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Abstract

A Critical Investigation into the Spray-Drying of Hydroxyapatite Powder for Thermal Spray
Applications

By
Qasim Murtaza B.Sc Engg, M.Tech 

ABSTRACT
This work examines the investigation of the spray drying process of Hydroxyapatite powder (HA) 

used as a thermal spray deposit in the application of orthopaedic femoral implants. In this research, the Niro- 

Minor™ mixed spray dryer was used for both modelling and experimental studies. The process parameters 

investigated included HA slurry viscosity, temperature, and air flowrate. Computational Fluid Dynamic 

(CFD) modelling and validation of the spray drying of HA powder was performed. An analysis of the spray 

drying of the HA slurry, was performed using the UMETRI AB, MODDE 7 software.

For the CFD analysis, the Spray dryer was divided into the three parts; two-fluid nozzle, the drying 

chamber, and atomisation. The Standard K-e, Reliable K-e and Reynolds Stress Model models were used to 

predict velocity profiles of the air, feed pipe of the two external nozzle and temperature profile for the drying 

chamber. Different model results were compared, studied and compared with experimental results. The 

standard K-e method is found to have good agreement with the experiment data in predicting the air and feed 

nozzle velocities, and the Reliable K-e simulated the temperature profile of the drying chamber. These results 

were also used to predict atomisation modelling. The models hence have proved to be an innovative method 

of understanding the dynamics of the spray drying technique.

In the statistical analysis of the spray drying process, factors such as temperature and flowrate of the 

inlet hot air in the spray dryer, viscosity of feed/ HA and responses (chamber powder size, cyclone powder 

size, deposition of powder on the wall of spray dryer and overall thermal efficiency) were determined using a 

Multiple Linear Regression (MLR) method and the statistical analysis of main and interaction effects were 

quantified using the ANOVA test. For the chamber particle size, the statistical analysis showed that the 

viscosity of the HA slurry is most significant and for the cyclone particle size, the main affects are 

temperature, viscosity and flow rate, and also the interaction effect of temperature and viscosity were 

significant. Wall deposition is influenced by temperature and the interaction of both temperature and 

viscosity. The spray dried HA powders were also studied in terms of morphology. The two main shapes 

observed are a doughnut and solid sphere shape as a result of the different input parameters. A solid sphere of 

HA spray dried powder with pores was observed when a viscosity of 75 mPa.s was applied to all three levels 

of drying temperature. Doughnut shaped particles were observed when a slurry viscosity of 50 mPa.s was 

utilised. This doughnut phenomenon was more pronounced with an increase in the spray drying air 

temperature (461K) in the chamber powders. While a viscosity of 50 mPa.s and temperature of 461K yielded 

the ideal particle size and range, in terms of HA morphology, where a mix of solid and doughnut shape 

powder was produced. This is beneficial for HA thermal spray coatings as they require porous coatings to 

help the growth of the cells inside the coating to provide a strong bioactive bond between the implant and 

bone. This research provides a deeper understanding into the spray drying of hydroxyapatite powders 

providing data to improve its application in the use of HA deposits to anatomically join femoral implants to 

human tissue.
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Nomenclature

A Area (m/s)

A p
Surface area o f the particle (m2)

cD Drag coefficient
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c/v Heat capacity of volatiles evolved (J/kg)

D Diameter (m)

A > Diffusion coefficient o f vapour in the bulk (m2/s)

d P Particle droplet diameter (m)
F

other Other interaction forces (N)

Gb Generation of turbulence kinetic energy due to buoyancy
h Convective heat transfer coefficient (W/m2-K)

K
Rate of evaporation (kg/s)

h , Latent heat of volatiles evolved (J/kg)

hpyrol Heat of pryrolysis as volatiles are evolved (J/kg)

I Radiation intensity (cd)

I Diffusion flux of species j
k Thermal conductivity (W/m-K)

k p
Particle thermal conductivity (W/m-K)

K s Wave number
Kn Kundsen number
K Mass transfer coefficient (m/s)

K Thermal conductivity o f the continuous phase (W/m-K)

k e ff Effective conductivity (W/m-K

M w, Molecular weight of species i (kg/kgmol)

m ' Mass flow rate (kg/s)

Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. Murtaza
XIX



mp Mass of the droplet (kg)

mp Mass flow rate of the particles

rnp Average mass of the particle in the control volume (kg)

m P , o Initial mass o f the particle (kg)

m p,o Initial mass flow rate of the particle injection tracked (kg/s)

A mp Change in the mass of the particle in the control volume (kg)

N Nusselt number

N, Molar flux of vapour (kgmol/m2-s)
Oh Ohnesorge number
P Pressure (Pascal)
Pr Prandtl number
Q Volumetric flowrate m3/sec
r radius (m)
Re Reynolds number
Re^ Reynolds number based on the particle diameter
5c Schmidt number
s„ Heat of chemical reaction

S,n Mass added to the continuous phase from the dispersed phase (kg)

S* Surface of (f> per unit volume

T Temperature (k)

T„ Droplet temperature (k)

T„ Temperature o f continuous phase (K)

T p
Temperature o f the particle upon exit of the control volume (K)

^ref Reference temperature o f enthalpy (K)

Temperature change o f the particle in the control volume (K)

At Time step (s)
u Axial component of velocity at the injector exit (m/s).

u p
Velocity o f the particle (m/s)

V velocity (m/sec)
We Weber number

YJ Mass fraction o f species j  (%)

ym Fluctuating dilatation in turbulence to the overall dissipation rate.

£ p
Particle emmissivity (dimensionless)

G Stefan-Boltzmann constant (5.67* 10s W /m2-K 4 )
Radiation temperature (K)

<t> Fluid Property
V Gradient of <j>
r Diffusion coefficient ^

t* Viscosity of the fluid (Pa.s)
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p p Droplet density (kg/m3)

e p Latent heat (J/kg)

cr Particle emissivity (dimensionless)
<j£ Turbulent Prandtl number
d  Angle (degree)

Initial wave amplitude (m) 
Rotation (rpm)
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1

Introduction

1.1 INTRODUCTION

The Spray drying technique is a continuous process o f drying slurry. The process involves 

the atomisation of a feedstock into a spray, and then the interaction between the spray and 

the drying medium results in moisture evaporation. The resulting dried product converts 

either into a free flowing powder, granule or agglomerate type of material and its type 

depends upon the physical and chemical properties of the feedstock, dryer design and its 

operating parameters [1,2]. The dried powder can be easily controlled to its precise quality 

standards such as particle size, particle size distribution, bulk and particle density, 

friability, dispersibility and flowability with careful choice o f its initial parameters [3].

Powders can be used to produce thermally sprayed coatings to improve the serviceability 

of engineering components and biomedical implants [1,4]. This process involves powders 

been carried into a thermal spray combustion chamber which heats/melts and then propels 

it onto a substrate as a coating. This coating provides the substrate with a protective layer 

from wear, corrosion and thermal effects. In the case of bio-coatings, these coatings are the 

attachment of cells onto femoral implants. Thermal spray powders can be coated by High 

Velocity Oxy-Fuel (HVOF) or Plasma spray techniques [5]. These thermal spray coatings 

have lenticular or lamellar grain structure due to quick solidification o f small globules, and 

are flattened due to them striking a cold surface at high velocities [6]. In most cases, the in­

flight particles are molten or partially molten before impact and solidify a few 

microseconds after impact and this depends upon the particle size and shape during the 

production of the thermal spray powder [6]. The powder properties and characteristics 

have a direct impact on coating quality, ease of application and performance in its end use

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza 1



CHAPTER 1: Introduction

thus depend upon the methods of manufacture, purity, morphology and particle size 

distribution which yields free flow powders [7]. Therefore thermal spray powders should 

be free flowing with narrow distribution size and have spherical shape [8].

In general, there are four basic methods of producing powders for thermal spraying; 

crushing, agglomeration, chemical and atomisation [9]. Each method can be further sub­

divided and powders can also be produce by various combinations from each group. 

Among all, spray-drying is becoming an important tool in the production o f thermal spray 

powders [6,7,10,11]' There are several hundred commercial powders specifically 

developed for the various spray drying process; metals, metals alloys, ceramics, carbides 

and polymers [10,11].

Thermal spray powders are produce using a mixed type spray dryer, as it gives higher 

temperature exposure and more residence time of spray to evaporate in the drying 

chamber. Wherein the external-two fluid nozzle of the mixed spray dryer system is 

preferable in producing thermal spray powders so as to avoid clogging and to control 

powder size by varying atomising pressures and this nozzle atomisation are generally form 

coarse particle powders with good flowability and the variation of the pressure allows 

control over the feed rate and the spray characteristics [1,2,12]. The emerging droplets 

from the nozzle are then dried by hot air entering from the top o f the drying chamber. The 

dried droplets convert into particles and are collected either at the bottom of the chamber 

(large dense particles) or from a cyclone (small low density particles). Further treatment 

may be necessary such as blending /crushing before the powder can be used in thermal 

spray deposition.

In the present research, the mixed spray dryer is investigated for Hydroxyapatite (HA) 

thermal spray powder, as HA powder has a similar chemical and phase composition to that 

of living bone and is often applied as a coating onto metal orthopaedic implants because 

the bioactive behaviour of HA coatings have proved to speed up the integration of 

prosthesis with living cells in the human body.
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An implant is typically made of a titanium alloy and the HA coating covers the part that 

will enter into direct contact with the bone. The plasma spraying technique is used to 

produce the coating in medical industrial practice [1,4], however, the problem related to 

this type o f processing is the possible decomposition of HA phase resulting from an 

incongruent melting of hydroxyapatite and a formation of an amorphous phase resulting 

from rapid solidification [13]. This decomposition causes different phases to form such as; 

Ca4P2 0 g (TP) or Ca3(P04)2 (TCP) as well as amorphous HA, which are less bioactive than 

crystalline HA, therefore, the content of which in a sprayed coating should be kept low. 

This may be achieved by the production of a narrow distribution size o f powder, thus the 

spray dryer becomes an important tool in the HA manufacturing route. However, the spray 

drying of Hydroxyapitite (HA) for clinical applications has posed numerous problems in 

industry such as varying morphology, inconsistent drying and variation in size o f the 

powder produced [14],

To improve the performance of spray dryer, over the past decades research in this field of 

spray dryer modelling has primarily dealt with the practical effectiveness of spray dryers in 

various industries [15]- These designs are mainly empirically and artistically in nature. 

However, experiments on full-scale spray dryer posses major difficulties, not only because 

of their large sizes and massive costs involved, but also because o f their complex and 

hostile environment in which to measure the velocity of hot air, temperature profiles and 

particle thermal histories within the drying chamber. On the other hand, these are essential 

to understand the spray drying process completely. This understanding will lead to good 

productivity, low energy consumption and high final product quality. These short comings 

are encouraged and lead to take the proposed study of a full-scale spray dryer using 

computational fluid dynamics (CFD) techniques, and to investigate a statistical analysis of 

the spray drying process for HA powder production.

Chapter two is a review of literature relevant to this study. A wide ranging literature survey 

has been identified on all aspects o f spray drying, powder characterisation o f spray dried 

powders, computational fluid dynamic modelling of spray dryers, spray dried thermal 

spray powders and the HA thermal spray powder. The Chapter focuses initially on various 

types of spray drying and atomization techniques and especially mixed type spray dryer
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with the external two-fluid nozzle, which is often used for ceramic and thermal spray 

powder. CFD modelling of the spray drying technique is also reviewed in detail and also, 

the commercial softwares available to analyse such models. Various spray dried thermal 

spray powders are examined and in particular the HA powder manufacturing route.

The experimental equipment involved in the spray dryer and validations of the spray dryer 

model, is presented in Chapter 3. The facility includes the auxiliary equipment used to 

calibrate the temperature and flow rate inside the drying chamber, and the feed and 

viscosity measurement of the HA slurry. This Chapter also includes a description of 

equipment used for particle size measurement, powder morphology and the procedures 

used to produced the results.

The computational fluid dynamic modelling of the spray dryer process, specifically 

velocity vector, temperature profile and atomisation model is presented in Chapter four. 

This chapter describes the meshing of the models and the procedures used to apply the 

boundaries conditions, turbulent models and solution schemes.

In Chapter five the modelling and experimental results with their associated discussions are 

presented. At first, the calibration of the process parameters used in the spray drying 

process and HA slurry properties (such as viscosity, flow rate and density) are determined. 

These HA slurry and spray dryer parameters are then used in the modelling methods. The 

modelling results show the velocity vector of the air and feed pipe of the external two-fluid 

nozzle, the temperature profile o f the drying chamber used to predict the thermal histories 

of the particles with validation of the data, and the atomisation o f the HA slurry. Different 

turbulent models are analysed and discussed during the modelling results. The analysis of 

the spray drying process for HA slurry drying together with a statistical experimental 

matrix, presents the factors (temperature, flowrate of inlet hot air and viscosity o f HA 

slurry) and responses (the drying chamber, cyclone particle size, wall deposition and 

overall thermal spray dryer efficiency) in terms significant effects using ANOVA analysis. 

The resulting HA powder morphologies produced for various viscosities and temperatures 

are also presented and discussed.
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Finally, Chapter six summarises the conclusions found from the results and presents 

recommendations for future research. The future research includes expanding the current 

studies to predict complete modelling using the different atomisation models so that 

different spray drying combinations could be modelled and other thermal spray powders 

investigated.
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2

Literature Review

2.1 INTRODUCTION

Spray drying is not a new technology. Spray drying is the continuous process of drying and 

has been used in the food and pharmaceutical industries for over a century. Spray drying 

has many applications from foodstuff (milk powder, instant coffee, frozen vegetables) to 

household commodities (household detergents, plastic utensils) and manufacturing 

components (metal powders used in sintering and thermal spray applications) [l].The 

resultant powder produced can easily be controlled to yield precise quality standards such 

as; particle size, particle size distribution, bulk and particle density, friability, dispersibility 

and flowability.

Real engineering environments are normally complex, combining loading with chemical 

and physical degradation near the surface of the component. One o f the most common 

failure mechanism in engineering service is surface wear damage. Metallic/Ceramic 

powders can be sprayed using thermal spraying to improve the serviceability of, 

engineering components or in the present research biomedical implants [4,5] There are 

various methods used to produce thermal spray powders but Spray Drying is becoming a 

more useful tool in the production of powders for this process. The following sections will 

focus powder production for thermal spraying applications on the spray-drying process, 

product morphologies, and the role of computational fluid dynamics in the prediction of 

the velocity and temperature effects on the spray dried product.
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2.2 POWDER PRODUCTION

There are four basic methods of producing powders for the thermal spraying; crushing, 

chemical, agglomeration and atomisation [10,16]. Each method can be further sub-divided 

and powders can also be made by various combinations from each group. As a result there 

are a wide range of production routes available, each producing powders with their own 

particular characteristics and it will be demonstrated how Spray-drying is becoming an 

important tool used in the production o f thermal spray powders [11,17],

2.2.1 CRUSHING

Crushing, milling or grinding have the same meaning and are generally used in the 

production of ceramic powders. However, it is also used to manufacture some metals and 

metal alloys. The most common use of this technique is in the manufacture o f alumina, 

carbide powders and zirconia powders [18]. The powders produced are very dense but also 

have coarse, irregular, and of blocky morphologies [18,19]. These methods are used but 

not generally are suitable for the production of thermal powders as the chance of 

contamination from the production process and the irregular shape causes problems 

(choking of powder in the nozzles) during in the thermal spray deposition process [19].

2.2.2 AGGLOMERATION

The most common method o f agglomeration is where the constituents are physically mixed 

together with an organic binder. The solvent is then driven off by a heat source and the 

resultant material sized. This binder can often be burnt off during spraying [18,19], The 

use o f spray drying has become another common method for the agglomeration technique 

of producing powders. Here, slurry would be formed with the constituents and this can 

then be fed into a rotary spray head or nozzle. This method can be used for ceramics 

thermal spray powders such as zirconia and cermets such as WC-Cobalt [18]. The powder 

is largely spherical but in the as-spray dried state it can be porous and friable [19], The 

material is often densified and stabilised by sintering and/or spray densification. 

Sometimes sintering can be carried out to improve the crystallinity of the spray dried 

powders [18].
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2.2.3 CHEMICAL

There are numerous chemical methods used in the production o f powders. Chemical 

methods results in very fine powder particle sizes [20]. Such methods include; Sol Gel, 

Chemical Precipitation, Reaction, Reduction (hydrogen in an autoclave to reduce metal 

salts in the metal), Decomposition (for example metal carbonyls [20] and Electrolytes 

[18]). The Sol-Gel method was originally developed to produce ceramic materials for the 

nuclear industry in order to avoid dust (particle sizes less than 20  nm) generated in the 

grinding and sieving processes, and such powders have excellent flow characteristics [21]. 

Nowadays, this method has been frequently used to produce a number o f ceramic powders 

for the thermal spraying of Hydroxyapatite, Chromia, Alumina and the stabilized Zirconia, 

which often contain different steps like the precursor, sol and gelation, to produce a 

powder [22-24].The gel can be shaped to the required morphology and often appears as 

spheres of fibres. Thermal spray powders of spherical morphology are then produced using 

the spray drying process post these chemical processes. [25].

2.2.4 ATOMISATION

Atomisation methods include; Rotating Electrode, Vibrating Electrode (arc), Centrifugal 

(from a melt) and Rapid Solidification (for example aluminium ribbon). However, by far 

the most commonly used methods are either water or gas atomisation [17-19]. In this 

process, the cheapest method is that of water atomisation whereas the most expensive is 

argon atomisation [2]. The advantage of the latter process is the better control of oxygen 

levels in oxygen sensitive materials such as MCrAlY's [2],

Some schematic processes of metal atomisation are shown in Figure 2.1. It can be observed 

that in an atomisation model for gas and water atomised metal powders also include the 

formation of highly irregular or membrane-shaped particles [11], as well as the occurrence 

of collisions between particles. Thus in conventional gas and water atomisation processes, 

five distinct stages can be observed [18];

♦ Stage 1: Wave formation through the initiation of small disturbances at the surface 

of the liquid.

♦ Stage 2: Wave fragment and ligament formation through shearing forces o f the 

disturbances from stage 1.
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♦ Stage 3: Breakdown of ligaments into droplets (primarily atomisation); regular 

particle shape powder when high surface tension and cooling rate exist; irregular 

particle shape powder by low surface tension and high cooling rate.

♦ Stage 4: Further deformation and thinning o f droplets and wave fragments into 

smaller particles (secondary atomisation).

♦ Stage 5: Collision and coalescence o f particles.
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Figure 2.1: Schematic sketch of the Atomisation Processes [2,18].
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2.3 SPRAY DRYING PROCESS

The spray drying process involves the atomization of a feedstock into a spray, and then the 

interaction between the spray and the drying medium results in moisture evaporation. 

Hence in a typical spray dryer, the feedstock is transformed from a fluid state into a dried 

particulate form by spraying the feedstock into a hot drying medium [1,2,18]. The 

feedstock can either be a solution, suspension or paste. The drying continues until the dried 

product is obtained and the product has been recovered from the air. The resulting dried 

product converts either into a powder, granule or agglomerate type o f material and its type 

depends upon the physical and chemical properties of the feedstock, the dryer design and 

the dryers operating parameters [1]. A typical spray drying process can be divided into 

four stages (Figure 2.2) [26].

♦ Atomisation

♦ Spray-air contact

♦ Spray evaporation

♦ Product separation

2.3.1 SPRAY DRYING ATOMISATION

The atomisation process is a reduction of fluid into fine droplets o f spray (with a high 

surface/mass ratio). The basic mechanism and early theories on atomisation have been 

explained by a number o f researchers [27-30]. Lord Raleigh [27] explained that a jet 

becomes unstable and is ready to be disturbed if its length is greater than its circumference. 

Weber [28] extended this prediction to include viscosity, surface tension, and liquid 

density effects. Haelin [29] investigated that an orderly wave formation at a jets surface, 

caused by a high-velocity airflow, becomes completely irregular as the velocity increases. 

Ohnesorge [30] described with the Reynolds number relationship, that the tendency o f the 

jet to disintegrate can be expressed in terms o f liquid viscosity, density, surface tension and 

jet size. The mechanism of liquid break-up can be expressed by the magnitude of a 

dimensionless number Z, (the ratio of Weber number to Reynolds number) [30]. In fact, all 

of these mechanisms act simultaneously thus influencing the spray characteristics by 

varying degrees [1 , 2,18, 26],
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Figure 2.2: Various Stages of the Spray Drying Process, adopted from [1, 2,16].
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The atomiser can be classified on the basis of the different energies (such as; centrifugal, 

pressure and kinetic) applied to break up the liquid bulk (Figure 2.3). Many atomizers are 

available such as rotary, pressure, pneumatic and sonic nozzles but this research utilises the 

two-fluid pneumatic nozzle, hence this type will only be described. Nozzles are generally 

used to form coarse particle powders that have good flowability and the variation o f 

pressure allows control over the feed rate and the spray characteristics o f the process [1, 

31]. The droplet size produce by the nozzle spray depends upon the feed viscosity and 

surface tension, spray angle and pressure [1,26],
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(A) Pneumatic (Two-Fluid) Nozzle Atomisation

The external two-fluid nozzle is commonly used for thermal spray powder production [1, 

2,6,10,11,32], and hence was used in the investigation in this research. Pneumatic nozzles 

atomised by impacting a liquid bulk (feed stock) with a high velocity gas (normally air) as 

shown in the Figure 2.4 and 2.5.
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The high velocity gas creates high frictional forces over the liquid surface causing the 

liquid to disintegrate into spray droplets. The liquid disintegration occurs in two phases. 

The first phase involves the tearing of the liquid into ligaments and large droplets and the 

second phase completes the atomisation by breaking these liquid forms (ligaments and 

large droplets) into smaller and smaller droplets. The entire process is influenced by the 

magnitude o f the surface tension, density and viscosity of the liquid and the gaseous flow 

properties; velocity and density [1, 27-30]. The gaseous media used in the pneumatic 

nozzle atomisation include generally either; air, steam or inert gases (for example nitrogen 

and argon are chosen for metal powder production in closed cycle spray systems) [2 ,10]. 

The pneumatic nozzle generally uses one of four methods to provide effective air-liquid 

contact and breakdown o f the liquid into either ligament or individual droplets forms. They 

are as follows [1,16,26]:

(i) Contact with air and liquid within the nozzle head (internal mixing).

(ii) Contact with air and liquid outside the nozzle head (external mixing -  present 

research).

(iii) Combined internal and external mixing by using two airflows within the nozzle 

head (three-fluid nozzle)
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(iv) Contact with air and liquid at the rim o f a rotating nozzle head (pneumatic cup 

atomizer).

The external mixing (ii) permits greater control o f atomisation by independent control of 

both liquid and air streams. It also produces less clogging as compared with internal and 

combined forms of internal and external mixing nozzles [1].

Atomized
Fluid

Nozzle

1
X

m* **1

9

\i
I

Figure 2.5: An industrial (Niro-Type) external-two-fluid nozzle [33].

The pneumatic nozzle has greater flexibility in producing small droplet sizes over a wide 

range o f feed rates. The droplet size characteristics can be varied by adjusting the feed-air 

flow ratio of the nozzle head. The effect of the relative velocity between the air and liquid 

is dominant in determining droplet size formation. Increasing the relative velocity, 

decreases the mean droplet size, (as the point o f contact increases the air dynamic force for 

atomisation increasing) [1,2,17-19,31]- Further, the relative velocity between droplets and 

the air also influence moisture evaporation rates from the spray, however others factors 

also include; are feed rate, operating feed pressure, cone angle, and spray pattern [1,17-19, 

26].

The major advantage of using the extemal-two-fluid nozzle arrangement is to produce 

homogenous and small mean droplet size particles [1,2,26]. These characteristics can be
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achieved over a wide range of operating conditions, while handling either high or low- 

viscosity feeds [1,2,26]. The pneumatic nozzle has normally a large liquid orifice 

compared to those used in the centrifugal pressure nozzles, thus reduce the likelihood of 

nozzle clogging under normal conditions. The disadvantages o f the pneumatic nozzle 

arrangement are the high cost o f compressed air usage, the reduction in spray thermal 

capacity due to cold atomising air entering the chamber, and very low nozzle efficiency. In 

the present study the two-fluid nozzle was used for atomisation and simulation for thermal 

spray powders in the spray drying process, as this was the process available and the type 

used in the production of Hydroxyapatite (HA) powders for thermal spray applications.

2.3.2 SPRAY-AIR CONTACT (MIXING AND FLOW)

The spray to air contact is determined by the position of the atomizer in relation to the 

drying air inlet and three types exist; co-current, counter current and mixed current types of 

air-flow (Figure 2.6) [1,26]. The co- current air mixing type is used for heat-sensitive 

products, and hence not suitable for thermal spray powders as they are generally non­

sensitive to heat [32]. The counter-current arrangement is suitable for producing coarse, 

high bulk-density products that can withstand very hot environments [32]. The product 

particles generally have low porosity due to the reduced tendency of the droplet to expand 

rapidly, fracture during evaporation, and have low residence time in the main chamber 

which is not beneficial for thermal spray powders, as requires time to evaporate.

The air mixing system investigated in this research was o f a mixed flow type. It 

incorporates both co-current and counter-current air mixing systems. In the air mixing flow 

system, the feed been atomized and hot air comes in contact in the opposite directions. 

Figure 2.7 shows the exact layout of the mixed flow system used in the present research. 

This system is effectively Figure 2.6(c) turned up-side down. Therefore the hot air enters 

from the top of the drying chamber and the feed spray from the bottom, both meet near the 

top of the chamber (evaporation occurs) and then the feed and air fall back down towards 

the bottom of the camber. The dried powder is collected at the bottom of the drying 

chamber
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The feed is sprayed into the coolest gas first, and gradually flows towards the hottest zone 

near the top of the chamber decreasing the instantaneous rate o f drying and directionally 

producing a higher density product. Therefore the system can be used for heat sensitive 

products where coarse powder requirements necessitate the use o f nozzle atomizers. The 

particle trajectory is increased (double as compare with co-current or counter-current flow 

mixing systems), allowing for extra drying time, thus decreasing the overall spray dryer 

height required [1,18].
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Air In

Atomized
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Figure 2.7: Mixed air-flow pattern in a spray dryer used in the present research.

2.3.3 SPRAY-EVAPORATION

The spray-airflow mixing can be defined as the spray behaviour such as trajectories, 

evaporation rate, and residence time in the drying chamber [1,34-36]. Drying o f the 

droplets is carried out in two stages [1,26,32]. First, diffusion o f moisture from within the 

droplet maintains a saturated condition, that means the temperature at the droplet surface 

approximates to the wet bulb temperature o f the drying air, and as long as this lasts 

evaporation can be maintained at a constant rate. It is known as the constant rate period or 

the first period o f drying [1]. When the moisture content becomes too low to maintain 

saturated conditions and it reaches a critical point where a dried shell forms on the droplet 

surface, evaporation now becomes dependent upon the rate o f moisture diffusion through 

the dried surface shell. The thickness o f the dried shell increases with time, causing a 

decrease in the rate of evaporation. This is called the falling rate o f or the second period of 

drying [1,26]. This is described by the drying rate curve shown in Figure 2.8. The droplet 

residence time in the chamber depends upon the drying chamber design and the air flow 

rates (co-current, counter current and mixed current) [35]. Different products can exhibit 

different evaporation characteristics, some tend to expand, and others collapse, fracture,
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leading to porous, irregularly shaped particles [1,26,38], as shown in Figure 2.9. Others 

maintain a constant spherical shape or even contract, thus the particles become more dense. 

The extent o f any change in particle shape, and hence the dried-powder characteristics, are 

closely connected to the drying rate [37]. The thermal spray process requires its powders to 

be spherically shaped and have a uniform size distribution so as to achieve maximum 

flowablity characteristics [12,32].
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Figure 2.8: Drying rate curve [1,37].
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(c) Spherical with different size

(a) Spherical and Hollow (b) Hollow and Shrink

Figure 2.9: Different shapes of spray dried thermal spray powder [9,39].

2.3.4 PRODUCT SEPARATION

There are two systems used to separate the dried product from the hot air [1]:

System I: Primary separation of dried product takes place at the base o f the drying 

chamber. During operation, the majority of product falls to the end o f the chamber (heavier 

particles) due to gravity, while a small fraction (lighter particles) pass out entrained in the 

air and are recovered by separation equipment. Such separation equipment includes 

cyclones and dry collectors (Figure 2.10).

System II: This system is used for total recovery of the dried product, and takes place in 

the separation equipment. This system places great importance in the separation efficiency 

of the spray dryer and separation equipment, but this system is often not utilised.
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Figure 2.10: Schematic cross-section of a spray dryer.
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2.4 OPERATING VARIABLES OF A SPRAY DRYER

They are many operational variables associated with the atomization and drying operation 

of a typical spray dryer, which offer the means o f altering the characteristics o f the dried 

product. The most important variables are; atomisation energy, feed rate, the hot inlet air 

flow, drying temperature and the type of equipment used [1,2,26].

2.4.1 ENERGY AVAILABLE FOR ATOMISATION

An increase in energy available for atomization will cause the spray dryer to produce 

smaller droplet sizes at constant feed conditions [1,16,26]. An increase in nozzle pressure 

for atomisation, or air-fluid flow ratio in the two-fluid nozzle arrangement decreases the 

mean size o f the spray droplet [2], however the spread of droplets sizes in the spray 

distribution may not be appreciably changed. Producing greater amounts of the fine 

particles can often form a product with higher bulk density. The greater numbers of smaller 

particles produced, fill the voids between the larger and smaller particles [1,2,26,40,41].

2.4.2 FEED PROPERTIES

Increasing the feed viscosity, by increasing the amount of feed solids or reducing the feed 

temperature will produce coarser sprays during atomisation [1,16]. It has been reported that 

surface-tension effects during atomisation appeared minor, however an increase in feed 

solids has an effect on the evaporation characteristics where generally there is an increase 

in particle and bulk density [1,2,40]. The importance of the slurry formulation on the 

characteristics o f the produced granules for thermal spray applications is not a negligible 

factor. Takahashi et al. [42] found that decreasing the pH value o f aqueous silicon nitride 

slurries dispersed with nitrilotriethanol deflocculant caused the slurry to flocculate and 

produces granules with reduced density. Walker et al. [43] made correlations between 

aqueous alumina slurry formulation (binder type, solid loading and deflocculant level), 

slurry yield stress and the end product characteristics produced. It was also reported that a 

high deflocculant level which corresponds to a low slurry yield stress, results in hollow 

granules [43], Cao et al. [9] researched on Zr02 -A l203 ceramics and confirmed that the 

suspension preparation was a controlling factor of the properties of spray-dried powders. 

Tsubaki et al. [44] showed that granules prepared from a dispersed slurry were irregularly 

shaped and dimpled whereas flocculated slurry results were essentially spherical and
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homogeneous granules. Sizgek et al. [45] reported that the well-dispersed Ti02 /Zr02 

selections invariably lead to hollow particles, whereas solid microspheres were produced 

from partially aggregated under specific conditions.

Brentrand et al. [3] studied the correlation between the slurry formulation (by varying the 

pH, the amount of dispersant and the binder) and the characteristics o f the spray dried 

granules for two oxide ceramics; alumina and zirconia. It was shown that there was a 

qualitative relation between the sedimentation behaviour (measured by the sediment ratio 

(SR)) and the granule shape (solid or hollow). Low SR values (below 0.6 and 0.7 on the 

scale of 1 which shows maximum settled volume of flocculated slurries for zirconia and 

alumina respectively) attributed to dispersed slurries producing hollow dried spheres 

whereas high SR values (achieved with flocculated slurries) led to solid dried granules.

2.4.3 FEED RATE

An increase in feed of slurry rate at a constant atomising energy produces coarser sprays 

and un-dried products or mean droplet size increase with decrease the relative velocity of 

air and feed in the external two-fluid nozzle [1,2,26], Decrease o f the relative velocity 

between air and feed at the point of contact decreases energy available for atomisation, 

however, for small feed rates, high velocity air can readily penetrate, causing the necessary 

turbulence to form the narrow mean particle sizes spray. Whereas at the larger feed rates, 

even high-velocity air cannot cause complete atomisation hence, a wide droplet-size 

distribution throughout the resulting spray.

2.4.4 AIR FLOW

The rate o f airflow controls to a certain extent the residence time of the droplets in the 

drying chamber [1,18]. Increased residence time of droplets in the drying chamber leads to 

a greater degree of moisture removal, therefore reducing the air velocity, assists in the fast 

product recovery from the drying chamber [1,2,26].

2.4.5 DRYING TEMPERATURES

There are two temperature points of importance: inlet and outlet temperatures as shown in 

Figure 2.10.
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(A) Inlet: An increase in inlet temperature increases the dryer evaporative capacity at 

constant air rates. Higher inlet temperatures yield a more thermally efficient dryer 

operation. Increased temperature often causes a reduction in bulk density, as evaporation 

rates are faster and products dry to a more porous or fragmented structure [2,26].

(B) Outlet: For a fixed moisture content and dryer design, the outlet temperature must 

be kept within a narrow range to maintain the power packing and flow requirements [41]. 

An increase in outlet temperature decreases the moisture content, at constant airflow and 

heat-input conditions [41]. Operation at low outlet temperature produces powder with high 

moisture content, often used when agglomerated forms o f powder are required [26].
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2.5 POWDER CHARACTERISATION OF SPRAY DRIED PRODUCTS

Powder characterisation post spray drying is generally carried out to measure the bulk 

density, particle size, powder flowability and particle friability o f spray dried powders 

[46]. For thermal spray powders, the characteristics such as particle size, particle size 

distribution and particle shape (morphology) are of most important and these all effect 

both bulk density and powder flowability, as they have a bearing on transport costs 

[46,47]. HA powder used for coated titanium implants have been identified as class 3Rd 

medical devices in accordance with the Food and Drug Authority (FDA) regulations [48- 

54]. The chemical and physical parameter of optimum HA powder properties with respect 

to elemental analysis, Ca/P ratio, density and solubility of HA powders (Appendix-A).

2.5.1 BULK DENSITY

Bulk density is defined as the weight per unit volume o f powder. Bulk density provides a 

gross measure of particle size and dispersion which can affect material flow consistency. 

Bulk density of HA powder according FDA is 3.05 g/cm3 for thermal spray [51]. Walton 

and Mumford [46] measured bulk densities of spray dried powders ranging from 0.147 

g/cm3 for coffee to 3.674 g/cm3 for tungsten carbide. The research showed that the bulk 

density was influenced by the initial density of the materials, where an increase in solid 

density produced an increase in bulk density. A proportional increase would have been be 

apparent if  the particle shape, and particle size distribution o f all the powder samples 

produced and measured were identical. Duffie and Marshall [34] found that whilst the bulk 

density of some materials decreased with an increase in drying temperature and feed 

temperature, with others, increased, even if  when spray-dried under identical conditions. 

Factors, such as feed rate, powder temperature and residual moisture content also 

influenced bulk density [34]. Chu et al. [54] also studied the effects of operating 

parameters on the bulk density and moisture content of synthetic detergents. Bulk density 

was found to decrease with an increase in atomization pressure, whereas, moisture content 

showed a slight increase. Additionally, an increase in a feed concentration produced an 

increase in the bulk density and a decrease in moisture content, however, the bulk density 

decreased with an increase in the feed temperature.
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2.5.2 POWDER FLOWABILITY

Powder flowability is the ability o f a powder to flow. In most engineering design 

situations, bulk powder can often be regarded as a plastic continuum, that is the powder 

exhibits a rheological behaviour relating to both Hookean (where the ratio o f stress to 

strain remains constant, within the elastic limit of the body) and plastic deformation [18]. 

A powder is subjected to a continuous stress first deforms elastically ( almost in a Hookean 

manner), but as the stress increases the powder starts to yields and eventually fails 

completely, after which, deformation becomes completely plastic, the powder dilates and 

flow sets in [18]. This approach although relatively successful, fails to give any 

consideration of; particle surface morphology and rheology like- surface asperities of 

adjacent particles interlocking, particle size, particle shape and particle packing, inter­

particle force (Van der Waals electrostatic surface forces). Walton [55] used an 

inclinometer to test the flowability o f spray dried powders. It was designed to measure the 

angle of repose o f small quantity of powder (approximately 1.1 cm3). The authors showed 

that all the samples demonstrate one of three distinct types o f flow behaviour; free-flowing, 

semi-free-flowing or cohesive flow. Powder samples demonstrating free-flowing 

behaviour flow readily in an even, unbroken manner (due to having individual shapes, 

Figure 2 .11(a)) and have flow patterns characterised by a high percentage (usually 100%) 

of the powder being displaced from the inclinometer at relatively low angles of repose. The 

displacement generally occurs over a narrow angle repose (approximately 7°) [55]. Semi- 

free-flowing powder tend to flow in an uneven and broken manner (due to having irregular 

elongated shaped particle mixed with spherical particles, Figure 2.11(b)) with the bulk 

powder showing signs of brittle fracture as it is separated at a 20° angle of repose [55]. 

Walton [55] also demonstrated that particle size and its distribution had a considerable 

influence on powder flowability. Therefore the larger the particle size and the narrower the 

particle size distribution, the more free flowing the powder [55]. The author also, 

suggested a correlation between particle morphology and powder flowability. In a free 

flowing powder, particles should ideally be spherical with no surface asperities, have a 

relatively large particle size and be moisture and static free [55]. Variation in powder 

moisture content (experiments were performed by Walton [55] at ambient temperature 

with powders humidity was ranging from 15% to 100%) had little effect on powder 

flowability so particles must be moisture free to see any difference in flow. It was shown,
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that Van der Waals and electrostatics forces promoted agglomeration within the powder. 

In cohesive flow, (for particles less than 5 (am), these forces become very large compared to 

the weight o f the particle (Figure 2.11(c)). Such small particles are naturally cohesive and 

form agglomerates.

Figure 2.11: Different shaped powders which cause different types of flow behaviour

of spray dried powder [50],

------- -----------------------------------------------------------------------------------------------------------------------  O
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2.5.3 PARTICLE FRIABILITY

The physical strength or friability of a single spray dried particle is very difficult to 

determine due to its small size and the minute force would be o f the |aN range [55], The 

methods used to determine the friability o f powders like; tensile, compressive, 

attrition/abrasion and impact testing, are not applicable to single particles as the properties 

of the particles in bulk vary compared to that o f individual particles [55], Ghardiri [56] 

demonstrated a nanotester for measuring the strength o f single crystals approximately 2nm 

to 5nm in diameter; unfortunately, most spray dried particles are many timers larger. 

However, Walton [55] determined the friability o f individual spray dried particles by 

applying light pressure to individual particles and estimating their relative resistance to 

compression.

2.5.4 PARTICLE MORPHOLOGY

It is described that process variables like; the residence time o f particles with the drying 

chamber, the type o f spray to air contact, and feed parameters such as concentration, 

temperature and the degree o f feed aeration, all effect particle morphology [32,55]. Three 

distinct morphological features have been identified namely; agglomerate, skin-forming 

and crystalline spray-dried products (Figure 2.12) [57]

(a) Agglomerate 
(Aluminium oxide) 
Phosphate)

(b) Skin-Forming 
(Coffee)

(c) Crystalline 
(Tri-Sodium-

Figure 2.12: Different types of particle morphology of spray dried powders [57].
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(A) Agglomerate- An agglomerate is a particle composed o f individual grains of material 

bound together by sub-micron dust (material less than 1 (im in diameter and/  or a binder) 

[7]. It has been suggested that agglomeration occurs due to static electrical effects [57]. 

Many of the particles produced by spray drying form porous or hollow particles. Particle 

expansion has been found to increase with particle size or feed concentrations [58]

(B) Skin-forming- A particle composed of large individual crystal nuclei bound together 

by a continuous non-liquid phase which is polymeric or sub-microcrystalline in nature is 

known to have skin forming morphologies [57].

(C) Crystalline structure- A particle composed of large individual crystal nuclei bound 

together by a continuous microcrystalline structure is known as a crystalline structure [57].

Buckham and Moulton [58] spray dried aqueous ammonium sulphate solutions and found 

that the drying rate had a considerable effect on the morphology in the final powder. Under 

the same spray dryer conditions, the larger particles tended to dry to a less dense product 

compared to the smaller particles, indicating a grater tendency on the part o f larger 

particles to from porous or hollow spheres. Dlouhy and Gauvin [59] studied the 

evaporation and drying rates of calcium lignosulphate solutions (palletizing agent) and 

drying at different inlet air temperatures produced considerable differences in particle size 

and shape. At inlet air temperatures of 52 to 64 °C, the particles appeared to be smaller and 

more regular-shaped than those dried at 192 to 215 °C. A greater proportion of hollow 

particles were also produced at the higher temperature.

Beltran et al. [60] reported that their final product (40% maltodextrin) showed a formation 

of thick, compact and irregular crust, which was more evident for low-temperature drying 

(110/70 °C) than when drying at higher temperatures (170/145 and 200/173 °C) in which 

smooth and regular surfaces of completely broken material were observed. Ghardiri [56] 

found that the inorganic materials fell typically into the crystalline and agglomerate 

category and could be further subdivide according to their aqueous solubility that materials 

which were readily soluble in water tended to have crystalline morphologies whereas, 

insoluble or partially -soluble materials tended to form agglomerate structures
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The main characteristic o f the spray-dried powder is a spherical external shape. However 

within such a shape, two kinds of granule morphologies are often formed by spray drying 

either “solid” or “hollow”, and for the same hollow granules at least three types have been 

identified: thin-walled fractured, thin-walled dimple and thick-walled spherical [3,46,47]. 

The researchers [46,47,55-42] observation suggested that a different shape o f spray dried 

powder is due to it in suite material properties and drying history. Particle blowholes and 

catering due to the high porous or open nature o f the particle structure allowing the flow of 

water, water vapour and possibly dissolved gases form the interior o f the particle to its 

surface, with the minimal amount of resistance, thus minimizing internal pressure build-up 

and particle distortion or inflation. Hollow particle with a blow hole may be due to rapid 

evaporation o f volatile solvent exceeding the rate of liquid and /or vapour diffusion 

through the porous particle structure. An example tungsten carbide spray dried powder. 

The internal structure of spray dried particles may be either solid or hollow. If  solid may be 

due to the wall structure are relatively thick in relation to overall particle diameter; if  

hollow, the particles can sometimes contains trapped air/gas bubble. If particles with 

excessive surface cracking and large number of broken shells, this may be due to the 

formation of relatively nonporous, rigid particle structure, where evaporation of the 

internal liquid has resulted in particle fracture and possibly explosion, example- trisodium 

orthophosphate. The mushroom cap shape o f clay spray dried powder may be due to the 

result of the particle’s resistance to airflow as it moves though the drying chamber.
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2.6 COMPUTATIONAL FLUID DYNAMIC (CFD) - SPRAY DRYER

2.6.1 INTRODUCTION

Computational fluid dynamics (CFD) can play an effective role in the optimisation of 

parameters for the spray dryer process, such as the initial droplet diameter, the location and 

orientation o f sprays, and the mass flow rate o f the sprayed material [1,64]. Before the 

advent of CFD, there were many attempts to formulation mathematical models to predict 

spray drying processes [65]. At the earliest stage o f the spray drying modelling era, there 

were many phenomena which were difficult to represent by mathematical models such as 

polydispersity of spray, entrainment effects, or problems o f internal heat and mass transfer 

in a dispersed phase. A significant changed was marked in the 1970’s when Parti and 

Palancz [66] formulated the principles of momentum, heat and mass balances between the 

continuous and disperse phase, and particularly when Gauvin and Katta [35] presented a 

model which took into account entrainment effects and non-uniformity of atomisation. A 

spray drying model solution which accounts for axial and tangential velocity distributions 

of air inside the drying chamber was also described [35]. However, a land mark change 

occurred when Crowe et al. [35,67] demonstrated a so-called Particle Source in Cell (PSI- 

Cell) model for gas-droplet flows. It was based on the Navier-Stokes and continuity 

equations where the droplets were treated as sources of mass, momentum and energy is the 

gaseous phase. Using this concept, any influences on the spray was initially neglected in 

calculating the axial, radial and tangential components o f the gas velocities. A large 

number of droplets were then tracked through the gas inside the chamber; these droplets 

were chosen to represent the range o f droplet sizes leaving the atomizer, so that the sum of 

the flowrates of each droplet size equalled the total liquid flowrate. In the model proposed 

originally by Crowe et al. [38] many simplified assumptions were made that referred 

mainly to the calculation of trajectories and temperatures o f particles. Further extensive 

studies resulted in the development of more sophisticated version o f the PSI- Cell model, 

including also commercial packages such as F10W3D and PHOENICS and the latest 

commercial software; FLUENT and CFX were all based on this fundamental principle 

[68],

A dispersed liquid phase species in the form of a large number o f discrete droplets 

convecting and vaporising in a continuous gas phase species and their mathematical
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description, involves complex nonlinear couplings o f momentum, energy and mass 

exchange [69]. Regardless of the macroscopic complexity o f the flow field, the traditional 

modelling approach for such flows generally involves specifying the governing equations 

for a single, isolated droplet including drag, convective heat transfer, mass transfer and 

effects due to finite droplet Reynolds numbers. The derived equations were then used 

either for every individual droplet (as in direct numerical simulations) or for a subset of 

statistically representative droplets or "test particles" (as in various forms o f two-phase 

turbulence and spray modelling) [69].

2.6.2 MODELLING OF SLURRY AND DROPLETS

A slurry plays an important role as it can break up into droplets, hence it is controlled by 

viscosity and kinetic energy. Kadja and Bergeles [70] modelled a slurry droplet undergoing 

drying. The model was based on heat, mass and momentum transfer between the slurry 

droplet and gas flow and this was investigated numerically. The model was solved using 

finite volume methods which had been developed by Varonos and Bergeles [71]. The 

model showed that the total evaporation time for droplets with a high solid content was 

small and indicated that higher rates of evaporation would be obtained when the injected 

slurry was atomised into very small droplets and low effects o f evaporation was observed 

when the relative motion between the droplet and the surrounding gas was increased at the 

point of injection.

Modem direct numerical simulations currently treat as many as 106 individual solid 

particles undergoing dispersion in simplified turbulent flow configurations; however, such 

large computations are relatively new for evaporating droplets due to the numerical 

complexity added by the droplet heat and mass transfer [72]. Mashayek et al. [73] simulate 

droplet dispersion in isotropic turbulence in which the evaporation was governed by the 

classical "D2 law" (Godsave, [74] and Spalding [75]) and the mass loading was considered 

small enough to neglect turbulence modulation in the dispersed phase (one-way coupling). 

More recently, Mashayek [76] removed this restriction and considered droplet dispersion 

in compressible homogeneous turbulence with two-way coupling and droplet evaporation 

governed by a heat-mass transfer analogy model as first used by Crowe et al. [77]. Their 

simulations employed 963 spectral points for the gas phase discretisation and include as
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many as 5.5x105 sets of Lagrangian equations for the three dimensional positions; velocity, 

temperature and mass of each droplet. Stoichastic approaches in which only representative 

droplets are followed, have received more attention than direct simulation approaches; as 

they work out to be less expensive computationally [77].

2.6.3 EVAPORATION MODELS

Stevenson et al. [78] showed that over the last few decades, five different approaches have 

been developed and used to describe the drying of droplets [78]. The first approach 

assumed the droplet was assumed to be at a uniform temperature and the moisture was to 

diffuse through the solid and evaporate at the surface of the droplet. The second approach 

was based on the formation of a crust, with a receding crust-bulk interface [79]. The crusts 

internal heat was ignored, which would have an effect on the calculated droplet 

temperature during the periods of drying. A third approach was based upon a proper 

receding interface model with a droplet core temperature different to that of its surface 

[78]. However, the core temperature was not linked to the air wet-bulb temperature. This 

model was simplified by ignoring the heating o f the crust, but was complicated by the 

requirements to solve the diffusion equation for the crust and increasing the number of 

physical parameters that were evaluated experimentally. However the major drawback of 

this analysis was the assumption of the linear temperature distribution in the crust, which 

may be correct for flat geometries but not for spherical ones.

The fourth method was based on the reaction engineering approach to describe the drying 

of a single droplet o f milk [32,80]. In this approach, neither temperature nor water 

concentration distributions in the droplet were considered. As the water in the droplet 

depleted, the effective water vapour pressure (or water activity) at the surface was reduced 

causing continuous reduction in drying rate. This model was modified later by 

incorporating the mass transfer resistance o f the crust [80]. The modified model was semi- 

empirical in nature and only useful for fast computations.

The fifth and final model was developed to predict the change in droplet mass and 

temperature when it was exposed to hot air [80]. The droplet was assumed first to undergo 

sensible rapid heating with no mass change. Then the droplet experienced some shrinkage,

--------------------------------------------------------------------------------------------------------------------------------
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with no temperature change but rapid mass loss, followed by a period o f crust formation 

with a significant change in droplet mass and temperature, and finally a short period of 

sensible heating of the dried particle. This model, unlike previous models, accounted for 

shrinkage and for the temperature distribution in the droplet. It provided good predictions 

for the change in droplet temperature and mass, compared with experimental 

measurements and was used in numerical solutions [32],

2.6.4 COMMERCIAL SOFTWARES FOR SPRAY DRYER

Zbicinski [65] showed how the commercial software CFX was very useful for 

development and experimental verification o f momentum, heat and mass transfer model on 

a spray drying processes. Uneven distribution of particles and entrainments effects were 

taken into account in the model. The model compared to experimental results (investigated 

using water evaporation) at different initial air temperatures, feed rates, flow rates o f the 

drying agent and different parameters of atomisation, spray cone angle and initial particle 

size distribution. However, it was found that the model was not validated with the 

experimental data.

Oakley and Bahu [64] used FLOW3D [76] to describe a discrete droplet model (adapted 

from Crowe et al. [75]) to predict the behaviour of water and milk droplets and particles. 

This model had serious limitations like low accuracy for swirling flows. The model was 

earlier version o f spray drying process where primary K-e  model used and the specification 

of gas velocity component u, v and w, and value of K  and e  defined by user. The model 

was used body fitted girds and validated with water and milk spray.

Harvine et al. [82] analysed a tall form of spray dryer (co-current rotary type) used for 

diary products, where a two phase simulation was used to evaluate the applicability o f the 

commercial software CFD model and CFX 4.3, and to examined the characteristics of the 

flows that existed within these complex devices. The model used K-e  turbulence model 

with standard coefficient and employed to simulate heat and mass transfer between the 

feed particles and the surrounding gas that was based on the concept of a general 

characteristic of drying curve.
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Langrish and Kokel [83] also used this model to simulate the velocity flow fields, 

temperature profiles, mass fraction fields, and milk particle behaviour. Results [82,83] 

showed that the final particle moisture contents were o f a similar magnitude to those 

measured experimentally. The major draw back of these models was that they could not 

predict any atomisation.

Verdurmen et al. [84] used the software DrySim. The software was mainly used for diary 

products and specific types of dryers. The software was developed under Nizo food 

research. It was based on a tailor made simulation program for spray dryers, making used 

of computational fluid dynamics (CFD) techniques. The DrySim used a two dimensional 

simulation model of a spray dryer to calculate the flow pattern, temperature and moisture 

content of air; the trajectories of the atomized particles and the drying behaviour of the 

individual particles. The gas flow was described by the time-averaged Navier-Stokes 

equations in combination with a standard K -e  turbulence model (to be described in Chapter 

4). In DrySim, a particle tracker based on the equation of motion was used to simulate the 

particle trajectories. Since the particles affect the gas-flow (and vice versa), an iteration 

procedure was used to solve the equations. The drying o f droplets was influenced in 

DrySim by both external transport phenomena (from particle surface to surrounding air) 

and internal transport phenomena (diffusion of water within particles). The differential 

equation that describes the diffusion process o f spherical particles was solved numerically, 

simultaneously with the equations for external heat and mass transfer. In order to obtain 

reliable results using DrySim, it took several hours using a personal computer (800 MHz, 

128 Mb RAM) to carry out one simulation. Sub-models for the formation of insoluble 

material or for describing the stickiness o f particles had option in DrySim. Three industrial 

cases was described to show that DrySim was an effective tool for giving indications of 

how to adapt industrial dryers, for example to obtain a better product quality, a higher 

capacity or to reduce fouling. DrySim validated for rotary and nozzle atomizer with co­

current air flow drying system for dairy products. In DrySim modelling initial particle 

leaving at nozzle or rotary was assigned by measurement or manually and was not support 

by any atomization model. However, the mixed spray dryer is preferable for thermal spray 

powders drying. In present study, FLUENT software has given more insight as it governs 

all the aspects of CFD than DrySim.
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The CFD technique also plays an important role in assessing design alternatives in the 

spray dryer process [86,87]. Southwell et al. [85] used CFD software as a tool to 

investigate several design alternatives to overcome poor flow distributions in a plenum 

chamber for a pilot-scale co-current spray dryer. It was simulated using the CFD codes 

CFX4 and CFX5 to correct the uneven inlet air distributions, which influenced the spray 

dryer performance, airflow patterns, inlet conditions and significantly affected particle 

trajectories in such spray dryers. It was stated that considerable difficulty was encountered 

in obtaining adequate grid resolution for the holes in the distributor plate while keeping the 

required computational resources with realistic limits. The model was meshed with

532,000 cells to give a satisfactory accuracy of simulations but it took a long time to 

converge. All simulation results were based upon the assumptions o f isothermal and 

incompressible flow and used K-e  turbulence model. It was evident from the models 

results that the pressure and velocity profile distributions around the distributor plate were 

not as smooth as they would have been expected physically. Hence redesign corrected this 

problem. The CFX4 used multi block geometries, and had problems solving, however 

CFX5 (just as FLUENT does, the software used in this research) had the added benefit of 

using an unstructured mesh, so that the flow could be solved simultaneously throughout the 

flow domain, rather than on a block by block basis.

Fontana et al. [88] conducted a study on the flow distribution inside a spray dryer for 

ceramic powders. The objective of the study was to analyse the motion of the air and the 

process o f evaporation inside the drying chamber. The research initially simulated the 

motion of the air in isothermal conditions because of the complexity o f the mathematical 

model and the geometry had a 145000 grid cell. The spray dryer was divided into three 

main parts; the hot air distributor located at the tip o f the dryer, the cylinder (where 

evaporation take place) and the lower cone (where the spray dried product was collected). 

The research concluded that the CFD technique gave an insite into the complex physical 

phenomena involved in mixed spray dryer techniques used in the production o f ceramic 

powders.

Numerous authors [89-94] have investigated liquid spray atomisation based on the Taylor 

Analogy Breaking-up (TAB) and Wave model [92,93]. In the traditional approach for

---------------------------------------------------------------------------------------------:-- :-------------------  'Xf
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spray atomisation computation, the Eulerian equations for gaseous phase are solved along 

with a Lagrangian model for particle transport with two-way coupling of mass, 

momentum, and energy exchange between the two phases [89]. The spray atomization 

process is modelled by standard deterministic breakup models based on Taylor analogy 

breakup (TAB) [90] or wave [91] models. In the TAB model [90], oscillations o f the 

parent droplet are modelled in the framework of a spring mass system and breakup occurs 

when the oscillations exceed a critical value. Where as, in the wave model, new droplets 

are formed based on the growth rate o f the fastest wave instability on the surface o f the 

parent blob [91]. Both models are deterministic with ‘single-scale’ production of new 

droplets. In many spray atomisation applications, injection o f liquid je t takes place at high 

relative velocity between the two phases (high initial Weber number). Under these 

conditions, intriguing processes such as turbulence-induced breakup [91], multiple droplet 

collision in the dense spray region [91], fluctuations due to cavitating flow inside the 

injector [92], contribute to the process of atomization. At each spray location, this may 

result in droplet formation over a large spectrum of droplet-sizes and is not captured by the 

above models. In order to improve the TAB model, [93] used an enhanced TAB model 

(ETAB), where the product droplet size was obtained via a breakup cascade modelled by 

an exponential law. Therefore, the parameters of this distribution function were derived 

from experimental data to achieve better performance of the model.A novel numerical 

algorithm capable of simulating spray droplets with similar properties commonly known as 

parcels can be modelled and compared with standard parcel-approaches as usually 

employed in the computation of multiphase flows [94],

Langrish and Zbicinski [95] used a CFD programme to reduce the wall deposition rate in a 

spray dryer, using the K-e model for turbulence. To validate the model, a solution of 

sodium chloride containing 20% by mass of the salt was sprayed at the rate of 

0.0012kg/sec from a two fluid nozzle into a 0.935m diameter, 1.69m high cylinder-on-cone 

chamber. The CFD program was used to explore methods for decreasing the wall 

deposition rate, including simple modification to the air inlet geometry (to eliminate swirl) 

and a reduction in the spray cone angle from 60 to 45 degrees. Using the constraints 

imposed by the experimental equipment, the programme suggested that the maximum 

spray angle (60 degree) and the maximum amount o f swirl in the inlet air would minimise
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the wall deposition rate. Even though the quantitative agreement for the changes in 

geometry was poor when compared to experimental results, however the trends were 

reproduced well, demonstrating the usefulness o f the technique. To the present no research 

has described the use o f FLUENT codes to solve spray drying problems but a few 

researchers [96] used the code in spray dryer cyclone simulations which gave good 

correlation to that found experimentally. The reason for this may lie in the fact that 

FLUENT is commonly used in space research rather than in drying research [76].
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2.7 THERMAL SPRAY POWDERS

Surface engineering is an important branch of engineering and has a significant effect on 

the serviceability and life of a component [4]. Engineering environments are normally 

complex, combining loading with chemical and physical degradation to the surface of the 

component [97], One of the most common failures in the service engineering is surface 

wear damage [98]. Studies show that 80% of the total costs for the protection o f metals are 

related to coating applications [97]. Surface protection can be produce in two ways. Firstly, 

material physical, chemical, and mechanical properties may be altered. Such methods are 

carburising, carbonitriding, and aluminising and so on, however these processes are time 

consuming [97]. Secondly, a coating of a hard material can be applied over a base material 

to act as a shield against the environment. Several coatings methods exist, however thermal 

spraying (Figure 2.13) is one of the most common [35],

All thermal spraying processes are based on the same principle, heating a feed stock 

material (powder or wire), accelerating it to a velocity, allowing the particles to strike the 

substrate surface, and the particles then deformed and solidified onto the substrate [36], 

The thermal spray basic definition can be divided into three divisions; materials, heat and 

speed [99,100]:

(A) Materials-The spray materials include a wide range o f ceramics, carbides, plastics 

and metals, available in powder or wire from [12], The large variety o f materials with 

varying physical and chemical properties explains why the thermal spraying is the most 

versatile and diversified technology among surface treatment processes [32,101].

(B) Heat-Introducing the feed stock material into a hot gas stream is produced by either 

a chemical reaction and/or by a physical reaction. The temperatures vary from 3000°C for 

the combustion of oxygen gas mixing, to 20000°C for a plasma arc [102-104].

(C) Speed-The particles are accelerated towards the substrate by the gas stream and 

deform on impact to form a coating. The speed is an essential element, which directly 

influences the coating properties [12 ,101].
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Figure 2.13: Equipments involved in the plasma thermal spray process [104].

The most common thermal spraying process are Plasma Arc and High Velocity Oxy-Fuel 

(HVOF) [99], however plasma spray will be referred to in this research as the method used 

to apply Hydroxyapatite (HA) material, so this will be discussed here.

2.7.1 PLASMA ARC SPRAYING

The plasma arc spray process (Figure 2.14) uses an arc between two consumable electrodes 

materials as a heat source and a compressed gas to atomise and propel the coating material 

onto the substrate. The plasma spray gun electrodes usually are made o f a copper anode 

and tungsten cathode, both of which are water cooled. The Plasma gases (argon/nitrogen 

and hydrogen/helium) flow around the cathode and through the anode in a constricting 

nozzle. The plasma is triggered by a high voltage discharge which causes localised 

ionisation and a conductive path for a DC arc (14000 °C) to form between cathode and 

anode [105], As the heat causes the gas to reach extreme temperature it resistance 

dissociates and ionise into a plasma. The plasma exist the anode nozzle as a free or neutral 

plasma flame for spraying. Powder is fed into the plasma flame by an external powder port 

mounted near the anode nozzle exit. The powder is so rapidly heated and accelerated that 

spray distances between the coating on the substrate can be in the order of 25 to 150 mm

[106].
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Figure 2.14: A systematic of plasma arc coating process.

Thermal spray coatings have lenticular or lamellar grain structures resulting from a rapid 

solidification o f small globules, flattened due to the striking o f molten particles on a cold 

surface at high velocities [99,100]. In most cases, the flight particles are molten or partially 

molten before impact and solidify a few microseconds after impact and this depends upon 

the particle size and shape, and upon on the production o f thermal spray powder [12,32, 

95-103], Powder properties and characteristics have a direct impact on the coating quality, 

ease o f application and performance in the end use, and this depends upon on methods of 

manufacture and powder purity, morphology and particle size distribution [99-111], 

Thermal spray processes are most efficient if  their powders are spherical in shape and have 

a low size distribution of a mean size o f 40 |im [111,112],
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2.8 SPRAY DRIED THERMAL SPRAY POWDERS

There are several hundred commercial powders specially developed for the various thermal 

spray processes, and the most common are listed below [12,32, 99,113-121]:

(1) Metals:- Molybdenum, Nickel, Chromium, Silicon, Ferrous, Aluminium, Zinc

(2) Metals Alloys:- Carbon Steel, Stainless Steel, Nickel- Chromium, Nickel 

chromium- Aluminium, Magnesium-Chromium-Aluminium-X, Bronze, Cobalt- 

Molybdenum- chromium- Silicon, Cobalt-Chromium-Nickel-Tungsten.

(3) Carbides (Cermets):- Tungsten-Carbon-Cobalt, Tungsten-Carbon-Chromium, 

Tungsten-Carbon-Nickel, Chromium-Carbon-Nickel-Chromium.

(4) Oxides (Ceramics):- Chromium oxide, Aluminium oxide, Aluminium oxide- 

Titanium oxide, Zirconium oxide-Yttrium oxide.

(5) Abradables:- Aluminium- Silicon- Polyester, Aluminium- silicon -Graphite.

(6) Composites:- Aluminium oxide-Titanium oxide- Polytetrafluoroethylene 

(PTFE).

(7) Polymers:- Polytetrafluoroethylene, Polyetheretherketone (PEEK)

Several powders could have been identified in the present research however, the spray 

drying of Hydroxyapitite (HA) for clinical applications has posed numerous problems in 

industry such as varying morphology, inconsistent drying and variation in size o f powder 

produced. These factors had a huge effect on the plasma spraying o f this HA powder and 

resulting coating performance. Hence this is focus for the reminder of the report.

2.8.1 HYDROXYAPATITE THERMAL SPRAY POWDER

Hydroxyapatite and other related calcium phosphate minerals have been utilized 

extensively as biomedical implant materials for many years due to their identical chemical 

composition and high biocompatibility with natural bone, whose primary function is to 

withstand load bearing situations [122-127]. Generally, HA has poor bulk properties 

therefore it is normally used as a coating applied by plasma spray on to load bearing 

metallic prosthetic implants [125,126]. HA is used as surface coating on bio-inert metallic 

substrates such as; titanium alloy, Ti-6A1-4V and stainless steel 316 [128-133] (Physical 

properties of HA and plasma spray parameter used in coating is given in Table A2 in 

Appendix-A). Variation in process parameters such as powder morphology can induce
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microstructural and meclianical inconsistencies which effect service performance of the 

coating [112]. Kweh et al. [122] confirmed that the quality o f a coating is closely 

dependent on the overall attributes and characteristics of the manufacturing route of these 

powders. These attributes include particle size, particle-size distribution and particle 

morphology, and all of these contribute to the flow characteristics of the HA particles in 

the powder-feed system of thermal spray systems and their subsequent melting behaviour 

in the plasma je t [122], Cheang and Khor [125] also studied the preparation of HA 

powders and coating by plasma spray process and suggested that the state o f the starting 

powder adversely affected the coating characteristics. The raw HA powders were 

synthesized by spray drying and calcinations. The final thermal spray coating contained 

large particles (above 55 (am in size) which remained unmelted with little or no change in 

shape and structure. Spray particles from 55 to 30 (im had mixtures of crystalline and 

amorphous phases but the shape of the particles were generally spherical or oval. Sprayed 

particles less than 30 (im were predominantly spherical and contained large amount of 

amorphous phases. Calcium oxide phase was detected in the size range 10-20 (am which is 

undesirable in biomedical coatings. Hence this particle-plasma interaction suggested that 

particle size and stability during deposition was an important factor in the final 

characteristic o f coating in terms of phase, crystallinity and microstructure and it could be 

controlled to some extent during the spray drying of HA slurry. Khor et al. [133] and 

Guipont et al. [129] studied sprayed dried hydroxyapatite and concluded that good 

flowability was a great advantage in producing higher reliable coatings with reproducible 

spraying parameters. Furthermore, a spherical shape was the best in promoting 

homogeneous heating o f the particles in the plasma gun. Consequently, the use of powder 

particles with spherical geometry and narrow size distributions so as to induce excellent 

heat transfer and consistent melting capabilities, increase the deposition efficiency and 

decreases coating porosity [119,133].

2.8.2 MANUFACTURING OF HA POWDER

Many manufacturing methods for HA have been published, such as, precipitation, solid- 

state synthesis, hydrolysis, and hydrothermal and sol-gel methods [122,123]. As this 

research focuses on spray drying techniques, therefore the precipitation method will be 

described briefly as this method is been used by another researcher in the Materials
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Processing Research Centre and it is the method used by industry to produce HA for 

clinical applications.

Precipitation method: This is the reaction o f orthophosphoric acid with calcium 

hydroxide in equation 2 .1:

10Ca(OH)2+6H3PO4 — ^Ca(P04)6(0H)2+18H20 --------------------------Equation 2.1

This method is a more convenient process and suitable for the industrial production of HA 

since the only by-product is water and the probability of contamination during processing 

is very low [121-138,135,136]. Ideally, the ratio (stoichiometric equation for pure and 

single phase) o f calcium to phosphorus for orthopaedic applications in the form o f thermal 

spray coating is 1.677 [121]. In the case of precipitation, nanometric-size crystals can be 

prepared. The crystallinity and Ca/P ratio depend strongly upon the preparation conditions 

like ph level, assys time and spray dryer parameter conditions [135, 137]. The resultant 

precipitate (feedstock/slurry) is then dried in a spray dryer to control particle size and 

morphology.

Luo and Nieh [123,138] produced HA powder with varying morphologies. The granules 

obtained were particles with an average crystalline size ranging from 1 to 8(j.m when the 

slurry was spray dried at a slurry feed of 0.25, 0 and 0.167 Volume % and a nozzle 

atomisation pressure o f 1, 3, and 5 kg/cm2 with an inlet air temperature o f 200°C and outlet 

air temperature of 100°C. The authors concluded that the morphologies o f the granules 

were controlled by adjusting the spray-drying conditions; the volume fraction of feed 

slurry and atomisation pressure. It was also noted that the spray-dried granules produced 

were doughnut, solid and hollow sphere shaped.

Kweh et al. [122] produced and characterised HA powder. The HA slurry was spray dried 

in a co-current flow dryer and then calcined at 900°C. The spray dried precipitated powder 

were examined for purity, phase composition and morphology. The author observed that 

the spray dried powder had good purity, spherical shape, flowablity and amorphous phases. 

After calcination, the spray dried powder showed a great improvement in crystallinity but
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had a reduction in flowabilty which had an effect when used as a feedstock powder in 

thermal spraying.

The literature survey on HA powder suggests that spray drying is still has an important role 

in the manufacturing o f raw HA powder for thermal spray deposition to produce a 

bioactive material onto clinical implants. The spray dryer parameters like feed rate, 

atomization air and inlet temperature can easily control the particle size of HA powder 

which influences the decomposition o f powder particles during thermal spray deposition 

into undesirable phases. However, experimentation and optimisation o f various feed stock 

with varying parameters to produce ‘ideal’ powders post spray drying is time-consuming. 

Therefore knowledge of the drying mechanism within the spray dryer will reduce the 

number of experimental trials. To date no research paper/work has reported on the 

simulation of the spray drying of HA, nor on the simulation o f spray dryer used for HA 

synthesis. Hence this research will focus on simulation using finite element analysis the 

internal mechanism within the spray dryer, validated the results found with experimental 

and instrumentational data to predict how to produce powders with ‘ideal’ morphologies 

and size as required for thermal spraying.
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2.9 SUMMARY / OVERVIEW

Literature review sliows spray drying still has a great important in the food, detergent and 

pharmaceutical industries. Its major application is the drying of milk and other food 

products, where the researchers are working to improve the quality o f food products by 

analysing moisture content, aroma loss, flowability and powder size. Other researchers are 

working to improve the optimum condition o f the spray dryer to overcome the difficulties 

that exist in spray dryers like deposition onto the wall of the spray dryer. The dominant 

spray dryer technique used in the food industries is the rotary type atomizer with co-current 

air flow. This food industry spray dryers contain a large drying chamber, drying o f feed 

slurry at low inlet temperature as compare with the thermal spray powders because food 

products are very sensitive to temperature.

On the other hand, other researchers are working to control the physical performance o f the 

spray dryer using modelling techniques. Overall quality of spray drying depends upon a 

large number o f factors including process variables and characteristics of the drying 

product; feed, viscosity, density, inlet and outlet temperature, type o f atomizer, energy to 

atomization, dimension of drying chamber, sensitivity of product towards to temperature, 

hygroscopic nature. The major issue in dryer operation is flow stability and the need to 

avoid highly unsteady flows. Such flows can lead to significant wall deposition o f partially 

dried product which sticks to the wall and builds up a crust. In the past decade, despite 

their importance, the modelling of the physical processes governing the performance of 

dryers is relatively poorly developed. But recently there has been much development in the 

field of computational fluid dynamics (CFD) to determine the optimum parameters of 

physical drying process which helps researcher to design spray dryers and processes.

Nowadays, thermal spray powders take an important position in surface engineering to 

improve wear resistance and temperature resistance. Researchers are often use finding to 

powders produced by spray drying as it is fast, continuous producing and has better control 

over particle size and morphology. In literature very little has been reported about spray 

dryer performance used to produce thermal spray powders. Some papers have reported that 

mixed type air flows using the two-fluid nozzle atomisation provide the best results if  used 

to produce the thermal spray powder [6, 8, 16, 23, 108]. It is compact in design and gives
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more residence time to particles and this is ideal as thermal spray powders are less 

sensitive to heat. There is a need to transfer the knowledge and experience o f spray dryers 

used in the food industries into the application o f producing thermal spray powders.

___________________________________________________ CHAPTER 2: Literature Review
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3

Experimental Equipment and Procedures

3.1 INTRODUCTION

In the present research, the two fluid nozzle mixed spray dryer used to produce 

hydroxyapatite thermal spray powders was simulated using finite element modelling and 

validated experimentally using a Niro spray dryer. For the experimental analysis a factorial 

design was chosen using orthogonal blocking together with the Box-Behnken scheme, as 

experiments would prove tedious and costly. The Box-Behnken scheme is an independent 

quadratic design to investigate treatment combinations at the edges of a process space and 

its centre. These designs are rotatable (or near rotatable) and require three levels of each 

factor. The designs have limited capability for orthogonal blocking compared to the central 

composite designs. The Box-Behnken scheme requires fewer treatment combinations than 

a central composite design in cases involving 3 or 4 factors. For this research, Box- 

Behnken scheme reduced the experiments form 27 to 13 which contained all of 

information except the corner data (Table 5.3).

This chapter describes the equipment used in the experimental and validation procedures, 

along with the parameters, the process and the characterisation equipment (Figure 3.1).
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Figure 3.1: Equipment and parameters used in the experimental phase of the
research.
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3.2 DESCRIPTION OF THE SPRAY DRYER

A systematic of the Niro-Minor spray dryer used in the present research, is shown in 

Figure 3.2. The two fluid mixed spray can be divided into a number o f major parts. This 

unit consists of an insulated drying chamber mounted rigidly within a framework. The 

framework supports the auxiliary equipment, namely the instrument control panel, product 

recovery cyclone, air heater, and fan. The Feed liquid (in this case HA slurry) is fed to the 

atomizer by a small capacity peristaltic pump, and atomised into a fine spray o f droplets. 

The spray is driven into contact with the hot air entering the chamber through a ceiling air 

disperser (Figure 2.10). The ceiling air disperser is located at the centre o f the chamber lid. 

Removal o f moisture from the droplets is accomplished virtually instantaneously, and 

although residence time of the product in the drying chamber is short, dry powder is drawn 

with the air towards the base o f the chamber. The powder and air mixture (generally fine 

particles) are then sucked out to a small highly efficient cyclone where the powder is 

separated away from the air and collected in a glass jar. However dense particles collect at 

the base o f the chamber and collected from this point. The specific details o f the above 

components of a spray dryer will be discussed in the following sections.
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3.2.1 DRYING CHAMBER

The drying chamber is 800mm in diameter, with a 600 mm cylindrical height and a conical 

based. The cone angle is 60 degrees. All of the internal surfaces are made of smooth 

stainless steel AISI 316. Air enters from the top and leaves the base o f the chamber 

through a duct, which connects the chamber base to the cyclone (Figure 2.10). The

chamber is insulated so that heat loss is minimised.

(A) Inlet Drying Air

The hot air injected from the top o f drying chamber, is heated by electric heaters that are 

placed inline with the air supply between the inlet air supply port in the drying chamber 

and the air filters. A fan is mounted under the instrumental panel on the exit side of the 

cyclone, and draws air though; the heater, air disperser, chamber and cyclone. The 

maximum capacity of air drawn through the drying chamber is 80kg/hr at 80°C. 

(Specification details in Appendix-B).

(B) Outlet of Product and Air

The dried powder is collected at the bottom of main drying chamber and cyclone in 

buckets that are placed and locked in at the each of the collection points (Figure 3.2). 

Heavy particles drop due to gravity into the main drying chamber bucket; where as lighter 

particles due to their light by weight are carried by the air to the cyclone and collected in 

the cyclone bucket, leaving the clean air to exit.

3.2.2 THE EXTERNAL TWO-FLUID NOZZLE ATOMISER

The two-fluid nozzle atomizer (Figure 3.3) was used to breakdown the feed (it’s positioned 

is shown in Figure 2.10). The positioned is axially down the centre of the drying chamber 

so that feed comes in contact with the centrally opposite direction o f the hot air coming 

from the top of the drying chamber roof. The feed and air are injected using separate 

nozzles (Figure 3.3(b)). The feed is pumped by a peristaltic pump and the compressed air 

is fed to the air nozzles using a calibrated scale.
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Figure 3.3: Schematic cross-section of the external two-fluid nozzle.

3.2.3 OPERATING PANEL

Two digital temperature controllers are mounting on the panel o f the spray dryer (Figure

3.4). The inlet (HBO 433.206) and outlet (HBO 331.103) temperature controllers (Figure

3.4) are encased by a black metal housing with the front sealed off water tight. The inlet 

and outlet temperature indicators have a range o f 0 to 500°C and 0 to 200°C respectively 

with an error o f ±1°C [139]. The operation switch on the operating panel controls various 

operations such as:

Position O; Turns on the chamber light and panel live indicator light.

Position M; Fan motor on.

A complete description of the operation o f the Niro spray dryer may be found in its manual 

[139]. The position selected depends on the inlet drying air temperature required for the 

drying operation that enables heaters on and the exact inlet and outlet temperatures are 

controlled by inlet and outlet temperatures indicators on the panel. For example to set
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220°C inlet drying temperature, turn on position III, sets 220°C using a little knob, on the 

inlet temperature indicator.

Position I Produce drying temperature up to 125°C in the chamber 

Position II Chamber drying temperature between 125 and 200°C 

Position III For temperature greater than 200°C

The inlet drying temperature thermocouple is located near the heaters, far away at the inlet 

o f drying chamber, so exact inlet temperatures are measured at the inlet o f drying chamber 

and calibrated with an accuracy ±1°C.

Inlet drying air flow rate is controlled by a knob at the end on the operating panel. It has 6 

levels between closed to open condition.

Figure 3.4: Operating panel of the spray dryer.
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3.3 OPERATION PROCEDURE

Before start up, the spray dryer must be checked that all duct connections are tightened and 

mounted correctly such as; the connection between chamber and cyclone, the chamber roof 

is in the correct position (and air tight), and that the air and liquid connections are properly 

installed. Centralising the nozzle position is an important to achieve the maximum 

interaction of the nozzle spray with the hot air. Centralising o f nozzle means placed the 

nozzle along the axis of incoming hot air from the top o f the spray dryer. This was done by 

the adjusting four screws to fix its position to get the maximum atomisation at a given 

viscosity (Figure 3.5). The spray cone angle was adjusted to 45 degrees outside the main 

drying chamber before been placed in side the drying chamber. It was fixed by screw on 

the nozzle pipe. All experiments were run with this setting o f the spray angle, and once the 

nozzle was placed in the correct central position in the drying chamber, maximum direct 

interaction of the nozzle spray was achieved with the hot air [139],

Adjusting Screw for Centralising

Figure 3.5: Assembly of the external two fluid nozzle with adjusting screw to set the
spray angle.

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza



CHAPTER 3: Experimental Equipment and Procedures

The spray drying operation for the external two-fluid nozzle is as follows [139];

♦ The air disperser cover is centred over the drying chamber and once the chamber 

roof is in the correct position, it is then sealed.

♦ The connection between the chamber and cyclone is tightened and the rubber gaskets 

are checked that they are in their proper position.

♦ Powder collecting jars are placed under the chamber and cyclone respectively.

♦ The dampers o f outlet chamber and cyclone at the jar positions are open to collect the 

dried powder.

♦ The nozzle is assembled, and the air and liquid connections are connected with the 

feed tube.

♦ The nozzle is centrally aligned in the chamber

♦ The feed pipes are thoroughly tightened.

♦ The compressor is turned on and allowed to generate sufficient pressure to above 5 

Bar before atomisation commences.

♦ A check is made that the fan and pump both rotate in the clockwise direction.

♦ The fan and the air heater are turned on.

♦ The damper on the exhaust duct is adjusted to control the inlet hot air flow rate (for

an example 5 Nm3/hr)

♦ Set inlet and outlet temperatures on the inlet and outlet temperature indicator on the 

control panel to 46IK  and 110K respectively.

♦ Wait until the set temperatures reach are reached (usually it takes 1 hour).

♦ When the outlet temperature has reached approximately 110°C, air is passed to the

nozzle at a flow rate corresponding to 75% of the maximum Flow meter readings

♦ The air and water-flow rates are gradually built up while maintaining the pressure; 

the outlet temperature must not be lower then 110°C, as long as water is fed into the 

nozzle.

♦ As soon as, the temperature remains constant for 10 minutes, HA slurry can be 

supplied to the nozzle and drying begins.

♦ Now set the feed rate to start the spray drying process. Observe whether there is 

pronounced splashing of partially dried product on the glass window of drying
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chamber. If excessive splashing, switch back to water and re-check nozzle position 

and spray characteristics.

♦ During operation, the chamber jar must be changed before it totally fills up and the 

jar under the cyclone is also changed (the outlet o f cyclone damper must be closed).

♦ For the shut-down procedure, the jars are to be changed. The feed o f the pump is 

changed from HA slurry to water, to clean the pump and feed system, the feed pump 

is then stopped. Shut-off heater. After the plant has cooled down, shut-off the 

compressed air supply and then stop the fan.
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3.4 VISCOSITY OF HA SLURRY

Viscosity plays an important role in the breaking up o f liquid je t into spray [140-142], 

Viscosity is the property of a fluid that characteristics it’s perceived “thickness” or 

resistance to shear and defined as the measure of the internal friction of a fluid [143], The 

greater the friction, the greater the amount o f force required to cause fluid flow, which is 

called “shear”. Shearing occurs wherever the fluid is physically moved or distributed, as in 

pouring, spraying, mixing, and so on [144], All fluids can be classified into two types; 

newtonian and non-newtonian fluids. Many real fluids cannot be described by a simple 

rheolgical equation. The apparent viscosity of more complex fluids depends not only on 

the rate of shear, but also on the time the shear has been applied [144], These fluids may be 

subdivided into two classes according as the shear stress decreases or increases with time 

when the fluid is sheared at a constant rate; Thixotropic or Rheopectic fluids [144]. A 

thixotropic fluids has the apparent viscosity decreases with time because the rate of 

breakdown of a structure during shearing at a given rate will depend on the number of 

linkages available for breaking and must therefore decrease with time [145]. In the 

rheopectic fluid, the flow is caused by gradual formation of a structure by shear. This 

results in the fluids viscosity increasing with time as it is sheared at a constant shear rate. 

The HA slurry falls into the latter case (rheopectic fluid) as with time the particle settles 

down, causing thickening of the slurry. During the spray drying process, the HA slurry is 

continuously stirred to maintain a uniform mixture and thus keep the viscosity constant 

with time. As viscosity has an influence on the rate of flow, it was necessary to measure 

the viscosity o f the HA fluid and match it to an ideal slurry feed rate. The ideal rate sends 

the slurry into the heating zone (hot air) for efficient drying. Flow rates that are too high 

(or using low viscous fluids) cause the slurry to be driven up into the heating vent, 

therefore blocking the hot air chamber inlet. Low flow rates (or high viscous fluids) would 

find it difficult to raise the slurry towards the heating zone, thus the slurry would collect at 

the base of the chamber.

There were two main types of viscometry measurement technique (Figure 3.6) that were 

used for the determination of the viscosity o f the HA fluids [145]:
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Figure 3.6: Viscosity measurement techniques: (A) Cylinder and falling sphere 
method, (B) Rheology international series 2 viscometer.

3.4.1 THE FALLING SPHERE METHOD

The falling sphere method was used to determines an approximate viscosity o f a HA fluid 

by measuring the time taken for a sphere o f known mass and volume to fall freely in the 

fluid o f interest. Knowing this time, the viscosity o f the fluid can then be determined 

mathematically using the following equation:
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Viscosity = 77 = --------------------------------------------- Equation 3.1

Where, A p  = p s -  p f , p s is the density o f sphere, p f  is the density o f the liquid, R is the

radius of sphere, V is the velocity o f the sphere in the fluid, g is the gravity. This viscosity 

was then compared to a chart in the rotational type viscometer [145] to select the ideal 

share rate to be used to accurately measure the viscosity of the fluid.

3.4.2 ROTATIONAL TYPE VISCOMETER

In the present study, the cone and plate rotational type viscometer was used to measure the 

accurate viscosity of the liquid feeds (HA slurry). It involves direct determination of the 

relation between shear stress and shear rate by subjecting the entire sample to a uniform 

rate of shear in a suitably designed instrument [145],The cone and plate viscometer was 

appropriate for such a fluid as it contains small particles, and because the cone angle is so 

small (3°) and the average gap width is correspondingly small (less than 0.5mm) errors due 

to surface tension were negligible, therefore, the apparent viscosity o f the fluid was be 

calculated using [145]:

3MQ +. ,  „
---------------------------------------------Equation 3.2

Where, M is the torque, Q is the rotational speed (rpm), R is the radius of cone plate, 0 is 

the angle of cone plate. The Rheological International Series 2 viscometer provide the 

viscosity value for you once the correct shear rate is selected (this was ensued using the 

falling sphere method).

The procedure involved taking a small sample of fluid (HA slurry) and placing in onto the 

plate. The plate was then raised using a micrometer until a gap o f 0.1mm was achieved. 

The shear rate (determined form the falling sphere method) was applied and the viscometer 

gave out viscosity readings for their fluid. Results were taken every 2 seconds for 4 

minutes to determine an accurate average viscosity value.
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Figure 3.7: Cone and Plate Viscometer [145].

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza



CHAPTER 3: Experimental Equipment and Procedures

3.5 AIRFLOW MEASUREMENTS

Most spray dryers are constructed in such a way that the air enters tangentially inside the 

main chamber of the spray dryer. This is defined as swirl [142], The degree of swirl is 

expressed by the swirl angle which is defined as the angle between the axial and tangential 

velocity components o f the drying air at the inlet. This swirl angle has a great influence on 

the airflow pattern [142], as at small swirl angles the airflow pattern consists of a fast 

flowing core with slow circulation around it. When the swirl angle is increased, at a certain 

value (critical swirl angle) a vortex breakdown will occur, hence the direction o f the 

velocity in the centre of the original vortex will be reversed [142], The air flow velocity 

and direction was important as these measured values were inputted into the model to 

simulate the spray drying process.

3.5.1 NOZZLE VELOCITIES

(A) Air pipe

The atomised air was stored in the compressor at 6 Bar used to supply the air pipe o f the 

two-fluid external nozzle. The atomisation air was controlled using a calibrated volumetric 

flow scale set at 5 Bar (given in the range 0 to 100%). Initially air was fed into the air pipe 

nozzle through four pipe chambers. The exit velocities o f air nozzle at the different 

calibrated volumetric flow percentage were measured using an electronic potentiometer 

(Figure 3.8, 3.9) which had a range of 0.0 to 30 m/s and an accuracy o f ± O.Olm/s (and 

using equations 3.3 and 3.4 as air flow volume was divided into four parts (Appendix-B)). 

The air nozzle velocities were measured by two methods at the different calibrated 

percentage scale; firstly the air nozzle was placed inside the drying chamber and then the 

velocities were measured at the top of spray dryer without its roof (Figure 3.8), and 

secondly the air nozzle was placed in an open space horizontally to measure velocities 

along the axis at the different distances (Figure 3.9).

Q= 4 Av----------- -------- ------------------------- Equation 3.3

v= Q/4A----------------------------------------------Equation 3.4

The procedure involved, velocities taken at intervals of 10%, from 30 to 100% of 

calibrated volumetric flow scale at 5.0 Nm /hr. In both procedures values were taken every
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10 mm across the top o f the chamber or axially out form the horizontally placed nozzles to 

give a two dimensional representation o f the nozzle air flow.

Figure 3.8: Air nozzle velocity measured at the top of the spray dryer by electronic
potentiometer.

"
■{ 1 , j

S3mi r?
Figure 3.9: Air nozzle of two fluid nozzle velocity measured by electronic

potentiometer.

3.5.2 AIR FLOW INSIDE THE SPRAY DRYER

The hot air flow rate was measured by the pressure drop across the cyclone o f the spray 

dryer because the inlet hot air was coming directly from heater in the sealed cover so there 

was no point to measure at, and the hot air after the main chamber was flowing in a closed
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circuit by only one pipe line passing through cyclone, scrubber and then exhaust to 

atmosphere. With the consultation Niro Company, the hot air flow measured across the 

cyclone and the company provided K chart which used in the later calculations (Appendix- 

B).

The hot air flowrate inside the spray dryer was measured by manometer (Figure 3.10) with 

a range of 500mm and accuracy of ±lm m  of H2O. The inlet and outlet o f the manometer 

were fitted before and after the cyclone respectively by drilling and tapping into the pipe 

line. The flow rate was read directly by the pressure drop on a calibrated scale and given 

by the following numerical equations [146]:

PGR = K * D 2 * y]p*Ap  (Kg/hr)------------------------------ Equation 3.5

D = ^  ̂ (m)------------------------------------------Equation 3.6
V K j p * A p

Ap = — ----- -̂----  (mmWG)-----------------------------------------Equation 3.7
PGR2 

K 2 * D * * p

Where, PGR is the process gas rate through cyclone, D  is the cyclone diameter, POR is 

the product rate into cyclone, p  is the Gas density at cyclone inlet, K  is the capacity

factor
PGR
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Manometer
Inlet o f Manometer Outlet o f Manometer

Figure 3.10: Pressure tapping of inlet and outlet of the manometer to measure the
flowrate inside the spray dryer.
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3.6 FEED FLOW MEASUREMENT.

The feed pipe of the external two-fluid nozzle is located at the centre of the nozzle. It is 

separated from the air pipe and feed pumped by a peristaltic pump directly in the main 

drying chamber.

In this research, the HA slurry solution was pumped through the nozzle at a volumetric 

flow rate, measured by collecting a known volume in a graduated cylinder over a set time 

for different speeds of the peristaltic pump, using the equation for an incompressible fluid 

(Appendix-B):

Q = A v------------------------------------------------- Equation 3.9

Where Q is the volumetric flow rate (m3/s), A the cross-sectional area (m2) and v is 

velocity (m/s) o f the fluid. The velocity o f the slurry for different peristaltic pump settings 

(rpm) was measured using equation 3.9 and getting mass flow rate of feed by below 

equations 3.10 and 3.11.

Measured Volume rate = Q = Av = (71 d2 /4) x v ---------- -------------- Equation 3.10

So Mass flow rate = m' = p f  (71 d2 /4) v (kg/sec)----------------------------- Equation 3.11

Pf is the feed density (kg/m3) and d is diameter o f feed pipe (m).
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3.7 TEMPERATURE DEVICES

The temperature profile was very important in the main spray drying chamber as the 

evaporation of the fluid in this slurry of HA depends upon the occupation of the slurry in 

various temperature zones. The temperature measurement had the two approaches: one can 

measure with an unprotected probe and the second is protecting probe [147], subsequently, 

the probe must be cleaned before another measurement cycle can begin. The time span 

over which actual temperatures can be measured using an unprotected probe are limited by 

the temperature equilibration o f the probe and the rate of particle deposition. This meant 

that in most sprays the response time of the probe should be very short while the density of 

the spray should be low. The other approach is to prevent the probe from begin hit by 

droplets [147]. Avoiding wetting of the probe, requires placing a shield over the probe, and 

these vary from simple shields to so-called aspirated probes. Papadakis [148] used a simple 

shield to protect the probe from being hit by droplets mainly from one direction only. It is 

clear that such arrangements do not work in flow systems with circulations or large eddies. 

Goldberg [149] developed a shield to protect the probe from particles coming from all 

directions. In such arrangements the problems arises that the probe is also measuring the 

temperature surrounded by the cooler walls o f the shield. To avoid this, Nijhhawan et al. 

[150] described that the shield should be aspirated. Kieviet et al. [151] developed a 

temperature and humidity device which was based on protecting the temperature probe 

from being hit by particles by removing the particles from the gas stream. This was good in 

the sense that it gave results for the two air parameters, but gave no results for the effect on 

the particles themselves.

Rainbow refractometry has been used to measure the temperature of droplets which is 

based on the refractive index that is a function of temperature, because the density changes 

in condensed materials with changes in temperature [151]. Gemic et al. [152] measured the 

temperature using such a method. This method gave good results because the device 

doesn’t come in contact with droplets.

Unfortunately the budget of this research did not extend to purchasing any of the above 

equipment so a simpler procedure was adopted. In this research, the temperature profiles 

were measured by using K type thermocouples (range -50 to 1000 °C and accuracy ± 2 °C)
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at different points inside the main drying chamber (Figure 3.11 and 3.12). For that a mesh 

was designed and placed inside the chamber to hold the thermocouples at fixed positions. 

The thermocouples extension wires were taken out from the gasket o f the drying chamber 

roof to measure the temperature at the different points. Then, lid was place to seal the 

drying chamber. The spray dryer was then run without the feed. The temperature was 

recorded at 15 point at one time when the inlet and outlet temperatures reached at the set 

value (for example inlet temperature 461K and outlet temperature 383K) and stabilised for 

10 minutes.

(e) (d) (c) (b) (a)

Figure 3.11: Mesh points used to measure the temperature experimentally.
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Figure 3.12: Mesh to hold the thermocouple inside the spray dryer to measure the
temperature profile.
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3.8 SPRAY DROPLET SIZE DEVICES

To understand the droplet behaviour inside the spray dryer, not only the averaged size and 

velocity distributions of droplets are of importance, but also the instantaneous properties of 

individual droplets are required to understand the unsteady state o f droplets, the flow 

structure and to evaluate heat and mass transport processes [153-160]. Glover et al. [153] 

used interferometric laser imaging (ILIDS) for droplet sizing which was based on an 

instantaneous spatial distribution of droplet size by analysing the out-of -focus image of 

droplets. Maeda et al. [154, 150] and Kawaguchi et al. [155] converted circular images 

with fringes into linear images by optical squeezing (defocusing horizontally and focusing 

vertically). The squeezing technique reduced the noise, thus and the signal to noise, ratio of 

the interferogram becomes more enhanced compared to that o f conventional techniques. 

To improve the understanding of swirling flow, a number of studies have been carried out. 

Sommerfeld and Qiu [157] studied the particle dispersion characteristics in a confined 

swirling flow. In this research a phase doppler technique and numerical technique were 

used. The Phase Doppler Anemometry (PDA) which is an extension o f a laser Doppler 

velocimetry, gives the size and velocity o f individual spherical particles simultaneously. 

However the PDA is a point measurement technique; while the imaging method 

Interferometric Laser Imaging Technique (ILIDS) provides instantaneous spatial 

distribution of the droplets. The results demonstrated the behaviour of different sized 

particles in a complex flow and the spatial change of the particle size distribution 

throughout the flow field.

Takeuchi et al. [158] studied the spatial distributions o f droplet size and velocity in air 

heated spray, measured by (ILIDS). Kobayashi et al. [159] improved this method by 

creating an automated system for high speed processing using high resolution computer 

control digital camera and computing system so that the validation and accurate 

explanation of fringe spacing may be easily performed. These new optics have over come 

the previous techniques using photographs. This system measures denser spray during 

avoiding overlapping of images, however this system has reported an error of 4% on the 

mean diameter during measurements, but still provides effective measurement, of droplet 

sizes ranging from a few micrometers to several hundred micrometers.
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The Standard Rainbow Thermometry (SRT) measures the diameter and temperature of one 

droplet at a time. The impossible detection of non-spherical droplets constitutes one of the 

most important problems for this technique. The effect o f a non-spherical droplet on SRT 

pattern is to shift and distort it, making the analysis of the interference pattern impossible 

to identify. Beeck et al. [160] developed the Global Rainbow thermometry technique for 

measuring directly averaged temperature and average droplet size o f spray. This was 

possible by constructive interference of laser-light scattering o f the spherical droplets. The 

non-spherical droplets and liquid ligaments fall into the background and thus do not 

influence the interference pattern from which average size and temperature was derived. 

This was a large improvement with respect to standard rainbow thermometry, which is 

strongly influenced by particle shape. Moreover, the Global Rainbow technique was easily 

applicable for smaller droplets, as the global pattern was not affected by a ripple structure. 

Measurements carried out on water spray, showed the mean diameter obtained from the 

rainbow pattern was smaller than the arithmetic mean diameter measured by the phase- 

doppler anemometry.

Vetrano et al. [161] tried to improve the Global Rainbow thermometry technique, by 

looking at the influence of droplet non-sphericity on the size and temperature 

measurements of liquid droplets suspended in a liquid or a gaseous bulk. The research the 

simulation and experimental results gave satisfactory agreement, in measuring irregular 

droplet size. The GRT technique has already been applied to flat fan water sprays in air 

and flashing jets [160]. These new techniques GRT and ILIDS give a detail analysis and 

insight of atomisation in spray dryers. They identify the exact phenomena o f breakdown of 

liquid sheet into droplets coming out from the nozzle in spray dryers together with thermal 

behaviour of droplets when using modelling techniques, and are quite useful to validate the 

simulation of droplets size, temperature and velocity inside the spray dryer.

In this study the spray was closed and sealed during the spray drying. It was not possible to 

use the above techniques to measure the particle and droplet sizes in the drying process due 

to lack of equipment and funding. So an attempt was made to look at the particle size 

distribution before and after the drying process was completed. The hydroxapatite powder
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slurry was manufacturing in house (Appendix-B) with varying viscosities and before been 

pumped into the nozzle it was measured.

The dried powder was collected at the base o f drying chamber and cyclone. The particle 

size was measured using the Malvern Mastersizer 2000. The basic principle of this device 

is shown in Figure 3.12. In the master size analyser, the particles are passed through the 

focus point o f a laser beam. On interaction, these particles scatter laser beam light at an 

angle that is inversely proportional to their size. The angular intensity o f the scattered light 

is then measured by a series of photosensitive detectors to give optimised resolution across 

a board range of sizes.

The following procedure was used to prepare the spray dried HA powder particle samples 

as dispersed solutions for particle size distribution in the Malvern Mastersizer. 1 gram of 

sodium pyrophosphate or dispersant was mixed intensively via a magnetic stirrer in 

1000ml o f deionised water to act as a dispersant. Then 0.5 gram o f HA powder was 

dispersed in 30 ml of the above prepared dispersant in an 80-100ml heavy-duty beaker. 

The suspension was then stirred for a period o f more than 2 minutes to ensure that the HA 

powder and dispersant had formed a suspension. The stirred suspension was then placed in 

an ultrasonic bath for a 5 minutes period. The scattered light data was then transferred to 

the software running on the computer. The D [4,3] or equivalent volume mean used to 

analysed the particle size distribution as laser diffraction gives the best result [2,162].
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Figure 3.12: Systematic sketch the principle of Mastersizer 2000, adapted from [162].
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3.9 POW DER CHARACTERISATION

In the powder manufacturing process, powder characterisation is very important to 

maintain quality and acceptance of the resulting powder for thermal spray applications 

(like powder size and powder shape) [163]. There are numerous techniques available 

including the Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-ray 

diffraction. An optical light microscope was not sufficient to study powder shape as the 

image reveals only two dimensional surfaces. When viewing powder particles on the OM, 

only one particle can be focused at a time and the rest become out o f focus producing a 

blurred image. The microscope, SEM has a superior resolution and depth o f focus and can 

reveal the morphology characteristics of the powder. The SEM can produce a three 

dimensional image but it can only be attained by using two pictures taken at different 

angles [164], The SEM operates by firing electrons onto the surface of a charged sample 

(HA samples has prepared by gold coating) and cathode detectors detect the reflection of 

this electron producing an image on a computer screen. Various HA powders in this 

research were produced in the spray dryer and their morphological shape was analysed 

using the SEM, the results of which are presented in Chapter 5.
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4

Simulation and Modelling

4.1 INTRODUCTION

The experimental data was either used as inputs or to validate the simulation results 

reduced by the FLUENT 6.2 software. This chapter will describe the Computational Fluid 

Dynamic (FCD) background to the software and the procedures used in this research to 

model spray drying. CFD is solely concerned with obtaining a numerical solution to fluid 

flow problems using computer software [165], The advent of high speed and large memory 

computers has enabled users to obtain solutions to many flow problems including those 

that are compressible or incompressible, potential or non-potential, laminar or turbulent, 

multiphase, chemically reacting or non-reaction [166]. The equations governing the fluid 

flow problem are the continuity (conservation of mass), the Navier-Stokes (conservation of 

momentum), species, and energy equations, and these equations makeup a system of 

coupled non-linear partial differential equations [165,166]. Due to nonlinear terms in these 

partial differential equations, these analytical methods yield very few solutions. In general, 

closed form analytical solutions are possible only if partial differential equations are made 

linear or higher orders are neglected of linearity. In most engineering flow situations, the 

non-linearity cannot be neglected and there the only option left; therefore numerical 

methods are needed to obtain solutions. CFD replaces the partial differential equation 

governing the fluid flow, with algebraic equations, which in turn can be solved with the aid 

of a digital computer to get an approximate solution [167], Various discretization methods 

exits in CFD; finite difference methods (FDM), finite volume method (FVM), finite 

element method (FEM) and boundary element method (BEM) [168,169]. FDM was the 

most commonly used method in CFD applications but it has been replaced by FVM
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because it has advantage of allowing direct discretization in the physical space, for 

arbitrary mesh configuration, without the necessity o f an explicit computation of metric 

coefficients [167,168]. The most advanced CFD commercial softwares available are 

FLUENT Inc and CFX, both using FVM.

Discretization is carried out done by a control-volume-based technique to convert the 

governing equations into algebraic equations so they can be solved numerically [4], CFD 

involves firstly discretizing the physical domain into a set o f  control volumes or cells that 

the flow occurs within, such as the interior o f a spray nozzle or the drying chamber system 

of a spray dryer. This discretization is straightforward for very simple geometries such as 

rectangles or circles, but is a difficult problem in Computer Aided Design (CAD) Software 

for more complicated geometries. Currently automatic “mesh generators” are simply but 

not adequate in these cases, requiring extensive investment o f time on the part of the 

scientist or engineer to generate mesh geometries [169,170]. This leads to problems in 

Human-Computer Interfaces (HCI). In a discretized mesh (Figure 3.1) the Navier-Stokes 

equations take the form of a large system of nonlinear equations; going from the 

continuum to a discrete set of equations is a problem that combines both physics and 

numerical analysis. For example, it is important to maintain the conservation of mass in the 

discrete equations. Between 3 and 20 variables are associated, at each node in the mesh; 

the pressure, the three velocity components, density, temperature, and so on. Furthermore, 

capturing physically important phenomena such as turbulence requires extremely fine 

meshing in parts o f the physical domain. Currently meshes with 20000 to 2000000 nodes 

are common, leading to systems with up to 4.0 x 107 unknowns [171].

A system of nonlinear equations is typically solved by a Newton-like method, which in 

turn requires solving a large, sparse system of equations in each step [172]. Sparsity here 

means that the matrix of coefficients for the linear system consists mainly o f zeros, with 

only a few nonzero entries. With 4.0 x 107 unknowns, clearly the system cannot store the 

matrix as a two dimensional array with 1.6 x 1015 entries; therefore storing the coefficients 

requires the development o f efficient data structures which require little overhead storage 

but allow the necessary manipulations to be performed efficiently [172].
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control
volum e

Figure 4.1: Fluid region of pipe flow is discretized into a finite set of control volumes

(mesh) [166].

Methods for solving a large sparse systems of equations is currently been resolved [170]. 

As often this is the most time-consuming part of the program, and because the ability to 

solve these systems is the limiting factor in the size o f problem and complexity o f  the 

physics that can be handled. Direct methods, which factor the matrices, require more 

computer storage than that permissible for all but the smallest problems. Iterative methods 

use less storage but suffer from a lack o f robustness; they often fail to converge. The 

solution is to use preconditioning; that is, to pre-multiply the linear system by some matrix 

that makes it easier for the iterative method to converge [173].

CFD problems are restrained by the limits o f computational power, so parallel 

programming methods are often used [169-173]. Therefore research problem often tries to 

identify ways o f how to partition the data and to assign parts o f it to different processors, 

hence usually domain decomposition methods are applied [173]. Domain decomposition is 

often expressed as a graph partitioning problem, namely finding a minimum edge cut 

partitioning o f a discrete mesh, with roughly the same number of nodes in each partition 

set. This helps to used rapid heuristics approach to gain quick solutions [169-173]. An 

additional problem with parallel programming is that enhanced methods for solving the 

resultant linear systems often have inherently sequential characteristics, while parallel 

solution methods are not robust enough to tackle real world problems.
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Once the solution has been found, analysing, validating, and presenting the result uses 

visualisation and graphical techniques. These techniques are not useful for viewing the 

computed flow field, but can help with understanding the nature o f the problem, the 

interaction of algorithms with the computer architecture, performance analysis o f the code, 

and most importantly, debugging.

In a research lab, a pilot plant (Bench sized version) spray dryer yields given perfect dried 

product results. However the industrial success o f a new spray dryer depends upon it 

meeting its specified performance in all respects; therefore this is possible only by 

providing better scale-up kits [174]. It has been reported that there are two aspects to spray 

dryer scale-up; process and component [175]:

(A) Process scale-up: This requires the industrial plant to operate and produce a 

powder quality specified through process development and testing on a much smaller 

scale. Process scale-up also involves the aspects o f health and safety, and environmental 

protection.

(B) Component scale-up: This involved mechanical design and the ability to 

reproduce similar performance on larger dryer sizes.

Without the component scale-up, process scale up could never be achieved. Commercial 

scale up involves the designing of atomizers that not only reproduce droplet size 

distributions and higher feed rates but are also are completely reliable [176]. The 

modelling could help to scale up in both ways, process and component to look in details 

design of spray dryer.
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Figure 4.2: Systematic of CFD method used to solve complex physical fluid problems.
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4.2 TURBULENCE MODELS

There are a number of turbulence models available to solve various fluid problems. The 

choice o f turbulence model will depend on considerations such as; the physics 

encompassed in the flow, the established practice for a specific class o f problem, the level 

of accuracy required, the available computational resources, and the amount o f time 

available for the simulation. To make the most appropriate choice of model for a certain 

application, the user most to understand the capabilities and limitations o f the various 

models [168,170]. The Different types of turbulence models are [169,170,177]:

♦ Spalart-Allmaras model

♦ K-C  models

■ Standard K-C model (used in present research

■ Renormalisation-group (RNG) K-C  model

■ Realisable k - s  model (used in present research)

♦ k  -  cd models

■ Standard k - c o  model

■ Shear-stress transport (SST) k - c o  model

♦ v 2 — /  model

♦ Reynolds stress model (RSM) (used in present research)

♦ Large eddy simulation (LES) model

In the present study, the Standard K-C, the Realizable K-C  and RSM models were used for

the modelling of the spray dryer. Within these three groups the standard K-C, Realizable

K-C and RSM models were used for nozzles simulations and continuous phase of drying

chamber, while the Realizable K-C model was used for the atomizer models. Therefore the 

following sections will only describe these models.
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4.2.1 THE STANDARD K -e  MODEL

The standard K-C  model is the simplest, fastest and most validated model for turbulence

[170,178]. It brings the solution of two separate transport equations and allows the

turbulent velocity and length scales to be independently measured [178]. The standard K-C

model in FLUENT has been defined as the “workhorse” o f  practical engineering flow 

calculations, since it was first proposed by Launder and Spalding [180] in 1974. 

Robustness, economy, and reasonable accuracy for a wide range of turbulent flows 

explains its popularity in industrial flow and heat transfer simulations [171]. It is a semi- 

empirical model, and the derivation o f the model equations relies on phenomenological 

considerations and empiricism (mathematical expression in Appendix-C). Two improved

versions of the standard model are also available in FLUENT, namely the RNG K-C 

model [180] and the realizable K-C model [177,181].

4.2.2 THE REALIZABLE K -e  MODEL

The realizable K-C  model contains a new formulation for turbulent viscosity was derived.

A new transport equation for the dissipation rate, e , This provides an exact equation for 

the transport of the mean-square vorticity fluctuation (mathematical expression in 

Appendix-C) and thus the model satisfies certain mathematical constraints in terms of 

Reynolds stresses, which is consistent with the physics o f turbulent flows [182].

The one limitation of the realizable K-C  model is that it produces non-physical turbulent

viscosities when the computational domain contains both rotating and stationary fluid 

zones (multiple reference frames, rotating sliding meshes). But the realizable model gives a 

good result when used for spray models [182],

4.2.3 THE REYNOLDS STRESS MODEL (RSM)

The RSM is the most classical model which is based on the initial work o f launder (1975) 

[178]. The RSM solves the transport equations for the Reynolds stresses, together with an
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equation for the dissipation rate, which means five additional transport equations are 

required in 2D flows and seven additional transport equations must be solved in 3D 

(general expression in Appendix-C).: The RSM model has a greater potential to represent 

turbulent flow phenomena more correctly than the other two equations described models 

but takes more computational time and is slow to converge [183].

The RSM is an excellent model to study the effects o f streamline curvature, swirl, rotation, 

and rapid changes in strain rate in a more thorough manner than one-equation and two- 

equation models and has the more potential to give accurate predictions for complex flows. 

However, the dependability of RSM predictions is still restricted by the closure 

assumptions employed to model various terms in the exact transport equations for the 

Reynolds stresses; the modelling of the pressure-strain and dissipation-rate terms is 

particularly challenging, and often considered to be responsible for compromising the 

accuracy o f the RSM predictions [184,185].

These turbulence models solution converged after a number o f iterations would be 

independent of the initial values for SK-e  [183]. However, for a fast convergence, it is 

important to use a reasonable initial guess for K  and e. For spray dryer complex flows 

(flows with multiple inlets with different conditions), 5 to 10% turbulence intensity is 

enough to represent fully-developed turbulence.
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4.3 MODELLING OF THE SPRAY DRYER

In the present research the Spray dryer was divided into the three parts; two-fluid nozzle, 

atomisation, drying chamber. For the CFD analysis the following steps were used;

♦ Geometry Creation
♦ Meshing
♦ Solver
♦ Post-processing

4.4 GEOMETRY CREATION

The spray dryer geometry was created in the Gambit pre-processor which is an integrated 

packaged for CFD analysis. The Gambit allows geometry to be constructed using bottom- 

up or top down techniques or imports geometry from alternative packages with either 

include: ACIS solid modelling capabilities or IGES import, cleanup and modification 

capabilities. The Gambit allows the user to construct and mesh the models by means o f its 

graphical user interface (Figure 4.3).

6  Micrt

GAMBIT S o lv e r :  FLUENT 5 /6  ID: d e f a u l t j d

He Edit Sofvar

g l | g j ^ w |
htesh

0 | cpffoliPSl

Operation

Transcript
GRAPHICS WTKD0¥ -  L0¥ER 
RIGHT QUADRANT

d e fa u lt e d  lok  
defaulted tm

Figure 4.3: Gambits graphical user interface (GUI).

The spray dryer was divided into two parts; A two-fluid nozzle and a drying chamber. Both
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geometries were accurately created using vertices, lines and then connected faces. The air 

nozzle, spray feed pipe nozzle and dryer chamber geometry models were created using by 

7, 8 and 4 quadrilateral connected faces respectively due to complexity o f their shapes so 

that forced quadrilateral map meshing scheme would be applied (Figure 4.4 & 4.5).

Figure 4.5: Axis-symmetric section of the cham ber of the spray dryer.
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4.5 MESHING OF SPRAY DRYER

The meshing of model geometry is an important and still challenging task because the 

quality of the mesh affects both the accuracy of solution, the CPU time and memory 

requirements [184]. The model geometry of the spray dryer was meshed in GAMBIT 2.1. 

The general meshing tools available in the GAMBIT 2.1 include; edge, face and volume 

direct meshing. The edge meshing may be done thorough spacing, grading using single or 

double sided elements, interval size and count element types [186]. Face meshing offers a 

range of element /scheme type combinations [186];

♦ Quadrilateral: map, submap, tri-primitive and pave

♦ Quadrilateral/Triangle: map, pave and wedge

♦ Triangle: pave

When the geometry model is complex, it must be decomposed into a simpler form [187], to 

reduce discretization errors. Upon the selection of a volume for meshing Gambit 

automatically chooses the type of mesh it will use based on the solver selected and the 

edges types available [186]. Options include quadrilateral, triangle and wedge elements 

used to define the geometry.

Alternatively, a map scheme provides a perfect quadrilateral element distribution through 

out the model geometry, but where the edges do not from a proper rectangle; the elements 

become distorted and require smoothing the sides of elements [186]. This scheme was used 

extensively to mesh both the two-fluid nozzle and the drying chamber o f spray dryer in the 

present research.

4.5.1 MESHING OF TWO-FLUID NOZZLE AND SPRAY DRYER

The air and feed pipe were separately meshed using the quadrilateral map scheme. The air

and feed pipe were represented by 660 and1070 quadrilateral elements respectively (Figure

4.6 & 4.7). In two-fluid nozzle each connected face of the geometry was meshed separately 

however the connecting edge of each face had the same number o f nodes to maintain the 

continuum. Each side of the face was first graded and then forced with quadrilateral map 

element scheme. However, the first face of the air pipe had 7 faces, to represent a logical 

rectangle, a face must included four end type vertices and all other vertices associated with
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the face must be designated as side type vertices to make mappable. Therefore side edges 

act as vertices so that the gird closely follows the streamlines o f the flow, especially for the 

convective terms (Figure 4.6). The main spray chamber was meshed with 63000 

quadrilateral elements (Figure 4.8). The major challenge here was the meshing o f the very 

small spray dryer injector (air/fluid nozzle) 0.75 mm which required 10 elements compared 

to the large drying chamber (1.6 m in height). To over come this problem the both side 

grading method was used to give proper number o f element to capture the full effect o f 

inlet condition without the limitation o f the computer facilities. The successive ratio of 

both side grading was 1.02 .

Meshed Air Pipe
Zoomed View

Figure 4.6: Mesh of air pipe of external two-fluid nozzle.
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Complete meshed 
Feed Pipe

Zoomed View

Figure 4.7: Mesh of feed pipe of external two-fluid nozzle of spray dryer.
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Zoomed View

Hot Air Inlet

Complete Meshed Spray 
Drying Chamber

Outlet of Hot Air

Zoomed View

Air/Feed Inlet

Figure 4.8: Mixed mesh of 2D axis-symmetric spray dry chamber.

4.5.2 MESH CHECKING

The quality o f a mesh plays an important role in the accuracy and stability o f the CFD 

results which is based on node point distribution, smoothness and skewness. As a flow is a 

continuous domain and is defined by discretion. The flow salient features (such as shear 

layer, separated region, shock waves, and mixing zones) are depended on the density and 

distribution of nodes in the mesh. In many cases poor resolution in critical region could 

dramatically alter the flow characteristics [188]. Therefore, a small boundary in the spray 

dryer model such as inlet of the hot air compared with other boundaries, was meshed using 

10 nodes and all other inlet and outlet boundaries were more than 20  nodes.
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Zoomed View

Hot A ir  Inlet

Complete Meshed Spray 
Drying Chamber

Outlet of Hot Air

Zoomed View

Air/Feed Inlet

Figure 4.8: Mixed mesh of 2D axis-symmetric spray dry chamber.

4.5.2 MESH CHECKING

The quality o f a mesh plays an important role in the accuracy and stability o f the CFD 

results which is based on node point distribution, smoothness and skewness. As a flow is a 

continuous domain and is defined by discretion. The flow salient features (such as shear 

layer, separated region, shock waves, and mixing zones) are depended on the density and 

distribution of nodes in the mesh. In many cases poor resolution in critical region could 

dramatically alter the flow characteristics [188]. Therefore, a small boundary in the spray 

dryer model such as inlet o f the hot air compared with other boundaries, was meshed using 

10 nodes and all other inlet and outlet boundaries were more than 20  nodes.
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The mesh was checked in the GABMBIT 2.1 program which was based on Equi-angle 

skew techniques and can be described by [188].

- 0 .  0L -max
180 - 0 .  0a

-Equation 4.1

where, 0 max 0mm, 0e are the largest, smallest and equiangular angle face ( 60 for triangles

and 90 for square), the quality o f mesh is measured by the skewness range. The poor 

quality of grid will cause in accurate solutions and / or slow convergence [187]. The 

important factors in the checking of mesh are to [189]:

♦ Minimise equi-angle skew; skewness should not exceed 0.75

♦ Minimise local variation in cell size; the adjacent sides should not have a size ratio 

greater than 1.6

♦ If these parameters are out of range, it is recommended that the mesh is deleted, and 

re-meshed.

The Gambit 2.1 program allows the user to carry out this check in its examine mesh 

display. Several techniques for the refinement and improvement o f meshes in two 

dimensions have been considered in the last 20 years [126], Initially meshing using various 

strategies failed on one or both of the above points, which meant that the mesh model was 

gird dependent. Later in models edge, grading on one or both sides and Winslow 

smoothing scheme were applied to get the desired quality o f mesh [187]. It is very 

important to check the quality of the resulting mesh, because it properties such as skewness 

can greatly affect the accuracy and robustness o f the CFD solution.

4.5.3 ANALYSIS OF SKEWNESS

The feed pipe of the two-external fluid nozzle was meshed by 660 quadrilateral elements. 

All were checked for skewness. The air nozzle pipe was mesh in the same manner but the 

geometry o f nozzle pipe was more complex to ensure all elements were under the 0.5 

skewness (Figure 4.9). More than 99% of elements were under 0.6 skewness and only 1% 

of the elements were in the range of 0.6 to 0.75 due to the sharp edge of the nozzle pipe 

(Figure 4.10). The spray dryer was meshed axis-symmetrically due to it symmetric shape 

and to reduce calculation times. The main spray chamber was meshed with 63000 

quadrilateral elements. However, no cells were found with a skewnness more than 0.5 

(Figure 4.11).

-------------------------- :------------------------------ :---------------------- :----------------------------------------- :— :--------------------------- 87
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Figure 4.9: Equi-angle skew for the air-pipe of the external two-fluid nozzle.
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Figure 4.10: Equi-angle skew for the feed-pipe of the external two-fluid nozzle.
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Figure 4.11: Equi-angle skew for the spray dryer.
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4.6 FLUENT SOLVER

The FLUENT 6.1 solver provides comprehensive modelling capabilities for a wide range 

of incompressible and compressible, laminar and turbulent fluid flow problems. In 

FLUENT, a broad range of mathematical models for transport phenomena (like heat 

transfer and chemical reactions) is combined with the ability to model complex geometries. 

Examples o f FLUENT applications include; laminar non-Newtonian flows in process 

equipment; conjugate heat transfer in turbomachinery and coal combustion in utility 

boilers; external aerodynamics; flow through compressors, pumps, and fans; and 

multiphase flows in bubble columns and spray dryer atomizer models and fluidized beds.

An important useful group of models in the FLUENT is the set o f free surface and 

multiphase flow models. These can be used for the analysis o f gas-liquid; gas-solid, liquid- 

solid, and gas-liquid-solid flows. For these types o f problems, FLUENT uses the volume- 

of-fluid elements (VOF), mixture, and Eulerian models, as well as the discrete phase model 

(DPM). The DPM performs Lagrangian trajectory calculations for dispersed phases 

(particles, droplets, or bubbles), including coupling with the continuous phase. Examples 

of multiphase flows include channel flows, sprays, sedimentation, separation, and 

cavitations. In the present research, the spray dryer modelling was divided into three parts; 

two-fluid nozzle simulation, temperature simulation o f the main chamber and atomisation 

of HA slurry (Figure 4.12). To setup the simulation problem in CFD, the following few 

steps are needed to initiate the modelling like the selection o f numerical schemes to solve 

the governing equations, linearization o f governing equations from the partial 

differentiation equations, activate the physical laws to study the required properties of fluid 

or droplets such as energy equation and read out the result through post processing like 

temperature, velocity and droplets of HA slurry.

Figure 4.12: Systematic plan for the spray dryer modelling.
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4.6.1 NOZZLE MODELLING
Figure 4.13 shows the sketch of nozzle (air/feed pipe) modelling steps in FLUENT 

software. In the post processing, the results, outlet velocities was used as an input in the 

atomisation model o f drying chamber.

Figure 4.13: The flow path for nozzle simulation.
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4.6.2 DRYING CHAMBER MODELLING

The drying chamber was modelled for the temperature and velocity profile to initiate the 

atomisation in the spray dryer. Figure shows 4.14 the brief steps o f it.

Figure 4.14: The flow path for drying chamber of the spray dryer simulation for
temperature and velocity profile.
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4.6.3 ATOMISATION MODELLING

In the atomisation modelling o f the spray dryer, the nozzle exit velocity and drying 

chamber temperature and velocity profiles were taken as an input and steps is shown in the 

Figure 4.15. For atomisation modelling, temperature profile was solved in Eulerian 

approach then discrete phase of air blast model was activated in Lagrangian. Further steps 

of this model are discusses in subsequent sections 4.6.4 and 4.6.5, and mathematical 

equations in Appendix-C.

Drying Chamber

Define Models
• Solver Scheme - Segregated
• Linearization - Implicit
• Space -  Axis Symmetric
• Time -  Unsteady

Discrete Phase

Interaction with Continuous 
Phase (velocity and 
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• Droplet collision
• Droplet Break-up

Viscous Model
• Realizable k - s

f
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Solve Controls
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Figure 4.15: Systematic step to solve the spray dryer modelling with discrete phase.
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4.6.4 SOLVER NUMERICAL SCHEMES
Generally, two numerical methods are used to solve the fluid flow problems [190]:

♦ coupled solver
♦ segregated solver

The coupled solver solves the governing equations o f continuity, momentum, and energy 

and species transport simultaneously (coupled together). These governing equations for 

additional scalars are solved sequentially, because the governing equations are non-linear 

(and coupled), several iterations of the solution loop must be performed before a converged 

solution is obtained [190]. Where as, The segregated solver algorithm solves governing 

equations sequentially (segregated from one another) to obtain the solution and each 

iteration follows the path shown in Figure 4.13 and loops until the convergence criteria are 

met, such as, residual of continuity, momentum energy and other scalar quantities. In the 

present research segregated solver is used which is fast and takes less memory [190].

Figure 4.16: Overview of the segregated solution method [177].
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4.6.5 LINEARIZAITON
In solver numerical schemes methods, the discrete non-linear governing equations are 

linearized to convert a system of equations for the dependent variables in every 

computational cell of mesh geometry. The resultant linear system can then be solved to 

yield an updated flow-field solution [191]. The approach in which the governing equations 

are linearized is either “implicit” or “explicit” with respect to the dependent variable (or set 

of variables) of interest.

♦ Implicit: For a given variable, the unknown value in each cell is computed using a 

relation that includes both existing and unknown values from its neighbouring cells. 

As a result each unknown will appear in more than one equation in the system, and 

these equations can be solved simultaneously to provide the unknown quantities.

♦ Explicit: For a given variable, the unknown value in each cell is computed using a 

relation that includes only existing values. Therefore each unknown will appear in 

only one equation in the system and the equations for the unknown value in each cell 

can be solved one at a time to provide the unknown quantities.

In the present research modelling, the implicit linearization option is used with the 

segregated solver. In the implicit scheme, a single variable field (for an example velocity) 

is considering all cells at the same time and then solve for the next variable field by again 

considering all cells at the same time and so on that gives initially fast convergence and 

reduce the chance of divergent of residual errors [192].

4.6.6 DISCRETE PHASE MODEL

Previously, spray drying modelling has been based on the discrete phase modelling, where 

Euler/Lagrange approaches are used, where the gas field is calculated first (Euler). This is 

done by calculating an approximate solution for the Navier-Stokes and continuity 

equations on a grid o f contour volumes, subsequently the particles are tracked individually 

(Lagrange) and then computes the trajectories o f these discrete phase entities, as well as 

heat and mass transfer to/from them [193-203]. The steps in the discrete model (Figure 

4.15) in the present research are as follows;
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♦ Prediction of the effects of turbulence on the dispersion o f particles due 

to turbulent eddies present in the continuous phase.

♦ Heating/cooling o f the discrete phase.

♦ Vaporization and boiling of liquid droplets.

♦ Optional coupling of the continuous phase flow field prediction to the 

discrete phase calculations.

♦ Droplet break-up and coalescence

After the solving the continuous phase fields (temperature and velocity), the discrete phase 

activate. As the trajectory of a particle is computed, the model in the FLUENT keeps track 

of the heat, mass, and momentum gained or lost by the particle stream that follows that 

trajectory and these quantities can be incorporated in the subsequent continuous phase 

calculations. The continuous phase impacts the discrete phase and discrete phase 

trajectories effect on the continuum. This two-way coupling in the model is accomplished 

by alternately solving the discrete and continuous phase equations until the solutions in 

both phases have stopped changing. This interphase exchange of heat, mass, and 

momentum from the particle to the continuous phase is showed qualitatively in Figure 

4.17. When the droplets come in contact with hot air in the main drying chamber, the heat 

and mass transfer in the spray dryer, assumed the droplet has exposed the temperature to 

heating/evaporation and boiling (Figure 4.18). It depends upon the droplet size and 

surrounding hot air temperature conditions. The model assumed that the second phase is 

sufficiently dilute; by volume fraction the discreet phase less than 10- 12% because to 

maintain particle-particle interactions and the negligible effects of the particle volume 

fraction on the gas phase [204]. This assumption is well suited in spray dryer conditions 

and therefore is often used modelling. The major disadvantage is that, it is dependent on 

predicting the chaotic motions of individual droplets to provide an overall picture o f the 

spray [205], The stochastic models employed in producing this chaotic motion requires a 

large number o f drop parcels to produce a smooth representation o f the spray and are 

therefore computationally expensive, however, generally accepted to be more efficient in 

this regards than the current alternatives [205]. Recently, other alternative approaches were 

suggested by Beck and Watkins [206], where the liquid and the gas were both used in 

Eulerian formulation (by considering the liquid and gas as separate phases, which reduced 

the number of equation to be solved) [206].
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Typical Continuous Control Phase

Figure 4.17: Heat, mass, and momentum transfer between the discrete and
continuous phases.

Spray dryer

Figure 4.18: Systematic sketch of heat and mass transfer of particle in the spray
dryer.
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4.6.7 SPRAY MODEL

FLUENT has a number o f spray models like plan-orifice, pressure-swirl, flat-fan, air- 

blast/air assisted and effervescent atomizers [177]. The air-blast model was selected for the 

presented study as it replicates of the external two-fluid nozzle atomizer (mathematical 

expression in Appendix-C). The FLUENT software represents the external two fluid 

nozzle atomizer where as an air stream used to accelerate the break-up of a liquid sheet 

from an atomizer. This air may also help to disperse the droplets, preventing collisions 

between them. The inputs into this model are sheet thickness, maximum relative velocity, 

mass flow rate, and spray angle [207]. The analogy o f the external two-fluid nozzle was 

defined by a Linearized Instability Sheet Atomisation (LISA) model produced by Schmidt 

et al. [207]. The LISA model was divided into two stages [208-211]:

♦ Film formation

♦ Sheet break-up and atomisation

The atomizer model currently used in FLUENT uses a slightly improved form of that 

model proposed by Schmidt et al. [207], in which, the physical mechanism of sheet 

disintegration, for long waves, ligaments are assumed to form from the sheet break-up 

process once the unstable waves reached a critical amplitude [211]. Break-up from 

ligaments to droplets is assumed to behave according to Weber's [212] analysis for 

capillary instability. This break-up/spray atomisation process has option modelled by 

standard deterministic break-up models based on Taylor analogy break-up (TAB) or wave 

models [213,214]. This procedure determines the most probable droplet size [212].

The mesh files were imported from GAMBIT 2.1 to FULENT 6.1 solver. Before the model 

was solved, the following setting applied; the mesh was checked and physical model 

applied. The mesh was checked to ensure the quality of domain cells. In which any cell 

that may cause problem o f convergence were adjusted. Once the checking of mesh was 

completed, the scale and units were applied following with physical models.

In this research, segregate, implicit second order schemes and discrete phase model were 

applied; these FLUENT solver setting were employed that were based on the best the
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current practice in the spray dryer modelling. The turbulence models applied included SK- 

e and realizable SK-e  and Reynolds Stress Models. These viscous models were selected, 

on the fact that they are robust and the most widely validated models currently available in 

the literature. The constants employed in these models were the default models used within 

the FLUENT 6.1 package.

4.7 POST PROCESSING

After CFD solution, results views in the post processing panel and also, save hardcopy files 

of graphics displays for further analysis. The software has option to generate graphics 

displays showing grids, contours, profiles, vectors, and pathlines. The discrete model, 

results display the particle trajectories and particle diameter. In addition to the many 

graphics tools FLUENT also provides tools that allow to generate XY plots and histograms 

of solution, file, and residual data., modify the colours, titles, legend, and axis and curve 

attributes to customize plots.

In the present research, the nozzle results were displayed as velocity vectors and profiles, 

the drying chamber simulations results were analysis as temperature profile and velocity 

vectors, and spray atomisation were examined as particles trajectory and particle diameter.
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5

Results and Discussion

5.1 INTRODUCTION

The research results will be divided into three main parts; analysis of the spray dryer 

process for HA powder production, simulation and comparison o f the spray dryer. The 

simulation results are presented using the coupled scheme where each spray dryer part was 

separately simulated and analysed and later combined together with the others simulations 

to predict the operational behaviour of the Niro spray dryer. The initial velocity of the 

air/feed was known however the simulation then produced a velocity at the exit of the 

nozzle, this value was used as the atomization velocity in the chamber to predict the results 

found in the chamber. The simulated chamber results (using air flow and feed simulation 

values) were then compared using experimental data. During the modelling, care was taken 

with all major influencing factors; effect o f computing technology, model building and 

mesh generation, mathematical methods and numerical analysis, relevant physical models, 

comparison, post-processing and data extraction. Before simulation and comparison could 

commence, equipment calibration and model checks had to be performed, only then could 

the model results be compared to experimental data.

5.2 CALIBRATION AND MODEL CHECKS

5.2.1 VISCOSITY RESULTS

Three viscosity levels (25, 50 and 75 ± 5% mPa.s) of HA slurry viscosities were produced 

for spray drying and as inputs in the simulations o f the feed nozzle and atomisation. This 

range was controlled by the addition/taking out o f deionised water from the HA slurry
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when the participation reaction was completed. This viscosity range was selected after 

measuring the HA slurry at an industrial manufacturing plant where produce HA powder is 

produce for thermal spray applications (used in the production o f human hip implants) and 

it was found to be region of 48 ± 5  mPa.s. It has been reported by many researchers 

[122,123,215, 216] that the feed HA slurry has a great impact on the atomisation in spray 

drying process such as particle size distribution, atomization and morphology of dried 

droplet. Luo and Nieh [123] reported that at higher viscosities (45.9 mPa.s) of HA slurry, 

the spray dryer produces solid sphere types and higher mean diameter o f droplets. During 

the spray drying, it is mandatory that the HA slurry is continuous stirred as its viscosity is 

effected by particles sedimentation and separating out from the water. At the higher 

viscosities o f HA slurry such as 75 mPa.s, spray dryer nozzle sometimes blocked due to 

fast sedimentation and higher solid content. However, if  other binders used, this higher 

solid content o f HA slurry can be spray dried successfully at 70 to 80 % solid content levels 

according to Athena et al. [215],

5.2.2 AIR DRYING TEMPERATURE VERSUS AIR FLOW

Calibration of the air drying temperature versus airflow positions I, 13 , and III (see page 

Chapter 3), produced the following results described in Table 5.1 the temperature increased 

from 398K to 46IK  from position I to HI respectively.

Table 5.1: Air drying temperature and air flow rate at the different positions.

Drying Air Flow Rate (m/s) at Temperature 

(K)

398K 421K 461K

Position I 12.738 12.712 12.704

Position II 14.642 14.628 14.612

Position III 16.643 16.631 16.601
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5.3 EXPERIMENTAL ANALYSIS

The present work deals with the optimisation of the HA spray drying process by using an 

experimental design methodology. Based on the literature data, three major spray drying 

factors; the temperature of the inlet hot air in the spray dryer, the flow rate o f the inlet hot 

air in the spray dryer and the HA slurry viscosity were selected for the analysis. The 

average viscosity of HA slurry was found to be with the range o f 25 to 75 mPa.s.

In these experiments, the feed flowrate used was 7.6 x 10'7 m3/s because the spray dryer 

initial test run gave the best result at this setting in terms of minimum deposition onto the 

top inside of the spray dryer and in term of producing free flowing powder. The range of 

flowrate of slurry to rpm of peristaltic pump used is shown in the Appendix-B. The kinetic 

energy for atomisation of the feed (feed flow rate 9.655x1 O'4 Kg/s and atomisation pressure 

75% on the calibrated scale) was kept constant.

To take into account the influence o f the interactions between the different factors, the use 

of an experimental design methodology was more suitable than an OVAT (one variable at a 

time) method. This approach has already proved successfully in bioprocesses, allowing a 

rapid and robust optimisation of several processes [218].

A factorial experimental design with interaction effects was built using MODDE 7.0® 

software. Three factors with three levels were investigated (Table 5.2). As experiments are 

tedious and costly, a factorial design was chosen on orthogonal blocking using the Box- 

Behnken scheme. The design contains thirteen experiments (Table 5.2). The performance 

and optimisation of spray dryer for the production of thermal spray powder (HA powder) 

was evaluated by analysing following responses: (1) Chamber powder size (Dch) (|im), (2) 

Cyclone powder size (Cyl) (jim) (3), Deposition of powder onto the wall of the spray dryer 

(Wd) (graded in terms of numbers 1-10), the deposition onto the wall grade implies that 1 

is (no deposition) and 10 is (complete deposition)) and (4) Overall thermal efficiency (Th) 

(%).
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Table 5.2: Experimental value for different response for various conditions of
variable.

Exp. Variables Responses
J 1* FI* Vis* Dch Cyl Wd Th
(K) (m/s) (mPa.s) (Hm) (jun) (No) (% )

1 389 14.60 25 9.40 6.80 8 45.00
2 461 14.60 25 18.80 11.50 3 60.06
3 389 14.60 75 39.80 8.50 6 54.24
4 461 14.60 75 41.60 25.60 6 64.00
5 389 12.70 50 26.90 9.92 7 56.80
6 461 12.70 50 33.05 19.70 4 58.78
7 389 16.60 50 29.40 15.40 6 48.97
8 461 16.60 50 36.85 20.25 7 52.60
9 421 12.70 25 19.03 9.030 4 65.32
10 421 12.70 75 39.70 13.92 4 60.16
11 421 16.6 25 16.43 8.43 6 56.40
12 421 16.60 75 40.45 24.45 6 53.45
13 421 14.60 50 30.42 18.72 5 50.21

* T= Temperature, Fl= Flow rate o f hot inlet air, Vis= Viscosity o f HA slurry

A second order polynomial model was used to describe relationships between responses 

and experimental factors:

v  ' /!  - i > ' \  • V  2 > „ X , X , ------------------------------------Equation 5.1
(=1 1=1 j= i+ 1

Where Y is the response, Po is the constant coefficient, Xj and Xj are the variables, (3; are 

the linear coefficients and Py are interaction coefficients. This polynomial model was fitted 

to the four responses.

5.3.1 DATA ANALYSIS AND OPTIMISATION

The MODDE 7.0® software was applied and the correlations between factors; Temperature 

of the inlet hot air in the spray dryer (T), Flow rate of the inlet hot air in the spray dryer 

(FI.), Viscosity of feed/ HA slurry (Vis), and the responses were determined using a 

Multiple Linear Regression (MLR) method, and the statistical analysis o f main and 

interaction effects were quantified using an ANOVA test.
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5.3.2 STATISTICAL ANALYSIS

Table 5.3 and Figure 5.1 (gives the analysis o f the regression coefficients o f polynomial 

models describing the relationships between Chamber powder size (Dch), Cyclone powder 

size (Cyl), Deposition o f powder on the wall o f spray dryer (Wd) (in terms o f numbers (1- 

10) and Overall thermal efficiency (Th) and the studied factors. It indicates that the two 

responses (Vu-, Via) can be described well by polynomial models with good coefficients o f 

determination (R2). ANOVA analysis table D .l is given in Appendix-D.

Sum m ary of Fit

Dry ing Chamber P ow der Cyclone Pow d er W a ll D e p o s itio n Thermal E ffic iency

N“13
D ? = 3

C o n d .  n o . = 7 - 1 0 9 3  
Y - a i s s = 0 M ODDE 7 - 10/11/2006 22:63:42

Figure 5.1: Summary of fit for the experimental matrix for Multi- Linear Regression.

Figure 5.1 represents the quality o f the fit o f the model, R2 is the fraction o f the variation of 

responses by the model and Q2 is o f the variation of the response that can be predicated by 

the model R2 every time. The R2 in this model is excellent for all the responses (R2 > 0.8) 

however, Q2 is quite acceptable for the drying chamber powder, cyclone powder and wall 

deposition, but un acceptable for the thermal efficiency (which is negative) which is poor 

due to noise present or unexpected behaviour o f this response.

For the chamber particle size, the statistical analysis o f the data showed that viscosity (Vis) 

had the most significant effect (P-value<0.05 or 95% confidence level). However, the main 

effects of temperature and flow rate and the six interaction effects were not significant. The 

main effects on the cyclone particle size, the main effect were temperature, viscosity and 

------------------------------------------------------------------------------------------------------------------104
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flow rate are significant (P-value<0.05) but only the interaction T*Vis effect is significant. 

The obtained data also demonstrates also that for wall deposition (Wd), it is effected by 

temperature and the interaction effect between the temperature and viscosity. The thermal 

efficiency (Th), shows no significant effect o f any of the factors studied

Table 5.3: R-squared of the polynomial models and P-values of both linear and
interaction effects of responses.

Dch
(Urn)

Cyl
(jim)

Wd
(No)

Th
(%)

R2 0.927 0.983 0.931 0.753
Constant 0.0244968 0.00135861 0.00724614 0.00334566

T 0.469034 0.00963096 0.0478375 0.163836
Vis 0.00932733 0.00399236 0.67494 0.779783
FI 0.598449 0.0249767 0.0691368 0.171827

rp*rp 0.643463 0.0980198 0.18169 0.899009
Vis*Vis 0.671059 0.0568478 0.820538 0.281473

F1*F1 0.357181 0.57073 0.820539 0.428324
T*Vis 0.484315 0.0118029 0.0466619 0.681941
T*F1 0.504349 0.26445 0.0790955 0.897009

Vis*V 0.697936 0.0889562 1 0.862531

Eliminating the non significant coefficients (P-value<0.05), the reduced model response 
can be expressed as follows (Figure 5.2-5.5):

Model 1: Drying chamber particle size = 21.42 + 10.7738 (Viscosity of feed).

Model 2: Cyclone particle size = 16.72 + 3.00375 (Temperature) + 4.08875
(Viscosity of feed) + 2.12 (Airflow rate) + 3.95 (Temperature x Viscosity 
of feed).

Model 3: Wall deposition = 5 - 0.875 (Temperature) + 0.75 (Airflow rate)
+ 0.125 (Viscosity of feed) + 1.25 (Temperature x Viscosity of feed)

The first model (1) shows that, when the atomisation energy is constant, the drying mean 

chamber particle size depends only the viscosity o f the feed. The atomisation is produced 

by kinetic energy (via the external two-fluid nozzle) in the form of a wave which is
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indirectly proportional to mean particle size [1-8]. The model clearly shows a constant 

value which acts as the initial energy required to break-up the feed into droplets. The mean 

particle size increases directly with an increase in the viscosity o f HA slurry (Figure 5.2). 

This behaviour can be attributed to the fact that, according to the basic atomization theory, 

an increase in viscosity leads to as increase in droplet size [1,8]. These results are also in 

agreement with those reported by Luo and Nieh [122] who demonstrated that the increase 

of the HA slurry solid concentration increases the viscosity from 1 to 45.9 cst and then the 

mean particle size of the sprayed HA from 1.7 to 7.84 (im.

The second model (2) describing the cyclone particle size shows that temperature, viscosity 

and flow rate of hot inlet air, have a positive effect on the HA particle size (Figure 5.3). 

This can be explained by the fact that the increase o f temperature with the higher airflow 

rate led to faster evaporation especially at 461 K; where the HA slurry dries into a solid 

sphere with porous pores, becomes a lighter particle and is therefore carried away to the 

cyclone. Moreover, the high HA slurry viscosity produces over all a higher particle size 

distribution at constant atomization energy. The second model also demonstrates also that 

the interaction between viscosity and temperature has a positive influence on the particle 

size. This is due to the evidence that an increase o f temperature decreases the slurry 

viscosity, therefore requires less particle break down energy to produce finer particle size 

distributions, which have more surface area to dry, hence improves their drying rate.

Model (3) demonstrates on the contrary, that high viscosity will cause wall deposition, 

however high temperature avoids this phenomenon. This behaviour can be due to the 

drying process itself. During spray drying, the particle je t stream encounters the hot air, 

where particle drying takes place according the drying models. In fact; the first drying step 

consists of a primary drying which causes the outer surface to dry or free surface drying, 

followed by a secondary drying where the core is dried due to continuous higher 

temperature. If the particles reach the chamber walls before the end o f the primary drying 

stage, the chances o f particles sticking to the wall, is high and the rate depends upon the 

particles material properties.
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As illustrated in the surface response shown in Figure 5.4, the lowest wall deposition is 

obtained only when a low viscosity slurry (Vis<35 mPa.s) is sprayed at high temperatures 

(T>445 K). The model shows also a positive effect for hot air flowrate. Figure 5.4 shows 

that higher flow rate turbulence increases wall deposition effects. Numerous authors [89- 

95] have described this turbulence effect on wall deposition. Master [91] provided a 

solution, that if  a spray dryer is scaled-up by 20%, it greatly reduces the wall deposition 

because it allows more space for the particles to dry before hitting the wall during first 

flight. The quantity o f particle deposition it can be assessed also by taking photographs o f 

the walls of the spray dryer and observing simulation of the velocity vectors as shown in 

Figure 5.6.

The thermal efficiency of the dryer does not have a strong significant effect, however the 

inlet temperature is significant, and the thermal efficiency is a function o f the inlet and 

outlet temperatures of the spray dryer. The higher the temperature difference between inlet 

and outlet temperatures of the spray dryer, the higher the thermal efficiency, thus more 

energy is utilised in the evaporation of the water from the HA slurry. In this statistical 

analysis (Figure 5.5), the temperature of the hot air entering was high (from 398 to 461K) 

compared the outlet leaving the chamber (65 to 90K) temperature.
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Figure 5.2: 3D surface and contour response of particle size collected in the main 
drying chamber of the spray dryer for various flow rates.

Viscosity units: mPa.s 
Temperature units: K
Particle size units: urn

390 400 410 420 430 440 450 460
Tem peralure

(c) Flow rate 16.6 m/s

(a) Flowrate 12.7 m/s

(b) Flowrate 14.6 m/s

390 400 410 420 430 440 450 460
Tem perature
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Viscosity units: mPa.s 
Temperature units: K 
Particle size units: um

(a) Flow rate 12.7 m/s

3 9 0  4 0 0  4 1 0  4 2 0  430  4 40  450  460
T em p era tu re

(c) Flow rate 16.6 m/s

(b) Flow rate 14.6 m/s

T e m p e ra tu re

T e m p e ra tu re

Figure 5.3: 3D surface and contour of response of Particle size collected in Cyclone of
the spray dryer.

------ -------------------------------------------------------------- ---------------------- ;------------------ 109
A Critical Investigation into the Spray-Drying o f Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza



CHAPTER 5: Results and Discussion

Viscosity units: mPa.s 
Temperature units: K 
Deposition units: Numbers

3 9 0  4 0 0  4 1 0  4 2 0  4 3 0  4 4 0  4 5 0  4 6 0
T e m p e ra tu re

(a) Flow rate 12.7 m/s

Flow rate 14.6 m/s

(c) Flow rate 16.6 m/s

3 9 0  4 0 0  4 1 0  4 2 0  4 3 0  4 4 0  4 5 0  4 6 0

T e m p e ra tu r e

T e m p e ra tu re

Figure 5.4: 3D surface and contour of response of wall deposition inside the spray
dryer.
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Viscosity units: mPa.s 
Temperature units: K 
Thermal efficiency: %

(a) Flow rate 12.7 m/s

(b) Flow rate 14.6 m/s

T e m p e ra tu re

(c) Flow rate 16.7 m/s

T e m p e ra tu re

3 9 0  4 0 0  4 1 0  4 2 0  4 3 0  4 4 0  4 5 0  4 6 0
T e m p e ra tu re

Figure 5.5: 3D surface and contour of response of over-all thermal efficiency of the

spray dryer.
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Circulation

HA powder deposited 
onto the chamber wall

Figure 5.6: Side wall deposition and the circulation of the velocity vector inside the
spray dryer.

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza



CHAPTER 5: Results and Discussion

5.3.3 PARTICLE SIZE DISTRIBUTION

In the present research, a large range of mean particle size o f HA were obtained, which is 

predominately dependent upon the feed viscosity at constant atomization energy and the 

significant effects like temperature and flow rate of the hot inlet air (Figure 5.7-5.9). Figure

5.7 shows at low viscosity 25 mPa.s and low temperature 398 K to high temperature 461 

K, mean particle size ranges from 8.5 (im to 18.8|im, Figure 5.8 shows at medium viscosity 

50 mPa.s and low temperature 398 K to high temperature 461 K, mean particle size ranges 

from 9.92 îrn to 36.85 nm and Figure 5.7 shows at high viscosity 75 mPa.s and low 

temperature 398 K to high temperature 461.K, mean particle size ranges from 24.45 |um to 

41.60 (im. For all o f the sample particle sizes analysed a quite narrow distribution was 

found (Figure 5.7-8). At low viscosity 25 mPa.s the distribution is normal distribution 

spread over the entire area as compare to high viscosity 75 mPa.s and the distribution is 

narrower at higher temperature level. Figure 5.7 shows that at low viscosity a unimodal 

distribution for all three temperatures 398, 421 and 461 K  results. However at all 

viscosities an increase in temperature, caused some of the particle size distribution attained 

to start to develop a little bump in normal distribution, where the effect is more pronounce 

at the temperature of 461K for the chamber powders (Figure 5.9). This can be explained by 

agglomeration of the powder due to its low particle size [219]. The agglomeration during 

spray drying process can be defined as the association of smaller particles into clusters due 

to bringing independent particles into contact with one another, enhancing or controlling 

interparticle adhesion, and stabilizing the created agglomerates in some cases under the 

action of external forces (for an example temperature difference), where as in a particular 

their moisture content which affect the adhesiveness of the particles [18,17,33]. At the 

higher temperature drying profile, the concentration of primary spray particles at a vicinity 

of the nozzle has much temperature difference as atomisation o f feed temperature is very 

low with compare to the inlet drying temperature and few particles which may give a 

chance to collide with small particles to primary particles that formed just after 

atomisation. The agglomeration observed at the higher temperature (46IK) may be due to 

fast evaporation, exploding of droplet into doughnut shape and release instant moisture to 

surrounding (Figure 5.9) [219, 216].
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The mean particle size is an important factor which determines the feed stock powder 

characteristics for thermal spray deposition. Thermal spray powders are formed when the 

spray dried powder is calcinated and milled. From a particle size point o f view, these two 

processes further increase the size and alter their shape [220]. The spray drying HA powder 

can be highly porous or in an amorphous state. The sintering o f HA powder is required to 

improve the crystallinity of the powder o f up to 99% for medical implant substitute 

applications [221], It has been reported that the microstructure o f HA powder increases in 

grain size exponentially by increasing sintering temperature [222]. The HA phase is stable 

when sintered below 1400 °C for 2 hours [133]. However, sintering at temperatures greater 

than 1400 °C resulted in the decomposition of HA from (Tricalcium Phosphate) TCP, 

(Tetracalcium Phosphate Monoxide) TTCP and (Calcium oxide) CaO products [126,133, 

137].

The typical HA powder sizes for plasma spray has been reported [125,133] to be in the 

range of 20 to 75 (im to retained its original crystallinity, however, particle sizes lower than 

20 (am, become partial melted and decomposed into calcium phosphate (TCP), tetra­

calcium phosphate (TTCP) or amorphous calcium (ACP) and the crystallinity is generally 

less than 30 percent, where as if  the particle size is larger than 75 (am the heating of the 

HA powders is insufficient during plasma thermal spraying, which resulted in extremely 

poor bonding o f the deposited powders with the medical implant to form a coating and 

most of the particles that impacted on the substrate rebound off. In this research, the spray 

drying of HA slurry at 50 mPa.s viscosity and hot inlet temperature 461 K produced a the 

mean average particle size of 36 (im in the drying chamber which further increases the 

powder size after sintering as a result o f some agglomeration that would be ideal for the 

plasma spray. For an example, a typical plasma spray powder range is 20 (im to 58 (am to 

get a desire coating characteristic [104]. In this research, HA powder produce at 50 mPa.s 

viscosity and temperature 461 K produced mean particle size 34 (im in the drying chamber 

and 20 (am particle size in the cyclone of the spay dryer. To achieve the desired powder 

range (20 to 58 |j.m) for the plasma spray of HA powder, these powders must be sieved out 

to this specific range and the rest of the HA powder would be further treated so as to be
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used in other processes such as electro chemical processes also used to deposit HA 

coatings onto hip implants where the HA powder needs low particle size [227].
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Figure 5.7: Particle size distribution at feed viscosity of HA slurry 25 mPa.s.
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Figure 5.8: Particle size distribution at feed viscosity of HA slurry 50 mPa.s
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Figure 5.9: Particle size distribution at feed viscosity of HA slurry 75 mPa.s.
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5.3.4 MORPHOLOGY OF HA SPRAY DRIED POWDER

Figures 5.10 to 5.14 show HA particles morphology produce (at different magnifications) 

for different levels of viscosity (25, 50 and 75 mPa.s) and inlet temperatures (398, 421 and 

46IK) respectively. The micrographs produced by the SEM clearly show the shape of 

entire samples of powder collected from the drying chamber and the cyclone, which were 

spherical and quite regular with large distribution sizes. In general, spherical powders have 

better rheological properties than irregular powders and thus produce better coatings for hip 

implants [131]. The plasma spray equipment uses tiny nozzles to input its powder into its 

melting flame, thus requires spherical powders to increase the efficiency o f the system. The 

spray drying HA powder has free flowing characteristic however has low percentage of 

crystallinity as compared to FDA requirements (99.9%) [137], therefore these powders do 

require sintering before been used to produce thermal spray coatings. However, sintering or 

calcination has shown to reduce the flowability of the powder due to surface roughness 

effects [122], where HA spray dried powder particles in the range of 20-45 (j.m, had a 

flowrate o f 0.21g/s for uncalcinated powder compared to 0.15 g/s after calcination for 24

The two main shapes found in this research were a solid and a doughnut sphere shaped 

morphology (Figure 5.13-5.14). After initial break down of the slurry into fine droplets by 

the high speed air, the droplet surface temperature of the droplet quickly reaches the drying 

temperature and the surface moisture begins to evaporate when the moisture content on the 

droplet surface falls below its critical value. The shape of dried powder depends upon the 

viscosity o f the HA slurry (solid concentration). It was also observed that the particles 

shape had blow holes, spikes, catering and shrivelling which would be explained by 

looking at each particle’s history.

A solid sphere of HA spray dried powder with pores was observed when of a viscosity 75 

mPa.s was applied to all three levels of drying temperature (398, 421 and 461K) (Figure 

5.10-5.12 (c)). However at 398K the powder had a more fracture porous particle, while on 

the other hand, at the 461 K the particles were more solid (Figure 5.12 (c)). This can be 

explained by the fact that at higher viscosity, the HA slurry contains more insoluble
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precipitates; thus the surface temperature of the droplets would exceed the boiling 

temperature of the water during drying and moisture would rapidly flow to the droplet 

surface by capillary action. In the dense slurry, a thick shell o f insoluble precipitates would 

quickly form. As a result, heat transfer into the centre of the droplet becomes difficult and 

the temperature at the centre may never reach boiling point. The drying process is thereby 

controlled by the outward diffusion process of water. This leads to the formation of solid 

spheres (Figure 5.13) and the denser the starting slurry, the denser the solid sphere. The 

same was also reported by Luo et al. [122], where at a HA slurry concentrations o f 0.25 

volume fraction, the spray dried powder shapes were solid spheres with pores.

If the moisture evaporation rate exceeds the rate o f solute diffusion back into the droplet 

interior, the solute precipitated at the droplet surface forms a shell. At the same time, 

pressure builds up due to moisture. If the shell is porous, this pressure would be released 

and a hollow sphere would be formed. If the shell is non-porous, a hollow sphere would 

erupt under high internal pressures.

Doughnut shaped particles were observed in the spray drying of HA slurry when a slurry 

viscosity o f 50 mPa.s was utilized. This doughnut phenomenon was more pronounced with 

an increase in the spray drying air temperature (46IK) (Figure 5.10-5.12 (b)) in the 

chamber powders. A doughnut shape HA powder may be formed due to the dilute HA 

slurry. This may be explained due to the mobility of the insoluble precipitates in the droplet 

been high, under external forces (such as gravitational forces), these insoluble particles can 

tend to move to the bottom o f the drying chamber and elongate the droplet into an elliptical 

shape (Figure 5.13 (b)). This phenomenon may be increases the surface area o f the droplet 

and thus, the associated surface tension. At the moment the droplet detaches from the HA 

slurry spray stream, a strong effect of surface spring-back occurs, following the tendency to 

minimise its surface to volume ratio. This spring-back action can lead to an inward 

collapse o f the opposite faces o f an elongated droplet and the formation of a doughnut­

shaped granule (Figure 5.14). This mechanism of doughnut formation has previously been 

described by several authors [41,50,117,119], where the drying process can also be
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diffusion controlled, similar to that for the solid-sphere formation, but higher temperatures 

can accelerate this.

While a viscosity of 50 mPa.s and temperature o f 461 K yield the ideal particle size and 

range, in terms of HA morphology, a mix of solid and doughnut shape powder was 

produced. For thermal spray applications, solid spherical powders are desired to retain its 

bulk properties and dense coating on the substrate. However, HA thermal spray coating 

requires porous coatings to help the growth of the cells inside the coating to provide a 

strong bioactive bond between the implant and bone [128]. However it is felt that the 

mixture of solid and doughnut powder shaped particles may provide a strong deposit with 

pores for cellular growth.
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(c) Viscosity 75 mPa.s: Drying chamber Cyclone

Cyclone

(b) Viscosity 50 mPa.s: Drying chamber Cyclone

(a) Viscosity 25 mPa.s: Drying chamber

Figure 5.10: SEM micrographs of spray drying (for an inlet temperature of 398K)
HA powder.
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(c) Viscosity 75 mPa.s: Drying chamber Cyclone

Cyclone

(b) Viscosity 50 mPa.s: Drying chamber Cyclone

(a) Viscosity 25 mPa.s: Drying chamber

Figure 5.11: SEM micrographs of spray drying (for an inlet temperature of 421K)
HA powder.
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(a) Viscosity 25 mPa.s: Drying chamber Cyclone

(b) Viscosity 50 mPa.s: Drying chamber

(c) Viscosity 75 mPa.s: Drying chamber Cyclone

Cyclone

Figure 5.12: SEM micrographs of spray drying (for an inlet temperature of 461K)
HA powder.
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Figure 5.13: Different solid sphere shapes of HA powder.
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Figure 5.14: Different doughnut shapes of HA powder.
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5.3.5 COMPARISION OF STATISTICAL MODEL

The MODDE 7.0® software was used to analyse the factors and to compare to the 

experimental data target (Table 5.4). The optimised value o f input factors; temperature, 

viscosity and flowrate, were 460.99 K, 25.86 mPa.s and 12.76m/s respectively and the 

same factors levels (461 K, 26 mPa.s and 12.7m/s) were examined by an additional 

independent experiment performed. The experiment indicates good agreement between the 

statistical simulation the data for mean particle size o f chamber (14.84% difference), mean 

particle size o f cyclone (27.11% difference), wall deposition (1.5% difference), and 

thermal efficiency (17.24% difference), (Figure 5.15) implying that empirical model can be 

used to describe the relationship between the factors (Figure 5.1). These differences m aybe 

due to iterations errors, interaction effect, energy losses and statistical model errors.

Table 5.4: Optimisation factors and responses for comparison of the statistical model.

Factors Responses
Low High Min. Target Max.

Temperature
(K) 398 461

Chamber 
particle size

(u b )
5 22 50

Viscosity
(mPa.s) 25 75

Cyclone 
Particle Size 

(nm)
1 10 15

Flow rate
(m/s) 12.7 16.6

Wall
Deposition

(points)
0 1 3

Over-all
Thermal

Efficiency
(% )

50 60 80
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I Simulated Measured

19.03,
22.31

Drying 
chamber Mean 

Particle size

8.17
11.21

Cyclone Mean 
Particle size 

(pm)

1.97 2

Wall Deposition 
(Number)

Over-all Thermal 
Efficiency 

(%)

Figure 5.15: Comparison of responses of experiment and statistical model for 
optimization of the spray dryer factors (Temperature, Viscosity and Flowrate).

A  Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza



CHAPTER 5: Results and Discussion

5.4 THE EXTERNAL TWO-FLUID NOZZLE SIMULATION

The external two-fluid nozzle has two pipe systems; air and feed pipe. Each pipe was 

analysed separately to predict each internal and exit velocities and their relative velocities.

5.4.1 AIR PIPE SIMULATION

Initially the velocity achieved for interval 10 percentage o f calibrated atomising scale 

(5kg/mm) was measured, by reading the input velocity value for each equivalent scale 

setting Reynolds no at the inlet o f air pipe were calculated Table 5.5.

Table 5.5: Inlet and exit velocity of air nozzle pipe for various atomising scales.

% of Calibrated Inlet Velocity Reynolds No. Exit Reynolds

Atomising Scale of Air Nozzle (at the inlet of Velocity No. at the

(100% = 5.0 (Measured) air pipe) (Simulated) exit of air

NnrVhr) (m/s) (m/s) pipe

100 7.31 5421 118.5 53325
80 5.85 4338 91.5 41175
75 5.48 3990 85.5 38475
60 4.38 3249 72.3 32535
50 3.65 2707 58.4 26280
40 2.95 2165 47.6 21420
30 2.19 1624 36.5 16200

Table 5.4 shows the nozzle simulated velocities for 30 to 100% calibration of atomising 

scale (100% = 5.0 Nm3/hr). For each increase in calibrated scale 50 to 60% a proportional 

change in input (and final output) velocity was found (with minimum error of 1.5 %). 

Generally, it has been established that for internal fluid flow such as in pipes, laminar flow 

exits when Re < 2300 and turbulence exits at Re>4000. In this air pipe analysis, the 

Reynolds number is calculated at the entry point by the following equation [135]:

Re = ----------------- ---------------------------- Equation 5.1

Where p is the density, p. is the dynamic viscosity and Dh is the hydraulic diameter, v is 

the velocity and Re is the local value o f Reynolds Number. In this research, the hydraulic
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diameter is 0.011 m at the inlet diameter of the air pipe. Equation 5.1 was used to check if 

turbulence flow of air occurred at the inlet point of the air pipe. Table 5.4 shows that the 

exit velocity of the air feed starts out as laminar flow and reaches turbulent flow as the 

scale is changed from 30 to 100% (100% = 5.0 Nm3/hr) respectively. The calibration of 

atomizing scale was performed at 30 to 100 % with the interval of 10, because it was 

observed that below 30% atomisation a minimum energy or threshold kinetic energy was 

needed to start atomisation which only occurred at 30%. All the levels (30%-100%) of 

atomising calibrated scale were analysed, but the 75% or 5.48 m/s inlet velocity 

experimental run is described because preliminary spray drying tests showed that at 75% 

calibrating atomising scale gives full atomisation o f HA slurry with minimum wall 

deposition and desired particle size distribution were found (all o f there results are shown 

in Appendix D2-6).

Figure 5.16 shows the velocity, turbulence intensity and temperature of the air inside the air 

pipe for 5.48 m/s inlet velocity. Figure 5.16 (a) shows that the velocity profile is well 

developed and its vectors in Figure 5.17 indicates that at the sharp edges of the air nozzle 

circulations are present. Figure 5.16 (b) shows the turbulent intensity in the air nozzle and 

it is 293% at the throat of initially assigned value at the inlet (5%) which is very clearly 

indicated that is the critical point o f nozzle as the air nozzle is only a convergent type 

nozzle. Air is a compressible gas therefore it is effected by temperature which changes the 

fluid density, viscosity, and thermal conductivity, therefore one must evaluate its 

importance. Figure 5.16 (c) shows only a slight change in temperature which means that 

the air almost acts as an incompressible fluid.

Figure 5.18 shows the velocity at the outlet of the air nozzle for 5.48 m/s inlet velocity. 

The results compare the three turbulence models (Standard K-C, Realizable K-C, and 

RSM) and the variation between the turbulence models was found to be within the range of 

5 to 10%. This suggests that the standard K-C  produces good results when compared to

other two methods. The same was reported by Fletcher [173] that the standard K-C, model
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produced reasonable results in the simulation o f spray dryer performance using CFX5 

codes.

Figure 5.16: (a) Velocity profile (b) turbulence intensity and (c) temperature
distribution at 5.48 m/s inlet.
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Figure 5.17: Velocity vector at 5.48 m/s inlet velocity of the air pipe.
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accuracy is hardly reduced. Further more the standard K-C  has two equations to describe

the complete turbulence model, where as the realizable K-C  contains new transport

equations for dissipation rate G derived from the Navier-Stokes equations, therefore it has 

five complex equations for two dimensional flow [142-152],

Table 5.6:- Iterations to converge the solution with standard criteria at 5.48 m/s inlet
velocity of air pipe nozzle.

Number of Iterations

S K-C R K-C RSM

Air Nozzle 1789 2595 8121

Further analysis of the Standard K-C  method used to predict the exit velocity at the entire 

range of atomizing scales in can be observed in Figures D l-5  (Appendix D). As a swirl 

wheel does not exist in the nozzle, the Standard K-C  method is quite fast at predicting the

results, however if a swirl wheel was considered, the Realizable K-C  would be a more 

efficient turbulent method to predict the exit velocity [155].

The Mach number was estimated, to determine whether the compressible behaviour in the 

air pipe existed or not. In the simulation, if  Mach numbers were above approximately 0.3, 

the compressible solution algorithm would be activated and at a Mach number above 

approximately 0.7, significant differences between incompressible and compressible results 

would be expected [144]. The air pipe simulation with full range o f atomizing scale 

showed clearly that the maximum velocity achieved was less than the critical velocity 

(Mach number 1 or the speed of sound). The maximum Mach number calculated for the air 

pipe was less than 0.3, so there is no chance of a shock wave and stagnation conditions 

occurring inside the nozzle. Figures D l-5 (Appendix D) shows the velocity, turbulence 

intensity and temperature profile at different inlet velocities, which produces exit velocity 

and turbulence that were directly proportional to the break-up of the feed flow from the 

external two-fluid nozzle inside the spray dryer. The higher velocity o f the air pipe, results
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The exit velocity profile shows (Figure 5.6) a slight attacking angle toward the feed pipe 

flow which helps to break-up the feed due to the design o f nozzle shape. The RSM 

predicted the highest velocity at the outlet o f the air pipe and this maybe due to the fact that 

the air pipe exit orifice is circular and symmetric in shape which is beneficial when 

modelling with the RSM method as the convergent part of the nozzle causes the flow to 

stabilise by redistributing normal stresses near the walls. The RSM tends to damp the 

normal stresses perpendicular to the wall, while enhancing the stresses parallel to the wall 

thus giving a higher value at the centre point o f the nozzle [150]. The outer regions o f all 

three models predicted similar results due to using a standard wall function and low 

residual effects at the wall boundaries o f the nozzle.

■ RS Model RKE M o d e l -------- SKE Model

Oulet Distance (m)

Figure 5.18: Outlet velocity at air pipe of the two-fluid nozzle at 5.48 m/s inlet
velocity.

The air nozzle was simulated under the same conditions and standard convergence criteria 

with different turbulence models (Table 5.6). It has been shown that the Standard K-C , 

model gives fast and reliable results without much expense o f time and memory as it 

contained the lowest number o f equations to compute compared to the Realizable K-C, and

RSM model [179-183], The Standard K -€  also assumes that turbulence is an isotropic 

flow region, this assumption sharply reduces the intensity o f the calculation, while the

------------------------------------------------------------------------------------------------------------------ 130
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in the more energy required to break-up the feed, and at constant flow rates of feed this 

produces narrow particle size distributions [1, 8 ,10].

5.4.2 FEED PIPE SIMULATION

For the feed pipe, a peristaltic pump was used to pump the HA slurry through the external 

two-fluid pipe into the spray dryer. The peristaltic pump was set at different rpm and 

measured amount of flow was collected using a graduated cylinder. The resulting velocities 

(Figure 5.19) were used as the initial values for the feed pipe simulation.

Figure 5.19 shows an almost linear relationship between the pump rpm and the flow rate, 

as the property of peristaltic pump works on the positive fixed displacement principle. The 

peristaltic pump use rotating rollers pressed against feed pipe (special flexible tube) to 

create a pressurized flow and this feed pipe is compressed at a number of points in contact 

with the rollers to flow the HA slurry through the feed pipe with each rotating motion
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However, there is a drastic change of flow rate after 30 rpm, because at the lower rpm, 

these the rollers slip over the feed pipe.

The exit velocity ranged for the condition 10 to 100 rpm of peristaltic pump provided the 

inlet feed velocity o f 0.163 to 0.694 m/s or a feed rate 10 to lOOOml/min to the spray dryer 

for drying. Figures D- 6-8 (Appendix-D) show the simulated profiles o f velocity o f the feed 

pipe. Again one pump setting (7.6e-7 m3/s) and its respective flow rate will be described in 

this section. It has been shown that as the feed flow develops inside the feed pipe, 

circulation occurs at the sharp edges o f the feed pipe (Figure 5.20).
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Figure 5.20: The feed pipe velocity profile and vector at 7.6e-7 m3/s flowrate of
peristaltic pump.

The simulation o f feed nozzle was simulated under the same conditions and standard 

convergence criteria using the three different turbulence models (Table 5.7). The RSM 

predicted the highest velocity (Figure 5.21) at the outlet of the feed pipe and this maybe 

due to the fact that the feed nozzle is circular and symmetric in shape which is beneficial 

when modelling with the RSM method, as the convergent part o f the nozzle causes the
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flow to stabilise [150]. The standard K - e  predicted reasonable feed velocities with at less 

expense of computation (Table 5.6) within an acceptable limit.

Table 5.7:- Iterations to Converge the Solution with Standard Criteria for the feed
nozzle.

Number o f Iterations

S K - e R K - e RSM

Feed Nozzle 1082 1545 5026
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5.5 TEMPERATURE PROFILE SIMULATION IN THE SPRAY DRYER

In this section, the temperature and velocity distribution of the hot air inside the drying 

chamber for different conditions (temperature and air velocity) were studied. The three 

different levels o f temperature (398, 421, and 461K) and velocity (12.7, 14.6 and 16.6 m/s) 

were used to analyse the temperature profile and velocity vector inside the spray dryer. The 

temperature levels were selected on the basis o f temperature range available on the spray 

dryer and maintained to gives sufficient evaporation. The highest level chosen was 46IK, 

as Luo [123] reported that in the spray dryer process the 373 to 473K for HA slurry drying, 

neither changed the structure of HA nor caused any grain coarsening. The velocity levels 

were chosen to cover the whole range of hot air velocity available by the spray dryer to find 

out its effect on flow rate in the spray drying o f HA slurry. These models were simulated 

according to the condition of hot air coming in from the top o f the drying chamber. Initially 

the heat transfer coefficient was found to be 0.25 W/m2.K for each model, which was in 

good agreement with the real conditions of the spray dryer [217], Experimentally the spray 

dryer would be left to heat until the outlet and inlet temperatures reach the set temperatures 

(for example inlet temperature 398K and outlet temperature 373K) and then spray drying 

would start, so the simulations were carried out in the same way. The amount of hot air 

defines how much heat enters in the main drying chamber and its profile gives an idea of 

where evaporation occurs inside the dryer. The velocity vector shows the circulation and 

movement o f the hot air, which would both directly affect the quality o f the dried product 

and be responsible for the evaporation of the liquid. For all of these inlet conditions, the

drying chamber was simulated using the three turbulent models, Standard K -€, Realizable 

K-C  and RSM and later these were compared experimentally to predict the best results.

Figure D 9-16 (a) in Appendix-D shows all o f the results simulated for the temperature and 

velocity levels. Figure 5.22 shows an example of one of these results inlet temperature for 

398K at a hot air velocity of 12.7 m/s. Table 5.8 shows the temperature the found at 

different zones (see Figure 5.22 (a)) in the chamber where different velocities were used.
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The temperature profile results for each inlet temperature (398K) and increasing velocity 

(12.7, 14.6 and 16.6m/s), showed that the hot region increased with an increased in

velocity. The temperature profile for the Standard K-E  method at a velocity 12.7m/s,

showed the hot region developed from the inlet point to Zone A axially downwards while 

this region increased to Zone B when the velocity was increased to 14.6m/s; and to 0.7m

(Zone B) with the increase of hot air to 16.6m/s. The Realizable K-C  method for the same

conditions was slower to develop, with the hot region ending at 0 .2m and remaining in 

Zone A upto 16.1m/s. Whereas the RSM method hot region started in Zone B and

increased with higher velocity but not to the same extent as that for the standard K-E

method results. A similar observation was found when the temperature input was increase 

from 398 to 421 and 46IK  for all three models. This shows that the temperature profile is 

dependent on the velocity vector, as the velocity vector carries heat from the source. 

However, along the axis o f the spray dryer, the temperature gradient line is almost same by 

these turbulent models (Figure 23). The temperature o f central axis area is an important as

major drying process o f HA droplet was done there. Figure 5.23 shows RAT-G predict the

temperature gradient along the axis is highest as compared with RSM which has the lowest 

due to narrow temperature distribution.

Figures D 9-16 (b) in Appendix-D show that the velocity vector increased from its inlet

velocity 12.7, 14.6 and 16.6m/s at the constant temperature in each SK-E, RK-C  and RSM

models respectively. It has been shown that the inlet hot air is responsible for the 

distribution the heat inside the spray dryer, which affects the movement o f the spray dried

particles. In the Standard K-E  method, (Figure 5.24) a maximum vector of 23.8 m/s was

attained at the outlet of the spray dryer and had three circulations regions; one at the comer

of the roof and two on side the walls o f the spray dryer. The Realizable K-E  had a

maximum vector 22.2m/s (Figure 5.25) and again three circulations with one more 

dominated at the comer of the spray dryer. Whereas the RSM, had a maximum vector of

24.5 m/s (Figure 5.26) at the outlet, but due to its narrow distribution velocity down the
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centre of the chamber, the three areas o f circulations were located in different regions to 

that found in the Standard K-C and Realizable K-C methods.

The temperature profile produced was quite different in each o f the three turbulent models;

Standard K-C, Realizable K-C and RSM methods. Inspite o f the different turbulent models,

the temperature profile depended on the flow rate of the hot air. At an inlet hot velocity of

16.6 m/s (Figure D-10, 13 and l6 (a) Appendix-D) a maximum wide distribution of 

temperature resulted regardless o f inlet temperature, however, at 12.7 m/s a minimum 

distribution was found. For fast and uniform drying, it is recommended [86,90,123,148], to 

have a uniform temperature profile and more turbulent hot air flow, so on this basis the hot 

air at 16.6 m/s velocity and inlet temperature 46 IK would give the best drying rate o f HA

slurry. The temperature profile using the Realizable K-C method was selected for the

atomisation of the HA slurry as its temperature profile was more uniform, less 

computational expensive and incorporated swirl motion [82,84] as will be shown in 

section 5.6.
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Figure 5.22: Temperature profile by SK -C , R K-C and RSM methods (inlet condition
Temp-398 K, velocity-12.7m/s).
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Figure 5.23: Temperature gradient along the axis of the spray dryer (inlet condition;
temperature 398K and Velocity 12.7m/s).
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Figure 5.24: Velocity vector using the SA -t methods (inlet condition Temp-398 K,
velocity-12.7m/s)
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Figure 5.26: Velocity vector by RSM method (inlet condition Temp-398 K, velocity-
12.7m/s)
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Table 5.8: Mean zone temperatures found for varying hot air velocities.

Hot air 
Velocity

Zones nput Temperatures (K
Setting 398K Setting 421K Setting 461K

12.7
(m/s)

SK-e RAT-e RSM SK-e RK-e RSM SK-e RiST-e RSM
A 378 369 388 380 393 403 421 429 439

B 355 350 365 371 370 383 403 395 417

c 350 344 362 366 361 376 386 386 403

D 345 341 352 359 356 364 379 376 401

14.6
(m/s)

A 384 376 384 387 396 406 424 433 440

B 368 364 369 379 382 394 408 403 421

c 362 354 364 376 371 387 394 388 406

D 357 351 356 371 368 376 380 379 388

16.6
(m/s)

A 386 374 392 399 399 409 434 433 446

B 374 369 372 389 392 394 415 418 423

c 367 359 370 377 384 391 396 403 410

D 362 355 363 374 379 376 388 396 395

Range of standard deviation ± 2.75 to 4.50

___________________________________________________________— ------------------ 140
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5.6 ATOMISATION SIMULATION

In the preliminary test runs o f the spray dryer, it was found by visualization, that at the 30 

rpm speed peristaltic pump and 75% atomising yields a complete spray in this specific case 

of spray dryer. These parameters where fixed to look at the other parameters of spray dryer, 

to determine how the particle size and spray dryer performance affects; like viscosity, 

temperature and hot air flow rate. It was decided to look at this because little because much 

literature is available about the spray formation and the affect o f feed and atomising energy 

[1, 3-6], The boundary conditions chosen for the atomisation simulation of the 25 mPa.s 

viscosity of HA slurry is given in Table 5.9 and HA slurry properties with injection 

properties are given in Appendix-D.

Table 5.9: Boundary conditions used for atomisation simulation (HA slurry of 25
mPa.s).

Hot Air Mass 
flowrate 
(Ke/hr)

Air
Temperature

(K)

Total Spray 
Rate 
(kg/s)

Feed
Temperature

(K)

Feed Density 
(Kg/m3)

Pressure
Outlet
(Pa)

80 461K 4.730 x 10'4 300K 1134.85 101325

Air Radial 
Velocity (m/s)

Air Axial 
Velocity (m/s)

Air Nozzle 
Axial (m/s)

Air Radial 
Velocity (m/s

13.85 m/sec. 8.0 m/sec 54.6 16.6

Chamber Wall 
thickness (m)

Wall Material Wall Heat 
Transfer 

Coeff. 
(W/m2K)

Air 
temperature 
outside wall 

(K)

Injection type Evaporating

species

0.01 AISI-316 Steel 0.25 300K Air blast 
atomizer

h 2o

Spray Model Spray Angle 
(degrees)

Relative 
Velocity of 

Atomisation

Sheet constant Turbulent
Dispersion

Interaction 
B.C(wall and 

droplets)
Droplet 

collision, 
Break-up and 
Wave Models

-22.5 85 12 Stoichastic and 
Random Eddy 

models

Escape*

*Indicates that the particles are lost form the calculation domain the point of impact with 
the wall.

In the atomisation model, the simulation was carried out at 461 K and the hot air velocity 

inlet 16.6 m/s at three levels o f viscosities (25, 50 and 75 mPa.s) at constant atomising 

energy (5.48 m/s inlet velocity pressure and the feed flow rate 4.730 x 10'4) to compute the 

particles drying histories (Figures 5.27-5.29). The graphs represent droplets diameter,
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evaporation and temperature of droplets at different atomisation time such as, 0 .1, 0.2 and

2 seconds. It is clearly shown that at viscosity has a great impact on the atomisation, initial 

particle distribution, and evaporation rate. The atomisation time at 2 seconds and 25, 50 

and 75 mPa.s, HA slurry viscosities, produce minimum droplets diameter o f 2.13, 2.24 and

12.7 |o.m. it is quite understandable, the higher viscosity needs more energy to break down 

the slurry sheet into fine droplets [210]. The model also show the particles hitting the 

conical wall, due to turbulent the hot air flow rate and also due to stoichastic effects during 

the particle trajectories [123,124].

The atomisation model predicted (Figures 5.27- 5.29) the evaporation rate o f HA slurry at 

viscosity of each 25, 50 and 75 mPa.s for a time of 2 seconds to be 1.34 x 10'8, 2.79 x 10‘9 

and 1.7 x 10'9 kg/sec respectively. The rate of evaporation decreased with an increase in 

viscosity because the HA slurry viscosity was produced at the varying contents o f water;
— -1 -5

such as at 75 mPa.s, the HA slurry density was 1180.35 kg/m compare to 1134.85 kg/m 

at 25 mPa.s, thus the at 75 mPa.s slurry had a higher solid content. In this research, only the 

simulation results were presented, a validation was not possible due to lack o f funds to 

purchase high powdered equipment. Each atomisation model o f the three levels of 

viscosities (25, 50 and 50 mPa.s) (Figures 5.27-5.29), showed that the evaporation rate was 

higher initially and then reduced because the drying of the droplets was carried out in two 

stages. First, at the saturated condition; as long as this lasts evaporation can be maintained 

at a constant rate and is known as the first period of drying [1]. When the moisture content 

reaches a critical point, the evaporation rate becomes dependent on the moisture diffusion 

through the dried surface shell and lowered by the evaporation rate and this is called the 

falling rate of or the second period of drying [1,26].

The particles temperature in the atomisation model, at all three levels of viscosities (25, 50 

and 75 mPa.s) increased with time as evaporation rate slowed down and the particles dried 

out (Figures 5.27-29 (c)). For an example in Figure 5.27, temperature o f few particles 

above the boiling point of water before collection. It showed these particles were 

completely dried out and still in contact with the hot air as the temperature can be exceed 

the boiling point depends upon the heat balance between the convective heart transfer rate
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form air and heat absorption due to evaporation [177]. However, for HA dried particles, 

temperature upto 473K could be quite saved as no decomposition o f HA phase was 

reported [129,138].

In this simulation the drying model used was already built-in into the FLUENT software. 

When compare with other models (polynomial secondary drying rate) in the atomisation, it 

was reported that the built-in model in FLUENT possibly over-estimates the drying rate in 

the falling rate period because the droplet is only dried folly i f  the surrounding temperature 

is higher than its the boiling temperature [217].
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Figure 5.27: Particles diameter, evaporation and temperature of HA slurry (Viscosity
25 mPa.s) atomisation at the hot inlet temperature 461K and flowrate 16.6 m/s.
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Figure 5.28: Particles diameter, evaporation and temperature of HA slurry (Viscosity
50 mPa.s) atomisation at the hot inlet temperature 461K and flowrate 16.6 m/s.

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. Murtaza



CHAPTER 5: Results and Discussion

I
1.69e-09 

1.52e-09 

1.35e-09 

1.1Ba-«9

j . Q i e - a a  

a.4B s - lD  

B.776-10 

5.076-10 

3.38e-10 

1.696-1 D 

D.D 0e-»0 D

Evaporation (kg/sec) 
1.73c-09

■
1.56e-09 
1 >39e-Q9
K £ l » - n a

i . 04s -a a  

S.E7e-lO 

6.S4e-lD 
5,20e-U 
3.476-10 

1.736-10 

D.D Dc-'D D 

Evaporation (kg/sec)

I

1.27c-05 

(a) Particle Dia (m)

1.70c-D9 

1 .53e-09 

].36e-D9 
1 . 1 9 « - 0 a  

j.c2&-aa
S.49&-1 D 

6.706-1 0 

5.106-10 

3.4 06-10 

1.70 e- 10 

0.0 Dc-'D D

Particle Temp. (K) (Time 0.1 sec)

I
 4. 14 b-1 02 

4.D2e-*D2 

3.91e-*02 

3.80s-»02 

3.6Ss+02

I
3.57&+D2 

3.45&+02 
3.346-'02 

3.226-'02 

3.116^02 

3.0 Ds-rD2

Particle Temp. (K) (Time 0.2 sec) 

4.14c-»02

1

(b) Evaporation (kg/sec)

4.D2c*D2 

3.91c-* 02 

3.Slls+02 

3.eSs+02

I
3.57&+D2

3.45e+02 

3.34 6*02 

3.226-'02 

3.116+02

3.0 Dc-'D 2
(c) Particle Temp. (K)

(Time 2 sec)

Figure 5.29: Particles diameter, evaporation and temperature of HA slurry (Viscosity
75 mPa.s) atomisation at the hot inlet temperature 461K and flowrate 16.6 m/s.
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5.7 THE EXTERNAL TWO-FLUID NOZZLE COMPARISION

This approach to compare of air pipe o f the external two-fluid nozzle was used because 

experimental results could not be measured in the nozzle, so the simulated output results of 

the air nozzle were applied as input results onto the drying chamber model. In the 

comparison model, initially a half axis symmetrical model was analysed but the results 

did not converged due to sharp quadrilateral cell shapes near the inlet velocity point which 

caused residuals during the start of the simulation and caused errors during the calculations 

in each turbulence model. Many attempts were made to converge the simulations however 

none succeeded. Then a full model was constructed and the same conditions were applied, 

this gave predicted results and a convergent solution, achieved in both steady and unsteady 

states.

The air pipe comparison procedure was applied at the different atomising pressures, where 

the air velocity (outputted from the nozzle model) was measured for a series o f distances 

from the exit point and compared to similar simulated results in a model that contained the 

drying chamber. The velocity experimental results found for the top o f spray dryer were 

compared simultaneously to the results found at the same position in the model. Figure 

5.30 shows the simulation of the velocity vector at different inlet velocities (2.19, 2.95,

3.65, and 4.38 m/s) o f the external two-fluid nozzle by according to the standard K -£

method. The results show that the maximum velocity for the 2.19, 2.95, 3.65, and 4.38 m/s 

inlet velocities were 33.3, 415 and 48.6 m/s respectively found at nozzle tip. These 

velocities decreased as the air flowed from the bottom to the top o f the chamber. At 2.19 

m/s inlet velocity, the air only travelled approximately one third o f the way up the chamber, 

where as the remaining atomising pressures forced the air up into the final third of the 

chamber, the region where heating occurs. This means these atomising pressures give 

sufficient kinetic energy to the feed particles to travel into the hot region o f the spray dryer.

Figure 5.31 shows the velocity vectors at 5.48 m/s inlet velocity o f the nozzle using the 

three turbulence models; Standard K-C, Realizable K-C, and RSM methods. The aim here 

was to identify which model provided the best results without compromising on
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computational time. All of these simulations were carried out in unsteady states for a 

constant time o f 2 minutes (Table. 10).

It was observed that the Standard K-E  method, provided a velocity profile much closer to

natural phenomena as compare to the Realizable K-E  and RSM methods. The Realizable

K-E,  and RSM methods a velocity vectors diverted away from the axis up to 2 minutes, but 

for longer time durations (20 minutes) the velocity vector showed much similar results that 

of the Standard K-E,  velocity profile (Figure 5.32). Therefore it was obvious that these

turbulence methods; the Realizable K-E,  and RSM have more parameters to calculate

hence the results were much more sensitive. Again, one can say that the Standard K-E

method gave fast and more accepted results in the terms o f velocity vector, even if the 

model misses other important fluid parameters like shear, skin stress and wall function

which can be predicted by more rigorous turbulence models (R K-E  and RSM).

Table 5.10:- Iterations to Converge the Solution with Standard Criteria for the air
nozzle.

Number o f Iterations

s k - e R K - e RSM

Feed Nozzle 3412 4954 15456
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Figure 5.33: Velocity Profile at the Top of Spray Dryer.

Figure 5.33 shows the measured (experimental data) and simulated velocity profile at the 

top o f spray dryer chamber. The measured profile gave a smooth profile as compared to the 

simulated. It can be clearly seen that the velocity profile were not the same as those

-----------------------------------------------------------------------------------------------t------------------ 152
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measured, however, the maximum velocity at the centre was the same for all the conditions 

of atomising pressure. The profile changed due to the local turbulence factors, as the 

models predicted the high Re to low Re number from the inlet point o f  velocity (exit point 

of nozzle) to the top of the spray dryer. Figure 5.33 (d) shows the three turbulence model

and measured velocity profile at 5.48 m/s inlet velocity. The Standard K-E  is quite similar

to that of the measured pattern o f velocity but Realizable K-E  and RSM produce quite

different profiles at the top o f the spray dryer as the nozzle air velocity je t drifts towards 

one side of spray dryer wall (Figure 5.31).

Figure 3.34 shows the comparison between simulated and measured velocity from exit of 

air nozzle pipe to open atmosphere along the axis o f it. It shows both simulated and 

measured air velocity is the same falling trend. Distance from the exit point of the nozzle to 

0.3 m, the falling trend is very close to each other, however after 0.3m from the exit tip of 

the nozzle, the gap is wider that due to local disturbance [183]. In Figure 3.34 (d) shows

the Standard K-E  is quite similar to that of the measured pattern o f velocity but Realizable

K-C and RSM produce quite different profiles after 0.3m from the exit o f air pipe nozzle 

the nozzle air velocity jet drifts towards one side o f spray dryer wall.

The errors found in the results may be due to some leakages in the system when the

experimental equipment was used and to limitations in the Relizaible K-E  model. The

model shows that the feed and air combination velocity becomes steady with time. 

Differences between the profile of the model results and the experimental results may be 

associated with external disturbances not simulated in the model. It must be noted that the 

simulated results compared here to the experimental results are a combination o f three 

models (air, feed and chamber model). Hence inaccuracies would build up in each model; 

therefore the final results are credible. The model however can demonstrate the spray 

profile leading upward (due to kinetic energy) towards the roof o f the dryer and circulates 

towards the side walls at the top of spray dryer.
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Figure 5.34: Velocity profile along the axis of air nozzle pipe.

A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. Murtaza



CHAPTER 5: Results and Discussion

5.8 TEMPERATURE PROFILE COMPARISION

Figures D9-16 in Appendix-D shows the temperature results measured experimentally at 

different points in the chamber (Figure 3.12). Figure 5.35 shows the results found for an 

input temperature and velocity of 398K and 12.7 m/s respectively. Results (a) to (e) show 

the temperatures found going from the top of the chamber towards the two nozzle 

assembly, at for different positions in the chamber as described in Figure 3.12. The results 

(experimentally and simulated) all decreased from the top of the chamber towards the 

nozzle.

0.1m

0.1m

H  3 8 2
□  3 7 7
□  3 7 3 0.1m

□  3 6 9
□  3 6 4

0.1m

□  3 6 0
□  3 5 6
□  3 5 2

0.1m

0.1m

3 9 8

3 8 6 0.1m

Figure 5.35: Temperature profile measured experimentally (inlet condition tem-398
K, velocity-12.7m/s).

The Measurement results and the simulation results did not differ by a major amount 

(maximum difference was approximately 20%). The major difference in temperature 

profiles was found particularly at the inlet point of the hot air. However, at the middle part
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of drying chamber each model produced results close in range to that found experimentally 

(Figure 5.37). The measured values at the top of spray dryer were much higher in all cases 

as hot air comes down from the top. But at the middle section of the drying chamber, the 

measured values were very close to the simulations values. Many researcher have [157-

161] shown the temperature profile to be in good agreement with the Standard K-E

method, but this method does not simulate swirl movement which is common in the spray 

drying processes to disperse the feed spray more uniformly in contact with the hot air [144, 

150,153]. To incorporate the swirl inside the spray dryer, one has only two options; the

Realizable K-E  and RSM method, however the Realizable K-E  method provides more

promising results [177]. Though the Reynolds stress model (RSM) is the most descriptive 

turbulence model, the reliability of RSM predictions is still limited by closure assumptions 

(modelling of the pressure-strain and dissipation-rate) employed by the model [185,190], 

Thus why the RSM may not always yield results that are clearly superior to the Standard

K-E  and Realizable K-E  models in all classes o f flows, to warrant the additional

computational expense.

Figure 5.22 shows that the Standard K-E  and Realizable K-E  produced results are close to

that found from the experimental data. The Realizable K-E  method simply combines the

Boussinesq relationship and an eddy viscosity definition to obtain the normal Reynolds 

stress in an incompressible strained mean flow, and its eliminates the few deficiency that

exist in the Standard K-E  method like the prediction of the spreading rate for

axisymmetric model [181].
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Figure 5.37: Comparison of temperature gradient along the axis inside the spray 
dryer (inlet condition; temperature 398K and Velocity 12.7m/s).
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5.9 ATOMISATION COMPARISION

Figure 5.38 shows the comparison o f mean particle size o f spray dried HA powder with the 

simulation of atomisation at three different viscosities (25, 50 and 75 mPa) and same spray 

dryer drying conditions (hot inlet air temperature 461K and flow rate 16.6 m/s).Both the 

results show mean particle size increase with the increase of HA slurry however simulated 

atomisation mean particle size is higher than experiment value at all three levels of HA 

slurry. It shows the simulated mean particle size is over estimated with the experimental 

data. Difference in these two results may be modelling assumption o f droplet drying, spray 

drying time o f simulation (a short duration due to computer limitation) and measurement of 

spray dried o f HA powder in master-size analyser. The atomisation model assumed all 

particles were spherical which was not the case in the experiments as monographs showed 

the HA powder was the mixture of solid and doughnut shape. The doughnut shape powder 

may collapse in the preparation of the sample for particle size analyser. In the droplet 

drying model, the secondary drying or falling drying rate estimated the heat and mass 

transfer due to connective boiling o f the discrete phase droplet when the temperature of 

droplet was reached the boiling point as long as the mass of the droplet exceeded the non­

volatile fraction of water in the HA powder. This model assumption gave fast evaporation 

and drying o f all moisture form the HA droplet that may cause earlier drying and gave the 

higher mean particle size [217]. However, with these limitations, the atomisation can give 

an estimation o f mean particle size o f spray drying process.
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Figure 5.38: Comparison of mean particle size of simulated and experimental data of
spray dried HA powder.
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In Figure 5.28 (b), the particles reach the top of the roof o f the spray dryer at the time 2 

seconds. If  these particles were not dried out completely, then there would be a chance that 

deposition would occur to deposit on the roof. When this simulation was compared with 

the experiment under the same conditions (Figure 5.39) particles were found to have 

deposited onto the roof o f the spray dryer near the hot inlet air entrance because the 

particles had not dried out completely before hitting the roof.

Figure 5.39: The roof of the spray dryer with deposition of HA slurry after spray 

drying of HA slurry (inlet temp 461K, flow rate 16.6 m/s).
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6

Conclusions and Recommendations

6.1 CONCLUSIONS

In this study, a critical investigation into the spray-drying o f Hydroxyapatite powder for 

thermal spray applications was carried out. The investigation was divided into two parts, 

statistical analysis for the analysis of the spray drying process and the CFD modelling of 

the spray dryer of HA powder. An optimisation of spray drying process was done using a 

statistical design of experiments. In the modelling procedure, the spray dryer was divided 

into three parts; nozzle, drying chamber and atomisation, and these results were compared 

using experimental data. Good agreement was found between the model and the 

experimental results. The conclusions resulting from the investigation are summarised as 

follows:

♦ In the preliminary test runs of the spray dryer, it was found by visualization that 

when the peristaltic pump and the air atomisation were set at 30 rpm (4.73 xlO '4 

kg/s) and 75% air atomisation pressure (5.48 m/s inlet velocity o f the air pipe), this 

provided a fully developed spray with minimum deposition on the wall of spray 

dryer.

♦ In the statistical experiment analysis, at the constant atomisation energy the drying 

mean chamber particle size depends only upon its feed viscosity. The mean particle 

size increases directly with an increase in the viscosity o f HA slurry.
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♦ The cyclone particle size showed that both the temperature and viscosity have a 

positive significant effect on the HA particle size and also the interaction between 

viscosity and temperature has a positive influence on the particle size.

♦ The high viscosity reduces the effect of particle wall deposition within the spray 

dryer.

♦ The statistical model did not provide any strong significant effects on thermal 

efficiency, however, the significant inlet temperature would effect thermal efficiency 

as it is a function of the inlet and outlet temperatures o f the spray dryer.

♦ In the spray drying o f HA slurry experiments, a large range o f mean particle size (6.8 

|im to 38.7 jim) of HA powder was obtained which predominately depends upon the 

feed viscosity at the constant atomization energy and all o f the other factors had little 

significant effect, like temperature and flow rate of the hot inlet air.

♦ The spray dried HA powder showed a quite narrow particle size distribution. At low 

viscosity (25 and 50 mPa.s) an unimodal distribution at all three temperatures of 

drying was observed, which is an ideal condition for the flowablity of the thermal 

spray powder. However when the viscosity was increased from 50 to 75 mPa.s, the 

particle size distribution attained was a more bimodal distribution with an increase in 

temperature (46IK).

♦ The spray drying HA powder was highly porous, however sintering of the HA 

powder is still compulsory to improve the crystallinity up to 99% for medical 

applications.

♦ The spray dried HA powder (viscosity o f HA slurry; 25, 50 and 75 mPa.s and inlet 

temperatures 398, 421 and 461K) SEM micrographs showed that the shape of the 

entire set samples of powder were spherical. In general, spherical powders have 

better rheological properties than irregular powder and thus produce better coatings 

for hip implants.
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♦ The resulting spray dried HA powder, showed two main morphological shapes, a 

solid and a doughnut sphere. The shape of dried powder depended upon the viscosity 

o f HA slurry (solid concentration). It was also observed on a number o f particles the 

occurrence of blow holes, spikes, cratering and shrivelling that would be explain by 

their drying history.

♦ The Air pipe of the external-two fluid nozzle was modelled using the Standard K-e, 
Realizable K-e and RSM using FLUENT software. It was found that all three models 

predicted almost the same results. However, computational time varied considerably 

(100, 140.74 and 464.50 % iterations) for the SK-e, R K-e and RSM methods 

respectively. In the validation, it was observed that the Standard K-e method, 

provided a velocity profile much closer to the natural phenomena when compared to 

the Realizable K-e and RSM methods. For the Air pipe modelling (without swirl), the 

Standard K-e produced fast and reasonably accurate exit velocity prediction, within 

±15% mean velocity o f those found from the experimental results.

♦ The feed pipe of the external-two fluid nozzle was modelled under the same 

conditions using the turbulence models (Standard K-e, Realizable K-e and RSM); the 

best result was again predicted by the Standard K-e method which was in good 

agreement (17%) with experimental data. However, the RSM predicted the highest 

velocity at the outlet o f the feed pipe. The simulated flow rate using all three 

turbulence models was lower than that measured, because in the model, the 

peristaltic pump flow rate pulsates which was not accounted in the models.

♦ In the context of the spray dryer, this external two-fluid nozzle analysis enhanced 

this research in two ways; it gives an insight of the complexity o f the air nozzle, such 

as mimicking the inside in the term of fluid mechanics. The air nozzle pipe has 

shown clearly that the atomising air is well-under the critical limits of throat 

conditions for the nozzle (less than 0.3 Mach) therefore can be used for higher 

atomising pressures to produce higher air velocities at the exit o f nozzle. This system 

could also provide higher feed rates to produce the desired particle sizes. From a
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scale up principle, this CFD analysis can be applied to any size o f spray dryer, or in 

the analysis of new designs. This procedure o f analysis would save time and money 

in the analysis o f industrial spray dryer units.

♦ During the spray dryer temperature profile modelling, the simulation and 

measurement results did not differ by a major amount (maximum difference was 

approximately 9.0%). The Standard K-e  and Realizable K-e  produced results closer 

to that o f the experimental data. To incorporate the swirl inside the spray dryer, the 

Realizable K-e method, provided more promising results than the RSM method.

♦ The atomisation model allows the user to gain an understanding into the complex 

nature of the spray drying techniques. The evaporation rate o f the HA slurry at 

different viscosities, showed with time that the evaporation rate was higher at the 

initial stage (1.34 x 10 '9 kg/s) and then reduced (1.44 x 10 ' 10 kg/s at 25mPa.s and a 

drying temperature o f 398K) because the drying of the droplets occurs out in two 

stages; saturated drying and so called falling rate.

♦ The atomisation model showed that the particles temperature raised to and remains 

at their boiling point because the temperature exceeded the boiling point due to the 

heat balance of the convective heat transfer rate from the air and heat absorption due 

to evaporation.

♦ In the atomisation model, the built-in model in FLUENT possibly over-estimates the 

drying rate in the falling rate period because the droplet was dried fully only if the 

surrounding temperature was higher than its boiling point.

♦ Knowledge of the aforementioned mechanisms, will aid researchers and industrialists 

to select ideal input parameters to produce HA particles with the desired size and 

morphologies. This will not only benefit thermal spray powders but also provide 

more efficiency during the process, without the associated loss o f produced material 

currently been experienced in industry.
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6.2 RECOMMENDATIONS FOR FUTURE WORK

♦ The spray dryer modelling could be carried out on the three dimensional scale with 

the help of higher speed or parallel computing to compare these results, and could be 

applied to the drying of other thermal spray powders for example tungsten carbide 

cobalt (WC-Co) which uses “wax” fluid as a binder.

♦ The model could be used with other spray dry techniques such as ultrasonic 

atomisation to enhance the design of the spray dryer to provide smaller nano sized 

particles, an area of extreme interest in the materials engineering world today.

♦ The atomisation model could be validated using proper arrangement o f equipment in 

the spray dryer such as; Interferometric Laser Imaging Technique (ILIDS) which 

provides instantaneous spatial distribution o f the droplets and the Global Rainbow 

Thermometry Technique (GRT) for measuring directly averaged temperature and 

average droplet size o f spray. These new techniques ILIDS and GRT would give a 

detail analysis and insight of the atomisation in spray dryers, by identifying the exact 

phenomena of breakdown of the liquid sheet into droplets coming out from the 

nozzle in spray dryers together with thermal behaviour of droplets when using 

modelling techniques, and are quite useful to validate the simulation o f droplets size, 

temperature and velocity inside the spray dryer.

♦ In this research, FLUENT was used to build the drying model, however, different 

ceramic drying models could be used to predict the particle thermal histories and 

then be compared with experimental results.

♦ The rejected HA powder from thermal spray powder size range ( < 20 [im or > 58 

[im] can be investigated to determine the HA powder can be recycled and use for 

other methods of coating hip implants (such as electro-chemical coating) or bio­

applications to reduce the amount of waste achieved from the process.
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A 1 CHEMICAL AND CRYSTALLOGRAPHIC OF CA-P POWDER

US Food and Drug Administration (FDA) requires tlie following test data to be reported 

when using or proposing HA products:

A l.l  Elemental analysis

An elemental analysis for the powder noting any impurities including, but not limited to,

50 ppm heavy metals, as identified in ASTM FI 185-03 [44] and ISO 13779-3 [45] is 

required. The limits for specific trace elements are outlined in the following table.

Table A -l: Limit of allowable trace elements in HA product [49].

Elements Maximum limit (mg/kg)

Arsenic 3

Cadmium 5

Mercury 5

Lead 30

Limit of allowable Trace Elements [49] based on the assessment o f the risk posed by other 

chemical impurities is carried out in accordance with BS ISO 10993-17 [50]

A1.2 Calcium to Phosphorous (Ca/P) Ratio

The Ca/P ratios in atomic percent for the powder should be reported. In order to account 

for the deviation that may occur form the ideal sotichiometric ratio; a sufficient number of 

samples are required for analysis in order to produce a statistically meaningful mean and 

variance (95%) confidence interval) [46]. The ideal stoichiometric ratio for HA is 1.667 

according to its chemical formula Caio(PO 4 ) 6  (OH) 2 [43,48], However, the acceptable 

range of calcium and phosphorous ratio, Ca/P shall have a value o f 1.65 < Ca/P > 1.82 for 

the atomic ratio in accordance to ISO 13779-1:2000 [49]. This must be determined using 

the specifications described in ISO 13779-3:2000 [48].

____________________________________________________________________________ 183
A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powder for Thermal Spray Applications: Q. Murtaza



Appendix-A

A 1.3 X-ray Diffraction (XRD)

Individually superimposed spectra o f the formed HA powder over the standard given for 

the relevant calcium phosphate compound (such as, Hydroxypapatite, JCPDS 9-3348) in 

the powder diffraction files of the JCPDS (joint committee on powder diffraction 

standards) must be determined. A minimum of 95 % crystallinit6y and purity is required 

for the HA powder as in accordance with ISO 13779-1 [49] and ASTM F185-03 [47]. The 

quantitative and qualitative determination of the content o f the HA phase and of other 

crystalline phases may be determined in accordance with ISO 13779-3 [48]

A 1.4 Infrared spectrometry (IR)

The IR spectra of the HA powder must also be indicated. Spectra must be plotted as 

percent transmittance versus wave number [46]. The characteristic absorption bands for 

HA are as follows [46] P 0 4 3': 570cm'1, 962 cm '1, 1050 cm"1 and OH-: 630 cm '1, 3540 

cm ' 1

A 1.5 Solubility of Ca/P compound

A complete report regarding the solubility testing is required and should be conducted in a 

physiologically similar solution to tris-HCL buffered solution at 37°C, tested at a pH of 3.0 

and 7.3 [46], Room temperature and 100°C measurements are optional. Alteration in pH 

must also be recorder with the solubility product of HA being based upon the normal 

stoichiometric formula Caio(PO 4)6  (OH) 2 [49]
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Table A.2: Properties of HA and Plasma spray parameter for coating [48,49,133]

Physical
properties

Metric units Mechanical
properties

Metric units

Density
3.00-3.219 g/cc

Ultimate Tensile 
Strengths

38-48 MPa

Porosity 0.1-3% Modulus o f Elasticity 7-13 GPa

Lattice parameters 
a lattice constant 
b lattice constant

9.432-0.9841 A° 
6.881-06884 A°

Flexural Strength 100-120 MPa

Crystallinity index 33-37 Compressive Strength 350-450 MPa

Crystallite Size 0.025 x 0.03 (nm) Fracture Toughness <1.0 MPa.m1/z

Ignition Products HA + CaO Poisson’s Ratio 0.27

Plasma spray parameters used for depositing HA onto orthopaedic implant

Coating Power
(KW)

Currrent
(A)

Distance
(mm)

W ork gas 
Rate 

(L/min)

Carrier gas 
Rate 

(L/min)

Powder 
feed rate 
(g/min)

HA 30 500 80-90 Ar: 50
h 2:3

Ar: 3 20

Properties of Ha applied onto r1-Alloy substrates

Surface Average Roughness (|im) Initial Powder size (|im)

HA coating on Ti substrate 4.96 ± .043 3 0 -1 6 0
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Figure B .l: Air nozzle pipe (Niro Production Minor).
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Figure B.2: Feed nozzle pipe (Niro Production Minor).
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Figure B.3 Spray dryer (Niro Production Minor).
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Figure B.4: Atomisation condition of the spray dryer.
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Apnendix-B

Figure B.5i K factor as a function of product and gas ratio.
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B .l INLET HOT AIR FLOW RATE OF SPRAY DRYER

B.1.1 A sample calculation for open condition:

Gauge reading 100 mm of H20 ;

The air flow rate PGR is given by equation 3.5

PGR = k * D 2 * -Jp*Ap  (Kg/hr)------------------------------ EquationB. 1

The Cyclone diameter D= 0.14m 

P  101325
Gas density at 100 °C = p  = -----= --------------  Kg/m3 ------------Equation B.2

R T  287*373

And, K read out K= 406 (at 25 % product/ gas ratio)

So, PGR = (0.19068) (406)

PGR = 80 Kg/hr

Therefore, this flow rate is the same in the spray dryer as the inlet air flow rate with the 

correction o f air density of inlet temperature.

Inlet Outer diameter = 0.01m and inner diameter = 0.08m 

Inlet air velocity (m/sec) as axis symmetric V =1/2 p  ( 7r(0.052 -  0.042)) /  m (m/sec) 

Where V is inlet velocity, m air mass flow rate Kg/sec and p  is the density (kg/m3 at a

given temperature 

V = 16.6 m/sec.

This inlet air enter at 61.18° with the vertical axis o f spray dryer 

So the component of inlet hot air is as follows 

Horizontal component 16.6 Cos 61.18° = 8.0 m/sec 

Vertical component 16.6 Sin 61.18° = 13.85 m/sec.
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Table B l: Inlet air flow rate of the spray dryer.

S.No. Different 

point of 

control 

knob of 

air flow 

rate

Manometer 

Reading 

across the 

Cyclone 

(mm of 

H20 )

Air flow 

rate of 

spray 

dryer 

(kg/hr)

Inlet 

Velocity 

of the 

spray 

dryer 

(m/s)

Horizontal

component

(m/s)

Vertical

component

(m/s)

1 Open

condition

100 80 16.6 8.0 13.86

2 At 4 points 

knob

90 75 14.7 7.35 12.73

3 At 6 points 

knob

75 65 12.7 10.99 6.35
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B.2 AIR PIPE NOZZLE

Percentage of calibrated scale air at 100 % is 5 Nm3/hr

Figure B,6: Initial air velocity of air pipe nozzle at calibrated scale.

A sample calculation

At 100 % of calibrated scale is 5 (Normal condition m3/hr) at 1 bar.

This atomising air initially flows thorough 4 air pipes:

Q=AV; 4x ^ 7-2=5/ 3600 m3/sec ----------------------Equation B.3

The radius o f the air pipe, r = .0055 m 

Therefore; V = 7.307 m/sec
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B.3 FEED PIPE NOZZLE

Figure B.7: Calibration graph between HA feed slurry viscosity and density.

Figure B.8: Calibration graph between HA feed slurry flowrate and rpm of peristaltic

pump.
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A Sample Calculation: 

Flow rate at 25 mPa.s HA slurry feed at 30 rpm of pump:

As the spray drying simulation is axis -  symmetric

At 25 mPa the flow rate at 30 rpm of peristaltic pump:

Flow rate o f HA slurry (kg/sec) = l/2pQ--------- Equation B.4

p is the density of HA slurry at a 25 mPa Viscosity from the graph 2 = 1134.85 kg/m3:

Q is the volume flow rate o f HA slurry at the given rpm o f the pump, for 30 rpm is 

50ml/min = 8.33 x 10' 6 form the graph 3

Therefore; Flow rate o f HA slurry feed = 1/2 x 8.33 x 10'6x 1134.85 = 4.73 x 10'4 Kg/sec

Table B.2: Properties of HA slurry; viscosity, density and flowrate.

S.No Viscosity of HA slurry Density Flowrate

(mPa.s) (Kg/m3) (kg/sec) x 10"4

1 25 1134.85 4.730

2 50 1158.66 4.833

3 75 1180.35 4.918
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B.4 PREPARATION OF HA SLURRY INHOUSE

Figure B.9: Preparation of HA slurry in-house for the spray drying.

The route taken in this research to produce stoichiometric HA slurry for spray drying:

1 An analytical weighing scale was used to accurately weigh CaO powder. Reagent 

grade 1.42 mol (79.55g) CaO (JT Baker, Analysed , 100% pure) powder were added to 

500ml of distilled water in a 100 ml -  enclosed beaker and vigorously stirred Heidolph 

stirrer at 1000 rpm at the reaction temperature for 24 hrs to react and from a suspension of 

Ca in an access o f deionised water. The beakers were covered in order to avoid possible 

contamination via contact with atmospheric conditions. The temperature of the reaction (20 

°C) was maintained by thermostat- controlled water bath.
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2 An analytical weighing scale was also used to accurately weigh the required 

quantity of orthophosphoric acid 97.32 g of 85% H3PO4 (JT baker, Analysed) used added 

to the Ca(OH)2 solution at an addition rate of 1.5 ml/min using a peristaltic pump. During 

the course o f the acid addition, the pH of solution was monitored via handheld pH meter 

(HI9183, Hanna Instrument, Inc.) with an accuracy o f 0.2. The reactants were stirred for a 

further 24 hrs to aid in the maturation stage, under continuous stirring conditions at 

lOOOrpm, held at the respective reaction temperature o f 20 C, 0.28 mol (9.94g) NII4OH, 

was added to slurry after 24 hrs ripening period to stabilise the pH o f the super-saturated 

solution to above9 and then ready to spray drying.

B 4.1 Physical Analysis of HA

Table B.3: Physical properties of HA Powder.

Phase Present in 
HA

Crystallinity (%) Purity (%) Density (kg/m3)

HA, TTCP, aTCP, 
PTCP

95.4876 90.444 Chamber
dried

Cyclone
dried

2.9128 3.2331

HA

=>

f

HA

£  HA HA

Az/t'A.nWui jmJv

TTCP 
TTCP 1U 1

vjrAoli to

HA

HA

w
HA

TTCP

F in a l Sintered HA

HA

HA

- » v1*. / I

Spray Dried HA

HA
11;

20 21 22 2 3 24 2 5 2 6 27 28 29 30 31 32 34 35 36 37 38 39 4C(
2D'

Figure B.10: HA XRD spectra and final sintered HA XRD spectra.
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c . l  GENERAL TRANSPORT EUATION FOR MASS, MOMENTUM AND 

ENERGY

The equations used in the modelling of spray dryer in the FLUENT software are given 

below [177-180,183,190,192,200-203,207-214].

Where, ^ is a property per unit mass, p  density, V control volume, A surface area, and V 

gradient o f <j> , T diffusion coefficient </>, and surface of (j) per unit volume.

These partial differential equations are discretized into a system of algebraic equations by 

finite volume method (FVM). These algebraic equations are then solved numerically to 

give a solution to the problem.

C.1.1 MASS CONSERVATION EQUATION

The general equation for conservation of mass, or continuity equation is as follows:

This general form of the mass conservation equation is valid for incompressible as well as 

compressible flows. The source Sm is the mass added to the continuous phase from the 

dispersed second phase (for an example in this research due to vaporisation of liquid 

droplets) and any other defined sources.

Equation C.l

Unsteady convection diffusion generation

Equation C.2
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C.1.2 MOMENTUM CONSERVATION EQUATION 

The general Conservation o f momentum is given by:

rs _

— (yov) + V . (p vv )  = -V p  + V .(t) + pg + F ------------------- Equation C.3
dt

where p  is the static pressure, t  is the stress tensor , and p g  and F  are the gravitational 

body force and external body forces (that arise from the interaction with the dispersed 

phase), respectively.

The stress tensor t can be described by:

r  = //[(V v + V v T) - y  V .v/--------------------------------- Equation C.4

2 _
where // is the molecular viscosity, I  is the unit tensor, and the second term ( —V.v/ ) on 

the right hand side is the effect of volume dilation.

C.1.3 ENERGY EQUATION 

General energy equation is as follows;

^ =
— (pE ) + A.(v(pE + p )) = v.{keffV T  ~ 'Y Jh jJ , + + S h —Equation C.5
dt j

where keff is the effective conductivity defined according to the turbulence model and 

J  j is the diffusion flux of species j . The first three terms on the right-hand side of

Equation C.5 resent energy transfer due to conduction, species diffusion, and viscous 

dissipation, respectively. S h includes the heat o f chemical reaction, and any other 

volumetric heat sources is defined.

Where,

2 T
E  -  h -  — + — , h , =  fC - d t ----------------------- Equation C .6

o 2y  Tref

---------------------------------------------------------------- — ------------  199
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Where, p  is the given pressure, p  is the density o f gas, V  is the velocity, Cp is heat at 

the constant pressure, and sensible enthalpyh is defined for ideal gases. Sensible 

enthalpy h is defined for ideal gases as h -  ^  Yjhj , and Fyis the mass fraction o f species
j

j  and TreJ is 298.15 K.

C.2 DISCRETISATION (FVM)

Discretisation of the fluid flow governing equations can be illustrated simply by 

considering the steady-state conservation equation for transport of a scalar quantity^. This 

can be written in integral form for an arbitrary control volume V as follows:

p<j>v.dA = + £ S ^ d V ------------------------------------------- Equation C.7

Where,

p Density

V Velocity Vector

dA Surface area vector

Diffusion coefficient (j)

V<j> Gradient of (f)

Surface of <f> per unit volume

C.3 THE STANDARD k - s M ODEL

The turbulence kinetic energy k  and its rate of dissipation e  are obtained from the 

following transport equations:

The general transport equations for the Standard k - s  model are as follow:

9 ,  n  d d
— (/?£) + —  (pkui) = —  at OX; OX:

dk
dx, +  G K + G b Ps + SK -Equation C .8

and
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5 d d
— (ps)  + — (peui) = —
dt ox, ox.

ds
dxj

+ C „ |  ■+ (Gk -  C„Gb) -  C2,p ^ ~  + S, ■

Equation C.9

where,

Gk represents the generation of turbulence kinetic energy due to the mean velocity 

gradients, Gb is the generation of turbulence kinetic energy due to buoyancy. YM 

represents the contribution o f the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate. Cu , C2e and C3e . <j k and <re are the turbulent Prandtl numbers for

k  a n d f , respectively. SK a n d ^  are defined source terms.

Modelling the Turbulent Viscosity:

The turbulent (or eddy) viscosity, //, is computed by combining k  and s  as follows:

K 2n = pC  -----------------------------------------------Equation C.10
s

Where, Cfl is a constant. Model Constants are Cle, C2e, C . <rK and <j e have the following 

default values:

CXE =1.44, C2e= 1.92, CM = 0 .09 , a K =1 .0 , and cr£ =1.3

C.4 The Realizable k - e  Model

The modelled transport equations for & and s  in the realizable k - s  model are as follow:

8 d d
*r<P*0  + — ( p K u )  = —

dt dxj dxj
dK

f  \  
H + —

V a k J dx,
+ Gk +Gb -  p s  - Y m + SK-------Equation C. 11

and
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In these equations, GK represents the generation o f turbulence kinetic energy due to the 

mean velocity gradients. Gb is the generation of turbulence kinetic energy due to buoyancy, 

^ rep resen ts  the contribution of the fluctuating dilatation in compressible turbulence to 

the overall dissipation rate. C2 and ClE are constants. a K and cre are the turbulent Prandtl 

numbers for k  and s ,  respectively. SK and Se are defined source terms. Note that the 

k equation is the same as that in the Standard k - s  model, except for the model constants. 

However, the form of the s  equation is quite different from those in the 

Standard k - s  models.

Modelling the Turbulent Viscosity

As in The Standard k - s  models, the eddy viscosity is computed from:

Mt=pCj  —  s
■Equation C.13

K U
Equation C.14

A  + A s

Where,

•Equation C.15

and

Equation C.16
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where Cly is the mean rate-of-rotation tensor viewed in a rotating reference frame with the 

angular velocity wK. The model constants = 4.04, As = ~J6 cos (/) .

Where,

<f> = - c o s \ 4 ( W ) ,  W  = S‘JSjL Ski, ~s = JSySg , S„ = - ( ^ + ^ L ) -----Equation C.17
3 5 3 V u J u 2 cbc, 5*,.

C is a function of the mean strain and rotation rates, the angular velocity o f the system

rotation, and the turbulence fields ( k  and s  ).

The model constants are;

Cle =1.44, C2 =1.9, crk = 1 .0 , cre = 1.2 

C.5 THE REYNOLDS STRESS TRANSPORT M ODEL

The exact transport equations for the transport o f the Reynolds stresses, pu^uj , may be 

written as follows:

Local Time Derivative + Convection = - Turbulent Diffusion + Molecular Diffusion - 

Stress Production - Buoyancy Production + Pressure Strain - Dissipation - Production by 

Rotation + Source Terms

— ( p u p j )  + — (pukupj)  = - — (puiuJuk) + p (SkJui +SikuJ ) + — [/J— (uiuj ] -

— r du. —  5m. ~rz ~r: du, du, du, du,
p(M,uk + ujuj ~ )  - p/3(giUjO + g  ufif) + p ( —  + — L) - 2/j  —  — -

oxk dxk oXj ox t oxk oxk

2pQk(Ujum£ikm +uiumsjkm) + Ssoum................................................................. Equation C.18

Where,

p  is density of fluid, u ' , u 'u ' k are velocity fluctuation indirection x ' , x '}, x ’k respectively, 

k  is kinetic energy, e is a dissipation tensor , /? is thermal expansion, // is viscosity, g is 

gravity, Q is the rotation and 0  is an angle of strain.
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C .6 DISCRETE PHASE M ODEL

The general equations for setting up and solving an unsteady discrete-phase problem are as 

follows:

C.6.1 EQUATIONS OF MOTION FOR PARTICLES

The trajectory o f a discrete phase particle (or droplet or bubble) by integrating the force 

balance on the particle, which can be written in a Lagrangian reference frame. This force 

balance equates the particle inertia with the forces acting on the particle, and can be written 

(for the x direction in Cartesian coordinates) as:

dup . gx(PP ~ P) t-, n  r 1 1 n— — - F d (u ~  u  ) + ------- ------------------------------------------------b Fx -Equation C.19
dt p p

Where, the drag force per unit particle mass is FD( u - u p) and

Fd = ------------------ ------ -------------Equation C.20
P A  24

Where, u is the fluid phase velocity, u is the particle velocity, // is the molecular viscosity 

of the fluid, p  is the fluid density, p p is the density o f the particle, and d p is the particle 

diameter. CD is discharge coefficient and Re is the relative Reynolds number, which is 

defined as

p d .  \uB -u \
Re = — E L Z --------------------------------------------------------- i -------- Equation C.21

M

74 h Re
CD = —  (1 + \  Re*2) + ---------- --------- Equation C.22

Re b4 + Re

Where,

exp(2.3288 -  6.458 I<j> + 2.4486^2)

b2 0.0964 + 0.5565^

b
3

exp(4.905 -13.8944^)2 -10 .2599^3)

exp(l .4681 + 12.2584^ -  20.7322^ + 15.8855^3)
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The shape factor, <f>, is defined as

■EquaitonC.23

Where s is the surface area of a sphere having the same volume as tat o f the particle, and 

S  is the actual surface area of the particle.

For sub-micron particles, a form of Stokes' Drag law is available. In this case, FD is defined

The factor Cc is the Cunningham correction to Stokes' Drag law, which it can be compute 

from:

Where X is the molecular mean free path.

C.6.2 THERMOPHORETIC FORCE

Small particles suspended in a gas that has a temperature gradient experience a force in the 

direction opposite to that o f the gradient. This phenomenon is known as thermophoresis. 

FLUENT includes a thermophoretic force on particles in the additional force term, Fx , in 

Equation C.26:

1 rp

Fx = - D t .............................. ....................... ..........Equation C.26
mpT dx

where DT is the thermophoretic coefficient. It can define the coefficient to be constant, 

polynomial.

18 n
Equation C.24

Cc = 1 + —  (1.257 + 0.4e“° ,w' /M)) 
d n

■Equation C.25

6ndp/u2Cs(K  + C,Kn) 1 dT  

p(\  + 3CmKn)(\ + 2 K  + 2C,Kn) dx
Equation C.27
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Where,

Kn Kundsen number = 2
/ d P

A Mean free path o f the fluid

K X
k Fluid thermal conductivity based on translational energy

K Particle thermal conductivity

cs 1.17

c, 2.18

Cm 1.14

mp Particle mass

T Local fluid temperature

Fluid viscosity

Where the expression in the model assumes that the particle is a sphere and that the fluid is 

an ideal gas.

C.6.3 BROWNIAN FORCE

For sub-micron particles, the effects of Brownian motion can optionally be included in the 

additional force term. The components o f the Brownian force are modelled as a Gaussian 

white noise process with spectral intensity Sn>ij given by;

S n,ij = S0S9 ---------------------------------------- Equation C.28

Where Sy is the Kronecker delta function, and

2 \6voT  .
S0 = ----------- -------------------------------------- Equation C.29

)! C,
P

T  is the absolute temperature of the fluid, v is the kinematic viscosity, and a  is the Stefan- 

Boltzmann constant. Amplitudes of the Brownian force components are of the form
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Fbi = gt J------------------------------------------Equation C.30

where are zero-mean, unit-variance-independent Gaussian random numbers. The

amplitudes of the Brownian force components are evaluated at each time step. The energy 

equation must be enabled in order for the Brownian force to take effect. Brownian force is 

incorporated only when the model is non-turbulent.

C.6.4 SAFFMAN'S LIFT FORCE

The Saffman's lift force, or lift due to shear, can also be included in the additional force 

term as an option in FLUENT to model spray drying. The lift force can be expressed by:

/•’ = 2* V (P “ % ) -------------------------- Equation C.31
Ppd P (dfcdy)

Where k  = 2.594 and J,.. is the deformation tensor. This form of the lift force is intended

for small particle Reynolds numbers. Also, the particle Reynolds number based on the 

particle-fluid velocity difference must be smaller than the square root of the particle 

Reynolds number based on the shear field. Since this restriction is valid for submicron 

particles, it is used in the model because the spray dryer produces small particles 

(submicron particles).

C.6.5 DROPLET SIZE DISTRIBUTIONS

For liquid sprays, a convenient representation of the droplet size distribution is the Rosin- 

Rammler expression. The complete range of sizes is divided into an adequate number of 

discrete intervals; each represented by a mean diameter for which trajectory calculations 

can be performed. If the size distribution is o f the Rosin-Rammler type, the mass fraction 

of droplets of diameter greater than d  is given by:

Yd = e {d,7,)" -------------------------------------- Equation C.32

Where d  is the size constant and n is the size distribution parameter.
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C.7 Heat and Mass Transfer Calculations

For the heat and mass transfer calculations in the discrete models there are a number of 

laws are activated in the FLUENT such as:

Particle type Laws activated

Droplet Heating/ evaporation / boiling

C.7.1 LAW-INERT HEATING OR COOLING

The inert heating or cooling laws can be applied to the spray dryer models while the 

particle temperature is less than the vaporization temperature that the user defines as Tvap

and after the volatile fraction, f v0 o f a particle has been consumed. These conditions are

written as;

Law of heating:

T P <  T vaP -------------------------------------- Equation C.33

Law cooling:

mp < (1 -  f vja)mpja...........................................Equation C.34

Where Tp is the particle temperature, mp 0 is the initial mass o f the particle, and mp is its 

current mass.

The Law of heating can be applied until the temperature of the particle/droplet reaches its 

vaporization temperature. At this point a non-inert particle/droplet may proceed to obey 

one of the mass-transfer laws of vaporization and boiling.

The Heat in terms of balance to relate the particle temperature Tp ( t) , can be related to the

convective heat transfer and the absorption/emission of radiation at the particle surface is 

given:
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mpcp —j*- = hAp(Tx - T p) + s pApa ( 9 * - T p ) ------------------ EquationC.35

Where,

mp Mass o f the particle (kg)

c p
Heat capacity of the particle (J/kg-K)

A p
Surface area of the particle (m2)

T00
Local temperature of the continuous phase (K)

h Convective heat transfer coefficient (W/m2-K)

s p
Particle emmissivity (dimensionless)

a Stefan-Boltzmann constant (5.67* 108 W/m2-K 4)

Or G VRadiation temperature = (— / 4 (K)
4cr

Equation C.35 assumes that there is negligible internal resistance to heat transfer( that the 

particle is at uniform temperature throughout) G is the incident radiation in W/m2 and 

define as :

G = -------------------------------------Equation C.36

Where /  is the radiation intensity andQ  is the solid angle.

Equation C.35 is integrated with respect to time using an approximate, linearised form that 

assumes that the particle temperature changes slowly from one time value to the next:

dT
mpCp ~ ^ r  = Ap{-(h + s p°'r p)r p + (hT« + s p(T0r) } --------------- Equation C.37

As the particle trajectory is computed, FLUENT integrates Equation C.37 to obtain the 

particle temperature at the next time value, yielding:

Tp(t + At) - a p + (Tp (t) -  a p)e~PpM........... ........................-Equation C.38
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Where At is the integration time step and

a  _ hT« + £P<J° l  
h + e poTp (t)

p  A p(h + s poTp (t)

mPcP

FLUENT can also solve Equation C.37 using the equivalent mass transfer equation using a 

stiff coupled solver.

The heat transfer coefficient h is evaluated using the correlation:

Nu = = 2.0 + 0.6 R e ^  pr ^ -----------------------Equation C.41
K

Where,

d p Particle diameter (m)

K Thermal conductivity of the continuous phase (W/m-k)

Red Reynolds number based on the particle diameter and the 

relative velocity

Pr Prandtl number for continuous phase ( cp/u / km )

Finally, the heat lost or gained by a particle as it traverses each computational cell appears 

as a heat source or sink in subsequent calculations of the continuous phase energy equation. 

During Laws heating and cooling particles/droplets do not exchange mass with the 

continuous phase.

C.7.2 LAW OF DROPLET VAPORIZATION

The Law of droplet vaporization can be activated in models to predict vaporization from a 

discrete phase droplet. The law initiates when the temperature of a droplet reaches its 

vaporization temperature, Tvap and continues until the droplet reaches its boiling point, Tbp,

or until the droplet's volatile fraction is completely consumed:

Equation C.39

Equation C.40
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Tp < Tbp.......................................................-Equation C.42

mP > C1 -  f v,o)mp,o----------- -------------------------Equation C.43

The start of the vaporization law is determined by the user setting Tvop . Vaporization stops

only when the droplet temperature falls below its dew point. During vaporization no 

evaporation is predicted. When the boiling point is reached, the droplet vaporization is the 

predicted using the boiling rate.

(a) Mass Transfer during the Law of Vaporization

The rate of vaporization is governed by gradient diffusion, where the flux o f vapour in a 

gas phase is related to the gradient of the vapour concentration between the droplet surface 

and the bulk gas, as given by:

N i = K ( c i,s ~ C i , J ------------------------------------Equation C.44

Where,

*1 Molar flux of vapour (kgmol/m2-s)

K Mass transfer coefficient (m/s)

c , . Vapour concentration at the droplet surface (kgmol/m3)

Vapour concentration in the bulk gas (kgmol/m3)

When Njis positive evaporation occurs. If  JV,is negative the droplet temperature falls 

below the dew point and condensation conditions exist), the FLUENT treats the droplet as 

inert.

The concentration o f vapour at the droplet surface has evaluated by assuming that the 

partial pressure o f vapour at the interface is equal to the saturated vapour pressure, Psat, at

the particle droplet temperature, Tp :
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C. = --------------------------------------- Equation C.45
RTp

Where R is the universal gas constant, the concentration of vapour in the bulk gas can be 

calcualted is known from solution of the transport equation for species i :

C = X,  ---------------------------------------- Equation C.46
RT

W hereX i is the local bulk mole fraction of species/, p op is the operating pressure, and 

Tm is the local bulk temperature in the gas. The mass transfer coefficient in Equation C.44 

is used to calculate Nusselt correlation:

N u AB =  =  2 - °  +  °-6 Re?  — -------- ------------Equation C.47
^i,m

Where,

D i,m Diffusion coefficient of vapour in the bulk (m2/s)

Sc
The Schmidt number = ———

P D i,n

d P Particle droplet diameter (m)

And the mass of the droplet is reduced;

mp (t + At) = mp (t) -  NjApM WJAt - ---------- ------------Equation C.48

Where,

M w>i Molecular weight of species i (kg/kgmol)

mp Mass of the droplet (kg)

Surface area of the droplet (m2)
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(b) Heat Transfer to the Droplet

The droplet is updated temperature according to a heat balance that relates the sensible heat 

change in the droplet to the convective and latent heat transfer between the droplet and the 

continuous phase:

mpcp ~ ^  = hAp ^  ~ Tp^ + ~ ^ f hf s + A ps pC7̂ ~ Tp ^ -------- Equation C.49

where,

Droplet heat capacity (J/kg-k)

T P
Droplet temperature (k)

h Convective heat transfer coefficient (W/m2-K)

Too Temperature o f continuous phase (K)

K Rate of evaporation (kg/s)

s p
Latent heat (J/kg)

a Particle emissivity (dimensionless)

oR Stefan- Boltzmann

d m p

d t

/  i /
Radiation temperature =  (— ) / 4 , where /  is radiation

4 0 -

intensity

C.7.3 LAW OF DROPLET BOILING

The droplet boiling Law can be applied to predict convective boiling o f a discrete phase 

droplet when the temperature of a droplet has reached its boiling temperature, Thp and while

the mass of the droplet exceeds its non-volatile fraction, (1 -  / v 0) .

Tp > Tbp---------- ------------------ ---------------- Equation C.50

f v,Q)mp,o------------------------------------- Equation C.51
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When the droplet temperature reaches the boiling point, a boiling rate equation is then 

applied:

= — ^ 2— (i + 0.23-v/Re7)ln[l + Cp’w^ ° ~ 7^ ]--------Equation C.52
dt Ppcp, J p hfg

Where

S.oo Heat capacity of the gas (J/kg-k)

P p Droplet density (kg/m3)

K Thermal conductivity o f the gas (W/m-K)

Equation C.52 was derived assuming steady flow at constant pressure. The model requires 

Tx > Tbp in order for boiling occurring and that the droplet remains at fixed temperature

Tbp throughout the boiling law.

C .8 SPRAY M ODEL

C.8.1 THE AIR-BLAST/AIR-ASSIST ATOMIZER MODEL

The FLUENT air blasted model is used the Linearized Instability Sheet Atomization

(LISA) model. The LISA model is divided into two stages:

1. Film formation

2. Sheet break-up and atomization

(1) Film Form ation

The thickness o f film, i ,  is related to the mass flow rate o f feed by:

m = nput(dinJ - t ) --------------------------------------- Equation C.53

Where dinj is theinjector exit diameter, and m is the mass flow rate, which must be

measured experimentally. The unknown in Equation C.53 is u , the axial component of 

velocity at the injector exit. This quantity depends on internal details o f the injector or the 

nozzle. The total velocity is assumed to be related to the injector pressure by:
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■Equation C.54

kv is a function of the injector design and injection pressure. If the swirl ports are treated as

nozzles or it is nozzle, Equation C.54 is then an expression for the coefficient of discharge 

for the swirl ports, assuming that the majority o f the pressure drop through the injector or 

nozzle occurs at the ports or nozzle exit. The coefficient o f discharge (Cd ) for single-phase 

nozzles with sharp inlet comers and L i d  of 4 is typically 0.78 or less. Hence, 0.78 should 

be a practical upper bound forkv . R educing^ by 10% to allow for other momentum losses 

in the injector gives an estimate of 0.7 can be used.

Physical limits on kv are such that it must be less than unity by conservation o f energy, and 

it must be large enough to permit sufficient mass flow. To guarantee that the size of the air 

core is non-negative, the following expression kv is given by:

It assuming that Ap is known, Equation C.54 can be used to find £7. Once U  is determined, 

u is found from:

Where 0  is the spray angle, which is assumed to be known and generally it is 45 degree. In 

the present the study the nozzle angle has set for 45 degree to get maximum disintegration 

of liquid feed.

(2) Sheet Break-up

The model assumes:

♦ Two-dimensional

♦ Viscous

♦ Incompressible liquid sheet of thickness 2h moves with velocity 

U through a quiescent

♦ Inviscid, incompressible gas medium.

Equation C.55

u = U cos 0 Equation C.56
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The model defines the liquid and gas have densities o f p t and p g , respectively, and the 

viscosity of the liquid is jur  A coordinate system moves the sheet, and a spectrum of 

infinitesimal disturbances of the form is given by:

77 = rj0elkx+ml---------------------------------------—Equation C.57

W here^ 0 is the initial wave amplitude, k = 2n  / X is the wave number, and co = cor + ia>i is 

the complex growth rate. It is described that the most unstable disturbance has the largest 

value o f  co,., denoted by Q , and is assumed to be responsible for sheet break-up. Thus, it is 

desired to obtain a dispersion relation co = co(k) from which the most unstable disturbance 

can be deduced the dispersion relation for the sinuous mode is given by:

n k 3
co2(tanh(kh) + Q) + (4v,k2QkU) + 4vtk 4 tanh(kh) -  4v f k 3l tanh(Ih) -  Q U 2K 2 + -----= 0 —

Pi
-----Equation C.58

Where,

Q = ^ ŝ /p  and I2 = k 2 + o ) / v , ------------ ------------- Equation C.59

A critical Weber number of Weg-  27/16 (based on the relative velocity, the gas density,

and the sheet half-thickness), the fastest-growing waves are short. Below 27/16, the 

wavelengths are long compared to the sheet thickness.

The resulting expression for the growth rate has given in the model by:

(0 = -------- ---------[ - 2v ,k 2 tanhikh) +
r tanh (kh) + Q '

n k 3
+ 4v 2k A tanh2{kh) -  Q 2U 2K 2 -  (tanh(M) + Q ) ( - Q U 2k 2 + — )]

Pi

-Equation C.60

The Equation C.59 to Equation C.60 reduce with assumptions, an order-of-magnitude 

analysis using typical values from the inviscid solutions shows that the terms of second 

order in viscosity can be neglected in comparison to the other terms in Equation C.60. In
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addition, the density ratio Q is on the order o f 103in typical applications and hence it is

assumed that Q « I.

The physical mechanism of sheet disintegration in the FLUENT only for long waves. For 

long waves, ligaments are assumed to form from the sheet break-up process once the 

unstable waves reach a critical amplitude. If  the surface disturbance has reached a value of 

r/b at break-up, a break-up time, r  , can be evaluated is given by:

Where Q , the maximum growth rate is represented by numerically maximizing 

Equation C.60 as a function o f k .

Therefore;

The sheet breaks up and ligaments will be formed at a length given by:

externally in the model.

It is assumed that the ligaments are formed from tears in the sheet once per wavelength, 

the resulting diameter is given by:

Equation C.61

Equation C.62

Where the quantity ln(— )is  an empirical sheet constant from 3 to 12, it is specified

Equation C.62

Where K s is the wave number corresponding to the maximum growth rate Q .
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The ligament diameter depends on the sheet thickness, which is a function o f the break-up 

length. The film thickness is calculated from the break-up length and the radial distance 

from the centre line to the mid-line of the sheet at the atomizer exit r0:

The value of d L is assumed to be linearly proportional to the wavelength that breaks-up the 

sheet is given by:

where CL, or the ligament constant, is equal to 0.5 by default in the model. The wavelength 

is calculated from the wave n u m b e r ^ .

The variable Oh is the Ohnesorge number; it is a combination o f Reynolds number and 

Weber number that is given by:

This procedure determines the most probable droplet size. The spread parameter has 

assumed to be 3.5, based on past modelling experience. The spray cone angle has defined 

externally input which has based on the setting of two fluid nozzle atomizer. The 

dispersion angle of the spray has assumed to be a fixed value o f 6°.

C.8.2 DROPLET COLLISION MODEL

The FLUENT estimates the number o f droplet collisions, tracking o f droplets and their 

outcomes for TV droplets, each droplet has A ^-l possible collision partners. Thus, the

1 2 1
number of possible collision pairs is approximately—N  . (The factor o f — appears because

droplet A colliding with droplet B is identical to droplet B colliding with droplet A. This 

symmetry reduces the number o f possible collision events by half.) An important 

consideration is that the collision algorithm must calculate possible collision events at

Equation C.63

d L =2nCL/ K s Equation C.64

d0 = 1.8 8 ^(1  + 30h)]/6 ■Equation C.65
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every time step. A spray can consist o f several million droplets; the computational cost of a 

collision calculation from first principles is prohibitive in the simulation models. The 

fluent uses the concept o f parcels. Parcels are statistical representations of a number of 

individual droplets. For example, if  the FLUENT tracks a set o f parcels, each of which 

representing 1000 droplets, the cost of the collision calculation is reduced by a factor 

oflO6. Because the cost o f the collision calculation still scales with the square of N , the 

reduction o f cost is significant; however, the effort to calculate the possible intersection of 

so many parcel trajectories would still be prohibitively expensive.

C.8.3 CALCULATION PROCEDURE OF DISCRETE AND CONTINUOUS PHASES 

OF SPRAY DRYER IN THE FLUENT SOFTWARE

(a) M om entum  Exchange

The momentum transfer from the continuous phase to the discrete phase is computed by:

F  = X “ w) + Foiher)m'p ^ ----------------- Equation C .66
Ppdp

Where,

M Viscosity of the fluid

P p
Density o f the particle

d p Diameter of the particle

Re Relative Reynolds number

u p
Velocity of the particle

u Velocity o f fluid

c D Drag coefficient

mp Mass flow rate of the particles

A t Time step

F
other Other interaction forces
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(b) Heat Exchange

The heat transfer from the continuous phase to the discrete phase is given by:

Tm„ Am pe
Q = [ ~ ^ c pAT + ---- H -h jg  + h ol + \cpiidt)\mp>0------------------------Equation C.67

m p , 0 m p,  0 Tref

Where,

mp Average mass of the particle in the control volume (kg)

m p f i
Initial mass of the particle (kg)

c p
Heat capacity of the particle (J/kg-K)

AT
p

Temperature change of the particle in the control volume (K)

A mp Change in the mass of the particle in the control volume (kg)

K Latent heat of volatiles evolved (J/kg)

hp yro l Heat of pryrolysis as volatiles are evolved (J/kg)

c p ,i
Heat capacity of volatiles evolved (J/kg)

T
p

Temperature of the particle upon exit o f the control volume (K)

T1 ref Reference temperature of enthalpy (K)

mp ,o
Initial mass flow rate of the particle injection tracked (kg/s)

(c) Mass Exchange

The mass transfer from the discrete phase to the continuous phase can be computed by:

A m n
M   ---- - m '  0------------------------------------ Equation 2.60

mP, o ’

Where,

m P, o
Initial mass of the particle (kg)

Amp Change in the mass of the particle in the control volume (kg)

m 'P ,o
Initial mass flow rate of the particle injection tracked (kg/s)
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The mass exchange appears as a source of mass in the continuous phase continuity 

equation and as a source of a chemical species defined in the model. The mass sources are 

included in any subsequent calculations of the continuous phase flow field.
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D .l ANOVA TABLE

Appendix D

Drying chamber Particle DF
Total

Constant
13
1

SS MS (variance)
9687.38 745.183
8587.91 8587.91

F SD

Total Corrected 
Regression 
Residual

12 1099.47
9 1021.76
3 77.7061

91.6222
113.529
25.902

4.38301
9.57195 

0.126 10.655
5.0894

Lack of Fit 
(Model Error) 

Pure Error 
(Replicate Error)

N = 1 3  Q 2=  .1631
DF = 3 R2 = 0.929

R2 Adj. = 0.717

Cond. no. = 7.1093 
Y-miss = 0 

RSD = 5.0894

Cyclone Particle Size 
Total 

Constant

DF SS MS (variance) F
13 2889.03 222.233
1 2526.21 2526.21

SD

Total Corrected 
Regression 
Residual

12 362.825
9 356.645
3 6.17938

30.2354
39.6273
2.05979

19.2385
5.49867 

0.017 6.29502 
1.4352

Lack of Fit 
(Model Error) 

Pure Error 
(Replicate Error)

N =  13 Q2 = 0.727 
DF = 3 R2 = 0.983 

R2 Adj. = 0.932

Cond.no. = 7.1093 
Y-miss = 0 

RSD = 1.4352
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Wall DEPOSITION DF SS
Total 13 424

Constant 1 398.769

MS (variance)
32.6154
398.769

F

Total Corrected 12 25.2307 2.10256
Regression 9 23.4807 2.60897

Residual 3 1.75 0.583333
4.47253 0.122

Lack o f Fit 
(Model Error) 

Pure Error 
(Replicate Error)

N  = 13 Q2 = 0.130 
DF = 3 R2 = 0.931 

R2 Adj. = 0.723

Cond.no. = 7.1093 
Y-miss = 0 

RSD = 0.7638

Over all Thermal ij DF
Total 13

Constant 1

SS MS (variance) F
40961.2 3150.86
40543.2 40543.2

Total Corrected 12 417.965 34.8304
Regression 9 314.85 34.9834

Residual 3 103.114 34.3715
1.0178 0.557

Lack of Fit 
(Model Error) 

Pure Error 
(Replicate Error)

N  = 13 Q2 = -0.2
DF = 3 R2 = 0.753

R2 Adj. = 0.013

Cond. no. = 7.1093 
Y-miss = 0 

RSD = 5.8627

SD

1.45002
1.61523

0.763762

SD

5.90173
5.91468
5.86272
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D.2 AIR PIPE
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Figure D -l: Velocity profile at 2.19 m/s inlet velocity and turbulence intensity and
temperature distribution.
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Figure D-2: Velocity profile at 2.95 m/s inlet velocity and turbulence intensity and
temperature distribution.
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Figure D-3: Velocity profile at 3.65 m/s inlet velocity and turbulence intensity and
temperature distribution.
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Figure D-4: Velocity profile at 4.38 m/s and turbulence intensity and temperature
distribution.
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Figure D-5: Velocity profile at 7.31 m/s inlet velocity, turbulence intensity and
temperature distribution.
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D.3 Feed Nozzle
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Figure D-6: The feed pipe velocity profile and vector at 50 rpm of peristaltic pump.
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Figure D-7: The feed pipe velocity profile and vector at 75 rpm of peristaltic pump.
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Figure D-8: The feed pipe velocity profile and vector at 100 rpm of peristaltic pump.
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D.4 TEMPERATURE SIMULATED PROFILE
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Figure D-9: Temperature profile and velocity vector by SK-C, RK-C, RSM methods, 

and measured (inlet condition tem-398 K, velocity-14.6m/s).
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Figure D-10: Temperature profile and velocity vector by SJ5T-C, RK-C, RSM method, 

and measured (inlet condition tem-398 K, velocity-16.6m/s).
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Figure D -ll:  Temperature profile (a) and velocity vector (b) by SK-C, RK-C, RSM  

methods, and measured (inlet condition tem-421 K, velocity-12.7m/s).
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Figure D-12: Temperature profile (a) and velocity vector (b) by SK -€ ,  R ff-€, RSM  

method, and measured (inlet condition tem-421 K, velocity-14.6m/s).
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Figure D-13: Temperature profile (a) and velocity vector (b) by SK-C, RfiT-€, RSM 

method, and measured (inlet condition tem-421 K, velocity-16.6m/s).
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Figure D-14: Temperature profile (a) and velocity vector (b) by SK-E, RK-C, RSM  

method, and measured (inlet condition temperature-461 K, velocity-12.6m/s).
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(b)
Figure D-15: Temperature profile and velocity vector by SK-C, RA-C, RSM method, 

and measured (inlet condition temperature-461 K, velocity-14.6m/s).
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Figure D-16: Temperature profile and velocity vector by SK-C, RfiT-€, RSM method, 

and measured (inlet condition temperature-461 K, velocity-16.6m/s).
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Table D2: HA SLURRY PROPERTIES USED IN ATOMISATION SIMULATION

Water -liquid / HA slurry

Density (kg/m3) 1180.35

Cp (J/kg) 4182

Thermal Conductivity (W/mK) 0.6

Viscosity (mPa.s) 75

Latent heat (J/kg) 2263073

Vaporisation temperature (K) 284

Boiling point (K) 373

Volatile component fraction (%) 80

Binary Diffusion (m2/s) 3.05 x 10 "5

Saturation Vapour pressure (P) 26501

Droplet surface tension (N/m) 0.07194

Table D3: INJECTION OF NOZZLE PROPERTIES

Injection type Air blast Atomiser

Numbers o f streams 60

Particle type Droplets

Inlet slurry temperature(K) 300

Flowrate (kg/s) 4.730 x 10'4

Start time (s) 0

Stop time (s) 2

Injector inner diameter (m) 0.0  m

Injector outer diameter (m) 0.0015

Spray half angle (degrees) -22.5

Relative velocity (m/s) 86.0

Sheet constant 12

Ligament constant 0.5

------------------------------------------------------------------------------------------------------------- 237
A Critical Investigation into the Spray-Drying o f  Hydroxyapatite Powders for Thermal Spray Applications: Q. M urtaza


