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Abstract 
 

 
 

An in-depth understanding of biochemical processes occurring within the cell is a key 

factor for early diagnosis of disease and identification of appropriate treatment. Intracellular 

sensing using fluorescent nanoparticles (NPs) is a potentially useful tool for real-time, in 

vivo monitoring of important cellular analytes.  

This work is focused on synthesis of organically modified-silicate (ORMOSIL) optical 

nanosensors for the quantitative analysis of oxygen concentration and pH sensing inside the 

cell. The structure of the sensor consists of a biofriendly silica matrix with encapsulated 

oxygen/pH-sensitive dyes. The optical probes used in this work are the oxygen-sensitive 

([Ru(dpp)3]
2+

) complex and pH-sensitive fluorescein isothiocyanate (FITC) co-

encapsulated with the ATTO488 and Texas Red as the reference dyes, respectively. In 

order to obtain silica-based NPs, the Stöber method was used. The NPs were characterised 

using techniques such as Transmission Electron Microscopy (TEM), Dynamic Light 

Scattering (DLS), fluorescence and other spectroscopic techniques.  

The second part of this work focuses on the introduction of the NPs into the cell and 

intracellular sensing. In this work the oxygen and pH nanosensors are introduced in a 

number of established human and mouse cell lines. Internalization of NPs within the cell is 

investigated using fluorescence confocal microscopy techniques. The detection of the 

optical signal is based on both ratiometric and fluorescence lifetime – based measurements 

carried out on the wide-field and confocal microscopes with fluorescence lifetime imaging 

platforms. After the NP calibration, the response of the cell to the different extracellular 

oxygen concentration is investigated. 

Oxygen and pH sensing is the starting point for this intracellular diagnostics research. 

The silica-based NPs, thanks to the flexible processing conditions, allow for tailoring of 

pore size and hydrophilic-hydrophobic balance. The possibility to control these two 

parameters makes the NPs a very promising tool for a better understanding of many 

processes in living cells.  
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Chapter 1  

 

Introduction 

 

1.1. Cellular diagnostics  

 

“The constant conditions which are maintained in the body might be termed 

equilibria. That word, however, has come to have a fairly exact meaning as applied to 

relatively simple physico-chemical states, in closed systems, where known forces are 

balanced. The coordinated physiological processes which maintain most of the steady 

states in the organism are so complex and so peculiar to living beings — involving, as 

they may, the brain and nerves, the heart, lungs, kidneys and spleen, all working 

cooperatively — that I have suggested a special designation for these states, 

homeostasis. The word does not imply something set and immobile, a stagnation. It 

means a condition — a condition which may vary, but which is relatively constant.” 

[1] 

This sentence, published by American biologist Walter Cannon in the 1930s, is a 

starting point in understanding the importance of  cellular sensing  which enables the 

detection of  changes in the analyte concentration at a ppm (parts per million) level. The 

homeostasis mechanism plays a key role in the adaptation by the body to constantly 

changing conditions. If there is any breakdown in homeostatic mechanisms, the body is 

not able to maintain a balance and, as a consequence, disorder and disease occur. 

Unfortunately, in many cases, the disease “macro-symptoms” are only recognisable 

when irreversible changes have already taken place. It would be highly desirable in 

early stage diagnosis to detect the disease “micro-symptoms”, which would be manifes- 
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ted as very small changes of the analytes happening at the cellular level. This insight 

into the inter- and intracellular environment could enable the monitoring of the 

homeostasis of the body, thus enabling an early response and treatment in order to 

prevent serious pathological conditions.  

 

1.2  Oxygen and its role 

 

Elixir of Life – and Death – this ambiguous title can be found in the book written by 

Nick Lane, describing “oxygen - the molecule that made the world” [2]. The therapeutic 

abilities of “active”, meaning ozone and hydrogen peroxide-based oxygen treatments 

against bacterial infections and tumours coexist together with the toxic and apoptosis-

inducible character of the same “active” components. Life depends on oxygen, from the 

moment when the first organisms, which appeared 2.5 billion years ago, were able to 

convert solar energy into chemical energy of carbon bonds. The evolution machinery 

gave them the unique photosynthesis skill, which enabled them to convert carbon 

dioxide and water into glucose and oxygen. One billion years later, the next generation 

of organism, eukaryotes, came into being and closed the energy cycle by transforming 

glucose into carbon dioxide and water in the process called cellular respiration. This 

process consists of two steps: glycolysis and oxidation of pyruvic acid. The energy 

produced during the glycolysis process is then trapped in molecules of ATP, what is 

illustrated in Figure 1.1. 

 

 

Figure 1.1: The glycolysis process [3]. 

 

The reaction efficiency, 2 molecules of adenosine triphosphate (ATP) per 1 molecule of 

glucose, is not as high as would be required for developing and maintaining more 

advanced organisms. To satisfy the need of metazoans, the next cell-type in the 
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evolution chain, oxidative phosphorylation evolved around 0.5 billion years ago. This 

new metabolic pathway, in comparison to glycolysis, produced 18 times as much ATP 

per 1 mole of glucose, which is enough to perform the functions of these complex 

multicellular organisms. A schematic of this process is shown in Figure 1.2. 

 

 

Figure 1.2: The oxidative phosphorylation process [4]. 

 

The same metabolic route, called aerobic respiration, is used by the human body. This 

highly efficient process, which utilizes oxygen as an energy source, has however dual 

nature: it can maintain or terminate life. In the creation of ATP molecules, a fraction of 

electrons, escapes from the respiratory chain and combine with the oxygen molecule O2, 

generating the so-called “active” oxygen mentioned at the beginning of this chapter. 

This type of oxygen is now referred to as free radicals [5]. Apart from in the 

mitochondria, where they are naturally produced by the oxidative phosphorylation 

process,  free radicals are also formed at  inflammation sites and as a by-product of 

some normal cellular enzymatic reactions as well as exogenously generated by exposure 

to  pesticides, radiation, pharmacological agents, industrial pollutants, food additives, 

cigarette smoke and many others agents [6]. Any deviation in their production can result 

in oxidative stress and lead to a pathological state for the human body. Some human 
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diseases associated with generation of free radicals have been gathered in the Table 1.1: 

Table 1.1: Oxidative stress-related human diseases [6]. 

ORGAN SYSTEM DISEASE 

Brain, Central Nervous System(CNS), 

Peripheral Nervous System (PNS) 

Alzheimer`s, Parkinson`s, Huntington`s, 

Multiple Sclerosis, Trauma, Stroke, 

Ischemia, Other Neurodegenerative 

disorders 

Circulatory Atherosclerosis, Hyperlipidemia, Cardio- 

vascular diseases, Vascular disorders, 

Hypertension 

Endocrine Diabetes, Metabolic Syndrome 

Musculoskeletal Arthritis, Physical injury, Joint disorders 

Immune Allergic disorders, Autoimmune disorders, 

Inflammatory disorders 

Respiratory Asthma, Emphysema, Chronic 

Obstructive Pulmonary Disease (COPD), 

Bronchitis 

Digestive Inflammatory bowel disease, Crohn`s 

disease 

  

Oxygen therefore is a crucial component for the human body, and should be monitored 

in order to maintain a balance between the generation of energy and production of 

potentially toxic oxidants. It is proposed that the non-invasive oxygen nanosensor, 

which is the subject of this PhD thesis, could act as an effective early diagnostic device, 

thus fulfilling this oxidative stress screening function.  

 

1.3. Intracellular pH 

 

The term pH was introduced at the beginning of 20
th

 century by the Danish chemist 

Sørensen who applied the electromotive force technique in order to determine the 

hydrogen ion concentration. In his publication from 1909, he defined pH as the negative 

logarithm of the hydrogen ion concentration [7]: 
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]log[  HpH  (1.1) 

The level of acidity and alkalinity is represented on a scale from 1 to 14, where an 

increase in the amount of protons results in a decrease in the pH value. The chemicals 

which have a strong influence on the pH are acids which are proton donors and bases 

which are proton acceptors. The mechanism of introducing a proton to an aqueous 

solution is based on the molecule dissociation process, an example of which is shown 

below: 

COOHR 
  HCOOR  (1.2) 

Where R-COOH is a general formula for a carboxylic acid and R-COO¯ is a 

carboxylate anion. The tendency to ionize varies between different acids, which can be 

expressed by the difference in the dissociation constant, Ka: 

][

]][[

COOHR

HCOOR
Ka








 
(1.3) 

Where [R-COO¯], [H
+
] and [R-COOH] are the molar concentrations of carboxylate 

anions, hydrogen ions and carboxylic acid respectively. Using equation 1.2 the 

dissociation constant Ka can be then translated into pKa value:  

aa KpK log  (1.4) 

Only strong acids and strong bases will be completely dissociated under respectively 

low and high pH. In the case of weak acids and weak basics, which are capable of 

dissociating very easily, the protonic equilibrium will be prone to change giving small 

changes in pH, which is expressed in the Henderson – Hasselbalch equation: 

][

][
log

COOHR

COOR
pKpH a








 
(1.5) 

In the intracellular environment, many macromolecules, which are responsible for the 

proper functioning of the cell, possess functional groups which are weak acids or bases 

[8]. As a consequence, even small changes in pH may have a huge impact on the cell.  

Some common factors which influence cell pH are illustrated in Table 1.2.  
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Table 1.2: Influence of intracellular pH on the cellular functions. 

Factor Influence of pH 

Activity of metabolic enzymes Increase of the activity of the enzyme 

with increasing pH (i.e. phosphofruc- 

tokinase [9]) 

Protein synthesis Increase in rate of protein synthesis 

from pH 6.9 and its optimum at pH 7.4 

[10] 

Synthesis of DNA and RNA Increase in DNA and RNA synthesis 

with higher pH within physiological 

range [11] 

Actin and myosin contractility Low pH reduces the contractility (i.e. 

ischemia in the heart muscle [12])  

Ion channels conductivity Decrease in pH inhibits the 

conductivity of potassium channels, 

which stimulate voltage-gated calcium 

channels [13] 

Proliferation and apoptosis Increase in pH induces the cell 

proliferation and cell division [14] 

Multidrug resistance Alkaline shift of cytosolic pH inhibits 

the intracellular drug accumulation[15] 

Endocytosis Cytoplasmic acidification (below pH 

6.5) inhibits endocytosis  [16] 

 

Maintaining a stable physiological pH at 7.0-7.4 for neutral and slightly alkaline 

cytoplasm and lower acidic pH of 4.0 - 6.0 for endosome and lysosome compartments 

will be therefore crucial for intracellular homeostasis. [2,17]   On the other hand, 

monitoring intracellular pH can be a very powerful tool in the fight against such 

diseases as cancer and Alzheimer’s where indicative abnormal pH values have been 

detected [18]. 
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1.4. Optical Chemical Nanosensors 

 

Man has always been curious about and has striven to understand his surrounding 

environment. This exploration has been carried out largely by measurement techniques.  

Building up knowledge with time, man has succeeded in achieving a very sophisticated 

level of measurement of different physical, biological and chemical environments [19]. 

Using sensors, devices which respond in selective and reversible way to different 

compounds and ions, it is possible to measure very small quantities of analytes [20]. 

Generally, a sensing platform contains three main elements:  

- the active surface 

- the transducer 

- the electronics/software. 

These elements are illustrated in Figure 1.3.  

 

Figure 1.3: The basic components of a sensor. 

 

The   nature of the active surface determines the type of sensor. If the active surface 

contains some non-biological material, for example a polymeric membrane which reacts 

with the substrate, the sensor is defined as a chemical sensor. This is defined by R.W. 

Catterall [21] as “a device which responds to a particular analyte in a selective way 

through a chemical reaction and can be used for the qualitative and quantitative 
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determination of the analyte”. An optical chemical sensor is based on an optical 

transduction method, which can be optical absorption, luminescence (which is the most 

sensitive) or other optical parameters such as refractive index or reflectivity [22]. 

Biosensors utilize biomolecules such as enzymes, antibodies and receptors or a cell to 

react with the analyte. Due to these biological recognition elements they have 

advantages like high specificity and/or exceptionally high natural selectivity, and 

drawbacks such as restricted stability and lifetime [20].  In this work, the developed 

sensors can be described as Optical Chemical Nanosensors as, while the sensing 

principle of the oxygen or pH is via chemical sensing, the sensor’s dimension is in 

nanometer range. The general sensing pathway can be described as follows:  

1) Chemical or biological reaction between analyte and the active surface  

2) Change in the transducer due to the reaction, which can be expressed as change 

of impedance, voltage, light intensity, reflectance, etc. Usually the magnitude of 

the electronic signal is proportional to the analyte concentration 

3) Detection, amplification and processing the signal by electronics/software 

module 

Key sensor properties and behaviour in an ideal situation are described in Table 1.3.  

  

Table 1.3: The ideal sensor characteristics [23]. 

PROPERTY CHARACTERISTIC BEHAVIOUR OF IDEAL SENSOR 

Sensitivity Constant during the sensor lifetime and sufficiently 

high to allow convenient measurement of the signal 

Calibration Ease of calibration and preferably single point 

calibration 

Linearity In the full region of the substrate concentration 

(can be also nonlinear but more complicated signal 

analysis) 

Limit Of Detection The lowest concentration of substrate determined by 

the resolution of the electronic instrumentation 

Background Signal Constant with the sensor signal changes 

Hysteresis No influence from previous measurements = zero 

hysteresis  
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Drift And Long-Term 

Stability 

Constant sensitivity for the sensor entire lifetime or 

at least during the time of measurement 

Selectivity Response only to the target analyte changes and no 

interference from other analytes 

Dynamic Response Fast response to a change in analyte concentration 

Temperature Dependence Isothermal experimental conditions 

Signal To Noise Ratio Digital filtering techniques 

Lifetime Sensitive under normal operational conditions 

Biocompatibility Minimum impact on the human body  

 

In recent decades, nanotechnology has had a major impact on sensing, particularly for 

biomedical applications.  The capability to observe interactions unique to the nanoscale 

between matter and its environment and new behaviours not present at the macroscale, 

is a powerful driver for the new discipline of Nanomedicine.  Nanosensors which could 

scan for the presence of infectious agents or any signs of homeostatic imbalances, as 

well as eliminate infectious agents and fix the “broken” parts in cells are under 

investigation. There is much work worldwide on the development, clinical 

implementation and evaluation of hazards related to these new nanodevices which 

should be a source of hope for the many people suffering from diseases such as multiple 

sclerosis and other as yet, incurable conditions [24]. 

 

1.5. Thesis structure 

 

This work was focused on the sensing of oxygen and pH inside cells. In order to achieve 

quantitative information on inter- and intracellular level of the analytes, nanoparticles 

(NPs) in which were entrapped an oxygen-sensitive long lifetime ruthenium complex or 

a pH-sensitive fluorescein isothiocyanate fluorophores, were fabricated using the Stöber 

method. The sensor response of the nanosensors was first measured outside the cell 

environment. The NPs were then introduced to a range of different cell types including 

phagocytic and non-phagocytic cell lines, using a number of different particle loading 

techniques. The intracellular sensor response was monitored using both luminescence 

intensity imaging and lifetime based imaging techniques such as confocal microscopy 
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and fluorescence lifetime imaging microscopy (FLIM).  

The PhD thesis consists of six chapters. After an abstract, Chapter 1 gives a brief 

overview of the different elements of the work and details the work objectives. In the 

context of the interdisciplinary character of the project, the physics, chemistry and 

biology background is described in Chapter 2.  Chapters 3 and 4 describe the 

experimental results for oxygen and pH respectively including NP synthesis, 

characterisation and extra-cellular sensor response while Chapter 5 deals with the 

intracellular sensing aspect of the project. The thesis concludes with a brief Summary 

and Perspectives chapter.  

 

1.6. Research objectives 

 

The main objectives of this project were: 

1. To synthesise novel oxygen and pH sensitive nanoparticles for application in 

intracellular sensing. 

2. To introduce the developed nanosensors inside the cells and determine their 

intracellular localisation. 

3. To measure the intracellular concentration of analytes in a number of established 

human and mouse cell lines using different microscopy imaging approaches.  
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Chapter 2 

 

Background 

 

2.1 Introduction 

 

This chapter gives a comprehensive overview of all theoretical aspects related to the 

thesis. Due to the interdisciplinary nature of this work, the background from the 

different disciplines of physics, chemistry and biology is presented below. Optical 

chemical sensors, with special emphasis on luminescence–based sensors, are discussed 

at the beginning. The concept of nanosensor and its application for intracellular studies 

is then introduced. This is followed by a discussion on the optical detection and imaging 

techniques used. The last section gives an introduction to the biological aspects, such as 

how O2 and pH sensing occur inside the cell as well as what are the possible 

intracellular pathways of nanoparticle uptake.  

 

2.2 Overview of luminescence 

 

2.2.1 Luminescence phenomenon 

 

The process of absorption of photons by a material occurs on a very fast timescale, of 

the order of 10
-15

s.  In this process, the electrons are excited from the ground state 

energy level to a higher, more energetic state.  The ground and excited states have a 

number of discrete vibrational and rotational energy states. As a consequence the mole-  
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cule can be excited with different absorption energies, which broadens the absorption 

and emission spectra. The factors which determine whether a photon is 

absorbed/emitted by a molecule are the photon energy and the energy level differences 

and, more fundamentally, the quantum mechanical transition probabilities [1]. Electrons 

can be transferred between two energy levels only if the photon energy is exactly equal 

to the energy level difference. The process of electron de-excitation is called 

luminescence and it is well illustrated on the Jablonski diagram shown in Figure 2.1.   

 

Figure 2.1: The Jablonski diagram. A-photon absorption, F-fluorescence, P-phosphorescence,  

S-singlet state, T-triplet state, IC-internal conversion, ISC-intersystem crossing.  

 

Before luminescence occurs, electrons may lose energy thermally in a process called 

internal conversion. In these 10
-11

 seconds the electrons move to the lowest excited 

singlet state, S1, where they stay for a period of the order of nanoseconds. The 

luminescence energy released by the molecule while relaxing to the ground state,  S0, 

will be the energy level difference between the vibrational energy state v1=0 and 

whichever ground state energy level the electron occupies [2].  Depending on the nature 

of the excited state the resulting luminescence or emission process can be divided into 

two categories: fluorescence and phosphorescence. Fluorescence occurs when electrons 

excited to a singlet state rapidly decay with an emission rate of typically 10
-8

s.  

Electrons can also de-excite from the lowest excited singlet state to a triplet state by 

intersystem crossing. The process of returning from the triplet state to the ground state 
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and the associated emission of light is called phosphorescence and it lasts much longer 

(10
-3

-10
0 

s) than fluorescence. Molecules which contain a metal and one or more 

organic ligands called transition-metal-ligand complexes (MLCs) have a particular way 

of de-excitation, due to the presence of mixed singlet-triplet states; as a consequence, 

electrons can take from 400ns to several microseconds to come back to the ground state. 

It is noted that the ruthenium complex used in this work belongs to the group of MLCs 

[1] and displays phosphorescent emission while the transitions of the pH dyes, 

fluorescein and 1-hydroxypyrene-3,6,8-trisulfonic acid (HPTS), display fluorescence 

(short ~ns) lifetime decays.  In order to simplify the terminology, luminescence is used 

in this thesis to denote all photon emission processes.  

 

2.2.2 Stokes’ shift  

 

The difference in the position of the maxima for absorption and emission spectra of the 

luminescent molecule is defined as the Stokes’ shift and is shown in Figure 2.2. 

 

Figure 2.2: Stokes` Shift. 

 

As described in section 2.1.1, the energy absorbed by the molecule excites the electrons 
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from the ground state to the higher excited state. Emission of photons will occur when 

the electrons de-excite to the lowest vibrational energy level of the excited state by 

internal conversion and other non-radiative quenching processes. The emission 

spectrum determined by the energy level differences will be therefore shifted towards 

longer wavelengths compared to the absorption peak wavelength thus constituting the 

Stokes’ Shift.   Both spectra are representative of the particular molecular structure of 

the luminophore [2]. 

 

2.2.3 Luminescence lifetime and quantum yield 

 

The luminescence lifetime τ and quantum yield Φ are key properties of a luminescent 

molecule or luminophore. The lifetime is the average time which the electron in the 

molecule spends in the excited state prior to returning to the ground state. After 

absorption of light, due to the conformational changes and the interaction between the 

luminophore and its environment, the luminescence intensity will decrease 

exponentially, what is described by the equation: 

)/(

0)( teItI   
(2.1) 

Where: 

 I (t) - intensity measured at time t 

I0 - initial intensity just after excitation   

τ - luminescence lifetime 

 

The lifetime is defined as the time in which the luminescence intensity decays to 37% of 

its initial value just after the excitation pulse [1]. The decay can be either single 

exponential or multi-exponential, depending on the environment [2].   

The quantum yield, Φ is a measure of the efficiency of the emission and is defined as 

the ratio of emitted to absorbed photons and its value varies from 0 to 1. The influence 

of the non-radiative processes, defined as quenching, has to be considered here.  

Assigning the rate for all radiative processes as Г and non-radiative processes as knr, the 

quantum yield can be expressed as: 
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nrk


           (2.2) 

and it will be always less than unity because of the presence of luminescence  energy 

depleting processes [1]. 

 

2.2.4 Luminescence quenching  

 

All the processes which contribute to the decrease of luminescence intensity of the 

luminophore, are defined as luminescence quenching phenomena [1]. This is due to the 

presence of excited state relaxation processes which occur without emitting photons 

such as static quenching, dynamic (collisional) quenching as well as energy transfer or 

electron transfer events. In case of static and dynamic quenching, the molecule of 

quencher and the luminophore have to be in contact in order to generate non-radiative 

processes. Static quenching is present when a non-luminescent complex between the 

molecule of quencher and a non-excited molecule of luminophore is created, which 

leads to a decrease in the luminescence intensity. Dynamic quenching occurs when the 

indicator molecule is in its excited state. By collision with quencher molecules, the 

luminophore returns to the ground state without emitting photons. As a consequence, a 

change either in the luminophore lifetime or its intensity can be observed.  

Oxygen, one of the two analytes of interest in this work, acts as a quencher with regard 

to the emission of some luminescent complexes including the ruthenium complexes 

used here. Hence, a more detailed description of the dynamic quenching process and its 

application for oxygen sensing is discussed in section 2.3.3.     

 

2.3 Optical Chemical Sensors  

 

2.3.1 Introduction 

 

Optical sensors became more widely used within the last decade due to their many 

unique features, some of which are listed below: 

 No requirement for separate reference sensor 
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 Lack of electrical and electromagnetic interferences 

 Appropriate for real-time monitoring of the analyte 

 Energy-efficient 

 Inexpensive 

 Easy to miniaturise 

 Non sample consuming 

Having just few limitations coming from the fluorophore photobleaching and leaching 

which reduce sensor long-term stability and lack of compatibility with measurement of 

turbid samples, optical sensors found a wide range of applications in environmental and 

biomedical field. In this section an overview of oxygen and pH sensors is given together 

with main principles which lie behind optical oxygen and pH sensing. At the end, 

oxygen and pH-sensitive dyes are reviewed. 

 

2.3.2 Overview of oxygen and pH sensors 

 

The level of oxygen can be measured by several different techniques [3]. The traditional 

detection methods such as Winkler titration [4] and Clark electrode [5] are not always 

satisfactory, because of their time and analyte consuming nature respectively. A 

technique, which overcomes these limitations, is based on the optical detection of the 

luminescence signal, which is gradually quenched with increasing amount of oxygen. 

The luminophore is usually entrapped inside a hydrophobic oxygen-permeable matrix, 

which reduces dye leaching and minimizes possible interferences coming from the 

environment. Since the discovery of luminescence quenching phenomena in 1930’s by 

Kautsky and Hirsch [6], many different matrices have been developed. Due to very 

good mechanical and chemical stability, polymers have become very popular in this 

application [7, 8]. Other candidates for luminophore immobilizing agent are sol-gel 

materials. In relatively simple way, the property of the matrix can be optimised for a 

particular application. For oxygen sensing hydrophobic, organically modified silicates 

(ORMOSILs) have been developed. Sol-gel derived materials have many advantages 

over polymeric matrices such as: higher chemical, mechanical and thermal stability as 

well as better optical transparency [9].  

The most common device used for pH determination is the pH electrode. Despite many 
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advantages such as simplicity of usage, cheapness and reliability, the electrode is not 

suitable for many applications because of its fixed size and design.  Additionally 

drifting of the signal in time excludes the possibility of acquiring long-term 

measurements. As in the case of oxygen detection, an optical sensor provides an 

excellent alternative for pH measurements. The changes in pH are recorded based on the 

changes in the absorbance, luminescence or reflectance of the indicator molecules 

immobilized in a proton-permeable matrix. This simple (sensor) architecture facilitates 

the device miniaturization process and provides some flexibility in the design. The 

sigmoidal sensor response within a narrow dynamic range (±1.5pKa, where pKa is a 

negative logarithm of dissociation constant), results in high sensor resolution. Some 

attempts have been made to widen the dynamic range of the sensor by incorporating an 

indicator with two pKa values [10] or several indicators with different pKa values [11].  

pH optical sensors have evolved in time from simple colorimetric strips [12], through 

fibre optic absorption-based sensors [13], in various luminescent pH indicators 

immobilized in different polymer [14-16] and sol-gel derived [17, 18] matrices.      

 

2.3.3 Principles of optical O2 and pH sensing 

 

O2 sensing 

 

Oxygen, due to its small dimensions and neutral charge, which enable its fast diffusion 

and facilitate the probability of collision, is considered as a very efficient luminescence 

quencher [1, 19].  In an environment where more oxygen is present the quenching 

process will be more efficient therefore less luminescence of the indicator molecules 

will be observed. This dependence of luminescence signal from oxygen concentration 

has been applied here for oxygen sensing. The luminophores with longer lifetimes, such 

as ruthenium (II) complexes have become very popular in this application [20]. When 

the oxygen molecule collides with an excited ruthenium complex, the dye molecule 

returns to its ground state without luminescence emission and the oxygen molecule is 

brought from its triplet ground state to the excited state (Figure 2.3). 
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Figure 2.3: Schematic representation of the dynamic quenching phenomenon. 1 - luminophore 

in its ground state, 2 - luminophore in its excited state, 3 – quencher in its ground state, 4 - 

collision, 5 - quencher in its excited state. 

 

As mentioned in section 2.2.1 ruthenium complexes belong to the group of transition-

metal-ligand complexes (MLCs). The population of singlet and long-lived triplet states 

characteristic for this type of luminophores, results in the presence of an intersystem 

crossing.    After absorption of photons, the electrons can be transferred from singlet 

excited states to the triplet states, from where a return to the ground state might occur 

once again by the quenching event or by non-radiative decay [21]. A schematic 

representation of this process is presented in Figure 2.4.  

 

 

Figure 2.4: Simplified Jablonski diagram illustrating the mechanism of quenching by 

intersystem crossing. A - absorption of light, S0 - singlet ground state, S1 - first singlet excited 

state, T1 - first triplet excited state, Q - quencher, kISC - rate of singlet to triplet intersystem 

crossing, knr - non-radiative decay rate, L* - luminophore in the excited singlet state, L*T - 

luminophore in the excited triplet state. 
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Due to a collisional character of the quenching process, the intensity and the lifetime of 

luminophore are strictly related to the partial pressure of oxygen, that is described by 

the Stern-Volmer equation (Equation  2.3) [22]: 

                                 22
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                                          1
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*4                                                             (2.5) 

Where:  

I0 , I - the luminescence intensity of the luminophore in the absence and presence of O2 

τ0 , τ - the luminescence lifetime of the luminophore in the absence and presence of  O2 

KSV - Stern-Volmer quenching constant 

pO2 - partial pressure of O2 

kq - bi-molecular quenching constant 

The lifetime of the luminophore is dependent on both radiative (kr) and non-radiative 

decay rates (knr), as presented in Equation 2.4.  The bi-molecular quenching constant is 

related to the diffusion coefficient, D (Equation 2.5), which results in dependence of the 

dynamic quenching process on the temperature.  The other symbols in the above 

equation represent the spin statistical factor (g), the collision radius (R*) and Avogadro's 

number (N).   

Based on equation 2.3, the Stern-Volmer plot showing the dependence of I0/I or τ0/τ 

versus pO2 can be drawn. In a homogeneous environment, this plot is represented as a 

straight line with a vertical intercept at 1 and slope equal to KSV, which is used then as a 

value describing sensor sensitivity. In a lot of cases, microenvironment variations   leads 

to different local quenching profiles, for which other non-linear models have been 

established [23-25]. When two different microenvironments with Stern-Volmer 

constants KSV1 and KSV2 are present in the luminophore-doped sensing matrix, the two-

site Demas model can be applied to describe the quenching processes. This fitting is 

based on Equation 2.6 presented below: 
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Although Demas [26] et al. found this model very useful to describe their data, the 

authors underlined as well that a lot of attention has been paid to avoid over-
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interpretation of the results. 

   

pH sensing 

 

pH sensing using optical detection usually relies on the change in the absorption or 

luminescence intensity under different hydrogen ion concentrations, that is presented in 

Figure 2.5. 

 

 

 

Figure 2.5: Schematic representation of luminescence-based pH sensing. 1 – pH indicator at 

equilibrium e.g., weak acid HA at equilibrium with its conjugate base A
−
, 2 - protonated (acidic) 

form HA when excited does not change its luminescence properties, 3 - deprotonated (basic) 

form A
− 

changes its luminescence properties upon excitation. 

 

By tuning the pKa value of the pH indicator to the pH range of interest, which should be 

approximately between ±1.5pH unit of the pKa, a pH sensor for a particular application 

can be designed. The value which is read by the optical sensor is equal to the 

concentration of protonated (acidic) and deprotonated (basic) form of the pH-sensitive 

fluorophore.  For simplicity, in the first chapter, the general definition of pH was 

introduced in Equation 1.1. Focusing on the principles of pH sensing, this equation has 

to be modified to following: 

                                                       
H

apH log                                                      (2.7) 

where aH+ is hydrogen ions activity (or more precisely hydronium ions, H3O
+
). The 

activity of the ions is a function of not only their concentration but also it depends 

through the activity coefficient value fH+, on the ionic strength of the environment, as 
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presented in Equation 2.8 

                                                        Hfa
HH

                                                     (2.8) 

Consequently, the Henderson-Hasselbalch formula (see Equation 1.5) can be written as:  
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            (2.9) 

This means that, for any pH measurement the ionic strength has to be defined. 

Moreover, the calibration plot and pKa value have to be measured at the same ionic 

strength and temperature as the final experimental conditions [27].  

 

2.3.4 Luminophores for optical sensing of O2 and pH 

 

Luminophores for O2 sensing 

 

Oxygen sensing requires luminophores with a long decay time, which would enable 

monitoring the changes in the intensity or lifetime under different oxygen levels. Other 

features which have to be taken into consideration when choosing a complex for oxygen 

sensing are high quantum efficiency, analyte specificity, photo stability and chemical 

resistance. The first complexes used in this field which belong to the group of 

polycyclic aromatic hydrocarbons (PAHs), did not fulfil these criteria [28-30]. The 

achievements in organic chemistry significantly improved oxygen sensing capabilities. 

Complexes with lifetimes as long as thousands μs were synthesised, which significantly 

improved the oxygen sensor performance. The most popular oxygen indicators, together 

with their lifetimes and quantum efficiency, are shown in Table 2.1. 

 

Table 2.1: Oxygen-sensitive luminophores and their optical properties. 

Indicator Unquenched 

Lifetime (µs) 

Quantum Yield References 

([Ru(dpp)3]
2+

 6.3 0.35 [31,32] 

([Ru(phen)3]
2+

 0.74 0.08 [31,32] 

([Ru(bpy)3]
2+

 0.6 0.042 [31,33] 

Pd-coproporphyrin 1200  0.2 [33,34] 
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Pt-coproporphyrin 100 0.4 [34] 

Pd-meso-tetra-(4-carboxy-

phenyl)tetrabenzoporphyrin-

dendrimer 

276 0.12 [35,36] 

Pd-meso-tetra-(4-

carboxyphenyl)porphyrin-

dendrimer 

738 0.1 

 

 

[37] 

Pd-meso-tetra(4-

Carboxyphenyl)Porphine 

705 0.06 [35] 

Ir(Cs)2(acac) 20.8 0.54 [38] 

 

From the detection point of view, the long lifetime of these luminophores together with 

large Stokes shifts and high quantum efficiencies result in less expensive and simpler 

optics and electronics. 

For this intracellular oxygen sensing investigation, the ruthenium complex [Ru(II)-

tris(4,7-diphenyl-1,10-phenanthroline)]dichloride ([Ru(dpp)3]
2+

) was used. Its chemical 

structure together with the absorption and emission are presented in Figure 2.6 a, b. 

a) 

 

 

b) 

 

Figure 2.6: a) Chemical structure [39], b) spectroscopic characterisation of [Ru(dpp)3]
2+

. 

 

This luminophore, besides its good photostability and high quantum yield (~0.4), has 

several other features which are very attractive from the point of view of optical 

detection such as large Stokes shift (~150nm), absorption band in the blue region of the 
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spectrum (~450nm), which makes it compatible with low-price light emitting diodes 

(LEDs) and, crucial in this oxygen sensing application, relatively long luminescence 

lifetime (~5μs under nitrogen saturated conditions) originating in its triplet-to-ligand 

charge transfer (MLCT) nature [22]. In addition, very low solubility of ([Ru(dpp)3]
2+

) in 

an aqueous environment significantly reduces leaching of the dye from the silica 

nanoparticles into the intracellular environment, which is a big advantage  in this 

intracellular sensing application.  

The other group of oxygen indicators used in the optical detection systems are the 

colorimetric dyes, mainly represented by haemoglobin [40], myoglobin [41] and redox 

dye-based complexes [42]. However these dyes have a narrow range of application due 

to their special storage requirements in order to keep them stable.    

 

Luminophores for pH sensing 

 

There are several criteria, which have to be considered while choosing the pH indicator, 

which are listed below: 

- excitation and emission wavelength  included between 405-550nm and 550-

700nm, respectively 

- large Stokes’ shift 

- pKa value matched to the application 

- high quantum yield 

- high photostability  

- no cross-sensitivity to ionic strength and other analytes 

The common pH indicators are based on the change in the absorbance spectrum. 

Examples such as phenol red [43], bromocresol green [44], bromothymol blue, cresol 

purple [45], congo red [46] and phenolphthalein [47] can be found in the literature. An 

alternative group of pH-sensitive complexes are luminescent-based indicators, which 

thanks to their better selectivity and sensitivity are more frequently used for optical 

sensing application. None of them however fulfils all of the desired criteria. Due to its 

low cost, lack of cross-sensitivity with oxygen, low cytotoxicity and improved 

photostability, 1-hydroxypyrene-3,6,8-trisulfonic acid (HPTS) is one of the most 

popular in this group [48] and it was chosen at the beginning for these studies. With a 
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pKa value around 7.3, this luminophore is suitable for the sensing within cytosolic pH. 

The presence of the sulfonate groups in its structure results in very good solubility of 

this dye in water. This luminophore with two different absorption maxima (404nm and 

455nm for acidic and basic form, respectively) and with one emission peak at 515nm 

belongs to a class of self-referencing dyes used for the ratiometric detection (see section 

2.5.2).The big limitation, which have to be overcome when applying this dye for the 

intracellular measurements, is its lack of cell permeability. The strategies to deliver this 

dye to the interior of the cell include more invasive techniques such as microinjection 

and electroporation or encapsulation of the dye inside very dense, proton-permeable and 

cell membrane-permeable nanoparticle matrix, which would carry the pH indicator 

inside the cell. The other examples of pH-sensitive luminophores used for the 

intracellular measurements are carboxyfluorescein and its derivatives [49, 50] as well as 

seminaphthofluorescein (SNAFL) [51] and seminaphthorhodafluor (SNARF) [52]. The 

high quantum yield of carboxyfluorescein in basic environment together with a 

possibility of its covalent attachment to the surface of a sensor make it very attractive 

candidate for the cytosolic investigation. However moderate photostability of this dye, 

excludes its application for long-term monitoring of pH. In regard to SNAFL and 

SNARF indicators, these self-referenced fluorophores have many attractive features 

such as very limited dependence of their ratiometric properties on their concentration 

and the ionic strength of the intracellular environment, long wavelength excitation 

resulting in reduced cell photodamage and facilitated simultaneous detection as well as 

the possibility to bind them covalently inside the cell for the prolonged studies. The 

main drawbacks of these luminophores are their low quantum yield and a high cost. The 

latest examples of pH-sensitive dyes are more photostable iminocoumarin and lipophilic 

fluorescein derivatives, pH probes with multiple pKa values from 1.7 to 9.0 excitable 

with UV as well as pH-sensitive ruthenium metal-ligand complex and lanthanide.         
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2.4 Silica nanoparticles for intracellular sensing 

 

2.4.1 Introduction 

 

In this section silica nanoparticles and their application for monitoring oxygen and pH 

inside the cell are described. The advantages of miniaturization of the optical sensor to 

nanometre dimension, especially important in the cellular context, are presented first.  

This is followed by a State of the Art review of oxygen and pH nanosensors. The 

technique used in this work to synthesise nanoparticles is then introduced. The last 

section contains a brief description of organically modified silicates (ORMOSILs) and 

their application for oxygen sensing. 

       

2.4.2 Optical Nanosensors for intracellular measurements 

 

Live cell imaging and intracellular sensing are of great importance for early diagnosis 

and therapeutics applications [53]. Real-time, non-invasive monitoring of processes 

occurring at the cellular level is not achievable by traditional optical and 

electrochemical sensors. For a long time the only insight inside the cell was due to 

analyte-specific luminescent molecular probes, which, coupled with high-resolution 

microscopic techniques, have provided much valuable information about biological 

processes. The diffusion problem, derived from sequestration of dye molecules to 

specific cellular compartments and their non-specific binding inside the cell, as well as 

other limitations associated with intensity-based measurements (i.e. photobleaching, 

fluctuations in source intensity), make impossible to quantify the intracellular 

measurements. In order to overcome these problems, optical nanosensors, named by 

Kopelman group as PEBBLE: photonic explorer for bioanalysis with biologically 

localized embedding [54, 55], have been developed. This new group of sensors is based 

on nanoparticle design, where luminescent molecules are incorporated inside an inert 

protective matrix, which minimises the possibilities of non-specific binding between 

proteins and molecules of the indicator dye as well as prevents potentially toxic 

interactions between the cellular components and the encapsulated organic compound. 

Due to their small dimension (20-600nm), the spherical nanosensors occupy from 1ppm 
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to 1ppb of the mammalian cell volume, which make them relatively non-invasive and 

can help them evade the immune system. Other important features of nanoparticles from 

the bioimaging and biosensing point of view are:  

 

 High surface-to-volume ratio, thus enhancing the accessibility of 

analytes/targeting factors towards indicator dyes/specific cells or compartments 

of cells 

 High loading efficiency (both inside the NP matrix and on the surface), resulting 

in signal amplification 

 Possibility of loading more than 1 dye into the matrix, enabling encapsulation of 

indicator and reference dye for ratiometric measurements and multi-analytes 

analysis  

 Capability of targeting of nanoparticle to the location of interest by coating their 

surface with proteins and peptides [56] 

 

Since PEBBLEs invention in 1990s, significant progress has been made in the 

nanoengineering field. Many different types of nanosensors are used at present for 

bioimaging and biosensing applications including silica and polymer nanoparticles, 

lanthanide nanoparticles, magnetic nanoparticles, metallic nanoparticles as well as 

quantum dots which are famous for their unique size-dependent emission properties 

[53].  

This work focuses on the use of silica NPs, whose properties due to the versatile silica 

chemistry, can be easily adjusted for analyte-specific application. In addition, the 

negative charge on the surface of silica nanoparticles and the ease of surface 

modification makes them very attractive in nanotechnology. With these features, 

nanoparticles can bind in many ways to different bio-recognition agents such as 

antibodies, protein complexes, nucleic acids and many others. They can also be doped 

with a wide range of positively charged molecules by electrostatic interactions [57]. The 

optical transparency of the silica protective layer is an important aspect for detection of 

the embedded dye luminescence as the dye spectrum is not altered to any large extent 

by the matrix. The photostability of the dye is also enhanced by its incorporation in the 

silica matrix [58]. Other features of the silica matrix which are important for in vivo 
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applications are dispersibility in water, resistance to microbial attack and lack of 

influence of solvent polarity on nanoparticle size.    

Despite these numerous advantages, much research is still required before these new 

probes can be introduced onto the market. There is still a limited understanding of the 

nanoparticle behaviour in biological systems. Questions regarding the detailed 

interaction of nanoparticles with the organism and toxicity effects have not yet been 

answered. However the vision of early detection of diseases is a powerful engine for the 

robust toxicological investigation, which hopefully will facilitate the implementation of 

nanotechnology in the biomedical field in the very near future [59, 60].  

 

2.4.3 O2 and pH-sensitive nanoparticles – state-of-the-art 

 

Although the mechanism of optical oxygen sensing is well known and many oxygen 

sensors have been developed (see section 2.3.2), sensing of oxygen inside the cell still 

remains cumbersome [61]. The issues related to the intracellular delivery of the sensor 

and its calibration, ideally performed inside the cells, make quantitative oxygen studies 

very challenging. The first dissolved oxygen nanosensor applied in the intracellular 

environment was developed by the Kopelman group in 2001 [62]. This ratiometric 

sensor composed of an oxygen-sensitive   ruthenium complex and Oregon Green 488-

dextran as a reference dye embedded into silica matrix, was introduced into C6 glioma 

cells and measurements of oxygen inside the cells were successfully performed. The 

sensitivity of this sensor, expressed by the quenching response to dissolved oxygen 

(QDO), was calculated to be equal to 80%, based on the equation: 

                                           %100

2

22 
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
N
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DO
I

II
Q                                       (2.10) 

where IN2 is the luminescence intensity of the oxygen-sensitive luminophore in the 

absence of oxygen and IO2 is the luminescence intensity in the oxygen-saturated 

environment. In the case of ratiometric measurements, the symbol I stands for the ratio 

of luminescent indicator to the reference dye intensities. A few years later, the same 

group have exploited the concept of organically modified silicates (ORMOSILs) and 

silicones for nanosensing applications. This novel approach resulted in the fabrication of 

nanoparticles with a hydrophobic matrix consisted of phenyltrimethoxysilane (PTMS) 
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and methyltrimethoxysilane (MTMS) [63] or polydecylmethacrylate (PDMA) [64]. 

Apart from the change in the matrix, the ruthenium complex was exchanged with the 

platinum (II) octaethylporphine, which due to its much longer lifetime (60-90 μs) and 

unaffected by the light scattering and auto-fluorescence infrared emission is more 

suitable for this oxygen biosensing application. For these hydrophobic nanosensors, the 

highest sensitivity to dissolved oxygen was achieved (QDO=97%). Other matrices for 

dissolved oxygen sensing were developed based on polyelectrolyte layers [65] and 

liposomes [66], both doped with ruthenium complexes; however, the quenching 

responses of these nanosensors to dissolved oxygen were much lower than the ones 

measured for platinum-doped nanoparticles (QDO equal to 60% and 76% respectively). 

Additionally, the nanoparticles made from a hydrophobic copolymer of styrene and 

vinylpyrrolidone which can host a wide range of oxygen-sensitive luminophores (with a 

hydrophilic poly(vinylpyrrolidine) shell) have been reported in the literature [67].  

In parallel to ratiometric luminescence-based measurements, different optical 

techniques employing the luminophore lifetime [68-71] and luminescence anisotropy 

[72] have been investigated.  

Beside oxygen sensitivity, an important feature of the intracellular nanosensor is its 

ability to penetrate the cell membrane without any physiological disruption. A big 

improvement has been made in this area since the creation of first PEBBLEs, which 

were introduced to the cell by a gene gun technique [73]. Papkovsky et al. developed 

the strategy of self-loading oxygen sensors with the cell-penetrating peptides, which 

when conjugated with Pt(II)-coproporphyrin oxygen-sensitive molecules of dye were 

transported  inside the cell. This concept then was adapted into the field of nanosensing, 

where ratiometric luminescent nanoparticles were coated with these peptides [74] or 

with amino groups [75] in order to facilitate their cellular uptake. Some limitations of 

these probes, such as variations in the nanoparticle uptake between different cell lines 

and issues related to photostability and brightness, have been overcome by 

incorporation of a platinum complex into a cationic polymeric nanoparticle matrix. The 

positive charge of the nanosensor allows it to easily penetrate through the membrane, 

which results in similar cell loading efficiency for different mammalian cell types. The 

long-lifetime phosphorescent dye with its high photostability and brightness contributes 

to the high performance of the nanosensor. Up-to-date, the studies presented by 
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Papkovsky et al. have shown the greatest potential for this intracellular oxygen 

investigation. 

As with oxygen, the first pH nanosensors derive from the Kopelman group and they 

belong to the category of polymeric PEBBLEs. Different pH indicators (i.e. fluorescein 

and its derivatives, SNAFL) and the internal standard sulforhodamine 101 were 

entrapped within acrylamide nanoparticle matrices for the ratiometric intracellular 

measurement [73, 76]. The performance of these nanosensors was highly reduced by 

leaching of dye molecules from the matrix (45% within 48 hours) [77], which led to 

their cytotoxicity and unsatisfactory calibration, due to the presence of free dye 

molecules in the cell and different leaching rates for the indicator and reference dye 

respectively. To overcome this problem, Rosenzweig et al. covalently attached amine-

reactive forms of pH-sensitive Oregon Green and pH insensitive Texas Red to the 

surface of submicrometer polystyrene nanoparticles, which were then introduced to a 

macrophage cell line through a phagocytic pathway [78]. These nanoparticles, with a 

dynamic range between 4.5 and 7.0 and sensitivity of 0.1 pH units, were able to detect 

the change in lysosome pH from 4.8 to 6.5 under chloroquine stimulation. However, 

unshielded molecules of the luminophores were still in contact with intracellular 

components and their rate of photobleaching was comparable to that of free dye 

molecules. The next improvement was to inertly bind luminophores inside the 

nanoparticle structure through covalent attachment, which was demonstrated by Sun et 

al. [77]. In this work, a fluoresceinamine and rhodamine B derivatives were modified 

with acrylamide functional group and incorporated inside the hydrophilic 

polyacrylamide nanoparticles. The same strategy was applied for the silica 

nanoparticles. The Wiesner group synthesized a nanosensor, where a reference and 

sensor dyes were spatially separated in a core/shell nanoparticle construct. In this way 

the interaction between the sensing dye located within a shell and the hydrogen ions 

could occur without any interferences from the core-bounded molecules of the reference 

dye [79]. Other examples of this successful approach can be found in the literature [80, 

81]. The luminescent pH nanosensors have a limited pH measurement range determined 

by pK value of the sensing dye. Recently, Aylott et al. developed pH nanosensors with 

tuneable pK and extended dynamic range. By incorporating two pH-sensitive 

fluorophores and a reference dye inside polymer nanoparticles, they were able to 
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increase the effective dynamic range of the nanosensor from 1.15 pH units up to 2.01 

pH units, which could be applied for simultaneous intracellular measurements of pH 

within basic cytoplasmic and acidic endosomal cell compartments [83]. The same group 

had several other achievements in the synthesis of pH nanosensors, which includes 

clickable sensing polymeric nanoparticles [84] and incorporation of pH-sensitive dyes 

into a nanocrystal structure [85]. All above examples of pH-sensitive nanosensors use 

optically inert materials for the nanoparticle matrix. To increase the brightness and 

optical functionality of nanosensor, a novel category of nanomaterial based on 

fluorescence resonance energy transfer (FRET) was designed. Semiconductor quantum 

dots (QD) and polymer dots (Pdots), coupled to pH-sensitive dyes, have been reported 

[86]. The last examples of pH-sensitive nanoparticles derive from the class of the 

Surface-enhanced Raman scattering (SERS) nanosensors, which being free from 

photobleaching and auto-fluorescence issues, are very promising candidates for 

intracellular studies [87,88].  

 

2.4.4 Nanoparticle synthesis – Stöber process  

 

In 1968 a German chemist, Werner Stöber, published his revolutionary work on the 

synthesis of mono-disperse silica spheres. The first one who observed the formation of 

the particles, as a result of mixing tetra alkyl silicates in alcohol with water under basic 

conditions, was Kolbe [89].  Stöber however made a detailed investigation of this 

process and he succeeded in achieving controlled growth at sub-micron nanoparticle 

size [90]. Since that time, other synthesis routes such as micro-emulsion [91] and 

silicon-based methods [92] have been established. However, the Stöber synthesis 

remains the simplest and most efficient one in comparison to others, where large 

amount of surfactants and time-consuming preparation of the reactants are the big 

limitations from the industrial/mass production point of view [93].  

The following steps can be distinguished in the Stöber-based nanoparticle synthesis: 

- Hydrolysis of the suitable metal alkoxides in the basic environment: 

Si(OR)4 + nH2O   Si(OR)4-n (OH)n + nROH                                           (2.11) 

- Water (1) and/or alcohol (2) condensation phase 

1) Si-OH + HO-Si     Si-O-Si  + H2O                                            (2.12) 
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2) Si-OR +  HO-Si    Si-O-Si  + ROH                                          (2.13) 

-  Formation of nanoparticles 

There have been   two proposed models to explain nanoparticle formation according to 

the Stöber process. The first is the monomer addition model which divides the Stöber 

process into two stages: nucleation generation and particle growth, being a result of 

addition of hydrolysed monomers to the polymer’s surface [94, 95]. The controlled 

aggregation model is the second possibility which describes the formation of silica 

nanoparticles; it excludes the nucleation phase and predicts the grouping of sub-

particles into the final particles [96-99]. Even if the exact mechanism is not clear, there 

is a lot of experimental data which shows a strong influence of water-to silane ratio and 

the nature and concentration of the catalyst and the metal alkoxides on the relative rates 

of hydrolysis and condensation. As a consequence, the control of the physical properties 

of nanoparticles such as average pore size, pore shape and NP surface area can be 

established [100]. There is, however, one limitation which has to be taken into 

consideration when designing bioimaging nano-probes and sensors which is that many 

biomolecules denature in the presence of alcohol and in high pH conditions. This is not 

an issue for the nanoparticles which are used as optical chemical sensors in this work. 

[101].  

 

2.4.5 ORMOSILs and their application for oxygen sensing 

 

Organically modified silicates (ORMOSILs) are inorganic-organic hybrid materials 

which, due to the same mechanism of formation as for the Stöber –based nanoparticles, 

belong to the same group of sol-gel derived materials [102]. The introduction of 

additional organosilicon results in better control of the chemical and physical 

parameters of the final product [103]. Following Sanchez and Ribot [104], ORMOSILs 

materials can be divided into two classes: embedded and grafted materials, depending 

on their method of formation. The materials where the organic and inorganic 

components are simply mixed and, in the process of co-condensation, combined 

together, belong to the first class. The other category corresponds to materials where the 

hybrid formation is facilitated by the chemical bonding between organic and inorganic 

compounds. The scheme of the reaction is very similar to the one in section 2.4.4 
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describing the Stöber process; basic hydrolysis of metal alkoxides and 

organoalkoxysilanes defined in sol-gel terminology as precursors, followed by their co-

condensation reaction and finally nanoparticle formation. The simplified synthesis route 

is presented below: 

 

 

Figure 2.7: ORMOSIL formation [105]. 

Where R4-n Si(OR′)n - organic precursor 

             R - desirable functional group (e. g.:CH3, C6H5, CH2CH2CH2SH) 

             1≤ n ≤3. 

ORMOSIL nanoparticles, in comparison to the pure inorganic Stöber–derived 

compounds, possess many advantages some of which are listed below: 

 

 Larger pores in the matrix , which allows for controlled biomolecule release 

 Possibility of loading either hydrophilic or hydrophobic dyes/drugs and, as a 

consequence, improvement in the quantum yield of photoluminescence and 

facilitating therapeutic applications for a wider range of treatable diseases 

 Expanded range of surface functionalization variants with different chemical 

groups   

 Improved biocompatibility [106] 

 

For dissolved oxygen sensing, due to their increased hydrophobicity and porosity of the 

matrix, ORMOSIL nanoparticles provide a better linearity as well as sensitivity of the 

sensor [63], which makes them a good candidate for this application.  
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2.5 Optical sensing techniques for monitoring intracellular 

O2 and pH 

 

2.5.1 Introduction 

 

Luminescence has been used in order to study changes in concentration of the analyte. 

The measurements have been based on two different luminescence features: the 

intensity and the lifetime. Direct unreferenced luminescence-intensity detection has 

many drawbacks such as sensitivity to external perturbations coming from the light 

source and detector, inner filter effects, as well as change in the signal caused by 

leaching and photobleaching. To eliminate these effects, ratiometric and lifetime-based 

measurements have been utilized in this study and these techniques are briefly described 

in the following subsections.   

   

2.5.2 Ratiometric measurements 

 

The use of an analyte-independent reference dye, in conjunction with the sensing dye, 

can counteract some of the disadvantages of intensity-based sensing. Ratiometric 

measurements are independent of instrument fluctuations and dye concentration as well 

as leaching and photobleaching [63]. The measurements can be performed in three 

different ways: 

- two excitation and one emission wavelength detection 

- one excitation and two emission wavelengths detection 

- two excitation and two emission wavelengths detection 

An application of the dye with two different emission peaks, one dependent and another 

one independent on the analyte concentration, is very convenient for this ratiometric 

approach. In this case only one fluorophore is present in the sensing matrix, what results 

in a more facile synthesis route and excludes the changes in the intensity ratio due to 

either fluorophore leaching process or difference in the photostability between two 

different fluorophores.      
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2.5.3 Luminescence lifetime-based measurements 

 

2.5.3.1 Phase fluorometry 

 

The phase fluorometry method is a time–resolved luminescence technique. Because this 

is an indirect lifetime-based method, it has many advantages over unreferenced intensity 

measurements such as the possibility to resolve the emission from more than one dye, to 

distinguish between static and dynamic quenching, to carry out resonance energy 

transfer investigation, and, in particular, for cellular imaging there is no dependence on 

dye concentration, photobleaching or leaching effects. To carry out the measurement, 

the excitation beam is modulated usually with a sinusoidal wave at a frequency f, so that 

its reciprocal would be comparable to the decay time of the dye τ. Hence, the resulting 

emitted light will have the same frequency f as the incident beam and will be also time 

delayed or phase-shifted relative to the excitation signal as presented on Figure 2.8.   

 

Figure 2.8: Phase shift used in phase fluorometry technique [107]. 

 

The lifetime therefore can be calculated from the equation: 

                                                              
f




2

tan
                                                     (2.14) 

where Φ is a phase shift . The time of response for the sample is finite and determined 

by the dye lifetime. This time delay results in demodulation of the emission by a factor 

mω, defined by the equation: 
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where:  

a – average intensity of the incident light 

b – peak-to-peak height of the incident light 

A - average intensity of the emission light 

B – peak-to-peak height of the emission light 

 

There are two factors which have to be taken into consideration: 

1. decrease of the signal to noise ratio (SNR) with increasing modulation frequency 

2. increase of the phase sensitivity with modulation frequency 

The crucial step therefore for the phase fluorometry measurements would be to find an 

optimal modulation frequency for the particular dye which is consistent with its 

lifetime. The electronics for this method is relatively cheap and employs a light-emitting 

diode (LED) to excite the sample and a photodiode (PD) with amplifiers for a collection 

of the signal [108-110]. Note that this technique was used only to calibrate the 

nanosensors outside of the cell environment. The techniques used in the following 

sections were used for the cellular sensing.  

 

2.5.3.2 Time-correlated single-photon counting (TCSPC)  

 

The Time correlated single photon counting (TCSPC) method is a time–resolved 

technique implemented in the time domain mode. This means that the dye is excited, not 

as in the previous case by a sinusoidally modulated beam, but using a pulsed laser 

source [108]. As the name implies, this technique measures one photon per excitation 

pulse. To fulfil this condition the photon count rate must be lower than 1% of the 

excitation pulse frequency. A schematic, which shows the principle of this detection 

method, is presented in Figure 2.9. 
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Figure 2.9: Principle of TCSPC method [111] 

 

 The photons are collected into the different acquisition channels determined by the time 

between the excitation pulse and photon emission. In Figure 2.9, the fluorophore decay 

spectrum is shown only when much less than 1 photon is detected per excitation pulse. 

For higher count rates, false shorter lifetimes will be detected, due to limitations in the 

electronics, which is unable to measure multiple photons per pulse. When many photons 

arrive at the detector only the first one is counted, resulting in deformation of the 

intensity decay and shortening of the lifetime. As for the previous frequency domain 

technique the lifetime of the dye is closely related to the pulse rate of the excitation 

wave; for TCSPC technique the laser pulse width should be comparable to the lifetime, 

which usually is in the nanosecond time scale. Therefore this method requires expensive 

electronics such as high repetition rate mode-locked picoseconds (ps) or femtoseconds 

(fs) light sources and for signal collection a high-speed micro-channel plate (MCP) 

photomultiplier tubes (PMTs) [111]. The long lifetime of oxygen-sensitive 

luminophores (from μs to ms) is a big limitation for this technique, as longer lifetimes 

require longer pulse rates with subsequently lower count rates and therefore require 

longer acquisition times. Cellular experiments would require high frame rates in order 

to monitor the intracellular processes. The data can still be acquired for longer lifetime 
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luminophores, however higher count rates have to be applied in excess of the ideal 1-

5% limit, and only part of the decay curve can be monitored in the image reconstruction 

process. Under these conditions there is a high probability of photon arrival events 

going undetected and the full TCSPC histogram cannot be accurately constructed. 

Nevertheless, any changes in the lifetime of the luminophore should be detected and 

although not ideal, qualitative information can be obtained.   

 

2.6 Optical imaging techniques 

 

2.6.1 Introduction 

 

Recent research and development in genomics and molecular biology has uncovered 

new exciting opportunities in the area of pharmacology and medicine. The need to have 

an insight into what is going on inside the cell and, for example, into how the molecules 

of a drug interact with living cells, was a driver for the development of high resolution 

imaging techniques. The synthesis of new luminescent labels together with the non-

invasive character of virtual sectioning of the specimen made optical techniques very 

attractive candidates for biomedical studies [112]. The introduction of new, intense light 

sources and advances in digital imaging and analysis allowed fast simultaneous imaging 

of different luminescent labels inside biological samples up to 100μm thick [113]. 

Optical microscopy evolved during this time from conventional wide-field microscopes 

which suffered from “out-of-focus” light decreasing the quality of the image up to the 

super-high resolution techniques such as stimulated emission depletion microscopy 

(STEM), photo-activated localisation microscopy (PALM) or stochastic optical 

reconstruction microscopy (STORM). In this intracellular sensing study, laser scanning 

confocal microscopy (LSCM) and fluorescence lifetime imaging microscopy (FLIM) 

were used and the general concepts behind these techniques are discussed in this 

section.  
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2.6.2 Confocal microscopy 

 

Using a conventional epifluorescence microscope, the incident light is directed onto the 

entire specimen, which leads to emission of the overall luminescence from the sample. 

It results in a blurred image of the region of interest derived from the photons coming 

from the out-of-focus light. In confocal microscopy, this effect is reduced up to a certain 

level determined by the limit of diffraction by introducing a focused coherent excitation 

beam together with pinhole apertures for the light source and detector. In this way, 

improved spatial resolution is achieved (up to a factor of 1.4) and extremely thin (0.5 to 

1.5 micrometer) optical sections can be detected. A general confocal microscope setup, 

presented in Figure 2.10, consists of one or more lasers, a scanning head with optical 

and electronic elements, a detecting unit usually composed of photomultipliers and a 

computer for final acquisition and display of the data. 

 

Figure 2.10:  Confocal microscopy schematic [113]. 

 

The scan head of the microscope is moved across the (x,y) plane and the image is 

recorded using a point-by-point and line-by-line raster. The optical sectioning of the 

sample enables 3D reconstruction of an object of interest, which makes confocal 

microscopy very attractive especially in imaging of biological samples. 
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2.6.3 Fluorescence Lifetime Imaging Microscopy (FLIM) 

 

Fluorescence Lifetime Imaging Microscopy (FLIM) is another technique which can be 

used to track the changes in complex biological systems. Unlike conventional intensity-

based microscopy, as mentioned previously, lifetime measurements are insensitive to 

many factors such as dye concentration, photobleaching, as well as variation in 

excitation source intensity, gain of the detector, signal loss within the optical path or 

specimen, and microscope focusing. This makes FLIM measurements much more 

attractive in the field of intracellular imaging and sensing, where equal distribution of 

dye across the biological specimen is very challenging if not impossible to achieve. As 

molecules of dye are exposed to different microenvironments, the change in lifetime can 

be detected. This allows the monitoring of a range of important cellular parameters 

including temperature, pH, oxygen and ion concentration and molecular interactions 

occurring within the cell.   

FLIM measurements can be divided into two categories: time–domain and frequency-

domain techniques. The first one uses a pulsed laser to excite the sample and then 

luminescence lifetime decay is reconstructed in time. In frequency-domain FLIM the 

excitation source and/or detector are modulated and the lifetime is calculated from the 

demodulation and the phase shift of the emitted luminescence. Both of these techniques 

have their strong and weak points, which have to be taken into consideration in deciding 

about the experimental setup. The measurements done in time-domain FLIM are usually 

based on TCSPC technique, described in section 2.5.3.2. Very good signal to noise ratio 

and excellent picosecond resolution are very attractive features of this technique; 

however, time-consuming image acquisition can be a huge limitation in detecting dyes 

with long lifetimes. The frequency-domain measurements do not have the long data 

acquisition problem due to their high photon efficiency detection. There is also no need 

to deconvolute the instrumental response and the luminescence decay. However, data 

analysis of stretched exponential decay can be an issue on the way to obtaining accurate 

results.   
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2.7 Cellular sensing 

 

2.7.1 Introduction 

 

To maintain cellular homeostasis, the human body is continuously monitoring the level 

of the analytes which are crucial for proper functioning. Precise control over all 

physiological parameters requires a sophisticated network of very precise internal 

sensors. Since oxygen combusts the fuel that runs the human body in the process of the 

oxidative phosphorylation (described in section 1.2), oxygen sensing is a fundamental 

biological process which allows the organism to adapt and survive in continuously 

changing environmental conditions. A decrease in the availability of oxygen, defined as 

hypoxia, can result in two different types of response: acute and chronic. Acute response 

occurs over a timescale of seconds to minutes and is related to the ion flux through the 

channels located in the cell membrane which influences cell excitability, contractility, 

and secretory activity. When hypoxic conditions exceed the limit of a few minutes, the 

organism’s response will be chronic. At this stage, due to activation of the hypoxia-

inducible transcription factors (HIF), changes will appear at molecular level, which 

induce modifications in gene expression of numerous enzymes, transporters and growth 

factors [114]. The oxygen distribution within the body is heterogeneous, therefore the 

critical oxygen tension will vary between the organs and tissues (21% O2 in the 

atmosphere, 14% O2 in the alveolar air, 12% O2 in the arterial blood, 5,3% O2 in venous 

blood, 3% O2 in tissues and 1-5% O2 in interstitial mammalian brain tissue) [115]. 

Different hypotheses have been proposed to explain how the human body maintains 

oxygen homeostasis. Nevertheless further investigations with more sophisticated tools 

are required in order to decide on one coherent oxygen sensing and regulation model. It 

is known, however, that mammalian cells react to decreased oxygen levels at the 

systemic level by rapid stimulation of breathing and increase in blood pressure in order 

to maintain normal oxygen tension in vital organs. A crucial role is played here by the 

chemoreceptors, specialised nerve cells, responsible for monitoring even slight changes 

in oxygen concentration which are localised in the carotid bodies present in most 

tissues, as well as the less well-studied neuro-epithelial bodies in the lung [115, 116]. 

Under hypoxic condition, these cells release transmitters what leads to the 
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depolarisation of nearby afferent nerve endings and an increase in sensory discharge. 

The transduction process that triggers transmitter release is not yet well understood. It 

has been suggested that hemeprotein plays a role and that cytochrome b-like NAD(P)H 

oxidase might be an attractive candidate for this protein. The hydrogen peroxide (H2O2) 

produced by this cytochrome b acts as a second messenger in regulating potassium 

channels and gene expression involved in hypoxia response [117].   

Another important analyte for the human body is the intracellular pH. The control over 

this parameter is strictly connected to the process of respiration and CO2 concentration. 

When dissolved in the blood, CO2 is rapidly converted to carbonic acid, which then 

dissociates into a proton and a bicarbonate ion. An increase in ventilation would lead 

therefore to an increase in the proton concentration and a subsequent decrease in 

extracellular pH. As with oxygen sensing, the chemoreceptors located within the body 

are responsible for CO2 and pH detection. In order to maintain the body homeostasis, 

the level of CO2 has to be kept constant in the blood at 40mmHg. Even small deviations 

from this value, originating both from the respiratory route and from cellular metabolic 

disruption, will cause the organism to try to compensate by a change in the respiration 

rate. Extracellular changes in pH would lead to corresponding intracellular changes in 

proton concentration. The cell, in trying to maintain a constant value of cytosolic pH, 

would respond by activation of ionic pumps, which would transport the excess protons 

outside or inside the cell.  The detailed mechanism of this intracellular pH regulation is 

described in reference [118] by Nattie et al.  

 

2.7.2 Mechanism of oxygen sensing 

 

2.7.2.1 Mechanism of oxygen sensing at the systemic level 

 

Three steps can be distinguished in the hypoxia sensing process:  

1. detection of the decrease in level of oxygen by carotid bodies and as a 

consequence, inhibition of potassium channels in the cell membrane 

2. depolarization of the cell membrane and activation of voltage-dependent calcium 

channels; calcium influx 
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3. exocytosis of neurotransmitters, transduction of the signal to the respiratory 

center,  hence increasing lung ventilation (Fig 2.11.) 

 

Figure 2.11: The oxygen sensing mechanism at the systemic level [116]. 

 

The neurotransmitters released at the end of the sensing process are classified into two 

groups: “conventional” and “unconventional”. Neurotransmitters, such as acetylcholine 

(ACh), ATP, catecholamines and others, which undergo the exocytosis process from the 

synaptic vesicles, belong to the first group. The “unconventional” group consists of 

neurotransmitters generated by enzymatic reactions such as gas signalling molecules: 

nitric oxide (NO) and carbon monoxide (CO) [116]. 

 

2.7.2.2 Mechanism of oxygen sensing at the molecular level 

 

As was discussed in section 2.7.1, molecular level interactions associated with hypoxia 

are not well understood.  However, a general oxygen sensing model which is illustrated 

in Figure 2.12 has been proposed [119]. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

46 

 

 

Figure 2.12: The proposed oxygen sensing mechanism at the molecular level [119]. 

 

It is proposed that the main sensing element is a cytosolic, membrane bound, 

multisubunit b-like cytochrome, containing a flavo-heme protein in the plasma 

membrane. This protein, which may behave as a nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH oxidase), transfers the electrons through flavin and heme 

to molecular oxygen, which gives as the final product the superoxide O2
-
. This 

superoxide is converted, in the presence of free iron, to a reactive oxygen species 

(ROS), which is essential in the activation of hypoxia-inducible factor (HIF-1) and for 

hypoxia inducible gene expression [119]. HIF-1 is a heterodimeric transcription factor, 

which is described by Semenza as “the master regulator of oxygen homeostasis” [120]. 

It maintains control over the cellular oxygen level by regulating the transcription of 

genes involved in adaptation to reduced oxygenation conditions. It is composed of two 

dimers: α-subunit (HIF-1α) and β-subunit (HIF-1β). Under normal oxygen conditions, 

which are defined as normoxia, these subunits are separated due to ROS-initiated 

degradation of HIF-1α by the proteasome. When the level of oxygen decreases, the HIF-
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1β remains unaffected, while the abundance of HIF-1α significantly increases due to the 

ROS deficit. The translocation of the HIF-1α subunit to the nucleus occurs, where it 

creates an active transcriptional complex with HIF-1β [121]. This leads to up-regulation 

of more than 50 genes which encode the synthesis of the hypoxia-response proteins, 

such as for example erythropoietin (Epo), vascular endothelial growth factor (VEGF) 

[122], NO-synthase [123] and haem oxygenase [124]. An improved understanding of  

these processes in the future will, no doubt, contribute greatly to the fight against cancer 

as well as many cardiovascular and cerebrovascular diseases [125]. 

 

2.7.3 Mechanism of pH sensing 

 

The cell is able to maintain the pH value at a constant level by employing ion pumps 

located in the membranes to transport ions in or out of the cell and intracellular 

organelles. This intracellular ionic transport relies on a system of different so called acid 

extruders and acid loaders.    

 

 

 

Figure 2.13: Schematic representation of acid extruders and acid loaders located in the cell 

membrane [126]. 

 

As shown on Fig 2.13, acid extruders are responsible for pumping out the protons from 

the cell and accumulating bicarbonate ions (HCO3
-
) inside the cell. This active transport 

uses energy either from adenosine triphosphate (ATP) hydrolysis or the sodium ion 



Chapter 2. Background                                                                            B. Korzeniowska  

 

48 

 

gradient. The opposite process is used by the acid loaders, which passively transport 

protons inside cells as well as pumping out OH
-
 and HCO3

-  
 to outside the cell.  

The other factor facilitating this strict control over pH is the high buffering power, β, of 

the cytosol which is defined as the amount of strong base or strong acid that has to be 

added to a litre of solution to respectively raise or lower its pH by 1 pH unit. This is 

described by equation 2.16. 

                                 
pH

StrongAcid

pH

StrongBase









                                      (2.16) 

This buffering power varies with pH.  For closed systems, where total buffer 

concentration remains constant, the maximum buffering power is at a pH equal to the 

pKa value. In the cellular scenario, where CO2 can easily penetrate from the 

extracellular milieu inside the cell, a crucial role is played by the open system category 

CO2/HCO3
-
 buffer pair, which contributes from a half to two thirds to the total buffering 

power. As for all open systems, this contribution increases exponentially with pH (Fig 

2.14), which results in a large resistance of the cell to pH changes. 

 

 

Figure 2.14:  The pH dependence of buffering power in a closed and open-system [126]. 

 

By combining the ionic transport with the buffering power in a cell, a fundamental law 

of pH regulation can be formulated: 

                                                           

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                                           (2.17) 
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Where: 

 ΔpHi - the rate of intracellular pH change 

 JE - the rate of acid extrusion, 

  JL - the rate of acid loading 

From the above equation it is clear that intracellular pH will be stable only when the rate 

of proton extrusion and loading are the same. The cellular metabolism and changes in 

extracellular CO2 concentration affect the intracellular and extracellular pH. Changes in 

pH on one side of the membrane induce changes in pH on the opposite side. In this way 

the intracellular and extracellular pH are strictly connected to each other and their 

changes will determine intracellular pH stability, which can be expressed in equation: 

                                                   
o

i
i

pH

pH
stabilitypH




                                               (2.18) 

 where ΔpHo describes the rate of pH change outside the cell. In normal physiological 

conditions, generally this ratio is around 30%, except for some pH - sensitive cells such 

as glomus cells of peripheral receptors [127] and certain neurons [128, 129], where its 

value can increase by a factor of two. 

It has been suggested that the increased value of intracellular pH in cancerous cells may 

result in increased tolerance of the acidic environment present in a solid tumour [130, 

131]. This shift to basic pH could play a role in the cellular signalling process. 

Therefore a better knowledge of proteomics is necessary in order to fully understand the 

mechanism of intracellular pH regulation.   
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2.8 Mechanism of nanoparticle cellular uptake 

 

2.8.1 Introduction 

 

In last 10 years, many different nanomaterials have been developed. Nanotechnology 

developments have had a large influence on both the industrial and pharmacological 

world. The development of polymeric micelles, quantum dots, liposomes and different 

types of nanoparticles for targeted drug delivery gave rise to a new era of nanomedicine 

[132,133]. In order to achieve the final goal, it has to be fully understood how the 

nanoparticles interact with the cells, how they penetrate through the cell membrane and 

which properties of nanomaterials are critical in this intracellular delivery process. In 

this section, a general overview of different nanoparticle uptake mechanisms is 

presented together with some examples of in vitro studies from the literature. 

 

2.8.2 Endocytosis 

 

Nanoparticles can enter the cell in a process called endocytosis. This process can be 

divided into two categories: phagocytosis and pinocytosis, which are briefly described 

in the following two separate sections. However, some common intracellular delivery 

stages for both of these categories can be distinguished and are illustrated in Figure 

2.15. These stages are: 

1. Engulfing of the nanoparticle in cell membrane invagination and formation of a 

membrane-bound vesicles, named endosomes or phagosomes depending on the 

uptake category. 

2. Intracellular delivery of endosomes to specialised vesicular structures in order to 

direct the entrapped nanomaterial into diverse cellular compartments 

3. Final delivery step which can undergo different scenarios such as: 

 Nanomaterial release into various intracellular structures 

 Transporting nano-cargo to the extracellular milieu. 

 Transferring nanoparticles between cells 
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Figure 2.15:  Schematic representation of different endocytotic pathways [134]. 

 

2.8.2.1 Phagocytosis 

 

Phagocytosis is observed for macrophages, monocytes, neutrophils and dendritic cells. 

The particles, which are recognised in the bloodstream as phagocytic targets, are 

covered by proteins in a process called opsonization. These proteins are specific to the 

receptors located in the cell membrane of the phagocyte, which enables particle 

attachment to the cell surface. Then the particles are ingested by the phagosomes, which 

is followed by phagosome maturation, their fusion with lysosomes to the enzyme-rich 

structures called phagolysosomes, where the final step - degradation of the particles - 

occurs. It has been observed that the shape of the particle plays a much more important 

function than its size during phagocytotic uptake. Objects which are larger than the cell 

itself are able to be engulfed inside the phagosome. In the case of local particle shape, 

when the curvature of an object creates an angle larger than 45 degrees with the normal 

to the cell membrane at the point of initial contact, the phagocytosis process does not 

occur.  This is due to the absence of actin structures which are crucial in the initial phase 

of the phagocytic mechanism.  
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2.8.2.2 Pinocytosis 

 

This mechanism exists in all types of cells and its character varies between different cell 

types. The general classification is shown in Figure 2.16, where the main differentiation 

is based on the cytosolic protein called clathrin-1.  The uptake mechanism where this 

protein participates in the creation of a coated pit is defined as clathrin-dependent or 

clathrin-mediated endocytosis (CME). All the other uptake events belong to the group 

of clathrin-independent processes, which are then divided into different subcategories 

determined by the membrane protein responsible for the uptake initialization.  

 

Figure 2.16: Classification of pinocytosis mechanisms [134]. 

 

An overview of all pinocytosis mechanism and their corresponding cellular functions 

are gathered in Table 2.2. 

 

 

 

 

 

 

 

 



Chapter 2. Background                                                                            B. Korzeniowska  

 

53 

 

Table 2.2:  Overview of pinocytosis processes. 

Uptake category Cell type Mechanism Function 

Clathrin-

dependent 

All mammalian 

cells 

Encapsulation of the 

cargo to a clathrin-1-

coated pit, pinching off 

the vesicle from the 

plasma membrane by 

dynamin, shedding of 

the clathrin coat and 

vesicle fusion with the 

early endosomes, 

sorting of the cargo to 

the late 

endosomes/lysosomes, 

trans-Golgi network or 

to the recycling 

endosomes  

Supplying nutrients 

(i.e. cholesterol, iron) 

Maintaining cellular 

homeostasis by 

inhibition of 

signalling pathways 

through internalization 

and degradation of 

receptors 

Caveolae-

mediated 

Muscle, 

endothelial 

cells, fibroblasts 

and adipocytes 

Attachment of cargo to 

caveolin-1 derived 

caveolae, formation of 

caveolae vesicles and 

their transport and 

fusion with caveosomes 

or multivescular body, 

delivery of the cargo to 

different cellular 

compartments  

Cellular delivery of 

proteins and DNA 

Pathogens including 

bacteria and viruses 

entry pathway 

Caveolae- and 

clathrin-

independent 

All cells except 

those with 

clathrin-

dependent and 

caveolae-

mediated 

pathways  

Initiated by different 

endocytic proteins: Arf-

6, flotillin, Cdc42 and 

RhoA. The intracellular 

transport not yet fully 

understood. 

Transport of 

extracellular fluid, 

SV40, CTB, 

glycosylphosphatidyli

nositol (GPI)-linked 

proteins, interleukin-2, 

growth hormones 

crucial for cellular 

signalling pathways 

Macropinocytosis All cells except 

macrophages 

and brain 

microvessel 

endothelial cells 

Activation of receptor 

tyrosine kinases by 

growth factors, which 

results in changes in the 

actin cytoskeleton, 

formation of membrane 

ruffles, which engulf 

the cargo and transport 

it to a large  

intracellular vacuole 

(0.5-10μm)– 

macropinosome   

Transport of nutrients 

Entry route for 

bacteria, apoptotic 

bodies, necrotic cells 

and viruses 
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For nanomaterials, cellular uptake will be dependent on many different factors such as 

the particle charge, size, shape as well as material composition and surface chemistry. 

Examples from the literature show that positively charged nanomaterials use mainly 

clathrin-dependent and macropinocytosis routes whereas for negatively charged 

nanoparticles, caveolae-mediated endocytosis seems to be the most common way of 

entry to the cell [134]. Taking into consideration the size of the nano-cargo it has been 

noticed that, the smaller the size, the faster the uptake.  Surprisingly, even particles as 

large as 5 μm may undergo pinocytosis [135]. In the case of even larger sizes, 

macropinocytosis could be considered. In order to target nanomaterial into specific 

tissue or cells, the immunological response and specificity have to be carefully 

considered. The approach used to date is to modify the surface of the nanomaterial with 

some “inert” polymer like e.g. PEG and to attach to such a coated structure receptor 

molecules i.e. antibodies, polypeptides, aptamers and others specific biomarkers which 

are specific to the cell membrane [136, 137, 138]. Nevertheless, a lot of research has to 

be done in order to fully control the nanoparticle uptake initially for in-vitro and 

eventually for in-vivo applications.               

 

2.9 Summary 

 

The theoretical aspects related to this interdisciplinary project have been presented. The 

advantages of silica nanoparticles for biological applications as well as the existing 

expertise in sol-gel derived optical chemical planar sensors, in the group, have been an 

inspiration for this nanosensing investigation. The performance of oxygen and pH-

sensitive silica nanoparticles, described in the following experimental chapters, are 

comparable with the nanosensors presented here in the State-of-Art section. Most of the 

techniques used for nanoparticle characterization and the different biological protocols 

for nanosensors uptake have been summarized in materials and methods in the 

following two chapters. The last chapter is focused in the intracellular sensing studies.     

 

 

 



Chapter 2. Background                                                                            B. Korzeniowska  

 

55 

 

References 

 

[1] “Jablonski diagram”. http://www.shsu.edu/~chm_tgc/chemilumdir/JABLONSKI. 

html. 

[2] Herman, B. Fluorescence Microscopy BIOS Scientific Publishers, UK, 1998. 

[3] Ramamoorthy, R.; Dutta, P. K.; Akbar, S. A. Oxygen sensors: Materials, methods, 

designs and applications  Journal of Materials Science, 2003, 38, 4271–4282. 

[4] Labasque,T.; Chaumery, C.; Aminot, A.; Kergoat, G. Spectrophotometric Winkler 

determination of dissolved oxygen: re-examination of critical factors and reliability, 

Marine Chemistry, 2004, 88, 53–60. 

[5] Clark, L. C. Monitor and control of blood and tissue oxygen tensions. Transactions 

American Society for Artificial Internal Organs, 1956, 2, 41–57. 

[6] Kautsky, H.; Hirsch, A. Quenching of luminescence by oxygen. Transactions 

Faraday Society, 1939, 35, 216–219.   

[7] Shinar, R.; Zhou, Z. Q.; Choudhury, B.; Shinar, J. Structurally integrated organic 

light emitting device-based sensors for gas phase and dissolved oxygen. 

AnalyticaChimica Acta, 2006, 568, 190–199. 

[8] Voraberger, H. S.; Kreimaier, H.; Biebernik, K.; Kern, W. Novel oxygen optrode 

withstanding autoclavation: technical solutions and performance. Sensors and Actuators 

B-Chemical, 2001, 74, 179–185.   

[9] Brinker, C. J.; Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol-

Gel Processing. Academic Press, Boston, 1990. 

[10] Wolfbeis, O. S.; Marhold, H. A new group of fluorescent pH-indicators for an 

extended pH-range. Fresenius Zeitschrift F¨ur Analytische Chemie, 1987, 327, 347–

350. 

[11] Lin, J.; Liu, D. An optical pH sensor with a linear response over a broad range. 

Analytica Chimica Acta, 2000, 408, 49–55. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

56 

 

[12] Harper, G. B. Reusable glass-bound pH indicators. Analytical Chemistry, 1975, 47, 

348–351.  

[13] Peterson, J. I.; Goldstein, S. R.; Fitzgerald, R. V.; Buckhold, D. K. Fiber optic pH 

probe for physiological use. Analytical Chemistry, 1980, 52, 864–869. 

[14] Hulth, S.; Aller, R. C.; Engstrom, P.; Selander, E. A pH plate fluorosensor (optode) 

for early diagenetic studies of marine sediments, Limnology and Oceanography, 2002, 

47, 212–220.  

[15] Liu, Z. H.; Liu, J. F.; Chen, T. L. Phenol red immobilized PVA membrane for an 

optical pH sensor with two determination ranges and long-term stability. Sensors and 

Actuators B-Chemical, 2005, 107, 311–316. 

[16] Agayn, V. I.; Walt, D. R. Fiber-optic sensor for continuous monitoring of 

fermentation pH. Bio-Technology, 1993, 11, 726–729. 

[17] Makote, R.; Collinson, M. M. Organically modified silicate films for stable pH 

sensors. Analytica Chimica Acta, 1999, 394, 195–200.  

[18] Nivens, D. A.; Zhang, Y. K.; Angel, S. M. A fiber-optic pH sensor prepared using 

a base-catalyzed organo-silica sol-gel. Analytica Chimica Acta, 1998, 376, 235–245. 

[19] Lakowicz, J. R.; Weber, G. Quenching of fluorescence by oxygen - probe for 

structural fluctuations in macromolecules. Biochemistry, 1973, 12, 4161– 4170. 

[20] Watts, R. J.; Crosby, G. A. Spectroscopic characterization of complexes of 

ruthenium(II) and iridium(III) with 4,4’-diphenyl-2,2’-bipyridine and 4,7-diphenyl- 

1,10-phenanthroline. Journal of the American Chemical Society, 1971, 93, 3184–3188. 

[21] Parmente, C. S.; Rau, J. D. Fluorescence quenching in aromatic hydrocarbons by 

oxygen. Journal of Chemical Physics, 1969, 51, 2242–2246. 

[22] Lakowicz, J. R. Principles of Fluorescence Spectroscopy, Chapter 8 and 9. 

Springer-Verlag, New York, 3rd edition, 2006. 

[23] Bacon, J. R.; Demas, J. N. Determination of oxygen concentrations by 

luminescence quenching of a polymer-immobilized transition-metal complex. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

57 

 

Analytical Chemistry, 1987, 59, 2780–2785. 

[24] Carraway, E. R.; Demas, J. N.; DeGraff, B. A. Luminescence quenching 

mechanism for microheterogeneous systems. Analytical Chemistry, 1991, 63, 332– 336. 

[25] Xu, W. Y.; McDonough, R. C.; Langsdorf, B.; Demas, J. N.; DeGraff, B. A. 

Oxygen sensors based on luminescence quenching - interactions of metal-complexes 

with the polymer supports. Analytical Chemistry, 1994, 66, 4133–4141. 

[26] Demas, J. N.; DeGraff, B. A. Luminescence-based sensors – microheterogeneous 

and temperature effects. Sensors and Actuators B-Chemical, 1993, 11, 35–41. 

[27] Edmonds, T. E.; Flatters, N. J.; Jones, C. F.; Miller, J. N. Determination of pH with 

acid-base indicators - implications for optical fiber probes. Talanta, 1988, 35, 103–107. 

[28] Cox, M. E.; Dunn, B. Detection of oxygen by fluorescence quenching. Applied 

Optics, 1985, 24, 2114–2120. 

[29] Wolfbeis, O. S.; Posch, H. E.; Kroneis, H. W. Fiber optical fluorosensor for 

determination of halothane and/or oxygen. Analytical Chemistry, 1985, 57, 2556–2561. 

[30] Xu, W. Y.; Schmidt, R.; Whaley, M.; Demas, J. N.; DeGraff, B. A.; Karikari, E. 

K.; Farmer, B. L. Oxygen sensors based on luminescence quenching - interactions of 

pyrene with the polymer supports. Analytical Chemistry, 1995, 67, 3172– 3180.  

[31] Mills, A. Optical oxygen sensors. Platinum Met. Rev. 1997, 41, 115-127. 

[32] Klimant, I.; Wolfbeis, O.S. Oxygen-sensitive luminescent materials based on 

silicone-soluble ruthenium diimine complexes. Anal. Chem. 1995, 67, 3160-3166. 

[33] Vanderkooi, J.M.; Maniara, G.; Green, T.J.; Wilson, D.F. An optical method for 

measurement of dioxygen concentration based upon quenching of phosphorescence. J. 

Biol. Chem. 1987, 262,5476-5482. 

[34] Papkovsky, D.B. Luminescent porphyrins as probes for optical (Bio)sensors. Sens. 

Actuat.B-Chem. 1993, 11, 293-300. 

[35] Lo, L.W.; Koch, C.J.; Wilson, D.F. Calibration of oxygen-dependent quenching of 

the phosphorescence of Pd-meso-tetra (4-carboxyphenyl) porphine: A phosphor with 



Chapter 2. Background                                                                            B. Korzeniowska  

 

58 

 

general application for measuring oxygen concentration in biological systems. Anal. 

Biochem. 1996, 236,153-160. 

[36] Apreleva, S.V.; Wilson, D.F.; Vinogradov, S.A. Tomographic imaging of oxygen 

by phosphorescence lifetime. Appl. Opt. 2006, 45, 8547-8559. 

[37] Dunphy, I.; Vinogradov, S.A.; Wilson, D.F. Oxyphor R2 and G2: Phosphors for 

measuring oxygen by oxygen-dependent quenching of phosphorescence. Anal. 

Biochem. 2002, 310,191-198. 

[38] Borisov, S. M.; Klimant, I. Luminescent nanobeads for optical sensing and imaging 

of dissolved oxygen. Microchim. Acta 2009, 164, 7-15. 

[39] D. Wencel, Sol-gel-derived optical oxygen, pH and dissolved carbon dioxide 

sensors. Ph. D. Thesis, Dublin City University, 2008. 

[40] Zhujun, Z.; Seitz, W. R. Optical sensor for oxygen based on immobilized 

hemoglobin. Analytical Chemistry, 1986, 58, 220–222. 

[41] Chung, K. E.; Lan, E. H.; Davidson, M. S.; Dunn, B. S.; Valentine, J. S.; Zink, J. I. 

Measurement of dissolved oxygen in water using glass-encapsulated myoglobin. 

Analytical Chemistry, 1995, 67, 1505–1509. 

[42] Mills, A. Oxygen indicators and intelligent inks for packaging food. Chemical 

SocietyReviews, 2005, 34, 1003–1011. 

[43] Wang, E. J.; Chow, K. F.; Kwan, V.; Chin, T.; Wong, C.; Bocarsly, A. Fast and 

long term optical sensors for pH based on sol-gels. Analytica Chimica Acta, 2003, 495, 

45–50. 

[44] Ismail, F.; Malins, C.; Goddard, N. J. Alkali treatment of dye-doped sol-gel glass 

films for rapid optical pH sensing. Analyst, 2002, 127, 253–257. 

[45] Kosch, U.; Klimant, I.; Wolfbeis, O. S. Long-lifetime based pH micro-optodes 

without oxygen interference. Fresenius Journal of Analytical Chemistry, 1999,  364, 

48–53. 

[46] Liu, J. N.; Shahriari, M. R., Sigel, G. H. Development of a porous polymer pH 

http://doras.dcu.ie/557/
http://doras.dcu.ie/557/


Chapter 2. Background                                                                            B. Korzeniowska  

 

59 

 

optrode. Optics Letters, 1992, 17, 1815–1817. 

[47] Liu, Z. H.; Luo, F. L.; Chen, T. L.  Phenolphthalein immobilized membrane for an 

optical pH sensor. Analytica Chimica Acta, 2004, 510, 189–194. 

[48] Lee, S. H.; Kumar, J.; Tripathy, S. K. Thin film optical sensors employing 

polyelectrolyte assembly. Langmuir, 2000, 16, 10482–10489. 

[49] Cajlakovic, M.; Lobnik, A.; Werner, T. Stability of new optical pH sensing 

material based on cross-linked poly(vinyl alcohol) copolymer. Analytica Chimica Acta, 

2002, 455, 207–213. 

[50] Lobnik, A.; Oehme, I.; Murkovic, I.; Wolfbeis, O. S.  pH optical sensors based on 

sol-gels: Chemical doping versus covalent immobilization. Analytica Chimica Acta, 

1998, 367, 159–165. 

[51] Aslan, K.; Lakowicz, J. R.; Szmacinski, H.; Geddes, C. D.  Enhanced ratiometric 

pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence 

sensing. Journal of Fluorescence, 2005, 15, 37–40. 

[52] Parker, J. W.; Laksin, O.; Yu, C. ; Lau, M. L.; Klima, S.; Fisher, R.; Scott, I.; 

Atwater, B. W. Fiber-optic sensors for pH and carbon dioxide using a self-referencing 

dye. Analytical Chemistry, 1993, 65, 2329–2334. 

[53] Ismail, F.; Malins, C.; Goddard, N. Alkali treatment of dye-doped sol-gel glass 

films for rapid optical pH sensing. Analyst 2002, 127, 253-257. 

[54] Lee, Y. K.; Smith, R.; Kopelman, R. Nanoparticle PEBBLE Sensors in Live Cells 

and In Vivo. Annu. Rev. Anal. Chem., 2009, 2, 57-76. 

[55] Buck, S. M.; Koo, Y. L.; Park, E.; Xu, H.; Philbert, M. A.;  Brasuel, M. A.;  

Kopelman. R. Optochemical nananosensor PEBBLEs: photonic explorers for 

bioanalysis with biologically localized embedding. Current Opinion in Chemical 

Biology, 2004, 8, 540-546. 

[56] Lee, Y. K.; Kopelman, R. Optical nanoparticle sensors for quantitative intracellular 

imaging. Wiley interdiscipl. Rev. Nanomed. Nanobiotechnol., 2009, 1, 98-110. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

60 

 

[57] Jin, Y.; Lohstreter, S.; Pierce, D. T.; Parisien, J.; Wu, M.; Hall III, C.; Zhao, J. X.  

Silica Nanoparticles with Continuously Tunable Sizes: Synthesis and Size Effects on 

Cellular Contrast Imaging. Chem. Mater., 2008, 20, 4411-4419. 

[58] Song, C.; Ye, Z.; Wang, G.; Jin, D.; Yuan, J.; Guan, Y.; Piper, J. Preparation and 

time-gated luminescence bioimaging application of ruthenium complex covalently 

bound silica nanoparticles. Talanta 2009, 79, 103-108.  

[59] Tallury, P.; Payton, K.; Santra, S. Silica-based multimodal/multifunctional 

nanoparticles for bioimaging and biosensing applications. Nanomedicine, 2008, 3, 579-

592. 

[60] Kandlikar, M.; Ramachandran, G.; Maynard, A.; Murdock, B.; Toscano, W. A. 

Health risk assessment for nanoparticles: A case for using expert judgment. J. Nanopart. 

Res. 2007, 9, 137-156. 

[61] Fercher, A.; Borisov, S. M.; Zhdanov, A. V.; Klimant, I.; Papkovsky, D. B. 

Intracellular O2 Sensing Probe Based on Cell-Penetrating Phosphorescent 

Nanoparticles. ACS Nano 2011, 5, 5499-5508.  

[62] Xu, H.; Aylott, J. W.; Kopelman, R.; Miller, T. J.; Philbert, M. A. A real-time 

ratiometric method for the determination of molecular oxygen inside living cells using 

sol-gel-based spherical optical nanosensors with applications to rat C6 glioma. Anal. 

Chem. 2001, 73, 4124-4133.  

[63] Koo, Y. E. L.; Cao, Y. F.; Kopelman, R.; Koo, S. M.; Brasuel, M.; Philbert, M. A. 

Real-time measurements of dissolved oxygen inside live cells by organically modified 

silicate fluorescent nanosensors. Anal. Chem. 2004, 76, 2498-2505. 

[64] Cao, Y. F.; Koo, Y. E. L.; Kopelman, R. Poly(decyl methacrylate)-based fluorescent 

PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples. Analyst 

2004, 129, 745-750. 

[65] Guice, K. B.; Caldorera, M. E.; McShane, M. J. Nanoscale internally referenced 

oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles. 

J. Biomed. Opt., 2005, 10, 064031. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

61 

 

[66] Cheng, Z. L.; Aspinwall, C. A. Nanometre-sized molecular oxygen sensors 

prepared from polymer stabilized phospholipid vesicles. Analyst,2006, 131, 236–43. 

[67] Borisov, S. M.; Klimant, I. Luminescent nanobeads for optical sensing and imaging 

of dissolved oxygen. Microchim. Acta 2009, 164, 7-15. 

[68] Schmälzlin, E.; Van Dongen  J. T.; Klimant, I.; Marmod´ee, B.; Steup, M. et al. An 

optical multifrequency phase-modulation method using microbeads for measuring 

intracellular oxygen concentrations in plants. Biophys. J., 2005, 89, 1339–45. 

[69] Schmälzlin, E.; Walz, B.; Klimant, I.; Schewe, B.; Löhmannsröben, H. G. 

Monitoring hormone-induced oxygen consumption in the salivary glands of the blowfly, 

Calliphora vicina, by use of luminescent microbeads. Sens. Actuators B, 2006, 119, 

251–54. 

[70] Dmitriev, R. I.; Ropiak, H. M.; Yashunsky, D. V.; Ponomarev, G. V.; Zhdanov, A. 

V.; Papkovsky, D. B. Bactenecin 7 Peptide Fragment as a Tool for Intracellular 

Delivery of a Phosphorescent Oxygen Sensor. FEBS J., 2010, 277, 4651–4661. 

[71] Dmitriev, R. I.; Zhdanov, A. V.; Ponomarev, G. V.; Yashunski, D. V.; Papkovsky, 

D. B. Intracellular Oxygen-Sensitive Phosphorescent Probes Based on Cell-Penetrating 

Peptides. Anal. Biochem., 2010, 398, 24–33. 

[72] Horvath, T.; Monson, E.; Sumner, J.; Xu, H.; Kopelman, R. Use of steady-state 

fluorescence anisotropy with PEBBLE nanosensors for chemical analysis. Proc. SPIE 

(Int. Soc. Photonic Eng.), 2002, 4626, 482–92. 

[73] Clark, H.; Barker, S.; Brasuel, M.; Miller, M.; Monson, E.; Parus, S.; Shi, Z.; Song, 

A.; Thorsrud, B.; Kopelman, R.; Ade, A.; Meixner, W.; Athey, B.; Hoyer, M.; Hill, D.; 

Lightle, R.; Philbert, M. Subcellular optochemical nanobiosensors: probes encapsulated 

by biologically localised embedding (PEBBLEs). Sens. Actuator B-Chem., 1998, 51, 

12-16. 

[74] Koo Lee, Y.-E.; Ulbrich, E. E.; Kim, G.; Hah, H.; Strollo, C.; Fan,W.; Gurjar, R.; 

Koo, S.; Kopelman, R. Near Infrared Luminescent Oxygen Nanosensors with 

Nanoparticle Matrix Tailored Sensitivity. Anal. Chem., 2010, 82, 8446–8455. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

62 

 

[75] Wang, X.-d.; Gorris, H. H.; Stolwijk, J. A.; Meier, R. J.; Groegel, D. B. M.; 

Wegener, J.; Wolfbeis, O. S. Self-Referenced RGB Colour Imaging of Intracellular 

Oxygen. Chem. Sci., 2011, 2, 901–906. 

[76] Clark, H.; Kopelman, R.; Tjalkens, R.; Philbert, M. Optical nanosensors for 

chemical analysis inside single living cells. 2. Sensors for pH and calcium and the 

intracellular application of PEBBLE sensors. Anal. Chem., 1999, 71, 4837-4843.  

[77] Sun, H.; Scharff-Poulsen, A. M.; Gu, H.; Almdal, K. Synthesis and characterization 

of ratiometric, pH sensing nanoparticles with covalently attached fluorescent dyes. 

Chemistry of Materials, 2006, 18, 3381-3384.  

[78] Ji, J.; Rosenzweig, N.; Griffin, C.; Rosenzweig, Z. Synthesis and application of 

submicrometer fluorescence sensing particles for lysosomal pH measurements in 

murine macrophages. Anal. Chem., 2000, 72, 3497-3503.  

[79] Ow, H.; Larson, D.; Srivastava, M.; Baird, B.; Webb, W.; Wiesner, U. Bright and 

stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005, 5, 113-117.  

[80] Gao, F.; Tang, L.; Dai, L.; Wang, L. A fluorescence ratiometric nano-pH sensor 

based on dual-fluorophore-doped silica nanoparticles. Spectrochimica Acta Part A-

Molecular and Biomolecular Spectroscopy, 2007, 67, 517-521. 

[81] Doussineau, T.; Smaihi, M.; Mohr, G. J. Two-Dye Core/Shell Zeolite 

Nanoparticles: A New Tool for Ratiometric pH Measurements. Advanced Functional 

Materials, 2009, 19, 117-122. 

[82] Burns, A.; Ow, H.; Wiesner, U. Fluorescent core-shell silica nanoparticles: towards 

"Lab on a Particle" architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35, 

1028-1042. 

[83] Chauhan, V. M.; Burnett, G. R.; Aylott, J. W. Dual-fluorophore ratiometric pH 

nanosensor with tuneable pKa and extended dynamic range. Analyst, 2011, 136, 1799-

1801. 

[84] Welser, K.; Perera, M. D. A.; Aylott, J. W.; Chan, W. C. A facile method to 

clickable sensing polymeric nanoparticles. Chem. Commun., 2009, 6601-6603. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

63 

 

[85] Nielsen, L. J.; Eyley, S.; Thielemans, W.; Aylott, J. W. Dual fluorescent labelling of 

cellulose nanocrystals for pH sensing. Chem. Commun., 2010, 46, 8929-8931. 

[86] Tomasulo, M.; Yildiz, I.; Raymo, F. pH-Sensitive quantum dots. J Phys Chem B, 

2006, 110, 3853-3855. 

[87] Jensen, R. A.; Sherin, J.; Emory, S. R. Single nanoparticle based optical pH probe. 

Appl. Spectrosc., 2007, 61, 832-838.   

[88] Wang, Z.; Bonoiu, A.; Samoc, M.; Cui, Y.; Prasad, P. N. Biological pH sensing 

based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. 

Biosens. Bioelectron., 2008, 23, 886-91. 

[89] Kolbe, G. Das komplexchemische Verhalten der Kieselsäure”, PhD Thesis, 

Friedrich-Schiller Universität Jena, 1956.  

[90] Stöber, W.; Fink, A. Controlled Growth of Monodisperse Silica Spheres in the 

Micron Size Range. Journal of Colloid and Interface Science, 1968, 26, 62-69. 

[91] Pileni, M. P. The role of soft colloidal templates in controlling the size and shape of 

inorganic nanocrystals. Nature Materials, 2003, 2, 145-150. 

[92] Balthis, J. H.; Mendenhall, P. Preparation of sols from finely divided silicon. USP 

2614994, 1952. 

[93] Wang, X.; Shen, Z.; Sang, T.; Cheng, X.; Li, M.; Chen, L.; Wang, Z. Preparation of 

spherical silica particles by Stöber process with high concentration of tetra-ethyl-

orthosilicate. Journal of Colloid and Interface Science, 2010, 341, 23-29. 

[94] Matsoukas, T.; Gulari, E. Dynamics of growth of silica particles from ammonia-

catalyzed hydrolysis of tetra-ethyl-silicate. J. Colloid Interface Sci., 1988, 124, 252-261. 

[95] Matsoukas, T.; Gulari, E. Monomer-addition growth with a slow initiation step: A 

growth model for silica particles from alkoxides. J. Colloid Interface Sci., 1989, 132, 

13-21. 

[96] Bogush, G. H.; Zukoski IV, C. F. Studies of the kinetics of the precipitation of 

uniform silica particles through the hydrolysis and condensation of silicon alkoxides. J. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

64 

 

Colloid Interface Sci. 1991, 142, 1-18. 

[97] Bogush, G. H.; Zukoski IV, C. F. Uniform silica particle precipitation: An 

aggregative growth model. J. Colloid Interface Sci., 1991, 142, 19-34. 

[98] Van Blaaderen, A.; Van Geest, J.; Vrij, A. Monodisperse colloidal silica spheres 

from tetraalkoxysilanes: Particle formation and growth mechanism. J. Colloid Interface 

Sci., 1992, 154, 481-501. 

[99] Chen, S. L.; Dong, P.; Yang, G. H.; Yang, J. J. Kinetics of formation of 

monodisperse colloidal silica particles through the hydrolysis and condensation of 

tetraethylorthosilicate. Ind. Eng. Chem. Res., 1996, 35, 4487-4493.    

[100] Collinson, M.M.  Sol-gel strategies for the preparation of selective materials for 

chemical analysis. Critical Reviews in Analytical Chemistry, 1999, 29, 289-311. 

[101] Knopp, D.; Tang, D.; Niessner, R. Review: Bioanalytical applications of 

biomolecule-functionalized nanometer-sized doped silica particles. Analytica Chimica 

Acta, 2009, 647, 14-30. 

[102] Seddon, A. B. Sol-gel derived organic-inorganic hybrid materials for photonic 

applications. IEE Proc.-Circuits Devices Syst., 1998, 145, 369-372. 

[103] Tripathi, V. S.; Kandimalla, V. B.; Ju, H. Preparation of ormosil and its 

applications in the immobilizing biomolecules. Sensors and Actuators B, 2006, 114, 

1071-1082. 

[104] Sanchez, C.; Ribot, F. Design of hybrid inorganic-organic materials synthesized 

via sol-gel chemistry. New J. Chem., 1994, 18, 1007-1047. 

[105] Collinson, M. M. Recent trends in analytical applications of organically modified 

silicate materials. Trends in Analytical Chemistry, 2002, 21, 30-38. 

[106] Qian, J.; Li, X.; Wei, M.; Gao, X.; Xu, Z.; He, S. Bio-molecule-conjugated 

fluorescent organically modified silica nanoparticles as optical probes for cancer cell 

imaging. Opt. Express, 2008, 16, 19568-19578. 

[107] McDonagh, C.; Kolle, C.; McEvoy, A. K.; Dowling, D. L.; Cafolla, A. A.; Cullen, 



Chapter 2. Background                                                                            B. Korzeniowska  

 

65 

 

S. J.; MacCraith, B. D. Phase fluorometric dissolved oxygen sensor. Sensors and 

Actuators B, 2001, 74, 124-130. 

[108] Lakowicz, J. R. Principles of Fluorescence Spectroscopy. Kluwer Academic / 

Plenum Press, New York, 1999. 

[109] Higgins, C.; Wencel, D.; Burke, C. S.; MacCraith, B. D.; McDonagh, C. Novel 

hybrid optical sensor materials for in-breath O2 analysis. Analyst, 2008, 133, 241-247.  

[110] Wencel, D.; Higgins, C.; Klukowska, A.; MacCraith, B. D.; McDonagh, C. Novel 

sol-gel derived films for luminescence-based oxygen and pH sensing. Materials 

Science-Poland, 2007, 25, 767-779.  

[111] Goldman, R. D.; Spector, D. L. Live Cell Imaging, A Laboratory Manual. Cold 

Spring Harbor Laboratory Press, New York, 2005. 

[112] Davidson, M.W.; Abramowitz, M. Optical Microscopy.  Encyclopedia of Imaging 

Science and Technology, Wiley-Interscience, New York, 2002. 

[113] Claxton, N. S.; Fellers, T. J.; Davidson, M. W. Laser scanning confocal 

microscopy, Department of Optical Microscopy and Digital Imaging, National High 

Magnetic Field Laboratory, The Florida State University, 2005, Unpublished 

(http://www.olympusfluoview.com/theory/LSCMIntro.pdf). 

[114] López-Barneo, J.; Pardal, R.; Ortega-Sáenz, P. Cellular Mechanisms of Oxygen 

Sensing. Annu. Rev. Physiol., 2001, 63, 259-287. 

[115] Sharp, F. R.; Bernaudin, M. HIF1 and Oxygen Sensing in the Brain. Nat. Rev. 

Neurosci., 2004, 5, 437-448. 

[116] Bronstein, N. Ion Channels and Oxygen Sensing in the Cartoid Body. Modulator, 

2008, 22, 18-22. 

[117] Acker, H. Mechanisms and meaning of cellular oxygen sensing in the organism. 

Respir. Physiol., 1994, 95, 1-10. 

[118] Nattie, E.; Li, A. Central chemoreception 2005: A brief review. Autonomic 

Neuroscience, 2006, 126-127, 332-338. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

66 

 

[119] Zhu, H.; Bunn, H. F. Oxygen sensing and signalling: impact on the regulation of 

physiologically important genes. Respir. Physiol., 1999, 115, 239-247. 

[120] Semenza, G. L. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. 

Current Opinion in Genetics & Development, 1998, 8, 588-594. 

[121] Wenger, R. H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, 

hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J., 

2002, 16, 1151-1162. 

[122] Pugh, C. W.; Ratcliffe, P. J. Regulation of angiogenesis by hypoxia: role of the 

HIF system. Nat. Med., 2003, 9, 677-684. 

[123] Melillo, G.; Musso, T.; Sica, A.; Taylor, L. S.; Cox, G. W.; Varesio, L. A hypoxia-

responsive element mediates a novel pathway of activation of the inducible nitric oxide 

synthase promoter. J. Exp. Med., 1995, 182, 1683-1693. 

[124] Lee, C.; Jiang, B.H.; Chin, B.Y.; Iyer, N.V.; Alam, J.; Semenza, G. L.; Choi, A. M. 

Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 

gene in response to hypoxia J. Biol. Chem., 1997, 272, 5375-5381. 

[125] Metzen, E.; Ratcliffe, P. J. HIF hydroxylation and cellular oxygen sensing. Biol. 

Chem., 2004, 385, 223-230. 

[126] Boron, W. Regulation of intracellular pH. Adv. Physiol. Educ. 2004, 28, 160-179.  

[127] Buckler, K. J.; Vaughan-Jones, R. D.; Peers, C.; Lagadic-Gossmann, D.; Nye, P. 

C. G. Effects of extracellular pH, pCO2 and HCO3
_ 

on intracellular pH in isolated type-1 

cells of the neonatal rat carotid body. J Physiol.,1991, 444, 703–721. 

[128] Ritucci, N.A.; Chambers-Kersh, L.; Dean, J. B.; Putnam, R. W. Intracellular pH 

regulation in neurons from chemosensitive and nonchemosensitive areas of the medulla. 

Am J Physiol Regul Integr Comp Physiol., 1998, 275, 1152–1163. 

[129] Ritucci, N. A.; Dean, J. B.; Putnam, R.W. Intracellular pH response to 

hypercapnia in neurons from chemosensitive areas of the medulla. Am J Physiol Regul 

Integr Comp Physiol., 1997, 273, 433–441. 



Chapter 2. Background                                                                            B. Korzeniowska  

 

67 

 

[130] Gillies, R. J.; Martı´nez-Zaguila´n, R.; Peterson, E. P.; Perona, R. Role of 

intracellular pH in mammalian cell proliferation. Cell Physiol Biochem.,,1992, 2, 159–

179. 

[131] Stubbs, M.; McSheehy, P. M.; Griffiths, J. R.; Bashford, C. L. Causes and 

consequences of tumour acidity and implications for treatment. Mol Med Today,  2000, 

6, 15–19. 

[132] Kabanov, A. V.; Alakhov, V. Y. Pluronic (R) block copolymers in drug delivery: 

From micellar nanocontainers to biological response modifiers. Critical Reviews in 

Therapeutic Drug Carrier Systems, 2002, 19, 1–72. 

[133] Duncan, R. The dawning era of polymer therapeutics. Nature Review Drug 

Discovery, 2003, 2, 347–360. 

[134] Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. 

Controlled Release 2010, 145, 182-195. 

[135] Cannon, G.; Swanson, J. The macrophage capacity for phagocytosis. Journal of 

Cell Science, 1992, 101, 907–913. 

[136] Farokhzad, O. C.; Langer, R. Nanomedicine: Developing smarter therapeutic and 

diagnostic modalities. Advanced Drug Delivery Reviews, 2006, 58, 1456–1459. 

[137] Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: an emerging 

treatment modality for cancer. Nature Review Drug Discovery, 2008, 7, 771–782. 

[138] Esfand, R.; Tomalia, D. A. Poly(amidoamine) (PAMAM) dendrimers: from 

biomimicry to drug delivery and biomedical applications. Drug Discovery Today, 2001, 

6, 427–436. 

 

 

 

  



 

 

68 

 

 

 

 

 

Chapter 3 

 

Oxygen-sensitive silica nanoparticles 

 

3.1 Introduction 

 

In this chapter the development of novel oxygen-sensitive nanoparticles is described. 

The tuning of the nanosensor sensitivity to oxygen was successfully accomplished by 

the incorporation of an organically modified precursor into the silica matrix. Due to the 

poor solubility of PTMS-based nanoparticles in aqueous solution, observed by 

Kopelman [1], the nanosensors were prepared from a mixture of tetraethylorthosilicate 

(TEOS) and methyltriethoxysilane (MTEOS) to give a highly oxygen-permeable 

matrix. For dissolved oxygen detection, where the concentration of the oxygen 

molecules is lower than in the gas phase, a porous matrix, which is sufficiently 

hydrophobic, is essential for obtaining a sensitive sensor as the oxygen gas 

preferentially partitions out of the aqueous solution into the hydrophobic environment 

of the matrix. By combining two different silica precursors, composite nanoparticles for 

oxygen detection were synthesised. The ruthenium (II)-tris(4,7-diphenyl-1,10-

phenanthroline)
2+

 ([Ru(dpp)3]
2+

) complex, with a long lifetime of 5.3 µs and high 

luminescence quantum yield of ~ 30%,  was employed as the oxygen-sensitive dye [1]. 

Thanks to the positive charge of the dye and its very low solubility in water, simple 

physical entrapment was used in the synthesis. Two different types of nanoparticles 

were developed during the project. Initially, a nanoparticle containing only the 

([Ru(dpp)3]
2+

) complex was synthesised which was designed to be used for lifetime-

based sensing. The second formulation involved the co-encapsulation of a nanosecond 
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lifetime oxygen insensitive reference dye, ATTO488 N-hydroxy-succinimidyl-esters 

(ATTO488 NHS-ester) in addition to the ([Ru(dpp)3]
2+

) complex within the nanoparticle 

matrix to enable  ratiometric detection. This approach, described in detail in section 

2.5.2, is a good compromise between fluorophore concentration-dependent intensity-

based measurements and lifetime-based detection, which is still not so common due to 

the requirement for relatively expensive electronics. This chapter reports the synthesis 

and characterisation of the particles which were designed with a size range and surface 

properties which are compatible with cellular uptake. A novel approach derived from a 

modified Stöber synthesis, described below, was used in order to achieve this goal. A 

gradual improvement in nanoparticle oxygen-sensitivity was achieved as the synthesis 

was modified from the initial, almost insensitive TEOS-based to the organically 

modified (so-called composite) nanoparticles with enhanced oxygen-permeability. Full 

investigations of both nanosensors, for lifetime- and ratiometric-based detection, 

including nanoparticle optical properties characterization as well as nanoparticle size 

and surface charge measurements, are described. The chapter concludes with the results 

from nanosensor oxygen calibration in water and a summary. 

 

3.2 Materials and methods 

 

3.2.1 Reagents and materials 

 

Absolute ethanol (EtOH), 0.1 M hydrochloric acid (HCl), 28% (v/v) ammonium 

hydroxide solution (NH4OH), anhydrous dimethyl sulfoxide (DMSO) and the silica 

precursors TEOS, MTEOS and aminopropyltriethoxysilane (APTES) as well as 

[Ru(dpp)3]Cl2 were purchased from Sigma Aldrich. ATTO488 NHS-ester was obtained 

from ATTO-TEC GmbH, Germany. Aqueous solutions of nanoparticles were prepared 

from deionised (DI) water. 

 

3.2.2 Fabrication of O2 nanosensors  

 

Conventional Stöber-based nanoparticle synthesis: 

This protocol was generally based on the classical Stöber method. Prior to the 
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nanoparticle synthesis a stock solution of ([Ru(dpp)3]
2+

) was prepared by dissolving 

0.02g of ([Ru(dpp)3]
2+

) in 10ml of EtOH. Then 26µl of this stock solution was mixed on 

the stirrer with 12.2ml of EtOH and 0.5ml of TEOS in a polystopper glass vial. After 

stirring for 15 minutes, 0.75ml of NH4OH was added dropwise to the reaction mixture 

to initiate the formation of nanoparticles. After 30 minutes, a second silica precursor, 

MTEOS, in amount of 0.447ml was added and the final mixture was stirred for 24 hours 

at room temperature. The final molar ratio of silica precursors to dye was equal 100000. 

It was observed during the optimization process (presented in the experimental section) 

that the higher the amount of ([Ru(dpp)3]
2+

) that was used for the reaction the less 

spherical were the nanoparticles formed. This amount was determined to be sufficient 

for intracellular imaging and sensing. The nanoparticles were collected by 

centrifugation and resuspended in EtOH using ultrasonication, which was followed by 

three washing steps in EtOH.  The nanosensors were centrifuged always with the same 

speed of 8320rcf and for an equal time of 30 minutes.  

As a control, TEOS-based nanoparticles were synthesized according to the same 

protocol. To maintain the same molar ratios in the synthesis, the amount of TEOS was 

increased from 0.5ml to 1ml (added in one step, 15 minutes before pipetting NH4OH). 

The nanoparticles were centrifuged and washed in EtOH as described in the paragraph 

above.  

   

Novel modified Stöber – based nanoparticle synthesis for lifetime detection: 

 

Based on the prior experience in the research group with sol-gel films, where hydrolysis 

of different organically modified precursors was carried out in an acidic environment, a 

new method of introducing this approach into the nanoparticle synthesis was developed. 

The nanoparticles were synthesized in two steps. At the start, 0.5ml of TEOS was added 

to 12.2ml of EtOH and all reagents were mixed on the stirrer in a polystopper glass vial 

for 15 minutes. The nanoparticle formation was then started by the dropwise addition of 

0.75ml of NH4OH to the reaction mixture. The second step of this modified Stöber 

synthesis was based on initiating the process of hydrolysis and condensation of MTEOS 

outside of the main reaction vial, which was done in the following way: 3.24ml of the 

same ([Ru(dpp)3]
2+

) stock solution prepared for the Stöber synthesis was mixed by 
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stirring with 2.02ml of EtOH and 2.86ml of MTEOS in poly stopper glass vial for 15 

minutes. Then 1.037ml of HCl was pipetted dropwise into the reaction mixture. The 

exothermic hydrolysis of MTEOS liberates heat, so that the temperature of the reaction 

mixture increased over a 15-minute period.  After this time, 0.5ml of the mixture 

containing prehydrolysed MTEOS was added to the reaction vial. The time interval 

between initiating the reaction with TEOS and addition of the ethanol mixture with 

prehydrolysed MTEOS and ([Ru(dpp)3]
2+

) was optimized to 6 hours. For the shorter 

time intervals, the precipitate was observed in the reaction vial a few minutes after the 

addition of the MTEOS mixture. The reaction mixture was left on the stirrer for another 

20 hours at room temperature. The nanoparticles were obtained by centrifugation at 

8320rcf for 30 min and washed with EtOH (8320rcf, 30 min/3x).  

 

Fabrication of nanoparticles for ratiometric detection 

 

The novel modified Stöber approach was also employed for the synthesis of the 

nanoparticles for ratiometric detection. Here, an additional step was added to the 

protocol in order to introduce the oxygen-insensitive ATTO488NHS ester into the 

nanoparticle matrix, the chemical structure of which is presented in Figure 3.1. 

 

 

Figure 3.1: Chemical structure of ATTO488NHS ester.  

 

The fluorophore was covalently attached to the silica matrix by reacting ATTO488NHS 

ester with APTES yielding the reactive ATTO488NHS ester-APTES conjugate prior to 

the nanoparticle synthesis. This NHS-ester derivative upon the reaction with APTES 

forms the amide bond, which then is used to immobilize ATTO488 within the 
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nanoparticle core. A 2x10
-3

M stock solution of 29.4µl of ATTO488NHS in DMSO and 

0.5µl of APTES were added to 20.6µl of DMSO and stirred for 3 hours. The reaction 

mixture, due to its very small volume (50µl), was carried out in a 2ml eppendorf held in 

a poly stopper glass vial on the stirrer. The resulting ATTO488NHS ester-APTES 

conjugate was used without further purification.  

The nanoparticle synthesis was initiated as described in detail in the previous section. 

Briefly, an ethanolic solution with TEOS was prepared on the stirrer; this was followed 

by the addition of NH4OH. After 3 hours of the reaction, ATTO488NHS ester conjugate 

was added to the reaction. After another 3 h time interval, the mixture of prehydrolysed 

MTEOS was introduced to the reaction mixture and the nanoparticle forming mixture 

were left on the stirrer for another 20 hours at room temperature. The nanoparticles 

were collected by centrifuge (8320rcf, 30min) and three washing steps in EtOH were 

performed. 

All samples were stored in the dark under ambient conditions.  

 

3.2.3 Experimental characterisation systems 

 

3.2.3.1   Phase fluorometry setup 

 

The oxygen-sensitivity of the nanoparticles was measured using a phase fluorometry-

based oxygen reader acquired from a partner company, DELTA, Denmark. The principle 

of phase fluorometry has already been described in section 2.5.3.1. Briefly, the reader 

consists of an optical fibre which  directs light from a blue LED, corresponding to the 

absorption band of the ruthenium complex, into the sample and the emitted 

luminescence is directed back up the fibre, and, using appropriate filtering, is detected 

using a photodiode detector. To generate the different mixtures of calibration gases in a 

controlled way, two mass flow controllers (Celerity, Ireland) and the control unit 

(National Instruments, Ireland) were employed. For operating the mass flow controller 

system and collecting and displaying experimental data, the data acquisition and control 

software was developed, using LabVIEW™.  

An aqueous solution of nanoparticles placed in a 50 ml plastic centrifuge tube (VWR, 

Ireland) was mounted in a clamp and attached to a holder. To create an air-tight 
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chamber, the tube was closed with a silicone stopper (Fisher Scientific, Ireland). The 

flow of the calibration gases, which was controlled by mass flow controllers (Celerity, 

Ireland) and the control unit (National Instruments, Ireland), was bubbled using plastic 

tubing (Tygon, USA) and a needle punched directly through the stopper into the sample. 

Another needle was used as an outlet to release the pressure created while the sample 

was degassing. Each sample, containing nanoparticles re-suspended in water (7mg/ml), 

was bubbled with different oxygen and nitrogen mixtures for 5 minutes. The first step 

(0% O2, 100% N2) was set for 10 minutes to allow complete removal of oxygen from the 

nanoparticle solution. The excitation light from a 450nm blue LED, which was 

modulated at a frequency of 20 kHz, was delivered through an optical fiber, as 

described above, which was attached to the bottom of the sample. The modulation 

frequency fopt was optimized for the luminophore lifetime τ, according to the Equation 

3.1. 

12  optf  (3.1) 

The emitted light was collected by the same optical fiber and transported back to the 

oxygen reader for the analysis. A red emission filter was used to isolate the emission 

from ([Ru(dpp)3]
2+

)-doped nanoparticles. The measurement was done every 3 seconds. 

Photodiode was used for the detection.   

 

3.2.3.2   Dynamic Light Scattering (DLS) 

 

The size and zeta potential of the nanoparticles were determined using a Delta
TM

NanoC 

Particle Analyzer (Beckman Coulter, USA) equipped with a two 30mW 658nm laser 

diodes as a light source, designed for separate size and zeta potential measurements. 

The samples, in aqueous solution, were transferred to a disposable plastic cuvette and 

flow cell for size and zeta potential measurements, respectively. The signal was 

collected by a photomultiplier tube and then was fed to a digital autocorrelator for the 

nanoparticle size and zeta potential calculation. The Polydispersity index was measured 

from the size distribution of the nanoparticle population. Each value reported was an 

average of five measurements.  
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3.2.3.3 Transmission Electron Microscopy (TEM) 

 

Transmission electron microscopy was performed by Ms Tiina Toivonen at University 

College Dublin using a Tecnai G2 20 Twin microscope (FEI, USA). One drop (around 

10µl) of the diluted sample in EtOH (concentration ~ 1 mg/ml) was dried on a 300mesh 

copper grid with formvar / carbon film obtained from Agar Scientific, UK. The samples 

were then stored for analysis. 

 

3.2.3.4 Spectrofluorometry 

 

The luminescence emission spectra of the nanoparticles were acquired using a 

FluoroMax-2 spectrofluorometer (Horiba Jobin Yvon, USA) equipped with a continuous 

wave 150 W xenon lamp as a light source. The nanoparticles were dispersed in DI water 

in a quartz cuvette for standard excitation and emission spectra measurements. The 

excitation spectra were obtained for 520nm and/or 610nm emission wavelength, which 

corresponds to ATTO488 and ([Ru(dpp)3]
2+

) emission peaks, respectively. The emission 

spectra were collected for 450nm wavelength excitation.  

For the oxygen calibration of the nanoparticles, designed for the ratiometric detection, a 

1.8 ml quartz flow cell with 10 mm path length obtained from Starna Scientific Limited, 

UK was used. Before each measurement, samples were transferred into a 50ml plastic 

centrifuge tube with a silicone stopper and degassed using the mass flow controller 

setup described in section 3.2.3.1. Then each sample was transferred with a flow rate 

15mms
-1

 to a flow cell using a Minipuls-3 peristaltic pump (Gilson, France) and the 

plastic tubing (Tygon, USA) for the measurements. The samples were excited at 450nm 

wavelength. The emitted light was forwarded through the monochromator to the 

photomultiplier detector.    

The spectrofluorometer was employed to monitor the luminescence of the nanoparticles 

undergoing the leaching experiment (described in section 3.2.3.5).  

All the measurements were carried out for equally diluted (10x) nanoparticle stocks. 

The slits on the excitation and emission monochromators were set to 3nm. 
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3.2.3.5   Leaching studies 

 

2.5ml of the aqueous solution of the nanoparticles co-encapsulated with a water-soluble 

ATTO488 and water-insoluble ([Ru(dpp)3]
2+

) were transferred into the FLOAT-A-

LYSER G2 dialysis device (Spectra/Por
®
, USA) with a re-sealable screw cap, a 

weighted bottom and a flotation ring (shown in Figure 3.2).  

 

Figure 3.2: FLOAT-A-LYSER G2 dialysis device. 

 

Prior to usage, the dialysis membrane was washed three times in deionized water 

according to the manufacturer’s instructions. The device was then placed inside a 1L 

glass beaker filled with deionized water and left on the stirrer for 24 hours. As 

recommended, within this time the deionized water in the beaker was exchanged for 

fresh water twice (after 4 and 8 hours of dialysis). The sample was transferred from the 

dialysis device to a quartz cuvette for the luminescence measurements every few hours 

and the emission spectra of the nanoparticles were recorded as described in the previous 

section. 
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3.3 Development of O2 - sensitive nanoparticles 

 

3.3.1 Introduction 

 

There are several conditions which have to be fulfilled by the nanoparticles in order to 

use them for intracellular sensing studies. The nanoparticles have to be small enough to 

be non-toxic and passively transported through the cellular membrane. It has been 

shown as well that the charge on the nanoparticle surface plays a very important role in 

the uptake mechanism [2]. The results vary considerably between different 

nanomaterials, cell lines and even research groups. It seems, however, that nanoparticles 

in the size range between 20 and 50 nm and with a positive charge on their surface are 

easily engulfed by the cells [3]. In this intracellular sensing approach some additional 

features have to be taken into consideration, such as hydrophobicity and porosity of the 

nanoparticles which are important for the nanosensor oxygen response. On the other 

hand, as mentioned already, the nanoparticles have to be dispersable in the aqueous 

cellular environment, therefore a certain hydrophobic – hydrophilic balance has to be 

established in order to satisfy both of these criteria. The nanoparticle optimization 

process is described below. 

 

3.3.2 Optimization of nanoparticle size and shape  

 

The properties of nanoparticles synthesised by the Stöber method are dependent on 

many parameters including the nature and concentration of the catalyst, the silicon 

alkoxide precursors type, as well as water-to-silane ratio, pH, temperature and humidity 

[4]. Changes in one or more parameters have an impact on the relative rate of hydrolysis 

and condensation (described in section 2.4.4), which then influences the shape, size, 

porosity and hydrophobicity of the final nanoconstructs. Due to the previous experience 

of the group with ([Ru(dpp)3]
2+

)-doped sol-gel materials, the same dye was chosen for 

the detection of intracellular oxygen. Taking into account the good solubility of 

([Ru(dpp)3]
2+

) in EtOH, the Stöber nanoparticle synthesis seemed to be the best 

approach. The alternative techniques for the silica nanoparticle synthesis, such as well-

established microemulsion [5] and less common lysine-catalysed emulsion [6] had to be 
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excluded from the investigation, because of their aqueous reaction environment. In the 

course of the project, many different (~100) formulations were used in order to optimise 

the nanoparticles for maximum oxygen response while retaining other desirable 

morphological properties such as size and monodispersity.  A summary of approaches 

used is described in Table 3.1. 

 

Table 3.1: Summary of results obtained from the optimization of Stöber nanoparticle synthesis. 

For simplicity, an alphabetical nomenclature was introduced to the table. P – precursor, C- 

catalyst, D – dye, S- solvent, 2”x”- twice amount of moles of “x”, PDI – polydispersity index. 

PRECURSORS CATALYST DYE SOLVENT SIZE 

[nm] 

PDI 

P  C D S ~230 0.095 

P C 2D S Precipitate 

P 2C D S ~480 0.195 

P C D ½ S Precipitate 

½ P C D S ~160 0.047 

2P C D S ~100 0.04 

5P C D S ~80 0.089 

P 5C D S Precipitate 

  

As can be seen from the data presented in Table 3.1, with an increase in amount of the 

catalyst (NH4OH) the size of the nanoparticles increased (from 230nm to 480nm). 

When a certain level of the catalyst was exceeded, nanoparticles did not form. In the 

case of the silica precursor, when the amount was decreased (½ P) or increased (2P, 5P), 

the size of the nanoparticles measured on DLS was always smaller than for the initial 

recipe. The PDI index, which indicates the degree of the sample monodispersity (PDI 

should be ≤0.2 for a stable colloidal suspension of nanoparticles [7]), in most cases was 

less than 0.1. The amount of solvent and dye played as well a crucial role in the 

formation of the nanoparticles. When their initial values were changed (2D, ½ S), 

nanoparticles were not formed. To gain better insight into the nanoparticle formation, 

the TEM technique was also used in these studies. The results obtained from TEM 

imaging are presented in Figure 3.3. 
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R=100000 R=50000 

  

R=20000 R=10000 

  

Temperature of reaction: 50
o
C Reaction without stirring 

  

 

Figure 3.3: TEM images of the nanoparticles synthesized during the optimization process. R – 

molar ratio of silica precursor to dye.  
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 The TEM images contributed some valuable information to the whole optimization 

process. It was found that factors such as higher temperature of the reaction (50
o
C), 

elimination of stirring during the nanoparticle synthesis (sample mixed only within first 

30 minutes) and increase in amount of dye (from R=100000 to R=10000), which was 

observed to act as a catalyst have a negative impact on the formation of the 

nanoparticles. Despite the many parameters which severely influence the final reaction 

product, a successful protocol for the synthesis of the composite nanoparticles was 

established (described in section 3.2.2).  
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3.3.3 Optimization of nanoparticle oxygen response 

 

3.3.3.1 Optical properties of ([Ru(dpp)3]
2+

)-doped nanoparticles 

To fulfil all the optical nanosensor criteria, the oxygen-sensitivity of the nanoparticles 

had to be optimized on the phase fluorometry setup, the principles of which are 

described in section 2.5.3.1. Prior to this step, the optical properties of the nanoparticles 

were characterized on the spectrofluorometer. The excitation and emission spectra of 

([Ru(dpp)3]
2+

)-doped nanoparticles dispersed in water were compared to the spectra of 

the free dye dissolved in EtOH. The spectroscopic results from this analysis are 

presented in Figure 3.4. 

 

Figure 3.4: Normalized excitation and emission spectra of ([Ru(dpp)3]
2+

) (λexc=450nm, 

λem=610nm) dissolved in EtOH and ([Ru(dpp)3]
2+

)-doped nanoparticles dispersed in DI water.  

 

As can be observed in Figure 3.4, the emission spectrum of ([Ru(dpp)3]
2+

)-doped 

nanoparticles with the emission peak at 610nm were slightly shifted toward the longer 

wavelengths (~10nm) with respect to the free ([Ru(dpp)3]
2+

) dye emission peak. This 

can be explained by the difference in ([Ru(dpp)3]
2+

) microenvironments (EtOH versus a 
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composite nanoparticle in water), which has been shown to influence  the optical 

properties of the fluorophore [8].  As well as the  other favourable features of good 

photostability, long µs lifetime and high quantum yield which were mentioned in 

section 2.3.4, the large Stokes shift of ([Ru(dpp)3]
2+

) allows for a relatively simple 

experimental set up for sensing. All of the optical properties of ([Ru(dpp)3]
2+

) discussed 

above support the choice of this dye for these intracellular oxygen studies.  

 

3.3.3.2 Oxygen-sensitivity performance of ([Ru(dpp)3]
2+

)-doped nanoparticles 

synthesized by the classical Stöber method 

 

Having characterized the optical properties of the ([Ru(dpp)3]
2+

)-doped nanoparticles, 

oxygen-sensitivity tests were performed using the phase fluorometry setup described in 

section 3.2.3.1. In the standard experimental procedure, in parallel with oxygen 

response scans, all samples were investigated for their size and the surface charge 

(defined as a zeta potential) using DLS and TEM techniques. The cumulative data from 

all the techniques mentioned above, are presented and discussed below. As the starting 

point, TEOS-based nanoparticles doped with ([Ru(dpp)3]
2+

) were synthesized according 

to the  Stöber protocol described in section 3.2.2 and characterized. As observed before 

in the literature, the dense hydrophilic silica matrix formed as a result of hydrolysis and 

condensation of TEOS has a low level of permeability to oxygen [10]. Therefore the 

results obtained for TEOS-based nanoparticles were used as a control in the 

development of the composite nanoparticles with enhanced oxygen-sensitivity. In the 

next step, the composite nanoparticles were synthesized based on the same protocol. 

The results from these comparative studies are presented in Figure 3.5. 
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Stöber method 

TEOS-based nanoparticles Composite nanoparticles 

a) DLS data 

Hydrodynamic diameter : 

96.3 nm ±15.5nm 

PDI = 0.045 

Zeta potential = -49.6 mV 

Hydrodynamic diameter: 

 101.2 nm ± 16.6 nm 

PDI = 0.033 

Zeta potential = -46.8 mV 

b) TEM (scale bar: 50nm) 

  

c) Phase angle response 

  

 

  

 

 

 

 

 



Chapter 3. Oxygen-sensitive silica nanoparticles                                    B. Korzeniowska  

 

83 

 

d) Calibration curve – full oxygen concentration range 

  

e) Calibration curve – physiological oxygen concentration range 

  

 

Figure 3.5: The results obtained for TEOS-based and composite nanoparticles doped with 

([Ru(dpp)3]
2+

) prepared according to the Stöber method: a) size and zeta potential 

measurements, b) TEM imaging, c) phase angle response, d) calibration curve in the full 

dissolved oxygen concentration range, e) calibration curve in the physiological dissolved 

oxygen concentration range.  

  

DLS analysis of TEOS-based and the composite nanoparticles revealed homogenous 

nanoparticle populations with an average hydrodynamic diameter of 96.3 nm and 101.2 

nm, respectively. Very good monodispersity of the nanoparticles in solution is manifest 

in the low PDI value (<0.1). Depending on the charge on the surface of the nanoparticle, 

which is influencing on the zeta potential value, the measured sample in liquid can 

aggregate (-30mV< zeta potential <+30mV)  or remain stable (-30mV >zeta potential> 

+30mV)  The excellent stability of the nanoparticles in water was confirmed by the high 

zeta potential values equal to – 49.6 mV and – 46.8 mV, respectively. The size of the 
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nanoparticles measured from TEM images is smaller than that measured by DLS, due to 

the difference between the hydrodynamic diameter of nanoparticles in solutions and the 

more precise TEM measurements of the dry nanoparticle cores [9]. TEM images 

confirmed the lack of nanoparticle aggregates within the sample. The structure of 

TEOS-based nanoparticles was observed to be more regular compared to that of the 

composite nanoparticles. Within the synthesis optimization it was noticed that 

increasing the amount of MTEOS (up to the molar ratio: TEOS:MTEOS=1:4) results in 

a rougher, less regular nanoparticle surface, which was thought to indirectly prove the 

presence of the symmetric, non-hydrolysed methyl group coming from MTEOS. Based 

on the new findings, this hypothesis was modified in time and it will be further 

discussed in section 3.3.3.3.  

With regard to the oxygen-sensitivity of the nanoparticles, as can be observed from the 

data, (see Figure 3.5c) the phase angle decreases as the amount of oxygen in the gas 

mixture blown through the sample increases, what is related to a decrease in the lifetime 

of ([Ru(dpp)3]
2+

), caused by the oxygen quenching effect (described in section 2.3.3). 

As expected, a larger oxygen response (Φ0/Φ = 1.44, where Φ0/Φ is used as a measure 

of maximum oxygen sensitivity) than for TEOS-based nanoparticles is detected for the 

composite one, whose increased sensitivity is observed at very low (0 – 5%) and very 

high (50-100%) O2 concentration in the gas mixture. Outside this range of concentration 

(5-50%) the sensitivity of both nanosensors remains the same. The dissolved oxygen 

concentrations, expressed in ppm, were then calculated based on the solubility constant 

of oxygen in water at 21
o
C (0.004252g of O2 in 100g of H2O) [10]. The calibration plots 

(Φ0/Φ versus [O2]) were drawn and fitted to a linear Stern-Volmer and non-linear 

Demas two-site models (Equation 2.3 and Equation 2.6 in section 2.3.3) within full and 

physiological dissolved oxygen concentration range, which is shown in Figure 3.5 d, e. 

The Demas model gave an excellent correlation (r
2
=0.999) over the full as well as 

physiological oxygen concentration range for the composite nanoparticles (see data in 

Table 3.2). From the error assigned to KSV2 parameter, it is visible that Demas model is 

not relevant to the TEOS-based nanoparticles. The very short linear range for TEOS-

based nanoparticles is associated with their very limited permeability to oxygen caused 

by their dense silica network (Φ0/Φ = 1.17). Due to this limited sensitivity, the data for 

these nanoparticles could not be fitted to the Stern-Volmer model. The poor fitting to 
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this linear model (r
2
=0.978) was observed as well for the composite nanoparticles 

(r
2
=0.978).  The calibration is based on the performance of three samples. The error bars 

associated with the nanoparticle solutions are very small. This illustrates very good 

reproducibility of the nanoparticle synthesis.   

 

Table 3.2: Stern-Volmer and Demas fitting parameters for pure TEOS-based and composite 

nanoparticles prepared by the Stöber method. Terms from Equation 2.6, r
2
 = regression.  

 

NPs 

Stern-Volmer model - full oxygen concentration range 

KSV[O2]
-1

 r
2
 

Composite  0.0121 ± 0.0005 0.972 

 

NPs 

Stern-Volmer model - physiological concentration range 

KSV[O2]
-1

 r
2
 

Composite  0.0172 ± 0.0006 0.978 

 Demas model – full oxygen concentration range 

f1 KSV1[O2]
-1

 KSV2[O2]
-1

 r
2
 

TEOS 0.11 ± 0.01 0.2574 ± 0.0186 0.0013 ± 0.0044 0.999 

Composite  0.11 ± 0.01 0.1541 ± 0.0105 0.0083 ± 0.0001 0.999 

 Demas model – physiological concentration range 

f1 KSV1[O2]
-1

 KSV2[O2]
-1

 r
2
 

TEOS 0.14 ± 0.01 0.1968 ± 0.0077 0.0001 ± 0.0003 0.999 

Composite  0.06 ± 0.01 0.2741 ± 0.0408 0.0105 ± 0.0006 0.999 

 

Based on the data from Table 3.2, the most readily quenched site, KSV1, of the 

composite nanoparticles is around 1.5 times higher than that of TEOS-based one at 

physiological oxygen concentration range. The two different microenvironments within 

the nanoparticle structure are described by f1 and f2 parameter values. The recovered 

values for f1 for both TEOS-based and composite nanoparticles, are very small 

(0.14±0.01 and 0.06±0.01 respectively). It indicates that only 14% and 6% of ([Ru 

(dpp)3]
2+

) molecules that are immobilized within the nanoparticle structures are located 

within the oxygen-permeable microenvironments with higher oxygen permeability 

(KSV1> KSV2). Taking into account the above findings and comparing the maximum 

oxygen sensitivity obtained for the composite nanoparticles (Φ0/Φ = 1.44) to the 
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literature (Φ0/Φ = 2.7) [10], further steps to improve the nanosensor oxygen response 

were taken.  

3.3.3.3 Development of ([Ru(dpp)3]
2+

)-doped nanoparticles with enhanced oxygen-

sensitivity 

As discussed before in the introduction, it was established from work on thin film 

oxygen sensors, that a hydrophobic matrix optimises the oxygen response [11]. An 

increase in the amount of the methyl group within the nanoparticle structure should 

result therefore in a better oxygen response. The new modified Stöber approach, 

described in section 3.2.2, was used to synthesize composite nanoparticles with 

enhanced sensitivity. The hydrolysis and condensation of MTEOS, before adding to the 

reaction mixture, was initiated in the acidic environment. The amount of MTEOS and 

the time of addition were optimised. The full characterization of the nanoparticles is 

presented in Figure 3.6. 

 

Modified Stöber method 

Composite nanoparticles 

a) DLS data 

Hydrodynamic diameter  

90.6 nm ± 17.8 nm 

PDI = 0.048 

Zeta potential = -43.7 mV 

b) TEM imaging (scale bar: 50nm) 
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c) Phase angle response 

 

d) Calibration curve – full oxygen concentration range 

 

e) Calibration curve – physiological oxygen concentration range 

 

Figure 3.6: The results  obtained for the composite nanoparticles doped with ([Ru(dpp)3]
2+

) 

prepared according to the new modified Stöber method: a) size and zeta potential 

measurements, b) TEM imaging, c) phase angle oxygen response, d) calibration curve within 

full dissolved oxygen concentration range, e) calibration curve within physiological dissolved 

oxygen concentration range.  
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The nanoparticles synthesised by this new modified Stöber approach have a 

hydrodynamic diameter equal to 90.6 nm ± 17.8 nm and low PDI value equal to 0.048. 

These results, together with a high zeta potential value (described in section 3.3.3.2), 

indicate the excellent stability of the composite nanoparticles in water. TEM imaging 

reveals the smaller size of the nanoparticles, as discussed earlier, by drying the 

nanoparticle solution on the TEM grids. Moreover, the shape of the nanoparticles 

observed on the TEM image is spherical, which is in contrast to the previous findings 

for the composite nanoparticles prepared via the classical Stöber method. It was 

postulated in the previous section for the composite nanoparticles prepared via a 

conventional Stöber method that as the amount of MTEOS used for the reaction 

increases, a greater degree of hydrophobicity is introduced into the nanoparticle. This 

was thought to increase the roughness of the nanoparticle surface. Based on the TEM 

images obtained for the nanoparticles synthesized via the modified Stöber synthesis, this 

hypothesis has to be revised. This huge contrast in the nanoparticle shape fabricated by 

these two different approaches (classical and new modified Stöber synthesis), may be 

caused by the different MTEOS hydrolysis environment. In the case of the previous 

approach based on the classical Stöber method, the introduction of MTEOS to the 

reaction environment with high pH seems not to facilitate the incorporation of this 

precursor to the nanoparticles. As a possible consequence, only a small fraction of 

MTEOS used for the reaction may contribute to the formation of the composite 

nanoparticles.  

A significant enhancement in the oxygen-sensitivity (Φ0/Φ = 3.75) was observed for the 

composite nanoparticles synthesized via new modified Stöber technique within the full 

dissolved oxygen concentration range (0ppm-42.5ppm). In the dissolved oxygen 

concentration range from 0 to 10ppm, the Demas model gave an excellent correlation 

with the data (r
2
 = 0.999) (see data in Table 3.3), that indicates the presence of two 

independent luminophore micro-domains with different accessibilities. However, in this 

intracellular sensing application, where the concentration of dissolved oxygen is very 

small (7.4ppm under ambient condition), a good correlation to the Stern-Volmer model 

is observed (r
2 

= 0.994), which simplifies the process of the nanosensor calibration to a 

Stern-Volmer-derived linear calibration plot.  The fitting was performed as well for the 

data points obtained from the full oxygen concentration range. It was not possible to fit 
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the data to the Demas model (possibly another model suitable for fitting the data from 

three or more micro-domains required). Further inspection of the data from Table 3.3 

reveals that even if the Ksv1 value (0.20) obtained for these new nanoparticles is lower 

than the one obtained for the composite nanoparticles obtained via the conventional 

Stöber method (0.27), a much larger fraction of ([Ru(dpp)3]
2+

) molecules is located in 

the microenvironment permeable to the oxygen for the newly synthesised nanoparticles 

(f1 =0.54)  The recovered  value for f1 for the nanoparticles synthesised by Stöber 

method without prehydrolysis of MTEOS is 0.06±0.01 (see data in Table 3.2), which 

combined with a more efficient quenching effect mentioned above, could suggest that 

this small fraction of ([Ru(dpp)3]
2+

) molecules exposed to the oxygen are located on the 

surface of the nanoparticles.   

 

Table 3.3: Stern-Volmer and Demas fitting parameters for the composite nanoparticles doped 

with ([Ru(dpp)3]
2+

) prepared by the new modified Stöber method.  

Terms from Equation 2.6: r
2 
= regression.   

 

Stern-Volmer model – full oxygen concentration range  

KSV[O2]
-1

 r
2
 

0.0704 ± 0.004 0.951 

Stern-Volmer model – physiological oxygen concentration range 

KSV[O2]
-1

 r
2
 

0.1037 ± 0.0019 0.994 

Demas model – physiological  oxygen concentration range 

f1 KSV1[O2]
-1

 KSV2[O2]
-1

 r
2
 

0.54 ± 0.05 0.2014 ± 0.0133 0.0403 ± 0.0055 0.999 
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3.3.3.4 Development of composite nanoparticles for ratiometric detection 

 

Taking into consideration the complexity of the electronics and the relatively high cost 

of the equipment required for lifetime-based imaging, composite nanoparticles suitable 

for the standard fluorescence microscopy instrumentation were developed in parallel. A 

second fluorophore, ATTO488, acting as a reference dye, was co-encapsulated with 

([Ru(dpp)3]
2+

) in the nanoparticle matrix in order to perform the dual emission-based 

ratiometric measurements, described in section 2.5.2. Due to the wide absorption 

spectrum of the ruthenium dye complex, it was possible to excite both dyes with the 

same excitation wavelength of 488nm. The ratio of luminescence intensities emitted at 

520nm for the reference dye and 610nm for oxygen-sensitive complex was calculated 

for different concentration of oxygen, which was then utilized in the microscopy 

imaging studies. The synthesis was based on the protocol described in detail in the 

nanosensor fabrication section. Prior to the oxygen-sensitivity measurements, the 

optical properties of these nanoparticles were analysed on the spectrofluorometer and 

the optical spectra obtained from these measurements are presented in Figure 3.7. 

 

a) ATTO488 spectra (λexc max = 500nm, λem max = 525nm ) 
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b) ([Ru(dpp)3]
2+

)/ATTO488 – doped nanoparticle (NP) and free ruthenium 

spectra 

 

 

Figure 3.7: a) Normalized absorption and emission spectra of ATTO488 (λexc=488nm) dissolved 

in water [12], b) Normalized excitation and emission spectra of ([Ru(dpp)3]
2+

)/ATTO488 – 

doped nanoparticle in water. The spectra of a free ([Ru(dpp)3]
2+

) dissolved in EtOH presented in 

section 3.3.3.1 was added to the graph. 

 

As shown in Figure 3.7b, the excitation peaks of the spectra collected for 

([Ru(dpp)3]
2+

)/ATTO488 – doped nanoparticles and free fluorophores overlap very well. 

In the case of the emission spectra, a small shift toward a longer wavelengths is 

observed for the ([Ru(dpp)3]
2+

)/ATTO488 – doped nanoparticles with respect to the free 

dye molecules, which was already mentioned before and attributed to the difference in 

the microenvironment of ([Ru(dpp)3]
2+

) (see section 3.3.3.1). 

([Ru(dpp)3]
2+

)/ATTO488 - doped composite nanoparticles were then investigated for 

their size, zeta potential and oxygen sensitivity and the results from this analysis are 

presented in Figure 3.8. 
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Modified Stöber method 

Composite nanoparticles for the ratiometric detection 

a) DLS analysis 

Hydrodynamic diameter = 87.3 nm ± 15.2 nm 

PDI = 0.067 

Zeta potential = - 46.22 mV 

b) TEM imaging (scale bar: 50nm) 

 

c) Spectrofluorometry 

 



Chapter 3. Oxygen-sensitive silica nanoparticles                                    B. Korzeniowska  

 

93 

 

d) Calibration curve 

  

 

Figure 3.8: The results  obtained for the composite nanoparticles doped with ([Ru(dpp)3]
2+

) and 

ATTO488 prepared according to the new modified Stöber method: a) size and zeta potential 

measurements, b) TEM imaging, c) oxygen-sensitivity spectrofluorometric analysis, d)cali- 

bration curve within physiological dissolved oxygen concentration range. R0 is the ratio 

between the fluorescence intensities of ATTO488 and ([Ru(dpp)3]
2+

) in the absence of oxygen, 

and R is the ratio at a given oxygen concentration.  

 

As expected, based on the previous results obtained for the ([Ru(dpp)3]
2+

)-doped 

nanoparticles (see section 3.3.3.2), the hydrodynamic diameter of the nanoparticles co-

encapsulated with ([Ru(dpp)3]
2+

) and ATTO488  equal to 87.3 nm ± 15.2 nm is slightly 

bigger than the nanoparticle size measured by TEM (~60nm). A homogeneous, 

monodispersed population of nanoparticles is presented on the TEM image, which is 

also well confirmed by DLS (PDI<0.1). The good stability of the nanoparticles in water 

is confirmed by the high zeta potential value measured on DLS (discussed in the 

previous section). The quasi-linearity (r
2
 = 0.994) of the Stern-Volmer plot suggests a 

single microenvironment for the fluorophore exposed to the oxygen [10]. Very large 

error bars were obtained for this calibration experiment, which possibly derives from 

the imperfect experimental calibration setup (described in section 3.2.3.4). The oxygen-

sensitivity of the ([Ru(dpp)3]
2+

)/ATTO488-doped nanoparticles is smaller (~1.3 times) 

than for nanoparticles containing only the ([Ru(dpp)3]
2+

) complex (based on KSV1 values 

for data obtained within the physiological concentration range  in Table 3.3 and Table 

3.4). It is possible that the small amount of APTES, present in the reaction mixture, acts 
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as a catalyst, which results in a more dense silica network. 

 

Table 3.4: Stern-Volmer fitting parameters for the composite nanoparticles doped with 

([Ru(dpp)3]
2+

) and ATTO488NHS ester prepared by the new modified Stöber method.  

Terms from Equation 2.6: r
2
 – regression.   

 

NPs doped with 

Stern-Volmer model 

KSV[O2]
-1

 r
2
 

([Ru(dpp)3]
2+

) / ATTO488 0.0843 ± 0.0016 0.994 

 

Due to very good solubility of ATTO488 in water, the leaching studies were performed 

for the nanoparticles according to the protocol described in section 3.2.3.5. The results 

from this experiment are presented in Figure 3.9. 

 

Figure 3.9: The data collected from the leaching experiment done for the nanoparticles co-

encapsulated with ([Ru(dpp)3]
2+

) and ATTO488.  

 

There is a small drop (~10%) in the luminescence intensity of both fluorophores 

observed within the first 2 hours. After this, no leaching is detected. This experiment 

indirectly proves the successful covalent immobilization of highly-water soluble 

ATTO488 within the nanoparticle structure.    

 



Chapter 3. Oxygen-sensitive silica nanoparticles                                    B. Korzeniowska  

 

95 

 

3.3.4 Temporal stability 

 

The stability of the composite nanoparticles with enhanced oxygen-sensitivity was 

monitored over time. Due to the problem with repeatability of the measurements done 

with a flow cell and peristaltic pump on the spectrofluorimeter (note a huge error bar on 

Figure 3.8 d,) the stability studies were done only for ([Ru(dpp)3]
2+

)-doped composite 

nanoparticles using  the phase fluorometry setup. The oxygen response curves were 

measured in 7 day intervals (up to 4 weeks since transferring the nanoparticles into the 

water). The results from this temporal stability study are presented in Figure 3.10. 

 

 

 

Figure 3.10: Effect of storage time in water on oxygen nanosensor sensitivity. 

 

From these data, it can be seen that a decrease in oxygen-sensitivity was observed 

within the first 24 hours, which is possibly caused by an on-going precursor hydrolysis 

process occurring within the nanoparticle matrix when stored in the aqueous 

environment. For the samples kept in ethanol, no change in nanosensor sensitivity was 

observed, which confirmed the above hypothesis. All data shown, including calibration 

plots presented in the previous sections, were carried out for the stable samples only.  

 

 

 

 



Chapter 3. Oxygen-sensitive silica nanoparticles                                    B. Korzeniowska  

 

96 

 

3.3.5. Reversibility studies 

 

Reversibility studies were performed on the phase fluorometry setup (described in 

section 3.2.3.1) for the best performing sample - ([Ru(dpp)3]
2+

)-doped composite 

nanoparticles prepared by modified Stöber method. The results from phase angle 

response are presented in Figure 3.11. 

 

Figure 3.11: Reversibility studies done for the composite nanoparticles doped with 

([Ru(dpp)3]
2+

) prepared by modified Stöber method. 

 

From the obtained results, very good reversibility compared with examples in the 

literature [10] is observed for the composite nanoparticles over the full dissolved 

oxygen concentration region.     

 

3.4 Conclusions 

 

In this chapter, the development of oxygen-sensitive composite nanoparticles was 

described. The synthesis parameters were optimized in order to achieve spherical, 

monodispersed nanoparticles within a size range compatible with the cellular sensing 

experiments. Two new approaches, classical and new modified Stöber-based 

nanoparticle synthesis, were investigated. A significant enhancement in the oxygen-

sensitivity of the composite nanoparticles was successfully achieved due to the 

introduction of the new modified Stöber synthesis route.  This improvement may be 

caused by a more efficient incorporation of pre-hydrolysed MTEOS into the 
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nanoparticle matrix; however, some more detailed studies of nanoparticle composition 

and porosity such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray 

Photoelectron Spectroscopy (XPS) and BET, are required to prove this hypothesis. The 

([Ru(dpp)3]
2+

)-doped  nanosensor displayed very good repeatability, reversibility and 

temporal stability.  

The other goal, the design and development of composite nanoparticles for ratiometric 

measurements, was also successfully accomplished.   The introduction of APTES to the 

reaction environment for the covalent binding of the reference dye – ATTO488NHS 

ester to the composite nanoparticle resulted in a relative decrease in the nanosensor 

oxygen response compared to that obtained for the composite nanoparticles doped only 

with ([Ru(dpp)3]
2+

). It is proposed that the catalytic activity of APTES present in the 

reaction mixture may influence the reaction kinetics and may result in a denser silica 

network. Some further studies on the nanoparticle porosity are necessary to confirm this 

hypothesis. It was shown, based on the leaching studies, that the highly water-soluble 

ATTO488NHS ester is well incorporated in the nanoparticle structure, which allows for 

reliable ratiometric detection.   

Finally, it was shown that, in the physiological range of oxygen concentration, both 

types of nanosensor, for the lifetime- and ratiometric-detection, are well fitted to the 

linear Stern-Volmer plot, which simplifies the process of the data analysis. 
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Chapter 4 

 

pH-sensitive silica nanoparticles 

 

4.1 Introduction 

 

In this chapter, the synthesis and characterization of ratiometric pH-sensitive 

nanoparticles are described. To facilitate proton ingress into the nanoparticle matrix, the 

hydrophilic TEOS precursor was used for the nanoparticle synthesis. In order to 

perform the ratiometric measurements, which are described in section 2.5.2, the pH-

sensitive fluorescein isothiocyanate (FITC) and the pH-insensitive Texas Red used as a 

reference dye, were covalently bound to the nanoparticle matrix. Another approach 

involving the physical entrapment of the pH-sensitive dye HPTS, was investigated in 

parallel. The dual-excitation nature of HPTS, which allows for the ratiometric detection 

without incorporation of the reference dye into the nanoparticle structure, is a very 

attractive feature from the optical detection point of view. In the experimental part of 

the chapter, the characterisation results of all nanoparticles, namely their size and zeta 

potential (described in section 3.3.3.2) using DLS and TEM techniques are presented. 

The nanosensors were then calibrated ex-vivo on the microplate reader. The conclusions 

from these preliminary results are presented at the end. 
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4.2 Materials and methods 

 

4.2.1 Reagents and materials 

 

TEOS, APTES, EtOH, NH4OH (28% v/v), DMSO anhydrous and fluorescein 5(6)-

isothiocyanate (FITC) were purchased from Sigma Aldrich. Sulforhodamine 101 acid 

chloride (Texas Red-X), succinimidyl ester, mixed isomers was obtained from 

Molecular Probes. Potassium salts of hydrogen phosphate (K2HPO4) and dihydrogen 

phosphate (KH2PO4), used to prepare buffer solutions of defined pH, were purchased 

from Sigma Aldrich. Standard buffer solutions (pH 4.0, 7.0 and 10.0) were obtained 

from VWR International. Polystyrene bottom transparent 96-well microplates were 

obtained from Thermo Fisher Scientific. Aqueous solutions used for nanoparticle 

dispersion were prepared from deionised (DI) water. All chemicals were of analytical 

grade and were used without further purification. 

 

4.2.2 Buffer preparation 

 

10mM phosphate buffers stock solutions with acidic and basic pH were prepared by 

dissolving 1.36g of KH2PO4 and 1.74g of K2HPO4 in 1 L of DI water, respectively. By 

combining the stock solutions in different proportion, calibration buffers of the desired 

pH were obtained. To adjust the value of pH to a certain level, a pH meter calibrated 

with standard buffer solutions (pH 4.0, pH 7.0 and pH 10.0) was used. The preparation 

of buffer solution at pH 10.0 required the addition of sodium hydroxide.  

 

4.2.3 Fabrication of pH nanosensors 

 

The (W/O) reverse microemulsion synthesis of HPTS-doped nanoparticles 

  

The HPTS-doped nanoparticles were synthesized by a standard (W/O) quaternary 

reverse microemulsion protocol found in the literature [1]. First, 7.5ml of cyclohexane, 

1.77ml of Triton X-100 and 1.6ml of n-hexanol were mixed on the stirrer at room 

temperature to generate the microemulsion system. Then, 0.48ml of 20mM HPTS 
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aquatic solution was added to the mixture. After 10 minutes, 100µl of TEOS was 

pipetted to the reaction vial. Thirty minutes later, 60µl of NH4OH was introduced to 

initiate the hydrolysis of TEOS. The reaction was allowed to stir for 24 hours at room 

temperature. To recover the nanoparticles, the microemulsion was broken by the 

addition of 20ml of EtOH. At the end of the process, the nanoparticles were washed by 

centrifugation (8320rcf, 30 minutes) 3 times with EtOH and final washing with water 

was carried out. After each centrifuge step (8320rcf, 30 minutes) the nanoparticles were 

dispersed in EtOH and finally in DI water using an ultrasonicator.  

 

Conventional Stöber synthesis of FITC/Texas Red-doped nanoparticles 

  

The nanoparticles containing pH-sensitive FITC and Texas Red acting as the reference 

dye were successfully fabricated using the conventional Stöber synthesis. FITC was 

incorporated into the nanoparticle structure through the isothiocyanate amine-reactive 

linker. For the conjugation of the reference dye with the nanoparticle matrix, a modified 

form of Texas Red with NHS ester was chosen. This NHS-ester derivative, upon the 

reaction with APTES, forms an amide bond, which then is used to immobilize Texas 

Red within the nanoparticle core.  

This additional step therefore was done prior to the nanoparticle synthesis, when both of 

the fluorophores were linked to APTES according to the protocol reported in the 

literature [2]. Stock solution of FITC in DMSO (11.8µl of 5x10
-3

M) was mixed with 

37.7µl of DMSO and 0.5µl of APTES and left on the stirrer for 3 hours. In parallel, 4.9 

µl of 12x10
-3

M stock solution of Texas Red NHS ester in DMSO and 0.5µl of APTES 

were added to 45.1µl of DMSO and left to react for 3 hours. These reactions were 

carried out in 2ml eppendorfs inserted into a glass vial, which then were put on the 

stirrer. The resulting FITC-APTES and Texas Red-APTES conjugates were used 

without further purification. 

The main reaction mixture was prepared in a glass vial according to the conventional 

Stöber synthesis described in section 3.2.2. TEOS (0.5ml) was added to 12.2 ml of 

EtOH and mixed on the stirrer for 15 minutes. Then the formation of nanoparticles was 

initiated by addition of 0.75 ml of NH4OH to the reaction mixture. Three hours later, 

Texas Red-APTES conjugate was pipetted into a reaction vial. After another 3 hours, 
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the FITC-APTES conjugate was introduced to the reaction mixture, which was followed 

by the addition of 0.5ml of TEOS. After 24 hours of synthesis, the nanoparticles were 

collected and washed three times in EtOH using the centrifuge (8320rcf, 30 minutes). 

The sample was then stored in the dark under ambient conditions. The synthesis and 

subsequent experiments were performed at room temperature. 

 

4.2.4 Experimental characterisation systems 

 

 4.2.4.1  Fluorescence measurements 

 

Fluorescence spectra were recorded using the FluoroMax-2 spectrofluorometer 

described in section 3.2.3.4. Nanoparticles were dispersed in water and transferred to a 

quartz cuvette for the measurements. The excitation spectra were acquired with an 

emission wavelength set at 515nm for HPTS and FITC and 609nm for Texas Red to 

match the maximum emission of these fluorophores. The emission spectra were 

collected employing excitation wavelengths of 490nm and 589nm, which corresponds 

to excitation peaks of FITC and Texas Red, respectively. 490nm excitation wavelength 

was used for HPTS. In all measurements 3nm passbands were used for the excitation 

and emission monochromators. 

Calibration experiments were performed on a Safire II microplate reader (Tecan System 

Inc., Austria). Before measurements, the nanoparticles were diluted in the buffer 

solutions with different pH (in the range 4.0 to 10.0). Three replicates of 250µl of each 

nanoparticles buffer solution were pipetted into the 96-well microplate. The same 

excitation and emission wavelengths were set for the excitation and emission 

measurements as that applied on FluoroMax-2 spectrofluorometer (see above). In all 

measurements the bandwidth was set at 5nm and the temperature at 21
0
C. 

Fluorescence spectra obtain from the leaching experiments were acquired on the 

FluoroMax-2 according to the protocol described in section 3.2.3.5.  
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4.2.4.2  Other characterisation techniques 

 

The pH of the buffer solutions was measured using a digital Orion Benchtop 420 A+ 

calibrated with three standard buffers of pH 4.0, 7.0 and 10.0 at room temperature. 

The size and the zeta potential of the nanoparticles were investigated using the DLS and 

TEM instrumentation described in section 3.2.3.2 and 3.2.3.3, respectively. 

 

4.3 Development of pH-sensitive nanoparticles 

 

4.3.1 Development of HPTS-doped nanoparticles synthesised by a 

(W/O) reverse microemulsion method   

 

The first approach was to employ a very photostable and highly fluorescent HPTS with 

a pKa around 7.3 to monitor the cytosolic intracellular pH. As mentioned in the 

introduction, HPTS as a self-referencing dye with two excitation wavelengths at 405nm 

and 450nm is a perfect candidate for the fabrication of the nanoparticles designed for 

the ratiometric detection. The HPTS-doped nanoparticles were synthesized using the 

microemulsion technique (described in section 4.2.3). The data acquired from the 

nanoparticle characterisation is presented in Figure 4.1. 
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Microemulsion method 

HPTS-doped nanoparticles for the ratiometric detection 

a) DLS analysis 

Hydrodynamic diameter = 84.1 nm ± 14.9 nm 

PDI = 0.109 

                                          Zeta potential = -47.4 mV 

b) TEM imaging (scale bar: 50nm) 

 

c) Spectroscopic characterization of HPTS 
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d) Excitation spectra  of HPTS-doped nanoparticles (λem = 515 nm) 

                              

e) Calibration plot obtained for HPTS-doped nanoparticles 

 

 

Figure 4.1: The results obtained for the nanoparticles doped with HPTS prepared according to 

the microemulsion method: a) size and zeta potential measurements, b) TEM imaging, c) 

spectroscopic characterization of HPTS (excitation spectra – left, emission spectrum - right), d) 

fluorescence spectra acquired for the nanoparticles dispersed in the buffer solution with 

different pH, e) calibration plot. 

 

The hydrodynamic diameter of HPTS-nanoparticles measured by DLS is around 85nm. 

The TEM images revealed a monodispersed population of nanoparticles with an average 

size of around 60 nm. As explained in section 3.3.3.2, the sample before TEM 

measurement is dried on a TEM grid, which results in a smaller size of the nanoparticle 

detected by this technique compared to that measured using DLS. A low zeta potential 

value (~-47mV) obtained from DLS indicates a good stability of the nanoparticles in 
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water [3]. The excitation spectra were collected for the emission wavelength of HPTS at 

515 nm. From the spectra measured for the nanoparticles dispersed in the buffer 

solutions with different pH, the calibration plot was obtained.  This plot was used to 

quantify the pKa value of HPTS-doped nanoparticles (pKa~7.8). A shift in pKa of the 

nanoparticles toward a higher value compared to that one reported for the free dye 

molecules (7.3) is observed, which is possibly caused by the different 

microenvironment of HPTS [4].  

Due to the very good solubility of HPTS in water, a leaching experiment was performed 

for the nanoparticles. The data obtained from this study is presented in Figure 4.2. 

 

Figure 4.2: Leaching study done for the HPTS-doped nanoparticles synthesized by the 

microemulsion technique. 

 

As can be observed from the spectroscopic measurements, an extensive (almost 100%) 

leaching of HPTS from the nanoparticle matrix was detected. Despite many different 

strategies from the literature including addition of a positively charged cationic 

surfactant to a classical Stöber synthesis [5], optimisation of the reverse microemulsion 

method for obtaining denser nanoparticle structure [6] as well as exchanging HPTS for 

its less water-soluble derivative [7],   the leaching problem was not solved and therefore 

the synthesis of HPTS-doped nanoparticles was not continued. 
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4.3.2 Development of FITC/Texas Red-doped nanoparticles 

synthesised by a conventional Stöber method   

 

The most successful approach to  pH-sensitive nanoparticle synthesis was based on the 

conventional Stöber method described in section 4.2.3. To immobilize the fluorophores 

within the nanoparticle matrix and eliminate the leaching problem, both fluorophores, 

FITC and Texas Red, were covalently bound to the nanoparticle silica network. The 

nanoparticles were then characterized and the results are presented in Figure 4.3. 

 

Conventional Stöber method 

FITC/Texas Red-doped nanoparticles for the ratiometric detection 

a) DLS analysis 

Hydrodynamic diameter = 85.3 nm ± 13.5 nm 

PDI = 0.089 

Zeta potential = -48.4 mV 

b) TEM imaging (scale bar: 50nm) 
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c) Spectroscopic characterization 

FITC Texas Red 

  

d) Emission spectra  (calibration experiment)  

 

e) Calibration plot 

 

Figure 4.3: The results obtained for the nanoparticles containing FITC and Texas Red prepared 

according to the Stöber method: a) size and zeta potential measurements, b) TEM imaging, c) 

spectroscopic characterization of FITC and Texas Red, d) fluorescence spectra acquired for the 

nanoparticles dispersed in the buffer solution with different pH, e) calibration plot. 
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The hydrodynamic size and PDI obtained from DLS measurements for FITC/Texas 

Red-doped nanoparticles were equal to 75.3 nm ± 13.5 nm and 0.089, respectively. The 

DLS results were verified, by an alternative method, TEM, which revealed the 

population of monodispersed nanoparticles on the images with an average size of 

around 50nm measured for the dried sample (the difference in the nanoparticle size 

between DLS and TEM was described in previous section). The calibration plot was 

acquired based on the emission spectra collected for excitation wavelengths of FITC 

and Texas Red at 490nm and 589nm, respectively. Then, from the ratio of the intensity 

maxima (IFITC/ITexas Red) at different pH, the sigmoidal fit was obtained. The value of 

pKa was equal 7.17, which means that these FITC/Texas Red –doped nanoparticles are 

suitable for the cellular application. When comparing this value to pKa of free 

molecules of FITC dissolved in water (pKa~6.4 [8]), the shift toward higher pKa value 

is observed, what can be a result of different luminophore microenvironment [9]. 

 

4.4 Conclusions 

 

The synthesis and characterization of pH-sensitive nanoparticles was described in this 

chapter. Both techniques, the conventional Stöber and the microemulsion technique, 

were employed for the nanoparticle fabrication. In the first approach, highly photo 

stable HPTS was used for the synthesis but unfortunately this water-soluble fluorophore 

was almost completely leaching out from the nanoparticles within 1 week.  The new 

successful strategy was based on a covalent binding of pH-sensitive FITC and Texas 

Red, used as the reference dye, to the nanoparticle matrix. These nanoparticles, obtained 

via conventional Stöber method were then characterized, calibrated and sigmoidal fit 

was done for obtained data. The pKa was calculated from the calibration plot and its 

value was around 7.2. It implies that this sensor could be suitable for intracellular 

measurement of pH within the cytosol where the pH is around 7.4. For sensing pH 

values inside lysosomes and endosomes, another pH-sensitive dye with lower pKa value 

would need to be incorporated into the nanosensor. 
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Chapter 5 

 

Intracellular sensing 

 

5.1 Introduction 

 

In the last decade, optical PEBBLE nanosensors have been developed in order to 

monitor processes occurring at the cellular level [1]. Many different factors have to be 

considered while designing the nanosensor for intracellular imaging and sensing, 

including the size and charge of the nanoparticles, the method of delivering the 

nanoparticles to the specific cell line as well as the influence of the nanomaterial on the 

cellular environment [2]. In the case of nanosensing an additional factor has be taken 

into consideration, which is the potential change in the nanosensor response upon its 

introduction to a complex cellular environment. In this chapter, the results obtained 

from cellular uptake and intracellular sensing experiments are described. Different 

methods of delivering the nanoparticles into the cells were tested on various cell lines. 

The intracellular sensing part is focused on the detection of oxygen. Due to time and 

other constraints, although pH nanosensors have been developed as reported in Chapter 

4, it was not possible to progress the study of intracellular sensing with these 

nanoparticles. This is included under Future work in Chapter 6.  
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5.2 Materials and methods 

 

5.2.1 Reagents and materials 

 

General buffers 

Phosphate buffer saline (PBS) (GIBCO): 13.7mM NaCl2, 27mM KCl, 100mM 

Na2HPO4, 20mM NaH2PO4. pH 7.3 

 

FACS buffer – BD Biosciences 

 

External buffer: 145mM NaCl2, 2mM KCl, 5mM NaHCO3, 10mM Glucose, 10mM 

HEPES, 1mM MgCl2, 2.5mM CaCl2. pH 7.3 

 

5.2.2 Cell culture 

 

5.2.2.1 Cell maintenance and growth media 

Macrophages J774A.1 cells were maintained in Roswell Park Memorial Institute media 

1640 supplemented with 10% v/v fetal bovine serum and 2% v/v Penicillin 

Streptomycin, all obtained from GIBCO. Human Embryo Kidney (HEK293) cells 

which were stably transfected with Toll-like receptor 4 (TLR4) and Human 

Osteosarcoma Epithelial (U2OS) cells were cultured in Dulbecco’s Modified Eagles 

Medium (DMEM) (Sigma Aldrich) supplemented with 10% v/v fetal bovine serum. All 

cell lines were maintained between 80% and 90% confluence, at low passage number 

(below 40) in T-75 flasks (Nunc, Fisher Scientific) at 37
0
C, 5%CO2. 

 

5.2.2.2 Cell passage 

Cells were grown up to 90% of confluency and washed three times with 1ml of sterile 

PBS. Cells were then detached from the bottom of T-75 flasks by addition of 1ml of 

Trypsin (0.25% w/v) / EDTA (0.02% w/v) solution 1X (Sigma Aldrich) for 10 minutes 

at 37
0
C. In the case of macrophages, adherent cells were detached from the bottom of 

culture flasks using a scraper. Cells were re-suspended in an appropriate media 

(described in section 5.2.2.1) in up to 10ml of total volume and transferred into a 15ml 



Chapter 5. Intracellular sensing                                                               B. Korzeniowska  

 

114 

 

sterile centrifuge tube for washing.  Cell pellets were collected at 148rcf for 5 minutes at 

room temperature. The resulting supernatants were removed and cells were re-

suspended in 5ml of appropriate complete growth media. Cells were finally passaged at 

a ratio of 1 to 5 into new T75 flasks.   

  

5.2.2.3 Cell counting 

Prior to plating, cell numbers were determined using the trypan blue viability method. 

Briefly, a sample of resuspended cells was diluted 5 times in PBS containing Trypan 

Blue (0.4%w/v) (Sigma) and healthy cells were counted on a hemocytometer.  

 

5.2.2.4 Preparation of microscope coverslips 

All imaging and time-domain fluorescence lifetime sensing experiments were 

performed on coated 15mm diameter round coverslips (Deckgläser, Germany). For 

frequency-domain fluorescence lifetime sensing experiments, cells were grown on 

25mm diameter coated round coverslips. The thickness of both types of coverslips was 

equal 1.5mm. 

 

5.2.2.5 Poly-D-lysine coating 

Before coating, the coverslips were washed in 5% (v/v) acetic acid ethanolic solution 

for 3 hours on a rotating carousel. They were washed several times with distilled water 

and sterilized by autoclaving. At the end of the process, clean and sterile coverslips were 

transferred into a 12-well plate and incubated for 3 hours at 37
0
C with poly-D-lysine 

solution diluted in PBS to a final concentration of 30ng/ml. The coated coverslips were 

finally washed three times in sterile PBS after removing poly-D-lysine solution from the 

wells.   
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5.2.2.6 Nanoparticle intracellular delivery procedures 

 

MACROPHAGE UPTAKE 

The phagocytosis uptake was performed based on the following standard protocol:  

1) The cells were cultured for 24 hours in 6-well plates (Nunc, Fisher Scientific) 

with a concentration of 5x10
5
 cells per well. Two plates were prepared: one for 

flow cytometry studies, another one containing coverslips (detailed in section 

5.2.2.4), on which macrophages were grown for analysis under the confocal 

microscope. 

2)  Lipopolysaccharide (LPS) solution was added for 24h to the wells at a final 

concentration of 200ng/ml. During this time macrophages, stimulated by LPS, 

developed the immunological response expressed as an increase in phagocytic 

activity. 

3) There followed the 0,2,6,12,24 hours incubation of the nanoparticles (25µg/well) 

with macrophages; the negative control was also prepared containing LPS with 

cells.  

4) Cells for flow cytometry were washed 3 times in FACS buffer (PBS, 2% v/v 

FCS, 0.05g NaN3 in 100ml) and scraped from a 6 well culture plate. This was 

followed by centrifugation for 5 min at 148rcf. The cell pellets were then re-

suspended in 500µl of FACS buffer and analysed (BD FACS Aria Cell Sorter, 

USA). 

5) For confocal microscopy, coverslips containing macrophages were transferred 

directly from the culture media to PBS. Coverslips were fixed in acetone for 15 

minutes at -20
0
C. After washing in PBS, 6µl of the fluorescence mounting media 

(DAKO, USA) was used to mount coverslips onto microscope slides prior to 

imaging. The slides were stored protected from the light, in the fridge.   

  

PASSIVE UPTAKE 

Passive uptake experiments were done for HEK293 and HEK293 stably transfected 

with TLR4 cells. All cells were seeded on the poly-D-lysine coated coverslips located in 

a 12-well plate at density 15x10
4
 cells per well. After 24 hours of incubation at 37

0
C the 

cells were washed 3 times in PBS and fresh complete media containing nanoparticles 
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(50µg/well) was applied into the wells. The cells were washed three times in PBS, 

stained, mounted onto microscope slides and imaged using confocal microscopy. 

Nanoparticle incubation times of 24 hours and 48 hours of nanoparticle uptake were 

investigated. 

 

CHEMICAL TRANSFECTION 

The chemical transfection experiments were performed with HEK293 cells grown on 

sterile coverslips coated with poly-D-lysine and placed in 12-well plates. Cell 

concentration was 15x10
4
 cells per well. SAINT-MIX reagent (Synvolux Therapeutics, 

Sweden), which belongs to a group of cationic lipid-based transfection systems, was 

used for these experiments. The amount of the transfection reagent components (SAINT 

MIX, HBS buffer) was optimized. In general the protocol  consisted of the following 

steps: 

1) 5/50/100µg of nanoparticles were diluted in 100ul of HBS buffer 

2) SAINT MIX transfectant (5µl, 10µl, 20ul) was added to the nanoparticles/HBS 

solution 

3) Nanoparticles/SAINT MIX mixture was incubated for 15 minutes at room 

temperature 

4) After the incubation, nanoparticles/SAINT MIX complex was added to the wells 

with a fresh complete medium 

5) 24 hours after nanoparticle transfection, cells were washed in PBS, stained and 

mounted on the microscope slides for imaging 

 

ELECTROPORATION 

The physical transfection with nanoparticles was done using an electroporator (Bio-Rad 

Gene Pulser, USA). HEK293 (1x10
6
 cells/ml) in media containing nanoparticles were 

placed on ice prior to electroporation. Different parameters were optimized which are 

listed below: 

- amount of nanoparticles: 20μg, 100µg 

- voltage applied to the sample: 220V, 260V, 320V 

- the capacitance: 960μF  

Following electroporation cells were immersed on ice for 5 minutes and then washed in 
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fresh media. After counting on a hemocytometer, the cells were grown on coverslips in 

12-well plates at a final concentration 5x10
5
 cells/well. Imaging was carried out 24 

hours post transfection. 

 

5.2.2.7 Staining of intracellular compartments 

For the intracellular localisation studies, cells were stained using CellMask
TM

 Deep Red 

Plasma Membrane Stain (Molecular Probes
®
, USA). This dye, due to its amphipathic 

structure, is loaded very efficiently through its hydrophobic moiety into the cell 

membrane, while its other component, negatively-charged hydrophilic dye, remains 

anchored outside the membrane. For membrane staining, the cells grown on the 

coverslips were taken out from the 12-well plate and put on the paper filter. The cells 

were then washed three times in sterile PBS and 150μl of staining solution with a 

concentration of 2.5μg/ml was pipetted on the coverslips with the cells and left at room 

temperature for 5 minutes. Cells were then washed three times with 150μl of PBS and 

were mounted on microscope slides using 3μl of Fluorescence Mounting Media.  

 Mitochondrial staining was performed at 37
o
C for 30 minutes with the MitoTracker® 

Deep Red FM (Molecular Probes
®
, USA) diluted in serum-free media at a concentration 

of 25nM. This staining reagent contains a mildly thiol-reactive chloromethyl moiety, 

which, once inside the cell, can form covalent bioconjugates with different intra-

mitochondrial protein sulfhydryls [3] as presented in Figure 5.1 

 

 

 

Figure 5.1: Intracellular reactions of the MitoTracker® Deep Red FM. 
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Before staining, the cells were washed three times in sterile PBS (150μl). Washing and 

mounting of the cells on the coverslips was performed in the same way as described 

above for the cell membrane staining protocol.  

Both dyes were chosen due to their optical properties (λabs/λem ~644/665 nm), which 

should not interfere with the broad peaks of excitation and emission of ([Ru(dpp)3]
2+

) 

(presented in section 3.3.3.1).  

 

5.2.3 Instrumentation 

 

5.2.3.1 Flow cytometry 

Flow cytometry was used for the nanoparticle uptake analysis. This method employs 

both the laser light scattered by the molecules of interest as well as fluorescence emitted 

from the fluorophore incorporated in the sample to identify and quantify the cellular 

components.  Samples were loaded into the flow cytometer FACS Aria 1 (BD 

Biosciences, USA). Due to the pressurized sheath fluid forcing the analysed sample into 

the center of the chamber and into the capillary, the cells were focused into single file 

inside the flow cell. While passing through the interrogation point, laser light intersected 

the cells and, as a consequence, side and forward scattering and fluorescence signals 

were collected. A 488-nm Coherent
®
 Sapphire

TM
 solid state laser was used as the 

excitation source. The fluorescence from the ruthenium complex was collected in the 

600-620 nm PE-Texas Red
® 

channel. The detection of the scattered light was divided 

between two pathways depending on the type of the scattering: 

- forward scatter light gathered by the photodiode placed along the axis of the laser 

beam 

- side scatter light directed through a system of mirrors and filters to the photomultiplier 

tube (PMT) at a 90
0
 angle [4]. 

The photons collected by the detectors were then transduced into voltage, which is 

proportional to the amount of light. 

 

5.2.3.2 Confocal microscopy 

Confocal microscopy was used to investigate the intracellular localization of the 

nanoparticles. Confocal microscopy was performed using a Zeiss LSM 510 META. 
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([Ru(dpp)3]
2+

) and ([Ru(dpp)3]
2+

)/ATTO488-doped nanoparticles were excited with 

488nm line of a 100 mW Argon laser beam. The fluorescence from CellMask
TM

 Deep 

Red Plasma Membrane Stain and MitoTracker® Deep Red FM was stimulated using the 

633nm line of Helium-Neon laser beam. The optical filter sets, together with the 

excitation lines, are described in Table 5.1. 

 

Table 5.1: Optical configuration used on the confocal microscope. NS  -non-stained samples, 

ST- stained samples, HFT (German abbreviation: Haupt-Farb-Teiler) – Primary Dichroic 

Beamsplitter, NFT (German abbreviation: Neben-Farb-Teiler) – Secondary Dichroic 

Beamsplitter, LP - long-pass, BP - band-pass. Numbers represent wavelength values in nm. 

Sample Measurement 

mode 

Excitation 

filter 

Dichroics 

Main 

secondary 

Channel Emission 

filter 

NS Single channel 488 HFT 

405/488, 

NFT490 

Ch2 LP420 

Single channel 488 HFT 

405/488, 

NFT545 

Ch2 BP 505-

530 

Ch3 LP615 

ST Sequential 

channel 

488 HFT 

405/488, 

NFT 545 

Ch2 BP 505-

530 

Ch3 LP615 

633 HFT 

405/488/ 

/543/633, 

NFT545 

Ch3 LP 650 

 

The imaging of non-stained samples was carried out using the backscattered reflection 

of the laser beam on the glass coverslip (yellow – labelled optical path in Table 5.1). In 

the case of stained samples, fluorescence from the mitochondrial and cell membrane 

stains was employed to determine the correct focal plane (green-labelled optical path in 

Table 5.1). The emitted signals were detected using photomultiplier tubes and 

transformed into the images. The images were acquired with 63x magnification 
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objective under oil immersion (Plan-Apochromat 63x/1.40 Oil DIC M27) using Zeiss 

LSM 510 META software and then analysed with Image J.  

The other settings used for the imaging are listed below: 

 - pixel dwell time – 25.6 μs/pixel,  

- resolution - 1024 pixels,  

- image – 12 bit,  

Confocality was achieved by setting pinhole equivalent to 1 airy unit for each channel 

(896µm and 106µm for 488nm and 633nm excitation respectively).  
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5.2.3.3 Confocal microscopy with the TCSPC Platform. 

 

Time-domain sensing was accomplished with the Zeiss LSM510 confocal microscope 

combined with fluorescence lifetime imaging extension modules (Picoquant, Germany). 

The sample was excited with a 5mW, 50ps 405nm diode laser (LDH405, Picoquant). 

The excitation source was coupled to the Zeiss LSM microscope and emitted light 

collected though the same optical fibre. The emitted signal was detected using Single 

Photon Avalanche Diodes (MPD-SPAD, Picoquant) in the Time-Tagged Time-Resolved 

(TTTR) format. A TCSPC data acquisition module (PicoHard 300, Picoquant, 

Germany) tags photon arrival times with respect to the beginning of the experiment and 

with respect to the laser pulse which allows for reconstruction of 2 dimensional and 3 

dimensional fluorescence lifetime modes. A schematic diagram of the time-domain 

FLIM instrumentation setup is presented in Figure 5.2.  

 

 

Figure 5.2: Time-domain FLIM microscopy setup. 
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5.2.3.4 Wide-field frequency-domain fluorescence lifetime microscopy   

 

A Leica DMIRE2 widefield microscope was used for the frequency domain FLIM 

measurements. Fluorescence was stimulated using a 1W 473nm LED (PicoQuant) 

modulated at 100kHz and suitable filter sets (Leica I3 filter set: 450-490 band pass 

excitation filter, 510nm dichroic mirror, 515nm and 540nm long pass emission filters) 

and visualised at 63x magnification under glycerine immersion (Leica HCX PL APO 

37
0
C X63/A=1.3). To amplify the emission signal, a frequency-modulated image 

intensifier (Lambert Instruments II18MD) coupled to a CCD camera (Vosskuhler CCD-

1300D) was used. Images were acquired and analysed using LI-FLIM 1.2.12 software. 

The frequency-domain instrumentation scheme is presented below in Figure 5.3. 

 

Figure 5.3:  Frequency-domain FLIM instrumentation [5]. 
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5.3 Nanoparticle intracellular delivery 

Due to the fact that there was no difference in cellular uptake observed for the 

nanoparticles designed for the lifetime and ratiometric detection as will be shown in the 

experimental section, the results can be addressed to both types of nanoparticles. The 

macrophage uptake and electroporation experiments are described using the results 

obtained for the ([Ru(dpp)3]
2+

)-doped nanoparticles. For the passive uptake and 

chemical transfection, the data obtained from the experiments performed with the 

nanoparticles containing ([Ru(dpp)3]
2+

) and ATTO488 are presented.   

 

5.3.1 Macrophage uptake 

 

5.3.1.1 Flow cytometry analysis 

The results from the phagocytosis uptake were analysed by the flow cytometry method 

and are presented as histograms displaying the number of events versus their intensities. 

This is shown in Figure 5.4. 

 

Fig 5.4:  Histograms obtained by FACS represent nanoparticle phagocytosis uptake for the 

different incubation times (0h ,2h ,6h ,12h ,24h) with macrophages together with a negative 

control (untreated cells). 

 

The negative control and 0 hours incubation samples gave, as expected, a very similar 
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population of low intensity events. No signal from [Ru(dpp3)
2+

]-doped nanoparticles 

was detected. Increase in time of incubation resulted in the shifting of the peak toward 

the higher intensity region, so that the mean fluorescence intensity for the final 24h 

incubation sample was significantly higher in comparison to the negative control and 

equal to 141.10 arbitrary units. This shift in fluorescence intensity indicates the particle 

uptake into the cell population. 

The data are also illustrated as a cytogram (dot plot), where the side scatter light 

intensity was plotted versus the forward scatter channel. Each dot represents one event. 

The set of clusters, equivalent to different populations within the sample, could be 

therefore distinguished on the plot. Boxes were drawn around regions of the cytogram, 

which allowed the calculation of the percentage of total fluorescence events within the 

population [4]. For the longer incubation time, an increase in the amount of events 

assigned to the macrophages with nanoparticles region from around 2% up to 91% was 

observed, which is presented in Figure 5.5. 
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Fig 5.5: Dot plot representation of the phagocytosis assay for the different NPs incubation 

time with macrophages together with negative control. SSC- side-scattered light. PE-Texas 

Red – forward scattered light channel with 620BP emission filter.  
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The population of dead cells was gated out at the time of analysis. 

 

5.3.1.2 Confocal microscopy imaging 

As a complementary technique of the nanoparticle uptake analysis, confocal microscopy 

was employed and the data from the imaging are presented in Figure 5.6. 

 

 

Figure 5.6: Confocal images of macrophages incubated with the ([Ru(dpp)3]
2+

)-doped 

nanoparticles (red) for A) 0 h, B) 2h, C) 6h, D) 12h. Non-fluorescent / scattered light was used 

to identify the cells (green).  

 

For the cells with 0 hours nanoparticle incubation time (Figure 5.6A), where 

nanoparticles were applied to the cells for a very short time (a few seconds), no 

nanoparticles appeared to enter the cell. A few isolated nanoparticles occurred on the 

cell periphery. With this limited exposure time, no nanoparticles are expected to enter 

the cells through phagocytosis. Phagocytosis has been detected as early as after 10 

minutes and the point when uptake saturates depends very much on the analyte of 
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interest [6]. Therefore any nanoparticles visible in Figure 5.6a are presumably bound 

non-specifically to the outside of the cell. After 2 hours (Figure 5.6B), the amount of 

nanoparticles visualized inside the macrophages increased dramatically. This uptake is 

time-dependent with a greater number of nanoparticles seen inside the macrophages 

after 6 and 12 hours of incubation (Figure 5.6 C and D). The confocal images are in 

agreement with the flow cytometry results.  
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5.3.2 Passive uptake 

 

In order to investigate the passive uptake of the nanoparticles, the adherent HEK 293 

cell line was used for the experiment. The cells were incubated with the nanoparticles 

for 24 hours. The results from the passive uptake experiment are shown in Figure 5.7. 

HEK 293 cells – passive uptake 

  

Figure 5.7: Confocal images of HEK293 incubated with the ([Ru(dpp)3]
2+

)/ATTO488-doped 

nanoparticles for 24h. The luminescence signal from the nanoparticles was collected with 

488nm laser into two separate channels, green and red, corresponding to ATTO488 and 

([Ru(dpp)3]
2+

), respectively. The cell membrane (blue) was stained with CellMask
TM

 Deep Red 

Plasma Membrane Stain and imaged with 635 nm laser.  

 

It can be observed from the images that the nanoparticles are passively uptaken by HEK 

293 cells up to some extent. To increase the efficiency of the uptake, HEK293 cells 

were starved for different period of time by the incubation with a serum-free DMEM 

media [7, 8]. The results from this approach are presented in Figure 5.8.  
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Figure 5.8: Confocal images of HEK293 starved for 5 hours in the serum-free media and then 

incubated with the ([Ru(dpp)3]
2+

)/ATTO488-doped nanoparticles in the complete media for 

24h. The luminescence signal from the nanoparticles was collected with 488nm laser into two 

separate channels, green and red, corresponding to ATTO488 and ([Ru(dpp)3]
2+

), respectively. 

The cell membrane (blue) was stained with CellMask
TM

 Deep Red Plasma Membrane Stain 

and imaged with 635 nm laser.  

 

As observed from the confocal images, positive uptake results were obtained for HEK 

293 cells when exposed to starvation. However, the cell membrane integrity and overall 

condition of HEK293 suggests that the cell viability may be affected in the absence of 

FBS. 

5.3.3 Chemical transfection 

The chemical transfection experiments were performed according to a protocol 

described in section 5.2.2.6. Different amounts of SAINT-MIX transfectant were used in 

the experiment. The images from the confocal microscope are presented in Figure 5.9. 
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HEK 293 – 5 μl of SAINT-MIX (Membrane stain) 

 

HEK 293 – 10 μl of SAINT-MIX (Membrane stain) 
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HEK 293 – 20 μl of SAINT-MIX (Membrane stain) 

 

Figure 5.9: Confocal images of HEK293 cells transfected with the ([Ru(dpp)3]
2+

)-doped 

nanoparticles containing different amount of SAINT-MIX chemical transfectant.  

 

An increase in amount of nanoparticles for the slides with the higher amount of SAINT-

MIX transfectant was detected. A difference in intensity redistribution is observed 

especially for the nanoparticles transfected with the highest amount of transfectant 

reagent. This could be caused by different factors including the higher permeability of 

the cell membrane to oxygen. As a consequence, a higher oxygen concentration would 

be detected, which would result in more efficient quenching of ([Ru(dpp)3]
2+

) and a 

larger contribution of ATTO488 to the signal. A more disrupted structure for 10μl and 

20 μl of SAINT-MIX is as well observed, which supports the previous hypothesis. 
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5.3.4 Recombinant cell line 

Another strategy was to employ HEK 293 transfected with TLR4 receptor. This cell 

line, due the presence of TLR4, has ability to detect LPS derived from Gram-negative 

bacteria and, as a consequence, initiate an immunological (phagocytic) response. The 

phagocytic ability of this cell line was therefore employed for the ([Ru(dpp)3]
2+

) / 

ATTO-doped nanoparticle uptake studies. The confocal images obtained from the 

experiments are presented in Figure 5.10 a, b. 

HEK 293 transfected with TLR4 (Mitochondrial stain) 

 

Figure 5.10a : Confocal image of the ([Ru(dpp)3]
2+

)/ATTO488-doped nanoparticle uptake 

performed for HEK293 transfected with TLR4 stained with MitoTracker®Deep Red FM dye. 
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HEK 293 transfected with TLR4 (Membrane stain) 

 

Figure 5.10b : Confocal image of the ([Ru(dpp)3]
2+

)/ATTO488-doped nanoparticle uptake 

performed for HEK293 transfected with TLR4 stained with CellMask
TM

 Deep Red Plasma 

Membrane dye. 

 

The successful uptake is clearly visible from the confocal images (Figure 5.10 a, b). The 

image of the cells stained with the membrane dye (Figure 5.10b) indicates that 

morphologically the cells remain unchanged after the nanoparticle uptake therefore the 

cell integrity is well maintained. This suggests that the nanoparticles are biocompatible.  

 As seen in Figure 5.10a, the luminescence derived from the nanoparticles and the 

mitochondrial stain was collected from the same pixels, which reveals that the 

nanoparticles are located in the proximity or inside the mitochondria. To fully 

understand whether nanoparticles enter inside mitochondria, some confocal 

microscopy-based co-localization studies and high resolution TEM imaging of the 

biological specimens should be performed.  
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5.3.5 Electroporation 

 

Electroporation was the last nanoparticle delivery technique investigated within these 

studies. This method is based on the application of an electrical impulse in order to open 

the pores in the cell membrane and introduce the nanomaterial inside the cell. The 

results from the electroporation collected for ([Ru(dpp)3]
2+

)-doped nanoparticles are 

presented in Figure 5.11.   

 

 

 

Figure 5.11: Confocal images of HEK293 electroporated with ([Ru(dpp)3]
2+

)-doped 

nanoparticles. Green channel (left-hand side): pseudo-coloured images of the cells, red 

channel (in the middle): images of ([Ru(dpp)3]
2+

)-doped  nanoparticles inside the cell, the 

composite image reconstructed from both channels (right-hand side).  

 

Confocal images obtained from three different samples (negative control, 20μg and 
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100μg of nanoparticles) are presented. As expected, HEK293 cells with the highest 

concentration of nanoparticles applied for the electroporation shows the highest 

nanoparticle delivery efficiency. The morphology of HEK293 cells after the 

electroporation is different in comparison to the previous results (see Figures 5.8 and 

Figure 5.9) obtained from the passive uptake and chemical transfection experiments. It 

may be caused by the invasive character of this technique. In consequence, the cells 

after electroporation require more time to spread on the glass coverslip and reach the 

desired level of co-fluency (~80%) for the confocal imaging. Due to the invasive 

character of this intracellular delivery method, other approaches were investigated.  

 

5.4 Intracellular oxygen sensing 

 

5.4.1 Time-domain measurements 

 

Oxygen sensing experiments were performed on macrophages using the fluorescence 

lifetime imaging microscopy (FLIM) technique. Macrophages, due to their ease of 

maintenance, are a very powerful model system for quantitative biophysical studies of 

eukaryotes [9].  

Six slides with 0h, 2h, 6h, 12h, 24h incubation times and a negative control were 

prepared for the oxygen sensing experiment according to the protocol described in 

section 5.2.2.6. The composite ([Ru(dpp)3]
2+

)-doped  nanoparticles were used for this 

experiment. Five randomly selected areas for each slide were then imaged and analysed 

in accordance with the steps listed below: 

- Focusing on the surface of the slide (Figure 5.12, left side) 

- Moving the focus 2um over the surface  

- Collecting the wide field fluorescence image (Figure 5.12, in the middle)  

- Switching to the FLIM platform and collecting the lifetime map (512x512 

resolution, 2.5µs acquisition window, 164µs pixel dwell time) (Figure 5.12, right 

side) 

- Analyzing the fluorescence images with ImageJ image processing program in 

order to compare an average fluorescence for the slides with a different 

nanoparticle incubation time.  
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The images are presented in Figure 5.12. 

 

 

 

 



Chapter 5. Intracellular sensing                                                               B. Korzeniowska  

 

137 

 

 

 

Figure 5.12: Confocal images of macrophages incubated with the ([Ru(dpp)3]
2+

)-doped 

nanoparticles for negative control, 0h, 2h, 6h, 12h, 24h (left – back scattered image, center – 

fluorescence image, right – FLIM image). 

 

The fluorescence-based analysis (data not shown) confirmed the flow cytometry results 

for the negative control, 0h and 2h incubation slides. In the case of the 6h incubation 

slide, the average fluorescence was higher than for the 12h and 24h incubation slides. It 

was possibly caused by the difference in the sample preparation (scraping of the 

macrophages versus simple wash of the slides in PBS).   

The FLIM images allowed for ease of distinguishing between the long lifetime 

nanoparticles (red spots) and the short lifetime endogenous proteins of macrophages 

(blue regions).  

Note that, due to hardware restrictions resulting in a short acquisition window (2.5µs), 

the colour scale does not show the real values of the lifetime. As it was mentioned in 

section 2.3.2, the experiments on the macrophages presented in this work, are 

qualitative. The quantitative analysis is limited to the point measurements due to the µs 

range lifetime of the ruthenium complex, which requires a very long acquisition 

window and presents technical limitations regarding the equipment available.   
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5.4.2 Frequency-domain measurements 

 

Frequency-domain sensing was carried out as part of a European research infrastructure 

Euro – Bioimaging Proof-of-concept project. The experiments were performed at the 

Netherlands Cancer Institute in Amsterdam. The scope of this project was to overcome 

the hardware limitations of the previous time-domain FLIM system and prove that the 

composite nanoparticles can be used in the intracellular environment to sense the level 

of oxygen. The experiments were performed on a widefield frequency domain FLIM 

setup (described in section 5.2.3.4) and the results obtained are discussed below. A new 

type of the adherent cells, U2OS, was used in these frequency-domain FLIM 

experiments. At the beginning it was confirmed that  the nanoparticles are uptaken by 

U2OS cells. The results from the intracellular localisation of the nanoparticles are 

presented in the following Figures (Figure 5.13 and Figure 5.14) 

 

 

Figure 5.13: Z-stack of confocal microscope images of 24 hours incubated with ([Ru(dpp)3]
2+

)-

doped nanoparticles (passive uptake) U2OS cells. Each image is a composite of backscatter light 

(green) and signal from the ruthenium-doped nanoparticles (red).  
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Figure 5.14: Z-stack of confocal microscope images of U2OS cells transfected with the 

([Ru(dpp)3]
2+

)-doped nanoparticles using lipofectamine. Each image is a composite of 

backscatter light (green) and signal from the ([Ru(dpp)3]
2+

)-doped nanoparticles (red).  

 

From the Z-stack of confocal images above, it is clearly visible that the nanoparticles 

are located inside the cell after 24 hours nanoparticle uptake as well as after 

lipofectamine-based transfection. Prior to performing the final nanoparticle calibration 

experiment with the nanoparticles engulfed by U2OS, the system (described in section 

5.2.3.4) was optimized for detection of the ([Ru(dpp)3]
2+

). Based on the extensive 

studies performed by the group, it was established that the optimal modulation 

frequency for ([Ru(dpp)3]
2+

) is 20kHz. The minimum modulation frequency available 

on the frequency-domain FLIM instrumentation in Amsterdam was 100kHz, which has 

to be taken into the consideration, when evaluating the oxygen nanosensor performance. 

The data obtained for free ([Ru(dpp)3]
2+

) molecules dissolved in EtOH within the 

physiological range of dissolved oxygen concentration (see Figure 5.15)  revealed the 

change in the lifetime of around 1.6 μs.  
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Figure 5.15: Lifetime calibration on frequency-domain FLIM for free ([Ru(dpp)3]
2+

) molecules 

dissolved in ethanol. 

 

On the phase fluorometry system (described in section 2.5.3.1), in the same dissolved 

oxygen concentration region, the change in the lifetime for free ([Ru(dpp)3]
2+

) 

molecules dissolved in EtOH was around 3.5 times larger compared to the frequency-

domain FLIM data. This is very likely due to the larger modulation frequency which 

reduces the optical signal compared to that which would be obtained at the more 

suitable frequency of ~ 20kHz. The calibration procedure was then repeated for the 

nanoparticles dispersed in water (Figure 5.16).  
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Figure 5.16: Lifetime calibration done on the frequency-domain FLIM for the nanoparticles 

doped with ([Ru(dpp)3]
2+

) dispersed in water. 

 

The final experiment with the nanoparticles transfected into cells was performed and the 

data collected from this experiment are presented in Figures 5.17 and 5.18.  
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Figure 5.17: Frequency-domain FLIM images of the ([Ru(dpp)3]
2+

) – doped nanoparticles 

uptaken by U2OS cells acquired under different oxygen concentration conditions (calibration 

gas mixtures containing from 0%  up to 20% of oxygen). To visualize better the changes in the 

lifetime, the sequence of images containing only one cell is presented.  
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Figure 5.18: Lifetime calibration done on frequency-domain FLIM for the nanoparticles doped 

with ([Ru(dpp)3]
2+

) uptaken by U2OS cells. Three different cells correspond to three different 

region of interest (ROI1, ROI2, ROI3).  

 

The sensitivity of the composite nanoparticles from calibration in water was then 

compared to those located inside U2OS cells (Figure 5.19).  
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Figure 5.19: Comparison of oxygen sensitivities between the composite nanoparticles doped 

with ([Ru(dpp)3]
2+

) dispersed in water and uptaken by U2OS cells.  

 

The fitting to the linear Stern-Volmer model was performed for the data obtained from 

the experiments within the physiological concentration range and a good correlation to 

this model was observed for both data sets (see Table 5.2). The dissolved oxygen 

concentrations, expressed in ppm, were calculated based on the solubility constant of 

oxygen in water at 21
o
C (0.004252g of O2 in 100g of H2O) [10]. 

Table 5.2: Stern-Volmer fitting parameters obtained from frequency-domain FLIM for the 

composite nanoparticles dispersed in water and uptaken by U2OS cells. 

 

NPs in 

Stern-Volmer model - physiological concentration range 

KSV[O2]
-1

 r
2
 

H2O  0.0806 ± 0.0022 0.991 

U2OS 0.0278 ± 0.0006 0.995 
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 As mentioned in the introduction, the complex intracellular environment can influence 

the nanosensor performance as observed in this case from the decrease in a value of the 

parameter KSV for the nanoparticles located inside U2OS cells. It has to be underlined 

however that due to the non-optimal modulation frequency parameters these data are 

only indicative of the response of the nanoparticles to intracellular oxygen 

concentrations and do not represent an accurate measurement. The same experiments 

would need to be performed on the instrument with 20 kHz modulation frequency 

capability to truly evaluate the performance of the nanoparticles. 

5.5 Conclusions 

In this chapter, nanoparticle uptake was successfully performed on four different cell 

lines using a range of available techniques.  All approaches were successful in 

delivering the nanomaterial inside the cells. It was difficult to distinguish the precise 

intracellular localization of the nanoparticles using fluorescence confocal microscopy 

due to spectral cross-talk between commonly used intracellular fluorescent probes and 

the diffraction limited resolution of standard optical microscopy.  Some other 

complementary techniques would need to be applied to these studies (i.e. TEM, STED) 

in order to gain some better insight in this matter. For the intracellular sensing 

experiments two different measurement techniques were employed, time and frequency-

domain lifetime microscopy. Due to the long lifetime of ([Ru(dpp)3]
2+

) and limited 

hardware resources, the TCSPC technique could be only applied for  qualitative studies. 

Quantitative results were obtained on the frequency-domain FLIM. A decrease in the 

lifetime from ~4.4μs to ~3.4μs was observed when the cells were exposed from 0% to 

20% of oxygen.  This change in lifetime is smaller in comparison to what was detected 

on the phase fluorometry setup for the nanoparticles dispersed in water. One of the 

factors responsible for the detected decrease in the oxygen sensitivity is the non-optimal 

modulation frequency. Other reasons could be related to the interaction between the 

nanoparticles and biological matter such as coating of the active sensing surface of the 

nanoparticle with proteins. Further investigation is required to fully interpret the results 

obtained. 
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Chapter 6 

 

Summary and Perspectives 

 

The main objectives of this interdisciplinary project, as stated in chapter 1 of the thesis, 

were the development, characterization and optimisation of novel oxygen and pH – 

sensitive nanoparticles for intracellular sensing applications. 

The first goal – synthesis of novel nanoparticles with enhanced oxygen sensitivity, was 

achieved by incorporation of an organically modified silica precursor - MTEOS into the 

nanoparticle structure. A gradual improvement in the nanoparticle oxygen response was 

achieved. An increase in oxygen response of around 1.5 times within the physiological 

dissolved oxygen concentration range (0-10ppm) was detected for the composite 

nanoparticles synthesized via a newly developed modified Stöber approach compared to  

pure silica particles obtained from the conventional Stöber process. These optimal 

composite nanoparticles, with the highest oxygen-sensitivity, exhibit very good sensor 

performance, namely excellent batch to batch reproducibility, reversibility and temporal 

stability. Additionally, in the region of dissolved oxygen concentration relevant to this 

cellular application, an excellent (r
2
=0.999) and good (r

2 
= 0.994) correlation to the 

Demas and Stern-Volmer models is observed, respectively. This quasi-linear response of 

the nanosensor enables a two-point calibration strategy. Due to the cost, availability and 

overall complexity of the FLIM instrumentation, ratiometric intensity-based 

nanoparticles were developed as an alternative to the lifetime-based particles. Both 

types of nanoparticles were encapsulated in cells and the lifetime-based intracellular 

oxygen response was measured. 

The second goal – synthesis of pH-sensitive nanoparticles to monitor initially pH within  
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cytosol was successfully accomplished by incorporation of pH-sensitive FITC and pH-

insensitive Texas Red to the TEOS - nanoparticle matrix. Both dyes were covalently 

linked to the nanoparticle structure to avoid the problem with leaching of the dye 

(observed for the HPTS-doped approach) from the nanoparticle matrix into the cell 

environment. These nanoparticles, with pKa equal to 7.17, are well suited for 

intracellular cytosolic investigation.  

The third goal – the intracellular delivery of nanoparticles was performed using many 

different approaches such as passive uptake, chemical transfection, electroporation as 

well as using a recombinant cell line. All of these strategies resulted in efficient delivery 

of the nanoparticles inside various cell lines. The phagocytic uptake of the nanoparticles 

by the macrophages was also investigated. Confocal microscopy was used to 

investigate the intracellular location of the nanoparticles. Protocols for staining of the 

intracellular compartments were optimised and applied in these studies. The cellular 

membrane staining confirmed the positive uptake information. For the mitochondrial 

stain, the signal from both fluorophores incorporated in the nanoparticles and the 

mitochondria-targeting dye were collected from the same pixels, which can indicate the 

nanoparticle intracellular localisation in the proximity of or inside the mitochondria. 

However more detailed fluorescence co-localization and alternative TEM imaging 

should be performed to fully understand the nanoparticle localisation. Under all 

conditions tested, cellular uptake does not significantly alter particle photophysics and 

the particles retain their high molecular brightness and are easily distinguishable from 

endogenous fluorescent proteins both in terms of intensity and fluorescence lifetime. 

Additionally these particles can be tolerated within the cell for extended periods of time 

(24 hours) without obvious cytotoxic effects.  

The fourth goal – the intracellular sensing experiments were successfully performed for 

oxygen only, using two different approaches, time- and frequency-domain FLIM. Due 

to the long lifetime of ([Ru(dpp)3]
2+

), the data obtained from the time-domain FLIM is 

qualitative in nature. Nevertheless, very good contrast between the long-lifetime 

nanoparticles doped with ([Ru(dpp)3]
2+

) and short-lifetime endogenous proteins was 

observed on the images acquired in this time-domain mode, which is a big advantage 

over conventional fluorescence imaging. The data collected on frequency-domain FLIM 

revealed the good potential of this technique for the intracellular sensing application. 
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From the preliminary results obtained from the proof-of concept study, around 1.6 μs 

change in the lifetime within the physiological dissolved oxygen concentration region 

was detected. The modulation frequency used for the measurements was not optimal for 

([Ru(dpp)3]
2+

) (100 kHz used instead of 20 kHz), therefore it was not possible to obtain 

the absolute quantitative information about the nanosensor sensitivity. Both imaging 

techniques had a positive contribution to the project and might be investigated in the 

future for specific intracellular diagnostics applications. Using the nanoparticles as a 

diagnostic tool can enable the early detection of disease and can contribute to more 

efficient therapeutics. 

 

Future work in the context of oxygen sensing could consist of the development of other 

nanoparticle formulations based on optimising the new modified Stöber synthesis for 

other organosilicon precursors or by changing the ([Ru(dpp)3]
2+

) to some other 

fluorophore with the longer lifetime; for example, porphyrin complexes. Expanding the 

area of the application for the pH-sensitive nanoparticles could be accomplished by the 

incorporation of a third fluorophore with a lower pKa into the nanoparticle structure in 

order to sense the pH in the intracellular compartments with lower pH such as 

endosomes and lysosomes. The delivery of the nanoparticles could be as well improved 

by labelling the nanoparticles with a specific antibody to the intracellular organelle or 

by using other techniques, including encapsulation of the nanoparticle into the 

liposomes. In the course of this work, while pH-sensitive nanoparticles were 

synthesised and characterised, it was not possible to proceed with cellular sensing. This 

work is ongoing. 

FLIM is a very promising technique, which could be applied in order to monitor the 

analyte changes occurring inside the cell. Nevertheless, a dependence of the modulation 

frequency on the luminophore lifetime has to be well considered in obtaining precise 

measurements. Due to the short lifetimes of fluorophores used for the cellular imaging, 

most FLIM setups are equipped with the frequency modulation modules, which operate 

at high frequencies. The long lifetime oxygen-sensitive dyes require much lower (10Hz- 

50kHz) modulation frequencies. To obtain the precise quantitative data from these 

intracellular sensing measurements, frequency-domain FLIM with a shorter modulation 

frequency (~20kHz) should be used for the experiments. 
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A huge area of research is devoted to monitoring the parameters from a single cell. The 

combination of microfluidics with intracellular sensing could provide very interesting 

results, where monitoring of the parameters of the single cell could be accomplished. 

Collectively, these results demonstrate the successful application of ([Ru(dpp)3]
2+

)-

doped nanoparticles for intracellular oxygen sensing. Overall, this thesis demonstrates 

the huge potential for the development of  oxygen, pH and other analyte-sensitive 

nanoparticles, which would lead to a multifunctional platform for early diagnostics and 

therapeutics applications.  
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