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Abstract 

Welding input parameters play a very significant role in determining the quality of a weld joint. 

The joint quality can be defined in terms of properties such as weld-bead geometry, mechanical 

properties, and distortion. Generally, all welding processes are used with the aim of obtaining a 

welded joint with the desired weld-bead parameters, excellent mechanical properties with 

minimum distortion.   

Nowadays, application of Design of Experiment (DoE), Evolutionary algorithms and 

computational network are widely used to develop a mathematical relationship between the 

welding process input parameters and the output variables of the weld joint in order to determine 

the welding input parameters that lead to the desired weld quality. A comprehensive literature 

review of the application of these methods in the area of welding has been introduced herein. 

This review was classified according to the output features of the weld, i.e. bead geometry and 

mechanical properties of the welds. 
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1. Introduction  
 
Generally, the quality of a weld joint is directly influenced by the welding input parameters 

during the welding process; therefore, welding can be considered as a multi-input multi-output 

process. Unfortunately, a common problem that has faced the manufacturer is the control of the 

process input parameters to obtain a good welded joint with the required bead geometry and weld 

quality with minimal detrimental residual stresses and distortion. Traditionally, it has been 

necessary to determine the weld input parameters for every new welded product to obtain a 
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welded joint with the required specifications. To do so, requires a time-consuming trial and error 

development effort, with weld input parameters chosen by the skill of the engineer or machine 

operator. Then welds are examined to determine whether they meet the specification or not. 

Finally the weld parameters can be chosen to produce a welded joint that closely meets the joint 

requirements. Also, what is not achieved or often considered is an optimised welding parameters 

combination, since welds can often be produced with very different parameters. In other words, 

there is often a more ideal welding parameters combination, which can be used if it can only 

determined. 

In order to overcome this problem, various optimization methods can be applied to define 

the desired output variables through developing mathematical models to specify the relationship 

between the input parameters and output variables. In the last two decades, Design of Experiment 

(DoE) techniques have been used to carry out such optimization. Evolutionary algorithms and 

computational network have also grown rapidly and been adapted for many applications in 

different areas.  

In this paper a comprehensive literature review of the application of these techniques is 

presented. This review shows the correlation between the input parameters and the output 

variables, the paper also presents the optimization of the different welding processes through the 

mathematical models. The classification of this literature review will be according to the weld 

joint features. 

 

2-Weld-bead geometry 

Theoretically, an extremely thin fused layer might be sufficient for connecting the parts to 

be joined. The fusion layer should also not be thicker than necessary in order to avoid wasting of 

energy, edge burn-off, sagging of the weld pool and deep weld end craters [1]. Control of weld 

bead shape is essential as the mechanical properties of welds are affected by the weld bead shape 

[2]. Therefore, it is clear that precise selection of the process parameters is necessary. 

 

2.1 Factorial Design 

Raveendra and Parmar [3] have built mathematical models using the fractional factorial 

technique to predict the weld bead geometry and shape relations (penetration, width, 

reinforcement height, width to penetration ratio and percentage dilution). The base metal was a 
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13-mm thick low carbon structural steel plate. The parameters of the FCAW process considered 

in this work were: arc voltage, welding current, welding speed, gun angle and nozzle-to-plate 

distance. They have developed models which can be used either to predict the bead geometry or 

to determine a combination or a range of parameters to obtain the desired bead geometry 

dimensions within the factors domain. Furthermore, these models can also be used in a 

production system for automatic control of welding conditions. 

 Gupta and Parmar [4] have used the fractional factorial technique 25-1 to develop 

mathematical models to predict the weld bead geometry and shape relationships for the SAW of 

microalloyed steel; the thickness ranged between 10 and 16 mm. They investigated bead 

penetration, weld width, reinforcement; dilution, width/penetration, and width/reinforcement as 

affected by wire feed rate, open circuit voltage, nozzle-to-plate distance, welding speed and 

workpiece thickness. It was found that the fractional factorial technique was convenient for the 

prediction of the main effects and the interaction effects of different combinations of welding 

parameters. Mathematical models were developed which can be used effectively to predict the 

weld zone dimensions. Moreover, they mentioned that, if a specific set of requirements for weld 

bead dimensions is given, these models can be used in a computer program to determine a 

combination of parameters which will meet the requirements. 

 The development of the mathematical models using the five level factorial technique to 

predict the weld bead geometry for depositing 316L stainless steel onto structural steel IS 2062 in 

single wire surfacing using the SAW process was studied by Murugan et al. [5]. They 

investigated the following weld bead parameters (penetration, reinforcement, width and dilution) 

as affected by the following SAW process variables (open-circuit voltage, wire feed-rate, welding 

speed and nozzle-to-plate distance). It was shown that the developed models can be employed 

easily in automated or robotic welding, in the form of a program, for obtaining the desired high 

quality welds. The results demonstrated that the bead penetration is not affected significantly by 

the voltage and nozzle-to-plate distance and the width is not affected by the latter. Furthermore, it 

was proven that the dilution increased when voltage and welding speed are increased from its 

lowest level to its centre level, but dilution is not affected by changes in voltage when welding 

speed is at its centre level. They found that the dilution decreased with increasing voltage when 

welding speed is increased from its centre level to its highest level. 
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 Murugan and Parmar [6] used a four-factors 5-levels factorial technique to predict the 

weld bead geometry (penetration, reinforcement, width and dilution %) in the deposition of 316L 

stainless steel onto structural steel IS2062 using the MIG welding process. The following process 

parameters were controlled; open-circuit voltage, feed rate, welding speed and nozzle-to-plate 

distance. It was demonstrated that this factorial technique can be employed easily for developing 

mathematical models to predict the weld bead geometry within the factors ranges and these 

models can be fed into automatic robotic surfacing in a form of program to obtain the desired 

high quality. In addition to this, the effect of each factors on the weld features were determined 

and presented graphically. 

 

2.2 Linear regression  

Yang et al. [7] have used linear regression equations for computing the weld features 

(melting rates, total fusion area, penetration, deposit area, bead height and bead width) from 

SAW process variables (electrode extensions range, welding voltage, welding current, welding 

speed and electrode diameter) using both positive and negative electrode polarity. The base 

material was a 19 mm thick ASTM A36 steel plate. They managed to develop regression 

equations for each weld feature in both polarity conditions. Their results indicated that the linear 

regression equations were equally useful for computing the various features of the SAW process.    

The effect of process parameters (welding current, travel speed, gap width, bead height and 

arc deflection current) on the bead shape in a narrow gap-GTAW process with magnetic arc 

oscillation was studied by Starling et al [8]. Two AISI 304L stainless steel plates (9.5 and 6 mm 

thick) were employed to prepare the narrow gap joints and an AWS ER308L wire of 0.96 mm 

diameter was used as a filler metal. Statistical experimental design and linear-regression 

modelling were used in this investigation to develop the model. It was shown that the arc 

oscillation has little effect on the lateral fusion of the joint, however, this oscillation does 

improve bead shape by increasing its concavity. It was reported that when the gap width was 

reduced, the undercutting level tended to increase remarkably. Also, the effects of other welding 

parameters were in good agreement with the results of previous works. 

 Kim et al. [9] have studied the interrelationship between robotic CO2 arc welding 

parameters and bead penetration by developing mathematical models using factorial techniques 

to predict the desired bead penetration. Partial-penetration and single-pass welds were fabricated 
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in 12 mm SS400 plates based on controlling four different process parameters (arc voltage, 

welding current, welding speed and welding angle). They found that all the investigated 

parameters affect the bead penetration. They suggested extending the empirical formulae to plates 

of varying thickness and many other parameters which were not included in their research. 

 Kim et al. [10] have employed factorial design to correlate the robotic GMAW process 

parameters (welding voltage, welding speed and arc current) to three responses (bead width, bead 

height and penetration) for optimization purposes. The material used was plates of AS 1204 mild 

steel adopting the bead-on-plate technique. Electrode wire with a diameter of 1.2 mm with the 

same mechanical and physical properties of the base metal was used. Their results showed that all 

process parameters influenced the responses and the models developed are able to predict the 

responses with 0-25% accuracy. 

 

2.3 Response Surface Methodology 

 Murugan and Parmar [11] developed mathematical models using response surface 

methodology (RSM) to study the direct and interaction effects of SAW parameters (open circuit 

voltage, wire feed rate, welding speed and nozzle-to-workpiece distance) on the cladding 

geometry (depth of penetration, height of reinforcement, weld width and dilution %). The process 

parameters obtained from the developed models were employed to clad IS2062 structural steel 

plate of 20-mm thickness using 316L stainless steel wire of 3.15 mm diameter. They concluded 

that a low dilution of 22.57% can be produced by both high voltage and high welding speed or by 

low voltage and low welding speed. It was reported that the hardness of the existing martensitic 

structures at the intermediate mixed zones in overlays was below 400 VHN, due to low carbon 

content in the cladding.  

Gunaraj and Murugan [12] have highlighted the use of RSM to develop mathematical 

models and plot contour graphs relating important input parameters namely the open-circuit 

voltage, wire feed rate, welding speed and nozzle-to-plate distance to some responses namely, the 

penetration, reinforcement, width and percentage dilution of the weld bead in SAW of pipes. 

They demonstrated that all responses decrease with increasing welding speed. Also, when the 

nozzle-to-plate distance increases all responses decrease, but reinforcement increases. Moreover, 

an increase in the wire feed rate results in an increase in all responses but the width remains 

unchanged.  
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 In 1999, Gunaraj and Murugan [13] also studied the effect of SAW parameters on the heat 

input and the area of HAZ for low carbon steel with two joint types, bead-on-plate and bead-on-

joint, using mathematical models developed by RSM. They found that for the same heat input, 

the area of the HAZ is greater for the bead-on-plate than that for bead-on-joint. They found that 

the effect of SAW parameters on the area of HAZ in both cases follows the same trend.  

 Koleva [14] has developed models to investigate the influence of electron beam welding 

(EBW) parameters namely electro beam power, welding velocity, distance from the main surface 

of the magnetic lens to the focus point and the distance between the magnetic lens and the sample 

surface on the welding depth and width. The experiment was performed with samples of 

austenitic steel, type 1H18NT. Also, the desirability approach was used to find the optimal 

welding conditions which would lead to the desired depth and width. The author has suggested 

the use of the developed models for on-line control of the process. This allows the selection of 

the optimal levels, eliminates the time required for testing and prevent losses of components. 

 Gunaraj and Murugan have divided their study into two parts, in the first part [15] they 

developed a model to relate the weld bead volume to SAW parameters with slightly changed 

open-circuit voltage limits from those used in their previous work [68]. This change is reflected 

in the development of new models to correlate the rest of the responses mentioned earlier to the 

process. Their results revealed that the penetration reduces, and the bead width and dilution 

increase considerably as welding voltage increases. Also, they proved that the reinforcement is 

least when all SAW parameters are at their upper limits and the wire feed rate is at its lower limit. 

In the second part [16] the total volume of the weld bead was optimized (minimized) by keeping 

the other bead parameters as constrains to obtain sound welded pipes. Also, sensitivity analysis 

was carried out to predict the effect of the other bead parameters on the total volume.  

 Gunaraj and Murugan [17] continued their previous study and successfully investigated 

the effect of SAW parameters on HAZ characteristics. They pointed out that the heat input and 

wire-feed rate has a positive effect, but welding speed has a negative effect on all HAZ 

characteristics. They also concluded that the width of HAZ is of a maximum (about 2.2 mm) 

when the wire-feed rate and the welding speed are at their minimum limits. 

 The effect of the laser welding parameters on the bead geometry of 2.5 mm thick AISI304 

stainless steel has been investigated by Manonmani et al. [18]. In this study the relationship 

between the process parameters (beam power, welding speed and beam incidence angle) and the 



 7

weld bead parameters (penetration, bead width and area of penetration) has been developed using 

RSM. To verify the developed models a conformity test run were carried out using intermediate 

values of the process parameters. It was confirmed that the model developed were accurate since 

the error percentages were between -4.317% and 3.914%. It was demonstrated that the depth of 

penetration and penetration area increase as the beam power and the beam angle increase. Also, 

as the welding speed increases, the width decreases, whereas the penetration depth and area 

increase to an optimum value and then decrease with further increases in welding speed. This is 

due to the fact that the effect of keyholing is predominant at lower speed and as the welding 

speed is increased the mode of heat transfer changes from keyholing to conduction type of 

welding. It was reported that the variation in the bead width is slightly affected by the process 

parameters.   

 In 2005, Gunaraj and Murugan [19] extended their study and managed to establish 

mathematical expressions to predict the penetration size ratio ‘PSR’ (the ratio of bead width to 

the height of penetration) and the reinforcement form factor ‘RFF’ (the ratio of bead width to the 

height of reinforcement). These expressions and the others developed earlier can be fed into a 

computer, relating the weld bead dimensions to the important SAW parameters, in order to 

optimize the process to obtain the required bead shape and weld quality. 

 Koleva [20] has carried out another work by applying RSM to establish the relationship 

between performance characteristics (weld depth, weld width and thermal efficiency) and its 

influencing factors (beam power, welding velocity, focus position, focusing current of the beam 

and the distance to the sample surface) for EBW of austenitic stainless steel. Optimal welding 

regimes were found through the thermal efficiency optimization. New statistical approaches were 

proposed to choose the focus position at a condition of maximum thermal efficiency and welding 

depth.  

 Benyounis et al. [21] have applied RSM to investigate the effect of laser welding 

parameters (laser power, welding speed and focal point position) based on four responses (heat 

input, penetration, bead width and width of HAZ) in CO2 laser butt-welding of medium carbon 

steel plates of 5 mm thick. They found that the heat input plays an imported rule in the weld-bead 

parameters; welding speed has a negative effect while laser power has a positive effect on all the 

responses. Again Benyounis et al. [22] have used the previous models [21] to optimize the 

process. Two optimization criteria were considered; the desirability approach was used to find the 
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optimal conditions in the numerical optimization. They reported that full penetration has a strong 

effect on the other bead parameters. Also, strong, efficient and low cost weld joint could be 

achieved using the optimal conditions. 

Koleva and Vuchkov [23] have established the relationship between EBW parameters 

(beam power, welding velocity and focus position) and weld-depth and weld-width using RSM in 

order to improve the quality of the process in mass production. They reported that the optimal 

process parameters values when welding stainless steel are: power 6.5-8 kW, welding velocity 

11.667-1.333 mm/s and focus position 78 mm below the sample surface.  

Kannan and Murugan [24] have studied the effect of flux cored arc welding process 

parameters (welding current, welding speed, nozzle-to-plate distance and welding torch angle 

with reference to vertical) on the duplex stainless steel clad quality in terms of penetration, width, 

reinforcement and percentage dilution. It was demonstrated that the process parameters have a 

significant effect on the bead geometry of the clad. The effect of the input process parameters on 

the clad quality parameters have been presented in graphical form, which assist in finding the 

welding parameters combination that would lead to the desired clad quality quickly. 

  

2.4 Artificial Neural Networks (ANNs) 

 Andersen et al. [25] have explained some concepts related to neural networks and how 

they can be used to model weld bead geometry, in terms of equipment parameters, in order to 

evaluate the accuracy of neural networks for weld modelling. They carried out a number of 

simulations and they used actual GTAW data for this purpose. The data consisted of values for 

voltage, current, electrode travel speed and wire feed speed and the corresponding bead width, 

penetration, reinforcement height and bead cross-sectional area. The performance of neural 

networks for weld modelling was presented and evaluated using actual welding data. It was 

concluded that the accuracy of neural networks modelling is fully comparable with the accuracy 

achieved by more traditional modelling schemes. 

Evaluation of ANN for monitoring and control of the plasma arc welding process was 

carried out by Cook et al. [26]. Three areas of welding application were investigated in this work: 

weld process modelling, weld process control and weld bead profile analysis for quality control. 

A network was constructed to determine the torch standoff, forward current, reverse current and 

travel speed for desired crown width and root width. The base material was 2219 aluminium 
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alloy in the form of plates 6.35 mm thick; the joint type was bead-on-plate. It was confirmed that 

ANNs are powerful tools for analysis, modelling and control of such applications. Also, the 

results obtained when analyzing weld profile data suggested that ANNs can yield real-time 

results of equal or better accuracy and reliability than previously used data analysis algorithms.   

Vitek et al. [27] have developed a model to predict the weld pool shape parameters 

(penetration, width, width at half-penetration and cross-section area) in pulsed Nd-YAG laser 

welds of Al-alloy 5754 using neural network. They have considered the following process 

parameters; travel speed, average power, pulse energy and pulse duration. They developed a 

routine to convert the shape parameters into a predicted weld profile which was based on the 

actual experimental weld profile data. The accuracy of the model was excellent. They concluded 

that this approach allows for instantaneous results and therefore, offers advantages in applications 

where real-time predictions are needed and computationally intensive predictions are too slow. 

 A comparison between back-propagation and counter-propagation networks in the 

modelling of the TIG welding process was made by Juang et al [28]. The complicated 

relationships between the welding process parameters and the weld pool features were 

considered. The input process parameters were: welding speed, wire feed speed, cleaning 

percentage, arc gap and welding current, while the output features were: front height, front width, 

back height and back width. The base metal was pure 1100 aluminium with a plate thickness of 

1.6 mm. The experimental results, for the TIG welding process, showed that the counter-

propagation network has a better learning ability than the back-propagation network. However, 

the back-propagation network has better generalization ability than the counter-propagation 

network. 

 Chan et al. [29] have proposed a model to predict the bead-on-plate weld geometry (bead 

width, height, penetration and bag length at 22.5°) in GMAW of low alloy steel with C25 

shielding gas. The process parameters were: current, voltage, wire travel speed and workpiece 

thickness. Back propagation network (BPN) was used. Their results revealed that the weld bead 

geometry problem can be accurately modelled by using BPN. A new weld bead parameter l22.5 

(length from the origin to periphery at 22.5° from the work piece surface) has been defined. 

 Jeng et al. [30] have used both BPN and learning vector quantization neural networks to 

predict the laser welding (LW) parameters for butt joints. The input parameters included were 

workpiece thickness and welding gap, while the output parameters ‘responses’ were optimal 
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focus position, acceptable welding parameters of laser power, welding speed and weld quality, 

including weld width, undercut and distortion. They managed to integrate all the networks 

together to make an accurate prediction model of the laser welding parameters. Therefore, the 

limitation in the industrial application of LW for butt joints can be reduced through the use of this 

well established model. 

Usage of ANN to model the GMAW process was reported by Nagesh and Datta [31]. BPN 

was used to associate the welding process parameters (electrode feed rate, arc power, arc voltage, 

arc current and arc length) with output features of bead geometry (bead height and width, 

penetration depth and area). The workpiece material was grey cast iron and a mild steel electrode 

was used. It was showed that there was a small error percentage difference between the estimated 

and experimental values, which indicates that the neural networks can yield fairly accurate 

results. 

Ridiings et al. [32] have applied neural networks  technique to predict the outer diameter of 

the weld bead shape for three wire, single pass per side, submerged arc, line-pipe seam welds 

using the following welding process parameters: current, voltage and angle for the three wires as 

well as the welding speed, stickout and spacing of wires. The plates welded were of various 

thicknesses from 15.9 to 25.4 mm and they were varied in strength from X52 to X65. The 

welding was carried out using alloyed wires with a 4 mm diameter. It was shown that the applied 

technique can predict a weld bead shape with a high degree of confidence. The contribution of 

each factor to the variation in the final weld bead shape was determined. Furthermore, it was 

mentioned that an efficient model can be built using different neural networks to predict the bead 

shape when using a smaller number of measurements for separate areas. However, the higher the 

number of measurements the better the accuracy of the technique. 

Christensen et al. [33] have developed a multilayer feed forward network for modelling and 

online adjustment of GMAW process parameters to guarantee a certain degree of quality. In this 

study, butt joint welding with full penetration of standard steel S135 with 3 mm thickness was 

carried out. The process parameters were; wire feed speed, voltage, welding speed and gap width 

while the network inputs were back bead width and back bead height. In open loop control 

strategy, it has been demonstrated that use of the model to provide high quality welding is 

feasible and the network training was straightforward and effective. Whereas, in the closed loop 
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experiments a single input and single output control scheme was investigated, it was shown that it 

was applicable for adaptive control of GMAW with some limitations.      

 

2.5 Taguchi Method 

 Juang and Tarng [34] have adopted a modified Taguchi method to analyze the effect of 

each welding process parameter (arc gap, flow rate, welding current and speed) on the weld pool 

geometry (front and back height, front and back width) and then to determine the TIG welding 

process parameters combination associated with the optimal weld pool geometry. It was 

experimentally reported that, the four smaller-the-better quality characteristics, ‘four responses’ 

of the weld pool in the TIG welding of S304 stainless steel of 1.5 mm in thickness are greatly 

improved by using this approach. 

Lee et al. [35] have used the Taguchi method and regression analysis in order to optimize 

Nd-YAG laser welding parameters (nozzle type, rotating speed, title angle, focal position, 

pumping voltage, pulse frequency and pulse width) to seal an iodine-125 radioisotope seed into a 

titanium capsule. The accurate control of the melted length of the tube end was the most 

important to obtain a sound sealed state. It was demonstrated that the laser pulse width and focal 

position were the laser welding parameters that had the greatest effects on the S/N ratios of the 

melted length. The optimal welding conditions were obtained at a pulse width of 0.86 ms and a 

focal position of 3.18 to 3.35 mm. Furthermore, confirmation experiments were conducted at the 

optimal welding conditions, it can be said that the titanium tube ends were sealed perfectly. 

 

2.6 Combination of two Techniques 

  A comparison of back-bead prediction (width and depth) of the GMAW process using 

multiple regression analysis (MRA) and ANN analysis have been carried out by Lee and Um 

[36]. The controlled process parameters were: Gap, current, voltage and speed. The workpiece 

material was SS41 mild steel. It was found that the error rate predicted by the ANN was smaller 

than that predicted by MRA, in terms of the width and depth of the back-bead. It was also found 

that between the two predictions, the prediction of the width was superior to the prediction of the 

depth in both methods. Moreover it was concluded that the welding speed was the most important 

factor in the geometry of the back-bead, followed by welding current, gap and arc voltage. 
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Park and Rhee [37] have analyzed the signal of the plasma, or spatter, and bead size, to 

develop a bead size estimation system using the regression method and a neural networks 

method. It was found that the relationship is a nonlinear function caused by the penetration state. 

In contrast, the authors concluded that the regression models were appropriate for estimation 

when classifying the penetration state as partial penetration and full penetration, whereas, the 

neural network was a very accurate estimation approach for bead size. 

Kim et al. [38] have presented an intelligent algorithm to establish the relationship between 

GMA CO2 welding process parameters; (number of passes, arc current, welding voltage and 

welding speed and bead height), in order to predict the bead height using a neural network  and 

MRA for the robotic multi pass butt welding process of BV-AH32 steel with 12 mm in thickness. 

Their results showed that all the process parameters would influence the bead height. Also, the 

developed models were able to determine the welding condition required to achieve the desired 

bead height, which helped to develop an automatic control system and to establish guidelines and 

criteria for the most effective joint design. 

The effect of energy input per unit length of weld from the travelling heat source on the 

laser efficiency and weld quality have been investigated by Casalino et al. [39]. A number of 

austenitic stainless steel butt joints were produced by CO2 laser welding irradiation. The welding 

efficiency was calculated as the melted area to energy input per unit length ratio. Moreover, the 

weld crown and depth were measured in order to evaluate the quality of the joint. ANN was used 

to correlate the collected data to the process parameters (laser power, speed and material 

thickness), and then these parameters were clustered using a fuzzy C-means algorithm. In order 

to select the optimum network parameters a 24-factorial design was used. Finally, a model was 

built to choose the most suitable laser welding process for producing high efficiency and superior 

quality. It was recommended to consider more input factors such as laser focus, different 

materials and different weld beads. 

Kim et al. [40] have used genetic algorithm (GA) and RSM to determine the optimal 

welding conditions in GMAW process, the base metal was mild steel with a thickness of 5.8 mm. 

First, the near-optimal conditions were determined through a GA, and then the optimal conditions 

were determined over a relatively small region by using RSM. The desirability function approach 

was used to find the optimal conditions. They correlated the following parameters; wire-feed rate, 

welding voltage and welding speed to some responses, namely, bead width, penetration and 
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height. They concluded that by combining these two techniques, a good result for finding the 

optimal welding conditions can be obtained. 

A comparison between GA and RSM in the optimization of the GMAW process when 

welding of 9.5 mm thick mild steel with a square-groove butt joint was carried out by Correia et 

al. [41]. The criterion was to choose the best values of three parameters (reference voltage, wire 

feed rate and welding speed) based on four quality responses (deposition efficiency, bead width, 

depth of penetration and reinforcement). Their results indicated that both methods are capable of 

finding the optimum conditions. Also, they found that GA is a powerful tool for optimization, 

especially in irregular experimental regions, because there is no need to generate models. A 

selection of the correct settings of the GA tool parameters, such as, population number, number 

of generations, etc. was required. On the other hand, the RSM technique found a better 

compromise between the evaluated responses than the GA, but RSM is not able to build a model 

to fit the data over irregular experimental regions. 

 

2.7 Other Techniques  

D. Kim et al. [42] have proposed a method for determining the near-optimal setting of 

GMAW process parameters (wire feed rate, welding voltage and welding speed) in welding 

plates made of mild steel with a thickness of 0.4 mm using a controlled random search (CRS). 

The CRS was used to determine the welding process parameters by which the desired weld bead 

(front bead height, back bead width and penetration) can be formed.  They managed to determine 

the optimal welding conditions that lead to the desired weld beads. 

Tarng et al. [43] have constructed the relationship between TIG welding process parameters 

(gap, gas flow rate, current, welding speed and cleaning) and weld bead geometry parameters 

(front depth, back height, back width and cluster number). To search for the process parameters 

with the optimal weld pool geometry, an optimization algorithm called simulated annealing (SA) 

was applied to the network. Finally, the quality of the aluminium welds based on the output 

variables was classified and verified by a fuzzy clustering technique. The membership gradings 

corresponding to categories, good, fair and poor, were listed, and the results showed that the 

membership gradings for the category ‘good’ was much higher. Therefore, good weld quality can 

be obtained by using the optimal welding process parameters. 
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3- Mechanical properties 

In any welding process, the input parameters have an influence on the joint mechanical 

properties. By varying the input process parameters combination the output would be different 

welded joints with significant variation in their mechanical properties. Accordingly, welding is 

usually done with the aim of getting a welded joint with excellent mechanical properties. To 

determine these welding combinations that would lead to excellent mechanical properties. 

Different methods and approaches have been used to achieve this aim. The following is a review 

of some articles that utilized these techniques for the purpose of optimizing the welding process 

in order to achieve the desired mechanical properties of the welded joint. 

 

3.1 Factorial Design  

Application of the factorial technique for weld quality prediction for the plasma transferred 

arc (PTA) weld cladding process on mild steel was investigated by Harris and Smith [44]. The 

process variables considered were current, powder feed rate, torch travel speed, oscillation width 

and torch stand-off distance. Four deposit quality features were measured, namely; deposit 

height, width, hardness and dilution. It was confirmed that all the process variables were acting as 

main process parameters in controlling the deposit quality. Also, it was reported that the PTA 

process is an excellent choice for depositing high quality hard-facing deposits at low controlled 

dilution. 

Optimization of friction welding of dissimilar materials using factorial design was studied by 

Murti and Sundaresan [45]. They studied the friction welding of three industrially useful 

dissimilar materials: low alloy steel to austenitic stainless steel; medium carbon steel to high 

speed steel and aluminium to stainless steel. The main aim was to determine the metallurgical 

and mechanical behaviour of the friction welded joints produced using optimum welding 

conditions. Three mathematical models were developed to relate the notched tensile strength 

(NTS) and shear energy to the process parameters, namely: friction pressure, friction time and 

forging pressure with different levels according to the two materials which formed the joint. It 

was reported that the statistical experimental design was useful for reducing the number of trials 

necessary to optimize the welding conditions for friction welding. Also, the strength of the joint 

which was produced by using the optimized condition was in fair agreement with the predicted 
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results. Moreover, in all cases, the joint strength was at least as high as those of the softer of the 

two materials that formed the joint. 

Control of distortion in robotic CO2-shielded FCAW was investigated by Arya and Parmar 

[46]. A three level fractional factorial technique was used to develop mathematical models to 

predict the angular distortion in 10 mm thick low carbon steel. The effect of arc voltage, wire 

feed rate, welding speed and groove angle on the angular distortion in single vee butt welds was 

investigated with and without sealing run. It was concluded that the models developed were fairly 

accurate and can be usefully employed for controlling the angular distortion in automated 

welding lines using the FCAW process. 

Zhou et al. [47] have utilized factorial experimentation to investigate the influence of joining 

parameters (rotational speed, frictional time and pressure) on the NTS of dissimilar aluminium-

based metal matrix composite MMC/AISI304 stainless steel friction joints. It was observed that 

frictional pressure and rotational speed have a statistically-significant effect on the NTS values. 

Moreover, they reported that the highest NTS occurs in joints produced at a high frictional 

pressure of 120 MPa. 

Fatigue endurance of flux cored arc welded (FCAW) cruciform joints containing lack of 

penetration using design of experiment was studied by Balasubramanian and Guha [48]. The aim 

was to optimise some dimensional factors that affected the fatigue life of cruciform joints made 

of quenched and tempered steel (ASTM 517 F grade). It was mentioned that the techniques 

described in this work were fairly simple and economical to optimise the time consuming fatigue 

tests. It was also reported that some factors affecting the fatigue endurance were optimised to 

attain a maximum fatigue life, but the validity of the procedure is limited to the factors domain 

considered for the investigation. It was noted that the ANOVA technique is the most convenient 

to identify the significance of the main effects and interaction effects of joint dimensions. The 

same authors [49] continued their investigation by developing mathematical models using design 

of experiment to predict the fatigue life of shielded metal arc welding SMAW and FCAW 

cruciform joints failing from root and toe regions. Using the developed models the fatigue life of 

SMAW and FCAW cruciform joint can be predicted at a 95% confidence level, however, the 

validity of the models is limited to the factors domain. It was found that the factorial 

experimentation technique design of experiment is more economical for predicting the effect of 

various factors on fatigue life through conducting a minimum number of experiments. 
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Koganti et al. [50] have employed a full factorial design to define the optimum weld MIG 

process parameters for non-treatable 5754 aluminium alloys. The effects of weld process 

parameters on the lap joint failure load (tensile-shear strength) and weld penetration were 

investigated. The process parameters were: power input (torch speed, voltage, current, wire feed 

rate), pulse frequency and gas flow rate. The joint strengths and weld penetration were measured 

for various operating ranges of weld factors. It was indicated that the power input and the gas 

flow rate were the two significant factors based on lap shear load to failure and weld penetration 

data. It was reported also, that the lower the power input, the lower the shear load to failure and 

depth of penetration and vice versa. The optimum factor settings for higher joint strength were 

high power input and high gas flow rate. 

Sampath [51] has presented an innovative constrains-based approach that proved quite 

efficient in developing a specification for consumable solid-wire electrodes for GMAW of 

HSLA-80 and HSLA-100 steels that meet or exceed the US Navy requirements. Initially, he 

converted the US Navy requirements into a set of constraints which related the chemical 

composition of steels to certain metallurgical characteristics. Subsequently, a 23 factorial design 

was used to develop a batch of welding electrodes in order to evaluate their performance. Among 

the eight electrodes used, it was shown that two electrodes met or exceeded ER-100s 

requirements, while one electrode met or exceeded ER-120s requirements. It was concluded that 

the use of this approach greatly reduced the risk inherent in developing electrode specifications. 

Pine et al. [52] have presented an experimental and numerical study to determine the 

torsional stiffness, elastic limit and ultimate strength of spot welded, adhesively bonded and 

weld-bonded box sections. They investigated a variety of factors, namely: joining technique, 

sheet thickness, steel strength, section area, section design and end weld using factorial design 

techniques to determine their effects on the torsional properties of box sections. The authors have 

concluded that the joining technique, section area and section thickness were the main factors 

which have the greatest effect on the torsional stiffness of the box sections. It was found that the 

torsional stiffness can be improved without substantial weight gain by changing the joining 

technique from 50 mm pitch spot welds to adhesive bonding, increasing the section area and to a 

lesser extent, changing the section design. Furthermore, the steel strength was the most important 

factor in determining the elastic limit and ultimate strength. 

 



 17

3.2 Response Surface Methodology 

Wang and Rasmussen [53] have investigated the inertia welding process of low carbon steels 

using RSM, with the purpose of establishing an empirical functional relationship between the 

process parameters (the axial pressure, the initial rubbing velocity and the total moment of 

inertia) and the breaking strength of the joint. It was concluded that a relatively wide range of 

operating conditions would produce successful welds. Also, they observed that the average 

microhardness at the weld was about 27 percent higher than the base material and the ideal weld 

should be made with the least possible amount of kinetic energy as long as full penetration at the 

interface is achieved. 

Yamaguchi et al. [54] have investigated the friction welding process of 5056 aluminium 

alloy using RSM. Their aim was to find the optimal welding conditions that would yield 

maximum tensile strength at the weld. The process input parameters were friction pressure, up-set 

pressure, friction time, rotating speed and braking time. It was reported that the successful welds 

showed 89.2% joint efficiency in tensile strength. It was also observed that the friction layer 

formed at the friction interface disappeared in these successful weld runs.     

Koichi et al. [55] have studied the combination of welding conditions that produce 

maximum notched tensile strength of friction welded joints of S4 5C carbon steel using RSM. 

They managed to correlate the process parameters (friction pressure, upset pressure, friction time, 

rotation speed and braking time) to the tensile strength of the weld joint. Successful weld strength 

was obtained using the optimal welding condition predicted by the empirical equation. 

Benyounis et al. [56] have proposed models using RSM to investigate the effect of welding 

parameters in SAW (welding current, arc voltage and welding speed) on the impact strength at 

two testing temperatures of 50 °C and 27 °C. The aim was to predict and optimise the impact 

strength of the spiral-welded joints with respect to the process parameters. It was observed that 

the welding current was the most significant factor associated with the impact strength, then the 

welding speed, whereas the welding voltage has no significant effect within the factors domain 

investigated. They listed the optimal welding conditions that would lead to acceptable impact 

strength with improving the process productivity. 

The production of strong and stiff, aluminium-titanium, multi-layered composites 

(laminates) by explosive welding was undertaken by Ege et al. [57]. The study was performed 

using RSM to investigate the mechanical behaviour of the laminates with changes in two 
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characteristic variables; abundance of interfaces and volume percentage of the more ductile 

component. Eighteen laminates were produced and then one-step welding of these laminates was 

carried out by explosive-introduced pressuring. Yield strength, ultimate tensile strength and 

elongation were the responses under consideration. A second-order model was fitted to define the 

relationship between the yield strength and the two variables. It was reported that the mechanical 

properties of the laminates depend strongly on the relative amounts of the components, but only 

weakly on the abundance of the interface within the selected operability region. It was also 

mentioned, that with the aid of the developed model it is possible to fabricate laminates that are 

tailored to strength, density and load specifications. 

 Allen et al. [58] have proposed a model based on central composite design with the alpha 

parameter set equal to 2, for robotic gas metal arc welding of sheet metal of 409-gauge, stainless 

steel. The six factors controlled in this study were: wire feed speed, weld travel speed, arc 

voltage, contact-tube-to-work distance, root opening and offset. The objective was to minimize 

the weld cycle time by maximizing welding speed, while maintaining predictable weld quality 

over a range of worst-case processing conditions. The optimal welding conditions for this type of 

material with a lap joint were reported and confirmed by experimental tests. The effect of the 

process parameters was presented graphically.    

 Raghukandan [59] has conducted experiments to clad low carbon steel and copper plates 

using nitroglycerine explosive (2500 m/s detonation velocity). The aim was to adopt RSM to 

relate the bond and shear strength of the clad to four process factors (flyer thickness, loading 

ratio, angle of inclination and stand-off distance). Mathematical models were developed and the 

effect of process parameters on the responses was discussed. It was found that the flyer thickness, 

the loading ratio and the angle of inclination have significant contribution to the interfacial 

morphology of explosive clad. 

V. Murugan and Gunaraj [60] have implemented RSM to correlate the angular distortion in 

GMAW of structural steel plate (IS: 2062) to the process parameters, namely: time gap between 

successive passes, number of passes and wire feed rate. The main and interaction effects of the 

process parameters were analyzed and presented. It was found that the number of passes had a 

strong effect on the response, therefore, to control the angular distortion in practice the number of 

passes has to be monitored carefully. Moreover, it was demonstrated that all the process 

parameters have a negative effect on the angular distortion.    
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Benyounis et al. [61] have studied the effect of CO2 laser welding parameters (laser power, 

welding speed and focus position) on the impact strength and NTS of butt joints made of medium 

carbon steel plates. Two mathematical models were developed using RSM to describe the 

influence of the process parameters on the two responses. The main, quadratic and interaction 

effects of the process parameters on the two responses were determined quantitatively and 

presented graphically. It was reported that the welding speed is the main factor affecting the two 

responses; it was found that decreasing the welding speed from its highest level to lowest level 

would result in increasing both responses by 89.3% and 76.45% respectively. Laser power and 

focal point position have also strong effect on both responses investigated.  

 Benyounis et al. [62] have done another work to predict the residual stress for CO2 laser 

butt-welding joints of AISI304 stainless steel plates. The investigation is carried out using RSM 

to develop models in terms of the process input parameters mentioned earlier in [59] to predict 

the principal residual stress and its direction. It was observed that the travel speed and laser 

power were the main factors affecting the behaviour of the maximum residual stress. It was 

recommended to use the developed models to find the optimal welding conditions to obtain the 

welded joint with a minimum distortion. 

Olabi et al. [63] have established the relationship between the CO2 laser welding parameters 

(laser power, welding speed and focus position) and the residual stress magnitude and 

distribution using RSM for butt joint welded components. The base material was AISI304 

stainless steel plates with 3 mm thickness. Incremental hole drilling procedure with the standard 

seven increments was followed to measure the residual stress magnitude and distribution at three 

locations, on HAZ, 10 mm and 20 mm from weld centreline repetitively. Twenty one models 

were developed to describe the residual stress behaviour. A procedure of four steps was presented 

to use the developed models in order to predict the residual stress magnitude at the proposed 

welding conditions and at a given position. Also, the effect of the process parameters on residual 

stress behaviour has been determined quantitatively and presented graphically. 

Benyounis et al. [64] have developed a mathematical model using RSM to relate the failure 

load to the laser welding parameters namely: laser power, welding speed and focal position. The 

effect of the process parameters on the failure load and the tensile-shear strength of the lap joint 

made of AISI304 with 1 mm thickness have been investigated. It was found that the main factor 
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affecting the joint strength is the welding speed and the other two factors are slightly affecting the 

joint strength.     

 

3.3 Artificial Neural Networks 

Control of distortion and overall quality of welds were investigated by Casalino et al. [65] in 

order to select the GMAW process parameters that minimize thermal deformation and evaluate 

weld quality. They integrated the artificial intelligence techniques and FEM with the aid of 

experimental trials of bead-on-plate welds. The base metal was 1.6 mm thick low-carbon steel, a 

0.9 mm diameter copper-coated wire was used as an electrode with a shielding gas consisting of a 

75% Ar – 25% CO2 mixture with flow rate of 10-15 ft3/h. ANN was used at first to link the 

process parameters to the geometry of the molten zone, which allowed the geometries throughout 

a range of process parameters to be calculated. Then FEM was applied to predict the residual 

stress value and distortion in the welded joint. Finally, fuzzy C-means clustering algorithm was 

applied to evaluate the quality joints. Mathematical models for GMAW were constructed. 

Experimentally butt welded joint were validated. It was concluded that the experimental result 

are in good agreement with the mathematical model. 

 Li-Ming et al. [66] have established a static model for SiCw/6061 Al metal matrix 

composites in diffusion welding using ANN. The relationship between welded joint strength and 

welding parameters, such as, welding temperature, welding pressure and welding time was 

presented. The effect of process parameters on the joint strength was demonstrated and optimal 

technical parameters were obtained.  It was proven that the developed static model was in good 

agreement with the actual data.   

Sterjovski et al. [67] introduced ANN modelling as an alternative technique to those 

currently in the literature to predict the hardness of HAZ, and hence, trying to control it to 

minimize the risk of hydrogen assisted cold cracking in welding in-service pipelines by the hot 

tapping technique. The model developed included materials characteristics; chemical 

composition and hardness (as inputs), the peak temperature, holding time and cooling rate of the 

HAZ thermal cycle simulation were also used as key inputs in the model to predict the HAZ 

hardness. It was reported that the hardness of HAZ increases with increasing the following: 

carbon content, original hardness of pipe or fitting material and more rapid cooling. They 

compared the predictive capabilities of the models developed with other published works to the 
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neural network model they developed. It was clear that the neural networks model produced a 

much lower error across a broader range of HAZ hardness values. 

Lightfoot et al. [68] have used ANN to develop a model to study the FCAW process factors 

affecting the distortion of 6 – 8 mm thick D and DH grade steel plates. A sensitivity analysis was 

carried out, which highlighted a number of apparently key factors that influenced distortion. It 

was proven that the carbon content played a key role in the amount of distortion produced by the 

welding process. They found that an increase in the carbon content was beneficial in reducing 

thin plate distortion caused by welding. Also, they identified a number of distortion-related 

factors, such as carbon content, YS/TS ratio and rolling treatment. It was concluded that these 

factors can be controlled to reduce the distortion in 6-8 mm thick plates. 

Sterjovski et al. [69] have applied the ANN models to predict the mechanical properties of 

steels in various applications, namely: impact strength of quenched and tempered pressure vessel 

steel exposed to multiple postweld heat treatment cycles, the hardness of the simulated HAZ in 

pipeline and lap fitting steel after in-service welding and the hot ductility and hot strength of 

various microalloyed steel over the temperature range for stand or slab straightening in 

continuous casting process. It was found that the three ANN models successfully predicted the 

mechanical properties. It was also shown that ANNs could successfully predict multiple 

mechanical properties and the result of the sensitivity analysis were in agreement with both 

findings of the experimental investigation and reported results in the literature. Furthermore, it 

was mentioned that the use of ANNs resulted in large economic benefits for organisations 

through minimizing the need for expensive experimental investigation and/or inspection of steels 

used in various applications. 

Okuyucu et al. [70] developed a model using ANN for the analysis and simulation of the 

correlation between friction stir welding (FSW) parameters of aluminium plates and mechanical 

properties of the welded joint. The process parameters consist of weld speed and tool rotation 

speed verses the output mechanical properties of weld joint, namely: tensile strength, yield 

strength, elongation, hardness of WZ and hardness of HAZ. Good performance of the ANN 

model was achieved and the model can be used to calculate mechanical properties of the welded 

plates as a function of process parameters. Also, it was found that the correlation between the 

measured and predicted values of tensile strength, hardness of HAZ and hardness of weld metal 

were better than those of elongation and yield strength. 
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3.4 Taguchi Method 

 Laser butt-welding of a thin plate of magnesium alloy using the Taguchi method has been 

optimized by Pan et al. [71]. They studied the effect of Nd-YAG laser welding parameters 

(shielding gas type, laser energy, conveying speed, laser focus, pulse frequency and pulse shape) 

on the ultimate tensile stress. Their result indicated that the pulse shape and energy of the laser 

contributed most to thin plate butt-welding. It was found that the optimal combination of welding 

parameters for laser welding were argon as a shielding gas, a 360 W laser energy, a workpiece 

speed of 25 mm/s, a focus distance of 0 mm, a pulse frequency of 160 Hz and type III pulse 

shape. It was also found that the superior ultimate tension stress was 169 MPa at an overlap of 

the welding zone of approximately 75%. 

 Anawa et al. [72] have applied the Taguchi approach to optimize the laser welding 

process of dissimilar materials, namely: plain carbon steel and AISI316 with the same thickness 

of 1.5 mm. The process parameters were laser power, welding speed and focus position against 

one response NTS. The experimental results indicated that the process could be optimized using 

the Taguchi method in order to obtain superior welded joints. Anawa et al. [73] have continued 

their investigation and studied the effect of the laser welding parameters mentioned above on the 

impact strength of the same joint at room temperature using the same optimizing technique. The 

results indicated that the laser power has the most significant effect on the impact strength. Also, 

it was mentioned that the optimal settings to obtain excellent impact strength were the highest 

laser power, a welding speed of 750 mm/min and a focus position of -0.5 mm. 

  

3.5 Combination of two techniques  

ANN and Taguchi methods were used to predict the bead geometry parameters (front width, 

back width and depth of penetration) by Seshank et al. [74]. Aluminium plates were bead-on-

plate welded using pulsed current GTAW, the controlled parameters were: peak current, base to 

peak current ratio, % time at peak current, frequency and welding speed. Taguchi’s orthogonal 

array was used to set the welding conditions to be studied. Different ANNs were built to predict 

the responses. The results they achieved were found to be of good accuracy. An online 

relationship has been built to make the prediction of the depth of penetration possible if the top 

bead width is known. Moreover, it was found that a simple MLP with a single hidden layer with a 
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Tanh transfer function and momentum learning is more effective than the networks that have two 

or three hidden layers. 

 Murugananth et al. [75] have coupled ANN model with optimization software, which 

utilize linear and nonlinear techniques to explore possible combination of carbon, manganese and 

nickel concentrations for a given set of welding parameters, to predict the weld metal 

composition that would maximise the toughness at – 60 °C. The predicted weld metal 

composition was Fe-0.034C-0Mn-7.6Ni-0.65Si-0.038O-0.018N-0.013P-0.006S (wt.%) and 

toughness of 87 J ±20 J at 60 °C. 

 Factors that affect weld mechanical properties (oxygen, nitrogen, carbon, hydrogen and 

iron contents in the weld joint as well as the cooling rate) of commercially pure titanium have 

been investigated by Wei et al. [76]. ANNs techniques were used, to predict the ultimate tensile 

strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B 

hardness. The input data was obtained from mechanical testing of single-pass autogenous welds. 

The ANN models were developed. An oxygen equivalent equation (OEE) was also used to 

predict the mechanical properties of CP titanium welds; a good agreement was found between 

both ANN and OEE. The obtained results indicated that both oxygen and nitrogen have the most 

significant effect on the strength while hydrogen has the least effect. Also, it was reported that 

cooling rate is more important than the carbon and iron content in the ultimate tensile strength 

model, and more important than oxygen and the iron content and equally important as the carbon 

content in the yield strength model. 

 

3.6 Other Techniques 

Canyurt [77] has extended the GA approach to the estimation of mechanical properties of 

the joints of brass material. He developed non-linear models to specify the effect of GTAW 

process parameters (gap between plates, torch angle, quantity of shielding gas, pulse frequencies 

and electrode tip angle) on the tensile strength of the welded joint. He examined the effect of the 

five welding parameters on the strength value using the genetic algorithm welding strength 

estimation model (GAWSEM). Also, he indicated that the changes in the gap between the joint 

parts from 0 to 0.5 mm leads to a 4.4 times decrease in the joint strength and changes in the torch 

angle from 60° to 90° leads to a 1.9 times increase in the joint strength. Furthermore, he reported 
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that the optimum quantity of the shielding gas and the pulse frequencies were 16.5 l/min and 30 

Hz. 

 

4. Comparison between the optimization techniques 

Derived from the above literature review some insight has been gained into the use of DoE, 

ANN, GA, Taguchi method and other techniques for modelling and optimizing different welding 

processes. It was noted that RSM performs better than other techniques, especially ANN and GA, 

when a large number of experiments are not affordable. The trend in the modelling using RSM 

has a low order nonlinear behaviour with a regular experimental domain and relatively small 

factors region, due to its limitation in building a model to fit the data over an irregular 

experimental region. Moreover, the main advantage of RSM is its ability to exhibit the factor 

contributions from the coefficients in the regression model. This ability is powerful in identifying 

the insignificant factors main effect, insignificant interactions or insignificant quadratic terms in 

the model and thereby can reduce the complexity of the problem. On the other hand, this 

technique required good definition of ranges for each factor to ensure that the response(s) under 

consideration is changing in a regular manner within this range. The most popular designs within 

RSM designs are the central composite design (CCD) and Box-Behnken design. In regard to 

ANNs, it noted that ANNs perform better than the other techniques, especially RSM when highly 

nonlinear behaviour is the case. Also, this technique can build an efficient model using a small 

number of experiments; however the technique accuracy would be better when a larger number 

of experiments are used to develop a model. On the other hand, the ANN model itself provides 

little information about the design factors and their contribution to the response if further analysis 

has not been done. The most popular ANNs are learning vector quantization neural networks, 

back-propagation and counter-propagation networks. In the case of GA, it is a powerful 

optimization tool especially in irregular experimental regions. The main characteristic of GAs 

over the other optimization techniques is that they operate simultaneously with a huge set of 

search space points to find the optimal welding condition instead of a single point. On the other 

hand, this technique required a good setting of its parameters and uses a large computational 

effort, and therefore a long run time. Also this technique does not develop mathematical models. 

The Taguchi method is also one of the powerful optimization techniques which characterize with 

improving the product quality and reliability at low cost. The optimization algorithm works by 
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calculating signal-to-noise (SN) ratios for each combination and then the combination having a 

maximum SN ratio is defined as the optimal setting. However, Taguchi's analysis approach of SN 

may lead to non-optimal solutions, less flexibility and the conduction of needless experiments. 

Table 1 presents a comparison between the above mentioned common modelling/optimizing 

algorithms methods based on this literature review.  

 

 

Table 1: Comparison between the common modelling/optimizing techniques 
           Technique 

Comparison ANNs GA RSM Taguchi Factorial 
Designs 

Computational time Long Very long Short Medium Short  

Experimental domain Regular or 
irregular 

Regular 
or 

irregular 

Regular 
only 

Regular 
or 

irregular 
Regular only

Model developing Yes* No Yes No Yes† 

Optimization  Through 
model Straight Through 

model Straight Through 
model 

Understanding  Moderate Difficult Easy  Normal  Easy  
Availability in software Available Available Available Available Available 

Optimization Accuracy level    High  High  Very high Normal  Very high 
Application  Frequently Rarely  Frequently Rarely  Frequently  

*) No factors interaction effects.  †) No factors quadratic effects. 
 

 

5. Conclusion 

 The optimization methods covered in this survey are appropriate for modelling, control 

and optimizing the different welding process. The survey reveals the high level of interest in the 

adaptation of RSM and ANNs to predict response(s) and optimize the welding process. 

Generally, there is a lack of comparative study regarding the performance of the optimization 

methods, in other words for a given optimization problem which method would suit better. 

Combining two optimization techniques, such as GA and RSM, would reveal good results for 

finding out the optimal welding conditions. Future work should focus on the application of these 

modelling and optimization techniques to find out the optimal welding combinations for a certain 

welding process at which the process could be considered safe, environment friendly and 

economical.  
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