proportional to the 

concentration of product in a reaction. Higher fluorescence indicates a higher 

concentration of a product. Each PCR reaction was set up as follows;
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SYBR-Green 

RNAse free water 

cDNA

12.5 \x\ 

8.5 p,l

2.0 \x\

1.0 ul

1.0 ul

Forward primer lOuM 

Reverse primer 1 OuM

Each sample was assayed in triplicate, and the program used for the 

different primer sets was as follows;

Denaturing Phase: 95°C - 20 s

Annealing Phase: 55-60°C - 30s (Notch/hh primers) ____  55 cycles

5 7 -60°C- 45s (Apoptosis primers)

Elongation Phase: 72°C - 30 s ----

The Comparative Ct method (comparing cycle times where DNA 

amplification begins) was used for quantiatative analysis while Melt Curve 

analysis was carried out for qualitative analysis.

2.7. Cell Growth Assays

2.7.1 RVSMC Proliferation

To analyze RVSMC proliferation, cells were seeded equally at a density of 

lxlO3 cells per well after serum deprivation for 48hr. Cells were then counted using a 

Brightline Haemacytometer at 3 day intervals where the average of 3 wells was 

observed. Furthermore, in parallel experiments protein lysates were extracted and 

proliferating cell nuclear antigen (pCNA) expression was determined by western blot 

analysis as described in section 2.5.1. Concurrently cells were fixed using 

isopropanol and stained using Haematoxylin and Eosin for visualization using the 

Olympus C40 microscope for comparative cell proliferation analysis.
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2.7.2 RVSMC Apoptosis

2.7.2.1 Acridine Orange/Ethidium Bromide Cell Staining

The staining of RVSMCs with the Acridine Orange/Ethidium Bromide 

(AO/EtBr) dual stain (10 jog/ml, Sigma) allows determination of viable, apoptotic and 

necrotic cells concurrently. Acridine Orange is a metachromatic dye which 

differentially stains double stranded (ds) and single stranded (ss) nucleic acids. When 

acridine orange intercalates into the dsDNA of healthy cells it emits a green 

fluorescence upon excitation at 480-490 nm. However, this stain emits an orange 

fluorescence when intercalated with the ssDNA of apoptotic cells. Ethidium bromide 

is a nucleic acid stain which does not permeate viable or apoptotic cells. It does, 

however, penetrate necrotic cells due to plasma membrane disruption and stains the 

nucleus red. Therefore, viable cells appear to have a bright green nucleus with intact 

structure, while apoptotic cells exhibit a bright green nucleus showing condensation 

of chromatin as dense green areas. Late apoptotic cells have an orange nucleus 

showing condensation of chromatin, while necrotic cells display a red nucleus with 

intact structure. Briefly, cells were washed twice in lx PBS, and fixed in ice-cold 

isopropanol for 5 min. Cells are then rehydrated in lx PBS for 7-8 min, and stained 

with the AO/EtBr dual nuclear stain for 5 min, rinsed with PBS, and visualized using 

an Olympus DP-50 fluorescent microscope (excitation 460-490 nm, emission 515-565 

nm).

2.8 In Vivo Studies

2.8.1 Carotid Artery Ligation

The left carotid arteries of male Sprague-Dawley rats (Charles River 

Laboratories, Massachusetts, USA) were ligated, with the right carotid artery acting 

as a high flow control. Anesthesia was induced in animals pre-medicated with
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atropine sulphate (0.04 mg/kg, intra-muscular) through administration of 

pentobarbital sodium (50 mg/kg, intra-peritoneal) and halothane (inhalational). 

Following induction of anesthesia, the animal was positioned on a clean operating 

table, with a body pad to maintain body temperature. The animal was clipped and the 

surgical site prepped using betadine solution and alcohol. A midline cervical incision 

was made, and, with the aid of a dissecting microscope, the right and left common 

carotid arteries were isolated. A Transonic flowprobe was used to measure carotid 

blood flow in both the left and right arteries. The left common carotid artery was 

ligated near the carotid bifurcation using a 6-0 silk suture. The incision was then 

closed using 4-0 coated Vicryl, running suture pattern. The animal was then allowed 

to recover, whilst being monitered. Sham operated animals were subjected to the 

same surgical techniques, with the exception of the carotid artery ligation. Vessels 

were harvested from sham operated and ligated animals at 3 days and 28 days post­

ligation for RNA isolation (4 vessels per preparation) and protein isolation (2 vessels 

required per preparation). Terminal surgery was carried out by halothane inhalation 

and cervical dislocation, followed by harvesting of the carotid arteries.

2.8.2 Portal Vein Ligation

This procedure involved the portal vein ligation (PVL) of male Sprague- 

Dawley rats (Charles River Laboratories, Massachusetts, USA). Anesthesia was 

induced in animals pre-medicated with atropine sulphate (0.04 mg/kg, intra-muscular) 

through administration of pentobarbital sodium (50 mg/kg, intra-peritoneal) and 

halothane (inhalational). Following induction of anesthesia, the animal was 

positioned on a clean operating table, with a body pad to maintain body temperature. 

The animal was clipped and the surgical site prepped using betadine solution and 

alcohol. An appropriate incision was made, and, with the aid of a dissecting 

microscope, the portal vein was isolated, and a stenosis was created by means of a 

single ligature placed around the portal vein using a blunt-edged 20-gauge needle. 

The immediate removal of the needle allowed for the portal vein to expand to the 

limit imposed by the ligature (PVL). The incision was then closed using 4-0 coated 

Vicryl, running suture pattern. The animal was then allowed to recover, whilst being 

monitered. Sham operated animals were subjected to the same surgical techniques,
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with the exception of the portal vein ligation. Vessels were harvested from sham 

operated and ligated animals at 2, 4, 6, 9 and 15 days post-ligation for RNA isolation 

(4 vessels per preparation) and protein isolation (2 vessels required per preparation). 

Terminal surgery was carried out by halothane inhalation and cervical dislocation, 

followed by harvesting of the portal vein (Hou et al., 1998).

2.9 Data Analysis

Results are expressed as mean ± SEM. Comparison between control versus 

treated cells were made by (i) Student’s unpaired t test and (ii) Wilcoxon matched- 

pairs signed-rank test, with statistical significance established at p<0.05.
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Chapter 3

Results

Notch Receptor Signalling Modulates VSMC Growth via a CBF-1/RBP-Jk -
dependent Pathway



3.1 Introduction

The determination of VSMC fate (growth, migration, differentiation and 

apoptosis) is fundamental to the pathogenesis of vascular disease (Swhwartz and 

Henry, 2002). Pathological changes in vessel structure are induced, in part, by 

signalling pathways that govern SMC growth, death, differentiation and migration 

(Ferguson and Patterson, 2003). This change in SMC fate is believed to play an 

important role in neointimal formation during the pathogenesis of cardiovascular 

disease, including atherosclerosis and hypertension, and in the arterial response to 

injury. However, how these cell fate decisions are regulated and controlled remains 

poorly understood. Because changes in vascular cell fate are also apparent during 

vascular morphogenesis and modelling of the embryonic vasculature (Majesky 2003), 

the control of these cell fate decisions in adult cells may share similar signalling 

patterns. A number of pathways have been implicated in the control of vasculogenesis 

and angiogenesis; these include the VEGF, PDGF, and ephrin/Eph receptor pathways 

(Kojika and Griffin 2001). Recent studies have added the Notch signalling pathway to 

this list. Notch receptor-1 igand interactions are a highly conserved mechanism, 

originally described in developmental studies using Drosophila that regulates 

intercellular communication and direct individual cell fate decisions (Iso et al., 2003). 

Notch receptors and ligands are transmembrane proteins that have been identified in 

mammalian cells (Notch receptors: 1 to 4; Notch ligands: Delta, Serrate, and Jagged). 

Studies using constitutively activated Notch receptors missing their extracellular 

domains Notch intracellular (IC) have shown that Notch signalling determines 

proliferation, differentiation, and, more recently, apoptosis in several mammalian cell 

types. Following cleavage by presenilin, Notch IC is translocated to the nucleus 

where it interacts with the CSL family of transcription factors (CBF-l/RBP-Jk, Su (h) 

and LAG-1). CSL factors alone or as a complex with Notch are believed to become 

transcriptional activators that can then modulate the expression of Notch target genes 

that regulate cell fate decisions (Lai, 2002). These include the hairy enhancer of split 

(hes) gene and HES-related transcription factors (HRTs) that are critically involved in 

mammalian cell differentiation (Iso, 2003).

Recent studies report that Notch-receptor ligand interactions are prevalent during 

fibroblast growth factor-induced angiogenesis, suggesting a major role for this
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signalling mechanism in regulating vascular development (Zimrin et al., 1996). In 

addition, Notch receptors and downstream effectors (HRTs) play a critical role in cell 

fate determination during vascular ontogeny (Iso 2003). Mutations of Notch 

signalling pathway components in mice, for example, results in embryonic lethality 

due to defects in the formation of the vascular system. Mice homozygous for null 

mutations in Jagged 1 and Notch 1 die in utero due to defects in vascular 

morphogenesis and angiogenic vascular remodelling (Han et al., 2000). In addition, 

mutations in Notch target genes also highlight the importance of Notch-receptor 

ligand interactions in vascular development. Zebrafish embryos harbouring a 

mutation in the gridlock gene, a hrt-2 orthalogue, show impaired vascular formation 

due to aortic coarctation (Zhong et al 2000). While the role of the Notch signalling 

pathway in development is reasonably well established its functional role in adult 

VSMC remains to be fully elucidated. However if the adult SMC phenotype is not 

terminally differentiated and is similar in both morphology and gene expression to 

embryonic SMC (Gittenberger-de Groot et al., 1999), it is highly probable and 

conceivable that Notch signalling could be both present and playing an equally 

important functional role in adult VSMC.

Dysregulation of the Notch signaling pathway underlies a number of adult 

disorders with associated vascular pathologies, such as CADASIL and AGS (Loomes 

et al., 1999; Brulin et al., 2002), The human CADASIL syndrome of premature stroke 

and dementia is a heritable arteriopathy with alterations in VSMC, which results from 

mutations within the Notch 3 receptor (Kalaria et al., 2002). It is now becoming clear 

that the well-described modulation of SMC fate following stimulation involves a 

coordinate regulation of the Notch and HRT pathways in several cell types (Wang

2002). Indeed, recent studies demonstrate that Notch receptors and hrt genes are 

coordinately up-regulated in neointimal cells but down-regulated in medial cells 

following vascular injury, an effect that is mimicked by addition of serum mitogens 

(PDGF) to cultured cells in vitro (Wang et al., 2002). Furthermore, initial evidence 

that Notch 3 signalling may be a critical determinant of SMC survival and vascular 

structure by modulating the expression of downstream mediators of apoptosis via 

signalling cross-talk with the ERK/MAPK pathway has been presented (Wang et al.,

2003).

In most cell types examined, expression of Notch 1 IC leads to increased CBF-
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1/RBP-Jk-dependent gene expression. However, increasing evidence indicates that 

Notch signalling may occur independent of CBF-1/RBP-Jk gene expression. In 1996, 

Shawber et al., provided the first in vitro evidence of a Notch-activated CBF-1- 

independent pathway whereby Notch 1 prevented the differentiation of muscle cells 

(C2C12) upon serum withdrawal, without the interaction with CBF-1 or up-regulation 

of endogenous Hes-1 expression. This present study examined the endogenous role of 

Notch 1 and 3 receptors in controlling the modulation of SMC growth in response to 

growth factor stimulation. In addition we demonstrate that hes and hrt are direct 

downstream target genes of Notch 1 and 3 signalling in SMC and that a CBF-1/RBP- 

Jk dependent mechanism is essential for this regulation. Moreover, transient 

overexpression of constitutively active Notch 1 and 3 IC or inhibition of endogenous 

Notch signalling and target gene expression resulted in a modulation of CBF-1/RPB- 

Jk dependent promoter activity concomitant with changes in SMC growth. 

Furthermore we examined the role of individual hrt genes in controlling the 

modulation of SMC growth in vitro. Hrt gene knockdown by siRNA resulted in a 

significant inhibition of SMC growth while concurrently increasing SMC apoptosis. 

An increased understanding in the regulation of SMC fate in the vasculature, has the 

potential to lead to future therapeutic benefits, as it is aberrant SMC fate, which is a 

major cause of vascular disease.

The aim of this chapter was to determine the role Notch 1 and 3 receptors in 

controlling the modulation o f SMC growth and in addition, to examine the 

individual role o f downstream notch target genes, hrt 1, 2 and 3 in determining 

SMC growth in vitro.
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3.2 Results

3.2.1 Notch Receptors and Downstream Target Genes in SMC

The presence of Notch 1 and 3 receptors in serum-stimulated adult RVSMC was 

examined in vitro. Immunohistochemical analysis revealed the presence of Notch 1 

and 3 IC receptors in these cells with significant nuclear and cytoplasmic staining 

(Fig 3.1). The presence of Notch 1 and 3 receptors was further confirmed by Western 

blot analysis and RT-PCR (Fig 3.1). Notch 1 and 3 IC domains were present in 

cycling cells as a protein with an apparent molecular weight of 120 and 90 kDa, 

respectively. In a similar manner, Notch target genes, hes (hes -1 and -5), and HRTs 

{hrt-1, -2, and -3) were present in these cycling cells (Fig 3.1B) and expressed at the 

protein and mRNA level and by immunohistochemical analysis.

3.2.2 Notch 1 and 3 IC Receptors Activate Notch Target Genes in a CBF-1- 

Dependent M anner.

We confirmed that Notch 1 and 3 receptors were significantly overexpressed in 

RVSMC at both the mRNA and protein level following constitutive expression of 

Notch 1 and 3 IC (Fig 3.2 A and B). In addition, the specific over-expression of 

Notch 1 and 3 IC proteins was confirmed using anti-HA antibodies specific for both 

Notch 1 and 3 IC proteins Moreover, in cells co-transfected with the luciferase 

reporter plasmids, pGa981-6, which contains a CBF-1-regulated enhancer linked to 

the |3-globin minimal promoter or the corresponding enhancerless control vector, 

pGa50-7, we found a significant increase in CBF-l/RBP-Jk dependent promoter 

activity following constitutive expression of Notch 1 and 3 IC, 24±5.09 and 

15.72±3.8 respectively (Fig. 3.3 A and B). In addition, Notch 1 and Notch 3 IC 

dependent reporter gene expression was significantly inhibited following co­

expression with the mutant Notch 1 IC receptor (mNotch 1 IC), and by using a 

selective inhibitor of the CBF-1/SKIP interaction by 71±2.0% and 52.29±19.1% 

respectively. In addition, the Epstein Barr virus encoded gene product RPMS-1, 

resulted in a 71.38±4.1% decrease in Notch 1 IC dependent reporter gene expression 

and a 79.95+8.27% in Notch 3 IC reporter gene expression. Following treatment with

81



Brefeldin A, a pharmacological inhibitor of Notch receptor trafficking from the Golgi 

apparatus, a marked decrease in CBF-1 transactivation of 78.75±3.75% and 

57.86±4.56% was observed for Notch 1 and 3 IC respectively (Fig 3.3 A and B). In 

a similar manner, constitutive expression of Notch 1 and 3 IC significantly increased 

the transactivation of a native Notch target gene promoter hrt-1 by 19.51±4.17 and 

4.96±1.22 respectively (Fig 3.4A). Moreover, constitutive expression of mNotch IC 

significantly inhibited Notch 1 IC dependent transactivation of the hrt-1 promoter by 

a decrease of 77.25±7.89% (Fig. 3.4 B). We used quantitative Real-Time RT-PCR 

(QRTPCR) to determine the effects of inhibiting CBF-1/RBP-Jk regulated promoter 

activity on Notch target gene mRNA levels in these cells. Using QRTPCR analysis, 

constitutive expression of Notch 1 IC revealed a significant increase in Notch target 

gene mRNA levels {hrt-1, hrt-2, and hes-5) by 2.98±0.81, 1.51±0.52 and 2.19+0.05, 

an effect that was significantly inhibited following co-expression of RPMS-1 by 

71.48±0.33%, 79.48±3.31% and 90.42±1.14% respectively (Fig 3.5 A). RPMS-1 has 

previously been shown to bind directly to the CBF-1 nuclear complex and inhibit 

Notch IC CBF-1/RBP-Jk dependent promoter activity (Smith et al., 2001; Zhang et 

al., 2001). Similarly, constitutive expression of Notch 3 IC resulted in a significant 

increase in mRNA levels of Notch target genes of 3.55±0.5, 1.62±0.41 and 1.52±0.39 

for hrt-1, 2 and 3 respectively, an effect that was also significantly attenuated 

following inhibition of CBF-l/RBP-Jk regulated transcriptional activity by co­

expression of RPMS-1 by 80.0±0.28%, 53.1±4.3%, and 53.95±3.2% (Fig 3.5 B).

3.2.3 Serum-Stimulated Notch Target Gene Expression in SMC in vitro

In cells transfected with pGa981-6, a significant temporal increase was reported in 

luciferase activity following serum addition. The increase in pGa981-6 promoter 

activity post serum was 17.9±5.4, 26.6±2.3 and 11.0±0 at 4, 8 and 24 hr respectively 

(Fig 3.6 A). Co-transfection with a vector encoding a non-DNA binding mutant of 

CBF-I/RBP-Jk (R218H), which inhibits CBF-1/RBP-Jk regulated gene expression in 

SMC (Kato et al., 1997), inhibited serum stimulated CBF-1/RBP-Jk regulated 

promoter activity in these cells at 4 h by 41.57±12.34%, and a significant attenuation 

at 8 h and 24 h by 76.32±3.64% and 70.37±2.36% respectively, as compared to serum 

stimulated CBF-1 luciferase activity at each time point (Fig 3.6 A). Co-expression of
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RPMS-1 significantly decreased serum-stimulated CBF-l/RBP-jK-regulated promoter 

activity in these cells by 47.21±1.9%, 56.43±18.34% and 28.82±8.0% at 4 h, 8 h, and 

24 h post-serum stimulation (Fig 3.6 A). In a similar manner, the effect of co­

transfection of mNotch 1 IC, and the pharmacological inhibitors, Brefeldin A and 

Monensin, both of which attenuated serum-stimulated increases in CBF-1 luciferase 

activity, was investigated (Fig 3.6 B). All three inhibitors resulted in a significant 

attenuation of the serum-induced increase in CBF-1 luciferase activity at 8 h post­

serum stimulation. Cells treated with Brefeldin A and Monensin exhibited a 

69.73±10.72% and 81.61±7.85% decrease in luciferase activity respectively, and cells 

co-transfected with mNotch 1 IC exhibited a 83.91±11.87% decrease in CBF-1 

luciferase activity, as compared to that at 8 h post-serum stimulation. An attenuation 

in the serum-stimulated increase in CBF-1 luciferase activity was also seen at 10 h 

post-serum addition, with decreases of 61.6±16.54%, 69.07±10.79% and 84.9±3.59% 

by Brefeldin A, Monensin and mutant Notch 1 IC respectively. In parallel studies, a 

significant temporal increase was found in transactivation of hrt-1 promoter following 

serum stimulation compared with mock control The effect of serum stimulation on 

hrt-1 promoter activity was investigated over a period of 24 h (Fig 3.7). Serum 

stimulation resulted in a significant fold increase (24.6±6.4) in hrt-1 luciferase 

activity at 8 h post-serum addition. Similarly, fold increases in hrt-1 luciferase 

activity of 13.6±4.8 and 6.0±2.2 were evident at 10 h and 24 h post-serum addition. 

Co-transfection of the Notch inhibitor, RPMS-1, resulted in an attenuated fold 

increase in luciferase activity due to serum stimulation (Fig 3.7). The fold increase 

was significantly attenuated by 82.65±10.97% and 81.62±6.6% at 8 h and 10 h post­

serum addition respectively, and by 56.5±21.6% at 24 h post-serum addition, as 

compared to serum stimulated CBF-1 luciferase activity at each time point.

Using semiquantitative RT-PCR, we demonstrated a significant temporal 

increase in Notch target gene mRNA levels in quiesced cells following serum 

stimulation (Fig 3.8). Serum-stimulated increases in hrt-1 and hrt-2 mRNA levels 

were maximal after 5-10 h (3.8 A and B). Subsequent analysis using QRTPCR, 

similarly showed that serum stimulation for 8 h resulted in an increase in Notch target 

gene mRNA as compared to un-stimulated control cells (Fig 3.8 C). The fold 

increases for hrt-1, hrt-2, hrt-3, hes-1 and hes-5 being 1.65±0.17, 1.67±0.1, 

1.55±0.29, 2 .12±.31 and 1.75±0.01 respectively. To further verify the involvement of
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the CBF-1-dependent Notch signalling pathway in serum-stimulated increases in 

Notch target gene mRNA expression, cells were mock-transfected, or transfected with 

the CBF-1-dependent Notch signalling pathway inhibitor, RPMS-I (Fig 3.9A). 

Quiesced cells were serum stimulated for 8 h, and assayed for Notch target gene 

mRNA expression. Control levels of the Notch target genes in mock-transfected cells 

were arbitrarily assigned a value of 1. Hrt-2 and hrt-3 mRNA expression levels were 

significantly decreased by 58.0±1.0% and 65.0±5.0% respectively, similarly, hrt-1 

and hes-5 mRNA expression levels were also decreased by 58.0±12.0% and 

67.0±13.0% respectively due to the presence of RPMS-I. Serum-stimulated hes-5 

mRNA levels after 8 h were significantly attenuated following co-expression of 

RPMS-1 (Fig 3.9 B). Subsequent quantitative analysis of Notch receptors by 

QRTPCR confirmed that serum stimulation increased Notch 1 and 3 receptor mRNA 

levels after 8 h (Fig 3.10 A). Furthermore, treatment of quiesced cells with 10% FCS 

resulted in a significant increase in Notch 1 IC protein expression (Fig 3.10 B).

3.2.4 Notch Rcceptor Signaling and Serum-Stimulated SMC Proliferation

A significant temporal decrease was found in serum-stimulated SMC proliferation 

following inhibition of CBF-1/RBP-Jk activity with RPMS-1 compared with mock 

controls (Fig 3.11 A). Furthermore, constitutive expression of Notch 1 and 3 IC 

significantly increased SMC proliferation compared with mock controls (Fig 3.11 B), 

an effect that was significantly inhibited by co-expression with RPMS-1 (Fig 3.11 C). 

This increase in serumstimulated SMC proliferation was mirrored in clonal 

proliferation assays where constitutive expression of Notch 3 IC promoted clonal 

proliferation, an effect that was also inhibited by coexpression with RPMS-1 (Fig

3.11 D). In addition, the expression of proliferating cell nuclear antigen (pCNA), a 

marker for cell proliferation in SMC, was enhanced in cells following constitutive 

expression of Notch 1 IC compared with mock control. This increase in pCNA 

expression was reversed by co-expression with RPMS-1 (Fig. 3.11 D).
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3.2.5 Notch Target Gene Silencing by siRNA

The presence of Notch target genes hrtl, hrt2 and hrt3 in serum-stimulated adult 

RVSMC was examined in vitro. QRTPCR analysis revealed the relative expression 

levels of hrtl-3 as compared to GAPDH levels in RVSMC (Fig 3.12 A) and the 

subsequent gene knockdown by transfection of siRNA directed against these Notch 

target genes as compared to a scrambled control (Fig 3.12 B). SiRNA interference 

resulted in a 69.0±7.7%, 63.0±12.2% and 64.0±7% decrease in hrtl, 2 and 3 mRNA 

expression respectively.

3.2.6 Notch Target Gene silencing and Serum Stimulated RVSMC Proliferation

The functional importance of Notch signalling on SMC growth was confirmed by 

determining the effect of Notch target gene knockdown on SMC growth (balance 

between proliferation and apoptosis) by selective siRNA directed against Notch target 

genes, hrtl-3. In quiesced cells, a significant decrease was found in serum-stimulated 

SMC proliferation following hrt gene silencing by siRNA as compared with 

scrambled controls (Fig.3.13 A). Hrt gene knockdown resulted in a significant 

decrease in pCNA expression of 55.0±11%, 44.0±8.8% and 33.0±3.7% for hrtl, 2 and 

3 respectively (Fig 3.13 B). Furthermore, in parallel cultures, a significant temporal 

decrease was found in serum-stimulated SMC proliferation following hrt gene 

knockdown whereby the most significant decrease in RVSMC proliferation was 

observed by hrtl gene knockdown.

3.2.7 Notch Target Gene Silencing and RVSMC Apoptosis

To further examine the functional importance of the hrt genes on SMC growth, we 

determined the effects of hrt gene knockdown on SMC apoptosis. Hrt gene 

knockdown resulted in a significant increase in pro-apoptotic Bax mRNA and protein 

levels, a decrease in Bcl-XL mRNA and protein levels concomitant with a significant 

decrease in the number of apoptotic nuclei. An increase in Bax expression of 

1.7+.386, 4.1±.87 and 11.1+3.56 for mRNA and a subsequent increase in protein 

expression of 1.67±.08, 1.6+.08 and 1.7±.09 was observed for gene knockdown of
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hrt], hrt2 and hrt3 respectively (Fig 3.15). In parallel cultures a significant decrease 

in Bcl-X, expression was observed following hrt gene knockdown. 48.0±I7%, 

58.0±10.6% and I5.0±48.4% inhibition of mRNA was observed while an inhibition in 

Bcl-XL protein expression of 48.0±I2.2%, 45.0±I3.2% and 20.0±3.4% was observed 

for hrtl, 2 and 3 knockdown respectively (Fig 3.16). Concomitant with the 

subsequent increase in Bax and decrease in Bcl-X, expression an increase in apoptotic 

nuclei was observed. Hrtl, 2 and 3 gene knockdown resulted in a 8.1 ±.05, 4.0±.05 

and 12.0±.05 increase in apoptosis respectively (Fig 3.16).
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Protein and mRNA is expressed in RVSMC, as determined by western blot analysis 
and semi-quantitative PCR respectively. Immunocytochemistry showing protein 
expression at 20x magnification, and a secondary control. N=3

Figure 3.1 The Presence of Notch Signaling in Adult VSMC
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Figure 3.2 Up-regulation of Notch 1 IC and Notch 3 IC in Transfected
RVSMC

A: Notch 1 Up-regulation

A nti-H A

N otch 1 IC
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B: Notch 3 Up-regulation
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Figure 3.2 Up-regulation of Notch 1 IC and Notch 3 IC in RVSMC. U p-regulation  
o f  N otch 1 p ro te in  and m R N A  (A) expression  fo llo w in g  transfec tion  w ith  N otch  1 IC. 
U p-regu la tion  o f  N o tch  3 p ro te in  and m R N A  (B) expression  fo llo w in g  transfec tion  w ith  
N otch  3 IC . M = m ock  transfected  w ith  p7pcm v em p ty  vector, T =N otch  1 IC /N o tch  3 IC 
transfec ted  N=3
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Figure 3.3 Activation of the Notch Signalling Pathway in  RVSMC 
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Figure 3 3  Notch 1 and Notch 3 activates CBF-1 activity in RVSMC. R V S M C  w ere transien tly  
transfected w ith  th e  C B F-1 luciferase-lagged reporter p lasm id  and  co-transfected w ith  N otch  1 IC  (A) o r 
N otch 3 IC (B). A dd itionally , cells w ere co-transfectcd  w ith  in h ib ito rs  o f  the  N otch  s ig n a llin g  pathw ay, 
m N otch  1 IC , R P M S -I and treated w ith  the  pharm acological in h ib ito r Brefeldin A  (0.1 fxg/inl, 2 4  h). 
Luciferase assays w ere norm alized  to  (5-galactosidase ac tiv ities  and p ro tein  levels, n=  at least 3, and 
expressed as fo ld  increase over contro l ( th e  value  ob ta ined  w ith  p G A 9 8 -l-6  transfected cells arb itrarily  
assigned a  value  o f  1). * p < 0 .0 5 , (rank test) as com pared to  m ock  transfected  con tro l, °  p < 0 .0 5  as 
com pared to  N otch transfected  cells (rank test).
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Figure 3.4 Activation of Notch Target Genes in RVSMC
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Figure 3.4 Over-expression of Notch 1 and Notch 3 activates notch target genes in RVSMC.
(A) R V S M C  w ere tran sien tly  transfected w ith  th e  H R T-1 reporter p la sm id  and co-transfected w ith  
e ither N otch  1 IC  o r  N o tch  3 IC . B) R V S M C  w ere transien tly  transfected  w ith  th e  H R T-1 reporter 
p lasm id  and co-transfected  w ith  N otch  1 IC  in  th e  presence and absence o f  the  m u tan t N otch 1 IC 
p la sm id  L uciferase assays w ere norm alized  to  (3-gal actosidase ac tiv itie s  and p ro tein  levels, n=3, and 
expressed as fo ld  increase over contro l (= the  va lue  ob ta ined  w ith  H R T-1 reporter p lasm id  transfected 
cells arb itrarily  a ss igned  a  value o f  1). s p < 0 .0 5  as com pared to  m o ck  transfected  con tro l cells, $ 
p < 0 .0 5  as com pared  to  N o tch  transfected cells (s tuden t’s t test).
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Figure 3.5 Upregulation of Notch Target Gene mRNA Expression
in RVSMC
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Figure 3.5 Notch 1 and Notch 3 up-regulate Notch Tkrget Gene mRNA 
Expression,. R V S M C  w ere transien tly  transfected w ith  N o tch  1 IC  (A) and N otch  3 IC 
(B) in  th e  presence and absence o f th e  N o tch  inh ib ito r, R P M S -I . m R N A  levels w ere 
m easured  u s in g  quan tita tive  R T -P C R , and  expressed as fo ld  increase o ver con tro l Caq the  
levels o f  target gene present in  untransfected  cells (not show n)), n=3. * p < 0 .0 5 , ** 
p < 0 .0 0 5 , *** p < 0 .0 0 5  as com pared to  m o ck  transfected contro l (s tuden t’s t test).
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Figure 3.6 Serum Stimulation of the Notch Signalling Pathway in
RVSMC
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Figure 3.6 Serum stinulates CBF-1 activity in adult VSMC in a time-dependent manner, 
which can be inhibited by inhibitors of the Notch signaling pathway. A) R V S M C  were 
tran sien tly  transfected  w ith  the CBF-1 reporter p lasm id, p G A 9 8 -l-6 , and co-transfected w ith  th e  
N otch pathw ay in h ib ito rs , R P M S -I and R 218H  as ind icated  F o llo w in g  ov e rn ig h t recovery from 
transfection , cells were quiesced fo r 48  h, and s tim u la ted  w ith  m edia co n ta in in g  10% FBS at 0  h. 
S am p les w ere taken over a  period  o f  0 - 2 4  h, and assayed fo r luciferase ac tiv ity . B) R V S M C  w ere 
transien tly  transfected  w ith  th e  C BF-1 reporter p lasm id, p G A 9 8 -l-6 , and co-transfected w ith  the 
N otch 1 m u tan t p la sm id  pC M V -E D 4-H A . F o llo w in g  overn igh t recovery from  transfection , cells 
w ere quiesced fo r 48  h, and s tim u la ted  w ith  m edia con ta in ing  10%  FB S at 0  h , in  e ither th e  presence 
o r absence o f  th e  pharm acological in h ib ito rs  Brefeldin A  ( 0 . lfxg /m l) o r M o n en sin  (0 .25 fxg/ml) as 
ind icated  L uciferase assays w ere norm alized  to  (3-galactosidasc ac tiv ities  and p ro te in  levels, n=3, and 
expressed as fo ld  increase over contro l (= the value  ob ta ined  w ith  relevant reporter p lasm id  
transfected cells at 0  h arb itrarily  assigned  a value  o f  1). s p < 0 .0 5 , ss p < 0 .0 5  as com pared to  0  h 
serum  con tro l, $ p < 0 .0 5  as com pared to  serum  contro l at tha t tim ep o in t (s tuden t’s t test).
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Figure 3.7 Serum Stimulation of Notch Target Genes in RVSMC
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Figure 3.7 Serum stinulates Notch target gene activity in RVSMC in a time- 
dependent manner. R V S M C  w ere tran sien tly  transfected w ith  th e  H R T -1  reporter 
p lasm id, and co-transfected  w ith  the N otch  in h ib ito r R P M S -I. F o llo w in g  overn igh t 
recovery from  transfection , cells w ere quiesced fo r 48  h, and s tim u la ted  w ith  m edia 
con ta in ing  10%  FBS at 0  h. S am ples w ere taken over a  period  o f  0 - 2 4  h, and 
assayed fo r luciferase ac tiv ity . L uciferase assays w ere norm alized  to  |3-galactosidase 
ac tiv ities  and p ro tein  levels, n=3, and expressed as fo ld  increase over con tro l ( th e  
value  ob ta ined  w ith  relevant reporter p lasm id  transfected cells at 0  h arbitrarily  
assigned  a value  o f 1). s p < 0 .0 5 , ss p < 0 .0 0 5  as com pared to  0  h  serum  contro l, 
p < 0 .0 0 5  as com pared to  serum  contro l at that tim ep o in t (s tuden t’s t test).
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Figure 3.8 Serum Stim ulation of Notch Target Gene mRNA 
Expression in  RVSMC
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Figure 3.8 Serum stinulates Notch target gene activity in RVSMC in a time- 
dependent manner. A  &  B) R V S M C  w ere quiesced fo r 4 8  h and s tim u la ted  w ith  
m edia co n ta in in g  10% FBS at 0  h. S am ples w ere taken over a  period  o f  0 -2 4  h, and 
subsequently  assayed u s in g  sem i-quan tita tive  P C R . C ) R V S M C  w ere quiesced fo r 
48  h, and s tim u la ted  w ith  m edia con ta in ing  10% FBS at 0  h. S am p les w ere iso lated  
at 8 h post-serum  addition and subsequently  assayed u sin g  q u an tita tive  P C R . A ll 
values w ere norm alized  to  G A P D H  levels, and expressed  as a  ra tio  o f  G A P D H  (A &
B) o r as fo ld  increase over contro l ( th e  value ob ta ined  w ith  serum  depleted m R N A  
levels at 8 h  arb itrarily  assigned  a value  o f  1) (C ), n=3. * pcO .05 , ** p< 0 .0 0 5  as 
com pared to  0  h serum  contro l (s tuden t’s t test).
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Figure 3.9 Inhibition of Serum Stim ulated Notch Target Gene mRNA 
Expression in RVSMC
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Figure 3.9 Inhibition of serum stinulated Notch target gene mRNA expression in 
RVSMC A ) R V S M C  w ere transfected w ith  R P M S -1  o r  th e  em p ty  em p ty  vector (-R P M S - 
I). F o llo w in g  recovery overn igh t, cells w ere quiesced fo r 4 8  h and s tim u la ted  w ith  m edia 
con ta in ing  10%  FB S at 0  h. S am ples w ere iso la ted  at 8 h  post-serum  addition and 
subsequently  assayed u s in g  quan tita tive  P C R  fo r N o tch  target gene m R N A  expression . 
A ll values w ere norm alized  to  G A P D H  levels, and expressed  as a fo ld  decrease over 
control ( th e  value ob ta ined  w ith  serum  s tim u la ted  m R N A  levels at 8 h in  th e  absence o f 
th e  N otch in h ib ito r, arb itrarily  assigned  a value  o f  1), n=3. B) R epresen ta tive  sem i- 
quan tita tive  P C R  gel fo r hes-5, and G A P D H  in b o th  th e  p resence and absence o f  R PM S-I. 
s p < 0 .0 5 , ss p < 0 .0 0 5  as com pared to  m ock  transfected contro l (s tu d en t’s t test).
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Figure 3.10 Serum Stimulation of Notch Receptor Expression in
RVSMC
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Figure 3.10 Serum increases Notch protein expression in RVSMC. B) R V S M C  
w ere quiesced fo r 48  h, and s tim u la ted  w ith  m edia co n ta in in g  10%  FB S at 0  h as 
indicated  S am p les w ere taken  at 6  h post-serum  addition in  serum  con ta in ing  and 
non-serum  con ta in ing  sam p les, and subsequently  assayed u s in g  fo r N otch 1 protein  
expression . S am p les are expressed as fo ld  increase over non-serum  s tim u la ted  control 
(arb itrarily  assigned  a  va lu e  o f  1). A ) R V S M C  w ere quiesced fo r 48  h, and s tim u la ted  
w ith  m edia con ta in ing  10%  o r 0%  FBS at 0  h. S am p les w ere iso la ted  at 8 h  p o st­
serum  addition and subsequently  assayed using  quan tita tive  P C R . A ll values were 
norm alized  to  G A P D H  levels, and expressed as fo ld  increase over contro l (the  value 
ob ta ined  w ith  serum  depleted m R N A  levels at 8 h arb itrarily  ass igned  a value  o f  1), 
n=3. s p < 0 .0 5 , ss p < 0 .0 0 5  as com pared to  0  h  serum  control (s tuden t’s t test).
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Figure 3.11 Serum Stimulated Cell Proliferation
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Figure 3.11 Serum Stinulated RVSMC Proliferation A ) R V S M C  w ere tran sien tly  transfected w ith  th e  
pu rom ycin  resistance  p lasm id , pG K 3puro  and co-transfected w ith  th e  em p ty  vecto r p7pC M V  o r w ith  R P M S - 
1. F o llo w in g  recovery overn igh t, cells w ere quiesced fo r 48 h, and s tim u la ted  w ith  m edia con ta in ing  10%  
FBS at 0  h  and  seeded at equal densities o f  lx  103 cells. C e lls  w ere then  counted  at 3 day in tervals as 
described in  sec tion  2 .7 .1 . B) R V S M C  w ere transien tly  transfected  w ith  the pu rom ycin  resistance p lasm id, 
pG K 3puro  and co-transfected  w ith  th e  em pty  vector p 7pC M V  , w ith  N o tc h l IC o r w ith  N otch3 IC. 
F o llo w in g  recovery overn igh t, cells w ere quiesced fo r 48 h, and s tim u la ted  w ith  m edia con ta in ing  10%  FBS 
at 0  h and seeded at equal densities o f  lx  103 cells. C e lls  w ere then  coun ted  at 3 day in tervals as described in  
section  2 .7 .1 . N=3. *p< 0 .05
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Figure 3.11 Serum Stimulated Cell Proliferation
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Figure 3.12 Serum stimilated RVSMC proliferation C ) R V S M C  w ere tran sien tly  transfected  w ith  th e  
purom ycin  resistance p lasm id , pG K 3puro  and  co-transfected w ith  th e  em p ty  vector p 7 p C M V ,w ith  
N otch  1 IC  o r  w ith  N o tch  3 IC  o r  w ith  R P M S -I. F o llo w in g  recovery ov e rn ig h t, cells w ere quiesced fo r 
48 h, and s tim u la ted  w ith  m edia con ta in ing  10% FB S a t 0  h  and  seeded at equal densities o f  lx  103 
cells. C ells  w ere then counted  at 3 day in tervals as described in  sec tion  2 .7 .1 . D ) In Parallel S tudies 
R V S M C s transfected w ith  th e  em p ty  vector p 7pC M V  o r w ith  N otch3  IC  o r  N o tc h l IC  w ith  o r w ithou t 
R P M S -1  w ere fixed and  sta ined  using  H aem atoxy lin  and  E osin . rep resen ta tive  p ictu res o f  clonal 
pro liferation  assay. In addition, p C N A  expression  ana ly s is  w asp  erform ed on  R V S M C  transfected  w ith  
the em pty  vector p 7pC M V  , w ith  N otch  1 IC  w ith  o r w ith o u t R P M S -1 . R epresen ta tive  w estern  blot. 
N=3.
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Figure 3.13 The Effect of siRNA on Notch Target Gene mRNA Expression
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Figure 3.13 The Effect of siRNA on Notch Target Gene mRNA Expression in 
RVSMCs. A ) hrtl, hrt2 and  hrt3 m R N A  expression  levels w ere com pared  u s in g  quan tita tive  
real-tim e P C R . B) R V S M C s w ere transfected w ith  s iR N A  directed ag a in s t hrtl, hrt2, hrt3 
o r a scram bled con tro l. F o llo w in g  recovery overn igh t R N A  w as extracted and hrt m R N A  
expression levels w ere determ ined u s in g  Q R T P C R . * pcO .05 , ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as 
com pared to  control (rank test). N =4
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Figure 3.14 The Effect of Notch Target Gene Silencing on RVSMC Proliferation
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Figure 3.14 The Effect of Notch Target Gene Silencing on RVSMC Proliferation. RVSMCs were 
transfected with siRNA directed against Notch target genes hrtl,2 and 3 and a scrambled control. 
Following recovciy overnight, cells were serum starved for 48h and stimulated with media containing 
10% serum at 0 h. (A) At 8 h protein was extracted and pCNA expression levels were determined.(B) 
In parallel cultures cells treated as above were seeded at equal low densities and were counted at 3 
day intervals as describe in section 2.7.1. *p<0.05, **p<0.005, as compared to Scrambled control 
(student’s t test). N=4
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Figure 3.16 The Effect of Notch Target Gene Silencing on Bax Expression
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Figure 3.16 The Effect of Notch Tkrget Gene Silencing on Bax Expression. R V S M C s w ere 
transfected w ith  s iR N A  directed against N otch target genes h rtl,2 an d  3 and  a scram bled  control. 
F o llo w in g  recovery o v e rn ig h t p ro te in  and  R N A  w as ex trac ted  (A) Bax m R N A  expression  was 
determ ined by  QRTPCR. (B) T o ta l Bax p ro te in  expression  w as determ ined by w estern  b lo t analysis). * 
p < 0 .0 5 , ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared to  S cram bled  contro l (s tuden t’s t test). N=3
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Figure 3.17 The Effect of Notch Target Gene Silencing on Bcl-XL Expression
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Figure 3.17 The Effect of Notch Tkrget Gene Silencing on Bcl-XL Expression. R V S M C s were 
transfected w ith  s iR N A  directed against N otch  target genes h r t l ,2  and 3 and a scram bled  contro l. 
F o llo w in g  recovery o v ern igh t p ro te in  and R N A  w as ex trac ted  (A) Bcl-XL m R N A  expression  was 
determ ined by Q R T P C R . (B) T otal B cl-X L p ro te in  expression  was determ ined by w estern  blot 
analysis . * p < 0 .0 5 , ** p < 0 .0 0 5  as com pared to  S cram bled  control (s tuden t’s t test). N=3.
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Figure 3.18 The Effect of Notch Target Gene Silencing on RVSMC Apoptosis
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Figure 3.18 The Effect o f Notch Target Gene Knockdown on RVSMC Apoptosis. RVSMCs 
were transfected with siRNA directed against Notch target genes hrtl,2 and 3 and a scrambled 
oontol. Following recovery overnight, cells were stained with the Acridine Orange/ Ethidium 
Bromide dual stain and viewed under a fluorescent microcope, n=3. A) Representative images. B) 
Graph showing fold change in apoptosis. *p<0.05, as compared to scrambled control (student’s t 
test). N=3
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Discussion

This study has clearly established the effect of the Notch signalling pathway on 

VSMC growth and that it is at least in part, a CBF-1 /RBP-Jk dependent event. The 

functional role of CBF-1 /RBP-Jk activation of Notch target genes as a primary 

downstream effector system for Notch signalling in adult VSMC, has only recently 

been addressed (Wang et al, 2002). Furthermore there has been recent evidence to 

suggest that the Notch pathway is involved in multiple aspects of vascular 

development and remodelling (Iso et al, 2003), including proliferation (Wang et al, 

2003), apoptosis (Matsumoto et al, 2002; Wang et al, 2002), endothelial migration 

(Favre et al., 2003), SMC differentiation (Shawber et al, 1996) and angiogenic 

processes (Mailhos et al, 2001). However, recent studies have also focussed on the 

role of a CBF-1/RBP-Jk independent signalling in mediating the response of Notch 

receptor activation in several cell systems (Nofziger et al, 1996; Iso et al., 2003). 

This study describes for the first time, the regulation of endogenous signalling 

following inhibition of CBF-1/RBP-Jk dependent Notch signalling or constitutive 

expression of functionally active Notch IC, which results in fundamental changes in 

VSMC growth in vitro. In addition, this study describes the regulation of VSMC 

growth by individual Notch target genes hrtl, 2 and 3 following selective knockdown 

of these genes by targeted siRNA.

There have been several studies, which have reported the expression of Notch 

signalling pathway components in adult vascular tissue and cells (Lindner et al., 

2001; Wang et al., 2002). This study indicated that constitutive expression of Notch 1 

and 3 IC resulted in a significant increase in the expression of both Notch 1 and 3 IC 

protein and Notch receptor mRNA levels concomitant with a significant increase in 

Notch target gene promoter activity and mRNA levels in RVSMC. In addition, by 

inhibiting CBF-l/RBP-JK-dependent signalling using both pharmacological inhibitors 

Brefeldin A and Monensin, in addition to molecular interventions, we reported a 

significant inhibition of Notch 1 and 3 IC-dependent Notch target gene promoter 

activity and receptor mRNA levels. This data would suggest that expression of 

constitutively active Notch 1 and 3 IC requires golgi trafficking mechanisms to 

translocate to the nucleus as Brefeldin A and Monensin, which disassemble the golgi
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apparatus and causes it’s collapse into the endoplasmic reticulum, both inhibited 

Notch IC signalling events.

The inhibition of the Notch signalling pathway clearly decreased RVSMC 

growth in cycling VSMC suggesting that Notch exerts a net pro-proliferative, anti- 

apoptotic effect in these cells. This would concur with the pro-survival role of the 

Notch signalling pathway, which has been established in many other cell types 

(Kaneta et al, 2000; Mackenzie el al., 2004). Studies by Wang et al, 2002, reported 

that Notch 3 IC can promote SMC proliferation by inhibiting the expression of 

p27KIPl, a critical cell cycle inhibitor and can promote survival through induction of 

c-flip, a well-established anti-apoptotic mediator. However, in contrast to this study, 

they reported that Notch 3 inhibits VSMC growth in a CBF-l/RBP-JK-independent 

manner, whereas we have established this anti-apoptotic effect of Notch to be a CBF- 

1/RBP-Jk dependent event. However, it is very likely that Notch can promote VSMC 

growth in both a CBF-l/RBP-JK-dependent and -independent manner. In fact, recent 

studies by Mackenzie et al, 2004 reported details that Notch 4 inhibits apoptosis in 

both a CBF-1/RBP-JK-independent and -dependent manner.

This study demonstrates that serum stimulation promotes endogenous Notch 

signalling through a CBF-1/RBP-Jk dependent pathway and induces proliferation 

while in contrast, serum deprivation downregulates Notch signalling while inducing 

apoptosis. A similar anti-apoptotic effect of Notch 1 has been recently demonstrated 

in serum deprived arterial EC (Liu et al., 2003). This study reported that both Notch 1 

IC and Hes-1 conferred a strong resistance to serum deprivation-induced apoptosis in 

EC. This indicated that the Notch signalling pathway could play a significant role in 

regulating EC survival. In contrast to our data, Wang and co-workers, using cultured 

SMC reported that angiotensin II and PDGF markedly downregulated Notch 3 and 

Jagged -1 through ERK-dependent signalling mechanisms. Moreover, this down 

regulation of Jagged-1 and Notch 3 was associated with a decrease in CBF-l/RBP-Jk- 

mediated gene transcription and a decrease in the mRNA levels of Hrt-1. However, 

one possible explanation for this contrasting report is that Wang and colleagues 

utilised a clonal rat embryonic wild-type and stably transfected Notch 3 IC cell line 

that exhibits a de-differentiated phenotype. Moreover, stimulation of SMC growth in 

vivo following injury was associated with an increase in the expression of Notch 3 IC 

and Notch signalling components (Wag et al., 2002). This again reinforced the
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concept that stimulation of differentiated SMC growth is associated with enhanced 

Notch signalling (Campos et a l, 2002; Lindner et al., 2001). Though this study 

clearly demonstrates that serum stimulation activates Notch signalling and 

subsequently promotes VSMC growth, the stimulus foe Notch IC activation following 

serum stimulation remains to be elucidated. There have been several serum mitogens 

implicated in modulating Notch receptor expression and signalling in several cell 

systems (Wang et al., 2002; Bongarzone et al., 2000). Vascular endothelial growth 

factor (VEGF) has been reported to induce gene expression of Notch 1 and its ligand 

Delta-like 4 (D114) in human arterial endothelial cell (Liu et al., 2003). In this study, 

the VEGF-induced specific signalling is mediated through VEGF receptors 1 and 2 

and is transmitted via the phosphatidylinositol-3-kinase/AKT pathway but is 

independent of mitogen-activated protein kinase and src tyrosine kinase. This study 

will later demonstrate that VEGF can induce the upregulation of Notch target genes 

hrt-1, 2 and 3 and subsequently promote cell growth through a signalling cascade 

involving the Hedgehog and Notch signalling pathways.

The mechanisms on how endogenous Notch IC signalling through a CBF- 

1/RBP-Jk-dependent pathway promotes a pro-survival and an anti-apoptotic effect 

remains unclear. In an attempt to elucidate the mechanisms through which the Notch 

signalling pathway exerts its pro-survival, anti-apoptotic effect in VSMC, we 

examined the effect of the Notch signalling pathway on the Bcl-2 family of apoptotic 

genes. The Notch signalling pathway has been shown to regulate members of the Bcl- 

2 family in both vascular and non-vascular cells. Notch 1 and Notch 4 have been 

reported to upregulate Bcl-2 expression in T-cells and EC respectively (Deftos et al., 

1998; Mackenzie et al., 2004). As the Bcl-2 family is central to the regulation of 

apoptosis in many cell types and changes in Bcl-2 family expression are often 

observed during the pathogenesis of vascular disease, it is likely that the Notch 

signalling pathway may regulate some Bcl-2 family members. Therefore, this study 

examined the effect of the Notch signalling pathway on the expression of both pro- 

apoptotic Bax and anti-apoptotic Bcl-XL. We observed following inhibition of Notch 

IC, that there was a significant increase in Bax while a concurrent decrease in BcI-XL 

was reported. Furthermore, by selective knockdown of hrt-1, 2 and 3 by siRNA, there 

was a significant increase in Bax expression while concurrent decrease in Bcl-XLwas 

observed. In addition, serum deprivation resulted in an increase in Bax and a decrease
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in Bcl-XL, further suggesting a Notch-mediated regulation of Bcl-2 family members in 

VSMC. Moreover, using bioinformatics this study examined whether any Notch 

target gene promoter sites were present on either the Bax or Bcl-XL genes. Nakagawa 

et al, reported that the Hrt family of genes preferentially bind to an E box motif 

CACGTG, in addition to CAACTG, CACCTG, CACTTG and CATCTG to regulate 

transcription of other genes. Therefore, through sequence alignment of cloned Bax 

and Bcl-XL promoters (Grillot et al., 1997; Igata et al., 1999), we hypothesised that 

the Hrt genes could bind and possibly regulate both Bax and Bcl-XL However, 

though this would require confirmation with mutational analysis, the significant 

changes in expression of both bax and Bcl-XL by Hrt gene knockdown by siRNA, 

certainly adds weight to this argument.

In conclusion, this study has provided further evidence that both Notch 1 and 3 

receptors acting through a CBF-1/RBP-Jk dependent signalling pathway are an 

important determinant of SMC growth in vitro. Furthermore that Notch target genes 

hrt-1, 2 and 3 are important modulators of VSMC growth by varying degrees with 

hrt-1 having the most significant effect on VSMC proliferation, while hrt-3 exerts the 

most significant effect on VSMC apoptosis in vitro. Notch receptor expression is also 

upregulated within the vasculature of animal models following vascular injury (Leong 

et al., 2002; Campos et a l, 2002). Therefore greater knowledge of the regulation of 

Notch receptors and the downstream activation of Notch target genes in SMC may 

provide new insights into the molecular mechanisms underlying changes in vascular 

cell fate that underlie vascular proliferative disease.
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Chapter 4

Results

Sonic Hedgehog Regulates VSMC Fate in vitro Through VEGF Activation of
Notch Signalling



4.1 Introduction

In the previous chapter we clearly established a role for the Notch signaling 

pathway in directing individual vascular cell fate decisions. Notch signaling may 

therefore be a critical determinant of SMC survival by modulating the downstream 

expression of downstream mediators of apoptosis such as Bax and Bc1-Xl. However 

the mechanism of how this signaling pathway may be regulating cell fate remains to 

be fully elucidated. This study, for example has clearly shown that the Notch 

signalling pathway is activated by serum. Serum stimulation increases Notch 

signaling component activity and CBF-1-RBPJk dependent activity while serum 

deprivation conversely decreases expression and CBF-1- RBPJk dependent activity of 

this pathway. One of the possible mechanisms of serum regulation of the Notch 

signaling pathway is the presence of growth factors within the serum. Recent studies 

have shown that VEGF alters the expression of Notch signaling pathway components 

in vascular and other cell types (Lawson et al., 2002; Wang et al., 2002). Gene 

knockout studies have revealed that VEGF plays a critical role in developmental 

vasculogenesis and angiogenesis, in that mice with disrupted VEGF-R1 expression 

die embryonically due to severe vascular defects. Furthermore, in a similar manner, 

disruption of the Notch signaling pathway also leads to embryonic lethality due to 

defects in vasculogenesis and angiogenesis (Xue et al., 1999; Smith et al., 2000). In 

addition both the Notch and VEGF signaling pathways regulate arterial-venous 

differentiation in development (Lawson et al., 2002), further highlighting the 

functional relationship between these two pathways. Recent studies have shown that 

VEGF acts upstream of the Notch signaling pathway to determine arterial cell fate 

and that Notch is required to mediate this VEGF-induced arterial differentiation 

(Lawson et al., 2002).

As VEGF has been shown to be an important factor in regulating the Notch signalling 

pathway, it therefore proves both an important and interesting study to consider what 

factors are mediating VEGF expression.
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Recent studies have demonstrated that Hh and Notch signaling pathways regulate cell 

division during development of the Drosophilia (Amin et al, 2004). In additional 

studies, Shh was shown to upregulate the expression of Notch target genes during 

arterial differentiation, suggesting a possible role for Shh in maintaining cell 

proliferation through the Notch signaling pathway (Lawson et al., 2002)

Sonic hedgehog is a member of a family of closely related proteins consisting of Shh, 

Indian hedgehog (Ihh) and Desert hedgehog (Dhh). These proteins are known to 

regulate the morphology of many kinds of tissues (Ingham et al, 2001). Hh 

transduces signals via its receptor Patched (Ptc). Ptc forms a complex with a seven- 

pass membrane protein, Smoothened (Smo), which exists as an inactive form. 

Hedgehog-bound Ptc dissociates Smo, resulting in the activation. Activated Smo 

allows the entry of a transcription factor, Cubitus interuptus (Ci) into nuclei, which 

induces the expression of a panel of downstream target molecules (Ingham et al., 

1998). Vertebrate homologs of Ci are GUI, 2 and 3. The downstream target targets of 

the Gli gene products include both Ptc and Gli themselves; thus Ptc and Gli are both 

components and targets of the Hh signalling pathway. Several recent studies have 

highlighted the involvement of Hh in the development of embryonic vascular tissues, 

including hypervascularization of neuro ectoderm following overexpression of Shh 

(Rowithch et al., 1999). Disorganization of endothelial precursors in Shh-deficient 

zebrafish (Brown el al., 2000) and poor vascularization of the developing lung in Shh- 

deficient mice (Pepicelli et al., 1998). In addition Vokes et al, (2004) showed that 

endodermally-derived Shh is both necessary and sufficient for vascular tube 

formation in avian embryos. They also showed that Hh signalling is required for 

vascular tube formation in mouse embryos, and for vascular cord formation in 

cultured mouse endothelial cells. These results demonstrate a previously 

uncharacterized role for Hh signaling in vascular development and identify Hh 

signalling as an important component of the molecular pathway leading to vascular 

tube formation.

Moreover, more recently, it has been shown that Shh signaling is present in adult 

cardiovascular tissues and can be activated in vivo to induce robust angiogenesis (Pola 

et al., 2001). With the discovery that Hh is preferentially expressed in vascular tissue 

(Gering et al, 2005; Colnot et al, 2005), combined with Hh known morphogenic
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functions in embryonic development, it is therefore reasonable to hypothesise that 

Shh may co-ordinate VSMC changes in adult tissue.

The aim o f this chapter was to examine whether Hh components were present on 

adult VSMC and i f  activation o f  this signalling pathway controls cell fate. Since 

this study has clearly demonstrated that Notch signaling controls cell fa te, we 

investigated the role o f  the Hh signaling pathway in determining cell fa te  through 

VEGF activation o f  the Notch signaling pathway in vitro.
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4.2 Results

4.2.1 Expression of Hedgehog Components in RVSMC

Analysis of RVSMC revealed the presence of Hh signaling pathway components. We 

confirmed the presence of these components by immunocytochemical analysis, RT- 

PCR and western blot analysis in cultured RVSMC (fig. 4.1). By 

immunocytochemical staining we confirmed that Shh, Ihh and Ptcl was expressed 

with significant staining within the cytoplasm and membrane. In addition the 

expression of the Hh signaling components was further confirmed by western blot 

analysis. Shh, Ihh and Ptcl protein expression was confirmed using commercially 

available antibodies from Santa Cruz Biotechnology (Heidelberg, Germany). The 

expression of components of the Hh signaling pathway was also further confirmed by 

RR-PCR (fig. 4.1). Shh, Ihh, Ptcl, Smo and Gli2 mRNA transcripts were all detected 

in RVSMCs. Furthermore gli-promoter activity was also confirmed by luciferase 

reporter assays and was significantly increased in quieced RVSMC following serum 

stimulation (fig. 4.8). In all cases the appropriate primary and secondary controls were 

performed in parallel with each experiment.

4.2.2 Activation of Hedgehog Signaling in RVSMC

After the successful detection of Hedgehog signalling components in RVSMC we 

next investigated whether we could constitutively activate the Hh signaling pathway 

in these cells. To examine the activation of Hh signaling recombinant Shh protein was 

used which was commercially available from R and D systems (UK). Treatment of 

RVSMC with recombinant Shh resulted in 6.68±.91 fold increase in Gli2 mRNA 

expression as compared to a BSA control. In parallel studies, treatment of cells with 

the Hh inhibitor cyclopamine, resulted in a significant reduction of 39.0±2% in 

baseline gli-2 mRNA expression (Fig. 4.2). To further examine the activation the Hh 

signalling pathway in these cells we transiently transfected an expression vector 

encoding full-length mouse Shh. In order to maximize the percentage of cells 

expressing Shh, we puromycin selected by co-transfecting a puromycin resistant 

plasmid and treating with puromycin containing media (0.8ug/ml) for 48h. Shh over
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expression resulted in a significant 4.5±.05 fold increase in gli-2 mRNA expression 

over mock-transfected control. Furthermore by co-transfecting with RPMS-1, hence 

inhibiting CBF-1/RBP-jK-dependent Notch signaling, we could significantly 

attenuate this Shh- induced upregulation of gli-2 mRNA expression by 56.0±5% 

(Fig. 4.4).

4.2.3 Hedgehog Activation of Notch Target Gene Expression in RVSMC

With the evidence that Hh signalling was both present and that it could be 

successfully activated in RVSMC we next aimed to elucidate whether Hh activation 

could activate the Notch signaling pathway in these same cells. Treatment of RVSMC 

with recombinant Shh protein resulted in a significant upregulation in Notch target 

gene expression. Hrt-1, 2 and 3 mRNA expression increased by 1.78±.21, 3.06±.37 

and 3.92±.84 fold respectively over control (Fig. 4.3 A). In parallel experiments Hrt-1 

and Hrt-2 protein expression was increased by a fold of 2.1±.l and 1.9±.05 

respectively following treatment with recombinant Shh protein (Fig. 4,3 A). 

Moreover Hh inhibition with cyclopamine resulted in a significant decrease in 

baseline Notch target gene expression. Hrt-1, 2 and 3 mRNA expression decreased by 

51.5+17.6%, 51.5 ± 17.6% and (29.0±8.0%) respectively while concurrently

decreasing Hrt-1 and hrt-2 protein expression by 44.0±9.0% and 52.0±11.0% (Fig.

4.3 B). To further confirm that Shh- mediated increases in Notch target gene 

expression, we transiently transfected full-length mouse Shh. Shh overexpression 

resulted in a significant increase of 2.2+. 1, 2.4±.12 and 3.5±.05 in Hrt-1, 2 and 3 

mRNA expression respectively, an effect that was significantly attenuated following 

inhibition of CBF-1/RBP-Jk-dependent Notch signalling by co-expression with 

RPMS-1 to 60±9.0%, 45.4+8.0% and 57.2±5.0% for Hrt 1, 2 and 3 respectively (Fig. 

4.5).

4.2.4 Notch Activation of Hedgehog Signalling in RVSMC

With confirmation that Hedgehog signalling activates Notch signalling in RVSMCs 

in-vitro, we now investigated the effect of Notch IC over-expression on Hh signalling. 

We examined this through the transient transfection of RVSMC with the active (IC)
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portion of either the Notch 1 or Notch 3 receptor, co-transfected with the Notch 

inhibitor RPMS-1 and a puromycin resistant plasmid as previously described. Over­

expression of Notch IC resulted in a marked increase in Hh signalling which was 

attenuated by RPMS-1 confirming that Notch mediated increases in Hh signaling is 

occurring, at least in part, in a CBF-1-dependent manner. Overexpression of Notch 1 

IC resulted in a significant increase of 1.3±.05 and 1.4+.07 fold increase in Shh and 

Ihh protein expression in respect to a mock transfected control, an increase which was 

attenuated following co-transfection with RPMS-1 by 53.9±9.0% and 50.0±7% 

respectively (Fig. 4.6). Furthermore over-expression of Notch 3 IC showed no 

significant increase in Notch 3 protein expression while resulting in a 1.35±.05 

increase in protein expression. Although no significant increase in Shh protein 

expression was observed following over-expression of Notch 3 IC, co-transfection 

with Notch inhibitor did result in a significant decrease of 42.0±6% in Shh protein 

expression while concurrently attenuating the Notch 3-mediated increase in Ihh 

protein expression by 40.7±5% (Fig. 4.6). In parallel studies we investigated the 

effect of Notch IC on Smo expression. Over-expression of Notch 1 IC resulted in a 

17.5+.41 increase in smo mRNA levels over mock-transfected controls, while co­

transfection with RPMS-1 attenuated this increase by 40.0±4% (Fig. 4.7). 

Furthermore, we investigated the effect of Notch 3 IC on Gli promoter activity and 

subsequently on Gli2 mRNA expression. Over-expression of Notch 3 IC served to 

significantly increase both Gli promoter activity and gli-2 mRNA levels by 2.3±.05 

and 1.5±.04 respectively (Fig. 4.7 B). As in the previous experiments, we confirmed 

that these Notch-mediated increases in Hh signaling were occurring to some extent in 

a CBF-1-dependent manner, since co-transfection with RPMS-1 resulted in an 

attenuation in Notch IC mediated increase in Gli-promoter activity and Gli2 mRNA 

expression by 39.0±5.% and 26.7±6% respectively (Fig. 4.7 B).

□ □

4.2.5 The Effect of Shh on RVSMC Proliferation

In the previous chapter we established the functional role of the Notch signalling 

pathway on VSMC fate and confirmed this by determining the effects of Notch 

signalling on VSMC growth. The present study has demonstrated the interaction of
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the Notch and Hh signalling pathways, therefore we aimed to determine the effect of 

Hh signalling on VSMC growth. In quiesced cells there was a significant temporal 

increase in serum- stimulated proliferation in cultures treated with recombinant Shh.

3.5 fig of Shh significantly increased RVSMC proliferation after 9 days as compared 

to control (Fig. 4.9 C). In addition, serum stimulated pCNA expression, a marker for 

cell cycle dependent SMC proliferation increased by 2.1±. 1 after 24h (Fig. 4.9 A). 

Furthermore, in parallel cultures Shh inhibition by cydopamine resulted in a 

significant decrease in RVSMC proliferation after 9 days (Fig. 4.9 C). This was 

mirrored by a 48±8% decrease in pCNA expression after 24h post serum addition 

(Fig. 4.9 B). To further address the effect of Shh on RVSMC proliferation, we 

transiently transfected cells with full-length mouse Shh. Overexpression of Shh 

resulted in a significant increase in RVSMC clonal proliferation after 12 days in 

culture (Fig. 4.10 B and C). Furthermore, serum-stimulated pCNA expression 

increased by 4.0±0.4 fold over mock-transfected controls. The functional importance 

of the Notch-Hh signaling interaction in determining VSMC fate was highlighted by 

the fact that co-transfection of the Notch inhibitor RPMS-1 resulted in a marked 

decrease in Shh-mediated increase in proliferation. Clonal proliferation was 

attenuated to control levels (Fig. 4.10 B and C), while Shh-mediated increased pCNA 

expression was inhibited by 68.0±10% (Fig. 4.10 A).

4.2.6 The Effect of Shh on RVSMC Apoptosis

To further elucidate the functional importance of Shh on RVSMC fate, we determined 

the effect of Shh on VSMC apoptosis. As in the previous chapter, we investigated the 

ratio of expression of the pro-apoptotic Bax against the expression of the anti- 

apoptotic B c 1 -X l while concurrently observing the number of apoptotic nuclei by 

staining cells with the dual stain of acridine orange/ethidium bromide as a measure of 

the degree of apoptosis within the cells. Treatment of RVSMC with recombinant Shh 

protein resulted in a marked decrease in Bax mRNA and protein expression of 

35.0±6% and 64.0±11% respectively in comparison to mock treated control. 

Furthermore, this was paralleled with a significant increase in anti-apoptotic Bcl-XL 

expression, with a 1.63+0.1 fold increase in mRNA and an increase of 1.8±0.9 in
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protein expression over control. In quiesced cells, Shh treatment resulted in a 

88.0%±16% inhibition in serum starved-induced apoptosis. In contrast to this, 

RVSMCs treated with the Hh inhibitor cyclopamine showed a marked increase in 

apoptosis. Hh inhibition resulted in a 2.4±0.05 fold increase in Bax mRNA while 

increasing Bax protein expression by a fold of 1.8±0.14 (Fig. 4.12 A). Concurrent 

with an increase in Bax expression, Bc1-Xl expression was significantly decreased by 

67.0±5% for mRNA and a subsequent 71.0±11% decrease in protein expression (Fig.

4.12 A). Concomitant with these changes in Bax and Bc1-Xl expression levels, a 

significant increase in the number of apoptotic nuclei was observed. Hh inhibition 

resulted in an 8.4±0.1 fold increase in apoptosis over control (Fig. 4.12 B). As with 

our investigation into the functional importance of Hh signaling in the promotion of 

RVSMC proliferation, we determined the effect of Shh over-expression and Notch 

inhibition on RVSMC apoptosis. Constitutive over-expression of Shh in puromycin- 

pooled cells resulted in a significant decrease in RVSMC apoptosis. Shh over­

expression resulted in a 70.0±11% and 61.0±12% decrease in Bax mRNA and protein 

respectively compared to mock transfected controls (Fig 4.13) while concurrently 

increasing Bcl-XL mRNA and protein expression by a significant fold increase of 

2.0±0.05 and 2.2±0.07 (Fig. 4.14). Concomitant with these Shh induced changes in 

Bax and Bc1-Xl expression a significant decrease in apoptotic nuclei was observed 

following serum deprived induced apoptosis. Shh over-expression resulted in a 

59.0±16% decrease in apoptosis compared to mock-transfected control (Fig. 4.15). 

Furthermore the effect of inhibiting CBF-1RBP-Jk- dependent Notch signalling on 

Shh-mediated inhibition of RVSMC apoptosis was examined. Co-transfection of 

RPMS-1 significantly reversed the Shh-mediated decrease in Bax mRNA and protein 

expression to control levels while concurrently attenuating the Shh-mediated increase 

in Bcl-Xi mRNA and protein expression to mock control levels. This effect was 

mirrored by reversing the decrease in apoptotic nuclei in Shh transfected cells by 

inhibiting CBF-1/RBP-JK-dependent Notch signaling in these cells (Fig. 4.15).
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4.2.7 Hedgehog Stimulates RVSMC Growth Through VEGF Activation of 

Notch Signalling

Since it is well documented that VEGF acts downstream of Hh in activating Notch 

signalling during arterial differentiation (Lawson et al., 2002), we investigated the 

effect of Shh on VEGF expression in RVSMCs and the subsequent effect on Notch 

signaling. Treatment of the cells with recombinant Shh resulted in a significant fold 

increase of 2.3±0.1 in VEGF protein expression as compared to control (Fig. 4.16). 

Furthermore, VEGF mRNA expression was significantly increased by 4.2±0.2 fold 

over mock control following treatment with recombinant Shh (Fig. 4.17). In addition, 

Shh inhibition with cyclopamine resulted in a significant decrease of 74.0±16% in 

VEGF mRNA expression (Fig 4.18). We then addressed the effect of recombinant 

VEGF (25ng) on Notch target gene mRNA expression. Recombinant VEGF treatment 

resulted in a 2.64±0.7, 5.1±1.0 and 2.5±0.8 fold increase in hrt-1, hrt-2 and hrt-3 

mRNA expression respectively (Fig. 4.19). Selective knockdown of VEGF with a 

targeted siRNA was confirmed at the mRNA level with a significant knockdown of 

76.0±2% VEGF mRNA as compared to scrambled controls (Fig. 4.20). In parallel 

cultures, Shh induced increases in hrt-1 and hrt-3 mRNA expression by 2.6±0.4 and 

4.4±0.1 fold respectively over control. Inhibition of VEGF expression with the siRNA 

76.0±2% significantly resulted in a 84.0±26% and a 78.0+9% inhibition in the Shh- 

mediated increase in hrt-1 and hrt-3 respectively as compared to scrambled controls 

(Fig. 4.20).
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Figure 4.1 The Presence of Hedgehog Signalling in RVSMC
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Figure 4.1 The presence of Hedgehog signaling in RVSMC. Shh, Ihh and Ptcl are 
expressed in RVSMC, as determined by western blot analysis and semi-quantitative PCR r. 
Inimunocytochcmistry showing Shh, Ihh and Ptcl expression at 20X magnification. Smo and 
Gli2 is expressed in RVSMC as determined by semi-quantitative PCR.Gels and 
immunocytochemistry pictures are representative experiments. n=3.
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Figure 4.2 Activation of Hedgehog signalling in RVSMCs
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Figure 4.2. Activation of Hedgehog Signaling in RVSMC. A ) R V S M C s w ere treated w ith  
recom binant S h h  p ro te in  (3 .5 |^g) fo r 48 h and th e  effect on  gli2 m R N A  expression  was determ ined 
Q R T P C R  w as perform ed fo r expression  levels o f  gli2 in  S h h  treated R V S M C s com pared to  BSA  
control. B) T h e  effect o f  H h in h ib itio n  w ith  C y clo p am in e  (40(xM ) fo r 2 4  h o n  gli2 m R N A  expression  
as determ ined by  Q R T P C R . A ll values w ere norm alized to  G A P D H  levels, and  expressed as fo ld  
increase over con tro l. * p < 0 .0 5 , ** p < 0 .0 0 5  as com pared to contro l (s tudent’s t  test).n= 3
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Figure 4.3 Sonic Hedgehog Activates Notch Target Gene Expresson in RVSMCs
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Figure 4 3  Sonic Hedgehog activates Notch target gene expresson in RVSMCs. A ) R V S M C s were 

treated w ith  recom binan t S h h  (3.5(ng) fo r 4 8  h and th e  effect on  N otch  target gene m R N A  and  protein  

expression  w as determ ined u s in g  Q R T P C R  and w estern  b lo ttin g . T he data w as no rm alised  to  G A P D H  and 

com pared to  a B SA  contro l. B) T h e  effect o f  H h  in h ib itio n  w ith  cyc lo p am in e  (40[xM ) fo r 24  h  on  N otch 

target gene m R N A  and  p ro te in  expression  w as determ ined using  Q R T P R  and  w estern  b lo t analysis. T he 

cum ulative  data w as n o rm alised  to  G A P D H  and com pared to  a D M F  con tro l. * p < 0 .0 5 , ** p < 0 .0 0 5  as 

com pared to  contro l (rank test).n= 3 .
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Figure 4.4 The Effect of Notch Inhibition on Hedgehog Target Gene Expression

Figure 4.4 Ihe Effect of Notch Inhibition on Hedgehog target gene expression.
R V S M C s w ere tran sien tly  transfected w ith  th e  p u rom ycin  res istance  p la s m id  pG K 3puro , 

and co-transfected w ith  th e  m o ck  vector p7p C M V , S h h  o r  th e  N o tch  in h ib ito r  R P M S -1 . 

F o llo w in g  o v ern igh t recovery, cells w ere incubated  in  p u ro m y c in  co n ta in in g  grow th 

m edium  (0 .8 u g /m l, 48h). S am p les w ere iso la ted  and gli-2 m R N A  expression  w as 

determ ined by Q R T P C R . A ll data was norm alised  to  G A P D H  levels and  expressed as fo ld  

change over m o ck  con tro l, *** p < 0 .0 0 0 5  as com pared to  contro l (rank test).n= 3 .
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Figure 4.5 The Effect of Shh Overexpression on Notch Target Gene Expression
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hrt-3

mock shh shh/RPMS-1

Figure 45  The Effect of Shh Overexpression on Notch Ihrget Gene Expression. R V S M C s were 
transien tly  transfected  w ith  th e  purom ycin  resistance  plasm id, pG K 3puro , and  co- transfected  w ith  the 
m ock  vector p 7 p C M V  alone  o r w ith  S h h  o r  th e  N otch  in h ib ito r  R P M S -1 . S am p les  w ere iso la ted  and 
hrt-1,hrt-2 and  hrt-3 m R N A  expression  w as determ ined u s in g  Q R T P C R . A ll data w as n o rm alised  to  
G A P D H  leve ls and  expressed as fo ld  change o ver m o ck  con tro l, *** p < 0 .0 0 0 5 , ** p < 0 .0 0 5  as 
com pared to  con tro l (rank test). n=3.
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Figure 4.6 The Effect of Notch IC on Shh and Ihh Expression
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Figure 4.6 The Effect of Notch IC on Hedgehog Signaling. R V S M C s w ere tran sien tly  transfected w ith  
the pu rom ycin  resistance  p la s m id  pG K 3puro , and co-transfected w ith  th e  em p ty  vecto r p7pC M V , N otch  1 
IC , N otch 3 IC  p lu s o r  m in u s  th e  N otch  in h ib ito r  R P M S -1 . P ro te in  sam p les w ere iso la ted  and w estern 
b lo t analysis w as carried o u t fo r S h h  and  Ihh p ro te in  expression . V alues are expressed  as fo ld  change over 
m ock contro l. ** p < 0 .0 0 5  as com pared to  contro l (s tuden t’s t  test). W estern  b lo ts  are representative. n=3.
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Figure 4.7 The Effect of Notch IC on Smo and Gli2 mRNA and Promoter Activity

Figure 4. 7 The Effect of Notch IC on Hedgehog Signaling. A) R V S M C s w ere tran sien tly  transfected w ith  
th e  pu rom ycin  resistance p lasm id  pG K 3puro  and co-transfected w ith  th e  m o ck  vec to r p7pC M V , N otch  1 IC 
plus o r m inus th e  N otch  in h ib ito r  R P M S -1 . Q R T P C R  analysis w as then  carried o u t fo r smo m R N A  
expression. A ll data w as n o rm alised  to  G A P D H  levels and expressed as fo ld  change over m ock contro l B) 
R V S M C s w ere tran sien tly  transfected  w ith  the  purom ycin  resistance p lasm id , pG K 3puro , th e  g li-luciferase 
reporter p lasm id  and co-transfected  w ith  the m ock  vector p7pC M V , N otch  3 IC , p lu s o r m inus th e  N otch 
in h ib ito r R P M S -1 . G li-p ro m o te r ac tiv ity  w as determ ined as fo ld  increase over m o ck  contro l. C ) R V S M C s were 
transiently  transfected  w ith  th e  pu rom ycin  resistance  p lasm id, pG K 3puro , and co- transfected w ith  the  m ock  
vector p7pC M V , N otch  3 IC  p lu s o r  m in u s  th e  N otch  in h ib ito r R P M S -1 . Q R T P C R  analysis w as then  carried 
ou t for gli-2 m R N A  expression . A ll data w as norm alised  to  G A P D H  levels and  expressed as fo ld  change over 
m ock control. *** p < 0 .0 0 0 5 , ** p < 0 .0 0 5  as com pared to  contro l (rank test). n=3.
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Figure 4.8 The Effect of Serum Stimulation on Gli-Promoter Activity

•» No serum 
Serum

Figure 4.8 The Effect o f Serum Stimulation on GU-Promoter Activity. RVSMCs were 
transiently transfected with a luciferase tagged Gli-promoter. Following recovery overnight 
cells were quiesced for 48 h and the effect of serum stimulation on gli-promoter activity was 
observed Data represents the mean of 3 independent experiments and values are expressed as 
fold change over no serum control.
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Figure 4.9 The Effect of Shh on RVSMC Proliferation
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Figure 4.9 The Effect of Shh on RVSMC proliferation. A ) R V S M C  w ere treated  w ith  recom binant S h h  
(3 .5 [ig ) fo r 2 4  h. S eru m -stim u la ted  p C N A  expression  w as determ ined after 2 4  h R epresen ta tive  b lo t o f  3 
independent experim en ts..B ) R V S M C  w ere treated w ith  C y c lo p am in e  (40fiM ) fo r 2 4  h and pC N A  
expression  was determ ined  R ep resen ta tive  b lo t o f  3 independent experim en ts. C ) R V S M C s w ere treated w ith  
Shh  fo r 2 4  h  o r w ith  C y c lo p am in e  fo r 2 4  h. C e lls  were then  seeded at equal densities and counted at 3 day 
in tervals as described in  sec tion  2 .1 .1 . T h e  average count o f  3 w ells w as observed  and 3 independent 
experim ents w ere carried o u t (A nova). n=3.
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Figure 4.10 The Effect of Shh over-expression and Notch IC inhibition on Proliferation
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Figure 4.10 The Effect of Shh over-expression and Notch IC  inhibition on Proliferation. R V S M C s 
w ere transien tly  transfected  w ith  th e  pu rom ycin  resistance p la sm id  pG K 3puro , and co- transfected w ith  
th e  m ock  vector p7p C M V , S hh  p lu s  o r  m in u s th e  N otch in h ib ito r  R P M S -1 . C e lls  w ere then  quiesced for 
48h  and either analysed  fo r serum  s tim u la ted  pC N A  expression  at 2 4  h (A) o r  seeded at equal densities and 
counted at 3 day in tervals over 12 days (B). C ) R epresen ta tive  clonal p ro life ra tion  assays at day 12 po st 
transfection. V alues are expressed  as fo ld  change o ver m ock contro l (anova). n=3.
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Figure 4.11 The Effect of Shh on RVSMC Apoptosis
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Figure 4.11 The Effect of Shh on RVSMC Apoptosis. The effect of recombinant Shh (3.5|ig) for 24 h on
apoptotic genes Bax and Bel-X, expression was determined. Samples were isolated and Bax and Bcl-XL 
mRNA expression was determined by QRTPCR (A). The data was normalised to GAPDH and compared 
to a BSA control. Bax and Bcl-XL Protein expression was determined by western blotting (B). Data 
represents a representative blot of 3 independent experiments. C) RVSMCs were treated with recombinat 
Shh (3,5|.ig) for 24 h and quiesced for 48 li. Cells were then stained with the dual stain of Acridine Orange/ 
Ethidium Bromide for apoptotic nuclei. Values are expressed as fold change over control .** p<0.005, *”  
p<0.0005 as compared to control (student’s t test). n=3.
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Figure 4.12 The Effect of Shh on RVSMC Apoptosis
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Figure 4.12 The Effect of Shh on RVSMC Apoptosis. The effect of cyclopamine (40[iM) for 24 h on 
apoptotic genes Bax and Bcl-XL expression was detennined. Samples were isolated and Bax and Bcl-XL 
mRNA expression was determined by QRTPCR (A). The data was normalised to GAPDH and compared to 
a BSA control. Bax and Bcl-XL protein expression was detennined by western blotting (B)..Data represents a 
representative blot of 3 independent experiments. C) RVSMCs were treated with recombinat Shh (3.5(j,g) for 
24 h and quiesced for 48 h. Cells were then stained with the dual stain of Acridine Orange/] ithidium 
Bromide for apoptotic nuclei. Values are expressed as fold change over control, *** p<0.0005 as compared 
to control (student’s t test). n=3.
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Figure 4.13 The Effect of Shh Over-expression and Notch IC Inhibition on
Bax expression
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Figure 4.13 The Effect of Shh Over-expression and Notch IC Inhibition on Bax Expression.
R V S M C s w ere tran sien tly  transfected  w ith  th e  pu rom ycin  resistance p lasm id , pG K 3puro , and co-transfected 
w ith  the m ock  vector p7pC M V , S h h  p lu s o r  m in u s th e  N otch in h ib ito r  R P M S -1 . S am p les w ere then  
iso la ted  and Bax m R N A  levels w ere determ ined by Q R T P C R . A ll data w as no rm alised  to  G A P D H  levels 
and expressed as fo ld  change o v e r m o ck  contro l.B ) R V S M C s w ere tran sien tly  transfected w ith  the 
pu rom ycin  resistance p lasm id , pG K 3puro , and co- transfected w ith  th e  m o ck  vecto r p7pC M V , S h h  p lu s o r 
m inus th e  N otch in h ib ito r R P M S -1 . S am p les w ere then  iso la ted  and B ax p ro te in  expression  w as determ ined 
by w estern b lo ttin g . V alues are expressed  as fo ld  change over contro l , ** p < 0 .0 0 5  as com pared to  control 
(studen t’s t test). n=3.
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Figure 4.14 The Effect of Shh over-expression and Notch IC inhibition on BcL-Xl
expression
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Figure 4.14 The Effect of Shh Over-expression and Notch IC Inhibition on Bcl-XL Expression.
R V S M C s w ere tran sien tly  transfected  w ith  th e  purom ycin  res is tance  p lasm id , pG K 3puro , and  co­
transfected w ith  them ock  vec to r p7p C M V , S h h  p lu s  o r  m in u s th e  N o tch  in h ib ito r  R P M S -1 . A ) S am ples 
w ere then iso la ted  and Bcl-XL m R N A  levels w ere determ ined by  Q R T P C R . A ll data was no rm alised  to  
G A P D H  levels and expressed  as fo ld  change over m o ck  con tro l.B ) R V S M C s w ere tran sien tly  transfected 
w ith  th e  p u rom ycin  resistance  p lasm id , pG K 3puro , and co- transfected w ith  th e  m ock  vector p7pC M V , S hh  
p lu s o r m inus th e  N otch  in h ib ito r  R P M S -1 . S am ples w ere then  iso la ted  and B cl-X L p ro te in  expression  was 
determ ined by w estern  b lo ttin g . V alues are expressed  as fo ld  change o v e r contro l , ** p < 0 .0 0 5 , * p< 0 .0 5  as 
com pared to  contro l (s tuden t’s t tes t). n=3.
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Figure 4.15 The Effect of Shh Over-expression and Notch IC Inhibition on Apoptosis

Mock

Apoptotifc Body

A p o p to t i c
B o d y

Mock Shh

+ Serum

Shh+RPMS-1

- Serum

tfloaoa
<
&

100-,
75-

50-

25

Mock Mock Shh Shh+RPMS-1

+ Serum - Serum

Figure 4.15 The Effect of Shh over-expression and Notch 1C Inhibition on Apoptosis. R V S M C s 
w ere  tran sien tly  tran sfec tcd  w ith  the p u ro m y c in  re s is tan ce  p la sm id . pG K 3 p n ro , and  co -trau sfcc ted  w ith  
th e  em pty  vec to r p7 j)C M V , S hh  o r  the N otch  in h ib ito r R P M S -1 . C e lls  w e re  tlien q u ie sced  fo r  4 8  h  and  
then  sta ined  w ith  th e  dual s ta in  o f  A crid in e  O ran g e / E th id iu m  B rom ide fo r  ap o p to tic  n u e le i.P ic tu rcs  a re  
representative . Values are expressed as fold change over control .* p<0.05, as compared to control 
(rank test). n=3.
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Figure 4.16 The Effect of Shh on VEGF Protein Expression

Control Shh

Figure 4.16 The Effect of Shh on VEGF Protein Expression. R V S M C s w ere treated w ith  
recom binant S h h  p ro te in  (3 .5 |xg  ) fo r 48  h and  th e  effect on  V E G F  pro te in  expression  was 
determ ined R ep resen ta tive  b lo t. V alues are expressed  as fo ld  change o ver con tro l .* p < 0 .0 5 , as 
com pared to  contro l (rank test) ,n=3.
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Figure 4.17 The Effect of Shh on VEGF mRNA Expression
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Figure 4.17 The Effect of Shh on VEGF mRNA expression. R V S M C s w ere transien tly  
transfected w ith  s iR N A  directed against V E G F  o r a scram bled  con tro l. F o llo w in g  overn igh t 
recovery cells w ere treated w ith  recom binan t S h h  (3 .5ug ) fo r 48 h. S am p les w ere iso la ted  and 
VEGF m R N A  exp ression  w as determ ined by Q R T P C R . A ll data w as n o rm alised  to  G A P D H  
levels and expressed  as fo ld  change over con tro l, * p < 0 .0 5 , ** p < 0 .0 0 5  as com pared to  control 
(rank test). n=3.
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Figure 4.18 The Effect of Shh Inhibition on VEGF mRNA Expression

control cyclopam ine

Figure 4.18 The Effect of Shh inhibition VEGF mRNA Expression. T h e  effect o f  H h 
in h ib itio n  w ith  cyc lopam ine  (4 0 |iM ) fo r 24  h on  V E G F  m R N A  expression  w as determ ined 
u sing  Q R T P R . A ll data w as norm alised  to  G A P D H  levels and  expressed  as fo ld  change over 
con tro l, * p < 0 .0 5 , as com pared to  contro l (rank test). n=3.
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Figure 4.19 The Effect of VEGF on Notch Target Gene mRNA Expression
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Figure 4.19 The Effect of VEGF on Notch Thrget gene niRNA Expression. R V S M C s w ere 
treated w ith  recom binan t V E G F  (25ng) fo r 2 4  h. S am p les w ere iso la ted  and N otch  target gene 
m R N A  expression  w as determ ined by Q R T P C R . A ll data was no rm alised  to  G A P D H  levels and 
expressed as fo ld  change over con tro l, * p < 0 .0 5 , as com pared to  contro l (rank test). n=3
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Figure 4.20 The Effect of Shh and VEGF Gene Silencing on Notch Target Gene
mRNA Expression
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Figure 420 The Effect of Shh and VEGF Gene Silencing on Notch Tkrget Gene mRNA Expression.
R V S M C s w ere tran sien tly  transfected  w ith  s iR N A  directed against V E G F  o r  a scram bled  contro l. 
F o llow ing  overn igh t recovery cells w ere treated w ith  recom binan t S h h  (3 .5ug) fo r 48 h. S am p les were 
iso lated  and hrt-1 and  hrt-3 m R N A  expression  w as determ ined by Q R T P C R . A ll data w as norm alised  to  
G A PD H  levels and expressed as fo ld  change over con tro l, ** p < 0 .0 0 5 , * p < 0 .0 5  as com pared to  control 
(rank test). n=3.
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Figure 4.21 The Effect of VEGF and Shh on Notch Target Gene mRNA
expression
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Figure 4.21 The Effect of VEGF and Shh on Notch Thrget Gene mRNA expression. R V S M C s 
were tran sien tly  transfected  w ith  s iR N A  directed aga in s t V E G F  o r  a  scram bled  con tro l. F o llo w in g  
overn igh t recovery cells w ere treated w ith  recom binan t S h h  (3 .5 u g ) fo r 2 4  h. O r recom binant 
V E G F  (25ng) fo r  2 4  h. S am p les  w ere iso la ted  and hrt-2 m R N A  exp ression  w as determ ined by 
Q R T P C R . A ll data w as no rm alised  to  G A P D H  levels and  expressed as fo ld  change over contro l, * 
p < 0 .05 , ** p < 0 .0 0 5  as com pared to  control (rank test). n=3.
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Discussion

This study has clearly established the effect of the Notch signalling pathway on 

VSMC growth and that it is at least in part, a CBF-1/RBP-Jk dependent event. The 

functional role of CBF-I/RBP-Jk activation of Notch target genes as a primary 

downstream effector system for Notch signalling in adult VSMC, has only recently 

been addressed (Wang et al., 2002). Furthermore there has been recent evidence to 

suggest that the Notch pathway is involved in multiple aspects of vascular 

development and remodelling (Iso et al., 2003), including proliferation (Wang et al., 

2003), apoptosis (Matsumoto et al., 2002; Wang et al., 2002), endothelial migration 

(Favre et al, 2003), SMC differentiation (Shawber et al, 1996) and angiogenic 

processes (Mailhos et al, 2001). However, recent studies have also focussed on the 

role of a CBF-1/RBP-Jk independent signalling in mediating the response of Notch 

receptor activation in several cell systems (Nofziger et al., 1996; Iso et al., 2003). 

This study describes for the first time, the regulation of endogenous signalling 

following inhibition of CBF-1/RBP-Jk dependent Notch signalling or constitutive 

expression of functionally active Notch IC, which results in fundamental changes in 

VSMC growth in vitro. In addition, this study describes the regulation of VSMC 

growth by individual Notch target genes hrtl, 2 and 3 following selective knockdown 

of these genes by targeted siRNA.

There have been several studies, which have reported the expression of Notch 

signalling pathway components in adult vascular tissue and cells (Lindner et al., 

2001; Wang et al., 2002). This study indicated that constitutive expression of Notch 1 

and 3 IC resulted in a significant increase in the expression of both Notch 1 and 3 IC 

protein and Notch receptor mRNA levels concomitant with a significant increase in 

Notch target gene promoter activity and mRNA levels in RVSMC. In addition, by 

inhibiting CBF-l/RBP-jK-dependent signalling using both pharmacological inhibitors 

Brefeldin A and Monensin, in addition to molecular interventions, we reported a 

significant inhibition of Notch 1 and 3 IC-dependent Notch target gene promoter 

activity and receptor mRNA levels. This data would suggest that expression of 

constitutively active Notch 1 and 3 IC requires golgi trafficking mechanisms to 

translocate to the nucleus as Brefeldin A and Monensin, which disassemble the golgi
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apparatus and causes it’s collapse into the endoplasmic reticulum, both inhibited 

Notch IC signalling events.

The inhibition of the Notch signalling pathway clearly decreased RVSMC growth 

in cycling VSMC suggesting that Notch exerts a net pro-proliferative, anti-apoptotic 

effect in these cells. This would concur with the pro-survival role of the Notch 

signalling pathway, which has been established in many other cell types (Kaneta et 

al., 2000; Mackenzie et al., 2004). Studies by Wang et al, 2002, reported that Notch 3 

IC can promote SMC proliferation by inhibiting the expression of p27KIPl, a critical 

cell cycle inhibitor and can promote survival through induction of c-flip, a well- 

established anti-apoptotic mediator. However, in contrast to this study, they reported 

that Notch 3 inhibits VSMC growth in a CBF-l/RBP-JK-independent manner, 

whereas we have established this anti-apoptotic effect of Notch to be a CBF-1/RBP- 

Jk dependent event. However, it is very likely that Notch can promote VSMC growth 

in both a CBF-1/RBP-JK-dependent and -independent manner. In fact, recent studies 

by Mackenzie et al, 2004 reported details that Notch 4 inhibits apoptosis in both a 

CBF-l/RBP-JK-independent and -dependent manner.

This study demonstrates that serum stimulation promotes endogenous Notch 

signalling through a CBF-1/RBP-Jk dependent pathway and induces proliferation 

while in contrast, serum deprivation downregulates Notch signalling while inducing 

apoptosis. A similar anti-apoptotic effect of Notch 1 has been recently demonstrated 

in serum deprived arterial EC (Liu et al., 2003). This study reported that both Notch 1 

IC and Hes-1 conferred a strong resistance to serum deprivation-induced apoptosis in 

EC. This indicated that the Notch signalling pathway could play a significant role in 

regulating EC survival. In contrast to our data, Wang and co-workers, using cultured 

SMC reported that angiotensin II and PDGF markedly downregulated Notch 3 and 

Jagged -1 through ERK-dependent signalling mechanisms. Moreover, this down 

regulation of Jagged-1 and Notch 3 was associated with a decrease in CBF-l/RBP-Jk- 

mediated gene transcription and a decrease in the mRNA levels of Hrt-1. However, 

one possible explanation for this contrasting report is that Wang and colleagues 

utilised a clonal rat embryonic wild-type and stably transfected Notch 3 IC cell line 

that exhibits a de-differentiated phenotype. Moreover, stimulation of SMC growth in 

vivo following injury was associated with an increase in the expression of Notch 3 IC 

and Notch signalling components (Wag et al., 2002). This again reinforced the
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concept that stimulation of differentiated SMC growth is associated with enhanced 

Notch signalling (Campos et al., 2002; Lindner et al., 2001). Though this study 

clearly demonstrates that serum stimulation activates Notch signalling and 

subsequently promotes VSMC growth, the stimulus foe Notch IC activation following 

serum stimulation remains to be elucidated. There have been several serum mitogens 

implicated in modulating Notch receptor expression and signalling in several cell 

systems (Wang et al., 2002; Bongarzone et a l, 2000). Vascular endothelial growth 

factor (VEGF) has been reported to induce gene expression of Notchl and its ligand 

Delta-like 4 (D114) in human arterial endothelial cell (Liu et al., 2003). In this study, 

the VEGF-induced specific signalling is mediated through VEGF receptors 1 and 2 

and is transmitted via the phosphatidylinositol-3-kinase/AKT pathway but is 

independent of mitogen-activated protein kinase and src tyrosine kinase. This study 

will later demonstrate that VEGF can induce the upregulation of Notch target genes 

hrt-1, 2 and 3 and subsequently promote cell growth through a signalling cascade 

involving the Hedgehog and Notch signalling pathways.

The mechanisms on how endogenous Notch IC signalling through a CBF- 

1/RBP-Jk-dependent pathway promotes a pro-survival and an anti-apoptotic effect 

remains unclear. In an attempt to elucidate the mechanisms through which the Notch 

signalling pathway exerts its pro-survival, anti-apoptotic effect in VSMC, we 

examined the effect of the Notch signalling pathway on the Bcl-2 family of apoptotic 

genes. The Notch signalling pathway has been shown to regulate members of the Bcl- 

2 family in both vascular and non-vascular cells. Notch 1 and Notch 4 have been 

reported to upregulate Bcl-2 expression in T-cells and EC respectively (Deftos et al., 

1998; Mackenzie et al., 2004). As the Bcl-2 family is central to the regulation of 

apoptosis in many cell types and changes in Bcl-2 family expression are often 

observed during the pathogenesis of vascular disease, it is likely that the Notch 

signalling pathway may regulate some Bcl-2 family members. Therefore, this study 

examined the effect of the Notch signalling pathway on the expression of both pro- 

apoptotic Bax and anti-apoptotic Bcl-XL. We observed following inhibition of Notch 

IC, that there was a significant increase in Bax while a concurrent decrease in Bcl-XL 

was reported. Furthermore, by selective knockdown of hrt-1, 2 and 3 by siRNA, there 

was a significant increase in Bax expression while concurrent decrease in Bcl-XLwas 

observed. In addition, serum deprivation resulted in an increase in Bax and a decrease
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in Bcl-XL, further suggesting a Notch-mediated regulation of Bcl-2 family members in 

VSMC. Moreover, using bioinformatics this study examined whether any Notch 

target gene promoter sites were present on either the Bax or Bcl-XL genes. Nakagawa 

et al, reported that the Hrt family of genes preferentially bind to an E box motif 

CACGTG, in addition to CAACTG, CACCTG, CACTTG and CATCTG to regulate 

transcription of other genes. Therefore, through sequence alignment of cloned Bax 

and Bcl-XL promoters (Grillot et al., 1997; Igata et al., 1999), we hypothesised that 

the Hrt genes could bind and possibly regulate both Bax and Bcl-XL However, 

though this would require confirmation with mutational analysis, the significant 

changes in expression of both bax and Bcl-XL by Hrt gene knockdown by siRNA, 

certainly adds weight to this argument.

In conclusion, this study has provided further evidence that both Notch 1 and 3 

receptors acting through a CBF-1/RBP-Jk dependent signalling pathway are an 

important determinant of SMC growth in vitro. Furthermore that Notch target genes 

hrt-1, 2 and 3 are important modulators of VSMC growth by varying degrees with 

hrt-1 having the most significant effect on VSMC proliferation, while hrt-3 exerts the 

most significant effect on VSMC apoptosis in vitro. Notch receptor expression is also 

upregulated within the vasculature of animal models following vascular injury (Leong 

et al., 2002; Campos et al., 2002). Therefore greater knowledge of the regulation of 

Notch receptors and the downstream activation of Notch target genes in SMC may 

provide new insights into the molecular mechanisms underlying changes in vascular 

cell fate that underlie vascular proliferative disease.
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Chapter 5

Results

The Effect of Mechanical Forces on the Notch and Hedgehog Signalling 
Pathways and Cell Growth in vitro and in vivo



5.1 Introduction

Biomechanical forces are known to play an important role in maintaining the 

normal tissue architecture of the cardiovascular system. The haemodynamic forces 

associated with the flow of blood play a vital role in the physiological control of 

vascular tone, remodelling and associated vascular pathologies. Cells of the 

vasculature are exposed to two principal haemadynamic forces, shear stress and cyclic 

strain. Shear stress is described as the dragging frictional force created due to blood 

flow and primarily affects EC under normal conditions. The other forces include 

cyclic circumferential strain, which is caused by a transmural force acting 

perpendicular to the vessel wall (Schwarz et al., 2002). Mechanotransduction is 

known to play a central role in the highly co-coordinated cellular response of the 

vasculature to changes in haemadynamic stimulation. Transduction of biomechanical 

stimuli leads to the activation of cellular signalling mechanisms that can alter cell 

fate. It is these alterations in cell fate in response to haemadynamic stimulation that 

are fundamental to the pathogenesis of vascular disease (Osol et al., 1995). Strain- 

induced changes in SMC growth participates in the local vascular response to 

hypertension (Koller et al., 2002), late lumen loss and restonosis after vascular 

interventions in addition to plaque vulnerability during atherosclerosis (Schwarz et 

al., 2002, Brooks et al., 2005).

VSMC, which constitute the major component of the blood vessel wall, absorb 

most of the pressure-induced cyclic strain. Blood vessels are continuously exposed to 

mechanical forces, which is essential to develop and maintain a differentiated and 

functional VSMC phenotype (Birukov et al,. 1998). The pathogenic role of VSMC 

growth is increasingly recognized in cardiovascular disease. Since changes in VSMC 

growth are also apparent during vascular morphogenesis and modelling of the 

embryonic vasculature (Brookes et al., 2004) (Majesky et al., 2003), the control of 

these cell fate decisions in adult cells may share similar signalling pathways. This 

study aimed to investigate the effect of cyclic strain on both the Notch and Hh 

signalling pathways and in addition, determine the effect of mechanical force on 

VSMC growth. Furthermore, we aimed to elucidate whether the cyclic strain-induced 

changes in VSMC growth are regulated by the Notch signaling pathway. A Flexercell

144



Tension Plus™ strain unit was used in this study to regulate pressure to flexible 

bottomed pronectin-coated Bioflex plates, thus allowing VSMC to be exposed to 

defined levels of cyclic strain. VSMCs were exposed to 10% cyclic strain which is 

accepted as normal physiological conditions in vivo. Cardiovascular disease states, 

such as hypertension, can increase the level of cyclic strain on VSMC up to 30% (Li 

and Xu, 2000). Biomechanical signals induce a highly restricted transcriptional 

response in SMC that include genes that can modify vascular structure (Xu et al., 

2000). As components of the Notch and Hh signaling pathways are co-ordinately 

regulated in vascular tissue (Wang et al., 2002), (Pola et al., 2001), the present study 

examined the specific role of cyclic strain on endogenous Notch and Hh signaling 

components in VSMC and their contributory role in controlling the growth response 

of these cells following strain.

To further address the role of mechanical forces associated with blood flow on 

the regulation of Notch and Hh signalling and subsequently on vascular cell fate we 

determined the effect of altered biomechanical forces in an in vivo environment. We 

examined the relative expression of Notch and Hh signalling components in addition 

to the growth response in vivo using two models of vascular injury. The models of 

altered haemadynamic forces and subsequent vascular remodelling analyzed in this 

study were the rat carotid artery and portal vein ligated models. The carotid artery 

ligation provides a model of bilateral carotid remodelling in a single animal. Hence, 

the simultaneous reduction in blood flow in the left (ligated) carotid artery and the 

subsequent increase in blood flow in the right carotid artery allows us to examine the 

effects of altered haemadynamics on expression of Notch, Hh and other relevant 

genes of interest in a single animal. This partial ligation model used in this study and 

by Korshunov and Berk (2003) shows that the partial ligation of the left carotid artery 

results in a dramatic decrease of 90% in blood flow in the left carotid artery, with the 

maintenance of an intact endothelium with no thrombosis. Furthermore, a 

concomitant increase of 70% in blood flow was observed in the right carotid artery. 

This particular model exhibits vessel enlargement or outward remodelling in both the 

left and right carotid arteries, which is maximal at 7 days post-ligation. Carotid 

ligation resulted in greater remodelling in the right carotid artery, with an increased 

lumen and only a subtle increase in medial or adventitial layers. In contrast, the left
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carotid artery displayed dramatic increases in both medial and adventitial layers.
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Figure 1: Carotid remodelling. Verhoeff Van Giesson staining of sham, right 

carotid artery (RCA) and left carotid artery (LCA) 14 days post-ligation. Sham (A, B, 

F); Ligated (C, D, E). Elastic fibres, black; nuclei, brown; collagen, red; other tissue 

structure, yellow. Partial ligation resulted in significant intimal formation (in mouse 

model only) in the LCA, with small breaks (arrows) and thinning in the internal and 

external elastic laminae. In contrast, the elastic laminae and the media of shams 

remained intact (Korshunov and Berk 2003).

In addition to the carotid ligation model we also utilized portal vein ligation (PVL) as 

a model of altered heamadynamic forces and compared this to sham-operated control. 

Portal vein ligation induces pre-hepatic portal hypertension, which is characterized by 

increased cardiac output and increased plasma volume (Yokoyama et al., 2001). As a 

result of this increased cardiac output and plasma volume, blood pressure and 

therefore biomechanical forces are increased in ligated animals as compared to sham- 

operated controls. Previous studies by Yokoyama (2002), observed increases in portal
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pressure from 5.41±0.6 mm Hg in sham-operated animals as compared to 13.2±0.9 

mm Hg in portal vein ligated rats

The aim o f this chapter was to investigate the effect o f altered biomechanical 

forces both in vitro and in vivo on Notch and Hh signalling pathway expression and 

the subsequent effect on VSMC growth.
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5.2.1 Notch 3 Receptor Promotes SMC Proliferation and Inhibits Apoptosis 

Through Activation of Notch Target Genes in a CBF-l/RBP-.Ik-dependent 

Manner.

The co-expression of RPMS-1 to inhibit CBF-1/RBP-jK-dependent signalling resulted 

in a significant increase of 31 ±9.0% in the number of apoptotic nuclei when 

compared to mock controls (Fig. 5.1 A). Over expression of constitutively active 

Notch 3 IC also resulted in a significant reduction in the bax/bcl-xL ratio such that 

steady state bax mRNA levels decreased by 48±3.0% while bcl-XL mRNA levels 

increased by (62±12.0%) when compared to mock controls (Fig. 5.1 B and C). 

Moreover, inhibition of endogenous CBF-1/RBP-JK-dependent signaling following 

expression of RPMS-1 resulted in an increase of 42±3.0% in the pro-apoptotic bax 

mRNA levels while concomitantly inhibiting anti-apoptotic bcl -xL mRNA levels by 

38±2.0% (Fig. 5.1 B and C). Furthermore, the changes in the bax/bcl-xL ratio 

following over expression of constitutively active Notch 3 IC were reversed following 

co-expression with RPMS-1 (Fig. 5.1 B and C). In addition, selective knockdown of a 

Notch target gene, hrt-2 with siRNA resulted in a significant increase of 410+87.0% 

in bax mRNA levels while significantly decreasing bcl-xL mRNA by 45±13.2% when 

compared to the scrambled siRNA control (Fig. 5.2).

5.2.2 Cyclic Strain Induces Changes in SMC Growth In Vitro.

Cyclic strain (24h, 10%) significantly decreased the expression of pCNA, a marker 

for cell proliferation by 40±4.0% after 24 h (Fig. 5.3 B) while concomitantly 

decreasing the proliferation rate of SMC for up to 10 days post strain by 33±2.5% 

(Fig. 5.3 A). In parallel cultures, serum-deprivation of SMC for 48 h, a known 

ubiquitous pro-apoptotic stimulus for SMC, caused a marked fold increase of 1.9+.05 

in SMC Bax protein expression while concurrently inhibiting Bcl-xL expression by 

72±6.0% (Fig. 5.4 B). Cyclic strain also increased the Bax/Bcl-xL ratio by increasing 

the expression of Bax by a fold of 1.24+.03 and decreasing the expression of B c1-Xl , 

respectively by 61±8.0%, when compared to unstrained cells (Fig. 5.4 A). The change

5.2 Results
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in the Bax/Bcl-xL ratio was further confirmed by examining Bax and BcI-Xl mRNA 

levels following strain. Strain significantly increased the levels of proapoptotic bax 

mRNA by 31.0±8.0% and decreased the levels of Bcl-Xi mRNA by 29.0±17.0% 

when compared to unstrained cells (Fig. 5.4 C).

5.2.3 Cyclic Strain Inhibits Notch Signaling in SMC In Vitro

Cyclic strain (10%, 24 h) caused a significant decrease in Notch signalling pathway 

components. Notch 1 and Notch 3 protein expression (both Notch IC and the full- 

length receptor (Notch EC)) was significantly decreased by 17.0±2.0% and 

25.0±3.0% respectively (Fig. 5.5 A) concomitant with a significant decrease in the 

expression of Notch ligand, jagged-1 protein expression by 30.0±6.0% (Fig. 5.5 C). 

In addition, Hrt-1 and Hrt-3 protein expression (Fig. 5.6 A) was significantly 

decreased by 12.0±1.0% and 11.0±2.0% respectively following strain. Cyclic strain 

also significantly decreased Notch 1 and Notch 3 receptor steady state mRNA levels 

by 57.0±11.0% and 50.0±2.9% respectively with respect to static control (Fig. 5.5 B). 

Similarly, a significant decrease of 35.0±4.0% in jagged-1 mRNA levels was also 

observed due to cyclic strain (Fig. 5.5 D), concomitant with a significant decrease in 

hrt-1, hrt-2 and hrt-3 by 39.0±1.0%, 47.0±17.0% and 42.0+12.0% respectively and a 

significant decrease of 42.0+12.0% and hes-5 57.0±11.0% in hes-1 and hes-5 mRNA 

levels by when compared to unstrained controls (Fig. 5.6 B). The effects of cyclic 

strain on the Notch signalling pathway were both force- and time-dependent. VSMC 

were subjected to 0, 5, 10 and 15% cyclic strain and assayed for Notch receptor and 

Notch target gene mRNA expression (Fig. 5.10). Both notch 3 and hes-5 exhibited a 

significant force-dependent decrease in mRNA expression. The percentage decrease 

in notch 3 mRNA levels was 26.0±1.0, 50.0±3.0 and 64.0±0.8 at 5%, 10%, and 15% 

cyclic strain, as compared to the static control (Fig. 5.7 A). Hes-5 mRNA expression 

was similarly decreased with increasing levels of cyclic strain, with a decrease of 

38.0±13.0% at 5% cyclic strain, 57.0±11.0% at 10% cyclic strain, and 61,0±14.0% at 

15% cyclic strain, as compared to static control (Fig. 5.7 B). Notch 3 and hes-5 

mRNA levels were temporally reduced following exposure to strain for up to 24 h 

when compared to the unstrained controls (Fig. 5.8 A and B). VSMC exposed to 

10% cyclic strain over a period of 24 h resulted in a significant temporal decrease in
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Notch 3 mRNA expression of 23.0±7.0%, 58.0±6.0% and 64.0±3.0% at 4 h, 8 h, and 

24 h post-cyclic strain respectively, as compared to static control (0 h timepoint). 

Hes-5 mRNA expression showed a similar temporal decrease of (27.0±4.0%), 

(55.0±6.0%) and (25.0±3.0%) at 4 h, 8 h, and 24 h post-cyclic strain respectively, as 

compared to static control (0 h timepoint). For subsequent studies, regulation of 

Notch signaling was examined following exposure to 10% cyclic strain for 24 h. 

There was also a significant temporal decrease in baseline transactivation CBF- 

1/RBP-JK-dependent-promoter activity in cells exposed to strain when compared to 

unstrained controls at all times examined (6, 10 and 24 h) with strain maximally 

decreasing CBF-1/RBF-Jk transactivation by 82.36±1.96% after 6 h (Fig. 5.9 A). 

Cyclic strain also significantly decreased Hrt-1 activity at all times examined post 

strain, with maximal inhibition occurring after 8 h with a significant decrease of 

65.8±0.5% (Fig. 5.9 B).

5.2.3 Cyclic Strain Inhibits Notch Signaling in a Gi-MAPK-dencndent Manner.

Since cyclic strain regulates SMC fate through various mechanosensitive pathways 

(Lehoux et al., 2003; Xu et al 2000), the role of inhibitory Gi-proteins and MAPK in 

mediating the strain-induced response was examined. Pre-treatment of cells with the 

Gi-protein inhibitor, pertussis toxin (lOOng/ml for 24 h) significantly inhibited 

baseline levels of Notch 3 IC protein expression by 40.0±10% (Fig. 5.10 A) and 

Notch 3 mRNA 74.0±11% in unstrained cells (Fig. 5.10 B). Moreover, the strain- 

induced decrease in Notch 3 IC expression and Notch 3 mRNA levels was attenuated 

following pertussis toxin treatment (Fig. 5.10 A and B). Furthermore, hrt-2 mRNA 

baseline levels were significantly inhibited following pre-treatment of cells with the 

Gi-protein inhibitor, pertussix tosin (lOOng/ml for 24 h). In addition, the strain- 

induced decrease in hrt-2 mRNA was also attenuated following pre-treatment of cells 

with the Gi-protein inhibitor, pertussix tosin (lOOng/ml for 24 h) (Fig. 5.11 A). The 

role of inhibitory Gi-proteins in mediating the strain response on proliferation was 

examined. Pre-treatment of cells with the Gi-protein inhibitor, pertussis toxin 

(lOOng/ml for 24 h) significantly inhibited baseline levels of pCNA, a marker for 

proliferation by 26.0±9.0%. Furthermore the strain-induced decrease in pCNA 

expression was significantly blocked following pertussis toxin treatment (Fig. 5.11B). 

In addition to the role of inhibitory Gi-protein, the MAPK pathway involvement in
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mediating the strain-induced response was investigated. Following pre-treatment of 

cells with the MAPK inhibitor, PD98059, there was a significant inhibition in 

baseline levels of Notch 3 IC protein expression of 51.0±7.0% while concurrently 

inhibiting the strain-induced decrease in Notch IC expression (Fig. 5.12).

5.2.4 Effect of Notch Signaling on Cyclic Strain-induced Changes in SMC 

Proliferation and Apoptosis In Vitro

The recovery from strain-induced decreases in Notch signalling was confirmed by 

demonstrating that over expression of Notch 3 IC recovered the strain-induced 

decrease in Notch 3 and hrt-2 mRNA to levels that were comparable with unstrained 

cells (Fig. 5 .13 A and B). Hence we investigated whether over expression of Notch 3 

IC could recover the strain-induced changes in SMC proliferation and apoptosis. In 

parallel cultures, cyclic strain decreased pCNA expression in mock controls by 

54.0±5.0%, an effect that was significantly attenuated following over expression of 

Notch 3 IC (Fig. 5.14). Moreover, the cyclic strain-induced increase in the percent of 

apoptotic nuclei of 22.0± 10% in mock controls was significantly attenuated following 

over expression of Notch 3 IC (Fig. 5.15). The effect of Notch 3 IC over expression 

on cyclic strain-induced changes in Bcl-2 family mRNA levels were also investigated. 

Cyclic strain significantly decreased hcl-Xi mRNA levels by 48.0±10% when 

compared to mock controls, an effect that was significantly attenuated following over 

expression of Notch 3 IC (Fig. 5.16A). In contrast, the cyclic strain-induced increase 

in bax mRNA levels of 1.52±.21 compared to mock controls was further enhanced to 

a significant increase of 2.1 ±.08 following over expression of constitutively active 

Notch 3 IC (Fig. 15.16 B). In parallel studies, inhibition of Notch IC by co-expression 

with RPMS-1 further enhanced the strain-induced increase in bax mRNA by 1.95±.05 

while concomitantly potentiating the strain-induced decrease in BcI-Xl mRNA levels 

by 0.15±.05 when compared to mock controls (Fig. 5.17A and B). The inhibition of 

Notch IC also further enhanced the strain-induced decrease in pCNA expression from 

a 32.0+8.0% to a 48.0±8.0% decrease as compared to mock controls (Fig 5.17C).
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5.2.5 Cyclic Strain Inhibits Hedgehog Signaling in SMC In  V itro

Cyclic strain (10%, 24 h) caused a significant decrease in Hedgehog signalling 

pathway components. Hedgehog ligands, Shh, Ihh and Dhh mRNA expression was 

significantly decreased 44.0±2.8%, 46.0±7.9% and 35.0±5.4% respectively following 

strain while Hh target gene mRNA expression of Ptcl and gli-2 also was significantly 

decreased by 29.0±1.0% and 29.0±1.0% (Fig. 5.18). Moreover Shh and Ptcl protein 

expression was significantly decreased 62.0±5.0% and 23.0±5.0% respectively 

following cyclic strain (10%, 24 h) (Fig. 5.19A and B). For subsequent studies, 

regulation of Hh signaling was examined following exposure to 10% cyclic strain for 

24 h. There was a significant temporal decrease in baseline transactivation of Gli- 

promoter activity in cells exposed to strain when compared to unstrained controls. 

This temporal decrease was maximum at 24 h with a 71.0+9.0% decrease in Gli- 

promoter activity (Fig. 5.20).

5.2.6 Effect of Notch Signaling on Cyclic Strain-induced Changes in Hedgehog 

Signalling in SMC In Vitro

The recovery from strain-induced decreases in Hh signaling was confirmed by 

demonstrating that over expression of Notch 3 IC recovered the strain-induced 

decrease in gli-2 and Ptc-1 mRNA to levels that were comparable with unstrained 

cells. Cyclic strain-induced decreases in Ptcl mRNA expression compared to 

unstrained controls was reduced from 45.0±5.0% to 5.0+5.0% while concurrently 

cyclic strain-induced decreases in gli-2 mRNA expression was reduced from 

30.0+15.0% to a 0.1±,20 fold increase respectively (Fig. 5.21A and B).

To determine whether the effect of altered mechanical forces extrapolates to an in- 

vivo situation, we investigated Notch and Hh signalling pathway expression and 

subsequent levels of growth. Two in-vivo models of vascular injury and remodeling 

were used where animal models were subjected to either carotid artery or portal vein 

ligation.
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The Effect of Carotid Ligation on Notch and Hh Signaling In -V ivo

Notch and Hh component expression levels were examined in the carotid arteries of 

sham-operated animals (data on level of expression in right and left carotid of sham 

animals pooled) and compared to that of the right and left carotid arteries of ligated 

animals. Blood flow was significantly altered in both the right and left carotid arteries 

of ligated animals where flow rates remained constant in sham-operated animals (Fig. 

5.23). Over the time period examined of 0, 3 and 28 days, flow rates in the right 

carotid were significantly increased to 165±13% and 175±8.0% at day 3 and 28 

respectively over sham-operated control. Concomitantly, blood flow rates in the left 

carotid decreased at day 3 and 28 to 5.0±0.8% and 3.0±0.4% respectively over sham- 

operated controls post- ligation.

Post-Carotid Ligation Day 3

With blood flow and subsequent mechanical forces altered in both the right and left 

carotid arteries of ligated animals, Notch and Hh component expression levels were 

examined. There was an increase of 1.19±0.04 in Notch 1 IC protein expression in the 

right carotid artery compared to control and a significant increase of 1.21 ±0.02 in the 

left carotid artery of the ligated animal (Fig. 5.24). Furthermore, Notch 3 IC protein 

expression was significantly increased in both the right and left carotid arteries of 

ligated animals to 1.87±0.26 and 1.77±0.23 over sham operated control respectively 

(Fig. 5.25). Notch target gene protein expression was also increased as compared to 

sham- operated controls (Fig. 5.26). HRT-1 protein expression was increased to 

2.07±0.1 and 2.0±0.2 over sham-operated control in the right and left arteries of 

ligated animals respectively. HRT-2 expression was increased by 3.18±0.32 and 

3.0±0.32 fold in the right and left carotid arteries respectively. Likewise, fold 

increases of 2.63±0.27 and 2.58±0.23 in HRT-3 expression were evident in the right 

and left carotid arteries respectively. A similar pattern was evident for the up- 

regulation of Hes-1 and Hes-5 protein expression. Significant fold increases of

1.86±0.08 and 1.87±0.21, and 2.4±0.02 and 1.99±0.02 evident in the right and left 

carotids of ligated animals for Hes-1 and Hes-5 respectively. In addition, the level of 

Hes-5 protein expression was significantly decreased in the left ligated artery when
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compared to the contralateral right carotid. Hh component expression was also 

significantly increased as a result of carotid ligation. Shh protein expression was 

increased to 3.38±0.36 and 3.37±0.02 over sham -operated control in the right and 

left arteries of ligated animals respectively (Fig. 5.27A). Similarly, Ihh expression 

was increased by 2.19±0.12 and 2.25±0.14 fold in the right and left carotid arteries 

respectively (Fig. 5.27B). Likewise, Hh target gene Ptc-1 expression was increased to

I.61±0.04 and 1.58±0.07 fold in the right and left carotid arteries respectively (Fig. 

5.27C). In parallel studies we investigated this effect of altered mechanical forces in- 

vivo using the rat carotid artery ligation model on proliferation. Using pCNA as a 

marker for proliferation, there was a subtle but significant increase in expression in 

the right and left carotid arteries of the ligated animal over the sham operated control 

of 1.28±0.02 and 1.24±0.05 respectively (Fig. 5.28).

Post-Carotid Ligation Day 28

The expression of Notch receptors and target genes were subsequently analyzed in 

animals at 28 days post-carotid ligation. Again, protein expression was analyzed in 

the right and left carotid arteries of ligated animals, and expressed as fold change over 

sham-operated control level.

Notch 1 IC protein levels were decreased in both the right and left carotid arteries of 

ligated animals (Fig. 5.29). Notch 1 IC expression was decreased by 37.0±15.0% and

II.0±4.0% in the right and left carotid arteries respectively, as compared to sham- 

operated control. A similar expression pattern was evident for Notch 3 IC protein 

expression, with significant decreases in both the right 42.0±7.0% and left 18.0±3.0% 

carotid arteries as compared to sham-operated controls (Fig. 5.30). In addition, Notch 

3 IC protein expression was significantly decreased in the right carotid artery of the 

ligated animal, as compared to the left carotid artery. Subsequent analysis of Notch 

target gene protein expression levels revealed a similar pattern of expression to that of 

the Notch receptors (Fig. 5.31). Analysis of the right carotid artery of ligated animals 

revealed a significant decrease of 40.0±7.0% in HRT-1 protein expression, with 

respect to sham-operated animals (Fig. 5.31 A). This decrease in HRT-1 expression 

was also evident in the left ligated carotid artery 15.0±6.0%. As with Notch IC
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receptor expression, HRT-1 expression was significantly decreased in the right carotid 

artery of the ligated animal, as compared to the left carotid artery.

Similarly, HRT-2 expression was significantly decreased in the right carotid of the 

ligated animal by 37.0±11.0% of as compared to sham-operated control, with a less 

pronounced decrease of 16.0±6.0% evident in the contralateral left carotid artery (Fig. 

5.31B). Analysis of HRT-3 protein expression also revealed a significant percentage 

decrease in expression in both the right 49.0±4.0% and left 19.0±5.0% carotid arteries 

of ligated animals, as compared to sham-operated controls (Fig. 5.31 C). In addition, 

the level of HRT-3 protein expression between the right and left carotid arteries was 

significantly different, with a substantial decrease in the right carotid over the 

contralateral left carotid artery. The expression pattern of the Hes family of target 

genes followed a similar pattern to that of the related HRT family. Hes-1 protein 

expression was significantly decreased in the right carotid artery 43.0+6.0% of ligated 

animals as compared to sham-operated controls (Fig. 5.31D). The contralateral left 

carotid artery exhibited a slight fold decrease in Hes-1 protein expression over control 

9.0+5.0%, this level of protein expression was significantly different to that evident in 

the right carotid artery. Similarly, Hes-5 protein expression was significantly 

decreased in the right artery 51.0+13.0% as compared to sham-operated control, and a 

less pronounced fold decrease of 25.0±28.0% was evident in the contralateral left 

carotid artery (Fig. 5.31E). The expression of Hh signaling components were 

subsequently analyzed in animals at 28 days post-carotid ligation. Again, protein 

expression was analyzed in the right and left carotid arteries of ligated animals, and 

expressed as fold change over sham-operated control level. Analysis of Shh protein 

expression revealed a significant percentage decrease in expression in both the right 

57.0+3.0% and left 36.0±11.0% carotid arteries of ligated animals, as compared to 

sham-operated controls (Fig. 5.32A). In addtion, the level of Shh protein expression 

between the right and left carotid arteries was significantly different, being 

substantially decreased in the right carotid over the contralateral left carotid artery. A 

similar pattern of expression was evident for both Ihh and Hh target gene Ptc-1. Ihh 

protein expression decreased by 61.0+3.0% and 44.0±1.5% in the right and left 

carotid arteries respectively as compared to sham-operated controls while Ptc-1 

expression decreased by 28.0±9.0% in the right while decreasing by 12.0±9.0% in the 

left. In both cases, expression between the left and right carotid arteries was
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significantly different, being substantially decreased in the right carotid over the 

contralateral left carotid artery. In parallel studies we investigated this effect of altered 

mechanical forces in-vivo using the rat carotid artery ligation model at day 28 on 

proliferation. Using pCNA as a marker for proliferation, there was no significant 

difference in expression in the right carotid arteries of the ligated animal over the 

sham-operated control. However there was a subtle but significant fold increase of 

1.24±.09 in pCNA expression in the left carotid artery as compared to sham-operated 

controls (Fig. 5.33). In addition, the level of pCNA expression between the right and 

left carotid arteries was significantly different, being decreased in the right carotid 

over the contralateral left carotid artery.

Portal Vein Ligation

In addition to the carotid ligation model, a portal vein ligation model was also used to 

analyze the effect of altered mechanical forces on the Notch signalling pathway in 

vivo. Rat portal veins were ligated, and subsequently isolated from ligated and sham- 

operated models at timepoints over a period of 2-15 days post-ligation. Splanchnic 

blood flow and splenic pressure (an index of portal venous pressure) was measured at 

each timepoint post-ligation in both sham-operated and ligated animals. We measured 

blood flow using a Transonic flow probe, and splenic pressure was measured using a 

Doppler probe, with measurements adjusted according to the weight of the animal. 

Two days following PVL splanchnic blood flow was significantly decreased in the 

ligated versus sham-operated animal, as a result of the obstruction to portal inflow 

caused by ligation (Fig. 5.34A). Splanchnic blood flow returned to sham-operated 

control levels 4 days post-ligation, but was significantly increased, as compared to 

sham-operated control, in the ligated animal by 44.0±17.0%, 44.0±13.0% and 

92.0±6.0% at 6, 9, and 15 days post-ligation respectively. Analysis of splenic 

pressure, and hence portal venous pressure, revealed significant increases in pressure 

in the ligated animals at all timepoints post-ligation (Fig. 5.34B). Splenic pressure 

was increased by 76.2±17.6% and 79.1±19.1%, as compared to sham-operated 

control, at 2 and 4 days post ligation respectively. Similarly, increases of
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34.1±14.4%, 62.8±18.9% and 49.2+14.1% in splenic pressure were observed in the 

ligated animals at 6, 9 and 15 days post ligation respectively.

We then analyzed expression levels of Notch receptors, ligand and target genes 

in the ligated models, and compared to that of the sham-operated animals at each 

timepoint (arbitrarily assigned a value of 1). The data presented represents the mean 

of two vessels pooled for each timepoint. We found that the Notch signalling pathway 

generally appears to exhibit a triphasic pattern of expression in response to portal vein 

ligation over the time period studied. There was generally a decrease initially in 

expression of components of the signaling pathway at 2 days post-ligation. 

Expression of Notch signaling pathway components were then increased over sham- 

operated control levels at 4 days post-ligation, followed by an attenuation of this 

increase, maintained over 6 - 1 5  days post-ligation. Notch 1 IC receptor expression 

remained unchanged in the ligated animal 2 days post-ligation, as compared to the 

sham-operated control, arbitrarily assigned a value of 1 (Fig. 5.35A). However, at 4 

days post ligation there was a considerable fold increase in Notch 1 IC protein with 

the level of Notch 1 IC protein increased in the ligated animal by 60% over sham- 

operated control. Notch 1 IC protein levels examined at 6, 9 and 15 days post-ligation 

decreased by 58%, 50% and 75%, as compared to sham-operated control for each 

timepoint. It is interesting to note that Notch 1 IC expression changes in both sham- 

operated and ligated animals following surgery, which is represented in (Fig. 5.35B). 

Notch 1 IC expression in the sham-operated animal decreases from days 2-6 post­

surgery, and subsequently increases from days 6-15 post-surgery.

A similar expression pattern was evident for Notch 3 IC protein (Fig. 5.36A). An 

initial decrease in Notch 3 IC protein expression was observed at 2 days post-ligation 

by 11% as compared to sham-operated control, this expression was subsequently 

increased at 4 days post-ligation, to 55% over sham-operated control. However, this 

increase in Notch 3 IC protein expression was attenuated at 6, 9, and 15 days post­

ligation by 61%, 43% and 58% as compared to sham-operated controls. As with 

Notch 1 IC, Notch 3 IC expression is altered in sham-operated animals following 

surgery (Fig. 5.36B). Notch 3 IC protein expression decreases from 2-6 days post­

surgery, subsequently increases at day 9 and decreases at day 15 post-surgery. 

Therefore, a tri-phasic pattern of Notch 3 IC expression is exhibited in sham-operated 

animals post-surgery. Similarly, analysis of Jagged protein expression revealed an
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initial decrease of 12% with respect to sham-operated control 2 days post-ligation, 

and a subsequent increase in Jagged expression levels 4 days post-ligation, to 50% 

over sham-operated control samples (Fig. 5.37A). As was evident with the pattern of 

Notch receptor expression, this increase in Jagged expression was attenuated at 6 and 

9 days post-ligation to expression levels of 14% and 11% lower than sham-operated 

control. Jagged expression levels remained similar to those of sham-operated control 

in the ligated animal 15 days post ligation. Jagged expression is also altered in the 

sham-operated animals following surgery (Fig. 5.37B). Jagged expression decreases 

post-surgery from day 2 - day 4, subsequently increases from day 4 - day 9, and 

decreases at day 15, thus exhibiting a similar tri-phasic expression pattern to Notch 3 

IC.

In addition, we analyzed the expression levels of Notch target genes, which 

revealed a similar pattern of expression to that of the Notch receptors. Analysis of 

HRT-1 expression revealed a considerable decrease of 40% in expression 2 days post­

ligation, as compared to sham-operated control (Fig. 5.38A). A subsequent increase in 

HRT-1 protein expression, to 30% over sham-operated control, was observed 4 days 

post-ligation. This increase was attenuated to expression levels of 50%, 40% and 

60% decreased versus sham-operated control at 6, 9, and 15 days post-ligation 

respectively. The pattern of HRT-1 expression alteration in sham-operated control 

animals following surgery is illustrated in (Fig. 5.38B). HRT-1 expression in sham- 

operated animals is decreased from days 2 - 4  post-surgery, subsequently increased at 

6 days post-surgery, and remains unchanged thereafter.

Similar to the pattern of HRT-1 expression, a 37% decrease in HRT-2 protein 

expression was observed in the ligated vessel 2 days post-ligation, as compared to 

sham-operated control (Fig. 5.39A). HRT-2 protein expression analysis at 4 days 

post-ligation revealed a 60% increase in expression over sham-operated control, 

which was attenuated at 6, 9 and 15 days post-ligation to expression levels of 53%, 

8% and 14% decreased versus sham-operated control. The changes in HRT-2 

expression following surgery in the sham-operated animal are illustrated in (Fig. 

5.39B), as with HRT-1, a minimal change in HRT-2 expression is evident following 

surgery, as compared to the change in expression described following PVL. In 

addition, HRT-3 protein expression levels decreased slightly by 10% as compared to 

control levels 2 days post-ligation, however, an increase of 46% over control levels
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was observed 4 days post-ligation (Fig. 5.40A). Again, this increase was 

considerably attenuated at day 6 and day 15 post-ligation, with expression levels 

being decreased by 47% and 33% respectively, as compared to sham-operated control 

levels. This attenuation was also evident 9 days post-ligation but to a lesser degree, 

with HRT-3 expression levels being 20% increased over sham-operated control. 

HRT-3 expression levels decrease in the sham-operated animals from day 2 - day 4 

following surgery, and subsequently increase gradually from day 4 - day 15 after 

surgery (Fig. 5.40B). Unlike the Notch receptors, or the HRT target genes studied, 

the Hes target genes exhibited an increase in protein expression of 33% and 70% over 

sham-operated control 2 days post-ligation respectively (Fig. 5.41A and 5.42A). The 

subsequent expression pattern of these target genes, however, mirrors that of the other 

components of the Notch signaling pathway studied. Protein expression of HES-1 was 

increased 4 days post-ligation by 54% fold over sham-operated control (Fig. 5.41A). 

An attenuation of this increase was observed at 6, 9 and 15 days post ligation 

respectively. Hes-1 expression levels were decreased by 42% and 37% compared to 

sham-operated control at 6 and 15 days post-ligation respectively. Hes-1 expression 

was increased by 10% over sham-operated control at 9 days post-ligation, but is 

decreased as compared to Hes-1 expression levels at 4 days post-ligation. Similarly, 

Hes-5 protein expression levels were found to be increased by 35% over control 4 

days post-ligation, which is an attenuation of the 70% increase in Hes-5 expression 

evident 2 days post-ligation (Fig. 5.42A).

This increase was further attenuated at 6, 9 and 15 days post-ligation expression 

levels decreased by 67%, 46% and 65% respectively, as compared to sham-operated 

control. As with other components of the Notch signaling pathway, both Hes-1 and 

Hes-5 expression levels are altered following surgery. Hes-1 expression gradually 

increases from day 2 - day 15 post-surgery (Fig. 5.41B), whereas Hes-5 expression 

increases from day 2 - day 6 post-surgery, subsequently decreases at day 9, and 

increases at day 15 post-surgery to expression levels similar to those seen at day 6 

post-surgery (Fig. 5.42B).

In addition to protein expression of the Notch signaling pathway post portal vein 

ligation, we also analyzed mRNA expression at days 2 and 15 as compared to sham- 

operated controls. Between 5-7 vessels were pooled and at both days 2 and 15 a 

significant decrease in Notch signaling component expression was evident. At day 2,
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Notch 1 mRNA expression was decreased by 59.7±.05% as compared to sham- 

operated control (Fig. 5.43). Furthermore Notch target gene mRNA expression was 

also significantly decreased at day 2. Hrt-1, hrt-2, hrt-3 and hes-5 mRNA expression 

was decrease by 24.0±.06%, 44.0±.11%, 54.0±.09% and 53.0±.04% respectively as 

compared to s ham-operated controls (Fig. 5.43). In addition, the effect of portal vein 

ligation on Hh signaling component mRNA expression was also determined at day 2 

post ligation. As with the Notch signaling pathway, Hh signaling component 

expression was significantly decreased as compared to sham-operated controls. Shh 

and smo expression was decreased by 64.8±.04% and 37.0±.02% respectively (Fig.

5.43). Similarly at day 15 a decrease in Notch signaling component expression was 

observed. Notch 1 mRNA expression was decreased by 44.0±.12% as compared to 

sham-operated controls (Fig. 5.44). Similarly hrt-1, hrt-2 and hrt-3 exhibited 

decreases in expression of 71.0±.01%, 77.0±.04% and 60.0±.05% respectively (Fig.

5.44). This data clearly shows altered expression of Notch and Hh signaling as a 

result of increased mechanical forces as a result of portal vein ligation. In addition, we 

addressed the effect of portal vein ligation on apoptosis by analyzing bax and bcl-Xi 

mRNA expression at days 2 and 15 post ligation. A significant fold increase in bax 

expression of 3.84+.08 and 3.23±.15 was observed at day 2 (Fig. 5.43) and 15 (Fig.

5.44) respectively as compared to sham-operated control. Moreover, bcl-XL 

expression was significantly decreased by 83.0±.02% in ligated animals at dayl5 as 

compared to sham-operated controls (Fig. 5.44). In parallel studies the effect of portal 

vein ligation on VEGF expression was determined. At day 15 post portal vein ligation 

a significant decrease of 73.0±.08% was observed as compared to sham-operated 

controls (Fig. 5.44).
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Figure 5.1 The Effect of Notch IC Inhibition on Apoptosis

Mock RPMS-1

(B) (C)

Figure 5.1 The Effect of Notch IC Inhibition on RVSMC Apoptosis. (A) RVSMC were transiently transfected with 
the puromycin resistance plasmid, pGK3puro, and co-transfccted with Ihe empty vector p7pCMV or the Notch 
inhibitor RPMS-I. Following overnight recovery, cclls were incubated in puromycin containing growth medium (0.8 \i 
g/ml, 48 h). Cells were stained with the Acridine orange/Ethidiuin Bromide dual stain and viewed under a fluorescent 
microscope. A) Representative images. Apoptotic cells, white arrow. Graph shows cumulative data of percentage 
increase in the number of apoptotic cells due to Notch inhibition. (B) RVSMC were transiently transfected with the 
puromycin resistance plasmid, pGK3puro, and co-transfected with die empty vector p7pCMV or Notch 3 IC plus or 
minus the Notch inhibitor RPMS-I, RNA was isolated and assayed for Bax (B) and Bcl-xL (C) expression as indicated 
using quantitative real time PCR analysis. Expression was normalized to GAPDH levels, and expressed as % increase 
over control (= the value obtained with mock transfected cells arbitrarily assigned a value of 1) n=3, * p<0.05 as 
compared to mock transfected control (student’s t test).
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Figure 5.2 The Effect of Notch IC Inhihition on Apoptosis

JS
U

-50

*

Scrambled siRNA hrt-2

Figure 5.2 The Effect of Notch IC inhibition on RVSMC Apoptosis. RVSMCs 
w ere tran sien tly  transfected  w ith  siRNA directed against hrt-2 o r a  scram bled  
contro l. F o llo w in g  overn igh t recovery RNA w as iso la ted  and assayed  fo r Bax and 
Bcl-xL ex p ression  as indicated u sin g  quan tita tive  real tim e  QRTPCR analysis. 
E xpression  w as norm alized  to  GAPDH levels, and expressed as %  increase over 
control (= th e  va lue  ob ta ined  w ith  m o ck  transfected  ce lls  arb itrarily  a ss igned  a  value 
o f  1) n=3, * p < 0 .0 5  as com pared to  m ock  transfected contro l (s tu d en t’s t test).
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Figure 5.3 Cyclic Strain Induces Changes in SMC Growth in  vitro .
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Figure 5.3 Cyclic Strain Induces Changes in SMC Growth in vitro. (A) RVSMC were seeded onto 
Flexercell™ plates at 1 x 10s cells/well. Following a 24 h growth period, cells were subjected to 
cyclic strain (10%, 24 h). Cells were then counted at 2 day intervals using a haemacytometer. The 
average of 3-wells was observed (B) RVSMC were seeded onto Flexercell™ plates at 1 x 10s 
cells/well. Following a 24 h growth period, cells were subjected to cyclic strain (10%, 24 h). Protein 
was then isolated and pCNA expression was determined by western blot analysis. Values are 
expressed as fold change over static (arbitrarily assigned a value of 1), n=3. * p<0.05 as compared to 
static control (student’s t test).
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Figure 5.4 Cyclic Strain Induces Changes in SMC Growth in  vitro.
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Figure 5.4 Cyclic Strain Induces Changes in SMC Growth In  Vitro. A ) R V S M C  were seeded on to  
F lexerce ll™  plates at 1 x  105 cells/w ell. F o llo w in g  a  2 4  h g row th  p e rio d  cells w ere subjected  to  cyclic  
strain  (10% , 2 4  h). P ro te in  w as then  iso la ted  and Bax and Bcl-X L exp ression  w as determ ined by w estern  b lo t 
analysis .(B) R V S M C  w ere quiesced fo r 48hrs , protein  w as then  iso la ted  and  Bax and B cl-X L expression  was 
determ ined by  w estern b lo t analysis and com pared to  serum  co n ta in in g  con tro ls . (C) R V S M C  w ere seeded 
on to  F lex e rce ll™  plates at 1 x  105 cells/w ell. F o llo w in g  a  2 4  h g ro w th  p e rio d  cells w ere sub jected  to  
cyclic  stra in  (10% , 2 4  h). R N A  w as then  iso la ted  and Bax and  B cl-X L ex p ressio n  w as determ ined by  using  
quantita tive real tim e  P C R  analysis. E xpression  w as norm alized  to  G A P D H  levels, and expressed as fo ld  
increase over contro l (=  th e  value  ob ta ined  w ith  unstrained  cells arb itra rily  assigned  a  value o f  1) n=3, * 
p< 0 .05  as com pared to  unstrained  contro l (s tuden t’s t test).
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Figure 5.5 Cyclic Strain Inhibits Notch Signalling in SMC in  vitro

Protein mRNA

Figure 5.5 Cyclic Strain Inhibits Notch Signaling in SMC in vitro. A) R V S M C  w ere seeded on to  
F lexercell™  p la tes at 1 x  10s cells/w ell. F o llo w in g  a 2 4  h g row th  period, cells w ere sub jected  to  cyclic 
strain (10% , 2 4  h). P ro te in  w as then  iso la ted  and N otch  I IC  and N otch  3 IC  (A) and  Jagged 1 (C) 
expression w as determ ined by w estern b lo t analysis. In parallel cultures R N A  w as extracted  and N otch 1 
and N otch 3 (B) and Jagged  1 (D) expression  was determ ined by using  Q R T P C R  analysis. E xpression  
was norm alized to  G A P D H  levels, and expressed as fo ld  increase over contro l (= th e  v a lu e  ob tained  w ith  
unstrained cells a rb itra rily  assigned  a  value  o f  1) n=5, ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared to  
unstrained contro l (s tuden t’s t test).
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Figure 5.6 Cyclic Strain Inhibits Notch Signaling in SMC in  vitro
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Figure 5.6 Cyclic Strain Inhibits Notch Signaling in SMC in vitro. (A) R V S M C  w ere seeded o n to  
F lexerce ll™  plates at 1 x  105 ce lls/w ell. F o llo w in g  a  2 4  h g row th  period, cells w ere sub jected  to  cyclic 
stra in  (10% , 2 4  h). P ro te in  w as then  iso la ted  and H rt-1 and H rt-2 expression  w as determ ined by w estern 
b lo t analysis. (B) In parallel cu ltu res R N A  w as extracted and hrt-1,hrt-2,hrt-3 hes-1 and hes-5 
expression was determ ined by u sin g  quan tita tive  real tim e  P C R  analysis. E xp ress ion  w as norm alized to  
G A PD H  levels, and  expressed  as fo ld  increase over contro l (= th e  va lue  o b ta ined  w ith  unstra ined  cells 
arbitrarily  ass igned  a  va lue  o f  1) n=5, * p < 0 .0 5  as com pared to  unstra ined  con tro l (s tudent’s t test).

166



Figure 5.7 Force-dependent Effect of Cyclic Strain-induced Decrease in Notch
Signalling Pathway mRNA Expression in RVSMC
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Fig 5.7 Force-dependent Effect of Cyclic Strain-induced decrease in Notch Signalling Pathway 
mRNA Expression in RVSMC. RVSMC were seeded onto Flexercell™ plates at 1 x 10s cells/well. 
Following a 24 h growth period, cells were subjected to differing levels of cyclic strain, 0%, 5%, 10% or 
15% for 24 h as indicated. Samples were isolated at 24 h post-strain and subsequendy assayed using 
quantitative PCR for notch 3 (A), and hes-5 (B) mRNA expression. All values were normalized to 
GAPDH levels, and expressed as a fold change over static (0%) control (= the value obtained with static 
RVSMC mRNA levels, arbitrarily assigned a value of 1), representative experiment, mean of 6 wells, 
experiment performed in triplicate. * p<0.05, ** p<0.005,*** p<0.0005 as compared to unstrained control 
(student’s t test). n=3.
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(A) Notch 3

Figure 5.8 Time-dependent Effect of Cyclic Strain-induced Decrease in
Notch Signalling Pathway mRNA Expression in RVSMC
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Fig 5.8 Time-dependent Effect of Cyclic Strain-induced Decrease in Notch Signalling Pathway 
mRNA Expression in RVSMC. RVSMC were seeded onto Flexercell™ plates at 1 x 10s 
cells/well. Following a 48 h growth period, cells were subjected to cyclic strain over a period of 24 
h, as indicated. Samples were isolated at 0 h, 4  h, 8 h, and 24 h post-strain and subsequently assayed 
using quantitative PCR for Notch 3 (A) and hes-5 (B) mRNA expression. All values were 
normalized to GAPDH levels, and expressed as a fold change over static (0%) control (= the value 
obtained with static RVSMC mRNA levels, arbitrarily assigned a value of 1), representative 
experiment, mean of 6 wells, experiment performed in triplicate. *' p<0.005, ***p<0.0005 as 
compared to static control (student’s t test).
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Figure 5.9 Cyclic Strain Inhibits Notch Signaling in SMC in  vitro
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Figure 5.9 Cyclic Strain Inhibits Notch Signaling in SMC in vitro. R V S M C  w ere seeded 
o n to  F lex e rce ll™  plates at 1 x  105 ce lls/w ell. R V S M C  w ere tran s ien tly  transfected w ith  the 
CBF-1 o r th e  h rtl luciferase-taggcd reporter plasm id. F o llo w in g  o v ern ig h t recovery, cells were 
sub jected  to  cyclic  strain  (10% , 2 4  h) as indicated. S am ples w ere iso la ted  at 2 4  h p ost-s tra in  and 
assayed l'or luciferase ac tiv ity . L uciferase assays w ere norm alized  to  (J-galactosidase ac tiv ities and 
pro tein  levels, n=4, and expressed  as fo ld  increase over contro l (= th e  va lue  ob ta ined  w ith  
unstra ined  cells arb itrarily  assigned  a value  o f  1). *p< 0 .05  as com pared to  unstrained  control 
n=3 (s tu d en t’s t test).
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Figure 5.10 Cyclic S train  Inhibits Notch Signalling in  a Gi-dependent 
Manner
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Figure 5.10 Cyclic Strain Inhibits Notch Signalling in a Gi-dependent Manner. R V S M C  were 
seeded on to  F lex e rce ll™  p la tes at I x 105 cells/w ell. F o llo w in g  a  48  h g row th  period, cells w ere treated 
w ith  P T X (100ng /m l) and sub jected  to  cyclic  strain  o ver a period o f  2 4  h, as indicated. S am p les were 
isolated post-flex  and subsequen tly  assayed using  w estern b lo ttin g  and q uan tita tive  P C R  fo r N otch  3 
protein(A ) and m R N A (B ) expression . (B) A ll values w ere norm alized  to  G A P D H  levels, and expressed as 
a  fo ld  change over sta tic  (0% ) (-PTX ) contro l (= th e  va lue  ob ta ined  w ith  s ta tic  (-PT X ) R V S M C  m R N A  
levels, arbitrarily  assigned  a  value  o f  1), represen tative experim en t, m ean o f  6  w ells , experim ent 
perform ed in trip lica te  as com pared to  s ta tic  contro l.n=3 .
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Figure 5.11 Cyclic Strain Inhibits Notch Signalling in a Gi-dependent Manner

(C) hrt-2 mRNA

unstrained 10% Strain

■ P1X + PIX

(D) pCNA

U nstrained 10% Strain U nstrained 10% Strain

- PTX + PTX

Figure 5.11 Cyclic Strain Inhibits Notch Signalling in a Gi-dependent Manner. R V S M C  were 
seeded o n to  F lex e rce ll™  pla tes at 1 x  105 cells/w ell. F o llo w in g  a  48  h g row th  period, cells were 
treated w ith  P T X  (lO O ng/m l) and sub jected  to  cyclic  strain  over a  period  o f  2 4  h, as indicated
S am ples w ere iso la ted  post-flex  and subsequently  assayed u sin g  w estern b lo ttin g  and quan tita tive  
P C R  fo r hrt-2  m R N A  expression  (A) and pC N A  protein  expression  (B). (A) A ll values were 
norm alized to  G A P D H  levels, and expressed  as a fo ld  change over s ta tic  (0% ) (-PT X ) control (= the 
value ob tained  w ith  sta tic  (-PTX ) R V S M C  m R N A  levels, arb itrarily  a ss igned  a value  o f  1), 
representative experim en t, mean o f  6  w ells , experim en t perform ed in  trip licate , as com pared to  sta tic  
control. n=3 (s tuden t’s t test).



Figure 5.12 Cyclic Strain Inhibits Notch Signalling in a MAPK- dependent Manner
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Figure 5.12 Cyclic Strain Inhibits Notch Signalling in a MAPK- dependent Manner.
R V S M C  w ere seeded o n to  F lex e rce ll™  plates at 1 x  105 ce lls/w ell. F o llo w in g  a  48  h grow th 
period, cells w ere treated w ith  P D 9 8 0 5 9  (lO O ng/m l) and sub jected  to  cy c lic  stra in  over a  period 
o f  2 4  h, as ind icated  S am ples w ere iso la ted  p ost-llex  and subsequen tly  assayed  u sin g  w estern 
b lo ttin g  and quan tita tive  P C R  fo r N otch3 p ro tein  expression(A ) and m R N A  expression  (B). 
(B) A ll values w ere norm alized  to  G A PD H  levels, and expressed  as a fo ld  change over sta tic  
(0% ) (-PD ) contro l (= th e  va lue  ob ta ined  w ith  s ta tic  (-PD ) R V S M C  m R N A  levels, arb itrarily  
assigned  a value  o f  1), rep resen tative experim ent, m ean o f 6  w ells , ex perim en t perform ed in  
trip licate, as com pared to  s ta tic  con tro l.n=3
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Figure 5.13 The Effect of Notch3 IC over expression in Strained RVSMC

(A) Notch 3 mRNA
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(-) Notch 3 IC (+) Notch 3 IC

(B) hrt-2 mRNA

(-) Notch 3 IC (+) Notch 3 IC

Figure 5.13 Ihe Effect of Notch3 IC over expression in Strained RVSMC. R V S M C  w ere 
seeded o n to  F lex e rce ll™  p la tes at 1 x 105 cells/w ell, and w ere tran sien tly  transfected w ith  the 
purom ycin  resistance p lasm id , pG K 3puro , and co-transfected w ith  th e  em p ty  vector p7pC M V  or 
N otch 3 IC 2 days later, and subsequently  exposed to  cyclic  strain  (10% , 2 4  h). Notch 3 m R N A  
levels (A) and hrt-2 m R N A  (B) w ere m easured u sin g  quan tita tive  R T -P C R , and expressed as 
fo ld  increase o v e r contro l (=  th e  levels o f  target gene present in  s ta tic  m o ck  transfected cells) 
n=3, **p<0.005 , “p < 0 .0 5  as com pared to  sta tic  control (s tuden t’s t test).
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Figure 5.14 The Effect of Notch3 IC over expression in Strained RVSMC on
Proliferation
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Figure 5.14 The Effect of Notch3 IC over expression in Strained RVSMC on Proliferation.
R V S M C  w ere seeded o n to  F lex e rce ll™  plates at 1 x  105 ce lls/w ell, and  w ere tran sien tly  transfected 
w ith  th e  purom ycin  resistance  p lasm id , pG K 3puro , and co-transfected  w ith  th e  em pty  vector p 7pC M V  
o r N otch  3 IC  2  days la ter and subsequently  exposed  to  cyclic  stra in  (10% , 2 4  h). W estern  b lo t analysis 
was carried o u t and p C N A  p ro te in  expression  w as m easured, and  expressed  as fo ld  increase over control 
(= th e  levels o f  target gene p resen t in  s ta tic  m ock  transfected ce lls) n=3, ""pcO.OOS, *p< 0 .05  as 
com pared to  s ta tic  contro l (s tuden t’s t  test). n=3.
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Figure 5.15 The Effect of Notch IC over Expression on Apoptosis
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Figure 5.15 The Effect of Notch3 IC over expression in Strained RVSMC on Apoptosis.
R V S M C  w ere seeded o n to  F lex e rce ll™  plates at 1 x  105 ce lls /w e ll, and w ere transien tly  
transfected w ith  th e  p u rom ycin  resistance p lasm id, pG K 3puro , and  co-transfected  w ith  th e  
em pty  vector p 7 p C M V  o r N otch  3 IC  2 days la ter and  subsequen tly  exposed  to  cyclic  strain  
(10% , 2 4  h). C e lls  w ere sta ined  w ith  A O /E tB r dual s ta in  and v iew ed under a  fluorescent 
m icroscope. A p o p to tic  cells w ere then  counted  and expressed as %  change in  th e  n u m b er o f 
ap o p to tic  cells as com pared to  control (= th e  levels o f  target gene p resen t in  s ta tic  m ock 
transfected cells) n=3, *‘ p < 0 .0 0 5 , *p< 0 .05  as com pared to  sta tic  con tro l (s tuden t’s t test).
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Figure 5.16 The Effect of Notch IC over Expression on Apoptosis
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Figure 5.16 The Effect of Notch3 IC over Expression in Strained RVSMC on Apoptosis. R V S M C  
w ere seeded on to  F lex e rce ll™  plates at 1 x  105 ce lls/w ell, and  w ere tran sien tly  transfected w ith  th e  
purom ycin  resistance p lasm id , pG K 3puro, and co-transfected  w ith  th e  em p ty  vector p 7pC M V  o r N otch  3 
IC  2 days later and subsequen tly  exposed  to  cyclic  stra in  (10% , 2 4  h). B cl-X L m R N A  levels (A) and Bax 
m R N A  (B) w ere m easured u sin g  quan tita tive  R T -P C R , and expressed as fo ld  increase over control (= th e  
levels o f  target gene present in  s ta tic  m ock transfected cells) n=3, **p< 0 .005 , *p< 0 .05  as com pared to  
s ta tic  contro l (s tuden t’s t test)
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Figure 5.17 The Effect of Notch IC Inhibition on Strained RVSMCs
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Figure 5.17 The Effect of Notch IC Inhibition on Strained RVSMC. R V S M C  w ere seeded 
o n to  F lex e rce ll™  plates at 1 x 105 ce lls/w ell, and were tran sien tly  transfected w ith  the 
purom ycin  resistance p lasm id, pG K 3puro , and co-transfected w ith  th e  em p ty  vecto r p7pC M V  
o r N otch 3 IC  2 days la ter and subsequently  exposed  to  cyclic  stra in  (10% , 2 4  h). Bcl-XL 
m R N A  levels (A ), Bax m R N A  (B) and pC N A  (c) was m easured and expressed as fo ld  increase 
over contro l (= th e  levels o f  target gene p resen t in  s ta tic  m o ck  transfected  cells) n=3, 
**p<0.005, "p < 0 .0 5  as com pared to  sta tic  contro l (s tuden t’s t test).
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Figure 5.18 Cyclic Strain Inhibits Hedgehog Signalling in SMC in  vitro

Figure 5.18 Cyclic Strain Inhibits Hedgehog Signalling in SMC in vitro. R V S M C  
w ere seeded o n to  F lex e rce ll™  plates at 1 x 105 cells/w ell. R V S M C  w ere transien tly  
transfected w ith  the  C B F-1 o r th e  h r t l  luciferase-tagged reporter p la sm id  F o llo w in g  
overn igh t recovery, cells w ere sub jected  to  cyclic  stra in  (10% , 2 4  h) as ind icated  S am ples 
w ere iso la ted  at 2 4  h post-stra in  and subsequently  assayed u s in g  q u an tita tive  P C R  fo r Hh 
sig n a llin g  pathw ay com ponen t m R N A  expression . A ll values w ere norm alized  to  G A PD H  
levels, and expressed  as a fo ld  change o ver s ta tic  (0% ) control (= th e  va lue  ob ta ined  w ith  
s ta tic  R V S M C  m R N A  levels, arb itrarily  assigned  a va lue  o f  1), rep resen tative experim ent, 
m ean o f  6  w ells , experim ent perform ed in  trip licate . * p < 0 .0 5 , ** p < 0 .0 0 5  as com pared to  
s ta tic  contro l (s tuden t’s t test).n=3.
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Figure 5.19 Cyclic Strain Inhibits Hedgehog Signalling in SMC in  vitro
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Figure 5.19 Cyclic Strain Inhibits Hedgehog Signalling in SMC in vitro. R V S M C  w ere seeded on to  
F lexercell™  plates at 1 x 105 ce lls/w ell. R V S M C  w ere tran sien tly  transfected  w ith  the  C B F-1 o r th e  h rtl 
luciferase-tagged reporter p la sm id  F o llo w in g  o v ern igh t recovery, cells w ere sub jec ted  to  cyclic  strain  (10% , 
24  h) as indicated  S am ples w ere iso la ted  at 2 4  h post-stra in  and subsequently  assayed  u s in g  w estern b lo ttin g  
forShh (A) and Ptc-1 (B) p ro tein  expression . A ll values w ere expressed as a  fo ld  change over sta tic  (0%) 
control (= the value o b ta ined  w ith  sta tic  R V S M C  p ro te in  levels, arb itra rily  assigned  a  value  o f  1), 
representative experim en t, m ean  o f  6  w ells , experim ent perform ed in  trip licate . * p < 0 .0 5 , ** p< 0 .0 0 5  as 
com pared to  sta tic  contro l (s tu d en t’s t  test).n=3.
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Figure 5.20 Cyclic Strain Inhibits Hedgehog Signalling in SMC in  vitro
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Figure 5.20 Cyclic Strain Inhibits Hedgehog Signaling in SMC in vitro. R V S M C  w ere 
seeded o n to  F lex e rce ll™  pla tes at 1 x 105 cells/w ell. R V S M C  w ere tran sien tly  transfected  w ith  
the G li-luciferase-tagged  reporter p la sm id  F o llo w in g  overn igh t recovery, cells w ere subjected  
to  cyclic  strain  (10%, 24 h) as ind icated  S am ples w ere iso la ted  at 2 4  h post-s tra in  and assayed 
fo r luciferase ac tiv ity . L uciferase assays w ere norm alized  to  (3-galactosidase ac tiv ities and protein  
levels, n=4, and expressed  as fo ld  increase over contro l (=  th e  value  o b ta ined  w ith  unstrained 
cells arb itrarily  a ss igned  a  va lue  o f  1). **p < 0 .0 0 5  as com pared to  unstra ined  contro l. n=3 
(s tuden t’s t test).
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Figure 5.21 The Effect of Notch 3 IC over-Expression on Hedgehog Target
Gene mRNA Expresssion in Strained RVSMC
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Figure 521 The Effect of Notch 3 IC over-Expression on Hedgehog target gene mRNA 
Expresssion in Strained RVSMC. R V S M C  w ere seeded o n to  F lex e rce ll™  p la tes at 1 x  105 
cells/w ell, and w ere tran sien tly  transfected  w ith  the purom ycin  resistance  p lasm id , pG K 3puro , and 
co-transfected w ith  th e  em p ty  vecto r p7pC M V  o r N otch 3 IC  2 days la te r and subsequently  exposed 
to  cyclic  strain  (10% , 2 4  h). g li-2  m R N A  levels (A) and ptc-1 m R N A  (B) w ere m easured  using  
quantita tive R T -P C R , and expressed as fo ld  increase over contro l (=  th e  levels o f  target gene 
present in  s ta tic  m ock  transfected  cells) n=3, **p<0.005 as com pared to  s ta tic  contro l (s tuden t’s t 
test)
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Figure 5.22 The Effect of Shh on Hedgehog and Notch Target Gene mRNA
Expresssion in Strained RVSMC.
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Figure 522 The Effect of Shh on Hedgehog and Notch Ihrget Gene mRNA Expression in 
Strained RVSMC. R V S M C  w ere seeded on to  F lex e rce ll™  p la tes at 1 x  105 ce lls/w ell, and were 
treated w ith  recom binan t S h h (3 .0 u g , 2 4  h). F o llo w in g  overn igh t recovery, cells w ere subsequently  
exposed  to  cyclic  stra in  (10% , 24  h). gli-2  m R N A  levels (A) and hrt-3 m R N A  (B) w ere m easured using  
quantita tive R T -P C R , and  expressed  as fo ld  increase over contro l (= the  leve ls o f  target gene present in 
sta tic  m ock  transfected  ce lls) n=3.
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Fig 5.23 Blood Flow in Young Rats Following Carotid Ligation

200

180'w '

s 160
0o 140

O
o 120

DX5 100
a03
XJ 80
U
2 60
3 40

20

0

ss
 f

\ s s%
ft *

ss

—Sham
-  Right Ligated 
■ - Left Ligated

Day 0 Day 3 Day 28

Fig 5.23 Graphs Showing Blood Flow Rates in Young Rats Post-Carotid Ligation 
Conparcd to Sham Control Animals. T h e  left caro tid  artery o f  yo u n g  rats w as ligated, 
and  the b lood  flow  rates m easured  in  the left and righ t carotid  arteries o f  bo th  ligated  and 
sham -operated  an im als u sin g  a  T ranson ic  flow probe (g /m l/m in ) at 0 , 3 , and 28  days post- 
liga tion . R esu lts  are expressed as percentage increase in  flow  rate over sham  operated 
an im als , a rb itra rily  assigned  a value o f  100%. s p < 0 .0 5 , ss p < 0 .0 0 5  as com pared to  sham - 
operated contro l (s tuden t’s t test).n=3,
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Fig 5.24 Changes in Notch 1 Receptor Expression in Ligated versus
Sham-operated Animals 3 Days Post-Carotid Ligation
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Fig 5.24 Changes in Notch 1 receptor expression in the right and left carotid 
arteries of ligated animals compared to sham-operated controls. T h e  left carotid  
artery o f  y o u n g  rats w ere liga ted  at day 0. T h e  le ft and  rig h t carotids o f  b o th  sham - 
operated  and  lig a ted  an im als w ere harvested  3 days p o st lig a tio n . P ro te in  extracted 
from  these  vessels w as assayed fo r N otch  1 u sin g  W estern  b lo t analysis . V alues are 
expressed as fo ld  increase over sham -operated  an im als (arbitrarily  a ss igned  a  va lue  o f  
1), n=2, tw o  vesse ls  w ere poo led  fo r each p ro te in  preparation. p < 0 .0 5  as com pared to  
sham -operated  contro l (s tudent’s t test).
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Fig 5.25 Changes in Notch 3 Receptor Expression in Ligated versus
Sham-operated Animals 3 Days Post-Carotid Ligation
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Fig 525 Changes in Notch 3 receptor expression in the right and left carotid 
arteries of ligated animals conpared to sham-operated controls. T h e  left carotid 
artery o f  yo u n g  rats was liga ted  at day 0. T h e  left and rig h t carotids o f  b o th  sham - 
opcrated and  lig a ted  an im als w ere harvested  3 days p o st lig a tio n . P ro te in  extracted  from  
these  vesse ls w as assayed fo r N otch  3 u sin g  W estern  b lo t analysis. V alues are expressed 
as fo ld  increase over sham -operated  an im als (arbitrarily  assigned  a  va lu e  o f  1), n=2, tw o 
vessels w ere poo led  fo r each p ro tein  preparation. *p< 0 .05 , **p<0.005  as com pared to  
sham -operated  contro l (s tuden t’s t test).
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Fig 5.26 Changes in Notch Target Gene Expression in Ligated
versus Sham-operated Animals 3 Days Post-Carotid Ligation
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Fig 5.26 Changes in Notch Thrget Gene expression in the right and left carotid 
arteries of ligated animals conpared to sham-operated controls. T h e  left carotid  
artery o f  yo u n g  rats w ere lig a ted  at day 0. T he  left and  rig h t carotids o f  b o th  sham - 
operated and lig a ted  an im als  w ere harvested 3 days p o st lig a tio n . P ro te in  extracted from  
these  vessels w as assayed fo r H R T-1 (A), H R T -2  (B), H R T -3  (C), H es-1 (D) and Hes-5 
(E) u s in g  W estern  b lo t analysis. V alues are expressed as fo ld  increase over sham - 
operated an im als  (arb itrarily  assigned  a value  o f  1), n=2, tw o  vessels w ere poo led  for 
each p ro te in  preparation. ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared  to  sham -operated 
con tro l, $$ p < 0 .0 0 5  as com pared to  righ t artery o f liga ted  an im al (s tuden t’s t  test).
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Fig 5.27 Changes in Hedgehog Signaling Gene Expression in Ligated
versus Sham-operated Animals 3 Days Post-Carotid Ligation
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Fig 5.27 Changes in Hedgehog Gene expression in the right and left carotid arteries of ligated animals 
conpared to sham-operated controls. T h e  left carotid  artery o f  yo u n g  rats w ere liga ted  at day 0. T h e  left and 
right carotids o f  b o th  sham -operated  and liga ted  an im als w ere harvested 3 days p o s t liga tion . P ro te in  extracted from  
these vessels was assayed fo r S h h - (A), Ihh-(B) and P tc l  (E) u s in g  W estern  b lo t analysis. V alues are expressed as 
fo ld  increase over sham -operated  an im als  (arbitrarily  assigned  a  va lue  o f  1), n=2, tw o  vesse ls w ere poo led  fo r each 
protein preparation *p< 0 .05 , ** p < 0 .0 0 5 , *** p< 0 .0 0 0 5  as com pared  to  sham -operated  con tro l, * p< 0 .0 5  as 
com pared to  righ t artery o f  lig a ted  an im al (s tudent’s t  test).
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Fig 5.28 Changes in pCNA Expression in Ligated versus Sham
Operated Animals 3 Days Post-Carotid Ligation
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Fig 5.28 Changes in pCNA expression in the right and left carotid arteries of ligated 
animals conpared to sham-operated controls. T h e  left caro tid  artery o f  yo u n g  rats were 
ligated  at day 0. T h e  left and rig h t carotids o f  bo th  sham -operated  and  lig a ted  an im als were 
harvested 3 days p o st lig a tio n . P ro te in  extracted from  these  vesse ls  w as assayed fo r pC N A  
expression  u s in g  W estern  b lo t analysis. V alues are expressed as fo ld  increase over sham - 
operated an im als (arbitrarily  ass igned  a  value o f  1), n=2, tw o  vessels w ere poo led  fo r each 
protein  preparation. ** p < 0 .0 0 5 , * p < 0 .0 5  as com pared to  sham -operated  con tro l (s tuden t’s t 
test).
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Fig 5.29 Changes in Notch 1 Receptor Expression in Ligated
versus Sham-operated Animals 28 Days Post-Carotid Ligation
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Fig 5.29 Changes in Notch 1 receptor expression in the right and left carotid 
arteries of ligated animals conpared to sham-operated controls. T h e  left carotid 
artery o f  young  rats w ere lig a ted  at day 0. T he  left and rig h t carotids o f  bo th  sham - 
operated and liga ted  an im als  w ere harvested 28 days p o st lig a tio n . P ro te in  extracted from  
these  vessels was assayed fo r N otch  1 using  W estern b lo t analysis . V alues are expressed 
as fo ld  increase over sham -operated  an im als (arbitrarily  ass ig n ed  a  v a lu e  o f  1), n=2, tw o 
vessels w ere pooled  fo r each p ro tein  preparation.
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Fig 5.30 Changes in Notch 3 Receptor Expression in Ligated versus
Sham-operated Animals 28 Days Post-Carotid Ligation
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Fig 530 Changes in Notch 3 receptor expression in the right and left carotid 
arteries of ligated animals conpared to sham-operated controls. T h e  left carotid  
artery o f  yo u n g  rats w ere liga ted  a t day 0. T h e  left and rig h t carotids o f bo th  sham - 
operated and  lig a ted  an im als  w ere harvested 28 days post lig a tio n . P ro te in  extracted 
from  these  vesse ls w as assayed fo r N otch 3 u sin g  W estern b lo t analysis. V alues are 
expressed as fo ld  increase over sham -operated  an im als (arb itrarily  assigned  a value  o f  
1), n=2, tw o  vessels w ere poo led  fo r each p ro tein  preparation.** p < 0 .0 0 5  as com pared 
to  sham -operated  con tro l, $ p < 0 .0 5  as com pared to  left liga ted  artery (s tuden t’s t test).
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Fig 5.31 Changes in Notch Target Gene Expression in Ligated versus
Sham-operated Animals 28 Days Post-Carotid Ligation
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Fig 531 Changes in Notch Thrget Gene expression in the right and left carotid 
arteries of ligated animals conpared to sham-operated controls. T h e  left caro tid  artery 
o f  yo u n g  rats w ere liga ted  at day 0. T he  left and rig h t carotids o f  b o th  sham -operated  and 
liga ted  an im als  w ere harvested  28 days p o st lig a tio n . P ro te in  ex tracted  from  these  vessels 
w as assayed  fo r H R T -1 (A), H R T -2  (B), H R T -3 (C ), H es-1 (D) and  H es-5 (E) using  
W estern  b lo t analysis . V alues are expressed as fo ld  increase o v e r sham -operated  an im als 
(arbitrarily  a ss igned  a  va lue  o f  1), n=2, tw o  vesse ls  w ere po o led  fo r each protein  
preparation. * p < 0 .0 5 , ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared  to  sham -operated  con tro l, $ 
p < 0 .0 5 , p < 0 .0 0 5  as com pared to  r igh t artery o f  lig a ted  an im al (s tu d en t’s t  test).
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Figure 5.32 Changes in Hedgehog signaling Expression in liga ted  versus
Sham-operated Animals 28 Days Post-Carotid Ligation
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Changes in Hedgehog signaling Expression in Ligated versus Sham-
operated Animals 28 Days Post-Carotid Ligation

C Ptcl

S ham  R ig h t L igated  L eft L igated

Fig 532 Changes in Hedgehog Gene Expression in the Right and Left Carotid Arteries of 
Ligated Animals Compared to Sham-operated Controls. T h e  left caro tid  artery o f  y o u n g  rats w ere 
ligated  at day 0. T h e  le ft and  righ t carotids o f  b o th  sham -operated  and lig a ted  an im als  w ere harvested  
28 days p o st lig a tio n . P ro te in  extracted from  these  vessels w as assayed fo r  S h h  (A), Ihh  (B), and P tc l  
(C) using  W estern  b lo t analy sis. V alues are expressed as fo ld  increase over sham -operated  an im als 
(arbitrarily assigned  a  va lu e  o f  1), n=2, tw o  vesse ls w ere poo led  fo r each p ro te in  preparation , ** 
p< 0 .005 , *** p < 0 .0 0 0 5  as com pared to  sham -operated  con tro l, $ p < 0 .0 5 , M p < 0 .0 0 5  as com pared to  
righ t artery o f  lig a ted  an im al (s tuden t’s t test).
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Figure 5.33 Changes in pCNA Expression in Ligated versus Sham-
operated Animals 28 Days Post-Carotid Ligation
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Fig 533 Changes in pCNA Expression in the Right and Left Carotid Arteries of Ligated Animals 
Conpared to Sham-operated Controls. T h e  left carotid  artery o f  y o u n g  rats w ere liga ted  at dry 0. T he 
left and righ t carotids o f  bo th  sham -operated  and lig a ted  an im als w ere harvested  28 days post ligation . 
P ro tein  extracted from  these  vessels w as assayed fo r pC N A  expression  u sin g  W estern b lo t analysis. 
V alues are expressed as fo ld  increase over sham -operated  an im als (arbitrarily  ass igned  a  value o f  1), n=2, 
tw o vessels w ere poo led  fo r each protein  preparation. ** p < 0 .0 0 5 , as com pared  to  sham -operated 
con tro l(s tuden t’s t test).

199



A Blood Flow

Figure 5.34 Splanchnic Blood Flow and Splenic Pressure following
Portal Vein Ligation
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Fig 534 Graphs showing splanchnic blood flow and splenic pulse pressure in 
young rats post-PVL conpared to sham-operated control animals. A ) A  T ranson ic  
flow probe w as used  to  m easure sp lanchn ic  b lo o d  flow  in b o th  ligated  and sham -operated  
am inals a t at 2, 4 , 6, 9 and 15 days p o st-liga tion . B) P ortal venous pressure was 
m easured ind irec tly  w ith  direct sp len ic  punctu re  (sp len ic  p u lse  pressu re  u s in g  a  D oppler 
flow  probe). n=3. s p< 0 .0 5  as com pared to  sham -operated  contro l (s tuden t’s t test).
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Fig 5.35 Changes in Notch 1 IC Receptor Expression in Portal Vein
Ligated versus Sham-operated Animals
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Fig 5.35 Changes in Notch 1 IC expression in portal vein ligated animals compared 
to sham-operated controls. T he portal ve ins o f  young  rats w ere 1 igated  at day 0. T h e  
portal veins o f  bo th  sham -operated  and ligated  an im a ls  w ere harvested 2, 4, 6 , 9  and 15 
days post liga tion , P ro te in  extracted from these vessels w as assayed fo r N otch I IC  using  
W estern b lo t analy sis. A) V alues are expressed as fo ld  increase o ver sham -operated  
an im als for each tim ep o in t (arbitrarily  assigned  a  value  o f  1), n = l , tw o  vessels were 
pooled lo r each p ro te in  preparation. II) A bso lu te  densitom etry  values sh o w in g  changes in 
N otch 1 IC  expression  in  both  sham -operated  and liga ted  an im a ls , n = t ,  tw o  vessels were 
pooled  for each p ro tein  preparation.
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Fig 5.36 Changes in Notch 3 IC Receptor Expression in Portal Vein
Ligated versus Sham-operated Animals
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Fig 5.36 Changes in Notch 3 IC expression in portal vein ligated animals conpared 
to sham-operated controls. T he portal ve ins o f  yo u n g  rats w ere lig a ted  at day 0. T he
portal veins o f  b o th  sham -operaled  and lig a ted  an im als w ere harvested 2 , 4 , 6 , 9  and 15 
days p o st lig a tio n . P ro te in  extracted from  these  vessels w as assayed fo r N o tch  3 IC  using  
W estern  b lo t analysis. A ) V alues are expressed  as fo ld  increase over sham -operated  
an im als fo r each tim ep o in t (arb itrarily  ass igned  a va lue  o f  1), n = l ,  tw o  vesse ls were 
pooled  fo r each p ro tein  preparation. B) A b so lu te  densitom etry  values sh o w in g  changes in 
N otch 3 IC  expression  in  bo th  sham -operated  and liga ted  an im als , n = l , tw o  vessels were 
pooled  fo r each p ro tein  preparation.
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Fig 5.37 Changes in Jagged Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 537 Changes in Jagged expression in portal vein ligated animals coup a red to 
sham-operated controls. I’he portal ve ins o f  young  rats w ere liga ted  at day 0. T h e  
portal ve ins o f  bo th  sham -operated  and liga ted  an im als were harvested 2 , 4 , 6 , 9  and 15 
days post lig a tio n . P ro tein  ex trad ed  from  these  vessels w as assayed  for Jagged  using  
W estern b lo l analysis. A) V alues are expressed as fo ld  increase over sham -operated  
an im als fo r each tim ep o in t (arb itrarily  assigned  a  value o f  1), n = l ,  tw o vessels were 
pooled  for cach protein  preparation. B) A b so lu te  densitom etry  values sh o w in g  changes 
in  Jagged  expression  in  bo th  sham -operated  and ligated  an im a ls , n = l , tw o  vesse ls w ere 
pooled  for each protein  preparation.
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Fig 5.38 Changes in HRT-1 Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 538 Changes in HRT-1 expression in portal vein ligated animals conpared to 
sham-operated controls. T h e  portal ve ins o f  yo u n g  rats w ere lig a ted  a t day 0. T he  portal 
ve ins o f  bo th  sham -operated  and ligated  an im als  w ere harvested  2 , 4 , 6 , 9  and 15 days post 
liga tion . P ro te in  extracted from  these  vessels was assayed fo r H R T-1 u s in g  W estern b lo t 
analysis. A ) V alues are expressed  as fo ld  increase over sham -operated  an im als fo r each 
tim ep o in t (arb itrarily  assigned  a  value  o f  1), n = l ,  tw o  vesse ls  w ere poo led  fo r each p ro tein  
preparation. B) A b so lu te  densitom etry  values show ing  changes in  H R T -1 expression  in  b o th  
sham -operated  and  lig a ted  an im als , n = l , tw o vessels w ere p o o led  fo r each p ro te in  preparation.
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Fig 5.39 Changes in HRT-2 Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 539  Changes in HRT-2 expression in portal vein ligated animals conpared to 
sham-operated controls. T h e  portal veins o f  yo u n g  rats w ere liga ted  a t day 0. T he 
portal veins o f  b o th  sham -operated  and liga ted  an im als w ere harvested  2, 4 , 6, 9  and 15 
days post liga tion . P ro te in  extracted from  these  vessels w as assayed fo r H R T -2  using  
W estern b lo t analysis. A ) V alues are expressed as fo ld  increase over sham -operated  
an im als fo r each tim e p o in t (arbitrarily  a ss igned  a  value  o f  1), n = l ,  tw o  vessels w ere 
pooled  fo r each p ro te in  preparation. B) A b so lu te  densitom etry  values show ing  changes in  
H R T -2  exp ression  in  b o th  sham -operated  and  lig a ted  an im a ls , n = l ,  tw o vessels w ere 
poo led  fo r each p ro te in  preparation.
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Fig 5.40 Changes in HRT-3 Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 5.40 Changes in HRT-3 expression in portal vein ligated animals conpared to 
sham-operated controls. T he portal veins o f  yo u n g  rats w ere liga ted  a t day 0. T he 
portal ve in s  o f  bo th  sham -operated  and lig a ted  an im als w ere harvested  2 , 4 , 6, 9  and 15 
days p o s t lig a tio n . P ro te in  extracted from  these  vessels w as assayed  fo r H R T -3  using  
W estern  b lo t analysis . A ) V alues are expressed as fo ld  increase o ver sham -operated 
an im als  fo r  each tim e p o in t (arb itrarily  a ss igned  a  va lu e  o f  1), n = l ,  tw o  vessels w ere 
poo led  fo r each p ro tein  preparation. B) A b so lu te  densitom etry  values sh o w in g  changes in  
H R T -3 ex p ression  in  b o th  sham -operated  and  lig a ted  an im als , n = l , tw o  vessels were 
poo led  fo r each p ro te in  preparation.
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Fig 5.41 Changes in Hes-1 Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 5.41 Changes in Hes-1 expression in portal vein ligated animals conpared to 
sham-operated controls. T h e  portal veins o f  yo u n g  rats w ere liga ted  at day 0. T he portal 
veins o f  b o th  sham -operated  and  liga ted  an im als  w ere harvested  2, 4 , 6 , 9  and 15 days post 
liga tion . P ro te in  extracted from  these  vessels w as assayed fo r Hes-1 u s in g  W estern b lo t 
analysis. A ) V alues are expressed as fo ld  increase o v e r sham -operated  an im als  fo r each 
tim e p o in t (arb itrarily  assigned  a  value o f  1), n = l ,  tw o  vesse ls  w ere po o led  fo r each protein  
preparation . B) A b so lu te  densitom etry  values sh o w in g  changes in  H es-1 expression  in  
bo th  sham -operated  and liga ted  an im als , n = l ,  tw o  vessels w ere poo led  fo r each protein  
preparation.
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Fig 5.42 Changes in Hes-5 Expression in Portal Vein Ligated versus
Sham-operated Animals
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Fig 5.42 Changes in Hes-5 expression in portal vein ligated animals compared to
sham-operated controls. T h e  portal ve ins o f  yo u n g  rats w ere liga ted  a t day 0. T h e  
portal ve ins o f  b o th  sham -operated and lig a ted  an im als w ere harvested  2, 4 , 6, 9  and 15 
days p o st lig a tio n . P ro te in  extracted from  these  vessels w as assayed  fo r H es-5 using  
W estern  b lo t analysis. A ) V alues are expressed as fo ld  increase o v e r sham -operated  
an im als  fo r each tim ep o in t (arbitrarily  a ss igned  a  va lue  o f  1), n = l ,  tw o  vesse ls were 
poo led  fo r each p ro te in  preparation. B) A b so lu te  densitom etry  values sh o w in g  changes in  
H es-5 expression  in  b o th  sham -operated  and  liga ted  an im als , n = l ,  tw o  v esse ls  w ere pooled  
fo r each p ro te in  preparation.
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Figure 5.43 The Effect of Portal Vein Ligation (Day 2) on Notch and
Hedgehog Signalling.

Sham Notchl hrtl hrt2 hrt3 hes5 Shh smo Bax

Figure 5.43 Ihe Effect of Portal Vein Ligation (Day 2) on Notch and Hedgehog 
Signalling. T h e  portal veins o f  young  rats w ere liga ted  at day 0. T h e  portal veins o f  both  
sham -operated  and  lig a ted  an im als w ere harvested 2, 4 , 6 , 9  and 15 days p o st lig a tio n . R N A  was 
extracted at D ay 15 from  these  vessels w as assayed fo r N otch  1, h r t l-3  ,hes-5 , S h h , S m o  and 
Bax expression  u sin g  Q R T P C R  analysis. V alues are expressed as fo ld  increase over sham - 
operated an im als (arbitrarily  assigned  a  va lue  o f  1), n = l ,  7  vesse ls w ere p o o led  fo r cach RNA 
preparation. ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared to  sham -operated  con tro l (rank  test).
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Figure 5.44 The Effect of Portal Vein Ligation (Day 15) on Notch and
Hedgehog Signalling.
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Figure 5.44 The Effect of Portal Vein Ligation (Day IS) on Notch and Hedgehog Signalling. T he
portal veins o f  young  rats w ere ligated  at day 0. T h e  portal veins o f  b o th  sham -operated  and ligated  
an im als w ere harvested  2, 4 , 6, 9  and 15 days p o st liga tion . R N A  w as extracted  at D ay 15 from these  
vessels w as assayed fo r N otch  1, h r t l-3  , V E G F , Bax, B cl-xL and  sm o o th e lin  exp ression  u sin g  Q R T P C R  
analysis. V alues are expressed as fo ld  increase over sham -operated  an im als (arb itrarily  assigned  a value  o f 
1), n = l , 7  vessels w ere poo led  fo r each R N A  preparation. ** p < 0 .0 0 5 , *** p < 0 .0 0 0 5  as com pared to  sham - 
operated contro l (rank test).
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Discussion

This study examined the effect of equibiaxial cyclic strain on Notch signaling 

in adult SMC and determined the contributory role of Notch receptors in regulating 

strain-induced changes in SMC growth. Furthermore, it examined the effect of cyclic 

strain on the Hh signaling pathway and the contributory role of Notch receptors in 

regulating the strain-induced changes in Hh signaling in VSMC in vitro. To further 

investigate the role of biomechanical forces on Notch and Hh signaling and 

subsequently on cell growth, we utilized two models of vascular disease associated 

with vascular remodeling. This allowed us to extrapolate the effect of mechanical 

forces on these pathways to an in vivo scenario.

Biomechanical signals can induce a highly restricted transcriptional response in 

vascular SMC that can include genes that can modify structure (Osol et al., 1995; 

Koller et al., 2002). We established that cyclic strain induces a significant decrease in 

the pro-proliferative and anti-apoptotic effect of Notch by decreasing the expression 

and activity of components of the Notch 3 signalling pathway in a force and time- 

dependent manner. Furthermore this study determined that this decrease observed in 

Notch signaling pathway expression, was a Gi-protein and MAPK-dependent event. 

In addition, strain-induced inhibition of SMC proliferation could be reversed by over­

expression of Notch 3 IC to levels comparable to unstrained cells while concurrently 

attenuating the strain-induced SMC apoptosis. Moreover, Notch inhibition served to 

potentiate the strain-induced decrease in Notch signaling while concurrently further 

decreasing proliferation and increasing apoptosis. This decrease in Notch signaling 

was also mirrored by a similar decrease in Hh signaling. Furthermore, the strain- 

induced decreases in Hh signaling could be reversed by over-expression of Notch 3 

IC, again further highlighting the functional relationship between the Notch and Hh 

signaling pathways in adult SMC. Collectively this study suggests for the first time 

that biomechanical stimulation of SMC inhibits both endogenous Notch and Hh 

signaling resulting in fundamental changes in vascular SMC proliferation and 

apoptosis in vitro. Further understanding of the response of these pathways to 

biomechanical forces, may provide new insights into the pathogenesis and treatment 

of vascular diseases such as atherosclerosis and intimal hyperplasia.

In the previous chapter we reported that by inhibiting the Notch signalling 

pathway we could down regulate the Hh pathway downstream, and as a result,

211



decrease VSMC growth. Furthermore by over-expressing the Notch and Hh pathways 

we could achieve a level of protection against serum-deprivation induce apoptosis 

while concurrently promoting serum-induced proliferation. In this study we aimed to 

investigate whether this pro-proliferative and anti-apoptotic effect of Notch was 

conserved against cyclic-strain-induced changes in VSMC growth. This was studied 

through the over-expression of Notch 3 IC, as other studies by Wang et al., 2002 

reported that in vivo deformation of VSMC causes a greater down-regulation of 

Notch 3 as compared to other Notch receptors. This study demonstrated for the first 

time that constitutively active Notch 3 IC increased B cI - X l expression while 

concomitantly inhibiting Bax expression, an effect that was fully reversed following 

inhibition of CBF-1/RBP-Jk with co-expression of RPMS-1. This data further 

suggests that both Bax and B cI -X l are downstream targets of CBF-1/RBP- Jk for in 

the previous chapter we reported that specific siRNA targeted against either Hrt-1, 2 

or 3, resulted in significant increases and decreases in Bax and B cI - X l expression 

respectively. This is further re-enforced by studies that demonstrate that constitutively 

active Notch 1 modulates the expression of B cI - X l (Jang et ah, 2004). This regulation 

of both Bax and B cI -X l by cyclic strain is somewhat unsurprising as both have been 

implicated in neonatal vascular remodelling and the pathogenesis of vascular disease 

(Pollman et al., 1999; Gibbons et al., 2000). The stimulus for the observed increases 

in Bax expression due to cyclic strain is likely due to increased p53 activity as Bax is 

a direct transcriptional target of p53 and recent studies have shown similar increases 

in Bax expression due to increases in p53 activity (Mayr et al., 2002). However in the 

same study by Mayr, they reported an increase in B cI - X l expression following cyclic 

strain. This could perhaps be attributed to difference in VSMC phenotype. Conflicting 

reports on the effects of cyclic strain on SMC growth are also evident in previous 

studies (Schulze et al., 2003; Sedding et al., 2003; Hipper et al., 2000; Wilson et al., 

1993). However, again depending on the species of SMC, the phenotype studied, the 

extracellular matrix environment, the cell cycle status, SMC can either increase 

(2003; Sedding et al., 2003; Wilson et al., 1993) or decrease (Schulze et al., 2003; 

Hipper et al., 2000) their proliferative capacity. In this study, cyclic strain served to 

decrease SMC proliferation while concomitantly increasing SMC apoptosis.

As cyclic strain can induce a highly restricted transcriptional response in vascular 

SMC that regulates vascular structure (Kleinstreuer et al., 2001), we hypothesized
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that Notch could represent a novel pathway for contributing to strain-induced changes 

in VSMC fate. This study demonstrates a functional role for cyclic strain-induced 

decreases in Notch-mediated CBF-1/RBP-JK-dependent signaling and subsequent 

changes in vascular cell fate. In addition, the decrease in the expression of Notch and 

Hh components is consistent with the observed changes in SMC fate following strain. 

Moreover, selective inhibition of Gi proteins and MAPK respectively, which are 

known signaling pathways involved in mechanotransduction in vascular cells (Shaw, 

2004), despite decreasing baseline Notch signaling, blocked the strain-induced 

changes in Notch and corresponding changes in SMC fate. These findings further 

suggest a possible nexus by which the activation of a biomechanical signaling 

pathway is coupled to the Notch cellular fate programme. However the mechanisms 

by which cyclic strain regulates Notch signaling will require additional study.

To further elucidate the effect of biomechanical forces on the Notch and Hh 

signaling pathways and their contributory role in regulating strain-induced changes in 

SMC growth, we utilized two in vivo models of vascular remodeling. This study 

provides new evidence of alterations in Notch and Hh signaling pathway expression 

due to altered biomechanical forces in vivo. The aim of using an in vivo model of 

altered biomechanical forces and vascular remodeling was to further validate the 

cyclic strain induced decreases in Notch and Hh signaling pathway expression which 

we had determined in vitro. Partial ligation of the left carotid artery in the rat resulted 

in significant increases in blood flow in the right carotid artery at both 3 and 28 days 

post ligation. Contrast to this, blood flow in the left ligated carotid exhibited a 

significant decrease at both days 3 and 28 post ligation. These alterations in blood 

flow observed in our model proved consistent with Korshunov and Berk who used a 

similar model. However Korshunov and Berk, (2002) reported no significant changes 

in systolic blood pressure between sham-operated and ligated animals at both 3 and 

28 days post ligation. Therefore one would suggest that the resulting vascular 

remodeling events, which occur in both right and left carotid arteries, is a 

compensation mechanism for altered blood blow rates in these vessels. Therefore, 

since vascular remodeling is associated with changes in cell fate, it is likely that the 

changes in Notch and Hh signaling pathway expression is playing a pivotal role in the 

vascular remodeling in both the left and right carotid arteries respectively. In the case 

of both the rat carotid model and in the PVL model, a bi-phasic pattern of Notch
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signaling pathway component expression was observed when compared to sham- 

operated controls. In the rat-carotid model there is an initial upregulation of Notch 

and Hh signaling pathway component expression at 3 days post ligation with respect 

to sham-operated controls. This suggests that an up-regulation of the Notch signaling 

pathway and consequent upregulation of the Hh pathway is an acute response to 

alterations in blood flow and biomechanical stress. Furthermore, this upregulation of 

these signaling pathways is associated with the acute remodeling event, which occurs, 

in both the right and left carotid arteries, as a result of altered biomechanical forces. 

Analysis of Notch and Hh signaling pathway expression at 28 days post carotid 

ligation resulted in a decrease in Notch and Hh component expression as compared to 

sham-operated controls. Moreover expression levels of Notch and Hh were decreased 

in the high flow right carotid artery as compared to the low flow left carotid artery. 

This serves to complement our previous data reporting cyclic-strain-induced down 

regulation of Notch and Hh signalling is mirrored in an in vivo scenario of strain due 

to increased blood flow.

The observed bi-phasic pattern of Notch signaling pathway expression following 

both the carotid artery ligation and PVL model is somewhat expected as Campos et 

al, 2002 observed a bi-phasic pattern of Notch signalling pathway expression 

following balloon catheter injury. However in contrast to our study, Wang et al 

observed an initial downregulation of Jaggedl, Notch 1 and H rtl, 2 and 3 following 

balloon injury and an upregulation of both Jaggedl and Notch 3 expression 28 days 

post injury whilst no increase was observed in Hrtl, 2 and 3 expression levels. One 

possible explanation is that Wang and coworkers measured expression in medial 

SMC, whereas Campos measured expression of Notch in intimal SMC. A possible 

reason for these reported differences may be due to different SMC phenotype, which 

can often act differently to the same stimulus (Campadona et al., 1999). In contrast 

however, our study describes a bi-pasic regulation of the Notch and Hh signaling 

pathways in the entire vessel wall. Analysis of the regulation of the Notch and Hh 

signaling pathways in this study offers a more representative model of a vascular 

disease state, as cells are continuously exposed to increased and decreased blood flow 

and subsequent biomechanical forces as compared to sham-operated controls.
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Discussion

The research presented in this thesis has succeeded in its specific aims. We 

have clearly established the presence of Notch and Hedgehog signalling in adult 

VSMC and provided further insight into the regulation of cell growth by these 

pathways both in vitro and in vivo. Elucidating the role of Notch and Hedgehog and 

its role in VSMC growth will help contribute in the design of novel therapeutics for 

the treatment of vascular disease.

Vascular smooth muscle cell (VSMC) fate decisions (cell growth, migration 

and apoptosis) are the fundamental features in the pathogenesis of vascular disease. 

Firstly, this study investigated the role of Notch 1 and 3 receptor signalling in 

controlling adult SMC growth in vitro by establishing that hairy enhancer of split 

{hes-1 and -5) and related hrt’s {hrt-1, -2 and -3) are direct downstream target genes 

of Notch 1 and 3 receptors in VSMC. Furthermore, we identified the essential role for 

nuclear protein CBF-1/RBP-Jk in the regulation of these Notch target genes. In 

addition, by constitutively over expressing Notch 1 IC and Notch 3 IC we reported a 

significant up-regulation of CBF-1/RBP-Jk dependent promoter activity and Notch 

target gene expression concomitant with significant increases in SMC growth. 

Moreover, by inhibiting endogenous Notch-mediated CBF-1/RBP-Jk regulated gene 

expression by RPMS-1, and pharmacological inhibitors monensin and brefeldin A, we 

could significantly attenuate this Notch induced increase in cell growth. In addition, 

to Notch IC inhibition, by siRNA knockdown of Notch target genes hrt-1, -2 and -3 

we could significantly decrease cell growth while concomitantly increasing SMC 

apoptosis. These findings suggested in this study, proved that endogenous Notch 

receptors and downstream target genes, control vascular cell fate in vitro.

To further investigate the signalling mechanisms that govern cell fate 

decisions in VSMC, we then attempted to establish the role of the Hedgehog 

signalling pathway in these cells. Notch receptor-ligand interactions, vascular 

endothelial growth factor (VEGF) and components of the Hedgehog signalling 

pathway have been implicated in vascular morphogenesis and modelling of the 

embryonic vasculature. This study examined the specific role of a Hh/VEGF pathway 

in controlling VSMC growth in vitro. We reported that the Hh signalling pathway 

components Shh, Ihh, Dhh, the receptor Ptcl, Smo and the downstream target gene,
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gli-2, were all constitutively expressed in adult rat SMC. In addition, activation of Hh 

signalling with recombinant SHh or by over-expressing full-length SHh resulted in a 

significant increase in Hh signalling concomitant with an increase in VEGF 

expression. Moreover this increase in Hh signalling resulted in a significant increase 

in cell growth, a decrease in apoptosis and activation of Notch target gene expression 

in SMC. Furthermore, inhibition of Hh signalling with the specific Hh inhibitor 

cyclopamine resulted in a significant decrease in Hh signalling concomitant with a 

decrease in SMC proliferation, an increase in apoptosis while concurrently decreasing 

Notch target gene expression. In addition we found that we could significantly 

attenuate this Shh induced increase in cell growth by inhibiting the Notch signalling 

pathway with RPMS-1. SHh-mediated stimulation of Notch target genes was also 

significantly attenuated following inhibition of VEGF expression using targeted 

siRNA, an effect that could be reversed by activation with recombinant VEGF. 

Collectively, this data suggested that Hh could control SMC growth via VEGF 

activation of Notch target gene expression in vitro.

As this study has clearly established the role of the Notch and Hh signalling 

pathways in regulating cell fate in adult SMC we then investigated the role of 

mechanical forces in modulating Notch and Hh mediated growth of SMC in vitro. Rat 

SMC cultured under conditions of cyclic strain exhibited a temporal- and force- 

dependent reduction in Notch 3 receptor expression concomitant with a significant 

reduction in CBF-1 /RBP-Jx-dependent Notch target gene expression as compared to 

unstrained controls. Furthermore we found this decrease in Notch signalling to be 

both Gi-protein- and MAPK-dependent. In parallel cultures, cyclic strain was found to 

inhibit SMC growth while significantly promoting SMC apoptosis. Notch 3 receptor 

over-expression significantly reversed the strain-induced changes in SMC growth 

while Notch inhibition served to further potentiate these changes in SMC proliferation 

and apoptosis. We then investigated the role of mechanical forces resulting from 

either cyclic strain or from pulse pressure on the Hh signalling pathways. As with the 

Notch signalling pathway, Hh signalling pathway components were significantly 

down-regulated with strain as compared to unstrained controls. Furthermore cyclic 

strain induced decreases in Hh signalling could be reversed by over expression of 

Notch 3 IC, again further proving the functional relationship between these pathways 

in VSMC. Finally to further validate this part of the study on the proposed effects of
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mechanical forces on Notch and Hh signalling and subsequently on cell fate, we 

provided evidence of biomechanical regulation of these pathways in vivo. Using two 

models of biomechanical forces, the carotid ligation model and the portal vein ligation 

model, we provided evidence of the effect of biomechanical forces on Notch and Hh 

signalling and subsequently on cell growth. Notch and Hedgehog signalling pathway 

expression was decreased at 3 days and increased at 28 days post-carotid ligation. 

This was accompanied by a decrease and increase in cell growth respectively. In 

addition this pattern of an inverse relationship between Notch signalling pathway 

expression and cell growth was generally maintained following portal vein ligation. 

These results served to validate our in vitro data and in fact our in vitro model as a 

representation of an in vivo scenario.

This study has clearly provided evidence of the importance of the Notch and 

Hh signalling pathways in determining SMC fate decisions. Furthermore, it is these 

changes in SMC fate decisions which provide the framework for the development of a 

viable vascular system. Vascular development is typically divided into two stages, 

vasculogenesis, which involves the formation of endothelial tubes de novo from 

newly differentiated angioblasts and angiogenesis, which involves the remodelling of 

existing blood vessels to form the mature vasculature. With blood vessel formation 

being a key step in both normal embryonic development and in the growth of solid 

tumours, the signalling pathways that are active at the various stages of 

vasculogenesis and angiogenesis have become a very important focal point in 

vascular research. Therefore, determining how these signalling pathways interact to 

develop the vasculature will help contribute greatly towards the generation of 

therapies to both enhance and restrict vessel growth. Recent studies point to a role for 

Hh in blood vessel differentiation. Studies carried out in the mouse yolk sac (Byrd et 

al., 2003), the zebrafish (Lawson et al., 2002) and in adult vascular injury models 

(Pola et al., 2003), all suggest that the target of Hh action is not the angioblast cell or 

endothelial cell, but rather an intermediate cell type that responds to Hh. These 

intermediate cell types may respond to Hh by expressing vascular specific growth 

factors such as VEGF. Recent studies by D’amore et al., 2002 and Lawson et al., 

2002 have placed Hh in a signalling cascade that includes Notch, VEGF and the 

angiopoietins among others. However, studies by Kanda et al., 2004 and Vokes et al., 

2004 have suggested that Hh may exert its effect during vasculogenesis independent
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of the proposed Hh-VEGF-Notch cascade. This leads us to ask the question of how 

does the Hh signalling pathway interact with other signalling pathways in vascular 

development.

Pola et al., 2001 reported that addition of recombinant SHh to interstitial 

mesenchymal cells can promote the expression of VEGF. In addition, expression of 

both Notch 1 and DIM are upregulated by VEGF in human arterial endothelial cells 

(Liu et al., 2003). These two studies together lead us to hypothesize the existence of a 

regulatory cascade for vascular remodelling which involves Hh promoting VEGF 

expression, which in turn promotes Notch expression and signalling. Furthermore 

Lawson et al., 2001 carried out studies in the zebrafish, which revealed that the 

activation of Notch can compensate for the loss of VEGF activity. This placed VEGF 

downstream of SHh and upstream of the Notch signalling pathway in determining the 

arterial fate of the dorsal aorta in the zebrafish. Therefore Lawson’s work proved that 

VEGF can restore normal arteriogenesis in the absence of SHh but not however, in 

the absence of Notch function.

These studies among others have implicated the essential role of Hh, VEGF 

and Notch signalling in vascular development. However, in the past decade there has 

been a greater appreciation of the fact that signalling pathways such as Notch and Hh 

which have been studied predominantly during embryogenesis and thought to be 

relatively silent during normal adult life, may be recruited postnatally in response to 

tissue injury. Pola et al., 2003 demonstrated that SHh, IHh and ptcl are postnatally 

recapitulated and that their upregulation during muscle regeneration post ischemia 

provides evidence of a potential regulatory role of Hh signalling in angiogenesis. In 

addition, dysregulation of the Hh signalling pathway has also being shown to play a 

major role in a variety of human tumours such as breast cancer, prostate cancer and 

gastric cancer (Katoh and Katoh et al., 2005). Therefore with the knowledge that Hh 

signalling is recruited postnatally in adult life, this study aimed to investigate whether 

the Hh-VEGF-Notch cascade was recapitulated and playing a role of just of similar 

importance in VSMC growth in adult life. However, although the present study and 

the studies mentioned here can only offer a functional connection between SHh, 

VEGF and Notch in determining arterial fate, it should be noted that the molecular 

mechanisms by which Hh mediates VEGF and whereby VEGF mediates Notch in the 

vasculature, remains to be elucidated. Furthermore, though this functional relationship
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of Hh-VEGF-Notch has been shown to be a potent modulator of VSMC growth, a 

direct link to the downstream signalling mechanisms and effectors of proliferation and 

apoptosis remains to be fully elucidated. Therefore the final aim of this study is to 

postulate possible mechanisms on how these signalling pathways may regulate 

VSMC growth, and therefore provide a possible platform for which future studies in 

the laboratory may be built on.

The regulation of Notch and Hh signalling is known to occur at multiple levels 

including patterns of ligand and receptor expression, receptor-ligand interactions, 

trafficking of the receptor and ligands, and covalent modifications including 

glycosylation, phosphorylation and ubiquitination (Weinstein et al., 2002; Iso et al., 

2003; Baron et al., 2002). One growing possibility on the mechanism on how Notch 

modulates VSMC growth is the post-translational modifications on Notch IC such as 

phosphorylation that may influence its transactivation capacity (Pereira et al., 1999; 

Taylor et al., 2002). One such factor, Glycogen Synthase Kinase-3 beta (GSK-3|3) is 

known to modulate Notch signalling through phosphorylation of Notch IC (Taylor et 

al., 2002). Moreover, it has been reported that inhibition of GSK-3(3 shortens the half- 

life of Notch IC while conversely activated GSK-3|3 reduces the quantity of Notch IC 

that is degraded by the proteosome (Espinosa et al., 2002).

GSK-3|3 is a protein serine/threonine kinase, which phosphorylates and thereby 

inactivates glycogen synthase, a key enzyme in the synthesis of glycogen (Embi et al, 

1980). Since its discovery, research has provided insight into the pleiotropic role that 

GSK-3|j plays in protein synthesis, cell proliferation, cell differentiation, microtubule 

dynamics, cell motility and cell survival (Frame et al., 2001; Grimes et al., 2001). It is 

a crucial factor in many cellular signalling pathways and regulates several 

transcription factors. GSK-3|3 phosphorylates multiple substrates, which include 

cyclin D1 (Alt et al., 2000), GATA4 (Morisco et al., 2001), c-jun (Nikolakaki et al., 

1993), c-myc (Saksela et al., 1992) and p53 (Pap et al., 1998) among others. In 

addition, GSK-3|3 is also at the nodal point of various signalling pathways such as the 

phosphoinositde-3-kinase pathway, the protein kinase B pathway and the Wnt 

(wingless and integrated) pathway (Delcommenne et al., 1998; Shaw et al, 1997; 

Oak et al, 1996). It has been suggested that GSK-3|3 plays a significant role in 

several diseases including Alzheimers’ disease (Aplin et al, 1997), Diabetes Mellitus 

(Eldar-Finkelman et al., 1999) and tumorigenesis (Kim et al, 2000). Furthermore,
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GSK-3|3 has recently being identified as a negative regulator of cardiac hypertrophy 

(Antos et al., 2002) and as an important regulator of cardiac development (Hardt et 

al., 2002). In addition, Hall et al., 2002, demonstrated that during neointimal 

formation, VSMC apoptosis is inhibited by the upregulation of glucose metabolism 

and is linked to the inactivation of GSK-3|3. Moreover, recent studies by Park et al, 

2001 reported that constituted active GSK-3|3 gene transfer results in a significantly 

reduced proliferation and migration in human aortic SMC.

The phosphorylation of Notch proteins has been indirectly correlated with Notch 

activation and nuclear translocation as well as cellular transformation. Recent 

evidence has suggested that the Wnt pathway, which results in GSK-3|3 inhibition, 

cross-talks with the Notch signalling pathway. The Wnt family include several 

secreted glycoprotein’s that are required for a variety of developmental events. The 

canonical Wnt pathway involves the interaction of Wnt with the frizzled receptor that 

results in inhibition of GSK-3(3 by an unclear mechanism involving the 

phosphoprotein Dishevelled. Inhibitory cross-talk between the Notch and Wnt 

signalling pathways has been reported to occur at the level of the Notch extracellular 

domain binding to Wnt (Wesley et al., 1999), and the level of Notch intracellular 

domain binding to dishevelled (Axelrod et al., 1996). However, both studies report 

evidence for synergistic cross-talk between both pathways, resulting in the activation 

of different sets of genes that require both Notch and wingless proteins. Espinosa et 

al., 2002. recently reported a novel mechanism for Wnt and Notch pathway cross-talk 

involving GSK-3|3 phosphorylation. They demonstrated that GSK-3|3 is able to 

associate with and phosphorylate Notch 2 in vivo. Moreover, this phosphorylation 

occurs in the STR domain and more specifically in residues Thr-2068 and/or Ser- 

2070, Thr-2074, and Ser-2093, providing evidence of the importance of this region in 

regulating Notch function. Their study proved that full-length Notch 2 and Notch2 IC 

proteins are able to bind GSK-3|3 but only the processed fragment (Notch 2 IC) is 

phosphorylated. Taken together with the fact that over-expression of both full-length 

Notch 2 and Notch2 IC induces the accumulation of GSK-3P into the nucleus, this 

suggests that GSK-3|3 may be modulating active Notch. With this in mind they 

confirmed that GSK-3p is able to inhibit Notch mediated transcription of the Hes-1 

promoter and this is further validated with their results showing Notch target gene 

upregulation following GSK-3|3 inhibition with its inhibitor Lithium Chloride (LiCl).
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Furthermore Wnt-1 inhibits GSK-3 (3-dependent phosphorylation of Notch 2 and leads 

to HES-1 promoter upregulation.

Taken these results together, this indicates that GSK-3 (3 activity plays an important 

role in regulating Notch-dependent gene transcription. With the knowledge that the 

Notch pathway is crucial for controlling many cell fate decisions, specific 

combinations of active/inactive GSK-3 (3 and Notch may result in completely different 

outcomes. In addition, because GSK-3 p is located at the nodal point where multiple 

signals such as Notch and Hh merge to control the proliferation and migration of 

VSMC, it may represent a pharmacological target to treat vascular disease. Studies by 

Park et al., 2002, demonstrated or the first time in vivo that active GSK-3(3 gene 

transfer results in a significant reduction of neointima formation after balloon injury 

in rat carotid arteries. These effects were attributable, at least in part to the ability of 

GSK-3 p to inhibit SMC proliferation and to promote sustained apoptosis. This study 

extends recent in vitro findings that GSK-3 (3 plays an important role in VSMC 

proliferation and apoptosis in the process of vascular remodelling post balloon injury 

(Kim et al., 2002). The exact role of GSK-3 (3 in the proliferation and fate of VSMC is 

poorly understood but this novel regulation of Notch signalling by GSK-313 certainly 

contributes to the greater picture on how cell fate is determined in VSMC.

This study and others have provided insight into the molecular mechanisms of 

SMC growth following injury. For example, abberant SMC proliferation and 

extracellular matrix formation in the subintimal region of blood vessels that have been 

subjected to intimal injury, are responsible for restonosis following balloon 

angioplasty of the coronary arteries (Wang et al., 2002). In addition, aberrant SMC 

proliferation is also responsible for accelerated atherosclerosis in a variety of 

pathophysiological states. The mechanisms responsible for SMC proliferation 

following injury remains incompletely understood. One early response proto­

oncogene, c-myc is thought to play an important role in the regulation of cellular 

proliferation and differentiation. As activation of the Notch and Hh signalling 

pathways is coupled to the regulation of VSMC growth, it proves an interesting study 

as to whether both Notch and Hh may interact with the myc family.

Expression of c-myc in the normal cell is tightly regulated by external signals 

such as growth factors and extracellular matrix contacts as well as by internal clocks
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such as the cell cycle. The resting cell normally expresses little c-myc, whereas cells 

stimulated by growth factors dramatically increase c-myc expression as an immediate 

early response gene. C-myc persists into the cell cycle but then returns to its basal 

quiescent state in resultant daughter cells. Abnormal or ectopic over expression of c- 

myc in primary cells activates a protective pathway through the induction of 

pl9/pl4ARF and a p53-dependent cell death pathway. Hence, normal cells that over­

express c-myc are eliminated from the host organism through apoptosis, thereby 

protecting the organism from lethal neoplastic changes. Normal embryonic 

development requires regulate expression of c-myc as well as other myc family 

members. For example, mouse embryos in which both alleles of c-myc have been 

deleted by homologous recombination, die in early development due to a lack of 

primitive haematopoiesis. Several lines of evidence point to the interaction of the 

Notch signalling pathway and c-myc, which suggest a functional link in the regulation 

of cell growth. Similar to the Notch signalling pathway, c-myc is highly conserved 

from Drosophilia to humans and targeted mutations in murine c-myc gene results in 

widespread embryonic lethality suggesting its critical role in development (Davis et 

al, 1993). In addition, myc proteins are helix-loop-helix (HLH) proteins (class B) as 

they contain a HLH motif at their c-terminus which mediates protein dimerization 

with other proteins containing the same motif. Notch target genes are also part of the 

HLH family of genes (class C), and interaction between myc and Hes proteins has 

been documented (Swiss institute of bioinformatics). Hrt’s are known to bind to a 

number of E-box motifs on their target genes (Nakagawa 2000). This study therefore 

determined using bioinformatics and the cloned c-myc promoter sequence (Ray and 

Miller 1991), whether any of the Hrt binding sequences were present on the c-myc 

promoter. We reported that 3 Hrt E-boxes were found to be present on the c-myc 

promoter region, these being CAACTG, CACCTG and CACTTG. This further added 

to the possibility of the direct interaction between the Notch signalling pathway and c- 

myc.

In addition, this study among others has shown signalling by Hh family 

members to regulate proliferation and apoptosis in a variety of cell types. However, 

specific links between Hh, which has not yet been reported to activate a receptor 

tyrosine kinase like many other growth factors and the cell cycle, are still being 

elucidated. Studies by Sjostrom et al, has shown N-myc to be a direct target of SHh in
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proliferating cerebellar granule neuron precursors. Their study reported that Hh 

signalling induces N-myc expression and that N-myc protein is stabilized by insulin­

like growth factor-mediated suppression of GSK-3(3. Therefore, it would certainly 

now prove an interesting study as to whether this sequence of events is mirrored in 

vascular cells. With this in mind, one would be tempted to speculate a pro- 

proliferative pathway involving Notch-Hh upregulation of myc family members 

where GSK-3|3 suppression is required. In further validation of the importance of c- 

myc in VSMC growth, studies by Chen and co-workers reported that inhibition of c- 

myc prevents proliferation of VSMC post balloon injury. Balloon injury to the arterial 

wall triggers the synthesis of and the release of c-myc which in turn promotes 

proliferation and migration through receptor specific interactions of which may 

include the Notch signalling pathway. Furthermore, this study by Chen suggests that 

c-myc participates in the proliferative response of the vascular wall to arterial injury. 

In addition, that the resultant over-expression of c-myc in the damaged artery if 

inhibited may be therapeutically useful in preventing the proliferative lesions that 

occur after coronary angioplasty. However, it also important to determine the possible 

downstream effectors of apoptosis in addition to proliferation and how these effectors 

are possibly coupled to the Notch and Hh signalling pathways, as a controlled balance 

of both cell fates’ is of critical importance to vascular remodelling.

The cellular response to vascular injury involves a complex interplay between 

resident cells of the vessel wall such as EC, SMC and adventitial fibroblasts and 

circulating elements such as inflammatory cells that are recruited to participate in the 

healing response. Under conditions of injury VSMC switch from a contractile 

phenotype with slow replication into migratory cells with a high proliferation rate. 

Therefore it is increased total cellularity, which is a common feature of the injury 

response, thus focussing attention on the balance between cell proliferation and cell 

death. Cell growth, seen as this balance between cell proliferation and cell death is a 

critical feature of vessel-wall remodelling at all stages from vascular development and 

injury to chronic vascular lesions (Walsh et al., 2000). It is now well documented that 

VEGF is a major regulator of both physiological and pathological neo­

vascularization, a role which is conserved from development. This study has clearly 

shown that VEGF modulates the regulation of VSMC fate decisions through a
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functional signalling cascade involving the Notch and Hh signalling pathways. 

Several recent reports have also implicated VEGF as a major survival factor for EC 

during angiogenesis and vasculogenesis along with other growth factors such as bFGF 

and angiopoietin-1. The activation of VEGF receptors including KDR/flk-1 induces a 

number of phenotypic responses which contribute to the angiogenic phenotype 

(Neufeld et al., 1999). Recent results have implicated VEGF as a major (anti- 

apoptotic) factor for newly formed EC found in immature, newly formed blood 

vessels (Benjamin et al., 1999). These findings, including the findings of this study 

where Hh induced up-regulation of VEGF decreases serum-deprived induced 

apoptosis, asks the obvious question of how VEGF mediates its pro-survival/anti- 

apoptotic function. There have been several possibilities put forward, all of which are 

not necessarily exclusive. Gerber et al, and Carmeliet et al, reported evidence that 

VEGF promotes its pro-survival/anti-apoptotic function through the phosphotidyl 

inisotol 3 kinase (PI3K)/AKT signal transduction pathway. In addition Nor et al, 

reported that VEGF can induce high levels of anti-apoptotic bcl-2. This results is 

particularly interesting as this study has conclusively shown that over-expression of 

Notch and Hh signalling pathway components has shown to have a direct effect on 

bcl-2 family members by both increasing anti-apoptotic bcl-Xi while concurrently 

decreasing pro-apoptotic bax. Furthermore, Gupta et al, reported evidence that VEGF 

suppresses apoptosis in human micro and macro vascular cells via induction and 

suppression of the MAPK(p42)/ERK(p44) and SAPK/JNK signalling pathways 

respectively. Moreover the VEGF- mediated EC survival and angiogenesis may be 

dependent on the adhesion molecule VE (vascular endothelial) Cadherin through both 

AKT kinase and bcl-2 (Carmeliet et al., 1999). However, in addition to the bcl-2 

family of apoptosis regulators a new different family of modulators of apoptosis has 

been recently discovered.

The inhibitors of apoptosis proteins (IAP) are defined by the presence of at 

least one “BIR” domain (Baculovirus inhibitor of apoptosis repeat), and the ability to 

inhibit apoptosis. Humans have eight IAP family members, NAIP, cIAPl, cIAP2, 

XIAP, Is-XIAP, ML-IAP, apollon and survivin. This family of anti-apoptotic proteins 

bind and inhibit caspase 3,7 and or 9 but not caspase 8. Whereas anti-apoptotic 

members of the bcl-2 family such as bcl-2 itself or bcl-XL block upstream caspases, 

the IAPs and survivin appear to inhibit apoptosis by blocking the terminal effector
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caspases such as 3, 7 as well as procaspase 9. Tran et al, reported that VEGF could 

inhibit apoptosis and promote survival of EC by upregulating survivin. Another 

interesting aspect of Trans study was the cell cycle-dependency of VEGF induced 

upregulation of survivin expression. Survivin, also known as Birc5, was first 

identified as a member of the IAP gene family by Ambrosini et al, and subsequently 

has been demonstrated to have a unique dual role in the regulation of cell proliferation 

and cell death. Survivin is involved in the stabilization of microtubules during mitosis 

at the G2/M phase (Fortugno et al., 2002) and is thought to block apoptosis by direct 

interference with caspase 9 activation. Survivin is largely absent in normal adult 

tissues but is widely expressed in embryonic tissue. However, it is expressed in 

virtually all forms of human cancers to date and its expression has been linked to poor 

prognosis (Kawasaki 1998). Survivin is upregulated at the mitotic phase of the cell 

cycle and its activity requires phosphorylation by the mitotic kinase p34cdc2 cyclin B1 

at a unique site. From this unique function at the interface of cell proliferation and cell 

death, a potential role for surviving in the regulation of vascular injury has recently 

being postulated. Survivin up-regulation by VEGF resulting in EC survival may be a 

critical factor to angiogenesis. Furthermore recent studies by Blanc-Brude et al, has 

demonstrated that survivin mediates the anti-apoptotic effects of platelet derived 

growth factor (PDGF) in VSMC and identified survivin expression in experimental 

neointima formation. Moreover, survivin up-regulation has been identified in diverse 

forms of vascular injuries across species, including early atherosclerosis, angioplasty- 

induced neointima and vein-graft adaptation. Taken together, these reports all suggest 

a role of fundamental importance for survivin to the cellular events that determine 

neointima formation and vascular remodelling. With this growing evidence that 

VEGF up-regulates survivin, which in turn mediates cell division and cell cycle 

progression, a greater knowledge of VEGF-regulation of survivin and the possible 

role of Notch and Hh on its expression, may translate into clinically useful 

applications. On going investigations should seek to better identify the nature of 

survivin expressing cells, their contribution to vascular lesion development and the 

role of the Hh-VEGF-Notch signalling cascade, by which survivin may influence a 

SMC phenotype.
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In conclusion, this study has established the presence and functional 

relationship between the Notch and Hh signalling pathways in the regulation of 

VSMC growth. However, while the regulation of both these pathways remains 

undefined, a number of possible molecules have been proposed which may regulate 

these pathways or in fact be regulated by these pathways in promoting cell growth in 

VSMC. As it is aberrant cell growth, which is a fundamental cause of vascular 

disease, a greater understanding of the signalling pathways that govern cell growth 

will hopefully provide greater insight into the molecular basis of this disease, which 

continues to be a major cause of death each year. It is a hope that this study among 

others can help provide a platform for which future cardiovascular research can be 

built on with a view to providing therapeutic solutions to an ever-growing problem.
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