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Abstract

We investigate the asymptotic behaviour of solution of differential equation with state—
independent perturbation. The differential equation studied is a perturbed version of a
globally stable autonomous equation with unique equilibrium where the diffusion coeffi-
cient is independent of the state.

Perturbed differential equation is widely applied to model natural phenomena, in Fi-
nance, Engineering, Physics and other disciplines. Real-world processes are often sub-
jected to interference in the form of random external perturbations. This could lead to a
dramatic effect on the behaviour of these processes. Therefore it is important to analyse
these equations.

We start by considering an additive deterministic perturbation in Chapter 1. It is
assumed that the restoring force is asymptotically negligible as the solution becomes large,
and that the perturbation tends to zero as time becomes indefinitely large. It is shown
that solutions are always locally stable, and that solutions either tend to zero or to infinity
as time tends to infinity. In Chapter 2 and 4, we each explore a linear and nonlinear
equation with stochastic perturbation in finite dimensions. We find necessary and sufficient
conditions on the rate of decay of the noise intensity for the solution of the equations to
be globally asymptotically stable, bounded, or unstable. In Chapter 3 we concentrate on
a scalar nonlinear stochastic differential equation. As well as the necessary and sufficient
condition, we also explore the simple sufficient conditions and the connections between
the conditions which characterise the various classes of long—run behaviour. To facilitate
the analysis, we investigate using Split—Step method the difference equations both in the
scalar case and the finite dimensional case in Chapter 5 and 6. We can mimic the exact
asymptotic behaviour of the solution of the stochastic differential equation under the same

conditions in discrete time.
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Introduction and Notations

0.1 Introduction

0.1.1 Overview and highlights of the work

It is a natural problem in deterministic dynamical systems to ask under what conditions

is there a unique globally asymptotic stable solution of the equation

where f : R? — R? and this problem has been studied for general f since the 1960’s.
Without loss of generality, we always take this unique equilibrium to lie at z = 0. In
the 1960’s and 1970’s especially, this question was of great interest in dynamic macroe-
conomics, as it corresponds to the notion of the “invisible hand” that prices and outputs
of various commodities in an economy come to a unique set of equilibrium outputs and
prices without external intervention. However, it is likely that such economic systems are
subjected to persistent time-varying shocks, which fade over time. Such shocks may be
deterministic or stochastic in nature.

Therefore, it is equally natural to suppose that the equation is (somehow) perturbed
by adding a function g to the righthand side. Now the question is: what is the maximal
size of the perturbation for which the stable solution preserves its stability (or does any
perturbation cause the loss of stability)? What happens if the perturbation becomes
bigger? The structure of the perturbation should also be important. For example, the
perturbation may depend on the state (e.g., there are higher order nonlinear added to
an already linear problem). We call such a perturbation state dependent. On the other
hand, the perturbation may model a purely external force, in which case we may view g as
simply a function of time. We would call such a perturbation state independent. Another
possibility is that the perturbation is stochastic rather than deterministic, so the equation
becomes

dX(t) = —f(X(t))dt +o(t, X(t))dB(t),
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where B is a standard Brownian motion, and we understand this stochastic differential

equation (or SDE for short) as an integral equation of the form

X(t)=¢ - /0 F(X(s)) ds + /0 o(s, X(s))dB(s), >0,

where the last term is an It6 integral. In this case, we say the perturbation is state—
independent if o(x,t) = o(t), and state dependent otherwise.

In this thesis we deal with deterministic and stochastic differential equations with state—
independent perturbations. Our perspective is that we will assume that the perturbation
is such that the equilibrium is not preserved. However, it can still be the case that the
solutions of the perturbed equation are attracted to the equilibrium state of the the original
unperturbed problem. For example, if y is given by ¢/ (t) = —ay(t), for t > 0, then y(t) — 0
as t — 0o. Suppose now that this equation is perturbed by a state-independent term so
that now it reads 2/(t) = —ax(t) + p(t). If p(t) # 0 but p(t) — 0 as t — oo, then x(t) — 0
as t — oo, so the solution converges to the original equilibrium state of the unperturbed
equation.

We want our results to hold for a very large class of f, and to investigate the relationship
between the strength of mean reversion characterised by the nonlinearity of f, and the
intensity of the perturbation (g or ). We wish to ask: what is the difference between
the perturbation being “stochastic” or “deterministic”’? Given these criteria, we are led

to study the equations
2'(t) = —f(2(t) + 9(t), (0.1.1)
and

dX(t) = — f(X(t))dt + o (t)dB(t).

For equation (0.1.1)(especially in the scalar case with g(t) > 0 for all ¢ > 0), we can
develop a condition on f and g which discriminates between cases where z(t) — 0 as
t — oo and x(t) — oo as t — oo. It is notable that we can have z(t) — oo as t — o
even if g(t) — 0 as t — oo. This happens when f(z) — 0 as * — oo, and g does not
decay sufficiently rapidly, so that the strength of the mean reversion is weak. One reason
to include such deterministic analysis is to enable us to see the very different impact of

a state—independent stochastic term, in which ¢ tends to zero in some sense. For scalar



Chapter 0, Section 1 Introduction

SDEs The situation under which X (¢,£) — 0 as t — oo with probability one is equivalent
to the convergence of any solution with non-zero probability, and this is characterised
by a condition which involves the size of the perturbation o only. Furthermore, if the
perturbation exceeds this size, irrespective of the strength of the mean-reverting force, the
solutions will be unbounded.

Furthermore, we can classify entirely the asymptotic behaviour if |f(x)| — oo as |z| —
oo, depending only on a function which depends entirely on the perturbation intensity
o. This function allows for only three types of behaviour in the solution X: it is either
convergent with probability one; it is bounded but not convergent, with probability one;
or it is unbounded, with probability one. Other than |f(z)| — oo as || — oo, we make no
further assumption about the nature of nonlinearity (e.g., there are no linear, polynomial,
or exponential bounds on f).

It is interesting, however, to analyse the linear case in both one and arbitrarily many

dimensions, so the equation is
dX(t) = AX(t)dt + o(t) dB(t).

Here A can be a d X d matrix, B is an r—dimensional Brownian motion, and ¢ a matrix—
valued function. The linear analysis turns out to be very helpful in understanding the
asymptotic behaviour of the nonlinear equation. For all linear equations, irrespective of
dimension, we can classify the asymptotic behaviour and characterise the conditions un-
der which solutions are asymptotically convergent to the equilibrium. Stability ensues
whenever the underlying deterministic equation is globally stable, and the noise fades
sufficiently rapidly; once it exceeds a critical level, solutions do not converge to the under-
lying deterministic equilibrium. A classification of the asymptotic behaviour into stable,
bounded and unbounded solutions can be performed, and the conditions under which each
type of asymptotic behaviour is observed is independent of A, provided that all eigenvalues
of A have negative real part. Moreover, we don’t see any change in these conditions as
the dimension d changes.

When we come to deal with the general nonlinear problem, however, in the case when the

solution may only weakly revert to the mean (which means that, in some sense || f(z)| — 0
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as ||z|| — o0), there appears to be a distinction between scalar and finite dimensional non-
linear cases. Stronger sufficient conditions are needed on f in order to guarantee conver-
gence, even though, granted these stronger conditions, the behaviour of ||o|| characterises
the asymptotic behaviour. We speculate that stronger conditions on f are needed in finite
dimensions to ensure that the stability of the equilibrium is preserved, or that solutions
remain bounded, because of the transience of Brownian motion in higher dimensions.
We are unaware of a necessary and sufficient condition on f which would guarantee the
global stability of the zero equilibrium in finite dimensions. However, we employ a simple

and widely—used condition namely

(z, f(x)) >0, x#0,

where (-, -) denotes the standard inner product. This condition is often called the dissipa-
tive condition in the literature. This condition is always employed in our analysis of the

stochastic equation. We show that the dissipative condition is slightly strengthened to

liminf inf (x, f(z)) > 0,

Yoo |zl|=y
then we can characterise the convergence to the equilibrium in a manner otherwise inde-
pendent of f. Therefore, if the strengthened dissipative condition holds, we have stability
for all nonlinear problems under the same condition on ¢, no matter how strong the mean

reverting force is. If the dissipative condition is strengthened yet further to

liminf inf L’ f(x))

=400 > 0,
y—=oo |all=y [z

then we can classify the asymptotic behaviour as being convergent, bounded but not
convergent, or unbounded, in a manner which depends solely on ¢ through its norm.
Once again, therefore, once this second strengthening of the dissipative condition has
been made, the stability or boundedness of the solution are independent of the strength
of the mean reverting force.

We notice that the second strengthening of the dissipative condition implies that

lim | f(z)| = +oo. (0.1.2)

[|z]|—o0
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We conjecture, based on the linear case, and the scalar nonlinear case, that the global
stability of the deterministic equation, together with a condition of the form (0.1.2), would
enable the asymptotic behaviour to be classified. Similarly, we would expect that a weaker
condition on the size of f for large ||z||, together with the global stability of the unperturbed
deterministic equation, would enable us to characterise the convergence of all solutions in
a manner depending only on o.

The necessary and sufficient conditions which yield stable, bounded or unbounded so-
lutions are quite complex, involving hard—to compute integrals or summations. However,
simple sufficient conditions on ¢ are available which describe very well the classification

of the asymptotic behaviour. Roughly speaking, if there exists L € [0, oo] such that
. 2 .
Tim o (8)[:logt = L.

we have convergent solutions if L = 0; bounded but not convergent solutions if L € (0, 00);
and unbounded solutions if L = 4oc.

Finally, because f and o are general functions, it is usually impossible to write down a
formula for the solution of the SDE. Therefore, if one want to have quantitative information
about solutions it is necessary to simulate them on a computer. For this reason, we
must design reliable numerical methods for their simulation, and demonstrate that the
important properties of the solutions hold. In particular, any successful numerical method
should preserve the stability, boundedness or unboundedness of solutions of the equation.
Accordingly, we demonstrate that the asymptotic behaviour of the continuous problem
can be recovered completely by applying an appropriate implicit discretisation scheme.

Moreover, the same scheme works for all the problems that are considered in this thesis.

0.1.2 Relevant literature

The topic of this thesis is the asymptotic behaviour of stochastic differential equations.
This constitutes a large field of research. A number of important textbooks and mono-
graphs have been written on the subject. Classical work on the asymptotic behaviour, espe-
cially asymptotic stability of stochastic differential equations, was undertaken in Gikhman

and Skorohod [43] and in Khas'minski [45]. The work of Skorohod emphasised linear



Chapter 0, Section 1 Introduction

stochastic equations [73]. Mao has made a number of important contributions, particu-
larly with regard to the exponential stability of solutions in [53], with further developments,
including extensions to functional and neutral equations appearing in Mao [55]. A very
comprehensive monograph on stochastic functional differential equations is Kolmanovskii
and Myshkis [46], which devotes a lot of space to different modes of convergence, especially
in p—th mean. Extensions of the results of these works, with particular emphasis on SDEs
with Markovian switching, appear in Mao and Yuan [58]. Further results on the asymp-
totic behaviour and stability of stochastic partial differential equations and stochastic
delay partial equations are in the book of Liu [52].

This thesis is especially interested in studying the asymptotic behaviour of stochastic
differential equations with state-independent noise. Such equations have attracted a lot
of attention. Liapunov function techniques have been applied to study their asymptotic
stability in Khas'minski [45], with a lot of emphasis given to equations with perturbations
o being in L?(0,00). However, in a pair of papers in 1989, Chan and Williams [31] and
Chan[30] demonstrated that the stability of global equilibria in these systems could be
preserved with a much slower rate of decay in o: in fact, they showed that provided the
noise perturbation decayed monotonically in its intensity, then solutions converged to the

equilibrium with probability one if and only if

lim o?(t)logt = 0.

t—o00

These results also required strong assumptions on the strength of the nonlinear feedback.
Shortly thereafter, Rajeev [64] demonstrated that these results could be generalised to
equations with some non—autonomous features, and some results on bounded solutions
were obtained. In parallel, Mao demonstrated in [54] that a polynomial rate of decay of
solutions was possible if the perturbation intensity decayed at a polynomial rate. These
results were extended to neutral functional differential equations by Mao and Liao in [50],
with exponential decaying upper bounds on the intensity giving rise to an exponential
convergence rate in the solution.

After this, Appleby and his co—authors extended Chan and Williams’ results to stochas-

tic functional differential equations [15] and to Volterra equations especially (see Appleby
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and Appleby and Riedle [1, 14]), with extensions to discrete Volterra equations appearing
in Appleby, Riedle and Rodkina [20]. Necessary and sufficient conditions for exponential
stability in linear Volterra equation in the presence of fading noise was studied in [9].

One of the handful of papers which has most influence on this thesis is Appleby, Gleeson
and Rodkina [10], which returns directly to the equation studied by Chan and Williams
in [31]. In it, the monotonicity assumptions on f and o were completely relaxed, and the
mean reversion strength was also considerably weakened. Moreover, results on unbounded
and unstable solutions also appeared for the first time. However, the finite dimensional
case was not addressed, nor was a complete classification of the dynamics presented.
Furthermore, it remained an open question as to whether the weaker mean—reverting
assumption on f

liminf |f(z)| =:¢ >0
|z]—o0

was necessary to prove stability results. The goal of the thesis is to address each of these
shortcomings, and some papers, whose results are recorded in this thesis, have already
been published. See Appleby, Cheng and Rodkina [4, 5] and Appleby and Cheng [3]. The
first of these papers covers work presented in Chapter 2; the second forms the basis of
Chapter 5; and the third is, almost verbatim, Chapter 1. The other Chapters form the
basis of three preprints: Appleby, Cheng and Rodkina [6] covers the scalar nonlinear SDE
studied in Chapter 3; Appleby, Cheng and Rodkina [7] deals with its extension to finite
dimensions in Chapter 4; and Appleby, Cheng and Rodkina [8] deals with the numerical
methods for finite dimensional SDEs covered in Chapter 6.

Since most stochastic differential equations cannot be solved in closed form, there is an
obvious importance in developing reliable methods for their numerical simulation. In par-
ticular, much interest has centered on the question of preserving the asymptotic behaviour
of solutions when they are discretised. For deterministic equations, this approach is advo-
cated in the book of Stuart and Humphries. [76], for instance. For stochastic equations,
when this programme of research started, the major emphasis was on the mean square
asymptotic behaviour of linear SDEs. Among the early and important contributions we

highlight work of Saito and Mitsui [61], Schurz [71] and [72] and Higham [38]. The papers
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of Schurz and Higham also demonstrate the usefulness of implicit methods for dealing
with problems in which the continuous solutions converge to the equilibrium state. These
early works on SDEs were extended to study p—th mean exponential stability in stochastic
delay differential equations in Baker and Buckwar [26]; necessary and sufficient conditions
for exponential stability in the solution of SDEs and the corresponding discretisation were
given in Higham, Mao, Stuart [40].

More recently, attention has focused on preserving the pathwise stability and asymp-
totic properties of solutions of stochastic differential and delay differential equations. Close
to necessary and sufficient conditions for pathwise stability of discretisation of nonlinear
scalar SDEs appears in Appleby, Mao and Rodkina [13]. Almost sure exponential stability
has been studied extensively too. The literature is expanding rapidly, for SDDEs, expo-
nential stability of numerical solutions has been established in Wu, Mao, and Szpruch [80].
For equations with Markov switching, the a.s. exponential stability of numerical solutions
has been examined in Yin, Mao, Yuan, and Cao [81] and in S. Pang, F. Deng and X. Mao
[63]. On the other hand, non—exponential rates of convergence to equilibria of discreti-
sations of SDEs, which arise due to nonlinear drift and diffusion coefficients have also
been investigated. Examples of papers in this direction include Appleby, Rodkina, and
Berkolaiko [17] and Appleby, Rodkina and Mackey [19]. The latter paper is interesting in
the context of this thesis, as it concerns equations with state-independent perturbations.
However, what is notable in all these papers is that additional assumptions on the size of
the coefficients are needed, whether these are (essentially) linear or nonlinear (particularly
polynomial), in order to determine the rate of convergence. Instead, we wish to proceed for
equations with state independent noise in a manner analogous to Szpruch and Mao [77, 78]
in the state—dependent case by determining convergence to equilibria by making minimal
assumptions on the size of the drift and diffusion coefficients. Of course, in relaxing these
assumptions, we expect only to demonstrate convergence, but not to determine an upper
bound on its rate.

Recently, the limitations of using explicit Euler methods for simulating stochastic dif-
ferential equations have been explored. For the equation studied in this work, the paper

of Appleby, Rodkina, Berkolaiko [16] demonstrates that if f does not obey a global linear
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bound (in the sense that lim|, . [ f(2)|/|z| = +00), then for sufficiently large initial con-
ditions, the solution will oscillate unboundedly with probability arbitrarily close to unity,
even though all solutions of the corresponding continuous equation tend to zero with prob-
ability one. However, local stability is preserved, in the sense that if the noise intensity
remains arbitrarily small and the initial condition is sufficiently small, then solutions of
the explicit scheme will converge with probability arbitrarily close to unity. These results
were extended to equations with state-dependent noise in Appleby, Kelly, Mao, and Rod-
kina [11]. Examples which demonstrate that explicit Euler methods will suffer from these
problems when it is desired to preserve stationarity in SDEs, are presented in Mattingly,
Stuart, and Higham [60].

Given, therefore, that we desire to preserve the asymptotic behaviour for general non-
linear f (which need not obey global linear bounds), it becomes necessary to use a method
other than explicit Euler-Maruyama. Implicit methods have been recognised as perform-
ing well in these circumstances, as evidence by work of Schurz [70] and Rodkina and
Schurz [66]. Among possible implicit methods, a good candidate would appear to be the
split step backward Euler method (SSBE) developed by Higham, Mao, and Stuart in [39]
and in [60], as it has been shown to ensure convergence of numerical approximations of so-
lutions of SDEs on compact intervals, and preserves a.s. exponential stability in SDEs (see
e.g., Higham, Mao, and Yuan [41]) and in hybrid SDEs (see e.g., Mao, Shen, Gray [57]),
and stationarity in SDEs with and without Markovian switching (see Yuan and Mao [82]
and Mao, Yuan and Yin [59]). General stability under weaker assumptions on the drift and
diffusion coefficient is in Szpruch and Mao [77] and [78] in which a dissipative condition on
f is used. However, in contrast to the equations studied here, the diffusion term depends
only on the state, and equilibria are preserved by the stochastic perturbation.

In each case, the algorithms perform well with weak or no restrictions on the uniform
step size, in contrast to explicit Euler methods. In this thesis, we show with very weak
assumptions on the nonlinear function f and the perturbation o, that the SSBE method
preserves all possible types of asymptotic behaviour, without restriction being made on

the step size h > 0.
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0.1.3 Technical synopsis of the thesis

The purpose of this research is to study the asymptotic behaviour of solutions of a class of
differential equations with perturbations. With the results obtained from the continuous—
time equations, we also investigate if similar behaviour of the solutions are preserved by
discretisation. We also extend our results in the finite—dimensional case.

Before studying the differential equations with stochastic perturbation, we consider non-
linear differential equation with deterministic perturbation independent of the state which
do not involve any randomness. These results are presented in Chapter 1. The equation

in question is a perturbed version of equation

y'(t)=—fly(t), t=0.

It is presumed that the unperturbed equation has a globally stable and unique equilib-
rium at zero. Therefore the question arises as whether stability is preserved when the
perturbation g is asymptotically small. We already know that we have stability when the
perturbation is integrable. Also, if f obeys liminf, o f(z) > 0 and g(t) — 0 as t — oo
we have stability. Therefore we confine our attention in the case when ¢ is not integrable
and f(x) — 0 as @ — oo. It is shown that the solutions are locally stable, and that the
solutions either tend to zero or to infinity as time tends to infinity. We also give the critical
rate of decay of the perturbation g which depends on the strength of the restoring force
f, for which the solution will go to zero or to infinity.

In Chapter 2, we then apply the knowledge obtained from analysing the stability and
instability of deterministic differential equations to characterize the asymptotic behaviour
of solutions of linear stochastic differential equation in finite-dimensions. The equation
in question is a perturbed version of a linear deterministic differential equation with a

globally stable equilibrium at zero,
y'(t) = Ay(t), t=0.

where A is a matrix whose eigenvalues all have negative real parts. We want to answer the
question under what condition on the perturbation intensity ¢ would we preserve stability.

We first completely characterize the asymptotic stability, boundedness and unboundedness

10
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of the solution of the linear stochastic differential equation whose diffusion coefficient is
state-independent. In fact, everything can be inferred from the sum

o0

Se)=>

€
1—-&
= VI o (s)|2ds

where @ is the distribution function of a standardised normal random variable, or a related

< 400, for every >0, (0.1.3)

integral. If the sum is finite for all €, solutions tend to zero with probability one; if it is
always infinite, then solutions are unbounded; the third possibility, that .S is finite for some
values of €, but infinite for others, leads to the solution being bounded but not convergent.
In each case, we see the specified behaviour with probability one.

Although this is a necessary and sufficient condition for stability, boundedness or un-
boundedness, it can be hard to apply in practice. Therefore we also deduce a sharp
sufficient condition on ¢ to obtain the appropriate asymptotic behaviour. Perhaps the
most simple but comprehensive sufficient condition, involving the existence and size of the
limit limy—o ||o(¢)]|% log t has already been stated earlier.

We next move to characterize the global stability, global boundedness and recurrence
of solutions of a scalar nonlinear stochastic differential equation in Chapter 3. It is also a
perturbed version of a globally stable autonomous equation with unique equilibrium where

the diffusion coefficient is independent of the state. To be precise, we look at the equation
dX(t) = —f(X(t))dt +o(t)dB(t), t>0; X(0)=¢eR.

We give conditions which depend on the rate of decay of the noise intensity under which
solutions either (a) tend to the equilibrium almost surely, (b) are bounded almost surely
but tend to zero with probability zero, (c) or are recurrent on the real line almost surely.
We also show that no other types of asymptotic behaviour are possible. The condition
which characterises these types of behaviour uses (0.1.3) in the scalar case, once |f(z)| —
oo as |z| — oo. For stability, the necessary and sufficient condition is simply the finiteness
of S(e) in (0.1.3) for all e. Therefore, all conditions regarding monotonicity of f and o
(as required in [31]), or requiring f to satisfy extra conditions at infinity (as in [10]) have
been removed. Moreover, our results apply with only continuity of f, rather than stronger

conditions such as locally Lipschitz continuity. Under this relaxation, it may be that

11
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solutions are no longer unique, but nonetheless all solutions have the same asymptotic
behaviour.

These results are then extended to the finite-dimensional case in Chapter 4, where
stability and instability results are obtained under the equivalent conditions. We study
the same equation as in Chapter 3, with X(0) = ¢ € R?% B being an r-dimensional
standard Brownian motion, f : R® — R? is a locally Lipschitz continuous function and
o € C(]0,00); R™*"). We obtain stability under the finiteness of S(e) in (0.1.3), provided
that f obeys liminf, e inf},—.(y, f(y)) > 0. If we strengthen the dissipative condition
yet further, as indicated above, then we can classify the long run behaviour using S(e) as
we did for the linear equation in Chapter 2.

The last two chapters are devoted to the numerical analysis of solutions of the SDE. We
consider the scalar equation, under monotonicity conditions, in Chapter 5. We investigate
there the possibility of the preservation of the behaviour of the solutions of the scalar
stochastic differential equation under discretization. We consider a special Euler—type
discretisation called the Split-step backward Euler method. It takes the form the Split-

Step backward Euler method:

Xp(n) = Xn(n) = hf(Xp(n)), n=0,

Xp(n+1) = Xi(n) + Vho(nh)é(n+1), n>0.

Our main result is that the SSBE method preserves the asymptotic behaviour of the
solution of the SDE under the monotonicity assumptions imposed by Chan and Williams
in [31].

We use such an implicit scheme rather than an explicit scheme because we are interested
in the long—run behaviour of the solution. We can use explicit scheme if we are working
on finite time intervals, provided the size of the step is sufficiently small. If we want to
study the long run behaviour of the solution, an explicit scheme will still work reliably if f
has a global linear bound and is Lipschitz continuous. But there are drawbacks: if we are
interested in controlling the error of the solution, the explicit scheme requires a smaller
and smaller step size to maintain a particular error. Therefore, the cost of continuously

reducing the step size is very large. Moreover, it is known when f does not obey a global

12
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linear bound, that the explicit scheme predicts unboundedly oscillating solutions even
when the true solution is known to be asymptotically stable. However, using the implicit
scheme, we do not need to worry about the step size, and moreover, are ensured that the
solutions inherit the appropriate asymptotic behaviour.

We extend the numerical results in finite-dimensions in Chapter 6. The same Split-Step
backward Euler method is used with £ = {(n) : n > 1 being a sequence of r—dimensional
independent and identically distributed Gaussian vectors. We are able to classify the path-
wise stability, and more generally, the pathwise asymptotic behaviour of the discretisation.

We can impose that f be locally Lipschitz continuous on R?, or that f satisfies a global
one—sided Lipschitz condition, to guarantee the existence of a unique strong solution of the
SDE. However, if we do not impose these conditions on f, the continuity of f and o would
guarantee the existence of a local solution of the SDE, and together with the condition
(4.1.9), we have global existence of a unique solution. In the main result, it is shown that
when the split—step—method is applied to the resulting stochastic differential equation, and
the stochastic intensity is decreasing, the solutions of the discretised equation inherit the
asymptotic behaviour of the continuous equation, regardless of whether the continuous
equation has stable, bounded but unstable, or unbounded solutions. Classification of the
long run behaviour of the numerical solutions is also possible when ||o|| is not monotone.
If o obeys limy_,oo ||o(t)||% logt = L for some L € [0, oc], then the discretisation has stable,
bounded but unstable, or unbounded solutions, if and only if the continuous equations has

solutions with the corresponding asymptotic behaviour.

0.2 Notations

We introduce some standard notation used in this thesis:
N denotes the natural numbers.

Q™ denotes the positive rational numbers.

R : set of real numbers.

RT : set of non-negative real numbers.

R? : d-dimensional Euclidean space.

13
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C : set of complex numbers.

C(I;J) : space of continuous functions f : I — J where I and J are intervals contained
in R.

CL(I;J) : space of differentiable functions f : I — J where f' € C(I;J).

L'(0,0) : the space of Lebesgue integrable functions f : [0,00) — R such that

/ |f(s)|ds < +o0.
0

L?(0,00) : the space of Lebesgue square integrable functions f : [0,00) — R such that

/OO |f(s)?ds < +oo.
0

x V y : the maximum value between x and y.

x Ay : the minimum value between x and y.

gof:I—-K:x—(go f)(x):=g(f(x)): composition of two functions g and f.

h € RVyx(a) : we say that a function A : [0,00) — (0,00) is regularly varying at infinity

with index o € R if

R¥*" : set of d by r matrices.

AT : the transpose of A € R¥*7,

det A : the determinate of a square matrix A.

(-,-) : the standard inner product on R

| - || : the Euclidean norm on a row or column vector.

For A € R¥™" we denote the entry in the i-th row and j-th column by A;j, we denote
the Frobenius norm of A by

1/2
r d /

[AllF = ZZ 14551

j=1i=1

e; : the i-th standard basis vector in R?.
N(a,b) : normal distribution with mean a and standard deviation b.
(Q, F,{Fit}+>0,P) : a complete probability space with a filtration {F;};>0 satisfying the

usual conditions, i.e. it is increasing and right continuous while Fy contains all P-null sets.

14
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0.3 Important results from stochastic Analysis

In this thesis, the stochastic differential equations studied are driven by Brownian mo-
tions. They are often expressed in their integral form, where the stochastic integrals are
continuous martingales. And it is often convenient to understand the behaviour of contin-
uous martingales in terms of standard Brownian motions, particularly when dealing with
asymptotic results. Therefore we first establish a few definitions:

A stochastic process, {B(t) : 0 <t < oo}, is a standard Brownian motion if

e It has continuous sample paths,

e It has independent, stationary and normally-distributed increments.

Often we write FB(t) = o({B(s) : 0 < s < t}), which is the so—called natural filtration
of Brownian motion.
If (F(t))¢>0 is a filtration, an R%-valued JF(t)-adapted integrable process {M(t)}>q 1s

called a martingale with respect to {F(t)}(or simply, martingale) if
E[M(t)|F(s)] = M(s) a.s. foral0<s<t<oo. (0.3.1)

A right—continuous adapted process M = {M ()}, is called a local martingale if there
exists a nondecreasing sequence {7j} k>1 of stopping times with 7, T oo a.s. such that
every {M(my At) — M(0)},5 is a martingale.

A stochastic process X = {(X(¢), F(t))i>0} is called a semi-martingale if its trajectories
are cadlag(right-continuous and have left limits), and if it can be represented as the sum
of a local martingale and a process of locally bounded variation, i.e. in the form X (¢) =
M(t) + V(t), where M(t) is a local martingale and V (t) is a process of locally bounded
variation, that is, fg |dV (s,w)| < 400, t>0, weQ.

In this thesis, the martingales that we encounter are almost always Ito integral. We do

not give a precise definition(see [44]) but note that these are processes of the form
t
I(t) = / H(s)dB(s),t >0 (0.3.2)
0
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where H is a FP-adapted process. It transpires that if H is, for example, continuous
or bounded, that I is a local martingale. An important measure of the variability of the
path of a martingale is given by its quadratic variation. If M is a scalar martingale, its
quadratic variation (M) is the unique continuous adapted process vanishing at 0, for which
M? — (M) is a martingale. We notice that if I in (0.3.2) is a martingale, then this implies

that
(I)(t) :/tHz(s)ds, t>0.
0

This fact is used repeatedly throughout our work. Indeed, the quadratic variation assists
us in expressing Brownian motions in terms of continuous martingales and vice versa.
This is particularly useful when dealing with asymptotic results. The martingale time
change theorem, stated below, helps greatly in this direction. On the other hand, it can
sometimes happen that a martingale is standard Brownian motion, and Lévy’s martingale
characterisation gives us easily checked conditions under which this can arise.
Accordingly, we state without proof these important results below. First we state mar-

tingale time change theorem [65, Theorem V.1.6]:

Theorem 0.3.1. If M is a (F(t),P)-continuous local martingale vanishing at 0 and such

that (M)(o0) = 0o and if we set
T(t) =inf{s: (M)(s) =t},

then, B(t) = M(T(t)) is a (F(T'(t)))-Brownian motion and M(t) = B((M)(t)) for all

t>0.

We then have the martingale convergence theorem [65, Proposition IV.1.2.6]:

Theorem 0.3.2. A continuous local martingale M converges a.s. ast — oo, on the set
{(M)(o0) < oo}

Another useful result in proving a continuous, adapted stochastic process is a Brownian

motion is Lévy’s characterisation of Brownian motion given in [44, Theorem 3.3.16]. It is
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Theorem 0.3.3. Let {M(t),F(t),0 <t < 400} be a continuous, adapted process in R
such that, M(t) is a continuous local martingale relative to {F(t)}. Then {M(t),F(t),0 <
t < +oo} is a one—dimensional Brownian motion.

In view of Theorem 0.3.1, we see that precise asymptotic information about standard
Brownian motion would lead to precise asymptotic information about continuous mar-

tingales. The following result, which is called the law of iterated logarithm for standard

Brownian motions, characterise the fluctuations of standard Brownian motion.

Theorem 0.3.4. For the standard Brownian motion B,

li B(t) 1, liminf B(t)

imsup ——=——==1, liminf —————— = —

t_mop V2tloglogt t—oo 4/2tloglogt

One consequence of the law of the iterated logarithm for standard Brownian motions

and the martingale time change theorem is that an law of iterated logarithm result holds

for continuous time martingales. It is

Theorem 0.3.5. Let M be a continuous local martingale such that limy_, oo (M)(t) = +oo

a.s. on an event A. Then

M(t M(t
lim sup ®) =1, liminf ® =-1 a.s. on

oo \/2(M)(D) log log (M) (1 5o \/2(M) (1) log log (M) (1)

To conclude this section, we mention an important analogue of Theorem 0.3.2 for non—

negative semi-martingale. It is given in [55, Theorem 3.9]:

Theorem 0.3.6. Let {A(t)},5q and {U(t)},5( be two continuous adapted increasing pro-
cess with A(0) = U(0) = 0 a.s. Let {M(t)};>( be a real-valued continuous local martingale

with M(0) =0 a.s. Let £ be a nonnegative Fo—measurable random variable. Define
X(t)=€4+Alt)—-U{t)+ M(t) for t>0.
If X (t) is nonnegative, then

{ lim A(t) < oo} C {tllglo X (t)exists and is ﬁm’te} N {tllglo U(t) < oo} a.s.

t—00
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where B C D a.s. means P(BN D) = 0. In particular, if lim;_,o A(t) < o0 a.s., then for

almost all w € Q)

lim X (t)(w)ezists and is finite, and lim U(t)(w) < oo.

t—o00 t—o00
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Chapter 1
Asymptotic Stability of Perturbed ODEs

with Weak Asymptotic Mean Reversion

1.1 Introduction and Connection with the Literature

Mainly in this thesis, we investigate the asymptotic behaviour of solutions of differential
equations with stochastic perturbations. However, in order to see the effect of random
perturbations, we first ask what can happen if there are fading deterministic perturbations,
and in particular to study the relationship between the nonlinear restoring force and the
rate of decay of the deterministic perturbation.

In this chapter we consider the global and local stability and instability of solutions of

the perturbed scalar differential equation

(1) = —f@®) +g(t), t20; 2(0) =& (LL1)

It is presumed that the underlying unperturbed equation y'(t) = —f(y(¢)) for ¢ > 0 has
a globally stable and unique equilibrium at zero. It is a natural question to ask whether
stability is preserved in the case when g is asymptotically small. In the case when g is

integrable, it is known that
tlim z(t,§) =0, forall &+#0. (1.1.2)
—00

However, when g is not integrable, and f(x) — 0 as * — oo examples of equations are
known for z(t,&) — oo as t — oco. However, if we know only that g(t) — 0 as ¢t — oo, but
that liminf|, . [f(x)| > 0, then all solutions obey (1.1.2).

In this chapter, we investigate the asymptotic behaviour of solutions of (1.1.1) under
the assumption that f(x) — 0 as z — oo and g ¢ L'(0, ), but that g(t) — 0 as t — co.

In order to characterise critical rates of decay of g for which stability still pertains we
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stipulate that £ > 0 and g(¢) > 0 for all ¢ > 0, so that solutions always lie above the zero
equilibrium.

As might be expected, such a critical rate depends on the rate at which f(x) tends to
zero as x — oo, and the more rapidly that f decays, the more rapidly that g needs to
decay in order to guarantee that x obeys (1.1.2). Furthermore, regardless of how rapidly f
decays to zero, there are still a class of non—integrable g for which solutions obey (1.1.2),
and regardless of how slowly g tends to zero, there are a class of f for which f(x) — 0 as
x — oo for which (1.1.2) still pertains.

More precisely, if we define by F' the invertible function

1
F(x):/l mdu, x>0,

it is shown that provided f is ultimately decreasing on [0,00), and g decays to zero more
rapidly than the non-integrable function f o F~! then solutions are globally stable (i.e.,
they obey (1.1.2)). This rate of decay of g is essentially the slowest possible, for it can be
shown in the case when f decays either very slowly or very rapidly, that for every initial
condition there exists a perturbation ¢ which tends to zero more slowly than f o F~!, for
which solutions of (1.1.1) actually obey z(t) — oo as t — co. Moreover it can be shown
under a slight strengthening of the decay hypothesis on g that for every g decaying more
slowly than f o F~! that all solutions of (1.1.1) obey x(t) — oo as t — oo, provided the
initial condition is large enough. In the intermediate case when f tends to zero like 2=
for > 0 as  — oo (modulo a slowly varying factor) a similar situation pertains, except
that the critical rate of decay to zero of g is Af o F~!, where A\ > 1 is a constant which
depends purely on .

The question addressed in this chapter is classical; under the assumptions here, we note

that the autonomous differential equation

2(t) = —f(a(t)) (11.3)

is the unique positive limiting equation of the differential equation (1.1.1) if either g(¢) — 0
as t — oo or if g € L'(0,00). Therefore the problem studied here is connected strongly

with work which relates the asymptotic behaviour of original non—autonomous equations
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to their limiting equations. Especially interesting work in this direction is due to Artstein
in a series of papers [23, 24, 25]. Among the major conclusions of his work show that in
some sense asymptotic stability and attracting regions of the limiting equation are synony-
mous with the asymptotic stability and attracting regions of the original non—autonomous
equation. However, these results do not apply directly to the problems considered here,
because the non—autonomous differential equation (1.1.1) does not have zero as a solution.
Moreover, equation (1.1.1) does not exhibit the property that its limiting equation is not an
ordinary differential equation, so the extension of the limiting equation theory expounded
in e.g., [23] is not needed to explain the difference in the asymptotic behaviour between
the original equation and its limiting equation. Other interesting works on asymptotically
autonomous equations in this direction include Strauss and Yorke [74, 75] and D’Anna,
Maio and Moauro [32].

Another approach which seems to generate good results involves Liapunov functions.
Since the equation (1.1.1) is non—autonomous, we are inspired by the works of LaSalle
(especially [49] and [48]), in which ideas from Liapunov’s direct method, as well inspiration
from the limiting equation approach are combined. In our case, however, it seems that the
only possible w—limit set is zero, the equilibrium point of the limiting equation, and once
more the fact that zero is not an equilibrium of (1.1.1) makes it difficult to determine a
t—independent lower bound on the derivative of the Liapunov function. Some Liapunov—
like results are presented here in order to compare the results with those achieved using
comparison approaches. However, the methods using comparison arguments to which the
bulk of this paper is devoted, seem at this point to generate a more precise characterisation
of the asymptotic behaviour of (1.1.1).

The motivation for this chapter originates from work on the asymptotic behaviour of
stochastic differential equations with state independent perturbations, for which the un-
derlying deterministic equation is globally asymptotically stable. In the case when f has
relatively strong mean reversion, it is shown in [10], for a sufficiently rapidly decaying
noise intensity, that solutions are still asymptotically stable, but that slower convergence
leads to unbounded solutions. A complete categorisation of the asymptotic behaviour in

the linear case is given in Chapter 2. It appears that the situation in the scalar case for
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It6 stochastic equations differs from the ordinary case (see Chapter 3), even in the case
when there is weak mean-reversion, but the situation in finite dimensions may differ. The
Liapunov-like approach we have applied here is also partly inspired by work of Mao, who
presented work on a version of LaSalle’s invariance principle for Ité stochastic equations
in [56], partly because the intrinsically non—autonomous character of the stochastic equa-
tion leads the author to allow for the presence of an integrable t—dependent function on the
righthand side of the inequality for the “derivative” of the Liapunov function. A similar
relaxation of the conditions on the “derivative” of the Liapunov function for It6 equations
can be seen in [45, Chapter 7.4] of Hasminskii when considering the asymptotic behaviour
of so—called damped stochastic differential equations, which also form the subject of [10]
and Chapters 2, 3 and 4 of this thesis.

The Chapter is organised as follows. Section 2 contains preliminaries, introduces the
equation to be studied, and states explicitly the hypotheses to be studied. Section 3
lists the main results of the paper. In Section 4 a number of examples are given which
illustrate the main results. Section 5 considers extensions to the results indicated above to
include finite-dimensional equations or equations in which the perturbation changes sign.
A Liapunov—style stability theorem is given in Section 6, along with some examples. The

proofs of the results are given in the remaining Sections 7-13.

1.2 Mathematical Preliminaries

1.2.1 Notation

In advance of stating and discussing our main results, we introduce some standard no-
tation. We denote the maximum of the real numbers x and y by = V y. Let C(I;J)
denote the space of continuous functions f : I — J where I and J are intervals contained
in R. Similarly, we let C'(I;.J) denote the space of differentiable functions f : I — J
where f' € C(I;J). We denote by L'(0,00) the space of Lebesgue integrable functions

f:]0,00) — R such that
/ 17(s)|ds < +oo.
0
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If I, J and K are intervalsin R and f : I — J and g : J — K, we define the composition
gof:I—K:zw (gof)(z):=g(f(x)). If g:[0,00) = R and h : [0,00) = (0,00) are
such that

9(x)

:cﬁ\rgo (x) =1

we sometimes write g(z) ~ h(z) as x — oo.

1.2.2 Regularly varying functions

In this short section we introduce the class of slowly growing and decaying functions called
regularly varying functions. The results and definition given here may all be found in e.g.,
Bingham, Goldie and Teugels [27].

We say that a function A : [0,00) — (0,00) is regularly varying at infinity with index

a € Rif
h(A
lim (Az)

200 h(x)

=\

We write h € RV (a).

We record some useful and well-known facts about regularly varying functions that
will be used throughout the chapter. If h is invertible, and o # 0 we have that h~! €
RV (1/a). If h is continuous, and o > —1 it follows that the function H : [0,00) — R

defined by

obeys H € RV (a+ 1) and in fact we have that

H(zx) 1
im = .
z—oo xh(x) a+1

If h1 € RV (a1) and hg € RV (a2), then the composition hy o he is in RV (a1a2).

1.2.3 Set-up of problem and statement and discussion of hypotheses

We consider the perturbed ordinary differential equation

()= —f(z(t) +g(t), t>0; z(0)=C¢. (1.2.1)
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We suppose that
feCR;R); xf(zx) >0, z#0; f(0)=0. (1.2.2)

and that g obeys
g € C([0,00); R). (1.2.3)

To simplify the existence and uniqueness of a continuous solutions on [0, 00), we assume
that

f is locally Lipschitz continuous. (1.2.4)

In the case when ¢ is identically zero, it follows under the hypothesis (1.2.2) that the

solution z of (1.2.1) i.e.,

2'(t)

I

|
~
]
—~
~
N’
~
\Y
=
8
o
S~—

I
o

(1.2.5)

obeys
tlggo z(t;€) =0 for all £ # 0. (1.2.6)
Clearly z(t) = 0 for all t > 0 if £ = 0. The convergence phenomenon captured in (1.2.6)
for the solution of (1.2.1) is often called global convergence (or global stability for the
solution of (1.2.5)), because the solution of the perturbed equation (1.2.1) converges to
the zero equilibrium solution of the underlying unperturbed equation (1.2.5). We see that
if g obeys
g € L0, 00), (1.2.7)
then (1.2.2) still suffices to ensure that the solution x of (1.2.1) obeys (1.2.6). On the

other hand if we assume only that

lim ¢(t) =0, (1.2.8)

t—o00

but that ¢ ¢ L'(0,00), (1.2.2) is not sufficient to ensure that z obeys (1.2.6). Under

(1.2.8), it is only true in general that
lim z(t,£) =0, for all |£], sup|g(t)| sufficiently small. (1.2.9)
t—o0 t>0

This convergence phenomenon is referred to as local stability with respect to perturbations,

and is established in this chapter.
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An example which show that some solutions of (1.2.1) even obey

lim z(t) = oo (1.2.10)

t—o00

in the case when g obeys (1.2.8) but g ¢ L'(0,00) and when f obeys (1.2.2) but the

restoring force f(x) as x — oo is so weak that

lim f(z) =0 (1.2.11)

T—00

are presented in Appleby, Gleeson and Rodkina [10].

However, when (1.2.11) is strengthened so that in addition to (1.2.2), f also obeys

There exists ¢ > 0 such that ¢ := liminf |f(x)], (1.2.12)
—00

i
||
then the condition (1.2.8) on g suffices to ensure that the solution x of (1.2.1) obeys (1.2.6).
See also [10]. For this reason, we restrict our focus in this paper to the case when f obeys
(1.2.11).

The question therefore arises: if f obeys (1.2.11), is the condition (1.2.7) necessary in
order for solutions of (1.2.1) to obey (1.2.6), or does a weaker condition suffice. In this
paper we give a relatively sharp characterisation of conditions on g under which solutions
of (1.2.1) obey (1.2.6) or (1.2.10). In general, we focus on the case where g ¢ L'(0,00),
once we have shown that x obeys (1.2.6) when g € L'(0, 00).

To capture these critical rates of decay of the perturbation g, we constrain it obey
g(t) >0, t>0, (1.2.13)

Our purpose here is not to simplify the analysis, but rather to try to obtain a good lower
bound on a critical rate of decay of the perturbation. To see why choosing g to be positive
may help in this direction, suppose momentarily that g(¢) tends to zero in such a way
that it experiences relatively large but rapid fluctuations around zero. In this case, it is
possible that the “positive” and “negative” fluctuations cancel. Therefore an upper bound
on the rate of decay of the perturbation to zero, which must majorise the amplitude of
the fluctuations of g, is likely to give a conservative estimate on the rate of decay. Hence

it may be difficult to ascertain whether a given upper bound on the rate of decay of g is
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sharp in this case. Similarly, we constrain the initial condition £ to obey
£€>0, (1.2.14)

as this in conjunction with the positivity of g and the condition (1.2.2) on f will prevent
the solution of (1.2.1) from oscillating around the zero equilibrium of (1.2.5): indeed these
conditions force x(t) > 0 for all ¢ > 0. This positivity enables us to get lower as well as
upper bounds on the solution.

Many stability results in the case when & and g do not satisfy these sign constraints can
be inferred by applying a comparison argument to a related equation which does possess
a positive initial condition and g. Details of some representative results, and extensions
of our analysis to systems of equations is given in Section 1.5.

To determine the critical rate of decay to zero of g, we introduce the invertible function
F, given by

1

F(z) :/1 mdu, x> 0. (1.2.15)

Roughly speaking, we show here that provided g(t) decays to zero according to

lim sup <1, (1.2.16)

t—oo f(F71(1))
and

There exists * > 0 such that f is non—increasing on (z*, c0) (1.2.17)

then the solution x of (1.2.1) obeys (1.2.6). The condition (1.2.16) forces g(t) — 0 as
t — o0o. To see this note that the fact that f obeys (1.2.17), and (1.2.2) implies that
F(t) = oo as t — oo and therefore F~1(t) — oo as t — 0o. Since f obeys (1.2.11), we
have f(F~1(t)) — 0 as t — oo. This implies that g(t) — 0 as t — co. We note also that
(1.2.16) allows for g to be non-integrable, because ¢ — f(F~1(t)) is non-integrable, owing
to the identity

t F~L(t)

[ e tonds= [ g Playdu= £ - 1

0 F=1(0)

which tends to +00 as t — oo. Careful scrutiny of the proofs reveals that the condition

(1.2.17) can be relaxed to the hypothesis that f is asymptotic to a function which obeys
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(1.2.17). However, for simplicity of exposition, we prefer the stronger (1.2.17) when it is
required.
On the other hand, the condition (1.2.16) is sharp when f decays either very rapidly or

very slowly to zero. We make this claim precise. When f decays so rapidly that
foF 1 €RV,(-1) (1.2.18)

or f decays to zero so slowly that

f € RVa(0) (1.2.19)

then for every £ > 0 there exists a g which obeys

lizn sup f(g(tl)(t)) > 1, (1.2.20)

for which the solution z of (1.2.1) obeys (1.2.10). In fact we can construct explicitly such

a ¢g. Moreover, under either (1.2.18) or (1.2.19), it follows that for every g for which

.. g(t)
R 1)

there exists & > 0 such that the solution x of (1.2.1) obeys (1.2.10) for all £ > z. We

> 1, (1.2.21)

observe that (1.2.21) implies that g ¢ L'(0,00). We note that the condition (1.2.18)
automatically implies that f obeys (1.2.11) and also that f is asymptotic to a function
which obeys (1.2.17).

In the case when f decays to zero “polynomially” we can still characterise quite precisely
the critical rate of decay. Once again, what matters is the relative rate of convergence of

g(t) and of f(F~1(t)) to 0 as t — co. Suppose that f obeys
There exists § > 0 such that f € RV (—0). (1.2.22)

This condition automatically implies that f obeys (1.2.11) and moreover that it is asymp-

totic to a function which obeys (1.2.17). In the case that

. g(t)
B sp 2 1)

and f obeys (1.2.17), we have that the solution = of (1.2.1) obeys (1.2.6). On the other

< A(B) =BT (14571, (1.2.23)

hand if f obeys (1.2.22), then for every & > 0 there exists a g which obeys

: 9(t)
hgﬁ}lpm > AB), (1.2.24)
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where A() is defined in (1.2.23) for which the solution z of (1.2.1) obeys (1.2.10). More-

over, when f obeys (1.2.22), it follows that for every g for which

. g()
1)

that there exists > 0 such that the solution = of (1.2.1) obeys (1.2.10) for all £ > z. We

> (), (1.2.25)

note that (1.2.25) implies that g ¢ L'(0, c0).

In the next section, we state precisely the results proven in the paper, referring to the
above hypotheses. Although the hypotheses (1.2.19), (1.2.18) and (1.2.22) do not cover all
possible modes of convergence of f(z) — 0 as x — oo, we find in practice that collectively

they cover many functions f which decay monotonically to zero.

1.3 Precise Statement of Main Results

In this section we list our main results, and demonstrate that for any non—integrable g
that it is possible to find an f for which solutions of (1.2.1) are globally stable. We also
find the maximal size of perturbation g which is permissible for a given f so that solutions

of (1.2.1) are globally stable.

1.3.1 List of main results

In our first result, we show that when g € L'(0,00), then = obeys (1.2.6) even when f

obeys (1.2.11).

Theorem 1.3.1. Suppose that f obeys (1.2.2) and that g obeys (1.2.3) and (1.2.7). Let

x be the unique continuous solution of (1.2.1). Then x obeys (1.2.6).

As a result of Theorem 1.3.1 we confine attention when f obeys (1.2.11) to the case
in which g is not integrable. We assume instead that g(t) — 0 as ¢ — oo and try to
identify the appropriate non—integrable and f-dependent pointwise rate of decay which
ensures that x obeys (1.2.6). Our first result shows that the non—negativity of g and global
stability of the zero solution of the underlying equation (1.2.5) ensure that solutions = of

the perturbed equation (1.2.1) obey either lim;_,o z(t) = 0 or limy_,o z(t) = 0.
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Theorem 1.3.2. Suppose that g obeys (1.2.3), (1.2.8), and g is non-negative. Suppose
that f obeys (1.2.2) and that x is the unique continuous solution x of (1.2.1). Then either
limy o0 2(t) = 0 or limy_o0 2(t) = +00.

Of course, Theorem 1.3.2 does not tell us into which category of asymptotic behaviour a
particular initial value problem will fall, or whether either asymptotic behaviour is possible
under certain asymptotic assumptions on f and g.

We first show that when the initial condition & is sufficiently small and sup;>g g(t) is
sufficiently small (in addition to g obeying (1.2.8)), then the zero solution of the underlying

unperturbed equation is locally stable and we have that the solution z of (1.2.1) obeys

z(t) — 0 as t — oo.

Theorem 1.3.3. Suppose that f obeys (1.2.2) and that g obeys (1.2.8). Then for every
e > 0 sufficiently small there exists a number x1(e) > 0 such that g(t) < € for allt > 0
and & € (0,z1(€)) implies z(t,£) = 0 as t — oo.

In the case when f(xz) — 0 as x — oo and f is ultimately monotone, our most general
global stability result states that if g decays to zero so rapidly that (1.2.16) is true, then
we have that the solution = of (1.2.1) obeys z(t) — 0 as t — oo.

Moreover, instead of the pointwise rate of decay (1.2.16), we can provide a slightly

sharper condition, that is if g decays to zero so rapidly that

. Joa(s)ds
1 _— <1, 1.3.1
el FL(t) (1.3.1)

then we have that the solution = of (1.2.1) obeys z(t) — 0 as t — oo.

Theorem 1.3.4. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that = is the
unique continuous solution of (1.2.1). Suppose that f obeys (1.2.11) and (1.2.17) and let
F be defined by (1.2.15). If g and f are such that (1.3.1) holds, then the solution x of

(1.2.1) obeys (1.2.6).

Therefore we can think of the following Theorem as a Corollary of Theorem 1.3.4.
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Theorem 1.3.5. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that x is the
unique continuous solution of (1.2.1). Suppose that f obeys (1.2.11) and (1.2.17) and let
F be defined by (1.2.15). If g and f are such that (1.2.16) holds, then the solution x of
(1.2.1) obeys (1.2.6).

We have some partial converses to this result. If it is supposed that for every f which
decays to zero so slowly that f € RV (0), and for every initial condition £ > 0 there exists
¢ which violates (1.2.16) (and a fortiori obeys (1.2.20)) for which the solution of (1.2.1)
obeys z(t) — oo as t — oo.

Theorem 1.3.6. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that x is the
unique continuous solution of (1.2.1). Suppose that f obeys (1.2.11) and (1.2.19) and let
F be defined by (1.2.15). For every & > 0 there is a g which obeys (1.2.20) such that the

solution x of (1.2.1) obeys (1.2.10).

Moreover, we have that the solution (-, {) of (1.2.1) obeys z(t,£) — oo as t — oo for any
g obeying an asymptotic condition slightly stronger than the negation of (1.2.20), provided
the initial condition £ is sufficiently large. More precisely the asymptotic condition on ¢
is (1.2.21).
Theorem 1.3.7. Suppose that f obeys (1.2.2), g obeys (1.2.3), and that f obeys (1.2.19)
and g and f obey (1.2.21). Suppose that x is the unique continuous solution of (1.2.1).

Then there exists T > 0 such that for all £ > & we have limy_,o x(t, &) = 0.

Similar converses to Theorem 1.3.4 exist in the case that f(z) decays so rapidly to zero
as © — oo that fo F~!isin RV, (—1). We first note that for every initial condition, a
destabilising perturbation can be found.

Theorem 1.3.8. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that x is the
unique continuous solution of (1.2.1). Suppose that f obeys (1.2.11) and (1.2.18) where
F is defined by (1.2.15). For every & > 0 there is a g which obeys (1.2.20) such that the

solution x of (1.2.1) obeys (1.2.10).
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Once again, if the initial condition is sufficiently large, and g obeys an asymptotic
condition slightly stronger than the negation of (1.2.20) (viz., (1.2.21)), then once again

solutions tend to infinity.

Theorem 1.3.9. Suppose that f obeys (1.2.2), g obeys (1.2.3), and that f obeys (1.2.18)
and g and f obey (1.2.21). Suppose that x is the unique continuous solution of (1.2.1).

Then there exists £ > 0 such that for all £ > & we have limy_,o x(t, &) = 0.

In the case where f is in RV (—/f) for some 8 > 0 we have the following case distinction.
If g decays to zero so slowly that (1.2.23) holds, then z(t) — 0 as ¢t — oo. Moreover,
analogously to Theorem 1.3.4, instead of the pointwise rate of decay (1.2.23), if we impose

the weaker condition

. Jo 9(s)ds
1 JU“Sr 72
el ()

then we have that the solution z of (1.2.1) obeys z(t) — 0 as t — oo.

<A< A(B), (1.3.2)

Theorem 1.3.10. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that x is
the unique continuous solution of (1.2.1). Suppose that there is f > 0 such that f obeys
(1.2.17) and (1.2.22) and let F' be defined by (1.2.15). If g and f are such that (1.3.2)

holds, then the solution x of (1.2.1) obeys (1.2.6).

Therefore the following Theorem is a direct corollary of Theorem 1.3.10.

Theorem 1.3.11. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that z is
the unique continuous solution of (1.2.1). Suppose that there is f > 0 such that f obeys
(1.2.17) and (1.2.22) and let F' be defined by (1.2.15). If g and f are such that (1.2.23)
holds, then the solution x of (1.2.1) obeys (1.2.6).

The condition (1.2.23), which is sufficient for stability in the case when f € RV (—p) is
weaker than (1.2.16). However, it is difficult to relax it further. For every f in RV (—25)

and every initial condition £ it is possible to find a g which violates (1.2.23) (and therefore

obeys (1.2.24)) for which the solution obeys x(t) — oo as t — oo.
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Theorem 1.3.12. Suppose that f obeys (1.2.2) and g obeys (1.2.3). Suppose that x is
the unique continuous solution of (1.2.1). Suppose that there is § > 0 such that f obeys
(1.2.22) and let F be defined by (1.2.15). Then for every & > 0 there is a g which obeys

(1.2.24) such that the solution x of (1.2.1) obeys (1.2.10).

On the other hand, we have that the solution z(-,&) of (1.2.1) obeys z(t,£) — oo as
t — oo for any g obeying an asymptotic condition slightly stronger than the negation of
(1.2.24), provided the initial condition ¢ is sufficiently large. More precisely the asymptotic

condition on g is (1.2.25), where A(3) is as defined by (1.2.23).

Theorem 1.3.13. Suppose that f obeys (1.2.2), g obeys (1.2.3), and that f obeys (1.2.22)
and g and f obey (1.2.25). Suppose that x is the unique continuous solution of (1.2.1).

Then there exists T > 0 such that for all £ > T we have lim;_,o z(t,£) = 0.

1.3.2 Minimal conditions for global stability

In this short subsection we address two questions: given any non—integrable g, we show
that it is possible to find an f for which the solution of (1.2.1) is globally stable. And given
an f, we determine how large is the largest possible perturbation g that is permissible so
that the solution is globally stable.

We also consider two extreme cases: when g just fails to be integrable g € RV (—1),
and when ¢ tends to zero so slowly that g € RV, (0). In the case when g just fails to be
integrable (so that g € RV (—1)), we can choose an f which decays to zero so rapidly that
foF~!1 € RV, (—1) while at the same time ensuring that solutions of (1.2.1) are globally
asymptotically stable. On the other hand, if g decays to zero so slowly that g € RV (0),
we choose f to decay to zero slowly also while preserving global stability. In particular, it
transpires that f is in RV (0).

Consider first the general question. Suppose that g(t) — 0 as t — oo in such a way
that g & L'(0,00). If moreover g is ultimately decreasing, the next Proposition show that
it is possible to find an f,which satisfies all the conditions of Theorem 1.3.4, so that the

solution f of (1.2.1) = obeys (1.2.6). Therefore, there is no rate of decay of g to zero,
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however slow, that cannot be stabilised by an f for which f(xz) — 0 as z — co. Therefore,
it is possible for g to be very far from being integrable, and f(x) — 0 as z — oo, but
provided that this rate of decay of f is not too fast, then solutions of (1.2.1) can still be

globally stable.

Proposition 1.3.1. Suppose that g is positive, continuous and obeys (1.2.8) and g ¢
LY(0,00). Let A > 0. Then there exists a continuous f which obeys (1.2.2), (1.2.11) and

also obeys

i 9)

Jm gy A (1.3.3)

Moreover, if g is decreasing on [1,00) for some T > 0, then f obeys (1.2.17).

Proof. Suppose that f is such that f(0) =0, f(z) > 0 for all z € (0, 1] and that

mlﬂmzimm>o

r—1—
Define

Gi(z) = - /13: g(s)ds, x>0. (1.3.4)

Then G is increasing and therefore G;l exists. Moreover since g ¢ L'(0,00), we have

that G\(z) — 00 as  — 00, so G '(x) — oo as x — oo. Define also

f(@) = <g(Gy (z =1+ GA(0)), z>1.

1
A
For x > 1 we have that z — 1 4+ G5(0) > G»(0), so G}' (z — 1 + G(0)) > 0. Therefore f
is well-defined. Moreover, since g is positive, we have that f(x) > 0 for all x > 0. Note
that f(1) = ¢g(0)/A, and g and G, are continuous, we have that f : [0,00) — [0,00) is
continuous. Since g(t) — 0 as t — oo and G} ' (t) — 0o as t — oo, it follows that f(z) — 0
as r — oo. We see also that if g is ultimately decreasing, that f must obey (1.2.17),

because G;\l is increasing.
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Finally, notice that

B :ci B Gy (z—1+G(0)) 1 1 s — G-1(p
F(gc)_/1 f(u)du—/o o 300 s = Gl = 1+ Ga(0),

Therefore for x > 1 we have g(F(z)) = Af(z). Now F(x) > 0 for z > 1, so we have
g(y) = Mf(F~1(y)) for y > 0, so clearly we have that (1.3.3) holds. O
Suppose next that g tends to zero arbitrarily slowly (restricted to the class of RV (0)).

Then it is possible to find an f (also in RV (0)) which satisfies all the conditions of

Theorem 1.3.4, so that z obeys (1.2.6).

Proposition 1.3.2. Suppose that g € RV (0) is continuous, positive and decreasing and

obeys (1.2.8). Define

Gt) = /ltg(s) ds, 1>0. (1.3.5)

Let X > 0. Suppose that f is continuous and obeys (1.2.2), as well as

f(z) ~ ~g(GHx)), = — oco. (1.3.6)

Then f obeys (1.2.11), f is asymptotic to a decreasing function, f € RV (0) and (1.3.3).

As an example, suppose that n € N and that g(x) ~ 1/(log,, =) as  — co. It can then

be shown that G~!(z) ~ xlog,,  as x — oo. Therefore we have

1
log,, =

g(G™}(x))
Hence if f(x) ~ A71/log,, x as ¥ — oo, we have that g and f obey (1.3.3).
Remark 1.3.1. If f tends to zero very slowly, we can still have g tending to zero very slowly,
and yet have solutions of (1.2.1) obeying (1.2.6). Indeed, suppose that f € RV (0). Then
F € RVy(1) so F~1 € RV (1). Therefore f o F~1 € RV, (0). Hence if g obeys (1.3.3)

with A < 1, we have that g € RV (0).

Remark 1.3.2. We note that if f tends to zero very rapidly, so that fo F'~!isin RV (—1),

then g must be dominated by a function in RV, (—1). Therefore, if f tends to zero very
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rapidly, it can be seen that g must be close to being integrable. This is related to the fact
that however rapidly f tends to zero (in the sense that fo F~!isin RV (—1)), it is always
possible to find non—integrable g for which solutions of (1.2.1) are globally asymptotically

stable and obey (1.2.6).

Remark 1.3.3. Suppose conversely that g € RV (—1) in such a way that g & L'(0, 00).
Then we can find an f which decays so quickly to zero as x — oo that fo F~! ¢
RV (—1) while f and g obey (1.3.3). Therefore, if g tends to zero in such a way that it
is close to being integrable (but is non—integrable), then solutions of (1.2.1) are globally
asymptotically stable provided f exhibits very weak mean reversion.

To see this let A > 0. Then it can be shown in a manner similar to Proposition 1.3.1

that if f is defined by

where G, is defined by (1.3.4), then f and g obey (1.3.3). Moreover, if F' is defined by
(1.2.15), for this choice of f we have F(z) = Gy'(z) — Gy '(1) for z > 1. Rearranging

yields F~1(z) = Gy(z + G') for > 0, where we define G’ := G '(1). Hence

FE (@) = 106 (7 @) = yole+ G

Since g € RV (—1) it follows that f o F~! € RV, (—1).
Example 1.3.1. In the case when g(t) ~ 1/(tlogt) as t — oo, we have
1
Ga(t) ~ X logot, ast— oo.

Therefore can see (formally) that log G;l behaves asymptotically like e* and that G;l(t)

behaves like exp(e) as t — co. Hence a good candidate for f is
1 -z Az
f@) =3¢ exp(—e™), @21,
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/

Then, with 2’ = exp(e), we have F(z) = exp(e’*) — z/. Therefore we have F~!(z) =

logy(z + 2) /. Hence

1 1

_ 1
FE (@) = Az + a2/ log(x +a')

Therefore we have that g and f obey (1.3.3). Note moreover that fo F~! is in RV (—1).

1.4 Examples

In this section we give examples of equations covered by Theorems 1.3.2—1.3.13 above.

Example 1.4.1. Let a > 0 and 8 > 0. Suppose that f(z) = az(1+ z)~ P+t for z > 0.

Then f obeys (1.2.2) and (1.2.17). We have that f € RV (—f3). Now as x — oo we have

T g [ e du = s
:c)—/l f(u)du /11/au du—ﬁ+1x+.

Then F~1(z) ~ [a(1 4 B)z]"/P*D) as & — co. Therefore as x — oo we have
F(F~ () ~ a[a(l 4 B)x]B/B+1) = o1/ (B+1) (1 4 g)=B/(B+1) =B/ (B+1)

Suppose that

. g9(t) 1/(5+1) 1
lim sup =753 (1+ B)-B/ B+ -5/ (B+D) <h (1+67)

Then for every £ > 0 we have z(t,£) — 0 as t — co. On the other hand, for every £ > 0,

there is a g which obeys

: g9(t) 1/(8+1)
lim sup =757 (1+ B)—P/(B+D—B/(B+D) = = (1+587)

such that z(t,£) — oo as t — co. Finally, for every g which obeys

g9(t) 1/(B+1) -1
lim inf s (15 B) PGB/ B 1+57)

there is an > 0 such that for all £ > Z we have z(¢,£) — oo as t — 0.
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Example 1.4.2. Let a > 0 and suppose that

J@) = T logler oy “2°

Then f obeys (1.2.2) and (1.2.17). Moreover, we have that f € RV (0). Hence as x — oo

we have
1 1
F(z) ~ —log(e + u) du ~ —xlog x.
1 a a

Therefore we have F'~!(z) ~ az/logx as x — oo. Thus as z — oo we have
f(F () ~a/log F~Y(z) ~ a/log .

Therefore if

limsup g(t)logt < a,

t—o0

we have z(t,£) — 0 for all £ > 0. On the other hand for every £ > 0 there is a g which
obeys

limsup g(t) logt > a,

t—o00

for which z(t,£) — oo. Finally, for every g which obeys

liminf g(t)logt > a,

t—o00

there is a & > 0 such that for all £ > z we have z(t,&) — oc.

Example 1.4.3. Let a > 0, 8 > 0 and § > 0 and suppose that

where f(0) =0, f(z) >0 for z € (0,1) and f is continuous on [0,1) with lim,_,,- f(z) =

ae™®. Then f obeys (1.2.2) and (1.2.17). By L’Hopital’s rule we have

F 1 -1 1
() _ — lim x =

mlggo e&xﬁ/xﬁ  q z—00 —ﬁxﬁg*l + 55:3*1 (ICSB
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Therefore we have

. x - 1
P ST @ F1(2)F  adB

From this it can be inferred that

i I @)

T—00 €T

= adf.

Now we have o' (@)7 aéfrF~1(z)? as x — co. Therefore as  — oo we get

1 raF~(x
2f(F7 () = waF " (a) /77 o aéﬁ; _f(;)ﬁ - 515 Pl (z)1P,

It remains to estimate the asymptotic behaviour of F~1(z) as  — oco. Since 6F ()5 —
Blog F~1(x) — logx — log(adB) as x — oo, we therefore obtain

1 B
lim oF (2)” (z)

=1
z—oo  logx

Hence

lim

Ffl(x)lfﬁ 1 (1-8)/8
T—00 (log ;1;)(1*5)//8 - ( > )

5

Thus (F~1)17 is in RV« (0) and thus f o F~! € RV (—1). Moreover as  — oo we have

1 1 1 1 1
F1 ~— = P Lo .
Therefore if
t
lim sup T 9(t) T <1,

t=00 BE7E T (logt) /A1

we have z(t,£) — 0 for all £ > 0. On the other hand for every £ > 0 there is a g which

obeys
. g(t)
lim sup — T T > 1,
t=00  BFI7B Tt (logt)-1/A+H1
for which z(t,£) — oo. Finally, for every g which obeys
o g(t)
fmint T > 1

B(Sl/ﬁ t (logt)_1/5+1

there is a > 0 such that for all £ > z we have z(t,&) — oc.
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1.5 Extensions to General Scalar Equations

and Finite-Dimensional Equations

We have formulated and discussed our main results for scalar equations where the so-
lutions remain of a single sign. This restriction has enabled us to achieve sharp results
on the asymptotic stability and instability. However, it is also of interest to investigate
asymptotic behaviour of equations of a similar form in which changes in the sign of g lead
to changes in the sign of the solution, or to equations in finite dimensions. In this section,
we demonstrate that results giving sufficient conditions for global stability can be obtained
for these wider classes of equation, by means of appropriate comparison arguments. In
this section, we denote by (x,y) the standard innerproduct of the vectors z,y € R?, and

let ||z|| denote the standard Euclidean norm of € R? induced from this innerproduct.

1.5.1 Finite-dimensional equations

In this section, we first discuss appropriate hypotheses under which the d—dimensional

ordinary differential equation
2 (t) = —p(z(t) +~(t), t>0; =z(0)=¢eR? (1.5.1)

will exhibit asymptotically convergent solutions under conditions of weak asymptotic mean
reversion. Here, we assume that ¢ : R? — R% and that v : [0, 00) — R?. Therefore, if there
is a solution z, x(t) € R? for any ¢t > 0 for which z exists. In order to simplify matters,
we assume once again that ¢ is locally Lipschitz on R¢ and that + is continuous, as these
assumptions guarantee the existence of a unique continuous solution, defined on [0, T) for
some T > 0. In order that solutions be global (i.e., that T'= 4+00), we need to show that

there does not exist T" < +o0o such that

lim || z(t)]| = +o0.
lim [|2(2)]] = +o0

In the scalar setting, this is ensured by the global stability condition (1.2.2). We need a

natural analogue of this condition, as well as the condition that 0 is the unique solution
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of the underlying unperturbed equation

J(t) = —(2(t), t>0; 2(0)=E¢. (1.5.2)
A suitable and simple condition which achieves all these ends is
¢ is locally Lipschitz continuous, ¢(0) =0, (¢(z),z) > 0 for all = # 0. (1.5.3)

We also find it convenient to introduce a function ¢ given by

- (w6(u)
o(2) :{ mfug Tl iig (1.5.4)

It turns out that the function g is important in several of our proofs. For this reason, we

list here its relevant properties.

Lemma 1.5.1. Let ¢q : [0,00) = R be the function defined in (1.5.4). Then

po(x) = ”113”1£1<u, ¢(zu)), = >0. (1.5.5)

If ¢ obeys (1.5.3), then po(0) = 0, po(x) > 0 for x > 0 and yg is locally Lipschitz

continuous. Moreover, if ¢(x) — 0 as ||z|| = oo, then po(x) — 0 as x — oco.

In the scalar case when ¢ is an odd function, we note that (g collapses to ¢ itself. The
proof of Lemma 1.5.1 is presented in the final section.
We consolidate the facts collected above regarding solutions of (1.5.2) and (1.5.1) into

two propositions. Their proofs are standard, and are also relegated to the end.

Proposition 1.5.1. Suppose that ¢ obeys (1.5.3). Then x = 0 is the unique equilibrium
solution of (1.5.2). Moreover, the initial value problem (1.5.2) has a unique continuous

solution defined on [0,00) and for all initial conditions z(t) — 0 as t — oo.

Proposition 1.5.2. Suppose that ¢ obeys (1.5.3). Then, the initial value problem (1.5.2)

has a unique continuous solution defined on [0, c0).
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1.5.2 Extension of Results

In order to compare solutions of finite-dimensional equations with scalar equations to

which results in Section 1.3 can be applied, we make an additional hypotheses on ¢.

¢ :[0,00) — [0,00) is locally Lipschitz continuous where
(z,¢(x)) > @(||z|]) for all z € RT\ {0}, ¢(0) =0, ¢(z)>0forallz>0. (1.5.6)

Under (1.5.3), we observe by Lemma 1.5.1 that the function ¢g introduced in (1.5.4) can

play the role of ¢ in (1.5.6). Our comparison theorem is now stated.

Theorem 1.5.1. Suppose that ¢ obeys (1.5.3) and (1.5.6), and that v is a continuous
function. Let x be the unique continuous solution of (1.5.1). Let € > 0,17 > 0 and suppose

that x., is the unique continuous solution of

2 (8) = — () + O]+ 57 6305wy (0) = 2O + 2. (157)

Then for every e > 0,1 >0, ||z(t)]| < xy(t) for all t > 0.

The proof is deferred to the end.

Scalar equations

We now consider the ramifications of Theorem 1.5.1 for scalar differential equations. Notice
first that the function g introduced in (1.5.4) is very easily computed. Due to (1.5.5), we

have that

Gola) = inf uo(au) = min uo(au) = min(6(x), ~6(~z). (L5.8)

We restate the hypothesis (1.5.3) for ¢ in scalar form:
¢ : R — R is locally Lipschitz continuous, z¢(x) > 0 for x # 0, ¢(0) = 0. (1.5.9)

The following results are then direct corollaries of results in Section 1.3 and Theorem 1.5.1.

Theorem 1.5.2. Suppose that ¢ obeys (1.5.9) and v is continuous and in L'(0,00). Then

the unique continuous solution x of (1.5.1) obeys x(t) — 0 as t — oo.
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Proof. Let € > 0. Define g(t) = |y(t)| + ee/2 for t > 0. Then by hypothesis, g is
continuous and positive on [0,00), and g € L'(0,00). By (1.5.9) and Lemma 1.5.1, the
function g defined in (1.5.8) is locally Lipschitz continuous and obeys ¢(0) = 0 and
wo(x) > 0 for > 0. Therefore for any € > 0 and 1 > 0, we may apply Theorem 1.3.1 to
the solution . of (1.5.7) and conclude that x, (t) — 0 as ¢ — oo. By Theorem 1.5.1 we

have that z(t) — 0 as t — oo. O

Theorem 1.5.3. Suppose that ¢ obeys (1.5.9) and v is continuous and v(t) — 0 as
t — 0o. Then for every e > 0 sufficiently small there exists a number x1(e) > 0 such that
|v(®)| < €/2 for allt > 0 and |£| < x1(€)/2 implies that the unique continuous solution x

of (1.5.1) obeys x(t,£) — 0 as t — oo.

Proof. Let € > 0. Define g(t) = |y(t)| + ee7?/2 for t > 0. Then by hypothesis, g is
continuous and positive on [0,00), obeys g(t) — 0 as t — oo, and also g(t) < e for
all t > 0. By (1.5.9) and Lemma 1.5.1, the function ¢ defined in (1.5.8) is locally
Lipschitz continuous and obeys ¢¢(0) = 0 and ¢o(x) > 0 for x > 0. There exists ¢y > 0
sufficiently small so that the set inf{x > 0 : yo(z) = 2¢p} is non-empty. For € € (0, )
define z1(e) = inf{x > 0 : po(x) = 2¢}. Then @o(x) < 2¢ for all z € [0,z1(¢)). Fix
n(e) = z1(e) > 0. Since [£] < x1(€)/2, we have that |2, ) (0)] = [2(0)] + n(e)/2 < z1(e).
Suppose there is a finite 71 (e) = inf{t > 0 : 2, (t) = 71(€)}. Then x;](e) (T1(e)) > 0.

,€

Also

0 < 27 (T1(6) = —po(zy(e),e(Ti(e)) + 9(Ti(€)) < —po(x1(€)) + € = —e <0,

a contradiction. Hence we have that x,) (t) < x1(e€) for all t > 0. Now by Lemma 1.8.1
it follows that x,)(t) — 0 as ¢ — oo. Therefore, by Theorem 1.5.1, we have that

|z(t)| < z1(e) for all t > 0 and that z(t) — 0 as t — oo. O
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Theorem 1.5.4. Suppose that ¢ obeys (1.5.9) and v is continuous and obeys y(t) — 0 as
t — oo. Suppose also that ¢y given by (1.5.8) is decreasing on (x*,00) for some x* > 0.

If ®q is defined by

vo(u)
and
t
d
lim sup IOLISNS <1
t—o0 CI)O (t)

then the unique continuous solution x of (1.5.1) obeys z(t) — 0 as t — oo.

Proof. Let € > 0. Define g(t) = |y(t)| + ee7?/2 for t > 0. Then by hypothesis, g is
continuous and positive on [0,00), obeys g(t) — 0 as ¢ — oo, and also g(t) < € for all
t > 0. By (1.5.9) and Lemma 1.5.1, the function ¢ defined in (1.5.8) is locally Lipschitz
continuous and obeys ¢o(0) = 0 and ¢o(z) > 0 for > 0. Therefore for every ¢ > 0 and
n > 0 the equation (1.5.7) is of the form of (1.2.1) with ¢¢ in the role of f and ®g in the
role of F'. Notice that the monotonicity of g implies that ®g(z) — 0o as z — oo, and
therefore that ®;'(2) — oo as 2 — oo. Therefore by hypothesis, we have

t t t t
d d sd d
lim sup M = limsup Jo ()l ds |y ceds = lim sup M <1.

oo By t(t) oo By (1) () oo @y L(t)

Therefore, by Theorem 1.3.4 we have that x, (t) — 0 as t — oo, and hence by Theo-

rem 1.5.1, it follows that x(t) — 0 as t — oc. O

A result analogous to Theorem 1.3.10 can be formulated even when v changes sign. We

state the result but do not provide a proof.

Theorem 1.5.5. Suppose that ¢ obeys (1.5.9) and ~y is continuous and obeys v(t) — 0 as

t — 0o. Suppose also that ¢y given by (1.5.8) is in RV (—f) for B> 0. If g is defined

by
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and

limsup 221 () = gHY/BHD (1 4 gLy,
t—o0 0 (t)

then the unique continuous solution x of (1.5.1) obeys x(t) — 0 as t — co.

Jo Iv(s) ds
-1

Finite—dimensional results

In this section, we often request that the function ¢ introduced in (1.5.6) obeys a mono-

tonicity restriction.
x +— (z) is decreasing on (z*,00) for some z* > 0. (1.5.10)

Results analogous to Theorems 1.5.2, 1.5.3, 1.5.4 and 1.5.5 can be stated for finite—
dimensional systems. The proofs are very similar to those of the corresponding scalar

results, and are therefore omitted.

Theorem 1.5.6. Suppose that ¢ obeys (1.5.3) and vy is continuous and in L'(0,00). Then

the unique continuous solution x of (1.5.1) obeys x(t) — 0 as t — oo.

Theorem 1.5.7. Suppose that ¢ obeys (1.5.3) and that v is continuous and v(t) — 0 as
t — 0o. Then for every e > 0 sufficiently small there exists a number x1(e) > 0 such that
7@ < €/2 for allt > 0 and ||&|| < z1(€)/2 implies that the unique continuous solution

x of (1.5.1) obeys x(t,€) — 0 as t — oo.

Theorem 1.5.8. Suppose that ¢ obeys (1.5.3) and that ¢ and ¢ obey (1.5.6) and (1.5.10).

Suppose that 7y is continuous and that y(t) — 0 as t — oo. If ® is defined by

o1
@(m):/l mdu,

and

then the unique continuous solution x of (1.5.1) obeys z(t) — 0 as t — oo.
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Theorem 1.5.9. Suppose that ¢ obeys (1.5.3) and that ¢ and ¢ obey (1.5.6). Suppose

also that ¢ is in RVeo(—p) for B > 0. Suppose that 7y is continuous and that v(t) — 0 as

T
@(w):/l mdu,

. S (s) | ds
1 JO NI/
el T e 1)

t — oco. If ® is defined by

and

< gD+ 57,

then the unique continuous solution x of (1.5.1) obeys x(t) — 0 as t — co.

1.6 A Liapunov Result

The main result of this section shows that if f has a certain rate of decay to zero, and
g decays more rapidly than a certain rate which depends on f, then solutions of (1.2.1)
can be shown to tend to 0 as t — co by means of a Liapunov-like technique. The results
are not as sharp as those obtained in Section 3, and do not have anything to say about
instability, but nonetheless the conditions do seem to identify, albeit crudely, the critical
rate for g at which global stability is lost.

The conditions of the theorem appear forbidding in general, and the reader may doubt
it is possible to construct auxiliary functions with the desired properties. However, by
considering examples in which f decays either polynomially or exponentially, we demon-
strate that the result can be applied in practice, and that the claims made above regarding

the sharpness of the result are not unjustified.

Theorem 1.6.1. Suppose that f obeys (1.2.2) and (1.2.4) and that g € C([0,00); (0, 00))
and g(t) — 0 ast — oo. Let © € C([0,00);[0,00)) be a twice differentiable and increasing
function such that ©(0) = 0. Define 1(x) = 207 1(x) for x > 0 and 1(0) = 0, and suppose
that 1 is an increasing and convex function on (0,00) with lim,_,q+ 2¢'(z) = 0. Define

also 6 : [0,00) — [0,00) by
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Suppose that © o f ¢ L'(0,00) and that § o g € L*(0,00). Then the unique continuous

solution x of (1.2.1) obeys x(t) — 0 as t — oo.

Proof. Since © is increasing, 1 is a well-defined function. Moreover, as © is twice differ-
entiable, it follows that ©~! is twice differentiable, and therefore we have that x ~ v/(z)
is a continuous function and that ¢”(z) is well-defined for all > 0. In fact, by the
assumption that ¢ is increasing and convex, we have that ¢’(z) > 0 and that ¢"(z) > 0
for all z > 0. Let ¥ : [0,00) — R be defined by ¥(x) = ¢/(z) for z > 0 and ¥(0) = 0.
Then ¥ is an increasing and continuous function on [0, 00) with ¥(0) = 0. Therefore, by

Young’s inequality, for every a,b > 0 we have
a b
ab < / U(s) ds—l—/ U Y(s)ds = ¢(a) + H(b), (1.6.1)
0 0
using the fact that v is continuous from the left at zero with ¢(0) = 0, and the definition
H(x) = / T (s)ds, x>0. (1.6.2)
0

Now for z > 0, using the fact that v is twice differentiable, and that ¢'(0+) = 0, we have

1@ - | (s ds = / C@) A s) ds = / ) du.

+

Now, by integration by parts, and the definition of 8, we have

CORCR.
H(z) = /0+ w" (w) dw

@)~ (=)
= ()" @)y ((#) " (2)) — lim w?l)’(w)—/ U (w) dw
0

w—0t 4

= @) (@) (¥) (@) — lim wy'(w) — ()" (@) — lim y(w)

w—0t w—0t+

= 0(z),

since Y(w) — 0 as w — 07 and wy)’(w) — 0 as w — 01 by hypothesis. Therefore by

(1.6.1) and the fact that ¢(a) = a®~!(a) for a > 0, we have

ab < a® (a) +6(b), for all a,b> 0. (1.6.3)
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We notice also that the definition of H forces 6(z) = H(z) > 0 for all z > 0, and since
U~ is a positive and increasing function, it follows that # will be increasing and convex
on (0, 00).

Now, define

I(x) = /:G(f(s)) ds, x>0 (1.6.4)

Notice that I(z) > 0 for x > 0 because O(z) > 0 and f(x) > 0 for x > 0. Also,

©o f & LY(0,00) is equivalent to I(x) — oo as & — co. Define also
V(t)=1(z(t), t=0. (1.6.5)

Since © o f is continuous on [0, 00) and the solution z of (1.2.1) is in C'*(0, 00), it follows

that V € C1(0, 00) and moreover

V/(t) = O(f(z(1))2'(t) = —f(z(1)O(f(x(1)) + g()O(f(x(2))), t>0.  (1.6.6)

By hypothesis, g(t) > 0 for all t > 0. Also, it is a consequence of our hypotheses that
x(t) > 0 for all t > 0, and so by (1.2.2) that f(x(¢)) > 0 for all ¢ > 0. Since ©(0) = 0
and © is increasing on (0, 00) by hypothesis, it follows that ©(f(z(¢))) > 0 for all £ > 0.

Therefore we can apply (1.6.3) with b:= g(¢) > 0 and a = O(f(z(¢))) > 0 to get

O/ (x(1))g(t) < O(f(x(1)))O(O(f(x(t)))) + Blg(1))
= F())O(f(x(t) + (Bog)(t), t >0,
Inserting this estimate into (1.6.6) we get
VI(t) = —f(x(t)O(f (x(t) + a()O(f(x(t))) < (Bog)(t), > 0.
Therefore by (1.6.4) and (1.6.5) we get

t t t
I(a(t) = V(1) = V(0) + /0 V/(s)ds < V(0) + /0 (00 g)(s)ds = 1(€) + /0 (60g)(s) ds
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for all + > 0. Since # o g € L'(0,00) by hypothesis, we have that there is a finite K > 0
such that

I(x(t) < I(&)+ /000(909)(5) ds=:K, t>0.

The positivity of K is guaranteed by the fact that I(z) > 0 for x > 0, and the fact that
f(z) > 0 for z > 0 and g(¢) > 0 for ¢ > 0. Suppose now that limsup,_,. z(t) = +oo,
so by the continuity of ¢ — x(t), there is an increasing sequence of times ¢, — oo such
that z(t,) = n. Then I(n) < K for all n € N sufficiently large. Since I(n) — +oo as
n — 00, we have co = limy,_,~ I(n) < K < 400, a contradiction. Therefore, it follows that
lim sup;_,, z(t) is finite and non-negative. Therefore by (1.8.3), we have that x(¢t) — 0
as t — oo, as required. ]

The next result is a corollary of Theorem 1.6.1 which is of utility when f(z) decays like

a power of z for large x. In this case, we know from our earlier analysis that g must also

exhibit a power law decay. Our Liapunov-like result also reflects this fact.

Corollary 1.6.1. Suppose that f obeys (1.2.2) and (1.2.4), and g € C([0,00);(0,00))
satisfies g(t) — 0 as t — oo. Suppose that there is o > 0 such that f* ¢ L'(0,00) and
gt € LY(0,00). Then x, the unique continuous solution of (1.2.1), obeys x(t) — 0 as

t — o0.

Proof. Suppose for all x > 0 that ©(x) = x, where & > 0. Then O is increasing on
(0,00) with ©1(z) = 2/« for z > 0. Moreover, we have that © is in C2(0,00). Now,
define (x) = z'*t1/® for > 0. Then 9(0) = 0, ¥'(z) = (1 + 1/a)z?* > 0 for z > 0
and ¥"(z) = a (1 + o Hz'/*"1 > 0 for z > 0. Thus 1 is increasing and convex with
lim,_,o+ 29/ (z) = 0. With ¢/(z) = U(z) = (1 + 1/a)z"* for z > 0, and ¥(0) = 0, we
have U~1(z) = Koz for z > 0, where K, = 1/(1 + a=1)® > 0. Therefore for x > 0,

we have that 0(z) = [ U 7!(s)ds = Ko(1 + o) '2™™®. Thus ¢'** € L'(0,00) implies
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that § o g € L1(0,00). Moreover @ o f = f* & L1(0,00). Therefore, all the hypotheses of
Theorem 1.6.1 are satisfied, and so x(t) — 0 as t — oo, as claimed. O
An example illustrates the close connection between Corollary 1.6.1 and Theorem 1.3.10.
In fact we see that the results are consistent in many cases.
Example 1.6.1. Suppose that there is 3 > 0 such that f(z) ~ 7% as 2 — oo and
that ¢'*/# € L'(0,00). Let « = 1/8 > 0. Then f*(z) ~ 2~ as £ — oo, and thus
f* ¢ LY(0,00) and ¢g'*t* € L1(0,00). Thus, by Corollary 1.6.1, we have that z(t) — 0 as
t — oo.
A condition that implies g'*1/# € L(0,00) but g & L'(0,00) is g(t) ~ t~" as t — oo for
ne (8/(B+1),1). Then
¢ 1
/ g(s)ds ~ =t'™" ast — oo
0 n

while

14+

F(x):/lxl/f(u)dUN/lxuﬁdu:1_il_ﬂm , as T — 00.

Therefore F~1(x) = Cpz'/®+D) as x — co. Hence

. fgg(s)ds I - g
R R R, T V=V

By Theorem 1.3.10, we have that z(t) — 0 as t — oo.
Therefore if f(x) ~ 2~” for some § > 0 and g(t) ~ t™7 as t — oo for n > B/(B + 1),
both Theorem 1.3.10 and Corollary 1.6.1 imply that z(t) — 0 ast — oo. If n > /(5 +1),

we have that

t
d 1—n
lim fo 9(s) ds = 1 lim t
t—00 F_l(t) Cﬁn t—o0 $1/(B+1)

= +OO,

and so we know from Theorem 1.3.13 that z(¢,£) — oo as t — oo for all initial conditions
& > 0 that are sufficiently large. On the other hand, we see that the conditions of Corol-
lary 1.6.1 do not hold if n > B/(8 + 1), because g'*1/8(t) ~ t=1B+D/B a5 t — oo, and so

g"t1/8 & LY(0,00). Therefore, the conditions of Corollary 1.6.1 are quite sharp.
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One reason to use the general form of Young’s inequality in the proof of Theorem 1.6.1
is to enable us to prove stability results for differential equations in which ¢ and f do not
have power law asymptotic behaviour. The following example shows how Theorem 1.6.1
can be used in this situation.

Example 1.6.2. Suppose that f(z) = e™® for z > 1 and that f(z) = ze™! for z € [0,1].
Suppose that g/log(1/g) € L'(0,00). Let © be such that ©(0) = 0, O(y) = 1/log(1/y)
for 0 <y <1/e.

If we now suppose that we can extend © on [1/e,00) so that O is twice differentiable
and increasing on [1/e,00) and y — y©~!(y) is convex on (1,00), Theorem 1.6.1 allows
us to conclude that z(t) — 0 as t — oc.

Notice that ©~1(y) = e ¥ for 0 < y < 1. Therefore for y > 0, we may define
P(y) = yO~1(y) with ¥(0) = 0. Since © is increasing, ©~! is increasing, and so 1 is
increasing, and by hypothesis, 1 is convex on [1, 00).

In particular, for y € (0, 1] we have ¢(y) = ye™ /Y. Then ¢'(y) = (1+y~1)e /¥ > 0 for
y € (0,1) and

1 1 1
i L R

for y € (0,1). Therefore v is increasing and convex on (0,00). Also, we have the limit

lim,_,o+ y9'(y) = 0. Now for x sufficiently small

@@ @@ o0 »
9(93):/ Y (y)dy=/ —e ydy:/ e " du,
0 0 y /()= (x)

so f(z) = eV @)@ for > 0 sufficiently small. Now, using the formula for 1/, we have

for « > 0 sufficiently small

o= <1 N 1) /W) (@)

(¥)~H(x)
Therefore we have log1/z ~ 1/(¢/)~!(z) as x — 0T, from which the limit
0(x) e~ /(@) (=) x/ (1 + m)

lim — 2 = lim S = i =1
o0t x/log(1/x) o0t x/log(1/x) o0t x/log(1/x)
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can be inferred. Since g(t) — 0 as t — oo and g/log(1/g) € L'(0,0), we have that
6 oge L'Y(0,00). Also, because O(f(z)) = 1/ for x > 1 we have that © o f ¢ L(0,0).
Therefore all the hypotheses of Theorem 1.6.1 hold, and we conclude that x(t) — 0 as
t — o0.

In the case when f(x) = e ™ for x > 1 and g(t) ~ Ct™" as t — oo for any n > 1 and
C > 0 we have that g(t)/log(1/g(t)) ~ t~"/logt as t — oo, and so g/log(1/g) € L'(0, 00)
and © o f ¢ L'(0,00). Therefore, by Theorem 1.6.1 we have that x(t) — 0 as t — co. If
n < 1, then g/log(1/g) € L*(0,0), and so the argument above does not apply.

On the other hand, we have for > 1 that F(z) = [{"¢“du = e* — ¢, and so F~!(z) ~

log(z) as & — co. Then for n > 1, g € L'(0, ), and so

Ay = O

fot g(s)ds _
—1 -
Therefore, by Theorem 1.3.4, we have that x(t) — 0 as t — oco. If n = 1, we have that

fgg(s) ds — Clogt as t — oo and so

- Jogls)ds
2T ¢

If C <1, then z(t) — 0 as t — oo; if C' > 1 we have that z(¢) — oo for all initial conditions
sufficiently large. If n < 1, we have that fot g(s) ds grows polynomially fast as t — oo, and

therefore

t
lim 7‘[0 9(s) ds
t—oo F—1 (t)

= +o0.
Therefore, for all initial conditions sufficiently large, we have z(t) — oo as t — oo.

This discussion once again shows how the results from Section 3 are consistent with the
Liapunov stability result Theorem 1.6.1, and that moreover, Theorem 1.6.1 is quite sharp.

The sharp results from Section 3 show that global asymptotic convergence holds for all

n > 1, but that for n < 1, we can have x(t) — oo for some initial conditions. On the other
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hand, Theorem 1.6.1 guarantees the global convergence of solutions for n > 1, but does

not apply if n < 1.

1.7 Proof of Theorem 1.3.1

For all t > 0, z(t) = & — fO ds—l—fo s)ds < §—|—f0 := K. Suppose

liminf; o 2(t) = 2* > 0. Clearly z* < K. Now, as f(z) >0 for x >0

inf  f(x):=¢>0.

z€[% K]
Therefore there exists 7' > 0 such that x(t) > 2*/2 for all ¢t > T'. Thus z*/2 < z(t) < K

for all t > T and so f(z(t)) > ¢ for all t > T. Therefore as g € L'(0,00), for t > T we

have
x(t) = x( / f(z ds+/ g(s)ds
<x(T)—o(t—T) +/ g(s)ds.
T
Thus, as ¢ > 0, we have liminf;_, ., 2(t) = —o0, a contradiction. Therefore
htrgg)lfa:(t) =0 (1.7.1)

Since g € L(0, ), for every € > 0, there is Ty (e) > 0 such that
[ee]
/ g(s)ds < e forall t > Ti(e).
¢

(1.7.1) implies that there exists t,, — oo such that lim,_,~ z(t,) = 0. Thus for every € > 0
there exists an Ny (€) € N such that x(¢,) < e for all n > Nj(€). Clearly there exists Na(e)
such that ty,) > Ti(€) + 1. Let N3(e) = max[N1(e), Na(e)]. Then ty, ) > Ti(e) and as
N3(e) > Ni(e), 2(tny () < € Let Ta(e) = ty,()- Then for t > Ty(e), we have
t t
o) =sltno)~ [ flal)ds+ [ gls)ds
N3 (e N (o)

t o)
§e—|—/ g(s)ds§6—|—/ g(s)ds < 2e.

EN3 (o) tN3(e)

Thus for every € > 0, there is a T(e) > 0 such that z(¢) < 2¢ for all ¢ > Th(¢). Hence

x(t) = 0 as t — oo.
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1.8 Finite liminf implies zero limit

and Proof of Theorem 1.3.2

In this section, we show that whenever x had a finite liminf, it must have a zero limit.

Lemma 1.8.1. Suppose that g obeys (1.2.3), (1.2.8), and g is non—negative. Suppose that

f obeys (1.2.2) and that the solution z of (1.2.1) obeys

liminf z(t) < z* (1.8.1)

t—00
for some x* > 0. Then x obeys (1.2.6).

A consequence of Lemma 1.8.1 is that only two types of behaviour are possible for
solutions of (1.2.1). Either solutions tend to zero, or they tend to infinity. This is nothing

other than Theorem 1.3.2.

Proof of Theorem 1.3.2. Suppose that there exists 2* > 0 such that x obeys (1.8.1). Then
by Lemma 1.8.1 it follows that z(t) — 0 as t — oco. On the other hand, if there does not
exist * > 0 such that liminf; , 2(¢) < z*, it follows that liminf; ,~ 2(t) = +o0, which
implies z(t) — oo as t — 0. O

It remains to establish Lemma 1.8.1. In order to do so, we start by proving that (1.8.1)

implies that x is bounded above.

Lemma 1.8.2. Suppose that g obeys (1.2.8), f obeys (1.2.2) and that the solution x of
(1.2.1) obeys (1.8.1). Then

limsup z(t) < 2z*.

t—o00
Proof. Suppose that limsup,_,.. z(t) > 2z*. Since f obeys (1.2.2), we may define f* =
MiNge (5« /4,30+ 2] f(2) > 0. Let € < f*/2. Since g(t) — 0 as t — oo, there is Ti(e) > 0

such that g(t) < € for all ¢ > Ty(e). Let Ta(e) = inf{t > Ti(e) : x(t) = 5z*/4} and
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Ts(e) = inf{t > Th(e) : x(t) = 32*/2}. Then 2/(T3) > 0. Since T3 > T > T} we have
0 <2'(T3) = —f(x(T3) + 9(T3) = —f(3x*/2) + g(T3) < —f*+e< —f"+ f*/2 <0,

a contradiction. O

We next show that x has a zero liminf.

Lemma 1.8.3. Suppose that g obeys (1.2.8), f obeys (1.2.2) and that the solution x of
(1.2.1) obeys (1.8.1). Then

liminf z(t) = 0.

=00
Proof. Suppose that liminf; , 2(t) = ¢ > 0. By Lemma 1.8.2 it follows also that ¢ <
lim sup,_, ., z(t) < 2z*. Therefore there exists T > 0 such that 0 < ¢/2 < z(t) < 4™ for
all t > T1. Define c; = mingee/p4,+) f() > 0. Then f(z(t)) > ¢1 for all ¢ > T1. Since
g(t) — 0 as t — oo, it follows that there exists 75 > 0 such that that g(t) < ¢;1/2 for all

t > Ty. Let T3 = max(T1,T53). Then for all ¢ > T3 we have

2(t) = —f(2(t) + g(t) < e + T = =T

Therefore we have that z(t) — —oo as t — oo, which contradicts the fact that z(¢) > 0

for all t > 0. ]

We are now in a position to prove Lemma 1.8.1.

Proof of Lemma 1.8.1. By Lemma 1.8.2 we have that limsup, ,. z(t) < 2z* and by
Lemma 1.8.3 we have that liminf; . x(¢) = 0. Therefore we have x(t) < z** for all
t > 0. Suppose that there is ¢ € (0,2**) such that limsup,_, ., z(t) > ¢. Fix n € (0,¢).

Since f obeys (1.2.2) and g obeys (1.2.8) we may define
0<am= min_ f(),
TE[n,z**]

T(n) =sup{t >0 : g(t) > e1(n)/2}.

54



Chapter 1, Section 9 Asymptotic Stability of Perturbed ODEswith Weak Asymptotic Mean Reversion

Define T1(n) = inf{t > T'(n) : z(t) = n}. There exists T* > T1(n) such that z(t) > ¢ > 7.
Let Ty = sup{t < T* : x(t) = n}. Then T5 > T} and there is a 6 > 0 such that z(t) > n

for all t € (T, T5 + 9). However, for ¢t € (T»,T> + 6) we have

z(t) = z(Ty) — . f(x(s))ds —l—/ g(s)ds

T>

§1‘(T2)—/t€1(77)d3+/t61(77>d3

Ts T> 2

= a(m) — (¢~ 1) 2 < a(my) =,

which contradicts the definition of T5. Therefore we have that lim;_, x(t) = 0, as re-

quired. ]

1.9 Proof of Theorem 1.3.4, 1.3.5, 1.3.10 and 1.3.11

1.9.1 Proof of Theorem 1.3.4

It is seen from Lemma 1.8.1 above that if we can show that there is an z* > 0 such that

the solution = of (1.2.1) obeys (1.8.1), then x obeys (1.2.6).

Lemma 1.9.1. Suppose that f obeys (1.2.17) and (1.2.2) and that g is continuous. Sup-
pose that F' is given by (1.2.15) and that f and g obey (1.3.1). Let x be the unique

continuous solution of (1.2.1). Then it obeys (1.8.1).

Proof. Since g and f obey (1.3.1), there exists A < 1 such that

. Jy a(s)ds
| =< 1.
el F(t)

Choose € € (0,2/3) so small that A(1+¢) < 1 —¢/2. Therefore for every e € (0,2/3) there

exists T'(e) > 0 such that

fot g(s)ds

F1(1) <AN1l4e€) <1—¢€/2, t>T(e).
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Therefore f(f g(s)ds < (1 —¢/2)F~1(t) for all t > T'(¢). Since f obeys (1.2.2), by defining

xe = 2(T'(¢)), for all t > T'(¢) we have

x(t) = ze — /T(E) fx(s))ds + /T(e) g(s)ds
< xe + /T(E) g(s)ds

<ze+(1—€/2)FLt) :=G(2).

Suppose, in contradiction to the desired conclusion, that liminf; ,o z(t) = z; > z*. Then
there exists 75 > 0 such that for all t > T we have z(t) > x*. Let T3(e) = max(T'(e), T3).
Then for z* < z(t) < G(t), so by (1.2.17) we have f(z(t)) > f(G(t)). Hence for t > T5(e)

we have

t t

£(t) = 2(Ty) — [ fle(s))ds + / o(s) ds

T3 T3
<a(l) - | F(G(s))ds + (1 —€¢/2)F~1(t)
= o(T3) + (1 - ¢/2)F~(T3) +/T [=F(G(9) + (1 = ¢/2)f(F~(s))] ds.

Hence

t

z(t) < x(T3) + (1 —¢/2)FH(T3) +/ [—f(G(s)) + (1= ¢/2) f(F7(s))] ds, > T3(e).

T3

We next show that

For every e € (0,2/3) there exists #3(¢) > 0 such that

(1—¢/2)f(0) — f(xe+ (1 —€/2)0) < —€¢/4f(0), for all @ > 03(e). (1.9.2)

Now define Ty(e) = F(03(€)) and let T5(e) = max(T5(e),T4(e)) + 1. Therefore for ¢t >

Ts(€) > Ty(e) = F(05(€)) we have F~1(t) > 03(e). Thus by (1.9.2) we have

(1—€/2)f(F7L(#) = f(G(t)) < —€/4f(F~L(t)), for all t > Ty(e).
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Since T5(e) > T3(€), by (1.9.1) we have

t

w(t) < a(T3) + (1 — ¢/2)F(T3) +/ [—£(G () + (1 = e/2) f(F!(s))] ds,

< a(T8) + (1 /2)F~NTy) - /4 Tt PP (s)) ds,

= a(T3) + (1= ¢/2)F 1 (T3) — e/4[F (1) — F~1(Ty)],

for all t > T5(e), therefore we have lim;_,o 2(t) = —o0. Since liminf;_, z(t) = 1 > 2* >
0 and 2/(t) < 0 for all ¢ > T5(e) it follows that lim; o 2(t) = 21 > x*, a contradiction.
Hence it follows that liminf; o z(t) < x*.

It remains to prove (1.9.2). Since z. is fixed, for every € € (0,4/3) there exists 01(e) > 0

such that —ef/4 < x. < €0/4 for all § > 01(¢). Thus for > 6;(€) we have

e

1
0<( 1

)0 < e+ (1 —€/2)0 < (1 — ¢/4)0.

Also, there exists 03(e) > 0 such that (1 — 3¢/4)02(e) > z*. Define 05(€) by 65(e) =

max(61 (), f2(€)). Then for 8> f4(e) we have
< (1—%)9<x5+(1—§)0< (1—e/4)8 < 6.
Thus for @ > 65(e), by (1.2.17) we have
f(xe+ (1 —¢€/2)0) > f(0(1 —€/4)) > f(0) > (1 —€/4)f(0),
which proves (1.9.2). 0

1.9.2 Proof of Theorem 1.3.10

It is seen from Lemma 1.8.1 above that if we can show that there is an z* > 0 such that
the solution x of (1.2.1) obeys (1.8.1), then = obeys (1.2.6). We next show that if g and

f obey (1.3.2), then x does indeed obey (1.8.1).
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Lemma 1.9.2. Suppose that f obeys (1.2.2), (1.2.17) and (1.2.22), and that g is contin-
uous. Suppose that F is given by (1.2.15) and that f and g obey (1.3.2). Let x be the

unique continuous solution of (1.2.1). Then x obeys (1.8.1).

In order to prove this result we require and auxiliary lemma.

Lemma 1.9.3. Let 5 > 0. Let A\ € (1,\(B)), where A\(B) is given by (1.2.23). Define

A(0) = X and

An+1)=X—An)"?, 0<n<n, n:=inf{n>1:A(n+1)<0}. (1.9.3)

Then n' is finite and 0 < A(n+1) < A(n) forn=0,...,n — 1.

Proof. We first note that because A(0) = XA > 1, we have A(1) > 0, so we can only have
A(n+1) <0 for n > 1. Hence n’ is appropriately defined. Suppose that n’ is infinite.
Then we have that A(n) > 0 for all n > 0.

Define ky(z) = — A+ 27# for z > 0 and hy(z) = 21 — \2® + 1 for 2 > 0. Then
for x > 0 we have ky(z) = 2 Phy(z). Clearly we have h)(z) = 2~ ((8 + 1)z — A\B) for
x > 0. Define z, = fA/(B + 1). Then z, € (0,\) and we have that hy is increasing on
(0, x4) and decreasing on (x,,00). Therefore for all z > 0 we have

L tans
CESEEh

ha(z) > ha(zy) = 25 (zs — ) + 1 = BBAB ( 5

B+1)7 \B+1 _A) e
Since A < A(B), it follows that the righthand side is positive, and so we have hy(z) > 0
for all > 0. Hence ky(z) > 0 for all z > 0.

Since A(n) > 0 for all n > 0, we have kx(A(n)) > 0 for all n > 0. Therefore A(n) >
A—Am)™P for all n > 0. But A(n +1) = X — A(n)~? for all n > 0, so we have

A(n+1) < A(n) for all n > 0. Therefore we have that A(n) — L > 0 as n — oco. Suppose

that L > 0. Then we have L = A — L7, or L1 — AL# + 1 = 0. But this implies that
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hx(L) = 0, a contradiction. Suppose that L = 0. Then we have

1
0= lim A(n+1)= lim A\ = ——= = —o0,

n—00 n—00 A(n)ﬁ

a contradiction. Therefore we must have that there is a finite n’ > 1 such that A(n) > 0
for n < n/ and A(n’ +1) < 0. Moreover, we note that 0 < A(n + 1) < A(n) for n =

0,...,n —1. O

Proof of Lemma 1.9.2. Without loss of generality, we may take A in (1.2.23) to obey A > 1,
i.e.,

t
s)ds
lim sup foFg_(l()t) <A< A\B) (1.9.4)

From (1.2.1) and (1.9.4), we have for all € > 0, there exists T'(¢) such that for all t > T'(e):
¢
[ atras <aq+ari), =100,
0

and so

Therefore we have

) x(t)
limsup ———= < A =: A(0) > 1,
P gy <A A0

where A is the sequence defined in Lemma 1.9.3, so there is a Ty(€) > 0 such that z(t) <
A1+ €)F~Y(t) for t > Ty(e). Suppose, in contradiction to the desired conclusion, that
liminf; ,o (t) = 1 > x*. Then there exists 77 > 0 such that x(t) > «* for all ¢t > T7.

We have x* < z(t) < A(1+ ¢)F~1(t) for t > max(Ty(e), T1), which implies that

—f(2(t) < —fA1 +eF ), t>max(To(e), T1).
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Therefore for Ts(e) = max(T'(¢), To(e), T1), we have

ot) <o(ly) - [ FOQ+OF )ds+ [ gls)ds
T T>

< a(Ty) — Tt FOQ+ ) F(s)ds + A1+ €)F(t)

_ T A+ ) L
— (D) /Flm) o+ M1+ P ).

Therefore

o) 1 /F““ JAUT ) gy 4 a1 1 o).

F-1(T) f(u)

Thus, as f € RVs(—f) we have

, z(t) oL A0+ e)s)
B P S B gy g A
o T+ 90) )
= — lim ) +A(1 +e),

Therefore by (1.9.3) we have

limsup F"’“_(f()t) < A= A0)F = A1),

Introduce the n-th level hypothesis for n = 0,...,n':

A(n) >0, Timsup Fé’;(f()t) < A(n). (1.9.5)

We have already that (1.9.5) is true for n = 0 and n = 1.

By Lemma 1.9.3, one of the following holds:
(a) There exists n’ > 1 such that A(n) > 0 for n < n/ and A(n' + 1) < 0;

(b) There exists n’ > 1 such that A(n) >0 for n <n’ and A(n' 4+ 1) = 0;
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We show that (1.9.5) at level n implies (1.9.5) at level n+1 provided that n =0,...,n'—1.

Therefore as (1.9.5) is true at level 0, we have that (1.9.5) is true at level n’. Hence

_ x(t)
h?litolp (1) < A(n)).

Since it is assumed that z(t) > z* for all ¢ > T}, for every € > 0 there exists a T5(€) =

max(Ty,Ty) such that z* < z(t) < A(n)(1 4 €)F~1(t) for t > T3(e). We have

t t

w(t) = 2(Ts) — | f(a(s))ds + / o(5)ds,

Ts T3
<alty) ~ [ FAm+F )ds + 20+ F ),
T L (OO DI L
— (Ty) /F—1<T3> M1+ 9P (1),

Therefore, we have

lim sup 2(t) <A1l+e¢) —(An)(1+ 6))_ﬂ

t—o0 F_l(t)

Letting € — 0 and using (1.9.3) yields

. x(t) _
limsup ——2— <A —A(n)? =A(n+1),
msup 1 < A= Am) = A+ 1)

which is simply (1.9.5) at level n + 1.
We now consider the case distinctions A(n’ + 1) < 0 and A(n’ 4+ 1) = 0. In the former

case we have already shown that

lim su < A(n'),
‘ p F_l(t) — ( )

and this implies that

x(t)

li <A A=A P =A( +1) <0.
P iy <A AT A
Since F'~1(t) — oo ast — oo, therefore we have lim;_, o, z(t) = —o0, it follows that since for

all t > Ty, iminf; oo z(t) = 21 > 2* > 0 and 2/(¢) < 0, it follows that lim;_,oo x(t) > 2%,

a contradiction. Hence we must have liminf; o, 2(t) < 2* and the proof is complete.
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On the other hand, suppose that A(n/+1) = 0. Therefore we have A(n’) = A=%/# € (0,1).

Let € > 0 be so small that ¢ € (0, \'/# —1) and

1
nB
I+e) <T@

Now we have that

i (1) < A = \~1/B -1/8 N .\

imsup ——~ < A(n) = A <A (I+e)y=XN<1. (1.9.6)

t—o00 F (t)
Now define
1
)\/l = )\ - ()\,)_B e <1 — w) > 0, (197)

Moreover as (1 +¢)72 > 1 - X"FtD/8 e have 1 — (1 +¢) 7 < \=B+D/B 50
Moa(1-—L ) caus
(1+¢)P
Thus X’ € (0, \"'/#), and we can prove that (1.9.6) and (1.9.7) together imply

. x(t) "
lim su < \". 1.9.8
PP i) S (19)

Proceeding as in the case when A(n’ 4+ 1) < 0 we arrive once more at the conclusion that

liminf; o z(t) < x*. O

1.10 Proof of Theorem 1.3.6, 1.3.8, 1.3.12

Lemma 1.10.1. Let a > 0. Define g € C([0,00);(0,00)) by
g(t) = (14 a)f(F Hat + F(£/2)) +e7t, t>0. (1.10.1)
Then the solution of (1.2.1) obeys z(t) — 0o as t — oo.

Proof. Define x(t) = F~1(at + F(£/2)) for t > 0. Then x1(0) = £/2 < x(0). Clearly for

t > 0 we have

27 (1) + flar(t) = 9(t) = (L+a) f(F~ (at + F(£/2))) — g(t) < 0.
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Then zr(t) < x(t) for all ¢ > 0. Since z1(t) — oo as t — oo, we have that z(t) — oo as

t — oo. O

Lemma 1.10.2. Let g be defined by (1.10.1).

(i) If fo F~1 € RV,o(—1), then

. g(t) _ -1
DL FEw) T
(i) If B> 0 and f € RVoo(—P), then
lim 90 _ (14 a)a P/B+D), (1.10.2)

t=oe f(F7H(T))
Proof. Since f o F~! € RV, (—1) we have that

L (o) at + F(&/2))

AT o r et

Also as fo F71 € RV (—1) we

(foF)at) _ 4

lim =«

t=oo (fo F1)(t)
Since fo F~1 € RV (—1), we have et /(f o F~1)(t) — 0 as t — co and so g obeys

i 90 (1 o i FOF0 £ FE/2) (F 0 F)(a)

= ofl.
% FED) T (FoF ) (JoF M@ T

Note that when f € RV, (—f), we have f o F~1 € RV (—8/(B8+ 1)), so

i JEHAD)) gy
t—oo f(F~1(t)) '

Since fo F~1is in RV (—8/(8 + 1)) we have that

L (fo P at + F(g/2)

t—o0 (foF_l)(Ozt) =1

Since fo F~! € RV (—B/(B+1)), we have et /(fo F~1)(t) — 0 as t — oo and so g obeys

. (M at + F(E/2)) f(F ) :
B gy - OB T @) gy e
as required. ]
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Proof of Theorem 1.3.8. Let x > 1. By hypothesis f o F~! € RV, (—1), and let o =

1/(k —1) > 0. If g is defined by (1.10.1), then by part (i) of Lemma 1.10.2 we have

. gt)  _
D) R
Moreover, by Lemma 1.10.1 we have that z(t) — oo. O

Proof of Theorem 1.3.6. Let x > 1. By hypothesis fo F~! € RV, (0). Let a = x —1 > 0.

If g is defined by (1.10.1), then by part (ii) of Lemma 1.10.2 we have

. 9(t)
lim ————— = 1.
S FEw)
Moreover, by Lemma 1.10.1 we have that z(t) — oo. O

Proof of Theorem 1.3.12. Let s > (1+8)37%/(B+1)  Since f € RV, (—f) we have foF ! €

RV (=B/(8 +1)). Since > (14 8)5~%/(F+1) there exists a unique a € (0, 3] such that.
(14 a)a /B = g,
Since g is defined by (1.10.1), then by part (ii) of Lemma 1.10.2 we have

o 9O N BB _
i iy = e =

Moreover, by Lemma 1.10.1 we have that z(t) — oo. O

1.11 Proof of Theorems 1.3.3, 1.3.7, 1.3.9 and 1.3.13

The proof of Theorem 1.3.3 is an easy consequence of Lemma 1.8.1, and is given next. We

consider the proof of the other theorems in the second subsection.

1.11.1 Proof of Theorem 1.3.3

There exists ¢y > 0 sufficiently small so that the set inf{x > 0 : f(x) = 2¢p} is non—empty.
For € € (0, ¢) define z1(e) = inf{z > 0 : f(x) = 2¢}. Then f(z) < 2¢ for all x € [0, z1(€)).

Suppose also that g(t) < e for all ¢ > 0.
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Let z(0) < z1(e). Suppose there is a finite T1(e) = inf{t > 0 : z(t) = z1(¢)}. Then

2'(T1(e)) > 0. Also
0 < 2/(Ty(0)) = —F(@(Ti () + (T () < —F(a1(0)) +€ = —¢ < O,

a contradiction. Hence we have that z(t) < x1(e) for all ¢ > 0. Now by Lemma 1.8.1 it

follows that x(t) — 0 as t — oc.

1.11.2 Proof of Theorems 1.3.7, 1.3.9 and 1.3.13

In order to prove Theorems 1.3.7, 1.3.9 and 1.3.13, it proves convenient to establish the

following condition on g and f:

There exists a > 0 such that lim inf 9(t)

minf oGy LT e (1.11.1)

We now show that (1.11.1) is satisfied under the conditions on g and f given in Theo-

rems 1.3.7, 1.3.9 and 1.3.13.
Lemma 1.11.1. Suppose that f obeys (1.2.2) and that g obeys (1.2.3).

(i) Suppose that f obeys (1.2.18) and that g and f obey (1.2.21). Then g and f obeys

(1.11.1).

(ii) Suppose that f obeys (1.2.19) and that g and f obey (1.2.21). Then g and f obeys

(1.11.1).

(11i) Suppose that f obeys (1.2.22) and that g and f obey (1.2.25). Then g and f obeys

(1.11.1).
Proof. For part (i), by (1.2.21), there is k > 1 be given by

k = lim inf 9(t)

minf 7 oy (1.11.2)

Then we may choose « > 1/(k — 1) > 0. Hence by (1.2.21) and (1.2.18) we have

O R 00 B
it ey~ A ) e
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Since o > 1/(k — 1), we have ka > a + 1, so (1.11.1) holds.
For part (ii), once again there is x > 1 which obeys (1.11.2). Then we may choose

a€ (0,5 —1)>0. Then o < k — 1. Hence by (1.2.21) and (1.2.19) we have

lim inf FE(at))  ite fF(FLE)

Since kK > a + 1, (1.11.1) holds.

For part (iii), there is A > A(3) = (1 + 8)8#/(0+8) such that

= limin 7g(t)
G RO

Let a = 3 > 0. Since f is in RV (=), it follows that f o F~!is in RV (—8/(8 + 1)).

Using this and the fact that f and g obey (1.2.25), we have

imin 9@ . M — )\ /o B/(B+1)
1Hoof f(F~Y(at)) A/tLOO f(F=1(t)) A

_ Aﬁﬁ/(ﬁﬂ) > )\(ﬁ)ﬁﬁ/(ﬁ-ﬂ) =1+8=1+a,
which proves (1.11.1). O

Lemma 1.11.2. Suppose that f obeys (1.2.2) and that g obeys (1.2.3). Let x be the
unique continuous solution of (1.2.1). Suppose that g and f obey (1.11.1). Then there

exists T > 0 such that for all £ > %, we have that limy_,+ x(t, &) = oco.

Proof. Define F by (1.2.15). By (1.11.1) there exists n > 1 + a such that

lig(i)glf m =1.

Now for e > 0 sufficiently small we have n(1 —¢€) > (1 + «)(1 + €). For such an € > 0

sufficiently small, there is T'(¢) > 0 such that
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and so
9(t) = 1+ )L+ a)f(FH(at), t=T(e). (1.11.3)
Next suppose that
E>FHA+a)T(e), &> F HF(1)+T(e)). (1.11.4)
Define
zp(t) = F Y (at), t>T(e). (1.11.5)

y'(t)=—fy®), t>0; y(0)=¢ (1.11.6)

Since g(t) > 0 for all ¢ > 0, we have 2/(t) > —f(xz(t)) for all t > 0. Then z(t) > y(t) for
all t > 0. Now, by (1.11.6) and (1.2.15) we have y(¢t) = F~1(F(£) —t) for all t € [0, T(e)],
because the second part of (1.11.4) guarantees that y(¢) > 1 for all t € [0,T(¢)]. Therefore

by the first part of (1.11.4) and (1.11.5) we have
21(T(6)) = FHaT(e)) < FY(F(€) — T() = y(T() < 2(T(e)).  (L1L7)
Next note for t > T'(¢) and by using (1.11.5) and (1.11.3) we have

2 () + fzL(t) — 9(t) = (L + ) f(F~H(at) - g(t)
< (L+a)f(F~(at) = (1+ ) (1 +a) f(F ' (at))

= —e(1+a)f(F Yat)) <0.
Therefore by this and (1.11.7) we have
() < —flen() + 9(t), t>T() w1(T() < 2(T(€)). (1.118)

Hence zr,(t) < x(t) for all t > T'(e¢). Therefore as a > 0 we have z(t) — oo as t — oo,

and therefore it follows that x(t) — oo as t — oo, as required. O
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The proof of Theorem 1.3.7 is now a consequence of part (i) of Lemma 1.11.1 and
Lemma 1.11.2. The proof of Theorem 1.3.9 is a consequence of part (ii) of Lemma 1.11.1
and Lemma 1.11.2. Finally, the proof of Theorem 1.3.13 is a consequence of part (iii) of

Lemma 1.11.1 and Lemma 1.11.2.

1.12 Proof of Proposition 1.3.2

Note G is increasing. Moreover as g € RV (0), we have G € RV (1). Therefore G~1 €
RV (1), and so g o G™! € RV (0). By (1.3.6), we have that f € RV, (0). Since
G~ 1(x) = oo as ¥ — 0o and g obeys (1.2.8), we have from (1.3.6) that f obeys (1.2.11).
Since g is decreasing and G~! is increasing, z + g(G~!(x)) is decreasing, and so by (1.3.6),
f is asymptotic to a decreasing function.

Define G)(t) = G(t)/X for t > 0. Then G;' exists and we have G, '(t) = G1(t/)).

Since g o G™1 € RV (0), we have as z — oo that

f(@) ~ 390G @) ~ 10(G (/%) = 196Gy (@) (1121)

Now g € RV (0) implies that Gy (z) ~ zg(z)/) as  — co. Since G} ' (z) — 0o as z — o0,

we have that Az ~ G '(2)g(G ' (%)) as # — oo. Therefore we have that as  — oo

f@) ~ 306 @) ~ 5 = =

Since f is in RV (0) we have as © — oo that

I A e
P = [ ot g ~ @

Since g is decreasing and g is in RV (0) we have that g(F(z)) ~ g(Gy'(z)) as 2 — oc.

Therefore by (1.12.1) we have that as x — oo

9(F(2)) ~ g(G3(x)) ~ Af ().

Since F' € RV (1) we have that F~!(z) — oo as z — oo, and therefore it follows that

(1.3.3) holds.

68



Chapter 1, Section 13 Asymptotic Stability of Perturbed ODEswith Weak Asymptotic Mean Reversion

1.13 Proofs from Section 1.5

1.13.1 Proof of Lemma 1.5.1

For x > 0 we have that

£ (2o (y) = int (u, $(zu)).

= in —
lyli=<"[ly]l’ lufl=1

Since ¢(0) = 0, we have that (1.5.5) holds. Moreover, (1.5.5) is equivalent to

vo(z)

—po(z) = \|Sl||11=)1 —(u, p(zu)), x>0.

It is true for any A, B : R* — R that

sup A(u) — sup B(u)| < sup |A(u) — B(u)|. (1.13.1)
l[ull=1 lull=1 lJul|=1

Let z,y € R such that |z| V |y| < n € N. Since ¢ is locally Lipschitz continuous, for every

u € R? with ||ul| = 1, we have

[o(xu) = d(yu)|| < Knlz -yl (1.13.2)

for some K, > 0. Therefore, for |z| V |y| < n, by using (1.13.1), the Cauchy-Schwarz

inequality and (1.13.2) in turn, we get

lpo(r) — wo(y)| = | sup —(u, p(zu)) — sup —(u, p(yu))

Jlufl=1 l[ull=1
< Sup [(u, d(yu)) — (u, ¢(zu))|
= [(u, ¢(yu) — d(zu))|
< Sup ulll[¢(yu) — ¢(zu)||
< Kplz -y,

which establishes the local Lipschitz continuity of ¢g.
To show that ¢g(z) > 0 for x > 0, notice first by (1.5.3) that ¢o(x) > 0 for all x > 0.
Suppose now that there is an xg > 0 such that ¢g(z¢) = 0. Then, by the continuity of ¢y,

we have

0=1olwo) = inf (u,(zou))= min {u,d(wou)) = {u", é(zou))

l[ull=z0 [ull=1
for some u* € R? such that ||u*|| = 1. But then, with z* = zou* # 0, we have (z*, p(z*)) =

0, contradicting (1.5.3).
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1.13.2 Proof of Proposition 1.5.1

It is easy to see that (z,¢(x)) > 0 for x # 0 ensures that z = 0 is the only equilibrium
of the unperturbed equation (1.5.2). Suppose that zy # 0 is another equilibrium. Then
¢(xg) = 0. But 0 = (xo,¢(z0)) > 0 by (1.5.3), a contradiction. The global asymptotic
stability of solutions is achieved by taking u(t) = ||z(¢)||? for t > 0.

If 2(0) = 0, then z(¢) = 0, for all ¢ > 0. Otherwise, suppose 2(0) # 0, then [|z(0)|| > 0
and u'(t) = —2(z(t),#(2(t))) < 0, so t — u(t) is non-increasing. Either u(t) — 0, as

t — oo or u(t) — L? > 0 as t — oo. Suppose that the latter holds. We establish that

lminf(z(¢t), p(z(t))) =: A >0

t—o00

from which a contradiction will result.

Since ||z(t)|| = L > 0 as t — oo, ||2(¢)|| > 0 for all t > 0 and

(2(1), 0(2(1))) . (u, ¢(u))
[l

> m
lull=lz)  [Jull

= po(llz()])-
By Lemma 1.5.1, ¢y is locally Lipschitz continuous, so since ||z(t)|| — L as t — oo,

o (20, 60))

minf == 2 iminfeo(llzMI) = ¢olL).

Also, as L > 0, Lemma 1.5.1 ensures that ¢o(L) > 0. Thus liminf, . (2(t), ¢2(t))) >
Loo(L) > 0. Recalling that u/(t) < —2(z(t), ¢(2(t))), we get
limsup v/ (t) < limsup —2(z(t), ¢(2(t))) < —2Lpo(L) < 0.
t—»00 t—ro0

Therefore u(t) — —oo as t — oo, which contradicts the fact that u(t) > 0 for all ¢ > 0.

1.13.3 Proof of Proposition 1.5.2

The local Lipschitz continuity of ¢ ensures that there is a unique continuous solution of
(1.5.1), defined up to a maximal time 7" > 0 for which limyp ||z(t)|| = 400, or z(t) is
uniquely defined for all + > 0. Suppose the former and let y(t) = ||x(t)||* for t € [0,T).

Then for ¢t € (0,T") we get
y'(t) = 2(=o(x(t)) + (1), 2(1))) < 2(y(t), z(t)) < 2[ly(O)llll=@)]],
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using (1.5.3) and the Cauchy Schwarz inequality. Since + is continuous on [0, 7], we have

that [|y(¢)|| < T for all ¢t € [0,7] and some I" > 0. Hence

y'(1) <2Vy(t), te(0,7), () =I*>0.
Since y(t) — oo as t T T and y is continuous, there exists T € (0,T') such that y(¢) > 1 for

all t € [T1,T). Dividing by 1/y(t) on both sides of this differential inequality for ¢t € [T1,T)

and then integrating yields
y(O)? —y(T)Y2 <20(t —Th), te[l,T).

Letting ¢t 1 T on both sides of the inequality now leads to the desired contradiction.

1.13.4 Proof of Theorem 1.5.1

By hypothesis (1.5.6), ¢ is locally Lipschitz continuous and obeys ¢(0) = 0. Therefore
(1.5.7) has a unique continuous solution. Moreover, we see that x.(t) > 0 for all t > 0,
by considering ty = inf{t > 0 : x,(t) = 0} and showing that such a ¢y cannot be finite.

Clearly, we must have z7, (to) <0, so that
€ _ € _ _
0> 7 (to) = —p(zne(to)) + (o)l + 577 = [V (to) ]| + 3¢ > ee™™ >0,

a contradiction. Thus z.(t) > 0 for all ¢ > 0.
Let y(t) = [J(t)||* and ye(t) = x,(t)? for ¢ > 0. We show that y(t) < y.(t) and
this proves the result. Now as y(t) = (x(t),z(t)) and z € C([0,0); R?), we have that

y € C((0,00);R) and moreover

By the Cauchy—Schwarz inequality and (1.5.6), we get

2(¢(z(1)), x(t))
[lz(®)]]

when [lz()[| # 0, so =2(¢(x (1)), 2(t)) < =2¢([z())]z(#)]|. In the case that |[z(t)[| = 0,

> 2¢(llz@)])

2(¢(x(t)), z(t)) = 0. Therefore, for all t > 0, —=2(¢(z(t)), z(t)) < —2¢(||z(t)])||z(¢)]]. Thus

y'(t) < =2¢([l=@) D= @ + 2y Oll[<@)] for £ > 0 or

Y (t) < =20(Vy(®)vyt) + 2llv(®)llVy(), t>0.
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Moreover ye(0) = ([[z(0)l| +€/2)* > [lz(0)[* = y(0).
Suppose there is t9 > 0 such that y(t2) = y(t2) but y(t) < y.(t) for t € [0,t2). Then as

ye is in C1((0,00),R), we have that y'(t2) > y.(t2). By construction

Ye(t) = 2ay, (O{—p(ane(t)) + 7] +€/2e7"}

= =2v/ye(t)o(Vye(t) + 2V ye () V(B + ev/ye(t)e ™"

Thus

Ye(t2) = =2/5e(t2)p(V/9e(t2)) + 2/ ue(t2) 1 (t2) || + €3/ye(ta)e ™"
= —2/y(t2)p(Vy(t2)) + 2¢/y(t2) [ (t2) | + /()2
> ¢/ (t2) + ey/ye(t2)e "
>yl (t2) + ey/ye(ta)e .

or \/ye(t2) < 0. This implies x,(t2) = 0. But this is impossible as x,(t) > 0 for all
t > 0. Therefore y(t) < ye(t) for all t > 0, or [|z(t)||*> < zy.(t)? for all ¢t > 0, which proves

the result.
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Chapter 2
Asymptotic Behaviour of Affine Stochastic

Differential Equations

2.1 Introduction

In the last chapter, we examined the asymptotic behaviour of the deterministic differential
equation

'(t) = —f(x(t) + (1), t=0.

We viewed this as an equation with a unique and globally stable equilibrium at zero
which is then perturbed by an external force g. We view this force as external because
it is independent of x. The question naturally arises: what happens if the deterministic
external force is replaced by one which is stochastic, and whose intensity is independent

of the state 7 In that case, we are lead to examine the stochastic differential equation
dX(t)=—f(X()dt+o(t)dB(t), t=>0,

where the function o is continuous and stochastic and B is a finite dimensional Brownian

motion. Specifically, we let

o € C(]0,00); R¥*T) (2.1.1)

and B be an r—dimensional standard Brownian motion.

In this chapter, we do not address directly the asymptotic behaviour of general nonlinear
stochastic differential equations: this is done in the case of scalar stochastic differential
equations in Chapter 3 and for finite dimensional equations in Chapter 4. Instead we
start by analysing affine stochastic differential equations. This means that the function f
is replaced by a linear function, or that f(z) = Ax where A is a d x d real matrix. Since
we are presuming that there is a unique equilibrium at zero, and that it is globally stable,

we assume that all the eigenvalues of A have negative real parts. One of the important
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tasks in this chapter is to classify the asymptotic behaviour of the stochastic differential
equation

dX (t) = AX(t)dt + o(t) dB(t)

It turns out that this can be achieved by studying the simpler d—dimensional equation

with solution Y which is given by
dY (t) = =Y (t)dt + o(t)dB(t), t>0; Y(0)=0. (2.1.2)

In fact, we demonstrate that X and Y have equivalent asymptotic behaviour, in the sense
that X converges to zero if and only if Y does; is bounded but not convergent if and only
if Y is; and is unbounded if and only if Y is.

Therefore, the question of analysing the asymptotic behaviour of the general linear
equation reduces to that of studying the special linear equation (2.1.2). If o is identically

zero, it follows that the solution of

obeys y(t) = 0 for all ¢ > 0 if y(0) = 0. The question naturally arises as under what

condition on o does the solution Y () obey

lim Y(t) =0, a.s. (2.1.3)

t—o00

It is shown in [31] that Y'(¢) obeys (2.1.3) in the one—-dimensional case if

lim o?(t)logt = 0.

t—o00

Moreover in [31], it is shown that if ¢ — o%(¢) is decreasing to zero, and Y (¢) obeys (2.1.3),
then we must have lim;_, o, 02 (t)logt = 0. These results are extended to finite-dimensions
in [30].

In this chapter, we characterise the convergence, boundedness and unboundedness of
solutions of (2.1.2) without imposing monotonicity on ||o||%. Our main results show that

Y obeys (2.1.3) if and only if

o0

Z < 400, forevery e>0, (2.1.4)
= %f”“ () [2.ds
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where @ is the distribution function of a standardised normal random variable. We also
show that in contrast to (2.1.4), if S(e) is infinite for all €, then limsup,_, . [|Y (¢)|| = +oc;
while if the sum is finite for some € and infinite for others, then ¢; < limsup,_, . ||[Y (¢)]] <
c2 a.s., where 0 < ¢; < ¢p < 400 are deterministic. Since S(e€) is monotone in ¢, it can
be seen that we can describe the asymptotic behaviour for every function o, and that,
moreover, the stability, boundedness or unboundedness of the solution depends on ¢ only
through the Frobenius norm ||o||p. Therefore, as all norms in RY" are equivalent, it
follows that the asymptotic behaviour relies only on ||o||, where || - || is any norm in RZ*",

Given that we are dealing with a continuous time equation, it seems appropriate that the
conditions which enable us to characterise the asymptotic behaviour should be “continu-
ous” rather than “discrete”. The finiteness condition on S(€), which relies on a particular
partition of time, and the convergence of a sum, can certainly be seen as a “discrete” con-
dition, in this sense. Therefore, we develop an integral condition on ¢ which is equivalent

to the summation condition in (2.1.4). More precisely, we define

o] t+c 62 t+c
o= \/ / ua<s>u%dsexp<—t+c”/f)”2)x(o,w> (/ ua<s>u%) ds (2.15)
t n oS F t

for arbitrary ¢ > 0. We then show that I(e) being finite for all e implies that Y tends to 0;

if I(e) is infinite for all € then Y is unbounded; and if I(¢) is finite for some € and infinite
for others, then Y is bounded but not convergent to zero.

Although (2.1.4) or I(e) being finite are necessary and sufficient for ¥ to obey (2.1.3),
these conditions may be hard to apply in practice. For this reason we also deduce sharp
sufficient conditions on ¢ which enable us to determine for which value of € the functions

S(e) or I(e) are finite. One such condition is the following: if it is known that

t+c
lim |o(s)|% dslogt = L € [0, 00],

t=o0 Ji
then L = 0 implies that Y tends to zero a.s.; if L is positive and finite, then Y is bounded,
but does not converge to zero; and if L = +oo, then Y is unbounded. Of course, all
these conditions ensure that the solution of the general linear equation possesses the same
properties.
One other result of note is established. We ask: is it possible for solutions of the

unperturbed ODE 2/(t) = Ax(t) to be unstable, but solutions of the SDE to be stable
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for some nontrivial ¢? In other words, can the noise stabilise solutions? We prove that
it cannot, in the sense that if there are a representative and finite collection of initial
conditions & for which X (¢, &) tends to zero with positive probability, then it must be the
case that all the eigenvalues of A have negative real parts, and that S(e) is finite for all
e > 0. These conditions are therefore equivalent to lim;_,~, X (¢,£) = 0 a.s. for each initial
condition &.

The next section states and discusses the main results, with proofs and supporting
lemmatas in the following section. Then we discuss the sufficient conditions on o for

stability with proofs and supporting lemmatas.

2.2 Main results for linear equation

We first determine necessary and sufficient conditions for the solution of a linear equation

defined by (2.1.2) to tend to zero. Note that Y has the representation
t
Y(t) = e_t/ e*o(s)dB(s), t>0. (2.2.1)
0
Denote by ® : R — R the distribution of a standard normal random variable

O(z) = \/12?/ e 2du, zeR. (2.2.2)

We interpret ®(—o0) = 0 and ®(oc0) = 1. Define 0; : N — [0, 00) by

T

n+1
02(n) = Z/ ox(s)ds, i=1,...,d. (2.2.3)
I=1""

and
n+1
O(n)? = / o (s)|[% ds. (2.2.4)

Finally define

S=> 1-@ < (2.2.5)
= VI ()1 ds

Since S is a monotone function of €, it is the case that either (i) S(e) is finite for all € > 0;
(ii) there is ¢ > 0 such that for all ¢ > ¢’ we have S(¢) < 400 and S(e) = 400 for all

e < €¢; and (iii) S(e) = 4oo for all € > 0.
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The following theorem characterises the pathwise asymptotic behaviour of solutions of

(2.1.2).

Theorem 2.2.1. Suppose that o obeys (2.1.1) and thatY is the unique continuous adapted

process which obeys (2.1.2). Let S(-) be defined by (2.2.5).

(A) 1If
S(e) is finite for all € > 0, (2.2.6)
then
tli>I£10 Y(t) =0, as. (2.2.7)

(B) If there exists € > 0 such that
S(e) is finite for all e > ¢, S(e) = +o0 for all e < ¢, (2.2.8)

then there exists deterministic 0 < ¢ < ¢9 < 400 such that

cp <limsup||[Y(t)| < c2, a.s. (2.2.9)
t—00
Moreover
o 1t 9
liminf [|Y(¢)[| =0, lim — [ ||[Y(s)]|*ds =0, a.s.
t—00 t—oo t 0
(C) If
S(€) = 400 for all e > 0, (2.2.10)
then
limsup ||Y (¢)|| = 400, a.s. (2.2.11)
t—00

The conditions and form of Theorem 2.2.1, as well as other theorems in this section, are
inspired by those of [31, Theorem 1] and by [20, Theorem 6, Corollary 7].
Let d be an integer and A be a d X d matrix with real entries, and consider the deter-

ministic linear differential equation
o/ (t) = Az(t), t>0; =z(0)=¢eRY (2.2.12)
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Theorem 2.2.1 can be immediately applied to determine necessary and sufficient conditions
for the convergence to the unique equilibrium of (2.2.12) of solutions of a stochastically

perturbed version of (2.2.12), namely

dX(t) = AX(t)dt +o(t)dB(t), t>0; X(0)=¢eRL (2.2.13)

Theorem 2.2.2. Suppose that o obeys (2.1.1). Let A be a d x d real matriz for which all
eigenvalues have negative real parts. Let X be the solution of (2.2.13). Let 0 be defined

by (2.2.4) and let ® be given by (2.2.2). Then the following holds:
(A) If S obeys (2.2.6), then lim; oo X(t,&) =0 a.s. for each & € R%;

(B) If S obeys (2.2.8), then there exist deterministic 0 < ¢; < co < oo independent of &

such that

c1 <limsup || X (t,€)| < c2, a.s.
t—o00

Moreover
it [1X(L 6 =0, Tim L [ X (s.6)[2ds = 0
iminf | X(1O1 =0, Jim 7 | [X(s,0)*ds =0, as.

(C) If S obeys (2.2.10), then limsup, ... | X (¢, €)| = +oo a.s. for each & € R?.

Suppose that (t,)n>0 is an increasing sequence with ¢y = 0 and lim, . t, = +o0.

Define
> €
Si(e)=> q1-0 (2.2.14)
ord VI o (s)]13-ds

n

This necessary and sufficient condition on S; (¢) is difficult to evaluate directly, because
we do not know & in its closed form. However we can show that S; () is finite or infinite

according to whether the sum

5.0 §§¢tHW(NPd (3 ! ) (2215
1 (€) = / o(s sexp | —— —- 2.2.15
=\ " 2 [ lo(s)||2% ds

is finite or infinite, where we interpret the summand to be zero in the case where ¢'(n) = 0.

Therefore we establish the following Lemmata which enables us to obtain all the above

results with S; (e) in place of Sq (e).
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Lemma 2.2.1. S; (e) given by (2.2.14) is finite if and only if S} (€) given by (2.2.15) is

finite.

Proof. We note by e.g., [44, Problem 2.9.22], we have

. 1—®(x) 1
lengO p ey R (2.2.16)

If S; () is finite, then 1 — ®(¢/0'(n)) — 0 as n — oo, where #'(n)? = ftt:“ lo(s)||% ds.

This implies €/6'(n) — oo as n — co. Therefore by (2.2.16), we have

. 1— ®(e/0'(n)) 1

n—00 0'(n) /e - exp(—e2/{202(n)}) ~ 2r (2.2.17)

Since (1 — ®(e/0'(n)))n>1 is summable, it therefore follows that the sequence

(¢/(n) /e - exp(—€* /{20 (n)}))nz1

is summable, so S} (€) is finite, by definition.

On the other hand, if S (e) is finite, and we define ¢ : [0,00) — R? by

rexp(—1/(22?)), = >0,
p(z) =
0, z =0,
then as we have 6'(n) exp(—€2/260"?(n)) summable, we have (¢(6'(n)/€))n>1 is summable.
Therefore ¢(6'(n)/e) — 0 as n — oo. Then, as ¢ is continuous and increasing on [0, 00),
we have that 6'(n)/e — 0 as n — oo, or €/6'(n) — oo as n — oo. Therefore (2.2.17)

holds, and thus (1 — ®(e/6'(n)))n>1 is summable, which implies that Sy (€) is finite, as

required. O

The following theorem then characterises the pathwise asymptotic behaviour of solutions

of (2.1.2).

Theorem 2.2.3. Suppose that o obeys (2.1.1) and that'Y is the unique continuous adapted

process which obeys (2.1.2). Let Sy (€) be defined by (2.2.14) where t. is any e—independent
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sequence obeying
to=0, 0<a<tpy—t,<p <400, lim t, =400 (2.2.18)
n—oo
for some 0 < o < B < +00.

(A) If

Sy (€) is finite for all € > 0, (2.2.19)

then

lim Y(¢) =0, a.s.

t—00

(B) (i) If there exists € > 0 such that
St (€) is finite for all e > €, (2.2.20)
then there exists a deterministic 0 < co < +00 such that

limsup [|[Y(#)|| < c2, a.s.

t—00
(ii) On the other hand, if there exists €' > 0 such that

S; () = +oo for all e < €, (2.2.21)

where T is any e—independent sequence obeying (2.2.18), then there exists a

deterministic 0 < ¢1 < +o0o such that

limsup |[Y(¢)]| > c1, a.s.
t—00

(C) If
St.(e) = 400 for all € > 0, (2.2.22)
then
limsup ||Y (¢)|| = 400, a.s.
t—o00
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We mention a useful corollary which holds when ¢, = nh for some h > 0. It yields
Theorem 2.2.1 in the case h = 1. It is also of utility when considering the relationship
between the asymptotic behaviour of solutions of stochastic differential equations and the

asymptotic behaviour of uniform step—size discretisations.

Corollary 2.2.1. Suppose that o obeys (2.1.1) and Y is the unique continuous adapted

process which obeys (2.1.2). Suppose that Sy, is defined by

(2.2.23)

Wn"“ lo(s)2 ds
(4) If

Sh(e) is finite for all e > 0,
then

lim Y(t) =0, a.s.

t—o00
(B) If there exists € > 0 such that
Sh(€) is finite for all e > €,  Sp(€) = +oo for all e < €,
then there exists deterministic 0 < ¢1 < cg < +00 such that

c1 <limsup |Y ()| < ¢, a.s.
t—ro0

Moreover
o 1t 2
liminf |[Y(¢)[| =0, lim — [ [[Y(s)]|*ds=0, a.s.
t—o00 t—oo ¢ Jo
(C) If
Sh(€) = 400 for all € > 0,
then

limsup |Y (¢)|| = 400, a.s.
t—00
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One important application of Theorem 2.2.3 is to formulate the conditions for asymptotic
convergence, boundedness and fluctuation in terms of a continuous integral condition on

o. To this end we introduce for fixed ¢ > 0 the e-dependent integral

o= [ \/ [ 1ol dsex (— - [jg% ds) -y o oI ) d.

t (2.2.24)

We notice that € — I(€) is a monotone function, and therefore I(-) is either finite for all
€ > 0; infinite for all € > 0; or finite for all € > ¢ and infinite for all € < ¢/. The following

theorem is therefore seen to classify the asymptotic behaviour of (2.1.2).

Theorem 2.2.4. Suppose that o obeys (2.1.1) and thatY is the unique continuous adapted

process which obeys (2.1.2). Let I(-) be defined by (2.2.24).

(A) If

I(e) is finite for all € > 0, (2.2.25)

then
lim Y(t) =0, a.s.
t—o00
(B) If there exists € > 0 such that
I(€) is finite for all e > €', I(e) = +oo for all e < €, (2.2.26)
then there exists deterministic 0 < ¢1 < ¢g < +00 such that

c1 <limsup||Y(t)| < ¢, a.s.
t—o0

Moreover,

1 t
liminf [Y(8)] =0, lim / 1Y (s)|2ds = 0, a.s.
t—00 t—oo ¢ Jq

(C) If

I(e) = 400 for all e > 0, (2.2.27)
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then

limsup ||Y (¢)|| = 400, a.s.
t—00
A similar theorem can of course be formulated for the solution of (2.2.13).

Theorem 2.2.5. Suppose that o obeys (2.1.1) and that X is the unique continuous adapted
process which obeys (2.2.13). Suppose all the eigenvalues of A have negative real parts,

and let I(-) be defined by (2.2.24).

(A) If I obeys (2.2.25), then

lim X(¢t) =0, a.s.

t—o00

(B) If I obeys (2.2.26), then there exists deterministic 0 < ¢; < ca < 400 such that
c1 <limsup || X(t)| < ¢z, a.s.
t—o00
Moreover

1 t
liminf || X (¢)]| =0, lim / 1X(s)|*ds =0, a.s. (2.2.28)

t—o0
(C) If I obeys (2.2.27) then
limsup | X (t)]| = 400, a.s.
t—o0

The result of the last theorem shows that liminf; .o || X (¢)|| = 0 a.s. when I(e) is finite
for some € > 0 and infinite for others. In the case when I(e) = +oo for every e > 0, we
now give an example which shows that no general conclusion can be made about the limit

inferior.

Example 2.2.1. Suppose that d = r > 3, that A = I; and that o(t) = n(t)I for t > 0,
where n € C([0, 00); (0, 00)). Suppose also that

t

lim [ e*n%(s)ds = +oc.
t—oo Jg
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Then the +—th component of X obeys
t
Xi(t) = &e b + e_t/ e’n(s)dBi(s), t=>0.
0

Hence

d t 2
X (1) Hz—H&HﬁZ(/ z<s>), 150,
=1

Define

Then T : [0,00) — [0,00) is an increasing and C! function with T'(t) — co as t — co.

Define 7(t) = T~ 1(¢) for t > 0 and

d t 2
—le+ Y ([ enwanis) =0
i=1
Also define U(t) = U(7(t)) and
()
B (t) = / en(s)dB;(s), t>0.
0
Let G(t) = FB(7(t)). Then U and B} are G-adapted and
d
= |l€l3 + Y Bi(1)?, t=0.
i=1

We now establish that B is a G standard Brownian motion. To do this we must check
the conditions of Theorem 0.3.3. First, we see that B} is FZ(7(t)) measurable, and
therefore G(t) measurable. Since 7 is increasing, G is a filtration. Also because 7 is
continuous and s — e®n(s) is continuous, then ¢ — B(t) is continuous. Finally, if we let

Li(t) = [3 e*n(s)dB;(s), then E[] =[5 €**n(s)?ds = T(t). Thus
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Therefore, we need only to check that B} obeys the projection property (0.3.1) for mar-

tingales. Let ¢ > s > 0. Then as 7 is increasing, we have
E[B; (1)G(5)] = B[ (r(5)|1FE (7(s)]
B[ en(wdBi(u) + B(s)FP(r(5)
7(t)
—B[[ B F(r(s)] + Bi(5)
7(t)
—B[[ (B + Bi(s) = B (s)

Hence B is a G(t)-martingale. Finally, (B})(t) = fOT(t) e?n(s)%ds = T(r(t)) = t. There-
fore, by Theorem 0.3.3, B} is a G standard Brownian motion. Also, because the Brow-
nian motions Bi,..., By are independent, it follows that By, B, ..., B} are independent

G-adapted standard Brownian motions. Therefore U is a d-dimensional square Bessel

process starting at ||¢]|3, and indeed
STONX (eI =U(1), t=0.

Thus, Uy = VU is a d-dimensional Bessel process starting at ||€]|2.

Now, if £ # 0, it was proven in Appleby and Wu [22] that

Us(t)

log 1 U.
. Vi . 2(t)
lim inf —_ 1 415 :
Pt loglogt d—2’ lﬁilolp V2tloglogt s
Hence
~ log €T<t)\\)\f/(;(t))||2 1
lim inf =— , a.s.
t—00 loglogt d—2
which yields
log X 1 .
2t t
liminf — Y LO _ . limsup I X @)l =1, as. (2.2.29)
t—oo loglogT(t) d—2 tsoo  \/2e 2T (t)loglog T'(t)

If we suppose that 7 is such that n/(¢)/n(t) — 0 as t — oo, so that n neither decays nor

grows at an exponential rate, we have by I’Hopital’s rule that

Tt 1

Pl e2tn(t)? X
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and because lim;_,~, logn(t)/t = 0, we have also that

loglog T'(t)
t—o0 logt

Therefore, from (2.2.29) we get

log H)lf(t)llz
Lt 1 X(t
lim inf vz = — , limsup w =1, as.
t—o0 logt d—2 t—00 n? (t)logt

Now, we suppose that n(t)/t* — L € (0,00) as t — oco. If @ > 0, we can show that all
the hypotheses hold and that I(e) = +oo for all € > 0. Moreover, if « > 1/(d —2) > 0,
then

Jim [ X(0)]2 = +oo, as

while if 0 < a < 1/(d — 2), we have
liminf | X (¢)||2 =0, limsup || X(t)|2 = +o0, a.s.
t—o0 t—00

(In the case a < 0, we have that X(t) — 0 as t — oo a.s. because I(¢) is finite for all
€e>0.)

Therefore, it can be seen that without further information on the growth or decay
rate of ||o(t)|| as t — oo, it is impossible to make a general conclusion about the size
of liminfy_, || X (¢)]|. In this sense, the overall conclusions of Theorem 2.2.4 cannot be
improved upon if d > 3 without further analysis. However, we will see in the next chapter
that when d = 1 (in which case we can take r = 1 without loss of generality), it can be

shown that I(e) = 400 for all € > 0 implies

liminf | X (¢)| =0, limsup|X(t)| =400, a.s.
t—00 t—o0

We now present a result concerning the inability of noise to stabilise the asymptotically

stable differential equation z'(t) = Ax(t).

86



Chapter 2, Section 2 Asymptotic Behaviour of Affine Stochastic Differential Equations

Theorem 2.2.6. Suppose that o obeys (2.1.1) and that X (-,€) is the unique continuous
adapted process which obeys (2.2.13) with initial condition X (0) = £. Then the following

are equivalent:

(A) All the eigenvalues of A have negative real parts, and I defined by (2.2.24) obeys

(2.2.25);
(B) There is a basis (§)%; of R? and an event C with P[C] > 0 given by
C=A{w: tligloX(t,gi,w) =0, fori=1,...,d, tligloX(t,O,w) =0};

(C) For each ¢ € R? we have limy o0 X (¢,€) =0 a.s.

Proof. Theorem 2.2.5 shows that (A) implies (C), and (C) clearly implies (B). It remains
to prove that (B) implies (A). Define §, = 0 and for ¢ = 1,...,d set {; = & — &—1.
Next, for w € C, define V;(t,w) = X(¢,&,w) — X (¢,&i—1,w) for i = 1,...,d. Therefore
by hypothesis we have that Vj(t,w) — 0 as t — oo. Moreover, we see that V; obeys the

differential equation
V;,(t,W) = A%(t7w)a t>0, ‘/;(va) = gz - gifl = Cl

If ¥ € R4 is the principal matrix solution given by W/(t) = A¥(t) with ¥(0) = I, then
Vi(t,w) = U(t)¢;. Therefore we have that U(¢)¢(; — 0 as t — oo for each i = 1,...,d.
Since (¢;)%_, are linearly independent, we have that W(¢) — 0 as t — oco. Hence it follows
that all the eigenvalues of A have negative real parts.

Let Y be the solution of (2.1.2). Writing X as
dX(t) = (—X(t)+{X (@) +AX(t)}) dt + o(t) dB(t),
by variation of constants, we see that
t
X(t) = X(0)e ! +/ e =X (s)+ AX(s)}ds+ Y (), t>0.
0
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Therefore, we see that Y (t,w) — 0 as t — oo for each w € C. Since C is an event
of positive probability, we see from Theorem 2.2.4 that Y (¢) — 0 as t — oo a.s., and
that therefore I(e) is finite for all e > 0. We have therefore shown that (B) implies both

conditions in (A), as required. O

2.3 Sufficient conditions on o for stability

Although the condition on (2.2.5) is necessary and sufficient, it can be quite difficult to
check in practice. We supply easily checked sufficient conditions on ¢ for which the solution
of (2.1.2) converge to zero, bounded or unbounded. We deduce some conditions which are
more easily verified than (2.2.6). In view of Theorem 4.2.4, in what follows, we therefore
concentrate on the case when o is not in L2([0, 00); R¥"). In this case, there exists a pair

of integers (i, j) € {1,...,d} x {1,...,r} such that o;; & L*([0,00); R). Note that ¥; obeys

dY;(t) = —Y(t) dt + Zr:aij(t) dB;(t), t>0.
j=1

Thus there exists a standard Brownian motion B; such that

dY;(t) = —Yi(t)dt + | Y o3 (t)dB;(t), t=>0.
=1
Define
ol(t) = oi(t), t>0. (2.3.1)
=1

Then o; ¢ L?(0,00), and it is possible to define a number 7; > 0 such that fg e*a?(s)ds >

e for t > T; and so one can define a function ¥; : [T;,00) — [0, 00) by

1/2

t 1/2 t
Xi(t) = (/ e 2952 () ds> (log log/ e*o?(s) ds) , t>1T;. (2.3.2)
0 0

The significance of the function 3; defined in (2.3.2) is that it characterises the largest

possible fluctuations of Y;.

Lemma 2.3.1. Suppose that o is continuous and obeys (2.1.1) and o; defined by (2.3.1)

is such that o; & L*(0,00). Suppose that'Y is the unique continuous process which obeys
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(2.1.2). If %; is defined by (2.3.2) then Y; obeys

, Yi(0)ll
1 =2, as. 2.3.3
msw S~ Ve (333)

Since Y is given by (2.2.1), Lemma 2.3.1 follows by applying the Law of the iter-

ated logarithm for martingales to M (t) := g e*ai(s)dB;(s). This holds because o; &

L?([0, 00); R¥™) implies that (M)(t) = 562502-2(8) ds — oo as t — oo. Its proof is essen-

tially given in [10].

Note that lim¢ o [|o(t)[|% logt = 0 implies ¥; in (2.3.2) goes to zero as t — oo. Also
that lim;_,oo [|o(t)]|% logt = +oo implies ¥; in (2.3.2) goes to oo as t — oo. Finally we
have that liminf, . ||o(¢)||%logt > 0 implies liminf; o 3;(¢) > 0. We state the next
result which is discussed in more details in next chapter for one—dimensional nonlinear

SDE, and also in Chapter 4.

Theorem 2.3.1. Suppose o € C([0,00);R¥*"™) and that Y is the unique continuous

adapted process which obeys (2.1.2).
(i) If limi oo |o(t)||% logt = 0, then Y obeys (2.2.7).

(ii) If limi_soo |o(t)]|%logt € (0,00), then there are ci,c2 > 0 such that 0 < ¢; <

limsup;_, . |Y(t)| < c2 a.s.

(iii) If limi—oo ||o(t)||% logt = +o00, then Y obeys (2.2.11).

2.4 Proofs

2.4.1 Proof of Theorem 2.2.4

We start by proving a preliminary lemma.
Lemma 2.4.1. Suppose x € C(]0,00);[0,00)).
(i) If [y x(t) dt = 400, then for every h > 0 there exists a sequence (tn)n>0 obeying

tO:O, hgtn+1—tn§3h, nZO
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such that
oo
Z z(tn) = +00 (2.4.1)
(i) If fo t)dt < +o0, then for every h > 0 there exists a sequence (t,)n>0 obeying
t():O, hgtn+1—tn§3h, TLZO
such that
oo
Z ) < +00 (2.4.2)

Proof. We start by proving part (i). Let sop = 0 and define for n > 1

sp, = inf{t € [nh,(n +1)h] : z(t) = se[nin(%zil)h] x(s)}. (2.4.3)

Clearly s,, € [nh, (n + 1)h]. Thus

h s€[0,h]

00 h 0 (n+1)h
—|—oo:/ J?(t)dt:/ x(s)ds+2/ s)ds < h max x(s +thsn
0 0 n=1
Therefore we have

o0 o0
Z x(s2n) + Z x(S2p+1) = 00
n=1 n=0

Hence we have that either (I) > | x(s2,) = 400 or (II) > 77§ z(s2p41) = +00.

If case (I) holds, let t,, = sa, for n > 0. Then top = 0 and (¢,),>0 obeys (2.4.1). Note
that t; — tg = t1 = s2 € [2h,3h]. For n > 1, we have t,+1 — t,, = Sapt+2 — S2,. Hence
tnt1 —tn < (2n+3)h —2nh = 3h. Also ty,y+1 —tn, > (2n+2)h — (2n 4+ 1)h = h. Therefore
t, obeys all the required properties.

If case (II) holds, let ¢, = s2,,—1 for n > 1 and ¢ty = 0. Then ¢, = 0 and (¢,)n>0 obeys
(2.4.1). Note that t; —tg = t1 = s1 € [h,2h]. Therefore h < t; —tg < 2h < 3h. For n > 1,
we have t, 11 — t, = Sopt+1 — Son—1. Hence t11 — t, < (2n 4+ 2)h — (2n — 1)h = 3h. Also

tne1 —tn > (2n+1)h — (2n — 14 1)h = h. Therefore t,, obeys all the required properties.
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We now turn to the proof of part (ii). Construct (¢,)2, recursively as follows: let

to =0, and for n € N

tny1 = inf{t € [t, + h,t, + 2h] : z(t) = . +h§;i<% Jr%x(s)}. (2.4.4)

The existence of such a sequence can be proved by induction on n, taking note that z is
continuous on the compact interval [t,, + h,t, + 2h], and hence attains its minimum. By
construction, we have

tnat —tn > h >0, (2.4.5)

and t,4+1 —t, < 2h. To prove (2.4.2), note that z(t,+1) < x(t) for t, +h <t <t, +2h, so
by integrating both sides of this inequality over [t, + h,t, + 2h], using the non-negativity

of z(-) and t, + 2h < t,11 — h + 2h = t,, 41 + h (which follows from (2.4.5)), we get

tn+2h tn+1+h
ha(tusr) < / (1) di < / (1) dt.
t t

Summing both sides of this inequality establishes (2.4.2). O
Lemma 2.4.2. Suppose that I is defined by (2.2.24).
(i) Suppose that I(€) = +o00. Then there exists (tp)n>0 independent of € > 0 such that
to=0, 0<h<tpy1—th <3h<+o0, n>0,

and

o0

Z = +o00.
W*l lo(s)I3 ds

(11) Suppose that I(€) < +oo. Then there exists (tp)n>0 independent of € > 0 such that

to=0, 0<h<tpy1—th <3h<+oo, n>0,

and

o

< +00.
=\ \/ft”“lla Weas) |
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Proof. Define
t+c
C = [ lollbds 10 (2.4.6)
t

and ¢c(x) = xe—é/(mﬁ)x(om) (x) for > 0. Therefore for z > 0 we have

20u(a) = Lae Iy ) (2/0) = dn /),

Then

/6—/ b (C(1)) Jedt = /¢1

Let z(t) = ¢1(¢(t)/€) for t > 0. Clearly x is a non—negative function on [0,00), and as
lim, o+ ¢1(x) = 0 = ¢1(0), we have that ¢; is continuous and increasing on [0, c0). Hence
. is continuous on [0, 00). Note therefore that I(e)/e = [ z(t

We are now in a position to prove part (ii). Suppose that I(e€) < +o00. Let 0 < h < ¢/3.
Then by Lemma 2.4.1 part (ii) there exists (¢,)n>0 such that h < ¢,41 — ¢, < 3h and
Yoo @e(C(tn)) < 4+00. Recall that t,, are defined by (2.4.4) i.e., to =0, and for n € N we
have

tn+1 = inf{t € [t, + h,t, + 2h] : z(t) = . +hir;i<ri o ze(s)}.

Since z¢(t) = ¢1(¢(t)/€) and ¢y is increasing, it follows that

tny1 = inf{t € [t, + h,t, +2h] : ((t) = . +h£r;i<2 +2h§(s)},

and since ( is independent of e, it follows that (¢,) is independent of e.

This is equivalent to

thn exp( 24(1) )<+oo.

This implies that {(¢,) — 0 as n — oo, and by Mills’ estimate that

Lo L= B(e/(t)
n—o00 ((tn €2 \/
- - eXp <—7 42(115”)) 2m
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Hence we have

S+ ()| Bl e

Since tpy1 < t, + 3h, and 3h < ¢, we have

tn+c 9 tn+3h 9 tna1 5
/t lo(s) 3 ds > / lo(s)|3ds > / lo ()3 ds.
n n tn

Since @ is increasing, we have

>1 ¢

>1—-®
¢ “*Cna )% ds VI o (s)3 ds

y (2.4.7) we have

[e o]

29!

W%"“ lo(s)[% ds

< 400,

SMIE
= ¢ Wna )| ds

which proves part (ii).

We are now in a position to prove part (i). Suppose that I(e) = +oo. Let h € [c,00).
Then by part (i) of Lemma 2.4.1 there exists (t5)n>0 such that h < t,,11 — ¢, < 3h and
Yo @e(¢(tn)) = 4+o00. We now wish to show that the (t,) are independent of ¢ > 0.
Since they depend directly on the sequence (s, ) defined by (2.4.3), we must simply show

that the sequence (s,) is independent of €. By (2.4.3) we have

sp = inf{t € [nh, (n + 1)h] : z(t) = se[ngl(?z}—cf—l)h] ze(s)}.

Since z(t) = ¢1(¢(t)/e) and ¢; is increasing, it follows that
sp =inf{t € [nh,(n+1)h] : ((t) = max ((s)},

s€[nh,(n+1)h]

and since ( is independent of €, so are (s,) and therefore (t,,).
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Next, > > ¢c(¢(tn)) = +o0 is equivalent to

Suppose that

> (1o (g <+

Then ((t,) — 0 as n — oo, and by Mills’ estimate that

L) 1
n—oo ((tn €2 vV
- - eXp <_742(1tn)> 2

Hence we have that

> e2 1
;)g*(tn)exp <_2<<tn)2) = e

a contradiction. Therefore we have

ol | 1 (R 1)) L

HF ds n=0

Next, as ¢ < h and t,41 > t, + h we have

tnt+c 9 tn +h 9 tn+1 9
[ |Wﬂums[ |wﬂums[ lo(s)]3 ds.

Since @ is increasing, we have

¢““w )3 ds ¢W“w ()13 ds

By (2.4.8) we have

[e o]

2\ ¢wﬂu ()3 ds

oo
21! = o0,
= ¢”“w ()13 ds

which proves part (i). O
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Proof of Theorem 2.2.4. To prove part (A), we have by hypothesis that I(e) < +oo for all
€ > 0. Then, by Lemma 2.4.2 part (ii), for every h < ¢/3, there exists (¢,),>0 independent

of € for which h < t,11 —t, < 3h and

o0

Z < Ho00.
w;““ lo(s)|% ds

Therefore by Theorem 2.2.3 part (A), it follows that Y (¢) — 0 as t — oo a.s.

To prove part (C), we have by hypothesis that I(¢) = +oo for all € > 0. Then, by
Lemma 2.4.2 part (i), for every h > ¢, there exists (¢,)n>0 independent of € for which

h <tpy1 —t, < 3h and

o0

Z = +00.
¢ " o (s)]13 ds

Therefore by Theorem 2.2.3 part (C), it follows that limsup,_, |Y (t)| = +o0 a.s.
To prove part (B), we have by hypothesis that I(e) < +oo for all € > €. Then, by
Lemma 2.4.2 part (ii), for every h < ¢/3, there exists (¢,)n,>0 independent of e for which

h <tp+1 —tn < 3h and

o0

Z < +o00.
W“ lo(s)|% ds

Therefore by Theorem 2.2.3 part (B), it follows that limsup, ,. |Y ()] < c2 a.s.

On the other hand, we have by hypothesis that I(e) = 400 for all € < €¢’. Then, by
Lemma 2.4.2 part (i), for every h > ¢, there exists (7,)n>0 independent of e for which

h < Tpt1 — Tn < 3h and

[e.e]

2\ = = toc.
¢ a Ha )| ds

Therefore by Theorem 2.2.3 part (B), it follows that lim sup, .. |[Y (t)| > 1 a.s. O

2.4.2 Proof of Theorem 2.2.2
Let z(t,w) = X (t,w) — Y (t,w) for ¢ > 0. Then z(0) = £ and
Z(tw) = AX(t,w) + Y (t,w) = Az(t,w) + g(t,w), t>0
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where g(t,w) = AY (t,w) + Y (t,w). Let ¥ be the unique continuous d x d-valued matrix
solution of

U(t)=A¥(t), t>0; ¥(0)=I,

Since all eigenvalues of A have negative real parts, there exist K > 0 and A > 0 such that

|U(t)| < Ke=* for all t+ > 0. Now by variation of constants, z is given by
t
z(t,w) = ¥ (t)¢ —i—/ U(t—s)g(s,w)ds, t>0. (2.4.9)
0

To prove statement (A), note that S obeying (2.2.6) implies by Theorem 2.2.1 that
Y(t,w) = 0 as t — oo for all w € Q* where Q* is an a.s. event. We show now that
X (t,&,w) — 0 ast — oo for every & € R? and every w € Q*, which would prove statement
(A). Since Y (t,w) — 0 as t — oo we have g(t,w) — 0 as t — oco. Therefore by (2.4.9),
we have z(t,w) — 0 as t — oco. Since Y (t,w) — 0 as t — oo and V(t) — 0 as t — oo, it
follows that X (¢t,w) — 0 as t — oc.

To prove statement (B), note that all hypotheses of part (B) of Theorem 4.2.1 hold, so

therefore we have that there is a deterministic ¢3 > 0 such that
limsup || X (¢)|| > c3, a.s.
t—o0

To prove the upper bound, note that because there is a deterministic ¢ > 0 such that

limsup,_, o |Y'(¢)| < ¢2 a.s., we have
limsup ||g(t)]| < ||[I + Allc2, a.s.
t—00
Using this estimate, the fact that ®(¢) — 0 as t — oo, and (2.4.9) we get
oo
fimsup =) < [ 1@(s)|ds- |1+ Alea =i cr, as,
t—o0 0

Hence we have limsup,_ ., || X (¢)|| < c2 + ¢4 =: ¢5 a.s., which proves the upper estimate
in (B).
To prove statement (C), note that all hypotheses of part (A) of Theorem 4.2.1 hold, so

therefore we have that limsup,_, || X (¢)|| = 400 a.s. as required.
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2.5 Proof of Theorem 2.2.3

2.5.1 Preliminary estimates

We start by showing how estimates on the rows of the matrix o relate to its Frobenius
norm. Let (¢,)n>0 is an increasing sequence with ¢y = 0 and lim,,_,+ ¢, = +00 and define,

by analogy to (2.2.14),

co d
Sie=YY<{1-9 ‘ : (2.5.1)
n=0i=1 \/fi”“ > 07(s)ds

Define

tn41

)= [ o) s (252)
in
tn+1 T

02(n) = / Y ofi(s)ds, i=1,....d. (2.5.3)
We can see that as S} is a monotone function of e, it is the case that either (i) S} (e) is
finite for all € > 0; (ii) there is €] > 0 such that for all € > €] we have S} (¢) < +oo0 and
St(€) = +oo for all € < €}; and (iii) SL(€) = +oo for all € > 0. In the next lemma, we
show that S;. defined by (2.2.14) is always finite if and only if S{ is; that S;. is infinite if

and only if S} is; and that S;. and S} are sometimes finite and sometimes infinite only if

the other is.

Lemma 2.5.1. Let (t,)n>0 be an increasing sequence with to =0 and limy,_,o0 t,, = +00.

Suppose that Sy is defined by (2.2.14) and that S} is defined by (2.5.1).
(a) The following are equivalent:
(i) St (€) < 400 for all € > 0;
(ii) St (€) < +oc for all e > 0.
(b) The following are equivalent:

(i) There exists € > 0 such that for all € > € we have S (€) < +00 and Sy (e) =

+oo for all e < €;
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(i) There exists €y > 0 such that for all € > €| we have S} (¢) < +o0 and Si (€) =

+oo for all € < €;
(c) The following are equivalent:
(i) Si.(€) = +oo for all e > 0;
(i) S} (€) = +oo for all € > 0.

Proof. With @ and 6; defined by (2.5.2) and (2.5.3), we have 6%(n) > 6;(n)? for each

i=1,...,d. Thus

g{l_q)(@i(ﬁn))} 5d<1_‘b(9&))>- (2.5.4)

Suppose, for each n, that Z;(n) for i = 1,...,d are independent standard normal random
variables. Define Z(n) = (Zi(n), Z2(n),...,Zi(n)) and suppose that (Z(n)),>o are a

sequence of independent normal vectors. Define finally

Then we have that X; is a zero mean normal with variance 022 and X is a zero mean
normal with variance #2. Define Z*(n) = X (n)/6(n) is a standard normal random variable.

Therefore we have that

P X (n)| > €] = B[|Z*(n)| = ¢/6(n)] = 2B[Z*(n) > /6(n)] = 2 <1 ~ <9<€n>>> .
(2.5.5)
With A;(n) = {|X;(n)] < /d}, B(n) = {X°0, |Xi(n)| < c}, then Ny Ai(n) € B(n), so
—_— _ d —_—
P[IX(n)| > ] < P(B(n)] < P |, Ai(n)| = P [UL, 4(m)| < > P [4(m)].
i=1

Since X; = 0;Z;, we have

d d
e/d
PX(n)|>d <25 PXin)>e/d =25 11— . (2.5.6)
; ;{ (ez‘(n)>}
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By (2.5.5) and (2.5.6), we get

> () N

From (2.5.4), we can see that S; (¢) < +oo implies that S} (¢) < 4+oo and from (2.5.7)

that S} (e/d) < +oo implies S; (¢) < +oco. Therefore, we have that part (a) holds. Part
(c) holds similarly, because from (2.5.4) we have that S} (e) = +oo implies S; (€) = +oo,
and from (2.5.7) we have that S} (e/d) = +oo implies Sy (€) = +oc0. As to the proof of
part (b), suppose that (i) holds. Then by (2.5.4), we can see that S} (¢) < Sy (¢) < +o0
for all € < €, and by (2.5.7) that S} (¢/d) > S(¢) = +oco for all € < €. Therefore, there

exists €] € [¢/, € /d] such that (ii) holds. The proof that (ii) implies (i) is similar. O

2.5.2 Organisation of the proof of Theorem 2.2.3

The proof is divided into four parts: we first derive estimates and identities common to
parts (A)—(C) of Theorem 2.2.3. Second, we prove (2.2.11), which yields (C). Next, we
obtain the lower bound on the limit superior in (2.2.9), which is part of (B). Finally, we
find the upper bound on the limit superior in (2.2.9), which completes the proof of the
limsup in (B). We also prove (2.2.7), which proves (A).

The proof of the liminf in (B) and the ergodic—type result in part (B) are not given at
this point. Instead, we prove them for the solution of the general equation (2.2.13). The

results for Y are then simply corollaries of this general result, with A = —I.

2.5.3 Preliminary estimates

Let V(j) := fttﬂl e*“tia(s)dB(s), j > 1. Define V;(j) = (V(4), e;). Then

T

Vi) =Y / " ou(s) dBi(s).

1=1 “ti—1

For each fixed i, Then (V;(j));>1 is a sequence of independently and normally distributed

random variables with mean zero and variance

T ts r ts
B0 = Valh)] = Y [ @ das <3 [ o) ds = 02—,
1=17ti-1 1=1“ti-1
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Similarly, v?(j — 1) > e2t-17%)92(j — 1) > e72802(j — 1), so v;(j — 1) = 0 if and only if
0;(j —1) = 0. Also, by (2.2.1), we get
s n
Y(t,) =e ' Z/ g Ze =ty (5), n>1. (2.5.8)
j=1"7ti-1 j=1

This also implies that for n > 1 we have
Y(tns1) = V(n+1) + Z 1=ty () = V(n+ 1) + e Tty (t,).  (2.5.9)

Next, as V;(j) is normally distributed, we have P[|V;(j)| > € = 2(1 — ®(e/vi(j — 1)).
However, as ® is increasing, and e %60;(j — 1) < v;(j — 1) < 6;(j — 1), we have 1 —

B(e/eP0;(j — 1)) <1—D(e/v;(j —1)) < 1 — D(e/6(j — 1)), s0
2 (1= ®(e/e 0~ 1)) <PIVi() > 2(1 = D(/0:(j —1))), j=1. (25.10)

Note that |V (j)l1 = 2%, [Vi(§)|. Thus, as [V (j)]1 > [Vi(j)|, we have that P[|V (j)|; >

€] > P[|Vi(j)| > €] for each i =1,...,d. Therefore

d
dP([V(j)1 > € = > PVi(j)| > €. (2.5.11)
=1

On the other hand, defining A;(j) = {|Vi(j)| < €/d} and B(j) = {|V(j)|1 < €}, we see
that N%_, 4;(5) € B(j). Then

. d
PV()h = € =BG < P [, A4G)| =P |Ul A(G)] < D PIVi()| > ¢/d).
i=1
(2.5.12)

2.5.4 Proof of part (C)

Suppose S;. obeys (2.2.22). Then by Lemma 2.5.1 we have that S{(¢) = +oo for every e >
0. Therefore by (2.5.10), 3322, Zglzl P[|Vi(j)| > €] = +oo for every € > 0. Therefore, by
(2.5.11) we have 372 P[[V(j)|1 > €] = +oo for all e > 0. Since (V/(j));>1 are independent,
it follows from the Borel-Cantelli Lemma that for every € > 0 limsup,,_,, |V (n)|1 > € a.s.
Letting ¢ — oo through the integers, we have limsup,,_,.. |V (n)[1 = +o0o a.s. Thus by
(2.5.9), we obtain lim sup,,_, ., |Y (tn)[1 = 400 a.s., which implies that limsup,_, o |Y (¢)|1 =

+00 a.s.
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2.5.5 Proof of lower bound in part (B)

Suppose that S;. obeys (2.2.21). There exists an € < €’ such that 3 7%, {1 — @ (¢/0(j))} =
+00. Therefore, by Lemma 2.5.1, it follows that there exists €} > 0 such that for all

e/e P < €} we have

By (2.5.10) we therefore have

iip[%(ﬂl > € > 22{1_q> <eﬂ€9‘zjﬁ_1)>} — too.

j=1i=1 j=1

Therefore by (2.5.11) we have
S PIV()h > = +oo.
j=1

By the independence of (V(j)) together with the Borel-Cantelli Lemma, it follows that
limsup,_,., |V(n)]1 > € as. Letting € T €je™® through the rational numbers gives
limsup,, . [V(n)]1 > €je™® on Q, an a.s. event. By (2.5.9), V(n +1) = Y(tpi1) —

e*(t7t+1*tn)Y(tn), so we have

e ™ <limsup [V (n,w)|; < (1+e ) limsup|Y (tn,w))1, forw e Q.

n—oo n—oo

Thus

limsup |[Y (t,)1 > €le P /(1 +e79), as.,

n—oo

which implies lim sup,_, . [Y (t)]1 > €je P /(1 + e~ %) =: ¢1, a.s.

2.5.6 Proof of upper bounds in parts (A) and (B)

Suppose that

i {1 By <0(63)> } < +oo. (2.5.13)

j=1
In part (A), (2.5.13) holds for all € > 0, while in part (B) it holds for all € > ¢'. By (2.5.13)

> {i-o i)} <

j:l 1=

and (2.5.4) we have
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and hence by (2.5.10) we have
ZP [Vi(5)] > €] < 4o0.
7j=11i=1
By the Borel-Cantelli lemma, it follows that lim sup,,_, .. |Vi(n)| < € a.s. Now from (2.5.8),

we have that

n
Yiltn) =" TV()),
j=1
so therefore, as t,, —t; > a(n — j) for j =1,...,n, we have that

|<Z =t Vi(j) < Y e G,
j=1

SO
1

T o= 2S5 (2.5.14)

hmsup|Y(tn | <EZ€ o = ¢
7=0

Next let t € [ty,tn+1). Therefore, from (2.1.2) we have

m( ) _(t tn) +Z€ / e’ Uzl )dBl(S), te [tn,thrl).

Therefore
max V()|
t€tn,tn+1]
Tt
< |Y;(tn)| + [max ]e_t Z/ e®oy(s)dBy(s)| < |Yi(tn)| + Zi(n), (2.5.15)
te tnytn+1 =1 tn
where
Tt
Zi(n) == e max / e’oy(s)dB(s)|, m>1.
=t x5 [ ou(s)aB
Fix n € N. Now
Tt
P[Zi(n) > €] =P | max Z/ e*oy(s) dBy(s)| > eel
tE[tn,tn+1] =1 tn

Define 7;(t) := >, j; e*02(s)ds for t € [n,n + 1]. Consider

r

Cin(t) =37 /t oa(s)dBy(s), t € [t tnia].

=1
Then Cy, = {Cin(t) : t, <t < tni1} is a continuous martingale with (C;,)(t) = 7 (t) for

t € [tn,tns1]. Therefore, by the martingale time change theorem [65, Theorem V.1.6],
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there exists a standard Brownian motion B, such that C;,(t) = B} (7;(t)) for t € [t,, tn41],

B, (i /tt e*a2(s) ds>

I=1"""n

and so we have

P|Z; >el =P ma
[Zi(n) > € e

=P B! > eeln
_ue[o?%?fﬂ)}' m(u)] > ee }

=P { max  Bj (u) > eet”} U { max  —B} (u) > eeln H
L Lu€l0,7i(n+1)] u€[0,7;(n+1)]

<P B >eeln| +P -B! > eeln
_uE[Or,I;i%:L(—&—l)} in(1) 66] Le[or,%%ffﬂ)] in (1) 66}

=P [|Bz*n(7'z(n +1)) > eet”} + P [|B:;(Tl(n + 1) > eet”] ,

where B!* = —B! is a standard Brownian motion. Recall that if W is a standard
Brownian motion that max,c[o 4 W (s) has the same distribution as [W()|. Therefore, as

B} (1i(n + 1)) is normally distributed with zero mean we have

P[Zi(n) > €] < 2P [| B}, (1i(n + 1))| > ee'"] = 4P [B;;, (1i(n + 1)) > ee']

Y R (R | DD S € .
(e () 1o (o)

If we interpret ®(o0) = 1, this formula holds valid in the case when 7;(n+ 1) = 0, because

in this situation Z;(n) = 0 a.s. Now

" tnel
e rri(n 4+ 1) = e 2n Z/ 0l (s)ds
1=1/tn

n+1
< 62(t"+1_t")/ o2(s)ds < €*P0%(n).
n
Since & is increasing, we have

o)1 <4 (1-0 (e ) ) <4 (14 (i)

Therefore we have

P[Zi(n) > ee®] < 4 (1 — P (.9(2))) . n>0. (2.5.16)

Hence

Z]P’[Zi(n) > eeP] < 400,
n=1
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so by the Borel-Cantelli lemma, we have that

limsup Z;(n) < ee®, a.s. (2.5.17)

n—oo

Therefore by (2.5.15), (2.5.14) and (2.5.17), we have that

limsup |[Y;(t)] < (1/(1 —e ) + €%)e, as.

t—o00

and so

limsup [V (¢)]1 < d(1/(1—e %) +€eP)e, as. (2.5.18)

t—o00

If (2.2.6) holds, (2.5.18) implies that Y (¢) — 0 as t — oo a.s.
If the first part of (2.2.8) holds, then (2.5.18) holds for every € > ¢’. Thus, letting € | ¢
through the rational numbers we have limsup, .. |Y(¢)|1 < d(1/(1 —e™®) + eP)e =: ¢y

a.s., proving (2.2.9).

2.5.7 Proof of (2.2.28) in part (B) of Theorem 2.2.5

We note that I(e) being finite is equivalent to S(e) < +oo. Therefore we have that

an lo(s)||% ds — 0 as n — oo which implies that

1t 2
tlggot/o llo(s)||zds = 0. (2.5.19)

Since all the eigenvalues of A have negative real part, there exists a d x d positive definite

matrices M such that

ATM + MA = -1,

(see for example Horn and Johnson [42] or Rugh [68]). Define V(z) = 27 Mz for all

x € R%. Notice that

d
ov
o = [2Ma]; = > 2Myy,.
v k=1
Therefore we have
2V

Let X;(t) = (X(t),e;). Notice that the cross—variation of X; and X; obeys
d(X;, X;) Zalk O'jk
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Therefore, as V is a C? function, by the multidimensional version of It6’s formula, we have

1%
dV(X(1) =Y 5 (Xt ZZ (% ax £))d{ X, X;)(t).
=1 ¢ =1 j=1 v J
Hence
dV(X(t)) = (2M X (t), dt+ZZMUZam okt
=1 j=1

+ (2M X (t),o(t) dB(t)).
Next, we note that because M = M7 and ATM + MA = —I;, we have

(2Mz, Az) = (M + M)z, Az) = (Mz, Az) + (Az, M z)

= (Mz)T Az + (Az) T M7z = 2T MT Az + 2T AT Mz = —2T 2.

Also, since M is positive definite, there exists a d x d matrix P such that M = PP, so

we have
d d r d r d
Z Z oan(®)ogrt) =Y > | D Mijou(t) | o(t)
—1 j=1 k: i=1 k=1 \j=1
d r d
=> > Mo®)]ioty(t) = > _[Ma(t)o(t)
i=1 k=1 i=1

where we have used the fact that ||C||% = tr(CCT) for any matrix C and that tr(CD) =

tr(DC) for square matrices C and D. Thus
t t
VEX®) = V©) ~ [ XX ds+ [ 1P a(s) s
0

+Z/{ > [2MX( )]zgij(s)} dB;(s). (2.5.20)

We consider the third term on the righthand side of (2.5.20). Since ||PTo(s)||r <

HP7 |\ rllo(s)||F, from (2.5.19), we have that
li ! t ||P7 ( )||2 ds =0
tlm n . gl\s)||pas = V.
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Let K (t) be the fourth term on the righthand side of (2.5.20). Then K is a local martingale

2
Z/{ > 2MX( )]Z%-(s)} ds.

Hence by the Cauchy—Schwarz inequality, we have

<Z/ ZQMX ZU” ds—4/ IMX(8)2l|o(5) 1% ds.

Since t — || X ()| is bounded a.s., we may use (2.5.19) to get

with

lim L(K)(£) =0, as.

t—oo t

Hence by the strong law of large numbers for martingales, we have that K(t)/t — 0 as
t — oo a.s. Since t +— || X (¢)|| is bounded a.s. we have that V(X (¢))/t — 0 as t — oo a.s.

Therefore, returning to (2.5.20), we get

1 t
lim - [ X(s)TX(s)ds =0, as. (2.5.21)

Suppose now that there is an event A; with P[A;] > 0 such that
Ay = {w : liminf || X (¢,w)|| > 0}.
t—00

Since t — || X (t)|| is bounded, it follows that for each w € Aj, there is a positive and finite
Z(w) such that

htlgg)lf | X (t,w)|le =: Z(w).

Therefore for w € A1 we have

hmmf / X(s,w)'X(s,w)ds

Therefore
lim inf — /X ()1 X(s)ds >0, a.s. on Ay,

t—o0
which contradicts (2.5.21), because P[A1] > 0. Therefore, it must be the case that P[A;] =

0, which implies that P[A;] = 1, or liminf; , || X (¢)|| = 0 a.s. as required.
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Chapter 3
Asymptotic Classification of Solutions of Scalar

Nonlinear SDEs

3.1 Introduction

In the previous chapter, a complete classification of the asymptotic behaviour was given
for an affine stochastic differential equation in the finite dimensional case. In Chapter 1,
we saw that if a nonlinear equation is perturbed deterministically, and the mean reverting
force is weak as the solution departs far from equilibrium, then solutions may not converge
if the maximal size of the perturbation does not decay sufficiently rapidly. Therefore, if
we consider scalar nonlinear equations (as in Chapter 1), but perturb them stochastically
(as in Chapter 2), it is of interest to ask whether we can perform a classification of the
asymptotic behaviour in a manner that equals our success in these earlier problems.
Therefore, in this chapter, we characterise the global asymptotic stability of the unique
equilibrium of a scalar deterministic ordinary differential equation when it is subjected
to a stochastic perturbation independent of the state. Another major task is to classify
the asymptotic behaviour of solutions into convergent, recurrent or bounded under some
stronger mean reverting condition on the nonlinearity. What is of special interest is that,
in the former case, solutions will be globally convergent under exactly the same conditions
on the intensity of the stochastic perturbation o that apply in the linear case, and indeed,
these conditions which ensure stability are entirely independent of the type of nonlinear
mean reversion: unlike the deterministic case we do not need to make any assumption on
the strength of the mean-reversion, merely that it is always present. In this sense, by
comparing with the results of Chapter 1, we can think of deterministic scalar ODEs as
being more robust to exogenous stochastic destabilisation than exogenous deterministic

destabilisation.
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Furthermore, the classification of the asymptotic behaviour of solutions which can be
obtained in the case when there is slightly stronger mean-reversion relies once again on
the exactly the same criteria needed to classify the asymptotic behaviour in the affine case,
so that the conditions which guarantee bounded or unbounded solutions are once again
independent of the type of nonlinear mean reversion. Such results suggest that the affine
equation must be of great assistance to their proof, and accordingly we discuss in detail
how the results obtained from Chapter 2 (specialised and extended to the scalar case)
can assist in analysing the asymptotic behaviour of solutions of the non—linear stochastic
differential equation in the scalar case. This analysis will also motivate the extension of
the results in this chapter to finite dimensional equations in Chapter 4, and also points
the way to explaining how the finite dimensional results from Chapter 2 can be used to
achieve this task.

To make our discussion more precise, let us fix a complete filtered probability space
(Q,F,(F(t))>0,P). Let B be a standard one-dimensional Brownian motion which is

adapted to (F(t))¢>0. We consider the stochastic differential equation
dX(t)=—f(X(#))dt+o(t)dB(t), t>0; X(0)=¢&eR. (3.1.1)
We suppose that f obeys (1.2.2) and that o obeys
o € C([0,00);R). (3.1.2)

These conditions ensure the existence of a continuous adapted process which obeys (3.1.1)
on [0,00), and we will refer to any such process as a solution. We do not rule out the
existence of more than one process, but part of our analysis will show that all solutions
share the same asymptotic properties. Hypotheses such as local Lipschitz continuity or
monotonicity can be imposed in order to guarantee that there is a unique such solution.
The condition (1.2.2) on f inspire the dissipative condition (4.1.9) in Chapter 4.

In the case when o is identically zero, it follows under the hypothesis (1.2.2) that any

solution x of equation (1.2.5)
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obeys equation (1.2.6), that is
lim z(t;£) = 0 for all £ € R.
t—o0

Clearly z(t) = 0 for all ¢ > 0 if £ = 0. The question naturally arises: if any solution =
of (1.2.5) obeys (1.2.6), under what conditions on f and o does any solution X of (3.1.1)
obey

lim X (¢,€) =0, a.s. for each £ € R. (3.1.3)
t—o00

The convergence phenomenon captured in (3.1.3) for any solution of (3.1.1) is often called
almost sure global convergence (or global stability for the solution of (1.2.5)), because
solutions of the perturbed equation (3.1.1) converge to the zero equilibrium solution of
the underlying unperturbed equation (1.2.5).

Chan and Williams [31] proved the following result:

Theorem 3.1.1. Suppose

lim f(z) =00, lim f(z)= —o0, (3.1.4)

T—00 T—r—00

and that o is a continuous function with t — o2(t) non—increasing. Let X be the unique

solution of (3.1.1). Then the following are equivalent:

(4)

lim o?(t)log(t) = 0; (3.1.5)

n—oo

(B) X(t) = 0 as t — oo with positive probability;

(C) X(t) -0 ast— oo a.s.

These results were extended to finite-dimensions by Chan in [30]. The results in [31, 30]
are motivated by problems in simulated annealing.

In Appleby, Gleeson and Rodkina [10], the monotonicity condition on f and (3.1.4) were
relaxed. It was shown if f is locally Lipschitz continuous and obeys (1.2.2), and in place

of (3.1.4) also obeys (1.2.12) then any solution X of (3.1.1) obeys (3.1.3) holds if o obeys
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(3.1.5). The converse of Chan and Williams is also established: if ¢ — o%(t) is decreasing,
and the solution X of (3.1.1) obeys (3.1.3), then ¢ must obey (3.1.5). Moreover, it was

also shown, without monotonicity on o, that if o obeys

lim o?(t)logt = +o0, (3.1.6)

t—o00

then the solution X of (3.1.1) obeys

limsup | X (¢,&)| = 400, a.s. for each £ € R. (3.1.7)

t—o0

Furthermore, it was shown that the condition (3.1.5) could be replaced by the weaker
condition

t t
lim [ e 2t7952(s)ds - logz/ o?(s)e** ds =0 (3.1.8)
0

t—o00 0

and that (3.1.8) and (3.1.5) are equivalent when t + o2(t) is decreasing. In fact, it was
even shown that if 02 is not monotone decreasing, o does not have to satisfy (3.1.5) in
order for X to obey (3.1.3).

In this chapter, we improve upon the results in [10] and [31, 30] in a number of directions.
First, we show that neither the Lipschitz continuity of f nor the condition (1.2.12) is
needed in order to guarantee that any solution X of (3.1.1) obeys (3.1.3). Moreover,
we give necessary and sufficient conditions for the convergence of solutions which do not
require the monotonicity of o2. One of our main results shows that if f obeys (1.2.2) and

o is also continuous, then any solution X of (3.1.1) obeys (3.1.3) if and only if

o0 n+1 2 1
S'(€) := / o02(s) dsexp LN S +oo, for every e >0, (3.1.9
@=3 [ o0 T (5.19)

a?(
and it is even shown that if (3.1.9) does not hold, then P[X(t) — 0 as t — oo] = 0 for
any £ € R (Theorem 3.5.1). Another significant development from [10] and [31, 30] is a
complete classification of the asymptotic behaviour of (3.1.1) in terms of the data, rather
than merely satisfactory sufficient conditions. In Theorem 3.4.3, we show that when f
obeys (3.1.4), that any solution is either (a) convergent to zero with probability one, (b)
bounded but not convergent to zero, with probability one, or (c) recurrent on R with
probability one, according as to whether S’(¢) is always finite, sometimes finite, or never
finite, for € > 0. Apart from classifying the asymptotic behaviour, the novel feature here

is that bounded but non—convergent solutions are examined.
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Of course, the analysis from the last chapter can also be used to replace finiteness
conditions on the sum S’(e) with corresponding integral conditions, although we do not
list again in this chapter results which describe the asymptotic behaviour. It suffices to

mention that if we fix ¢ > 0 and define

/ \/“’C—stexp< - 12)2d8> o) </tt+ca(8)2) ds  (3.1.10)

then I(e) < +oo for all € > 0 is a necessary and sufficient condition for solutions to
obey (3.1.3). Similarly, in the case when f obeys (3.1.4), then any solution is either (a)
convergent to zero with probability one, (b) bounded but not convergent to zero, with
probability one, or (c) recurrent on R with probability one, according as to whether I(¢)
is always finite, sometimes finite, or never finite, for € > 0.

Although the condition (3.1.9) is necessary and sufficient for X to obey (3.1.3), it may
prove to be a little unwieldy for use in some situations. For this reason we deduce some
sharp sufficient conditions for X to obey (3.1.3). If f obeys (1.2.2) and o is continuous
and obeys (3.1.8), then any solution X of (3.1.1) obeys (3.1.3) (Theorem 3.4.2). In the
spirit of Theorem 3.5.1, we also establish converse results in the case when o2 is monotone
, and demonstrate that the condition (3.1.8) is hard to relax if we require X to obey
(3.1.3). The relationship between the conditions which characterise the asymptotic be-
haviour, and which involve S’(€), and sufficient conditions are explored in several results,
notably in Proposition 3.3.1. Also, in the case when solutions are bounded, we analyse the
relationships between the deterministic bounds on solutions and the drift and diffusion co-
efficients. In particular, in Propositions 3.4.2,3.10.1 and 3.4.3, we demonstrate the bounds
on any solution increase with greater noise intensity, and with weaker mean reversion.

These results are proven by showing that the stability of (3.1.1) is equivalent to the
asymptotic stability of a process Y which is the solution of an affine SDE with the same
diffusion coefficient o (Proposition 3.4.1, especially part (A)). A classification of the asymp-
totic behaviour Y has already been achieved in Chapter 2, and the relevant results of
Chapter 2 are listed in Section 3.3. The proof of part (a) of Proposition 3.4.1 is given un-
der the additional condition that o & L?(0, 00); the case when o € L?(0, 00) is easier, uses

different methods, and is dealt with separately. Essentially, in the case when o ¢ L?(0, co)
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the recurrence of one-dimensional standard Brownian motion forces solutions to return to
an arbitrarily small neighbourhood of the origin infinitely often. Then, if the noise fades
sufficiently quickly so that the affine SDE is convergent to zero, the difference Z := X —Y
obeys a perturbed version of the ordinary differential equation (1.2.5) where the pertur-
bation fades to zero asymptotically, and by virtue of the recurrence property, there exist
arbitrarily large time when Z is arbitrarily close to zero. By considering an initial value
problem for Z starting at such times, deterministic methods can then be used to show
that Z tends to zero, and hence that X tends to zero. A similar method is employed
in Theorem 3.4.3 to establish an upper bound on |X| when Y is bounded, but does not
tend to zero. Establishing that solutions of (3.1.1) is unbounded, or obeys certain lower
bounds, is generally achieved by writing a variation of constants formula for X in terms
on Y, and then using the known asymptotic behaviour of Y to force a contradiction.

Many parts of the analysis in this chapter apply to finite-dimensional equations, and
these questions will be investigated in the next chapter.

Other interesting questions which can be attacked by means of the methods in this
chapter include an analysis of local stability, where there are a finite number of equilibria
of the underlying deterministic dynamical system (1.2.5). Some work in this direction has
been conducted in a discrete-time setting in [2]. Numerical methods under monotonicity
assumptions like those of Chan and Williams have been studied and are outlined in Chapter
5. Furthermore, finite dimensional analogues of the results in this chapter are given in
Chapter 4, with corresponding numerical results in the multidimensional case concluding
the thesis in Chapter 6.

Section 3.2 deals with preliminary results, including the proof that solutions of (3.1.1)
exist. Results for an auxiliary affine SDE, proven in Chapter 2, are recapitulated in Section
3.3, along with some new results for the stability of affine equations. Section 3.4 considers
general results, including the classification of the almost sure behaviour of solutions under
the additional assumption (1.2.12) on f. Section 3.5 considers the characterisation of
asymptotic stability using only the assumption (1.2.2). Proofs of many results are deferred

to the end of the chapter, and these proofs are presented in Sections 3.6, 3.7, 3.9 and 3.10.
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3.2 Preliminaries

3.2.1 Remarks on existence and uniqueness of solutions of (3.1.1)

There is an extensive theory regarding the existence and uniqueness of solutions of stochas-
tic differential equations under a variety of regularity conditions on the drift and diffusion
coefficients. Perhaps the most commonly quoted conditions which ensure the existence of
a strong local solution are the Lipschitz continuity of the drift and diffusion coefficients.
However, in this chapter, we would like to establish our asymptotic results under weaker
hypotheses on f. We do not concern ourselves greatly with relaxing conditions on o,
because ¢ being continuous proves sufficient to ensure the existence of solutions in many
cases.

The existence of a unique solution of
dX(t) = f(X(t))dt + o(t, X (t)) dB(t) (3.2.1)

can be asserted in the case when |o(t,x)| > ¢ > 0 for some ¢ > 0 for all (¢,x) and f being
bounded, so no continuity assumption is required on f. However, assuming such a lower
bound on ¢ would not natural in the context of this chapter: for asymptotic stability
results, we would typically require that lim inf; .o, 0%(t) = 0. Moreover, f being bounded
excludes the important category of strongly mean-reverting functions f that have been
investigated for this stability problem in [31] and [10].

One of the aims of this chapter and of [10] is to relax monotonicity assumptions on
o which are required in [31]. Therefore, although we are often interested in functions o
which tend to zero in some sense, we do not want to exclude the cases when o(t) = 0 for
all t in a given interval (or indeed union of intervals). Our analysis will show that in these
cases, the behaviour of ¢ on the intervals where it is nontrivial can give rise to solutions of
(3.1.1) obeying (3.1.3) or (3.1.7). However, on those time intervals I for which o is zero,

the process X obeys the differential equation

where X (inf I) is a random variable. On such an interval, it is conceivable that a lack of

regularity in f could give rise to multiple solutions of the ordinary equation (and hence
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the SDE (3.1.1)), so our most general existence results which make assertions about the
existence of solutions (but say nothing about unicity of solutions), and which use the
weakest hypotheses on f that we impose in this work, do not appear to be especially
conservative.

For these reasons, we prove that there is a continuous and adapted process which obeys
(3.1.1) by using very elementary methods, rather than by appealing to a result from the
substantial body of sophisticated theory concerning the existence of solutions of (3.2.1).

When f obeys (1.2.2) and o obeys (3.1.2), we now demonstrate that there exists a
continuous and adapted process X which satisfies (3.1.1). The existence of a local solution
is ensured by the continuity of f and o, while the fact that any such solution is well-defined
for all time follows from the mean-reverting condition zf(z) > 0 for  # 0 which is part
of (1.2.2). In the chapter, the spirit of our approach is to show that any solution of (3.1.1)
has the stated asymptotic properties, even though multiple solutions exist, without paying

particular concern as to whether solutions are unique.

Proposition 3.2.1. Suppose that f obeys (1.2.2) and o obeys (3.1.2). Then there exists

a continuous adapted process X which obeys (3.1.1) on [0,00), a.s.

The proof is postponed to Section 3.6. In order to ensure that solutions of (3.1.1) are
unique, it is often necessary to impose additional regularity properties on f. One common
and mild assumption which ensures uniqueness is that (1.2.4). See e.g., [55]. Another
assumption which guarantees the uniqueness of the solution is that the drift coefficient
—f obeys a one-sided Lipschitz condition. More precisely, imposing such an assumption

on f implies
There exists K € R such that (f(z)—f(y))(x—y) > —K|z—y|*> for all z,y € R. (3.2.2)

It is to be noted that if f is non—decreasing, it obeys (3.2.2), because the righthand side
is non—negative, and we can choose K = 0. Since non—decreasing functions do not have
to be Lipschitz continuous, we see that in general (3.2.2) does not imply (1.2.4), so these

additional assumptions can be used to cover different situations.
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Proposition 3.2.2. Suppose that f obeys (1.2.2) and (3.2.2) and that o obeys (3.1.2).
Then there exists a unique continuous adapted process X which obeys (3.1.1) on [0, c0)

a.s.

Again the proof is deferred to Section 3.6.

In the proof of Proposition 3.2.1, and elsewhere throughout the chapter, it is helpful to
introduce the following processes and notation. Consider the affine stochastic differential
equation

dY(t) ==Y (t)dt+o(t)dB(t), t>0; Y(0)=0. (3.2.3)
Since o is continuous, there is a unique continuous adapted process which obeys (3.2.3),
and we identify the a.s. event {2y on which this solution is defined:

Qy = {w € ) : there is a unique continuous adapted process Y

for which the realisation Y'(-,w) obeys (3.2.3)}. (3.2.4)

It is also helpful throughout the chapter to identify the event (2x on which the continuous

adapted process X obeys (3.1.1), so we therefore define

Ox = {w € ) : the continuous adapted process X

is such that the realisation X (-,w) obeys (3.1.1)}. (3.2.5)

By virtue of Proposition 3.2.1, Qx is an almost sure event.

3.2.2 Preliminary asymptotic results

We first consider hypotheses on the data i.e., on o under which any solution X of (3.1.1)
obeys (3.1.3). We note that when o € L?(0,00), we have X obeys (3.1.3). However, we
cannot apply directly the semimartingale convergence theorem of Lipster—Shiryaev (see
e.g., [51, Theorem 7, p.139]) to the non-negative semimartingale X2, because it is not
guaranteed that E[X?(¢)] < +oo for all t > 0. The proof of the following theorem, which

is deferred to the next section, uses the ideas of [51, Theorem 7, p.139] heavily, however.
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Theorem 3.2.1. Suppose that f satisfies (1.2.2). Suppose that o obeys (3.1.2) and o €

L?(0,00). If X is any solution of (3.1.1), then X obeys (3.1.3).

The proof is relegated to Section 3.7.1. Our next result shows that if, on the contrary,
o ¢ L*(0,00), we can only guarantee that X visits a neighbourhood of the equilibrium

infinitely often.

Theorem 3.2.2. Suppose that f obeys (1.2.2), and that o obeys (3.1.2) and o & L*(0, 00).

Then any solution X of (3.1.1) obeys liminf; , | X (t)| =0 a.s.

Again the proof is postponed to Section 3.7.1.

3.3 Linear Equation

Since scalar linear SDEs have attracted much attention, in this section we explain some
of the similarities and differences between our work and that which has appeared in the
literature to date. We also restate notation, auxiliary functions and processes in order to
state scalar versions of results from Chapter 2 that are relevant to the asymptotic analysis

of the nonlinear equation.

3.3.1 Linear equations with time-varying features

In this section, we discuss results from the general asymptotic theory of linear stochastic
differential equations. A useful nomenclature for classifying various categories of linear
equation is given in Mao [55, Chapter 3.1], for it transpires that the asymptotic behaviour
of equations—and the corresponding analysis of their asymptotic behaviour— differs across
these categories. As we focus in this section on scalar equations, we confine attention now
to the most general scalar linear equation. We say that the scalar process X is a solution

of a linear stochastic differential equation if it obeys

-
dX(t) = (ap(t) X (t) + fo(t)) dt + Z(aj(t)X(t) + f;(t)) dB;(t) (3.3.1)

j=1
where 7 > 1 is an integer, a; and f; for j = 0,...,r are appropriately regular functions,
and B = (Bjy,...,B;) is an r—dimensional standard Brownian motion. To simplify our
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discussion, we assume the continuity of the f’s and a’s, which is sufficient to ensure the
existence of a unique strong solution of (3.3.1).

The equation (3.3.1) is termed homogeneous if f;(t) =0 forallt > 0andall j =0,...,7.
For such an equation, if X (0) = 0, then the unique solution is X (¢) = 0 for all ¢ > 0 a.s.,
so the presence of the stochastic terms preserves the zero equilibrium of the underlying

deterministic differential equation
2'(t) = ao(t)z(t). (3.3.2)

An extremely comprehensive theory concerning the stability of the zero solution of (3.3.1)
exists for homogeneous equations, and is expounded in e.g., Khas’minski [45, Chapter
6], to which we allude presently. For any other non-homogeneous equation, X(0) = 0
does not imply that X(¢) = 0 for all ¢ > 0, and it is sometimes said that the non-
autonomous perturbations f; are not equilibrium-preserving. For instance, if a;(t) = 0
for all t > 0 and 5 = 1,...,r, the diffusion coefficient depends only on ¢ (and is thus
state-independent) and the equation is termed linear in the narrow sense in [55]. These
equations are in some sense the simplest in the class of linear equations, as their solutions
can be expressed explicitly in terms of the fundamental solution of (3.3.2). It is such non-
homogeneous equations that are investigated in this section, and discussed also in e.g., [45,
Chapter 7.4] and in [30, 31]. For such equations, it can be shown if f;, j = 1,...,f
fade sufficiently rapidly, then the stability of the underlying deterministic equation is
preserved. Conditions given in these works, such as the square integrability of the f;’s (cf.
e.g., [45, Chapter 7.4, p.255] for the equation studied in this chapter, and generalisations to
nonlinear and non—autonomous equations in [45, Theorem 7.4.1]) are covered and improved
in this chapter. In [45] and elsewhere, such equations are often referred to as possessing
damped perturbations, reflecting the fact that the f(¢)’s are hypothesised to tend to zero
in some sense as t — 00.

In the equation analysed in this section, which is driven by r» = 1 Brownian motions, a
non-autonomous function f; appears in the diffusion coefficient (which means that the zero
equilibrium is not preserved) but no such perturbation is present in the drift (i.e., fo = 0).

In Appleby and Rodkina [21], a single non—autonomous forcing function also appears, but
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is present instead in the drift (i.e., fp is non-trivial) with the non—-autonomous forcing
function being absent in the diffusion coefficient (i.e., fi = 0): accordingly, the equation
considered is

dX(t) = (ao X (t) + fo(t)) dt + a1 X (t) dB(t). (3.3.3)

As in this work, the results in [21] aim to estimate the critical size of the perturbation at
which the stability of zero equilibrium of the autonomous equation is lost. The autonomous
equation has all solutions attracted to zero if ag — a?/2 < 0, and under those conditions

it is shown that if

log lfo(®)l _ _ ai

lim su < 0,
t_mop logt a? — 2ay
then X (t) — 0 as t — oo a.s., while if
1 t 2
lim inf og | fo(t)] > —— ay :
t—o0 logt ay — 2ag

then limsup,_, . | X (¢)| = +o00 a.s. These conditions for the a.s. asymptotic convergence
of X(t) — 0 as t — oo are therefore quite sharp. Indeed, the stipulation that ag—a?/2 < 0
cannot be readily relaxed either, for in the case when fo(¢) > 0 for all ¢ > 0 and X (0) > 0,
the condition ag — a?/2 < 0 is necessary in order to have X (t) — 0 as t — oc.

Owing to the deep treatment of the long—time behaviour of linear equations in [45,
Chapter 6], the brief synopsis of the diverse results there which impinge on our work,
and which was promised earlier, is now given. In particular, we focus on results relat-
ing to homogeneous but non—autonomous equations. In [45, Theorem 6.1.1] extremely
sharp conditions are given on the time—varying coefficients ag and a; for the stability and

instability of the scalar homogeneous differential equation
dX (t) = ap(t) X (t) dt + a1(t) X (t) dB(1).

In contrast to our analysis here, which concentrates on pathwise behaviour, [45, Chapter
6.2] is devoted to characterising stability and instability in the mean and mean square
sense, with sufficient conditions for stability and instability for general p—th moments
being given in [45, Chapter 6.3] The connection between moment stability and instability
and stability in probability is developed in [45, Chapter 6.4] for autonomous equations

and in [45, Chapter 6.5] for non-autonomous equations. The remainder of the chapter,
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being largely concerned with results leading to and including the almost sure Lyapunov

exponents for autonomous equations, is less germane to the results reported in our work.

3.3.2 Specialisation of results from Chapter 2

We can now apply the results from the previous chapter, which concerning the asymptotic
behaviour of the related finite-dimensional stochastic differential equation in the scalar
case. We start with notation and definitions which parallel our presentation there. Let
® : R — [0, 1] be the distribution function of a standard normal random variable as defined

in (2.2.2).the sequence 6 : N — [0, 00)

62(n) = /n+1 o?(s)ds. (3.3.4)

Let € > 0 and consider the sum
> €
S(e) ZT;){l@ <9(n)>} (3.3.5)
Again, this summation is difficult to evaluate directly, because ® is not known in closed
form. However, it can be shown that S(e) is finite or infinite according as to whether the

sum
2

S'(€) = Zoﬁ(n) exp (—62022”)) (3.3.6)

is finite or infinite, where we interpret the summand to be zero in the case where (n) = 0.
This is the result of Mill’s estimate, which is proven as Lemma 2.2.1 in Chapter 2.

Moreover, we have the next result immediately as a corollary of Theorem 2.2.1

Corollary 3.3.1. Suppose that o obeys (3.1.2) and Y is the unique continuous adapted

process which obeys (3.2.3). Let 0 be defined by (3.3.4) and S'(-) by (3.3.6).

(A) If 0 is such that

S'(€) is finite for all € > 0, (3.3.7)
then
tlg})lo Y(t)=0, a.s. (3.3.8)
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(B) If 0 is such that there exists € > 0 such that

S'(€) is finite for all € > €,

S'(€) = +o0 for all e < €,
then the event 1 defined by
O :={w e Ny : 0 < limsup |Y (t,w)| < +00}.
t—00
is almost sure and there exist deterministic 0 <Y <Y < 400 defined by

Y := inf limsup|Y(¢,w)| >0,

wEM  t—oo

=l
!

:= sup limsup |Y (¢,w)| > 0.

weQ) t—oo
Moreover

1 t
liminf |Y'(¢)] =0, lim / Y (s)|*ds =0, a.s.
t—o0 t Jo

t—o00

(C) If 0 is such that

S'(€) = +oo for all € > 0,

then

limsup |Y (t)| = 400, lminf|Y(¢)|=0, a.s.
t—o00

t—o0

(3.3.9a)

(3.3.9b)

(3.3.10)

(3.3.11)

(3.3.12)

(3.3.13)

In Corollary 3.3.1, no monotonicity conditions are imposed on o. The form of Theo-

rem 3.3.1 is inspired by those of [31, Theorem 1] and [20, Theorem 6, Corollary 7].

Remark 3.3.1. The benefit of this result is that it can be used more easily to state the

nonlinear result even it’s a corollary of Theorem 2.2.1. The existence of deterministic

bounds on |Y| in (3.3.11) and (3.3.12) in part (B) was established as part of Theorem

2.2.1 in Chapter 2. Moreover, it was established as part of the proof that explicit bounds

on Y and Y can be given in terms of the critical value of € = ¢ in (2.2.8). The estimates
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given by the analysis in [4] are

-1

e — 1
>y = ! < "=7. .3.
Y>y o1t Y_<1_€1+6>6 ] (3.3.14)

Hence we have 0.2689¢ < lim sup,_, . |Y ()] < 4.3003€¢, a.s.
It remains an open question as to whether in general the explicit bounds 7 and y on
Y and Y can be improved. In part of Theorem 3.3.1 in which case (B) holds, it can be

shown by an independent argument that y =7y = ¢’ and therefore that Y =Y = €.

Remark 3.3.2. If o obeys (3.1.2) and o € L?(0,00), and Y is the solution of (3.2.3), then
Y obeys lim;_yoo Y (t) = 0 a.s. by Theorem 3.2.1. Moreover, if ¢ € L?(0, 00), then o obeys
(3.3.7). If o obeys either (2.2.8) or (3.3.13), then o ¢ L?(0, 00).

The condition that S’(e) is finite or infinite can be difficult to check. However, in the
case when

There exists L € [0, 00] such that L = lim o?(t)logt, (3.3.15)
—00

each of the conditions (3.3.7), (2.2.8) and (3.3.13) is possible according as to whether the
limit L is zero, non—zero and finite, or infinite. In this case therefore, the asymptotic

behaviour of any solution of (3.1.1) can be classified completely.

Proposition 3.3.1. Suppose that o € C([0,00); R) obeys (3.3.15) and that S'(-) is defined

by (3.3.6).
(A) If L =0, then S’ obeys (3.3.7).
(B) If L € (0,00), then S’ obeys (2.2.8).

(C) If L = oo, then S’ obeys (3.3.13).

Scrutiny of the proof reveals that we can replace the condition (3.3.15) with the weaker
condition

There exists L € [0, 00] such that L = lim 6?(n)logn, (3.3.16)

n—oo
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and still obtain the same trichotomy in Proposition 3.3.1. The proof of Proposition 3.3.1
is postponed to Section 3.8.

The conditions of Corollary 3.3.1 can be quite difficult to check in practice. In Chapter
2, easily—checked sufficient conditions on ¢ for which Y is bounded, stable or unstable, are
developed. These results are extended slightly here, and will also be used to analyse the
nonlinear equation (3.1.1). For this reason, they are stated afresh here.

In the case when o € L?(0,00) we have that Y tends to zero. Therefore, we confine
attention to the case where o ¢ L?(0,00). In this case, we can define a number 7' > 0 such

that f(f e?502(s)ds > e® for t > T and so one can define a function ¥ : [T, 00) — [0, c0) by

¢ 1/2
S(t) = ( / e 2t=9) 52 (s) ds> (logt)'/?, t>T. (3.3.17)
0

Our main result in this direction can now be stated.

Theorem 3.3.1. Suppose that o obeys (3.1.2) and thatY is the unique continuous adapted

process which obeys (3.2.3). Let ¥ be given by (3.3.17).

(A) If limy oo X%(t) = 0 then

lim Y(t) =0, a.s. (3.3.18)

t—o0

(B) If liminf; o ¥2(t) = L < +oo then

limsup |Y'(¢)| > V2L, a.s.

t—o0

(C) Iflimsup, . ¥%(t) = L < +oo then

limsup |Y ()] < V2L, a.s. (3.3.19)

t—o00

(D) If limy o ¥2(t) = L < 400 then

limsup |Y ()] = V2L, a.s. (3.3.20)

t—00

(E) If limy_,o0 $2(t) = +o00 then

limsup |Y (t)| = +o0, a.s.

t—o00
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The proof of part (C) uses the methods of [4, Theorem 3.2], so is not given. It is now
clear that part (D) is merely a corollary of parts (B) and (C). Parts (A) and (E) may also
be thought of as limiting cases of part (D) as L — 0 and L — oo, respectively. We note
that when o obeys (3.3.15), then X2(t) — L as t — oo, so that in part (D), we have from
the proof of part (B) of Proposition 3.3.1 that S’ obeys (2.2.8) with € = v/2L and by
(3.3.20), that Y = Y = v/2L = ¢ in (3.3.11) and (3.3.12). This strengthens the general

estimates given on Y and Y in (3.3.14).

3.4 Nonlinear Equation

In this section we explore the asymptotic behaviour of the nonlinear differential equation
(3.1.1). In the first part of this section, we establish a connection between the solution of
(3.2.3) and solutions of (3.1.1). This enables us to state the main results of the chapter,

which appear, together with interpretation and examples, in the second part of this section.

3.4.1 Connection between the linear and nonlinear equation

In our first result, we show that knowledge of the pathwise asymptotic behaviour of Y (¢) as
t — oo enables us to infer a great deal about the asymptotic behaviour of X (¢) as t — oo.
Indeed, we show in broad terms that X inherits the asymptotic behaviour exhibited by

Y, when f obeys (1.2.2).

Proposition 3.4.1. Suppose that f satisfies (1.2.2) and that o obeys (3.1.2). Let X be
any solution of (3.1.1), and Y the solution of (3.2.3), and suppose that the a.s. events

Qx and Qy are defined as in (3.2.5) and (3.2.4) respectively.

(A) Suppose that there is an a.s. event defined by
{weQy: tlg& Y (t,w)| = 0}.

Then lim;_,o X (t) =0 a.s.
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(B) Suppose that the event 1 defined by (3.3.10) is almost sure. Then the event
Q=01 NOAx (341)
1s almost sure, and there exists a positive and deterministic X given by

X = inf limsup|X(t,w)]. (3.4.2)

T we o

(C) Suppose that there is an a.s. event defined by
{w € Qy : limsup |Y(¢,w)| = +oo}.
t—o0

Then lim sup,_, . | X (t)| = +o0 a.s.

In the proof of part (B), we can even determine an explicit lower bound for X. If the
event € is defined by (3.3.10), we may define as in (3.3.11) and (3.3.12) the deterministic
numbers 0 < Y <Y < +oo. For any f obeying (1.2.2) it can be shown that there is

function y — z(y) = z(f,y) which, for y > 0, obeys

2z + max |f(z)| = y. (3.4.3)
|z|<z
This leads to the estimate
X >z(f,Y), (3.4.4)

where Y is given by (3.3.11). Moreover, as it transpires that z(f,-) is an increasing

function, by (3.3.14), we can estimate X explicitly according to

X >z(f,y),

where y is given explicitly by (3.3.14).

An interesting implication of part (C) is that an arbitrarily strong mean—reverting force
(as measured by f) cannot keep solutions of (3.1.1) within bounded limits if the noise per-
turbation is so intense that a linear mean-reverting force cannot keep solutions bounded.
Therefore, the system will run “out of control” (in the sense of becoming unbounded)

however strongly the function f pushes it back towards the equilibrium state.
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3.4.2 Main results
Due to Theorem 3.3.1, we can readily use Proposition 3.4.1 to characterise the asymptotic

behaviour of solutions of (3.1.1).

Theorem 3.4.1. Suppose that o obeys (3.1.2), f obeys (1.2.2) and that X is any contin-

uous adapted process which obeys (3.1.1). Let 6 be defined by (3.3.4) and S’(-) by (3.3.6).

(A) If 0 is such that (3.3.7) holds, then

lim X(¢t) =0, a.s.

t—o00

(B) If 0 is such that (2.2.8) holds, then there exists an almost sure event Q2 = Q1 NNy,

and a deterministic X > 0 defined by (3.4.2) such that

X = inf limsup|X(¢,w)| > 0.

T we€D2 tseo
Moreover, X obeys

X >z(f,Y),

where x(f,-) is the unique solution of (3.4.3), and Y is defined by (3.3.11). Further-
more,

liminf | X (t)| =0, a.s.
t—00
(C) If 0 is such that (3.3.13) holds, then

limsup | X (t)| = 400, liminf|X(¢)|=0, a.s.
t—00

t—o0

Proof. If 0 is such that (3.3.7) holds, then from Theorem 3.3.1, we have lim;_,~, Y'(t) = 0,
a.s. Taking this together with Proposition 3.4.1, part (A) holds. If 6 is such that (2.2.8)
holds, or if € is such that (3.3.13) holds, then taken together with Theorem 3.3.1 and

Proposition 3.4.1 we have that the first part (B) and of (C) is true. For the second part
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of (B) and (C), we recall that if (2.2.8) or (3.3.13) hold, Remark 3.3.2 implies that o ¢
L?(0,0). In this case, we already know that lim inf, ,o | X (#)| = 0, a.s. by Theorem 3.2.2.

O]

The formula (3.4.3), which is established in the proof of part (B) of Proposition 3.4.1,
relates the lower bound on the large fluctuations x to the size of the diffusion coefficient o
and the nonlinearity in f. Thus, we may view z = z(f,Y) = z(f, o), because Y depends
on o but not on f. It is clear that the larger the diffusion coefficient, the larger the value
of Y. We now show for fixed f that z is increasing and that z(f,y) — oo as y — oo.

Moreover, we show for fixed y that z(f1,y) > z(fo,y) if

|fo(@)] = |fi(z)|, z€eR. (3.4.5)

These ordering results seem to make intuitive sense, as we would expect weaker mean

reversion and a larger diffusion coefficient to lead to larger fluctuations in X.

Proposition 3.4.2. Suppose that f obeys (1.2.2). Let x be the unique solution of (3.4.3).

Then
(i) y = z(f,y) is increasing and limy o 2(f,y) = +00, lim,_,o+ 2(f,y) = 0.
(ii) If f1 and fa are functions that obey (1.2.2) and also satisfy (3.4.5), then z(f1,y) >
z(f2,y).

Proof. Define h¢ : [0,00) — [0, 00) according to

hy(z) :=2x + lm‘ax lf(y)], z>0. (3.4.6)
y|<z

Then hy is increasing and continuous, and obeys the limits lim, .o hf(z) = 400 and

lim, o+ hy(x) = 0. By (3.4.3), hy(z(f,y)) = y. Therefore

a(f,y) =h;'(y), y=0. (3.4.7)

Hence y — z(f,y) is increasing. Finally, lim, ;o z(f,y) = oo and lim,_,o+ z(f,y) =
limy, o+ h ' (y)=0.
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To prove part (ii), note by (3.4.5) that

by (z(f1,9) =y = hp(2(f2,y)) = 22(f2,y) + max |fa(u)

[ul<z(f2,y)

> 22(f2,y) +  max |fi(u)] = hp (z(f2,9))-

[ul<z(f2,y)
Since hy, is an increasing function, we have z(f1,y) > z(f2,y) as required. O

Just as the conditions of Theorem 3.3.1 can be quite difficult to check in practice for
Y, the same is true for the conditions of Theorem 3.4.1 on # for X. As in Theorem 3.3.1,
and because of Proposition 3.4.1, we can supply easily checked sufficient conditions on o
for which X is bounded, stable or unstable.

In the case when o € L?(0,00) we have that X tends to zero. Therefore, we confine
attention to the case where o ¢ L?(0,00). In this case, we can define a number 7' > 0
such that f te2s 02(s)ds > e° for t > T and so one can define, as before, the function
¥ [T, 00) — [0,00) by (3.3.17).

Theorem 3.4.2. Suppose that f obeys (1.2.2) and that o obeys (3.1.2). Let X be any

solution of (3.1.1). Let ¥ be given by (3.3.17).
(A) If limy oo X2(t) = 0 then limy o X (t) =0 a.s.

(B) If there exists L € (0,00) such that liminf;_,, ©%(t) = L, then there exists an almost
sure event Qo = Q1 N Qx, and a deterministic X > 0 defined by (3.4.2) such that
X = inf,eq, limsup, . | X (t,w)| > 0. Moreover, X > z(f,Y), where z(f,-) is the

unique solution of (3.4.3), and Y is defined by (3.3.11).
(C) If lim; oo X2(t) = 400 then limsup, .. |X(t)| = +o0 a.s.
Proof. If limy_,00 €™ logtft 2552(s)ds = 0 then lim;_,o Y (t) = 0 from Theorem 3.3.1.
Combining this with Proposition 3.4.1, we get lim; o, X (¢) = 0 proving part (A). Sim-

ilarly, parts (B) and (C) follow from parts (B) and (E) of Theorem 3.3.1 and Proposi-

tion 3.4.1. 0
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We finish this Section by giving a sufficient condition on f for which solutions of (3.1.1)
do not tend to zero but are nonetheless bounded. In the case when o is such that either
parts (A) or (C) apply, we have unambiguous information about the asymptotic behaviour
of solutions: either almost all sample paths tend to zero, or almost all sample paths exhibit
unbounded fluctuations. However, scrutiny of the statement of Proposition 3.4.1 shows
that part (B) does not rule out the possibility that limsup,_, . | X ()| = 400 with positive
probability (or even almost surely). We make a further hypothesis on f, under which this

is impossible, and X is forced to be bounded. The hypothesis is

lim f(z)=—o0, lim f(z)= cc. (3.4.8)

T —00 T—00

An estimate on the lower bound X in case (B) is given in (3.4.3), which is found as part
of the proof of Proposition 3.4.1. X is given in terms of f and o. Similarly, an estimate
can be determined for the upper bound. Towards this end, we introduce functions which

are a type of generalised inverse of f by defining the functions f~ and fT by
fH(x)=sup{z >0: f(z) =z}, x>0, (3.4.9)
f(z)=inf{z<0: f(z) =2}, z<0. (3.4.10)

These functions are well-defined if f obeys (1.2.2) and (3.4.8). We notice also that if f is

increasing, then f* are exactly the inverse of f.

We may therefore define for any f the function y — Z(f,y) by

z(f,y) = 2y + max(f*(y),—f(—y)), vy >0. (3.4.11)

The main conclusion of the following theorem is that an explicit upper bound can be found

for lim sup,_, ., | X (¢)|. In fact, it can be shown that if Y obeys (3.3.12), then
limsup | X (t,w)| < Z(f,Y), for each w € g, (3.4.12)
t—o00

where {29 is given by (3.4.1).

We are finally in a position to state the main result of this section.

Theorem 3.4.3. Suppose that o obeys (3.1.2), f obeys (1.2.2) and (3.4.8). Suppose that
X is any continuous adapted process which obeys (3.1.1). Let 0 be defined by (3.3.4) and
S'(+) by (3.3.6).
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(A) If 0 is such that (3.3.7) holds, then lim;_ oo X (t) =0, a.s.

(B) If 0 is such that (2.2.8) holds, then there exists an almost sure event Qo = 1 N Qx

where Qy defined in (3.3.10), and deterministic 0 < X < X < 400 such that

X = inf limsup|X(¢,w)], X = sup limsup|X(¢,w)|, (3.4.13)
wEQ2  t—oo wENy  t—oo
Moreover,
X >z(f.Y),

where x(f,-) is the unique solution of (3.4.3), and Y is defined by (3.3.11), and

X <z(fY),
where T(f,-) is defined by (3.4.11) and Y is defined by (3.3.12). Furthermore,

liminf | X (¢)| =0, a.s.
t—00

(C) If 6 is such that (3.3.13) holds, then

limsup | X (t)| = 400, liminf|X(¢)|=0, a.s.
t—00

t—o0

We prove part (B) only, as the results of parts (A) and (C) follow from Theorem 3.4.1.
Therefore, under the additional hypothesis that f obeys (3.4.8), it follows from Theo-
rem 3.4.1 and 3.4.3 that either (i) solutions tend to zero with probability one, when o
obeys (3.3.7) (ii) solutions fluctuate within finite bounds with probability one, when o
obeys (2.2.8) or (iii) solutions fluctuate unboundedly with probability one, when o obeys

(3.3.13). In the second case, part (B) of Theorem 3.4.3 can be restated as

2(£.Y) < limsup [X(1)| <F(£.T), as.

t—00
and moreover we have weaker but explicit estimates on these deterministic bounds given
by

0 <z(f,y) <limsup |X(f)| <Z(f,y) < +oo, as.,

t—o00
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where y and 7 are given by (3.3.14).

It is interesting to determine the effect of weaker mean reversion and an increasing
diffusion coefficient on the upper bound of the large deviations of X, given by Z(f,Y),
just as we did for the lower bound on the size of the largest fluctuations in Proposition 3.4.2,
given by z(f,Y). As before, it can be shown that weaker mean reversion and increasing
diffusion coefficients increase the bound T. Also, if the effect of the diffusion coefficient
alone is negligible (so that Y — 0), or unboundedly large (so that Y — oc), we see that
cases (A) and (C) in Theorem 3.4.3 can be viewed as limiting cases of the asymptotic
behaviour described in case (B). These properties of the bounds are established in the

following result.

Proposition 3.4.3. Suppose that f obeys (1.2.2) and (3.4.8). Let T be given by (3.4.11).

Then
(i) y = Z(f,y) is increasing and limy o Z(f,y) = +o0, lim,_,o+ Z(f,y) = 0.

(i1) If f1 and fo are functions that obey (1.2.2) and (3.4.8), and also satisfy (3.4.5), then

Z(f1,y) > Z(f2,9).

The proof is relegated to the final section. We finish the section with an example which

shows how estimates of X and X can be obtained in practice.

Example 3.4.1. We see how these estimates on the fluctuations behave for a specific class
of examples. Suppose that f(x) = 2" where n is an odd integer and that o?(t)logt —
L € (0,00) as t — 0o. Then by Theorem 3.3.1 it follows that limsup,_,.. |Y(t)| = V2L

a.s. so we have Y =Y = +/2L. Since f is increasing we have for x > 0 that
fr@) =) =2"", f(—2)=f"'(-2)=—-2"", max|f(y)|=2"

ly|<z

so that z(L) = z(f,Y) and Z(L) = Z(f,Y) satisfy
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From this, we readily see that

ol) 1o, 20
=0+t 2L 27 Lot (V2L)Un
and that
(L) lim 2By

Notice that lim;_,o+ Z(L) = 0 and limy_, z(L) = oo.
It is clear that these asymptotic bounds are widely spaced, because

1m@: im@: 00
L—ot (L)  L—oo z(L) oo

It would be an interesting question to determine whether either of these bounds is satis-
factory, but we do not pursue this here. We suspect that the upper bound (L) as L — oo

is very conservative, however, as it does not take into account the strong mean reversion

of f.

3.5 Asymptotic Stability

It should be remarked that one consequence of Theorem 3.4.1 is that sample paths of X
tend to zero with non—zero probability if and only if 6 obeys (3.3.7), in which case almost
all sample paths tend to zero. Therefore, we have the following immediate corollary of

Theorem 3.4.1.

Theorem 3.5.1. Suppose [ obeys (1.2.2) and that o obeys (3.1.2). Let X be any solution
of (3.1.1). Let 0 be defined by (3.3.4) and let ® be given by (2.2.2). Then the following

are equivalent:

(A)
Z O(n) exp (;026(1)> < 400, for every e > 0. (3.5.1)
n=1

(B) limy_00 X (t,&) = 0 with positive probability for some & € R.

131



Chapter 3, Section 5 Asymptotic Classification of Solutions of Scalar Nonlinear SDEs

(C) limy_00 X (t,€) =0 a.s. for each & € R.

Part (A) refines part of [10, Proposition 3.3]. Also, if X(t) — 0 as t — oo, it does so a.s.,
and so 0 obeys (3.3.7). Therefore, Y (t) — 0 as t — oo. This forces liminf;_ o, X2(t) =
0, for else we would have limsup,_, . |Y(¢)] > 0 a.s, as essentially pointed out by [10,
Proposition 3.3].

It should also be noted that no monotonicity conditions are required on ¢ in order for
this result to hold, and that a.s. global stability is independent of the form of f. The
conditions and form of Theorem 3.4.1 and 3.5.1 are inspired by those of [31, Theorem 1]
and by [20, Theorem 6, Corollary 7].

An interesting fact of Theorem 3.5.1 is that it is unnecessary for o(t) — 0 as t — oo in
order for X to obey (3.1.3). In fact, we can even have limsup,_, ., |o(t)|?> = oo and still
have X (t) — 0 as t — oo a.s. Some examples are supplied in [10].

Note that (3.1.5) implies lim;_, X(¢) = 0, that (3.1.6) implies lim; o, X(¢) = oo, and
finally that liminf; ., 0%()logt > 0 implies that liminf; o 3(¢) > 0. The next result is

therefore an easy corollary of Theorem 3.3.1, or of Proposition 3.4.1 and Proposition 3.3.1.

Theorem 3.5.2. Suppose that f satisfies (1.2.2), and that o obeys (3.1.2). Let X be any

solution of (3.1.1).
(i) If o obeys lim;_soo 0%(t)logt = 0, then X obeys (3.1.3).

(ii) If o obeys liminf; o 0%(t)logt € (0,00), then P[lim; oo X(t) = 0] =0

and liminf; , | X (t)| =0, a.s..
(iii) If o obeys limy_,o, 02(t)logt = oo, then

limsup | X ()| = oo, litminf | X(t)| =0, a.s.
—00

t—o00

Part (i) is part of [10, Proposition 3.3(a)]. Part (iii) is [10, Lemma 3.7]. In [31], Chan
and Williams have proven in the case when t — ¢0%(t) is decreasing, that Y obeys (3.3.18)
if and only if o obeys (3.1.5). Our final result is a corollary of this observation and

Theorem 3.5.1, and also of [10, Theorem 3.8]. A stronger result than Theorem 3.5.2 can
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be stated if the sequence @ in (3.3.4) is decreasing: in this case, lim,_,, 6%(n)logn = 0 is

equivalent to (3.1.3).

Theorem 3.5.3. Suppose that f satisfies (1.2.2). Suppose that o obeys (3.1.2) and t —

o2(t) is decreasing. Let X be any solution of (3.1.1). Then the following are equivalent:
(A) o obeys limy oo 0%(t)logt = 0;

(B) limy_, 00 X(t,€) =0 a.s. for each & € R.

The remark preceding this result points to the importance of the condition 8(n)? logn —
0 as n — 00.We now supply an example in which 6(n)?logn — 0 as n — oo, but t + o2(t)

has “spikes” which prevents it from satisfying the condition lim; s, o2(¢)logt = 0.
Example 3.5.1. Consider the decomposition of [0, c0) into a union of disjoint intervals
[0,00) = Upeo{Ir U Jp U Ki },

where ¢, € (0,1/2) for each k > 0 and
Iy =k k+e), Jp=(k+ep,k+1—e€), Kp=[k+1—e,k+1), keN.

Let (Ix)r>0 and (gr) x>0 be positive sequences and consider the function o : [0, 00) — [0, 00)

defined by
( lk—l’“E;qu(t—k), t € [k, k+ e,
o*(t) = T te(k+emk+1—ep),
lhpr + B0~k —1), tek+1— ekt 1),

Then t +— 02(t) is continuous. If § is defined by (3.3.4), then
2 1
o (k) = Qk(l - ek) + 56k(lk+1 + lk)

Notice also that o?(k) = l. Suppose qxlogk — 0, ex(lx + lr41)logk — 0 but we have

that lim sup,_,. lx logk > 0. Then 6%(k)logk — 0 as k — oo, but

limsup 0%(¢) logt > limsup o2(k) log k = limsup I3, log & > 0.

t—00 k—oo k—00
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Concrete examples of sequences for which these conditions hold include

1 1 ] 1
= — € — ——— =
Tk FT ke T
or
1 1 I
= — € = = .
©=er1 T (kg2 *

3.6 Proof of Existence Results from Section 3.2.1

3.6.1 Proof of Proposition 3.2.1

Consider the affine stochastic differential equation (3.2.3). Since o is continuous, there is a
unique continuous adapted process which obeys (3.2.3). Let Qy be the a.s. event defined

by (3.2.4) on which Y is defined. Now, for each w € Qy, define the function
ot 7,w) = —f(@+ Y (E,w) + Y (Lw), 20,

Since f is continuous, and the sample path ¢ — Y (t,w) is continuous, (¢,z) — ¢(t,z,w)

is continuous. Consider now the differential equation
Y(tw) = gt 2(tw),w), t> 05 2(0,w) = €.

By the continuity of ¢ in both arguments, by the Peano existence theorem, there exists a
continuous local solution ¢ — z(t,w) for each w € Qy and 0 < ¢t < 7.(w). Presently, it will
be shown that 7.(w) = +00 a.s. on Qy.

Moreover, as Y is adapted to (FZ(t));>0, 2 is also adapted to (FZ(t))i>0. Now consider

the process X defined on Qy by X(t) = z(¢t) + Y (¢) for ¢t € [0,7.). By construction it is
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continuous and adapted. Furthermore, we have for ¢ € [0, 7¢)
X(t,w) = 2(t,w) + Y (t,w)
¢ t t
=¢ —I—/ (s, z(s,w),w)ds +/ Y (s,w)ds + </ o(s) dB(s)) (w)
0 0 0

:§—|—/0 {=f(z(s,w) +Y(s,w)) + Y(s,w)} ds—l—/o ~Y(s,w)ds

+( [ ora86) @

—e+ [ s+ ([ o986 @
= (e [ ~rexenas+ [ o)a89) @)

Hence X (-,w) obeys (3.1.1) for each w € Qy on the interval [0, 00). The proof that 7. is

infinite a.s. was given in the Appendix of [10].

3.6.2 Proof of Proposition 3.2.2

The proof is inspired by an observation in e.g., [44]. Note first by Proposition 3.2.1 that
the continuity of f together with (1.2.2) guarantees the existence of a continuous adapted
process which obeys (3.1.1). Suppose therefore that X; and X9 are any two solutions of

(3.1.1). Then
d(X1(t) = Xa(t)) = (= f(Xa(t)) + f(X2(1))) dt,
and by Itd’s rule we have that
d(X1(t) = X2(t))? = =2(X1(t) — X2(1) (F(X1(t)) — f(Xa(1))) dt, t=>0.
Since X1(0) = X»(0) = £, we have
(X1(t) = Xa2(t)* = -2 /Ot(Xl(S) — Xa(s)) (f(Xa(s)) = f(Xa(s))) ds, t=0.
Since f obeys (3.2.2), we have
(X1(t) — Xo(t))? < 2K /Ot(Xl(s) — Xo(s))%ds, t>0.

If K <0, we can conclude automatically that X;(t) = Xo(¢) for all ¢ > 0 a.s., and that
therefore the solution is unique. If K > 0, by applying Gronwall’s inequality to the non—
negative continuous function ¢ — (X7 (t) — X2(t))?, we conclude that Xi(t) = X»(t) for all

t > 0 a.s., and once again we have uniqueness.
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3.7 Proofs of Preliminary Results

3.7.1 Proof of Theorem 3.2.1

By Ito’s rule, we have

¢ t ¢
X2(t) = €2 —/ 2X (s)f(X(s)) ds +/ o2(s) ds +/ 29X (s)o(s)dB(s), ¢>0. (3.7.1)
0 0 0
Since 2 f(x) > 0 for all # € R and o € L?(0, 00), we have

XQ(t)<§2+/ ds+2/X B(s), t>0.

0
Define M to be the local martingale given by M (t) = fo 2X(s)o(s)dB(s) for t > 0. Let

U(t):/o 2X(s), f(X(s))ds, A(t):/o o(s)%ds, t>0.

Since xf(z) > 0 for all z € R and o € L?([0,00), it follows that A and U are continuous

adapted increasing processes. Therefore by Theorem 0.3.6, it follows that

lim X(t)? =L €[0,00), a.s.

t—o00

and that
t
lim [ X(s)f(X(s))ds=1¢€[0,00), a.s.

t—o00 0

By continuity this means there is an a.s. event A = {w : X(¢,w)? — L € [0,00) as t — oo}

such that A = A, UA_ U Ay where

Ay ={w: X(t,w) = v/ L(w) € (0,00) as t — oo},

_={w: X(t,w) > —v/L(w) € (—00,0) as t — oo},

and Ap = {w: X(t,w) — 0 as t — oo}. Suppose that w € A;. Then

lim ! X(s,w)f(X(s,w))ds =+/L(w)f(v/L(w)) >0, (3.7.2)

t—oo t 0

by continuity of X, f and the fact that zf(x) > 0 for x # 0. Since the last two terms on

the righthand side of (3.7.1) have finite limits as t — oo, (3.7.2) implies that for w € Ay

that
X2(t
0< li)m (t,w) = —-2v/L(w)f(v/L(w)) <0,
a contradiction. Therefore P[A;] = 0. A similar argument yields P[A_] = 0. Since

P[A] = 1, we must have P[Ag] = 1, as required.
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3.7.2 Proof of Theorem 3.2.2

Let Ay = {w : liminf; ,o X (¢t,w) > 0} and suppose that P[A;] > 0. In particular, for
w € Ay, define (0,00] 3 ¢(w) = liminf; o X (¢,w) Then there exists 77 (w) > 0 such that
X (t,w) >0 for all t > T (w). Hence for ¢t > T (w), we have

T t t
X(t) = X(0) - ; f(X(s))ds — Tf(X(S))d8+/O a(s)dB(s)

T t
< X(0) — ; f(X(s))ds—l—/O o(s)dB(s).

Since o ¢ L?(0,00) it follows that lim inf; fot o(s)dB(s) = —oo a.s. Therefore a.s. on
A1 we have
Ty t
¢(w) = liminf X (t,w) < X(0) — f(X(s))ds+ liminf/ o(s)dB(s) = —o0,
t—o00 0 t—o00 0

a contradiction. Hence P[A;] = 0, therefore liminf; oo X(¢) < 0 a.s. To prove that

limsup;_,. X (t) > 0 a.s., define X_(t) = —X(¢), f-(x) = —f(—x), 0_(t) = —o(t). Then
dX_(t) =—f(X_(t))dt+o_(t)dB(t), t>0.

By the same argument as above, it can be shown that liminf; oo X_(¢) < 0 a.s., which
yields lim sup,_,.. X (¢) > 0 a.s. Combining this with liminf; ,,, X (¢) < 0 a.s. yields the

required result.

3.8 Proofs of Proposition 3.3.1
By (2.2.16) we have

lim {log(1 — ®(z)) — logz ! + x2/2} = log (1/\/%) ,

T—00

and so

1 _
tim 0B @)
T—00 x?/2

Suppose that #(n) — 0 as n — oo, we have for e > 0 that

- log(1 — ®(e/f(n))) - 1
e /(262 (n)) '
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Thus

L log(1— B(e/0(n) . log(l— @(/0(n)) | /(20°(n))

n—00 logn n—00 €2/(202(n)) logn
B R S (3.8.1)
2 ns0002(n)logn’ o
In cases (A) and (B), we have that 6%(n) := f:“ o2(s) ds obeys
lim 6%(n)logn = L, (3.8.2)

n—o0

and in each case #(n) — 0 as n — oo. Therefore (3.8.1) holds in both case (A) and case

(B). To prove part (A), note that when L = 0, from (3.8.2) and (3.8.1), we have

o log(1 = B(e/6(n)

n—00 logn

= —0

for every € > 0, so by (3.3.5), we have S(¢) < +o0 for every € > 0. Therefore, by Lemma
2.2.1,5 obeys (3.3.7), as required.

To prove part (B), note that when L € (0, 00), from (3.8.2) and (3.8.1), we have

L log(1 - a(e/0(n) &2
n—00 logn 2L
If € > /2L, then by (3.3.5) we have S(¢) < +oo, and thus by Lemma 2.2.1,5'(¢) < 4o0.
On the other hand, if € < v/2L, by (3.3.5) we have that S(¢) = 400, and so by Lemma
2.2.1,5’(¢) = +o0. Therefore (2.2.8) holds with ¢ = v/2L.
In case (C), suppose that there exists €* > 0 such that S’(¢*) < +o00. Then by Lemma
2.2.1,we have that S(e*) < 4+o0o. Then we have that 1 — ®(¢*/0(n)) — 0 as n — oc.
This implies that #(n) — 0 as n — oco. Thus, we have that (3.8.1) holds. Now, because

o2(t)logt — oo as t — oo, we have that 62(n)logn — oo as n — oo. Therefore, using this

fact and (3.8.1), we have that

19801 = $(e/6(n))

n—00 logn

=0.

Therefore, it follows from (3.3.5) that S(e*) = +o0, a contradiction. Therefore, we must

have that S’(e) = +o0 for every € > 0, which is (3.3.13), as claimed.
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3.9 Proof of Proposition 3.4.1

3.9.1 Proof of Part (A) of Proposition 3.4.1

In the case when o € L?(0,00), we have that each of the events {w : lim;_,o Y (t,w) = 0}
and {w : lim;_,oo X (t,w) = 0} are a.s. by Theorem 3.2.1.

Suppose now that o & L?(0,00). Define
Qe =Qx Ny, (3.9.1)
where Qx is given by (3.2.5) and Qy is defined by (3.2.4). Define for each w € Q. the

realisation z(-,w) by z(t,w) = X (t,w) — Y (¢,w) for t > 0. Then 2(-,w) is in C'*(0, c0) and

obeys
(tw) = —f(X(t,w)) +Y(t,w) = —f(2(t,w) + Y(t,w)) + Y (t,w), t > 0; 2(0) =&
Define
Ay ={we Qe im Y(t,w) =0}, Az = {we Q: liminf | X (t,w)| = 0}.

Therefore As is an a.s. event by hypothesis. Since o & L?(0,00), A3 is an a.s. event by
Theorem 3.2.2. Thus the event A4 defined by A4 = As N Az is almost sure. Fix w € Ay.

Since Y (t,w) — 0 as t — oo and liminf; , | X (t,w)| = 0, it follows that
o < Timi T : _
hggg)lf |2(t,w)| < htrg&lf | X (t,w)| + Y (¢, w)] llgégf | X (t,w)| + tlgglo Y (t,w)| = 0.

Let n € (0,1). We next show that limsup,_,. |2(t,w)| < 7. Since f is continuous on R, it
is uniformly continuous on [—2,2]. Therefore, there exists a function y : [0,00) — [0, 00)

such that p(0) =0, u(v) — 0 as v | 0, and for which for every v € [0,4] is defined by

pu(v) = [f (@) = fy)l.

= max
|z V]y|<2,le—y|<v

Thus p is a modulus of continuity of f on [—2,2]. Let € > 0 be so small that

< et ul)) < f) A=)l
Then for u € [n—e,n+¢€] C (0,2) we have |f(u) — f(n)] < p(e), so f(u) > f(n) —p(e) > e.

Therefore

e < inf  f(u). (3.9.2)
u€(n—e,n+e)
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On the other hand for u € [-n —¢,—n + €] C (=2,0) we have |f(u) — f(—n)| < u(e), so

fu) < f(=n) + ple) < —e

Therefore

—e> sup  f(u). (3.9.3)
u€(n—e,n+e)

Since Y (t,w) — 0 as t — oo, there exists T1(e,w) > 0 such that |Y(t,w)| < € for all
t > T1(e). Suppose that limsup,_, . |z(t,w)| > 7. Since liminf; o |2(t,w)| = 0, we may
therefore define Th(e,w) = inf{t > Ti(e,w) : |z2(t,w)| = n/2}. Also define T3(e,w) =
inf{t > Th(e,w) : |2(t,w)| = n}.

In the case when z(T3(e,w),w) = 1, we have 2/(T3(e,w),w) > 0. Since |Y (T3(e,w),w)| <

€ we have

0 < 2(Ts(e,w),w) = —f(2(Ts(e,w)) + Y (T3(e,w),w)) + Y (T3(e, w), w)
= —f(77 + Y(T3(€7w)a W)) + Y(T3(€7w)’w)

< —fn+Y(I3(e,w),w)) + € < - in‘f< fu) +e <0,
u—n|<e

by (3.9.2), a contradiction. On the other hand, in the case when z(T3(e,w),w)) = —1, we

have that 2/ (T3(e,w),w) < 0. Since |Y (T3(€,w),w)| < € we have

0> 2 (T(e,w),w) = —f(2(T3(e,w),w) + Y (T3(e,w),w)) + Y (T3(€,w))
= —f(—77 + Y(T?)(eaw)’w)) + Y(T3(€a W)a w)

> —f(—77 + Y(T?)(e’w)?w)) —€2> — sup f(u) —€>0,
jwtl<e

by (3.9.3), a contradiction. Hence T3(e,w) does not exist for any w € Ay. Hence
limsup,_, |2(t,w)| < n. Since n > 0 is arbitrary, we make take the limit as n | 0 to
obtain limsup,_,, |2(t,w)| = 0. Since X =Y + z, and Y (t,w) — 0 as t — oo, we have
that X (¢t,w) — 0 as t — oo, and because this is true for each w in the a.s. event Ay, the

result has been proven.

3.9.2 Proof of Part (C) of Proposition 3.4.1

Let the a.s. event . be as defined in (3.9.1). Define now the event Q3 = {w € Q :

lim sup;_, |Y (t,w)| = +oo} which is a.s. by hypothesis. Define F(t) = X(t) — f(X(t))
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for t > 0. Then (3.1.1) can be rewritten as
dX(t) ={-X(t)+ F(t)} dt +o(t)dB(t), t=>0,
so by variation of constants we get
¢
X(t) = X(0)e™" +/ e F(s)ds + Y (t), t>0.
0
Rearranging and taking absolute values gives
t
Y (t)] < |X ()| 4 |X(0)]e™" + / e U=\ F(s)|ds, t>0. (3.9.4)
0

Define A5 = {w € Qx :sups>o | X (t,w)| < +oo} and suppose that P[A5;] > 0. Define
Ag = A5 N Q3. Then P[Ag] = P[A5] > 0. Let w € Ag and define X;(w) = sup;>q | X (t,w)|.
Then | X (t,w)| < X;(w) for all ¢ > 0. Since f is continuous, for all y > 0, there exists

f(y) < 400 such that

max | f(z)| =: f(y). (3.9.5)
|z|<y
Therefore |f(X (t,w))| < f(X1(w)) for all t+ > 0. Hence by (3.9.4), for each w € Ag, we

have that for all ¢t > 0

Y (1)) < Xa(w) + Xa(w) + Ot e~ (X, (@) + F(X1 () ds

< 3X1(w) + f(X1(w)).
Since limsup,_ ., Y (t,w)| = 400 for each w € Ag C 3, we have a contradiction, so
therefore we must have P[Ag] = 0. This, taken together with continuity the continuity of

X, gives limsup,_,. |X(t)| = oo a.s., proving part (C) of Proposition 3.4.1.

3.9.3 Proof of Part (B) of Proposition 3.4.1

Define Q5 = Q1 N Q. Then by hypothesis, for every w € {23 we have that there is a finite

and positive Y*(w) such that

Y*(w) = limsup |Y (¢, w)].

t—o0

By definition Y < Y*(w) < Y. Define for w € s

X*(w) = limsup | X (t,w)],

t—o00
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where X*(w) = 0 and X*(w) = +o00 are admissible values. By (3.9.4), we have

t—o00 t—o00

t
Y (w) < X*(w) + limsup/ e 9| F(s,w)| ds < X*(w) + limsup |F(t,w)|.
0
By the definition of f, F' and X* we have

limsup |F(t,w)| < X*(w) + f(X*(w)).

t—o00

Since f is defined by (3.9.5) and hs by (3.4.6), we obtain

Vi(w) < 2X%(w) + f(XT (W) = hy(X*(w)).

By Proposition 3.4.2, hy is an increasing function, so we have X*(w) > h;l(Y* (w)). Now

by the definition of X*, X and the fact that hJIl is increasing, we have

X = inf X*(w)> inf hy'(Y*(w)) = h! ( inf Y*(w)).
wello

Since Qy C Q, infyeq, Y*(w) > infueq, Y*(w) = Y, by the definition of Y. Thus as h'
is increasing,

X >hi! < inf Y*(@) > hi N (Y) = z(f,Y),

using (3.4.7) at the last step. Notice lastly that part (i) of Proposition 3.4.2 implies that

z(f,Y) > 0 because Y > 0, by hypothesis.

3.10 Proofs of Theorem 3.4.3 and Proposition 3.4.3

3.10.1 Preliminary results

The asymptotic estimate (3.4.12) in Theorem 3.4.3 is shown by first establishing the

estimate

limsup | X (¢, w)| < max(z,(Y),z_(Y))+Y, for each w € Q (3.10.1)

t—o00

where we define x4, z_ : [0,00) — R by

24 (y) =sup{z > 0: I[nin ]f(ﬂc +a)=y}, y=>0, (3.10.2)
ac|—y,y

—r_(y) =inf{z <0: max ]f(x +a)=—-y}, y>0. (3.10.3)
ac Yy

142



Chapter 3, Section 10 Asymptotic Classification of Solutions of Scalar Nonlinear SDEs

We prefer the estimate in (3.4.12) in part because the estimate on the right hand side of
(3.10.1) is difficult to analyse in general, due to the complexity of z; and z_. Moreover,
there is no loss of sharpness in the estimate in (3.4.12) relative to (3.10.1) in the case
when f is increasing. To see this, first note that when f is increasing on R, it can readily
be seen that z,(y) = y + f~'(y) and z_(y) = y — f~*(—y). Therefore, if we grant that

(3.10.1) holds, it follows that

limsup | X (t,w)| < 2V + max(f 1Y), —f*(Y)), for each w € Q.

t—o00

Therefore, if we define

T(f,y) = 2y + max(f ' (y), = (~y)), (3.10.4)

it can be seen that

limsup | X (t,w)| <Z*(f,Y), for each w € Q.

t—o00

On the other hand, Z*(f) defined in (3.10.4) is equal to Z(f) defined in (3.4.11) when f
is increasing, because f~(z) = f~!(z) for x <0 and f*(z) = f~'(x) for 2 > 0, where f*
and f~ are defined in (3.4.9) and (3.4.10).

Therefore, the second stage in proving the asymptotic estimate (3.4.12) reduces to show-
ing that

y+max(r4(y), - (y)) <z(f,y), y=>0, (3.10.5)

and accordingly, we start the proof of Theorem 3.4.3 by first establishing (3.10.5).

Lemma 3.10.1. Suppose that f obeys (1.2.2) and (3.4.8). Then the functions f* and f~
given by (3.4.9) and (3.4.10) are well-defined and with x4, x— and T defined by (3.10.2),

(3.10.3) and (3.4.11) respectively, we have (3.10.5).

Proof. Let z > z + f*(x). Suppose u € [—z,z]. Then z+u > f*(z). By the definition
of fT we have f(a) > z for all a > f*(x). Therefore, for each z > = + f*(z), we have

f(z+u) >z for all u € [z, x]. Hence

min _ f(z+u) >, foralz>z+ fH(x).

u€[—z,x]
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Since x1(y) = sup{z > 0 : minye|_y ) f(= +u) =y}, we have that

y+ 1 (y) > 24 (y). (3.10.6)

Let > 0. Let 2z < —z + f~(—x). Suppose u € [—z,z]. Then z 4+ u < f~(—x).
By the definition of f~ we have f(a) < —z for all @ < f~(—=z). Therefore, for each

z < —x+ f~(—=x), we have f(z 4+ u) < —z for all u € [—z,x]. Hence

max f(z+4+u) < —z, forall z<—z+ f~(—x).

u€[—x,z]
Since —r_(y) = inf{z > 0 : max,e[_,, f(z +u) = —y}, we have that —y + f~(—y) <

—z_(y), so

y— [ (~y) =2 (y) (3.10.7)

Hence by (3.4.11), (3.10.6), (3.10.7), for any y > 0 we have

z(f,y) = 2y + max(f " (y), —f " (—y))
=y+max(y+ [T (y),y — f(-y))

>y +max(z4(y), z—(y)),

which is (3.10.5). O

3.10.2 Proof of Theorem 3.4.3

We start with a lemma.

Lemma 3.10.2. Let f obey (1.2.2) and (3.4.8). Suppose that p is a continuous function

such that
limsup |p(¢)| < p.

t—o00

Suppose that z is any continuous solution of

Z(t)=—f=(t) +pt) +pt), t>0; 2(0)=¢
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Then
lim sup |2(t)| < max(z(p), 2—(p)) < p+ max(f*(p), —f~ (-D),

where x is defined by (3.10.2), x_ by (3.10.3) and f* by (3.4.9), (3.4.10). Moreover, if

x(t) = z(t) + p(t) fort >0, and T is defined by (3.4.11), then

limsup |z(t)| < Z(f, D).

t—o00

Proof. For every n > 0, there exists T'(n) > 0 such that for ¢ > T'(n) we have |p(t)| < p+n.

The bound on p yields the estimate

zt)—p—n<z(t)+plt) <z(t)+p+n, t>T(n).

Since f(x) — oo as x — oo, for every n > 0 there exists Z,(n) > n such that

min  f(x+a) >p+2n, forallx>zy(n).
a€[=p—n,p+n]

Note that x4 defined by (3.10.2) obeys

IFin ]f($ +a) >p, forall z>xi(p). (3.10.8)
a€(—p,p

Also as f(x) = —o0 as x — —oo, for every n > 0 there exists an Z_(n) > n such that

max f(r+a)<—p—2n, forallz<—%_(n).
a€[—p—n,p+1]

Note that x_ defined by (3.10.2) obeys

I?ax } fx+a) <-—p, forallz<—z_(p). (3.10.9)
ac|—p,p

Let 2(n) = max(i4(n), & (n)).

Suppose that there is ¢1(n) > T'(n) such that z(t1) > Z1(n). If not, it follows that

z(t) < zy(n) for all t > T'(n)

145



Chapter 3, Section 10 Asymptotic Classification of Solutions of Scalar Nonlinear SDEs

and we have that limsup,_, . 2(t) < Z4(n), which implies that lim sup,_,., 2(¢) < z4+ (D).
We will show that there exists a ta(n) > t1(n) such that z(t2) = z4(n) and moreover for
all t > to(n) that z(t) < &4 (n). This implies that limsup,_, . 2(t) < Z4(n) or indeed that
limsup, ;o 2(t) < 24(p).

By the definition of ¢; we have z(t1) + p(t1) > 0 and

Z(t) = —f(z(t1) +p(t1)) +p(t1) < —  min_ f(z(t1)+a)+p+n< —n.
a€[—p—n,p+n]

Then we have either that z(t) > Zy(n) for all ¢ > ¢;(n) or that there is a minimal

ta(n) > t1(n) such that z(t2) = Z4+(n). In the former case for every ¢t > t1(n) we have

Z(t) = —f(z(t) +pt) +p(t) < =  min_ f(z(t) +a) +P+n< -
a€[~p—n,p+n)

Since n > 0, we may define t3 = (2(t1) —Z4(n))/n+t1+1. Then z(t3) < z(t1) —n(ts—t1) <

Z4(n), a contradiction. Therefore, there exists a to > ¢; such that z(t2) = Z4+(n). Now

2 (ta) = —f(2(t2) + p(t2)) + p(t2) < — min f(@+(n)+a)+p+n< —n.
a€[—p—n,p+n)

Then either there exists a minimal ¢3(n) > t2(n) such that z(t3) = Z4(n) or we have that
2(t) < Z4(n) for all t > to(n). In the former case, we must have 2’(t3) > 0. But once again

we have

Z(t3) = —f(z(t3) + pts)) +p(ts) < — min  f(@4(n)+a)+p+n < —n,
a€[—p—n,p+1)

a contradiction. Thus we have z(t) < Zy(n) for all t > t3(n), which implies that
lim supy_ o 2(t) < 74 (5).
Suppose that there is ¢;(n) > T'(n) such that z(t1) < —z_(n). If not, it follows that

z(t) > —z_(n) for all t > T'(n)

and we have that liminf; o 2(t) > —Z_(n), which implies that lim inf; , z(t) > —z_(D).

We will show that there is a t2(n) > t1(n) such that z(t2) = —Z_(n) and moreover that
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for all t > to(n) that z(t) > —Z_(n). This will imply that liminf; , 2(t) > —Z_(n) or
that liminf; , 2(t) > —z_(D).

By the definition of ¢; we have z(t1) + p(t1) < 0 and

Z(t1) = —f(z(t1) +p(t1)) +p(t1) > = max  f(z(t1) +a) —=p—n >
a€[~p—n,p+1]

Then we have either that z(t) < —Z_(n) for all ¢ > ¢1(n) or that there is a minimal

ta(n) > t1(n) such that z(t2) = —Z_(n). In the former case for every ¢t > t1(n) we have

2(t) = —f(z(t) +pt) +p(t) > = max  f(z(t) +a)=p—n>1.
a€[—p—n,p+1]

Since n > 0, we may define t3 = (2(t1)+z_(n))/—n+t1+1. Then z(t3) > z(t1)+n(tz—t1) >

—Z_(n), a contradiction. Therefore, there exists a ta > ¢; such that z(t2) = —Z_(n). Now
d(t2) = —f(a(t2) +p(t2)) +p(tz) 2 = max  f(Zi(n)+a)—D—n=n
a€[—p—n.p+]
Then either there exists a minimal ¢3(n) > t2(n) such that z(t3) = —Z_(n) or we have

that z(t) > —z_(n) for all t > t2(n). In the former case, we must have 2'(t3) < 0. But

once again we have

2 (t3) = = f(2(ts) +p(t3)) +p(t3) > —  max  f(Z4+(n) +a) —=p—n >,
a€[=p—n,p+1]

a contradiction. Thus we have z(t) > —z_(n) for all ¢ > t2(n), which implies that
liminfy,o 2(t) > —z_ (D).

We have thus shown that

limsup 2(t) < z4(p), liminfz(¢t) > —x_(p),

t—o0 t—o0
and so limsup,_,  |2(t)] < max(z4(p),z_(p)), as required.

Since limsup;_, . [p(t)| < P, it follows that

limsup |z (t)| < B+ max(z-+ (5), —(7))-

t—o00
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Therefore using Lemma 3.10.1 (specifically (3.10.5)), we have

limsup |z(t)| < p+ max(z4(p),z—(p)) < Z(f,p),

t—o00

which is precisely the final estimate required. ]

3.10.3 Proof of Theorem 3.4.3

Let €. be the event defined in (3.9.1). Then for every w € Q. we may define 2(t,w) :=
X(t,w) —Y(t,w) for t > 0 where Y is the solution of (3.2.3). Then z(0) = X(0) and each

sample path of z is in C'1(0, c0) with
Z(tw) = —f(z(t,w) + Y (t,w)) + Y (t,w), t>0.

If 6 obeys (3.3.9a) and (3.3.9b), it follows from part (B) of Theorem 3.3.1 that there exists
an a.s. event {1, defined by (3.3.10), such that there is a finite, positive and deterministic
Y satisfying (3.3.12) i.e.

Y = sup limsup|Y (¢, w)|.

weQ t—oo

Let Q9 = Q1 N Q.. Fix w € Q9. Then by Lemma 3.10.2, with Y (-,w) in the role of p, and

z(+,w) in the role of z, we have that

limsup |z(t, w)| < max(z(Y),z_(Y)).

t—o0
Putting X (-,w) in the role of z in Lemma 3.10.2, we can infer from Lemma 3.10.2 that
for w € Qo

limsup | X (t,w)| < Z(f,Y).

t—o00

Since this estimate holds for all w € Q9, we have precisely (3.4.12), as required.

3.10.4 Proof of Proposition 3.4.3

For a given f, f* and f~ are non—decreasing functions. We show first that lim, o f*(z) =
0.
Since f(z) — oo as © — oo, there exists a > 0 such that f(z) > 1 for all x > a. Let

€ be any positive number with € < a. Then, as f is continuous and strictly positive on
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[, a], it follows that there exists z. € [e,a] such that 0 < f(z.) = mine<y<q f(y). Define
5(e) = f(xe). Then, if 0 < x < §(¢), we have that fT(z) < e. To justify this, suppose
to the contrary that f*(z’') > € for some 2/ € (0,6(¢)). Then f*(z') = sup{z > 0 :
f(z) = 2'} > e. Now, for ft(z') =: 2/ > ¢, we have f(2') > f(z.) = d(e). However,
by hypothesis §(€) > 2/, so f(2') > a’. However, 2/ = fT(z) = sup{z > 0: f(z) = 2/}
implies that f(2') = 2/, so we have a contradiction. Therefore, for every € € (0,a) there
exists a § = d(e) > 0 such that if 0 < x < d(¢), we have that fT(z) < e. Thus, as f is
a non-—negative function, and € € (0,a) is arbitrary, this is precisely lim,_,o+ f*(z) = 0.
The proof that lim,_,o f~(x) = 0 is similar.

Note that lim, oo fT(2) = limy oo f(2) = oo (by (3.4.8)) so it is clear that y +—
Z(f,y) is increasing, and moreover that lim, .o Z(f,y) = oo. Also, as lim, g+ f1(z) =
lim, 0 f~(x) = 0, we have that lim,_,o Z(f,y) = 0, which proves part (i).

To prove part (ii), suppose first that there is > 0 such that fi7(2) < fo™(x). By
definition, fi(z) > x for all z > f;7(z). Since fi™(x) < fo (x), we have fi(fo™(x)) > .
But fo(f2"(2)) > fi(f2"(2)) by (3.4.5). Hence fo(fo™(2)) > z. But fo(f2™(2)) = z, by

definition, so we have the contradiction = > x. Hence
AT (@) > fot(x), z=>0. (3.10.10)

Suppose next there is y < 0 such that f; (y) > f, (y). By definition, fi(z) < y for
z < fy (y). Since f5 (y) < fy (y), it follows that fi(f; (y)) < y. By (3.4.5), we have
—f2(u) = = fi(u) for allu < 0. Hence with u = fy (y), we get — fo(f5 (v)) = —f1(f5 (v)) >

—y. But fa(f5 (y)) = y, by definition, so we have —y = —fo(fy (v)) > —f1(fy () > —v,

a contradiction. Thus we have f; (y) < f; (y) for all y < 0, or

—fi ) =—f3(y), y<O. (3.10.11)

Therefore, it follows from (3.4.11), (3.10.10) and (3.10.11) that

T(f2,y) = 2y + max(fo* (y), — f5 (—y))

<2y +max(f1"(y), — 1" (—y)) = Z(f1,v),

as required.
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Chapter J
Asymptotic Classification of Finite

Dimensional Nonlinear SDEs

4.1 Introduction

4.1.1 Discussion on hypotheses

In the previous chapter, we employed results on the linear equation studied in Chapter 2,

to enable us to analyse the asymptotic behaviour of the scalar nonlinear SDE
dX(t) = —f(X(t))dt+ o(t)dB(t) (4.1.1)

where the underlying deterministic ODE has a unique globally stable equilibrium at zero.
In this chapter, we seek to extend our results in Chapter 3 to the finite-dimensional case,
expecting that the results on finite dimensional affine equations in Chapter 2 can be of
help.

Just as in Chapter 2, we will work with a d—dimensional system, so the noise intensity will
be a continuous d x r matrix—valued function and B a r—dimensional standard Brownian
motion. f should be a function from R? to R? and be continuous so that solutions of
the SDE can exist. However, it is important to ask how we should capture reasonably the
assumption that x = 0 is a unique globally stable equilibrium solution of (4.1.1).

As to uniqueness, we must request that f(z) = 0 if and only if x = 0. Global stability
is however more difficult to characterise, and in general even deterministic research has

focussed on giving sufficient conditions under which all solutions of

2() = —f((1)) (4.1.2)
obey z(t) — 0 as t — oo. One popular assumption in the stochastic literature is the so

called dissipative condition

(x, f(z)) >0 for all z # 0,
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and it is easy to see that this yields z(t) — 0 as ¢ — oo, by showing that the Liapunov
function V (z(t)) = ||z(t)||3 is decreasing on trajectories. It is also clear that the dissipative
condition makes x = 0 the unique equilibrium, for if there were another at z* # 0, then

we have

0= (", 0) = (", f(z")) >0

a contradiction. We see also that in the one-dimensional case, the condition zf(z) > 0
for x #£ 0, which characterises the existence of a unique and globally stable equilibrium, is
nothing other than the dissipative condition.

The analysis of good sufficient conditions on f which guarantee global stability for the
ordinary equation (4.1.2) forms a substantial body of work, and rather than attempting
to trace this, we mention the original contributions of Olech and Hartman in a series of

papers in the 1960s. In Hartman [35], global stability is assure by

[J(x)]ij = gxf; (x) is such that H(x) := %(J(a:) + J(z)T) is negative definite  (4.1.3)

In the two—dimensional case, Olech [62] proves that
traceJ(z) <0 and |f(z)| > ¢ > 0 for |z| > z* (4.1.4)
suffice. The second of these conditions is weakened in Hartman and Olech [36]to

||| f(x)| > K for all |x| > M, or / ”iﬂlf |f(z)|dp = 400 (4.1.5)
0 llzl=p

and the first of Olech’s assumptions is modified to

a(z) <0, where a(z) = 1%?%X§d{)\i(x) + Aj(2)} (4.1.6)

and the A\(x)’s are eigenvalues of H(x). The local asymptotic stability of the equilibrium is
also assumed. In the 1970’s Brock and Scheinkman [29] demonstrated that some of Olech
and Hartman’s conditions can be deduced from Liapunov considerations. In particular,
they show that some of the conditions used in [35] imply the dissipative condition. This is
of particular interest to us, as our approach to understanding the stability and boundedness
of solutions may be considered a Liapunov—like approach. A more recent paper of Gasull,

LLibre and Sotomayor [34] considers the relationships between these conditions and global
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stability. As the chapter develops, the relationship between these existing conditions and
the conditions we will need are drawn out.

Given that our basic assumption which will guarantee the stability of the underlying
deterministic equation is the dissipative condition, in this chapter we investigate how the
results in Chapter 3 can be extended to the finite-dimensional case. Roughly speaking, we
are able to prove analogues of the main results in Chapter 3 concerning a characterisation
of asymptotic stability (under weak conditions on f) and a classification of the asymptotic
behaviour (under strong mean-reverting conditions far from the equilibrium).

However, in this chapter somewhat stronger assumptions on f are needed in order
to achieve this. In Chapter 3, we were able to prove our results requiring only that f
be continuous, so that even when solutions might not be unique, we can ensure that
all solutions have the same property. In this chapter for our stability and boundedness
results, we have imposed a local Lipschitz condition on f. In the case of stability this
makes our argument more manageable, and we conjecture that the assumption could be
relaxed. However, the proof of boundedness makes use of a comparison argument in which
the existence of a unique solution of an equation (whose solution majorises the solution
of the SDE) is essential, and the removal of the Lipschitz assumption in this case is more
difficult to achieve.

In the case where we prove stability, we have found that it is no longer enough to assume
merely the global stability condition that sufficed in the scalar case. Instead, our proof
requires that f obey

liminf inf (y, f(y)) > 0.

=00 Jy|=z
It is interesting to notice that this condition implies the first condition in (4.1.5). Moreover,
we speculate that in the finite dimensional stochastic case, it may be necessary for the
function f to provide some minimal strength of mean reversion at infinity, because the
stochastic part of the equation can be transient (in the sense that its norm can grow
to infinity as ¢ — 00). An example of this possibility was given in Example 2.2.1 in
Chapter 2. It is reasonable to assign the source of this problem to the transience of the

stochastic perturbation in the finite dimensional part, because in the scalar case, where no
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additional condition on f is needed, the perturbation fo s) dB(s) being a time—changed
one—dimensional Brownian motion, is recurrent.

To give some motivation as to why we expect some extra condition on f in the presence
of a cumulatively transient perturbation, we recall the deterministic results in Chapter 1,

and write the differential equation in the integral form

t
= - / f(z ds+/ g(s)ds, t>0. (4.1.7)
In the case when g(¢) — 0 but fo s)ds = 400, we have shown that unless f has enough

strength to counteract the cumulative perturbation fo s) ds, it is possible that x(t) — oo

as t — oo. If one writes the stochastic equation in integral form

=£— / f(X ds—i—/ta(s)dB(s), t >0,
0
we can guess that when the cumulative perturbation fo s) dB(s) is not convergent (which
happens when o ¢ L?([0, 00); R%*")), some minimal strength in f is needed to keep the
solution from escaping to infinity.

There is another reason to believe that the analogy with the deterministic equation here
is justified. In the case when ¢ is in L'(0,00) and the cumulative perturbation fo s)ds
converges, we have shown in Chapter 1 that the solution of (4.1.7) obeys z(t) — 0 as
t — oo using only the global stability condition zf(z) > 0 for  # 0, which is nothing
other than the dissipative condition in one dimension. In this chapter, a direct analogue
of this result in the stochastic case is proven. It can be shown that when f obeys only
the dissipative condition, and ¢ € L2([0,00);R¥*") (so that the cumulative stochastic

perturbation fo s)dB(s) converges), then X (t) — 0 as t — oo a.s.

4.1.2 Set—up of the problem and main results

Given these general considerations, we now summarise the problem to be studied in precise
terms, and outline the main results of the chapter. Let d and r be integers. We fix a
complete filtered probability space (€2, F, (F(t))¢>0,P). Let B be a standard r—dimensional
Brownian motion which is adapted to (F(t)):>0. We consider the stochastic differential
equation

dX(t) = —f(X(t))dt + o(t)dB(t), t>0; X(0)=¢eRY (4.1.8)

153



Chapter 4, Section 1 Asymptotic Classification of FiniteDimensional Nonlinear SDEs

We suppose that
fe CRERY); (x, f(x)) >0, w#0;  f(0)=0, (4.1.9)

and that o obeys (2.1.1). To simplify the existence and uniqueness of a unique continuous
adapted solution of (4.1.8) on [0,00), we assume that f : R? — R? is locally Lipschitz
continuous. See e.g., [55]. Hereinafter, we refer to this unique continuous and adapted
process as the solution of (4.1.8).

In the case when o is identically zero, it follows under the hypothesis (4.1.9) that the

solution x of equation (1.2.5)

obeys
lim (¢ &) = 0 for all £ € RY. (4.1.10)
t—00

Clearly z(t) = 0 for all t > 0 if £ = 0. The question naturally arises: if the solution x of
(1.2.5) obeys (4.1.10), under what conditions on f and o does the solution X of (4.1.8)
obey

tlgrolo X(t,€) =0, as. for each £ € R% (4.1.11)

In Chapter 3, we showed under the scalar version of condition (4.1.9) that the solution

X of (4.1.8) obeys (4.1.11) if and only if o obeys

o
Sscalar (€) Z 1-0 < < 400, forevery e >0, (4.1.12)
n=0 an o?(s)ds

n

where @ is the distribution function of a standardised normal random variable. Corre-
sponding integral conditions were developed also. In this chapter, we show that a corre-
sponding condition on ¢ also suffices. In fact, we show in Theorem 3.5.1 that if f obeys
(4.1.9) and is locally Lipschitz continuous, and o is also continuous, then the solution X

of (4.1.8) obeys (4.1.11) if and only if the condition (2.1.4) from Chapter 2 holds i.e.,

oo
= Z 1—® < +o00, for every € > 0, (4.1.13)

=i W”“ lo(s)13(s) ds
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provided that f obeys

There exists ¢ > 0 such that ¢ := liminf inf (y, f(y)), (4.1.14)

=00 y|=z
a condition weaker than, but similar to, (1.2.12). As in the scalar case, therefore, we see
that the condition that guarantees the stability of the linear equation when perturbed by
o suffices also for all nonlinear equations for which f obeys (4.1.14)
In the case when (4.1.14) is not assumed, it can still be shown that if (4.1.13) does not
hold, then
P[X(t,&) — 0 as t — oo] = 0 for each & € RY.

Also, if (4.1.13) holds, the only possible limiting behaviour of solutions are that X (¢) — 0
as t — oo or | X(t)|| — oo as t — co. In the case when o € L?(0,00), X obeys (4.1.11)
without any further conditions on f.

The other major result in the chapter (Theorem 4.2.6) gives a complete classification of
the asymptotic behaviour of solutions of (4.1.8) under a strengthening of (4.1.14), namely

lminf it & @)

e ) I (4.1.15)
which is a direct analogue of the condition needed to give a classification of solutions of
(4.1.8) in the scalar case. We show that solutions of (4.1.8) are either (a) convergent to zero
with probability one (b) bounded, not convergent to zero, but approach zero arbitrarily
close infinitely often with probability one or (c¢) are unbounded with probability one.
Possibility (a) occurs when S(e) is finite for all ¢; (b) happens when S(e) is finite for
some €, but infinite for others, and (c) occurs when S(e) is infinite for all e. Therefore, this
result is directly analogous to Theorems 2.2.5 which applies to linear stochastic differential
equations whose underlying deterministic part is globally stable.

Although the condition (4.1.13) is necessary and sufficient for X to obey (4.1.11), it
may prove to be a little unwieldy for use in some situations. For this reason we deduce
some sharp sufficient conditions for X to obey (4.1.11). If f obeys (4.1.9) and is locally
Lipschitz continuous, and o is continuous but is not square integrable, because o;; is not
square integrable for j € J;, then

t t
. 72(t75) 2 . 2s 2 —
th_glo ; e lé‘]. o;(s)ds - loglog /0 e ZEEJ' oi(s)ds | =0, (4.1.16)
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implies that the solution X of (4.1.8) obeys (4.1.11). In the spirit of Theorem 3.5.1, we also
establish converse results in the case when ¢ — ||o(t)[|% is monotone (Theorem 3.5.3), and
demonstrate that the condition (4.1.16) is hard to relax if we require X to obey (4.1.11).

The main results are proven by showing that the stability of (4.1.8) is intimately con-
nected with the the stability of a linear SDE with the same diffusion coefficient (Theo-
rem 4.2.2). The stability of the linear SDE can be characterised by exploiting the fact
that an explicit solution for the equation can be written down, and that the solution is
a Gaussian process. As to the organisation of the chapter, notation, and statements and
discussion about main results are presented in Section 4.2, with the proofs of these results

being in the main part deferred to Section 4.3.

4.2 Statement and Discussion of Main Results

We start by showing that solutions of (4.1.8) will become arbitrarily large whenever the
diffusion coefficient is such that solutions of the corresponding affine equation (2.1.2) have
the same property. Furthermore, if solutions are of (2.1.2) are bounded but not convergent

to zero, then solutions of (4.1.8) do not converge to zero.

Theorem 4.2.1. Suppose that f satisfies (1.2.4). Suppose that o obeys (2.1.1) and let S

be defined by (2.2.5). Let X be the solution of (4.1.8).

(A) Suppose that S obeys (2.2.10). Then
limsup || X (¢)|| = +o0, a.s.
t—ro0
(B) Suppose that S obeys (2.2.8). Then there is a deterministic c3 > 0 such that
limsup || X (¢)|| > c3, a.s.
t—o0

We show that its solutions can either tend to zero or their modulus tends to infinity if

and only if solutions of a linear equation with the same diffusion tend to zero.
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Theorem 4.2.2. Suppose that [ satisfies (4.1.9) and (1.2.4). Suppose o obeys (2.1.1).
Let X be the solution of (4.1.8), and Y the solution of (2.1.2). Then there ezist a.s.

events 01 and Qo such that

{w: lim X(t,w) =0} C{w: lim Y (t,w) =0} N Qy, (4.2.1)
t—o0 t—o0
2 i =0} C i = 2 i = . (4.2,
{w tliglo Y(t,w) =0} C{w tligloX(t,w) 0} UA{w tllglo | X (t,w)|| =00} NQ. (4.2.2)
When taken in conjunction with Theorem 2.2.1, we see that the condition (2.2.6) comes

close to characterising the convergence of solutions of (4.1.8) to zero, contingent on the

possibility that || X (¢)|| — oo as t — oo being eliminated.

Theorem 4.2.3. Suppose that f satisfies (4.1.9) and (1.2.4). Suppose o obeys (2.1.1).

Let X be the solution of (4.1.8). Let ® be given by (2.2.2).
(i) If o obeys (2.2.6), then for each & € RY,

{tlggo | X (¢, &) = o0} U {tlggo | X(t,E)| =0} s an a.s. event.

(ii) If X(t,&) — 0 with positive probability for some & € R?, then o obeys (2.2.6).

Proof. To prove part (i), we first note that (2.2.6) and Theorem 2.2.1 implies that Y (¢) — 0
as t — oo a.s. Theorem 4.2.2 then implies that the event {lim;_, || X (¢,&)|| = oo} U
{limyy00 X (¢,€) = 0} is a.s. To show part (ii), by hypothesis and Theorem 4.2.2, we see
that P[Y(t) — 0 ast — oo] > 0. Therefore, by Theorem 2.2.1, it follows that o obeys
(2.2.6). 0

Part (i) of Theorem 4.2.3 is unsatisfactory, as it does not rule out the possibility that
| X ()| = oo as t — oo with positive probability. If further restrictions are imposed on f
and o, however, it is possible to conclude that X (¢,£) — 0 as ¢ — oo a.s. In the scalar

case, it was shown in Appleby and Rodkina [6] that no such additional conditions are

required.
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Our first result in this direction imposes an extra condition on o, but not on f. We note
that when o € L2([0, 00); R*™), Y obeys (2.2.7) and that X obeys (4.1.11). However, we
cannot apply directly the semimartingale convergence theorem of Lipster—Shiryaev directly
(see e.g., [51, Theorem 7, p.139]) to the non—negative semimartingale || X ||, because it is
not guaranteed that E[|| X (¢)]|?] < +oco for all t+ > 0. The proof of the following theorem,
which is deferred to the next section, uses the ideas of [51, Theorem 7, p.139] heavily,

however.

Theorem 4.2.4. Suppose that f satisfies (4.1.9) and (1.2.4). Suppose also that o obeys
(2.1.1) and o € L?([0,00); R¥*"). Let X be the solution of (4.1.8), and Y the solution of

(2.1.2). Then X obeys (4.1.11) and lim;_,o Y () = 0 a.s.

It can be seen from Theorem 4.2.4 that it only remains to prove Theorem 4.2.2 in
the case when o ¢ L%([0,00); R*"). Under an additional restriction on f (but no extra
condition on o) we can give necessary and sufficient conditions in terms of o for which X

tends to zero a.s.

Theorem 4.2.5. Suppose f obeys (1.2.4) and in addition to (4.1.9), obeys

liminf inf (z, f(z)) > 0. (4.2.3)

7—00 ||xH:r

Suppose that o obeys (2.1.1). Let X be the solution of (4.1.8). Let 0 be defined by (2.2.4)

and let ® be given by (2.2.2). Then the following are equivalent:
(A) S obeys (2.2.6);
(B) limy_y00 X (t,€) = 0 with positive probability for some & € R,

(C) limy_yo0 X (t,€) = 0 a.s. for each & € RY,

Notice that no monotonicity conditions are required on |o||% in order for this result to
hold. The condition (4.2.3) was not required to prove an analogous result in the scalar case
in [6]. However, the condition is weaker than the condition (1.2.12) which was required in

the scalar case to secure the stability of solutions of (4.1.8) in [10].
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There is one final result in this section. It gives a complete characterisation of the

asymptotic behaviour of solutions of (4.1.8) under a strengthening of (4.2.3), namely

liminf inf SO L (4.2.4)
roo |lzf=r |||

(4.2.4) is a direct analogue of the condition needed to give a classification of solutions
of (4.1.8) in the scalar case. The following result is therefore a direct generalisation of a

scalar result from [6] to finite dimensions.

Theorem 4.2.6. Suppose f obeys (1.2.4), (4.1.9), and (4.2.4). Suppose that o obeys
(2.1.1). Let X be the solution of (4.1.8). Let 0 be defined by (2.2.4) and let ® be given by

(2.2.2). Then the following are equivalent:
(A) If S obeys (2.2.6), then limy_,oo X (t) =0, a.s. for each & € RY;
(B) If S obeys (2.2.8), then there exists deterministic 0 < ¢; < ca < 400 such that
a < li?iiljp X)) < c2, a.s., for each & € R

Moreover,

liminf || X (¢)]| =0, a.s.

t—o00

(C) If S obeys (2.2.10), then limsup,_, ., | X (t)|| = +oo a.s., for each & € R,

4.3 Sufficient Conditions for Asymptotic Behaviour

Due to Lemma 2.3.1 and Theorem 4.2.2, the functions Y; determine the asymptotic be-

haviour of X. Let N C {1,2,...,d} be defined by
N={ie{1,2,...,d} : o; ¢ L*(0,00)}. (4.3.1)

where o; is defined by (2.3.1). Note that if i € N, then o; € L%(0, 00) and we immediately

have that Y;(t) — 0 as t — oo a.s.
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Theorem 4.3.1. Suppose that f satisfies (4.1.9), (1.2.4) and (4.2.3). Suppose that o
obeys (2.1.1) and o ¢ L?([0,00); R?*"). Let X be the solution of (4.1.8). Let N be the set

defined in (4.3.1) and 3; be defined by (2.3.2) for each i € N.
(1) If 8i(t) - 0 as t — oo for each i € N, then X obeys (4.1.11).
(ii) If X obeys (4.1.11), then liminf; ,o 3;(t) = 0 for each i € N.
(113) If iminf; oo X;(t) > 0 for some i € N, then P[limy_,o X (t) = 0] = 0.

(v) If im0 2i(t) = 00 for some i € N then limsup,_, . || X (t)|| = oo a.s.

An interesting fact of this result is that it is unnecessary for o(t) — 0 as t — oo in order
for solutions of (4.1.8) to obey (4.1.11). In fact, we can even have limsup,_, . ||o(t)[|% = oo
and still have X (t) — 0 as t — oo a.s. See [10] for examples.

Note that the condition

. 2 .
tll)rgo llo(t)]|7logt =0 (4.3.2)

implies that ¥;(¢) — 0 as t — oo for each i € N, and for i« ¢ N it still implies that

Yi(t) = 0 as t — co. Also note that the condition
lim o2(t)logt = +oo for some i € {1,...,d} (4.3.3)
t—o0

implies that 3;(t) — oo as t — oo, and finally that the condition

liminf o2 (t) logt > 0
t—o00

implies that liminf;_, o 3;(¢) > 0. The next result is therefore an easy corollary of Theo-

rem 4.3.1.

Theorem 4.3.2. Suppose that f satisfies (4.1.9), (1.2.4) and (4.2.3). Suppose that o

obeys (2.1.1). Let X be the solution of (4.1.8).

(i) If for all i € {1,...,d} o; obeys limy_, 02(t)logt =0, then X obeys (4.1.11).
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(ii) If there is i € {1,...,d} such that o; obeys liminf; . o2(t)logt € (0,00), then

P[limy_,o0 X(t) = 0] = 0.

(iii) If there is i € {1,...,d} such that o; obeys lim; o 02(t)logt = 0o, then

lim sup,_, . || X (¢)|| = o0 a.s.

In [31], Chan and Williams have proven in the case when t — o2(¢) is decreasing, that
Y obeys (2.2.7) if and only if o obeys (3.1.5). Therefore, our final result is a corollary of

this observation and of Theorem 4.2.2. It can also be deduced from Theorem 4.2.5.

Theorem 4.3.3. Suppose that f satisfies (4.1.9), (1.2.4) and (4.2.3). Suppose that o

obeys (2.1.1) and ||o||% is decreasing. Let X be the solution of (4.1.8). Then the following

are equivalent:
(A) o obeys lim;_,o ||o(t)]|%logt = 0;
(B) lim;_y00 X (t,€) = 0 with positive probability for some & € RY;

(C) limy_yo0 X (t,€) = 0 a.s. for each & € RY,

Another result in the same direction, but with a slightly weaker monotonicity hypothesis

is the following.

Theorem 4.3.4. Suppose that f satisfies (4.1.9), (1.2.4) and (4.2.3). Suppose that o

obeys (2.1.1) and that (fn—H |o(s)||% ds)n>0 is mon—increasing. Let X be the solution of

n

(4.1.8). Then the following are equivalent:
(A) o obeys limy, 0 f;“ lo(s)||% ds - logn = 0;
(B) limy_yo0 X (t,€) = 0 with positive probability for some & € R%;

(C) limy_yo0 X (t,€) =0 a.s. for each £ € RY,
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4.4 Proof of Results

4.4.1 Proof of Theorem 4.2.4

By Ito’s rule, we have

¢ t
IX®* = IIEHQ—/O 2(X(s), f(X(s))) ds + ; lo(s)7- ds
r t d
+Z/ > 2Xi(s)oij(s)dBj(s), t>0. (4.4.1)
7=1 0 =1
Define M to be the local martingale given by
r t d
Mt =Y / S 2X,(s)035(s) dB; (s), ¢ > 0.
j=170 i=1

and let
t t
Ut) = [ 20X XD A0 = [ lolids. >0
Since (z, f(z)) > 0 for all x € R% and o € L?([0,00); R?¥"), it follows that A and U are

continuous adapted increasing processes. Therefore by Theorem 0.3.6, it follows that
Jim X0 = L €[0,00),  a.s.

and that
lim [ (X(s), f(X(s))ds=1¢€[0,00), a.s.

t—o00 0

By continuity this means that there is an a.s. event A = {w : [|X(t,w)| — /L(w) €

[0,00) as t — oo}. We write A = A U Ay where
Ay = {w: [IX(t,w)]| = VL(w) € (0,00) as t = oo},
and Ap = {w: X(t,w) — 0 as t — oo}. Suppose that w € A;. Define
F(z) = (z, f(z)), zcR%.
By (4.1.9), we have that F'(z) = 0 if and only if = 0. Define for any r > 0
I;?:fTF(x) =: ¢(r) = 0.

Since f is continuous, F' is continuous, therefore ¢ is continuous. Hence min|,—, F(z) =

¢(r). Suppose there is r > 0 such that ¢(r) = 0. Then there exists x with |z| = r such that
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F(z) = ¢(r) = 0. But this implies that z = 0, a contradiction. Moreover ¢ is continuous

and positive definite. Hence for w € A, we have

liminf(X (¢t,w), f(X(t,w)) > ¢(v/L(w)) > 0.

t—o00

Therefore

liminfi/ (X (s,0), F(X(5,0))) ds > 6(v/T(@)) > 0. (4.4.2)
0

t—r00
Since the last two terms on the righthand side of (4.4.1) have finite limits as ¢ — oo,

(4.4.2) implies that for w € Ay that

. X2(tw)
< _— = —
0< thjgo ; 2¢0(y/L(w)) <0,
a contradiction. Therefore P[Ay] = 0. Since P[A] = 1, we must have P[4y] = 1, as

required.

4.4.2 Proof of Theorem 4.2.1

Define
Qx = {w € Q) : there is a unique continuous adapted process X (4.4.3)
for which the realisation X (-,w) obeys (4.1.8)}
Oy = {w € ) : there is a unique continuous adapted process Y (4.4.4)
for which the realisation Y (-,w) obeys (2.1.2)}.
Let

Q. = Qx NQy. (445)

If S obeys (2.2.10), it follows from Theorem 2.2.1 that limsup,_, . ||Y (¢)|]| = +o0, a.s.,
and let the event on which this holds be 27 C Qy. Suppose that there is an event
A ={w :limsup,_, . || X(t)|| < oo} for which P[A] > 0. Define 41 = AN Q; N, so that
P[A;] > 0.

Next, rewrite (4.1.8) as
dX(t) = (=X (1) + [X (1) = f(X®))]) dt +o(t)dB(t), t=0; X(0)=¢.
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Therefore on Qx we obtain
t t
X(t) =gt + / e (X (s) = f(X(s)))ds + e / e*o(s) dB(s).
0 0
Since Y obeys (2.2.1), for w € Q. we have
t
Yt w) = X(tw) — g / (X (s,w) — F(X(s5,0)))ds, £>0.  (4.4.6)
0

Define for w € Ay

X" (w):= li?isup I1X ()| < 400, (4.4.7)

and define f(z) = supjy| <. |f(y)| and F(x) =2z + f(z) for x > 0. Then for each w € Ay,

it follows from (4.4.6) that

lim sup |V (t, w)|| < 2X*(w) + f(X*(w)) = F (X" (w)),

t—o00
and as F(X*(w)) < +00, a contradiction results.
To prove part (B), first note that F is continuous and increasing on [0, oo) with F(0) = 0

and lim,_,~, F'(x) = 400. Therefore, for every ¢ > 0 there exists a unique ¢’ > 0 such that
F(c) = ¢, or ¢ = F7!(c). Suppose that S obeys (2.2.8), so that by Theorem 2.2.1 there
is a ¢; > 0 such that limsup, ., ||[Y(¢)|| > ¢1 a.s. Let the event on which this holds be

Q9. Suppose now that the event A, defined by
Ay = {w € Qx : limsup | X (t,w)|| < F~1(c1)},
t—00

and suppose that P[Ag] > 0. Define Az = Az N Qe N Qy. Then P[A3] > 0. For w € A3,
X*(w) as given by (4.4.7) is well-defined and finite, and in fact X*(w) < F~1(c1). As
before, from (4.4.6), we deduce that limsup,_, . ||V (t,w)|| < F(X*(w)). But then we have
c1 < F(X*(w)), which implies F~1(c;) < X*(w) < F~!(c1), a contradiction. Thus we

have that P[As] = 0, so limsup,_,, || X (t)|| > F~!(c1) =: c3 > 0 a.s., as required.

4.4.3 Proof of Theorem 4.2.2

In this proof, we implicitly consider the case where o & L2([0, 00); R9*"), as Theorem 4.2.4
shows that the result holds in the case where o € L%([0, 00); R4*"), with each of the events

{w im0 Y(¢,w) = 0} and {w : lims o0 X (¢,w) = 0} being a.s.
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We prove that X(t) — 0 as t — oo implies Y (¢) — 0 as t — oo i.e., (4.2.1). Since f
obeys (4.1.9) it follows from (4.4.6) that for each w € {w : X(t,w) — 0 ast — oo} N Qe
that Y (t,w) — 0 as t — oo, proving (4.2.1).

We now prove that Y(t) — 0 as t — oo implies X (¢) — 0 as t — oo or || X (¢)| — oo as
t— o0, ie. (4.2.2).

Define Q9 = {w : limy_,o Y (t,w) = 0} N Qy and

Ap ={w: hg(l)gf | X (t,w)| = 0},
Ay = {w: liminf | X (1.0)]| € (0,50},

Ao = {w: hgg)lf | X (¢, w)|| = o0}
Also define

Qo= NAx NA) =N QN A,
Q+:QQQQXﬂA+:QgﬂQeﬂA+,

Do = NAx NA=0N0NAs.

Finally define A} = {w : limy_oo X (¢t,w) = 0} and Q; = Qo N Qx N A;. Clearly 47 C Ag
and Q1 C Q.
Define for each w € Q. the realisation z(-,w) by 2(t,w) = X(t,w) — Y (¢,w) for t > 0.

Then z(-,w) is in C'*(0, 00) and obeys
Z(tw) = —f(X(tw)+Y(tw) = —f(z(t,w) + Y(t,w)) + Y(t,w), t > 0; 2(0) = £.
Let w € Qo UQ,. Then liminf; o | X (¢,w)] < +00. Define also
g(t,w) = f(z(t,w)) — f(2(t,w) + Y (t,w)) + Y(t,w), t>0.
Since 2(-,w) is in C*(0, c0) we have

d /
Wl =20t w), # (t,w))
= 2(z(t,w), = f(2(t,w) + f(2(t,w)) = f2(t,w) + Y (E,w)) + Y (E,w))

= —2<Z(t, w), f(Z(t, W>)> + 2<Z(t7w)a g(tvw»'
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Since Y (t,w) — 0 as t — oo and liminf; , || X (t,w)|] =: L(w) < 400, it follows that

o N
liminf ||2(¢, w)[| < lim inf [ X (¢, w) || +[[Y'(Z, )]
= lim inf [ X (¢, )| + lim [[Y'(¢,w)[| = L(w).

Define A\(w) := liminf;_,~ ||2(¢,w)||. Then A\(w) < +oc.

STEP A: We now show that liminf; . ||2(¢,w)|| > 0 implies
lim sup ||z(t,w)|| < 4oc.
t—00

Proof of STEP A: Suppose A(w) > 0 and limsup,_, ||2(f,w)|| = +oc0. Since f is

continuous, and (x, f(x)) > 0 for x # 0, it follows that there exists F\ > 0 such that

(2, f(2))-

Fy:= inf
[2l1=3A/2
Also, as f is locally Lipschitz continuous, there exists K3y > 0 such that
|f(z) = f(y)| < Ksp|z —y|, forall [z] Vv |y| < 3A.
Let

3)\(0.)) y 2F/\(w)
2 3A(1+ Kg)\(w))'

€<

Since Y (t,w) — 0 as t — oo, there exists Ti(e,w) > 0 such that |V (t,w)| < € for all
t > Ti(e,w). Suppose that

limsup ||2(t,w)|| = +o0.

t—ro0
Then there exists To(e) > Ti(€) such that Ta(e) = inf{t > Ti(¢) : ||z(¢)|| = 3A/2}. Define

also
Ts3(e) = inf{t > Th(e) : ||z(t)|| = 5A/4}, Tu(e) = inf{t > T5(e) : ||z(¢)|| = 3A/2}.

Clearly with w(t) = ||z(t,w)]||?, we have w'(T3,w) < 0 and w'(Ty,w) > 0. Since z(Ty) =
3A\/2 we have (2(Ty), f(2(T4))) > F». Also we have ||z(Ty)+Y (Ty)|| < ||z(Tw)||+||Y (Ty)] <

302+ €< 3 s0

1 (2(Ta) + Y (1)) — f(2(T))]| < Kax|[Y(Ty)]| < Ksae.
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Collecting these estimates yields
w'(Ty)
= —2(2(T), £ (2(T))) + 2(2(T4), 9(T4))
= =2(2(Tw), f(2(T1))) + 2(2(Tw), £ (2(Ta)) — f(2(Ta) + Y (T1)) + Y (T4))
3\

< a2 Doy z%uﬂz(n» — F((T0) + Y (T0))|

< —2F)\ + 3\e + 3M\K3pe€ < 0.

Therefore we have a contradiction, because w'(7y) > 0.

STEP B: Next we show that liminf; , [|2(¢,w)| = 0 implies

limsup ||z(t,w)]|| < +o0.

t—00

Proof of STEP B: Suppose to the contrary that limsup,_, ||2(f,w)| = +o0. Fix
A > 0 arbitrarily. Proceeding exactly as in STEP A, we can demonstrate that the suppo-
sition limsup,_, [|2(t,w)|| = oo leads to a contradiction. Therefore we have shown that
liminf;,o ||2(f,w)]|| € [0, 00) implies that lim sup,_, [|z(¢, w)|| < +oo.

STEP C: Next we show that
liminf || X (t,w)|| < 400
t—o0

implies that liminf; o |2(t, w)| = 0, lim sup,_, . [|2(¢, w)]|| < +oo.

Proof of STEP C: First, we note that liminf; . ||X(¢t,w)|| < +oo implies that
liminf; o ||2(f,w)|| < +o00. By STEPs A and B, implies limsup,_,, ||z2(¢,w)| < +oo.
Define

limsup ||z(¢,w)|| =: A'(w) € [0, 00).

t—o00

Suppose that liminf;_, ||2(t,w)|| = A(w) > 0. Then A’ > X > 0. By the continuity of f,
the fact that A’ > X\ > 0, and the fact that f obeys (x, f(x)) > 0 for all = # 0, there exists

an I o» > 0 defined by

F ()N (w) = (z, f(2)).

min
Aw)/2< 2| <A (W)= M(w) /2

For every 8 > 0 there exists a Kg > 0 such that

|f(z) = f(y)] < Kglz —y|, forall [z V |y < B.
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Suppose now that € > 0 is so small that

Aw) A F\ (@), A ()

O N T Karoae) M (@) T A@)/2)°

Then there exists T1(e,w) > 0 such that |Y(¢t,w)| < € for all ¢ > Ti(e,w). Also, there
exists To(w) > 0 such that |z(t,w)| < A'(w) + A(w)/2 for all t > Th(w). Define A = A"+ \.

Now there exists a K > 0 such that
[f(x) = f)] < Kalz —yl, forall [z|V[y] < A.

Now let T5(e,w) = 1+T1(€,w) VTa(w). Then for t > T5(e,w) we have ||z(t,w)+ Y (t,w)]| <
N(w)+AMw)/24+€ < N(w) +Aw) = A(w) and [|z(t,w)]| < A(w). Therefore for t > T3(e,w)
we have
[{g(t, w), 2(t, W) < 20t ) IIf(2(F,w) + Y (8 w)) = f(2(Ew) | + (2(Ew), Y (E,w))
< KallY (8 w) (8 W)l + 2 w) Y (E w)]
< (L4 Kp)e(A 4+ X/2) = (1 + Kn\) (A + X/2)e.
Since liminfy_, o ||2(¢t,w)|| = AMw) > 0 there exists Ty(w) > 0 such that ||z(¢,w)|| > A(w)/2

for all t > Ty(w). Define T5(e,w) = 1 + Ty(w) V T3(€,w). Then for t > T5(e,w) we have

0<Aw)/2 < |z(t,w)]| < A(w) + A(w)/2, which implies that
(2(t,w), f(2(t,w))) = Fxar > 0.
Therefore for t > T5(e,w) we have
%Hz(t,w)\\Q = —2(z(t,w), f(2(t,w))) + 2{g(t, w), 2(t,w))
< =2(z(t,w), f(2(t,w))) + 2(1 + Kara) (A" + A/2)e
< —2F>\7A/ + 2(1 + KA/_H\)(A/ + )\/2)6
< —F>\7A/.

Therefore for ¢t > T5(e,w) we have

(8, )1 < l2(T5)I* = Faar(t = T5)-

Hence we have that [|z(t,w)||? — —oo as t — oo, which is a contradiction. Thus

liminf; o ||2(t, w)|| = 0, as required.
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STEP D: Suppose that

liminf | X (t,w)]| < +o0.
t—00

Then limy_, o0 X (t,w) = 0.
Proof of STEP D: By STEP C, liminf; , [|X(¢t,w)|| < +oo, this implies that

liminf; o ||2(t, w)|| = 0 and limsup,_, . [|2(¢,w)|| < +oo. If we can show that

lim [12(t,w)] = 0,

t—o00

we are done because X (t,w) = z(t,w) + Y (t,w) and Y (t,w) — 0 as t — co. Let n > 0. We
next show that limsup,_, ||2(¢,w)|| < n. Since f is locally Lipschitz there exists Ko > 0

such that |f(z) — f(y)| < Ka|x —y| for |z| V |y| < 2n. There also exists F;, > 0 such that

F,, := min(z, f(z)).
|z]=n
Let € > 0 be so small that
n Fn

N ———.

Since Y (t,w) — 0 as t — oo, there exists T7(e,w) > 0 such that ||Y(t,w)| < € for all

e <

t > Ti(e). Suppose that limsup, . ||2(¢,w)[| > 7. Since liminf; o0 ||2(¢,w)|| = 0, we may

therefore define

Tr(e,w) = inf{t > T1(e,w) : ||z(t,w)|| = n/2},

T3(e,w) = inf{t > Th(e,w) : ||2(¢t,w)| = n}.

Therefore, with w(t) = ||z(t,w)||?> we have that w'(T3(e,w)) > 0. Furthermore, for t €

[Ta(e,w), Ta(e, w)] we have [[z(¢,w)|| < n and [[2(t,w) + Y (t,w)|| <n+e<2nso
lg(t, Il < 1f(2(t,w)) = F(2(t,w) + Y (T + [V (T, w)|| < KoY (8 w)l| + € < (14 Ka)e.
Thus as [|z(T3)|| = 1, we have
[(2(T3), 9(T3))| < [|2(T3)[l[lg(Ts) || = nllg(T3)[| < n(1 + Kz)e.
Since ||z(T3)|| = n, we have (z(T3), f(2(T3)) > F, so therefore we have the estimate

w'(T3(e,w)) = —2(2(T3), f(2(T3))) + 2(z(T3), 9(T3))

< —2F, 4+ 2(1+4 K2)ne < 0,
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a contradiction. Hence T3(e,w) does not exist for any w € Q¢ U Q4. Therefore we have
limsup,_, . [|2(¢t,w)|| < n. Since n > 0 is arbitrary, we make take the limit as n | 0 to
obtain limsup, . [|2(t,w)|| = 0. Since X =Y + 2, and Y (t,w) — 0 as t — oo, we have

that X (t,w) — 0 as t — oo.

4.4.4 Proof of Theorem 4.2.5

Let Y be the solution of (2.1.2). We prove first that (2.2.6) implies (4.1.11). First, from
Theorem 2.2.1, we have that (2.2.6) implies Y (¢) — 0 as t — oo a.s. Moreover, if (2.2.6)

holds it follows that
Zl— (e/0i(n)) < +oo for each € >0

for each 7 € {1,...,d}. Therefore, we have that ®(¢/0;(n)) — 1 as n — oco. Hence

we have 0;(n) — 0 as n — oco. Define ¥;(¢)? := >0 () for ¢ > 0. Then with

a;(n) = f:H ¥2(s) ds we have lim,,_,o a;(n) = 0, and so with a(n) := Z;‘i:l a;(n), we

have lim,,_,, a(n) = 0. Hence

Note that ||o(t)[|% = Zle ¥i(t)2. For every t > 0 there is n € Ng such that t € [n,n+1].

t ) n—+ n+1 d
/0 lo(s) 3 ds < / lo(s)[3 ds = / 2 s

_Z/ ds_z /l+1

=1 [=0

—ilz:az Z (1).

Now

Therefore we have

and so

lim - / o (s) (4.4.8)
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Define the event A = {w : || X (¢,w)| — oo as t — oco}. We prove that P[A] = 0. Suppose
to the contrary that P[A] > 0. Define Q3 = Q5N Qx N A. Then by assumption P[Q3] > 0.

By (4.4.1) we have

IX ()2 =[] - / 2(X(s), f(X(s))) ds + / lo(s)|2ds +2M (&), t>0. (4.49)
0 0

where M to be the local (scalar) martingale given by

M(t) = Z/O in( )oii(s)dBj(s), t>0. (4.4.10)
Since f obeys (4.2.3), i.e

liminf inf (x, f(z)) =: A > 0,

r—00 ‘$| r

for w € 23 we have that

liminf(X (s,w), f(X(s,w)) > A,

5§—00
S0
2 t
liminf/ (X (s,w), f(X(s,w)))ds > 2],
t—oo Tt Jg
so for each e < \/3, there exists T7(e,w) > 0 such that

2

2 /0t<X(s,w),f(X(s,w))> ds> 20—, 1> Ti(e,w).

By (4.4.8), for every € > 0 there is T5(€e) > 0 such that

2
el _
t

1/: lo()[Bds < e, t> Th(e).
Let T'(e,w) =14 T1(e,w) V Ta(e).

Suppose there is a subevent A’ of A with P[A’] > 0 such that (M)(t,w) — oo as t — 0o
for each w € A’. Then liminf; ,o, M (t,w) = —oo and limsup,_,., M (t,w) = 400 for each
w € A’. Then by the continuity of M there exists 7(w) > T'(¢,w) such that M (r(w)) = 0.
Let t > T(e,w). Then

2 2 t
X w)l* €]l _21/ (X(s,w), f(X(s,w)))ds +
0

t ot t
M(t,w)
t

f0||0 )7 ds L 2M(Ew)
t

<e—2A+e+e+2

M(t
:—2)\+36+2(t’w)<—)\+

M(t,w)
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Hence

coa M)y

| X (7(w))?
0= w

)
a contradiction. Therefore we have that lim; o (M)(t) < +00 a.s. on A. Hence M(t)

tends to a limit as t — oo a.s. on A and so M(t)/t — 0 as t — oo a.s. on A. Therefore,

2
ey X1
t—o0 t
2 9 t 1 t M
—tmoup 52 [, s s+ § [ ot as + 20
t—o00 0 0

— lim sup _2% /O (X (s5,0), F(X(s,0))) ds

t—o00

1 t
_ —2liminf/ (X (s,), (X (5,w))) ds < —2) < 0,
tJo

t—o00

a contradiction. Therefore, we must have P[A] = 0. Thus by Theorem 4.2.2, it follows
that X (t) — 0 as t — oo a.s. We have shown that statement (A) and (C) are equivalent.

Statement (C) implies statement (B). It remains to show that statement (B) implies
statement (A). By Theorem 4.2.2, it follows that P[Y (t) — 0 as t — oo] > 0. Therefore
by Theorem 2.2.1 it follows that (2.2.6) (or statement (A)) holds. Thus (C) implies (B)

implies (A).

4.5 Proof of Theorem 4.2.6

We start by noticing that parts (A) and (C) of the theorem have already been proven;
part (A) is a consequence of Theorem 4.2.5, while part (C) is part (A) of Theorem 4.2.1.
The lower bound in part (B) is a result of part (B) from Theorem 4.2.1.

Therefore, it remains to establish the upper bound in part (B). However, the proof of
this result is technical, and relies on a number of subsidiary results. The main step is a
comparison theorem, in which || X is bounded by the above by the positive solution of Z

of a scalar stochastic differential equation.
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4.5.1 Auxiliary functions and processes

We start by introducing some functions and processes and deducing some of their impor-
tant properties. Let ¢ : [0,00) — R be defined by

¢(x) = inf M, x> 0; #»(0) =0. (4.5.1)

lyl== |y
Since f obeys (4.1.9) it follows that ¢ : [0,00) — [0,00). We start by proving that ¢ is

locally Lipschitz continuous.
Lemma 4.5.1. Suppose that f obeys (4.1.9) and (1.2.4). Then ¢ defined by (4.5.1) is

locally Lipschitz continuous and if pa(x) := /xp(\/x) then ¢o : [0,00) — R is continuous.

Proof. For = > 0 we have ¢(x) = inf|,_;(z, f(z2)) and as ¢(0) = 0, the same formula

holds for = 0. Then for any z,y > 0 we have

[0(x) — d(y)| = | inf (z, f(x2)) — inf (z, f(y2))

|2|=1 |z[=1

sup <Z, —f(xz)> — Sup <Z7 _f(yz)>‘

|21=1 |2|=1

< sup [(z, —f(z2)) — (2, —f(y2))]

|z|=1

= sup [(z, f(yz) — f(x2))]

|2=1

By the Cauchy-Schwartz inequality, |¢(z) — ¢(y)| < supj, =y | f(y2) — f(zz)[. Now, since
f is locally Lipschitz continuous we have for every n € N that there is K,, > 0 such that
|f(u) = f(v)] < Kp||lu— vl for all ||u|| V ||v]| < n. Now suppose that x Vy < n. Therefore,

we have

lp(z) — o(y)| < |Sl\l—p1 |f(yz) — f(x2)| < \Sl|l—p1 Knly — x| = Kply — =,

so ¢ is locally Lipschitz continuous. Notice also that |¢(z)| < K,|z| for all x < n.
To prove that ¢ is locally Lipschitz continuous, suppose that x,y € [0,n] and suppose

without loss of generality that 0 <y <z <n. Hence 0 < \/y < /x < /n. Write

$2(7) = da(y) = Va(6(V) — o(vy)) + ¢(Vy)(VZ — V),
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so because ¢ is non-negative and \/z > ,/y we have

|62() = d2(y)] < Vald(Va) — d(VY)l + ¢(Vy) (Va = V).

Therefore, using the Lipschitz continuity of ¢ and the estimate |¢(y)| < K /vy for all

y < n we have

|62(2) = b2(y)| < VK mlVE =yl + K mv/y(Ve = y)
= VK m(Ve = Vy) + K aVy(Ve =) = K gz —y),
so that [¢o(z) — d2(y)| < K zlz —y| for 0 <y < x < n. Hence ¢ is also locally Lipschitz
continuous. Ul

Let X be the unique continuous solution of (4.1.8) and define the r scalar processes

g; : [0,00) = R by

e d . .
’ % iz loij@)],  X(t)=0.
We define 5(t) > 0 by
,
i)=Y ai(t), t=0. (4.5.3)
j=1
Hence o; for j = 1,...,r and ¢ are adapted processes. Therefore using the Cauchy—
Schwartz inequality and (4.5.2) we get
d
Fit) <) ahi(t), t>0,
i=1
and so 3%(t) < |lo(t)||% for all t > 0. Hence & and &; for j = 1,...,r are bounded functions

on any compact interval. Therefore, the process Yy given by
Yo(t) = Z/ e*5;(s)dBj(s), t>0
=170

is well-defined and is moreover a continuous square integrable martingale. Therefore the
process Yy defined by

Yo(t) = e tYo(t), t>0 (4.5.4)
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is a continuous semimartingale and obeys
dYy(t) = —Yo(t)dt + Y &;(t)dB;(t), t>0. (4.5.5)
j=1

Next define W(0) = 1+ [|£]] > 0 and

lo (Il + e

W'(t) = —p(W(t) + Yo(t)) + W (t) + Yo(t)

+ Yo(t), t>0. (4.5.6)

Since ¢ is locally Lipschitz continuous, [|o|% is continuous and the paths of Yj are contin-

uous, there is a unique continuous solution of (4.5.6) on the interval [0,7) where
T=inf{t >0:Z(t) ¢ (0,00)}

and Z(t) = W(t) + Yo(t) for t € [0,7). Therefore, as W is the unique continuous solution
of (4.5.6) on [0,7), it follows that on [0,7) that Z so defined is the unique solution of the

stochastic differential equation

t 2 —t "
az(t) = (—o(z(y) + ONELETN 4t S5 1) dB; o), (4.5.7)
with initial condition Z(0) = [£| + 1 > 0. The adaptedness of Y ensures that the process
W is adapted, and therefore so is Z.
The first step is to show that 7 = 400 a.s., which means that Z(t) is well-defined and

strictly positive for all ¢ > 0, a.s.

Lemma 4.5.2. Suppose that f obeys (4.1.9) and (1.2.4), and that o obeys (2.1.1). Let Z

be the unique continuous adapted solution of (4.5.7). Then T = 400 a.s.

Proof. Let ¢ =|£] 4+ 1 > 0 and define k* € N such that £* > (. Define for each k > k* the
stopping time 75 = inf{t > 0: Z(t) = k or 1/k}. We see that 7',5 is an increasing sequence

of times and so 7% = limy o 7',5 . Suppose, in contradiction to the desired claim, that

5% < +o0 with positive probability for some (. Then, there exists T' > 0, ¢ > 0 and
ko € N such that

Plre <T)>e k>ko> k"
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Therefore, by 1t6’s rule we have that

Tk
TATS - 2 -
e ) 1 o) ter
+/0 {W( VT2 25 2P T 20) }d

T T/\Tlg
Y /0 (1= Z(5)"2)3(s) dB;(s).

i=1

We remove the non—autonomous terms in the first integral by noting that [|o(s)||% < 02 <

+o0 for all s € [0,T7], so we arrive at

¢ 1 1 T/\Tlg
Z(T/\Tk,)—f'Z(T/\T]g):C‘FC—F/O bT(Z(S))dS+M(T)

where we have defined

p(z)1 e T 1402
_ — 3 + s
z z oz z

z>0, (4.5.8)

and M = {M(t) : t € [0,T]} is the martingale defined by

r

t/\T,g
M(t) = Z/O (1—Z(s)"%)aj(s)dB;(s), te][0,T].

Jj=1
For z > 1, since ¢ is non—negative we have

-T 2 2
1 1
e n —I-UT< +GT§1+U:2p-

23 z Tz

br(z) = —¢(2)(1 — 27%) =

For z € (0, 1], the Lipschitz continuity of ¢ guarantees that |¢(z)| < Kjz for some K; > 0.

Therefore we have

K1+1+U% e T
z 23

br(z) <

)

and so we can readily show that there is K9(7") > 0 such that bp(z) < Ky(T) for all
€ (0,1]. Define K3(T) = max(Ks(T),1+ 02). Therefore we have br(z) < K3(T) for all

z > 0. Since Z(s) € (0,00) for all s € [0,T A T]g] we have that

7 ¢ 1 T/\Tk 1
(T/\Tk)—l—Z(T/\T <ct+1 +/ T) + M(T) <+ 2+ TH(T) + M(T).
k
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By the optional sampling theorem, we have that

E|Z(T AT8) +

1
- S TK3(T) = K .
Z(ng)] §C+<+T 3(T) (T,¢) < +o0

Define next the event Cj = {Tlg < T}. Then for k > ko we have P[Cy] > €. If w € C, we
have that T,g <T,so Z(T/\T,g) =k or Z(T/\Tlg) = 1/k. Hence Z(T/\Tlg)—i-l/Z(T/\T,g) =

k+1/k for w € C. Hence

K(T,() > E

7'C 71
Z(T NT) + Z(T/\r,f)]

7'C 71
<Z(T ATY) + 2T A T£)> 1@]

= (k4 1/k)P[Cy] > (k + 1/k)e.

>E

Therefore, we have that K(T,¢{) > (k + 1/k)e for all k > ko. Letting k — oo gives a
contradiction. O

Given that Z is positive and well-defined for all ¢ > 0, we are now in a position to
formulate and prove a comparison result, which shows that || X (¢)| < Z(¢) for all ¢ > 0

a.s. Once this result is proven, the main theorem will be established if we show that the

solution Z of (4.5.7) is bounded.

Lemma 4.5.3. Suppose that f obeys (4.1.9) and (1.2.4), and that o obeys (2.1.1). Suppose
that Z is the unique continuous adapted solution of (4.5.7) and that X is the unique

continuous adapted solution of (4.1.8). Then || X (t)|| < Z(t) for allt >0 a.s.

Proof. Define Y(t) = || X (¢)||* for t > 0. Then by the definition of &; for j = 1,...,r from

(4.5.2), we have

By Ito’s rule, we have

r d
AYa(t) = (=2X(£), FX (@) + lo@)[F) dt+23 Y Xi(H)ow (1) dBs(1), > 0.

j=1i=1
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Using this semimartingale decomposition and the previous identity, we get

AYa(t) = (~2(X(6), X)) + [o(OlF) dt +2y/Ya() S 55(t)dB(t).  (4.5.9)
j=1

Let ¢ be the function defined by (4.5.1), & the process defined by (4.5.3), and define the

processes 11 and 19 by

m(t) = |lo(t)||p +2e" +5(t)* t>0,

m2(t) = 2/ Ya(t)p(/Ya(t)) — 2(X(2), f(X (1)), t=0,
and the processes 1 and 5 by

Bi(t) = b(Za(t), 1) +m(t), t=>0, (4.5.10)

Ba(t) = b(Ya(t),t) +n2(t), t>0, (4.5.11)
where we have defined b : [0, 00) X [0,00) — R by
b(z,t) = —2¢9(z) + |lo(t)||%, = >0,t>0, (4.5.12)

where ¢ is defined in Lemma 4.5.1.

Granted these definitions, we can rewrite (4.5.9) as

dYa(t) = Bo(t) dt + 2/Ya(t) Y 5;(t) dB;(t). (4.5.13)
j=1

Next, by virtue of Lemma 4.5.2 it follows that there is a positive and process Zy = {Za(t) :
t > 0} define by Zo(t) = Z(t)? for all t > 0. Therefore, applying It&’s rule to (4.5.7), and

using the definition (4.5.3), we have

dZs(t) = (22@) {—qb(Z(t)) + W} + ﬂt)) dt
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Hence by the definition of ¢2, (4.5.10) and Z3 we have

dZs(t) = B1(t) dt + 21/ Zo(t) Z ;(t) dB;(t). (4.5.14)
j=1
Notice also that Y2(0) = [¢|> < 1+ |¢]? = Z2(0).

Our proof now involves comparing Y and Zs, viewed as solutions of (4.5.13) and (4.5.14)
respectively. Proving that Y5(t) < Zs(t) for all ¢ > 0 a.s. suffices. The proof is an
adaptation of standard comparison proofs. Extant results can not be applied immediately,
because we must carefully deal with the fact that the state-dependence in the drift in
both (4.5.13) and (4.5.14) is merely locally Lipschitz continuous, and that the diffusion
coefficients are non—autonomous through the presence of a process rather than simple
deterministic dependence of time.

To prove that Y is dominated by Zs, we first show that ny(t) > 0 > na(t) for ¢ > 0.
The first inequality is immediate. To show that 72(¢) < 0 for all ¢ > 0, first note that if

X (t) =0, then no(t) = 0. If || X (¢)|| > 0, by (4.5.1) and the definition of Y3, we have that

XOSX@) o e @)
XOT 2 padlkon Jer = 2VRO)

Hence (X (t), f(X(2))) > | X () |lo(\/Y2(t)) = /Ya(t)p(/Y2(t)), so n2(t) < 0. Therefore,

because 172 < 0 and n; > 0, we have
Ba(t) < b(Ya(t),t), [i(t) > b(Za2(t),t), t>0. (4.5.15)

By Lemma 4.5.1, ¢9 is locally Lipschitz continuous, so for every n > 0 there is a £, > 0

such that

Now define A(t) := Ya(t) — Za(t) for t > 0. Let p(x) = 4z for z > 0. Then p is increasing

and [, 1/p(z) dz = +oo. Now by (4.5.3)

a0 =4 (V) ~ V(D) Z S2t)dt = 4 (V) ~ VZa(D) (1) .
j=1
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If
! 1
/0 p(A(S))_ I{A(s)>0} d[A](S) < 400, a.s. (4.5.17)
then AY(A) = 0 a.s., where A°(A) is the local time of A in zero (see [67, Proposition
V.39.3]).
If y > z > 0, we have that (\/y — vz)? <y —z. Define J = {s € [0,¢] : A(s) > 0}.

Therefore, s € J we have Ya(s) > Zs(s) > 0 and so

(2%~ 2V/ZaD) < 4(Yals) — Zo(s)) = 4A(s) = p(A(s))

Thus

/0 p(A) Iiage=0 dIA](s)

:/P(A(S))1I{A(s)>0}d[AKs)+/ p(A(8)  as)0y d[A] ()
7 0,4\J

= [ o) 4 (V) - VAE) a*s)ds
J

t t
S/O’Z(S) ds §/ 52(s)ds §/ lo(s)||3 ds < +oo0,
J 0 0

as required.

Next, let
To=inf{t >0:Ys(t) =nor Z(t)=n}, n>T[(1+|C?].

By Lemma 4.5.2, Z does not explode in finite time, so neither does Zs. Also, as || X || does
not explode in finite time, we have that 7,, — oo as n — co. Using the fact that AY(A) =0

a.s., together with (4.5.13) and (4.5.14) we get

tATh

At A Tn)+ = A(0)+ + /[) I{A(8)>0}(ﬂg(8) — B1(8)) ds + M(t). (4.5.18)

where we have defined

MO = [ a2 (VG - VAG)) X 058y (s)
j=1
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Therefore by (4.5.3), and the fact that \/Ya(s) V \/Za(s) < /n for s € [0, A 7,,]

006 =4 [ Liagsn (VIEG) - VZE) 0*s) ds

tATH 2

<t [ hawen (VIRG) - VAR) o)l ds
tATh t

< 4n / lo(s)|3 ds < 4n / lo(s) |3 ds.
0 0

Now A(0) = Y2(0) — Z2(0) < 0, so by the optional sampling theorem, we deduce from

(4.5.18) that

0 < BIAEAT)T=E[ [ as0(Ga(e) - Ar(o)) ds]. (1.5.19)

We now estimate the integrand on the right-hand side. If A(s) > 0, we have A(s) =
Ya(s) — Za(s) > 0. Thus for s € [0,¢ A 7,], because Ya(s) V Za(s) < n, we may use (4.5.15)

and then (4.5.16) to get

Iia(s)>01(B2(5) = Bi(s)) = Ba2(s) — Bi(s) < b(Ya(s),s) — b(Z2(s), s)

< [b(Ya(s), 8) — b(Z2(s), 8)| < kn[Ya(s) = Z2(s)].

Since Ya(s) — Z2(s) > 0, this gives I1a(s)>0}(82(5) = B1(s)) < kn(Ya(s) = Z2(s)) = rnl(s)T.
In the case when A(s) < 0, we have I{a(s)>03(B2(s) — Bi(s)) = 0 < k,A(s)T. Thus, the
estimate Ipa(sys0}(B2(s) — Bi1(s)) = 0 < K, A(s)™ holds for all s € [0, A 7,], so inserting

this bound into (4.5.19), we get
tATh tATh
0<EA(tAT)T]<E [/ knA(s)T ds} = mnE/ A(s)T ds. (4.5.20)
0 0

As to the term on the righthand side, by considering the cases when (a) 7, < t and (b)

Tn, > t, we can show that

tATn t
/ A(s)tds < / A(s A1)t ds.
0 0

Putting this estimate into (4.5.20) gives
t

0<E[A(tAT)T] < I-in/ E[A(s ATp)T]ds, t>0. (4.5.21)
0
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Since ¢t — A(t) has a.s. continuous sample paths, so does t — A(t A 7,), and therefore
dpn 1 [0,00) — R defined by 6,,(t) = E[A(t A7,)] for t > 0 is a non—negative and continuous
function obeying 0,(t) < Ky, fg On(s)ds for all t > 0. By Gronwall’s inequality, 0, (t) = 0
for all ¢ > 0. Therefore we have Y(t A 1,) — Zo(t A 7,) < 0 for all £ > 0 a.s. and for each
n € N. Since 7, — oo as n — oo, it follows that Ya(t) — Za(t) < 0 for all ¢ > 0 a.s., as

required. O
In the next lemma, we show that Y{ defined by (4.5.4) is bounded.
Lemma 4.5.4. Suppose that S obeys (2.2.8). If Yy is defined by (4.5.4), then there is

c1 > 0 such that

limsup [Yo(¢)| < c1, a.s.
t—o0

Proof. Let Vy(n) := [ e5™ > j=10j(s)dB(s), n > 1. Then by (4.5.4) we get

n

n

n 1 r
Yo(n) =e™" IZ; /l_1 e’ 5i(s)dB;(s) =Y e ™), n>1. (4.5.22)

j=1 =1

Define
Vo (t) = / S 55(s)dBy(s), t€[n—1,].
n—1 j=1
Clearly Y, _; is a continuous FZ martingale, and by (4.5.3) we have

(Y1) (1) = /_1 e*5%(s)ds, te[n—1,n].

Therefore there is an extension (€, F,,P,) of (2, F,P) on which is defined a one—

dimensional Brownian motion B,, = {B,(t) : n —1 <t < n;F,} such that
~ t —
Y,-1(t) = / e’a(s)dBy(s), te€[n—1,n].
n—1
(cf. [44, Theorem 3.4.2]). Now define
— t -
V1 (t) :/ e llo(s)l|rdB(s), ten—1,n]
n—1
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Since (t) < ||o(t)||F for all ¢ > 0, by applying a result of Hajek (cf. e.g., [44, Exercise

3.4.24]) we have that

P[Vo(n) > €] = P[Y—1(n) > ee"] < 2P[Y,—1(n) > ee"]. (4.5.23)

Noting that —Y,,_1 is also a continuous martingale, by applying Hajek’s result once more,

we have that
P[Vh(n) < —¢] =P[-Y,—1(n) > ee"] < 2P[Y,,—1(n) > ee"].

Combining this estimate with (4.5.23), we get

P[|Vo(n)| > €] < 4P[Y,—1(n) > ee"]. (4.5.24)

Now, we notice that Y, _1(n) is a normally distributed random variable with mean zero

and variance
2 "y 2
3(n) ::/ €| (5) % ds.
n—1

Notice that e20(n)? < e=2"9%(n) < 0(n)?. Since ® is increasing, we have

P[[Vo(n)| > €] < 4 (1 —-¢ (;;:))) =4 <1 - ¢ (ene@(n)»
(12 )

Therefore, for every € > €, by (2.2.10) it follows that

IN

D PVo(n)] = €] < +o0.
n=1

Thus by the Borel-Cantelli lemma, it follows that lim sup,,_,. |[Vo(n)| < € a.s. for every

e > €/. Hence by (4.5.22), we have that

(o]
1
limsup |Yy(n <e-§ e F=¢ ,a.s. 4.5.25
n%oop| 0( )’_ =0 1—e! ( )
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Next let ¢ € [n,n + 1). Therefore, from (4.5.4) we have

t r
Yo(t) :Yo(n)e_(t_”)Jre_t/ e’ 5i(s)dB;(s), t€[nn+1).
n j*l

With Zo(n) := e™" maX;epn nt1] frf e i-105(s) dBj(s)’ for n > 1, we have

t T
max |Yp(t)| < [Yo(n)|+ max e”! / e’ E aj(s)dBj(s)| < |Yo(n)|+Zo(n). (4.5.26)
te[n,n+1] te[n,n+1] n =

Next we estimate P[Zy(n) > ee]. Fix n € N. Now

P[Zo(n) > ece] =P [ max |Y, ()] > eee”] :
te[n,n+1]

Define 7(t) := ft e?6%(s)ds for t € [n,n + 1]. Therefore, by the martingale time change

n

theorem [65, Theorem V.1.6], there exists a standard Brownian motion B} such that

P[Zo(n) > ee] =P | max |B; (7(t))| > eee"} =P [ max | B (u)| > eee”| .
te[n,n+1] u€[0,7(n+1)]

Notice now that 7(t) < [ e?*||lo(s)||% ds, so

P[Zy(n) > ee] <P max | B (u)| > eee™
[ u€(0, [+ 25 lo(s)|3. ds]

=P B, > eee”
_ue[ofg%}gﬂ)ﬁ n(v) 666]

<P max  Br(u) > ee"e] +P [ max  —B(u) > eee
Lu€[0,0%(n+1)] uel0,02(n+1)]

— P [|B(0*(n + 1))| > ee”e] + P [|B* (03 (n + 1))| > ee™e] ,

where B}* = — B}, is a standard Brownian motion. Recall that if W is a standard Brownian
motion that max,cp 4 W (s) has the same distribution as [W(t)|. Therefore, as B}, (v(n+1))

is normally distributed with zero mean we have

P[Zy(n) > ee] = 2P [|B;;(172(n +1))| > eee™| = 4P [B,*l(ﬂQ(n +1)) > eee”]

:4(1-@(%)) :4(1-@(\/6_%;%».
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If we interpret ®(co) = 1, this formula holds valid in the case when v(n + 1) = 0, because
in this case Zy(n) = 0 a.s. Now e 2"02(n+1) = e~ 27 f:ﬂ e*|lo(s)||% ds < e262(n). Since

® is increasing, we have

P[Z(n) > ee] = 4 <1 - ( e—2n€76(n+ 1))) =4 (1 - <69€(€n)>> ’

SO

P[Zo(n) > €] < 4 <1 .y <0(€n)>> : (4.5.27)

Therefore by (2.2.8) and (4.5.27) we have Y 2 P[Z(n) > ee] < 4oo for all € > ¢.

Therefore by the Borel-Cantelli Lemma, we have that

limsup Zp(n) < ee, as. (4.5.28)

n—oo

By (4.5.25), (4.5.26) and (4.5.28) we have

limsup max |Yp(¢)| < limsup|Yy(n)| + limsup Zp(n) < — €+ e,
n—oo te€n,n+l] n—00 n—00 1—e
Therefore, letting € | € through the rational numbers we have
limsup [Y(#)|| < (1/(1 —e ) +e)é = ¢1, as.,
t—00
proving the result. O

Before proceeding with the final supporting lemma, we show that whenever S(e) is finite,

we must have
t+1
lim |o(s)]|%ds = 0. (4.5.29)

t—o0 t

Lemma 4.5.5. Suppose that S obeys (2.2.8). Then o obeys (4.5.29).

Proof. By (2.2.8), there exists € > 0 such that > >~ ;{1 — ®(¢/0(n))} < +oo. Therefore,

it follows that 6(n) — 0 as n — oo. For every t > 0, there exists n(t) € N such that
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n(t) <t < n(t)+ 1. Hence

t+1 ) t+1 ) n(t)+1 ) t+1 ,
[ \M@Nbdsé/?)kﬂﬁhds=/;) Wﬂﬁhds+/ lo(s)]3 ds

n(t)+1

n(t)+1 ) n(t)+2 )
g/ ndwuw+/ lo(s) 3 ds
n(t) t)+1

n(t)+
= 0(n(t))* + 0(n(t +1))*.
Since n(t) — oo as t — oo and #(n) — 0 as n — oo, taking limits yields (4.5.29). O

Before we can show that W is bounded, we must first prove that

liminf Z(t) < 400, a.s. (4.5.30)

t—o00

Lemma 4.5.6. Suppose that f obeys (4.1.9), (1.2.4) and (4.2.4). Suppose that o obeys

(2.1.1) and that S obeys (2.2.8). Then the solution Z of (4.5.7) obeys (4.5.30).

Proof. Note that if f obeys (4.2.4), then ¢ given by (4.5.1) satisfies limy, o ¢(z) = +00.

Using (4.5.7), we have

Zf) 1+nar /gﬁ d4—t/’b !F+€sds+ﬂﬁﬁk (4.5.31)

where M, is the continuous martingale given by

= oj(s)dBj(s), a.s.
),

Using (4.5.3) we get

wmmzéﬁ@@sAW@&m

and in the case when S(¢) is finite, we may appeal to the proof of Theorem 4.2.5, which
shows that (4.4.8) holds. On the event A for which (M5)(¢) tends to a finite limit as
t — oo, we have that Ms(t) converges to a finite limit, in which case Ms(t)/t — 0 as

t — oo on A. On A, we have that (M2)(t) — oo as t — 0o, so by the strong law of large
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numbers for martingales, we have

Mo(t Mo(t
limsup| 2(4) < lim sup 2(t)
() t—o00

t—o00 t T e (Ma)

. (t) /

= limsu lim su o ds =0,
t~>oop (M3)(t) tﬁ\oop t lo(s) 1z

<Mz>(t)

lim sup

So a.s. we have

———= =0, a.s. (4532)

Now define the event A; by A; := {w : lim;_,o Z(t,w) = 0o} and suppose that P[A;] > 0
By Lemma 4.5.2 we note that there is an a.s. event Q3 = {w : Z(t,w) > 0 for all t > 0}.
Let Ay = A1 N Q1 N Qy, where O is the a.s. event in (4.5.32). Thus P[A2] > 0. Then for

each w € Ay, we have that limy_,~ ¢(Z(t,w)) = 400, and so

lim — / d(Z(s))ds = 400, on A,. (4.5.33)

t—oo t

For each w € Ag, there is a T*(w) > 0 such that Z(¢t,w) > 1 for all t > T*(w). Therefore,

for t > T*(w), we have the bound

“lo(s))|7 + e 1 (T lo(s)|% +e 1 [t
VIR T - s < = OE ° s+ — 2 —$1 ds.
Z(s) °= t/o Z(s) T /T*{HU(S)HFH yds

¢ is integrable, and o obeys (4.4.8), it follows that the second term on the

Since t +— e~
right—hand side has a zero limit as ¢t — oco. To deal with the first term, note that the
continuity of Z on the compact interval [0,7*] and the positivity of Z implies there is a
Tt € [0,T7] such that inf,c(g 7+ Z(t) = Z(17) > 0, and so the first term also tends to zero
as t — oo. Thus the third term on the righthand side of (4.5.31) tends to zero as t — oo
on As. Noting this zero limit, we take the limit as ¢ — oo in (4.5.31), and using (4.5.33)
and (4.5.32), arrive at

A
lim 7@ w)

= —o0, for each w € As.
t—o00 t

which implies that Z(t,w) — —o0 as t — oo for each w € Ay. But since Z(t,w) > 0 for all

t > 0 for each w € As, we have a contradiction, proving the result. ]
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Lemma 4.5.7. Suppose that f obeys (4.1.9), (1.2.4) and (4.2.4). Suppose that o obeys

(2.1.1) and that S obeys (2.2.8). Then the solution W of (4.5.6) obeys
limsup [|[W ()| < c2, a.s.
t—00
for some deterministic ca > 0.

Proof. We have by Lemma 4.5.4 that limsup,_,. |Yo(¢)| < ¢1, a.s. From this fact and

(4.5.29), it follows that for every e > 0 there exists a T'(w, €) > 0 such that
- t
Yo(t,w)| < +1:=Y, / {llo(s)|F+e 2} ds<1, t>T(ew). (4.5.34)
t—1

Suppose this holds on the a.s. event ;. By (4.2.4) and (4.5.1) we have that ¢(x) — oo

as ¢ — 0o. Therefore, we can choose M > 0 so large that

M - 1 _
— >2Y +1, inf T) > = +Y +1. 4.5.35
2 - z>M/2-Y ¢(@) Y +1 ( )

By (4.2.4) and (4.5.1) we have that ¢(z) — oo as x — oc.

By Lemma 4.5.6, there is an a.s. event 9 such that Qo = {w : liminf; ,o Z(t,w) <
+o0}. Since |Yp| has a finite limsup on Qy, if follows that liminf;_, [|[W (¢, w)|| < +00 on
1 N Qy. Next suppose there is an event A3 = {w : limsup,_,., W(t,w) > M} for which
P[A3] > 0. Let Ay = A3NQ2NQ3. Notice that lim inf; oo W (t) = iminfy, Z(8)+Yo(t) >
liminf; ;o Yp(t) > —c1, so we do not need to consider the absolute value of W in the
definition of Az. Suppose that w € A4. It then follows that there exists t; > T'(e) such that
t1 = inf{t > T(e) : W(t) = M/2} and a t3 > t; such that to = inf{t > t; : W(t) = M}. It
also follows that there is ¢} € [t1,t2) such that ¢} = sup{t > ¢, : W(t) = M/2}.

Suppose first that to — ¢} > 1. Then to — 1 >t} > t; > T'(€). Define t3 = to — 1. Then
M > W (ts) > M/2. Hence

M — W (t;) = W(ts) — W(ts)

to

_ 2o (e 4 o(s)3
__bqu@+ﬁm”%+44{wﬁwﬂw§+%@}“'
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Since W (t) > M/2 and |Yy(t)| < Y for all t € [ty — 1,ts], we have that W (t) + Yy(¢) >
M/2—Y > 0. Thus ¢(W(t) + Y (t)) > inf,> 70—y ¢(z). Using these estimates leads to

to

2ofe s+ os)E | o
M — W(t g—/ inf xds—i—/ {F+Y}ds
(3) tg—lsz/nygZ)( ) to—1 M/2_Y

t2
b o) !

. , .
T ds+ Y.
e L vy ) A {e +lo(s)lr} ds+

Using the fact that to — 1 > T'(¢), we may use the second condition in (4.5.34), the first

condition in (4.5.35) and then the last condition in (4.5.35) to get

1 _
0<M—Wi(tz) < — inf +——=+Y
(te)<— ol 0@+ ym—y
1
< inf ¢(x)+ =——+Y <0,
z>M/2-Y 1

a contradiction.
Suppose on the other hand that to — ¢} < 1. Once again, for all ¢ € (],t2) we have
M/2 < W(t) < M with W(t}) = M/2 and W (t3) = M. Then, as ¢(z) > 0 for all x > 0,

we have

M/2 = W(ts) — W(H))

to t2 ,—s 2 to
=— o(Z(s))ds + e+ ol ds + Yo(s)ds

# t W (s) + Yo(s) t
to —s 2 to

< w ds _|_/
v W(s)+Yo(s) t

/
1

[Yo(s)] ds.

Now, for all t € [t],ts] we have that W(t) > M/2 and |Yo(t)] < Y, so W(t) + Yo(t) >

M/2 —Y > 0. Using these estimates, and then the assumption that to — ] < 1, we get

o= 1 Jo(s)|2 t
M/2 < Fd8+/ Yo(s)|ds
2= |, Wit vals) ©F S, W)

1

! /”{ lo) 2y ds+ [ 7
< e *+|lo(s d5+/ Y ds
M/2-Y Jy F "

1 b2 ) _
< e+ |lo(s ds+Y.
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Finally, we notice that to > ¢t; > T'(€), so we may use the second estimate in (4.5.34) to
get M/2<1/(M/2—-Y)+Y. Since M/2 > Y, this rearranges to give (M/2—Y)? <1 or
M/2—-Y < 1. Thisis M/2 <Y + 1. But as Y > 0, this contradicts the second condition

in (4.5.35), i.e, M/2 > 2Y + 1. O
The proof of the main result is now immediate. We have from Lemma 4.5.3 that
1 X(@t)|| < Z(t) =W (t)+ Yo(t), t=>0.

where W and Yj are given by (4.5.6) and (4.5.4) respectively. By Lemma 4.5.4, we have
that lim sup,_, . ||Yo(¢)|| < ¢1 a.s. By Lemma 4.5.7, we have that limsup,_, . ||[W(¢)]| < ¢2

a.s. Notice that both ¢; and ¢ are deterministic bounds. Therefore, it follows that
limsup | X (¢)|| < 1 +c2, as,
t—o0

as required.

4.5.2 Proof that limit inferior is zero

It remains to prove the second part of (B), namely that

liminf | X (¢)|| =0, a.s.

t—o0

We have already shown that ¢ — || X (¢)| is bounded. Furthermore, since S(€) < 400 for

all € > ¢/, we can prove as in the proof of Theorem 4.2.5 that (4.4.8) holds i.e.,

1 t
lim / lo(s)||% ds = 0.
t Jo

t—o00

Recall from (4.4.9) that we have the representation

X ()2 = (¢ - / 2(X(s), f(X(s))) ds + / lo(s)|2 ds +2M(t), ¢ >0.
0 0

where M is the local (scalar) martingale given by (4.4.10) i.e.,

M) => | Y Xi(s)oij(s)dBj(s), t>0.
0 =
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The quadratic variation of M is given by

r t d 2
(M)(t) =) / (in(s)aij(so ds,
=170 \i=1

and so by the Cauchy—Schwarz inequality, we have

t
an <X [ xH) Y b ds < [ IXEIBlot)lf ds

Therefore, as ¢t — || X (¢)|| is a.s. bounded, we have

lim S(M)(£) =0, as.

t—oo t

In the case that (M) converges, we have that M tends to a finite limit and so

lim ~M(t) = 0.

t—oo t

If, on the other hand (M)(t) — oo as t — oo, by the strong law of large numbers for

martingales, we have

1 o M@ (M)(@)
Am 3 M) = fim M) ¢

Using the fact that ¢ — || X (¢)|| is bounded, we have || X (¢)||?/t — 0 as t — co. Therefore,

by rearranging (4.4.9), dividing by ¢ and letting t — oo, we get

lim = [ (X(s), F(X(s)) ds = 0, as. (4.5.36)

t—oo ¢ Jo

Now we suppose that there is an event A; of positive probability such that
Ay = {w : liminf || X (¢,w)|| > 0}.
t—00

Since X is bounded, it follows that for a.a. w € Ay, there are X (w),Z(w) € (0,00) such
that

liginf X (t,w)|| = Z(w), limsup || X(t,w)]| = X(w).

t—o00

Thus, there exists T'(w) > 0 such that

"%2“’) <X (tw)| €2X(w), t>T(w).
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By the continuity of f and the fact that (x, f(x)) > 0 for all = # 0, it follows that for any
0<a<b< 4o

IIxI}Iel[i,b}@’ f(z)) = L(a,b) > 0.

Hence for t > T'(w) we have

(X(t,w), f(X(t,w))) > L (E(w),QX(w)> =: Aw) > 0.

Hence for t > T'(w) we have

1 1

s [ o ez 1 [ s, o ds = S ),

Hence for a.a. w € A1 we have

liminfi/o (X (s,), (X (5,0))) ds > Aw) > 0,

t—o0
which implies that

1 t
liminf/ (X(s), f(X(s)))ds >0, a.s. on Aj.
t Jo

t—o00

This limit, taken together with the fact that A; is an event of positive probability, con-
tradicts (4.5.36). Hence, it must follow that P[A;] = 0. This implies that P[4;] = 1, or

that liminf; , || X (¢)|| = 0 a.s. as required.
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Chapter 5
Discretisation of scalar nonlinear stochastic

differential equations

5.1 Introduction

The results in the previous chapter deal with a very wide class of nonlinear Stochastic
Differential Equations(in the sense that f can exhibit either very strong or very weak
reversion to equilibrium). It presents a challenge therefore to devise a single numerical
method which will reproduce the asymptotic behaviour of solution for all f in this class.

In this chapter we show that the asymptotic stability of a special implicit Euler scheme
for discretising a scalar stochastic differential equation is equivalent to the asymptotic
stability of the differential equation. The reason we use implicit scheme rather than the
explicit scheme is because if we want to use explicit scheme, we need to require some kind
of global linear bound on f, for example, a condition like |f(z)| < K|z| for all z, where
K is a constant. At the same time we also need the step size to be sufficiently small. It is
known that explicit discretisation is not always effective for preserving stability of scalar
ODEs(never mind about SDEs), if the step size is too large. Consider the discretisation

of

where a > 0. Under a standard Euler explicit method, with step size h, we have
zp(n+1) — zp(n) = —ahzp(n), n >0, x,(0)=1.

or

zp(n+1) = (1 —ah)zp(n), n>0, z,(0)=1.

Thus, if 1 —ah < —1(or h > %), we have that |z,(n)| — oo as n — oo and zj, osullates

unboundedly.
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On the other hand, an implicit Euler method yields
zp(n+1) —zp(n) = —ahzp(n+1), n>0, =z,(0)=1,

or
1

z

1+ ah h

zp(n+1) = (n), n>0, x,(0)=1.

Here, we have that x;(n) — 0 monotonically as n — oo for every step size h > 0, just as
the solution of the ODE does. This is also for nonlinear equation: indeed it can be shown
in the same manner that an explicit discretisation of 2/ = —f(z) will have unbounded
and osullating solutions if the global linear bound is violated, and the initial condition is
sufficiently large. Even though the standard theory says we can use an explicit scheme(but
with very small step size)to characterise the behaviour of solutions in a finite interval, as
the interval gets larger(or indeed in our case where we are interested in the long run
behaviour of the solution), with the explicit scheme, we would require smaller and smaller
step size. Therefore the cost of reducing the step size becomes considerable as the length of
the interval increases. It would be very nice to be able to consider the long run behaviour
of the solution without worrying about the step size. Therefore, it seems like a good
idea to apply an implicit scheme to the discretisation of the nonlinear SDE. In this work,
we have employed so-called Split-Step Backward Euler method, which we now discuss in
detail.

Let B be a standard one—dimensional Brownian motion. Suppose that

f(0) =0; f is continuous and non-decreasing; zf(z) > 0 for all = # 0, (5.1.1)

and let f be locally Lipschitz continuous on R. Let o : [0,00) — R be continuous and
¢ € R be deterministic. In this chapter we show that the asymptotic behaviour of the
equation (3.1.1) as t — oo can be mimicked by a uniform implicit discretisation for every
uniform step size h > 0. The method is known as the split-step backward Euler method

(SSBE), and is given by

Xp(n)

Xn(n) = hf(X;(n)), n=>0, (5.1.2)

Xp(n+1) = Xj(n)+Vho(nh)é(n+1), n>0. (5.1.3)
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The SSBE method was introduced in Higham et al.,[39, 60]. Deterministic versions of
the split—step method can be found in [33, 37]. The preservation of boundedness and
asymptotic stability of deterministic equations under the SSBE method is given in Stuart
and Humphries [76].

The asymptotic behaviour of solutions of SDEs and their split step discretisations were
studied in Higham et al., [41]. Another important work in which different implicit methods
are used to analyse pathwise asymptotic behaviour of SDEs is Schurz [70]. The preser-
vation of asymptotic stability of solutions of SDEs for explicit Euler methods as well as
corresponding rates of decay has been considered recently in [11, 19, 13, 17, 66]. The
stochastic differential equation in question is equation (3.1.1). In this chapter we will
focus on one—dimensional equation, where we refine our attention on finite-dimensional
problems in the next chapter. We show that the asymptotic stability of the SSBE method
for discretising a scalar stochastic differential equation is equivalent to the asymptotic sta-
bility of the differential equation. Most of the results in this chapter are overseen by the
next chapter. Even though, it is a great help in studying the finite-dimensional discrete
equation. The results in this chapter was published in the Proceedings of Neural, Parallel
and Scientific Computations, Volume 4, 2010. The continuous result in question here was
proven in [31], which was motivated by simulated annealing problem.

In our main result we show that if ¢+ —+ o02(¢) is non-increasing then for any h > 0
limy oo X (t) = 0 a.s. if and only if lim,,_,~ Xp(n) = 0 a.s., and that both processes tend
to zero a.s. if and only if o2(t)logt — 0 as t — oo. Therefore the split-step method
is a.s. asymptotically stable if and only if the SDE (3.1.1) is a.s. asymptotically stable.
In this chapter, other results are developed for stochastic difference equations and for
the discretisation of an ordinary differential equation. Results are stated and discussed in
Section 2; proofs are mainly postponed to Section 3. For standard results from probability
theory, we refer the reader to Shiryaev [69].

This chapter and the next, are the last in the thesis, and both are devoted to analysing
the long run behaviour of numerical schemes for the SDEs studied in Chapter 3 and
4. Essentially, in these remaining chapters we show that the SSBE method recovers in

all cases the type of asymptotic behaviour exhibited by the underlying continuous SDE.
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Moreover, these results which preserve the behaviour make no restriction on the uniform

size of the step, h > 0.

5.2 Statements and Discussions of Main Results

5.2.1 Deterministic Equation

Suppose that f obeys (5.1.1) and consider the differential equation

(8 = —f@®) 10, t2 0 2(0)=C. (5.2.1)

Part (A) of the following result is essentially proven in [10], with the weaker hypothe-
sis liminf|, o [f(z)] > 0 in place of the monotonicity of f. The result concerns the
asymptotic convergence of solutions of (5.2.1) to the zero equilibrium of the unperturbed

equation y/(t) = — (y(1)).
Theorem 5.2.1. Suppose f obeys (1.2.4) and (5.1.1). Let v :[0,00) = R be continuous.

Let x(0) = ¢ € R. Then there is a unique continuous solution of (5.2.1) and the following

hold:
(A) If y(t) — 0 as t — oo, then z(t) — 0 as t — oo;

(B) If x(t) — 0 as t — oo, then ftt+h v(s)ds — 0 as t — oo for any h > 0, and hence

liminf; ;o y(t) = 0.

Proof. To prove part (B), note for any h > 0 we have the identity

t+h

t+h
z(t+h) —z(t) = — t (x(s)) ds + /t v(s) ds.

Since z(t) — 0 as t — oo, x is continuous and f obeys (5.1.1), we have the desired result

on taking the limit as t — oo on both sides of the identity. O

We remark that x(t) — 0 as ¢ — oo does not imply v(¢) — 0 as t — oo. If « is positive

and integrable it can be shown under the hypotheses of Theorem 5.2.1 that x(t) — 0 as
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t — oo. However, there exist continuous, positive and integrable functions v for which
lim sup,_, . () > 0.
Let h > 0 and z(0) = ¢ € R. We consider the following difference equation
z*(n) = z(n)—hf(z*(n)), n>0, (5.2.2)
z(n+1) = z*(n)+ hg(n), n>0. (5.2.3)
This can be thought of as the split—step discretisation of the ordinary differential equation

(5.2.1) with g(n) = v(nh). The following result therefore parallels Theorem 5.2.1; its proof

is given in Section 3.
Theorem 5.2.2. Let h > 0, (g(n))n>0 be a real sequence. Let x(0) = ¢ € R. Suppose f

obeys (1.2.4) and (5.1.1). Then there is a unique solution of (5.2.2) and (5.2.3) and the

following are equivalent:

(A) g(n) — 0 as n — oo;

(B) x(n) — 0 as n — oo.

5.2.2 Stochastic Equation

We fix a complete filtered probability space (€2, F, (F(t))¢>0,P). Let B be a standard
one-dimensional Brownian motion which is adapted to (F(t));>0. If o is continuous, then
there is a unique continuous process, adapted to (F(t)):>0, which obeys the stochastic
differential equation (3.1.1). This process will be referred to hereinafter as the solution
of (3.1.1). Chan and Williams [31] have proved Theorem 3.1.1 This Theorem has been
extended in [10] to deal with non—monotone f and o.

Can we reproduce this asymptotic behaviour in discrete time using the SSBE method

(5.1.2)—(5.1.3)7 To answer this question, we first suppose that

(€(n))n>0

is a sequence of iid standard normal variables with common distribution function ®.

(5.2.4)
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Here ®(z) = (v2m)~! [*_ exp(—u?/2) du for x € R and we define ®(c0) = 1, ®(—o00) =
0. We consider the difference equation for (X, X*) given by (5.1.2)—(5.1.3), as this sys-
tem may be thought of as the split—step Euler—-Maruyama method of Higham, Mao and
Stuart [39] applied to (3.1.1).

Our first result on the asymptotic behaviour of (5.1.2)—(5.1.3) does not impose mono-

tonicity on o.

Theorem 5.2.3. Let h > 0. Suppose & obeys (5.2.4). Let ( € R be deterministic and
Xn(0) = (. If f obeys (1.2.4) and (5.1.1). Then there is a unique solution (Xp, X}) of

(5.1.2) and (5.1.3) and the following are equivalent:
(A) >0 1 —®(e/|o(nh)]) < 400 for every e > 0;
(B) lim,, 00 Xp(n) = 0 with positive probability for some ¢ € R;

(C) limp—s00 Xp(n) =0 a.s. for all € R.

The proof of Theorem 5.2.3 is postponed. We state next an application of Theorem 5.2.3

in the case when ¢ is decreasing.

Theorem 5.2.4. Let h > 0. Suppose § obeys (5.2.4). Let ( € R be deterministic and
X(0) = ¢. Suppose that n +— o?(nh) is decreasing. If f obeys (1.2.4) and (5.1.1). Then

there is a unique solution (Xp, X}) of (5.1.2) and (5.1.3) and the following are equivalent:
(A) lim,_, 0%(nh)log(nh) = 0;
(B) limy, 00 Xp(n) = 0 with positive probability for some ( € R;
(C) limy, 00 Xp(n) =0 a.s for all ¢ € R.

Proof. We use Theorem 5.2.3 to prove Theorem 5.2.4. It was shown in Appleby, Riedle and
Rodkina [20] that when o2 is non—increasing, and (£(n)),>0 are a sequence of independent

n

standard normal random variables, the following statements are equivalent:
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(1) >onzilon|exp (—27152052) <ooforalle e QF;
(ii) lim, 00 02 logn = 0;
(iii) limp oo 0né(n+1) =0 a.s.

Let oy, := o(nh). We show that (A) implies (C) implies (B) implies (A). Statement (i) in
this setting is equivalent to statement (A) in Theorem 5.2.3. If statement (A) in Theo-
rem 5.2.4 holds, then statement (ii) holds and therefore statement (i). Statement (i) in this
setting is equivalent to statement (A) in Theorem 5.2.3. Thus, by Theorem 5.2.3 we have
(C) in Theorem 5.2.4. Hence (A) implies (C). Obviously (C) in Theorem 5.2.4 implies (B)
in Theorem 5.2.4. Thus (C) implies (B). Since statement (B) in Theorem 5.2.4 is equiva-
lent to (B) in Theorem 5.2.3, by Theorem 5.2.3, we have statement (A) in Theorem 5.2.3.
But this is equivalent to statement (i) above, and therefore to statement (ii). But (ii) in
this context is nothing other than statement (A) in Theorem 5.2.4, so (B) implies (A).
Hence (A)—(C) are equivalent, ending the proof. O

Theorem 5.2.4 captures exactly the behaviour of Theorem 3.1.1 in discrete time. The
monotonicity of 02 ensures that statement (A) in Theorems 3.1.1 and 5.2.4 are equivalent.
Theorem 5.2.4 can be contrasted with results in [2, 11] in which step-size restrictions
are needed to mimic the asymptotic behaviour of SDEs using explicit Euler—-Maruyama
schemes.

In Figures 1 and 2 overleaf we show representative simulated sample paths of the equa-

tion

dX (t) = —2X(t)3dt + (1 +t)"2dB(t) with X(0) = 20.

The first figure shows a path for the SSBE scheme (5.1.2)—(5.1.3), while the second shows

a path for the explicit Euler scheme

Xp(n+1) = Xp(n) — 20X, (n)° + VA(L 4+ nh)26(n + 1).
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Figure 5.1: SSBE method: h = 0.1, X(0) = 20. Figure 5.2: Explicit E-M: h = 0.001, X (0) = 20.

It can be seen that the SSBE scheme gives the regular convergence to zero predicted by
continuous—time theory (see [12, 19] and references), while the explicit scheme performs
less well, even with a smaller step size. Indeed, for some larger values of h, we see solutions
which oscillate unboundedly. Note that the small time behaviour has been cropped from

each figure below.

5.3 Proof of Theorem 5.2.2

5.3.1 Supporting Lemmata

Lemma 5.3.1. Suppose f obeys (1.2.4) and (5.1.1). There exists a unique continuous

function x — Fp(x) such that

Fp(x) =2 — hf(Fy(z)), z € R, (5.3.1)

where |Fp,(x)| < |z| for x # 0 and F,(0) = 0.

Proof. We show that, for every = € R, there is a unique y = Fj(z) € R such that
y=x—hf(y), and x — Fy(x) is continuous. For every x € R/{0}, by the continuity of f
and the intermediate value theorem, there is a y between 0 and x such that Ap(z,y) =0
where

Ap(z,y) =y +hf(y) — =
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Clearly Ap(0,0) =0, so y =2 — hf(y) has a solution for each z € R. Let y; # y2. Since

f is non-decreasing, we have

(2 = 1) (An(z,32) = An(@,91)) = (y2 — 1) + hly2 — y1) (£ (y2) = £ (1)) = (2 —51)* > 0.

Therefore for each fixed z, y — Ap(x,y) is increasing. Moreover (z,y) — Ap(z,y) is
continuous, as f is continuous. Therefore by a variant of the implicit function theorem
(see e.g., Kudryavtsev [47]), there is a unique continuous function x +— Fj(z) such that
Ap(z, Fp(z)) = 0 for all z € R. Hence (5.3.1) holds and |Fj(x)| < |z| for x # 0, and

Fp(0) = 0, as required. O

Proposition 5.3.1. Let (0) = ( € R. Suppose f obeys (1.2.4) and (5.1.1). Then there

is a unique solution to (5.2.2), (5.2.3).

Proof. A consequence of Lemma 5.3.1 is that (5.2.2) is equivalent to z*(n) = Fj(z(n)),

n > 0 and that therefore (5.2.2), (5.2.3) is equivalent to
z(n+1) = Fp(x(n)) + hg(n), n > 0. (5.3.2)

Clearly this equation has a unique solution, as required. ]

We introduce another auxiliary function, related to Fj,, and deduce some of its salient

properties.

Lemma 5.3.2. Suppose f obeys (1.2.4) and (5.1.1) and F}, is given by (5.5.1). Define
Fif(z) = max(Fy(z), —Fp(—z)), > 0. (5.3.3)
Then F," (z) < z for allz > 0, F,7(0) =0, and F;" (z) > F;" (y) for allz > y > 0.

Proof. Define

Gp(x) =z +hf(x), xR (5.3.4)
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Then G}, is increasing, therefore G;l exists. Hence we have that
z — hf(Gy ' (2) = Gy, ' (2),

therefore by Lemma 5.3.1 and (5.3.1), we have that Fj, = G}_Ll. Evidently, we have that
0 < Fp(z) <z for x >0 and x < Fp(x) < 0 for x < 0. First we show that x > y implies
Fp(z) > Fy(y). Now

Gr(Fp(x)) = 2 >y = Gr(Fr(y))-

Since G}, is increasing, we have Fj,(z) > Fy(y). For z > 0, F;" (z) = max[Fj(z), —Fj,(—x)].

Since Fj,(z) < z for x > 0 and —Fj(—z) < x, we have
F(z) — 2 = max[Fy(z) — z, —F(—z) —2] <0, F,7(0)=0
because F}(0) =0. Let >y > 0. Then Fy(z) > Fj,(y), Fp(—x) < Fp(—y), therefore
Fy# () = max[Fy(e), - Fa(~2)] > max{Fu(y), ~Fu(—y)] = Fy (),

which completes the proof. O
Since f is non—decreasing and positive, we define for all n > 0 sufficiently small
z1(n) = min{z > 0: f(z) =n/h}, x2(n) =min{z >0: f(-z) = —n/h}.

Lemma 5.3.3. Suppose f obeys (1.2.4) and (5.1.1). Letn > 0 and x1(n), x2(n) be defined

as above. If z3(n) = max[n + x1(n),n + z2(n)], and F;" is defined by (5.3.3), then

F,j(a:) —x<—n for all z>ux3(n) andnlirél+ x3(n) = 0.

Proof. Let x > n+ x1(n). Thus as f is nondecreasing we have

flx—n) > f(x1(n)) =n/h.

Hence hf(x —n) >n. Thus x —n+ hf(x —n) > x, or Gp(z —n) > z for x > n+ x1(n).

Hence x —n > Fj,(x) for x > n+ x1(n) because Fj, = G}_Ll.
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Define ya(n) := —x2(n) — n and suppose y < ya(n). Thus y +n < —xz2(n). Therefore

fly+mn) < f(—=x2(n)) = —n/h,

so hf(y+mn) < —n. Hence y+n+hf(y+n) <y, or Gp(y+n) <y for all y < ya(n). Hence
y+n < Fyp(y) for all y < yo(n). Thus —x +n < Fp(—z) and —x < —(z2(n) + n). Hence

—Fp(—x) —x < —n for x > x9(n) +n and Fp(z) —x < —n for x > z1(n) + 1. Now let
x > x3(n) = max[z1(n) + 1, z2(n) + 7).
Then —Fp(—z) —x < —n and Fp(z) — x < —n. Hence for x > xz3(n) we have
Ff(z) — 2 = max[Fy(z) — 2, —Fp(—z) — 2] < —n

as required. To see that z3(n) — 0 as n — 0, note that x1(n) and x2(n) are non-decreasing
and positive on (0, 00), and lim,_,o+ z1(n) = lim,_,o+ z2(n) = 0. Therefore z3(n) — 0 as

n — 0, and the proof is complete. O

5.3.2 Proof of Theorem 5.2.2

We first prove (A) implies (B). Since g(n) — 0 as n — oo, for every ¢ > 0, there is
N(e) € N such that |hg(n)| < € for all n > N(e). Let F;" be defined by (5.3.3). Then F;"

is continuous and |Fy(z)| < F;"(|z]) for > 0. We define the sequence (27 (n))n>0 by
1) = @)+ hg@), n>0;  ot(0) = 2(0)] + 1.

Since F}' is increasing, we have z7(n) > 0 for all n > 0 and |z(n)| < 2T (n) for n > 0. Let
n > N(e), and suppose 2T (n) > z3(2e€) for all n > N (). By Lemma 5.3.3, F}f (z)—z < —2¢

for > x3(2¢), therefore we have
zt(n+1) <e+at(n)+[F (z7(n) —2t(n)] <zt (n) —e
Hence (z7(n)),>n(e) is decreasing, so 2 (n) — L > x3(2€) as n — oo. Therefore
F(E) = Jim, B Gt (n) = B o (1) — () = L
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which by Lemma 5.3.2 implies L = 0, a contradiction.
Therefore, we must have that there exists n’ = n’(e) > N(¢) such that xt(n’) > x3(2¢)
and 2t (n' + 1) < z3(2¢). Hence, as n’ > N(e), [g(n’)| < € and F}" is increasing, we have

2t (n' +2) < Ff(z3(2€)) + € < —2€ 4 x3(2€) + € < x3(2€).

Continuing by induction in this manner, we have z(n) < z3(2¢) for all n > n’(e) + 1. We

can therefore summarise the behaviour of x1 as follows:

(i) If 2% (n) > z3(2¢) for some n > N(e), there exists n’(€) > N(e) such that 2T (n) <

x3(2e¢) for all n > n/(e) + 1;

(ii) otherwise T (n) < w3(2¢) for all n > N(e).
Hence in either event, for every € > 0, there is Na(€) > 0 such that 27 (n) < z3(2¢) for all
n > Na(e). Hence |z(n)| < z3(2¢) for all n > Na(€). Thus limsup,,_. |z(n)| < z3(2€).
Since x3(2¢) — 0 as € — 0, we have |z(n)| — 0 as n — oo.

To prove that (B) implies (A), we first note that

z(n+1) = Fyp(x(n)) + hg(n) forall n>0.

Since Fy, is continuous and x(n) — 0 as n — oo by hypothesis, we have

lim Fp(xz(n)) = Fy(0) = 0.

n—oo
Hence

hg(n) =xz(n+1) — Fp(x(n)) =0 as n — oo,

as required.

5.3.3 Proof of Theorem 5.2.3

Under the hypotheses, we have by Theorem 5.2.2 that (5.1.2) and (5.1.3) has a unique
solution, and moreover, it can be written in the form (5.2.2) and (5.2.3) where hg(n) =
Vha(nh)é(n +1). By the independence of sequence (£(n)),>1 and the fact that o(nh) is
deterministic, we observe that (5.2.4) implies

P[[Vho(nh)&(n + 1)| < evE] = Pl—e/lo(nh)| < €(n+1) < ¢/lo(nh)]

= ®(¢/lo(nh)]) — (=¢/|o(nh)]).
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Since ®(—z) =1 — ®(x) for all x € R, statement (A) is equivalent to
> P[Vho(nh)é(n+1)| > eVh] < 400 forall €>0.
n=1

By the Borel-Cantelli lemma, statement (A) is equivalent to

limsup [Vho(nh)é(n+1)| < eVh

n—oo

on an almost sure event (). for every ¢ > 0. Hence statement (A) is equivalent to
o(nh)é(n+1) — 0 as n — oo almost surely. Suppose the almost sure event on which this
holds is Q*. Therefore, by Theorem 5.2.2, for every w € Q*, we have that Xj(n,w) — 0
as n — oo. Hence (A) implies (C), and clearly (C) implies (B). To see that (B) implies
(A), suppose that Xp(n) — 0 as n — oo on the event A which has non-zero probability.

Then by Theorem 5.2.2, it follows that for each w € A we have
onh)é(n+1,w) -0 as n— oo.

However, by the independence of the random variables £(n + 1) and the Kolmogorov
Zero-One Law, it follows that we must have P[A] = 1, which implies statement (A), by

the Borel-Cantelli lemma. Hence (A)-(C) are equivalent.
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Chapter 6
Discretisation of finite dimensional affine and

nonlinear stochastic differential equations

6.1 Introduction

In this chapter the asymptotic behaviour of certain discretisations of perturbed nonlinear
ordinary and stochastic differential equations is considered. We consider the perturbed

stochastic differential equation (3.1.1)
dX(t) = —f(X(t))dt +o(t)dB(t), t>0.

The equation is finite-dimensional, with f : R — R%, : [0,00) — R¥" and B being
an r—dimensional standard Brownian motion. We presume that f and o are sufficiently
smooth to ensure the existence of unique solutions. The appropriate conditions are that
f is locally Lipschitz continuous and that ¢ is continuous. Throughout we assume that

the unperturbed differential equation
y'(t)=—f(y(t), t=>0 (6.1.1)
has a unique equilibrium which is translated to zero:
f(z) =0 if and only if x = 0. (6.1.2)
This equilibrium is globally stable by imposing the dissipative condition
(x, f(x)) >0, forall z#0. (6.1.3)
Existence of a continuous solution of (6.1.1) is guaranteed by assuming that
f € C(R%LRY) (6.1.4)

The assumptions (6.1.2), (6.1.3) and (6.1.4) imply that all continuous solutions y of (6.1.1)

obey y(t) — 0 as t — oc.
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The purpose of this chapter is to examine whether we can mimic the asymptotic be-
haviour of the solutions of (4.1.8) under discretisation.

This should be achieved using only the conditions required to ensure stability, bounded-
ness or unboundedness in the continuous—time case. A particular challenge is to perform
a successful discretisation even in the case when the function f is not globally linearly
bounded, and with a uniform mesh size h > 0 if possible. As already discussed in the
previous chapter, it is known that for such highly nonlinear equations that explicit meth-
ods are unlikely to preserve the long run behaviour of solutions; see examples in [60] and
[41]. It has been shown in the deterministic case by Stuart Humphries and for stochastic
differential equations that implicit methods are very useful for achieving such results. For
this reason, we have adopted the split—step backward Euler method (SSBE) developed in
[39, 60]. This method reduces to the standard backward Euler method for deterministic
differential equations [33, 37]. In this work, we demonstrate that the split step back-
ward Euler method for SDEs, which was introduced by Mao, Higham and Stuart, and by
Mattingly, Stuart and Higham achieves these ends.

The results in this chapter extend and improve those presented in [5], in which a scalar
equation with a monotone increasing f was considered. A classification of the solutions of

scalar linear stochastic differential equations in continuous time was presented in [4].

6.2 The Equation

6.2.1 Set—up of the problem

Suppose that (€2, F,P) is a complete probability space. Suppose that £ is a stochastic

sequence in R” with the following property:

Assumption 6.2.1. £ = {{(n) : n > 1} is a sequence of r—dimensional independent and
identically distributed Gaussian vectors. Moreover, with the notation £9)(n) = (£(n), e;)
for j =1,...,r, we assume each of the Gaussian random variables £/ (n) has zero mean

and unit variance, and that §(j)(n), j=1,...,r are mutually independent for each n.
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This sequence generates a natural filtration F(n) := o{&(j) : 1 < j < n}. In what
follows we denote by ® : R — R the distribution of a standard normal random variable as

in (2.2.2) We interpret ®(—o0) = 0 and ®(c0) = 1.
Remark 6.2.1. Let f : R? — R obey (4.1.9). This condition on f guarantees that the
equilibrium at zero of the unperturbed equation is unique. Suppose to the contrary that
there is z* # 0 such that f(2*) = 0. Then 0 < (z*, f(z*)) = (z*,0) = 0, a contradiction.
Suppose also that
> e C([0,00); R, (6.2.1)

We consider uniform discretisation of the stochastic differential equation
dX(t) = —f(X(t))dt + B(t)dB(t), t>0; X(0)=¢eR? (6.2.2)

If, for example, we wish to guarantee the existence of a unique strong solution of (6.2.2),
we may assume that f is locally Lipschitz continuous on R? or satisfies a global one-sided
Lipschitz condition.

However, if one wants only to assure the existence of a solution, the continuity of f and o
guarantee the existence of a local solution. Moreover, the second part of condition (4.1.9)
guarantees that any such continuous solution does not explode in finite time almost surely,
so we have global existence of the solution. Local existence and uniqueness is standard

from e.g., [55]; a proof of non—explosion and global existence is given in [10].

6.2.2 Construction of the discretisation and existence and uniqueness

of its solutions

We propose to discretise the strong solution X of (6.2.2) as follows. Let h > 0, and
let 0, : Ny — R™" be a d x r—matrix valued sequence with real entries. Let & be

the sequence defined by Assumption 6.2.1. Consider the system of stochastic difference
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equations described by

Xn(0) =G (6.2.3a)
Xj(n) = Xp(n) = hf(Xj(n), n=>0; (6.2.3b)
Xu(n+1) = Xi(n) + Vhop(n)é(n+1), n>0. (6.2.3¢)

(6.2.3b), (6.2.3c) with the initial condition (6.2.3a) is the so—called split-step method for
discretising the stochastic differential equation (6.2.2). This makes sense if we presume

that op,(n) = X(nh) for n > 0, where ¥ is the diffusion coefficient in (6.2.2).

6.2.3 Existence and uniqueness of solutions of split—step scheme

We assume at first that (6.2.3) has at least one well-defined solution This is assured by

the following deterministic— and potentially h—dependent— condition on f.

Assumption 6.2.2. For every x € R there exists x* € R? such that

¥ =x — hf(z"). (6.2.4)

In this situation, we say that (6.2.3) has a solution if there is a pair of processes (Xp,, X})
which obey (6.2.3). Such a solution will automatically be global (i.e, defined for all n > 0):
there is no possibility of finite time explosion, because each member of the sequence ¢ is

a.s. finite. Such a solution will be adapted to the natural filtration generated by &.

Remark 6.2.2. In the scalar case (d = 1), and f obeys (4.1.9), then Assumption 6.2.2 is

satisfied.

Proof. Consider for each € R the function G, : R — R

G.(y)=y—x+hf(y), yeR.

Notice that the continuity of f ensures that G is continuous. Then G,(0) = —z and
Gx(z) = hf(z). Therefore by (4.1.9), G,(0)G,(z) = —hxf(x) < 0 for = # 0, so that there

is a solution z* of (6.2.4) between 0 and x for every x # 0. In the case when x = 0, we
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have yGo(y) = y? + yhf(y) > 0 for y # 0 and Go(0) = 0. Thus 0 is the only solution of

(6.2.4) in the case when z = 0. O

Conditions can be imposed on f which guarantee that there is a unique solution of

(6.2.3). These include f obeying the so—called one—sided (global) Lipschitz condition

(f(x) = fW)) (@ —y) < plz—y)?, forallz,ycR

and some p € R. This condition guarantees the existence of a unique solution of (6.2.4)
provided the step size h is chosen to be sufficiently small. Although this is weaker than
requesting that f satisfy a global Lipschitz condition, it places a restriction on f on all R,
and still excludes some functions f which grow faster than polynomially as |z| — co.

In this chapter, we do not worry about the uniqueness of the solution of (6.2.3). Instead,
we show that all solutions of the equation will have the correct asymptotic behaviour. This
is in the spirit of generalised dynamical systems considered by Stuart and Humphries [76].
This enables us to impose a weaker regularity condition on f and to therefore consider a
wider class of functions f than are covered by the one—sided Lipschitz condition. But if

uniqueness of the solution of (6.2.3) is required, we are still free to impose extra conditions

on f.

6.2.4 Mean reversion of split—step method under (4.1.9)

Before proceeding, it is worthwhile to note that the first, “deterministic” equation in the
split-step method (namely (6.2.3b)) forces the intermediate estimate X} to always be

closer to the equilibrium than Xj,.

Lemma 6.2.1. Suppose (Xp, X}) is a solution of (6.2.3) and that f obeys (4.1.9). Then

for each n € N,

0 < [IX75 ()l < | Xn(n)[| if | Xn(n)[l > 0, and Xj(n) =0 if and only if Xp(n) = 0.

Proof. To prove part (a), suppose first that || Xp(n)|| > 0. Notice from (6.2.3b) that
X7 (n) = 0 implies that X} (n) = 0, so we have || X} (n)|| > 0. By taking the innerproduct
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with X7 (n) on each side of (6.2.3b), and using the second statement in (4.1.9) we get
1X5: ()12 = (Xa(n), X5 (n)) — h(f (X} (n), Xji(n)) < (Xp(n), Xji(n)).

Applying the Cauchy—Schwartz inequality to the rightmost inequality, this implies that
15 ()11 < 1 Xa(m) 11X (n)]l, as required.

We have already seen that X7 (n) = 0 implies that X;(n) = 0. To prove the con-
verse, let Xj;(n) = 0 and suppose that || X7 (n)|| > 0. From (6.2.3b) we have X} (n) =
—hf(X}(n)), so taking the innerproduct as before and using (4.1.9) yields 0 < || X7 (n)||? =

—h(f(Xy(n)), X} (n)) <0, a contradiction. O

6.3 Statement and Discussion of Main Results

6.3.1 Affine equations

Before discussing the asymptotic behaviour of solutions of (6.2.3), it is fruitful to first
understand the asymptotic behaviour of the d-dimensional sequence Uy, = {Up(n) : n > 1}
defined by

Un(n+1) = Vhop(n)é(n+1), n>0 (6.3.1)

Define

Sp(e) = i {1 — P (W) } . (6.3.2)

n=0

Notice that Sp(e) is monotone in € > 0. Therefore, there are only three possible types of
behaviour for S, for a given o, namely: (i) Sy(€) < 400 for all € > 0; (ii) Sp(e) = +o0
for all € > 0; and (iii) Sp(€) < +oo for all € > ¢ > 0 and Sj(€) = +o0 for all € < ¢’. Due
to this trichotomy, it can be seen that the following result enables the long—run pathwise

behaviour of Up(n) to be classified in terms of Sj,.

Lemma 6.3.1. Let £ = {&(n) € R" : n € N} be a sequence of random vectors obeying

Assumption 6.2.1. Let Uy, be given by (6.3.1), and Sp(e) be defined by (6.3.2).
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(A) If Sp(e) < oo for all e > 0, then

lim Up(n) =0, a.s. (6.3.3)

n—oo
(B) If Sp(€) = 400 for all € > 0, then

limsup |Up(n)|| = +o00, a.s. (6.3.4)
n—oo

(C) If Sp(e) < +oo for all € > €, and Sp(e) = +o0 for all e < €, then there exist

deterministic 0 < ¢1 < ¢ < 400 such that

c1 <limsup ||Uy(n)|| < c2 < 400, a.s. (6.3.5)

n—oo

This result enables us to classify the asymptotic behaviour of the discretisation of the

d—dimensional affine stochastic differential equation
dY (t) = AY (t)dt + X(t)dB(t), t>0; X(0)=¢, (6.3.6)

where A is a d X d matrix with real entries. We assume that all solutions of the underlying

deterministic differential equation
y'(t) = Ay(t), t>0, z(0)=¢ (6.3.7)
obey y(t) — 0 as t — oo. This means that
Re(A) < 0 for all eigenvalues A of A. (6.3.8)

Let ¢4 be the characteristic polynomial of A, so that c4(A) = det(Ay— A). By (6.3.8), it
follows that there are no positive real solutions of the characteristic equation c4(A) = 0.
In particular, c4(1/h) # 0 for every h > 0, so we have that det( —hA) # 0 and therefore
the matrix C(h) given by

C(h)= (I —-hA)! (6.3.9)

is well-defined. Therefore, there is a unique solution of the split—step scheme

Y;,(0) = ¢, (6.3.10a)
Y(n) = Yin(n) + hAY (n), n>0, (6.3.10b)
Yi(n +1) =Y (n) + Vhop(n)é(n+1), n>0. (6.3.10c)
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which is equivalent to
Yi(n+1) = C(R)Yu(n) + Vhop(n)é(n+1), n>0; Y,(0)=c.
The asymptotic behaviour of Y}, can now be given.
Theorem 6.3.1. Suppose that A € R¥? obeys (6.3.8). Let £ = {£(n) € R" : n € N} be

a sequence of random vectors obeying Assumption 6.2.1. Let Sp(€) be defined by (6.3.2),

and (Yp,Y;r) be the unique solution of (6.3.10).
(A) If Sp(e) < +oo for every € > 0, then Yi(n) — 0 as n — oo a.s.

(B) If there exists € > 0 such that Sp(€) < +o00 for all € > € and Sk(e) = 400 for all

€ < €, then there exist deterministic 0 < c3 < ¢4 < +oo such that
¢ < Timsup [Vi(n)| < s, a.s
n—oo

and

n—oo

. - 2
liminf Yy (n)| =0,  lim nZIHYh(y)H =0, as.
]:

(C) If Sp(€) = 400 for all € > 0, then limsup,,_, ||[Ya(n)|| = +o0 a.s.

6.3.2 Nonlinear equation

We now discuss the asymptotic behaviour of solutions of (6.2.3). We first show that X},
has a zero limit in the case when oy, is square summable, without placing any condition on

f stronger than (4.1.9). This is a direct analogue of results available in continuous time.

Theorem 6.3.2. Suppose that (X, X}) is a solution of (6.2.3). Suppose f obeys (4.1.9),
on € (2(N,R), and that the sequence & obeys Assumption 6.2.1. Then lim,_,o, Xp(n) =0,

a.s.

We show that when U}, is unbounded, so is || X}||, and also that if Uy, is bounded, || X}]|

is bounded away from zero by a deterministic constant.
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Theorem 6.3.3. Suppose that (Xp,, X}) is a solution of (6.2.3). Suppose that f obeys

(4.1.9) and that the sequence & obeys Assumption 6.2.1. Let Sy(e) be defined by (6.3.2).
(A) If Sp(e) = o0 for every € > 0, then

limsup || Xx(n)|| = 400, a.s.
n—o0

(B) If Sp(€) < 400 for all € > €' and Sp(€) = 400 for all e < €, then

limsup || Xp(n)|| > %1, a.s.,

n—oo

where ¢y is defined by (6.3.5).

Theorem 6.3.4. Suppose that (Xp,, X)) is a solution of (6.2.3). Suppose that f obeys

(4.1.9) and that the sequence & obeys Assumption 6.2.1. Let Sp(€) be defined by (6.3.2).
(i) If Sp(€e) < +oo for every e > 0, then

{ ILm | Xn(n)|| =0} U{ ILm | Xn(n)|| = +o0} is an a.s. event.

(1) If limy,_yo0 Xp(n) = 0 with positive probability, then Sp(e) < +oo for every e > 0.

Under an additional mean-reverting condition on f, we can characterise the conditions

on oy, under which solutions of (6.2.3) tend to zero.

Theorem 6.3.5. Suppose that (Xp, X}) is a solution of (6.2.3). Suppose that f obeys

(4.1.9) and
liminf inf (z, f(x)) =: ¢ > 0. (6.3.11)
y=oo |lzll=y
and that the sequence & obeys Assumption 6.2.1.
(A) Sy (e) defined by (6.3.2) obeys Sp(e) < +oo for every e > 0;

(B) lim,, 00 Xp(n) =0 a.s. for all ¢ € RY;
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(C) limy, o0 Xp(n) = 0 with positive probability for some ¢ € RY;

Furthermore, in the scalar case, we can characterise the stability of the equilibrium
without requiring to assume (6.3.11). In fact, it suffices to just assume that f obeys

(4.1.9).

Theorem 6.3.6. Suppose that (Xp, X}) is a solution of (5.1.2) and (5.1.3). Suppose that

[ obeys (4.1.9) and Sp(e) = > 72 {1 — ®(¢/|on(n)])} < +oo for all € > 0. Then

lim Xp(n,{) =0 a.s. forall(e€R.

n—oo

The next result enables us to completely classify the asymptotic behaviour of the so-
lutions of (6.2.3). In order to do so, we must strengthen once again the mean—reverting

hypothesis on f.

Theorem 6.3.7. Suppose that (Xp, X)) is a solution of (6.2.3). Suppose that f obeys

(4.1.9) and

liminf inf M

y—=oo |zl|l=y ||z

= 400, (6.3.12)

and that the sequence & obeys Assumption 6.2.1. Let Sy(€) be defined by (6.3.2).
(A) If Sp(e) < +oo for all € > 0, then lim, oo Xp(n) =0 a.s.

(B) If Sp(e) < 4oo for all € > € and Sp(e) = +oo for all € < €, then there exists

deterministic 0 < c3 < ¢4 < 400 such that
c3 < limsup || Xp(n)|| < cq, a.s.
n—oo

and

liminf || X5 (n)|| =0, a.s.
n—o0

(C) If Sp(€) = +oo for all € > 0, then limsup,,_, || Xn(n)|| = +oo a.s.
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This necessary and sufficient condition on S (€) is difficult to evaluate directly, because
we do not know @ in its closed form. However we can show that Sy (e€) is finite or infinite

according as to whether the sum

50 =3 lonm)leexp (<5 o) (6313
n=0

Ol
is finite or infinite, we interpret the summand to be zero in the case where ||op(n)||F = 0.
Therefore we establish the following Lemmata which enables us to obtain all the above
results with S} (€) in place of Sy, (e).

Lemma 6.3.2. Sy(e) given by (6.3.2) is finite if and only if S} (e) given by (6.3.13) is

finite.

Proof. We note by e.g., [44, Problem 2.9.22], we have (2.2.16). If Sp(e€) is finite, then
1 —®(¢/|lon(n)||r) — 0 as n — oco. This implies ¢/| oy (n)||F — oo as n — co. Therefore

by (2.2.16), we have

lim 1 — @(¢/[lon(n)lr) _ 1 (6.3.14)

oo [lon(n)llp/e - exp(—e*/{2)lon(n)lF}) V2

Since (1 — ®(¢/||on(n)||F)),>1 is summable, it therefore follows that the sequence

(lon(m)llr/e - exp(=€*/{2]lon(n) |E(1)})) 15,

is summable, so S} (¢) is finite, by definition.

On the other hand, if S’(¢) is finite, and we define ¢ : [0, 00) — R? by

rexp(—1/(22?)), = >0,
p(x) =
0, z =0,
then we have ||op,(n)||F exp(—€®/2||op(n)||%(n)) is summable, hence (¢(||on(n)||F/€))n>1
is summable. Therefore ¢(||on(n)||r/e) — 0 as n — oco. Then, as ¢ is continuous and
increasing on [0,00), we have that ||ox(n)||r/e — 0 as n — oo, or €/||op(n)||Fp — oo as

n — oo. Therefore (6.3.14) holds, and thus (1 — ®(¢/||on(n)||F))n>1 is summable, which

implies that Sp,(€) is finite, as required. O
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6.3.3 Connection with continuous results

To see how these results mimic the asymptotic behaviour of (6.2.2) and (6.3.6), we record

corresponding result for solutions of these equations. To this end, we define

Se=Y {1-9 — < (6.3.15)
= VIS0 de
and for h >0

(6.3.16)

¢ J;,,”“ IS@)12 dt

Perusal of the proof of Theorem 2.2.3 in Chapter 2 shows thatS(-) above can be replaced

by S;. The result therefore is

Theorem 6.3.8. Suppose that A € R4*? obeys (6.3.8). Let h > 0 and suppose that S}(lc) (¢)

be defined by (6.3.16). Let Y be the unique solution of (6.3.6).
(A) If S,(lc)(e) < 400 for every e > 0, then Y (t) — 0 as t — 0o a.s.

(B) If there exists € > 0 such that S,(LC)(G) < 400 for all e > ¢ and S}(LC)(G) = 400 for all

€ < €, then there exist deterministic 0 < ¢1 < ¢g < +oo such that
cp <limsup ||Y ()| < ¢, a.s.
t—o0

and

t—o00

1 t
liminf |Y(¢)[| =0, lim / |Y(s)|?ds =0, a.s.
(C) If S}(lc)(e) = 400 for all € > 0, then limsup,_, ||Y (t)|| = +o0 a.s.
Similarly, we may replace S by S; in Theorem 4.2.6 in Chapter 4 to get

Theorem 6.3.9. Suppose that f obeys (4.1.9) and (6.3.12). Suppose that X is a solution

of (6.2.2). Let h > 0 and suppose that S}(LC)(e) be defined by (6.3.16).

(A) If S}(LC)(G) < 400 for all € > 0, then limy, o X(t) =0 a.s.
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(B) If S,(ZC)(E) < 400 for all € > € and S,(LC)(G) = 400 for all € < €, then there exist

deterministic 0 < c3 < ¢q4 < +00 such that
c3 < limsup | X (¢)|| < ¢4, a.s.
t—o00

and

liminf [ X(8)]| =0, a.s.

t—00
(C) If S}(LC)(e) = 400 for all € > 0, then limsup,,_, . || X(¢)|| = oo a.s.

If we take a uniform step size h > 0 in a forward Euler—discretisation of (6.2.2), this is

tantamount to setting

op(n) =%(nh), n>0 (6.3.17)

in (6.2.3). In this case, the continuity of ¥ ensures for each fixed n that

] 1 (n+l)h ) )
i ¢ 5 [ IS ds— lon(m p =0,

h—0 h

so it can be seen that the conditions classifying the finiteness S;, and S are in some sense
“close”. We now give some examples where Sj, and S} share the same finiteness properties,
and therefore, the asymptotic behaviour of solutions of (6.2.2) and (6.2.3) coincide.

In the case when the integral ff E?j(s) ds can be computed explicitly for any 0 < a <
b < +4ooand (i,5) € {1,...,d} x {1,...,r}, it is reasonable to approximate the stochastic

integral

h h

(n+1)h (n+1)h 1/2
/ ¥i;(s) dB;(s) by (/ E?j(s) d5> &(n+1)

where ¢ obeys Assumption 6.2.1. This is because the two random variables displayed
above have the same distribution. In terms of (6.2.3) (particularly (6.2.3c)) this amounts

to choosing o, according to

(n+1)h 1/2
lon(n)]i; = \}E </h Z?j(s) ds) , n>0, (i,5)e{l,...,d} x{1,...,r}.
(6.3.18)

In this case, it is seen that Sy(e) = Sj(e). Applying Theorems 6.3.7 and 6.3.9, we imme-

diately have the following result.
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Theorem 6.3.10. Suppose that f obeys (4.1.9) and (6.3.12) and suppose that ¥ obeys
(6.2.1). Assume that the sequence & obeys Assumption 6.2.1, and for h > 0 that f obeys
Assumption 6.2.2. Let X be a solution of (6.2.2) and (Xp, X}) is a solution of (6.2.3).

Then exactly one of the events
{w: lim X(t,w) =0}, {w:0<limsup|X(¢,w)|| < oo, liminf || X (t,w)| =0},
t—00 t—00 t—r00
and {w : limsup [| X (t,w)]|| = +oo}
t—o0

s almost sure, and exactly one of the events

{w: ILm Xn(n,w) =0}, {w:0 <limsup || Xp(n,w)| < +oo, lirginf | Xn(n,w)|| = 0},
n—00 N300 n—00

and {w : limsup || X (n,w)|| = +oo}

n—0o0
s almost sure.
If oy, is given by (6.3.18), and n féZHm Z?j(s) ds can be computed exactly for all

(4,7) € {1,...,d} x{1,...,7} and all n € N, we have the following equivalences:
(i) lim_o0o X (t) = 0 a.s., if and only if limy, 0o Xp(n) =0 a.s.
(it) limsup,_, . [| X (t)]| € (0,00) a.s., if and only if limsup,,_, || Xr(n)| € (0,00) a.s.

(117) limsup,_, o || X (t)|| = 400 a.s., if and only if limsup,,_, || Xr(n)| = +o0 a.s.

We next consider a situation where finiteness conditions on Sy, (€) and Sf, (€) also coincide,
but in which we do not need to have a closed—form expression for fj E?j(s) ds. This is the

case when t — ||2(t)||% is decreasing and oy (n) = X(nh).

Theorem 6.3.11. Suppose that f obeys (4.1.9) and (6.3.12) and suppose that ¥ obeys
(6.2.1). Assume that the sequence & obeys Assumption 6.2.1, and for h > 0 that f obeys

Assumption 6.2.2. Let X be a solution of (6.2.2) and (X, X}) is a solution of (6.2.3).
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Then exactly one of the events

{w: lim X(t,w) =0}, {w:0<limsup|X(¢,w)| < oo, liminf || X (t,w)| = 0},
t—00 t—00 t—r00

and {w : limsup || X (t,w)|| = +oo}
t—o0
is almost sure, and exactly one of the events

{w: lim Xp(n,w) =0}, {w:0<limsup||Xx(n,w)|| < +oo, liminf || X} (n,w)| = 0},
n—00 N—00 n—00

and {w : limsup || Xp(n,w)| = +o0}

n—oo

s almost sure.
If we further suppose that t — ||X(t)||% is non—increasing, and o (n) is given by (6.3.17),

we have the following equivalences:

(i) limy_0o X(t) = 0 a.s., if and only if limy, 0o Xp(n) =0 a.s.

(i) limsup,_, o, || X (t)]] € (0,00) a.s., if and only if limsup,,_, ., || Xr(n)|| € (0,00) a.s.
(117) limsup,_, o || X (t)|| = +o0 a.s., if and only if limsup,,_, || Xn(n)| = +o0 a.s.

Proof. Define 9j,(n)2 = [GHV™I53(4)(|2, dt/h. Since ¢ — |£(t)]|% is non-increasing, for
t € [nh, (n + 1)h] we have |S((n + 1)h)||% < [|Z(t)[|% < [|Z(nh)||%. Therefore integrating
over [nh, (n+1)h] and using (6.3.17) we get |[op(n+1)||r < Ip(n) < ||on(n)||p. For e > 0,

as ® is increasing, we have

Summing across this inequality and using the definitions (6.3.2) and (6.3.16) we get

si0 - {1-2 ()} <500 < 510,

Therefore, for any € > 0, Sj(€) is finite if and only if S}(Lc)(e) is finite.
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We now prove the equivalence (i). Suppose that lim; . X () = 0 a.s. Then, as S,(f) (€)
must be (i) finite for all € > 0; (ii) infinite for all € > 0; or (iii) finite for all ¢ > € and
infinite for all € < € for some € > 0, it follows from Theorem 6.3.9 that S}(LC)(E) < +o0 for
all € > 0. Therefore, we have that Sy, (¢) < +oo for all € > 0. Theorem 6.3.7 now implies
that Xp(n) — 0 as n — oo a.s.

Conversely, suppose that X;(n) — 0 as n — oo a.s. Since Sp(€) must be (i) finite for
all € > 0; (ii) infinite for all € > 0; or (iii) finite for all € > ¢ and infinite for all ¢ < € for
some € > 0, it follows from Theorem 6.3.7 that Sp(e) < +oo for all € > 0. Therefore, we
have that S,Sc)(e) < +oo for all € > 0, and hence by Theorem 6.3.9, X (t) — 0 as t — oo
a.s., completing the proof of (i).

The proof of the equivalences (ii) and (iii) are similar, and hence omitted. O

The condition that S} (e) is finite or infinite can be difficult to check. However we can
provide a sufficient condition on which each case of S (€) being finite all the time, some-
time finite sometime infinite and infinite all the time is possible according to whether

limy— o0 |0 (n)||% log n being zero, non-zero and finite, or infinite. Therefore the asymp-

totic behaviour of the solution of (3.1.1) can be classified completely.

Lemma 6.3.3. Define lim,_,o [|on(n)||%logn = L € [0,0], then we have the following:
(A) If L =0, then S} (€) < +oo for all e > 0;
(B) If L € (0,+00), then Sj(e) < +oo for all e > € and Sj () = +o0 for all e < €;
(C) If L = 400, then S} (€) = +oo for all e > 0

Proof. Notice from e.g., [44, Problem 2.9.22], limy_o0(1 — ®(z))/(z~'e~*"/2) = 1/1/2.

Therefore we have

lim log(1 — ®(z)) + logz + x?/2 = log(1/V27),
T—r00
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hence

lim log(1 — ®(z))

T—00 ,’L'2/2 =L

Let z = €/||op(n)||F — o0 as n — oo, we have

i 1081 = &(e/llon(n)l[F)) _
n—o0 62/2H0'h(n)”F .

Moreover,

i 08 = @(¢/[lon(n)l|F)) log(1 — ®(¢/llon(n)llF)) = €/2llon(n)r

=1
. log n nooo €/2]|on(n)l|r log n
2
1
= < lim

2 n—oo Hah(n)leogn

If L =0, then

L log(l— @(e/lon(m)lr)
n—00 log n

Therefore there exists an N (e), such that for n > N(e)

log(1 = @(¢/[|on(n)l|F)) < —2logn

1—®(/|lon(n)||r) <n 2 =0 asn — oo

This implies that Sy (€) < 400, which implies S} (¢) < +00 by Lemma 6.3.2 proving part
(A).

If L € (0,+00), we have

_ _ 2
i 108 = @(¢/llon(n)llF)) _ —¢
n—00 lOgn 2L

Therefore either € > /2L, in which case lim,,,oc 1 — ®(¢/||or(n)||r) = 0, hence Sp(e) <
400, and S} () < +00. Or € < V2L, in which case 1 — ®(e/|ox(n)||r) is not going to zero,
hence not summable, therefore Sy, (e) = 400 which implies S} (€) = +oc.

Finally, if L = +o0, suppose that Sp(€) < +o0, then

L log(1 = B(e/on(m)] )
n—0o0 logn

=0.
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Then for all € > 0, there exists an N(e) > 0 such that

log(1 — @(¢/|on(n)||r))
logn

> —1/2
log(1 — @(¢/[|on(n)|[F)) > —1/2logn = logn~'/?
1—®(e/|lon(n)||F) >n"Y? for all n> N(e)

This implies Sp,(€) = +00, which is a contradiction, hence the required result, completing

the proof. 0

6.4 Preliminary Results

In this section, we deduce some simple preliminary facts about (6.2.3) contingent on a
solution (X}, X)) existing. We also present some results on the asymptotic behaviour of

martingales that will be of utility in the sequel.

6.4.1 Estimates and representation

In our next result, we obtain a representation for || Xy (n)||%.

Lemma 6.4.1. Suppose (Xp, X}) is a solution of (6.2.3). Then

IXa(m)II? = 1 X0 (O)I* =2 h(F(XGi(E = 1)), X4 = 1)) + D hllon(i — DEOD)]?
i=1

=1

=Y RGP+ M(n), n=1, (6.4.1)

=1
where
d
YW (n) = 2Vh > [Xpm)lelow(m)r;, j=1,....,r, n=>1, (6.4.2)
k=1
M(n) = zn: iYU)(i ~1D)EW@G), n>1 (6.4.3)
i=1 j=1
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Proof. Notice that with Y as defined in (6.4.2) and M as defined in (6.4.3), we have

ZZ (2\/52 X7 (i — 1)]plon(i — 1)]kj> €0 (4)

11]1

::§:§:2¢mxg@—1ﬂk§:bmi—1ﬂwéﬂ@)

i=1 k=1 Jj=1
n d

=Y ) 2Vh[X5 (i — Dllon(i — 1G]k,
i=1 k=1

so that M defined by (6.4.3) obeys
n) = 2\/5220(,;(2' —1),05(i — 1)¢GE)), n>1. (6.4.4)
Next, we rewrite (6.2.3b) according to X,(n) = X3(n) + hf(X#(n)). Then
1) 12 = X5 (n)II* + 2h(F (XG5 (n), XG5 (n)) + B2 [ f (X (n)) 2. (6.4.5)
From (6.2.3c), for n > 0 we get
1Xa(n + 1)[* = 1X5 ()1 + hllon(n)é(n + 1* + 2VA(XG (n), on(n)é(n + 1)),

so by using (6.4.5) we get

1Xn(n + D)I* = [ Xn(n)[|* = 20 f (XG5 (n), X5 (n)) — W2 f (X5 ()|

+ hllop(n)é(n +1)||2 + 2VR(X}(n), on(n)é(n +1)).  (6.4.6)

Therefore for n > 1, by summing on both sides, and using (6.4.4) we have

X0 (m)II* = [1XA(0 H2+Zh{ 2 (XA — 1), X5 — D)+ loni — DEDI)
= SR G - D)) + M(n),
=1

where M is defined in (6.4.3), as claimed. O
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6.4.2 A result on the asymptotic behaviour of martingales

We prove now a useful lemma on the asymptotic behaviour of a martingale built from £
and sequences adapted to its natural filtration. It is based on a result of Bramson, Questel

and Rosenthal [28, Theorem 1.1].

Lemma 6.4.2. Let M = {M(n) : n > 1} be a martingale with respect to the filtration

(F(n))n>0 of o—fields on a probability space (0, F,P) such that
M(n) = Zn:Y(z’), n > 1.
i=1
If there exists a constant K € [1,00) such that
E[Y (n)?|F(n —1)] < KE[[Y (n)||F(n — 1))?,  a.s. for alln > 1, (6.4.7)

then

{w: lim M(n,w) exists and is finite}
n—o0

U{w : liminf M (n,w) = —oco, limsup M (n,w) = +o0} is an a.s. event (6.4.8)

n—oo n—o0o

We now prove a consequence of Lemma 6.4.2.

Lemma 6.4.3. Suppose that & obeys Assumption 6.2.1. Suppose that Y ) = {Y(j)(n) :
n > 0} for j = 1,...,r are sequences of F&(n)-measurable random variables. Define
M={M(n):n>1}
Mn)=>">"YP(i-1)¢V3E), n>1 (6.4.9)
i=1 j=1

Then M obeys (6.4.8).

Proof of Lemma 6.4.3. Define
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Since YU)(n — 1) is F¢(n — 1) measurable, and & obeys Assumption 6.2.1, it follows that

E |Y (n)?Fé¢(n — 1)] = iym (n—1)% =:¢*(n).
j=1

2

Next, we recall that if Z is a normal random variable with mean zero and variance c¢*,

then
1
E[Z|* = —c*.
121 = o
Since W) (n) for j = 1,...,r are independent standard normal random variables, and

YU)(n —1) is F&(n — 1) measurable, it follows that, conditional on F¢(n — 1), Y (n) is

normally distributed with zero mean and variance ¢2(n). Therefore

E [V @)lIFém—1)] = S2n) = B [y )7 - 1)]

s0 (6.4.7) holds with K = 27r. Therefore all the hypotheses of Lemma 6.4.2 apply to M,

and so we have the claimed conclusion (6.4.8). O

We employ one other result from the convergence theory of discrete process. It appears

as Lemma 2 in [18].

Lemma 6.4.4. Let {Z(n)}nen be a non-negative F(n)-measurable process, E|Z(n)| < oo

for allm € N and
Zn+1)<Zn)+W(mn)—-V(n)+vin+1), n=0,1,2,..., (6.4.10)

where {v(n)}nen is an F(n)-martingale-difference, {W(n)}nen, {V(n)}nen are nonnega-

tive F(n)-measurable processes, E|[W (n)| < +oo, E|V(n)| < +oo for alln € N. Then

{w : ZW(n) < —i-OO} - {W : Zv(n) < +OO} ﬂ{Z(n) -}
n=1 n=1

where {Z(n) —} denotes the set of all w € Q for which li_)rn Z(n,w) exists and is finite.
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6.4.3 Proof of Lemma 6.3.1

For n > 1, we have [Up(n)]; = \/Ezgzl[ah(n —1)];;¢;(n+1). Hence [Up(n)]; is normally

distributed with mean zero and variance 6;(n)? := hyiilon(n — 1)]% Therefore,

P|[Un(n)]i| > ] =1 — @ (9¢(€n)) . (6.4.11)

Define 0%(n) = 2?21 0;(n)? = hllop(n — 1)||%. Since 62(n) > 6;(n)? for each i = 1,...,d,

we have
d
€ €
1—-d—— <d|{1l1—-d | —~ .
> {12 (7m) =22 (7))
Suppose, for each n, that Z;(n) for i = 1,...,d are independent standard normal random

variables. Define Z(n) = (Zi(n), Z2(n),...,Z4(n)) and suppose that (Z(n)),>0 are a

sequence of independent normal vectors. Define finally

Then we have that X; is a zero mean normal with variance 012 and X is a zero mean
normal with variance #2. Define Z*(n) = X (n)/0(n) is a standard normal random variable.

Therefore we have that

P (0)| > € = Pl12° ()] > e/0(0)] = 2612°(0) = /o] =2 (1- @ (55 )).
(6.4.12)
With A;(n) = {[X(n)| < e/d}, B(n) = {X2, [X:(n)| < e}, then L, Ai(n) € B(n), s0
d

PIIX (n) > < P[B(n)) < P |, Ai(n)| = P [UL 4] < 3P [A4i(n)] .

=1

Since X; = 6;7;, we have

P[|X(n |>e<QZ}P’ >e/d—22{1— <E/d)>}. (6.4.13)

By (6.4.12) and (6.4.13), we get (2.5.7), i.e

e <e<6n>> fé{l—@ (em}

Define ||Up(n)]1 = Zle |[Un(n)]i| for n > 1. Therefore, as ||Ux(n)|[1 > |[Un(n)]i|, we have

that P[|Un(n)|1 > € > P[|[Un(n)]i| > €] for each i = 1,...,d. Therefore by (6.4.11) and
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(2.5.7), we have
d

dMWM@thz}jMMMMMzdzﬁfﬁ—@<m&Q}21—¢Q§Q.

i=1 i=1
(6.4.14)

On the other hand, defining A;(j) = {|[Un(n)]i| < €/d} and B(j) = {||{Un(n)|1 < €}, we

see that N¢_, A;(n) C B(n). Then

B[|UA(m)lls > = P[B(n)] < P [, Ai(n)]
d

=P |UL A < Y PlUmLI = ¢/d).

i=1
Hence by (6.4.11) and (2.5.4) we get

d d
P|Un(n)[1 = € < ZIP[|[Uh(n)]i| > ¢/d] = Z {1 _ (;ég))}

i=1 i=1 ¢

<d (1 —® (;{%)) . (6.4.15)

Part (A). Suppose Si(€) < +oo for all € > 0. Then, by (6.4.15) we have that

P|Un(n)]l1 = €] < 400

and so by the Borel-Cantelli lemma, lim sup,,_,. ||[Un(n)||1 < € a.s. for each € > 0. Letting
e } 0 through the rational numbers gives lim,, o, Up(n) = 0 a.s.

Part (B). Suppose Sp(€) = +oo for all € > 0. Then, by (6.4.14) we have that
P[[|Un(n)]l1 > €] = 400

Since (||Upn(n)]/1)n>1 is a sequence of independent random variables, by the Borel-Cantelli
lemma we have that limsup,, . ||[Un(n)||1 > € a.s. for each € > 0. Letting ¢ — oo through
the integers gives limsup,,_,  ||Un(n)|| = +00 a.s.

Part (C). Suppose Sp(€) < oo for all € > €. If € > €, then by (6.4.15) we have

o0 o0 €
P > dhd < Yod (1= 0 (o)) <,
2 2 fon ()l
and so limsup,,_, . [|Un(n)|l1 < dhe’ =: ca, a.s. On the other hand, if € < €, by (6.4.14)

we get

ZIP’ 1Un(n)1 > he/d] >Z { <M>}—+oo.

Therefore, using the Borel-Cantelli lemma and independence of ||Uy(n)|/1, we have that

limsup,,_, o [[Un(n)||1 > he'/d =: ¢, a.s.
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6.5 Proof of Theorem 6.3.2

Recall from Lemma 6.4.1 that X}, obeys (6.4.1) with M given by (6.4.4). Since f obeys

(4.1.9), this implies that
1X ()| = IX (0)[1* < D hllon(i = DEG)* + M(n), n> 1.
i=1

We want to prove that limsup, ., || Xn(n)|| < +oo, therefore we need to prove that
lim sup,, o0 Y oieq Rllon(i — 1)E3)||* < 400 and limsup,,_,o, M (n) < +oo. Define P(n) =
S hllon(i — 1)E@E)|?. Since (P(n)),>1 is a non—decreasing sequence, we have that
Py, = lim,_,~ P(n) exists a.s. We wish to show that P, must be finite a.s. Suppose to
the contrary that there is an event A = {w : Px(w) = oo} with P[A] > 0. Then as Py, is a
non—negative random variable, we have that E[P] = +00. However by Fubini’s Theorem
we have

o0 o0

E[Px] =E)  llon(i = DED? =D llonli = DIIE < +oo,

i=1 i=1

which is a contradiction. Therefore it must be that lim,,_,., P(n) = Py exists and is finite

a.s. From (6.4.6) and (4.1.9) we have

1Xn(n+ DI* = 1Xa(n)|* < hllon(n)én + DI? + 2VA{X(n),0n(n)é(n +1)). (6.5.1)

We know that E[|| X (0)||?] < +oc. We wish to prove that E[||Xx(n)||?] < +oo for each

n € N, which we prove by induction. Suppose that E[|| X} (n)||?] < +o00. Then, we get

E[| Xn(n + 1)[I*) < E[IXa(n)[*] + E[hllon(n)&(n + 1)]]

+ 2VRE[(Xj(n), on(n)é(n + 1))].

We now compute the second term on the right-hand side. Because X;(n) depends on
Xp(n) and is F(n)-measurable, and {(n + 1) is F(n + 1)-measurable and independent of

F(n), therefore {(n+1) is independent of X (n). Moreover E[|| X} (n)[]] < E[||Xx(n)]|]] < oo
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and similarly E[||¢(n + 1)||?] is finite. We get
[ d
E[(X(n), on(n)é(n +1))] = E | Y_[Xji(m)]ilon(n)é(n + 1));

Li=1

d r
=E Z[Xh( )i Z[ n(n )]”fj(n-i-l)]

(oo

d
(Z X5 (n)]ilon(n m) &Gnt 1)

=1

I
Mﬁ

_ZE

Since E[|| X} (n)|?] < 400 and E[Hﬁ(n + 1)]|?] < +occ and oy, is deterministic, it follows

from independence and the fact that E[{;(n + 1)] = 0 for all n and j, that

d
E KZ[H(H)H@(HHU) &(n+1)

i=1

=K

Z[Xﬁ(n)]i[gh(n)]ij E[¢;(n+1)] = 0.

Hence
E[{(X7(n), on(n)é(n +1))] = 0.

Next, we return to P(n) to get

i—1 j=1

2
d d r
Ellon(n)é(n+ DI =E_[on(n)éi(n + 1)] Z (Z[Uh(n)]ijfj(n + 1))
EZ{Z z]f] Tl+1 +ZZU}L ZJUzk f](n+1)§k(n+1)}‘

i=1 | j=1 J k#j

By the independence of &;(n + 1), &(n + 1) for i # j, we have

E[||lon(n)é(n +1)]12] ZZJh = [lon(n)||%. (6.5.2)

=1 j=1
Therefore

E[| Xa(n+ D[] < E[IXa(n)II’] + hllo(n)|lF < +oc.

Thus by induction we have IE[HXh(n +1)||?] < 4+oo for all n € N. Now by (6.5.1) we get

IXn(m)|? = 1X5(0)]1* = Z{Ith R e PG
ShZHGh(j G+1) H2+2\/EZ X5 (3),on(1)E0G +1))

n)+2vh Z (X33, on(H)EG +1)).
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Because E[||Xp,(n)[?] < +oo and E[[|X;(n)[*] < E[[|[Xn(n)[?], thus E[[|X}(n)[?] < +oo
for all. Therefore

n—1
=" 2VR(XG () oG + 1)
j=0

is a martingale. Next we compute the quadratic variation of M. To this end, we may

write M according to

n—1 r

) =2Vi Y Y Qiian + 1),

=0 |=1

where Qu(j) = S0, (X5 (1)]ilon(i)]la. Thus M(j + 1) — M(j) =2Vh 31, Q)& + 1)
Hence the quadratic variation of M is given by

n—1 T 2
n)=4hy E (Z Q)& + 1))
=0

=1

n—1 r
=4hY B[y Q)G +1)°

§=0 I=1

£33 Q)QuEG + Dgnli+ I

m=11#m

= 1h 3 QB + 1717)

Fj

+ Z Z Ql Qm El(] + 1)§m(] + 1)|‘F]
m=11#m

n—1 r

=4 > QF()

j=01=1

Therefore, by using the Cauchy—Schwartz inequality, we obtain the estimate

n—1 d r d
=4hZ<ZX?(j)2>' Yol _4hZ”Xh WP llon()IIE- (6.5.3)
- : =

Define the events

Ay ={w: lim P(n,w) = Px € (0,00)}, Ay ={w: lim (M)(n) = +oo}.

n—0o0 n—oo

Suppose that P[Ag] > 0. Let A3 = A; N Ag, so that P[A3] > 0. Then a.s. on A3 we have

lim M(n)

e D) () ~
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Next suppose that € € (0, 1) is so small that

4eh Y lon(n)|lz <
n=1

Thus for every w € A3 and for every e < 1, there is an N(w, €) > 1 such that |M(n,w)| <

(6.5.4)

N

e(M)(n,w) for all n > N(w,¢€). Therefore for n > N(w, €) we have

HXh(’I”L,w)HZ < HXh(va)HZ + hP(n,w) + M(n7w)

< X0, @)1 + hPoo(w) + €(M) (n,w).

Since || Xp(n,w)||? < maxo<j<n(w,e) |Xn(dw)[? = Xj*(e,w) < +oo for 0 < n < N(w,e).

Define Ci(e,w) := || Xp(0,w)|* + hPx(w) + X;*(e,w) which is finite. Therefore
| X7 (n,w)||* < Ci(e,w) + e(M)(n,w), n>1.

We drop the w-dependence temporarily. Define y(n) = ||y (n)||%]| Xn(n)||? for n > 0.

Hence by the last inequality and (6.5.3), we have

y(n) = llon()IE Xn(n)I* < Cu(e)llon ()7 + dehllon(n)l|E Z_:y(j), n21,
=0

where we have used the fact that || X (j)|| < || Xn(4)]|? for all j > 0. Thus for m > 1 we

have

> ) < €19 3 lon(r \|F+4eh§j||ah ||F§jy
n=1 n=1
< Ci(e Z”Jh \|F+4€hZ||0h(n)ll%Zy(j)
n=1 n=1 7=0

m

ZHah HF+46hZ||0h E (Do v6) +
j=1
ZHUh e+ 5 Zy

where C(€) = C1(€) + 4eh||X1,(0)||?||en(0)]|?, condition (6.5.4) was used at the last step,
the non-negativity and definition of y was used throughout. Therefore Z;n:l y(j) <

20(€) Y20, ||lon(n)||* for all m > 1. Thus

Z lon(n)]|*| Xn(n,w)||* < +oo  for each w € As.
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This implies that lim, . (M)(n,w) < 400 for each w € As, which is a contradiction.

Therefore we have that P[As] = 0. Thus we have that

lim (M)(n) exists and is a.s. finite
n—oo

This implies lim,,_,~, M (n) exists and is finite a.s. Thus we have limsup,,_, . || Xp(n)| <
+00 a.s.

Next we show that lim, o | Xp(n)|[? = L € [0,+00) a.s. To do this we apply
Lemma 6.4.4 with Z(n + 1) := || Xp(n + D)%, Z(n) := [|Xn(n)||?, V(n) := 0, W(n) :=
hllon(n)é(n + 1)|2, v(n + 1) := 2VR(X}(n), on(n)é(n + 1)). Therefore, by (6.5.2) we get
E[Y >, W(n)] = Y00, hllon(n)||% < +oo, which implies that Y °° , W(n) < +oo a.s.
Therefore, lim,, s || Xn(n)||? =: L € [0,00) a.s. Moreover, as W (n) > 0 it also follows
that limy, o W(n) =0 a.s., so lim, o Up(n) =0 a.s.

We are now in a position to prove that Xp(n) — 0 as n — oo a.s. Recall from (6.7.3)
and that Uy(n) — 0 as n — oco. Since || Xp(n)|| — VL as n — oo, it follows that
IX5 ()| = [IXn(n + 1) = Up(n + 1)l = VL as n — oco. Hence [(Xj(n),Un(n + 1))| <

| X7 (n)||[[Un(n + 1)|| = 0 as n — co. Therefore, rearranging (6.7.3) gives
2h(f(X4(n)), Xj5(n)) + 12| f (X5 (n)]®
= [ Xn ()| = | Xn(n + DII* + |Un(n + DI* + 2(X;(n), Un(n + 1))

which goes to 0 as n — oo. Thus lim,—ec {2(f(X}(n)), X}:(n)) + bl f(X;(n)||*} = 0.

Next define R : R* — R by
R(z) = 2(z, f(2)) + b|| f(2)|*, =eR" (6.5.5)

Then we have R(0) = 0, x — R(zx) is continuous, R(x) > 0 for all z # 0. Therefore we

have lim,,—,00 R(X (1)) = 0 and lim,, s | X4 (n)|| = VL. Thus

R(X(n)) > inf R(x) > 0.
(il )>_||xu=||X;:<n>|| (@)=

Hence 0 = limsup,,_, R(X};(n)) = limsup,,_, inf)j; = x; x| £(z) = 0. Therefore

li

m inf
n—=00 ||z||=[| X} (n) ||
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Now define R* : R* — R by R*(y) = inf||=, R(x). Since R is continuous, R* is contin-
uous. Thus, because lim, o RB*(|| X;(n)||) = 0 and || X;(n)|| = VL as n — oo, we have
that

0= lim R'(IX;(m)) = R* ( Jim | X (n)]|) = B*(VE).

lim
n—oo
Thus inf 7 R(z) = 0. Since R is continuous, there exists X* with | X*|| = v/L such
that R(z*) = 0, but since R(0) = 0 and R(z) > 0 for all z # 0, this forces z* = 0, so

L = 0. Hence, lim,,_,« || X1(n)||?> = 0, a.s., as required.

6.6 Proof of Theorems 6.3.3

We start by proving part (A). Suppose that A := {w : limsup,,_,, | Xn(n,w)| < +oo}
is an event with P[A] > 0. Define for w € A the quantity L(w) € [0,00) such that
L(w) = limsup,,_,, || Xn(n,w)|. By Lemma 6.2.1, we have || X7 (n)|| < || Xn(n)| for all
n > 0. Therefore, for every w € A, we have limsup,, . [| X} (n,w)|| < L(w). By (6.2.3c),
we have Up(n + 1,w) = Xp(n + 1,w) — X} (n,w). Since Sy(e) = +oo for every € > 0,
by Lemma 6.3.1 the process U, given by (6.3.1) obeys limsup,,_,. [|[Un(n)|| = +o0 a.s.
Suppose Q4 is the a.s. event such that Q4 = {w : limsup,,_, |Un(n,w)|| = +oo}. Then

A; = ANy is an event with P[A;] > 0. Therefore for w € A; we have

+o00 = limsup [|[Up(n + 1,w)|| = limsup || Xx(n + 1,w) — X (n,w)|

< limsup || Xp(n + 1,w)|| + limsup || X} (n,w)|| < 2L(w),

a contradiction. Therefore we have that P[A] = 0, which proves part (A).
For the proof of part (B), because Si(e) < 400 for all € > € and Sy(e) = +oo for
all ¢ < €/, Lemma 6.3.1 implies that the process U} defined by (6.3.1) obeys 0 < ¢; <

limsup,,_, [|[Un(n)]] < c2 < 400 a.s. for some deterministic ¢; and cy. In fact

Up(w) := limsup [|Up(n,w)]| € [c1, ca].

n—oo

Therefore, we know that lim sup,,_, . || Xn(n,w)| > 0 for all w € Q; where Q; is an almost

sure event.
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Let w € Q1. We have that

0 < ¢ (w) := limsup || X (n,w)]|.

n—oo
Clearly ¢’(w) := limsup,,_, [|X}(n,w)| < ¢/(w), where the latter inequality holds by
Lemma 6.2.1. We have that ¢’(w) > 0, because if X} (n,w) — 0 as n — oo, and f obeys

(4.1.9), we have
lim_ Xp(n,w) = lim X (n,0) + f(X;(n,w)) = 0.

By (6.2.3¢), since ¢ (w) > ¢’ (w), we get

Uy (w) = limsup |Un(n + 1,w)]| < limsup | Xu(n + L,w)]| + | X5 (n,w)]

n—oo n—o0

= (w) + " (w) <2 (w).

Therefore ¢/ (w) > Ujf(w)/2 > ¢1/2, as required.

6.7 Proof of Theorems 6.3.4, 6.3.5, and 6.3.6

6.7.1 Properties of the data

Before we turn to the proof of Theorem 6.3.4 we first require some auxiliary results con-
cerning the function f.
Lemma 6.7.1. Suppose that f € C(R?);RY). Suppose Assumption 6.2.2 holds. If K >0

and ||z|| > K > 0, then every solution z* of (6.2.4) obeys ||z*|| > F, '(K) > 0, where

Fp(x) :==x+h sup [[f(u)|, = >0. (6.7.1)
lull <z

Proof. Since Fj, : [0,00) — [0,00) is increasing, Fj ' is increasing. Let K > 0 and define

M = F;7'(K) > 0. Since ||z| > K = F},(M), and z* obeys = = z* + hf(z*), we get

K <] = [l=* + hf (@) < |27 + Al f (z7)]

<zl +h sup | f(u)ll = Enlllz"])-

ull<[l=z*]|

Thus K < Fy(||z*|), therefore F; '(K) < |lz*|, as required. O
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Lemma 6.7.2. Suppose that f obeys (4.1.9). Define f : [0,00) — R by

fly):== inf (z, f(z)), (6.7.2)

~ Jall=y
and ¢ : [0,00) = R by

ply) = inf  f(z).
J:E[Fh (%)7%}

where Fy, is defined by (6.7.1). Then f(x) >0 for all x > 0 and ¢(x) > 0 for all x > 0.

Proof. Since f is continuous, it follows that f is continuous. Also, as F}, is continuous and
invertible, F}" ! exists and is continuous, and therefore ¢ is continuous also. Notice that
the continuity of f and the dissipative condition in (4.1.9) implies that f(y) > 0 for all
y > 0. We show also that ¢(y) > 0 for y > 0. Suppose to the contrary that ¢(y) = 0 for
some y > 0. Then, as f is continuous, there exists = € [Fh_l(%y), %y] such that f(x) = 0.

However, as y > 0, we have that F, '(3y/4) > 0, and so this implies that there is z > 0

for which f(z) = 0. O

6.7.2 Asymptotic results

We are now ready to prove the first step of the main result of this section, which is namely

to establish that liminf, , || X (n)| = 0.

Lemma 6.7.3. Suppose that (Xp, X)) is a solution of (6.2.3). Suppose that f obeys
(4.1.9), and that the sequence & obeys Assumption 6.2.1. If Sp(€) defined by (6.3.2) obeys

Sh(€) < 400 for all € > 0, then
{liminf || X} (n)|| = 0} U{ lim || Xx(n)| = +oo} is an a.s. event.
n—00 n—00
Proof. Using (6.4.6) together with (6.3.1) we get

IXn(n+ DI? = 1Xn(n)? = 20(X5(n), f(X5(n)) = B2 (X5 (n)]>

+ 2(X5(n),Up(n+ 1)) + |Un(n + )|, (6.7.3)
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and therefore

IXh(n+ DI? < 1Xn(n)[* = 21(X5(n), f(XG(n)))

+ 2| X5 ()1 Un(n + DIl + [Un(n+ D). (6.7.4)

Suppose that 5 is the a.s. event such that Q5 = {w : lim, 0 ||Un(n,w)|| = 0}. Clearly,
we have that either the liminf of || X}, (n)| is finite or not. Suppose that there exists a

nontrivial event g such that
Q6 = {w : liminf || Xp(n,w)| < +o00}.
n—oo

In order to prove the result, it suffices to show that g is a.s. the same event as {w :
liminf,, o || Xn(n,w)|| = +o0}.

In order to do this, we suppose to the contrary that there exists an event A = {w € Qg :
liminf, o || Xn(n,w)|| = l(w) € (0,00)} for which P[A] > 0. The finiteness of the liminf is
a consequence of A being a subset of 6. Let A; = ANQ5: then P[4;] = P[A] > 0. Fixw €
A;. Suppose that liminf, , || X} (n,w)|| = 0. Then, because || X} (n,w)|| < || Xn(n,w)]|
we have that liminf, ,~ || Xp(n,w)| = 0, a contradiction. Hence, for every w € A; there
exists {*(w) > 0 such that liminf, . || X} (n,w)| = *(w) > 0.

Since [(w) > 0, we note that p(l(w)) > 0. Because for each w € A; we have Up(n +

1,w) — 0 as n — oo, it follows that for every w € Ay and for every

e (01030 e

51(w)
there is Ni(e,w) € N such that [|[Up(n + 1,w)|| < € for all n > Nj(e,w). There also exists
Ns(w) € N such that || Xp(n,w)|| > 3l(w)/4 for all n > Na(w).

Now let N3(e,w) = max(Ni(e,w), Na(w)). By the definition of the event A O Ay, it
follows for each w € A; that there is a finite Ny(e,w) such that Ny(e,w) = inf{n >
Ns(e,w) : || Xn(n,w)|| < bl(w)/4}. Therefore 3l(w)/4 < || Xn(Ny,w)| < 5l(w)/4.
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We now show by induction that our supposition leads us to conclude that 3l(w)/4 <
| Xn(n,w)|| < bl(w)/4 for all n > Ny(e,w). This is certainly true for n = Ny(e,w). Suppose
that it is true for a general n > Ny(e,w). Clearly, as n > Ny(e,w) > N3(e,w) > Na(w), we
have 3l(w)/4 < || Xp(n+1,w)]|, so it remains to establish the upper bound || X} (n+1,w)|| <
5l(w)/4.

Since F}, is increasing, by using Lemmas 6.2.1 and 6.7.1, we get

_ N Sl(w
F @1()/4) < 1% ()| < |Xam, )] < 2,
Hence
51
0< F}:l(?)l(w)/él) < || Xr(n,w)|| < Elw)
Since f is continuous, for all yo > y; > 0, we have
inf (z, f(z)) = inf f(y)>0.
ylSHxIISy2< U y€[y1,y2] 1)
Thus
(X3 (n,w), f(X}(n,w))) = min Fly) = ¢(l(w)) > 0.

 yElR, ! (81(w)/4),51(w) /4]

We now return to (6.7.4) to estimate the terms on the righthand side. For || X} (n,w)|| <

5l(w)/4, we have

2/ X5 (n, ) |1 Un(n + 1, w)l| + [Un(n + 1,0)|>

W), | o Bl 5Iw)

1 5 5 €= Sl(w)e.

<2

Therefore

= 20X} (n,w), f(Xp(n,w))) + 2| X5 (Ng, ) [[|Un(n + 1,w)[| + [Un(n + 1,w)|?

p(l(w))
5l(w)

< =2hp(l(w)) + Hl(w)e < —2hp(l(w)) + bl(w)h = —hp(l(w)).
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Therefore, by (6.7.4), we obtain || Xx(n + 1,w)||? < [|Xa(n,w)||* — hep(l(w)) and since
by hypothesis we assume || Xp(n,w)|| < 5l(w)/4, we have || X,(n + 1,w)|| < bl(w)/4, as

required. Moreover, scrutiny of the above argument shows that one can equally prove that
[ Xn(n 4 1,w)|1% < | Xn(n,w)||* = hep(l(w)), for all n > Ny(e,w).
Therefore for any N € N we have
10 (N + N, w)[[? < [ Xa(Ng,w)|* = Nhp(l(w))-
In particular, let N be any integer satisfying

) {(51&0))2 - (’91")>}

Since 3l(w)/4 < Xp(n,w) < 5l(w)/4 for all n > Ny, we get

31(w)
(P52) < 1K+ NP < 1K (3P - Nhp(1)
5l(w) )
< () - wnptat
[(w))*
()
which contradicts the original supposition. This proves the desired result. ]

We are finally in a position to provide a proof of Theorem 6.3.4.

6.7.3 Proof of Theorem 6.3.4

To prove part (i), by virtue Lemma 6.7.3, it suffices to show on the event 7 defined by
Q7 = {w : liminf,, o || Xp(n,w)|| = 0} (modulo some null event), we have Xp(n) — 0
as n — 0o. We can assume, without loss of generality, that €27 is an event of positive
probability, because, if it is not, Lemma 6.7.3 implies the event {lim,,_,~ || Xr(n)|| = +oo}
is a.s., and our claim is trivially true.

Recall also the a.s. event 25 defined in Lemma 6.7.3, viz.,
Qs ={w: h_)m Un(n,w) = 0}.
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By Lemma 6.7.2, it follows that the function f defined in (6.7.2) obeys f(y) > 0 for all
y > 0 and by the continuity of f, f is also continuous on [0, c0). Therefore, for any I > 0

we have that

min  f(y) > 0. (6.7.5)

3 <U<1g
Hence, we may choose an € = ¢(l) > 0 so small that
l 32 . 7
2¢(l) =1AN = A< —=2h min f(y) ;. (6.7.6)
32 101 L<y<i_
32—7—16
Let w € Qg := Q5NQ7. Therefore, there exists N1 (/,w) € N such that |Up(n+1,w)|| < €(l)
for all n > Ni(l,w). Moreover, as liminf,_, || X (n,w)| = 0, it follows that there exists
an integer No = Na(l,w) > Ni(l,w) such that || Xp,(N2,w)| < 1/16.
Suppose that there exists an integer N3 > Na such that || X(n,w)|| < 1/16 for n =
No,No+1,..., N3, but || Xx(N3+1,w)| > 1/16. By (6.2.3¢) and (6.3.1) we have X, (N3 +

1,w) = X;(N3,w) + Up(N3 + 1,w), and since N3 > Ny, we obtain

l l
IXE (N3, w)ll 2 [ Xn (N3 + 1 w)| = [Un(Ns + Lw)| > 75 —€> 55,

where (6.7.6) is used at the last step. Now using Lemma 6.2.1, we get || X/ (N3)| <
| X1 (N3)|| < 1/16, and so /32 < || X} (N3)|| < I/16. Therefore by the definition of f, we

have

(Xh(N3), f(X5(N3))) = min  f(y) >0,

l !
@Syég

where the last inequality is a consequence of (6.7.5).
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We now insert these estimates into (6.7.4) to get
1X5 (N3 + 1,w)|* < [|Xp(N3,w)||* = 2h(X (N3, w), f(X;(N3,w)))
+ 2/| X5 (N3, ) [[|UA (N3 + 1,w) || + [Un(N3 + 1,0)|1?
< || X (N3, w)[|* = 20X} (N3, w), (X} (N3, w)))

+ 2] XG5 (N3, w)[[e(l) + e(D)?

where once again (6.7.5) is used at the last step, and (6.7.6) has been used throughout.

Therefore, by hypothesis we have

LY e+ L2 < (L)
16) —I4nis T Lw 16)

a contradiction. Therefore, it must follow for each w € Qg that for every [ > 0 there exists
an integer No = Na(l,w) such that || Xp(n,w)|| < 1/16 for all n > Ny(l,w). Therefore, we
have that X,(n,w) — 0 as n — oo for all w € Qg, and as Qg is a.s., the first part of the
result has been proven.

To prove part (ii), define A = {w : lim, o, X (n,w) = 0}. Then P[A] > 0 by hypothesis.
By Lemma 6.2.1, we have that || X (n)|| < || Xn(n)| for all n > 0. Therefore, for w € A,

we have X (n,w) — 0 as n — oo. By (6.2.3c), we have that

lim Up(n+1,w) = le {Xp(n+1,w) — Xj(n,w)} =0.

n—oo
Therefore Up(n) — 0 on a set of positive probability. By Lemma 6.3.1, it follows that

Sh(€) < 400 for all € > 0.

6.7.4 Proof of Theorem 6.3.5

Scrutiny of Theorem 6.3.4 shows that we can establish Theorem 6.3.5 provided that the

condition (6.3.11) together with Sy (€) always being finite implies liminf,, || Xn(n)|| <
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+o0 a.s. This is the subject of the next result.

Lemma 6.7.4. Suppose that (X, X)) is a solution of (6.2.3). Suppose that f obeys
(4.1.9) and (6.3.11) and that the sequence & obeys Assumption 6.2.1. If Sp(e) defined by

(6.3.2) obeys Sp(€) < 400 for every e > 0, then
liminf || X5 (n)|| < +o00, a.s.
n—oo
Proof. Suppose to the contrary that
A ={w: liminf | X (n,w)|| = +oo}
n—o0

is an event with P[A] > 0. Since Q; = {w : Up(n,w) — 0 as n — oo} is an a.s. event, we
have that Ay = AN Q; obeys P[A;] > 0. Therefore by (6.3.11) for each w € Aj, there is

an N(w) € N such that
(Xi(n—1,0), J(Xi(n~ L)) 2 0 n> M)

On the other hand, as Up(n,w) — 0 as n — oo for each w € A;, we have that there is

Njy(w) such that

U (n,w)||* < h%, n > Na(w).

Suppose N3(w) = max(Ni(w), Na(w)). Then by Lemma 6.4.1, we have that || X}||? obeys

n

0P = XN = 30 #{20X G - D) X3 ) = G0l

i=N3+1

— Y WIS = 1)+ M(n) = M(N3), n>Ns+1.
i=N3+1

Since for n > N3(w) we have

2(Xi(n — 1,), (X3 = 1,6)) = 3 V()| > 22,
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we get

1Xn(n, w)[? < (1 Xn(N3(w), w)|* — %(n — N3(w)) + M(n,w) — M(N3(w),w),

n>N3(w)+1, weAd;. (6.7.7)

Now, recall that M is defined by (6.4.3) where Y'U) is given by (6.4.2) for j = 1,...,7.
Notice by (6.4.2) that Y (n) is an F¢(n)-measurable random variable. Since & obeys
Assumption 6.2.1, it follows that all the conditions of Lemma 6.4.3 hold, and that the
martingale M is in the form of (6.4.9) in Lemma 6.4.3. Therefore, it follows that M obeys

(6.4.8), so that, if we define

O ={w: lim M(n,w) exists and is finite}

—00

and

Qoo = {w : liminf M (n,w) = —oo, limsup M(n,w) = 400}

n—00 n—oco
then Q; U Qs =: Q9 is an a.s. event. Since )y is a.s., it follows that either (or both) of
Ay := A1 NQ; and Az := A1 N Q. are events of positive probability.
Suppose that P[A3] > 0. Then, for each w € Az we have that M (n,w) has a finite limit
(say L(w)) as n — oo, and that || Xp(n,w)|| — oo as n — oo. Taking the liminf as n — oo

on both sides of (6.7.7) gives

< || Xn(N3(w),w)||> = M(N3(w),w) + lim inf {—:ﬁ)h(n — N3(w)) + M(n,w)}

n—oo

= — 00,

a contradiction. Therefore, we have P[As] = 0.
Suppose now that P[As] > 0. Then, for each w € Ajz it follows from the definition of As

that liminf,, oo M(n,w) = —o0, and that |Xp(n,w)| — 0o as n — oo. Taking the liminf
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as n — oo on both sides of (6.7.7) gives

+OO = hm 1nf ||Xh(na (.U)H2
n—oo

< || Xn(N3(w), w)||? = M(N3(w),w) 4 lim inf {—3(n — N3(w)) + M(n,w)}

n—oo

= —0Q,

a contradiction. Therefore, we have P[A3] = 0. Therefore, we have that 0 = P[As U A3] =
P[A; N 2] > 0, a contradiction. Hence P[4;] = 0, and so P[A] = 0, which proves the

result. O

6.7.5 Proof of Theorem 6.3.6

To prove this, we first consider the case when o;, € ¢2(N). In this case, Theorem 6.3.2
implies that lim,, o Xp(n) = 0, a.s. Therefore, we concentrate next on the case when

on ¢ £2. An important step to achieve this is to prove the following lemma.

Lemma 6.7.5. Suppose that f obeys (4.1.9) and (X, X}) is a solution of (5.1.2) and

(5.1.3). Suppose also that oy, ¢ I>(N). Then

liminf Xj(n) <0 <limsup X(n), a.s.

n—00 n—00

Proof. Suppose liminf,, . Xp(n) > 0 with positive probability. Then there exists an

event A with P[A] > 0, such that

A ={w : liminf X}, (n,w) = X(w) > 0}.

n—oo

For w € A define X (w) := liminf,, o X5(n,w) > 0. Suppose liminf, - X;(n,w) = 0,
so that there exists a sequence (n;(w))32; such that nj(w) 1 oo as j — oo such that

lim; 00 X7 (nj(w),w) = 0. Therefore, as Xp(n,w) = X;(n,w) + hf(X}(n,w)), we have
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that

0 < X(w) =liminf X (n,w) < lim Xj;(nj(w),w)

n—00 j—00

= lim {X}(n;(w),w) + hf (X3 (n;(w),w))} = 0,

j—o0

a contradiction. Hence for each w € A we have that

lim inf X (n,w) =: X*(w) > 0.

n—oo

Therefore, for each w € A, there is N*(w) € N such that Xj(n,w) > X(w)/2 and

Xp(n,w) > X*(w)/2 for all n > N*(w). Let n > N*(w). Since

Xn(n+1) = Xi(n) + Vhor(n)é(n+1) = Xp(n) — hf(X5(n)) + Vhon(n)é(n + 1),

we have
Xp(n+1,w) = Xp(N*(w Z {Xa(j +1,0) = Xp(j,w)}
J=N*(w)
= Xh(N*(W),W) + Z 7hf(Xh ]7 Z fUh ] + 17(*})
J=N*(w) J=N*(w)

:Xh(N*(w) —h Z f Xh J,w +Z\[‘7h j—{-l,&))

j=N*(w)
N*(w)—
- > \Fah()(Jrlw)
7=0
N*(w)—
< Xh(N* Z \/>O-h ] + 1,(.0) +Mh(n+ 1)’

where we have defined the martingale M} by
n(n+1) Z\fah EG+1), n=>0.

Since oy, ¢ (?(N), we have that for a.a. w € A, liminf,, oo My(n+1,w) = —oo. Therefore,
we have

0 <liminf Xp(n+ 1,w) < —oco  for a.a. w € A,
n—oo
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a contradiction. Therefore P[A] = 0, so liminf, o Xp(n) < 0, a.s. One can proceed

analogously to prove that limsup,,_,.. Xx(n) > 0 a.s. O

Proof of Theorem 6.3.6. Define
Al ={w: 1i_>m | Xn(n,w)| = +o0}, Ag={w: li_}rn Xn(n,w) = 0}.

Note that Theorem 6.3.4 and the hypothesis Sy (€) < +o0o implies that Q* = A; U Ap is an

a.s. event. Suppose A; is an event with positive probability. Let

Q1 = {w : liminf Xp(n,w) <0, limsup X;(n,w)} > 0}
n—oo

n—oo
and Qy = {w : lim, o0 Vhop(n)é(n + 1,w) = 0}. By Lemma 6.7.5,  is an a.s. event,
and Sp(e) < +oo for all € > 0 implies that Qs is an a.s. event. Define Ay = A3 UQ; U Qs.
Then P[A3] = P[A;] > 0.

Next, let € € (0,1/2). Then for every w € A, there exists an Ny(w,e€) such that

for all n > Ny(w,e€) we have |vVhop(n)é(n + 1,w)| < € and |X,(n,w)| > 1/e. Since

lim, o0 | Xp(n,w)| = 400, liminf,, o Xp(n,w) < 0 and limsup,,_, . X(n,w) > 0, we
must have

liminf X} (n,w) = —oo, limsup Xj(n,w) = +o0.

n—00 n—00

Therefore as lim,, o | Xp(n,w)| = +o0, it follows that there exists N*(w,€) > No(w, €)
such that

1 1
Xh(N*(OU?E)vw) <-- Xh(N*(w7€) + ].,OJ) > .
€ €

Therefore

% < Xp(N*(w,€) + Lw) = X7 (N(w, €),w) + \/Eah(n)g(N(w,e),w)

< XG(N(w,),w) +c.
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Finally, because Xj(N*(w,€),w) < —1/€e < 0, therefore, we have that X (N*(w,¢),w) <

X;(N*(w,€),w) < 0. Therefore

< X7(N(w,€),w) +e<e.

A

Hence €2 > 1. But € € (0,1/2), which is a contradiction. Therefore P[A;] = 0 and so as

Ap and A; are disjoint events we have

1 =P[Q2"] = P[A1 U Ag] = P[A:] + P[Ao] = P[Aq].

Thus Ag = {w : lim,, 00 Xp(n,w) = 0} is an a.s. event, which finishes the proof. O

6.8 Proof of Theorem 6.3.7

6.8.1 Proof of parts (C), (A), and limsup in part (B)

Part (C) of the Theorem follows from part (A) of Theorem 6.3.3. Part (A) is a consequence
of Theorem 6.3.5, because the condition (6.3.11) on f is implied by (6.3.12). The lower
bound in part (B) is a consequence of part (B) of Theorem 6.3.3. Hence the result holds
if we can establish the upper bound in part (B).

To do this, notice first by part (B) of Lemma 6.3.1 that there exists an a.s. event
given by Q; = {w : limsup,,_, [|Un(n,w)||1 < c2}, where ¢z is given by (6.3.5). Therefore,
there is a deterministic By > ¢y such that for each w € Q; there is an N = N(w) € N such
that [|[Up(n + 1,w)|l2 < ||Up(n + 1,w)|1 < By for all n > N. Since f obeys (6.3.12), we

may define

o (z, f(z)) _ 2Bo
M(By) =sup{y > 0: inf <
(Bo) = supt lelo>y  [[ll2 h

}.
Define C(By) = By + M (By). Now suppose that || Xp(n,w)|2 > C(By) for all n > N(w).
Let n > N(w). By (6.2.3c) and (6.3.1), we have || X} (n,w)||2 > || Xnp(n+1,w)||2 — [|[Un(n+

1,w)ll2 > C(By) — Bp = M(By). Hence by the definition of M (Bj) we have

(Xi(n,w), f(X}(n,w))) _ 2Bo
X5 (1, w) 12 b
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Therefore by (6.2.3b) we get

(X5 (n,w), Xn(n,w)) = | X5 (n,w) 3 + h{(f (X5 (n,0)), X;(n,w))

2B,
> (|G (n, )3 + B X 1,0

By the Cauchy—Schwartz inequality,
16 (e w) |21 X0 (12, ) |2 2> (|G (n, w)I[3 + 2Bo|| X5 (1, w) -

Since || X} (n,w)|| > 0, we have ||[Xp(n,w)ll2 > || X} (n,w)|l2 + 2By, or | X/(n,w)|l2 <

| Xn(n,w)||2 —2By. Therefore, for n > N by (6.2.3c) we have
[Xn(n+1,w)ll2 < | X5(n, )| + Bo < [[Xn(n,w)l[2 — Bo.
Therefore, we have
C(Bo) < [Xa(N +n,w)ll2 < [Xn(N,w)[l2 = Bon, n =0,
which is a contradiction. Thus, there exists N = Nj(w) > N(w) such that || X;(Ny)||2 <
C(By).

We prove by induction that || X} (n)||2 < C(By) for all n > Nj. Suppose that this is true
at level n. Suppose that || X} (n,w)| > C(By) — Byg. Now by (6.2.3b) we get
(Xh(n,0), Xn(n,w)) = [ X5 (n,w0) > + h{f(X};(n,w)), X} (n,w))

2B,

> | X, w)|? + B

X5 (n, w) .
By the Cauchy—Schwartz inequality,
16 (n, w)ll2 | Xn (12, ) |2 = (|5 (n, w)[3 + 2Bo|| X5 (1, w) -

Since [|[ X7 (n,w)|| > 0, we have || Xp(n,w)|l2 > | Xp(n,w)|2 + 2By > C(By) + By. But
C(Bo) > || Xp(n,w)|l2 > C(By) + By, a contradiction. Hence || X} (n,w)|| < C(By) — Bo.

Therefore by (6.2.3c), we have
[Xn(n+1,w)2 < [ XE(n, w)ll2 + Bo < C(Bo),

which proves the claim at level n + 1. Therefore we have || X} (n,w)|2 < C(By) for all
n > Nj(w) and all w € Qq, which is an a.s. event. Hence limsup,,_, || Xx(n,w)||2 < C(By)
for each w € Q. Therefore, we have limsup,,_, . || Xp(n)||2 < ¢4 a.s., where ¢4 := C(By)

is deterministic.
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6.8.2 Proof of liminf in part (B)

It remains to prove in the following result.

Lemma 6.8.1. Suppose that Sp(€) < +oo for all € > € and Sy(e) = 400 for all e < €.
Then

liminf | Xp(n)|| =0, a.s.

n—oo

In order to do this we need first a technical lemma.

Lemma 6.8.2. Sy(¢) < 400 for all € > € and Sp(€) = +oo for all e < €. Then

Jim_{|log(n)[|F = 0, (6.8.1)
and
1 n—1
. + . (12 _
Jim ~ ZO lon(i = DEGDIP =0, as. (6.8.2)
iz

Proof. First, we note that if Sy (€) < +oo for some € > 0, it follows that

€
1-®( - ) 50, asn — 0.
(hllah(n)HF)

and therefore (6.8.1) holds. Define

B(n) = llon(n = e, n = 1.

Notice that the independence of {(n) imply that (5(n))n>1 is a sequence of independent

random variables. Using (6.5.2), we have that
E[B(n)] = Elllon(n — DEM)] = llon(n = DIIF, n > 1.

Notice from (6.8.1) that E[3(n)] — 0 as n — oco. Define 8(n) = 8(n) — E[(n)] for
n > 1. Then (3 (n))n>1 is a sequence of independent zero mean random variables. We will
presently show that

lim E[3(n)*] = 0. (6.8.3)

n—oo
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Taken together with E[8(n)] — 0 as n — oo, we see that lim, .., E[3(n)*] = 0, so that
there exists a constant K > 0 for which E[3(n)*] < K for all n > 0. Therefore, by this
estimate, and the fact that (3(n)),>1 is a sequence of independent zero mean random
variables, the version of the strong law of large numbers appearing in Theorem 7.2 in [79],

enables us to conclude that

R
nlg]gonzgﬁ(j)—o, a.s.
‘7:

Since E[3(n)] — 0 as n — oo, we have that

AN
nh_}ngo - Zﬂ(]) =0, as.
j=1
which is precisely (6.8.2).

It remains to prove (6.8.3). Since ||Az||2 < ||A||r||z||2 for any z € R” and A € R¥", we

have that

E[B(n)"] = Elllon(n — 1)Em)|3] < Ellon(n — DIIEIEM)I)

= llon(n = DIFE[IEM)3]-

Since (£(n))n>1 are identically and distributed Gaussian vectors with independent en-
tries (each of which is a standard normal random variable), we have that there is K; :=
E[||é(n)||§] for all n > 1. Hence E[3(n)*] < Ki|on(n —1)||3 for n > 1. Since (6.8.1) holds,

we have that E[3(n)%] — 0 as n — oo, as claimed. O

6.8.3 Proof of Lemma 6.8.1

Recall the representation of || X3||? in (6.4.1) i.e.,

IXn ()1 = 1 Xa(0)1* =2 ) A{f(XG(E = 1)), XG0 = 1)) + Y hllow(i — DED)]
=1 =1
=Y PFXGGE = D)+ M(n), n>1, (6.8.4)

=1
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where the martingale M defined by (6.4.2) and (6.4.3) i.e.,

d
’I’L) = QﬁZ[X;(n)]k[Jh(n)]kjv j=1L...,ry, n=>1,

k=1

- zn:iym(i —1D)EWE), n>1.

i=1 j=1

Then M has quadratic variation estimated by (6.5.3) i.e.,

<4hZ||Xh W2 llon ()%

Since || X/ (n)| is a bounded sequence, and ||op(n)||F — 0 as n — oo, we have that

lim l<M)(n) =0, as.

n—oo n
Suppose that A; = {w : lim, 0o (M) (n,w) = +00}. Then by the Law of Large numbers

for martingales, we have

im 1 n,w) = lim M(n,w) (M)(n,w)
Jim M (n,w) = lim (M) (n,w) n

for a.a. w € A;. Suppose that Ay = {w : lim, 00 (M)(n,w) < +oo}. Then by the
martingale convergence theorem we have that lim, o, M(n,w) is finite for a.a. w € Ag,

so we automatically have lim,_,oo M (n,w)/n =0 for a.a. w € As. Therefore we have that

=0, a.s. (6.8.5)

By Lemma 6.8.1 we have that

R . 2
7}5{)10”;]1||0h(1_1)5(1)| =0, as.

Recalling that n — || X} (n)| is a.s. bounded, we can use the last limit, (6.8.5) and (6.8.4)
to obtain

lim — zn: hR(X{(i—1) =0, as. (6.8.6)

n—00 N 4
P
recalling the definition of R from (6.5.5).

Next, we suppose that A defined by

A={w: liniinf | Xn(n,w)|| > 0}.
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is such that P[A] > 0. Let Q1 = {w : limsup,,_, || Xn(n,w)|| < +o00} and A; = AN Q.
Then P[A;] = P[A] > 0. Then for each w € A; we have liminf,_, || X} (n,w)| > 0.
Therefore, using the fact that || X (n)|| < || Xx(n)||, we see that || X} (n,w)|| is bounded for
w € Ay and therefore, for every w € A; there is an N(w) € N and 0 < X, (w) < Xp,(w) <
~+00 such that

S X0 () < IXG(n,0)]| < 2X0w), 1> N(w),

Now, we recall that R : R? — R defined by (6.5.5) is continuous and obeys R(x) > 0 for

all x # 0 and R(0) = 0. Therefore, for any 0 < a < b < 400, we have

inf R(z) =: Ly(a,b) > 0.

a<|lz)<b

Therefore, for all n > N(w) we have
* 1 v
RO, 0)I) > In (3200, 250(0) ) = M) >0

Hence, as R(x) > 0 for all x > 0, we have for n > N(w) + 1 that
1 . 1 < .l
LS hR(XG - Lw) = RR(X} (i — 1,0))
i "= N@)+

—

1
> = hA =—(n—N hA .
>3 ) = 50— N@)hh()
Therefore, we have for each w € A;

PR R .
hnrr_1>1£f - E 1 hR(X}(i — 1,w)) > hAp(w) > 0,
or

S S ”
hégg.}fnZ;hR(Xh(z—l))>0, on Aj.

Since P[A;] > 0 this contradicts (6.8.6), and so we must have P[A;] = 0. Hence we have

that liminf,, o || Xr(n)|| = 0 a.s. as claimed.

6.9 Proof of Theorem 6.3.1

We prove the result in two parts. First, we prove everything apart from the limit inferior

in part (B), and then show that
liminf ||Y3(n)|| =0, as.
n—oo
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in case (B), when the solution has already been shown to be bounded.

6.9.1 Proof of Theorem 6.3.1 apart from liminf in part (B)

Part (C) is a direct consequence of part (A) of Theorem 6.3.3. The lower bound in part
(B) is an automatic consequence of part (B) of Theorem 6.3.3.

It remains to prove part (A) and the upper bound in part (B). We start by determining
the eigenvalues of C'(h). If cc(p) be the characteristic polynomial of C(h), then we have
com)(0) = (=1)4det(C(h)) # 0 and

1 A—1
CC(h)()‘) = M()\h)dcfl (/\h> , A#O.

Therefore, A4 is an eigenvalue of A if and only if A\, = 1/(1 — A4h) is an eigenvalue of

C(h). Since (6.3.8) holds, 0 is not an eigenvalue of A, and for every h > 0,
hiy e
Re(A4) <0< §|)\A| .

This implies that |1 — hAa| < 1, and hence that |A\y| < 1 for each eigenvalue of C(h). Y},
obeys

Ya(n) = C()"¢+ Y C(h)"Un(5), n>0.
j=1
For part (A), if Sp(e) < +oo for every € > 0, by Lemma 6.3.1, we have that Uy(n) — 0

as n — 0o. Since all eigenvalues of C'(h) are less than unity in modulus, it follows that
2?21 C(R)"7Ux(j) — 0 as n — oo, proving the result. To prove the upper bound in part

(B), we note that for every e € (0, (1 — p(C(h)))/2), there is a norm || - || ; such that
|C(R) x| < IC(R)*|Inllzlln < (p(C(R)) + €)¥||||x for all & > 0 and all z € R
Hence we have

Vi)l < (p(C(R) + )™ I¢In + Y (p(C(h)) + €)™ UG |-
j=1

Therefore taking limits and using the fact that there is a ¢ > 0 such that ||z||x < c[|z|1

for all z € R?, we obtain

1
li Y; < li U .
B T R

By part (C) of Lemma 6.3.1, the righthand side is deterministic and finite, so the upper

bound in part (B) has been established.
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6.9.2 Proof of zero liminf and average in case (B)

We start by recalling a result of which may be found in e.g., Rugh [68].

Lemma 6.9.1. Let C be a d x d real matriz. If all the eigenvalues of C lie within the unit
disc in the complex plane, then there exists a positive definite d x d real matric M such
that
cTMC - M= -1,
Conversely, the existence of a positive definite M implies that all the eigenvalues of C'

lie inside the unit disc in the complex plane.

We will have achieved our goal once we have shown the following result.

Lemma 6.9.2. Suppose that the matriz A obeys (6.3.8) and that there exists € > 0 such
that Sp(€) defined by (6.3.2) obeys Sp(€) < +oo for all € > € and Sp(€) = +oo for all
e < €. Then

n—oo

o IS o
liminf [|Y}(n)|| =0, nlinéonz;”YhW =0, a.s.

j=
Proof. Tt has been shown above that all the eigenvalues of the matrix C' = C(h) lie inside

the unit disc in the complex plane. Therefore, by Lemma 6.9.1 there exists a positive

definite matrix M = M (h) such that
C(h)TM(R)C(h) — M(h) = —14.

Hereinafter, we write M = M (h) and C = C(h).
Define the function V : R? — R by V(z) = 27 Mz for € R%. We have that Y;,(n+1) =

CYy(n) + Up(n+1) for n > 0 with ¥3,(0) = ¢. Therefore, we have

V(Ya(n +1) = V(¥i(n) = YT ()Y (n) + Y3 ()" CT MU, (n + 1)

+ Up(n+1)TMCY,(n) + Up(n + )" MUL(n+1), n>0.
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using C'MC — M = —I to simplify the first term on the right hand side. We now simplify
the other terms on the right hand side.
Since M is a positive definite matrix, there exists a matrix P such that M = PPT.

Then

Up(n+ 1)TMU,(n+1) = Uy(n + DT PPTU,(n + 1)

= (PTUL(n+1))" PTU,(n + 1) = |PTU,(n + 1)|3.

Define k(n + 1) = Y, (n)TCTMUL(n + 1) + Up(n + 1)TMCY),(n) for n > 0. Then using

the fact that M is symmetric and the definition of Uy, we get

k(n+1) = (MTCY,(n) Up(n + 1) + Up(n + )T MCYy,(n)
= (MCY,(n)TUp(n + 1) + Up(n+ 1)TMCY;,(n)
= 2<MC'Yh(n), Uh(n + 1))

= 2Vh(MCY},(n), on(n)é(n + 1)).
Therefore

r d
k(n+1)=2Vh)_ (Z[MCYh(n)]i[ah(n)]ij> &(n+1), n>0. (6.9.1)

j=1 \i=1

Hence we have
V(Yi(n41) = V(Yi(n) = =YL (n)Yy(n) + k(n+ 1) + |PTU(n + 1|3, n >0,

so if we define

n roon d
Kn)=) k=) > <Z 2VA[MCY (1 = 1)ilon(l — 1)]ij> &), n=1,

=1

then K is a martingale and

n—1 n—1
V(Ya(n) = V() = =D IYDI3+ K(n) + Y _[IPTUL+ D)3, n=1.  (6.9.2)
=0 =0
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We now estimate the asymptotic behaviour of the last two terms on the righthand side of

(6.9.2). The quadratic variation of K is given by

n d 2
(K)(n) =) (Z 2Vh[MCY;, (1 — 1))ion(l — 1)}ij> .

=1 \i=1

By the Cauchy—Schwartz inequality, we have

(iMcm_l 2l )

i=1 i=1

M:

Z 4| MCYy (L = 1)|*on(l - 1)|I-

Since ||Yy(n)|| is bounded and |lop(n) — 0 as n — oo (by Lemma 6.8.2) we have that

lim L(K)(n) =0, as.

n—oo N

Arguing as in the proof of Lemma 6.8.1, we see that

1
lim —K(n)=0, as. (6.9.3)

n—oo M

As for the last term on the right hand side of (6.9.2)

n—1 n—1
0 < limsup — Z IPTUL(I+ DI < HPTthmsup Z IU(I+1)[5=0, as.
n—oo M0 "=

by (6.8.2) in Lemma 6.8.2. Hence

n—1
.1
nl;ngonlzg\PTUh(l+l)]]§ =0, as. (6.9.4)

Since ||Yx(n)|| is a.s. bounded, we have V(Y;(n))/n — 0 as n — oo a.s. Therefore, using

this limit and (6.9.4) and (6.9.3) in (6.9.2) we get

n—1

1
nlgngonlz(;\\Yh(l)llg =0, as.

This proves the second statement required.

Moreover, it also implies that liminf, . ||Y5(n)|l2 = 0 a.s. for otherwise we would have

n—1
hm 1nf — Z 1Y, (D)]|3 > 0 with positive probability,
l 0

a contradiction. O
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