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Abstract
Sensor networks play an important role in our modern information society. These networks

are used for a variety of activities in different domains, including traffic monitoring, en-

vironmental analysis, transport and personal health. In general, systems generate data in

their own format with little or no associated semantics. As a result, data must be managed

individually and significant human effort is required to analyze data and develop ad-hoc

applications for different end-user requirements. The research presented here proposes a

holistic and comprehensive approach to significantly reduce the human effort in analyzing

networks of sensors. The goal is to facilitate any form of sensor network, enabling users

to combine related semantics with sensor data, and facilitate the end-user transformation

of data necessary to provide more complex query expressions, and thus meet the analytical

requirements.
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Chapter 1

Introduction

Sensor networks are increasingly used to monitor and support various processes and func-

tions. The sensors provide a way to automate the monitoring process, as they perform

simple and specific tasks. What these networks offer is the continuous generation of infor-

mation. However, these networks generate vast amounts of information that is not struc-

tured and is very difficult to use. Due to the fact that there are no standard data storage

methods or mechanism for query answering or knowledge extraction, and therefore, the

sensed data must be handled on case by case basis, which requires considerable human

effort to analyze data or develop ad-hoc introduction of the applications required for each

situation. The sensors provide information that is treated, filtered, interpreted, and stored

in a useful way of infrastructure for users. By providing an appropriate data management

layer, the data can be controlled and thus, transformed into knowledge, providing input into

all forms of decision making through an efficient query answering process.

1.1 Background Study

Information innovation has had a significant impact on our lives. For many of us, we inter-

act with two very separate worlds: the real world in which we stay and the online world of

the web. Web technology has changed the way we learn, work, and play in our real world.
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The catalyst for this change is based on a new generation of cheap, reliable, and efficient

sensor technologies where these technologies keep sensing diverse events in the real world.

They include web-connected sensors and sensor systems of all types: flood gauges, air pol-

lution monitors, stress gauges on bridges, mobile heart monitors, webcams, satellite-borne

earth imaging devices and countless other sensors and sensor systems. In short, the combi-

nation of sensors, software, and the Internet will enable new types of information services

across a wide range of sectors from health and the environment to education, retail, and

entertainment.

A recent overview of the Sensor Web [15] highlighted the growth of sensor networks and

described research in areas such as sensor development, toolkits and standards, security,

ubiquitous sensing systems and wearable sensors. Many of these topics focused on bridg-

ing the physical-digital divide and discussed research into areas ranging from environmen-

tal monitoring, testing in large scale engine development, detection of hazardous gases in

emergency disasters, and personal and wearable sensors. The deployment of sensors, as

a means of automatic extraction of data from a wide variety of sources, is commonplace

today. A recent survey [14] of applications and test environments using sensor technology

provided details of sensor deployments in areas such as monitoring in the automotive in-

dustries, security, fire safety, environmental monitoring and health.

The Sensor Web aims to simplify access to sensor resources, similar what the World Wide

Web does for accessing the documents. It relies on new information and communication

standards for structuring sensor information and its exchange. The Open Geospatial Con-

sortium (OGC)[25] sets up these new standards, which refers to web accessible sensor

networks and archived sensor data that can be discovered, accessed and, where applica-

ble, controlled using open standard protocols and interfaces (APIs). The OGC provides

a framework for building exchange standards and service interfaces for accessing sensor

data and contextual information, and thus, enables real time integration of heterogeneous
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sensor data on the Internet. The research was undertaken through global collaborations of

experts, often in the context of coordinated engineering activities (the OGC Web Service

Initiatives) accelerates the development of interoperability standards and protocols. Within

Open Geospatial Consortium (OGC) standards, the SANY (Sensors Anywhere) [15] project

works towards ’plug and measure’ in sensor networks for environmental monitoring. The

architecture specifies all kinds of fixed and moving sensors, and it allows seamless sharing

of information between sensor networks. SANY provides a quick and cost-efficient way

to reuse data from sensor and data sources that are currently incompatible. Data sources

include live sensor data and archived data in the databases.

Sensor networks are increasingly finding their way into our living environment, where they

perform a variety of tasks like surveillance, safety or resource monitoring. Progress in stan-

dardization and communication protocols has made it possible to interact and exchange data

in a generic fashion. Researchers expect that the sensor network performance will become

more robust when information from multiple sources is integrated. In addition, they believe

that sensor networks could become smarter for at least two reasons: sensors that produce

highly reliable output can be used to provide guidance of other sensors within the network,

and correlations among sensed events could lead the automatic propagation of semantic in-

formation across sensors.

Sensors and sensing technology are everywhere. People often deploy sensors to address

issues like networking, calibration, sensor fusion and sensor event detection. The general

trend is towards networking sensors into the Sensor Web, and there is another way of us-

ing them such as they can be used in small groupings on standalone devices that gather

information, and report back live sensor readings. This wearable sensor technology [15]

records sensor readings of a wearer’s daily life, the focus of this work is on detecting events

of interest to the wearer from a multi-sensor standalone device. In the field of personal

health (pHealth) sensor networks, wearable sensors are used to demonstrate both levels of
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the health performance and well-being. Discrete sensors are now commonly used to assess

physiological responses during individual and team sports. Measuring heart rate and breath-

ing to assess the physiological stress during sports activities is widely accepted within the

sporting community. Wireless devices such as the wireless Polar heart rate monitor and the

team breathing sensor is used in this study to monitor the performance of the participant

during team sports. Relative heart rate can be estimated by treating and manipulating the

output of sensors, and it is a common measure of intensity in any sport.

1.2 Motivation

Before coaches can introduce a new training system, it is necessary to validate this strategy

through a large study. Traditionally in intermittent type sports, aerobic fitness is enhanced

through endurance training. This type of training requires long time periods which could

alternatively be spent on enhancing other essential sports specific skills. Recent research

[17] and [4] have demonstrated that short sprint interval training lasting, typically 10 to 15

minutes a session, can convey the same aerobic fitness as these endurance type sessions.

The challenge in performing the necessary tests using sensor devices is with managing the

very high volumes of data that will be generated. Often, exercise physiologists will spend

days analysing spreadsheets simply to arrive at basic calculations such as average heart

rates over specific periods of time, or comparisons of heart rates for selected athletes over

different training sessions. They lack the ability to do proper information analysis on these

high volumes of data. In other words, there is a significant gap between high level user

requirements and the data generated by sensors, and when this data is generated in high

volumes, it provides a significant barrier to knowledge extraction. Thus, the motivation

behind this research is to provide an information management layer that provides exercise

physiologists with the ability for meaningful analysis through a flexible query interface.
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1.3 Approach and Contribution

The challenge for us is to close the semantic gap between end user requirements and raw

datasets. We do this by providing a number of processors and algorithms to transform the

data to a format that could be queried using a high level query language. Therefore, the

overall contribution of this research is to provide a mechanism which will automatically

enrich and transform sensor data upto a point, and then through user interaction provide

new levels of semantic enrichment.

As part of our approach, we aim to achieve these goals:

• A rule based paradigm with which we can associate sensor data with the context

information in which these data has been generated, which is covered in Chapter 4.

• An efficient sensor outlier removal algorithm, which is provided in Chapter 5.

• A set of data functionalities or transformations to enable the end user express complex

queries against low level sensor data, which is covered in Chapter 5.

The contribution presented in this dissertation is two-fold. Firstly, we provide a framework

for the contextual enrichment of sensor data that allows the user to specify how to merge

context and raw sensor data in a rule based approach. Secondly, we provide a set of data

transformation primitives to extract levels of knowledge required for the more complex user

queries. We evaluate our work using a series of queries and provide a detailed discussion

of the results. In this evaluation, both user requirements (queries) and datasets are provided

by the exercise physiologists.

1.4 Summary and Dissertation Structure

The structure of this dissertation is as follows: We continue in Chapter 2 by giving an

analysis of related research in this field; in Chapter 3, a real world case study and a system

overview is then provided; Chapter 4 presents the enrichment of enabled sensor data using a

rule-based approach; in Chapter 5, we introduce our outlier removal algorithm together with
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the data transformation primitives; in Chapter 6, we present our evaluation with a detailed

analysis of experiments; and finally, we provide conclusions and discuss future work in

Chapter 7.
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Chapter 2

Related Research

The Related Research Chapter will mainly focus on four topics: Section 2.1 involves re-

search on context modeling and management in designing a context-aware system architec-

ture; Section 2.2 discusses the relevant technologies on Body Sensor Networks; Section 2.3

discusses research on the rule based contextual enrichment of raw sensor data; Section 2.4

discusses the research efforts on sensor outlier removal algorithms.

2.1 Context Modeling Architecture

Authors in [47] propose context management as a new approach to the design of context-

aware systems in ubiquitous computing that combines personalization and contextualiza-

tion. They present a framework that integrates user modeling and context modeling and this

base framework is designed for context-aware applications. They developed a component-

based architecture for hosting several components on different abstraction levels and pro-

viding functionalities like database access and knowledge exchange between these compo-

nents. We can illustrate the four main layers of the framework:

1. Sensor Layer

The Sensor Layer consists of tools that receive incoming data, perform cleaning and

fusion of sensor values. It serves as an information collector, where each context-
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adaptive system relies on a network of sensors placed in the physical environment

and delivering an image of the current situation that the user is acting in.

2. Semantic Layer

The Semantic Layer defines the context model of a context-adaptive system. The

context model then captures the current situation that the user is acting in. Each

context attribute on the Semantic Layer is connected with one or multiple sensors, and

in turn sensors deliver information to one or more attributes, creating across linked

network between sensors and attributes. Context attributes receive sensor values and

map them onto semantically more enriched values.

3. Control Layer

On the basis of the context model and data provided by the Semantic Layer, the

Control Layer decides what actions should be taken if a particular condition in the

model has been matched.

4. Indicator/Actuator Layer

Finally, The Indicator/Actuator Layer handles the connection back to the domain by

mapping the operations triggered in the Control Layer to real world actions.

These four components form the basis of a rule system that controls the desired behavior

of the target application. This rule system is a set of hierarchically ordered rules, where

each rule comprises a precondition part and an action part. If the precondition of a rule is

matched, the rule is triggered and all related actions are executed. Preconditions consist

of only boolean expressions while actions involve changes in context attribute values, and

the selection of content on different devices. This research work gives us an overview of

a functional layer architecture that supports sensor data management, context abstraction,

and the control of actuator output.

This four layered context-aware framework is similar to our own design, where we also

have the concepts such as the Sensor Layer where we enable sensors with affiliated tem-
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plates, the Semantic Layer where we associate context with the raw sensor data, the Control

Layer where we can apply necessary data transformations to enable complex queries.

Issues and limitations. This research work gives us an overview of a functional layer

architecture that supports sensor data management, context abstraction, and the control of

actuator output. However, one of the biggest drawbacks is that, the rule system they present

is in a relative low level hence only very limited queries can be proposed and answered. In

contrast, our system enables a wide range of queries over raw sensor data and transforms

data if necessary to answer more complex queries.

The research in [40] also focuses on context modeling and context management. They

suggest that an efficient context model is a key factor in designing context-aware services.

They establish a context awareness enabling architecture which provides the user with a

uniform way to access context information, thus hiding the complexity of context manage-

ment. It also offers streamlined mechanisms for massive distribution and synchronization of

personal repositories across multiple data sources. Under this structure, a component called

the Context Broker answers context requests and serves as the access point to the context

data. When a user requests context from the Context Broker, it decides and retrieves the

context from the most appropriate context source among multiple sources providers. There

is also an Inference Engine working under Context Broker, which infers additional and in-

directly observable context information. It contributes to minimise user interactions with

the pervasive computing system and plays the important role of estimating the activity of

a person given some lower level sensor data. The raw data is tracked by the Sensor Man-

ager, and eventually the Context Store retrieves context from the Sensor Manager (raw data)

and the Inference Engine (contextual data), processes this data, stores it to the appropriate

repositories and updates the context databases.

Their framework acts as an agent based architecture supporting context-aware computing
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in intelligent spaces populated with intelligent systems that provide pervasive computing

services to users. While our framework does not provide the user such services as live data

collecting nor live querying, we store and retrieve the associated context information to and

from the appropriate context repositories.

Issues and limitations. The biggest problem they experience is that the cost of commu-

nication and maintenance is sufficiently high in such large-scale distributed systems, and

it lacks the flexibility to include any kind of domain specific ontologies on behalf of the

end-users. Moreover, due to lack of a well-designed data aggregation/transformation layer,

even for answering a simple set of queries defined by end users will result very complex

contextual inputs. In contrast, our system architecture is quite context flexible and adaptive

on any domain which benefits from our template driven approach, and we allow the end

user to express complex query over sensor data with the help of a proper designed data

transformation component.

2.1.1 Summary.

These research projects present a context management architecture, which is adequate for

large scale ambient systems that have a strong relation to heterogeneous and distributed

networks. Their architecture supports context refinement, uniform access to context data by

users, as well as federation of context repositories. They offer a standardised mechanism for

discovering and accessing sensor data which enables contextual information to be reused in

potentially new and novel ways, and also enables contextual data to be utilized, providing

a common, self-describing context ontology.

2.2 Relevant Technologies

In both [7] and [8], the authors examine how Sensor Web enablement services work in

healthcare sensor networks. Their research follows the standards of the Sensor Web En-

ablement (SWE) from the Open Geospatial Consortium (OGC) [25] as a possible compo-
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nent for the virtualization of sensors and to build a generic sensor network architecture with

reusable components for various sensor networks. They offer a standardised protocol for

discovering and accessing sensor data which enables data to be reused in potentially new

and novel ways, and also enables sensor data to be enriched, providing a common, self-

describing data format and access protocol. Both approaches enrich multiple sources of

sensor data into a data model that represents different sensors and data as a series of ob-

servations. They focus on simple live sensor data from multiple sources, obtaining query

results on the basis of a series of simple rules applied to the streams.

The research in [1] also focuses on personal health sensor networks. They are developing

a wearable light device capable of measuring specific vital signs of the elderly, detecting

falls and location, and communicating this information automatically in real-time. Their

system has been designed with the aim of reducing the reliance on a central station, thus

leading to minimizing power consumption by communicating only when it is strictly neces-

sary. In contrast with [8], the full set of standards was not adopted since it proves inefficient

when taking into account the sensor protocols used in their system. Also, their systems are

only processing the sensors which are only in a Body Area Network, unlike the OGC Sen-

sor Networks which are geographically distributed, measured and observed. Nevertheless,

the concepts such as measurement and observation initiated by the OGC have been partly

adopted by them to manage and extract data from a sensor device.

2.2.1 Summary.

Both approaches discuss the relevant technologies on Body Sensor Networks and follow the

concepts and standards of the Sensor Web Enablement (SWE) which has also been adopted

in our approach. However, they do not adopt the full set of standards in comparing with our

standard OGC template which can be reused for various sensor networks.
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2.3 Rule Based Contextual Enrichment

In [44], the authors process and query streams of raw data as it arrives from sensors. Their

approach enriches the raw data into “semantic streams” and processes the streams as they

are generated. The “semantic streams” permits the user to issue queries over semantic

values directly, without addressing which data or operations are to be used. Their program-

ming model consists of two fundamental elements: event streams and inference units. Event

streams represent a set of events, where each event represents a real world object, such as a

person or a car and has its own properties such as the time or location, speed, identity etc.

Inference units are the processes that operate on event streams. They refer to the semantic

information about the world from incoming events and either generate new event streams or

add the information to existing events as new properties. So as a stream flows from sensors

and through different inference units, its events acquire new semantic properties. In order to

automatically compose sensors and inference units, they use a markup language to encode a

logical description of how they fit together. Furthermore, each inference unit must be fully

specified in terms of its input streams and output streams and any required relationships

between them. The “semantic streams” defines a set of logical predicates that can be used

to declare sensor and inference units as following:

Definition 2.1. An example of logical predicates

sensor( <sensor type>, <region> )

inference( <inference type>, <needs>, <creates> )

needs( <stream1>, <stream2>, ... )

creates( <stream1>, <stream2>, ... )

stream( <identifier> )

isa( <identifier>, <event type> )

property( <identifier>, <value>, <property name> )

The sensor predicate defines the type and location of each sensor. The inference,

needs, and creates predicates describe an inference unit in terms of the event streams

that it needs and creates. The stream, isa, and property predicates describe an event
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stream and the type and properties of its events. A query is simply a first-order logic de-

scription of the event streams and properties desired by the user. For example, a simple

query could be: stream(X), isa(X,vehicle), which has a simple meaning that

the query would be true if the event stream X is a vehicle.

Overall, there are two notable features in this research work. First, the declarative pro-

gramming they proposed is easier to understand than low-level, distributed programming

and allows users to query high level information from sensor networks. Second, the frame-

work allows multiple users to task and retask the network concurrently, optimizing for reuse

of services between applications and automatically resolving resource conflicts. Together,

their framework allows non-technical users to quickly extract semantic information from

raw sensor data using a set of logical predicates. Similar to this work, we developed a set

of Event-Condition-Action rule templates for enriching contextual information, which also

allows non-IT users to efficiently adding semantics to raw sensor data. Moreover, we use

XQuery as our stardard query language to make all queries more flexible and manageble

for the user.

Issues and limitations. There are several issues/limitations involved in this approach as

listed below:

• Queries are at a relatively low level.

• No open query language is supported.

• Finally, this work is still theoretical and has yet to provide experiments or an indica-

tion of query performance.

In [12] and [11] , the authors present an approach to address contextual synthesis of sensor

networks in the sports domain. The context synthesis is to generate new knowledge, as a

result of a reasoning process applied to context information that is already present in their

system. In their research, they utilize a context engine to retrieve context information on
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mobile applications. The context engine provides mechanisms to retrieve, model, synthe-

size, and distribute context information in a distributed, mobile environment. They use the

term context query as a request for context information. The context query uses an opera-

tion to produce the expected context information. Operators can be considered as functions

that take an input or list of inputs, perform an operation, and produce an output. Further-

more, they split context queries into two categories: simple and complex context queries.

These two query types are distinguished depending on whether they contain an operator

or not. Simple context queries obtain context information directly from the repository,

i.e. the database, without using operators; while the second category contains an operator,

whose inputs determine the required context information. These are called complex context

queries. The context engine contains a context mapping component that issues local and

remote context queries. Communication between the context mapping component and the

context repository is based on queries.

The authors define context synthesizing as a process of generating new knowledge. This

context synthesis requires some operator based rules to drive the process. In their dis-

tributed context retrieval, context synthesis begins with an interpretation of a context query

to retrieve a description and implementation of the operator. The basic context query is rep-

resented by an expression of operators, arguments, and a context quantifier. The description

of the retrieved operator specifies the operation performed by this operator, the required in-

put arguments, and the output returned by this operation. The output of the operation is

then sent to the mobile application as a result of the context query.

In summary, they provide context synthesis to the user which offers two main advantages:

firstly, an operator provides the user with a functional approach to context data simplify-

ing context synthesis and programming of context-aware systems in general. Secondly, the

context engine allow the user to apply operators dynamically based on description of input

and output types. Similar to their work, our main research area is also based on analyzing

21



sensor data in the sports domain. However, they put their research effort in a distributed,

mobile environment which has its own proprietary data format, while our aim is to provide

a more stardard platform where the user has a high level, stardard query language to express

queries.

Issues and limitations. Sensor data, generated from a single event, are kept in their pro-

prietary raw format. Queries are developed as ad-hoc programs over the proprietary data

format, but they are not SQL-like, and instead all object-oriented, containing context opera-

tors which perform synthesising operations. Context operators can in turn use other simpler

operators to execute smaller tasks and to reuse existing functionality. The biggest prob-

lems involved in this approach are: rules are still at a relatively low level and this research

does not support any open query language but requires precomposed built-in queries. Every

time a query needs to be added or edited, there is the need for a system expert to apply the

changes.

2.3.1 Summary.

Overall, the approaches presented lack the ability to handle complex queries over raw sensor

data and rules for enriching data are at a relatively low and abstract level. Moreover, no open

query language is supported among them. I will provide an Event-Condition-Action (ECA)

like paradigm which enables users to specify context enrichment using open query language

as XQuery, which will be shown in Chapter 4.

2.4 Sensor Outlier Removal

Palpanas et al. [30] have proposed an in-network approach for distributed online deviation

detection for streaming data. Their interests is in finding those values that deviate signif-

icantly from the norm. Their detection mechanism can be used to identify faulty sensors,

and to filter spurious reports from different sensors. However, this approach depends on the

existence of more powerful and sophisticated sensors (high capacity sensors) to perform
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the filtering process and to manage groups of low capacity sensors. Their more recent work

[39] propose a general and flexible data distribution approximation framework that does not

require a priori knowledge about the input distribution. They use an online filtering scheme

for sensor networks. The goal is to identify, among all the sensor readings in a sliding win-

dow, those values that have very few near neighbors.

In the sensor network setting, they require that each sensor maintains a model for the dis-

tribution of values it generates. Since they are not interested in the entire history of the

values produced by the sensors, it suffices to consider the values in a sliding window W

of size N. Thus, T holds only the values in this sliding window, i.e., the N most recent

values. At each point in time, they are interested in approximating the distribution of the

data values within the sliding window. The techniques proposed operate efficiently in an

online fashion. Moreover, they distribute the computation effort among the nodes in the

network, thus better exploiting the available resources and cutting down on the communi-

cation and processing costs. Their approach initially estimates the sensor data distributions,

then computes the density of the data space around each value, and therefore determines

which values need to be cleaned. The key point is that every sensor keeps a sliding window

of the historical data and estimates the data distribution to detect the outliers.

Our outlier removal method is similar in that it uses a sliding window W of size N to

detect and calibrate the actual outlier. The differece is that our method sets the initial valid

range/bound for the sliding window rather than keeping it on the entire historical data. In

this way, less memory footprint is needed while running this method against large volume

of sensor data.

Issues and limitations. Their approach initially estimates the sensor data distributions,

computes the density of the data space around each value and therefore, determines which

values need to be cleaned. The key point is every sensor keeps a sliding window of the his-
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torical data and estimates the data distribution to detect the outliers. This method, however,

consumes a lot of memory and may not find all outliers.

A similar approach for outlier detection in streaming data is described by Kenji et al.

[21]. They focus on the issue of online unsupervised outlier detection. Their approach

introduces SmartSifter as a probabilistic model to represent an underlying mechanism of

data-generation. The model takes a hierarchical structure, and every time a datum is in-

put, it employs an on-line learning algorithm. SmartSifter give a score to each datum on

the basis of the learned model, measuring how large the model has changed after learning.

Thus a higher score indicates a higher possibility that the datum is an outlier. In contrast to

Palpanas’s work [30], their method does not operate on sliding windows, but rather on the

entire history of the data values, using an exponential forgetting factor for discounting the

effect of the older values.

Their approach detects outlier based on a way of smart learning the data sources. In con-

trast, our methodology is based on parameterized variables, which is flexble to the user and

adaptive to different sensors.

Issues and limitations. Unlike Palpanas’s work [30], SmartSifter does not operate on

sliding windows, but rather on the entire history of the data values, using an exponential

forgetting factor for discounting the effect of the older values. Furthermore, the above

approach is not geared towards a distributed environment, such as a sensor network.

2.4.1 Summary.

Both of the approaches need to compare all values with their near neighbors as well as the

historical data. Our approach identifies candidate outliers only after the valid range is se-

lected. It requires a small memory footprint and facilitates the calibration of actual outliers

in a deterministic manner, detailed outlier removal algorithm will be listed in Chapter 5.
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2.5 Conclusion

From the research discussed in this chapter, we can clearly see that there are many ap-

proaches for modeling, enriching, cleaning and querying raw sensor data, but due to the

lack of a proper management layer, either queries are at a relatively low level or they do

not support any standard query language. Section 2.1 looked at the ideas in designing a

context-aware system architecture similar to that described in Chapter 3; Section 2.2 dis-

cussed the issues in adopting the concepts and standards of the Sensor Web Enablement

which is also covered in Chapter 3; Section 2.3 described research issues on rule based con-

textual enrichment of raw sensor data which is discussed further in Chapter 4; Section 2.4

involved examining issues on sensor outlier removal algorithms which we will provide in

Chapter 5. Overall, the approach presented in this research will provide a mechanism that

uses a rule-based context enrichment ontology which supports open query languages such

as XQuery, and moreover, provides an efficient sensor outlier removal algorithm to detect

and calibrate all necessary outliers. The next chapter will provide an overview of how our

system works.
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Chapter 3

System Architecture

Chapter 3 illustrates the processes our system uses to structure, enrich, transform and query

sensor data in real world scenario. In Section 3.1, a real world case study with user queries

is presented; in Section 3.2, we give an overview of our approach in answering these real

world queries; in Section 3.3, we describe a template driven approach to enable raw sensor

data for basic queries; in Section 3.4, we describe the enrichment of enabled sensor data

with the context information in which has been generated; and finally in Section 3.5, we

discuss future knowledge and transformations we can extract from the sensed data.

3.1 Real World Case Study

This research is a result of a collaboration with exercise physiologists. The goal of the

exercise physiologists is to collect data using a set of sensors and ensure that participants

complete the whole process of the activity. The challenge for us was to allow the user to

query raw datasets in a flexible manner. In order to achieve the goal, we need to provide a

number of processors and algorithms to transform the data to a format that could be queried

using a high level query language, which will be introduced in the following sections.
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3.1.1 HIIT Study

The treatment of individuals with CardioVascular Disease (CVD) has evolved consider-

ably in the last 50 years [6]. Individuals with cardiovascular disease are now encouraged

to undertake a rehabilitation programme that offers a multi-faceted and multidisciplinary

approach to optimize cardiovascular risk reduction, promote adoption and adherence to

healthy behaviours, enhance emotional well-being, reduce disability, and encourage an ac-

tive lifestyle [5]. Traditionally, individuals with CVD are encouraged to undertake con-

tinuous, moderate to vigorous intensity exercise as part of their cardiac rehabilitation pro-

gramme. A growing body of evidence has shown that High-Intensity Interval Training

(HIIT) can be an effective alternative to traditional continuous exercise interventions. High-

intensity interval training involves a series of repeated bouts of exercise performed between

70 - 100% of maximal effort, and alternated with periods of active or passive recovery. The

duration of the high-intensity intervals can range from 10 seconds to 5 minutes. When com-

pared to continuous endurance exercise, interval training has been shown to elicit similar or

even superior physiological adaptations, in both healthy and diseased populations.

The majority of studies that have examined the effect of interval training have used in-

tervals of 3 minutes in duration. Our collaborations examined the cardiovascular responses

to short duration High-Intensity Interval Training (HIIT) in individuals with documented

cardiovascular disease (CVD). Twenty-five men and women undertook a HIIT session that

involved a 10 minute warm-up, and 3 blocks of 8 high-intensity intervals, followed by a 5

minute cool down. Each interval consisted of 45 seconds of treadmill exercise at 90 - 100%

of their maximal effort, interspersed with 15 seconds of passive recovery, with details il-

lustrates in Figure 3.1. Heart rate was continuously monitored during each HIIT session

using a heart rate telemetry system (Polar Team2 Pro) [32]. To date, the majority of studies

evaluating the cardiovascular responses to HIIT have provided summary statistics, such as

average HR, maximal HR and minimal HR. The goal of the exercise physiologists is en-

sure that participants complete the whole process of the activity. This is important because
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Figure 3.1: High-Intensity Intervals

it allows healthcare professionals to better monitor the acute cardiovascular responses to

HIIT and design and implement individually tailored exercise programmes. Howerver, data

produced by the heart rate telemetry system was at a very low level and a high level query

language is not available for this type of data.

Aim To compare the effects of 4 weeks of traditional community-based cardiac rehabil-

itation programme and an individualized 4 week high-intensity intermittent exercise pro-

gramme.

Specific Aim:

• To evaluate the effect of a 4 week high-intensity intermittent exercise programme.

3.1.2 Queries

Requirements of the exercise physiologists are shown in Table 3.1. None of these queries

were possible to be expressed on the original datasets, because the original sensor data does

not have any contextual information like participant name or state information related to
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it in order to answer these queries. We will show our efforts to provide a proper query

interface for the exercise physiologists in Chapter 4 and Chapter 5.

Table 3.1: Queries in English.
Query

1 Return all participants names who belong to a specific group.

2 Return all participants names who wear a heart rate monitor in a specific activity.

3 Return all the values for each sensor reading of a participant during any specific state.

4 Calculate the minimal/maximum/average value for each sensor reading during any specific state.

5 Calculate the minimal/maximum/average value for each sensor reading in a specific group.

6 Return the participant name who has minimal/maximum value in a specific group.

7 Identify the incidence where each sensor reading of a participant was from N% to M% of its maximal value.

8 Identify any N second incidence where each sensor reading was at M% of its maximal value or above.

9 Identify the N minute rolling average for each sensor reading of a participant during any specific state.

10 Identify the earliest drop point/time reading of a participant where the slope between current sensor reading

and next sensorreading is negative for each interval.

3.2 System Architecture
The motivation for our system is to allow users to specify queries at a high level, and to

structure, enrich, transform and query sensor data. The architecture is depicted in Figure
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3.2 as consisting of 5 major components, starting from the sensor devices which have var-

ious types like heartrate monitors, breathing monitor, etc. Sensor data is then collected

by the Sensor Enablement component, which is responsible for structuring and mapping

sensed data from their native, raw, format to a standard format. The Context Enrichment

component merges the structured sensed data with the context information in which the data

has been generated. The Data Cleaning component then detects and calibrates the outliers.

At this point, sensor data is made available to the Data Transformation, and the Query In-

terface components.

Due to the fact that sensor data now has all the the context information such as participant

name and state name associated with it, users can then access enriched sensed data with

simple queries like ’List all the values for each sensor reading of one participant during any

specific state’ through the query interface. The full XQuery Expressions are listed in Exam-

ple 3.1 that return all the values for a particular participant grouped by state name. However,

as some like ’Calculate the minimal/maximum/average value for each sensor reading dur-

ing any specific state’ needs the aggregation information like minimal/maximum/average

value from enriched sensed data before it can be specified, it is necessary to transform or

further enrich the data in order to answer these complex queries.

Example 3.1. Sample Query

for $c := collection(‘HIIT’)

$s in distinct-values($c//sos:user[text()=’Ann’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/@state)

let $value := $c//sos:user[text()=’Ann’]

/sos:sensorData/sos:sections/sos:section/sos:measurement[@state = $s]

/sos:reading[sos:key[text()=’HeartRate’]]/sos:raw-value

order by $s

return <value state="{$s}">{for $v in $value return $v}</value>

30



3.3 Sensor Enablement

This component is responsible for parsing and converting raw sensor data generated from

the hardware devices into a structured standard format. Raw data is a series of sensor read-

ings plus some device specific parameters. Example 3.2 shows an example of raw data

sensed by a heart rate monitor for HIIT Study. First, the sensor outputted some configura-

tion data followed by a series of sensed heart rate values (delimited by the keywords Params

and HRData). From this sample output data, it is clear that while being machine readable,

sensor data cannot be manipulated without the development of a specific application.

Example 3.2. Raw Sensor Stream for HIIT Study

[Params]

Device=S1,

Version=106,

Monitor=2,

SMode=00000000,

Date=20110316,

StartTime=12:11:53.0,

Length=01:04:34.3,

Interval=1,

Upper1=0,

Timer1=0:00:00.0,

ActiveLimit=0,

StartDelay=0,

... (other configuration parameters)

[HRData]

71,

71,

72,

72,

74,

... (remaining heart rate values)

In our approach, we have chosen to transform raw data into a standard sensor format,

known as the Sensor Web Enablement (SWE) initiative by the Open Geospatial Consortium

(OGC)[25]. The Sensor Web Enablement group is a working group of the Open Geospatial
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Consortium, which refers to web accessible sensor networks and archived sensor data that

can be discovered, accessed and, where applicable, controlled using open standard protocols

and interfaces (APIs). The main contribution of the SWE is the specification of a number

of standards which are responsible for specific aspects of managing sensor networks. For

example, the Sensor Observation Service (SOS) is responsible for providing actual sensor

readings encoded in a standard XML format which we are using for our stardard XML out-

put. Concepts such as measurement, observation and process adopted in SWE initiative by

the OCG have inspired us to manage and utilize data from different types of sensor devices.

Moreover, we have developed a template approach on top of the OGC standard to ensure

that no requirement of system modification but providing new XML templates when new

sensors are developed.

The template driven approach converts the raw value into standard OGC XML tags in our

real case scenario, which is depicted in Figure 3.3. For instance, in our real case scenario,
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the template converts the paramenter Version into the complex element <sos:paramenter>

composed of two sub-elements <sos:key>Version</sos:key> and <sos:value>106</sos:value>.

Similarly, the heart rate data is actually converted into the complex element <sos:measurement>

with its sub-element <sos:raw-value>. Example 3.3 shows a full enriched XML/OGC ver-

sion of raw HIIT Dataset in Example 3.2. Note that adopting the OGC standard, facili-

tates the interoperability and integration of the sensed data with other OGC compliant data.

Within the template a user can define functions to perform time and data format transfor-

mation or timestamps generation.

This is a relatively simple process but it plays an important role as it protects the system

from changing in its envrionment, by providing Sensor Enablement we can make a number

of basic assumptions regarding sensor data. Firstly, we provide generic structural markups

for any sensor devices. Secondly, we convert the raw sensor data into XML format so that

basic queries can be easily applied to the sensor data.

Example 3.3. Enriched HIIT Dataset Now in OGC format

<?xml version="1.0" encoding="UTF-8"?>

<sos:GetResult xmlns:sos="http://www.opengis.net/sos/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

service="SOS" version="1.0.0">

<sos:ObservationTemplateId>urn:DCU:HeartRate</sos:ObservationTemplateId>

<sos:sensorData>

<sos:device>HRM</sos:device><sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime><sos:interval>1000</sos:interval>

<sos:sections>

<sos:section name="Params">

<sos:parameter><sos:key>Version</sos:key><sos:value>106</sos:value>

</sos:parameter>

... (other parameter elements)

</sos:section>

<sos:section name="HRData">

<sos:measurement offset="0" time="1300277513000">

<sos:reading ordinal="">

<sos:key>HeartRate</sos:key><sos:raw-value>71</sos:raw-value>

</sos:reading>
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</sos:measurement>

... (measurement element repeats)

</sos:sensorData>

</sos:GetResult>

3.4 Context Enrichment

The Context Enrichment component has the role of integrating the structured sensor data

with context information. Before the integration, although already queriable by means of

XQuery expressions, sensed data provides only basic device related information from which

meaningful knowledge extraction has not yet been provided. For instance, the output from

a sensor measuring HR values worn by an athlete, return those values associated with a spe-

cific device identification (or code) rather than associated with the athlete, while for an high

level user it is intuitive to pose a query using the athlete’s name. The association with the

athlete, as well as other information such as which team the athlete is with or what training

session the sensed data belongs to, etc., is implicit in the context, i.e. known from those

who deployed the sensors for each activity to monitor. As a result, a trainer who wants

to know simple information such as “what is the performance level of a (specific) athlete,”

must first verify which sensor the athlete is wearing, then specify the query. Clearly, with

more complex queries involving, for instance, information about teams or specific parts of

an activity, require a significant amount of work in order to retrieve the data of interest.

Such work is usually manual, complex and error prone. Thus, it can greatly benefit from

explicitly including context knowledge in the sensed data. In order to integrate context in-

formation with sensed data, exercise physiologists must provide clear and sufficient context

information by creating and populating a context repository with the required data. It is

then necessary to define enriching rules to specify how to enrich (or merge) sensor data

with context information. This is described in detail in Chapter 4.
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3.5 Data Transformation

Although the sensor data is structured and semantically enriched, we also need to facilitate

end users in specifying some complex queries like ’Identify any N second incidence where

each sensor reading was at M% of its maximal value or above.’. Thus, the data transfor-

mation component is introduced to perform modification on the database in terms of data

aggregations. Data aggregations is desirable when certain queries cannot be expressed. End

user queries can be rather complex, requiring the processing of aggregated data, performing

sorting and comparison on several attributes, etc. In this case, the user may want to precom-

pute specific data (for instance used by several queries) so that queries can take advantage

of such precomputations both in terms of expressions complexity and performance. This

is described in detail in Chapter 5. Our contribution here will be transforming sensor data

necessarily to make queries more manageable for exercise physiologists.

3.6 Summary

In this chapter, we went through all the components in our system architecture. The Case

Study section demonstrated with a real world scenario into where we applied our system.

The Context Enrichment component associates sensor data with the context information in

which data has been generated. The Data Transformation component offers a set of pre-

defined, yet customizable and extensible data transformation primitives, and also provides

data functionalities to answer more complex user queries.
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Chapter 4

Sensor Dataset Enrichment

This chapter presents the enrichment of enabled sensor data with additional semantics such

as participant details, experiment details and state information in which has been generated.

In Section 4.1 we present a brief overview of the integration process; in Section 4.2 we

present an Event-Condition-Action approach for integrating sensor data with contextual in-

formation; in Section 4.3, we then provide detailed analysis of the Rule Based Enrichment.

4.1 Process Overview

The goal of sensor dataset enrichment is to provide sufficient semantics to enable end users

to express basic queries using a high level, standard query language. There are many ways

to achieve this type of enrichment but in general, a metabase which holds information about

the context of the activity or experiment (people, objects, activity details, time, etc.) is

required and then sensor data and context must be merged to provide a more enriched

information source.

At an abstract level, a sensor will be deployed in a specific Context and in assocation with

a specific Activity. A Context will always have one or more of Participant/Team (people

or group of people who get invovled in the activity), State (the phase of the activity during

which the sensor value was generated, or is relevant to), and Timing (information on the time
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Figure 4.1: The Integration Process

at which an activity commenced and the interval at which sensor readings are generated).

Fig 4.1 illustrates the overview of the integration process. The Integration Process has 4

components: Sensor Data in Fig 4.1 is the XML/OGC version of raw sensor data, which

has the attributes as DeviceID, StartTime, Sensor Reading etc; ECA Rules show how con-

text data integrate into the structure enriched data using our Event-Condition-Action rules,

here we have ECA Rules work for adding in player information, adding in team information

and also the most important one: adding in the State and Timing information; Context Info

are the real values from External Data Sources, for instances: Warmup, Run and Recovery

is the real values for the attribute State; Enriched Data are the context enriched data after

ECA Rules has been applied to. Example 4.1 shows the external context information that

relates to Example 3.3.

Example 4.1. The External Context Infomation

<?xml version="1.0" encoding="UTF-8"?>

<context>

<exercise_desc>HIIT running test</exercise_desc>

<date>16/03/2011</date>

<start_time>12:21:19</start_time>

<states><state><name>warmup</name><duration>10:00</duration></state>

<state><name>run</name><duration>30:00</duration></state>

<state><name>recovery</name><duration>35:00</duration></state></states>

<teams><team><name>Training Day 1</name>

<deviceID>S1</deviceID><deviceID>S2</deviceID><deviceID>S3</deviceID>

<participants><participant><name>Ann</name><deviceID>S1</deviceID>
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<participant><name>Bryne</name><deviceID>S2</deviceID>

<participant><name>Paul</name><deviceID>S3</deviceID></participant></participants>

</team></teams>

</context>

In our approach we enable users to specify context enrichment in an Event-Condition-

Action (ECA) like paradigm. Once defined, ECA-like rules are transformed into standard

XQuery expressions, that can be applied to the input data and applied by any XML engine.

We will describe the transformation process along with the rule template in the following

section.

4.2 ECA Rules

Our ECA rules have a rather intuitive syntax. We use two pre-defined variables to refer to

the input sources: sensor refers to the raw sensor data, while context refers to the context

data. To navigate XML nested elements we adopt the . (dot), borrowing the notation from

object modelling. Because the deploying scenario varies often, we focus on the provision

of a method that enables non-expert users to specify how to enrich sensor data with context

information.

An Event-Condition-Action rule template is shown in Definition 4.1.

Definition 4.1. Event-Condition-Action rule template

On : <Event>

When : (<Condition>)+

Do : (<Action>)+

Default : (<Action>)?

Each rule has four main sections: On, When, Do and Default.

• The On section specifies the event name to which this rule must be applied. The

name can be specific name, such as “HIIT”, or if the rule is rather generic and can
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be applied to any event, as in this case, then the keyword any can be used. While

transforming into standard XQuery expressions, the keyword On is transformed into

let clause in XQuery, the event name is transformed into the collection name in the

database.

• The When section specifies the condition under which the rule must be executed.

Generally, this is a condition on either the raw sensor data, the context data, or possi-

bly both. The condition can be either one or more. In standard XQuery expressions,

the keyword When is transformed into if clause, the condition stays as the same but

each element is expressed using its XPath.

• The Do section specifies which action to perform as a manipulation of the input

data. Same as the conditon section, the action can be one or more depending on

the requirement. The keyword Do is transformed into do insert clause in standard

XQuery expressions and the attribute of latter element is assigned to former element.

• Finally, the Default section specifies the default action to perform and it is optional.

In standard XQuery expressions, the keyword Default is transformed into else clause.

Detailed example of how the ECA rule works will be described in the following section.

4.3 Rule Based Enrichment

There are three types of ECA rules that has been used in our integration process.

1. Participant Mapping Rule

The Participant Mapping Rule integrates the basic participant information, which

includes participant name, age, gender, DOB, address, phone number, and ect.

2. Group Mapping Rule

The Group Mapping Rule adds the basic group information, which includes group

name, location, number of people in the group, and ect.
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3. State Mapping Rule

The State Mapping Rule adds state information to sensed data to identify in which

session of the training a participant is. For example: First Half, Half Time, Second

Half are the states of a Gaelic Footbal game.

As the dynamics of sensor monitoring will see changing sensors, people or objects and the

context in which data is delivered, this rule based enrichment provides a generic approach

to avoid having to develop software wrappers for every experiment. It also provides a mech-

anism whereby end users (often non-computing users) can easily define how this merging

of context and raw data takes place. Thus, our focus here is on the provision of a method

that enables non-expert users to specify how to enrich sensor data with context information.

Furthermore, with the additional Participant/Group/State information added on, it is now

possible for users to express the query like ’Return all the values for each sensor reading

of one participant during any specific state’ on the enriched sensor datasets, a example is

already provided in Section 3.2. In here we will walk you through each rule step by step.

4.3.1 Participant Mapping Rule

The purpose of the participant mapping rule is to add participant information, such as name

and the training group the participant is with, into the XML data by mapping the device

IDs from the raw sensor data with that from the context. Let us consider first the rule that

adds personal information about the participants. For the sake of clarity in the presentation,

let us assume that the only information we need to add is the participant’s name (including

additional information is straightforward).

Example 4.2. Participant Mapping Rule

On : HIIT

When : context.participant.deviceID = sensor.deviceID

Do : sensor.user = context.participant.name
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Example 4.2 specifies that for the sensor data related to the activity “HIIT”, if the device ID

from the raw sensor data matches the device ID specified in the context for some participant

then the participant’s name is added to the sensed data. The transformation algorithm works

as follows:

• The keyword On is transformed into let clause in XQuery, with the collection name

“HIIT”.

• The keyword When is transformed into if clause, and each element is expressed using

its XPath.

• The keyword Do is transformed into do insert clause and the value of participant

name is assigned to the name of user under sensor data itself.

• The keyword Default is not used here but will be shown late in Example 4.8.

Full XQuery expressions is listed in Example 4.3.

Example 4.3. Participant Mapping Rule in XQuery

let $c := collection("HIIT")

if $c/context//participant/deviceID = $c//sos:sensorData/sos:deviceID

do insert $c//sos:sensorData/<sos:user>$x/name</sos:user>

Applying this rule, the sensed data is updated as shown in Example 4.4 by adding the

participant’ names wrapped in XML tags.

Example 4.4. An Enriched Sensor Stream with Player Name

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

< sos:user > Ann </ sos:user >

<sos:device>HRM</sos:device>

<sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime>

<sos:interval>1000</sos:interval></sos:sensorData>

</sos:sensorData>
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4.3.2 Group Mapping Rule

Similarly, we can map the information of which group a participant was part of in a training

session. In this rule shown in Example 4.5, if the device ID from the sensor data matches

a device worn by an participant belonging to a certain group, then the group name is added

to the sensor data. The group information is useful when the user wants to express queries

over a group of people. At a high level, this rule is fairly similar to the preceding, which

has the same behaviour in the generation of the XQuery implementation.

Example 4.5. Group Mapping Rule

On : HIIT

When : context.team.deviceID = sensor.deviceID

Do : sensor.session = context.team.name

Similar to the Participant Mapping Rule, the same transformation logic applies in this case.

This rule inserts the XML element session with value “Training Day 1” to the sensor data

and Example 4.6 lists the Full XQuery expressions.

Example 4.6. Group Mapping Rule in XQuery

let $c := collection("HIIT")

if $c//sos:sensorData/sos:deviceID = $c/context/team//deviceID

do insert $c//sos:sensorData/<sos:session>$c/context/team/name</sos:session>

After applying the rule, the default value of element session in Example 4.7 has been mod-

ified with the team name provided.

Example 4.7. An Enriched Sensor Stream with Team Name

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:user>Ann</sos:user>

< sos:session > Training Day 1 </ sos:session >

<sos:device>HRM</sos:device>

<sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime>

<sos:interval>1000</sos:interval>

</sos:sensorData>
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4.3.3 State Mapping Rule

The purpose of the State Mapping Rule is to add state (the phase of the activity during

which the sensor value was generated, or is relevant to) information to sensed data to iden-

tify in which session of the training an participant is. For example the high-intensity interval

training (HIIT) test is organized in a warmup session, followed by consecutive sessions of

running, then a final recovery session. The state mapping rules associate heart rate values

with the session (state) in which they have been generated according to the static definition

of the test. So there are 3 major states in the HIIT test: the beginning of the test is marked

as warmup which is 10 minutes in length; the next 20 minutes is denominated as run state;

the last 5 minutes is marked as recovery for participants to cool down.

The states associations can be implemented as a sequence of ECA rules, one for each con-

dition. Additionally, we introduce two new symbols in our condition part, the “()” symbol

means the attribute of an element and the “[n]” symbol means the number n value of an

element. Let us see the Example 4.8 for the rule that implement the above described en-

richment.

Example 4.8. State Mapping Rule

On : HIIT

When : sensor.time >= context.start_time and

sensor.time < (context.start_time + context.duration[1])

Do : sensor.measuremnt(state) = context.state.name[1]

When : sensor.time >= (context.start_time + context.duration[1]) and

sensor.time < (context.start_time + context.duration[2])

Do : sensor.measuremnt(state) = context.state.name[2]

When : sensor.time >= (context.start_time + context.duration[2]) and

sensor.time < (context.start_time + context.duration[3])

Do : sensor.measuremnt(state) = context.state.name[3]

Default : sensor.measuremnt(state) = "rest"
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This rule looks more complex than formal ones, but the transformation logic remains the

same except that the Default section is used in this rule to specify the default action.

• In this case Default is transformed into else clause with an action by setting the

default value of sensor state.

The XQuery equivalent is shown below in Example 4.9. The state information will be

inserted as an attribute into the measurement element.

Example 4.9. State Mapping Rule in XQuery

let $c := collection("HIIT")

if ($c//sensorData//time >= $c/context/start_time and

$c//sensorData//time < ($c/context/start_time + $c/context/duration[1]))

do insert attribute $c//sensorData@state ‘$c/context/state/name[1]’

if($c//sensorData//time >= ($c/context/start_time + $c/context/duration[1]) and

$c//sensorData//time < ($c/context/start_time + $c/context/duration[2]))

do insert attribute $c//sensorData@state ‘$c/context/state/name[2]’

if ($c//sensorData//time >= ($c/context/start_time + $c/context/duration[2]) and

$c//sensorData//time < ($c/context/start_time + $c/context/duration[3]))

do insert attribute state ‘$c/context/state/name[3]’

else(do insert attribute $c//sensorData@state ‘rest’ )

Applying the State Mapping rule, the sensed data is updated by inserting the state informa-

tion in Example 4.10.

Example 4.10. An Enriched Sensor Stream with State Infomation

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:user>Ann</sos:user>

<sos:session>Training Day 1</sos:session>

<sos:device>HRM</sos:device>

<sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime>

<sos:interval>1000</sos:interval>

<sos:section name="HRData">

<sos:measurement state=”rest” offset="0" time="1300277513000">

<sos:reading ordinal="">

<sos:key>HeartRate</sos:key>
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<sos:raw-value>71</sos:raw-value>

</sos:reading>

</sos:measurement>

... (measurement element repeats)

</sos:sensorData>

4.4 Summary

In this chapter, we introduced the ECA rule based context enrichment which facilitates a

wide range of basic queries by adding additional context information to the sensed data.

At this point, we have already associated the participant, group and state information with

sensor data. Therefore, we need to extract further knowledge from the sensed data using

transformation functions. The next chapter will provide a detailed description of sensor out-

lier removal algorithm, followed by several data transformation functions which facilitate

the advanced queries proposed by exercise physiologists in Section 3.1.
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Chapter 5

Sensor Dataset Transformation

This chapter presents the levels of knowledge and transformations we can extract from

the sensed data. In Section 5.1 we provide an algorithm to detect and calibrate outliers;

in Section 5.2 we present a wide range of data transformations in order to handle more

complex analyses requested by exercise physiologists.

5.1 Outlier Removal Algorithm

In almost all sensor networks, the network will generate outlier values which are clearly

outside the normal acceptable range. Before any queries or transformations of data can

progress, it is necessary to detect and calibrate these outliers. We present a method that op-

erates on XML sensor output and can be parametrised by exercise physiologists. There are

four primary steps: Set Valid Range; Identify Candidate Outliers; Identify Actual Outliers;

and Calibrate Outlier.

Step 1. Set Valid Range, MinValue and MaxValue In heart rate (HR) monitoring, the

general rule of thumb for Max HR is HRMax − age (and generally HRMax = 220). And

we also need to introduce a variable HRMin to set the minimal heart rate value (and usually

HRMin = 50). Variable HRLimit represents the boundary of heart rate range, it could be

either HRMax − age or HRMin. While this is generally applicable, we need to be as
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flexible as possible as we are dealing with an age group that may have wide differences.

Here we define the following function to identify the upper and lower bounds of the Max

HR range and the Min HR range, which contain valid candidate outliers.

Definition 5.1. Outlier Removal Algorithm

fV alidRange(hr, HRLimit, variance)=


FALSE if (hr > HRLimit ∗ (1 + variance))

FALSE if (hr < HRLimit ∗ (1− variance/2))

TRUE Otherwise

As HRLimit consists of two boundaries: the highest boundary HRMax − age and the

lowest boundary HRMin, we need to set two valid ranges using this algorithm. In the

case of Max HR experiment we have age, so the probable max HR is ProbableMax =

HRMax − age. Then we add a 10% variance (variance = 10%) so that anything upto

ProbableMax+10% is a possible valid MaxHR. Anything above is an outlier (automatic).

Thus: MaxV alue = ProbableMax + 10%; MinV alue = ProbableMax− 5%. These

two upper and lower bounds set up Max HR valid range.

The same logic applies to Min HR experiment, in this case, MaxV alue = HRMin + 10%

is the upper bound of Min HR valid range and MinV alue = HRMin − 5% is the lower

bound. Anything below HRMin−5% is also treated automatically as an outlier. Moreover,

anything between ProbableMax − 5% and HRMin + 10% cannot be an outlier, which

is important because there are many variances we need to check as the heart rate increases

swiftly in the early stages of activity.

Step 2. Identify Candidate Outliers Read through the stream of heart rates from start

to finish. We examine all heart rates which are within the above two defined valid ranges:

ProbableMax− 5% upto ProbableMax + 10% and HRMin− 5% upto HRMin + 10%.

Anything within these two ranges is a Candidate Outlier.
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Step 3. Identify Actual Outlier Read the 5 heart rates before and 5 heart rates after the

candidate outlier. Calculate the mean of these 10 values (Mean Compare) If the candidate

outlier is outside 5% of Mean Compare, where 5% is a variance parameter, it is deemed

an Actual Outlier.

Step 4. Calibrate Outlier Once deemed an Actual Outlier, it will then be replaced with

the Mean Compare calculated in Step 3.

5.1.1 Algorithm Evaluation

We evaluate our work using datasets from High-Intensity Interval Training (HIIT) study

described in Section 3.1. Table 5.1 shows the statistics of all the outliers detected and cali-

brated in the HIIT datasets. As the average age group in HIIT study is 50 we have age = 50

and thus, ProbableMax = HRMax − age = 170. So the Max HR valid range is between

ProbableMax − 5% = 161 and ProbableMax + 10% = 187. Meanwhile, the Min HR

valid range is between HRMin − 5% = 47 and HRMin + 10% = 55. Anything between

these two valid ranges is a Candidate Outlier. 60 files were fed through this outlier removal

process and we detected 573 candidate outliers, but only 11 of them were outside 5% of

Mean Compare and deemed an actual outlier. Calibrated outliers all comes from the the

Max HR valid range which means outliers mainly occur when a participant nearly reaches

some threshold close to her maximal performance. There are still 74 outliers (automatic)

caused by erroneous error input, all of them are zero readings from heart rate monitor.

Table 5.1: Sensor Outlier Statistics
Dataset No. of Files Candidate Outliers Outliers Calibrated Outliers (automatic)
HIIT 60 573 11 74

5.1.2 Summary

The broad goal of this algorithm is to monitor a range of consecutive heart rate measure-

ments and observe if there is a sudden jump before an immediate return to within, or close
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to, the average of the current set of values. Using the variance parameters, we showed this

to be very effective with one exception. Heart rate values during activities tend to start low,

build fairly rapidly and then hit some threshold close to the participant’s maximal perfor-

mance. Our algorithm works well once the threshold figure has been reached. What we

did here is to identify, among all the sensor readings in a sliding window, those values that

have very few near neighbors. Outliers are often caused by measurement error, and failing

to remove them will probably result in wrong or misleading measurement on athelet for

exercise physiologists.

5.2 Data Transformation

As our target user is non-IT, our method is deliberately simple. We have a series of low-

level data transformation primitives that calculate for peaks, troughs, distances between

peaks and troughs, search rolling averages and also calculate slopes. The end user adds

semantics by applying names to this new knowledge and associating this knowledge with

different data streams. The benefit is to have a repository from which new queries can

retrieve basic transformations to build new ones, achieving reuse and simplifying the engi-

neer’s task.

Basic contextual enrichment facilitates a range of basic queries but cannot handle more

complex ones. Given the simple nature of sensor data, which is often single or multiple

values generated at standard intervals, it is possible to predefine a series of operations to

generate new knowledge. A set of data transformation primitives are used to run a standard

set of analyses to which end users can add their own semantics. The primitives we currently

provide are the following:

• fn:Minimal - Calculate the minimal sensor readings for a participant during the ac-

tivity;

• fn:Average - Calculate the average sensor reading of a participant during the activity;
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• fn:Max - Calculate the maximum sensor readings for a participant during the activity;

• fn:As % Range - Give a percentage range of a specific sensor readings (normally the

maximal value) for a participant during the activity;

• fn:SlidingWindow(N) - Give the N-minute sliding window for each sensor reading of

a participant over the activity;

• fn:Slope(time1, value1)&(time2, value2) - Calculate the slope between two sensor

readings (value1 and value2) based on the time (time1 and time2), and

Slope =
value2 − value1

time2 − time1

In our experimental setting, exercise physiologists were interested in answering the queries

provided in Section 3.1. We choose a few samples of them here to give a general overview

of how Data Transformation works in answering those queries.

Table 5.2: Sample Queries in English.
Query

1 Calculate the average value for each sensor reading of a participant during any specific state.

2 Identify the incidence where each sensor reading of a participant was from N% to M% of its maximal value.

3 Identify the N minute rolling average for each sensor reading of a participant during any specific state.

4 Identify the earliest drop point/time of a participant where the slope between current sensor reading and

next sensor reading is negative for each interval.

These queries can be answered by selecting one of the built-in functions for data trans-

formation or by composing a few of them in a sequence. We have an XQuery expression

template in Example 5.1, which contains various parameters needed for data transforma-

tions. The $event specifies name of the event, similarly, $participant, $group and $state

specify the participant, group and state information. $value and $time specify the sensor

reading and its corresponding time, $total specifies the total number of sensor readings.

Example 5.1. XQuery Transformation Template
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for $c := collection(‘$event’)

let $participant := $c//sos:user/text() $group := $c//sos:session/text()

$state := distinct-values($c//sos:measurement/@state)

$value := $c//sos:user[text()=’$participant’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/sos:reading[@state = $state]/sos:raw-value

$time := $c//sos:user[text()=’$participant’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/@time

$total := fn:count($c//sos:user[text()=’$participant’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/sos:reading/sos:raw-value)

return do insert

Each data transformation primitive also has its XQuery implementation which will get pop-

ulated into the XQuery transformation template:

• fn:Minimal: ’let $min := fn:min($value)’;

• fn:Average: ’let $avg := fn:avg($value)’;

• fn:Max: ’let $max := fn:max($value)’;

• fn:As % Range: ’for $range in (0 to 1) let $percentage := 0’;

• fn:SlidingWindow: ’for sliding window $window in (0 to $total) let $length := 0’;

• fn:Slope: ’let $slope := ($value - following-sibling::$value) / ($time - following-

sibling::$time)’.

We choose High-Intensity Interval Training (HIIT) study as an example to show the neces-

sary data transformation process needed in answering the queries in Table 5.2. In relation to

these 4 queries, we will introduce the following 4 corresponding transformations: average

transformation, peak transformation, rolling average transformation and slope transforma-

tion.

5.2.1 Average Transformation

For example to answer the first query Calculate the average value for each sensor reading

of a participant during any specific state, only the fn:Average primitive is used to get the
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average value during any specific state. So the fn:Average XQuery implementation is added

into the transformation template and thus, populated with HIIT data. The full XQuery

expression is shown in Example 5.2. .

Example 5.2. Average Transformation in XQuery

for $c := collection(‘HIIT’)

let $participant := $c//sos:user/[text()=’Ann’]

$group := $c//sos:session/[text()=’Training Day 1’]

$state := distinct-values($c//sos:measurement/@state)

$value := $c//sos:user[text()=’Ann’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/sos:reading[@state = $state]/sos:raw-value

$time := $c//sos:user[text()=’Ann’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/@time

$total := fn:count($c//sos:user[text()=’Ann’]/sos:sensorData/sos:sections

/sos:section/sos:measurement/sos:reading/sos:raw-value)

let $avg := fn:avg($value)

return do insert <avg state="{$s}">$avg</avg>

After applying the average data transformation, the sensor data from HIIT study is then

updated into Example 5.3.

Example 5.3. HIIT Sensor Data Updated With Average Transformation

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:user>Ann</sos:user>

<sos:session>Training Day 1</sos:session>

<sos:sensorData candidate="candidate">

<sos:device>HRM</sos:device>

<sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime>

<sos:interval>1000</sos:interval>

< avg state=”warmup” > 101.67 </ avg >

< avg state=”run” > 119.21 </ avg >

< avg state=”recovery” > 97.73 </ avg >

</sos:sensorData>
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5.2.2 Peak Transformation

However, further transformations are necessary in order to answer more complex queries

like the second query Identify the incidence where each sensor reading of a participant was

from N% to M% of its maximal value. First the fn:Max is used to get the maximum value;

then based on that maximum value, the fn:As % Range 90% to 100% will be triggered.

Same transformation logic applies here as these two transformation primitives have been

added into the transformation template. The full XQuery expressions is listed in Example

5.4:

Example 5.4. Peak Transformation in XQuery

for $c := collection(‘HIIT’)

...same criteria apply

let $max := fn:max($value)

let $percentage := 0.9

return do insert <sos:peakHR>$max</sos:peakHR>

then do insert <sos:peakHR90>$max*$percentage</sos:peakHR90>

After applying the peak data transformation, the HIIT sensor data is then updated into

Example 5.5.

Example 5.5. HIIT Sensor Data Updated With Peak Transformation

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:user>Ann</sos:user>

<sos:session>Training Day 1</sos:session>

<sos:sensorData candidate="candidate">

<sos:device>HRM</sos:device>

<sos:deviceID>S1</sos:deviceID>

<sos:startTime>1300277513000</sos:startTime>

<sos:interval>1000</sos:interval>

< sos:peakHR > 141 </ sos:peakHR >

< sos:peakHR90 > 127 </ sos:peakHR90 >

</sos:sensorData>
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5.2.3 Rolling Average Transformation

Moreover, for answering the third Query Identify the N minute rolling average for each

sensor reading of a participant during any specific state, the fn:Average is triggered, then

the fn:SlidingWindow(N) will provide a one-minute sliding window for the fn:Average to

calculate the 1 minute rolling averages. Same transformation logic applies and the full

XQuery expression for this transformation is listed in Example 5.6:

Example 5.6. Rolling Average Transformation in XQuery

for $c in collection("HIIT")

...same criteria apply

let $avg := fn:avg($value)

for sliding window $window in (0 to $total) let $length := 60000

return do insert <sos:average><sos:time>$length</sos:time>

<sos:value>$avg[@time=$length in $window]</sos:value></sos:average>

After applying the rolling average data transformation, the HIIT sensor data is then updated

into Example 5.7.

Example 5.7. HIIT Sensor Data Updated With Rolling Average Transformation

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:section name="HRData">

<sos:measurement offset="0" state="warmup" time="1209826519000">

<sos:reading ordinal="">

<sos:key>HeartRate</sos:key>

<sos:raw-value>71</sos:raw-value>

< sos:average >

< sos:time > 60000 </ sos:time >

< sos:value > 82.36 < sos:value >

</ sos:average >

... (measurement element repeats)

</sos:sensorData>

5.2.4 Slope Transformation

The slope of a heart rate curve tells the exercise physiologists by how much their heart rate is

increasing or decreasing. In order to answer the last Query Identify the earliest drop point/-
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time of a participant where slope between current sensor reading and next sensor reading is

negative for each interval, only the fn:Slope primitive is used to calculate the value of slope

for each sensor reading. So the fn:Slope XQuery implementation is added into the transfor-

mation template and again, populated with HIIT data. Again, the full XQuery expression is

listed in Example 5.8:

Example 5.8. Slope Transformation in XQuery

for $c := collection(‘HIIT’)

...same criteria apply

let $slope := ($value - following-sibling::$value)

/($time - following-sibling::$time)

return do insert <sos:slope>$slope</sos:slope>

After applying the slope data transformation, the HIIT sensor data is then updated into

Example 5.9.

Example 5.9. HIIT Sensor Data Updated With Slope Transformation

<?xml version="1.0" encoding="UTF-8"?>

<sos:sensorData>

<sos:section name="HRData">

<sos:measurement offset="0" state="warmup" time="1209826519000">

<sos:reading ordinal="">

<sos:key>HeartRate</sos:key>

<sos:raw-value>71</sos:raw-value>

< sos:slope > 0 </ sos:slope >

... (measurement element repeats)

</sos:sensorData>

5.3 Summary

In this chapter, a detailed description of outlier removal algorithm was introduced, followed

by a deep analysis of several sensor data transformations. At this point, queries in Section

3.1 are now made available to exercise physiologists. In the next chapter, we will validate

our work based on the evaluation of experiment results.
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Chapter 6

Evaluation

Chapter 6 evaluates the experiments performed to validate our approach. In Section 6.1, we

give an overview of our evaluation process; in Section 6.2, we give a general description

of the system setup where the experiments run on; in Section 6.3, we describe the sensor

datasets and queries we have for the experiments; and finally in Section 6.4, we analyse the

experiment result and its impact on the exercise physiologists’ work.

6.1 Evaluation Overview

In this section, we evaluate our work in an incremental manner. As the exercise physiolo-

gists cannot express any query on the raw sensor datasets, we need to close the semantic gap

between end user requirements and raw datasets, and the best way is to provide a number

of processors and algorithms to transform the data to a format that could be queried using

a high level query language. To do this, we implemented a template driven approach to

convert raw sensor data into XML files. We also implemented the Event-Condition-Action

(ECA) rule approach, which has three types of integration rules, to enrich the XML files

with additional context information such as participant details, experiment details and state

information which has been generated. Then we implemented the outlier removal algo-

rithms to detect and calibrate all the necessary outliers. As the goal is to facilitate end
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user to express more complex queries, we implemented a wide range of data transforma-

tions in order to handle more complex analyses requested by exercise physiologists. In

the following sections, we will provide a description of our experimental setup, followed

by an introdution of the detailed experiment, and then we proceed to the evaluation and a

discussion of the experiment results.

6.2 System Description

After the enrichment and transformation processes, data is stored in the MonetDB XQuery

server [26] where it is then calibrated until ready for user queries. There is one MonetDB

database server deployed for this experiment, which acts as the local database server storing

all source XML data. All experiments ran on an Intel Core 2 Duo processor PC with 4GB

of RAM running Windows XP professional. The system was implemented using the Sun

Java Virtual Machine version 1.6 and standard XQuery 1.0; the MonetDB XQuery server is

version 4.30.0. All experiments were executed four times with the average of the last three

runs times recorded. The first run was treated as a cold run and thus ignored. Table 6.1 lists

all four sensor datasets we have, each of their sizes in raw format, the number of files in

each dataset, and their total sizes in the MonetDB after the enrichment and transformation

process.

Table 6.1: Sensor Datasets Statistics
Dataset Size of Original Dataset No. of Files Total Size in Database

The HIIT datasets 1.1 MB 60 39 MB
The Bangsbo datasets 2.5 MB 147 100 MB
The breathing datasets 12.8 MB 52 162 MB

The referee datasets 211 MB 35 837 MB

6.3 Experiments

The queries listed in Section 3.1 are real world requirements provided from exercise phys-

iologists. These queries are not expressible on the original data, they can only be executed
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once sensed data is integrated with its context and transformations to expose data of interest

have been applied. Here we state the various datasets we have for our research evaluation:

• The HIIT datasets: sensor data generated from a set of HeartRate sensor devices worn

by High-Intensity Interval Training (HIIT) group.

• The Bangsbo endurance datasets: sensor data collected from HeartRate sensor de-

vices and provided by the Dublin Gaelic football team for their Bangsbo endurance

tests.

• The breathing datasets: sensor data generated from the breathing monitor supported

by Sprint type Interval Training (SIT) group.

• The referee datasets: sensor data consisting of GPS, accelerometer and HeartRate

sensor outputs supported by professional GAA referees.

Table 6.2 provides the full details for each process in terms of: Single Data Input Size; Re-

sult Size for Enrichment Output; the Execution Time for Enrichment Process; Result Size

for Transformation Output and the Execution Time for Transformation Process. For exam-

ple, in the HIIT datasets, a single raw sensor data file is only 18 KB in size. And after the

enrichment process, it has been converted into a single XML file with associated semantics

which becomes 627 KB in size and has been stored into the MonetDB XQuery server. It

takes about 10 seconds for the whole enrichment process. The transformation process will

enlarge the file upto 704 KB in five and half seconds, having performed all possible trans-

formations and is ready to be queried through relatively simple XQuery expressions by end

user.

Table 6.2: Process Details
Dataset Input Size Enrichment Output Execution Time Transformation Output Execution Time

HIIT dataset 18 KB 627 KB 10s 141ms 704 KB 5s 563 ms

Bangsbo dataset 20 KB 652 KB 11s 372ms 779 KB 6s 141 ms

Breathing dataset 233 KB 3016 KB 32s 609ms 3725 KB 19s 78 ms

Referee dataset 6023 KB 24257 KB 1m 05s 361ms 29384 KB 52s 394 ms
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6.4 Analysis

Table 6.3: Sample Queries in English.
Query

1 Return all participants names who belong to a specific group.

2 Return all participants names who wear a heart rate monitor in a specific activity.

3 Return all the values for each sensor reading of a participant during any specific state.

4 Calculate the average value for each sensor reading of a participant during any specific state.

5 Calculate the maximum value for each sensor reading in a specific group.

6 Identify the incidence where each sensor reading of a participant was from N% to M% of its maximal value.

7 Identify the N minute rolling average for each sensor reading of a participant during any specific state.

8 Identify the earliest drop point/time of a participant where the slope between current sensor reading and

next sensor reading is negative for each interval.

In this section we use the High-Intensity Interval Training (HIIT) dataset as our main exper-

iment to validate our approach and its impact on the exercise physiologists work. Table 6.3

shows the sample queries in English. None of these queries were possible to be expressed

over the original datasets. Query 1 to query 3 can only be answered through the MonetDB

query interface after the sensor enrichment has been processed. When all the transforma-

tions proposed in Section 5.2 have been applied to the sensor datasets, it is then possible

to express query 4 to query 8 over the transformed datasets. As a result, we divide these

queries into two parts: queries handled by enrichment; and queries handled by transforma-

tion. Each query’s XQuery implementation and result will be provided and analysed. The

execution time is there for illustration purpose only.

Queries Handled by Enrichment Results and execution time are provided in Table 6.4.

Each XQuery implementation corresponds to each query in English.

• XQuery 1. This answers Query 1 ’Return all participants names who belong to a

specific group’. The result lists all possible names in a training session in less than

200 ms with the reason being that they query a small group of sensor data files.

• XQuery 2. The query ’Return all participants names who wear a heart rate monitor in

a specific activity’ returns all possible participant’s name using a heart rate monitor
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in HIIT study. The execution time is twice as long as the previous query due to the

fact that the whole dataset is queried in order to get the result.

• Query 3. The query ’Return all the values for each sensor reading of one participant

during any specific state’ is answered in approximately a second, because it needs to

list all possible sensor readings group by each state for a single participant.

Table 6.4: XQuery Expressions for Queries Handled by Enrichment

# Query as XQuery expression Results Execution Time
1 for $c := collection(’HIIT’) let $participant := $c//sos:user/text() <name group=”Training Day 1”> 197 ms

$group := $c//sos:session/text() where $group = ’Training Day 1’ Ann

return <name group=”$group”>$participant</name> </name>

...

2 for $c := collection(’HIIT’) let $participant := $c//sos:user/text() <name sensor=”HeartRate”> 381 ms

$sensor := $c//sos:reading/sos:key/text() where $sensor = ’HeartRate’ Ann

return <name sensor=”$sensor”>$participant</name> </name>

...

3 for $c := collection(’HIIT’) , $s in distinct-values($c//sos:user <value state=”warmup”> 998 ms

[text()=’Ann’]/sos:sensorData/sos:sections/sos:section 78

/sos:measurement/@state) let $value := $c//sos:user[text()=’Ann’] </value>

/sos:sensorData/sos:sections/sos:section/sos:measurement[@state = $s] <value state=”warmup”>

/sos:reading[sos:key[text()=’HeartRate’]]/sos:raw-value order by $s 79

return <avg state=”$s”> for $v in $value return $v </avg> ...

Queries Handled by Transformation Results and execution time are reported in Table

6.5 for each XQuery implementation handled by data transformation.

• XQuery 4. The query expression calculates the average value for each sensor reading

of a participant grouped by each state in less than half a second. The results are in

XML format and can be viewed in any text editor.

• XQuery 5. It answers the Query ’Calculate the maximum value for each sensor read-

ing in a specific group’, which is similar to the previous query. It works quite effi-

ciently due to the fact that it returns only one single result.
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• XQuery 6. The query answers the Query ’Identify the incidence where each sensor

reading of a participant was from N% to M% of its maximal value’. It executes even

quicker since it only queries a single sensor data file in 241 ms.

• XQuery 7. This query expression returns the one minute rolling averages for each

sensor reading during any state, it is the slowest query at 769 ms because it needs to

retrieve all possible averages calculated in a one minute rolling window for a single

participant.

• XQuery 8. This returns the earliest time where a sensor reading starts falling. The

execution time is less than 200ms with the reason that it only queries one sensor data

file and retrieves one single result.

Table 6.5: XQuery Expressions for Queries Handled by Transformation

# Query as XQuery expression Results Execution Time
4 for $c := collection(’HIIT’) , $s in distinct-values($c//sos:user <avg state=”warmup”> 494 ms

[text()=’Ann’]/sos:sensorData/sos:sections/sos:section 101.67

/sos:measurement/@state) </avg>

return <avg state=”$s”> $c//avg/text() </avg> ...

5 for $c := collection(’HIIT’) let $participant := $c//sos:user/text() <max group=”Training Day 1”> 316 ms

$group := $c//sos:session/text() where $participant = ’Ann’ 177

and $group = ’Training Day 1’ return <max group=”$group”> </max>

fn:max($c//sos:peakHR) </max>

6 for $c := collection(’HIIT’) let $max := $c//sos:peakHR90/text() <count> 241 ms

return <count> fn:count($csos:user[text()=’Ann’]/sos:sensorData 733

/sos:sections/sos:section/sos:measurement/sos:reading </count>

[sos:key[text()=’HeartRate’]]/sos:raw-value[text()>$max]))</count>

7 for $c := collection(’HIIT’) let $participant := $c//sos:user/text() <rollingAvg> 769 ms

where $participant = ’Ann’ return <rollingAvg> 82.36

$c//sos:averages/sos:average[sos:time[text()=’60000’]]/ </rollingAvg>

sos:value[text()]</rollingAvg> ...

8 for $c := collection(’HIIT’) let $participant := $c//sos:user/text() <time participant=”Ann”> 182 ms

$slope := $c//sos:slope/text() where $participant = ’Ann’ 12:19:16.0

and $slope ¿ 0 return <time participant=”$participant”> </time>

$c//sos:measurement/@time </time> ...
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Figure 6.1: User Interface

Let us emphasise the following two facts. Queries are executed on the sensor data obtained

after the above discussed enrichment and transformation process: without such enrichments

or transformations these queries are either difficult or impossible to express on the original

dataset. Queries are implemented as standard XQuery expressions: if needed, they can be

modified and customised using a simple text editor thus the system implementation does

not need to be altered.

6.5 Summary and End User Feedback

In order to determine how best to deliver a system for pHealth sensors, I regularly consulted

with exercise physiologists from the School of Health and Human Performance. Through

a series of interviews, I learnt of their requirements; using three physiologists work areas

in different scenarios. I continued to work with them as I developed the system, and I had

them evaluate my work. The results obtained were accurate to the extent that previously

unattainable information was included in their PhDs. The collabrative effort in the produc-

tion of several publications [10] [36] [37] throughout my research period. Figure 6.1 shows

the basic user interface I developed for them to query the sensor data.

The results for all queries in this chapter can also be stored in the database and thus, it is

possible for exercise physiologists to propose new queries to access new information. For
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example, they can query some average or maximum sensor reading across the groups and

even across the different studies. They could also express queries across different sensors.

Thus, queries become more flexible and extendable after our enrichment and transforma-

tion process.

The Exercise physiologists demonstrated a favourable opinion of the prototype. While

avoiding the manual error prone processes, they have been able to extract knowledge and

perform the analysis of interest quickly. They also realised the possibility of having access

to a wider information and analysis capacity than was previously available. From those

experiments, exercise physiologists were able to determine the intensity at which each sub-

ject trained. These measures can be used to prescribe various exercise protocols which can

be used to further enhance endurance capacity. Analysing heart rates in such a capacity

also enables exercise physiologists to identify training targets and optimal training zones

for each subject which is essential when prescribing an individual exercise program. The

queries posed during this study enabled physiologists to determine how hard each subject

trained and whether the level of training was adequate to induce the training adaptations

required.
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Chapter 7

Conclusions and Future Work

In this dissertation, we presented a system that allows users to specify queries at a high

level, and to structure, enrich, transform and query sensor data. In this final chapter, we

review the work presented and following that, we discuss areas where future work can be

explored.

7.1 Thesis Summary

This work is the result of a collaboration between exercise physiologists and computer sci-

entists. Sensors often generate large volumes of data, making analysis very difficult. There

is no standard format for query output, no method of merging results from different tests

or integrating results across groups, and a full query interface to datasets does not exist. In

this dissertation, we presented a framework for capturing low level sensor data and through

a number of enrichment processes to transform data to a position where high level query

expressions were possible. We also demonstrated in our evaluation that these query expres-

sions captured the precise needs of the domain experts. The end result is a process whereby

the exercise physiologists can run different test configurations and adapt their behaviour

between tests as a result of the fully automated query process.
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The initial challenge for us was to close the semantic gap between end user requirements

and raw datasets, by providing a number of processors and algorithms to transform the

data to a format that could be queried using a high level query language. We outline our

achievements as they show that our objectives were reached:

1. A rule based paradigm with which we can associate sensor data with the context

information in which these data has been generated.

2. An efficient sensor outlier removal algorithm was developed.

3. Finally, a set of data functionalities or transformations to enable the end user express

complex queries against low level sensor data, were provided.

A methodology was set to complete each goal in an incremental manner through the entire

dissertation.

In Chapter 1, an introduction to the Sensor Web [15] was presented and existing efforts

of personal health (pHealth) sensor networks were briefly discussed. It was concluded that,

there is a significant gap between high level user requirements and the data generated by

sensors. When this data is generated in high volumes, there is a significant barrier to knowl-

edge extraction. As a result, we needed to provide a mechanism to automatically enrich and

transform sensor data up to a point, and then through user interaction provide new levels of

semantic enrichment.

In Chapter 2, an analysis of related research in this field was given. We discussed three

main research areas: context modeling architecture, rule based contextual enrichment, and

sensor outlier removal.

In Chapter 3, we described a real world case study, and provided an overview of a system

which structures, enriches, transforms and queries sensor data in this real world scenario.

In Chapter 4, we presented the enrichment of enabled sensor data using a rule-based ap-

proach, an Event-Condition-Action rule template was introduced in this chapter, followed

by three types of context enrichment rules.
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In Chapter 5, we introduced our outlier removal algorithm in detecting and calibrating the

necessary outliers, we also presented a set of data transformation primitives that transform

sensor data necessarily to make queries more manageable for exercise physiologists.

In Chapter 6, we evaluated the experiments to validate our approach and its impact on the

exercise physiologists work, and they demonstrated a favourable opinion on the prototype.

7.2 Future Work

Based on what was learnt while delivering this research, we believe that there is a number of

interesting research areas to be explored. We separate these into short term goals which can

be achieved relatively quick and long term goals, which require more long term research

efforts.

7.2.1 Short Term Research Goals

We think the following goals are relative easy to complete from a short term perspective

and therefore, they will be our primary research objects.

Incremental Data Transformation Primitives Current research in this area is focused

on expanding the set of data transformation primitives to allow users more control in terms

of these transformation operations. The current set of functions operate on the values that

are generated by a single sensor. More complex queries require the fusion of sensor data

with different analyses required across these new datasets.

Compact Query Language and Query Analyzer A set of compact query expression-

s/language could be provided where the query analyzer will first analyze the query expres-

sions and then perform the appropriate data transformations where needed. The compact

query language must provide a simple way to exploit well-understood relational seman-

tics, and queries where performing relatively complex tasks should be easy and compact to

write. The compact query language will also have sufficient constructs to capture a wide
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variety of sensor data, and it should also be kept as simple as possible without sacrificing

too much expressiveness. The query analyzer translates the Compact Query Language into

well-formed XQuery expressions and perform data transformations where necessary.

7.2.2 Long Term Research Goals

The long term research goals of our research are to provide a more comprehensive query

interface which benefits both advanced and unskilled users.

Visual Query Interface XQuery was designed to meet the needs of skilled database pro-

grammers. Its inherent complexity makes the new language unsuitable for unskilled users.

The visual query interface allows non-IT users to query sensor data by simply dragging and

dropping visual parameters without the need to learn complex query language like XQuery,

then these visual annotations will be translated to the compact query language by a set of

well-designed algorithms. The visual query interface itself must sufficiently support the

sensor data model and all of its constructs, also is capable of querying and presenting all

forms of sensor data.
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