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positions along the column. The effective column length is 4.5 cm for the bottom 
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chromatogram.  Chromatographic conditions: Eluent: 0.5 mM phthalate, flow-rate: 1 

µL/min and injection volume: 50 nL. 
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Figure 1.13:  Chemical structures of methacrylate monomers and cross linkers. used 

in the polymerisation of polymer monoliths. (a) glycidyl methacrylate (GMA), (b) 

butyl methacrylate (BuMA), (c) lauryl methacrylate (LMA), (d) hydroxylethyl 

methacrylate (HeMA) and (e) ethylene dimethacrylate (EDMA). 
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Figure 1.15:  Separation of selected cations using a sulphonated polymer monolith.  

Separation conditions: Eluent: 10 mM copper sulphate, flow-rate: (A) 3 µL/min, (B) 6 
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µL/min,  (C) 9 µL/min,  (D) 12 µL/min and (E) 15 µL/min, detection: indirect UV at 

210 nm, injection volume: 0.2 µL.   

 

Figure 1.16: Separation of selected cations using a GMA-co-EDMA polymer 

monolith modified with a mixture of PEI and DMA.  Separation conditions: Eluent: 

potassium phthalate, detection: UV detection at 254 nm. 

 

Figure 1.17: Separation of (1) iodate, (2) bromate, (3) nitrite, (4) bromide and (5) 
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ammonium functionalities. Eluent: 10 mM NaClO4, injection volume: 10 nL, 
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Figure 1.18:  Separation of 6 common anions using a GMA-co-EDMA polymer 

monolith modified with grafted polymer chains of META.  Eluent: 2 mM sodium 

benzoate, flow rate: 1 µL/min., detection: on-column C4D detection, injection 

volume: 50 nL, peaks: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L, 

bromate, (4) 0.7 mg/L chloride, (5) 0.7 mg/L nitrite, (6) 3 mg/L bromide.   

 

Figure 1.19: Separation of common anions using an AS18 latex functionalised 

polymer monolith. Separation conditions: eluent: 1 mM KOH, flow-rate: 18 µL/min, 

detection: non-suppressed conductivity detection, peaks: (1) iodate, (2) bromate,  (3) 

nitrite, (4) bromide and peak (5) nitrate.   

 

Figure 1.20:  Separation of 5 anions using an AS18 latex functionalised polymer 

monolith. Separation conditions: Eluent: 0.5 - 5 mM KOH, flow-rate: 18 µL/min, 

detection: suppressed conductivity detection, peaks: (1) iodate, (2) bromate, (3) 

nitrite, (4) bromide and (5) nitrate.   

 

Figure 1.21:  Separation of 7 anions using a AS18 latex nano-particle modified 

GMA-co-EDMA polymer monolith.  Separation conditions: Eluent: NaOH gradient, 

flow-rate: 3.2 µL/min, detection: UV detection at 220 nm, Peaks: (1) iodate, (2) 
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Figure 1.22:  Separation of selected anions using a lysine modified silica monolith.  

Separation conditions: Eluent: 50 mM phosphate buffer, detection: UV detection at 

214 nm and flow-rate: 4.9 mL/min. 

 

Figure 1.23: Separation of common anions using a CTAC modified silica monolith 

(100 µm x 200 mm I.D.). Eluent: 50 mM NaCl and 0.1 mM CTAC, flow-rate: 11.1 

µL/min, detection: UV detection at 210 nm.   

 

Figure 1.24:  Separation of anion standards using a DDAB modified capillary silica 

monolith (top chromatogram) and determination of bromide in seawater (bottom 

chromatogram).  Separation conditions: Eluent: 500 mM NaCl, flow-rate: 2.1 µL/min, 

detection: UV detection at 210 nm and injection volume: 20 nL. 

 

Figure 1.25:  Separation of common anions using a DDMAU coated silica capillary 

monolith.  Separation conditions: eluent: 0.5 mM phthalate, flow-rate: 0.3 µL/min, 

detection: on-column C4D. 

 

Figure 1.26: Scanning C4D profile where (a) depicts void regions, (b) depict the areas 

where the monolith frits are situated and (c) is the area that contains the packing 

material.   

 

Figure 1.27: C4D scan of an unmodified monolith, a scan after the first surfactant 

coating and a scan after the second surfactant coating.   

 

Figure 1.28: Separation of transition metals on a bare silica monolith using an eluent 

consisting of 80 % acetonitrile and 10.3 mM ammonium acetate buffer at pH 4.6.  

Analysis was carried out using flow-rates of 1 mL/min, 3 mL/min and 5 mL/min.   

 

Figure 1.29:  Pre-concentration and separation of metals in coastal seawater samples 

(b). A blank sample (a) showed small concentrations of Zn(II) and Cu(II), possibly 

due to leaching from the eluent pump. 

 

Figure 1.30: (a)  Separation of Mg(II) and Ca(II) in a saline eyewash sample overlaid 

with a spiked 200 µg/L sample. (b): separation of Mg(II) and Ca(II) in 0.5 M KCl 
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overlaid with a spiked 300 µg/L sample, column used: IDA bonded silica (250 x 4.0 

mm I.D). 

 

Figure 1.31: Overlay of separations of Mg(II) and Ca(II) in 1 M KCl solutions at 

various flow-rates using the IDA immobilised monolith column.  The eluent used in 

the analysis was a HNO3 eluent (pH adjusted to 4.85).  Peaks: (1) 10 ppm Mg(II) and 

(2) 10 ppm Ca(II).  Detection used was UV-Vis at 570 nm after PCR with o-CPC.   

 

Figure 1.32: Overlay of chromatograms obtained for various transition and heavy 

metals using the lysine bonded silica monolith.  Separation conditions: Eleunt: 3 mM 

KCl pH 4.5, flow-rate: 2 mL/min, detection: UV-Vis detection at 495 nm following 

reaction with PAR.   

 

Figure 1.33: (left) Schematic demonstrating the chelating monolith solid phase 

extraction module prepared in a syringe tip.  (right) Dimensions of syringe tip filter.  

Reproduced from 

Figure 1.34: Separation of alkaline earth metals using an IDA bonded silica 

particulate column using (a) 0.1 M KNO3, (b) 0.2 M KNO3, (c) 0.3 M KNO3, (d) 0.5 

M KNO3, (e) 1.0 M KNO3 and (f) 1.5 M KNO3 eluents. 

 

Figure 1.35: (left): Van’t hoff plots of alkali metals, alkaline earth metals and amines 

showing changes in selectivity as the temperature is increased. (right): Separation of 

selected alkaline earth metals and BuA carried out at 27 oC (top) and 46 oC (bottom) 

demonstrating the benefits of the use of temperature to alter separation selectivity 

 

Figure 1.36: (left): Van’t Hoff plots for alkaline earth metals, transition and heavy 

metals cations obtained by increasing the temperature from 25 oC to 55 oC. (right): 

Separation of selected alkaline earth metals, transition and heavy metals using 

optimised temperature conditions (50 oC).  The eluent used was 0.2 M KCl and 0.9 

mM nitric acid.   

 

Figure 2.1: The in-house constructed capIC system incorporating a high pressure 

analytical pump, a 20 nL injector valve, the poly(META) functionalised anion 

exchange polymer monolith and on-column C4D detection. 
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Figure 2.2: Fluidic set-up for dual detection HPCIC. 

 

Figure 2.3 (a) Kapton flexible heating tape used in the manufacture of the capillary 

column heater (dimensions: 2.5 cm x 10 cm) and (b): Kapton heater wrapped in 

insulating tape and aluminum foil, encasing the cation exchange polymer monolith. 

The column was placed in the centre of the heater with 2 MicroTight unions 

positioned at each end.   

 

Figure 2.4: (a) Placement of the flexible heating tape inside a stainless steel tube and 

(b): In-house constructed capillary column heater demonstrating off-column C4D 

detection. Temperature monitoring was carried out using a thermocouple wire.     

 

Figure 2.5: Photo-grafting of poly(META) on the surface of the polymer monolith. 

 

Figure 2.6:  Photo-grafting of poly(SPM) on the surface of the polymer monolith. 

 

Figure 2.7: Immobilisation of IDA on the VAL grafted polymer monolith.  

 

Figure 2.8: Immobilisation of AIDA on the poly(GMA) photo-grafted polymer 

monolith 

 

Figure 3.1: (a) Separation of 6 anions on poly(META) polymer monolith using the 

two-step functionalising procedure and (b) separation of the same anion mix using the 

poly(META) functionalised polymer monolith using the one step procedure.  Figure 

2.2 (b) reproduced from [103]. Chromatographic conditions: effective column length: 

100 mm x 100 µm (a) and 110 mm x 100 µm (b), eluent: 2 mM sodium benzoate, 

injection volume: 50 nL, detection: on-column C4D, flow-rate: 1 µL/min.  Peak (1) 

0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L bromate, (4) 0.7 mg/L chloride, (5) 

0.7 mg/L nitrite and (6) 3 mg/L bromide.  

 

Figure 3.2: Overlaid chromatograms of separations of the 5 anions using the META 

functionalised polymer monolith obtained by varying the eluent concentration where 

(a) 2 mM sodium benzoate, (b) 1.4 mM sodium benzoate, (c) 1 mM sodium benzoate 

and (d) 0.6 mM sodium benzoate.  Chromatographic conditions: as in Figure 3.1. 
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Peaks: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L bromate, (4) 0.7 mg/L 

chloride, (5) 0.7 mg/L nitrite. 

 

Figure 3.3: Plots of log k versus log[benzoate] demonstrating that the mode of 

separation was anion exchange using the META functionalised polymer monolith. (1) 

nitrite, (2) chloride, (3) bromate, (4) chlorite and (5) fluoride.  

 

Figure 3.4: Separation of 5 anions using an in-house constructed capIC system.  

Chromatographic conditions: Column dimensions: 100 mm x 100 µm, eluent: 2 mM 

sodium benzoate, injection volume: 20 nL, flow rate: 1.3 µL/min and detection: on-

column C4D detection.  Peak: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L 

bromate, (4) 0.7 mg/L chloride, (5) 0.7 mg/L nitrite. 

 

Figure 3.5: Overlay of chromatograms obtained using the poly(META) polymer 

monolith.  Chromatographic conditions: as in Figure 2.5. Peaks: (a) 10 ppm formate, 

(b) 10 ppm bromate and (c) 10 ppm chloride. Also included in Figure 3.5 is the 

chromatogram obtained for a blank injection (green trace).  

 

Figure 3.6: Overlay of chromatograms obtained using the META functionalised 

polymer monolith. Chromatographic conditions: as in Figure 2.6, peak (a) 100 ppm 

chlorite, (b) 10 ppm chloride and (c) 100 ppm chlorate. Also included in Figure 3.6 is 

the chromatogram obtained for a blank injection (green trace).  

 

Figure 3.7: Overlay of chromatograms obtained using the META functionalised 

polymer monolith.  Peak (a) = 10 ppm acetate and peak (b) = 10 ppm formate.  Also 

included in Figure 3.7 is the chromatogram obtained for a blank injection (black 

trace).  

 

Figure 4.1: Separation of 100 ppm Mg(II), 100 ppm Ca(II) and 100 ppm Ba(II) using 

the in-house constructed capIC system. Chromatographic conditions: column: BuMA-

co-EDMA functionalised with SPM (100 µm I.D x 90 mm), eluent: 1 mM copper 

sulpfate, flow-rate: 1 µL/min, injection volume: 20 nL, detection: indirect UV at 210 

nm.   
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Figure 4.2: Plot of temperature versus voltage applied to the heating tape showed a 

linear correlation between 25 – 80 oC.   

 

Figure 4.3:  Separation of Ca(II), Mg(II) and Ba(II)  at 27 oC (a) and 62 oC (b). All 

chromatographic conditions as in Figure 4.1.  

 

Figure 4.4: Van’t Hoff plots where ◊ = Ba(II), ◊= Ca(II) and ◊ = Mg(II). Data 

obtained from individual injections of each alkaline earth metal at various 

temperatures.  

 

Figure 4.5: Plot of temperature versus backpressure showing linear correlation (R2 = 

0.99).  Measurements obtained using the capIC system with the backpressure noted as 

the temperature of the column heater was increased.    

 

Figure 5.1: Plots of - log [HNO3] versus log k for the 6 metals studied where ♦ = 

Co(II), ♦ = Mn(II), ♦ = Ni(II), ♦ = Zn(II), ♦ = Cd(II) and ♦ = Cu(II).  Chromatographic 

conditions: Eluent: 0.2 – 0.4 mM nitric acid, all other conditions as in Table 5.1. 

 

Figure 5.2: (a) Separation of 5 ppm Mn(II), 10 ppm Cd(II) and 10 ppm Cu(II) using 

C4D detection.  Chromatographic conditions: Column: VAL15a, eluent: 0.2 mM nitric 

acid, flow-rate: 1 µL/min, column length: 250 mm x 100 µm I.D., injection volume: 

20 nL. (b):  Same separation using simultaneous post column reaction and UV-Vis 

detection.  Chromatographic conditions: Eluent: 0.2 mM nitric acid, PCR: 0.15 mM 

PAR in 0.5 M ammonia, pH = 10.4, PCR flow-rate: 1µL/min, all other conditions as 

in Table 5.1.   

 

Figure 5.3: Overlay of chromatograms obtained for the separation of 5 ppm Mn(II), 

10ppm Cd(II) and 10ppm Cu(II) using VAL15b and VAL15c. Chromatographic 

conditions: Eluent: 0.2 mM HNO3, all other conditions as in Table 4.2. 

 

Figure 5.4: Calibration plot of applied voltage (V) versus temperature (oC) for the 

capillary column heater. 
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Figure 5.5: Overlay of chromatograms showing the effect of temperature on retention 

where (a) = 54 oC, (b) = 43 oC, (c) = 34 oC and (d) = 24 oC. Chromatographic 

conditions: column length: 230 mm x 100 µm I.D., eluent: 0.1 mM nitric acid, all 

other conditions as in Table 5.1. 

 

Figure 5.6: Van’t Hoff plots constructed for Mn(II) (◊), Cd(II) (□) and Cu(II) (∆) 

demonstrating that for Cu(II) and Cd(II), the sorption process exhibited exothermic 

behaviour and for Mn(II) the sorption process exhibited endothermic behaviour.   

 

Figure 5.7: (a) Scanning C4D profiles obtained using a 1 mM ethanolamine buffer pH 

= 9.8 for VAL20 where (■) is the scan of the un-modified polymer monolith and (■) 

is the scan following modification with IDA. (b): Scanning C4D profiles where (●) 

VAL15, (■) VAL20, (▲) VAL25 and (♦) VAL30.  

 

Figure 5.8:  Chelation ion chromatography system set-up incorporating on-column 

C4D and UV-Vis detection.  

 

Figure 5.9: Separation of transition/heavy metals utilising simultaneous on-column 

C4D detection (a) and UV-Vis detection at 500 nm following reaction of the eluted 

metals with PAR (b).  Chromatographic conditions: Eluent: 0.2 mM nitric acid, 

Eluent flow-rate: 1 µL/min, PCR flow-rate: 1 µL/min, PCR: 0.4 mM PAR in 0.1 M 

ammonia, pH 10.7.  Peak (1) 0.5 ppm Mn(II), (2) 1 ppm Cd(II) and (3) = 1ppm 

Cu(II).  A 10 pt moving average was applied to the chromatograms (using Microsoft 

excel) obtained using UV-Vis detection. 

 

Figure 5.10: Overlay of chromatograms obtained for the separations of 0.5 ppm 

Mn(II), 1 ppm Cd(II) and 1 ppm Cu(II) by varying the effective column length where 

(a) = 9 cm, (b) = 8.5 cm, (c) = 8 cm, (d) = 7.5 and (e) = 7 cm. Chromatographic 

conditions: Column: VAL30, eluent: 0.2 mM nitric acid, all other conditions as in 

Table 4.1. 

 

Figure 6.1: (a) Overlay of scanning C4D profiles obtained for GMA15 (♦), GMA20 

(♦), GMA25 (♦), GMA30 (♦) and GMA35 (♦). (b):  Scanning C4D profile obtained for 
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GMA30 where (♦) is the profile of the un-modified polymer monolith and (♦) is the 

profile obtained after modification with IDA. All scans were carried out using a 1 mM 

ethanolamine buffer (pH 9.8) at a flow-rate of 1 µL/min.   

 

Figure 6.2: Differences in corrected conductive response obtained during the C4D 

scanning of the poly(VAL) IDA-modified polymer monoliths and GMA-IDA 

polymer monoliths.   

 

Figure 6.3: Order of elution of the four metal cations using monolith VAL25 (♦) and 

GMA25 (♦) showing the changes in selectivity 

 

Figure 6.4: (a) Overlay of a separation of 5 ppm Mn(II), 10 ppm Cd(II) and 10ppm 

Zn(II) using GMA15 and GMA20. (b) Separation of 5 ppm Mn(II), 10ppm Cd(II) and 

10ppm Zn(II) using GMA25 overlaid with a 10 ppm Co(II) standard.  

Chromatographic conditions:  Eluent: 0.1 mM HNO3, flow-rate: 1 µL/min, injection 

volume: 100 nL, detection: on-column C4D, effective column length: 14 cm 

 

Figure 6.5: (a) Overlay of separations of 5 ppm Mn(II), 10 ppm Co(II), 10 ppm 

Cd(II) and 10 ppm Zn(II) using GMA30 and GMA35. (b) Overlay of separations of 

the metals standards carried out using GMA30.  Chromatographic conditions: Eluent: 

0.2 mM nitric acid. All chromatographic conditions as in Figure 6.4.   

 

Figure 6.6:  Overlay of separations of 5 ppm Mn(II), 10 ppm Co(II), 10 ppm Cd(II) 

and Zn(II) using 4 GMA30 monoliths. Chromatographic conditions: As in Figure 6.4. 

 

Figure 6.7: (left) Separation of 1 ppm Mg(II) and 5 ppm Ca(II) overlaid with 5 ppm 

Ba(II) using GMA30.  (right) Separation of 0.5 ppm Mg(II), 1 ppm Ca(II) and 5 ppm 

Ba(II). Chromatographic conditions: Eluent: 0.2 mM HNO3, effective column length: 

250 mm (GMA30) and 190 mm (GMA35). All other conditions as in Figure 6.4.   

 

Figure 6.8:  Linearity plots for Mg(II) and Ca(II) using GMA35 of concentration 

(mg/L) of Mg(II) and Ca(II) versus detector response (mV) 
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Figure 6.9:  Overlay of chromatograms obtained for (a) blank sample (0.2 mM nitric 

acid), (b) 0.8 ppm Ca(II) and 0.25 ppm Mg(II) standard and (c) 100 fold dilution of 

the bottled water sample. Chromatographic conditions: Eluent: 0.2 mM nitric acid. All 

other conditions as in Figure 6.4. 

 

Figure 6.10:  Separation of 5 ppm Mg(II), 5 ppm Mn(II), 10 ppm Co(II), Cd(II) and 

Zn(II) using GMA30. Chromatographic conditions: Eluent: 0.2 mM nitric acid, 

effective column length: 250 mm.  All other conditions as in Figure 6.4.   

 

Figure 6.11:  Overlay of 10 fold dilution of spiked pseudo seawater sample (a), 10 

ppm Co(II), Cd(II) and Zn(II) standard solution (b) and un-spiked pseudo seawater 

(c).  Chromatographic conditions: Column: GMA30, effective column length: 100 

mm, eluent: 0.2 mM HNO3.  All other conditions as in Table 6.4.   

 

Figure 6.12: Void peaks for injections of spiked pseudo seawater (black), un-spiked 

pseudo seawater (blue) and 10 ppm Co(II), Cd(II) and Zn(II) (red). The high ionic 

strength of the samples resulted in a maximum conductivity at 2500 mV.  The void 

peaks contained high concentrations of Mg(II) and Ca(II) which were unretained.        

 

Figure 6.13:  Metal analysis of seawater samples from (I) Quays beach, Co. Clare 

and (II) Ringsend, Co. Dublin where (a) is unspiked seawater sample, (b) 10 ppm 

Co(II), Cd(II) and Zn(II) standards (b) and spiked seawater (c).  Chromatographic 

conditions:  Eluent: 0.2 mM HNO3, column: GMA30, effective column length: 100 

mm.  All other conditions as in Figure 5.4.   

 

Figure 6.14: Un-spiked tap water (a), 10 ppm Co(II), Cd(II) and Zn(II) standards (b) 

and tap water sample spiked with 10 ppm Co(II), Cd(II) and Zn(II) (c). 

Chromatographic conditions as in Figure 5.4.   

 

Figure 6.15:  Overlay of chromatograms of Co(II), Cd(II) and Zn(II) obtained over a 

12 hour period. Chromatograms offset for clarity. All other chromatographic 

conditions as in Figure 5.4. 
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Figure A1.1: Backpressure profile obtained for HEMA-co-EDMA polymer 

monoliths with 40 % monomer (◊), 30 % monomer (◊), 20 % monomer (◊), 15 % 

monomer (◊) and 10 % monomer (◊).  Measurements carried out using methanol and 

flow-rate increased from 0.5 – 8 µL/min. 

 

Figure A1.2: SEM images obtained for monolith mixers: (a) 5 % monomer, (b) 10 % 

monomer, (c,d) 15 % monomer, (e) 20 % monomer, (f) 30 % monomer and (g,h) 40 

% monomer.   

 

Figure A1.3: Micro-fluidic nano-mixer chip showing the low (red) and high (blue) 

configuration. 

 

Figure A1.4:  Plot of wavelength (nm) versus peak height (V) showing that the 

optimum wavelength was between 565 nm and 570 nm. Separation conditions: 

Injection volume: 20 nL, Eluent: 5 mM nitric acid,  PCR: 4 mM o-CPC, 10 mM boric 

acid  pH adjusted to 9.8 with 250 mM NaOH,  flow-rate: 1 µL/min (eluent and PCR).  

 

Figure A1.5: Mg(II) peaks obtained on the FIA system using (a) the nano-mixer, (b) 

15 % monomer monolith, 3.5 cm in length, (c) 20 % monolith mixer, 3.5 cm in length 

and (d) 3.5 cm of empty FSC. 

 

Figure A1.6: Mg(II) peaks obtained using the FIA system with (a) the micro-fluidic 

nano-mixer, (b) the 15 % monolith mixer, 3.5 cm in length and (c) open tubular FSC, 

3.5 cm in length.  Injection volume: 20 nL, Eluent: 5 mM nitric acid,  PCR: 4 mM o-

CPC, 10 mM boric acid  pH adjusted to 9.8 with 250 mM NaOH.,  flow-rate: 1 

µL/min (eluent and PCR).  

 

Figure A1.7: Injections of 500 ppm Mg(II) on the flow injection system using the 

optimised conditions. Chromatographic conditions: PCR mixer: Low dead volume T-

piece, all other conditions as in Figure A1.6. 
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Abstract 

 
The fabrication and modification of polymer monoliths, in capillary formats, for the 

separation of small ions is presented. The separation of small ions using polymer 

monoliths has limitations and this work aims to investigate increasing the ion 

exchange capacity using photo-grafting techniques. Chapter 1.0 includes a 

comprehensive review on the use of capillary ion chromatography including 

advancements made in capillary instrumentation, stationary phases and detection 

devices. This chapter also includes the various methods of modifying stationary phase 

with ionogenic functionalities suitable for use in capillary ion chromatography. 

 

Chapter 2.0 shows the modification of polymer monoliths with quaternary ammonium 

ions, namely poly([2(methacryloyloxy)ethyl] trimethylammonium chloride) with 

immobilisation of the ion exchange functionalities taking place using photo-grafting 

techniques. In this work, the method of functionalisation of the polymer monolith was 

compared to a previously published polymer monolith bearing the same ion exchange 

functionalities. Chapter 2.0 also includes the separation of anions using a portable in-

house assembled capillary ion chromatography system.  

 

In Chapter 3.0, the photo-grafting of poly(3-sulfopropyl methacrylate) on a polymer 

monolith for the separation of cations is presented. The effect of temperature on the 

retention of Mg(II), Ca(II) and Ba(II) was carried out using an in-house constructed 

capillary column heater which was easily incorporated into the ion chromatography 

system. This chapter also introduces post-column reaction chemistry which involves 

the reaction of the eluted metals with a suitable reagent in a post-column mixer and 

detection of the coloured complex formed. In this work, the use of polymer monoliths 

as post-column mixers was investigated. Monoliths prepared with increasing pore size 

were incorporated into a flow injection analysis system and their suitability as post-

column mixers was determined and compared to a commercially available post-

column mixer.  

 

Chapters 4.0 and 5.0 deal with the immobilisation of chelating ligands on a polymer 

monolith to produce a capillary chelating ion exchanger. Two methods of 

immobilisation of the chelating ligand were identified and compared. Scanning 
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capacitively coupled contactless conductivity detection was used to characterise the 

chelating stationary phases. Chapter 5.0 includes the use of a novel bimodal detector 

set-up i.e. on-column C4D was used in conjugation with UV-Vis detection following 

the reaction of the eluted metals with a post-column reagent. Chapter 4.0 shows 

applications of the capillary chelating ion exchangers including the determination of 

Ca(II) and Mg(II) in bottled water samples and also the separation of metal cations in 

a spiked sea-water samples. 
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1.0 Background 

 

Research carried out to date on the separation of small ions by ion chromatography 

using polymer based monolithic columns has proven to be less effective when 

compared to their silica based counterparts. This is mainly due to the reduced surface 

area exhibited by the polymer monolithic columns, therefore reducing the surface area 

available for modification with the desired functional groups. This literature review 

aims to dicuss the methods currently available for the separation of small ions using 

surface modified monolithic columns and improvements that have been made over the 

years. A number of methods have been reported for the surface modification of 

polymer and silica monoliths which will be discussed throughout the text. One 

method that has received little attention is the use of photo-grafting techniques to 

introduce functional groups onto the surface of the monolith and this thesis aims to 

further investigate this method of surface modification of polymer monoliths for use 

in the separation of anions and cations using capillary ion chromatography (CIC).       

 

This thesis also aims to investigate the fabrication of chelating polymer monoliths 

through the photografting of chelating ligands onto the surface of the polymer 

monoliths, which has currently received no attention. The production of capillary 

chelating polymer monoliths demonstrates a novel, previously unpublished method 

for the separation of metal cations. The advantages of capillary chromatography is 

also descussed in detail throughout the text. 

 

1.1 Introduction to ion chromatography  

 

Since its development by Small et al. in 1975 [1], ion chromatography (IC) has 

become a widely used analytical technique for the separation of charged species.  

Separation in IC relies on the exchange equilibrium of the analyte ions in solution 

between the stationary phase and the eluent. As the eluent flows through the 

separation column, the eluent ions compete with the analyte ions for the ion exchange 

sites on the stationary phase thus displacing them. Electroneutrality must be retained 

at all times, therefore one monovalent eluent ion displaces one monovalent analyte 

ion [2]. Equation 1.1 demonstrates the replacement of an eluent ion with an analyte 

ion during the retention process. Retention depends on the affinity of the analyte ions 
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for the ion exchange sites. If the analyte ions have a high affinity for the ion exchange 

sites, they will be retained on the column longer than analyte ions that have a low 

affinity.   

 

                 Res+ E-  +  A-   =   Res+A- +  E                                 
Equation 1.1 

 

where Res+ denotes the ion exchange resin, E- denotes the eluent ions and A- denotes 

the analyte ions. 

 

Ion exchangers can be classified as strong or weak anion exchangers or strong or 

weak cation exchangers. Strong ion exchangers retain their charge over the entire pH 

range whereas weak ion exchangers are ionised over a narrow pH range. An example 

of a strong anion exchanger was demonstrated by Krata et al. [3], who used an AS14 

column packed with 9 µm beads and surface functionalised with quaternary 

ammonium groups for the separation of anions. The authors separated 8 organic and 

inorganic anions using an eluent consisting of 1 mM NaHCO3 and 3.2 mM Na2CO3. 

Separation occured in < 8.5 minutes with fluoride well resolved from the system peak. 

Weak anion exchangers are formed through the addition of a primary amine on the 

stationary phase matrix, however ion exchangers prepared this way have the 

disadvantage in that the eluent must be sufficiently acidic to give adequate anion 

exchange to obtain suitable retention [2]. The addition of sulfonate groups can 

produce strong cation exchangers such as the IonPac CS10 supplied by the Dionex 

Corporation. As mentioned previously, strong cation exchangers remain ionised over 

the entire pH range, whereas cation exchangers employing carboxyl groups, forming 

weak cation exchangers, are protonated at pH values of < 4 and lose their ion 

exchange capacity. Kadner et al. [4] separated sodium, lithium, ammonium and 

potassium using the IonPac CS10 (sulfonated) separation column and a 22 mM 

sulphuric acid eluent. All 4 ions were separated in a run-time of 15 minutes using a 

flow-rate of 1 mL/min and suppressed conductivity detection. The same authors also 

separated sodium, lithium, ammonium and potassium using an IonPac CS12A 

(carboxylic and phosphonic groups) separation column with a run-time of 6 minutes 

using an eluent consisting of 11 mM sulfuric acid. Separation of Mg(II), Sr(II) and 

Ca(II) was also possible, with a total run-time for all seven ions of < 12 minutes. The 
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separation of the alkaline earth metals using the IonPac CS10 separation yielded long 

run-times (> 20 minutes).                

 

IC is now considered a mature technique for the separation of ionic species.  

Developments in stationary phase technology, instrumentation and detection modes 

ensure that it is a routinely used technique.  A number of reviews have appeared in the 

literature with regard to ion chromatography including its conception and early 

development [5, 6] developments in ion chromatography [7-9], stationary phases in 

ion chromatography [10-14] and applications [15-17].  An number of text books on 

the topic of IC are also available [2, 18, 19]. 

 

1.2 Capillary ion chromatography 

 

Interest in the use of capillary ion chromatography (capIC) has grown in  recent years 

due to the advances made in stationary phase technology, particularly in the field of 

capillary monoliths and the use of capacitively coupled contactless conductivity 

detection (C4D) detection [20]. Capillary columns are considered to have an internal 

diameter (I.D.) of 50 - 500 µm [21] as opposed to standard bore columns, which have 

an average I.D. of 4 mm. 

 

There are a number of advantages in using capIC, which have been summarised in a 

review by Kuban and Dasgupta [20], such as improved sensitivity in comparison to a 

standard bore column, when the same mass of analyte was injected on both columns.  

Figure 1.1 shows a separation of common cations separated on a capillary column 

(0.4 mm I.D.), a microbore column (2 mm I.D.) and a standard bore column (4 mm 

I.D.). All columns were packed with the same packing material (CS12A) and 

contained surface carboxylic and phosphonic functionalities. In all cases, the injection 

volume was 0.4 µL. Flow-rates used were 10 µL/min for the capillary column (A) and 

1 mL/min for the standard bore column (C).   

 



 37 

 

 

Figure 1.1:  Comparison of detector sensitivity for the separation of cations using a 

capillary column (A), a microbore column (B) and a standard bore column (C). All 

columns are packed with the same packing material. An injection volume of 0.4 µL 

was used in all cases.  Reproduced from [22]. 

 

As can be seen from this plot, a 100 fold decrease in the flow-rate from standard bore 

to capillary, resulted in a 100 fold increase in the analyte concentration passing 

through the conductivity detector for the capillary scale separation, resulting in an 

increase in the detector sensitivity when the capillary column was used [22]. Other 

advantages of capIC include low eluent consumption, therefore low waste generated.  

Due to the low eluent consumption, the system can be left continuously running and is 

therefore always ready to use. The low eluent consumption ensures that capIC is 

suitable for incorporation in microfluidic platforms and field deployable devices.  

CapIC is ideal for low sample injection which is important if only a small amount of 

sample is available [20]. The use of low flow-rates ensure that it compatible with 

sensitive detection techniques, such as mass spectrometry, as a flow splitter is not 

required prior to the analytes reaching the detector. The disadvantages of capIC 

include the requirement of the use of specialised equipment, such as analytical pumps 

capable of pumping at low µL/min or nL/min flow-rates.  Extra-column volume also 

becomes an issue in capIC and the use of specialised fittings are required.    

(A) Capillary IC (0.4 mm) with 0.4 µL injection volume 

(B) Microbore IC (2 mm) with 0.4 µL injection volume 

(C) Standard bore IC (4 mm) with 0.4 µL injection volume 

Retention time (mins) 
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1.2.1 Commercially available capIC system 

 

As mentioned previously, the internal diameter of capillary columns is < 500 µm and 

as such, the volume of each component (such as the injector valve and the detector 

cell) also need to be minimised. The Dionex Corporation recently launched the first 

commercially available capIC system (ICS 5000) consisting of a capillary pump 

capable of accurately pumping at flow-rates of 0.001–3 mL/min, an eluent generator 

capable of suppling hydroxide or methanesulfonic acid eluents which are commonly 

used in suppressed IC, an IC ‘cube’, which houses the injector valve, eluent generator 

degasser, the capillary column and capillary electrolytic suppressor. The ‘cube’ also 

allows for temperature controlled chromatography to be carried out.  Detection on the 

capIC system is carried out using capillary conductivity with a 0.02 µL flow cell 

volume (as opposed to the standard flow cell which has a volume of 0.7 µL) [23].  

1.2.2 In-house constructed capIC systems 

Prior to the release of the capIC system by the Dionex Corporation, research groups 

investigated the use of novel in-house constructed capIC systems.  In 1997, Sjogren et 

al. [24] constructed a capIC system incorporating a pump, an electrodialytic NaOH 

generator, an capillary particle packed separation column, a chemically regenerated 

suppressor and a protype capillary conductivity detector cell.  The capillary particle 

packed column (500 mm x 180 µm I.D.) was packed with AS11 particles (containing 

quaternary ammonium functionalities) and was applied to the separation of 19 anions 

using a gradient elution profile (Figure 1.2). 
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Figure 1.2: Separation of 19 anions using an in-house constructed capIC system 

using suppressed conductivity detection.  Eluent: NaOH (gradient elution), injection 

volume: 100 nL, flow-rate: 2 µL/min, peaks (1) fluoride, (2) formate, (3) 

monochloroacetate,  (4) bromate, (5) chloride, (6) nitrite, (7) trifluoroacetate, (8) 

dichloroacetate, (9) bromide,  (10) nitrate, (11) chlorate, (12 )selenite, (13) tartrate, 

(14) sulfate, (15) selenate, (16) phthalate, (17) phosphate, (18) arsenate, (19) citrate. 

Reproduced from [24].  

Following on from the work in [24], the same research group produced a portable 

capIC system which incorporated a syringe pump, an electodialytic NaOH generator, 

a 100 nL injector valve, a packed capillary column made from fused silica capillary 

(500 mm x 180 µm I.D.), chemical suppressor and conductivity detection [25]. The 

capillary column was packed with AS11 particles (13 µm diameter with attached 

quaternary ammonium ions). A frit was prepared at the outlet of the capillary column 

by packing small pieces of glass wool into a 0.3 mm I.D PTFE tubing and pushing 

this into the the end of the fused silica capillary separation column. No entrance frit 

was used, which allowed trimming of the head of the column as the packing material 

became compressed over time. This system also incorporated a trap column packed 

with Chelex 100, a chelating metal resin to remove metal impurites, which was 
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situated prior to the separation column.  The dimensions of the entire system were 28 

x 43 x 15 cm with an overall weight of 10 kg.  The use of the electrodialytic NaOH 

generator allowed for the gradient elution of 15 anions as shown in Figure 1.3.  

 

Figure 1.3: Separation of 15 anions using a capillary packed capillary column (500 

mm x 180 µm) using a portable in-house constructed capIC system.  Separation 

conditions; Eluent: linear gradient from 2 mM to 38 mM NaOH from 5 to 17 minutes,  

injection volume: 100 nL, flow-rate: 1.5 µL/min, peaks: (1) acetate, (2) formate, (3) 

methanesulfonate, (4) monochloroacetate, (5) bromate, (6) chloride, (7) nitrite, (8) 

trifluoroacetate, (9) dichloroacetate, (10) bromide, (11) nitrate, (12) chlorate, (13) 

sulfate, (14) phthalate, (15) chromate.  Reproduced from [25].   
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1.3 Detection in IC 

 

1.3.1 Conductivity detection 

 

Conductivity detection is considered a universal detector in ion chromatography as all 

ions are electrically conducting. Conductivity detectors consist of a conductivity cell 

which houses two electrodes and are in constant contact with the eluent.  Conductivity 

detection can be subdivided under two main headings, non-suppressed ion 

chromatography and suppressed ion chromatography.    

 

1.3.1.1 Non-suppressed ion chromatography 

 

In liquid chromatography, the eluent provides the greatest flexibility with regards to 

affecting the retention of ions [2]. The choice of eluent used in a particular separation 

must be compatible with the mode of detection employed in the system. In the case of 

non-suppressed conductivity detection, the eluent chosen should exhibit a low 

background conductance. The main advances made in non-suppressed IC were due to 

the use of ion exchange resins with low capacity. The capacity of a resin is a measure 

of the number of functional groups per unit weight of resin and is normally expressed 

as milliequivalents of exchangable ions per gram of resin or milliequivalents per 

millilitre of resin [18]. Ion exchange resins of lower capacity require a lower 

concentration of eluent to elute the sample from the column and an eluent with a low 

ionic concentration has a low conductivity. The most common eluents used in non-

suppressed IC for the separation of anions are salts of carboxylic acids such as sodium 

or potassium salts of benzoic acids [26, 27] or phthalates [28, 29]. The main 

advantage of using non-suppressed conductivity detection is the simplicity in 

instrument set-up as extra hardware is not required.  Extra hardware can lead to band 

broadening (as a suppressor is placed between the separation column and the 

detection device) increasing the overall dead volume of the system.  

 

1.3.1.2 Suppressed ion chromatography. 

 

In suppressed IC, a suppressor is placed between the separation column and the 

detection device and its function is to reduce the background conductivity of the 
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eluent prior to it reaching the conductivity detector, which in turn results in increased 

detector signal of the analyte. The background conductivity using a NaOH eluent for 

example, results in high background conductivity if un-suppressed, as the eluent in 

fully ionised and therefore highly conducting. NaOH can be suppressed by 

exchanging the Na+ ions with H+ ions to produce water, resulting in an eluent (which 

also contains the sample analyte) with a lower conductivity passing out of the 

suppressor into the conductivity detector which increases the sample analyte signal, as 

shown in Figure 1.4.      

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4:  Increase in the conductivity signal of the analyte ion following the 

suppression of the NaOH eluent. Adapted from [31].   

 

Examples of eluents used in suppressed IC include hydroxide [30], sodium hydrogen 

carbonate and sodium carbonate [3] and methanesulfonic acid [31, 32].  Examples of 

suppressors include packed bed suppressors, hollow fibre membrane suppressors and 

micro-membrane suppressors, a description on how they function has been 

documented in a review on suppressors by Haddad et al. [34]. Electrolytic suppressors 

are also available.  Figure 1.5 shows a capillary electrolytic eluent suppressor (anion), 

available as part of the capIC system (ICS 5000) recently released by the Dionex 

Corporation. The design of the suppressor minimises dead volume, which is important 

as the suppressor is placed between the separation column and the detector. The 

suppressor consists of an ion exchange resin chamber (which also contains a coiled 
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(b) suppressed IC
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membrane through which the eluent flows), with anode and cathode electrodes 

situated on each side, separated by membranes. The ion exchange resin contains an 

ion of opposite charge to that of the eluent ion. A current is applied to one electrode, 

forcing the regenerant ions into the ion exchange chamber via an electric field.  Here, 

the regenerant ions exchange with the eluent ions through the coiled membrane where 

they are transferred from the ion exchange chamber into the second electrode chamber 

where they are removed.  The suppressed eluent then passes through the conductivity 

detector [35].   

 

 

 

 

 

Figue 1.5: Capillary eluent suppressor (ACESTM 300) available as part of the ICS 

5000 capillary IC system. Reproduced from [35]. 

Standard bore conductivity flow-cells have internal volumes of 0.7 µL (Dionex) or 

0.6 µL (Waters).  Ion chromatography systems that are capable of analysis at capillary 

scale are generally equipped with UV detectors with a detector flow-cell volume of 

0.02 µL. The use of conductivity detection at capillary scale has been possible 

through the use of capacitively coupled contactless conductivity detection (C4D). 
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1.3.2 Capacitively coupled contactless conductivity detection. 

 

Capacitively coupled contactless conductivity detection (C4D) was first applied in 

capillary electrophoresis in 1998 [36] and has since being used in ion chromatography 

[37] and microfluidic platforms [38]. A number of reviews on the use of C4D have 

appeared in the literature [39-41]. One of the main advantages of C4D is that the 

arrangement of the ring electrodes around the fused silica capillary, as shown in 

Figure 1.6, means that this form of detection is contactless, therefore eliminating 

fouling of the electrodes. Other advantages includes the elimination of excess 

connective tubing, as the detector cell is placed on-column. This reduction in tubing 

reduces the effects of band broadening. The use of C4D detection is also easily 

incorporated into an ion chromatography system as well as the low cost associated 

with the detection device.   

 

C4D detection is based on two ring electrodes (as shown in Figure 1.6) that are placed 

side by side which surround a capillary column, with the gap between the two 

electrodes (I) defining the detection volume (generally 2 mm, internal volume 16 nL). 

An AC voltage is applied to the first electrode and is picked up by the second 

electrode where it is amplified.  

 

 

Figure 1.6:  Two ring electrode encasing the separation column showing the cell area 

(A) and the distance between the two electrodes (I).  Reproduced from [42]. 
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As each electrode forms a capacitor with the solution inside the capillary, the 

conductivity of the liquid flow measured between the two electrodes can be 

determined [43]. As the analyte enters the detection gap, a reduction in resistance 

occurs and therefore an increase in conductivity.  

 

In 2002, Kuban et al. [44] showed the effect of the electrode length and the distance 

between the two electrodes on the separation of selected cations using capillary 

electrophoresis. While varying the electrode length from 0.5 – 3.0 cm had no 

significant effect on column efficiency, a clear difference was noted when the 

detection gap was increased. Figure 1.7 (left) shows the effect of increasing the 

detection gap on the theoretical plates for the selected cations while (right) shows the 

differences in peak height obtained for the same cation separation when the detection 

gap was varied from 0.6 mm (A) to 5.1 mm (B). A peak efficiency of ~ 60,000 N/m 

was obtained for Mn(II) when the detection gap was 5.1 mm which increased to ~ 

270,000 N/m when the detection gap was reduced to 0.6 mm. 

 

 

Figure 1.7: (left) Effect of detection gap on the efficiency of selected cations. (right) 

variation in peak height with a detection gap of 0.6 mm (A) and 5.1 mm (B). 

Reproduced from [44]. 

 

As mentioned above, the use of on-column C4D detection eliminates extra-volume 

connective tubing associated with conventional conductivity detectors, as the detector 

head is placed on-column. The use of on-column C4D is possible using columns with 
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an outer diameter (O.D.) of 375 µm, however, this does not mean that the use of C4D 

detection is restricted to capillary columns. In 2004, Kubán et al. [43] used a 

Metrosep cation 1-2 column (125 x 4 mm I.D.) for the separation of lithium, sodium 

and potassium using non-suppressed C4D detection. As the outer diameter of the 

separation column was > 375 µm, the authors used fused silica capillary, connected to 

the end of the separation column which facilitated the use of off-column C4D 

detection. Off-column C4D detection was compared to a conventional  conductivity 

detector. The separations were carried out using a 1 mM
 tartaric acid eluent and a 

flow-rate of 1 mL/min. Using the same system set-up, the authors also obtained a 

separation of fluoride, chloride and nitrate using a Super-Sep anion exchange column 

(100 x 4.6 mm I.D.) with a 2.5 mM phthalic acid eluent. In this case, a flow-rate of 

1.5 mL/min was used and an injection volume of 50 µL. The authors compared the 

LOD values obtained using both form of conductivity detection and found that the 

results were comparable. An LOD of 2.9 µg/L was obtained for lithium using off-

column C4D and an LOD of 3.4 µg/L was obtained for the same cation using 

conventional conductivity detection. Using the same anion exchange column, the 

authors carried out the same work using suppressed conductivity detection. Using a 

linear KOH gradient, the authors improved greatly on the LOD values for fluoride, 

chloride and nitrate using suppressed off-column conductivity detection. When non-

suppressed C4D detection was employed, an LOD value of 160 µg/L was obtained.  

With suppressed C4D detection, an LOD of 1.5 µg/L was calculated.         

            

In 2008, Gillespie et al. [26] fabricated a C4D detector cell suitable for standard LC 

(1.6 mm O.D.). The authors used 2 copper electrodes, 2 mm in length wrapped around 

a length of teflon tubing. The electrodes were positioned 2 mm apart. A Faraday 

shield was used to surround the excitation electrode to prevent the capacitive coupling 

between the electrodes. The length of Teflon tubing encased by the electrodes was 

used to house the separation column. Following optimisation of the detector 

conditions, separations of nitrite and nitrate were carried out using on-column C4D 

detection and a commercially available conductivity detector with similar dimensions. 

An eluent consisting of 2.5 mM sodium benzoate at a flow-rate of 20 µL/min was 

used. LOD values of 3.2 and 1.8  µg/L were obtained for nitrate and nitrite using C4D 

detection and 5.2 and 2.0 µg/L using the commercially available detector.       
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Due to the capabilities of placing the detector cell on-column, the ability to place the 

detector cell at various positions along the column, thus affecting the effective column 

length, can be exploited. Ó Ríordáin et al. [37] demonstrated the use of on-column 

C4D detection using a C18 silica monolith (150 mm x 0.1 mm I.D.) coated with N-

dodecyl-N,N-(dimethylammonio)undecanoate (DDMAU) for the separation of anions 

in drinking water samples. Figure 1.8 shows chromatograms obtained when the 

detector was placed at various positions along the column.   

 

 

Figure 1.8: Separations of anions obtained by placing the detector at various 

positions along the column. The effective column length is 4.5 cm for the bottom 

chromatogram, 8.5 cm for the middle chromatogram and 12.5 cm for the top 

chromatogram.  Chromatographic conditions: Eluent: 0.5 mM phthalate, flow-rate: 1 

µL/min and injection volume: 50 nL. Reproduced from [36]. 

 

Ó Ríordáin’s work demonstrated the ability to move the detector along the capillary to 

optimise separation efficiency and reduce the overall run-time of the separation. Due 

to the mobile nature of the C4D detector cell, chromatographic performance with 

regards to resolution, efficiency and separation run-time can be optimised by varying 

the effective column length in a non-destructive manner when the columns are in 
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fused silica capillary formats. To vary the effective column length using conventional 

conductivity detection, cutting of the capillary column is required. 

 

Due to the mobile nature of the C4D detector cell, researchers began to investigate the 

information to be gained by scanning the entire length of the column and recording 

the conductive response at each pre-defined location [45]. The use of scanning C4D 

techniques will be discussed in more detail in Section 1.6.4.   

 

1.3.3 UV detection 

 

UV detection is the most common form of detection used in high performance liquid 

chromatography, however within IC, UV detection is a selective detector and will 

only respond to certain ions [46].  A range of anions, such as nitrate, nitrite, bromide, 

chloride, iodide, iodate and phosphate are UV absorbing anions and can be detected 

using UV detection with a wavelength between 190 nm and 220 nm [2].  O’Ríordáin 

used UV detection at 214 nm for the detection of nitrate, nitrite, bromide, iodide and 

thiocyanate [47]. In this work, the author coated a Chromolith Performance C18 silica 

monolith with the surfactant dodecyldimethylamino acetic acid. The resultant ion 

exchange monolithic column was applied to the separation of the above mentioned 

anions using a 150 mM KCl eluent. The eluent also contained 0.2 mM 

dodecyldimethylamino acetic acid. Positive peaks were obtained as the molar 

absorptivity of the analyte anion exceeded that of the eluent ions, known as direct UV 

detection. In 2006, Li et al. [48] coated a Cromolith Flash RP-18e silica monolithic 

column with the surfactant cetylpyridinium chloride and used the resultant modified 

monolith for the separation of acetate, nitrate, bromide, tungstate, chromate and nitrite 

using UV detection at 210 nm. An eluent consisting of 20 mM sodium chloride was 

used at a flow-rate of 3 mL/min. Using a 20 µL injection volume, detection limits 

ranging from 1 – 19 µg/L were obtained. Using a 1.5 mmol/L phthalate eluent, the 

authors successfully separated the same group of 6 anions using UV detection at 279 

nm. Negative peaks were obtained, as the molar absorptivity of the eluent was higher 

than the anions, known as indirect UV detection. In this case, detection limits of 100 - 

500 µg/L were obtained demonstrating a loss in sensitivity using indirect UV 

detection. In 2004, Ueki et al. [49] prepared a polymer monolith with attached 

sulphonate groups. The authors separated ammonium, sodium, potassium, magnesium 



 49 

and calcium using a 10 mM copper sulfate eluent with indirect UV detection at 210 

nm. A flow-rate of 3 µL/min was used and an injection volume of 0.2 µL. More 

recently, Connolly et al. [45] modified the surface of a polymer monolith (120 mm x 

100 µm I.D.) with 3-sulfopropylmethacrylate (SPM) to which the authors used for the 

separation of potassium, magnesium calcium and barium. An eluent consisting of 0.5 

mM copper sulfate was used at a flow-rate of 1 µL/min using indirect UV detection at 

210 nm. The injection volume was 50 nL.           

 

Typically, UV detectors employed in standard systems have a flow cell volume of 

about 10 µL. Dionex have introduced the Ultimate 3000 variable wavelength 

detectors for use with capillary IC systems.  The flow cells available for this detector 

include 3 nL, 45 nL and 180 nL, all with 10 mm optical pathlengths.        

 

To improve sensitivity in IC, the use of post column reaction (PCR) detection is 

common practice. PCR requires the use of a reagent that can form coloured 

complexes with ions with a wavelength of maximum absorptivity well differentiated 

from that of the free reagent. Bromate can be determined using UV-Vis detection by 

reacting the bromate, as it elutes from the column, with a post column reagent o-

dianisidine (ODA). This results in a complex that can be determined at 352 nm with 

detection limits in the sub-µg/L range [50]. UV-Visible detection with PCR is 

commonly used for the determination of metals using chelation ion chromatography 

[51]. The most commonly used PCR reagents are complexing dyes and there are a 

number of reagents available for post column chemistry such as 4-(2-pyridylazo) 

resorcinol (PAR) [52] and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-

PADAP) [53] which are generally used for the determination of transition metals, o-

cresolphthalein complexone (o-CPC) which has been demonstrated for the 

determination of alkaline earth metals forming stable purple complexes [54] and 

chrome azurol S (CAS) which has been used as a post column reagent for Be(II) [55]. 

PCR requires the use of a mixing coil to allow sufficient mixing of the analytes, as 

they are eluted from the column with the PCR reagent. Careful selection of the mixer 

is required as increases in the connecting tubing between the injector and detector can 

result in an increase in band broadening [51]. Open tubular eg. PEEK tubing is 

commonly employed as mixers in PCR chemistry and is normally coiled so as to aid 

mixing [51]. While PCR chemistry can improve sensitivity and selectivity, the 
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method does possess some disadvantages, such as the cost associated with a second 

pump, increased complexity in the system due to the incorportation of a PCR mixer, 

the deleterious effects on band broadening due to the requirements of the mixer and 

an increase in baseline noise.   

 

1.4 Stationary phases in capIC 

 

CapIC particulate packed columns are packed with the same packing material that is  

used for standard bore columns. A frit is placed at one end and the column packed 

under high pressure. Some of the earlier work in the field of capIC was carried out 

using modified packed silica columns. In 1996, Takeuchi et al. [56] packed a capillary 

column with silica particles (5 µm diameter) modified with bovine serum albumin 

(BSA).  Using an eluent consisting of 1 mM sodium iodide and 0.3 mM tartaric acid, 

the authors separated chloride, bromide and nitrate in tap water samples. Following on 

from this, Zein et al. [57] used the same column for the separation of a range of 

anions (Figure 1.9) using various acidic eluents. Applications of the capillary packed 

column included anion analysis of saliva in smokers and non-smokers [57]. 

 

 

Figure 1.9: Separation of anions using a silica particle packed column (100 mm x 350 

µm I.D.) modified with BSA.  Separation conditions: eluent: (A) 3 mM aspartic acid, 

(B) 0.05 mM sulfuric acid, (C) 0.15 mM tartaric acid, Flow-rate: 5.6 µL/min, injection 

volume: 0.2 µL, peaks: (1) iodate, (2) bromide, (3) nitrate, (4) iodide, (5) thiocyanate.  

Reproduced from [57]. 

Retention time (mins) 
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Takeuchi et al. [58] packed a capillary column with TKSgel IC Anion SW particles 

(silica based) and modified the surface with dextran sulfate.  The resultant column 

was used for the separations of cations using a copper sulfate eluent as shown in 

Figure 1.10. 

 

 

Figure 1.10: Separation of cations using a 100 x 0.32 mm I.D. TSKgel IC-anion SW, 

silica particle packed column (modified with dextran sulfate). Separation conditions: 

Eluent: 6 mM copper sulfate, flow-rate: 4.2 µL/min, injection volume: 0.2 µL, 

detection: indirect UV detection at 210 nm. Reproduced from [58] 

 

Other commercially available particle packed (silica) capillary columns include the 

Jupiter range available from Phenomenex, which are packed with 3 - 15 µm silica 

particles. The silica particles are available with C18, C5 and C4 bonded phases. These 

columns are available in 300 or 500 µm I.D. formats and are used for the separations 

of proteins and peptides [59].  The same company also supply the Luna range which 

are packed with 3 - 15 µm silica particles, which are also available in 300 - 500 µm 

I.D. formats. These columns are also packed with C18, C5 or C4 bonded phases and 

are recommended for the separation of hydrophobic compounds. A cation exchange 

capillary column is also available as part of the Luna range. Attached benzene 

sulfonic acid bonded phases with a bead diameter of 5 or 10 µm are available in 

capillary formats (300 – 500 µm I.D.), with a surface area of 400 m2/g [60].  
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Phenomenex also supply Onyx silica monolithic columns. The column dimensions are 

150 mm x 100 µm I.D. and are currently available in C8 or C18 form. The ability to 

modify reversed phase stationary phases with surfactants (in the case of silica based 

stationary phases) has been studied. For example, O’Ríordáin et al. [37] modified an 

Onyx silica monolithic column (C18) described above with N-dodecyl-N,N-

(dimethylammonio)undecanoate (DDMAU), an amphoteric surfactant. The authors 

used the DDMAU modified silica monolith for the separation of inorganic anions 

using a 0.5 mM phthalate eluent. Average column efficiencies of ~ 35,000 N/m were 

obtained for the anions studied. Detection was carried out using on-column C4D 

detection uisng a flow-rate of 0.3 µL/min. 

 

Thermo also supply packed silica capillary columns in 320 µm I.D. formats. These 

columns are packed with silica particles with 1.9 µm particle size. The use of columns 

packed with smaller particles (< 2 µm) can improve separation efficiency.  However, 

one of the biggest drawbacks of using smaller particles is the higher back-pressure 

that is generated.  Because of this high pressure, heat is generated inside the column.  

The heat power generated per column volume increases with decreasing particle size 

[61].  The heat generated results in axial heating (from one end of the column to the 

other) and radial heating (from the centre of the column to the column wall). 

Temperature increases in the axial direction and decreases in the radial direction. 

These axial and radial gradients contribute to band broadening. A band of analyte will 

move faster in the core region of the column than at the column wall, as the core 

region is hotter and the mass transfer will increase. The viscosity of the eluent is 

higher near the wall of the column than at the centre, which will also contribute to 

band broadening. This in turn results in a loss of column efficiency. This temperature 

gradient will be significantly lessened with the use of capillary particle packed 

columns, as the heat has less distance to travel (from the centre of the column to the 

capillary wall) or with the use of monolithic columns as the backpressure exhibited by 

monolithic columns is lower than that of particulate packed columns.     

The use of polymer packed capillary columns for the separations of anions has also 

been demonstrated [24, 25]. In recent years, Dionex have released standard bore 

analytical column materials in capillary format with internal diameters of < 0.4 mm. 

The AS18 capillary column (150 mm x 400 µm) is packed with 7.5 µm diameter 
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beads with attached quaternary ammonium functionalities and has a capacity of 1.71 

µeq. This column has been applied to the separation of 11 inorganic anions, organic 

acids and oxyhalides using a 23 mM KOH eluent and suppressed conductivity 

detection.  Using a 10 µL/min flow-rate, separation of the 11 analytes occurred in < 

15 minutes [62]. The AS19 capillary column (250 mm x 400 µm), packed with 

particles of the same size and functional groups as the AS18, was applied to the 

separation of 22 anions using a KOH eluent gradient and a flow-rate of 10 µL/min 

[63]  Separation of the 22 anions occurred in < 50 minutes at a temperature of 30 oC.  

In this case, the column capacity was 2.5 µeq.   

Capillary cation exchange columns are also available from Dionex such as the CS16, 

packed with 5 µm particles with grafted carboxylic acid functionalities. This column 

(250 mm x 400 µm), was applied to the separation of lithium, sodium, ammonium, 

potassium, magnesium and calcium using a 30 mM methanesulfonic acid eluent and a 

10 µL/min flow-rate [64]. The analysis was carried out at 40 oC with baseline 

resolution of all analytes occurring in < 18 minutes.  This column had a capacity of 80 

µeq. Finally, CS12A capillary columns packed with 8 µm or 5 µm particles with 

grafted carboxylic acid and phosphonic acid functionalities are also available.  Using 

a 20 mM methanesulfonic acid eluent, separations of lithium, sodium, ammonium, 

potassium, magnessium and calcium are possible in < 10 minutes at a flow-rate of 12 

µL/min. Increasing the flow-rate results in the separation of all 6 cations in < 7 

minutes.  The capacity of this column was 28 µeq  [65].  

The packing of particles into capillaries is a difficult task and the use of monoliths has 

received significant attention in capLC due to their ease of manufacture, as the 

monolith is polymerised within the capillary walls. A decrease in column efficiency is 

usually observed at higher flow-rates using particulate packed columns, as separation 

is based on diffusive mass transfer of the sample analytes into the pores of the 

particle. Also at higher flowrates, particle based columns exhibit higher back-

pressures [66].  
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Van Deemter (equation 1.2) summarised the column effects that contribute to plate 

height and thus band broadening.  

 

                                             H = A + B + Cu                            Equation 1.2  
   u 

   

where A = eddy diffusion, B = longitudunal diffusion, C = mass transfer of the 

analyte between the eluent and the stationary phase and u = linear velocity of the 

eluent. 

 

Nguyen et al. [67] showed the effect of reducing the particle size on the C-term of the 

Van Deemter equation. By decreasing the particle size from 10 µm to 1.7 µm, the 

authors noted improvements in the plate height resulting in a flatter C-term from the 

constructed Van Deemter plots. However, a disadvantage of using smaller particles is 

the increase in the back-pressure generated [67]. Another method of exploiting the 

flatter C-term from the Van Deemter equation is through the use of monolithic 

columns [68]. 

 

1.5 Monoliths 

 

1.5.1 Introduction 

 

In the last number of years, monoliths have become increasingly popular in 

chromatographic separations.  This is evident in the number of reviews published on 

the topic [69-76].  The introduction of monoliths marked significant increases in the 

use of capLC.  Silica and polymer monoliths have been applied to a wide range of 

analyte separations such as oligonucleotides [77-79], proteins and peptides [80-82] 

and carbohydrates [83], however, this section will focus on the use of capillary 

polymer and silica monoliths for the separation of small anions and cations.   

 

A monolith is a single piece of porous material that is formed of interconnecting flow-

through channels from one end of the capillary to the other. Monoliths have a number 

of advantages over particle packed columns. One of the main problems associated 

with particle packed columns is the void volumes that exist between the particles. 
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Even the best packed columns contain 35 – 40 % void volume in addition to the 

internal porosity of the beads [84].  This leads to band broadening and decreases the 

efficiency [85].  As monoliths are a single piece of porous material, the effect of band 

broadening due to voids between particles is eliminated. A second advantage of 

monoliths over particle based columns is that in particle based columns, the analyte 

penetrates into the inner pores of the porous particle and this slows down the speed of 

the separation [85]. The mass transfer of the analyte between the eluent and the 

stationary phase should be fast and frequent [72].  Separation in particulate columns 

depends upon diffusive mass transfer and this is slow and unfavourable for large 

molecules. In monoliths, the eluent is forced to flow through the pores of the monolith 

and this enhances the mass transfer rate [86].  This also ensures that there is constant 

interaction between the eluent and the stationary phase which results in increased 

mass transfer, even when high flow rates are used.  Figure 1.11 shows the flowpath of 

the eluent through a particulate packed column (a) and a monolith column (b).     

 

 

Figure 1.11: Flowpath of the eluent through a particulate packed column (A) and a 

monolith column (B). Reproduced from [87]. 

 

Figure 1.12 shows a comparison of Van Deemter plots obtained using a particle 

packed column (Kingsorb C18, 30 cm x 4.6 mm I.D, particle size of 3 µm) and a 

Chromolith monolithic stationary phase (50 mm x 4.6 mm I.D.) [66].  As can be seen 
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from this plot, a flatter C-term was obtained using the monolithic stationary phase, 

allowing the use of faster flow-rates, without any significant loss in column efficiency 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.12: Comparison of Van Deemter plots for a 3 µm particle packed column 

and a monolithic column.  Reproduced from [66]. 

 

The high column permeability associated with monoliths allows the use of longer 

columns, resulting in highly efficient separations [88]. Other advantages of monoliths 

include the fact that frits are not required to hold the monolith in place, as the 

monolith is covalently bonded to the walls of the capillary.  As well as keeping the 

monolith in place, the attachment of the monolith to the capillary wall (the capillary 

column in pretreated to allow the covalent attachment of the monolith to the capillary 

wall) also prevents the eluent from flowing down the sides of the monolith, ensuring 

that the eluent and therefore the sample analytes are forced to percolate through the 

monolith bed [84].  Finally, the surface of the monolith can be modified with a wide 

range of surface functionalities (particularly in the case of polymer monoliths) and 

have become particularly useful in the field of ion chromatography for the 

determination of small anions and cations.   

 

It is well known that silica monoliths are more efficient in the separations of small 

ions than polymer monoliths due to the increased surface area exhibited by the silica 

monoliths. This is due to the mesoporous structures available on the surface of the 

silica monoliths [87].  Silica monoliths generally have a porosity greater than 80 % 
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and a surface area of about 300 m2/g [66].  While the use of silica monoliths are 

useful for the separation of small ions, they are not as efficient in the separation of 

large molecules, such as proteins. The opposite can be said for polymer monoliths.  

Due to the absence of mesopore structures on the polymer monolith surface, mass 

transfer is enhanced for the separation of large molecules [80-82]. 

  

One of the major drawbacks in the use of silica monoliths in ion chromatography is 

the limited pH range in which they can be operated (pH 2.0 – 8.0). Polymer monoliths 

are stable over the entire pH range, whereas at pH values greater than 8, silica 

dissolves, leading to poor efficiency, poor reproducibility and high back pressures 

[87, 89].  As well as being stable over the entire pH range, polymer monoliths are also 

more resistant to high temperatures. At pH < 2, the silylether bond on the silica 

monolith is hydrolysed which can lead to a loss of the bonded ligand.    

 

1.5.2 Polymer monoliths 

 

1.5.2.1 Fabrication 

 

For the fabrication of methacrylate polymer monoliths, the polymerisation mixture 

consists of a monomer, cross linker, porogens and a free radical initiator [88]. The 

monomer used will determine the polarity of the final monolith, pore formation 

depends on the type of porogen and concentration of cross linker used and the choice 

of initiator depends on the mode of polymerisation. Polymerisation starts when the 

mixture is heated (using thermal polymerisation) [49] or initiated using UV (using 

photopolymerisation) [90] to create free radicals. Another less common method of 

polymerisation includes polymerisation via γ-irradiation [85, 91]. 

 

As the polymerisation proceeds, polymer chains form that will not be dissolved and 

will precipitate as nuclei in the reaction medium, as their solubility in the porogen 

decreases. Polymerisation continues to take place both within the nuclei and in the 

surrounding mixture. The concentration of monomer within the swollen nuclei is 

higher than the surrounding mixture and the nuclei continue to swell.  As the nuclei 

become bigger, they begin to form clusters.  These clusters continue to grow and 
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eventually form an interconnected matrix with neighbouring clusters. Structural 

rigidity is secured through extensive cross linking to form a porous polymer monolith. 

 

Photopolymerisation has a number of advantages over thermal polymerisation, such 

as faster polymerisation times and the ability to place the monolith in pre-defined 

sections by masking of other areas, which is useful for the incorporation of monoliths 

into microfluidic channels. A recent study comparing the polymerisation of a GMA-

co-EDMA polymer monolith (100 µm I.D fused silica capillary) using thermal 

polymerisation and photopolymerisation has been carried out by by Bruchet et al. 

[92]. The authors used the same polymerisation mixture as Ueki et al. [81] and the 

only difference in the preparation of the polymer monoliths was the mode of 

polymerisation used. Ueki et al. [49] used thermal polymerisation during the 

fabrication of the polymer monolith (60 oC x 24 hours), whereas Bruchet et al. [92] 

used photopolymerisation (30 minutes irradiation time). In all cases, AIBN was used 

as the initiator. Scanning electron microscopy (SEM) images obtained by Bruchet et 

al. [92] showed globules of 1 µm diameter, while SEM analysis carried out by Ueki et 

al. [49] showed polymer globules of 2 – 5 µm diameter demonstrating that although 

the same polymerisation mixture was used in both sets of work, the mode of 

polymerisation used during the fabrication of the polymer monolith will have an 

overall effect on pore diameter.  

 

1.5.2.2 Monomers and cross linkers. 

 

Figure 1.13 shows the chemical structure of common monomers used in the 

polymerisation of methacrylate monoliths. The most widely used monomers for the 

production of methacrylate monoliths is glycidyl methacrylate (GMA). This is mainly 

due to the presence of reactive epoxy groups that facilities surface modification [93].  

Other monomers used in the polymerisation of polymer monoliths include butyl 

methacrylate (BuMA), which incorporates hydrophobic functionalities into the final 

monolith structure and hydroxyethyl methacrylate (HeMA), which forms a 

hydrophilic stationary phase.  Ethylene dimethacrylate (EDMA) is a commonly used 

cross linking monomer in the formation of methacrylate monoliths.  High % content 

of cross linking monomers, results in more highly cross-linked polymers formed in 

the early stages of polymerisation, which leads to a decrease in the average pore size 
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[68]. Viklund et al. [89] prepared GMA-co-EDMA monoliths with varying 

concentrations of the cross linker, EDMA.  The authors noted a decrease in the 

diameter of the flow-through pores as the concentration of the cross linker was 

increased.   

 

 

 
Figure 1.13:  Chemical structures of methacrylate monomers and cross linkers. used 

in the polymerisation of polymer monoliths. (a) glycidyl methacrylate (GMA), (b) 

butyl methacrylate (BuMA), (c) lauryl methacrylate (LMA), (d) hydroxylethyl 

methacrylate (HeMA) and (e) ethylene dimethacrylate (EDMA). 

 

Styrene based polymer monoliths with divinylbenzene as a crosslinker prepared in 

capillary formats have also been reported in the literature which have been applied to 

the separation of small molecules such as antibiotics and thyroid hormones [94] and 

alkylbenzenes [95, 96]. 

 

1.5.2.3 Porogens 

 

The porogens are considered the most important factor in relation to pore size control.  

Porogens can be described as being ‘good’ or ‘bad’ solvents for the polymer. If the 

porogen is considered a good solvent for the polymer, phase separation (nucleation) 

occurs later resulting in an increased number of nuclei before all the monomers are 
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exhausted. This results in the formation of a large number of swollen nuclei, which 

coalesce forming smaller pores. If the porogen is a ‘bad’ solvent, phase separation 

occurs early in the polymerisation system which lead to the formation of a limited 

number of nuclei and larger pores are formed [85]. 

 

In 2004, Lee et al. [90] showed the effect of porogen composition on the formation of 

the pores. A BuMA-co-EDMA monolith was prepared using 1-decanol as the porogen 

and a second BuMA-co-EDMA monolith was prepared using a porogenic mixture 

consisting of 1-decanol and cyclohexanol. Figure 1.14 shows the SEM images 

obtained for both monoliths showing that although the overall concentration of the 

porogens was the same in both monoliths (60 %), differences in the pore sizes were 

noted.  Figure 1.14 (A) shows the SEM image obtained when 1-decanol was used 

solely as the porogen and Figure 1.14 (B) shows the SEM image obtained when 

cyclohexanol was added to the porogen mixture. The monolith using 1-decanol as the 

porogen exhibited smaller pores in comparison to the monolith in which cyclohexanol 

was used as the porogen.   

 

 

 

 

 

 

 

 

 

 

 

Figure 1.14: SEM images of BuMA-co-EDMA polymer monoliths using (A) 1-

decanol as the porogen and (B) using a mixture consisting of 1-decanol and 

cyclohexanol.  Reproduced from [90]. 

 

 

 

 

(A) (B)
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1.5.2.4 Temperature of polymerisation 

 

The temperature at which polymerisation takes place has an effect on the pore size 

formed. Generally the higher the temperature, the smaller the pores [79]. The 

iniatiator used in the polymerisation mixture decomposes at a certain temperature, 

which results in the formation of free radicals. Higher temperatures leads to the 

formation of a large number of free radicals. The free radicals, in turn, lead to the 

formation of nuclei and globules. As the concentration of the monomers remains the 

same for each polymerisation regardless of the temperature, the rate of nuclei 

formation results in a large number of swollen nuclei and as the swollen nuclei 

coalesce, smaller pores are formed. The effect of temperature on the size of the pores 

formed was demonstrated by Viklund et al. [89].  GMA-co-EDMA monoliths, using a 

porogenic solution consisting of dodecanol and cyclohexanol, were prepared at 

different polymerisation temperatures. This work showed that at a temperature of 55 
oC, the formation of free radicals was slow and large pores (1,010 nm average pore 

diameter) were formed. At higher temperatures of 70 oC, the formation of free 

radicals was faster, resulting in the formation of smaller pores (120 nm average pore 

diameter). The specific surface was 17 m2/g when the polymerisation was allowed to 

proceed at 55 oC and 43.2 m2/g at 70 oC. This shows an increase in the surface area of 

the polymer monolith due to the use of a higher polymerisation temperature.   

 
1.5.3 Controlling the surface chemistry of polymer monoliths 

 
 
1.5.3.1 Co-polymerisation of polymer monomers with desired functionalities. 

 

In order to render a monolith suitable for ion exchange chromatography, ionic groups 

on the pore surface are required. The first method is carried out by the preparation of 

monoliths by the direct co-polymerisation of monomers with desired functionalities.  

A monomer with ionisable groups will result in a final monolith having ionisable 

groups [73].  Gu et al. [97] prepared a 160 mm x 75 µm polymer monolith using a 

polymerisation mixture consisting of 2,2-dimethoxy-2-phenylacetophenone (DMPA), 

2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and poly(ethyleneglycol) 

diacrylate (PEGDA) dissolved in a porogenic mixture containing water, methanol and 

ethyl ether. The final monolith afforded sulfonate groups due to the presence of 



 62 

AMPS in the polymerisation mixture and was used for the analysis of peptides.  Li et 

al. [98] prepared a polymer monolith via copolymerization of 2-(acryloyloxy)ethyl 

trimethylammonium chloride and polyethylene glycol diacrylate (PEGDA). The 

resultant monolith, with quaternary amine anion exchanger groups was applied to the 

separation of proteins.   

 

There are a number of advantages to using this approach. There are a wide range of 

monomers with ionisable sites available for polymerisation. As the functional groups 

are incorporated into the monolith during the polymerisation step no further 

modification is required. However this method does have the drawback that a large 

number of the functional groups become embedded inside the polymer matrix and 

cannot be used as ion exchange sites. Changing the monomer type or concentration in 

a polymerisation mixture requires re-optimising of the polymerisation conditions, 

which can be a time consuming task [79]. 

 

1.5.3.2 Addition of functional groups on the surface of the monolith 

 

To date, only a small number of research groups have studied the retention of small 

ions using capillary polymer monoliths modified with ion exchange functionalities.  

Ueki et al. [49] prepared a GMA-co-EDMA polymer monolith in 250 µm I.D fused 

silica capillary formats. The surface of the monolith was subsequently reacted with 

Na2SO3 at 70 oC allowing the attachment of sulfonated groups through ring opening 

of the epoxy groups. In this work, the authors demonstrated the ability to increase the 

ion exchange capacity of the polymer monolith by varying the conditions used during 

sulfonation (such as reaction time, concentration of Na2SO3 and solution pH). 

Increasing the reaction time from 1 hour to 12 hours resulted in a increase in the ion 

exchange capacity of the polymer monolith from 19 µequiv/mL to 92 µequiv/mL 

respectively. The ion exchange capacity was further increased (300 µequiv/mL)  

when the solution pH was increased from pH 6 to more alkaline pH conditions (pH 

11). As expected, an increase in the ion exchange capacity resulted in an increased 

retention of all metal cations studied. The separation was carried out using a 10 mM 

copper sulphate eluent and a flow-rate of 3 µL/minute as shown in Figure 1.15.  

Detection was carried out using indirect UV detection at 210 nm. Average peak 

efficiencies of 20,000 N/m were obtained.   
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Figure 1.15:  Separation of selected cations using a sulphonated polymer monolith.  

Separation conditions: Eluent: 10 mM copper sulphate, flow-rate: (A) 3 µL/min, (B) 6 

µL/min,  (C) 9 µL/min,  (D) 12 µL/min and (E) 15 µL/min, detection: indirect UV at 

210 nm, injection volume: 0.2 µL.  Reproduced from [49].  

   

In 2007, Kanatyeva et al. [99] prepared a GMA-co-EDMA monolith and 

functionalised the surface using three different methods, the first involved 

modification with polyethylenimine (PEI), the second involved modification with 

dimethylamine (DMA) and the third monolith was modified with a mixture of PEI 

and DMA (1:1). The authors noted that the monoliths modified with PEI 

demonstrated the lowest retention and selectivity for selected anions, while the 

monolith modified with DMA yielded long retention times and low efficiency. The 

monoliths modified with the mixture of PEI and DMA gave optimum results in terms 

of selectivity and retention time. The anions used in this study were fluoride, chloride, 

nitrate, nitrite and bromide and the separation can be seen in Figure 1.16. Although 

inproved separation was obtained using the polymer monolith prepared using a 

mixture of PEI and DMA, a run-time of 80 minutes was required to separate all six 

anions. 

 

Elution time (mins) 
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Figure 1.16: Separation of selected cations using a GMA-co-EDMA polymer 

monolith modified with a mixture of PEI and DMA.  Separation conditions: Eluent: 

potassium phthalate, detection: UV detection at 254 nm.  Reproduced from [99]. 

 

In 2011, Bruchet et al. [92] prepared a GMA-co-EDMA monolith in 100 µm fused 

silica capillary. The surface of the monolith was modified by flushing a solution of 

triethylamine (TEA) in 50:50 v/v ethanol/water through the polymer monolith for 4 

hours at 85 oC at 1 µL/min. The final monolith modified with quaternary ammonium 

functionalities was applied to the separation of iodate, bromate, nitrite, bromide and 

nitrate as shown in Figure 1.17. The ion exchange capacity was measured using break 

through experiments and found to be 8 nequiv/cm. Calculated efficiencies of 75,000 

N/m for nitrate, bromate and nitrite were obtained using a sodium perchlorate eluent 

at a flow-rate of 100 nL/min. At 700 nL/min peak efficiencies of ~ 18,000 N/m were 

reported.  
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Figure 1.17: Separation of (1) iodate, (2) bromate, (3) nitrite, (4) bromide and (5) 

nitrate using a GMA-co-EDMA polymer monolith functionalised with quaternary 

ammonium functionalities. Eluent: 10 mM NaClO4, injection volume: 10 nL, 

detection: UV at 210 nm, column dimensions: 100 µm x 750 mm.  Reproduced from 

[92]. 

 

1.5.3.3 Photo-grafting 

 

To avoid re-optimising of the polymerisation conditions a second method has been 

studied. The second method involves the fabrication of a generic monolith followed 

by modification of the surface chemistry of the monolith (post polymerisation) via 

photo-grafting methods. This method has the advantage in that all the grafted 

functionalities are available on the surface of the monolith.  Other advantages of using 

this method include that fact that grafted functionalities can be precisely placed on 

different sections of the monolith by masking off other sections prior to the 

application of UV energy [100], or the ability to functionalise different sections of the 

monolith with different surface chemistries [101]. 

  

Research has also been carried out on the photografting of functionalities onto the 

surface of a polymer monolith structure. As mentioned previously, the separation of 
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small ions on polymer monoliths is challenging, due to the reduction in the surface 

area in comparison to silica based monoliths. This reduction in the surface area in 

polymer monoliths results in a limited number of reactive sites available on the 

surface of the monolith, resulting in limited access for the incorporation of ion 

exchange functionalities. One method to increase the number of available sites is the 

growth of highly branched polymer chains from each reactive site on the monolith 

surface.   

 

In 1999, Rånby [101] demonstrated the surface photografting (on a low density 

polyethylene film) of a polymer (acrylic acid) in the presence of the free radical 

initiator, benzophenone using UV energy.  In 2003, Rohr et al. [102] applied this 

benzophenone initiated surface polymerisation chemistry to BuMA-co-EDMA 

polymer monoliths, where the authors modified the surface of the monoliths with a 

solution of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) in the presence of 

benzophenone. Following the application of UV energy, benzophenone is 

immobilised onto the monolith surface through hydrogen abstraction resulting in the 

formation of free radicals on the surface of the polymer monolith, which then initiates 

propagation reactions leading to grafting from the surface of the monolith. As the 

polymer chains also contain abstractable hydrogens, the chains continue to grow 

forming a highly branched polymer structure from each reactive site on the surface of 

the polymer monolith. The subsequent monolith was applied to the separation of 

peptides.  

 

To date, the use of surface grafting techniques to increase the capacity of the final 

functional groups on polymer monoliths for the separations of small ions has received 

little attention. Connolly et al. [103] introduced poly[2(methacryloyloxy)ethyl] 

trimethylammonium chloride poly(META) onto the surface of a GMA-co-EDMA 

polymer monolith in 100 µm UV transparent fused silica capillary using UV 

irradiation to produce a strong anion exchanger. This was carried out by flushing 

META in a solution of t-butanol/water in the presence of the free radical initiator 

benzophenone through the monolith followed by irradiation with UV energy. The 

resultant poly(META) monolith was applied to the separation of six common 

inorganic anions as shown in Figure 1.18, using a 2 mM benzoate eluent which 

facilitated the use of on-column C4D detection. The authors separated six common 
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anions in a run-time of 13 minutes and reported efficiencies of 15,000 N/m for 

fluoride at 1 µL/min and 29,500 N/m using a flow rate of 100 nL/min with a 50 nL 

injection volume. The authors also reported excellent retention for fluoride with a 

retention factor (k) of 2.5.   

 

 

Figure 1.18:  Separation of 6 common anions using a GMA-co-EDMA polymer 

monolith modified with grafted polymer chains of META.  Eluent: 2 mM sodium 

benzoate, flow rate: 1 µL/min., detection: on-column C4D detection, injection 

volume: 50 nL, peaks: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L, 

bromate, (4) 0.7 mg/L chloride, (5) 0.7 mg/L nitrite, (6) 3 mg/L bromide.  Reproduced 

from [103]. 

 

1.5.3.4 Latex coated polymer monoliths 

 

Another method that has appeared in the literature for the surface functionalisation of 

polymer monoliths is the covalent attachement of latex particles.  In 2004, Hilder et 

al. [83] prepared a BuMA-co-EDMA-co-AMPS polymer monolith using a porogenic 

system consisting of 1-propanol, 1,4-butanediol and water ensuring sulfonated 

functionalities were available due to the AMPS used in the initial polymerisation 
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mixture. This was followed by the attachment of quaternary amine functionalised 

latex particles (60 nm diameter) via electrostatic interactions. The authors found an 

increase in the surface area of the monolith from 35 to 47 m2/g following the 

attachment of the latex nanoparticles. This monolith was applied to the separation of 

carbohydrates.   

 

Following on from this, Zakaria et al. [104] fabricated a BuMA-co-EDMA polymer 

monolith and attached AS18 particles. The latex nano-particles were 65 nm in 

diameter with quaternary ammonium functionalities. Using a KOH eluent with 

suppressed conductivity detection, a peak efficiency of 5,400 N/m was obtained for 

iodate.  Figure 1.19 shows the separation of  iodate, bromate, nitrite, bromide and 

nitrate using indirect non-suppressed conductivity detection (the conductivity of the 

eluent was higher than that of the anions and as the anions pass through the 

conductivity detector, a decrease in conductivity was observed).   

 

 

 

Figure 1.19: Separation of common anions using an AS18 latex functionalised 

polymer monolith. Separation conditions: eluent: 1 mM KOH, flow-rate: 18 µL/min, 
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detection: non-suppressed conductivity detection, peaks: (1) iodate, (2) bromate,  (3) 

nitrite, (4) bromide and peak (5) nitrate.  Reproduced from [104]. 

 

From Figure 1.19, baseline resolution was not achieved. Due to the high background 

conductivity of the KOH eluent, the sensitivity of indirect conductivity was poor, 

therefore the authors incorporated a hollow fibre suppressor after the separation 

column. Figure 1.20 shows the separation of the same five anion mixture, obtained 

using suppressed conductivity detection. This separation was carried out using 

varying concentrations of KOH eluents. In Figure 1.23, the eluent used was 1 mM 

KOH and baseline resolution was not achieved. Using the same 1mM KOH eluent 

with suppressed conductivity (Figure 1.20) resulted in the baseline separation of the 

five anions.  

 

 

Figure 1.20:  Separation of 5 anions using an AS18 latex functionalised polymer 

monolith. Separation conditions: Eluent: 0.5 - 5 mM KOH, flow-rate: 18 µL/min, 

detection: suppressed conductivity detection, peaks: (1) iodate, (2) bromate, (3) 

nitrite, (4) bromide and (5) nitrate.  Reproduced from [104]. 
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Hutchinson et al. [105] prepared a PS-DVB polymer monolith using 1-decanol and 

toluene as the porogens. The authors sulfonated a PS-DVB monoliths using two 

different reaction methods namely (1) by reaction with sulfuric acid and silver sulfate 

at 95 oC and (2) through reaction with a 50 % (v/v) solution of chlorosulfonic acid and 

dichloromethane followed by the attachment of AS18 latex nano-particles.  Polymer 

monoliths with 8 % DVB resulted in a sulfonated monolith with a capacity that was 

two times higher than a polymer ion exchanger prepared by the same group using co-

polymerisation with AMPS as described above [104].  However, due to the low 

concentration of the cross linker used in the polymerisation of the polymer monolith, 

the use of this column as a chromatographic support was not feasible. A PS-DVB 

monolith with 20 % cross linker was also prepared and sulfonated. Although a 10 % 

increase in capacity was obtained relative to the BuMA-co-EDMA-co-AMPS 

monolith described above [104], the separation of anions was not improved upon and 

the authors concluded that the direct sulfonation of PS-DVB monoliths was not 

practical.   

 

In the same body of work, Hutchinson et al. [105] prepared three GMA-co-EDMA 

polymer monoliths (250 µm I.D.), the surface of which were sulfonated using three 

different methods. The first method involved flushing a solution of 4-

hydroxybenzenesulfonic acid and triethylamine dissolved in acetonitrile, followed by 

coating with AS18 latex nano-particles (quaternary ammonium functionalities). The 

second method used involved flushing a solution of thiobenzoic and triethylamine 

dissolved in acetonitrile. The generated thiol groups were oxidised using tert-

butylhydoperoxide and following a washing step, the monolith was coated with AS18 

latex nano-particles. Finally, Hutchinson et al. [105] also prepared a GMA-co-EDMA 

polymer monolith and sulfonation was carried out using a solution of sodium sulfate 

followed by attachment of AS18 latex nano-particles. The GMA-co-EDMA polymer 

monolith prepared using the first method yielded an ion exchange capacity of 15 

nequiv/cm, method 2 had an ion exchange capacity of 6.9 nequiv/cm and method 3 

had an ion exchange capacity of 12.6 nequiv/cm. The modified polymer monoliths 

were applied to the separation of iodate, bromate, nitrite, bromide, nitrate, iodide and 

benzenesulfonate using a sodium perchlorate eluent with UV detection. Although the 

GMA-co-EDMA polymer monolith sulfonated using method one yielded the highest 

ion exchange capacity, significant peak tailing was observed for benzesulfonate and 
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baseline resolution of all anions was not achieved. The polymer monolith prepared 

using method two yielded the lowest ion exchange capacity of the three monoliths 

prepared. In this case, the authors concluded that the low ion exchange capacity may 

have resulted in the in the retention of the anions due to hydrophobic interactions of 

the anions with the monolith surface rather than the latex nano-particles. Using the 

third method of sulfonation, the authors obtained improved peak shape and efficiency, 

particularly for the later eluting peaks. The increased ion exchange capacity also 

allowed the elution of the anions using a NaOH gradient up to 100 mM.  Previous 

work carried out by the same authors [104], only allowed a gradient elution profile up 

to a concentration of 5 mM NaOH. Therefore an improvement in the ion exchange 

capacity resulted in enhanced suitability of the latex coated polymer monolith in ion 

exchange chromatography. Figure 1.21 shows a separation of 7 anions using an 

NaOH gradient elution (1 mM NaOH initial concentration ramped up to 100 mM 

NaOH at 10 minutes). 

 

 

 

Figure 1.21:  Separation of 7 anions using a AS18 latex nano-particle modified 

GMA-co-EDMA polymer monolith.  Separation conditions: Eluent: NaOH gradient, 

flow-rate: 3.2 µL/min, detection: UV detection at 220 nm, Peaks: (1) iodate, (2) 

bromate, (3) nitrite, (4) bromide, (5) nitrate, (6) iodide and (7) benzenesulfonate.  

Reproduced from [105]. 
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1.5.4 Silica monoliths 

 

1.5.4.1 Fabrication of silica monoliths 

 

As with polymer monoliths, silica monoliths can be fabricated in a mould such a 

column, capillary or in the channel of microfludic channels. Silica monoliths are 

prepared by a sol gel process [106]. This process consists of hydrolyzing a silane 

compound, such as tert alkoxysilanes, in the presence of a porogen, such as poly 

ethylene glycol (PEG). This is a polycondensation reaction i.e. a chemical 

condensation that leads to the formation of a polymer by the linking together of the 

molecules of a monomer. During polycondensation, the viscosity of the solution 

increases.  The polymer becomes insoluble and precipitates, either as particles or as a 

monolithic mass with large pores. Urea is added to the polymerisation mixture to 

maintain an alkaline pH, as the basic pH helps the mesopore structures to form.  The 

silica monolith is subjected to higher temperatures (120 oC) which allows mesopore 

formation through hydrolysis of the urea resulting in the formation of ammonia.  

Following the drying step, the monolith is then heat treated at 330 oC for 25 hours. 

 

1.5.4.2 Silica monoliths for the separation of small ions 

 

As with polymer monoliths, the surface of silica monoliths can be modified to 

introduce ion exchange functionalities. In 2005, Sugrue et al. [107] modified a 

commercially available bare silica monolith (100 mm x 4.6 mm) with lysine to 

produce a stationary phase with zwitterionic characteristics. This was carried out by 

activating the surface of the silica monolith with hot water in a column water bath at 

60 oC for 4 hours. Modification of the monolith with lysine took place by recycling a 

solution of γ-glycidoxypropyltrimethoxysilane, lysine and water. The resultant 

monolith was applied to the separation of nitrite, bromide, bromate, nitrate, iodide and 

thiocyanate using a phosphate buffered eluent as seen in Figure 1.22. Peak 

efficiencies ranged from 41,000 N/m for iodate to 55,900 N/m for thiocyanate using a 

10 mM phosphate buffer (pH 3.0) and a flow-rate of 2 mL/min.  
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Figure 1.22:  Separation of selected anions using a lysine modified silica monolith.  

Separation conditions: Eluent: 50 mM phosphate buffer, detection: UV detection at 

214 nm and flow-rate: 4.9 mL/min.   Reproduced from [107]. 

 

The main applications in the use of silica monoliths for the separation of small ions 

has been carried out using surfactant modified monoliths.  

 

1.5.4.3 Surfactant coating 

 
The use of surfactants is an inexpensive way of rendering a reversed phase column 

suitable for ion exchange chromatography. Long chain carboxybetaine surfactants 

such as DDMAU and (N-dodecyl N,N-dimethylammonio)butyrate (DDMAB) have 

been used to modify standard bore packed particulate columns and silica monoliths 

for the separation of small anions. While this has been well documented in the 

literature [108, 109], a number of research groups have also investigated the use of 

capillary silica monoliths surface modified with surfactants and applied to the 

separation of small ions.   

 

Using a cetyltrimethylammonium (CTAC) coated silica monolith, Suzuki et al. [110] 

separated five anions (iodate, bromate, nitrite, bromide and nitrate) in less than 1 
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minute (Figure 1.23) with a 50 mM sodium eluent (and 0.1 mM CTAC) at a flow-rate 

of 11.1 µL/min. The authors noted a decrease in the retention of nitrate over time with 

an eluent containing no CTAC and found that the stability of the anion retention could 

be stabilised through the addition of CTAC to the eluent. The relative standard 

deviation (% RSD) was < 0.61 % for six successive injections of the standard mix. 

The CTAC coated silica monolith was applied to the determination of bromide in 

seawater with results showing that the high ionic strength from the salt anions in the 

seawater did not affect the retention time of bromide.  

 

 

 

Figure 1.23: Separation of common anions using a CTAC modified silica monolith 

(100 µm x 200 mm I.D.). Eluent: 50 mM NaCl and 0.1 mM CTAC, flow-rate: 11.1 

µL/min, detection: UV detection at 210 nm.  Reproduced from [110]. 

 

Following on from this, Suzuki et al. [111] coated a silica monolith with 

dilauryldimethylammonium bromide (DDAB) and applied the modified monolith to 

the separation of the same five anions (Figure 1.24) and found that the retention time 

of the 5 anions were almost double those obtained using the CTAC coated silica 

monolith. In this work, the authors concluded that the silica monolith coated with 

DDAB was more stable than that coated with CTAC. The DDAB coated silica 



 75 

monolith was also applied to the determination of bromide in seawater and as before, 

the retention time of the bromide standard was the same as the retention time of the 

bromide in the seawater sample. 

 

 

Figure 1.24:  Separation of anion standards using a DDAB modified capillary silica 

monolith (top chromatogram) and determination of bromide in seawater (bottom 

chromatogram).  Separation conditions: Eluent: 500 mM NaCl, flow-rate: 2.1 µL/min, 

detection: UV detection at 210 nm and injection volume: 20 nL.  Reproduced from 

[111]. 

 

In 2007, Ó’Ríordáin et al. [37] coated an Onyx C18 capillary silica monolith  with N-

dodecyl-N,N-(dimethylammonio)undecanoate (DDMAU). This modified silica 

column was used for the separation of iodate, bromate, nitrite, bromide, nitrate, 

iodide, sulphate, thiocyanate and perchlorate using a 0.5 mM phthalate eluent as 

shown in Figure 1.25. On-column C4D was used as the mode of detection with all 9 

anions separated in a run-time of 30 minutes (effective column length was 8 cm). 

Average peak efficiencies of 35,000 N/m were reported. Retention factor data was 

also obtained for a range of other anions.   
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Figure 1.25:  Separation of common anions using a DDMAU coated silica capillary 

monolith.  Separation conditions: eluent: 0.5 mM phthalate, flow-rate: 0.3 µL/min, 

detection: on-column C4D.  Reproduced from [37]. 

 

Gillespie et al. [112] carried out the separation of Mg(II), Ca(II), Sr(II) and Ba(II) 

using a sodium dioctyl sulfosuccinate (DOSS) coated capillary silica monolith (150 

mm x 100 µm I.D.). This monolith was applied to the determination of Mg(II), Ca(II), 

Sr(II) and Ba(II) using a 0.5 mM ethylenediamine eluent (pH 4.5) and on-column C4D 

detection. The flow-rate used was 1 µL/min with a 10 nL injection volume. Absolute 

detection limits (of the 10 nL injection) were in the picogram range (from 1.0 pgram 

for Mg(II) to 9.0 pgram for Ba(II)). A peak efficiency of 48,400 N/m was obtained for 

Sr(II) and 46,900 N/m for Ba(II). The DOSS coated silica monolith was used for the 

determination of alkaline earth metals in bottled and tap water samples.  
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1.6 Characterisation of monolithic stationary phases. 

 

A number of methods have been used to characterise the pore morphology of 

monolithic stationary including scanning electron microscopy [90], mercury intrusion 

porosimetry [113, 114], inverse size exclusion chromatography [113, 115] and 

scanning C4D. 

 

1.6.1 Scanning C
4
D 

 

The applications of scanning C4D within capillary chromatography have been 

highlighted in a recent review by Connolly et al. [45].  These applications include the 

evaluation of packing homogeneity of particulate packed columns, evaluation of 

structural homogeneity of monolithic rods and the ability to determine axial 

homogeneity of grafted functional groups on the surface of monoliths.  In 2007, 

Connolly et al. [116] demonstrated the visualisation of discrete bands of charged 

functional groups photo-grafted onto a monolithic column using C4D.  By scanning 

the length of the column, zones grafted with 2-acrylamido-2-methyl-1-

propanesulfonic acid (AMPS) could be detected. This was followed up by Gillepsie et 

al. [100] who functionalised increasing concentration of AMPs along the monolith by 

varying the amount of UV energy applied. By scanning the length of the column in 

mm increments, the authors were able to obtain an increase in detector response (mV) 

on the sections of the monolith that was functionilised with AMPs. An increase in 

detector response was obtained with an increase in applied UV energy. 

 

As mentioned in Section 1.4, the packing of particles in capillary column formats is a 

difficult task.  Poorly packed columns can lead to band broadening and poor column 

efficiency [117].  In 2009, Connolly et al. [118] used scanning C4D techniques for the 

characterisation and visualisation of packing homogeneity in capillary packed 

columns. In this work, the authors packed two 100 µm I.D fused silica capillary 

monoliths with Dionex OmniPac PAX-100, 8.5 µm diameter particles, prepared as a 

slurry in acetonitrile.  Following the placement of a monolithic frit at one end of the 

column, the slurry was pumped into the capillary at 0.1 mL/min. Following the 

packing of the capillary column, a monolithic frit was fabricated at the other end of 

the capillary, ensuring that the packing material was kept inside the capillary column.  
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The packed capillary column was scanned using scanning C4D techniques. The 

capillary column was scanned in predefined increments and the conductive response 

noted. The resultant plot of on-column detector position versus the conductive 

response can be seen in Figure 1.26.  From this plot, differences in the conductive 

response were noted.  Void volumes (denoted as (a) in Figure 1.26) were present and 

can be seen at the head of the column. A void area was also noted at the end of the 

column between the packing material and the monolithic frit.  Area (c) in Figure 1.26 

was the scanning C4D profile obtained during the scan of the packing material in the 

capillary column. A change in the conductive response can be seen between 10 mm 

and 15 mm in comparison to the conductive response obtained during the scan of the 

column from 15 mm to 35 mm demonstrating a deviation in the axial homogeneity of 

the packing material. This work demonstrated the simplicity of visualising the axial 

homogeneity of stationary phase packings in capillary column formats.   

 

 

Figure 1.26: Scanning C4D profile where (a) depicts void regions, (b) depict the areas 

where the monolith frits are situated and (c) is the area that contains the packing 

material.  Reproduced from [118]. 

 

Section 1.5.4.3 discusses the use of surfactant coated silica monolith in IC. One of the 

main disadvantages of using surfactant coated monoliths is that the coating tends to 

bleed off the column, thus affecting retention time precision. Methods to overcome 

this problem include, re-coating the column at regular intervals, adding the surfactant 

to the eluent, known as dynamic coating [119] or to include a pre-column, coated with 
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the surfactant, before the separation column [120]. Another drawback of using 

surfactant coating is the non-uniform coverage of the surfactant on the stationary 

phase.  In capillary columns, the use of scanning C4D has been used to determine the 

homogeneity of the coverage of the surfactant on the stationary phase.  

 

In 2006 Gillespie et al. [121] coated a 150 mm x 0.1 mm I.D silica capillary column 

with sodium dioctyl sulfosuccinate (DOSS). The authors used scanning C4D to 

characterise surfactant coatings on monolithic columns for application to capillary ion 

chromatography. The longitudinal homogeneity and temporal stability of the coating 

was investigated. A capillary column was coated with DOSS surfactant in the forward 

direction (i.e. from one end of the capillary column to the other). Using C4D, the 

column was scanned and the detector response noted.  From Figure 1.27 below, it can 

be seen that the detector response after the first coating indicated an uneven coverage 

of the surfactant. The column was re-coated in the reverse direction and the scan 

repeated. The second coating gave a more uniform coverage than the first coating.  

Although the surfactant coverage was improved after the second coating, this plot 

shows the uneven coverage of the surfactant along the length of the DOSS coated 

monolith. 

 

 

Figure 1.27: C4D scan of an unmodified monolith, a scan after the first surfactant 

coating and a scan after the second surfactant coating.  Reproduced from [121]. 
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The work described so far in this literature review has focused on the used of capillary 

columns (particulate and monolithic) for the separation of anions and cations. In the 

following sections, this review will focus on the separation of metal cations by ion 

chromatography and also introduce high performance chelation ion chromatography. 

 

1.7 High performance chelation ion chromatography (HPCIC) 

 

1.7.1 The separation of metal cations using monolithic columns 

 

The use of monoliths (in standard bore formats) for the determination of metal cations 

by ion chromatography has been studied. Xu et al. [122] modified an ODS silica 

monolith (100 mm x 4.6 cm) with lithium dodecylsulfate. The resultant cation 

exchanger was used for the separation of Na+, NH4
+, K+ and H+ using a 60 mM LiCl 

eluent and conductivity detection.  The column was appled to the determination of 

metal cations in acid rain samples. Connolly et al. [123] modified a commercially 

available silica monolith with the surfactant DOSS and used the resultant column was 

used for the separation of Cu(II), Mg(II), Ca(II), Sr(II) and Ba(II).  Sugrue et al. [124] 

separated transition earth metals and transition metals on a porous silica monolith  

using solvent enhanced ion chromatography. In this case, weak ion exchange 

interactions are responsible for retention of the metal cations and these interactions 

become stronger when high concentrations of organic solvents are used within the 

eluent. The authors successfully separated a range of selected transition metals, as 

shown in Figure 1.28 using an eluent consisting of 80 % acetonitrile and 10.3 mM 

ammonium acetate buffer at pH 4.6. 
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Figure 1.28: Separation of transition metals on a bare silica monolith using an eluent 

consisting of 80 % acetonitrile and 10.3 mM ammonium acetate buffer at pH 4.6.  

Analysis was carried out using flow-rates of 1 mL/min, 3 mL/min and 5 mL/min.  

Reproduced from [124].  
 

The examples of metal cation separations in Section 1.7.1 were all carried out using 

monolithic columns. An alternative method for the separation of metal cations is 

through the use of high performance chelation ion chromatography (HPCIC). To date, 

the only work carried out using HPCIC where the separations were carried out using 

monolithic columns has been performed by Sugrue et al. [125, 126], therefore the 

research reviewed will include various stationary phases with immobilised chelating 

ligands. 

 

1.7.2 Introduction to HPCIC 

 

Retention in HPCIC is based on the formation of ion exchange interactions in 

conjugation with the formation of a coordinate bond. It differs from ion exchange 

chromatography in that a new bond is formed and separation is dependent on the 

stability of  metal complex formation and subsequent dissociation [51]. Advances in 

stationary phases with immobilised chelating ligands have allowed for the direct 

determination of trace metals in complex sample matrices using HPCIC. There are a 

number of requirements for the use of chelating ligands in HPCIC including 

mechanical stability to withstand periods of applied pressure and hydrolytic stability, 
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to withstand changes in the pH of the eluent employed in the analysis [51].  Acidic 

eluents are normally used in HPCIC, as the acidic environment prevents the 

hydrolysis of the metals of interest, therefore the chelating substrate must be 

structurally stable to withstand such acidic conditions.   The stability of the chelating 

substrate should also be stable at high temperatures.  Increases in temperature have 

been shown to improve selectivity and efficiency in HPCIC (see Section 1.7.5.3).  As 

separation in HPCIC is based on the formation of surface complexes between metal 

ions and an immobilised ligand, ideally for efficient separations, there should be fast 

kinetics of complexation. Chelating ligands that form relativiely weak stability 

constants have been shown to deliver the most efficient separations of metals cations, 

as low stability constants result in faster dissociation of the immobilised chelating 

ligand.  Finally, the homogeneous distribution of the chelating ligands along the entire 

length of the column is important as chelate formation providing 1:1 metal-ligand 

interactions are desirable, as this allows for faster association/dissociation kinetics.   

 

Aminopolycarboxylates are often employed as chelating ligands in HPCIC.  The most 

common aminopolycarboxylate used is iminodiacetic acid (IDA).  IDA is commonly 

used in HPCIC, as the complexes formed between the metal cation and the IDA 

ligand are relatively weak, therefore strong eluents are not required for their elution.  

Large stability constants of metals with chelating ligands can cause broad peaks 

[127].  The use of IDA as a chelating ligand bound to a silica substrate has been 

shown to be useful for the separations of alkaline earth metals [128-131] and 

transition and heavy metals [132-133].  Other chelating ligands used include 8-

hydroxyquinoline [134] dye coated columns [135-137] and aminomethylphosponic 

acid [127]. 

 

The determination of trace metals in high concentration saline samples suffer from 

interferences from high salt concentrations, which swamp the ion exchange sites if ion 

exchange chromatography is used. A preconcentration step may be required prior to 

the separation of the metal cations. In HPCIC, the alkali metals form weak coordinate 

bonds with the chelating ligand, therefore reducing the interference from these salts 

and allowing the determination of trace metals in high salt sample matrices.  In 1994, 

Paull et al. [136] used a dye (xylenol orange) impregnated silica particle column for 

the pre-concentration and separation of metals in coastal seawater samples (Figure 
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1.29). Xylenol orange contained carboxylic acid groups, allowing for the formation of 

complexes with sample metals. 

 

 

Figure 1.29:  Pre-concentration and separation of metals in coastal seawater samples 

(b). A blank sample (a) showed small concentrations of Zn(II) and Cu(II), possibly 

due to leaching from the eluent pump. Reproduced from [136].  

 

In 2001, Bashir et al. [130] used an IDA bonded silica column for the determination 

of trace alkaline earth metals in brines. Samples analysed included a 0.9 % eyewash 

saline solution and 0.5 M KCl solutions for the determination of Mg(II) and Ca(II).  

Through the use of optimised eluent conditions, the authors successfully separated 

µg/L levels of Mg(II) and Ca(II) in high ionic strength samples without the presence 

of large matrix peaks as shown in Figure 1.30.     
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Figure 1.30: (a)  Separation of Mg(II) and Ca(II) in a saline eyewash sample overlaid 

with a spiked 200 µg/L sample. (b): separation of Mg(II) and Ca(II) in 0.5 M KCl 

overlaid with a spiked 300 µg/L sample, column used: IDA bonded silica (250 x 4.0 

mm I.D).  Reproduced from [130]. 

 

1.7.3 Monoliths in HPCIC 

 

The use of monolithic stationary phases with immobilised chelating ligands for the 

direct separation of metal cations has received little attention over the years, 

particularly in the case of polymeric monoliths, where no reports have appeared in the 

literature.  Sugrue et al. [125] first reported the use of a silica monolithic column for 

the separation of alkaline earth metals in high ionic strength matrices. The authors 

modified a commercially available 100 mm x 4.6 mm I.D. bare silica monolith with 

IDA.  Briefly, the surface of the silica was first activated by washing the monolith 

with distilled water at 60 oC in a thermostated water bath.  Modification of the 

monolith with IDA took place by recycling a mixture of γ-
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glycidoxypropyltrimethoxysilane, IDA and water through the column at 70 oC for 4 

hours.  Finally, the column was washed with 0.01 M nitric acid followed by the 

eluent, resulting in a chelating ion exchanger with covalently bonded IDA 

functionalities.   

 

The authors successfully separated Mg(II) and Ca(II) in a 1 M KCl brine solution 

using flow rates of 1.0, 2.0 and 3.5 mL/min using o-cresolphthalein complexone (o-

CPC) as a post column reagent and UV-Vis detection at 572 nm.  As can be seen in 

Figure 1.31, no system peak was observed for K+ showing the excellent selectivity 

demonstrated by o-CPC for the separation the of alkaline earth metals.  At flow-rates 

of 3.5 mL/min, separation occurred in < 1 minute demonstrating a novel IDA silica 

modified monolith for the fast separation of alkaline earth metals in high ionic 

strength samples.   

 

Following on from this work, Sugrue et al. [126] carried out a more comprehensive 

study, using the same IDA bound silica monolith, for the separations of alkaline earth 

and transition metals. The IDA immobilised silica monolith column (100 mm x 4.6 

mm I.D.) was also compared to an IDA bound silica particulate column (250 mm x 

4.0 mm I.D.).  Using either a 2 mM HNO3  or a 2 mM methanesulfonic acid (MSA) 

eluent, the authors obtained elution orders of Mg(II) < Sr(II) = Ca(II) < Ba(II), with 

the MSA eluent. Baseline resolution of Ca(II) and Sr(II) was not achieved using either 

the IDA-monolith or the IDA-silica particulate column.   
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Figure 1.31: Overlay of separations of Mg(II) and Ca(II) in 1 M KCl solutions at 

various flow-rates using the IDA immobilised monolith column.  The eluent used in 

the analysis was a HNO3 eluent (pH adjusted to 4.85).  Peaks: (1) 10 ppm Mg(II) and 

(2) 10 ppm Ca(II).  Detection used was UV-Vis at 570 nm after PCR with o-CPC.  

Reproduced from [126].   

 

Separations of transition and heavy metals, namely Mn(II), Cd(II), Zn(II) and Pb(II) 

with 0.2 M KCl eluents (pH 2 – 2.5) were carried out using the IDA immobilised 

silica monolith and the IDA-silica particle column and both stationary phases 

compared.  It was found that the eluent with the higher pH, resulted in complete 

retention of the later eluting metal Pb(II) using the particulate packed column.  

However, using the same separation conditions with the monolithic column, Pb(II) 

eluted after 15 minutes. The capacity of both columns were measured and the capacity 

of the IDA monolith column was lower than that exhibited by the particulate packed 

column, thus demonstrating an advantage in the use of lower capacity columns for the 

elution of the more strongly retained metals in the same run as Mn(II) and Cd(II) 

using isocratic elution conditions.           
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As mentioned previously, Sugrue et al. [107] modified a commercially available silica 

monolith (100 mm x 4.6 mm) with lysine to produce a stationary phase with 

zwitterionic characteristics.  As well as studying the retention of common anions, the 

authors also studied the retention of alkali, alkaline earth, transition and heavy metals.  

While the retention of the alkali and alkaline earth metals was due to ion exchange, 

the retention of the transition and heavy metals was a result of metal complex 

formation.  Figure 1.32 shows an overlay of transition and heavy metals using the 

lysine bonded silica monolith.  

 

Figure 1.32: Overlay of chromatograms obtained for various transition and heavy 

metals using the lysine bonded silica monolith.  Separation conditions: Eleunt: 3 mM 

KCl pH 4.5, flow-rate: 2 mL/min, detection: UV-Vis detection at 495 nm following 

reaction with PAR.  Reproduced from [107]. 

 

Rahmi et al. [139] reported the use of GMA-co-EDMA monoliths modified with IDA, 

fabricated in commercially available syringe filter tips (Figure 1.33), for the solid 

phase micro-extraction of 29 transition/heavy metals and rare earth elements prior to 

their determination by ICP-MS. A polymerisation mixture consisting of GMA, 

EDMA and a porogenic system consisting of either cyclohexanol/toluene or 1-

proponol/1,4-butanediol/water was used. In all cases the initiator was AIBN. 

Following de-oxygenation of the polymerisation mixture, an aliquot was drawn into a 



 88 

predefined space in the tip of the syringe and sealed. The syringe was placed in a 

water bath for thermal polymerisation.  Following washing of the syringe tip, IDA 

was immobilised onto the surface of the monolith by reacting with an IDA solution 

consisting of IDA and NaCl in a ratio of 5:1 in 2 M Na2CO3 and the pH adjusted to 

the required pH.  The chelating syringe monolith tips were tested by measuring the % 

recoveries of various transition and heavy metals in two river water certified reference 

materials.  Recoveries of > 80 % were obtained for all metals tested.     

 

 
 

 

Figure 1.33: (left) Schematic demonstrating the chelating monolith solid phase 

extraction module prepared in a syringe tip.  (right) Dimensions of syringe tip filter.  

Reproduced from [139]. 

 

1.7.4 Polymer monoliths with immobilised chelating ligands for immobilised 

metal affinity chromatography (IMAC). 

 

The uses of capillary polymer monoliths with immobilised chelating ligands have 

been reported in the literature. However, these monoliths have only been used in the 

IMAC form for the separations of proteins.  No reports have appeared in the literature 

using capillary polymer monoliths for the direct separation of transition and heavy 

metals.  Luo et al. [80] immobilised IDA groups onto a GMA-co-EDMA monolith via 

the ring opening reaction of the epoxy groups on the surface of the monolith. The 

resultant IDA immobilised polymer monolith was loaded with Cu(II), Ni(II) or Zn(II) 

resulting in an IMAC separation column which was used for the determination of 
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proteins in egg white samples. In 2004, Chuang et al. [138] prepared a PS-DVB 

polymer monolith with IDA functionalities, followed by the addition of Cu(II) for the 

IMAC separations of amino acids and oligopeptides. A polymerisation mixture 

consisting of 4-vinylbenzyl chloride, diethyl iminodiacetate and pyridine was 

prepared, followed by the addition of DVB, toluene, n-proponol and AIBN. The 

polymerisation mixture was filled into previously silanised fused silica capillary (75 

µm I.D.) followed by thermal polymerisation at 70 oC for 24 hours.  Following 

washing of the polymer monolith to remove any unreacted polymerisation mixture, 

hydrolysis of the functionalised diethyl iminodiacetate was required prior to the 

loading of the column with Cu(II).   

 

 

1.7.5 Factors effecting retention in HPCIC 
 
1.7.5.1 Eluent pH 

 

As the pH of the eluent controls the dissociation/protonation of the immobilised 

chelating ligand, it is the most important parameter effecting retention in HPCIC.  

Decreasing the eluent pH results in a decrease in retention of all metal cations, as a 

decrease in the eluent pH induces protonation of the immobilised chelating ligand on 

the surface of the stationary phase.  This results in a reduced number of charged 

functional groups, therefore leading to a reduction in retention. As most of the 

chelating ligands used in HPCIC contain weak acidic or basic groups such as IDA, the 

conditional stability constants formed between the metal ion and the immobilised 

chelating will also depend on the pH of the eluent [140]. Conditional stability 

constants decrease with decreasing pH, therefore to obtain narrow peaks and short 

retention times, eluents with pH values between 1–3 are commonly used.  Plots of log 

k versus – log [eluent] should be linear with slopes equal to the number of protons 

replaced by each metal coordinated to the chelating ligand immobilised on the 

stationary phase surface [51].   

 

Bashir et al. [141] showed the effects of eluent pH on the separation of alkaline earth 

and transition and heavy metals using weak nitric acid eluents and an itaconic acid 

cation exchange column.  Itaconic acid contains two carboxylic acid groups and the 

authors noted that the selectivity exhibited by this stationary phase was similar to that 



 90 

shown on other dicarboxylated stationary phases such as IDA. Stationary phase 

selectivity was found to be Li < Na < NH4 < K < Cs < Mg(II) < Ca(II) < Sr(II) < 

Mn(II) < Ba(II) < Cd(II) < Zn(II) < Co(II) << Pb(II) << Cu(II) using a weak nitric 

acid eluent.  The elution order obtained by Bashir et al. [141] of Mg(II) < Ca(II) < 

Sr(II) < Ba(II) corresponds to known stability constants for IDA-alkaline earth metals 

complexes [51]. Using nitric acid eluent varying in concentration from 0.6 – 2 mM, 

the authors successfully separated Mg(II), Ca(II), Mn(II), Cd(II), Zn(II) and Co(II), 

however the run times were excessive (30 minutes) and peak shape was poor.  Pb(II) 

and Cu(II) were completely retained under these conditions.  Plots of log k versus log 

[HNO3] were linear and slopes ranging from -1.8 for Mn(II) to -1.98 for Cu(II).  As 

mentioned previously, the slopes should be equal to the number of protons replaced 

by each metal coordinated to the chelating ligand immobilised on the stationary phase 

surface and in this case of this work, the slopes should be 2.  The acid concentration 

of the eluent was increased, however this resulted in the co-elution of the early eluting 

metals Mg(II), Ca(II) and Mn(II). Finally, the authors applied an ionic strength 

gradient to the separation using 20 mM KCl increased up to 1 M KCl and successfully 

obtained a separation of  Mg(II), Ca(II), Mn(II), Cd(II), Zn(II), Co(II) and Pb(II) in 

under 20 minutes, however Cu(II) was still retained.   

 

Sugrue et al. [126] also showed the effect of eluent pH on the selectivity of the 

alkaline earth metals using an IDA modified silica monolithic column. Using a 

NaNO3 eluent, the pH was varied from 4.7 – 6.7 with results showing that an increase 

in the eluent pH resulted in an increase in the retention of all metals studied.  The 

authors also noted that the selectivity, under the conditions studied, was different to 

that obtained by other cation exchangers, such as those employing sulfonated 

functionalities. The change in selectivity obtained by the IDA modified silica 

monolith was due to the suppression of the ion exchange interactions  through the use 

of electrolytes in the eluent.   

 

Barron et al. [52] demonstrated the effect of eluent concentration on the retention of 

metal ions using a Dionex ProPac IMAC-10 polyIDA polymer resin. The author 

found that by increasing the eluent concentration from 0.25 – 15 mM nitric acid, 

therefore decreasing the eluent pH resulted in a decrease in the retention of all metals 

studied.  Plots of log k versus –log [HNO3] were linear and parallel for all the metal 
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cations showing that the selectivity did not change with a change in the eluent pH.  

Optimum selectivity of Mn(II), Fe(II), Co(II), Cd(II) and Zn(II) was obtained using a 

0.25 mM nitric acid eluent, however, at this eluent pH, Pb(II) and Cu(II) were 

strongly retained and the authors were unable to separate all seven metal cations 

isocratically.   

 

1.7.5.2 Ionic strength 

 
 
To ensure that chelation is the dominant separation mechanism, electrostatic 

interactions must be suppressed. This can be carried by the addition of electrolytes, 

such as salts of the alkali metals, to the eluent. The addition of these salts to the eluent 

produces a shield of counter ions around the negatively charged moieties on the 

chelating ligand, therefore preventing electrostatic interactions with the metal cations.  

The addition of electrolytes to the eluent to suppress ion exchange interactions to 

make chelation the dominant separation mechanism has been reported in the literature 

and has been illustrated by Bashir et al. [130]. Using an IDA bonded silica column, 

the authors studied the effect on selectivity of alkaline earth metals using high ionic 

strength eluents.  Fig 1.34(a) shows a separation of the alkaline earth metals using a 

0.1 M KNO3 eluent (for all eluents the pH was kept constant at 4.2 using dilute 

HNO3). An elution order of Mg(II) < Sr(II) < Ca(II) < Ba(II) was obtained showing 

that using the 0.1 M KNO3 eluent, separation occurred due to a combination of ion 

exchange and chelation. Using a 0.2 M KNO3 eluent, the selectivity of Ba(II) and 

Ca(II) was reversed as shown in (b). Examination of (c) - (f) show that the retention 

of Ba(II) is mainly due to ion exchange as Ba(II), which was the last eluting peak 

using a 0.1 M KNO3 eluent, became the first eluting peak when their ionic strength 

was increased to 1.5 M KNO3. This demonstrates that the use of high ionic strength 

eluents resulted in suppression of ion exchange interactions, thus resulting in a 

decrease in the retention ability of Ba(II) when chelation was the dominant separation 

mechanism. The authors also concluded that the retention of Ca(II), eluting as the last 

peak when eluent concentrations > 0.2 M KNO3 were used, showed that retention of 

Ca(II) was possibly due to complexation, rather than simple ion exchange.   
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Figure 1.34: Separation of alkaline earth metals using an IDA bonded silica 

particulate column using (a) 0.1 M KNO3, (b) 0.2 M KNO3, (c) 0.3 M KNO3, (d) 0.5 

M KNO3, (e) 1.0 M KNO3 and (f) 1.5 M KNO3 eluents.  Reproduced from [130]. 

 
The changes in selectivity observed by Bashir et al. [130] were also observed by 

Sugrue et al. [125] using an IDA modified silica monolith.  In this work, the authors 

investigated the selectivity of the alkaline earth metals using eluents varying in 

concentration from 0.1 M KNO3 to 1.0 M KNO3 and noted that retention of the 

alkaline earth metals using an IDA modified silica monolith was due to a combination 

of both ion exchange and chelation.  
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Following on from this work, Bashir et al. [132] studied the effect of the ionic 

strength of the eluent  on the retention of transition and heavy metals using the same 

IDA bonded silica particulate column that was used for the alkaline earth metal 

analysis [130]. The authors studied the effect on the selectivity of transition and heavy 

metals using a 0.5 M or 1.0 M KNO3, NaNO3, KCl or NaCl eluents. In all cases the 

pH of the eluent was kept constant with HNO3.  No change in selectivity for Mn(II), 

Cd(II), Co(II), Zn(II) or Pb(II) was observed when KNO3 or NaNO3 was used as the 

eluent and the same trend was observed when the eluents were changed to KCl and 

NaCl.  However, the authors did notice differences in selectivity between the nitrate 

eluent and the chloride eluent.  Using the 0.5 M nitrate eluent, an elution order of 

Mn(II) < Cd(II) = Co(II) < Zn(II) was obtained and Pb(II) was heavily retained, 

however with the 0.5 M chloride eluent, the Cd(II) co-eluted with Mn(II) and the 

retention of Pb(II) was reduced. The change in selectivity of Cd(II) and Pb(II) 

observed between the nitrate eluent and the chloride eluent was due to the formation 

of stable chloro complexes between the chloride eluent and Pb(II) and Cd(II).  

Formation constants for Pb(II) with chloride is 0.9 and for Cd(II) is 1.35 as opposed 

to other metals, such as Mn(II), where the formation constant is 0.04 and Zn(II) is 

0.11 (values at 0.5 – 1 M ionic strength and 25 oC).  Unlike the alkaline earth metals 

shown previously [130], changes in selectivity were not observed when the ionic 

strength of the eluent was increased.  This was also observed by Nesterenko et al. 

[133] using a single column method for the trace metal analysis in complex samples 

using an IDA bonded silica particulate column.   

 
Shaw et al. [142] showed the retention of alkaline earth metals and transition metals 

using an IonPac CS12A pellicular column with attached carboxylic and phosphonic 

acid groups. The authors studied the effect of ionic strength in the eluent on the 

retention of various alkaline earth metals and transition metals. Increasing the 

potassium content of the KNO3 eluent resulted in a decrease in the retention of all 

metals and through manipulation of the eluent pH, the authors successfully separated 

Mg(II), Sr(II), Ba(II), Mn(II), Co(II), Ni(II) and Zn(II) which was not possible 

through simple ion exchange alone.  The authors also showed the effect of increasing 

the Cl- ion concentration in the eluent, on retention.  Similiar to that observed by 

Bashir et al. [132], the retention of Cd(II) and Pb(II) was greatly reduced, with Cd(II) 

eluting as the least retained metal. 
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1.7.5.3 Temperature effects 

 

Increasing the column temperature has proven to be beneficial in HPCIC, as increases 

in temperature can result in improved column efficiency and changes in retention and 

selectivity [51].  However, the effect of temperature on the separation of metal cations 

in HPCIC and IC is not widely used, despite its ease of incorporation into a 

chromatographic system.    

 

The effect of temperature on retention can be shown by the van’t Hoff equation 

(Equation  1.3). 

                                 ln k = - ∆H/RT + ∆S/R + ln φ                      Eqution 1.3            

 

where k is the retention factor, ∆H is the enthalpy change for the exchange reaction, R 

is the universal gas constant, T is the absolute temperature, ∆S is the entropy change 

and φ is the column phase ratio (which is constant for a given column).  ∆S is 

assumed to be constant, therefore the equation becomes: 

 

                                              ln k = - ∆H/RT                              Equation 1.4                            

 

Plots of ln k versus 1/T should be linear and have a slope = - ∆H/R [123]. 

 

The changes in retention and selectivity due to increases in temperature are related to 

both thermodynamic properties and kinetic properties. Generally, in the case of 

separation due to ion exhange interactions, the adsorption process is exothermic 

(negative values of ∆H) and an increase in temperature results in a decrease in 

retention.  In HPCIC, both exothermic and endothermic behaviour has been observed.  

Generally, for complexation of metals with IDA ligands, endothermic behaviour is 

exhibited and an increase in temperature generally results in an increase in retention 

[51].  In relation to kinetic properties, an increase in temperature can result in the 

formation of complexes with a higher denticity and therefore a slower dissociation 

rate, thus leading to an increase in retention with an increase in temperature  [51].   
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In 2001, Hatsis et al. [143] studied the effect of temperature on the retention of alkali 

and alkaline earth metals using a Dionex CS12A analytical column, with attached 

surface carboxylic and phosphonate functionalities. Using a methanesulfonic acid 

eluent, separations of various alkali metals, alkaline earth metals and amines were 

carried out at temperatures ranging from 23 oC to 60 oC. In all cases, the authors noted 

a decrease in retention with an increase in temperature.  In this case, retention was due 

to ion exchange interactions. The authors noted, that while no change in selectivity 

was observed within the same group of metals studied, a change in selectivity 

between each group of analytes was observed. Figure 1.35 (left) shows van’t Hoff 

plots obtained for various alkali, alkaline earth metals and amines showing that 

changes in selectivity were obtained with an increase in temperature. Figure 1.35 

(right-top trace) shows a chromatogram for the separations of Mg(II), Ca(II), 

butylamine (BuA) and Sr(II) carried out at 27 oC and the same separation carried out 

at 46 oC. Clearly a change in selectivity was obtained at the higher temperature and 

this demonstrates the improvement in the separation of the selected analytes through 

the implementation of temperature (bottom trace).  

  

 

    

Figure 1.35: (left): Van’t hoff plots of alkali metals, alkaline earth metals and amines 

showing changes in selectivity as the temperature is increased. (right): Separation of 

selected alkaline earth metals and BuA carried out at 27 oC (top) and 46 oC (bottom) 

demonstrating the benefits of the use of temperature to alter separation selectivity.  

Reproduced from [143]. 
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Following on from this work in 2003, Shaw et al. [142] studied the effect of 

temperature on the retention of selected transition and heavy metals using the same 

CS12A analytical column as Hatsis et al. [143]. Using a 0.2 M KCl with 0.9 mM 

nitric acid eluent, Shaw et al. [142] observed an increase in retention with an increase 

in temperature for all transition and heavy metals studied (Figure 1.36). The 

temperature range studied was 25 oC to 55 oC.  Changes in the retention of Sr(II) and 

Ba(II) were considered negligible over the range of temperatures studied due to the 

fact that complex formation between Sr(II) and Ba(II) and the phosphonic acid ligand 

on the stationary phase surface were the weakest of all the metals studied.  This 

allowed for changes in selectivity with an increase in temperature which led to 

improvements in the separation of 8 alkaline earth and transition and heavy metals as 

shown in Figure 1.36 (right).  At 25 oC, Ba(II) co-eluted with Zn(II), however at 50 
oC, an increase in the retention of Zn(II) and with the change in retention due to 

increase in temperature proving negilible for Ba(II), allowed the separation of both 

metals with optimised temperature conditions.  Also worth mentioning is the 

improvements in the separation of Mn(II) and Sr(II) which exhibited similiar k values 

at 25 oC but clear separation of both metals at 50 oC.    

 

 

Figure 1.36: (left): Van’t Hoff plots for alkaline earth metals, transition and heavy 

metals cations obtained by increasing the temperature from 25 oC to 55 oC. (right): 

Separation of selected alkaline earth metals, transition and heavy metals using 

optimised temperature conditions (50 oC).  The eluent used was 0.2 M KCl and 0.9 

mM nitric acid.  Reproduced from [142].   
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A comprehensive study on the effects of temperature on the retention of metal cations 

using cation exchange and chelation chromatography was carried out by Paull and 

Bashir [131]. The effect of temperature on the retention of alkali, alkaline earth and 

transition metals was studied using four different stationary phases namely, a Dionex 

CS10 (sulfonated) column, a CS14 (carboxylated) column, a Hamilton PRP-X800 

(itaconic acid – dicarboxylated) column and a silica based IDA analytical column.  In 

the case of the alkali metals, an increase in temperature resulted in a decrease in Li+, 

Na+, NH4
+, K+ and Cs+ on all four columns. Generally, in chromatographic systems 

where chelation in the dominant separation mechanism, heats of adsorption (∆H) are 

higher than those observed for simple ion-exchange mechanisms and heats of 

absorption obtained for ion exchange separations do not exceed 3 kJ mol-1 [51].  Paull 

et al. [131] reported ∆H values for all columns, which were consistent with expected 

values when ion exchange was the mode of retention.  The authors also studied the 

effect of temperature on the retention of alkaline earth metals using the four columns 

mentioned earlier.  Unlike the alkali metals, the effect of temperature on the retention 

of the alkaline earth metals was more complicated.  The authors found that using the 

CS10 column (sulphonated) and a HNO3 eluent, an increase in retention was observed 

with an increase in temperature.  However, using the CS14 (carboxylated) column, an 

increase in temperature resulted in a decrease in retention.  Due to differences in the 

capacity of the two columns, a higher eluent concentration was required to elute the 

metals using the CS10 column and under these acidic conditions, the charge density 

of the CS10 column was higher than that of the CS14 column. As mentioned 

previously, an increase in temperature resulted in a decrease in retention of all 

alkaline earth metals studied using the CS14 column. However, when the ion 

exchange interactions were suppressed (through the addition of KCl to the eluent), the 

opposite trend was observed and an increase in temperature resulted in a increase in 

retention. Heats of adsorption, which were calculated to be between -3.34 to -6.25 

using the nitric acid eluent, were 2.17 to 6.51 when ion exchange was suppressed and 

chelation became the dominant separation mechanism. The clear change in ∆H values 

supported the change in retention mechanism from ion exchange using the acidic 

eluent to chelation when high ionic strength eluents were used.  Using acidic 

conditions the effect of temperature on the IDA bound silica and the itaconic acid 

columns was minimal, however using eluents with increasing ionic strength, the effect 

of temperature on both columns was more pronounced. Increasing the temperature 
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resulted in a clear increase in retention of all metals studied.  As for the CS10 and the 

CS14 columns, ∆H values support the change from retention due to ion exchange 

under acidic conditions to chelation with the ionic strength of the eluent was 

increased.  Finally, the authors studied the effect of temperature on the retention of 

transition metals using the four different stationary phases.  In all cases, using eluents 

with increasing ionic strength, an increase in temperature resulted in an increase in 

retention of the transition metals studied.  In conclusion the authors observed that for 

strong cation exchangers, such as the sulphonated column, under acidic conditions, an 

increase in temperature resulted in an increase in retention and for the weak cation 

exchanger (carboxylated) under acidic conditions, an increase in temperature resulted 

in a decrease in retention. For the functional groups capable of forming complexes 

with metal cations, using eluents with high ionic strength suppressed the ion exchange 

interactions and an increase in temperature resulted in an increase in retention.  More 

recently, Barron et al. [52] demonstrated the effect of temperature on the retention of 

metals on a Dionex ProPac IMAC-10 analytical column (poly(IDA) functionalised 

polymer resin) and observed an increase in retention for all metals.  Fe(II) and Mn(II) 

co-eluted at ambient temperatures, however resolution of Fe(II) from Mn(II) was 

obtained at higher temperatures, demonstrating the use of temperature to improve 

separation.   

 

1.8 Conclusions 

 

The use of capIC has grown in popularity over the last number of years due to 

improvements in instrumentation and stationary phase technology. The extensive 

analysis carried out using monolithic stationary phases over the years has ensured that 

the topic is well understood.  Due to the lack of capIC instrumentation commercially 

available (until 2011), the use of C4D detection has ensured that capIC is widely used 

for the separation of anions and cations. From reviewing the literature, it is clear that 

polymer monoliths are less efficient than their silica based counterparts for the 

separation of small ions. The work carried out in the following chapters of this thesis 

aim to further improve on the methods currently available for surface modification of 

polymer monoliths for the separation of small ions as well as aiming to fabricate the 

first capillary polymer monolith with immobilised chelating ligands for the separation 

of metal cations. 
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2.0 Materials and Reagents 

 
Glycidyl methacrylate (GMA), butyl methacrylate (BuMA), lauryl methacrylate 

(LMA),  ethylene dimethacrylate (EDMA), propan-1-ol, butane-1,4-diol, decanol, 1-

dodecanol, cyclohexanol, 2,2-dimethoxy-2-phenolacetophonone (DAP), boric acid, 

nitric acid, copper sulphate, 3-sulfopropyl methacrylate (SPM), 4-(2-pyridylazo) 

resorcinol (PAR), o-cresolphthalein complexone (o-CPC), acetone, sodium 

hydroxide, sodium benzoate, benzophenone, hydrochloric acid, methanol, 

[2(methacryloyloxy)ethyl] trimethylammonium chloride (META), iminodiacetic acid 

(IDA) and 3(trimethoxysilyl)-propyl methacrylate were all purchased from Sigma 

Aldrich (Gillingham, UK). Vinyl azlactone (VAL) was purchased from TCI Europe 

(Boerenveldseweg, Belgium).   

 

Fluoride, chlorite, bromate, chloride and nitrite were purchased as their sodium or 

potassium salts from Sigma Aldrich (Gillingham, UK). The cations used for the 

chromatographic separations were magnesium, calcium and barium and were 

purchased as their chloride salts from Sigma Aldrich and prepared weakly to stock 

concentrations of 1000 mg/L. Dilutions of the stock standards were carried out to the 

required concentrations with deionised water and filtered prior to use. The metal 

standards used were copper nitrate, cobalt chloride (Sigma Aldrich), cadmium nitrate, 

nickel chloride, manganese, magnesium sulfate-hepta-hydrate, calcium chloride 

dihydrate, barium chloride dihydrate and strontium nitrate (VWR, Dublin, Ireland), 

zinc chloride (Merck, Darmstadt, Germany) and were prepared to stock 

concentrations of 1000 mg/L using 1 mM nitric acid.  The PCR used was 0.4 mM 

PAR dissolved in 0.1 M ammonia, pH 10.6 and was prepared daily. 

 

All eluents and standards were prepared using a Millipore water purification system 

(Bedford, MA, USA) and filtered through a 0.45 µm nylon membrane filter. UV 

transparent Teflon coated 100 µm internal diameter fused silica capillary (375 µm 

outer diameter) was purchased from CM Scientific Ltd. (Shipley, UK).   
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2.1 Instrumentation 

 

2.1.1 Instrumentation for fabrication and surface modification of polymer 

monoliths  

 

The pump used for the vinylisation of the fused silica capillary was a KDS-100-CE, 

KD Scientific syringe pump from Cole Parmer (Illinois, USA). Polymerisation of the 

polymer monoliths (using thermal polymerisation) was carried out using a water bath 

at 60 oC (GFL 1002, VWR International, Dublin, Ireland) and the polymer monoliths 

prepared using UV polymerisation was carried out using a Spectrolinker XL-1000 UV 

Crosslinker at 254 nm (Spectronics Corp. NY, USA).  

 

For photo-grafting of the monolithic columns, a Spectrolinker XL-1000 UV 

Crosslinker at 254 nm (Spectronics Corp. NY, USA) was used.  Surface modification 

of the polymer monoliths were carried out using a Knauer Smartline 100 high 

pressure analytical pump (Knauer, Bedforshire, UK). The polymer monoliths were 

connected to the pumping system using low dead volume capillary fittings from 

Upchurch Scientific (Oak Harbour, WA, USA). An Orion pH meter with a glass 

electrode was used for all pH measurements (Thermo Orion, Beverly, MA, USA). 

 
 
2.1.2 Commercially available capillary ion chromatography system  

 

The system used for the chromatographic separation of anions was a Dionex Ultimate 

3000 capillary chromatography system, (Sunnyvale, CA, USA) with 50 nL partial 

loop injection volume, using a 1 µL injection loop. The eluent flow was introduced 

using a calibrated flow splitter (101:1) to deliver an accurate flow-rate of 1 µL/min.  

The polymer monolith was connected to the injector valve using 25 µm fused silica 

capillary (25 cm x 25 µm, internal volume of ~ 120 nL) using a low dead volume 

MicroTight union with a swept volume of 17 nL (Upchurch Scientific, Oak Harbour, 

WA, USA). Detection was carried out using on-column C4D detection (Innovative 

Sensor technologies, GmbH, Innsbruck, Austria). The recording and processing of 

chromatograms was carried out electronically using Chromeleon software.  

Chromatograms were processed using the following equations: 
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Asymmetry                    A = RW + LW                                     Equation 2.1 
                 2 x LW5% 
 

where RW = width of right hand side of peak, LW = width of left hand side of peak 

measure at 5 % peak height. 

 

 

Resolution         Rs =     2(trb – tra)                  Equation 2.2 
                  Wb1/2 + Wa1/2 
 
 

where trb and tra are the retention time of solute b and a and Wb and Wa is the peak 

widths measured at 50 % peak height. 

 

 

Efficiency   N = 5.5 (tr)
2                   Equation 2.3 

                                                 (W1/2)
2 

 

 

where tr is the retention time of the peak of interest and W1/2 is the peak width as 50 % 

peak height. 

 

 

2.1.3 In–house assembled capillary ion chromatography system (capIC) used for 

the separation of anions and cations. 

 

An in-house constructed capillary ion chromatography (capIC) system was 

assembled, which consisted of a Knauer Smartline 100 high pressure analytical pump 

(Knauer, Bedforshire, UK) and a Cheminert fixed loop 20 nL injector valve (Global 

FIA, WA, USA). Detection was carried out using on-column C4D detection for anions 

analysis and C4D detection was replaced with a capillary UV detector with a 3 nL 

flow cell (Dionex Ultimate 3000, Sunnyvale, CA, USA) for cation analysis. The 

photo-grafted polymer monoliths were plumbed directly into the injector valve as 

shown in Figure 2.1. 
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Figure 2.1: The in-house constructed capIC system incorporating a high pressure 

analytical pump, a 20 nL injector valve, the poly(META) functionalised anion 

exchange polymer monolith and on-column C4D detection. 

 
2.1.4 CapIC system used for the separation of metal cations. 

 

The IDA functionalised polymer monolith was connected to the injector valve using 

10 cm x 25 µm I.D. fused silica capillary and a second Knauer pump was used to 

introduce the post-column reagent. A T-connector (Upchurch, WA, USA) was used to 

connect the IDA monolith and the post-column reagent pump to the UV-visible 

detector equipped with a 3 nL flow-cell (Dionex, Sunnyvale, CA, USA).  In this case, 

a post-column mixer was not incorporated into the system as the connective tubing 

(fused silica capillary) associated with the UV-Vis detector was long enough so as to 

allow mixing. The system also incorporated on-column C4D detection (Innovative 

Sensor technologies, GmbH, Innsbruck, Austria). The minimum amount of 25 µm 

I.D. fused silica capillary (Composite Metal Services Ltd., Shipley, UK) was used to 

connect all the separate components of the system using zero dead volume 

MicroTight unions (Upchurch, WA, USA) to reduce the effects of band broadening.  

Polymer 

monolith

Analytical

pump

Eluent

On-column C
4
D 

detection

C
4
D detection 

electronics



 104 

Characterisation of the IDA modified polymer monoliths was also carried out using a 

Dionex Ultimate 3000 capillary chromatography system (Dionex, Sunnyvale, CA, 

USA) with a 100 nL injection volume. Similar to the set-up described above (Section 

2.1.4), PCR was delivered using a second Dionex Ultimate 3000 analytical pump. The 

fluidic set-up can be seen in Figure 2.2. A PCR mixing device, which allowed mixing 

of the column eluate with the PCR, was prepared by coiling polyimide fused silica 

capillary (17 cm x 25 µm ID, internal volume = 87 nL) around a plastic tube (5 cm x 

15 mm ID). Detection was carried out using on-column C4D detection (Innovative 

Sensor Technologies GmbH, Innsbruck, Austria) and UV-Vis detection (Dionex, 

Sunnyvale, CA, USA) with a 3 nL flow-cell.  Eluents of either 0.1 mM or 0.2 mM 

nitric acid were delivered at 1µL/min.  The separation column was connected to the 

injector valve using 20 cm x 25 µm fused silica capillary (internal volume of 98 nL) 

via a zero dead volume union (MicroTight, Upchurch Scientific, Oak Harbour, WA, 

USA).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2: Fluidic set-up for dual detection HPCIC. 

 
2.1.5 Temperature studies 
 
2.1.5.1 Temperature heater used for alkaline earth metals using cation exchange 

separations. 

 

The capillary column oven was constructed using a polyimide flexible heating tape, 

(dimensions 2.5 x 10 cm) (Kapton, Omega, UK).  Figure 2.3 (a) shows the heating 

tape which was folded to form a cylinder. The cylindrical heating tape was wrapped 

with insulating tape and covered with aluminum foil as shown in Figure 2.3 (b). Using 
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two zero dead volume unions, the column was positioned within the column heater in 

such a way that the column was suspended down the central bore of the device and 

not touching the heated walls. The ends of the column heater were plugged and the 

temperature was controlled using a variable voltage power supply (Maplin, Dublin, 

Ireland). The temperature was monitored using a digital multimeter and a 

thermocouple wire (Maplin, Dublin, Ireland) placed inside the column heater. 

 

 

 

 

 

 

 
 
 
 
 
Figure 2.3 (a) Kapton flexible heating tape used in the manufacture of the capillary 

column heater (dimensions: 2.5 cm x 10 cm) and (b): Kapton heater wrapped in 

insulating tape and aluminum foil, encasing the cation exchange polymer monolith. 

The column was placed in the centre of the heater with 2 MicroTight unions 

positioned at each end.   

 
2.1.5.2 Calibration of the capillary column heater. 

 

 

Calibration of the capillary column heater was carried out using a multimeter with a 

temperature setting. Voltage was applied in 0.5 V increments and the temperature 

noted. Temperature was recorded using a thermocouple wire placed inside the heater. 

 
2.1.5.3 Temperature heater used for metal cation separations using chelation ion 

chromatography. 

 

Temperature studies were carried out using a capillary column heater, which was 

constructed using a flexible heating tape (Kapton, Omega, UK).  The heating tape (30 

cm x 2 cm) was gently folded into a cylindrical shape and pushed inside a stainless 

steel tube (30 cm x 1 cm I.D.) to form a column heater as shown in Figure 2.4 (a). A 

(a) (b) 
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thermocouple wire (Maplin, Dublin, Ireland) was used (via a small hole drilled mid-

way down the tube) to monitor temperature as shown in Figure 2.4 (b). Voltage (0-35 

V) was applied to heat the flexible tape using an EA-PS2316-050 triple power supply 

(Elektro Automatik, Germany).   

 

Empty fused silica capillary (7 cm x 25 µm I.D.) was connected to the end of the 

column to facilitate off-column C4D detection as shown in Figure 4.2 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: (a) Placement of the flexible heating tape inside a stainless steel tube and 

(b): In-house constructed capillary column heater demonstrating off-column C4D 

detection. Temperature monitoring was carried out using a thermocouple wire.     
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2.2 Procedure 

 

2.2.1 Vinylisation of fused silica capillary 

 

To ensure attachment of the monolith to the walls of the capillary, pretreatment with 

3-(trimethoxysilyl)propyl methacrylate was required. The walls of the fused silica 

capillary were first activated with 200 mM NaOH for 30 mins at a flow-rate of 2 

µL/min followed by washing with water for 10 mins. Various solutions were 

subsequently pumped through the fused silica capillary in the following sequence: 

200 mM solution of HCl at 2 µL/min for 30 mins, deionised water at 2 µL/min for 10 

mins, acetone 2 µL/min for 10 mins, followed by purging with nitrogen for 10 mins 

and finally a 50 % solution of 3-(trimethoxysilyl)propyl methacrylate in acetone at 2 

µL/min for 30 mins. The fused silica capillary was sealed with rubber septa and 

placed in a water bath at 60 oC for 20 hours. Following removal from the water bath, 

the fused silica was washed with acetone for 30 mins at a flow-rate of 2 µL/min 

followed by purging with nitrogen for 10 mins [116].  

 

2.2.2 Fabrication of polymer monoliths 

 

2.2.2.1 Fabrication of GMA-co-EDMA monolith 

 

A GMA-co-EDMA monolith was prepared for the separation of anions according to 

the procedure described by Ueki et al. [49].  A polymerisation solution was prepared 

consisting of 30 wt % GMA and 10 wt % EDMA dissolved in a porogenic solution 

consisting of 35 wt % propan-1-ol, 20 wt % butane-1,4-diol and 5 wt % of water. The 

polymerisation mixture also contained 4 mg of AIBN (1 % weight with respect to the 

total monomer concentration). The mixture was de-oxygenated for 10 minutes with 

nitrogen and allowed to fill into previously vinylised Teflon coated fused silica 

capillary (100 mm x 100 µm I.D.) by capillary action. The filled capillary was sealed 

with rubber septa and placed into a water bath at 60 oC for 24 hours. The resulting 

monolith was subsequently washed with methanol to remove any unreacted 

monomers at 1 µL/min for one hour.   
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2.2.2.2 Fabrication of BuMA-co-EDMA polymer monolith 

 

A polymerisation mixture was prepared consisting of 23 % v/v BuMA and 13 % v/v 

EDMA dissolved in 63 % v/v decanol containing 4 mg DAP (1 % weight with respect 

to total monomer concentration). The monomer mixture was vortexed to ensure the 

DAP was fully dissolved followed by de-oxygenating with nitrogen for 10 minutes. 

Fused silica capillary tubing (100 µm x 120 mm) was filled with the monomer 

mixture by capillary action and each end was sealed with a rubber septum.  It was 

then placed in the UV oven where 1 J/cm2 of UV energy at 254 nm was applied. 

Following irradiation, the monolith was washed with methanol at 1 µL/min for 1 hour 

to remove any excess porogen and unreacted monomer. 

 
 
2.2.2.3 Fabrication of LMA-co-EDMA polymer monoliths 

 

Monomer mixture consisting of 24 wt % LMA, 16 wt % EDMA, 45.5 wt % 1-

propanol, 14.5 wt % 1,4-butanediol and 4 mg of DAP (1% weight with respect to the 

monomers) was prepared as described by Collins et al. [144].  The polymerisation 

mixture was de-oxygenated for ten minutes with nitrogen and filled into the 

previously vinylised UV transparent fused silica capillary (30 cm x 100 µm) by 

capillary action and sealed with rubber septa followed by irradiation with 2 J/cm2 of 

UV energy at 254 nm.   

 
 
2.2.3 Surface modification of polymer monoliths for ion exchange 

chromatography. 

 

2.2.3.1 Immobilisation of free radical initiator benzophenone onto the polymer 

monolith 

 

In all cases, benzophenone, a free radical initiator, was covalently attached to the 

surface of the polymer monoliths by flushing the monolith with a 50 mg/mL 

benzophenone in methanol solution, which had been de-oxygenated with nitrogen for 

10 minutes. Following irradiation with 1 J/cm2 of UV energy at 254 nm, the monolith 

was then washed with methanol at 3 µL/min for 1 hour. 
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2.2.3.2 Photo-grafting of poly(META) on the surface of the polymer monolith for 

anion exchange chromatography. 

 

A 15 % w/v poly(META) solution was prepared in water and de-oxygenated for 10 

minutes with nitrogen. The monolith was flushed with the META reagent at a flow-

rate of 1 µL/min for 30 minutes. The monolith was end capped, irradiated with 0.252 

J/cm2 of UV energy at 254 nm [103] and washed with methanol at 1 µL/min for three 

hours. The column was then washed with water for 1 hour at 1 µL/min and 

equilibrated with a 2 mM sodium benzoate eluent for 12 hours.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Photo-grafting of poly(META) on the surface of the polymer monolith. 

 

 

2.2.3.4 Surface grafting of the polymer monolith with poly(SPM) for cation 

exchange chromatography 

 

A 6 % w/v SPM solution was prepared in de-ionised water and de-oxygenated with 

nitrogen for 10 minutes. This mixture was pumped through the benzophenone 

modified monolith at a flow-rate of 0.2 µL/min for 1 hour. The monolith was 

irradiated with 0.25 J/cm2 of UV energy at 254 nm. A preliminary wash with 

methanol was carried out at 1 µL/min for 10 minutes. The monolith was washed with 

water at 1 µL/min for 1 hour and left to equilibrate with a 1 mM copper sulfate eluent 

at 1 µL/min. This resulted in a polymer monolith with immobilised sulfonated groups 

as shown in Figure 2.6. 
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Figure 2.6:  Photo-grafting of poly(SPM) on the surface of the polymer monolith. 

 
2.2.4 Surface grafting of polymer monoliths for metal cation separations using 

chelation ion chromatography 

 

2.2.4.1 Photo-grafting of poly(VAL) or poly(GMA) on the monolith surface 

 

The monolith was flushed with a 5 % w/v solution of benzophenone in methanol, as 

described in Section 2.2.3.1. Following this, deoxygenated poly(VAL) solutions (15–

30 % v/v) in methanol of poly(GMA) solutions (15–35 % v/v)  were flushed through 

the polymer monolith at 1 µL/min for 1 hour and 1 J/cm2 of UV energy at 254 nm 

was applied.   

 

2.2.4.2 Fabrication of acetylimino-diacetic acid (AIDA) or poly(GMA) photo-

grafted polymer monolith 

 

A 1 mg/ml aqueous solution of IDA was flushed through the monolith at 1 µL/min for 

5 hours, followed by a water flush at 1 µL/min for 3 hours.  IDA covalently attached 

to VAL as shown in Figure 2.7. Figure 2.8 shows the covalent attachment of GMA 

and IDA.  
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Figure 2.7: Immobilisation of IDA on the VAL grafted polymer monolith.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 2.8: Immobilisation of AIDA on the poly(GMA) photo-grafted polymer 

monolith 
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A number of AIDA monoliths were used throughout this work and are denoted as in 

Table 2.1. The same naming system was used for all poly(GMA) IDA monoliths. 

 

Table 2.1: Description of the monoliths used throughout this work. 

 

Monolith name VAL  

(% v/v) 

Effective column 

length (mm) 

VAL15a 15 280 

VAL15b 15 280 

VAL15c 15 100 

VAL20 20 100 

VAL25 25 100 

VAL30 30 100 

 

2.2.5 Separation of anions using the poly(META) modified polymer monolith 
 
Six anion standards were prepared (fluoride, chlorite, bromate, chloride nitrite and 

bromide) to a stock concentration of 1000 mg/L. The stock solution were diluted with 

deionised water to yield a six anion standard mix containing 0.7 mg/L fluoride, 3 

mg/L chlorite, 3 mg/L bromate, 0.7 mg/L chloride, 0.7 mg/L nitrite and 3 mg/L 

bromide. A number of other inorganic and organic anions were also prepared to stock 

concentrations of 1000 mg/L in deionised water and chromatographic performance 

data obtained. The eluent used for all separations was 2 mM sodium benzoate. 

 
2.2.6 Separation of alkaline earth metals using poly(SPM) polymer monolith 

 

The cation exchange polymer monolith with photo-grafted sulfonated groups was 

used for the separation of calcium, magnesium and barium with UV detection at 210 

nm. Copper sulphate was chosen as the eluent as it has been shown to be suitable for 

the separation of cations [49]. 
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2.2.7 Separation of metal cations using poly(VAL) and poly(GMA) modified 

polymer monoliths 

 
Stock solutions of Mn(II), Co(II) and Ni(II), Zn(II), Cd(II) and Cu(II) were prepared 

daily and diluted accordingly with 1 mM nitric acid. The eluent used for the 

separation of metal cations ranged from 0.1 mM - 0.4 mM nitric acid.  

 

2.2.8 Sample preparation for applications of fabricated poly(GMA) modified 

polymer monoliths 

 

A simulated seawater sample consisting of 0.5 M (33,000 ppm) NaCl, 400 ppm Ca(II) 

and 1100 ppm Mg(II) was prepared with de-ionised water. A second simulated 

seawater sample was prepared as described which was spiked with 10 ppm Co(II), 10 

ppm Cd(II) and 10 ppm Zn(II). Tap water samples spiked with 10 ppm Co(II), Cd(II) 

and Zn(II) were prepared and injected without further dilution. A bottled water 

sample was diluted accordingly using the appropriate eluent and filtered prior to use.   

 

2.2.9 Characterisation of IDA modified monoliths by scanning C
4
D 

 

At selected stages during the monolith modification, scanning C4D was used to 

measure the distribution of IDA functional groups along the column length as 

described by Connolly et al. [45]. Specifically, while continuously flushing the 

monolith with a 1 mM ethanolamine buffer (pH 9.8), the detector head was moved at 

2 mm increments along the column and the conductive response recorded at each 

detector location.   
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Chapter 3.0: 

 

Modification of capillary polymer monoliths using  

photo-grafted chains of [2(methacryloyloxy)ethyl] 

trimethylammonium chloride (META) for the  

separation of anions  
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3.1 Introduction 

 
Polymer monoliths have been shown to be highly suited for the separation of large 

biomolecules, such as peptides and proteins, due to convection dominated mass 

transfer as opposed to diffusive mass transfer [145]. This is due to the eluent being 

forced to flow through the monolith bed, in comparison to particle packed columns, 

where separation depends on diffusion of the analytes in and out of the particle. 

However, the use of polymer monoliths for the separation of small ions has proven 

difficult, due to the lack of mesopores on the surface of the monolith, greatly reducing 

the surface area in comparison to its silica based counterparts [66]. To date, little 

focus has been placed on the separation of small ions using polymer based capillary 

monoliths.  
 

Connolly et al. [103] recently reported the use of a GMA-co-EDMA (110 mm x 100 

µm internal diameter) polymer monolith which was functionalised with 

[2(methacryloyloxy)ethyl] trimethylammonium chloride (META) to produce an anion 

exchange capillary polymer monolith with surface photo-grafted quaternary 

ammonium functional groups. Efficiencies of 15,000 N/m were reported for fluoride 

at 1 µL/min  

 

The aim of this work was to fabricate a high capacity ion exchange polymer monolith 

for the separation of small anions. This was carried out by photo-grafting polymer 

chains of [2(methacryloyloxy)ethyl] trimethylammonium chloride (META) on a 

polymer monolith previously immobilised with benzophenone. The effect of the 

method of photo-grafting of poly(META) on the polymer monolith was investigated 

and compared to the method of surface modification carried out by Connolly et al 

[103].  Separations of anions were carried out on the poly(META) polymer monolith 

using a Dionex capillary LC system and an in-house assembled capillary ion 

chromatography system. Chromatographic performance data using both systems were 

compared. The selectivity of the poly(META) polymer monolith, for a wide range of 

selected inorganic and organic anions, was studied.  
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3.2 Results and Discussion 

 

3.2.1 Monolith fabrication and functionalisation with poly(META) 

 

Polymer monoliths exhibit lower surface areas in comparison to their silica based 

counterparts, due to the absence of mesopores on the monolith scaffold. The reduction 

in the surface area of the polymer monolith requires the incorporation of a large 

number of functional groups for the efficient separation of small ions. This work 

aimed to increase the ion exchange capacity using photo-grafting techniques. To 

increase the surface coverage of poly(META), benzophenone was immobilised on the 

surface of the monolith.  

 

The ability of benzophenone to form free radicals on surfaces has been documented 

by Rånby et al. [101]. This was followed by Stachowiak et al. [146] who 

demonstrated the ability to form grafted polymer chains from the surface of the 

monolith in the presence of the free radical initiator benzophenone. Benzophenone 

abstracts hydrogen atoms exposed at the surface of the monolith and in this work, as 

the META solution was introduced and UV irradiation applied, graft polymerisation 

is initiated from the surface of the monolith due to the presence of a source of free 

radicals directly at the surface. This resulted in a strong anion exchange polymer 

monolith with quaternary ammonium functionalities. This method of functionalisation 

is known as a two step functionalisation procedure i.e. immobilisation of 

benzophenone was carried out in the first step followed by photo-grafting of 

poly(META) in a second step.  

 

Conversely, Connolly and Paull [103] prepared a GMA-co-EDMA generic monolith 

with which they introduced benzophenone and META onto the surface in a single 

step process. Briefly, a 15% META solution was dissolved in a water/t-butanol mix 

(1:3) to which benzophenone was added (1 % relative to META). Following de-

oxygenation with nitrogen, the solution was flushed through the monolith and 0.252 

J/cm2 of UV energy at 254 nm was applied. The poly(META) photo-grafted monolith 

was applied to the separations of common anions.   
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3.2.2 Effect of the method of functionalisation of the META polymer monolith on 

the separation of common anions.  

 

The method of photo-grafting of poly(META) on the polymer monolith carried out 

here in this thesis was modified from that reported by Connolly et al. [103]; therefore 

it was important to investigate the effect of the method of photo-grafting on the 

chromatographic separation of anions. An identical standard anion mix to that 

reported by Connolly et al. [103] was prepared and the same chromatographic 

separation conditions used. The advantages of using a two-step photo-grafting method 

over a one step procedure have been documented by Stachowiak et al. [146], 

including a greater degree of control over the grafting process as the free radical 

initiator and monomer were grafted in separate steps. Free radicals are formed on the 

polymer surface which favours graft polymerisation and reduces the formation of 

non-grafted polymer gel in the solution, which are removed during a washing step. 

Figure 3.1 (a) shows an isocratic separation of 6 common anions (fluoride, chlorite, 

bromate, chloride, nitrite and bromide) using the Dionex capillary ion 

chromatography system. This separation was carried out using the poly(META) 

functionalised polymer monolith prepared using the two step procedure by the author 

of this thesis. Using a 2 mM benzoate eluent, separation of the 6 anions was obtained 

in 9 minutes. Retention factor precision was calculated for n = 3 injections and was ≤ 

3.3 % for all six anions in the standard solution. Retention time precision for the first 

four anions was ≤ 0.45 % for n = 3 injections. Figure 3.1 (b) shows a separation of a 

mixture of the same anions obtained by Connolly et al. [103] on the poly(META) 

functionalised polymer monolith prepared using the one-step method of 

functionalisation. The authors calculated retention time precision for the first four 

anions to be < 1.2 % (n = 5 injections). Chromatographic performance data was 

compared for both methods of functionalisation i.e. the method reported by Connolly 

et al. [103] and the method reported in this thesis and can be seen in Table 3.1. In the 

work carried out in this thesis, the polymer monolith was connected to the injector 

valve of the Dionex LC system with 25 cm x 25 µm fused silica capillary, identical to 

that reported by Connolly et al. [103]. As all other chromatographic separation 

conditions were identical, any changes in chromatographic performance should have 

been due to differences within the polymer monolith.   
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Figure 3.1: (a) Separation of 6 anions on poly(META) polymer monolith using the two-step functionalising procedure and (b) separation of the 

same anion mix using the poly(META) functionalised polymer monolith using the one step procedure.  Figure 2.2 (b) reproduced from [103]. 

Chromatographic conditions: effective column length: 100 mm x 100 µm (a) and 110 mm x 100 µm (b), eluent: 2 mM sodium benzoate, 

injection volume: 50 nL, detection: on-column C4D, flow-rate: 1 µL/min.  Peak (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L bromate, 

(4) 0.7 mg/L chloride, (5) 0.7 mg/L nitrite and (6) 3 mg/L bromide.  
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From Table 3.1, differences in the retention of the 6 anions were noted. A decrease in 

k of ~ 40 % was observed with the two-step photo-grafted monolith. The increased 

retention shown by the poly(META) polymer monolith using the one step process 

suggests that an increased ion exchange capacity was obtained using this monolith.   

 

An increase in column efficiency was noted for chlorite, bromate, chloride and 

bromide using the poly(META) column prepared using the two-step process (polymer 

monolith prepared in this thesis). Mass transfer was enhanced using this polymer 

monolith resulting in improved efficiency.  

 

Peak widths (measured at 50 % peak height) increased using the poly(META) 

monolith prepared with the one step process. For example, an increase in peak width 

of ~ 35 % was noted for bromate and bromide when the one step process was 

compared to the two step process. Increased column efficiency (8 %) was obtained for 

fluoride using the poly(META) column prepared by Connolly et al. [103] (i.e. 

poly(META) polymer monolith prepared using the one-step procedure). This was 

possible due to the close proximity of fluoride to the void peak using the poly(META) 

fabricated in this thesis. A slight decrease in efficiency (2.5 %) was also observed for 

nitrite using the poly(META) monolith prepared using the two step process. 
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Table 3.1:  Chromatographic performance data obtained for the separation of the 5 anion mix on a one-step META functionalised polymer 

monolith and a two- step META functionalised monolith using a Dionex capillary ion chromatography system. This Table also contains 

performance data for the same separation of the anion standard mix using an in-house constructed capIC system. Chromatographic conditions:  

as in Figure 3.1.  

Asy – asymmetry calculated at 5 % peak height. 

Res – resolution  

k – retention factor 

N/m- peak efficiency /m

 Monolith using one step  

functionalisation procedure.  

Data reproduced from [103] 

Monolith using two step  

functionalisation procedure. 

Monolith using two step 

functionalisation procedure. 

Instrument  Dionex capillary LC system Dionex  capillary IC system capIC system 

Eluent 2mM sodium benzoate 2mM sodium benzoate 2mM sodium benzoate 

Anion N/m k Res. Asy N/m k Res. Asy N/m k Res. Asy 

Fluoride 15,000 2.6 - 1.15 13,800 1.7 - 1.18 12,000 1.7 - 1.04 

Chlorite 14,000 3.6 2.5 1.40 14,800 2.2 1.7 1.17 11,000 2.2 1.5 0.96 

Bromate 13,000 5.0 2.5 1.26 16,000 3.0 2.0 1.14 11,100 3.1 1.8 0.91 

Chloride 14,500 6.2 1.8 1.20 16,900 3.6 1.5 1.35 13,200 3.7 1.3 1.04 

Nitrite 11,200 7.8 1.8 1.16 10,900 4.4 1.6 1.43 15,400 4.5 1.4 0.95 

Bromide 6,300 10.76 2.8 2.55 10,700 8.2 3.36 2.70 - - - - 
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Baseline resolution of all anions using both monoliths was achieved, with the one-step 

monolith exhibiting slightly greater resolution for all anions, due to the increase in 

column capacity. Peak asymmetries using both poly(META) monoliths showed slight 

tailing with the more strongly retained bromide showing asymmetries > 2 using both 

monoliths. Improved peak asymmetries were obtained for chlorite and bromate using 

the poly(META) monolith prepared using the two step method of photo-grafting. 

Peak shape for chloride, nitrite and bromate obtained for the 6 anions were 

comparable for the poly(META) monoliths prepared using both methods of 

functionalisation. 

 

Although the poly(META) functionalised polymer monolith fabricated using the two-

step procedure showed improved efficiency and faster run times, the one-step 

procedure used in the preparation of the poly(META) monolith carried out by 

Connolly et al. [103] appeared to produced a column with a higher capacity 

(increased number of functional groups). This monolith was also faster to fabricate 

and functionalise, as the functionalisation was carried out in a single step. 

 

The chromatographic data discussed thus far was carried out using a Dionex capillary 

LC system. Table 3.1 also contains chromatographic data for the same separation on 

the poly(META) monolith using an in-house assembled capillary ion chromatography 

(capIC) system which is described in Section 2.1.3 and will be discussed in greater 

detail in Section 3.2.4. 

 
3.2.3 Effect of eluent concentration on efficiency, k and peak width. 

 
 
In ion chromatography, the eluent concentration is one of the most important 

parameters effecting retention.  Salts of aromatic carboxylic acid are commonly used 

as eluents in non-suppressed ion chromatography as dilute concentrations of these 

salts produce eluents with low background conductance, thus facilitating the use of 

on-column C4D detection.  In this work, a weak sodium benzoate eluent (2mM) was 

chosen. The effect of eluent concentration on the retention on the 5 anions was 

investigated using a series of benzoate eluents ranging in concentration from 0.6 mM 

to 2 mM and the resultant chromatograms can be seen in Figure 3.2.   
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Figure 3.2: Overlaid chromatograms of separations of the 5 anions using the META 

functionalised polymer monolith obtained by varying the eluent concentration where 

(a) 2 mM sodium benzoate, (b) 1.4 mM sodium benzoate, (c) 1 mM sodium benzoate 

and (d) 0.6 mM sodium benzoate.  Chromatographic conditions: as in Figure 3.1. 

Peaks: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L bromate, (4) 0.7 mg/L 

chloride, (5) 0.7 mg/L nitrite. 

 

A decrease in eluent concentration resulted in an increase in the retention of all 5 

anions (Figure 3.2), as is generally the case in ion chromatography.  Using the 2 mM 

benzoate eluent, the 5 anions were separated in a retention window of < 6 minutes. 

The run time, when the eluent concentration was reduced to 1.4 mM, was 7 minutes.  

    

Table 3.2 shows the chromatographic performance data obtained for the separation of 

the 5 anion mix by varying the concentration of the benzoate eluent from 1 mM to 2 

mM. A comparison of the chromatographic data obtained using the 2 mM benzoate 

eluent and the 1.4 mM benzoate eluent showed that an increase in efficiency was 

obtained for all 5 anions when the eluent concentration was decreased from 2 mM to 

1.4 mM without any significant difference in peak asymmetry. As expected, 

decreasing the eluent concentration resulted in an increase in peak width. The largest 

change in peak width was obtained for nitrate. Using a 2 mM benzoate eluent, the 

peak width was 0.28 minutes and was 0.61 minutes using the 0.6 mM benzoate eluent.  
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Table 3.2 (a): Effect of eluent concentration on efficiency, retention and peak width 

using the META functionalised polymer monolith using 2 mM and 1.4 mM benzoate 

eluents and (b) 1 mM and 0.6 mM benzoate eluents.   

 

 
 
 

 
Asy. – asymmetry calculated at 5 % peak height. 

Res. – resolution  

Peak width – measured at 50 % peak height in minutes. 

 

 

 

 

 

(a) 2 mM benzoate  1.4 mM benzoate 

Anion N/m k Peak 
width 

Asy Res  N/m k Peak 
width 

Asy Res 

            
F- 13,000 1.7 0.16 1.2 -  13,400 2.2 0.19 1.2 - 

ClO2
- 15,000 2.2 0.17 1.2 1.7  15,240 2.9 0.21 1.2 1.7 

BrO3
- 15,500 3.0 0.21 1.2 2.1  15,700 3.8 0.25 1.2 2.1 

Cl- 16,500 3.6 0.24 1.2 1.5  17,100 4.6 0.29 1.3 1.6 

NO3
- 15,500 4.4 0.28 1.3 1.5  15,900 5.5 0.34 1.3 1.5 

(b) 1 mM benzoate  0.6 mM benzoate 

Anion N/m k Peak 
width 

Asy Res  N/m k Peak 
width 

Asy Res 

            
F- 13,200 3.0 0.23 1.1 -  12,700 4.7 0.31 1.1 - 

ClO2
- 15,200 3.8 0.26 1.1 1.8  14,800 5.9 0.35 1.1 1.9 

BrO3
- 15,850 5.0 0.31 1.2 2.1  14,700 7.7 0.45 1.2 2.2 

Cl- 16,750 6.0 0.36 1.3 1.7  16,000 9.4 0.51 1.3 1.7 

NO3
- 15,500 7.1 0.43 1.3 1.5  15,300 11 0.61 1.3 1.5 
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Slight changes in resolution were noted as the eluent concentration was decreased.  

An increase in resolution of ~ 10 % was observed between chlorite and fluoride and 

also between the bromate/chloride pair. Peak efficiencies were comparable using the 2 

mM, 1.4 mM and 1 mM benzoate eluent. Using the 0.6 mM benzoate eluent, decreases 

in efficiency of < 6 % for all anions was obtained. From a comparison of all 

chromatographic data in Table 3.2, it appeared that the optimised eluent concentration 

was 1.4 mM.    

 

A plot of log k versus log [benzoate] was prepared using retention data and can be 

seen in Figure 3.3. This plot showed linear correlation for all 5 anions with R2 values 

> 0.99. Table 3.3 shows linearity data obtained from Figure 3.3 for the 5 separated 

anions. The values for the slopes obtained for all 5 anions are in broad agreement with 

the theoretical slope of - 1.0 for anion exchange elution of a singly charged anion 

using a single charged eluent ion [146]. One eluent ion displaces one analyte ion of 

the same charge.  This demonstrates that the mode of separation was predominately 

ion exchange. 
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Figure 3.3: Plots of log k versus log[benzoate] demonstrating that the mode of 

separation was anion exchange using the META functionalised polymer monolith. (1) 

nitrite, (2) chloride, (3) bromate, (4) chlorite and (5) fluoride.  
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Table 3.3: Linearity regression data obtained on the META functionalised polymer 

monolith from a variation in the eluent concentration.   

 

Anion Slope Intercept R
2
 

Fluoride -0.82 -1.99 0.99 

Chlorite -0.80 -1.81 0.99 

Bromate -0.77 -1.61 0.99 

Chloride -0.76 -1.51 0.99 

Nitrite -0.75 -1.40 0.99 

 
 
3.2.4 Separation of inorganic anions on the poly(META) polymer monolith using 

the capIC system. 

 

Trends in recent years have seen an increase in interest in the area of portable and 

field deployable analytical devices, such as the portable ion chromatography system 

reported by Kiplagat et al. [147] used for the separation of cations and transition 

metals using open tubular columns, and the portable CE system reported by 

Hutchinson et al. [148] which was applied to the separation of inorganic anions and 

cations in post blast explosive residues from homemade inorganic explosive devices.  

Both of the systems in [147] and [148] incorporated C4D detection. Here in this thesis, 

separation of anions using the poly(META) surface modified polymer monolith were 

also carried out on an  in-house assembled capIC system. This capIC system has the 

potential to be used as a field deployable, portable device.   

 

Figure 3.4 shows a separation of the 5 anion standard mix, previously separated on the 

Dionex system, using the capIC system as described in Section 2.1.3. Separation of 

the 5 anions occurred in < 2.5 minutes. Using the capIC system, the poly(META) 

monolith was plumbed directly into the injector valve and on-column C4D detection 

was employed at the mode of detection accounting for differences in the run-times 

observed with both systems. Table 3.1 shows the retention factors for the separations 

carried out on the capIC system and the Dionex capillary ion chromatography system. 

As can be seen from Table 3.1, the retention factors are extremely comparable, 

however, a difference in run time was observed due to the elimination of extra system 
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dead volume. The capIC system had a run time of < 2.5 mins (for the first five anions) 

and the same separation on the Dionex capillary ion chromatography system had a run 

time of < 6 mins, thus demonstrating a portable capIC system suitable for the fast ion 

chromatography separation of the selected anions.   
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Figure 3.4: Separation of 5 anions using an in-house constructed capIC system.  

Chromatographic conditions: Column dimensions: 100 mm x 100 µm, eluent: 2 mM 

sodium benzoate, injection volume: 20 nL, flow rate: 1.3 µL/min and detection: on-

column C4D detection.  Peak: (1) 0.7 mg/L fluoride, (2) 3 mg/L chlorite, (3) 3 mg/L 

bromate, (4) 0.7 mg/L chloride, (5) 0.7 mg/L nitrite. 

 

Although faster analysis was obtained using the capIC system, a decrease in column 

efficiency was obtained for fluoride (13 %), chlorite (27 %), bromate (30 %) and 

chloride (22 %), when compared with the same separation using the Dionex LC 

system. A decrease in resolution was also observed particularly between bromate and 

chloride where a resolution of 1.3 was obtained. As mentioned above, the 

poly(META) monolith was plumbed directly into the injector valve, thus eliminating 

any excess connective tubing, which would have an effect on the run time.  A second 

reason for the decrease in retention of the anions on the capIC system may lie in the 

pumping system used. The Dionex capillary ion chromatography system contained a 

calibrated flow splitter, therefore ensuring an accurate flow-rate, even at low µL/min 

levels. On the capIC system, a high pressure pump was used which did not contain a 
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flow splitter, thus anomalies in the flow-rate may have occurred. The flow-rate was 

monitored at 1 µL/min using a flow sensor (Upchurch Scientific, Oak Harbour, WA, 

USA) and it was discovered that the actual flow-rate was 1.3 µL/min. An increase in 

the flow-rate would account for the decrease in resolution and efficiency, particularly 

for chlorite, bromate and chloride, obtained on the capIC system. Connolly et al. 

[103] obtained an efficiency of 15,000 N/m for fluoride using a flow-rate of 1 µL/min 

and an efficiency of 29,500 N/m when the flow-rate was reduced to 100 nL/min. 

 

An improvement in peak asymmetry was observed for the separation of the standard 

mix on the capIC system. Peak asymmetries close to 1 were obtained for fluoride, 

chlorite, bromate, chloride and nitrite, respectively.  These values represent an ideal 

Gaussian peak shape. The asymmetry values, obtained for the separation of the 

standard mix using the Dionex LC system, showed some tailing of the analyte peaks, 

possibly due to the extra column volume associated with the set-up of this system.   

 
Limits of detection were calculated for the Dionex system and the capIC system and 

can be seen in Table 3.4. This table also shows absolute limits which take the 

injection volume into account.  Signal/noise ratios of 105 for the Dionex system and 

10 for the capIC system were calculated (using chloride) showing that the Dionex 

system was a more sensitive than the capIC system. C4D detection used in both cases 

was on-column and the difference in the signal/noise ratios was due to increase pump 

noise associated with the use of the analytical pump in the capIC system. 

 

The LOD values obtained on the capIC system were comparable to those obtained by 

Kiplagat et al. [147], who reported concentration LOD’s of 0.8 – 8 µmol/L which 

corresponded to 40 - 400 fmole injected cations using a portable, lightweight ion 

chromatography system, which employed C4D as the mode of detection. Although the 

Dionex system exhibited a superior sensitivity over the capIC system, this capIC 

system showed the ability to separate the five selected anions within a short retention 

time window (run time < 2.5 minutes).   
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Table 3.4: Approximate detection limits calculated for the anions separated on the 

capIC system and for the same separation on the Dionex system. Chromatographic 

conditions: as in Figure 3.4. 

 

 Dionex capLC system capIC system 

Anion mg/L Absolute limits 

(pmole) 

mg/L Absolute limits 

(pmole) 

Fluoride 0.03 0.08 0.2 0.20 

Chlorite 0.1 0.07 1.5 0.45 

Bromate 0.2 0.08 1.3 0.20 

Chloride 0.02 0.03 0.2 0.11 

Nitrite 0.2 0.20 1 0.43 

 

3.2.5 Chromatographic performance data for 30 organic and inorganic anions 

using the capIC system. 

 

Using the in-house constructed capIC system, retention data for 30 anions (organic 

and inorganic) was carried using the poly(META) monolith. Chromatographic 

performance data, including column efficiency, retention time data and peak width, 

were obtained and can be seen in Table 3.5.  Table 3.5 also includes retention factor 

data obtained by Ó’Ríordáin et al. [149] using an Onyx C18 silica based monolithic 

column (150 mm x 0.1 mm) modified with DDMAU. In this work, Ó’Ríordáin et al. 

[149] used a system similar to that described in this work (capIC) and also plumbed 

the capillary column directly into the injector valve. Detection was carried out using 

on-column C4D detection, therefore the effects of extra column band broadening were 

eliminated. Retention in ion chromatography depends on a number of factors, such as 

the charge of the analyte ion, the solvated size and the polarisability of the analyte ion 

and the type of eluent used [2]. In general, retention time increases with increased 

anion charge. As electroneutrality is maintained at all times, one monovalent eluent 

ion displaces one monovalent analyte ion. From Table 3.5, the retention of anions on 

the poly(META) monolith is in broad agreement (with some deviations) with this 

statement whereby most of the singly charged anions were less retained than the 

divalent anions.  



 129 

Table 3.5: k values for organic and inorganic anions using the GMA-co-EDMA 

polymer monolith functionalised with META.  

 

Anion 

# 

Anion k N/m k 

[149] 

Order of 

elution from 

[149] 

1 Methanesulfonate (CH3SO3 
-) 0.52 8,430 - - 

2 Chloroacetate (CH2ClCO2
-) 0.73 9,900 1.23 8 

3 Trifluoroacetate (CF3CO2
-) 0.75 6,700 - - 

4 Dichloroacetate (CHCl2CO2
-) 0.86 8,300 - - 

5 Carbonate (CO3
2-) 1.06 9,900 - - 

6 Acetate (CH3COO-) 1.30 11,000 - - 

7 Fluoride (F-) 1.32 12,000 - - 

8 Iodate (IO3
-) 1.38 7,100 0.71 3 

9 Selenite (SeO3
2-) 1.48 6,700 0.49 2 

10 Chlorite (ClO2
-) 1.52 11,000 1.32 9 

11 Formate (HCOO-) 1.56 11,300 0.77 4 

12 Bicarbonate (HCO3
-) 1.69 9,000 0.30 1 

13 Bromate (BrO3
-) 2.16 11,600 1.00 5 

14 Sulphite (SO3
2-) 2.36 10,900 7.09 13 

15 Dithionate (S2O4
2-) 2.49 9,200 - - 

16 Chloride (Cl-) 2.78 13,200 1.03 6 

17 Nitrite (NO2
-) 2.97 15,400 1.17 7 

18 Chlorate (ClO3
-) 4.50 9,200 2.25 12 

19 Bromide (Br-) 4.81 11,100 1.39 10 

20 Nitrate (NO3
-) 5.55 8,600 1.52 11 

21 Persulphate (S2O8
2-) 7.40 2,800 - -- 

22 Molybdate (MoO4
2-) 11.46 1,350 - - 

23 Oxalate (C2O4
2-) 15.34 1,510 - - 

24 Thiocyanate (SCN-) 15.41 1,550 20.88 15 

25 Dichromate (Cr2O7
2-) 16.97 2,300 - - 

26 Hydrogen phthalate 
C6H4(CO2)2

2- 
18.37 5,500 - - 

27 Tungstate (WO4
2-) 19.66 4,500 - - 

28 Perchlorate (ClO4
-) 21.61 1,700 23.40 16 

29 Thiosulphate (S2O3
2-) 22.40 4,900 13.12 14 

30 Chromate (CrO4
2-) 59.02 9,530 - - 
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Note: Column number 5 in Table 3.5 are k values taking from [149] and column 

number 6 compares the elution order obtained from [149] with the elution order 

obtained for the same anions in this thesis. 

 

Retention in ion chromatography also depends on the solvated size of the analyte ion. 

Smaller molecules, such as nitrite (NO2
-) have a smaller solvated size than larger 

molecules such as nitrate (NO3
-), holding water molecules more strongly. The water 

molecules shield the analytes ion charge from the charge on the ion exchange 

functional group which results in less retention in comparison to a less hydrated 

analyte ion. An increase in the hydrated ionic radii of the analyte ion results in a 

decrease in retention.  Ionic radii increase on descending a group in the periodic table, 

therefore the retention order for the halogen anions should be F- < Cl- < Br- < I-.  This 

order of elution was observed using the poly(META) polymer monolith.   

 

From Table 3.5, an elution order of  IO3
- < BrO3

- < NO2
- < Br- < NO3

- was obtained 

demonstrating the same selectivity for the poly(META) monolith to separations 

reported in the literature using both polymer and silica monoliths. For example, 

Zakaria et al. [104] prepared a BuMA-co-EDMA-co-AMPS polymer monolith (300 

mm x 250 µm I.D.), which was modified with latex nano-particles bearing quaternary 

ammonium functionalities. Using contactless conductivity detection and a 1 mM KOH 

eluent, the authors obtained an elution order of IO3
- < BrO3

- < NO2
- < Br- < NO3

-.  

This work was followed up by Hutchinson [105] who obtained an elution order of 

IO3
- < BrO3

- < NO2
- < Br- < NO3

- < I- using a GMA-co-EDMA polymer monolith 

which was modified with the same latex nano-particles described by Zakaria et al. 

[104].  An elution orders of IO3
- < BrO3

- < NO2
- < Br- < NO3

- was obtained using 

silica monoliths modified with cetyltrimethylammonium chloride (CTAC) [110] and 

dilauryldimethylammonium bromide (DDAB) [111] surfactants, respectively.  

 

As mentioned, Table 3.5 also contains k data obtained by Ó’Ríordáin et al. [149] 

using an Onyx C18 silica based monolithic column (150 mm x 100 µm I.D.) modified 

with DDMAU and changes in selectivity between the poly(META) polymer monolith 

and the DDMAU coated silica monolith were evident. The most weakly retained 

anion using the DDMAU coated silica monolith was bicarbonate (k of 0.30). With the 

poly(META) polymer monolith, a k value of 1.69 was obtained for bicarbonate, while 
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the retention for a range of anions, including fluoride, chlorite, formate and iodate 

were eluted prior to bicarbonate. Formate, bromate, chloride and nitrite showed the 

same order of elution on both columns. Figure 3.5 shows an overlay of 

chromatograms obtained for formate, bromate and chloride using the poly(META) 

polymer monolith demonstrating the possibility of the separation of the three anions 

using the separation conditions reported in this thesis. With the DDMAU coated silica 

monolith [149], k values of 0.80, 1.00 and 1.03 were obtained for formate, bromate 

and chloride demonstrating the inability to separate the three anions with the 

chromatographic conditions used by the authors. 
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Figure 3.5: Overlay of chromatograms obtained using the poly(META) polymer 

monolith.  Chromatographic conditions: as in Figure 2.5. Peaks: (a) 10 ppm formate, 

(b) 10 ppm bromate and (c) 10 ppm chloride. Also included in Figure 3.5 is the 

chromatogram obtained for a blank injection (green trace). Chromatographic 

conditions: as in Figure 3.4.     

 

Chloroacetate (k of 1.23) showed a similar k value to nitrite (k of 1.17) using the 

DDMAU coated silica monolith, whereas a k value of 0.73 was obtained for 

chloroacetate and 2.97 for nitrite using the poly(META) modified polymer monolith 

described in this thesis. Sulfite was retained significantly longer than nitrate using the 

DDMAU coated silica monolith but was retained prior to nitrate using the 

poly(META) polymer monolith. 

blank 
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Figure 3.6 shows an overlay of chlorate, chloride and chlorite using the poly(META) 

polymer monolith. Ó’Ríordáin et al. [149] carried out a separation of chlorate, 

chloride and chlorite using a silica based monolithic column modified with DDMAU. 

The authors reported a run time of 4.5 minutes. In this work, the overlaid 

chromatograms of these three anions show the potential for their separation in a short 

retention window (2.5 minutes). The retention order was chlorite < chloride < 

chlorate, which demonstrated a change in selectivity to that reported by Ó’Ríordáin et 

al. [149] where a retention order of chloride < chlorite < chlorate was obtained using 

the DDMAU coated silica monolith. 
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Figure 3.6: Overlay of chromatograms obtained using the META functionalised 

polymer monolith. Chromatographic conditions: as in Figure 2.6, peak (a) 100 ppm 

chlorite, (b) 10 ppm chloride and (c) 100 ppm chlorate. Also included in Figure 3.6 is 

the chromatogram obtained for a blank injection (green trace). Chromatographic 

conditions: as in Figure 3.4.     

  

Traditionally, anions such as fluoride are difficult to retain due to their high hydrated 

ionic radii and their ability to attract water molecules.  Previous work has reported the 

difficulty in the isocratic separation of these anions from the void peak. Glenn et al. 

[150] reported a k value of 0.49 for fluoride using a silica monolith coated with 

DDAB but failed to obtain retention for fluoride using a silica monolith with 

electrostatically bound latex nano-particles using a 4-hydroxybenzoic eluent. In this 
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work, a k value of 1.32 was obtained for fluoride demonstrating the strong anion 

exchange properties of the poly(META) monolith, while Connolly et al. [103] 

obtained a k value of 2.6 for fluoride using the poly(META) monolith described 

previously. 

 

Small organic acid ions such as formate and acetate have proven difficult to separate 

isocratically due the small differences in their affinities [151]. Short retention times 

for these organic acids are generally reported and a large number of solute-sorbent 

interaction sites are required for their separation [152]. Figure 3.7 shows overlaid 

chromatograms of formate and acetate carried out on the META functionalised 

polymer monolith using the capIC system.  k values of 1.30 and 1.56 were obtained 

for acetate and formate respectively, showing the potential for their separation under 

fully optimised chromatographic conditions. 
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Figure 3.7: Overlay of chromatograms obtained using the META functionalised 

polymer monolith.  Peak (a) = 10 ppm acetate and peak (b) = 10 ppm formate.  Also 

included in Figure 3.7 is the chromatogram obtained for a blank injection (black 

trace). Chromatographic conditions: as in Figure 3.4.     

 

As mentioned previously, the one of the aims of this research thesis was to try to 

improve the separation of small ions using polymer monoliths. Table 3.6 shows a 

comparison of column efficiencies obtained for the poly(META) polymer monolith 
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with other capillary columns with various ionogenic functionalities carried out by 

different research groups. Peak efficiencies obtained by the poly(META) polymer 

monolith in this thesis were slightly improved upon when compared to other capillary 

ion exchange columns.  
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Table 3.6: Comparison of peak efficiencies of other anions exchange capillary columns. 

*(ii) Ring opening of the epoxy groups through reaction with thiobenzoic acid in the presence of triethylamine in acetonitrile at 60 oC, followed 
by flushing with methanol. The generated thiol groups were oxidised using tert-butyl hydroperoxide before coating with the latex nano-particles. 
*(iii) The GMA-co-EDMA monolith was sulfonated using a solution of sodium sulfate and coated with the latex nano-particles.

Column Column 

dimensions 

Eluent Detection Efficiency (N/m) Anions Ref 

poly(META) photo-grafted 
polymer monolith                                   
(Dionex LC system) 

100 mm x 100 
µm I.D.  

2 mM sodium 
benzoate 

on-column C4D 
detection 

10,700 - 16,900 N/m F−, Cl−, NO2
-, Br-, 

BrO3
- and ClO2

- 
Present 
work 

BuMA-co-EDMA-co-AMPS 
with attached AS18 particles 

300 mm x 250 
µm I.D.  

1 mM KOH suppressed 
conductivity 

5400 N/m IO3
- [9]  

Particle packed AS11 500 mm x 180 
µm I.D. 

electrodialytic 
NaOH generator 

Conductivity 
detection 

21,018 - 27,300 N/m Cl- and SO4
2- [22] 

 

GMA-co-EDMA 
functionalised by reaction of 
triethylamine 

750 mm x 100 
µm I.D.  

10 mM NaClO4 UV detection at 
210 nm 

75,000 N/m (100 nL/min)                             
18,000 N/m (700 nL/min) 

NO2
-, BrO3

-, NO3
- [23] 

AS18 coated GMA-co-EDMA 
monolith sulfonated using 
method (ii)* 

348 mm x 250 
µm I.D.  

10 mM NaClO4 UV detection  2,680 - 4,550 N/m NO2
-, BrO3

-, NO3
-, 

IO3
-, Br-, I-, 

benzenesulfonate 

[11] 

AS18 coated GMA-co-EDMA 
monolith sulfonated using 
method (iii)* 

143 mm x 250 
µm I.D.  

10 mM NaClO4 UV detection  7,980 - 11,200 N/m NO2
-, BrO3

-, NO3
-, 

IO3
-, Br-, I-

benzenesulfonate 

[8] 
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3.3 Conclusion 

 

A GMA-co-EDMA polymer monolith was fabricated using thermally initiated 

polymerisation. The surface of the polymer monolith was subsequently grafted with 

polymer chains of poly(META) using UV irradiation, in a two step procedure, 

following photo-grafting of benzophenone. This poly(META) polymer monolith was 

compared to a similar poly(META) polymer monolith reported in the literature, 

whereby the benzophenone and poly(META) were photo-grafted in a single step. To 

the author’s knowledge, the work reported by Connolly et al. [103] was the first 

reported instance of the functionalisation of a polymer monolith, for anion analysis, 

using photo-grafting techniques. Separation of the six anions was carried out and due 

to increased retention of all anions, the poly(META) polymer monolith prepared 

using the one step method of functionalisation (produced by Connolly et al. [103]) 

produce a higher ion exchanger than the two-step procedure (produced in this thesis). 

However, the poly(META) polymer monolith prepared using the two step process, 

yielded faster run times and higher peak efficiencies while still maintaining baseline 

resolution of all anions. 

 

Characterisation of the poly(META) polymer monolith (using the two step procedure) 

was also carried out using an in-house assembled capIC system. The k values obtained 

for the Dionex LC system were comparable with those obtained using the capIC 

system demonstrating a novel, portable system suitable for the fast separation of the 

analytes of interest. The incorporation of grafted chains of poly(META) produced a 

suitable monolith for the retention of a wide range of organic and inorganic anions. 

Peak efficiencies obtained using the poly(META) polymer monolith were also 

comparable to other polymer monoliths with ion exchange functionalities.    
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Chapter 4.0: 

 
 

Separation of cations using a capillary polymer monolith 

functionalised with 3-sulfopropyl methacrylate 
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4.1 Introduction 

 

To date, limited research has been carried out on the fabrication of capillary polymer 

monoliths for the separations of small cations. In 2004, Ueki et al. [49] prepared a 

GMA-co-EDMA monolith in 250 µm I.D. fused silica capillary. Sulfonation of the 

surface of the monolith was carried out by flushing a solution of Na2SO2 through the 

monolith at 75 oC, allowing attachment of sulfonated groups through ring opening of 

the epoxy groups on the monolith surface. The authors found that increasing the 

reaction time, from 1 hour to 12 hours during the sulfonation procedure, allowed the 

fabrication of sulfonated capillary monolith exhibiting ion exchange capacities. The 

resultant monoliths were used for the separation of sodium, ammonium, potassium, 

magnesium and calcium using a copper sulphate eluent. Column efficiencies > 20,000 

N/m were obtained for all cations studied in this work. Gillespie et al. [112] reported 

the use of a capillary monolithic column, albeit a silica monolith, for the separation of 

alkaline earth metals. The authors modified the monolith with the ionic surfactant 

DOSS, rendering it suitable for cation exchange chromatography. Column efficiencies 

> 40,000 N/m were obtained for all 4 alkaline earth metals, thus demonstrating the 

differences in column efficiencies when polymer monolith are compared to silica 

monoliths.  

 

In the work in this thesis, a polymer monolith was functionalised with 3-sulfopropyl 

methacrylate (SPM) using photo-grafting techniques, following the formation of free 

radicals on the surface of the monolith using benzophenone.  The resultant monolith 

was applied to the separation of alkaline earth metals using a copper sulphate eluent. 

Temperature analysis, using an in-house constructed capillary column heater is also 

presented.  

 

4.2 Results and Discussion 

 

4.2.1 Monolith fabrication and functionalisation with poly(SPM) 

 
The functionalisation of the polymer monolith was carried out using a two step 

process, similar to the method described for the functionalisation of the poly(META) 

polymer monolith in Chapter 3.0. The first step involved immobilisation of 
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benzophenone onto the surface of the monolith by a process of hydrogen abstraction 

allowing the formation of free radicals, which favours the growth of polymer chains 

from the surface of the monolith [146]. This resulted in a polymer monolith with 

surface sulfonated groups. 

 

4.2.2 Separation of alkaline earth metals using poly(SPM) polymer monolith 

 

The cation exchange polymer monolith (90 mm x 100 µm I.D.) with photo-grafted 

sulfonated groups was used for the separation of calcium, magnesium and barium 

with UV detection at 210 nm.  Copper sulphate was chosen as the eluent as it has been 

shown to be suitable for the separation of cations [49]. Under these chromatographic 

conditions, the elution order on the SPM functionalised BuMA-co-EDMA polymer 

monolith was Mg(II) < Ca(II) < Ba(II), as shown in Figure 4.1, which is the typical 

elution order when retention is due to ion exchange [49, 112]. Negative peaks were 

obtained as the peaks were detected using indirect UV detection. 

 

Chromatographic performance data was obtained and can be seen in Table 4.1. 

Column efficiencies of 10,600 N/m were obtained for Mg(II), 10,900 N/m for Ca(II) 

and 7,600 N/m for Ba(II).  Table 4.1 also includes peak width (measured at 50 % peak 

height) of 0.28 mins, 0.33 mins and 0.48 mins for Mg(II), Ca(II) and Ba(II). 

respectively. Mg(II) showed a peak asymmetry of 1.2 while Ca(II) and Ba(II) showed 

peak asymmetries of 0.7 and 0.8 suggesting clear fronting of both peaks. Resolution 

of 1.3 was obtained for the Mg(II)/Ca(II) pair showing that these cations were not 

baseline resolved however baseline resolution between Ca(II) and Ba(II) was 

achieved (resolution of 1.5).  Ueki et al. [49] prepared a sulfonated GMA-co-EDMA 

polymer monolith and applied it to the separation of alkali and alkaline earth metals 

(Na+, NH4+, K+, Mg2+ and Ca2+).  Theoretical plates > 20,000 N/m were obtained for 

all cations (figures for individual cations not given) using a 10 mM copper sulfate 

eluent, a flow-rate of 0.3 µL/min and indirect UV detection at 210 nm.   

 

Comparing the monolith in this work (BuMA-co-EDMA) to that obtained by Ueki et 

al. [49], a clear difference in efficiency is evident. Using flow-rates of 3 µL/min, Ueki 

et al. [49] obtained k values of 2.25 and 5.25 were obtained for Mg(II) and Ca(II) 

respectively. In this present work, k values of 2.2 and 2.9 were obtained for Mg(II) 
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and Ca(II) using a flow-rate of 1 µL/min and an eluent of 1 mM copper sulphate. 

Although k values for Mg(II) were comparable, Ueki et al. [49] showed increased 

retention for Ca(II) clearly demonstrating the differences in capacity between the two 

monoliths. 

 

The sulfonation of the polymer monolith by ring opening of the epoxy groups 

prepared by Ueki et al. [49] was restricted to the number of epoxy groups on the 

surface of the monolith. The method of sulfonation of the polymer monolith used by 

Ueki et al. [49] using Na2SO3 appeared to yield a higher capacity than the polymer 

monolith prepared in this work. The method of photo-grafting poly(SPM) onto the 

surface of the monolith requires further optimisation of the procedure to improve 

column capacity and in turn improve column efficiency and retention. 
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Figure 4.1: Separation of 100 ppm Mg(II), 100 ppm Ca(II) and 100 ppm Ba(II) using 

the in-house constructed capIC system. Chromatographic conditions: column: BuMA-

co-EDMA functionalised with SPM (100 µm I.D x 90 mm), eluent: 1 mM copper 

sulpfate, flow-rate: 1 µL/min, injection volume: 20 nL, detection: indirect UV at 210 

nm.   
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Table 4.1: Chromatographic performance data for the separations of Mg(II), Ca(II) 

and Ba(II).  Chromatographic conditions: as in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

4.2.3 Temperature studies. 

 

 

Temperature effects are often omitted in chromatographic method development as the 

retention and selectivity of a chromatographic separation can be manipulated by 

varying the concentration of the eluent or changing the stationary phase.  There are a 

number of advantages to using high temperatures in LC, such as lower solvent 

viscosity, resulting in lower back-pressure generated [153]. Lower solvent viscosity 

allows for use of higher flow rates of the eluent, which increases the speed of 

analysis. Increasing the temperature may also be a simple way of varying retention 

[154] or selectivity [143] and can be easily incorporated into a separation system.  

 

 

4.2.3.1 Calibration of capillary column heater. 

 

 
To investigate the effect of temperature on the retention and efficiency of the 3 

selected cations, a column heater had to be incorporated into the in-house assembled 

capIC system. In order to determine if the flexible tape was suitable for use as a 

capillary heater, calibration was carried out using a multimeter with a temperature 

setting and a thermocouple wire placed inside the heater. Voltage was applied in     

0.5 V increments and the temperature noted. Figure 4.2 shows a plot of temperature 

versus voltage applied (n=4), including error bars, between 25 – 80 oC. The 

temperature was reproducible for any given voltage applied with % RSD values < 0.8 

%. 

Cation N/m k Peak 

width
1/2

 

(mins) 

Asy

. 

Res. 

Mg(II) 10,600 1.8 0.28 1.2 - 

Ca(II) 10,900 2.2 0.33 0.7 1.25 

Ba(II) 7,600 2.9 0.48 0.8 1.53 
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Figure 4.2: Plot of temperature versus voltage applied to the heating tape showed a 

linear correlation between 25 – 80 oC.   

 

4.2.3.2 Effect of temperature on the separation of Ca(II), Mg(II) and Ba(II) 

 
The effect of temperature on Ca(II), Mg(II) and Ba(II) was investigated using the 

sulfonated polymer monolith. Separations were carried out at temperatures ranging 

from 27 oC to 70 oC.  The column was allowed to equilibrate for 30 minutes prior to 

use. An overlay of the separations carried out at 27 oC and 62 oC can be seen in Figure 

4.3. 
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Figure 4.3:  Separation of Ca(II), Mg(II) and Ba(II)  at 27 oC (a) and 62 oC (b). All 

chromatographic conditions as in Figure 4.1.  

(a) 

(b) 
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As can be seen from Figure 4.3, an increase in temperature resulted in a decrease in 

retention of all three metals cations. Previous studies have also shown a decrease in 

retention of cations with an increase in temperature [143, 153]. From Table 4.2, an 

increase in efficiency for all three cation was observed with an increase in 

temperature up to 67 oC. Decrease in retention factors of 7 % for Mg(II), 11 % for 

Ca(II) and 15 % for Ba(II) were observed. An increase in efficiency of 80 % was 

observed for Mg(II), 70 % for Ca(II) and 50 % for Ba(II) when the temperature was 

increased from 27 oC to 62 oC. At ambient temperature, resolution of Mg(II)/Ca(II) 

was not achieved (resolution of 1.25) however resolution for Ca(II)/Ba(II) was 

achieved (resolution of 1.53). Although an increase in efficiency was achieved at 

higher temperatures, baseline resolution was further compromised.   

 

Rey et al. [154] observed a significant increase in efficiency with an increase in 

temperature, while observing a decrease in retention of common cations including 

alkaline earth metals, using a CS12A (carboxylated and phosphonic functionalities) 

with a methanesulfonic acid eluent. The authors reported increases in column 

efficiency of 30 % for Mg(II), 34 % for Ca(II) and 35 % for Ba(II) when the 

temperature was increased to 50 oC from 25 oC . Decreases in retention factors of 13 

% for Mg(II), 19 % for Ca(II) and 44 % for Ba(II) were reported.  Increases in 

efficiency were also noted by Hatsis et al. [143] with an increase in temperature.  

 

Here, in this present work, increases in efficiency of 20 % for Mg(II), 12 % for Ca(II) 

and 25 % for Sr(II) were obtained when the temperature was increased from 27 oC to 

60 oC. Table 4.2 also contains peak width data, measured at 50 % peak height. The 

largest difference in peak width was observed for Ba(II), where a decrease from 0.48 

mins at ambient temperature to 0.35 mins at 62 oC. Differences in peak width for 

Mg(II) and Ca(II), when the temperature was increased to 62 oC were minimal. To 

determine if temperature (above 62 oC) had a deleterious effect of the sulfonated 

groups on the polymer monolith, the temperature was allowed to return to ambient 

temperature. A separation of the three cation standard mix was carried out and no loss 

of retention or efficiency was observed. 
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Table 4.2:  Chromatographic performance data obtained for the separation of the 3 cation standard mix using the SPM functionalised polymer 

monolith.  Chromatographic conditions: as in Figure 3.3. 

Temp. 

(
o
C) 

 N/m k Peak 

width 

 N/m k Res. Peak 

width 

 N/m k Res. Peak 

width 

  Mg(II)  Ca(II)  Ba(II) 
25  10,600 1.8 0.28  10,900 2.2 1.25 0.33  7,600 2.9 1.53 0.48 

29  12,700 1.8 0.28  13,100 2.2 1.24 0.31  9,600 2.94 1.57 0.45 

33  15,100 1.77 0.27  16,300 2.29 1.34 0.29  10,200 2.93 1.62 0.43 

39  16,200 1.76 0.25  16,100 2.20 1.34 0.32  10,000 2.86 1.55 0.45 

45  16,300 1.77 0.26  15,900 2.19 1.32 0.30  10,900 2.85 1.58 0.42 

52  17,000 1.80 0.25  16,300 2.23 1.37 0.30  12,200 2.78 1.39 0.38 

57  17,000 1.73 0.24  16,500 2.15 1.34 0.28  12,900 2.70 1.44 0.36 

62  19,400 1.67 0.23  18,700 2.04 1.17 0.26  12,800 2.56 1.33 0.36 

67  15,900 1.56 0.24  16,600 1.95 1.18 0.27  11,800 2.47 1.28 0.35 



The relationship between column temperature and retention can be described by the 

van’t Hoff equation (Equation 4.1).  

 

 

                            ln k = - ∆H/RT + ∆S/R + ln φ                     Equation 4.1 

 

 

where k is the retention factor, ∆H is the enthalpy change for the exchange reaction, R 

is the universal gas constant, T is the temperature, ∆S is the entropy change and φ is 

the column phase ratio (which is constant for a given column). ∆S is assumed to be 

constant, therefore the equation becomes: 

 

 

                                           ln k = - ∆H/RT                                Equation 4.2 

 

 

Plots of ln k versus 1/T should be linear and have a slope = - ∆H/R [155]. Van’t Hoff 

plots were constructed for Ca(II), Mg(II) and Ba(II). Positive slopes for the three 

metals were obtained indicating that the absorption process exhibited exothermic 

behaviour i.e. the retention of metals decreased with an increase in temperature [153]. 

From the linear regression data in Table 4.3, it is clear that increasing the temperature 

did not have the same effect on all three cations. The more strongly retained Ba(II) 

showed the largest van’t Hoff slope in comparison to Ca(II) and Mg(II) showing that 

the effects of temperature on the retention of Ba(II) were more pronounced.  

 

 
Table 4.3: Linear regression data from van’t Hoff plots.  

 

 Slope Intercept R
2
 

Mg(II) 56.53 0.07 0.97 

Ca(II) 69.92 0.12 0.94 

Ba(II) 149.28 - 0.02 0.96 
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Heats of adsorption generally do not exceed 3 kJ mol-1 when ion exchange is the 

dominant separation mechanism [51]. In this present work, heats of adsorption of - 

0.45, - 0.58 and - 1.2 kJ mol-1 for Mg(II), Ca(II) and Ba(II), respectively were 

obtained (calculated from the linear regression data in Table 4.3), showing exothermic 

behaviour (a decrease in retention with an increase in temperature).  Paull et al. [155] 

obtained ∆H values of -1.01 for Mg(II) and – 0.46 for Ca(II) using a dicarboxylated 

polymeric cation exchanger and a 2 mM nitric acid eluent.  However, when a strong 

electrolyte was added to the eluent ∆H values significantly increased (17.32 for 

Mg(II) and 13.61 for Ca(II)) showing that the ion exchange interactions were 

suppressed and chelation became the dominant separation mechanism.  

Kolpachnikova et al. [129] obtained ∆H values of - 8.5, - 8.6 and -9.1 kJ mol-1 for 

Mg(II), Ca(II) and Ba(II), respectively using a lyseine-silica particulate column and  

- 1.1, - 1.1 and - 1.6 using a glutamic acid-silica particulate column.  In both cases a 

weak perchloric acid eluent was used and under these eluent conditions the authors 

concluded that the dominant separation mechanism was ion exchange due to the low 

∆H values (as mentioned earlier, ∆H values do not exceed 3 kJ mol-1 when ion 

exchange is the dominant separation mechanism [51].   

 

4.2.3.3 Effect of temperature on backpressure 

 

As the temperature increases, the viscosity of the eluent decreases, which in turn 

reduces the backpressure of the system. Figure 4.4 shows a plot of increased 

temperature versus back-pressure. The backpressure decreased from 53 bar at ambient 

temperature to 34 bar at 67 oC. An advantage of lowering the backpressure is the 

ability to use higher flow-rates which reduces analysis times. This was reported by 

Chong et al. [153] who showed that at 27 oC, run times of 8 minutes for nine alkali 

and alkaline earth metals were obtained using a flow-rate of 0.9 mL/min. However at 

a temperature of 60 oC, a decrease in backpressure was obtained, allowing an 

increased flow-rate of 1.3 mL/min to be used, this reducing the run time for the same 

nine cations to 5 minutes. 
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Figure 4.4: Plot of temperature versus backpressure showing linear correlation (R2 = 

0.99).  Measurements obtained using the capIC system with the backpressure noted as 

the temperature of the column heater was increased.    

 

4.3 Conclusion 

 

In this present work, a BuMA-co-EDMA monolith was functionalised with 3-

sulphopropyl methacrylate (SPM) and applied to the separation of alkaline earth 

metals (calcium, magnesium and barium) using indirect UV detection. Temperature 

studies were carried out using a novel, inexpensive capillary heater with calibration 

data showing reproducible temperatures at the particular applied voltage. Van’t Hoff 

plots showed that the absorption process was exothermic (decrease in retention with 

an increase in temperature) and calculated heats of adsorption showed that ion 

exchange was the dominant separation mechanism. A decrease in back pressure was 

also observed using higher temperature which would allow for the use of longer 

columns or faster flow rates. This work demonstrates the use of an in-house 

constructed capIC system which incorporated an inexpensive capillary column heater.   

 

Further work is required on the functionalisation procedure reported in this Chapter to 

produce polymer monoliths exhibiting higher capacities.  Increasing the concentration 

of the SPM during the photo-grafting of the polymer monolith or increasing the 
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photo-grafting irradiation time are some of the conditions that should improve the 

surface coverage of poly(SPM). 
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Separation of selected transition metals by chelation ion 

chromatography using acetyl-iminodiacetic acid modified 

polymer monoliths 
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5.1 Introduction 

 
Chelation ion chromatography (CIC) for the determination of metal cations in 

complex samples has received considerable attention over the last number of years. 

For the successful separation of metal cations using CIC, chelating stationary phases 

must exhibit high hydrolytic stability, the complexes formed should be kinetically 

labile and the chelating ligand should be chemically stable in order to withstand 

changes in eluent composition, pH and ionic strength [51, 160]. The most efficient 

separations of metals ions on chelating stationary phases are achieved when the 

chelating exchangers are negatively charged or have acidic functional groups, such as 

iminodiacetic acid (IDA).  

 

Although the surface area of silica monoliths is greater than their polymer based 

counterparts, at low pH, the silylether bond is hydrolysed and as the eluents used in 

CIC are mainly acidic, this can lead to a loss of the bonded ligand. The aim of this 

work was to surface modify polymer monoliths with a chelating ligand to produce 

capillary chelation ion exchangers. The resultant monoliths were applied to the 

chromatographic separations of selected metal cations. Temperature studies were 

carried out using an in-house constructed capillary column heater. A novel 

combination of on-column C4D detection and UV-Vis detection (following the 

reaction of the eluted metals with PAR) is also presented. 

 

5.2 Results and discussion   

 

5.2.1 Fabrication of acetylimino-diacetic acid (AIDA) modified monoliths. 

 

The main requirement for the base monolith used in this work is that they contain 

abstractable hydrogen’s, on the monolith surface, they exhibit sufficient UV 

transparency as the process of surface modification of the polymer monolith is carried 

out using UV processes and they exhibit suitable pore morphology for the separation 

of small molecules. LMA was chosen as the monomer in the monolith fabrication as 

work carried out by Collins et al. [144] demonstrated suitable pore morphology for 

the reversed phase separation of small molecules (toluene, ethylbenzene, 
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propylbenzene, butylbenzene, and pentylbenzene). Following the fabrication of the 

LMA-co-EDMA polymer monolith, benzophenone was immobilised onto the surface 

of the monolith by a process of hydrogen abstraction, which favours the growth of 

poly(VAL) chains from the surface of the monolith structure [102, 146]. The presence 

of the poly(VAL) grafts allowed for the covalent attachment of IDA. IDA 

immobilised via the amine groups of the poly(VAL) produced AIDA functional 

groups, a new method for the retention of metal ions using chelation in 

chromatography. 

   

5.2.2 Retention of transition and heavy metals using the AIDA immobilised 

polymer monolith 

 

The retention of selected transition and heavy metals was studied using VAL15a (see 

Table 5.1), where an elution order of Mn(II) = Co(II) = Ni(II) < Zn(II) < Cd(II) < 

Cu(II) was obtained using a 0.1 mM HNO3 eluent.  Retention factors of 3.8 were 

obtained for Mn(II), Co(II) and Ni(II), with Zn(II) exhibiting a k value of 4.1, Cd(II) 

of 6.4 and Cu(II) of 12.8.  This was a same elution order obtained by Barron et al. 

[52] using a ProPac IMAC-10 analytical column (10 µm polymeric beads coated with 

a poly(acrylate) layer with covalently attached poly-IDA groups. Using a 0.25 mM 

nitric acid eluent, the authors obtained an elution order of Mn(II) < Fe(II) < Co(II) < 

Zn(II) < Cd(II), however Pb(II) and Cu(II) were retained > 3 hours at this eluent 

concentration. Interestingly, the selectivity exhibited by the AIDA monolith in this 

work and that reported by Barron et al. [52] was different to that exhibited by other 

IDA stationary phases. Sugrue et al. [126] reported an elution order of Mn(II) < 

Co(II) < Cd(II) << Zn(II) <<< Cu(II) using a silica monolithic column with 

immobilised IDA functionalities. The authors used an eluent comprising of 0.065 M 

KNO3 and 0.035 M KCl. The order of elution showed a reversal in elution of Zn(II) 

and Cd(II) when compared to the AIDA polymer monolith in this work, which was 

due to the tendency of the chloride ions in the eluent, used by Sugrue et al. [126], to 

form chloro complexes with Cd(II) in comparison to Zn(II). Barron et al. [52] 

observed a selectivity change for Cd(II) and Zn(II) when the ionic strength of the 

eluent was increased (eluent comprising of 0.25 mM HNO3 and 7.5 mM KCl). Using a 

column packed with 5 µm spherical IDA bonded silica particles (150 mm x 4 mm 

I.D.), Jones et al. [161] observed an elution order of Mn(II) < Co(II) < Cd(II) < Zn(II) 
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with an 8 mM nitric acid eluent, an elution order similar to that obtained by Sugrue et 

al. [126]. Due to the use on C4D detection in the work in this thesis, the use of high 

ionic strength eluents was not possible.  

 

In the work in this thesis, the change in the elution order of Cd(II) and Zn(II) and the 

weak retention of Ni(II) and Cu(II) may be connected with the contribution to 

retention of cation exchange under the dilute nitric acid eluent condition used. This 

change in selectivity may also be due to the presence of the carbonyl group next to the 

nitrogen atom in the attached AIDA ligand on the poly(VAL) graft. The carbonyl 

groups located in this position should decrease the electron density on the nitrogen 

and reduce its capabilities to coordinate transition metals, such as Ni(II), Zn(II) and 

Cu(II), which have a high selectivity for coordination with nitrogen. 

 

5.2.3 Effect of eluent concentration on the selectivity and retention of various 

transition and heavy metals. 

 

IDA immobilised on the surface of a substrate has the ability to form kinetically labile 

surface complexes with metal ions and retention depends on the stability of the 

complexes formed.  As the stability constants for metals with IDA are not excessively 

high, strong eluents are generally not required for their separation [142]. 

Chromatographic performance data for a range of transition and heavy metals, using 

VAL15a was obtained. This analysis was performed on the capIC system described in 

Section 2.1.3 using on-column C4D detection. Using weak nitric acid eluents, the 

effect of eluent concentration on the retention of 6 transition and heavy metals was 

investigated. The concentration of the nitric acid eluent was varied from 0.2 mM (pH 

3.7) to 0.4 mM (pH 3.3). Increasing the concentration of the eluent resulted in a 

decrease in the pH.  As the chelating ligand in this work (IDA) is a conjugate base of 

a weak acid, the chelating ligand will have a strong affinity for hydrogen ions 

therefore, changes in pH will affect the association/dissociation of the metals 

complexes formed on the stationary phase surface [142, 162]. Table 5.1 shows the 

chromatographic performance data obtained when the eluent concentration was 

increased from 0.2 mM to 0.4 mM nitric acid. From this data, an increase in the eluent 

concentration resulted in a decrease in retention of all metals studied. As the pH of the 

eluent affects the degree of dissociation of the immobilised chelating ligand, a 
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decrease in the eluent pH induces protonation of the functional groups available on 

the stationary phase surface [51, 162].   

 

Table 5.1: Chromatographic performance data for transition and heavy metals 

obtained by varying eluent pH. Chromatographic conditions: Eluent: 0.2 mM – 0.4 

mM nitric acid, column: VAL15a (250 mm x 100 µm I.D), injection volume: 20 nL, 

detection: on-column C4D, flow-rate: 1 µL/min. 

Eluent conc. 

(HNO3 mM) 

Metal              

(conc., mg/L) 

N/m k Asy. Peak  

width 

0.2 (pH 3.70) Mn(II)  (0.5) 4,700 3.81 1.14 0.33 
0.3 (pH 3.57)  3,700 2.11 1.10 0.23 
0.4 (pH 3.31)  4,400 1.39 1.23 0.17 

 
0.2 Ni(II)    (5) 4,000 3.77 1.61 0.35 
0.3  4,250 2.06 1.24 0.21 
0.4  4,350 1.41 1.25 0.16 

 
0.2 Zn(II)   (5) 1,850 4.13 1.64 0.55 
0.3  3,300 2.14 1.31 0.24 
0.4  3,500 1.51 1.42 0.19 

 
0.2 Co(II)  (5) 5,150 3.81 1.09 0.32 
0.3  4,400 1.99 1.24 0.20 
0.4  4,200 1.34 1.35 0.16 

 
0.2 Cd(II)  (5) 3,900 6.39 1.12 0.56 
0.3  3,450 3.08 1.19 0.30 
0.4  3,200 2.08 1.32 0.24 

 
0.2 Cu(II)  (5) 3,200 12.84 1.19 1.12 
0.3  2,350 5.74 1.27 0.60 
0.4  2,300 3.81 1.32 0.44 

 

A decrease in pH led to reductions in peak width for all metals studied.  Decreases in 

peak width of > 47 % were obtained for all metals studied, with Cu(II) showing 

improvements in peak width of 65 % when 0.4 mM nitric acid was used as the eluent 

in comparison to 0.2 mM.  A decrease in k of ~ 65 % was noted for all metals studied, 

with a decrease in pH 

 

In all cases, narrower peaks were obtained for all metals with a decrease in eluent pH, 

however, increases in peak tailing were observed with the exception of Ni(II) and 

Zn(II), where decreases in peak tailing were noted. A decrease in eluent pH resulted 
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in a decrease in efficiency of Mn(II), Co(II), Cd(II) and Cu(II) which correlated with 

increases in peak tailing.  Ni(II) and Zn(II) showed decreases in peak tailing of 22 % 

and 13 % respectively, with a decrease in eluent pH, as well as an increase in 

efficiency.  

 

Plots of  - log [HNO3] versus log k were linear as shown in Figure 5.1 (R2 values > 

0.99) and changes in selectivity of the 6 metals were minimal over the range of eluent 

concentrations studied.  Slopes ranging from 1.4 for Zn(II) and Ni(II) to 1.8 for Cu(II) 

were obtained.  In theory, the slopes should be proportional to the number of protons 

replaced by each metal complex formed with the immobilised ligand [51, 163]. 

Divalent metal cations, such as the metals used in this work, form metal complexes 

with the chelating ligand IDA with the release of two protons. Slopes obtained for 

Cd(II) and Cu(II) were 1.7 and 1.8 respectively and were in broad agreement with a 

slope of two for the formation of surface metals complexes with IDA. Zn(II), Mn(II), 

Co(II) and Ni(II) showed slopes between 1.4 and 1.5.   
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Figure 5.1: Plots of - log [HNO3] versus log k for the 6 metals studied where ♦ = 

Co(II), ♦ = Mn(II), ♦ = Ni(II), ♦ = Zn(II), ♦ = Cd(II) and ♦ = Cu(II).  Chromatographic 

conditions: Eluent: 0.2 – 0.4 mM nitric acid, all other conditions as in Table 5.1. 
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5.2.4 Separation of metal cations, using the capIC system, incorporating 

simultaneous on-column C
4
D detection and UV-Vis detection 

 

Improvements in sensitivity using HPCIC can be obtained with the use of PCR 

chemistry.  PAR is one of the most widely used PCR reagents for transition and heavy 

metal analysis [130, 133]. The use of post-column mixing presents considerable 

difficulty when used at capillary scale as the incorporation of a PCR mixer increases 

the system dead volume resulting in band broadening and subsequently a loss in 

efficiency.   

 

From the retention data in Table 5.2, a difference in the k factors of Mn(II), Cd(II) and 

Cu(II) should allow their separation using the AIDA polymer monolith, therefore a 

standard mix containing Mn(II), Cd(II) and Cu(II) was prepared. The 

chromatographic separation of the metal mixture was performed on the capIC system 

described in Section 2.1.3. This system set-up allowed for a separation of metals using 

simultaneous conductivity and UV-Vis detection.  

 

Figure 5.2 shows a separation of Mn(II), Cd(II) and Cu(II) using simultaneous on-

column C4D detection (a) and UV-Vis detection (b). Chromatographic performance 

data was obtained and can be seen in Table 5.2. An increase in retention was observed 

using UV-Vis detection, which was due to the incorporation of the post-column mixer 

as well as the increase in effective column length (using on-column C4D detection the 

effective column length was 250 mm, which increased to 280 mm using UV 

detection)  A decrease in efficiency was observed with UV-Vis detection, due to an 

increase in peak width caused by extra column broadening associated with the post-

column reaction mixing device as well as the MicroTight unions (swept volume of 17 

nL) required in the system set-up.  An increase in extra column volume (from the end 

of the column to the UV detector flow-cell) of 134 nL was calculated.   
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Table 5.2: Chromatographic performance data showing the direct comparison of on-

column C4D detection with UV-Vis detection for the separation of 5 ppm Mn(II), 10 

ppm Cd(II) and 10 ppm Cu(II).  Chromatographic conditions: Eluent: 0.2 mM HNO3, 

all other chromatographic conditions as in Table 5.1. 

 

Metal Detection N/m Retention 

time 

(mins) 

Asy. k Res. Peak 

width  

Mn(II) C4D 3,900 3.60 1.57 4.01 - 0.28 
 UV-Vis 2,100 6.03 1.78 -* - 0.59 
        

Cd(II) C4D 3,600 5.83 1.14 6.74 3.45 0.48 
 UV-Vis 2,400 9.25 1.45 -* 2.65 0.84 
        

Cu(II) C4D 2,650 10.28 1.15 12.84 3.64 0.97 
 UV-Vis 2,700 14.98 0.97 -* 3.19 1.27 

 

-*  k value not obtained due to the absence of a void peak. 
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Figure 5.2: (a) Separation of 5 ppm Mn(II), 10 ppm Cd(II) and 10 ppm Cu(II) using C4D detection.  Chromatographic conditions: Column: 

VAL15a, eluent: 0.2 mM nitric acid, flow-rate: 1 µL/min, column length: 250 mm x 100 µm I.D., injection volume: 20 nL. (b):  Same separation 

using simultaneous post column reaction and UV-Vis detection.  Chromatographic conditions: Eluent: 0.2 mM nitric acid, PCR: 0.15 mM PAR 

in 0.5 M ammonia, pH = 10.4, PCR flow-rate: 1µL/min, all other conditions as in Table 5.1.   
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The extra column tubing associated with the post-column mixer had an impact on the 

peak width (increase of ~ 50 % in the case of Mn(II) and Cu(II)). Increased peak 

tailing was noted, using UV-Vis detection in comparison to C4D (except in the case of 

Cu(II), however this result may have suffered from interferences from the pump 

noise). As seen from Table 5.2, an increase in the peak tailing and peak width, using 

PCR and UV-Vis detection, led to a decrease in the resolution of the three peaks. 

From Table 5.2, it appeared that C4D detection was a superior detection device in 

comparison to UV-Vis detection. Faster elution times and improved peak shape were 

observed. However, chromatographic performance using UV-Vis detection may have 

been improved using fully optimised PCR conditions.  As can be seen from Figure 

5.2(b), a significant amount of pump noise was present. According to the 

manufacturers, these pumps are suitable for use at flow-rates > 100 µL/min and a 

flow-rate of 1 µL/minute were outside the recommended working range. One major 

advantage of using on-column C4D is the simplicity of the overall system set-up.  

Extra hardware, such as post-column mixers and extra pumps for delivering the PCR 

reagent were not required.  As the two high pressure eluent pumps used in the capIC 

system were not suitable for use in this work, all future work where C4D and UV-Vis 

were employed as the detection modes were carried out using the Dionex Ultimate 

3000 capillary ion chromatography system which incorporated a second Dionex 

capillary pump for delivery of the PCR reagent.          

 

5.2.5 Repeatability of functionalisation procedure. 
 

The repeatability of the functionalisation procedure for attachment of the chelating 

ligand onto the surface of the monolith was investigated. Two LMA-co-EDMA 

monoliths (denoted monoliths VAL15b and VAL15c) were fabricated and 

functionalised using the procedure described in Section 2.2.2.3. Separations of the 

three metals previously shown in Figure 5.2, were again carried out using VAL15b 

and VAL15c and performance data compared (Table 5.3). Clearly, differences in k 

can be seen from the separation of Mn(II), Cd(II) and Cu(II) shown in Figure 5.2(a) 

(denoted VAL15a) and the same separation using VAL15b and VAL15c (Figure 5.3). 

VAL15a had an effective column length of 250 mm and VAL15b and VAL15c had 

effective column lengths of 280 mm.  A k value of 4.01, 6.74 and 12.84 were obtained 

for Mn(II), Cd(II) and Cu(II) using VAL15a.  Table 5.3 shows the k data obtained for 
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VAL15b and VAL15c. During the fabrication of the AIDA polymer monoliths, the 

following observation was noted; the backpressure exhibited by VAL15a using the 

0.2 mM HNO3 eluent was 140 bar at 1 µL/min whereas the backpressures for 

VAL15b and VAL15c using the same conditions were 76 bar and 79 bar, 

respectively. The higher backpressure observed for VAL15a indicated that during the 

polymerisation of the polymer monolith, smaller flow-through pores were formed in 

the monolith structure in comparison to VAL15b and VAL15c, therefore resulting in 

an increased surface area of VAL15a. This increased surface area would result in 

increased sites available for the photo-grafting of benzophenone, which in turn would 

result in an increase in the overall complexation capacity of VAL15a, following the 

covalent attachment of IDA. The increase in complexation capacity would result in an 

increase in the retention of all metals, which was observed when compared to 

VAL15b and VAL15c. As all other columns prepared during the completion of this 

study exhibited similar k data to VAL15b and VAL5c, it can be concluded that an 

error may have occurred during the fabrication of VAL15a. This may have been 

incorrect monomer/porogen ratios during the preparation of the polymerisation 

mixture or an increase in the UV grafting time during the polymerisation of the 

monolith.      

 

Table 5.3: Chromatographic performance data obtained from the separations of 5 

ppm Mn(II), 10 ppm Cd(II) and 10ppm Cu(II). Chromatographic conditions: Eluent: 

0.2 mM nitric acid, all other conditions as in Table 5.1. 

Monolith  Metal k Asy. N/m Res. peak 

width 

VAL15a Mn(II) 4.01 1.57 3,900 8.14 0.28 
 Cd(II) 6.74 1.14 3,600 3.45 0.48 
 Cu(II) 12.84 1.15 2,700 3.64 0.97 
       

VAL15b Mn(II) 0.86 1.17 4,900 6.25 0.21 
 Cd(II) 1.4 1.08 4,700 2.35 0.28 
 Cu(II) 2.6 1.12 2,900 3.12 0.54 
       

VAL15c Mn(II) 0.89 1.28 5,000 6.47 0.21 
 Cd(II) 1.46 1.13 4,300 2.32 0.30 
 Cu(II) 2.73 1.16 2,700 3.06 0.57 
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Figure 5.3 shows an overlay of separations of Mn(II), Cd(II) and Cu(II) using 

VAL15b and VAL15c.  Differences in k of < 4 % were observed between VAL15b 

and VAL15c for Mn(II) and Cd(II), with the later eluting Cu(II) exhibiting the largest 

difference in k (5 %). VAL15b showed an improved efficiency over VAL15c for 

Cd(II) and Cu(II) which correlates with improvements in peak asymmetry whereas a 

difference in efficiency of 2 % was observed for Mn(II).  All other chromatographic 

data was comparable.                  
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Figure 5.3: Overlay of chromatograms obtained for the separation of 5 ppm Mn(II), 

10ppm Cd(II) and 10ppm Cu(II) using VAL15b and VAL15c. Chromatographic 

conditions: Eluent: 0.2 mM HNO3, all other conditions as in Table 5.1. 

 

5.2.6 Temperature studies 

 

5.2.6.1 Development and calibration of capillary column heater 

 

A capillary column heater was constructed as described in Section 2.1.5.3 using a 

flexible heating tape which emits heat when voltage is applied. The column heater 

was calibrated by applying increased voltage and recording the temperature increase.  

Figure 5.4 shows a calibration plot, including error bars, showing that for an applied 

voltage the temperature increase was reproducible (n = 4), with % RSD values < 0.8 
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% for all voltages tested.  The separation column was placed inside the column heater 

and the use of zero dead volume unions on either end of the separation column 

ensured that the column was not in physical contact with any part of the heating tape, 

therefore avoiding any associated local temperature gradients. The ends of the column 

heater were plugged to minimise heat loss.  The resultant capillary column heater was 

inexpensive to prepare and was easily incorporated into the chromatography system.     

 

20

25

30

35

40

45

50

55

60

0 5 10 15 20 25 30 35

Applied voltage (V)

T
e
m

p
e
ra

tu
re

 (
o
C

)

 

Figure 5.4: Calibration plot of applied voltage (V) versus temperature (oC) for the 

capillary column heater. 

 

5.2.6.2 Effect of temperature on separation performance. 

 

It has been shown previously that an increase in retention is observed with an increase 

in temperature when chelation is the dominant separation mechanism [52, 130, 142, 

155].  Using a Dionex Ultimate 3000 capillary chromatography system, the effect of 

column temperature on retention of Mn(II), Cd(II) and Cu(II) was investigated. The 

AIDA polymer monolith was placed inside the capillary column heater. In this case, 

off-column C4D was used as the AIDA polymer monolith was housed inside the 

capillary heater. Figure 5.5 shows the chromatograms obtained for the separations of 

the metals carried out at 24, 34, 43 and 53 oC. Temperature analysis was carried out 

using VAL15b.   
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Figure 5.5: Overlay of chromatograms showing the effect of temperature on retention 

where (a) = 54 oC, (b) = 43 oC, (c) = 34 oC and (d) = 24 oC. Chromatographic 

conditions: column length: 230 mm x 100 µm I.D., eluent: 0.1 mM nitric acid, all 

other conditions as in Table 5.1. 

 

Table 5.4 shows the chromatographic performance data obtained for the separations 

of Mn(II), Cd(II) and Cu(II) at the four selected temperatures. Cd(II) and Cu(II) 

exhibited endothermic behaviour (an increase in retention with an increase in 

temperature), indicating the chelation was the dominant separation mechanism. A 

decrease in retention with an increase in temperature was observed for Mn(II) which 

was indicative of ion-exchange being the dominant separation mechanism. A decrease 

in k of 8 % was observed for Mn(II) while an increase in k of 22 % and 50 % was 

obtained for Cd(II) and Cu(II) respectively when the temperature was increased from 

24 oC to 53 oC.  This clearly shows that increasing the temperature did not have the 

same effect on all three metals.   

 

In all cases, peak asymmetries > 4.0 were observed for Mn(II), showing significant 

tailing. Peak tailing was also observed for Cd(II) and Cu(II), although to a lesser 

extent than Mn(II) (peak asymmetries > 2.0 in all cases).  The increase in peak width 

and peak asymmetry (in comparison to the results shown in Table 5.3) was due to the 

Mn(II) 
Cd(II) 

Cu(II) 

(a) 

(b) 

(c) 

(d) 
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use of a 0.1 mM nitric acid eluent. An increase in the eluent pH resulted in an increase 

in the dissociation of the carboxylic acid groups on the IDA structure, producing an 

increase in the conditional stability constants of the surface metal complexes. An 

increase in the conditional stability constants results in an increase in retention, which 

in this case, led to an increase in peak width and asymmetry when compared to the 

chromatographic performance data obtained for the separations of Mn(II), Cd(II) and 

Cu(II) using a 0.2 mM nitric acid eluent, shown in Table 5.3 above.   

 

Table 5.4: Chromatographic performance obtained for the separation of Mn(II), 

Cd(II) and Cu(II) with increasing column temperature.  Chromatographic conditions: 

Column: VAL15b, eluent: 0.1 mM HNO3, effective column length: 230 mm x 100 

µm I.D., all other conditions as in Table 5.1. 

  

Column 

temp (
o
C) 

Metal k N/m Asy. Res. peak 

width 

23 Mn(II) 1.90 1,350 4.4 3.6 1.27 
 Cd(II) 3.53 2,750 2.2 2.4 1.37 
 Cu(II) 6.14 3,350 2.0 3.0 1.98 
       

34 Mn(II) 1.83 1,300 4.9 3.6 1.26 
 Cd(II) 3.74 3,100 2.5 2.8 1.35 
 Cu(II) 6.98 4,350 2.0 3.8 1.94 
       

43 Mn(II) 1.81 1,150 4.9 3.4 1.32 
 Cd(II) 3.96 3,400 2.8 3.0 1.39 
 Cu(II) 7.82 4,000 2.7 4.1 2.24 
       

54 Mn(II) 1.75 800 4.3 3.0 1.52 
 Cd(II) 4.32 3,150 2.4 3.2 1.50 
 Cu(II) 9.17 3,750 2.6 4.4 2.59 

 

From Table 5.4, a decrease in efficiency of 30 % for Mn(II) was observed with an 

increase in temperature, whereas Cd(II) showed increases in column efficiency of 19 

% when the temperature was increased from 24 oC to 43 oC, followed by a decrease of 

7 % when the temperature was further increased to 54 oC.  A column efficiency of 

4,350 N/m was reported for Cu(II) at 34 oC, an increase of 23 % when compared to 

analysis carried out at 23 oC.  At temperatures above 34 oC, Cu(II) showed a decrease 
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in column efficiency of 14 %. A 25 % increase in resolution between Mn(II) and 

Cd(II) was observed with an increase in temperature while a 32 % increase in 

resolution was observed for Cd(II) and Zn(II). While the use of temperature improved 

column efficiency for Cd(II) and Cu(II), increases in analysis runtime were observed.    

 

Van’t Hoff plots which relate changes in retention to changes in column temperature 

were plotted and can be seen in Figure 5.6. As mentioned previously, increasing the 

temperature did not have the same effect on all three metals which is evident from the 

slopes of each metal obtained from the van’t Hoff plots (Table 5.5).  Negative slopes 

of -571 and -272 were obtained for Cu(II) and Cd(II) respectively demonstrating that 

the sorption process was endothermic. A positive slope of +131 was obtained for 

Mn(II), demonstrating that the sorption process in this case was exothermic. Cu(II) 

exhibited the largest slope value, showing that the effect of temperature on Cu(II) was 

more pronounced than Cd(II) and Mn(II). A similar trend was also observed by Bashir 

et al. [130]. Using an IDA-silica packed analytical column (240 x 4 mm I.D), the 

authors noted that Zn(II) and Co(II), the more strongly retained metal ions exhibited 

more rapid responses to increases in temperature in comparison to the more weakly 

retained metals such as Mn(II).  The effects of temperature on the retention of Cd(II) 

were less pronounced than Zn(II) and Co(II) and the authors concluded that the 

effects of temperature on Cd(II) may have been more significant if a non-chloride 

eluent was used. Bashir et al. [130] did observe an increase in the retention of Mn(II) 

with an increase in temperature.  In this work the opposite was observed.   
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Figure 5.6: Van’t Hoff plots constructed for Mn(II) (◊), Cd(II) (□) and Cu(II) (∆) 

demonstrating that for Cu(II) and Cd(II), the sorption process exhibited exothermic 

behaviour and for Mn(II) the sorption process exhibited endothermic behaviour.   

 

Table 5.5: Linear regression data from van’t Hoff plots. 

 

 Slope Intercept R
2
 

Mn(II) 131 -0.16 0.89 

Cd(II) -272 1.46 0.93 

Cu(II) -571 2.71 0.99 
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Heats of adsorption (∆H) were calculated and can be seen in Table 5.6.  Generally, in 

chromatographic systems where chelation in the dominant separation mechanism, 

heats of adsorption (∆H) are higher than those observed for simple ion-exchange 

mechanisms and heats of absorption obtained for ion exchange separations do not 

exceed 3 kJ mol-1 [51].  In Chapter 4.0, temperature studies were carried out using a 

sulfonated functionalised polymer monolith which was used for the ion exchange 

separation of the alkaline earth metals Ca(II), Mg(II) and Ba(II).  Heats of absorption 

(∆H) were calculated to be -0.45, -0.58 and -1.2 for Mg(II), Ca(II) and Ba(II) 

respectively. An increase in temperature resulted in a decrease in retention for all 

alkaline earth metals studied using the sulfonated polymer monolith.  In this work, 

heats of adsorption were 4.75 kJ mol-1, 2.26 kJ mol-1 and -1.87 kJ mol-1 for Cu(II), 

Cd(II) and Mn(II) respectively. As mentioned earlier, Mn(II) exhibited exothermic 

behaviour and ∆H was lower than that obtained for Cd(II) and Cu(II).       

 

Table 5.6 also shows ∆H values obtained using separation columns with various 

ionogenic functional groups.  In the case of [52] and [131], KCl was added to the 

eluent to suppress ion exchange interactions and allow chelation to be the dominant 

separation mechanism.  Paull et al. [131] obtained ∆H values of 0.84 for Cd(II) using 

a silica based IDA column and ∆H values of 3.78 using the sulfonated polymeric resin 

(CS10) column. Barron et al. [52] obtained ∆H value of 2.5 for Cd(II) using an 

polymer based IDA resin while Eleftorov et al. [162] obtained ∆H values for Cd(II) of 

3.95, using a glutamic acid-bonded column. Glutamic acid is an aminodicarboxylic 

acid which can form complexes with metal cations through the nitrogen and oxygen 

atoms. NaClO4 was used as the eluent to suppress ion exchange and allow chelation to 

become the dominant separation mechanism. Although the heats of adsorption 

obtained for Cd(II) are comparable to those obtained by Paull et al. [131], Barron et 

al. [52] and Eleftorov et al. [162], in this present work a decrease in retention was 

observed for Mn(II) with an increase in temperature. The dicarboxylate polymeric 

resin (PRP-X800) exhibited higher ∆H values in comparison to the carboxylated resin 

(CS14) due to an increase in the number of available carboxylic groups available for 

the formation of surface metal complexes.    
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Table 5.6: Comparison of heats of adsorption (∆H) on various analytical columns 

Column IDA-polymer 

monolith 

LMA-co-EDMA 

(Current study) 

ProPac-IMAC 

[52] 

(poly-IDA 

functionalised 

polymer 10 µm 

resin) 

CS10 [131] 

(Sulphonated 

polymeric 

cation 

exchange) 

CS14 [131] 

(Carboxylated 

polymeric 

cation 

exchange) 

PRP-X800 

[131] 

(Polymeric 

dicarboxylate 

cation 

exchange) 

Silica-IDA 

[131] 

Glutamic 

acid-bonded 

silica [162] 

(5 µm particle 

size) 

Column 

dimensions 

230 mm x 100 µm 

I.D. 

50 x 2 mm  250 x 4 mm  250 x 4 mm  150 x 4 mm 250 x 4 mm 100 x 4.6 mm  

Eluent 0.1 mM HNO3 0.25 mM HNO3 

– 10 mM KCl 

100 mM 

HNO3 – 100 

mM KCl 

1.5 mM HNO3 

– 20 mM KCl  

0.3 mM 

HNO3 – 20 

mM KCl 

10 mM 

HNO3 – 20 

mM KCl 

0.2 M NaClO4 

(pH 4.0) 

        

Mn(II) -1.87 8.3 6.95 4.02 10.59 0.73 3.01 

Cd(II) 2.26 2.5 3.78 5.07 12.19 0.84 3.95 

Cu(II) 4.75 - - - - - - 
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5.2.7 Increasing complexation capacity of immobilised chelating ligand. 

 

The advantages of the method of functionalisation carried out in this work, i.e. post-

polymerisation, have been highlighted in a review by Nordborg and Hilder [12].  The 

separation of the monolith fabrication procedures and the surface functionalisation 

methods allows each of the processes to be optimised independently, allowing for 

changes to be made to the overall complexation capacity of the AIDA monolith, 

without re-optimisation of the entire monolith fabrication procedure.  An increase in 

the photo-grafted density of poly(VAL) should lead to an increase in the density of 

the chelating ligand on the surface of the monolith.  To investigate this, 4 monoliths 

were prepared according to Table 2.1 with increased photo-grafted density of VAL 

(denoted VAL15c, VAL20, VAL25 and VAL30). In each case, the concentrations of 

benzophenone and IDA were kept constant. 

 

5.2.7.1 Scanning C
4
D 

 

Sugrue et al. [125, 126] modified a commercially available silica monolith with IDA. 

The authors evaluated the surface coverage of the immobilised ligand along the entire 

length of the monolith using atomic absorption spectroscopy (AAS). Individual 

sections of the silica monolith were saturated with CuSO4 followed by washing with 

deionised water. The copper was desorbed using nitric acid (10 mM) and the 

concentration of copper was determined using AAS. This method was only possible 

by destruction of the monolith and could only be carried out at the end of the study. 

Since its inception as a detection device in capillary electrophoresis in 1998 [36], C4D 

has grown in popularity, expanding into the fields of liquid chromatography (LC).  

More recently, the ability to place the detector cell at various positions along the 

analytical column led researchers to investigate the information to be gained by 

scanning the entire length of the column.  The applications of scanning C4D within 

capillary chromatography have been highlighted in a recent review by Connolly et al. 

[45]. 
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In this present work, scanning C4D was employed as a non-destructive method to 

visualise axial homogeneity of the IDA ligand density along the entire length of the 

column. By scanning the monolith before (i.e. the un-functionalised monolith) and 

after immobilisation of IDA using an ethanolamine buffer (pH 9.8), a clear change in 

the conductive response indicated the successful immobilisation of IDA onto the 

surface of each of the 4 monoliths.  

 

Figure 5.7(a) depicts a typical scanning C4D profile (VAL20) showing the increase in 

conductive response following the modification of the polymer monolith with AIDA.  

Figure 5.7(b) shows an overlay of corrected scanning C4D profiles obtained for 

VAL15c, VAL20, VAL25 and VAL30 (i.e. the profiles were obtained by subtracting 

the conductive response obtained after modification of IDA from the subsequent base 

monolith scan carried out prior to surface modification). Increases in conductive 

response indicated that an increase in the poly(VAL) concentration during photo-

grafting, resulted in an increase in the number of sites available for the covalent 

attachment of  IDA.  Gillespie et al. [100] also used scanning C4D to show an increase 

in conductivity using polymer monoliths photo-grafted with increasing concentrations 

of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS).   

 

Finally, the scanning C4D profiles also demonstrated an axial homogeneous 

distribution of the chelating ligand for each monolith with % RSD (calculated from 

the conductive response obtained at each 2 mm increment) of ≤ 3 % all monoliths 

scanned. An anomaly in conductivity was observed at the head of the column 

(between 3 and 4 cm) with VAL25.  The average conductivity of the first 4 points was 

774 mV, a decrease in conductivity of 11 % when compared with the average 

conductivity obtained between 5 cm and 9 cm.  The use of scanning C4D techniques 

in this work ensured that the monoliths could be profiled prior to any 

chromatographic applications as destruction of the monolith was not required.  
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Figure 5.7: (a) Scanning C4D profiles obtained using a 1 mM ethanolamine buffer pH 

= 9.8 for VAL20 where (■) is the scan of the un-modified polymer monolith and (■) 

is the scan following modification with IDA. (b): Scanning C4D profiles where (●) 

VAL15, (■) VAL20, (▲) VAL25 and (♦) VAL30.  
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5.2.7.2 Effect of increasing the chelation capacity on the retention of selected 

metals. 

  

The effect of increasing the complexation capacity on the retention time of various 

metals was investigated using the modified polymer monoliths with on-column C4D 

detection. Using a 0.1 mM nitric acid eluent, increases in k were obtained for all 

metals when the complexation capacity was increased. Table 5.7 shows the 

chromatographic performance data for the AIDA polymer monoliths with increased 

complexation capacity.  With VAL15c, retention of Mn(II), Co(II), Ni(II) and Zn(II) 

was not achieved. VAL20 exhibited similar k values for Mn(II), Cd(II), Co(II) and 

Zn(II).  However, Mn(II) was retained using VAL20 and resolved from Cd(II) which 

was not achieved using VAL15c.   

 

All polymer monoliths showed poor peak shape for Zn(II), with peak asymmetries     

> 4 in all cases. Co(II) exhibited a decrease in column efficiency of 13 % from 

VAL15c to VAL30, while an increase in efficiency of  25 % was noted for Cu(II). 

Although Cu(II) showed an improvement in column efficiency using VAL30, 

increases in peak width (80 %) were obtained using a 0.1 mM nitric acid eluent due to 

the increase in the chelation capacity of the column. Due to the increased capacity 

exhibited by VAL30, a stronger eluent (0.2 mM HNO3) was required for the elution of 

the metal cations. 
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Table 5.7: Chromatographic performance data for 6 metals using IDA modified 

polymer monoliths with increasing complexation capacity. Chromatographic 

conditions: eluent: 0.1 mM nitric acid, metal concentrations: 1 mg/L, all other 

conditions as in Table 5.1. 

 

Monolith Metal k N/m Asy Peak 

width 

      
VAL15c Mn(II) - - - - 
 Co(II) - - - - 
 Ni(II) - - - - 
 Zn(II) - - - - 
 Cd(II) 0.85 3,300 0.79 0.26 
 Cu(II) 6.89 3,480 0.77 1.45 
      
VAL20 Mn(II) 2.8 1,650 2.46 0.8 
 Co(II) 2.9 1,740 4.11 0.82 
 Ni(II) 2.96 1,510 1.65 0.88 
 Zn(II) 3.36 956 4.33 1.22 
 Cd(II) 5.63 3,245 1.61 0.97 
 Cu(II) 11.76 2,990 1.65 1.97 
      
VAL25 Mn(II) 3.44 580 1.5 3.13 
 Co(II) 5.01 460 1.15 2.07 
 Ni(II) 3.79 540 1.13 3.77 
 Zn(II) 5.23 1,500 0.97 2.96 
 Cd(II) 9.93 2,920 1.4 3.5 
 Cu(II) 23.5 3,780 1.29 6.85 
      
VAL30 Mn(II) 8.26 1,088 6.08 2.77 
 Co(II) 11.02 1,254 7.86 4.28 
 Ni(II) 11.07 2,270 8.6 3.03 
 Zn(II) 12.43 555 4.37 5.04 
 Cd(II) 21.14 2,875 5.85 4.66 
 Cu(II) 45.22 4,640 5.25 7.25 

 - not retained 
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5.2.8  Separations of selected metals using simultaneous on-column C
4
D and 

UV-Vis detection. 

 

An open tubular post-column mixer was prepared using fused silica capillary (25 µm 

x 17 cm, internal volume 89 nL). Figure 5.8 shows the system set-up used for the 

separation of Mn(II), Cd(II) and Cu(II) incorporating on-column C4D detection and 

UV-Vis detection following reaction of the column eluate with PAR.  A T-piece was 

used to allow mixing of the eluted metals with the PCR. 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8:  Chelation ion chromatography system set-up incorporating on-column 

C4D and UV-Vis detection.  

IDA monolith

on-column C
4
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The AIDA polymer monolith was used for the analysis of the common transition and 

heavy metals Cu(II), Cd(II) and Mn(II) utilising a low pH nitric acid eluent (0.2 mM) 

and PAR as a PCR. Separations of transition and heavy metals were achieved using 

the novel combination of simultaneous on-column C4D detection (Figure 5.9(a)) and 

UV-Vis detection (Figure 5.9(b)) using VAL25 and VAL30. An increase in the 

retention of the three metals was obtained when the complexation capacity was 

increased. Table 5.8 shows the chromatographic performance data obtained for the 

separation of Mn(II), Cd(II) and Cu(II) using simultaneous C4D and UV-Vis 

detection. From the separation of the standard mixture using VAL25, baseline 

separation of Mn(II) and Cd(II) was not achieved. A resolution of 1.1 for C4D and 1.2 

for UV-Vis was obtained, however when the complexation capacity was increased 

(VAL30), baseline resolution between these two metals improved (1.6 for C4D and 

2.3 for UV-Vis), when the same eluent was employed.  

  

An increase in efficiency (between VAL25 and VAL30) was observed for Cd(II) 

using C4D detection, with Mn(II) and Cu(II) showing similar efficiencies. When both 

forms of detection are compared, superior column efficiencies was obtained for all 

peaks using PCR and UV-Vis detection, except for Cd(II) and Cu(II) using VAL25. 

The peak widths (measured at 50 % peak height) obtained for VAL25 were 

comparable for Mn(II) and Cd(II), however for the later eluting peak Cu(II), a 

significant increase in peak width was observed due to the increase in the 

complexation capacity exhibited by VAL30. This trend in peak widths was also 

observed using UV-Vis detection. The peak width values obtained using UV-Vis 

detection for Mn(II), Cd(II) and Cu(II) increased in all cases when compared to C4D 

detection, with the Cu(II) exhibiting the largest increase in peak width. This was due 

to the increase in the column length due to the system set-up (C4D was on-column, 

therefore reducing the effective column length in comparison to UV-Vis detection) 

and the increased flow path due to the PCR mixer and plumbing associated with the 

UV-Vis detector. As mentioned previously, an increase in extra-column tubing in 

capillary chromatography can have a deleterious effect on band broadening.   
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Figure 5.9: Separation of transition/heavy metals utilising simultaneous on-column C4D detection (a) and UV-Vis detection at 500 nm following 

reaction of the eluted metals with PAR (b).  Chromatographic conditions: Eluent: 0.2 mM nitric acid, Eluent flow-rate: 1 µL/min, PCR flow-rate: 

1 µL/min, PCR: 0.4 mM PAR in 0.1 M ammonia, pH 10.7.  Peak (1) 0.5 ppm Mn(II), (2) 1 ppm Cd(II) and (3) = 1ppm Cu(II).  A 10 pt moving 

average was applied to the chromatograms (using Microsoft excel) obtained using UV-Vis detection. 
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Table 5.8: Chromatographic performance data for the comparison of IDA polymer 

monoliths with varying degrees of complexation capacity using on-column C4D and 

UV-Vis detection.  

 C
4
D UV-Vis 

Metal Monolith 
 

N/m k Asy. Peak 
width 

Res. N/m Asy. Peak 
width  

Res. 

           
Mn(II) VAL25 900 1.00 1.6 0.8 - 1,200 1.1 0.9 - 
 VAL30 900 2.46 1.3 0.9 - 1,300 1.8 1.0 - 
           
Cd(II) VAL25 1,800 2.02 1.3 0.8 1.1 1,700 1.6 1.1 1.2 
 VAL30 2,700 4.94 1.1 0.9 1.6 3,300 1.1 1.1 2.3 
           
Cu(II) VAL25 3,100 4.03 1.6 1.1 1.9 2,500 1.3 1.4 2.0 
 VAL30 3,100 9.94 1.1 1.6 2.4 3,600 1.1 1.9 3.2 
 

 
5.2.9 Effect of varying the effective column length on retention. 

 

As mentioned previously, Connolly et al. [45] recently documented the applications 

of scanning C4D within the field of capillary chromatography. A further application of 

C4D includes the ability to place the detector cell at any position along the capillary 

column, thus changing the effective column length, without the need to cut the 

polymer monolith.  Figure 5.10 shows an overlay of chromatograms obtained for the 

separations of Mn(II), Cd(II) and Cu(II) by varying the effective column length using 

VAL30.  By decreasing the effective column length from 9 cm (Figure 5.10(a)) to 7 

cm (Figure 5.10(e)), the run time for the separation was reduced. At an effective 

column length of 9 cm, resolution of Mn(II) and Cd(II) was 1.80 which decreased to 

1.58 at an effective column length of 7 cm, however resolution was maintained. This 

demonstrates the ability to separate the three selected metals using a 100 µm x 70 mm 

IDA immobilised polymer monolith.       
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Figure 5.10: Overlay of chromatograms obtained for the separations of 0.5 ppm 

Mn(II), 1 ppm Cd(II) and 1 ppm Cu(II) by varying the effective column length where 

(a) = 9 cm, (b) = 8.5 cm, (c) = 8 cm, (d) = 7.5 and (e) = 7 cm. Chromatographic 

conditions: Column: VAL30, eluent: 0.2 mM nitric acid, all other conditions as in 

Table 5.1. 

 
5.3 Conclusions 

 

A number of AIDA modified polymer monolith have been fabricated and applied to 

the direct separation of metal cations. This work exploited the use of photo-grafting 

techniques, allowing the ability to increase in the surface coverage of AIDA without 

the requirement of re-optimisation the polymerisation conditions used during the 

fabrication of the LMA-co-EDMA polymer monolith. An increase in the 

complexation capacity was investigated and resulted in an increase in the retention of 

all metal cations studied. The increase in the complexation capacity of the 

immobilised ligand was achieved and verified through the use of scanning C4D 

techniques with results showing that the surface coverage of the AIDA ligand was 

homogeneous along the entire length of the column. Separations of Mn(II), Cd(II) and 

Cu(II) were achieved using a novel combination of on-column C4D and UV-Vis 

detection following reaction with PAR.  Mixing of the PCR with the column eluate 

was carried out using a capillary post-column mixing device. Temperature studies 



 
 

178 

were also carried out using an in-house constructed capillary column heater with 

results showing that the temperature was reproducible for any given voltage.  

Increases in column temperature did not have the same effect on the retention of 

Mn(II), Cd(II) and Cu(II). While the adsorption process for Mn(II) was exothermic 

(showing that ion exchange was the dominant separation mechanism for Mn(II)), 

Cd(II) and Cu(II) exhibited endothermic, suggesting that the dominant separation 

mechanism for both metals were due to the formation of surface complexes. 

 

This work demonstrates a novel capillary chelating ion exchanger for the direct 

separation of metal cations. In the following Chapter, LMA-co-EDMA polymer 

monoliths were fabricated and attachment of IDA was possible following the photo-

grafting of poly(glycidyl methacrylate) on the monolith surface. Both IDA chelating 

polymer monoliths, prepared using poly(VAL) and poly(GMA) were compared and 

contrasted.     
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Chapter 6.0: 

 

Modification of capillary polymer monoliths with 

iminodiacetic acid using poly(glycidyl methacrylate) for the 

separation of metal cations by high performance chelation 

ion chromatography  
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6.1 Introduction 

 
One method to increase the overall surface area of the polymer monoliths prior to the 

attachment of the functional group is through the use of photo-grafting techniques [88, 

102, 103]. Photo-grafting allows the formation of branch like structures emanating 

from one reactive surface site on the polymer monolith, thus increasing the surface 

density of the functional group, as opposed to direct modification of the polymer 

monolith with ionogenic functionalities (one functional group attached to one reactive 

site on the monolith scaffold) which would result in a reduced surface coverage. The 

use of polymer monoliths for the analysis of small ions, including the various methods 

of surface modification rendering a monolith suitable for ion chromatography have 

recently been reviewed by Connolly and Paull [103].  

 

To date, no reports have appeared in the literature using GMA as a linker for the 

attachment of IDA onto the surface of a polymer monolith for the separations of metal 

cations. The aim of this work was to modify LMA-co-EDMA polymer monoliths (in 

100 µm internal diameter formats) with IDA functionalities. This was carried out 

using photo-grafting techniques to introduce branched poly(GMA) on a monolith 

previously modified with benzophenone which was then reacted with IDA. Scanning 

C4D techniques were used to characterise the distribution of the chelating ligand along 

the length of the column, prior to the application of the IDA-modified polymer 

monolith to the separations of metals cations. The fabricated chelating ion exchanger 

was applied to the determination of Mg(II) and Ca(II) in bottled water samples as well 

as selected transition metals in spiked seawater and tap water samples. The IDA 

polymer monoliths prepared in this work were also compared to the AIDA polymer 

monoliths prepared in Chapter 5.0.     

 

6.2 Results and discussion   

 

6.2.1 Fabrication of poly(GMA) IDA modified monoliths 

 

In Chapter 5.0, a LMA-co-EDMA chelating polymer monolith was prepared by 

surface modification of the LMA structure with vinyl azlactone (VAL), following the 
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immobilisation of benzophenone.  IDA functionalities were covalently attached to the 

immobilised poly(VAL) grafts, allowing the separation of metal cations. In this work, 

LMA-co-EDMA polymer monoliths were prepared using a protocol set out by Collins 

et al. [144]. The advantages of using GMA as an IDA linker include the greater 

flexibility of the linker group, reducing steric hinderance which could affect metal ion 

complexation as well as the elimination of the amide (seen in the previous Chapter) 

and hence greater stability and coordination capability of the IDA ligand. 

 

6.2.2 Characterisation of IDA-modified polymer monoliths using scanning C
4
D 

 

As in Chapter 5.0, characterisation of the IDA modified polymer monoliths was 

carried out using C4D techniques according to Connolly et al. [45]. For each polymer 

monolith, a C4D scan was performed following the fabrication of the polymer 

monolith (i.e. the un-modified polymer monolith) and after modification with IDA.   

 

During the scanning process, differences in the backpressure exhibited before and 

after the modification of the grafted monolith with IDA were noted. Monolith 

GMA30 for example, showed a backpressure of 23 bar during the C4D scan of the un-

modified polymer monolith with the 1 mM ethanolamine buffer. Following the 

modification with GMA and IDA, the backpressure exhibited during the second C4D 

scan was ~ 90 bar, demonstrating a clear difference in backpressure following the 

attachment of IDA.  

 

Figure 6.1(a) shows an overlay of the scanning C4D profiles obtained for GMA15, 

GMA20, GMA25, GMA30 and GMA35. The data shown in this plot was obtained by 

subtracting the conductivity obtained from the scan of the un-modified polymer 

monolith from the conductivity obtained from the corresponding monolith following 

modification with IDA.  Figure 6.1(b) shows a typical scanning C4D profile obtained 

for monolith GMA30 where the bottom trace was obtained by scanning the un-

modified polymer monolith and the top trace obtained following the modification with 

IDA. As expected, the scan of the un-modified yielded a low conductivity due to the 

absence of charged groups on the un-modified polymer monolith surface. A clear 

difference in conductive response indicated the successful modification of the 

monolith surface with IDA. As mentioned previously, an ethanolamine buffer at pH 
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9.8, ensured that both carboxylic groups on the IDA structure were deprotonated, 

ensuring the maximum stationary phase charge during the scanning of the monolith.  

 

As seen previously with the poly(VAL) IDA-modified polymer monoliths, an increase 

in the conductive response was noted with an increase in the concentration of GMA 

during photo-grafting which led to a correspondingly higher IDA ligand density 

during the surface modification process. One of the main advantages of using 

scanning C4D techniques is the ability to measure axial homogeneity of the 

immobilised IDA along the entire length of the column.  Following each scan, % RSD 

values were calculated with results obtained as follows: GMA20 was 0.24 %, GMA25 

was 0.6 %, GMA30 was 0.8 % and GMA35 was 0.3 %.  The longitudinal 

homogeneity obtained in this present work represents an improvement in the 

longitudinal homogeneity obtained during the scans of the AIDA polymers prepared 

in Chapter 5.0.    

 

The % RSD value (calculated from the conductive response measured at each detector 

position) obtained for monolith GMA15 was 8 %.  As can be seen from Figure 6.1(a), 

an increase in the conductive response was noted between 13 and 15 cm during the 

scan of the IDA-modified GMA15 polymer monolith. The baseline disturbance was 

not observed in the scan of the polymer monolith prior to modification, therefore 

suggesting that the anomaly occurred during the modification process.  

 

 

 

 

 

 

 

 



 
 

183 

0

500

1000

1500

2000

2500

4 6 8 10 12 14 16 18

Detector position on column (cm)

D
e

te
c
to

r 
re

s
p

o
n

s
e

 (
m

V
)

 

 

0

200

400

600

800

1000

1200

1400

1600

1800

4 6 8 10 12 14 16 18 20

Detector position on column (cm)

D
e

te
c
to

r 
re

s
p

o
n

s
e

 (
m

V
)

 
 
 

Figure 6.1: (a) Overlay of scanning C4D profiles obtained for GMA15 (♦), GMA20 

(♦), GMA25 (♦), GMA30 (♦) and GMA35 (♦). (b):  Scanning C4D profile obtained for 

GMA30 where (♦) is the profile of the un-modified polymer monolith and (♦) is the 

profile obtained after modification with IDA. All scans were carried out using a 1 mM 

ethanolamine buffer (pH 9.8) at a flow-rate of 1 µL/min.   

(b) 

(a) 
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The measurement of axial homogeneity by calculating % RSD values from the data 

obtained for each scan in this work represents an improvement in axial homogeneity 

obtained during the scanning C4D profiles carried out for the poly(VAL) IDA-

modified polymer monoliths in Chapter 5.0. For the poly(VAL) IDA-modified 

polymer monoliths, % RSD values of between 1.5 and 2.2 % were obtained for each 

polymer monolith.  

 

Figure 6.2 shows a comparison of the conductive responses obtained during the scans 

of all poly(GMA) IDA-modified polymer monoliths and poly(VAL) IDA-modified 

polymer monoliths. This data was obtained by calculating the average conductivity 

obtained following the C4D scans of each monolith, i.e. the data point for GMA15 

was determined by subtracting the conductivity obtained at each 2 mm increment 

during the C4D scan of the polymer monolith after IDA from its conductivity obtained 

during the scan of the un-modified monolith and an average of the corrected 

conductivity values calculated. The same detector conditions and ethanolamine buffer 

were used during the C4D scans of the poly(GMA) IDA-modified polymer monoliths 

and poly(VAL) IDA-modified polymer monoliths allowing for a direct comparison of 

the both methods used for the modification with IDA. VAL15 and VAL20 showed an 

increased conductive response in comparison to GMA15 and GMA20. A difference in 

conductive response of 59 % and 35 % were noted. GMA25 showed a slight increase 

in conductivity of 15 % when compared to VAL25 whereas GMA30 and GMA35 

showed larger increases in conductivity of 36 % and 40 % respectively when 

compared to VAL30 and VAL35. A larger increase in detector response was noted 

between GMA15 and GMA35 (increase in detector response of 1930 mV) as opposed 

to VAL15 and VAL35 where an increase in conductive response of 615 mV was 

noted.  

 

From Figure 6.2, it appears that the attachment of IDA using poly(GMA) results in 

increased IDA ligand density, when used at higher concentrations i.e. GMA30 and 

GMA35. The effect of this increase in the density of the chelating ligand on the 

retention of selected metal cations will be discussed in more detail in Section 6.2.4. 

Significant information was gained from the use of scanning C4D, which could be 

obtained prior to the chromatographic application of the polymer monoliths, as this 

method of characterisation does not require destruction of the polymer monoliths.   
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Figure 6.2: Differences in corrected conductive response obtained during the C4D 

scanning of the poly(VAL) IDA-modified polymer monoliths and GMA-IDA polymer 

monoliths.   

 

6.2.3 Retention studies of transition and heavy metals using IDA-modified 

poly(GMA) grafted monoliths 

 

Using the IDA-modified poly(GMA) grafted monoliths polymer monoliths, retention 

data for a range of transition and heavy metals were obtained. This data can be seen in 

Table 6.1.  The eluent used for GMA15, GMA20 and GMA25 was 0.1 mM nitric 

acid.  Previously, using poly(VAL) IDA-modified polymer monoliths, an increase in 

the complexation capacity of each monolith resulted in an increase in the retention 

times of the metal cations studied. Using GMA15, retention of Mn(II) was not 

possible and no peak for Cu(II) was observed after 45 minutes while Co(II) and Cd(II) 

showed similar k values. Retention of Mn(II) was achieved using GMA20. As with 

GMA15, Co(II) and Cd(II) exhibited similar k values using GMA20. GMA25 also 

showed similar k values for Cd(II) and Co(II), while Cu(II) was retained > 120 

minutes when an eluent of 0.1 mM HNO3 was used.  Using a 0.2 mM HNO3 eluent, 

the Cu(II) peak was observed with a k value of 0.8 (data not displayed in Table 6.1).  

Due to the broad peak shape exhibited by Zn(II) using GMA25 with a 0.1 mM HNO3 

eluent (peak width, at 50 % peak height, was 3.71 minutes) as well as the increased 
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retention, an eluent comprising of 0.2 mM nitric acid eluent was used for retention 

studies of metal cations using GMA30 and GMA35.  Interestingly, the GMA30 and 

GMA35 resulted in significant differences in the k values for Co(II) and Cd(II) 

allowing for the possibility of the separation of these two metals, which did not appear 

to be possible using GMA25.  Cu(II) was retained > 60 minutes using GMA30 and 

GMA35.        

 

Table 6.1: Retention factor values for transition and heavy metals using poly(GMA) 

IDA-modified polymer monoliths with increasing complexation capacity. 

Chromatographic conditions: effective column length: 140 mm, detection: on-column 

C4D and flow-rate: 1 µL/min. 

 

Monolith GMA15 GMA20 GMA25 GMA30 GMA35 

Eluent 0.1 mM nitric acid 0.2 mM nitric acid 
 k k 

Mn(II) -* 0.82 1.53 1.61 2.21 
Co(II) 0.72 2.19 6.77 5.85 10.02 
Cd(II) 0.72 2.21 6.61 8.18 13.18 
Zn(II) 1.32 4.45 13.29 11.04 19.88 
Cu(II) - - - - - 

-* unretained     - not eluted 
 
 
6.2.4 Comparison of metal cation retention and elution order using poly(VAL) 

IDA-modified polymer monoliths and poly(GMA) IDA-modified polymer 

monoliths. 

 

Table 6.2 shows a comparison of k values obtained for poly(GMA) IDA-modified 

polymer monoliths and poly(VAL) IDA-modified polymer monoliths. The eluent 

used for the retention of the metal cations using VAL30 and GMA30 was 0.2 mM 

nitric acid.  For all other monoliths, the eluent used was 0.1 mM nitric acid.  Using 

VAL15, the retention of Mn(II), Co(II) and Zn(II) was not possible.  Retention factors 

of 0.85 and 6.89 were obtained for Cd(II) and Cu(II) respectively. Retention of Mn(II) 

was also not possible using GMA15.  Although retention of Co(II) and Zn(II) was 

achieved using GMA15, it is worth noting that the effective column length of all the 

poly(VAL) IDA-modified polymer monoliths was 100 mm, while the effective 

column length of  poly(GMA) IDA-modified polymer monoliths was 140 mm.  
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Table 6.2: Comparison of k values for metal cations studied using poly(GMA) IDA-

modified polymer monoliths and poly(VAL) IDA-modified polymer monoliths. 

Eluents used: VAL15, VAL 20 and VAL25: 0.1 mM HNO3 and VAL30: 0.2 mM 

HNO3   

 VAL15 GMA15 
 k 

Mn(II) - - 
Co(II) - 0.72 
Zn(II) - 1.32 
Cd(II) 0.85 0.72 
Cu(II) 6.89 -* 

 
 VAL20 GMA20 
 k 
Mn(II) 2.8 0.82 
Co(II) 2.9 2.19 
Zn(II) 3.36 4.45 
Cd(II) 5.63 2.21 
Cu(II) 11.76 -* 

 
 VAL25 GMA25 
 k 
Mn(II) 3.44 1.53 
Co(II) 5.01 6.77 
Zn(II) 5.23 13.29 
Cd(II) 9.93 6.61 
Cu(II) 23.5 -* 
   
 VAL30 GMA30 
 k 
Mn(II) 2.46 1.61 
Co(II) -▲ 5.85 
Zn(II) -▲ 11.04 
Cd(II) 4.94 8.18 
Cu(II) 9.94 -* 

 

-   not retained, -* retained > 60 minutes, -
▲

Data not available 

 

 

A number of observations were noted when the retention of the metal cations using 

VAL20 were compared to GMA20. The elution order obtained for VAL20 was 

Mn(II) = Co(II) < Zn(II) < Cd(II) (although Zn(II) only showed a slight increase in 

retention in comparison to Co(II)). The elution order for the retention of the metal 

cations using GMA20 was Mn(II) < Co(II) = Cd(II) < Zn(II) demonstrating a change 
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in selectivity between the polymer monoliths as shown in Figure 6.3. Zn(II) eluted 

before Cd(II) using VAL20 and eluted after Cd(II) using GMA20.  
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Figure 6.3: Order of elution of the four metal cations using monolith VAL25 (♦) and 

GMA25 (♦) showing the changes in selectivity. 

 

Also worth noting is the similar k values observed for Mn(II) and Co(II) (k values of 

2.8 and 2.9) which are well separated from Cd(II), which had a k value of 5.63 using 

VAL20 whereas using GMA20, Co(II) showed similar k values to Cd(II) (k values of 

2.19 and 2.21) which were separated from Mn(II) which had a k value of 0.82. 

Increasing the chelation capacity resulted in improvements in the retention of Mn(II) 

from Co(II) using VAL25. Zn(II) exhibited a similar k value to Co(II) which were 

both well resolved from Cd(II) and as with GMA20, the elution order was Mn(II) < 

Co(II) < Cd(II) < Zn(II). The data for VAL30 published in Table 6.2 was obtained 

using an eluent comprising of 0.2 mM nitric acid.  However, data was only obtained 

for Mn(II), Cd(II) and Cu(II). Using a 0.1 mM nitric acid eluent, the following k 

values were obtained: Mn(II) 8.26, Co(II) 11.02, Zn(II) 12.43, Cd(II) 21.14 and Cu(II) 

45.22.  Using a 0.2 mM nitric acid eluent, Mn(II) had a k value of 2.46, Cd(II) was 

4.94 and Cu(II) was 9.94. As the order of elution for all poly(VAL) IDA-modified 

polymer monoliths did not change with an increase in eluent concentration, this would 

suggest that k values for Co(II) and Zn(II) using VAL30 with a 0.2 mM nitric acid 
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eluent would be between 2.5 and 4.94 and it would appear that the separation of 

Mn(II), Cd(II), Co(II) and Zn(II) would not be possible.  

 

As mentioned above, increasing the concentration of the poly(GMA) from 25 % to  30 

%, during the modification of the polymer monolith surface with IDA, resulted in 

clear differences in k values for Co(II) and Cd(II) which co-eluted using GMA25 and 

the ability to separated 4 metal cations using GMA30 and a 0.2 mM nitric acid eluent 

was possible. Finally, increased retention for Mn(II) was obtained for VAL20, 

VAL25 and VAL30 in comparison to their equivalent poly(GMA) IDA-modified 

polymer monoliths showing an increased affinity of the poly(VAL) IDA-modified 

polymer monoliths for Mn(II). With the poly(VAL) IDA-modified polymer 

monoliths, it was also possible to elute Cu(II) in the same run as Mn(II) and Cd(II).  

Cu(II) forms the most stable surface complexes with IDA of all the metals studied in 

this work, according to known stability constants of metals with IDA published in the 

literature [16].  Cu(II) was retained > 60 minutes in all cases using poly(GMA) IDA-

modified polymer monoliths and it was not possible to detect Cu(II) in the same run 

as Mn(II), Co(II), Cd(II) and Zn(II) isocratically. 

 
6.2.5 Comparison of elution order of metal cations using poly(VAL) IDA-

modified polymer monoliths and poly(GMA) IDA-modified polymer monoliths 

with other IDA functionalised columns 

  

As seen in Chapter 5.0, an elution order of Mn(II) < Co(II) <  Zn(II) < Cd(II) < Cu(II) 

using a VAL30 polymer monolith was achieved (using a 0.1 mM nitric acid eluent). 

This was a similar elution order obtained by Barron et al. [52] using a ProPac IMAC-

10 analytical column (10 µm polymeric beads coated with a poly(acrylate) layer with 

covalently attached poly-IDA groups). The authors obtained an elution order of 

Mn(II) < Co(II) < Zn(II) < Cd(II) while Pb(II) and Cu(II) were retained > 3 hours 

using a 0.2 mM nitric acid eluent. Using the GMA30 polymer monolith, an elution 

order of Mn(II) < Co(II) < Cd(II) < Zn(II) <<< Cu(II) was obtained demonstrating a 

change in the selectivity between the poly(VAL) IDA-modified polymer monolith and 

the  poly(GMA) IDA-modified polymer monolith. 
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The elution order exhibited by the GMA30 monolith was similar to that obtained by 

Sugrue et al. [126] and Jones et al. [161].  Sugrue et al. [126] used a silica monolith, 

surface modified with IDA functionalities and obtained an elution order of Mn(II) < 

Co(II) < Cd(II) < Zn(II) <<< Cu(II) using an eluent comprising of 0.065 M KNO3 and 

0.035 M KCl.  Jones et al. [161] observed an elution order of Mn(II) < Co(II) < Cd(II) 

< Zn(II) with an 8 mM nitric acid eluent, a column packed with 5 µm silica particles 

with bonded IDA (150 mm x 4 mm I.D.).  

 

Table 6.3 shows a comparison of the column efficiency obtained for GMA30, VAL30 

and other IDA functionalised polymer monoliths in the literature namely, a ProPac 

IMAC-10 column consisting of 10 µm diameter particles with attached IDA and a 

commercially available silica monolith, surface modified with IDA Clearly, there 

exists a large difference in column efficiency exhibited by the IDA modified silica 

monolith when compared to GMA30, VAL30 and the ProPac IMAC-10. Using the 

IDA modified silica monolith, Co(II) exhibited the highest peak efficiency, similar to 

that observed by GMA30. The data shown in Table 6.3 for the ProPac IMAC-10 

column were obtained using optimised eluent conditions. Calculated efficiencies of 

2,720 N/m and 3,900 N/m were obtained for Mn(II) and Cd(II) respectively using an 

eluent consisting of 0.25 mM nitric acid, similar to the eluent used with the GMA30 

monolith. This demonstrated similarities in the efficiencies obtained for Mn(II) using 

the ProPac IMAC-10 column and GMA30, while Cd(II) showed improved efficiency 

with the GMA30.                   

 

Peak efficiencies obtained for GMA30 were superior to those obtained using VAL30 

when C4D was used as the mode of detection. However, an improvement in peak 

efficiency was obtained for VAL30 using UV-Vis detection at 500 nm following 

reaction of the eluted metals with PAR when compared to the peak efficiencies 

obtained using on-column C4D detection. It is worth pointing out that the effective 

column length of VAL30 using on-column C4D detection was 100 mm while the 

effective column length using UV-Vis detection was 140 mm. The increase in the 

effective column length of VAL30 using UV-Vis detection was due to the placement 

of a post column reactor at the end of the column, thus increasing the column length. 

This may have accounted for the increase in efficiency noted for the metal cations 

detected using UV-Vis detection. 
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Table 6.3: Comparison of efficiency of poly(GMA) IDA-modified polymer 

monoliths and poly(VAL) IDA-modified polymer monoliths with other IDA 

functionalised columns. 

 

 GMA30 

(140 mm x 

100 µm I.D 
a
 

 

VAL30 

(100 mm x 100 µm 

I.D ) 

 

ProPac IMAC-10 

(50 mm x 2 mm 

I.D)
c
 [17] 

Silica monolith 

(100 mm x 4.6 

mm I.D)
d
 [18] 

Detection C
4
D C

4
D UV-Vis UV-Vis UV-Vis 

 N/m N/m N/m N/m N/m 

Mn(II) 2,310 930 1,300 3,470 16,300 

Co(II) 7,480 1,250b - 4,500 27,530 

Cd(II)  5,900 2,700 3,300 10,060 9,400 

Zn(II) 4,579 3,100 3,600 10,420 16,450 

Eluents:  a = 0.2 mM HNO3,  

  b = 0.1 mM HNO3, 

c = 0.25 mM HNO3–10 mM KCl,  

d = 0.2 M KCl 

 

6.2.6 Separation of metal cations using poly(GMA) IDA-modified polymer 

monoliths 

 

Separations of metal standard samples were carried out on all five polymer monoliths 

and the chromatographic performance compared, which can be seen in Table 6.4.  

Figure 6.4(a) shows an overlay of separations of Mn(II), Cd(II) and Zn(II) using 

GMA15 and GMA20. Both separations were carried out using a 0.1 mM HNO3 

eluent.  Mn(II) was not retained using GMA15, Cd(II) co-eluted with the void peak 

and baseline resolution between Cd(II) and Zn(II) was 1.4.  Clearly, an increase in the 

chelating capacity (from GMA15 monolith to GMA20) resulted in the retention of 

Mn(II) and the ability to separate three metal cations, therefore resulting in improved 

separation capability. Baseline resolution of Mn(II) and Cd(II) was achieved 

(resolution of 1.6), however a resolution for Cd(II) and Zn(II) was only 1.2, therefore 

baseline resolution was not achieved between these two metals. Peak asymmetry 

improved for all metals using GMA20 with Zn(II) showing a peak asymmetry of 2.8 
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for GMA15 and 1.5 for GMA20. Although peak shape was improved using GMA20, 

large increases in peak width (calculated at 50 % peak height) were observed. Peak 

width for Zn(II) using GMA15 was 0.34 minutes and for GMA20 was 1.95 minutes, 

an increased peak width of 82. 

 

Baseline resolution of all three metals was achieved, with Mn(II) well resolved from 

the void. As seen previously, an increased chelation capacity resulted in 

improvements in peak shape with Zn(II) exhibiting a peak asymmetry of 1.1 and 

Mn(II) of 1.3.  Peak shape for Cd(II) remained unchanged at 1.2 when compared to 

GMA20.  A peak width of 3.5 minutes was observed for Zn(II) using GMA25.  Figure 

6.4(b) also shows a chromatogram obtained for the retention of Co(II).  A k value of 

6.77 was obtained for Co(II) which was similar to the k value of 6.78 obtained for 

Cd(II).  Using GMA25, it was only possible to separate Mn(II), Cd(II) and Zn(II). 

Increasing the complexation capacity resulted in a decrease in column efficiency. A 

decrease in column efficiency of ~ 50 % was observed for Zn(II) and 35 % for Cd(II) 

when GMA15 was compared to GMA25. In this case, increasing the complexation 

capacity resulted in slower association/dissociation kinetics, which had a deleterious 

effect on peak efficiency and peak width.        

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 
 

193 

Table 6.4: Chromatographic performance data obtained for the separation of Mn(II), 

Cd(II) and Zn(II) using GMA15, GMA20 and GMA25 and separations of Mn(II), 

Co(II), Cd(II) and Zn(II) using GMA30 and GMA35. 

 

Monolith Metal k N/m Asy. Resolution 

      

GMA15 Mn(II) - - - - 

 Cd(II) 0.69 1,650 1.6 - 

 Zn(II) 1.32 2,600 2.8 1.4 

      

GMA20 Mn(II) 0.81 1,020 1.5 1.9 

 Cd(II) 2.20 800 1.2 1.6 

 Zn(II) 4.40 525 1.5 1.2 

      

GMA25 Mn(II) 1.61 1,100 1.3 3.0 

 Cd(II) 6.78 1,060 1.2 3.1 

 Zn(II) 14.72 1,230 1.1 2.2 

      

GMA30 Mn(II) 1.39 2,310 4.2 3.3 

 Co(II) 5.51 7,480 2.1 6.2 

 Cd(II) 6.89 5,900 3.2 1.5 

 Zn(II) 10.88 4,570 3.7 2.7 

      

GMA35 Mn(II) 2.31 1,790 2.5 4.0 

 Co(II) 10.05 4,680 1.6 7.3 

 Cd(II) 12.71 4,045 2.7 1.5 

 Zn(II) 19.09 4,080 2.0 3.3 
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Figure 6.4: (a) Overlay of a separation of 5 ppm Mn(II), 10 ppm Cd(II) and 10ppm 

Zn(II) using GMA15 and GMA20. (b) Separation of 5 ppm Mn(II), 10ppm Cd(II) and 

10ppm Zn(II) using GMA25 overlaid with a 10 ppm Co(II) standard.  

Chromatographic conditions:  Eluent: 0.1 mM HNO3, flow-rate: 1 µL/min, injection 

volume: 100 nL, detection: on-column C4D, effective column length: 14 cm 
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Figure 6.5(a) shows an overlay of separations of Mn(II), Co(II), Cd(II) and Zn(II) 

using GMA30 and GMA35. The chromatographic performance data can be seen in 

Table 6.4.  Due to the increased capacity of GMA30 and GMA35, the eluent used was 

0.2 mM HNO3.  Figure 6.4(b) above shows an overlay of Co(II) with a separation of 

Mn(II), Cd(II) and Zn(II) using GMA25 demonstrating that the separation of these 

four metals was not possible. Using GMA30, an increase in the number of chelating 

moieties resulted in the ability of obtain baseline resolution of Co(II) and Cd(II). 

Significant increases in column efficiency were also observed using GMA30 when 

compared to GMA25.  An increase in efficiency of 52 % was observed for Mn(II), 87 

% for Co(II), 82 % for Cd(II) and 73 % for Zn(II).   

 

A further increase in the complexation capacity (GMA35) resulted in a decrease in 

efficiency when compared to GMA30. A decrease in efficiency of 23 % was observed 

for Mn(II), 37 % and 31 % for Co(II) and Cd(II) respectively and 10 % for Zn(II). 

Although a decrease in efficiency was observed between GMA30 and GMA35, 

improvements in peak shape were noted, particularly for Mn(II) and Zn(II).  A peak 

asymmetry of 4.2 and 3.7 was noted for Mn(II) and Zn(II) using GMA30 whereas a 

peak asymmetry of 2.5 and 2.0 was obtained for Mn(II) and Zn(II) using GMA35. 

Significant increases in peak width were also obtained when GMA30 was compared 

to GMA35, with Zn(II) showing an increase in peak width of 40 %.   

 

Cu(II) was retained > 60 minutes using GMA30 and GMA35 with a 0.2 mM HNO3 

eluent and it was not possible to separate Cu(II) in the same run as Mn(II), Co(II), 

Cd(II) and Zn(II).                  

 

Figure 6.5(b) shows an overlay of n = 5 separations of Mn(II), Co(II), Cd(II) and 

Zn(II) using GMA30 and an eluent consisting of 0.2 mM HNO3. Retention time 

precision was calculated to be < 1.5 % for Mn(II), Co(II) and Cd(II) and < 1.9 % for 

Zn(II). Retention time precision was also calculated for GMA35 and was < 2 % for 

Co(II), Cd(II) and Zn(II) and < 2.6 % for Mn(II).     
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Figure 6.5: (a) Overlay of separations of 5 ppm Mn(II), 10 ppm Co(II), 10 ppm 

Cd(II) and 10 ppm Zn(II) using GMA30 and GMA35. (b) Overlay of separations of 

the metals standards carried out using GMA30.  Chromatographic conditions: Eluent: 

0.2 mM nitric acid. All chromatographic conditions as in Figure 6.4.   
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6.2.7 Column to column reproducibility 

 

To investigate the reproducibility of the monolith fabrication and functionalisation 

procedure, 4 GMA30 monoliths and 4 GMA35 monoliths were prepared.  Separations 

of Mn(II), Co(II), Cd(II) and Zn(II) were carried out on all monoliths and the 

chromatograms obtained using the 4 GMA30 monoliths can be seen in Figure 6.6.  

Retention time precision was calculated to be < 12 % for Co(II) and Zn(II) and < 14 

% for Mn(II) and Cd(II) whereas the retention time precision using the 4 GMA35 

monoliths was 13 % for Cd(II), 16 % for Co(II) and Zn(II) and 19 % for Mn(II).                  
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Figure 6.6:  Overlay of separations of 5 ppm Mn(II), 10 ppm Co(II), 10 ppm Cd(II) 

and Zn(II) using 4 GMA30 monoliths. Chromatographic conditions: As in Figure 6.4. 

 

6.2.8 Alkaline earth metals 

 

The retention of alkaline earth metals using GMA25, GMA30 and GMA35 was 

studied. The effective column length for the separations of transition and heavy metals 

shown previously was 140 mm to allow direct comparison of each monolith.  An 

advantage of using on-column C4D is the ability to place the detector cell at various 

locations along the column, thus demonstrating a non-destructive method of varying 

the effective column length.  For the retention of alkaline earth metals, the detector 
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cell was placed as close to the end of the column outlet as possible.  Table 6.5 shows 

the chromatographic performance data obtained for Mg(II), Ca(II), Sr(II) and Ba(II) 

using GMA25, GMA30 and GMA35.           

 

Table 6.5: Chromatographic performance data for alkaline earth metals using various 

GMA-IDA monoliths.  Chromatographic conditions: Eluent: as specified in table, 

metals standard concentration: 5 ppm.  All other condition as in Figure 6.4.   

 

Monolith Metal k N/m Column dimensions Eluent 

(HNO3) 

GMA25 Mg(II) 0.43 1,040 190 mm x 100 µm 0.1 mM  

Ca(II) 0.53 1,170 

Sr(II) 0.55 1,110 

Ba(II) 0.60 1,190 

      

GMA30 Mg(II) 1.48 3,300 250 mm x 100 µm 0.2 mM 

Ca(II) 1.79 2,400 

Sr(II) - - 

Ba(II) 1.80 2,350 

      

GMA35 Mg(II) 2.29 1,290 190 mm x 100 µm 0.2 mM 

Ca(II) 3.06 1,890 

Sr(II) 3.24 3,620 

Ba(II) 3.76 4,460 

  - not injected 

 

From Table 6.5, k values obtained for GMA25 were similar for all four alkaline earth 

metals studied.  Peaks widths (calculated at 50 % peak height) were ~ 0.3 minutes for 

each metal cation and separation was not possible.  As the eluent was 0.1 mM HN03, 

it would be difficult to accurately reduce the concentration of the eluent to a lower 

concentration to try and improve resolution. Also, the column would have to be 

significantly longer, so as to allow separation of the alkaline earth metals. Using 

GMA30, differences in the k values of the alkaline earth metals were obtained, 
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allowing the separation of Mg(II) and Ca(II), which can be seen in Figure 6.7.  Ba(II) 

and Ca(II) had similar k values and separation was not possible. The retention of 

alkaline earth metals was also studied using GMA35. Using a 0.2 mM nitric acid 

eluent baseline separations of Mg(II) and Ca(II) were achieved (resolution of 1.63).  

An elution order of Mg(II) < Ca(II) < Sr(II) < Ba(II) was obtained and this shows that 

ion exchange appeared to be the dominant separation mechanism and retention was 

due to the formation of electrostatic interactions between the chelating ligand and the 

metal cations.  Mg(II) showed significant peak tailing at 5 ppm (asymmetry of 5.90) 

but was greatly improved when the concentration was reduced to 0.5 ppm, where a 

peak asymmetry of 1.62 was obtained. Figure 6.7 also shows a separation of 0.5 ppm 

Mg(II), 1 ppm Ca(II) and 5 ppm Ba(II) and as can be seen from this plot, baseline 

resolution between Ca(II) and Ba(II) was not achieved (resolution of 0.86 was 

obtained).  Sr(II) co-eluted with Ca(II) and baseline separation was not possible.      

 

Figure 6.7: (left) Separation of 1 ppm Mg(II) and 5 ppm Ca(II) overlaid with 5 ppm 

Ba(II) using GMA30.  (right) Separation of 0.5 ppm Mg(II), 1 ppm Ca(II) and 5 ppm 

Ba(II). Chromatographic conditions: Eluent: 0.2 mM HNO3, effective column length: 

250 mm (GMA30) and 190 mm (GMA35). All other conditions as in Figure 6.4.   
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6.2.9 Application of poly(GMA) IDA-modified polymer monoliths 

 

6.2.9.1 Determination of Mg(II) and Ca(II) in a bottled water sample 

 

Due to the ability of GMA35 to separate Mg(II) and Ca(II), the GMA35 monolith was 

applied to the determination of Mg(II) and Ca(II) in a bottled water sample. Linearity 

plots were constructed for Mg(II) and Ca(II) and can be seen in Figure 6.8.  R2 values 

of > 0.999 were obtained for both calibration curves.   
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Figure 6.8:  Linearity plots for Mg(II) and Ca(II) using GMA35 of concentration 

(mg/L) of Mg(II) and Ca(II) versus detector response (mV) 

 

Figure 6.9 shows the chromatogram obtained for the determination of Mg(II) and 

Ca(II) in a bottled water sample (100 fold dilution) overlaid with the same 

concentration of a Mg(II) and Ca(II) standard (0.8 ppm Ca(II) and 0.25 ppm Mg(II)).  

A 100 fold dilution of the bottle water sample was required to obtain baseline 

resolution between Mg(II) and Ca(II). Using the peak areas obtained for the 100 fold 

dilution of the bottled water sample, the concentration of Ca(II) and Mg(II) were 

calculated using the equation of the line obtained from the linearity graph in Figure 

6.8.  The concentration of Ca(II) was calculated to be 77 ppm and the concentration of 

Mg(II) was calculated to be 28 ppm. According to the manufacturer’s claims from the 

Concentration (mg/L) 
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label on the bottled water sample, the concentration of Ca(II) was 80 ppm and the 

concentration of Mg(II) was 26 ppm.     

 

1895

1900

1905

1910

1915

1920

1925

1930

1935

1940

0 2 4 6 8 10 12

D
e

te
ct

o
r r

e
sp

o
n

se
 (m

V
)

Retention time (mins)

Mg(II)
Ca(II)

(a)

(b)

(c)

Figure 6.9:  Overlay of chromatograms obtained for (a) blank sample (0.2 mM nitric 

acid), (b) 0.8 ppm Ca(II) and 0.25 ppm Mg(II) standard and (c) 100 fold dilution of 

the bottled water sample. Chromatographic conditions: Eluent: 0.2 mM nitric acid. All 

other conditions as in Figure 6.4. 

 

 

6.2.9.2 Simulated seawater analysis 

 

The determination of metals in seawater samples using conventional ion exchangers 

has the disadvantage in that the high concentration of salt ions present in the seawater 

sample would swamp the ion exchange sites available on the stationary phase matrix 

[135]. The use of chelating ion exchange can overcome this problem due to the 

reduced affinity of the chelating ligand for the alkali metals. Alkali metals form weak 

coordinate bonds with the chelating ligand. As the retention of metal cations is based 

on the formation of stability constants between the metal cation and the chelating 

ligand, the high ionic strength of seawater samples should have little effect on 

retention of the metal cations. 
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Figure 6.10 shows a separation of a standard solution containing Mg(II), Mn(II), 

Co(II), Cd(II) and Zn(II) using GMA30 with an effective column length of 250 mm.  

The elongation of the effective column length, to facilitate the resolution of Mn(II) 

from Mg(II) and Ca(II), resulted in an increase in the run–times for the separation of 

Co(II), Cd(II) and Zn(II). A total run-time of 40 minutes was observed when the 

effective column length was 250 mm as opposed to a run-time of 25 minutes when the 

effective column length was 140 mm. Due to the inability to resolve Mn(II) from 

Ca(II) and Mg(II), the effective column length was reduced to 100 mm and the effect 

of ionic strength on the retention of Co(II), Cd(II) and Zn(II) was studied.     
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Figure 6.10:  Separation of 5 ppm Mg(II), 5 ppm Mn(II), 10 ppm Co(II), Cd(II) and 

Zn(II) using GMA30. Chromatographic conditions: Eluent: 0.2 mM nitric acid, 

effective column length: 250 mm.  All other conditions as in Figure 6.4.   

 

A simulated seawater sample was prepared to investigate the effect of ionic strength 

on the retention of the metal cations. Figure 6.11 shows a separation of a 10 fold 

dilution of the simulated seawater sample spiked with 10ppm Co(II), Cd(II) and 

Zn(II) (a) overlaid with a standard solution containing only the metals (b). The plot 

also shows a 10 fold dilution of the un-spiked simulated seawater sample. From this 

plot, the effect of ionic strength (10 fold dilution, therefore concentration of Na+ is ≈ 

3,300 ppm) on the retention time of the metals appears to be minimal. Retention times 

of 7.4, 8.5 and 12.6 minutes were obtained for Co(II), Cd(II) and Zn(II) standards 
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respectively while retention times of the metals in the spiked simulated seawater 

samples were 7.3, 8.6 and 12.4 minutes for Co(II), Cd(II) and Zn(II) representing a 

difference of < 1.6 % in retention times.  Retention factor values were not calculated 

due to the inability to accurately integrate the void peak in the high ionic strength 

samples as the conductivity reached a maximum of 2500 mV (Figure 6.12). The 

spiked simulated seawater sample also contained 110 ppm Mg(II) and 40 ppm Ca(II) 

which were unretained (or very slightly retained).   
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Figure 6.11:  Overlay of 10 fold dilution of spiked pseudo seawater sample (a), 10 

ppm Co(II), Cd(II) and Zn(II) standard solution (b) and un-spiked pseudo seawater 

(c).  Chromatographic conditions: Column: GMA30, effective column length: 100 

mm, eluent: 0.2 mM HNO3.  All other conditions as in Figure 6.4.   
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6.2.9.3 Separation of transition metals in seawater samples 

 

The retention of transition and heavy metals was investigated using real seawater 

samples. The seawater samples were obtained from Quays beach in Co. Clare 

(seawater sample 1) and Ringsend, Co Dublin (seawater sample 2). Figure 6.13 shows 

a 10 fold dilution of a seawater sample spiked with 10 ppm Co(II), Cd(II) and Zn(II).   

 

As mentioned previously, k values could not be determined due to the high ionic 

strength of the seawater sample reaching a maximum conductivity at 2500 mV in the 

void peak (see Figure 6.12), therefore retention times were compared.  It is also worth 

pointing out the error associated with the comparison of retention times and not k 

values. For seawater sample 1, differences in retention times of 2.2 % for Co(II), 1.4 

% for Cd(II) and 4.5 % for Zn(II) were observed when the retention times of the 

spiked seawater sample were compared to the retention times obtained for the metal 

cation standard mixture. For seawater sample 2, differences in retention times of 3.7 

% for Co(II), 2.7 % for Cd(II) and 5.5 % for Zn(II) were obtained.   

 

 

 

Figure 6.12: Void peaks for 

injections of spiked pseudo 

seawater (black), un-spiked 

pseudo seawater (blue) and 10 

ppm Co(II), Cd(II) and Zn(II) 

(red). The high ionic strength of 

the samples resulted in a 

maximum conductivity at 2500 

mV.  The void peaks contained 

high concentrations of Mg(II) and 

Ca(II) which were unretained.        
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Figure 6.13:  Metal analysis of seawater samples from (I) Quays beach, Co. Clare and 

(II) Ringsend, Co. Dublin where (a) is unspiked seawater sample, (b) 10 ppm Co(II), 

Cd(II) and Zn(II) standards (b) and spiked seawater (c).  Chromatographic conditions:  

Eluent: 0.2 mM HNO3, column: GMA30, effective column length: 100 mm.  All other 

conditions as in Figure 6.4.   
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Figure 6.13 demonstrates the ability of the chelating polymer monolith to separate 

Co(II), Cd(II) and Zn(II) in the presence of 3,300 ppm NaCl as well as in the presence 

of 40 ppm Ca(II) and 110 ppm Mg(II). The separation of metal cations in seawater 

samples shown above could only be carried out by spiking the seawater with the metal 

cations. As transition and heavy metals are available in trace levels, a pre-

concentration step is required.  Rahmi et al. [139] recently reported the use of GMA-

co-EDMA monoliths, fabricated in commercially available syringe filter tips, for the 

solid phase micro-extraction of 29 transition/heavy metals and rare earth elements 

prior to their determination by ICP-MS.        

 

6.2.9.4 Separation of transition metals in a tap water sample 

 

A tap water sample was taken from within the research laboratory and spiked with 10 

ppm Co(II), Cd(II) and Zn(II). The sample was filtered prior to use and no dilution of 

the tap water sample was required. Figure 6.14 shows a separation of Co(II), Cd(II) 

and Zn(II) in a spiked tap water sample (black trace) overlaid with a standard mixture 

containing Co(II), Cd(II) and Zn(II) (blue trace). Figure 6.14 also shows the 

chromatogram obtained for the un-spiked tap water (red trace).  Retention factors of 

3.49, 4.45 and 6.81 were obtained for Co(II), Cd(II) and Zn(II) respectively in the 

metal standard mixture while k values of 3.48, 4.31 and 6.58 were obtained for Co(II), 

Cd(II) and Zn(II) in the spiked tap water sample. Differences in k of 0.29 % were 

observed for Co(II), 3.14 % for Cd(II) and 3.4 % for Zn(II).   

 

No metal peaks were observed in the un-spiked tap water sample, therefore future 

work would include a pre-concentration step prior to the determination of metals in 

tap water samples.   
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Figure 6.14: Un-spiked tap water (a), 10 ppm Co(II), Cd(II) and Zn(II) standards (b) 

and tap water sample spiked with 10 ppm Co(II), Cd(II) and Zn(II) (c). 

Chromatographic conditions as in Figure 6.4.   

 

6.2.10 Column stability 

 

Throughout this work, it was noticed that the stability of the column deteriorated over 

time (i.e. a loss of retention of the metal cations), therefore stability of GMA30 was 

closely monitored. The column volume was calculated to be 1.2 µL, (calculated 

taking the porosity into account). Throughout the life-time of GMA30, it was 

calculated that 7,980 µL of the eluent (0.2 mM nitric acid) had passed through the 

column before a complete loss of retention was observed, which translated into 6,650 

column volumes. The number of column volumes that passed through the column 

when a change in retention was observed was 5,450.   

 

Figure 6.15 shows an overlay of chromatograms obtained for the separations of 

Co(II), Cd(II) and Zn(II) over a 12 hour period (when a loss of retention was first 

observed).  Within this time frame, a decrease in k of 26 % was observed for Co(II), 

30 % for Cd(II) and 31 %  for Zn(II)           
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Figure 6.15:  Overlay of chromatograms of Co(II), Cd(II) and Zn(II) obtained over a 

12 hour period. Chromatograms offset for clarity. All other chromatographic 

conditions as in Figure 6.4. 

 

6.3 Conclusions 

 

LMA-co-EDMA polymer monoliths were fabricated and surface modified with IDA 

using photo-grafting techniques. Attachment of the IDA was possible through the ring 

opening of the epoxide group on the GMA structure, which was used to attach the 

IDA. Scanning C4D techniques were used to characterise the chelating stationary 

phase with results showing that an increase in the complexation capacity resulted in 

an increase in the conductive response during scanning of each monolith.  Results also 

showed that the axial distribution of the IDA groups were homogeneous along the 

length of the column with % RSD values < 1 %.  Increasing the GMA concentration 

from 20 % to 35 % during the grafting step resulted in a linear increase in the 

conductive response during the C4D scanning of each monolith.  As the same detector 

settings and ethanolamine buffer were used for the C4D scanning the poly(GMA) 

IDA-modified polymer monoliths were also used during the C4D scanning of the 

poly(VAL) IDA-modified polymer monoliths in Chapter 5.0, it was possible to 

compare the C4D scans obtained in both sections of work.  Results showed that the 

use of higher concentrations of GMA (30 and 35 %) during the modification of the 

Over 12 hr 
period 
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monolith surface with IDA, resulted in an increased conductive response during 

scanning C4D profiling when compared to VAL30 and VAL35, suggesting that an 

increased surface coverage of IDA was achieved using poly(GMA) as the IDA linker. 

The use of scanning C4D profiling used throughout this work demonstrated the vast 

amount of information to be gained during the fabrication of new stationary phases    

 

The poly(GMA) IDA-modified polymer monoliths were used for retention of selected 

metal cations.  The elution order obtained for the retention of Mn(II), Co(II), Cd(II) 

and Zn(II) was different that obtained using the poly(VAL) IDA-modified polymer 

monoliths. A reversal in selectivity of Cd(II) and Zn(II) was obtained using GMA-

IDA when compared to poly(VAL) IDA-modified polymer monoliths demonstrating 

that the linker used in the attachment of the IDA functionalities has an overall effect 

on the selectivity of the metal cations during chromatographic applications.      

 

Overall, the use of poly(GMA) for the attachment of IDA, as opposed to poly(VAL), 

produced a more efficient stationary phase when chromatographic performance data 

was compared.  From the analysis carried out in this work, it seemed that the most 

efficient results were obtained using a polymer monolith with an increased chelating 

ligand density used in conjugation with a higher concentration of eluent (i.e. GMA30 

used with a 0.2 mM HNO3 eluent resulted in a more efficient column in comparison to 

GMA25 used with an eluent comprising of 0.1 mM HNO3)      
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   Chapter 7.0: 

 

Final conclusions and summations 
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To date, little work has focused on the incorporation of ion exchange functionalities 

on polymer monolith substrates for the separation of small ions using photo-grafting 

techniques. In this work, polymer monoliths were fabricated and subsequently 

functionalised producing ion exchange polymer monoliths. Anion exchange monoliths 

were prepared by photo-grafting chains of poly(META). The poly(META) polymer 

monolith was applied to the separation of a six standard mix. Peak efficiencies were 

comparable to other work carried out using other polymer monoliths. Retention time 

precision was < 3 % for all six anions studied. Absolute LOD limits between 0.1 and 

0.4 pmole were obtained which were comparable to other portable chromatography 

systems in the literature. The fabrication of the poly(META) polymer monolith 

worked well and showed the ability to retain a large number of organic and inorganic 

anions. 

 

Alkaline earth metals were separated using a cation exchange polymer monolith, 

again prepared using photo-grafting techniques. Separation efficiency and resolution 

was poor demonstrating the low capacity exhibited by these monoliths. Increase in the 

ion exchange capacity could have been increased using an increased concentration of 

poly(SPM) during the functionalisation procedure. Temperature studies were carried 

out using an inexpensive capillary column heater, which was constructed using a 

flexible heating tape. The fabrication of the column heaters were easily incorporated 

into the system.  

 

Ion exchange polymer monoliths with attached chelating ligands were prepared and 

used for the separation of metal cations. In this work, two methods of IDA attachment 

were investigated. The first method involved the covalent attachment of IDA to 

poly(VAL) photo-grafted on the monolith surface and the second method involved the 

attachment of IDA on a poly(GMA) polymer monolith through ring opening of the 

epoxy groups. The use of photo-grafting techniques allows the ability to increase the 

surface coverage of the attached chelating ligand by increasing the concentration of 

the VAL or GMA during the photo-grafting step.   

 

C4D has been used for a number of years as a detection device in capillary 

chromatography and more recently it has become clear that valuable information can 

be gained from scanning the entire length of the column and measuring the conductive 
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response at pre-defined intervals. As well as measuring the axial distribution of IDA 

along the column length, scanning C4D plots also showed an increase in conductive 

response with an increase in the poly(VAL) or poly(GMA) concentrations used during 

photo-grafting. In the work in this thesis, a wealth of knowledge was obtained from 

constructed scanning C4D profiles. Characterisation of the IDA modified polymer 

monoliths was possible without destruction of the monolith and any anomalies 

associated with the stationary phase could be detected prior to chromatographic 

applications. While the longitudinal homogeneity obtained during the scanning of the 

IDA monoliths prepared using poly(VAL) showed an even distribution of the IDA 

groups (% RSD of 3 %), this was further improved upon when IDA was immobilised 

through the use of poly(GMA). Excellent longitudinal homogeneity was obtained (% 

RSD of < 1 %). This improvement suggests a more quantitative conversion (to 

bonded IDA groups) of available attachment sites with grafted poly(GMA) than 

achieved with the previous poly(VAL) grafted monoliths.     

 

The IDA modified polymer monoliths (prepared using poly(GMA) were applied to 

the determination of Ca(II) and Mg(II) in a bottled water sample. The results obtained 

were comparable to the manufacturer’s claims. A simple dilution step was required 

prior to the separation of the alkaline earth metals. The poly(GMA) monoliths were 

also used for the separation of transition metals in high ionic strength samples.  

 

The use of the chelating polymer monoliths demonstrated in this work were useful for 

the separation of metal cations. The work presented in this thesis on the use of 

polymer monoliths with attached chelating ligands for the separation of metal cations, 

resulted in the first publication on the topic. In the future, the use of capillary 

chelating polymer monoliths may replace other method of metal determination, such 

as atomic absorption spectroscopy. 
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Appendix 1.0 

 

Use of capillary polymer monoliths in fused silica capillary 

formats as post-column mixing devices. 
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A1.1 Introduction 

 

Post column reaction involves the reaction of the column eluate with a suitable 

reagent and measuring the reaction product often using UV-visible detection. The use 

of post-column mixing presents considerable difficulty when used at capillary scale, 

as any extra-column band broadening in the system leads to a substantial loss in 

efficiency [156]. The internal diameter of the post-column mixer is an important 

variable to consider, as this controls the mixer’s contribution to band broadening 

[157]. The internal diameter and volume should be kept as low as possible, while still 

ensuring sufficient mixing. Rohr et al. [158] demonstrated the use of monoliths, as 

post-column mixers, prepared by direct polymerisation of the monolith within micro-

fluidic channels. One advantage of direct polymerisation was the ability to place the 

monolith in specific regions in the micro-fluidic channels by masking off other areas.  

In this work, the authors demonstrated the effect of pore size and pore volume on the 

ability to mix two fluorescence dyes and found that the inclusion of the monolith in 

the channels of the micro-fluidic device did improve mixing when compared to 

mixing in an open channel mixer (i.e. no monolith), and that the best mixing was 

obtained with the monoliths with large irregular flow through pores. More recently, 

Mair et al. [159] demonstrated the ability to place 100 µm segments of monolith 

along the channel of a micro-fluidic device. In this work, the author mixed lysine with 

fluorescamine and measured the fluorescent intensity across an open channel, a 1 cm 

continuous monolith and a channel containing the segments of monolith. Mair found 

that while the continuous monolith increased mixing slightly, the mixing performance 

of the segmented monolith was found to be 22 % better than the open channel and the 

continuous monolith and this was due to the gaps between the segments of monoliths. 

 

In this present work, the fabrication of polymer monolith for their potential use as 

post-column mixers was investigated. The use of post-column chemistry has been 

shown to improve sensitivity in the analysis of alkaline earth metals [54].  Post-

column mixers must allow mixing of the eluted metals with a selected dye without 

significant increases in band broadening. Polymer monoliths in 100 µm Teflon coated 

fused silica capillary with varying pore size distribution were prepared and analysed 

for their suitablility as post-column mixers using a flow injection analysis system. The 
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monolith mixers were compared to a commercially available micro-fluidic nano-

mixer and the equivalent amount of open tubular fused silica capillary. 

 
A1.2 Instrumentation 

 

A1.2.1 Flow injection analysis system to determine the suitability of polymer 

monoliths in capillary formats as post-column mixers   

 
The flow injection system used in this analysis consisted of a Knauer Smartline 100 

high pressure analytical pump (Knauer, Bedfordshire, UK), a nano-flow sensor 

(Upchurch, WA, USA) and a Chemiert 20 nL injector valve (Global FIA, WA, USA).  

A second Knauer pump was used to introduce the PCR and detection was carried out 

using a Dionex Ultimate 3000 capillary UV detector with a 3 nL flow cell (Sunnyvale, 

CA, USA). The monolith mixers were compared to a commercially available micro-

fluidic nano-mixer purchased from Upchurch Scientific (Oak Harbor, WA, USA). The 

minimum amount of 25 µm fused silica capillary was used to connect all the separate 

components to reduce the effects of band broadening. A Dionex Ultimate 3000 

capillary chromatography system (Dionex, Sunnyvale, CA, USA) was used for 

backpressure measurements. The PCR mixers were also compared to a low dead 

volume T-piece, where one arm of the T-piece was connected to the eluent pump, the 

second arm connected to the PCR pump and the outlet port of the T-piece connected 

to the UV-Vis detector. The pump used for the vinylisation of the fused silica 

capillary was a syringe pump from Cole Parmer (Illinois, USA). The water bath used 

was a GFL 1002 (VWR International, Dublin, Ireland). The monolithic columns were 

polymerised and photo-grafted using a Spectrolinker XL-1000 UV Crosslinker at 254 

nm. (Spectronics Corp., NY, USA).    

 

A1.3 Procedure 

 

A1.3.1 Fabrication of polymer monoliths with increased pore size for use as 

monolith mixers 

 

Six polymer monoliths with increasing pore size distribution were prepared according 

to the concentrations set out in Table A1.1 [158].  Each polymerisation mixture was 
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de-oxygenated for 10 minutes with nitrogen and allowed to fill into 7 cm segments of 

previously vinylised Teflon coated fused silica capillary by capillary action. The fused 

silica capillary was sealed and 1 J/cm2 of UV energy at 254 nm was applied. The 

monoliths were subsequently washed with methanol at 1 µL/min for one hour.   

 

Table A1.1: % composition of monomer, cross-linker, porogen and initiator used in 

the preparation of the six polymer monolith mixers. 

 

Monolith # 1          2           3          4          5          6 

 % concentrations 

HEMA  24 18 12 9 6 3 

EDMA  16 12 8 6 4 2 

1-dodecanol  42 36.3 38.7 41.1 43.5 45.9 

Cyclohexanol  18 38.7 41.3 43.9 46.5 49.1 

DAP (%) 1 1 1 1 1 1 

 

 

A1.3.2 Measurement of back-pressure of the monolith mixers. 
 
The backpressures of each of the monolith mixers prepared in Table A1.1 were 

measured using a Dionex capillary ion chromatography system. The measurements 

were taken using methanol as the eluent and varying the flow rate from 0.5 – 8 

µL/min in 1 µL/min increments. 

 

A1.3.3 FIA using polymer monolith mixers as post-column mixers 

 

Using the FIA system described in Section A1.2.1, injections of Mg(II) were carried 

out using each of the monolith mixers in turn. The post-column reagent consisted of 4 

mM o-CPC, 10 mM boric acid and pH adjusted to 9.8 with 250 mM NaOH and 

detected using UV-Vis detection (originally set to 575 nm and following optimisation 

of the wavelength was changed to 570 nm). The monolith mixers were also compared 

to a micro-fluidic nano-mixer and the equivalent amount of open tubular fused silica 

capillary.  Peak heights and peak areas were noted for each mixer time and compared. 
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A1.4 Results and Discussion 

 

A1.4.1 Backpressure measurements 

 
 
To demonstrate the effect of monomer/porogen concentrations of the formation on 

pore formation, backpressure measurements were obtained for each monolith. The 

backpressure profiles obtained can be seen in Figure A1.1. Backpressure 

measurements were not carried out on the polymer monolith prepared using a 

polymerisation mixture consisting of 5 % monomer as it was observed that the 

monolith was breaking away from the walls of the fused silica capillary during the 

washing procedure. The monolith was not structurally stable which had the potential 

to block the flow cell of the UV detector if used and as a result, the 5 % monolith was 

omitted from any further analysis.   
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Figure A1.1: Backpressure profile obtained for HEMA-co-EDMA polymer monoliths 

with 40 % monomer (◊), 30 % monomer (◊), 20 % monomer (◊), 15 % monomer (◊) 

and 10 % monomer (◊).  Measurements carried out using methanol and flow-rate 

increased from 0.5 – 8 µL/min. 
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The linear response for the backpressure measurements obtained for all other polymer 

monoliths showed that the monoliths were stable and covalently bound to the walls of 

the fused silica capillary.  As can be seen from Figure A1.1, backpressures obtained 

for each monolith were as expected, with the monolith prepared using 10 % monomer 

and therefore containing the largest pores in comparison to the other monoliths, 

exhibited the lowest backpressure. The backpressure increased with an increase in 

monomer concentration. The 40 % monomer monolith was disregarded at this point 

due to the high backpressure exhibited.  

 

A1.4.2 Scanning electron microscope imaging 

 

Backpressure measurements obtained in Figure A1.1 showed that by increasing the 

porogen concentration, increased pore size was achieved, leading to decrease 

backpressure. Scanning electron microscope (SEM) imaging allowed the ability to 

visualise the pore morphology within the monolith structure. Figure A1.2(a) and (b) 

shows the polymer monoliths prepared using 5 % and 10 % monomer respectively.  

From these SEM images, it can be seen that the monolith only formed near the walls 

of the fused silica capillary. Figure A1.2(c) and (d) show the polymer monolith 

prepared using a monomer concentration of 15 %.  The monolith obtained exhibited 

large, irregular pores.  Figure A1.2(e) shows the SEM image obtained for the polymer 

monolith containing 20 % monomer and (f) shows the SEM image for the 30 % 

monomer monolith. These monoliths showed that a reduction in the diameter of the 

pores was obtained with an increase in monomer concentration.  Figure 1.2 (g) and (h) 

shows the SEM image obtained using a 40 % monomer concentration, which 

exhibited the highest backpressure. As can be seen for the SEM images, a highly 

dense porous polymer monolith was obtained, which was evident in the backpressure 

measurements obtained for this monolith in Figure A1.1. 
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Figure A1.2: SEM images obtained for monolith mixers: (a) 5 % monomer, (b) 10 % 

monomer, (c,d) 15 % monomer, (e) 20 % monomer, (f) 30 % monomer and (g,h) 40 

% monomer.   
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A1.4.3 Comparison of polymer monoliths in capillary formats as post-column 

mixers to a commercially available nano-mixer 

 

A1.4.3.1 Orientation of chip in the nano-mixer 

 

A commercially available nano-mixer consisted of a silica chip secured inside a 

plastic protective holding device. The micro-fluidic nano-mixer had 2 configurations, 

depending on which way the chip was placed in the chip holder. According to the 

manufacturers, the ‘low’ configuration had a flow path volume of 30 nL and mixes 

with low back pressure and the ‘high’ configuration had a flow path volume of 60 nL 

and gives superior mixing with a higher backpressure.  Figure A1.3 shows a picture of 

the microchip, which sits inside a protective holder. The microchip was tested in the 

‘high’ and ‘low’ configurations and as there was no appreciable difference in the 

backpressures exhibited, all investigative analysis using the micro-fluidic nano-mixer 

was carried out in the ‘high’ configuration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure A1.3: Micro-fluidic nano-mixer chip showing the low (red) and high (blue) 

configuration. 
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A1.4.3.2 Optimisation of detection wavelength. 

 

Previous work on the analysis of alkaline earth metals using o-CPC as a post-column 

reagent has shown that the optimum detection wavelength was 575 nm [54].  

However, it was important to determine the optimum wavelength using the conditions 

described in this work. Using the nano-mixer incorporated into the FIA system, 

injections of Mg(II) were carried out, varying the wavelength from 500 nm to 610 nm. 

Figure A1.4 shows a plot of wavelength (nm) versus peak area (V.s) and it can be 

seen from this plot that the optimum wavelength was between 565 nm and 570 nm, 

therefore all further work was carried using a detection wavelength of 570 nm. 
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Figure A1.4:  Plot of wavelength (nm) versus peak height (V) showing that the 

optimum wavelength was between 565 nm and 570 nm. Separation conditions: 

Injection volume: 20 nL, Eluent: 5 mM nitric acid,  PCR: 4 mM o-CPC, 10 mM boric 

acid  pH adjusted to 9.8 with 250 mM NaOH,  flow-rate: 1 µL/min (eluent and PCR).  

 

A1.4.3.3 Effect of polymer monolith post-column mixer length on peak shape 

 

The FIA system was set up using a high pressure pump, a nano-flow sensor and a 20 

nL injector valve. The least amount of 25 µm fused silica capillary was used to plumb 

the injector valve into the correct port of the nano-mixer. A second pump was used to 

introduce the post-column reagent which was connected to another port of the micro-

fluidic mixer. The eluent mixed with the post-column reagent as it passed through the 
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channels of the nano-mixer and exited through the third port of the nano-mixer, which 

was connected to the UV-Vis detector.   

 

Monolith mixers of various lengths were used (5 cm, 4 cm and 3.5 cm) and the effect 

of mixer length on peak height, area and width was investigated. Monolith mixers 

shorter than 3.5 cm could not be incorporated into the FIA system due to plumbing 

restrictions. The monolith mixers were also compared to the equivalent length of open 

tubular fused silica capillary (i.e. fused silica capillary containing no monolith). Table 

A1.2 shows the chromatographic performance data demonstrating the differences in 

peak width (measured at 50 % peak height), peak area and peak height, using 

monoliths mixers of varying flow-through pores, open tubular FSC and a 

commercially available nano-mixer. The peak area (V.s) indicated the degree of 

mixing while the peak height (V) indicated the band broadening. 

 

Table A1.2: Chromatographic performance data comparing mixing efficiency of 

monoliths of varying monomer concentration and varying lengths with a 

commercially available micro-fluidic nano-mixer.   

 
PCR mixer Mixer 

length 

(cm) 

Peak width  Peak Area 

(V.s) 

Peak Height 

(V) 

     
15% monomer 5 0.18 2.92 0.26 

4 0.15 3.16 0.31 
3.5 0.15 3.17 0.32 

     
20% monomer 5 0.11 2.63 0.33 

4 0.18 2.56 0.20 
3.5 0.10 2.94 0.39 

     
30% monomer 5 0.10 2.24 0.31 

4 0.11 2.33 0.30 
3.5 0.18 2.51 0.31 

     
Empty fused 
silica capillary 

5 0.09 2.64 0.43 
4 0.09 2.60 0.46 

3.5 0.08 2.64 0.47 
     
nano-fluidic 
mixer 

- 0.07 3.24 0.66 
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The effect of mixer length and therefore mixer volume was investigated. From Table 

A1.2, the length of the monolithic mixer had an effect on mixing capacity.  Each of 

the monolith mixers reported an increase in peak area (10 – 12 %) and an increase in 

peak height when the lengths of the monolith mixers were reduced (from 5 cm to 3.5 

cm), due to a decrease in the monolith mixer volume. The 15 % monomer monolith 

(3.5 cm) exhibited the largest peak area (3.17 V.s) when compared to the 20 % 

monomer monolith (3.5 cm) which showed a peak area of 2.94 V.s and for the 30 % 

monomer, a peak area of 2.51 V.s was obtained. As mentioned previously, a 

comparison of peak heights indicates the level of band broadening introduced by the 

monolith mixers. Peak heights of 0.32 V, 0.39 V and 0.31 V were obtained for 15 %, 

20 % and 30 % monolith mixers respectively.  However, when the peak heights from 

the monolith mixers are compared to the peak heights obtained from the equivalent 

length of open tubular fused silica capillary (0.47 V), it becomes evident that the 

introduction of the monolith into the fused silica capillary had an effect on the band 

broadening (~ 30 % increase in band broadening when compared to the 15 % 

monomer monolith, 3.5 cm in length). During this analysis, it appeared that the 

structural integrity of the 10 % monomer monolith was not sufficiently stable and in 

some cases, the porous polymer washed out of the end of the fused silica, therefore 

this monolith was ruled out as a potential monolith mixer. Although an increase in 

band broadening was observed when the monolith mixers (15 and 20 % monomer 

concentration) were incorporated in the flow injection system, in comparison with the 

same length of empty fused silica capillary, a closer inspection of peak areas indicated 

an increase in mixing efficiency of ~ 20 % when the monolith mixer was used. 

Comparing the 15 % monomer monolith (Figure 1.5(b) to the commercially available 

nano-mixer (Figure A1.6(b)) showed that the peak area’s obtained were comparable 

(3.17 V.s for 15 % monolith mixer and 3.24 V.s for nano- mixer), however, when the 

peak height’s are compared, it is clear that the 15 % monolith mixer contributes 

significantly to band broadening (~ 50 % decrease in peak height when the 15 % 

monolith mixer is used). Figure A1.5(c) shows FIA chromatograms obtained for 

injections of Mg(II) using the polymer monoliths prepared from a monomer 

concentration of 20 % and Figure 1.5(d) was obtained using empty fused silica 

capillary.  All chromatograms shown in Figure 3.12 are to scale and it is evident that 

the introduction of the monolith within the fused silica resulted in band broadening.  

 



 
 

234 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.5: Mg(II) peaks obtained on the FIA system using (a) the nano-mixer, (b) 

15 % monomer monolith, 3.5 cm in length, (c) 20 % monolith mixer, 3.5 cm in length 

and (d) 3.5 cm of empty FSC. 
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A1.3.3.4 Optimisation of post-column regent conditions 

 

To show the full extent of the mixing efficiency of the monolith mixers, the PCR 

conditions were optimised. The o-CPC concentration was varied from 0.5 mM to 8 

mM. The boric acid concentration was kept constant at 10 mM and the pH of each 

post-column reagent was adjusted to 9.8 with 250 mM NaOH. Injections of Mg(II) 

were carried out and it was found that the optimum concentration which exhibited the 

largest peak area and peak height was 1 mM o-CPC. This was repeated to find the 

optimum boric acid concentration where, the o-CPC concentration was kept constant 

at 1 mM and the boric acid concentration was varied between 2 mM and 20 mM.  The 

optimum concentration was found to be 15 mM boric acid. Finally, using 1 mM o-

CPC and 15 mM boric acid, the pH was adjusted from 8.5 to 11.5 and the optimum 

pH was found to be 9.8 

 

A1.4.3.5 Comparison of commercially available nano-mixer and monolith mixers 

using the optimized PCR conditions conditions. 

 

Using the optimised conditions, the commercially available micro-fluidic nano-mixer 

and the 15 % monolith mixer were compared.  Figure A1.6(a) shows the Mg(II) peaks 

obtained using the nano-mixer, while Figure A1.6(b) shows Mg(II) peaks using the 

polymer monolith prepared using a 15 % monomer concentration (3.5 cm) 

incorporated into the flow injection system.  The mixers were also compared to a 3.5 

cm piece of open tubular FSC Figure A1.6(c).  As all the chromatograms in Figure 

A1.6 are to scale, the effects of the incorporation of the monolith into the fused silica 

capillary become clear. Reductions in peak height were clearly visible as well as 

increase in peak width when the 15 % monomer mixer (b) is compared to (a). The 

PCR mixers, mentioned previously, were replaced with a low dead volume T-piece.  

Figure A1.7 shows Mg(II) peaks using the optimised conditions on the flow injection 

analysis system with a T-piece replacing the PCR mixer. 
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Figure A1.6: Mg(II) peaks obtained using the FIA system with (a) the micro-fluidic nano-mixer, (b) the 15 % monolith mixer, 3.5 cm in length 

and (c) open tubular FSC, 3.5 cm in length.  Injection volume: 20 nL, Eluent: 5 mM nitric acid,  PCR: 4 mM o-CPC, 10 mM boric acid  pH 

adjusted to 9.8 with 250 mM NaOH.,  flow-rate: 1 µL/min (eluent and PCR).  
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Figure A1.7: Injections of 500 ppm Mg(II) on the flow injection system using the 

optimised conditions. Chromatographic conditions: PCR mixer: Low dead volume T-

piece, all other conditions as in Figure A1.6. 

 

Table A1.3: Peak areas (V.s) (n=6 injections) using the micro-fluidic nano-mixer, 15 

% monolith mixer, open tubular fused silica capillary and low dead volume T-piece.   

 
 

Mixer Peak width 

 

Peak Area 

(V.s) 

Peak height (V) 

15 % monomer mixer  (3.5 cm) 0.24 5.63 0.33 

Micro-fluidic nano-mixer 0.07 5.62 1.11 

Open tubular FSC (3.5 cm) 0.08 4.75 0.84 

T piece 0.06 5.36 1.18 
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As can be seen from Table A1.3, the peak areas obtained from the nano-mixer and the 

15 % monolith mixer are comparable. As mentioned previously, a comparison of the 

peak heights suggests that the monolith mixer introduced significant band broadening 

which is evident when peak heights are compared (peak height for monolith mixer 

was 0.33 V and 1.11 V for the nano-mixer). The equivalent amount of open tubular 

fused silica capillary resulted in a reduction in the mixing efficiency showing that the 

incorporation of the monolith within the fused silica capillary resulted in a higher 

degree of mixing, however, when the peak heights are compared (0.33 V for 15 % 

monolith mixer and 0.84 V for open tubular fused silica capillary), the monolith did 

increase band broadening.  

 

The use of the T-piece with the 17 nL swept volume gave an interesting result. The 

fused silica from the UV detector was connected directly into the T-piece and it 

seemed that the length of fused silica from the detector connected to the flow-cell of 

the UV detector was long enough to ensure efficient mixing, when compared to the 

micro-fluidic mixer. A reduction in band broadening was also noted when the T-piece 

was compared to the monolith mixer. The results obtained for the T-piece were 

comparable to those obtained from the commercially available nano-mixer.  

 
A1.5 Conclusion 

 

The use of polymer monolith as post-column mixers is presented.  Polymer monoliths 

were prepared with decreasing porogen concentrations resulting in monolith with 

various flow-through pore diameters.  The differences in the flow-through pores were 

confirmed by obtaining back-pressure measurements and SEM images. Each monolith 

mixer was incorporated into a flow injection analysis system. Results showed that 

decreasing the length of the monolith mixer from 5 cm to 3.5 cm reduced the effects 

of band broadening due to decreases in the internal volume of the monolith mixer. 

The monolith mixer was also compared with an equivalent amount of open tubular 

fused silica capillary, which showed that the incorporation of the polymer monolith 

within the fused silica capillary did improve mixing, however an increase in band 

broadening was noted. The monolith mixer and open tubular fused silica capillary 

were also compared to a commercially available micro-fluidic nano-mixer. While 

peak areas of the monolith mixer and the micro-fluidic nano-mixer were comparable, 
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a increase in peak height of ~ 70 % was observed when the micro-fluidic nano-mixer 

was used demonstrating the significant effect on band broadening when the monolith 

mixer was used.  Finally, all post-column mixers were replaced with a T piece with a 

low swept volume with results showing that the mixing capabilities were similar to 

those exhibited by the micro-fluidic nano-mixer.   

 

Although the results obtained in this work showed that the use of a monolith as a 

mixer had a deleterious effect on band broadening, it is possible that that this problem 

may be overcome with the use of segmented monoliths similar to those reported by 

Mair et al. [159].   

 
 

 

 

 
 

 
 

 
 


