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Abstract

S ingu la rly  pe rtu rbed problem s arise in  m any branches o f science and are characterised 

m a them atica lly  by the  presence o f a sm all param eter m u lt ip ly in g  one or more o f 

the  highest derivatives in  a d iffe ren tia l equation. T h is  thesis concerns s ingu la rly  

pe rtu rbed  problems posed on non-rectangular domains. T he  m ethodology used is to  

perform  a co-ordinate trans fo rm a tion  to  pose the prob lem  on a rectangula r dom ain 

and to  then  s tudy the  transform ed problem .

We firs t consider a class o f parabo lic  problems. We classify the  problems in  the 

transform ed problem  class according to  the  nature  and loca tion  o f the  layers present in  

th e ir solution. T h is  classification then enables us to  design num erica l m ethods specific 

to  each class o f problems. K now n  theore tica l results are sta ted fo r the  convergence 

of some o f the  methods. We then  examine in  de ta il one p a rticu la r m ethod. Under 

certa in  assumptions i t  is shown th a t the  num erical solu tions generated by the m ethod 

converge u n ifo rm ly  w ith  respect to  the  s ingu la rly  pe rtu rbed  param eter. D eta iled 

num erical results are then  presented w h ich  ve rify  the  theore tica l results.

The next class o f problem s considered is a class o f e llip tic  problems. In  th is  case the 

transform ed d iffe ren tia l equation contains a new te rm  and the  s itu a tio n  is thus more 

complex. For th is  reason we consider on ly  the case when regular layers are present. 

A n  appropria te  num erical m ethod is constructed and under various assumptions i t  is 

proved th a t the num erica l so lutions converge un ifo rm ly , in  the  pe rtu rbed  case, i.e., 

when the s ingu la rly  pe rtu rbed  param eter is small. T h is  is the  centra l result o f the  

thesis. Extensive num erical com puta tions are presented w hich ve rify  the  theore tica l 

result.
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“I c a n ’t  h e lp  it , g as  c scap es  from  m y fu n d a m e n t on  th e  le a s t p re te x t ,  i t 's  

h a rd  n o t to  m e n tio n  i t  now  a n d  th e n , how ever g re a t  m y  d is ta s te .  O ne  

d ay  I c o u n te d  th e m . T h re e  h u n d re d  a n d  fifteen  fa r ts  in  n in e te e n  h o u rs , 

o r a n  av e rag e  o f over s ix teen  fa r ts  a n  h o u r . A f te r  a ll i t ’s n o t  excessive. 

F o u r fa r ts  ev e ry  fifteen  m in u te s . I t ’s n o th in g . N o t even o n e  fa r t  ev e ry  

fou r m in u te s . I t ’s un b e liev ab le . D am n  it ,  I h a rd ly  fa r t  a t  a ll, I sh o u ld  

n ev e r have  m e n tio n e d  it. E x tra o rd in a ry  how  m a th e m a tic s  h e lp  y o u  to  

know  y o u rse lf .”

Molloy, S am u e l B eck e tt.



N o t a t i o n  a n d  c o n v e n t i o n s

W e g a th e r  to g e th e r  som e n o ta t io n  a n d  co n v e n tio n s  t h a t  a re  u se d  th r o u g h o u t  th e  

th e s is . L e t Z N b e  a n y  m esh  fu n c tio n . T h e  p a r t ia l  f in ite  d iffe rence  o p e ra to rs  £ )+ , D~ 

a n d  8\ a re  d e fin ed  as

y N  _  y N
r ) +  y N  _  i + l , j  i , j

X l'3 Xi+1 - Xi
y N  _ y N

D ~ Zn  = 3
x  «  X i - X i - 1 ’

¿ 2^  =  2 (g ,+ ^  -
x l 'J x i+1 -  X^!

w ith  an a lo g o u s  d e fin itio n s  fo r th e  c o rre sp o n d in g  d iffe rence  o p e ra to rs  w ith  re sp e c t to  

t  a n d  y.

W e re p re se n t so lu tio n s  o f  c o n tin u o u s  p ro b le m s  b y  low er ca se  le t te r s , fo r e x a m p le

u, a n d  so lu tio n s  o f d isc re te  p ro b le m s by  u p p e r  case  le t te r s , for ex a m p le  U N . W e use  

h a ts  fo r fu n c tio n s  a n d  o p e ra to rs  on  th e  o rig in a l d o m a in  o f  d e fin itio n  of a  p ro b le m , fo r 

ex am p le  a. W e u se  t i ld e s  to  in d ic a te  s tr e tc h e d  v a ria b le s  a n d  c o rre sp o n d in g  fu n c tio n s , 

for ex am p le  x.

W e d e n o te  b y  C v,k(ST) th e  sp ace  o f H o ld e r  c o n tin u o u s  fu n c tio n s  w h e re  k is a n  

in te g e r a n d  v G (0 ,1 ] , w ith  c o rre sp o n d in g  n o rm s  H-jj  ̂ a n d  sem i-n o rm s |- |fc. T h e  n o rm , 

||- ||, is th e  m a x im u m  n o rm . S o m e tim es  th e  a b o v e  n o rm s  a re  s u b s c r ip te d  to  in d ic a te  

th e  a p p ro p r ia te  d o m ain .

T h e  gen eric  c o n s ta n t  C , so m e tim es  s u b sc r ip te d , is in d e p e n d e n t o f  e a n d  N.

1



C h a p t e r  1

I n t r o d u c t i o n

1.1 T he aim  of th e  thesis

In  th is  thesis we w il l  examine the  app lica tion  o f num erical methods to  the  approx

im a tion  o f solutions o f s ingu la rly  pe rtu rbed  p a rtia l d iffe ren tia l equations posed on 

non-rectangular domains. In  p a rticu la r we w il l  investigate the  use o f fin ite  difference 

num erical m ethods based on special piecew ise-uniform  meshes sometimes referred to  

as Shishkin meshes. The purpose o f th is  in tro d u c tio n  is to  give an overview o f the  

types of problem s we are concerned w ith , to  provide a b rie f sum m ary o f the  num eri

cal techniques th a t have been employed in  the  area and to  p u t the  m a in  results and 

findings o f the  thesis in to  th is  context.

1.2 N um erical m ethods for singularly  p e r tu rb e d  
problem s

S ingu larly  pe rtu rbed  problems arise in  a diverse array o f physical phenomena from  the 

m odelling o f f lu id  flow  and heat transfer [37] to  op tion  p ric ing  in  financ ia l m athem at

ics [5]. Such problems are described by  d iffe ren tia l equations and are characterised 

m athem atica lly  by the presence o f a sm all param eter called the s ingular p e rtu rb a tio n  

parameter, in  the  coefficient o f the  highest order deriva tive  in  the equation. The  solu

tions to  these problems m ay exh ib it w ha t are term ed layer phenomena, th a t is there

2



exist regions in  the dom ain o f de fin ition  o f these problem s in  w h ich th e ir  solutions 

change rap id ly . Such regions are called boundary layers or in te r io r layers depending 

on the ir location.

One p a rticu la r ly  im p o rta n t class o f s ingu la rly  pe rtu rbed  problem s are convection- 

d iffusion problems, so-called as th e y  m odel physical phenomena where bo th  con

vection and d iffusion processes are present. In  th is  con text our prob lem  becomes 

s ingu la rly  pe rtu rbed  when the convection processes dom inate  the  d iffus ion processes. 

T h is  usua lly  gives rise to  boundary layers o f various types. T h is  class o f problems is 

the m ain focus o f th is  thesis.

Perhaps the sim plest example o f a convection-d iffusion prob lem  is the  fo llow ing 

linear problem  in  one-dimension on the  in te rva l 0  =  (0 , 1 ).

P ro b le m  C la ss  1 .2 .1 .

eu"  +  a (x )?4  =  f ( x ) in (1 .2 .1 a)

u£(0) =  u0, ue( l )  =  uu  (1 .2 .1 b)

where a(x) >  a >  0 , x £ (1 .2 .1 c)

I t  is w e ll known th a t the  so lu tion  to  th is  problem  contains a boundary layer of 

w id th  0(e)  in  a neighbourhood o f x =  0. Despite its  s im p lic ity  i t  w il l  prove convenient 

fo r h igh ligh ting  the drawbacks in  some w e ll know n num erical methods.

O f course s ingu la rly  pe rtu rbed  problem s th a t arise in  practice are much more com

p lica ted and the m a jo r ity  involve p a rtia l d iffe ren tia l equations, which are in  general 

hard to  solve ana ly tica lly . Therefore i t  should come as no surprise th a t there is a 

vast lite ra tu re  devoted to  num erical m ethods designed to  generate approxim ations to 

th e ir  solutions. These m ethods can be b road ly  d iv ided  in to  tw o d iffe ren t categories: 

fin ite  element &  fin ite  volum e m ethods, and fin ite  difference methods.

In  th is  thesis we w il l  no t investigate f in ite  element and fin ite  volum e methods and 

confine ourselves to  some b rie f rem arks on th e ir  relevance to  the problem s th a t we 

are studying. A  descrip tion o f these methods m ay be found in  m any books. For a

detailed account o f th e ir  app lica tion  to  s ingu la rly  pe rtu rbed  problems and a survey

of some theore tica l results we refer the  reader to  the books [40], [37] and [34].

F in ite  difference num erical methods applied to  the approx im ation  o f solutions to
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d iffe ren tia l equations have a long h is to ry  (see [41]). T h e ir app lica tion  to  s ingu la rly  

pertu rbed  problems however, is much more recent, though already an extensive lite ra 

tu re  has been developed. E a rly  m ethods th a t were devised were classical in  approach 

and were based upon un ifo rm  meshes and so-called f itte d  difference operators. The 

firs t such m ethod was described by A llen  and Southwell [8] and analysed by  I l ’in  [20]. 

S im ila r m ethods were described by Hem ker [19] and E l-M is tika w y  and W erle [14], the 

form er derived v ia  a fin ite  element fram ework. The shortcom ings o f these methods 

when applied to  P roblem  Class 1.2.1 are expounded in  [15, §2.5]. We rem ark th a t the  

p rim a ry  d iff ic u lty  lies in  the fact th a t when a un ifo rm  mesh is employed there w il l  be 

no mesh po in ts present in  the  boundary layer region when the  s ingu lar pe rtu rb a tio n  

param eter is small. In  th is  case one says th a t the  methods do no t resolve the  layers 

present.

I t  should be noted th a t i t  is possible to  construct a f in ite  element m ethod based 

on a un ifo rm  mesh (see O ’R iordan [38]) th a t resolves the boundary layers in  P roblem  

Class 1 .2 .1  i f  a com plicated fo rm  o f in te rp o la tio n  is used (based on the exponentia l 

basis functions in troduced by Hemker in  [19]). However, the extension o f th is  m ethod 

to  problem s in  more than  one dim ension is d ifficu lt.

In  [4] Bakhvalov proposed a num erica l m ethod th a t was based on a special non- 

un ifo rm  mesh and a standard fin ite  difference operator. Thus in  contrast to  the  

above approaches i t  was the  mesh th a t was ta ilo red  to  the boundary layer ra the r 

than  the operator. He was able to  show th a t th is  m ethod resolved the  layers present 

in  solutions to  (1.2.1). However, the  com plicated construction  o f the  Bakhvalov mesh 

and the d iff ic u lty  o f the  theore tica l analysis has m eant th a t extension o f the  m ethod 

to  problem s in  more than  one dim ension has been lim ite d  (see [24] and [44]). For 

fu rth e r discussion o f th is  mesh and o ther non-un ifo rm  meshes we refer to  [15, §3.1] 

and [40, §2.4.2],

The preceding discussion h igh ligh ts  the fact th a t the  consideration o f P roblem  

Class 1.2.1 is most useful fo r ide n tify in g  disadvantages in  a num erica l m ethod. Th is  

is because o f the  sim ple fact th a t num erica l m ethods th a t are appropria te  fo r th is  

simple prob lem  m ay not be su itab le  fo r more general problem s in  more than  one 

dimension. T h is  is a key po in t. The app lica tion  and analysis o f num erica l methods for 

p a rtia l d iffe ren tia l equations (PDEs) is considerably more d iff ic u lt th a n  fo r o rd ina ry
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d iffe ren tia l equations. There are numerous technical d ifficu lties  th a t are s im p ly  no t 

present in  one dimension. We shall take up these issues in  §1.5.

In  th is  thesis we s tudy s ingu la rly  pe rtu rbed  problems w h ich  are m uch more com

p lica ted than  (1 .2 .1 ) yet w hich are s t i l l  s im pler th a n  w ha t one encounters in  practice. 

Hence even fo r these problem s we m ust bear in  m in d  th a t the  m ethods we develop 

should be capable o f extension to  m ore general s ituations.

1.3 R obust layer-resolving m ethods

The authors in  [15] require the  fo llow ing  key properties from  a num erica l m ethod 

designed to  be applied to  s ingu la rly  pe rtu rbed  problems w ith  layer phenomena:

1 . G loba lly  defined: defined a t each p o in t o f the dom ain o f the  exact solution.

2. Pointw ise-accurate: the  error between the com puted so lu tion  and the  actual 

so lu tion  should be measured in  the  g lobal m axim um  norm .

3. Param eter-un ifo rm : the  num erica l so lutions converge e -un ifo rm ly  to  the  exact 

so lu tion  and can be com puted using an e -un ifo rm  am ount o f com puta tiona l 

effort.

4. M onotone: the  discrete opera to r used in  the num erica l m ethod should be a 

m onotone operator.

A  comprehensive discussion o f these properties m ay be found in  [15]. I t  is w o rth  no ting  

th a t i t  can be d iffic u lt to  establish theore tica l results in  the  global m axim um  norm  

fo r the fin ite  element m ethod applied to  convection-d iffusion problems, p a rticu la r ly  

in  more than  one dimension. I t  is also hard  to  guarantee the m o no ton ic ity  o f such 

schemes.

These requirem ents were form alised in  the fo llow ing d e fin ition  o f a robust layer- 

resolving num erical m ethod [15, §1.4],

D e f i n i t i o n  1 .3 .1 . Le t (P£) be a class o f s ingu la rly  pe rtu rbed  problems parameterised 

by a singular pe rtu rb a tio n  param eter e, such th a t 0 <  e <  1 . Assume th a t each prob

lem in  (Pe) has a unique so lu tion  ue, and th a t each u£ is approxim ated by a sequence
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—N
o f num erical solutions {(U^ , Q ) } ^ = i  obta ined using a m onotone num erica l m ethod 

(P^), where is defined on the mesh VtN and N  is a d iscre tisa tion  param eter. Le t 

I l f  denote the piecewise linear in te rpo lan t over o f the discrete so lu tion. Then (P ^ )  

is said to  be a robust layer-resolving m ethod i f  the  num erica l so lutions are com putable 

w ith  an e-un ifo rm  am ount o f com puta tiona l w ork and converge e-un ifo rm ly, in  the  

sense th a t there exists a positive integer N 0, and positive  numbers C  and p where No, 

C  and p are independent o f N  and e, such th a t fo r a ll N  > No we have

sup
0 <£<1

ttnUr ~ U£
n

<  CN~P. (1.3.1)

1.4 F in ite  difference m ethods based on piecewise- 
uniform  fitted  m eshes

As should be clear from  the  preceding discussion fin ite  difference num erical m ethods 

based on un ifo rm  meshes are in  general inadequate fo r the  reso lu tion  o f boundary 

layers in  the solutions o f s ingu la rly  pe rtu rbed  problems. Indeed, i t  is essential to  

use a non-un ifo rm  mesh. One p a rtic u la r ly  simple type o f non-un ifo rm  mesh was 

in troduced by Shishkin [45]. I t  essentially comprises tw o un ifo rm  meshes o f d iffe ring  

w id ths  jo ined  at an app rop ria te ly  chosen tra n s itio n  po in t. For the  one-dimensional 

convection-diffusion prob lem  ( 1 .2 .1 ) the  tra n s itio n  p o in t is defined as

a = m in   ̂ ^ , — In N{i a

W hen the mesh is chosen in  th is  way i t  is referred to  as a piecew ise-uniform  fitte d  

mesh. In  the lite ra tu re  i t  is sometimes also referred to  as a Shishkin mesh. We 

shall use the form er term inology. A  fin ite  difference m ethod based on th is  mesh and 

a simple upw ind  fin ite  difference operator is robust and layer-resolving in  the sense 

defined in  the previous section when applied to  Problem  Class 1.2.1 (see [15, C hapter 

3]) w ith  the fo llow ing error bound: fo r a ll >  4 we have

sup
0<E< 1

TTN ~ UE _ <  C N  In  N. (1.4.1)
n
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The great v ir tu e  o f the  mesh is its  s im p lic ity  and th is  fac t makes i t  read ily  ap

plicable to  more com plicated problems. Indeed, even before i t  became w ide ly  known 

in  the  W estern lite ra tu re  Shishkin went on to  app ly his mesh to  ve ry  general classes 

o f s ingu la rly  pe rtu rbed  problems in  m any dimensions. He presented a w ide collection 

o f results in  the sem inal w ork [47]. C u rre n tly  on ly  available in  Russian, th is  book 

includes a huge am ount o f m a te ria l in  a h ig h ly  condensed style w ith  few proofs and 

li t t le  in  the way o f exp lana tory  deta il. A l l  o f these facts have meant th a t i t  was a 

re la tive ly  long tim e  before Sh ishkin ’s ideas and m ethods became w ide ly  known. I t  

wasn’t  u n til the  m id-90 ’s, when he began a co llabora tion  w ith  a group o f Ir ish  m a th 

em aticians, th a t the  analysis o f his methods was expounded in  a more constructive 

fashion. Th is  endeavour cu lm ina ted  in  the monographs [35] and [15]. A l l  o f th is  is fa r 

removed from  the s itu a tio n  today  where research on piecew ise-uniform  f itte d  meshes 

is one o f the dom inant areas in  the  field.

I t  should be noted th a t to  im plem ent the mesh one m ust know  the nature and 

loca tion  o f the  layers present in  the so lu tion  o f the prob lem  being considered a priori. 

T h is  is the  case fo r the  problem s we s tudy in  th is  thesis b u t fo r more com plicated 

problems i t  m ay be hard  to  establish th is  in fo rm a tion . One technique th a t m ay 

prove fru it fu l in  th is  regard is adaptive mesh refinem ent based on a posteriori error 

indicators. A  sum m ary o f some o f the  current theory fo r these methods m ay be found 

in  [27]. We w il l  no t consider such methods in  th is  thesis.

1.5 Singularly p e r tu rb e d  p a rtia l differential equa
tions

P ractica l problems invo lv ing  s ingular pe rtu rba tions involve PDEs. For example the 

fu ll Navier-Stokes equations are a system of non-linear PDEs. Hence i f  we are to  

have any chance o f developing adequate num erical m ethods for problems such as 

these i t  is essential th a t we contem plate problems th a t involve PDEs. In  th is  regard 

consider the fo llow ing tw o-d im ensional convection-d iffusion problem  on the square 

dom ain Q, =  (0 , 1 ) x  (0 , 1 ).
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P ro b lem  C lass 1 .5 .1 .

eAue +  a(x, y) ■ V ue =  f (x ,  y) in f l,  (1.5.1a)

u£ =  g(x,y) on d£l. (1.5.1b)

Depending on the p a rticu la r fo rm  o f the  coefficient o f the  convection te rm  in  the

equation, a , different types o f layers can appear in  the solu tions o f problems from  

th is  class. Under su itab le assumptions on the da ta  o f the  prob lem  the nature  and 

loca tion  o f these layers can be determ ined using the  techniques o f matched asym pto tic  

expansions (see the books [21] and [13] among others). For example, i f  we have

a(x,y)  >  ( a i , ^ )  >  (0 ,0 ), V ( æ , y ) e f t ,  (1.5.2)

then the solutions o f problems from  th is  class possess regu lar layers in  a neighbour

hood o f the  sides x =  0 and y =  0 and a corner layer near the corner (0 , 0); w h ile  

i f

a(x, y) =  (ox(x, y), 0), w ith  ax(x, y) >  « i  >  0, V(x, y) e  ft ,  (1.5.3)

then the solutions w il l  e xh ib it parabolic layers in  a ne ighbourhood o f the sides y — 0 

and y =  1 , a regular layer in  a ne ighbourhood o f x =  0 and corner layers near (0 , 0 ) 

and (0 , 1 ).

I t  is clear th a t the  solutions o f s ingu la rly  pe rtu rbed  p a rtia l d iffe ren tia l equations 

can exh ib it much more com plex layer phenomena th a n  can one-dim ensional problems. 

In  p a rticu la r parabolic layers and corner layers cannot occur in  the  so lu tion  o f o rd ina ry  

d iffe ren tia l equations. F u rthe r evidence th a t num erica l methods w ith  a f it te d  opera to r 

on a un ifo rm  mesh are inadequate for s ingu la rly  pe rtu rbed  problems is provided by 

considering a problem  where parabolic boundary layers are present.

In  [46] Shishkin showed th a t fo r a class o f parabo lic  problems conta in ing parabolic 

boundary layers there is no fit te d  operator m ethod on a un ifo rm  mesh th a t is e- 
un ifo rm . A  clearer dem onstra tion  in  a sim pler case can be found in  M ille r  et al 

[35] and a s im ila r resu lt fo r a class o f e llip tic  problem s w ith  parabo lic  boundary 

layers is given in  Shihskin [43]. As parabolic layers on ly  arise in  solutions to  p a rtia l 

d iffe ren tia l equations th is  lim ita t io n  o f fit te d  opera to r methods can on ly  be seen



when contem pla ting  problems in  more than  one dimension. In  contrast a num erical 

m ethod consisting o f a standard fin ite  difference opera tor on an app rop ria te ly  defined 

piecewise-uniform  fitte d  mesh is robust and layer-resolving for a class o f problems w ith  

parabolic boundary layers (see fo r example M ille r  et al [36]).

A no the r d iff ic u lty  th a t arises when we consider problem s in  more than  one d im en

sion is the  question o f the  existence and regu la rity  o f a classical so lu tion. R oughly 

speaking, fo r problems posed on sm ooth domains the regu la rity  o f the so lu tion  is 

determ ined by the re g u la rity  o f the  data  o f the  problem . A  general theo ry  fo r e llip tic  

equations can be found in  [26]. However, fo r problems such as (1.5.1) posed on a 

dom ain w ith  a piecewise-smooth boundary, we need to  im pose add ition a l conditions, 

known as co m p a tib ility  conditions, in  order fo r a s im ila r statem ent to  hold.

In  [18] Han and Ke llogg give suffic ient conditions fo r the  so lu tion  to  (1.5.1) to  

be in  C3'V(Q) under the assum ption (1.5.2). These cond itions are loca l cond itions in  

the sense th a t they involve the  boundary da ta  and the  coefficients o f the d iffe ren tia l 

equations evaluated at each o f the  corners o f the  square. C onditions th a t ensure more 

regu la rity  are no t in  general local and there does no t seem to  be e xp lic it form ulae fo r 

them  except in  the case o f constant coefficients.

I f  the appropria te  co m p a tib ility  conditions are no t satisfied then the so lu tion  o f a 

d iffe ren tia l equation w il l  in  general possess corner s ingu larities in  a neighbourhood o f 

the  corners o f the dom ain. In  o ther words the so lu tion  w il l  be regu lar in  a classical 

sense up to  a fin ite  num ber o f singular functions. The theo ry  o f corner s ingu larities 

is presented in  the books by G risvard  [16, 17] and Dauge [6 ] amongst others.

The s itua tion  is even more com plex when the dom ain is non-rectangular. In  

th is  case i t  seems th a t no e xp lic it form ulae for the  c o m p a tib ility  conditions exist to  

guarantee th a t the  so lu tion  is even in  C 3’" (Q ). In  th is  thesis we w il l  no t s tudy  corner 

singularities th a t m ay be present in  the solutions o f problems such as (1.5.1). Thus 

to  derive the m ain resu lt in  C hapter 4 we need to  make an assum ption th a t no such 

singularities exist in  the  solutions o f problem s from  the  class we are studying. As 

regards the convergence resu lt th a t we prove, we can say th a t our num erical m ethod 

is appropria te  fo r resolving the boundary layers present in  the regular ( in  a classical 

sense) p a rt o f the solu tion. N ote th a t fo r the  class o f parabo lic  problems th a t we study 

in  Chapter 3 i t  tu rns  ou t th a t the  c o m p a tib ility  cond itions can be stated e xp lic it ly
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and no equivalent assum ption is needed.

The issue of c o m p a tib ility  conditions is o f theore tica l im portance  as the analysis 

o f num erical methods fo r problems such as (1.5.1) usua lly  requires a higher level of 

regu la rity  o f the  so lu tion  th a n  m ay be expected from  p rac tica l problems. Th is  is 

discussed in  more de ta il in  the  next section.

1.6 T heoretical resu lts  for num erical m ethods 
based on piecew ise-uniform  fitted  m eshes

In  th is  section we present a b rie f survey o f the  theore tica l results th a t have been ob

ta ined fo r num erical m ethods based on piecew ise-uniform  fit te d  meshes fo r s ingu la rly  

pertu rbed problems invo lv ing  PDEs. As already stated these m ethods have proved 

capable o f app lica tion  to  qu ite  general singular p e rtu rb a tio n  problem s invo lv ing  d i

verse kinds o f layers. We in tend  to  provide a sketch o f the  development o f th is  theory  

fo r the  Problem  Class 1.5.1 under cond ition  (1.5.2), i.e. when on ly  regular and cor

ner layers are present in  the  so lu tion. We also provide a discussion o f the  ana ly tica l 

tools th a t have been employed. T h is  w il l  be tte r enable us to  p u t the  results o f th is  

thesis in to  the proper context. For a more general discussion o f layer-adapted meshes 

applied to  s ingu la rly  pe rtu rbed  problems see the review  artic les [39] and [27].

I t  was firs t shown by Shishkin in  [47], under certa in  strong assumptions on the 

regu la rity  o f the data  o f the  prob lem  and on the c o m p a tib ility  conditions, th a t a 

num erical m ethod based on a piecewise-uniform  fit te d  mesh and an upw ind  fin ite  

difference operator was e -un ifo rm  when applied to  a more general p roblem  th a n  th a t 

given in  (1.5.1). The error estim ate is o f the  fo rm

sup
0 <£<1

t t nUc -  uf _ <  C N ^ i ln N ) 2, ( 1 .6 .1 )

where the constants N 0 and C  are independent o f e and N.

I t  should be noted however, th a t under much weaker assumptions the fo llow ing 

bound was also proven [47, C hapter 3]

sup
0 < e < l

TtnUr - u E _ <  C iN - 1 (InN )2)p, (1 .6 .2)
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where p  =  1/4 or 1/8 depending on the precise assum ptions made.

T he proof of estim ates of the kind (1.6.1) generally requires precise bounds on 

the derivatives of the solution of the problem being studied. A n  asym ptotic expan

sion of the solution while revealing about the layer structure of singularly perturbed  

problems, is inadequate for obtaining these bounds. Therefore a different approach  

m ust be taken. Shishkin introduced the following decom position of the solution into 

a regular component and a layer component (som etim es referred to as a Shishkin 

splitting in the literature). Let

u =  v  +  w ,  (1.6.3a)

where L ev  =  /, L £w  — 0, (1.6.3b)

where L e is the differential operator in question. The key feature of this construction  

is that the component w,  representing the boundary layer behaviour of the solution,

is in the null space of the differential operator, L e. Shishkin employed this kind of

decomposition in analysing m ethods for quite general problems (again see [47]). A n  

analogous decomposition of the numerical solution can also be constructed and used  

to analyse the error in the numerical scheme.

Since these results appeared the com plexity of the presentation and the implicit

ness of the assum ptions in [47] have prom pted efforts by  various authors to provide 

a more constructive proof and to make the com patibility assumptions more precise. 

An initial effort was m ade by  Miller et  al in [35], where the maximum principle and  

barrier function technique first introduced by  Kellogg and Tsan [22], is used along 

with  the decomposition (1.6.3) to prove the estim ate (1.6.1) in a simpler case. Flaws 

in this proof due to the com patibility assum ptions were pointed out in Dobrowolski 

and Roos [9] where a splitting based on an asym ptotic expansion was constructed to  

obtain the bounds on the derivatives. Linfi and Stynes [30] employed a similar split

ting and used it in [29] to  analyse a hybrid difference scheme on a piecewise-uniform  

fitted mesh where the error bound derived was 0 ( N ~ 1). T hey also improved the error 

bound for the upwind scheme to 0 ( N ~ 1 l n N ) .  In [23] K opteva provides an expan

sion of the error for the upwind scheme which requires less com patibility conditions 

than the other approaches but which is only valid in the perturbed case (i.e. when  

e <  C N -1). She uses it to  obtain error estim ates for the Richardson extrapolation
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technique and for the approximation of derivatives of the solution.

In the theoretical analysis in this thesis we shall use decom positions of the form

(1.6.3) in conjunction w ith  the maximum principle and barrier function technique. 

For this approach to work the finite difference operator m ust be monotone. If this 

is not the case then a different technique m ust be employed. One such technique 

is due to Andreev and Savin [3]. It involves bounding the discrete Green’s function  

associated w ith  the finite difference operator. It was used in Andreev and K opteva  

[2 ] to prove an C>((iV- 1  In iV)2) error estim ate for the central difference scheme on 

a piecewise-uniform fitted mesh for the one-dimensional problem (1.2.1). A  recent 

extension of the technique to the problem (1.5.1) can be found in [1], where it was 

used to obtain a pr io r i  estim ates for the G reen’s function of a m onotone difference 

scheme on an arbitrary mesh.

It should be noted th a t a lot of the technical considerations in the above papers 

related to the com patibility conditions can be circumvented if one uses the technique  

of extending the domain when one is defining the regular part of the decomposition. 

For an example of this see §4.4. Following on from the discussion in the previous 

section we remark th a t none of the work cited above considers problems where corner 

singularities are in general present in the solutions of the problem except for [47]. Also, 

in [49] Shishkin proves that for problem (1.5.1) w ith  low regularity on the data  of 

the problem and no compatibility, a numerical m ethod based on a piecewise-uniform  

fitted mesh is e-uniform w ith  the error estim ate

sup
0<e<l

t t nUr -  u £ _ < / i ( A 0 ,  (1.6.4)
n

where ¡jl is independent of e and /i(N ) —*• 0 as N  — » oo.

1 . 7  S i n g u l a r l y  p e r t u r b e d  p r o b l e m s  o n  

n o n - r e c t a n g u l a r  d o m a i n s

It should be clear from the previous section th a t there exists a lot of results for 

m ethods involving piecewise-uniform fitted meshes even if we restrict ourselves to  

considering the m odel problem (1.5.1). However, all of the results quoted in the
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previous section are only valid on a rectangular domain. It should be noted however 

that in [47] Shishkin gives appropriate constructions for convex polygonal domains 

but the results are not w idely known. For non-convex domains see [48].

It is worth noting that it is som ewhat more convenient to deal w ith  more general 

domains when using finite element m ethods, as the geom etry of the problem  is natu

rally incorporated into the discretisation. However, as already sta ted  the derivation  

of error estim ates in the maximum norm, particularly for convection-diffusion prob

lems is difficult. The main purpose of th is thesis is to  stu dy  the application of finite 

difference numerical m ethods for singularly perturbed problems on non-rectangular 

domains, and to derive error estim ates of the kind presented in §1 .6 .

The procedure for this study is now outlined. G iven a class of problems on a 

non-rect angular domain we make a change of variables to transform the class to an 

equivalent one on the usual rectangular domain. This simplification of the geom etry  

produces a more complicated differential equation as the information about the geom

etry is incorporated into the coefficients of the equation. However, it is a convenient 

approach as it allows us to study  problems defined on different types of domains in 

the one setting. It also more convenient from a practical point of v iew  to design  

and implement a numerical m ethod on a rectangular domain. A s we are interested  

in employing meshes which are fitted to boundary layers, discretising on a possibly  

complicated domain could prove troublesome in general.

In Chapter 2 we begin our study of singularly perturbed problems posed on non- 

rectangular domains by  considering a class of parabolic problems. Using a suitable 

co-ordinate transformation the problem is posed on a rectangular domain. T he na

ture and location of some of the boundary layers that can occur are identified and 

subclasses of problems are defined that have the same behaviour. In the special case 

of a domain w ith  straight line boundary and an equation w ith  constant coefficients 

it is shown th a t it is possible to classify every possible problem into one of these 

subclasses. Numerical m ethods consisting of an upwind finite difference operator and 

an appropriate piecewise-uniform fitted m esh are constructed for each subclass. N u

merical results are presented that show com putationally th a t the m ethods described  

are e-uniform for particular problems from each subclass. Finally, more complicated  

domains are considered and numerical results are presented for a sample problem.
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In Chapter 3 theoretical results are presented for a numerical m ethod applied to  

a class of parabolic problems w ith  a boundary turning point. This class of problems 

is a slight generalisation of one identified in Chapter 2 whose solutions possess a par

abolic boundary layer in a neighbourhood of x  =  0. A  numerical m ethod based on a 

piecewise-uniform fitted mesh is constructed and it is shown th a t the numerical solu

tions generated by the m ethod converge e-uniformly to the solution of the continuous 

problem. Numerical results are presented th a t validate the theoretical result proven. 

Finally, a similar but related problem is examined. Some analysis is given that mo

tivates the construction of an appropriate numerical m ethod. Numerical results are 

provided that show com putationally th a t the numerical solutions converge.

In Chapter 4 we move on to consider a class of elliptic problems on a non- 

rectangular domain. We restrict our attention to the case when only regular layers 

are present in the solutions of problems from this class. W e assume th a t there exists 

a sufficiently regular co-ordinate transform ation from the domain to the unit square. 

The transformed problem class is then studied. In contrast to the parabolic case 

we note the presence of a new  term  in the differential equation which contains the  

mixed derivative of the solution. This fact makes the construction and analysis of 

an appropriate numerical m ethod much more difficult. Particular attention is paid  

to the establishment of a discrete comparison principle. In the perturbed case, i.e. 

when e  <  C N ~ X, it is shown th a t the numerical solutions generated by  our m ethod  

converge uniformly w ith  respect to the singular perturbation parameter. This is the 

central result of the thesis.

In Chapter 5 we present extensive numerical results dem onstrating the applica

tion of the m ethod developed in Chapter 4. Firstly, in the case of a domain whose 

boundary is a  parallelogram, we verify com putationally the theoretical result proved 

in the previous chapter. Some of the com putational issues related to the presence of 

the mixed derivative of the solution in the differential equation are then examined. 

We conclude the thesis w ith  some numerical results where our m ethod is applied to a 

problem posed on a domain whose boundary is more complicated. It is again demon

strated that the numerical solutions generated converge uniformly w ith  respect to the 

singular perturbation parameter. We feel that this example offers an indication of 

the wider applicability of the m ethod developed.
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C h a p te r  2

N u m e r i c a l  m e t h o d s  f o r  a  c l a s s  o f  

s i n g u l a r l y  p e r t u r b e d  p a r a b o l i c  

p r o b l e m s

2 . 1  I n t r o d u c t i o n

In this chapter we begin our study  of singularly perturbed problems on non-rectangular 

domains by  considering a parabolic problem  posed on a domain w ith  a piecewise- 

sm ooth boundary. Using a change of variables the problem  is transform ed to one on 

a rectangular domain. We are interested in the nature and location of the boundary  

layers that can occur in solutions to problems from this class. A s the form of the  

differential equation is complicated in the general case we consider the special case 

when the boundary of the domain is m ade up of straight lines. It is then  possible to  

identify all possible types of boundary layer behaviour.

This information enables us to construct numerical m ethods based on upwind  

finite difference operators and appropriate piecewise-uniform fitted m eshes which re

solve the layers present. It is shown com putationally that each of these m ethods 

is e-uniform when applied to particular problems. We also consider more general 

domains.

This chapter is organised as follows. In §2.2 we introduce a class of problems 

posed on a non-rectangular domain and perform a transformation of the independent
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variables to  obtain an equivalent class of problems posed on a rectangular domain. In 

§2.3 we consider a particularly simple kind of geometry, nam ely when  the boundary of 

the original domain is given by  straight lines. Each  problem from the corresponding 

transformed problem class is then classified into a particular subclass according to 

the behaviour of the convective term  in the differential equation. In §2.4 we identify 

the nature and location of the boundary layers th a t are present in the solutions of 

problems from each of the subclasses. In §2.5 we construct numerical m ethods that  

will resolve the layers present in each of the subclasses identified and in §2 . 6  we  

present detailed numerical results. Finally, in §2.7 we consider problems posed on 

more complicated domains and present some numerical results for a sample problem. 

Some of the material in this chapter has appeared in [10] and [11].

The com putations in this chapter and the following one were performed using  

C + + .

2 . 2  S t a t e m e n t  o f  p r o b l e m

We consider the following class of singularly perturbed parabolic problems 

P r o b le m  C la ss  2 .2 .1 .

L Eu ( £ , t )  =  (eüt f  +  av,£ — but — d u ) ( € , t )  =  f ( £ , t )  in Ú,  (2.2.1a)

u ( ^ , t )  =  g ( ^ , t )  on T  — C l \ ñ ,  (2 .2 .1 b)

b ( £ , t ) > P >  0 , d ( Í , t ) > 6 >  0 , V ( £ , í ) e á ,  (2 .2 .1 c)

where Cl =  ( f a ( t ) ,  f a i t ) )  x (0 ,T ] is a non-rec tangular  d o m a in  bounded by the curves

£ =  4>i(t), £ =  f a i t )  such that

4 ,1 (0 ) =  0 , f a ( 0 )  =  1 , f a ( t )  <  f a { t ) ,  V t e [ 0 , n  ( 2 .2 .2 )

and  0  <  e <  1  is the perturbat ion p arameter .

We also assume that the data a, b, d, f ,  g  and fa ,  f a  are sufficiently regular, and  

that /  and g  satisfy sufficient com patibility conditions at the corners of the domain.
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Figure 2.1: A non-rectangular domain Q.

The problem is now transformed to one on a  rectangular domain. This is achieved  

by introducing the new co-ordinatc system  (x ,  t ) and the change of variables

( 2 ' 2 ' 3 )

Note that this transformation exists by virtue of (2.2.2). The transformed class of 

problems, P£> is then

P r o b le m  C la s s  2 .2 .2 .

L eu ( x ,  t) =  (eu xx +  atix — blit — d u ) ( x ,  t.) =  f ( x ,  t) in  Q, (2.2.4a)

u (x ,  t ) =  g ( x ,  t) on T, (2.2.4b)
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where

ft — (0 ,1 ) x  (0 ,T ], r  =  ft \  ft, u ( x , t )  =  u ( £ , t ) ,  

a ( x , t ) =  ( a ( £ , t )  +  S (f l f ) (® ($ ( t )  -  f a i t ) )  +  f a ( t ) ) ) ( f a ( t )  -  f a (i)), 

fe(x, i) =  &(£, t ) ( f a ( t )  -  f a i t ) ) 2, d (x ,  t )  =  d(£, t ) ( f a ( t )  -  f a ( t ) ) 2,

f ( x , t )  =  f ( £ , t ) ( f a ( t )  - f a ( t ) ) 2, g (x ,  t) =  g ( £ , t ) ,

£ =  $ (x ,t )  =  x ( f a ( t )  -  f a ( t ) )  +  f a i t ) .

Notice th a t irrespective of the functions fa  and fa,

b ( x , t )  >  0, d ( x , t )  >  0, V (a ; ,i )G f t ,

similar to b and d. However, in general, the behaviour of a  m ay be such th a t it becomes 

zero or changes sign at certain points of the domain. W hen e  is small boundary layers 

of various types are in general present in solutions of problems from Problem  Class 

2 .2 .2 , and it is precisely the behaviour of a  th a t determines the nature and locations 

of these layers. Thus the choice of numerical m ethod will depend critically on a  which  

in turn depends on the relationship between the geom etry of the original domain and  

the original coefficient functions.

Ideally we would like to identify all the possible types of layer behaviour that 

could appear in the solution to problems from the transformed class. If we could do 

this then it would be possible to decom pose P £ into distinct subclasses. Each subclass 

would consist of problems whose solution had similar behaviour (i.e. possessed the  

same type  of layer in the same region of ft). T he reason for this is th a t w e strive  

to design numerical m ethods that will be applicable to all problems w ith  the same 

behaviour. Thus the classification of a particular problem into a subclass amounts to  

deciding w h at the appropriate numerical m ethod to apply to the problem  is.

The difficulty w ith  this approach is th a t we must be able to  determine, for all 

possible choices of a, the layer behaviour of the solution a priori .  This is a difficult 

task in general so we will confine ourselves to some specific situations where this 

information can be determined. It will be  shown in the next section that if the original 

domain is bounded by straight lines and the coefficient functions are constant then
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a complete classification of every problem in the transform ed problem class can be  

achieved. This enables us to explore in a relatively simple setting the diverse kinds 

of boundary layer behaviour that problems posed on the sam e geom etry can exhibit.

2 . 3  S p e c i a l  c a s e - s t r a i g h t  l i n e  b o u n d a r y

We will assume th a t the original domain has a boundary given by  straight lines. T hat 

is we will assume that ft =  CIl  is a domain bounded by  the lines

<t>i(t) =  (f)2(t) =  1  -  m 2t,  Vi 6  [0 ,T ],

where m i  and m 2  are constants. For simplicity it is also assum ed th a t the original 

coefficient functions are constant.

a (f, t )  =  a , S(£, t )  =  ¡3, V (f, t )  G ft.

The resulting transformed problem class, C  P £, is

P r o b le m  C la ss  2 .3 .1 .

L £u (x , t )  =  (euxx +  aux — but — d u ) (x ,  t )  =  f ( x ,  t )  in  ft,

u ( x , t )  =  g ( x , t )  on T,

where

a ( x , t )  =  h ( t ) i&  — (3(xim2 — m i )  +  m i ) ) ,  b { x , t )  =  /3(/i(i))2, 

d { x , t )  =  d i £ , t ) ( h ( t ) ) 2, f ( x , t )  =  f ( £ , t ) ( h ( t ) ) 2, g ( x , t )  =  g ( £ , t ) ,

£ =  £ ( x , t )  =  x h { t )  — m i t ,  h i t )  =  ( 1  — (m 2  — m x)t ) .

Note that h( t )  >  0, which follows from condition (2.2.2).

The form of this problem class is sufficiently simple to allow us to  identify all of the  

possible types of behaviour of a  (i.e. different sign patterns) and the layer structure  

of the corresponding solutions. This will enable us to classify any problem from P  ̂

into a subclass of P e. In this case we can identify nine such subclasses. These are
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defined as follows:

P *  =  { / e I «(a:, I) >  0, V [x,  t) G ft } ,

P£° =  {P e  | « (# , ¿) =  0 , V (x,  t) G ft } , 

P ~  =  { P e | a ( x ,  t )  <  0, V (a;, i) G ft } ,

+ it

! *

a ( x , t )  <
\  = 0  

I > °

x  ~  0 ,

0  <  x  <  1 ,

Vi G [0, T]  1 

Vi G [0, T]  j

p ° -  = .
1 »

a{ x ,  t )  <r - o

i < °

x  =  0 ,

0 <  X <  1,

Vi G [0,T] 1 

Vi G [0,T] J

P - "  = .
> ■

a ( x , i )  <

o 
o

V 
II

0  <  x  <  1 ,

x  =  1 ,

Vi G [0,T] ]  

Vi G [0,T] J

p+° =  <

! p-
a(x ,  t )  <i > 0  

I = °

0  <  x <  1 ,

X =  1,

Vi G [0,T] 1 

Vi G [0, T] J

r
r < 0 X < Vi G (0 ,7 ]

p - +  =  < Pe a ( x , t ) < =  0 x  =  C, Vi G [0,T]

, > o x  >  C, Vi G [0 ,T ] J

f
' >  0 x  <  C, Vi G [0,T] 1

P t  =  < Pe a ( x , t ) < =  0 s  =  C> Vi G [0, T]

k < ° >  c, Vi G [0 ,T ] J

where (  G (0 ,1),

Of course these nine subclasses are properly contained in Pe. T ha t is

P+  U P° U P~  U P°+ U P ° ~  U P ~ °  U P+° U p - + U P + ~  £  P£.

Actually we need only be concerned w ith  six of these subclasses as three pairs of them, 

viz. (P£+ , P ~ ) ,  (P t0+, P f a) and (P e0 ~ .P e+0), arc equivalent under the transformation  

x  =  1  — x.

Now we m ay sta te  simple relationships between the slopes of the lines defining

20



the boundary, m \  and m 2, and the coefficients, a  and /3, which determ ine if a given  

problem in P }  will be an element of a certain subclass of PE. These are shown in 

Table 2.1. The form of the transformed function, a, is also given to  show that it has 

the required behaviour. T he constants 7 , 7 1  and 7 2  are all strictly positive. T he value 

of C is the same for the two applicable cases:

a  — f i m i  

¡3(m2 -  m i )

and we clearly have £ G (0 , 1 ).

2 . 4  L o c a t i o n  a n d  n a t u r e  o f  b o u n d a r y  l a y e r s

In the final column of Table 2.1 we have indicated the location of the kinds of boundary  

layers that can occur in the solutions of particular problems from P } .  In this section 

we show how this information can be  determined. To do this we will consider the  

original problem class 2 .2 . 1  corresponding to P  ̂ where the boundary is given by  

straight lines and show how the relationship between the geom etry of the domain  

and the coefficients in the differential equation give rise to boundary layers in the  

solutions to problems from this class.

The reduced problem corresponding to  (2.2.1a) is obtained by  formally setting  

e =  0. This gives us the first order hyperbolic partial differential equation

(av£ — bvt — d v ) ( £ , t )  =  / (£ ,t )  in Cl. (2.4.1)

As we have assum ed that a  and b are constant this becomes the simpler

( a v t  -  (3vt -  dv)  [ i , t )  =  /(£ , t )  in Cl.

It is clear that w e cannot impose all of the boundary conditions (2.2.1b) on v  as this 

reduced problem is only of first order. To figure out on which part of P w e can specify 

conditions we consider the characteristic curves of the reduced problem. It can be
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Case Condition Subclass a(x ,  t ) Behaviour

7711 >  IV,2 O’ =  /577li F o+ h ( t ) j x P.L. near a: =  0

a  =  /3ttz2 F - ° - h ( t ) 7 ( 1  -  x) P.L. near x  =  1

$ m 2 <  a  <  $ m i Pe~+ h { t h { x  -  C) Sm ooth

d  >  (3m\ r ? h{ t ) (  7i +  722) R .L. near x  =  0

a  <  f i m 2 K

H£1

-C1

7i >  72 R.L. near x  =  1

m.2 >  r r i i a  =  f im i p o - —h(l)~fx P.L. near x  =  0, 
R.L. near x  =  1

a  =  0 m 2 p + 0 h ( t ) 7 ( 1  -  a:) R.L. near x  =  0, 
P.L. near x  =  1

f i m i  <  a  < P + - M 07(C  -  x ) R.L. near a: =  0, 
R.L. near x  — 1

A  <  f imi p e- ~ h { t ) (  71 +  72«) R .L. near x  =  1

a  >  pm, 2 p + /i(i)(7i -  72«), 7i >  72 R.L. near x  =  0

m x =  m 2 &  — ¡3m,i P°e 0 P.L. near x  — 0, 
P.L. near x  =  1

a  >  (3 m i Pe+ 7 R.L. near a: =  0

or <  (3m \ P f - 7 R .L. near x  =  1

Table 2.1: Classification of problems from P£,  R .L .=R egu lar Layer, P .L .=Parabolic  

Layer.
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easily shown that these are the straight lines given by

Oi
i  =  — ~t  +  c.

P

where c is an arbitrary constant. A long each characteristic the reduced equation  

becomes the first order ordinary differential equation

v s - d v  =  f

which means that if v  is specified at any point on a characteristic then its value at 

all other points on the characteristic is fully determined.

As $  is strictly positive it follows that the characteristics are oriented positively in 

time. So the value of v  on each of the characteristics is determ ined by the boundary  

value at the point on the boundary where they begin. T he set of all such points is 

called the inflow boundary. Similarly the set of all points on the boundary that are 

endpoints of characteristics is called the outflow boundary, and a region of the bound

ary that is itself a characteristic of the reduced problem is called the characteristic 

part of the boundary. We denote these regions by f 1/, To and f c  respectively. We 

have r  =  f 1/ U To U Fc-  Clearly, the relationships between the slopes of the charac

teristics and the slopes of the boundary walls determine w h at parts of the boundary  

belong to which set (Figures 2.2 and 2.3).

It can be shown th a t for points on T that are not part of the inflow boundary the  

solution of the reduced problem will not in general be equal to that of the full problem  

and thus we will have a boundary layer in a neighbourhood of these points. There 

are many different types of boundary layers but we will be  concerned w ith  just two  

distinct types, viz. regular boundary layers and parabolic boundary layers. It can be  

shown using the techniques of m atched asym ptotic expansions (see [21] and [13]) that 

the solution of the original problem will have a regular layer in a neighbourhood of 

f o  and a parabolic layer in a neighbourhood of Tc-  The w id th  of the regular layers 

in all cases is 0 ( e )  while the parabolic layers have w id th  0 ( y / e ) .

In term s of the transformed problem class the existence of a regular layer near 

£ =  f a  for example, corresponds to a regular layer near x  =  0  as £ =  fa  is m apped  

to  x =  0 by the transformation (2.2.3), w ith  similar statem ents for the other types of
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Figure 2.2: Characteristic curves of the reduced problem  (2.4.1) in the case P . 

behaviour.

We will not be concerned w ith  problems from subclass P ~ + as there axe in general 

no boundary layers present in their solutions and standard numerical m ethods suffice 

for generating adequate approximations. It is well known th a t this is not the case for 

problems from the other subclasses where boundary layers are present.

In Chapter 3 we will develop a numerical m ethod th a t is adequate for resolving 

the layers that are present in problems from a more general class than  P£  D P£0+. We 

will consider problems where we have

a(x ,  t )  =  a0( x , t ) x p , p  >  1 , o0 ( x , i ) > 0 ,

which corresponds to the form of a  in problems from Pj- fl Pe0+ when p  — 1  (see 

Table 2.1). Therefore, in this chapter we will not concern ourselves any further w ith  

problems from P^ fl Pen+.
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Figure 2.3: Characteristic curves of the reduced problem  (2.4.1) in the case PE+ ’ .

In the next section we will construct appropriate numerical m ethods to resolve 

the layers that are present in all problems from except those in the two subclasses 

mentioned above. T hat is we are concerned w ith  generating numerical solutions to  

problems from the intersections betw een problem class P t'} and the four subclasses of 

the general problem class P £:

P i  n  p + ,  P i  n  P£°, P i  n  P ° - ,  P le n  P + ~ .  (2.4.2)

N ote that while we now deal exclusively w ith  problems from the transformed class, 

the numerical m ethods we design will provide us w ith  adequate numerical solutions to  

problems from the original class as well, because the two classes are equivalent under 

the transformation (2.2.3). We implement the numerical m ethods on the transformed  

domain as it is more convenient com putationally to  deal w ith  a rectangular geometry.
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We now construct numerical m ethods that will generate approximations to solutions 

of problems from each of the four classes in (2.4.2). These consist of an upwind finite 

difference operator, and an appropriate piecewise-uniform fitted mesh. The difference 

operator , on a mesh Q N , is defined for any mesh function Z N , as

L ? Z N (Xi, t j )  =  {e52xZ N +  a D sx Z N -  b D ^ Z N -  d Z N ) { x h t j ) ,  V ( x it t j )  E Q N ,

2 .5  N u m e r i c a l  m e t h o d s

where
(  D + Z N ( x i , t j ) ,  a ( x i , t j ) >  0 

D l Z N {xh t j )  =  i  0 , a ( x i , t j ) = 0  .

{  D - Z N ( x i , t j ) ,  a ( x i , t j )  <  0

N ote that the definition of D x assures us th a t satisfies a discrete comparison  

principle and is thus a m onotone difference operator.

We use N x mesh intervals in the x  co-ordinate direction and N t mesh intervals

in the t  co-ordinate direction. Define the mesh, th a t discretises [0, T]  w ith  N t

uniform mesh elements, as

=  { t j  I h  =  j / N t , o <  j  <  N t } ,

and the piecewise-uniform meshes, and , th a t discretise Q. =  [0,1] w ith  N x

mesh elements, as

X i =
2 i a / N x 0 < i <  N x/ 2

a  +  2{ i  -  N x/ 2 ) ( 1  -  a ) / N x N x/ 2  <  i  <  N x

T f *Tl,T2

r
X i x < = \

I

Ai,Ti/Nx 0 <  i  <  N x/A

ri +  2 (i -  N x/ 4 ) ( t2 -  Ti ) / N x N x/ 4 <  i  <  3N x 

Ti +  4 [i -  3A^/4)(1 -  t2) / N x 3 N x/ 4  <  i  <  N x

It can be seen that consists of two uniform meshes, w ith  N x/ 2  mesh elements,
—N

joined together at the transition point a  and that ftT l *T2 consists of three uniform  

meshes, w ith  N x/A, N x/ 2  and N x/A  mesh elements, respectively, joined at the two
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transition points t \ and r 2. Clearly we m ust take N x to  be a multiple of 2 when  

using the first mesh and a multiple of 4 when  using the second mesh. We intend to  

apply the first mesh to  problems that possess a boundary layer near x  =  0  and the  

second mesh to problems that have boundary layers near bo th  x  =  0 and x  =  1. The  

transition points will be  chosen appropriately according to the particular problem  

class.

We define the resulting piecewise uniform fitted m eshes to  be the tensor products

n "  =  n " * x n f ,  (2 .5 .1 )

C = < ; x C ‘ . (2.5.2)

Setting n  T and r ^  T2 =  PI r  gives us the following fitted m esh finite

difference m ethods

M e th o d  2 .5 .1 .

L e U N {xh t j )  =  f ( x i , t j )  in n ? * T2,

U N ( x i , t j ) =  g ( x u t j )  on .

M e th o d  2 .5 .2 .

L ^ U N ( x i , t j )  =  f ( x i , t j ) in Q ^ T2,

U N ( x i , t j )  =  g ( x i , t j ) on  T ^ .

Finally we specify for each of the four problem classes in (2.4.2) the appropriate

numerical m ethod and the correct choice for the transition point(s) in each case.

These are sta ted  in Table 2.2. N ote that a  is the lower/upper bound on a.

We now sta te known theoretical results concerning the first two m ethods given in 

Table 2.2.

T h e o re m  2 .5 .1 . For  problems f r o m  class , which are sufficiently compat ible a t  

the corners,  the numerica l  approximat ions  generated  by Me th od  2.5.1 wi th a  defined
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Problem  Class M ethod Transition Point(s)

Pe n  P ?  

Pe n  P °  

Pe n  P e ~  

Pe n  P e ~

2.5.1

2.5.2

2.5.2

2.5.2

a  =  m in { | ,M n A ^ }

n  =  m i n d ^ y ^ l n A ^ }  , r 2  =  1  -  n

ri =  m in { | ,  y / è ] n N x }  , r 2 =  l - m i n { ì ,  f ln A ^ }

ri =  min { | |  In N x }  , r 2  =  1 -  tx

Table 2.2: Appropriate numerical m ethods and transition points for each of the classes 

(2.4.2).

as in Table 2 .2  are e - u n i f orm  and sa t is fy the fo l lowing error  es t i ma te

sup
0 < £ < 1

TtnU — u _  <  C N ~  ( in N x) +  C N t ,

where C  is a cons tant  indep end en t  of  N x, N t an d e.  

Proof.  See, for example, Shishkin [47]. □

T h e o re m  2 .5 .2 . For  problems f r o m  class P if ,  which are sufficiently compatible a t  

the corners,  the numerica l  approximat ions  generated  by Me tho d 2 .5 .2  wi th T\ and  r 2 

defined as in Table 2 .2  are e -u ni fo rm  an d  sa t is fy the fo l lowing error  es t i ma te

sup
0 < £ < 1

ttnU — U _ < C ( N ~ i l n N x)2 +  C N i- l  
t !

where C  is  a cons tant  ind ependent  of  N x , N t and  e.  

Proof.  See, for example, Miller et  al. [36]. □

2 . 6  N u m e r i c a l  r e s u l t s

In this section we present comprehensive numerical results that dem onstrate the nu

merical m ethods introduced in §2.5 applied to each of the problem classes given in
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Exam ple m i m 2 Subclass

1 0.5 0.25 P i  n  P +
2 1 . 0 1 . 0 P l  n  / f

3 1 . 0 1.5 P i  n  P t
4 0.5 1.25 P l  n  P r

Table 2.3: Exam ple problems.

(2.4.2). This will verify com putationally Theorems 2.5.1 and 2.5.2. It will also demon

strate experimentally that the other m ethods resolve the layers th a t are present in the  

solutions of the corresponding problem classes. To this end we consider th e following 

problem posed on the domain ClL. N ote that we take T  =  1.

P r o b le m  C la ss  2 .6 .1 .

( e u ^  +  u£ — u t — u ) (x ,  t) =  — £ — 1  in  &l ,

u (£ ,0 ) =  l - £ 2, £ e [ 0 , l ] ,

u ( —m i t , t )  =  l ,  u ( l  — rriit, t )  =  0 , i e ( 0 , 1 ].

We can construct a problem  from each of the four subclasses using this problem  

posed on various (similar) domains. This will show quite explicitly th a t the nature 

of the layers present in the solution of a problem from Problem  Class 2.2.1 depends 

critically on the geom etry of the domain. In Table 2.3 w e show appropriate values of 

m i and m 2  th a t give us an example problem  from each of the subclasses.

To generate approximate solutions to  each of the examples we apply the appro

priate numerical m ethod given in Table 2.2. We let N x =  N t =  N  and tabu late the  

computed errors, E ^ ,  and the com puted e-uniform errors, E N , for a variety of values 

of e  and N  for each of the examples given. As we do not have an exact solution for 

any of the problems we use the piecewise bilinear interpolant of the numerical solution  

generated by  the appropriate m ethod on the finest available mesh, viz. U  , as our 

approximation to the exact solution. Thus we define E  ̂ and E N as follows

E f  — m ax iC /^ fe .i,) - C / 1 0 2 4 (^ ,i,-)|, E N =  m ax .
0 <i,j<N 3 J e=l,2—i,...,2—32
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T he values of these quantities for each of the numerical m ethods applied to  the ap

propriate example problems are shown in Tables 2.4-2.7. N ote th a t the vertical dot 

notation indicates th a t in each column the errors have stabilised and remain essen

tially constant for each of the values of e  om itted. In each table we see th a t the  

values of for each fixed e decrease w ith  increasing N .  A  fo r t io r i  th e values of 

E N decrease w ith  increasing N indicating that the convergence is uniform w ith  re

spect to  e. These results indicate th a t each of the m ethods are layer-resolving for the 

corresponding example problems.

We also present graphs of some representative numerical solutions generated by  

each of the numerical m ethods applied to  the corresponding examples for particular 

values of e  and N .  We choose to plot these graphs on the original domain as it 

illustrates more clearly the effect of the geometry.

2 . 7  M o r e  c o m p l i c a t e d  d o m a i n s

In this section we will look at some problems where the boundary of the domain is 

more complicated than those considered thus far. Assum e that the sides of the original 

domain are parallel. T hat is we will assume th a t Cl — Clp is a domain bounded by  

the lines

0 i ( i )  =  <j>(t), 02 (i) =  1 +  <j>(t), Vi £ [0, T\,

where 0  is sufficiently regular. T he resulting transformed problem class, P £2  is 

P r o b le m  C la ss  2 .7 .1 .

L eu ( x , t ) =  (e u xx +  au x — but — d u ) ( x , t )  =  f ( x , t ) in Q,

u ( x , t )  =  g ( x , t )  on F ,

where

a(x , t )  =  a ( £ , i )  +  i ( £ , i ) 0 /( i) , b(x, t )  =  b(£,t),  d (x , t )  =  d(£, t ) ,  

f ( x , t )  =  g f a t )  =  £ = £(x , t )  =  x  +  <l>(t).
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Number of Intervals N
e 8 16 32 64 128 256

1 3.11e-02 1.82e-02 1 .0 1 e- 0 2 5.21e-03 2.52e-03 1.10e-03

2 _ 1 1.29e-02 7.48e-03 3.94e-03 1.97e-03 9.34e-04 4.04e-04

2 - 2 1.51e-02 8.01e-03 4.03e-03 1.98e-03 9.28e-04 3.99e-04

2 - 3 3.03e-02 1.59e-02 8.07e-03 3.96e-03 1.86e-03 8.01e-04

2 - 4 6.30e-02 3.04e-02 1.35e-02 5.85e-03 2.75e-03 1.19e-03

2 - 5 8 .8 6 e- 0 2 4.69e-02 2.35e-02 1 .1 2 e- 0 2 5.06e-03 2.08e-03
2-e 1.04e-01 5.80e-02 3.03e-02 1.52e-02 7.18e-03 3.08e-03

2 “ 7 1.13e-01 6.49e-02 3.51e-02 1.83e-02 8.98e-03 3.98e-03
2 - 8 1.18e-01 6 .8 8 e- 0 2 3.84e-02 2.07e-02 1.05e-02 4.81e-03

2 - 9 1 .2 1 e- 0 1 7.12e-02 4.06e-02 2.24e-02 1.18e-02 5.55e-03Ot—
1 1CM

1 .2 2 e- 0 1 7.26e-02 4.19e-02 2.36e-02 1.27e-02 6.14e-03
2 - n 1.23e-01 7.34e-02 4.27e-02 2.43e-02 1.33e-02 6.55e-03

2 - 1 2 1.23e-01 7.39e-02 4.32e-02 2.48e-02 1.36e-02 6.81e-03
2 _ 1 3 1.23e-01 7.41e-02 4.34e-02 2.50e-02 1.38e-02 6.96e-03

2 - 1 4 1.23e-01 7.42e-02 4.36e-02 2.51e-02 1.39e-02 7.03e-03
2 -i5 1.24e-01 7.43e-02 4.36e-02 2.52e-02 1.40e-02 7.07e-03
2 - i 6 1.24e-01 7.43e-02 4.37e-02 2.52e-02 1.40e-02 7.10e-03
2-!7 1.24e-01 7.44e-02 4.37e-02 2.52e-02 1.40e-02 7.11e-03
2 - 1 8 1.24e-01 7.44e-02 4.37e-02 2.52e-02 1.40e-02 7.11e-03
2 -i9 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.11e-03
2 - 2 0 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.11e-03

2 - 2 1 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03

2 - 2 2 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03
2-23 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03
2 - 2 4 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03

2-32 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03

E N 1.24e-01 7.44e-02 4.37e-02 2.53e-02 1.40e-02 7.12e-03

Table 2.4: Computed errors, E 1̂ , and computed e-uniform errors, E N, for appropriate
method chosen from Table 2.2 applied to example 1.
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Num ber of Intervals N
e 8 16 32 64 128 256

1 2.93e-02 1.70e-02 9.10e-03 4.64e-03 2.22e-03 9.67e-04

2 _ 1 2.56e-02 1.27e-02 6.26e-03 3.03e-03 1.41e-03 6.05e-04

2 “ 2 3.58e-02 1.81e-02 9.01e-03 4.38e-03 2.05e-03 8.78e-04

2 - 3 3.82e-02 1.96e-02 9.81e-03 4.78e-03 2.24e-03 9.61e-04

2 - 4 4.14e-02 2.09e-02 1.03e-02 4.96e-03 2.32e-03 9.93e-04

2~5 4.92e-02 2.40e-02 1.17e-02 5.59e-03 2.60e-03 l .l le -0 3
2-6 5.44e-02 2.63e-02 1.26e-02 5.98e-03 2.77e-03 1.18e-03

2~7 6.25e-02 2.91e-02 1.35e-02 6.29e-03 2.89e-03 1.23e-03
2 - 8 6.44e-02 3.41e-02 1.48e-02 6.69e-03 3.01e-03 1.27e-03

2 - 9 6.49e-02 4.00e-02 1.99e-02 7.38e-03 3.18e-03 1.31e-03

to
1 o 6.55e-02 4.02e-02 2.47e-02 l . l l e - 0 2 3.70e-03 1.39e-03

2 - u 6.59e-02 4.03e-02 2.47e-02 1.16e-02 4.53e-03 1.64e-03
2 - Ì 2 6.62e-02 4.03e-02 2.49e-02 1.14e-02 4.42e-03 1.50e-03

2 - 1 3 6.64e-02 4.04e-02 2.49e-02 1.15e-02 4.42e-03 1.50e-03
2-14 6.65e-02 4.04e-02 2.49e-02 1.15e-02 4.43e-03 1.51e-03
2 - is 6 .6 6 e- 0 2 4.05e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2-16 6.67e-02 4.05e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2-17 6.67e-02 4.05e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03

2 - 1 8 6 .6 8 e- 0 2 4.05e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2-19 6 .6 8 e- 0 2 4.05e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03

2 - 2 0 6 .6 8 e- 0 2 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2 - 2 !

6 .6 8 e- 0 2 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2 - 2 2

6 .6 8 e- 0 2 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03
2 - 2 3 6 .6 8 e- 0 2 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03

2 - 2 4 6.69e-02 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03

2-32 6.69e-02 4.06e-02 2.50e-02 1.15e-02 4.43e-03 1.51e-03

E N 6.69e-02 4.06e-02 2.50e-02 1.16e-02 4.53e-03 1.64e-03

Table 2.5: Computed errors, , and computed e-uniform errors, E N, for appropriate
method chosen from Table 2.2 applied to example 2.
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Num ber of Intervals N
£ 8 16 32 64 128 256

1 3.35e-02 1 .8 8 e- 0 2 9.95e-03 5.01e-03 2.39e-03 1.03e-03

2 _ 1 3.33e-02 1.72e-02 8.60e-03 4.19e-03 1.97e-03 8.44e-04

2~2 3.89e-02 1.99e-02 9.99e-03 4.87e-03 2.28e-03 9.78e-04

2 “ 3 4.19e-02 2 .1 2 e- 0 2 1.06e-02 5.14e-03 2.40e-03 1.03e-03
2 -4 5.70e-02 3.14e-02 1.63e-02 8.21e-03 3.90e-03 1.69e-03

2~ 5 6.43e-02 4.78e-02 3.16e-02 1 .8 8 e- 0 2 9.16e-03 4.00e-03
2 -6 7.37e-02 5.87e-02 3.74e-02 2.19e-02 1.19e-02 5.77e-03

2~7 8.80e-02 7.99e-02 5.02e-02 2.74e-02 1.40e-02 6.54e-03
2 s 9.59e-02 9.91e-02 6.96e-02 3.88e-02 1.83e-02 7.89e-03
2-9 9.89e-02 1 .1 0 e- 0 1 8.56e-02 5.51e-02 2.92e-02 1.25e-02
2-io 9.93e-02 1.14e-01 9.43e-02 6.63e-02 3.94e-02 1.91e-02
2- n 9.78e-02 1.15e-01 9.72e-02 7.14e-02 4.58e-02 2.45e-02

2~ 12 9.53e-02 1.13e-01 9.65e-02 7.21e-02 4.78e-02 2.71e-02
2 -i3 9.28e-02 l . l l e - 0 1 9.45e-02 7.05e-02 4.71e-02 2.73e-02
2 - 1 4 9.08e-02 1 .1 0 e- 0 1 9.26e-02 6.85e-02 4.57e-02 2.65e-02
2 - is 8.98e-02 1.08e-01 9.13e-02 6.70e-02 4.44e-02 2.57e-02

2 - 1 6 8.91e-02 1.08e-01 9.05e-02 6.61e-02 4.37e-02 2.51e-02
2-Ì7 8.87e-02 1.07e-01 9.01e-02 6.56e-02 4.32e-02 2.47e-02
2-18 8.84e-02 1.07e-01 8.99e-02 6.53e-02 4.30e-02 2.45e-02

2 - 1 9 8.83e-02 1.07e-01 8.97e-02 6.52e-02 4.28e-02 2.45e-02
2 - 2 0 8.82e-02 1.07e-01 8.97e-02 6.51e-02 4.28e-02 2.44e-02

2~21 8.81e-02 1.07e-01 8.96e-02 6.51e-02 4.27e-02 2.44e-02
2 - 2 2 8.81e-02 1.07e-01 8.96e-02 6.50e-02 4.27e-02 2.44e-02
2 - 2 3 8.80e-02 1.07e-01 8.96e-02 6.50e-02 4.27e-02 2.44e-02
2 - 2 4 8.80e-02 1.07e-01 8.96e-02 6.50e-02 4.27e-02 2.44e-02

2-32 8.80e-02 1.07e-01 8.96e-02 6.50e-02 4.27e-02 2.43e-02

E N 9.93e-02 1.15e-01 9.72e-02 7.21e-02 4.78e-02 2.73e-02

Table 2.6: Computed errors, E^,  and computed e-uniform errors, E N, for appropriate
method chosen from Table 2.2 applied to example 3.
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Num ber of Intervals N
£ 8 16 32 64 128 256

1 4.18e-02 2.40e-02 1.29e-02 6.52e-03 3.12e-03 1.35e-03

2 _ 1 4.11e-02 2.16e-02 1.09e-02 5.33e-03 2.50e-03 1.08e-03

2 “ 2 5.17e-02 2 .6 6 e- 0 2 1.33e-02 6.51e-03 3.05e-03 1.31e-03

2 “ 3 6.56e-02 3.42e-02 1.72e-02 8.42e-03 3.95e-03 1.70e-03
2-4 8.53e-02 4.45e-02 2.24e-02 1 .1 0 e- 0 2 5.17e-03 2.22e-03

2 - 5 8.32e-02 4.63e-02 2.40e-02 1.19e-02 5.62e-03 2.42e-03
2 - 6 5.95e-02 4.12e-02 2.18e-02 1 .1 0 e- 0 2 5.29e-03 2.30e-03
2 - 7 8.27e-02 7.89e-02 4.67e-02 2.55e-02 1.28e-02 5.65e-03
2-s 1.04e-01 1.07e-01 8.46e-02 5.31e-02 2.81e-02 1.28e-02

2 ~ 9 1.17e-01 1.18e-01 8.84e-02 5.65e-02 3.34e-02 1.70e-02
2 -io 1.25e-01 1.26e-01 9.29e-02 5.96e-02 3.50e-02 1.78e-02
2- n 1.29e-01 1.29e-01 9.54e-02 6 .1 2 e- 0 2 3.59e-02 1.82e-02
2 - 1 2 1.32e-01 1.31e-01 9.66e-02 6 .2 0 e- 0 2 3.63e-02 1.84e-02
2 - 1 3 1.33e-01 1.33e-01 9.72e-02 6.24e-02 3.65e-02 1 .8 6 e- 0 2

2-14 1.34e-01 1.33e-01 9.75e-02 6.26e-02 3.66e-02 1 .8 6 e- 0 2

2-15 1.34e-01 1.33e-01 9.76e-02 6.27e-02 3.67e-02 1 .8 6 e- 0 2

2 - i 6 1.34e-01 1.34e-01 9.77e-02 6.28e-02 3.67e-02 1 .8 6 e- 0 2

2 - ir 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1 .8 6 e- 0 2

2 - 1 8 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2-19 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2 - 2 ° 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2~21 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2 - 2 2 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2-28 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
2-24 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02

2 -S 2 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02
E * 1.34e-01 1.34e-01 9.78e-02 6.28e-02 3.67e-02 1.87e-02

Table 2.7: Computed errors, , and computed e-uniform errors, E N, for appropriate
method chosen from Table 2.2 applied to example 4.
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1 0

Figure 2.4: P lot of numerical solution generated by appropriate m ethod chosen from  

Table 2.2 applied to example 1 w ith  e  =  2 - 8  and N  =  128.
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Figure 2.5: P lot of numerical solution generated by appropriate m ethod chosen from  

Table 2.2 applied to example 2 w ith  e  — 2 - 1 2  and N  =  128.
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1 0

Figure 2.6: P lot of numerical solution generated by appropriate m ethod chosen from  

Table 2.2 applied to example 3 w ith  e =  2 - 8  and N  =  128.
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Figure 2.7: P lot of numerical solution generated by appropriate m ethod chosen from  

Table 2.2 applied to example 4 w ith  e =  2-lt) and N  =  128.

1 0
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To determine the location and nature of the layers present in solutions of prob

lems from this class we again consider the reduced problem  (2.4.1). In this case the  

characteristics will in general be curves. T hey are given by  (£ (s ) ,i ( s ) )  where

d£ „ d t  j 

da =  ds  =  ”  '

We introduce the following vectors

c ( € , t )  =  ( - & ( ( ,  t ) , b ( £ , t ) ) ,  n ( t )  =  (— 1, (2.7.1)

The vector c (£ ,t) is interpreted as the characteristic direction at the point (£,£) and  

n (t) is an outward normal to the boundary £ =  <j>(t) and an inward normal to th e  

boundary £ =  1 +  4>(t) depending on its location. In order to be able to classify every  

problem in P tf  into a subclass of P E depending on its layer behaviour we will assume 

the following.

A s s u m p t io n  2 .7 .1 . The s igns of  the quant i t ies c(cf>(t),t) -n (i) a n d c ( l  +  ( j>(t ) , t) -n{ t)  

do not  change as t  varies.

Geometrically speaking this means th a t the angles th a t all of the characteristic  

curves make w ith  each of the boundaries of th e domain, are of the same type for all t,  

i.e., always acute, right or obtuse. This rules out situations where the characteristic  

curves intersect the boundaries in com plicated ways. For example we cannot have a 

characteristic curve being tangent to the boundary at one point only. In this case the  

layer structure of the solution of the corresponding problem  would be considerably  

more complex than  the examples considered here.

It can be seen that the signs of the quantities c (</>(£), t ) . n ( t )  and c ( l  +  4>(t), t ) . n ( t )  

determine whether the corresponding boundary is part of the inflow boundary, outflow  

boundary or characteristic boundary. Therefore these quantities determine the types  

of layers present in the solutions of problems from the original class, and therefore also 

the transformed class, Pe2. N ote that the coefficient a  in th e transformed problem class 

is precisely the quantity c(£, t) • n (t) and hence the above assum ption is equivalent 

to assuming th a t the sign of a  remains the same along both  sides of the domain. 

Therefore, under Assum ption 2.7.1, any problem  from P e2  can be classified into one
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of the subclasses of P £ defined in §2.3.

Consider the following problem posed on the domain Clp. We take T  — 1 .

P r o b le m  C la ss  2 .7 .2 .

+  (2 i 2  — l)u£ — u t — u ) ( x ,  t )  =  —  £ —  1  in Clp, 

u(£ ,0) =  l - < £ 2, £ G [0,1],

n (0 ( i ) , i )  =  1 + t 2, « (1  +  4>(t),t) =  0, i  G (0,1],

where

cf)(t) =  t  — |  i3.

W ith this choice of boundary function 0  it is easy to see th a t c(£, L) ■ n (i)  =

0, Vi. Hence the corresponding transformed problem  class is a subclass of P e° and the  

solutions will possess parabolic boundary layers of w id th  0 { y / e )  in a neighbourhood of 

x  =  0 and x  — 1. To generate numerical solutions to problems from the transformed  

class we apply M ethod 2.5.2 w ith  the appropriate transition points

Ti = m in  j^ - v / i l n iV j ;  j , r 2 =  1 -  T\. (2.7.2)

In Table 2.8 we show the com puted errors, , and the com puted e-uniform  

errors, E N , for a variety of values of e and N .  Similar to the examples considered  

already, th e values of E ^  for each fixed e  decrease w ith  increasing N  and the values of 

E N also decrease w ith  increasing N  indicating that the convergence is uniform w ith  

respect to e. We also present a graph of a representative numerical solution plotted on 

the original domain for particular values of e and N  (Figure 2.8) and an illustration  

of how the piecewise-uniform fitted mesh would look on the original domain (Figure  

2.9).
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Num ber of Intervals N
e 8 16 32 64 128 256

1 1.99e-02 1 .2 1 e- 0 2 6.81e-03 3.56e-03 1.73e-03 7.55e-04

2 _ 1 1.35e-02 7.36e-03 3.79e-03 1.88e-03 8.85e-04 3.82e-04

2 - 2 2.58e-02 1.31e-02 6.55e-03 3.21e-03 1.51e-03 6.50e-04

2 “ 3 4.21e-02 2 .1 0 e- 0 2 1.03e-02 4.97e-03 2.32e-03 9.92e-04
2-4 5.67e-02 2.72e-02 1.31e-02 6.28e-03 2.91e-03 1.25e-03

2 - 5 6.93e-02 3.23e-02 1.53e-02 7.19e-03 3.31e-03 1.41e-03
2-e 8.92e-02 3.84e-02 1.74e-02 7.99e-03 3.63e-03 1.53e-03

2 “ 7 1 .1 2 e- 0 1 4.72e-02 2 .0 1 e- 0 2 8.88e-03 3.94e-03 1.64e-03
2-s 1 .2 2 e- 0 1 6.53e-02 2.51e-02 1 .0 2 e- 0 2 4.32e-03 1.76e-03

2 “ 9 1.24e-01 8.57e-02 3.27e-02 1.27e-02 4.94e-03 1.92e-03
2 -i° 1.25e-01 8.62e-02 4.30e-02 1.75e-02 6.12e-03 2.20e-03
2 - n 1.26e-01 8 .6 6 e- 0 2 4.30e-02 1.82e-02 7.12e-03 2.61e-03

2 " 1 2 1.27e-01 8 .6 8 e- 0 2 4.32e-02 1.82e-02 7.06e-03 2.62e-03
2 - 1 3 1.28e-01 8.70e-02 4.33e-02 1.82e-02 7.08e-03 2.62e-03
2 “ 1 4 1.28e-01 8.71e-02 4.33e-02 1.83e-02 7.09e-03 2.63e-03
2-i5 1.28e-01 8.72e-02 4.34e-02 1.83e-02 7.10e-03 2.63e-03
2 -ifl 1.29e-01 8.73e-02 4.34e-02 1.83e-02 7.11e-03 2.63e-03
2- n 1.29e-01 8.74e-02 4.34e-02 1.83e-02 7.12e-03 2.63e-03
2-18 1.29e-01 8.74e-02 4.34e-02 1.83e-02 7.12e-03 2.63e-03
2- w 1.29e-01 8.74e-02 4.34e-02 1.83e-02 7.12e-03 2.63e-03
2-20 1.29e-01 8.74e-02 4.34e-02 1.83e-02 7.12e-03 2.63e-03
2 - 2 1 1.29e-01 8.74e-02 4.34e-02 1.83e-02 7.12e-03 2.63e-03
2-22 1.29e-01 8.75e-02 4.34e-02 1.83e-02 7.13e-03 2.63e-03

2-32 1.29e-01 8.75e-02 4.34e-02 1.83e-02 7.13e-03 2.63e-03

E N 1.29e-01 8.75e-02 4.34e-02 1.83e-02 7.13e-03 2.63e-03

Table 2.8: Com puted errors, , and com puted e-uniform errors E N , for M ethod  

2.5.2 w ith  transition points given by (2.7.2) applied to Problem  Class 2.7.2.
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Figure 2.8: P lot of Numerical Solution generated by M ethod 2.5.2 w ith  transition  

points given by  (2.7.2) applied to the problem from Problem  Class 2.7.2 w ith  e  =  2~12 
and N  — 128 on original domain.

1.4 o
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X

Figure 2.9: Piecewise-uniform fitted mesh for the problem from Problem  Class 2.7.2 

on original domain.

43



C h a p te r  3

N u m e r i c a l  m e t h o d s  f o r  a  c l a s s  o f  

s i n g u l a r l y  p e r t u r b e d  p r o b l e m s  

w i t h  a  b o u n d a r y  t u r n i n g  p o i n t

3 . 1  I n t r o d u c t i o n

In this chapter we will study  a class of singularly perturbed problems w ith  a boundary  

turning point. A s remarked in §2.4 this problem is a generalisation of a class of 

problems th a t was generated from the consideration of a suitable parabolic problem  

on a non-rectangular domain. The key feature of problems from this class is that the  

coefficient of th e convective term  in the differential equation becomes zero along one 

side of the domain. It. will be seen th a t this means that the solutions of problems from  

this class possess a parabolic layer in a neighbourhood of this side of the domain.

The m aterial in this chapter is set out as follows. In §3.2 we sta te  precisely the  

class of problems we will be investigating and identify the nature and location of the  

boundary layers present. In §3.3 we consider some properties of the continuous prob

lem. In particular w e establish a m axim um  principle and bounds on the derivatives 

of the solution. In §3.4 we obtain sharper bounds on the derivatives through a suit

able decomposition of the solution into regular and layer components. The numerical 

m ethod is constructed in §3.5 and its m onotonicity is proven. In §3.6 we show that 

the numerical solutions generated by  the m ethod converge uniformly to the solution
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of the continuous problem w ith  respect to the singular perturbation parameter. D e

tailed numerical results are presented in §3.7. Finally, in §3.8 we briefly consider a 

related problem  also w ith  a boundary turning point. Some of the material in this 

chapter has appeared in [1 2 ] in a slightly different form.

3 . 2  S t a t e m e n t  o f  p r o b l e m

Consider the following class of singularly perturbed parabolic problems:

P r o b le m  C la ss  3 .2 .1 .

L eu(x ,  t )  =  (s u xx +  aux — but — d u ) ( x , t ) — f ( x , t ) in  ft,

u ( x , t )  =  g { x , t )  on T,

a( x ,  t )  =  a0( x , t ) x p i p  >  1, a 0( x , t )  >  a  >  0, V(x, i) G ft,

b ( x , t )  > /3 >  0, d ( x , t ) >  5 >  0 V(a;,t) €  ft,

where

ft =  (o, i )  x  (o, t ] ,  r  =  ft \  ft =  T l  u  u  r^ , 

r L =  { ( 0 , i )  I 0 < i < T } ,  r B =  { ( x , 0 ) I 0 < x <  1 }, r R =  { ( i , t ) \ o < t < T } .

We assum e th a t the data a a , b , d , f  and g  are sufficiently regular. In particular, 

this means th a t for a  to  have a certain amount of regularity (for example to be in 

C 3 (ft)) we m ust rule out the case when p  <  3 and takes a non-integer value. We also 

assume th a t /  and g  satisfy sufficient com patibility conditions at th e corners of the  

domain so that the solution and its regular component are sufficiently sm ooth for our 

analysis.

Problem  3.2.1 is a so-called boundary turning point problem. For p  >  1, the  

turning point is called a multiple turning point. It is a parabolic partial differential 

equation where the coefficient of the convective term  is zero along the left side of 

the boundary of the domain, i.e. on T l. N ote that we make no assertions about a 

steady-state solution of this problem. T he corresponding reduced problem  is defined

(3.2.1a)

(3.2.1b)

(3.2.1c)

(3.2.Id )
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Figure 3.1: Characteristics of the reduced problem  (3.2.2).

to be

(a(v0)x -  b(y0)t -  d v 0) ( x , t )  =  f ( x , t ) in Q, (3.2.2a)

v 0( x , t )  =  g ( x , t ) on r B u r fl. (3.2.2b)

The solution is said to have a parabolic boundary layer in a neighbourhood of Y l 

when a ( 0 , t )  — 0  and 6 (0 , t )  >  0 , as the boundary x  — 0  is then a characteristic curve 

of the reduced problem. The other characteristics do not intersect the boundary T

but deviate increasingly from the vertical away from the lateral boundary (Figure 

3.1).

Ordinary differential equations of a form related to  Problem  Class 3.2.1 have been  

dealt w ith  by  several authors (see for example [53], [52], [32], [31] and [27]) and arise 

in geophysics and in modelling therm al boundary layers in laminar flow (see [52] and 

the references therein).
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The analysis in this chapter (when p  set equal to 0) is also valid for the case

a ( x , t ) >  a  >  0, V(.x, t )  E ft.

The solutions of problems from the class then possess a different type of layer than the  

layers examined here, viz. a regular layer. This class of problems has been extensively 

studied (see for example [47], [50], and [24]). Moreover the m ethod of proof given can 

also be applied to  the reaction-diffusion case, when a  is identically zero (see [36]). In 

this case the solutions of problems from the class possess parabolic boundary layers 

at bo th  x  — 0 and x  =  1. These facts indicate th a t th e  technique of proof can  

be applied to a wide variety of problems involving boundary layers. This illustrates 

the potential of the technique in establishing theoretical results for other classes of 

singularly perturbed problems.

3 . 3  T h e  c o n t i n u o u s  p r o b l e m

The differential operator L £ in (3.2.1a) satisfies the following minimum principle.

L e m m a  3 .3 .1  (Minimum Principle). Le t  v  E C 2 ,1 (ft).

I f  v ( x , t )  >  0, V ( i , t )  e T ,  an d L ev ( x , t )  <  0, V ( x , i ) e f t ,

then v ( x , t )  >  0, V(x, t )  E ft.

Proof.  Assum e

3 r  E ft such that 'u(r) =  m in v  <  0,
n

then r ^ r ,  which implies r  €  ft.

N ow let

w ( x ,  t)  =  v ( x ,  t ) e“a;P+V 2(p+1)e) Mix, t ) E ft.

Then w ( x ,  t ) >  0, V(ic, t )  E T, and w(r )  <  0. Thus the minimum of w  m ust also be

negative. Let q  E ft such that

tu(q) —  minti; <  0 . 
si
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Applying the differential operator to v  gives 

L t-v = L £( w e - a*P+lMv+1)E)

—bwt — dw'j  (x , t ) e aa;P+i/2 (p+Ue

T he argum ent now divides into two cases depending on the position of q.

If q  ^ r r  =  { (x , T ) | 0 <  x  <  1} we have

w » ( q )  >  0 , w « (q ) =  tflt(q) =  0 ,

which gives

L ev (q ) >  0 .

If q  €  F j  then

Wxx(q) >  o, '^ ( q )  =  0, u/t(q ) <  0,

which again gives

L £v {q ) >  0.

This is a contradiction and thus our original assumption is false and we can conclude 

that the minimum of v  is non-negative. □

An im m ediate consequence of this is the following bound on the solution of any  

problem from Problem Class 3.2.1.

L e m m a  3 .3 .2 . The so lut ion u  o f  a n y  problem f r o m  Pr ob le m Class 3.2.1 sat i sf ies  the  

fo l lowing bound

M w S M r  +  n f h / P -

Proof.  Consider the barrier functions

x , i) =  Ci +  C^t  ±  ufaj.t), 

where C x =  ||g»||r and C 2  =  ll/lln //?-
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These functions satisfy the hypotheses of Lem m a 3.3.1 and therefore

$*(•M )  >  0, V(x, i) G ft,

and the result follows. □

Rema rk  3.3.1. Note that Lem m a 3.3.2 yields a  tim e-dependent stability  bound. If wc 

impose the restriction

l l / A %  <  C t (3.3.1)

then by using the barrier function

^ ± { x > t )  =  C \  +  C ’2 ( 1 — x )  ±  u(æ, i),

where C \  — ||.g||r and C i  — ||//a||jj we can establish a tim e-independent stability  

bound. However, we do not wish to limit the problem class with the restriction

(3.3.1).

We have the following bounds on the derivatives of any problem from Problem  

Class 3.2.1.

T h e o r e m  3 .3 .3 . Let u  G <73 ,t,(ft) be the solut ion  o f  a problem, f r o m  Pro ble m Class  

3.2.1.  Then f o r  all non-negat ive  integers i , j ,  such that  0 <  i  +  2j  <  3,

d x ' d t i
<  C e ~ i /2 . (3.3.2)

Proof.  Transforming the variable x  to the stretched variable x  — x / y / e ,  Problem  

Class 3.2.1 becomes

P r o b le m  C la ss  3 .3 .1 .

( u a  +  a£^~Ux  ~  but — d u ) ( x ,  t) =  / ($ ,  t )  i n  ft, (3.3.3a)

u ( x , t )  — g ( x , t )  on  f ,  (3.3.3b)
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where ft =  (0,1 ¡ \f s )  x (0,T] and f  is its boundary and

u{x , t )  =  u ( x , t ) ,  a(x , t )  =  do(x , t ) xp, do(x, t )  =  oo(®, t),  

b(x, t )  =  b(x, t ) ,  d (x , t )  =  d(x , t ) ,  f ( x , t )  =  f ( x , t ) ,  g{x,  t) =  g(x,  t).

Applying the estim ate (10.5) from [25, p. 352] gives, for all non-negative integers

i, j ,  such th a t 0 <  * +  2 j <  3,

d i+j u

d x id P NS

where for each ( x , t )  G ft and 5 >  0  we define

N s = N s (x,  t ) =  ((x -  Ô, x  +  6) x  (0 , T])  n  ft,

and the constant C  is independent of Ns  and does not depend on inverse powers of 

the coefficient d e ^  or its derivatives. Returning to the original variable it follows 

that

d i+Ui

d x ' d t i
—  C e  ( 1  +  U till^ )

NS
<  C e - ^ ( l  + 1|«||5 )

<  C'£

using the bound on u  given in Lem m a 3.3.2, where Ng  is defined in an analogous 

manner to Ns-  Taking the supremum of the left-hand side over all N s  C ft gives the  

required result. □

3 . 4  D e c o m p o s i t i o n  o f  s o l u t i o n

It turns out that the above bounds on the derivatives of the solution are not sharp 

enough for the proof of our required result. Stronger bounds are now obtained based  

on a m ethod originally contained in Shishkin [46]. This is achieved using the following
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decomposition of the solution into a regular and a singular- part. Let 

u ( x , t )  =  v ( x , I) +  w(æ, t), V(x,  t)  6  ft,

where

L ev ( x , t )  =  f ( x ,  t) in ft, (3.4.1a)

v { x , t )  =  u( x ,  t )  on U (3.4.1b)

w ith  the value of v  on T L still to  be specified. Thus, w  is the solution to  the problem

L £w ( x , t )  =  0 in ft, (3.4.2a)

w ( x , t )  =  0 on T f i U r R ,  (3.4.2b)

w ( x , t )  =  u( x ,  t )  — v ( x ,  t )  on T L- (3.4.2c)

The values that v  takes on T i  are chosen so that its first two derivatives in space are 

bounded independently of e. This is aided by the further decomposition

v { x , t )  =  (vq +  s v i  + e 2V2 ) { x , t ) ,  V(x,it) €  ft,

where vq is the solution to the reduced problem  (3.2.2), and and v 2 arc the respective

solutions to the problems

( o ^ -  ~ b ~  -  d v i ) ( x , t )  =  ~ ^ j ( x , t )  in ft, (3.4.3a)

v \ [ x , t )  =  0 on r e U F / j ,  (3.4.3b)

and

Lev i ( x ,  t )  =  - ~ ^ - ( x , t )  in ft,

V2 ( x , t )  =  0  on T.
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We clearly have L ev ( x , t ) =  f ( x ,  t) in ft, as required, w ith

v (x ,  t )  =  (v0 + £ v 1) (x ,  t )  on r^ .

N ote that extra com patibility conditions m ust be im posed on the da ta  at the corners 

of the domain so that the components Vo, Vi, v 2 and w  are sufficiently regular. To 

establish bounds on the derivatives of v  we need the following assum ption about the  

regularity of Vq and V\.

A ssu m p tio n  3 .4 .1 . L e t v  o be the so lut ion o f  the pr ob le m  (3.2.2) a n d v  i be the solut ion  

of  the problem  (3.4.3). A s s u m e  that  f o r  all non-negat ive  integers  i , j ,  such that

0 <  i  +  2 j  <  3,

dx idP
< C ,

d l+Jvi

dx i dP
<  C.

T h e o r e m  3 .4 .2 . Let  v  be the  so lut ion of  (3.4.1). Then,  u n der  A s s u m p t i o n  3-4.1,  

f o r  all non-negat ive  integers i , j ,  such that  0 <  * +  2 j  <  3,

di+jv

dx idP
<  C { l + £ 2~i/2).

Proof.  Clearly v 2 satisfies a problem of the same form as u,  and so applying Theorem  

3.3.3 we have: For all non-negative integers i , j , such th a t 0 <  * +  2 j  <  3,

d l+jVo
dx idP

<  C £ ~ i/2.

Combining this w ith  the bounds on vq and V\ given in Assum ption 3.4.1 we have: For 

all non-negative integers i , j ,  such th a t 0 <  i  +  2 j  <  3,

dx idP
<

d l+iV2
d x id P

d l+jv 2
d x id P

+  £z
d i+jV2
d x id P

+  £

<  C  +  eC  +  £2C £ ~ i/2

<  C {  1 +  £2~i/2)

as required. □

We now consider the other term  in the decomposition, w.  This is the part that

52



represents the boundary layer. For the proof of our result w e ju st require a sharper 

bound on w  itself and not its derivatives. This bound is given in the following theorem.

T h e o re m  3 .4 .3 . Let  w  be the  solut ion of  (3.4.2). Then

\ w ( x , t ) \  <  C e ~ x^ ,  V ( x , t )  6  ft.

P r o o f  Consider the barrier functions

' ip f { x , t )  =  C e ~ x^ e At ±  w ( x , t ) ,

where A  =  maxjj{0, (1 — d ) / b } .  We have

^ { x , 0 )  =  C e - x / v * >  0 ,

-0± (0, i) =  C e At ± u ( x , t )  — v ( x , t )  >  0,

^ ( 1 , 0 ) =  C e“1/vV  >  0

if C  is chosen sufficiently large. Also

L e^ f { x , t )  — C (  1 — a j y / e  — bA  — d ) ( x , t ) e ~ x^ e M <  0. (3.4.5)

It follows from Lem m a 3.3.1 that

>  0 , V ( x , t )  €  ft,

and the result follows. □

3 . 5  N u m e r i c a l  m e t h o d

We now introduce the appropriate discretisation th a t we will use for generating nu

merical approximations to  problems from the class P £tP. This consists of a standard  

upwind finite difference operator on a fitted piecewise uniform mesh. The difference 

operator L ^ ,  on a mesh ftw , is defined for any mesh function Z N , as

L ? Z N (xi, t j )  =  (e52xZ N +  a D + Z N -  b D ^ Z N -  d Z N ) ( x h t j ) ,  \ / { x u t j )  e  n N .
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Define the mesh, Q Nt, that discretises [0,T ] w ith  N t uniform mesh elements, as 

H iVt =  { i 3 | t j  =  T j / N u  0  < j <  N t } ,  

and the piecewise-uniform mesh, , th a t discretises [0,1] w ith  N x mesh elements,

as
2icr /Nx, 0 <  i  <  N x/ 2

a  +  2{i  -  iVx/ 2 ) ( l  -  <j ) / N x , N x/ 2  <  i  <  N x
f i ? x =  I Xi Xi =

where

a  — mmi n | ^ ,  V e \ n N ^

It can be seen that Q,^x consists of two uniform meshes, w ith  N x/ 2  mesh elements in

each, joined together at the transition point a.  W hen a  =  1/2 the mesh is uniform,

otherwise the mesh condenses near F L. We use the notation N  =  ( N x, N t ) and define 

the resulting piecewise uniform fitted mesh to  be the tensor product

x  n Nt,

and its boundary points T„ are D F . T he resulting fitted mesh finite

difference m ethod is

M e th o d  3 .5 .1 .

L ^ U N ( x i , t j )  =  f ( x i , t j ) in  (3.5.1a)

U N ( x i , t j )  =  g ( x i , t j ) on  (3.5.1b)

The following Lem m a gives a discrete analogue of th e minimum principle given in 

Lem m a 3.3.1. Its proof is standard.

L e m m a  3 .5 .1  (Discrete Minimum Principle). Let  Z N be any  mesh f un c t i on  defined  

on d p .

I f  Z N (xi, t j )  >  0, V (s i ,i ;-) €  r f ,  an d  L f  Z N ( x u t j )  <  0, V (xi; t j )  e

then Z N ( x i , t j ) >  0 , V ( x i , t j )  €
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A consequence of this is the following stability property of the finite difference
operator .

t -L e m m a  3 .5 .2 . L e t  Z N be any  mesh f u nc t io n  defined on

i f  z N (Xi, t j )  >  o, v ( x i l iJ ) e  i f ,

then \ Z N ( x i , t j )  | <  m a x \ Z N \ +  2 ’m a x \ L ^ Z n \//3, GpJ\T fjJV

P r o o f  Consider the discrete barrier functions

^ ( « i ,  ¿¿) =  C i +  C 2t j  ±  Z N (xi, t j ) ,

where Ci =  m axrw \ Z N \ and C 2  =  max^w | Z N \ / (3.

These functions satisfy the hypotheses of Lem m a 3.5.1 and therefore

^ ( x u t j )  >  0 , V ( x i , t j )  e  0% ,

and the result follows. □

In the next section we will need the following bound on the local truncation error 

of M ethod 3.5.1 whose proof is standard.

L e m m a  3 .5 .3  (Truncation Error). L e t  u  be the solu t ion  o f  (3.2.1) an d U N be the
_tv

solut ion of  the d iscrete pr obl em  (3.5.1) defined on . Then the fo l lowing gives a 

bound on the  local t ru ncat ion  error

L ^ { U  — u ) ( x i , t j ) \  <  - ( x i + i - x i - j . )
d 3u

d x 3

, a (x i > t j ) , % 
+  2  (gf+i - x t )

d 2u

d x 2

d 2u

d t 2
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3 . 6  D e c o m p o s i t i o n  o f  n u m e r i c a l  s o l u t i o n  a n d  e r r o r  

e s t i m a t e s

In an analogous manner to the continuous case we decom pose our numerical solution  

into a regular and a singular component

U N (xi,tj) - V N (x i,tj) + W N (xi, tj), VOi , t j )  £

where V N is the solution of the inhomogeneous problem

L ^ V N ( x i , t j )  =  f(jCi , t j ) in (3.6.1a)

V N ( x i , t j ) =  v ( x i , t j ) on I f ,  (3.6.1b)

and therefore W N is the solution to the problem

L ” W N (Xi, t j ) =  0 in f i f  (3.6.2a)

W N ( x i , t j )  =  w ( x i , t j ) on I f .  (3.6.2b)

The error in our numerical solution can now also be decomposed:

(UN -  u)(xu t j ) =  ((V N - v )  + (W N -  w))(x i,t j) ,  V (x i,t j)  G ,

and we estim ate the error in the regular component and the singular component 

separately.

T h e o r e m  3 .6 .1  (Error in the Regular Com ponent). Under  A s s u m p t i o n  3-4-1 the  

error in the regular componen t  satisfies the  fo l lowing es t i mate

\(VN - v ) ( x u tj)\ < C i N - ' + N f 1), \/(xh tj) e f lf ,

where V N is the so lut ion of  (3.6.1) and v  is the solut ion of  (3.4.1).
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Proof. We begin by considering the truncation error w ith  respect to the regular com

ponent. Prom Theorem  3.5.3 this is

|L s ( V N _ v ) ( x i , t j )\ <  -  Xi_i)
d 3v

d x 3

b(xu t j )
(:t j  t j - 1 )

+  

d 2v

O, {xi, tj ) d 2v

d x 2

d t 2

Using the bounds on the derivatives of v  given in Theorem  3.4.2 and the fact th a t

x i+l -  Xi - 1  <  ANX , x i+1 - X i <  2N x , t j  -  t j - 1  =  JVt ,

we get

x£ (l -I- £1/2) +  N x X(1 +  e)  +  N t *)

<  C i N ^  +  N f 1), V(Xi , t j )  €  i f ,

and an application of Lem m a 3.5.2 gives us

| ( v * - « ) ( * * ,* , ) !  ^ c ^  +  i v r 1), M(Xi, t j ) e n ^ .

□

Note th a t the above theorem  is also valid on a uniform mesh. It is only when we  

come to deal w ith  the singular component that the fitted mesh is needed. In order 

to examine the error in the singular component we will require the following bound  

(see for example [15]).

(3.6.3)

T h e o re m  3 .6 .2  (Error in the Singular Com ponent). Under  A s s u m p t i o n  3.4-1 we  

have, f o r  all N x >  4 and N t >  max^jO, (2 — d ) / b } ,  the fo l lowing es t i m a te  f o r  the 

error in the s ingular  comp onen t

\ ( W N - w ) ( x h t j ) \  <  C ( N - \ \ n N x) 2 +  N t- %  V fc .f ,- ) e  f t f
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Proof. We consider separately the cases a  =  1/2 and a  — y /e  In N x . In the first case 

the mesh is uniform and we have

where W N is the solution of (3.6.2) and w is the solution of (3.4.2).

e - 1 < 4 ( l n  N xf (3.6.4)

The expression for the local truncation error is, from Theorem  3.5.3,

+

3

d 3w

d x 3

a ( x i , t j )  . .

+  -— 7 r ~ ( x i+1 _  x %)
d 2w

d x 2

( tj  t j - 1 )
d 2w

d t 2

Using the bounds on the derivatives of w  (which follow from the bounds on the  

derivatives of u  given in Theorem  3.3.3), (3.6.4), and the fact that

x i+1 x i—i ■— 2N x , ^¿+1 Xi N x , t j  i N t ,

we get

IL ^ { W N - w ) ( x i , t j )\ <  C i N - ' e - 1*2 +  N - ' e - 1 +  N f 1)

<  C ( N ~  (In N x) +  N f  ) ,  V ( x i , t j )  £ f t" .

Applying Lem m a 3.5.2 then gives

We now consider the other case, th a t is when a  — \ / i ln  N x. T he mesh is now  

piecewise uniform and the mesh spacing (in the ^-direction) is h =  2 a / N x in the  

subinterval (0, a)  and H  =  2(1 — a ) / N x in the subinterval (a, 1). The argument now  

depends on the position of the mesh point av

If Xi £  [a, 1) then from the bound on w  given in Theorem  3.4.3 we have

I w & u t j ) ]  <  C e - a /^  =  C N ; 1.
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To derive a similar bound on W N wc introduce the mesh function Y N which is defined

YiNj = Y N { x i , t j ) =  \
Nx < i < N x

where A  =  m axjj{0, (2 — c l) /b} .  This is the discrete analogue of the barrier function 

used in Theorem  3.4.3.

Provided we choose N t large enough (i.e. N t >  A )  we have

Also,

D t Y ( x i} t3) < 0, D;Y(XU tj) > 0, V(xi, tj) € 

Now we apply the difference operator to Y N :

L ? Y £  =  e S l Y Ü  +  a M D Ï Y V - H x t . t j W Y i ï - d i x ^ Y Ü

<  e % Y % + a ( x t , t s ) D i Y % .

Depending on the position of the mesh point Xi we get two different expressions. If

i î£ N x/ 2  we have

L ^ Y i J < ( l - A b - d ) Y ^ < 0 ,  Vj.

While if i  =  N x/ 2

L ? Y Nx/2J <  ( N XH  - A b -  d)YiNt j

<  (2 -  A b -  d )Y iNj  <  0, Vj. 

Now consider the mesh function, C Y N — l'i/jV. We have

(c y n  -  w N ) ( Xi, t j )  >  o, v ( * it €  r * ,
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once wc take C  >  max-o<j<N, | W/,v(0. tj)\. Also

L ? ( C Y n  -  W N)(Xi, tj) = ( C L " Y N -  L ? W N )(x i,t j)

= C L ^ Y N{xu tj)

<  0 .

Then Lem m a 3.5.1 applies and wc get

W N {xu t j )  <  C Y N (xu t j ) ,  V(*i, t j )  e  .

But

2 ] n N x \ ~ N m / 2 A \ ~ j

( - 0  

( - i )
-Nt

< 2 N ~1X 

7~ 1<  CiV“ 1,

by (3.G.3), and the fact that

lim ' < C .
N,—oo \  Nt J

Therefore we get

W N (xi ,t j ) < C N ~ \  \f(xu t j ) e  n" si. £f e[<r,l), 

and the error in the singular component in this case can now be estim ated as

< C N - \  V(xu t j ) e n "  s.t. Xi.€[<r, 1).

If Xj E (0, a )  then the expression for the truncation error becomes

|L ? ( W n  -  w)(x i t t j)| < C ( N InN x + a{xu t j)e - l /2N - 1 InN x + N ^ 1).
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Now consider the discrete barrier functions

^ u t j ) =  C ( e - 1f2N - 1 h i N x ( a - x i) + ( N - 1O n N x) + N r % + N - 1) ± { W N - w ) ( x i , t j ). 

We have

o
'

15- > o, 0 <  i  <  N x/ 2 ,

^ ( 0  , t j ) > o, 0 <  j  <  N t ,

> o, 0 < j <  N t ,

< 0 , V ( x i , t j )  6  £1% s. t .  Xi G (0 , 0 -)

Applying Lem m a 3.5.2 in the subregion of Q,a bounded by  t  =  0. x  =  0, and x  =  a  

we get

>  0  V(a?j, t j )  €  s . t .  Xi e  (0 , a) .

This implies that

\ ( W N - w ) ^ , ^  <  C i N - ' Q a N j e - W a  +  i N - ' Q n N j  +  N r ^ t j  +  N i 1)

<  C ( N ^ 1 ( I n N x)2 +  N ^ 1), V f a t j )  6  U "  s . t .  x,t s  (0 , a) .

Combining the estim ates in each subregion gives the required result. □

The previous two theorems together give us the following e-uniform estim ate of 

the error in our numerical approximations at the mesh points.

T h e o r e m  3 .6 .3 . Le t  u  be any  so lu t ion  f r o m  Prob lem Class 3.2.1 and U N be the cor

responding numerica l  so lut ion generated  by Me th od  3.5.1.  Then, u n d e r  A s s u m p t i o n  

3.4-1, f o r  all N X > A  and N t >  m ax^{0, (2 — d ) / b } ,  we  have

sup <  C i N - ' Q n N ^  +  N r 1),
0<e<l

where C  is a cons tant  in depende nt  o f  N x , N t and  e.
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3 . 7  N u m e r i c a l  r e s u l t s

In this section we present numerical results th a t verify com putationally the theoretical 

result of the last section. We take T  — 1 and consider the following subclass of 

Problem  Class 3.2.1

P r o b le m  C la ss  3 .7 .1 .

(euxx +  x pux — ut — u ) ( x , t )  — x 2 — 1 in ii, 

u(x ,  0 ) =  ( 1  — x ) 2, 0  <  x  <  1 ,

u ( 0 , t )  =  l  +  t 2, u ( l , i )  =  0 , 0  <  t  <  1 .

We let N x — N t =  N  and tabu late the com puted errors, , and the computed  

e-uniform errors, E N , for a variety of values of e and N  for p  — 1.0 (Table 3.1). For 

other values of p  the error behaviour is analogous and so we show only the com puted  

e-uniform errors (Table 3.2). A s we do not have an exact solution for the above 

problem w e use the piecewise bilinear interpolant of the numerical solution generated
— 1024

on the finest available mesh, viz. U  , as an approximation to the exact solution. 

Thus we define E ^  and E £ as follows

E e =  m ax |U N (xi,  t j )  -  U WM(xi,  t j )|, E N =  m ax E ? .
0< i,j< N  e=l,2-1,...,2-sa

We also tabulate the com puted e-uniform orders of convergence qN for each value of 

p  considered (Table 3.3). These are calculated from the two-m esh differences defined 

as

=  m ax \UN ( x i , t j )  — U 2N( x i , t j ) \ ,  D N — m ax .
0 < i,j< N  V J e = l ,2 - l , . . . ,  2 -3 2  e

The qN are then defined as
D N

<1 ~  ° S 2  ~jy2N '

We see from Table 3.1 that the values of E ^  for each fixed e decrease w ith  increas

ing N .  A  fo r t io r i  the values of E N decrease w ith  increasing N indicating that the  

convergence is uniform w ith  respect to  e. For various values of p,  e-uniform orders
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of convergence depending on N  are given in Table 3.3. A s N  increases, the conver

gence order approaches 1, which corresponds to the conclusion of Theorem  3.6.3. For 

this particular problem, the orders of convergence (over the range of N  E [8,256]) are 

higher than  the theoretical rate given in Theorem  3.6.3 (see [15, §8.3] for some sample 

values). The orders tend to  the order associated w ith  C N - 1  In TV for all values of p.  

In Figure 3.2 we plot the numerical solution generated by  M ethod 3.5.1 for particular 

values of p,  e  and N .

3 . 8  T h e  c a s e  p  <  1 .

This chapter deals w ith  the case p  >  1. It is interesting to examine numerically the  

case p  <  1. There are extra technical considerations to be taken into account when  

p  <  1. In particular we impose the following further restrictions on the data  of the  

problem

ll//alln — C, ||/ / % < < ? ,  II/A%<C',

to  ensure th a t the solution is e-uniformly bounded.

We can transform the independent variable x  to  the stretched variable x  ~  x / e p + i
1—y

and neglect the term s containing . The resulting differential equation is indepen

dent of e  and therefore we arrive at the following assumption:

A s s u m p tio n  3 .8 .1 . For  all non-negat ive  integers i , j ,  such that  0 <  i  +  2 j  < 3 ,

d x id P
< C £ - i/{p+1\  i f  0 < p < l .  (3.8.1)

n

In order to  generate numerical solutions to problems from this new  class we pro

pose using the same numerical m ethod as in §3.5 but w ith  the following choice of 

transition parameter

. f l  ( 2 { p +  l ) e  \  p+ï" 
a  =  mm < ------------- In N x

[ 2  I  a

This is m otivated by (3.8.1).

We now dem onstrate experimentally th a t the numerical solutions do converge.
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N umber of Intervals N
£ 8 16 32 64 128 256

1 . 0 3.44e-02 2 .0 1 e- 0 2 1.15e-02 5.95e-03 2.88e-03 1.26e-03

2 _ 1 1.85e-02 9.46e-03 4.99e-03 2.54e-03 1.22e-03 5.28e-04

2 “ 2 2.89e-02 1.46e-02 7.23e-03 3.52e-03 1.64e-03 7.06e-04

2 - 3 3.91e-02 1.99e-02 9.86e-03 4.80e-03 2.25e-03 9.64e-04
2-4 4.97e-02 2.51e-02 1.25e-02 6.07e-03 2.84e-03 1.22e-03

2~5 5.09e-02 3.04e-02 1.53e-02 7.44e-03 3.48e-03 1.49e-03
2 - 6 4.93e-02 2.93e-02 1 .6 8 e- 0 2 9.18e-03 4.29e-03 1.84e-03

2~7 4.94e-02 2.81e-02 1.58e-02 8.81e-03 4.67e-03 2.28e-03
2-8 5.41e-02 3.01e-02 1.53e-02 8.38e-03 4.39e-03 2.04e-03
2-9 5.70e-02 3.19e-02 1 .6 6 e- 0 2 8.22e-03 4.31e-03 2.01e-03
2 - io 5.90e-02 3.29e-02 1.74e-02 8.70e-03 4.27e-03 2.00e-03
2 - n 6 .0 2 e- 0 2 3.37e-02 1.81e-02 9.08e-03 4.31e-03 1.99e-03
2~ 12 6 .1 1 e- 0 2 3.45e-02 1.85e-02 9.34e-03 4.45e-03 1.98e-03
2-13 6.16e-02 3.50e-02 1 .8 8 e- 0 2 9.51e-03 4.55e-03 1.98e-03
2-14

6 .2 0 e- 0 2 3.53e-02 1.90e-02 9.65e-03 4.62e-03 2.01e-03
2-15 6.23e-02 3.55e-02 1.91e-02 9.74e-03 4.67e-03 2.03e-03
2-16 6.24e-02 3.57e-02 1.92e-02 9.80e-03 4.71e-03 2.05e-03
2-!7 6.26e-02 3.58e-02 1.93e-02 9.84e-03 4.73e-03 2.06e-03
2-18 6.26e-02 3.59e-02 1.93e-02 9.87e-03 4.75e-03 2.07e-03
2-19 6.27e-02 3.59e-02 1.93e-02 9.89e-03 4.76e-03 2.08e-03
2 - 2 ° 6.28e-02 3.60e-02 1.94e-02 9.90e-03 4.77e-03 2.08e-03
2 - 2 i 6.28e-02 3.60e-02 1.94e-02 9.91e-03 4.78e-03 2.08e-03
2 - 2 2 6.28e-02 3.60e-02 1.94e-02 9.92e-03 4.78e-03 2.09e-03
2 - 2 S 6.28e-02 3.60e-02 1.94e-02 9.93e-03 4.78e-03 2.09e-03
2-24 6.28e-02 3.61e-02 1.94e-02 9.93e-03 4.79e-03 2.09e-03

2-32 6.29e-02 3.61e-02 1.94e-02 9.94e-03 4.79e-03 2.09e-03

E N 6.29e-02 3.61e-02 1.94e-02 9.94e-03 4.79e-03 2.28e-03

Table 3.1: Computed errors, E^ , and computed e-uniform errors, E N, for Method
3.5.1 applied to Problem Class 3.7.1 with p = 1.0.
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V

Num ber of Intervals N
8 16 32 64 128 256

2 . 0 5.67e-02 4.09e-02 2.28e-02 1 .2 1 e- 0 2 5.96e-03 2.64e-03

3.0 6.40e-02 4.12e-02 2.43e-02 1.33e-02 6.68e-03 2.99e-03

5.0 7.09e-02 4.60e-02 2 .6 8 e- 0 2 1.49e-02 7.58e-03 3.43e-03

1 0 . 0 4.39e-02 3.72e-02 2.83e-02 1.65e-02 8.63e-03 4.01e-03

Table 3.2: Com puted e-uniform errors, E N , for M ethod  3.5.1 applied to Problem  

Class 3.7.1 for various values of p.

V

Num ber of Intervals N
8 16 32 64 128 256

1 . 0 6.77e-01 8 .1 1 e- 0 1 8.85e-01 9.35e-01 8.89e-01 8.97e-01

2 . 0 3.88e-01 7.44e-01 8.25e-01 8.95e-01 9.37e-01 9.62e-01

3.0 5.84e-01 5.80e-01 7.87e-01 8.72e-01 9.19e-01 9.51e-01

5.0 3.79e-01 6 .0 0 e- 0 1 7.81e-01 8.04e-01 8.96e-01 9.33e-01

1 0 . 0 1.15e-01 5.11e-01 5.94e-01 7.34e-01 8.52e-01 9.07e-01

Table 3.3: Com puted e-uniform orders of convergence, qN , for M ethod 3.5.1 applied 

to  Problem  Class 3.7.1 for various values of p.
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1 0

Figure 3.2: Numerical solution generated by  M ethod 3.5.1 applied to problem from  

Problem  Class 3.7.1 w ith  p  — 2, N  =  128 and e  =  2-12.
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P r o b le m  C la ss  3 .8 .1 .

(euxx +  x pux — x put ) ( x , t )  =  — 2x p in Cl,

u(0,  i) =  1  + 12, u ( l ,  t )  =  0 , 0 < i < l ,

u(x ,  0 ) =  1  — x 2, 0  <  x  <  1 .

A s before we let N x =  N t  =  N  and tabulate the com puted e-uniform orders of

convergence qN for each value of p  considered (Table 3.4). The behaviour of the  

errors indicates that the numerical solutions converge. O f course theoretical analysis 

is required to establish the convergence of this numerical scheme in the case 0  <  p  <  1 .

We consider the following problem for various values of p.

p

Num ber of Intervals N
8 16 32 64 128 256

0 . 1 6.95e-01 7.63e-01 8 .0 2 e- 0 1 8.48e-01 8.96e-01 9.15e-01

0 . 2 6.99e-01 7.61e-01 8.15e-01 8.58e-01 9.03e-01 9.37e-01

0.5 7.04e-01 7.69e-01 8 .2 2 e- 0 1 8.69e-01 9.12e-01 9.44e-01

Table 3.4: Com puted e-uniform orders of convergence, qN , for Problem  3.8.1 for 

various values of p.
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C h a p te r  4

N u m e r i c a l  m e t h o d s  f o r  a  c l a s s  o f  

s i n g u l a r l y  p e r t u r b e d  e l l i p t i c  

p r o b l e m s

4 . 1  I n t r o d u c t i o n

In this chapter we will consider a class of singularly perturbed elliptic problems posed  

on a non-rectangular domain. The boundary of the domain will typically be piecewise- 

smooth. We assume that there exists a sufficiently regular co-ordinate transformation  

from the domain to the unit square. Then we will proceed to stu dy  the transformed  

class of problems. We restrict our attention to the case when only regular layers 

appear in the solutions of problems from this class. This requires some restrictions 

on the data  of the transformed problem class.

The m ost interesting feature of the transformed problem  class is the presence of a 

mixed derivative term in the differential equation. This is significant for a number of 

reasons. Firstly  it is in sharp contrast to w hat happens in the parabolic case where 

no extra term s are introduced into the transformed problem. Thus it will be seen 

that the construction of an appropriate numerical m ethod is more complicated in 

this case. Secondly the mixed derivative term  also introduces a number of technical 

considerations in the analysis of the numerical m ethod. Chief am ong these is the  

issue of the construction of a monotone difference scheme for the problem.
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The material in this chapter is set out as follows. In §4.2 we introduce a class of 

problems posed on a non-rectangular domain and show the form of the differential 

equation when we transform to a rectangular domain. In §4.3 we sta te precisely 

the class of problems we will consider and establish bounds on solutions to such 

problems and their derivatives. In §4.4 a decom position of the solution is constructed  

which enables us to establish sharper bounds on the derivatives. In §4.5 we introduce 

the numerical m ethod that will be used to generate approximations to solutions of 

problems from the transformed problem class. In §4.6 w e discuss our choice of finite 

difference operator paying particular attention to the requirement of monotonicity. 

Finally, in §4.7 we prove th a t the approximations generated by  this m ethod converge

uniformly w ith  respect to the singular perturbation parameter.

4 . 2  S t a t e m e n t  o f  p r o b l e m

We consider the following class of singularly perturbed elliptic problems:

P r o b le m  C la ss  4 .2 .1 .

L eú(£,r¡) =  (eA û  +  â -  Vû)(£,r/) =  /(£,rç) in Ù, (4.2.1a)

«(£ . V) =  iK£, V) on dÙ ,  (4.2.1b)

â(£,r?) =  (â i(£ ,r?),â 2 (£,r?)), \ / ( Ç , r f ) e Ù ,  (4.2.1c)

â  • ñ  0, (4,2.Id )

where  Q c  R 2 is a p i ecewise-smooth  d o m a in , ñ  denotes  the uni t  outward  no rm al  on

3Ù,  and  0 <  e <  1  is the per turbat ion  parameter .

We also assume th a t the data  â, / ,  and g  are sufficiently sm ooth and that /  and  

g  satisfy sufficient com patibility conditions at the corners of the domain.

We assume that there exists a sufficiently sm ooth co-ordinate transformation from  

Û to  fi =  (0 , 1 ) x  (0 , 1 ):

x  =  A(^,r¡) ,  y  =  B (£ ,r i ) ,  u ( x , y )  =  û f a r f ) .  (4.2.2)
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Figure 4.1: A  piccewise-smooth domain Cl.

The transformed differential equation then takes the form

( e ( ( +  A jj) uXx -H 2 ( / \^Be +  A 7)B 7̂ u Xy +  ( B^ +  B^ )Uyy) 

+ ( L eA ) u l t + ( L eB ) u y) ( x , y )  =  f ( x , y )  in ii.

Note that to write this equation out explicitly requires th a t we can invert the trans

formation in (4.2.2) to  obtain £ and ?/ as functions of x  and y .  N ote also the presence 

of the mixed derivative of the solution in the term 2(AcB^  +  A v B, l)uz-!/. The elliptic- 

ity of the differential operator is preserved once the Jacobi an of the transformation

(4.2.2) is non-zero. To see this we write the highest order term s in the differential 

equation as auxx +  2 buxy +  cUyy and calculate the quantity b2 —  ac:

( A ( B (  +  / („ f t , ) 2  -  [ A \  +  +  B j )  =  -  A , B ( f  <  0.
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4 . 3  T h e  c o n t i n u o u s  p r o b l e m

M otivated by  the discussion in the previous section we now sta te  precisely the problem  

we are considering. It is the general second order singularly perturbed linear elliptic 

equation w ith  variable coefficients and homogeneous Dirichlet boundary conditions.

P r o b le m  C la ss  4 .3 .1 .

L £u ( x , y )  =  { e [auxx +  2buxy +  cuyy) +  a  • V u ) [ x , y )  =  f ( x , y )  in Cl, (4.3.1a)

u ( x , y )  =  0 on dCl, (4.3.1b)

where

a(x , y)  =  (ai(æ , y ) ,  a2(x, y )) >  ( a u  a 2) >  (0,0) ,  V(æ, y)  6  Cl, (4.3.1c)

and the coefficients a,  b and c sa t is fy the fol lowing el l ipt ic i ty  condit ions:

For all (r, s) €  M2

C i ( r 2 +  s 2) <  (a r 2 +  2brs  +  c s2) ( x , y )  <  C 2( r 2 +  s 2), ( x , y ) e i l ,  (4.3.Id )  

where C i , C 2 >  0 are pos i t i ve  constants.

R e m a r k  4.3.1. There is no loss of generality in assuming homogeneous boundary  

conditions. To see this consider the problem

L ev ( x ,  y )  =  f ( x , y )  in Ci, v ( x , y )  =  g ( x , y )  on d û .

Assum ing g  is sufficiently sm ooth define the transformation u =  v  — g*, where g* is

defined to be an extension of the boundary conditions g  to  the whole of the domain  

Cl. For example w e could let

g * { x , y )  =  gs ( x ) ( l  -  y )  +  gw{ y ) { l  -  x )  +  gn( x ) y  +  ge( y ) x

-  (gs ( 0 ) ( 1  - x ) { l - y )  +  ge( 1 ) ( 1  -  x ) y  +  gn ( i ) x y  +  ge( 0 )æ (l  -  y ) ) ,

where gs , ge, gn and gw are the boundary functions on the appropriate sides, and at
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the four corners of the domain we have

& (0) =  9e( 0), 9e( 1) =  5n(0), 9n{ 1) =  9w( 1), 0 w(O) =  & (1).

Then u  satisfies the problem

L £u ( x , y )  =  f ( x , y )  — L £g * ( x , y )  in fi, u ( x , y )  =  0 on dSl, 

which is of the form of Problem  Class 4.3.1.

R e m a r k  4.3.2. The conditions (4.3.1c) ensure th a t the solutions of problems from this 

class possess regular layers in a neighbourhood of the sides x  =  0  and y  — 0  and a 

corner layer in a neighbourhood of the corner (0, 0). We thus exclude the possibility  

of characteristic boundary layers.

R e m a rk  4.3.3. The conditions (4.3.Id ) obviously imply that the functions a  and c 

are strictly positive. Another consequence of the conditions (4.3.Id ) is th e following 

familiar inequality

(ib ( x , y ) ) 2  <  a ( x , y ) c ( x , y ) ,  for all (x , y ) 6  i l  (4.3.2)

To see this let r  — —y/c. and s  =  ^  in (4.3.Id ).

The differential operator L e in (4.3.1a) satisfies the following minimum principle.

L e m m a  4 .3 .1  (M inimum Principle). Le t  v E C 2 (fi).

I f  v ( x , y )  >  0, V ( x , y )  E dCl, and  L ev ( x , y ) <  0, V ( x , y )  E fl, 

then v (x ,  y ) >  0, V(rc, y) E i).

Proof.

Assum e 3 p  =  (p i,p 2 ) such that u (p ) <  0 ,

then p  ^ dCl, which implies p 6 i!.

Now let

w ( x ,  y )  =  v ( x ,  y )  e7 lX/ee72̂ E, V(x, y)  E
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OL i  CL2
7 l =  i H i ’ 7 2 = 2 W '

Then w(x ,y )  >  0, V (x ,y ) G dCl and w ( p )  <  0. Thus the m in im um  of w  must 

also be negative. Let q  =  (qx, c/2) G Cl such tha t

w(q)  =  m inu; <  0. 
n

Prom the defin ition of q  we have

w x(q) =  wy(q) =  0, w xx(q) >  0, (wxy(q ))2 <  wxx(q)wyy(q). (4.3.3)

B ut then

Lev(  q) =  (e(awxx +  2bwxy + c w yy)(q)

+  (01 -  2(071 +  672))w x (q) +  (o2 -  2(671. +  072) ) ^ (q)

+  £—1 (cry2 +  267172 +  C72 -  Oi7i  -  a272) w (q )) e_7l 9l/ee_7292/e

>  ^e(a«;xx -  2sgn(6(gx, q2))by/wxxwyy +  cwyy)(q)

+  i -  ( +  ^ j ^2 +  ™ (q)^ e_7i9j/ee-7292/e
v i ia i r  im i iic ii iic ir  im i iic ii /  )

>  ( e(awxx -  2sgn(6(gi, q2))bv/uixxwyy +  cwyy) (q)

where

—719i /e g—72 92 /e

+  7 -  f  -^ 2  (aa i -  ||a|| ax) +  (ca2 -  ||c|| a2) 
46" V a c

— .. 77-77 11 (IM I a2a 2 -  2baxa 2 +  ||c|| a io-i) ) iu(q) ) e 
H I  llcll /  /

>  ^ ( a m ^  -  2sgn(6(?i, q2) )b ^ w xxwyy 4- cwyy)(q)

+  7-  f -^ 2  (o a i -  11a 11 01) +  (ca2 -  ||c|| a2)
4e a

— 77 ,,1|l n (aa2 -  2ba1a 2 +  c a f) ^  w ( q ) \  e 7l9l/£e 7292/£ >  0
IMI IMI /  )

where we have used the inequalities (4.3.1c), the e llip tic ity  condition (4.3.Id ), the
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definition of 71 and 72 and (4.3.3). This is a contradiction and thus our original 

assumption is false and we conclude tha t the m in im um  of v is non-negative. The 

result follows. □

An immediate consequence of th is is the following bound on the solution of prob

lems from Problem Class 4.3.1.

C o ro lla ry  4 .3 .2 . The solution u of any problem from Problem Class 4-3.1 satisfies 

the following bound

M l <11/11 A*.

where a  — m ax{ctlt 02}- 

Proof. Consider the functions

=  — (1 -  x) ± u { x , y ) ,  (x ,y )  € f l

Now,

L ^ i x / y )  =  - ^ - a i { x , y ) ± f { x , y )

< - 11/II ±  f{x,y)
<  0.

Also,

= — (1 -  *) > 0, (x ,y )  e d i i .
Oil

I t  follows from  the m inim um principle tha t

a i  ati

Sim ilarly i t  can be shown tha t

(x ,y )  e  H,
a  2

and the result follows. □
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We now state some assumptions regarding the smoothness of the solutions of 

problems from Problem Class 4.3.1.

A s s u m p tio n  4 .3 .3 . Assume that the functions a, b, c, ax and a2 are smooth. Let 

f  G C'1,I'( f i )  for  some u € ( 0 , 1 ) .  Assume that f  satisfies the compatibility conditions

/ (0 ,0 )  =  / ( l ,  0) =  / ( 0 , 1) =  / ( l ,  1) =  0. (4.3.4)

Assume also that f  is sufficiently regular and that the data of the problem satisfy 

additional compatibility conditions so that u € C'3,t/( f i)  for  some v  G ( 0 , 1 ) .

Remark 4.3.4. W ith  the previous assumption we are ru ling  out the existence of any 

corner singularities in  the solutions of our problems. The solutions to  e llip tic  problems 

on non-smooth domains are in  general not as smooth as the ir data and additional 

conditions need to be imposed to ensure the ir regularity. The conditions (4.3.4) are 

sufficient in  the case when 6 =  0 (see [18].) These are local conditions on the function 

/ .  Unfortunate ly for the Problem Class 4.3.1 i t  seems tha t such local conditions 

cannot be derived. This necessitates the in troduction  o f th is assumption as we require 

tha t u G C 3," ( f i)  in  the following analysis. This issue is discussed further in  §1.5 in 

the Introduction.

We now establish some classical bounds on the derivatives o f problems from  Prob

lem Class 4.3.1 where the inhomogeneous term  in  the differential equation can depend 

on e.

T h e o re m  4.3.4. Assume that a, b, c, o i, a2, f  G C 1,v(fi) for some v  G (0,1). 

Let u G C ,3 ," ( f i )  be the solution of a problem from Problem Class 4.3.1. Then if 

| | / | |„  <  Ce-1 we have

M  k — Ce~k, for  A; =  0 , 1 , 2 , 3 ,  

and i f ll/H j, <  Ce~2 we have

Mfc <  Ce~(k+1\  for k =  0 ,1 ,2 ,3 .

Proof. We follow the proof given in  [28, Theorem 3.2]. Transforming the variables
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(x, y)  to the stretched variables

we see tha t Problem Class 4.3.1 becomes 

P ro b le m  C lass 4.3.2.

(ciUxx +  2bxi ŷ "I- ciiyy “f" o,\Ux ~f~ d2Uy') (x , y ) — f  (x, y ) Cl, (4.3.oa)

u ( x , y ) =  0 on d fi,  (4.3.5b)

where Q =  (0, 1 /e ) x  (0, 1 /e ) and dCl is its  boundary and

u(x ,y )  =  u(x,y ) ,  a(x,y)  =  a{x,y) ,  b{x,y)  =  b(x,y) ,  c(x,y)  =  c(x,y) ,  

ai {x ,y )  =  Oi(x, y), a2(x ,y)  =  a2(x ,y) ,  f { x , y )  =  £ f (x , y ) .

The differential equation in (4.3.5a) is independent o f e. Thus from [26, p. 110] 

(which can be extended to  the square using the techniques o f [51]) we have, for all 

Ns,

N i ,jv< — +  N U J >

and, for k — 0, 1 ,

I ^  Nfc+2,v,;v4 ^  +  )>

where for each (x, y) G Cl we define

Ns =  Ns(x, y) =  ({x -  6, x  +  6) x  (y -  6, y  +  6)) n  Cl,

and the constant C  is independent o f Ns, is and e. Returning to the orig inal variables 

i t  follows tha t

e M i.jv , — ^ ( e ll/lli/,Ar2j +  IM Iwm)

<  < W | | „ + M | ) ,
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where N$ is defined in an antilogous manner to N$. Therefore we have

| « u  <¿7(11/11,-he- 1 IM I).

Now i f  H /||(/ <  C e_1 we get

\u\iiNf < C e ~ \  (4.3.6)

where we have used the bound on u given in Corollary 4.3.2. W hile i f  | | / | | „  <  C e~2 
we get

l“ U  <  C e ~ \  (4.3.7)

Also for k — 0,1

«“ H w *  <  c ( E ^ - l / U „  +  N I U , )

<  C  +  ||u||J .

Therefore wc have

M m u  <  C  ( ¿ i *  *  ' | / | , ,  +  e - ‘ - ! M l  J  ■

And if  | | / I I ,  <  Ce-1 we get

<  C e -“ +2>, (4.3.8)

where we have again used the bound on u. W hile i f  | | / | | „  <  C e ~2 we get

M w ,  S (4.3.9)

Taking the supremum of the left-hand sides of (4.3.6), (4.3.7), (4.3.8) and (4.3.9) over 

all N$ C f i  gives the required results. □
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4 . 4  D e c o m p o s i t i o n  o f  s o l u t i o n

The bounds on derivatives given in  the previous section are not adequate for the 

analysis of our numerical method. In  th is section we w ill establish sharper bounds 

on the derivatives by constructing a decomposition of the solution in to  regular and 

singular components.

F irs tly  we shall construct the regular component o f the decomposition. This

is done in  the following way. We introduce an auxilia ry problem defined on some

extended domain. Through a careful decomposition of the solution to  th is problem 

we show tha t we can specify boundary conditions tha t ensure tha t the solution and 

its firs t two derivatives are bounded independently of e. We then define our regular 

component as the solution to  this problem restricted to the orig inal domain. To this 

end define the extended domain Cl* — (—d, 1) x  (—d, 1), where d >  0 is an a rb itra ry  

constant independent of e. Consider the class of “extended” problems

P ro b le m  C lass 4.4.1.

L*ev*(x, y) =  (eM*v* +  a* • Vv*)(x, y) =  f*(x,  y) in Cl*, (4.4.1a)

v*(x,y)  =  g*(x,y)  on dCl*, (4.4.1b)

where

M*v*(x, y) =  (a*v*x +  2b*v*xy +  c*v*y)(x, y), (4.4.1c)

a*(x,y)  =  (a\(x,y),a*2{x,y)) ,  a*1\Ti =  a1, a£|n  =  a2) (4.4.1d)

a*\n — a) c * |„ =  c, / * h  =  / ,  g* |fln; =  0. (4.4.1e)

The coefficient functions in  the differential equation (4.4.1a) have been constructed 

so tha t when they are restricted to  the orig inal domain they coincide w ith  the respec

tive functions in  (4.3.1a). To define them  in  the rest o f Cl* we continuously extend

each function in  such a way tha t i f  ax € C k,u(Cl) then a* € C k'v(Clt) w ith  sim ilar

statements for the other functions mutatis mutandis. In  addition we define / *  in  such 

a way tha t at (—d, 1 ) and ( 1 , —d) i t  satisfies the following com patib ility  conditions

v n - d ,  i ) = 97*(i, - d )  =  o,
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for a ll multi-indices i  such tha t |i| =  0 , . . .  ,4.

The boundary data g* is defined to  be 0 on the inflow boundary dil}  so tha t i t  

coincides w ith  the boundary values of the orig inal problem on We w ill define g* 

on the outflow boundary d£l*0 appropriately later.

We further decompose v* in to the follow ing sum

v * =  vo +  £V* +  £2v2i (4.4.2a)

where

a* ■ Vi>o(x, y) =  f* (x ,y )  in  ÇT, =  0 on dQ¡}, (4.4.2b)

a * -V v * (x ,y )  =  - M*v*0( x , y ) in  O*, <  =  0 on dQ},  (4.4.2c)

L*v*2(x ,y)  =  - M * v { { x , y ) in  tt*, v *2 =  g* on dfl*. (4.4.2d)

I t  can be easily verified tha t v* defined in  th is  way satisfies the differential equation 

in  (4.4.1a). We need the following assumption.

A s s u m p tio n  4 .4 .1 . Assume that g* can be chosen on dQ*0 so that the data of the 

problem 4-4-%d satisfy additional compatibility conditions so that v2 G C 3'v (fl*) for  

some v  G (0, 1 ).

T h e o re m  4 .4 .2 . Assume 4-4-1 and that a*, b*, c*, a* and a2 are smooth, f*  G 

C 5,l/(Q*) and that g* G C 3,l/(dQ*) for  some u G (0,1). Suppose that f* satisfies the 

following additional compatibility conditions at the inflow corner (1 , 1 )

ô7*(i,i)  = o,

for all multi-indices i such that |i| =  0 , . . . ,  4. Then v* G C 3,V(CC) and

\v*\k <  C (1 +  e2~k) for  k =  0, . . . ,3 .

Proof. Prom [28] we have Vq G C 5,l/(f2*) and therefore M * v G C 3,u(f2*). Also

9*«S(1.1) = 0,
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for all multi-indices i such tha t |?'| =  0 , . . .  ,5, and from  [28] wc have v* G C,3,*/ (f2 ) 

and therefore M*v\  G C l'u{Cl’). Also

a x ( i ,  i )  =  o,

for all multi-indices i such tha t |z| =  0 , . . . ,  3. Th is implies tha t in particular

1) =  0.

We also have d, 1 ) =  M*v{(  1, — d) =  0.

From Assumption 4.4.1 we have v ’2 G C'i,l/(il*) and we can apply a sim ilar theorem

to Theorem 4.3.4 to  get

1̂ 2 Ik ^  Ce~k, for k =  0, . . . ,  3.

Since the equations defining Vq and v{ arc independent o f £ we have 

l^o I a.. <  C,  |wî|fc <  C, for k =  0, . . . , 3 ,

and the result follows. □

We now introduce the following decomposition of the solution of Problem Class

4.3.1 into regular and singular components

u(x, y) =  v(x,  y) 4- w(x,  y),  (x, y)  G Cl, (4.4.3)

where v  is defined as the restriction o f v* to i l

v =  v*|n> (4 -4 -4)

and the singular component satisfies the following homogeneous problem

Lew (x ,y )  =  0 in Cl, (4.4.5a)

w (x ,y )  =  0 on dCl[, (4.4.5b)

•tu(a;} 2/) =  — v [x ,y )  on dClQ. (4.4.5c)
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We now proceed to  prove the required sharper bounds on the derivatives of w.  I t  is 

convenient to  introduce the exponential functions

ex(x, y) =  e~A l^ 'yS>x̂ ,

e2(x,y)  =  e~A2('xfi')y/£,

e(x,y)  =  ei(æ,y) +  e2{x,y)  -  e^x ,  0)e2(0,y).

where

A  (x, y) =
ai {x ,y )

M ( x , y )  =
a2(x, y)

a{x,y)  ’ ’ c(x,y)  '

T h e o re m  4.4.3 . Let w be the solution of  (4.4.5). Then w can be decomposed into 

the following sum

w(x,  y) =  wL(x, y) +  w B(x, y)  +  w c (x, y), (x, y) €

where, for  all (a;, y) £  Q we have the following bounds

\wL(x,y)\  <  Ce~lix/2e,

\wB(x,y)  | <  Ce~l2v/2e,

\wc (x,y)  | <  C e ^ lx/ 2£e - ™ / 2£,

and for  all i , j ,  1 <  i +  j  <  3 we have

dx id y
d l+iw }

Hx >y)

dx id y
d l+jw c

r (x ,y )

H x , y )

<  Ce  \ e 1 (x ,y)  +  e 1 J),

<  Ce~j (e2(x ,y )  +  e1~i),

<  C e - {i+j\

where

7 i

dx%dyj

. f a i  { x , y ) \  . f a 2( x , y ) \
=  mm__ < ----- r  h  72 =  mm_ < — ----- r- > .

(x,y)eQ { a{x ,y)  j  (x,v)en I  c(x,y)  J

(4.4.6)

(4.4.7)

Remark 4.4.1. The key feature of the bounds on the derivatives of the layer compo

nents wl and w B, is tha t the magnitudes of the derivatives in  the directions normal
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to the layers, have an extra positive power of e. This w ill be crucial in  the analysis 

of the error in  the singular component in  §4.7.

Proof. In itia lly  we use the decomposition w — wq +  e w x where wq satisfies an in- 

homogeneous differential equation, bu t the same boundary conditions as w,  and w± 

satisfies homogeneous boundary conditions and an appropriate inhomogeneous d if

ferential equation. This was orig inally used in  [35]. We choose w Q in  the following 

way. Extend the boundary data of (4.4.5) defined on d i l  to  a function (f) E C 3,v(Cl) 

for some v  £  (0,1). Note tha t we do not need to  specify additional com patib ility  

conditions at the corners (0,1) and (1,0) as v S C'3,I/(iT) for some u E (0,1). Define 

wq as wq =  (j)e. Since e =  1 on dClo i t  is clear th a t wq satisfies the same boundary 

conditions as w. Note also tha t </> and its derivatives are independent of e.
As a consequence of the defin ition of wq we see th a t wx satisfies the following 

problem

Lew i (x ,y )  =  - - L ew 0( x , y ) in  Cl,

w i (x ,y )  — 0 on dCl.

Noting tha t

L£w0 =  L e(0e) =  Le(4>ei(z ,  y )) +  L e(0e2(a;, y)) -  L s(0e i(x , 0)e2(0, y)), 

we define a further decomposition o f w x by

W i  =  Z \  +  Z 2 +  2 l ,2 ,

where

LeZi(x, y) =  — - L e(0e i)(x , y) in  i2, z x =  0 on dCl, (4.4.8a)

L£z2(x ,y)  = —~ L E(4>e2) (x ,y )  in  Cl, z2 — 0 on dCl, (4.4.8b)
e

L£z h2(x ,y)  =  - - L E(<pe1(x,0)e2(0 ,y))  in  z i,2 =  0 on dCl. (4.4.8c)
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We now bound z x, z2, £1,2 and the ir respective derivatives separately. To accom

plish this i t  is necessary to  bound the inhomogeneous terms in  (4.4.8). S tarting w ith  

the equation for z\ we have

Lei fe i i ixyy )  =  (L £</>)ei(z,y) +  0(L ee i(x ,y ))

“1” 2 e (o 0 2 .(6 i)x “I- “h 4*y ( ^ l)x )  t ^ 4i y i . ^ l ) y ') ( .X )  ?/).

Since (j) and its derivatives are independent of £ we have

\L£(4>ei)(x, y)\ <  C  +  |Leei(a;,y)| +  em ax | £<*•»>

I t  can be verified tha t

max
9ei
dy (x,y) |  <  j e i ( x , y ) ,

})•

(4.4.9)

and i t  remains to  estimate |Leei(cc, y)|. We have

L£ei(x ,y )  = £ a ( x , y )
M { 0,y) 2 b(x,y) ( _  (A i(0 ,y ))y  

V e 2 £

+  c(x, y) x (Ai(®,y))y\ 2 ^ (^ i(Q ,y )) yy
e J e

aiÌa:, y M i( 0, y) xa2(x , y ) ( A i(0, y))v
ei (x,y)

=  -  [o(a:, y )A 1(0, y )(A i(0 , y) -  A x(x, y))

+  2b(x ,y) (xA1(0 ,y ) (A 1(0 ,y ) )y -  e (A i(0 , y ))y)

+  c(x, y )( (x (A i ( 0, y ))y)2 -  e a ;(^ i(0, y))yy) -  xa2(x, y ) ( A i ( 0, y ))y] e^x ,  y)

Since

we have

dA\
v4i(0,y) -  A^x^y) =  - x — (x',y),  0 <  x ’ <  x,

l^ e ^ x ,? /) !  <  C  ( l  +  j )  e i(a;,y) <  2 C \ / e 1(x ,y) .
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Using this and (4.4.9) wo obtain

|La$ei(x,y)\  < Cy/ei(x,y). (4.4.10)

In  an analogous manner we get

\Ls(<j>ez)(x,y)\ <  C y /e2(xi y). (4.4.11)

Now,

L£{(pei(x,Q)e2(Q,y)) =  (Lc0)ei(.x, 0)62(0, 7/) +  <f>(L£el (x,0)e-2(0,y))

-I- 25er^ci£a;>2/)«56a.(e1 (a:, 0)e2(0»3/)),,; +  f>(a:,y){cj>x(ei(x,  0)e2(0,y ))j,

+  c/)y(ei(x, 0)e2(0, y ))x) +  c(x, y)(j>v(ei(x,  0)e2(0, y ))y^  ■

Since (f> and its derivatives are independent o f e we have

\Le{<i>ei{x, 0)e2(0 ,2/))] <  c ( e i {  x,

+  e max j | e 2(0 ,y)|

0)e2(0 ,y) +  |Lee i( x ,0)e2(0,y )|

,|ei(a:, 0)| A
d y

(^2(0, y )) })
I t  is easily seen that

{max < |e2(0 ,y)| I  («.(». 0)) |e i(z ,0 ) | ^  M O , y)) 11 <  j  e-i(x, 0)e2(0, y),

(4.4.12)
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and it remains to estimate \L£ex(x, 0)e2(0, y)|. We have

L £e1(x ,0)e2(0,y)  =  (L £ei(o;,0))e2(0 ,y) +  e i(x , 0 )(L£e2(0, y)) 

+  2£b(x,y)(e1( x ,0))x(e2(0, y ) ) y

^  ^a(x,  y ) (A i(0 ,0))2 -  a^x ,  y )A 1(0 ,0) +  2b(x, y )A 1(0, 0)A2(0 ,0) 

c(x, y ) (A 2(0, 0))2 -  a2(x, y )A 2(0 ,0)^  e^x ,  0)e2(0, y)

£ a(x, y ) A i ( 0,0 ) (A i(0 ,0) -  A x{x, y))

+  2(b(x, y ) -  6(0, 0) )A !(0, 0)A 2(0, 0) +  2 6 (0 ,0 )^ (0 ,0)A2(0 ,0) 

+  c(x, y )A 2(0 ,0){A2(0 ,0) -  A 2(x, y)) ) e^x ,  0)e2(0, y).

Since

dA  dA
A 1( 0 , 0 ) - A 1(x ,y)  =  - x - Q ^ - ( x f , y ) - y - Q ^ ( x , i / ) ,  0 <  x' <  x, 0 <  y' <  y,

A 2(0,0) -  A 2(x,y)  =  - x ^ - ( x " , y )  -  y ^ - ( x , y " ) ,  0 <  x" <  x, 0 < y " < y ,

b(x, y) -  6(0, 0) =  x ^ ( x ,n, y) +  v'”) ’ 0 <  x>" <  x -> 0 <  v'" <  Vi

we have, for a ll [x, y) € £2,

\L£(ei(x,  0)e2(0, y))\ <  j  +  y +  |6(0, 0)| ^je^x,  0)e2(0, y)

<  C (  1 +  e_116(0,0)|)v/ e i( x ,0 )v /e2(0,y).

Note tha t the presence of the mixed derivative term  introduces an extra inverse power 

o f e in to this bound which is not present in  the special case when 6(0,0) =  0. Using 

th is bound and (4.4.12) we obtain

\L£(4>ei(x, 0)e2(0, y))| <  C (1 +  e' 1 16(0,0)|)y /e ^ x ,  0) ^ ( 0, y).  (4.4.13)

The bounds on z i , z 2 and are now obtained using the m in im um  principle.
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^ , ( x )  =  C'e~'nx/2e.

Then at each point in Q, using (4.4.7), (4.4.8a) and (4.4.10), we have

L£(iJji(s )  ±  Zi(x, y)) =  Leil>\ (* )  =F i)(® , y)
£

Starting with Z\ we introduce the barrier function

<  -
£
1 / C'j M x , y) /  _  2a iO i j / ) \  +  e_7ll/2£
£ \  4 V ‘ a (x, y ) )  )

<  0,

i f  C' is chosen sufficiently large. Also at each point on dfl

(ipi ± z i )  =  ipi >  0.

I t  follows from the m in im um  principle tha t (ip\ ±  z x) >  0 in Q and so at each point 

in (A we have

\ z i ( x , y ) \ < C ' e - ^ x/2£. (4.4.14)

In  an analogous manner we can use (4.4.7), (4.4.8b) and (4.4.11) to  get the bound on

\z2(x ,y) \  < C ' e ~ ™ /2£. (4.4.15)

To bound z 2̂ we use the barrier function

M x , y )  =  C ^ I + e - 1 |6 (0 ,0)|)e-'1'l3:/2£e -w /2 £ .

Then at each point in Q, using (4.4.7), (4.4.8c), (4.4.13), the inequalities (4.3.1c) and
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the e llip tic ity  conditions (4.3.Id ), wc have 

Ls(ipx>2 ± * 1,2) =  Leipit2( x , y ) ± ~ L E{<l>ei(x)0)e2(0,y ))

C +  ^ 0 ,° ^  (o(®, y)17? +  2b(x, y )7 i 72 +  c(x, y ) j 2

2 a i(x ,y )7 i  -  2a2( x ,^ 72) 4- c j e~^lx/2ee~^,v/2£

( t  (* -» > »
a2 (®, y)

+  c(.x, y)72 ^ 7 2 - c(x, y)

(a i(s , y )71 -  26(ar,y)7i72 +  «2(0̂ ,y)72) ^  +  c ' j  e~',''x/2£e~'nv,2e 

<- ^
, a2(x,y)

c(®, y)72 72 -
c (x ,y )

-  (a(rc, y )72 -  26(.r, y )7i72 +  c (x , y)7I )  ^ +  (7^ e“1,lffi/2£e_72w/2t'

<  0,

i f  C' is chosen sufficiently large. Also at each point on <9fi

(-01.2 ±  ^1,2) =  ^1,2 >  0.

I t  follows from the m inim um principle (4.3.1) tha t (ipi,2 ±  21,2) >  0 in Q and so at 

each point in Q we have

k 2(x ,y ) | <  C'( l  +  s - 1 |6 ( 0 ,0 ) | ) e - ^ 2ee -™ '2£. (4.4.16)

To bound the derivatives o f Z\, z2 and we note tha t z x, z2 and z it2 arc solutions 

of problems from Problem Class 4.3.1 and therefore we can apply Theorem 4.3.4. 

The inhomogeneous terms in  equations (4.4.8a) and (4.4.8b) defining z x and z2 are
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The inhomogeneous term in the equation (4.4.8c) defining z\^  is bounded by C e ~2. 

Therefore

K 2U <  C e -(fc+1), for A: = 1 ,2 ,3 .  (4.4.18)

Setting

wl =  <f>ei+ezi,

Wb =  <j>&2 +  £z2,

Wc =  -<j>eie2 +  £¿1,2,

taking appropriate derivatives, and using (4.4.14), (4.4.15), (4.4.16), (4.4.17) and 

(4.4.18) we get the desired result. □

4 . 5  N u m e r i c a l  m e t h o d

We now introduce a numerical method tha t w ill generate approximations to solutions 

o f problems from Problem Class 4.3.1. I t  comprises an upwind fin ite  difference oper

ator on a fitted  piecewise-uniform mesh. The difference operator L 1̂ , on a mesh , 

is defined for any mesh function Z N, as

=  (e(a5i +  2(J)+6:v +  b - S - ^ c 4 )  +  a l D t  +  a.2D ; ) Z N(xi>yj ) ) V ( * , ,%) G n N,
(4.5.1)

where

bounded by Ce 1. Therefore we have

M fc<:Cfe"\ \ z i \ k < C e ~ k, for * =  1,2,3. (4.4.17)

(«*»%) =

b {xi, yj) =

0.5(b(xi,yj) +  [&(»«, vj){>, i <  N x/ 2, j  <  Ny/2,
0, otherwise,

0 . 5 ( b ( x i ,y j )  -  |fc(arif 2/j)|), i  <  N„/2,  j  <  N v/ 2,
0, otherwise,
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D +D + +  D z D ,
JxyM̂‘ / 2

and

S t , Z N( x „ y j ) =  x-  » .  1  v- Z N ( x „ y j ), (4.5.2a)

K , 2 N(xhVj] =  D i D ' +2 D : D ‘ Z K (xl , Vj). (4.5.2b)

Clearly, at each mesh point, at most one of b+ and b~ can be non-zero. We defer a 

discussion of our choice of difference scheme u n til §4.6.

We use Nx mesh intervals in  the x co-ordinate direction and Ny mesh intervals in  

the y  co-ordinate direction where Nx and N y are both  even integers greater than 4. 

We discretise the domain Cl w ith  the tensor product mesh Cla =  Cla* x  Clal , where

Cl^ =  {xi  | 0 <  i  <  Nx} , and Cl^ =  {%• | 0 <  j  <  Ny} ,

w ith

and

a  i  =  mm

2 i a i / N x, 0 <  i <  N x/2

(Ji +  2(i — N x/2)(1 — cri)/Nx, N x/2  <  i <  Nx

2j a 2/ N y , 0 <  j  <  N y/ 2

^2 +  2 (j  -  N y / 2)(1 -  (T2) /Ny,  N y / 2 < j < N y

i n j ^ ,  ^ - ln ( N xNy)^ , a2 =  m in  j i ,  ^ ln ( iV a.iVy) | . (4.5.3)

Xi =

%

Note tha t when b =  0 and Nx — Ny we have an appropriate choice of crt and a2 in  

the standard case (see, for example [15]). For later convenience we shall define the 

following mesh widths

hi — Xi X j_i, Hi (/ij -4- hi+i ) /2 ,  h —  , H  -jy— . (4.5.4a)

kj =  Vj ~  Vj-u kj =  (kj +  kj+1)/2, k =  K  =  2^  a2\  (4.5.4b)

Setting dfl^ =  Cl^ f l  dCl, the resulting fitted  mesh fin ite  difference method is
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M e th o d  4.5.1.

L * U N(xi , y j ) =  f { x i , y j ) in f i f ,

UN(xi,y j)  =  0 on

The fin ite  difference operator L "  in  (4.5.1) satisfies the following discrete m inim um  

principle on

T h e o re m  4.5 .1  (Discrete M in im um  Princip le). Let Z N be any mesh function defined
n N on ilg. .

Proof. This follows from the fact tha t the associated system m a trix  is an M -m atrix  

(see [15, §2.3]). To see th is we need only examine those rows of the m atrix  tha t 

correspond to  the bottom  left hand corner region, i.e., the set of mesh points (x^yf)  

for which i  <  Nx/ 2 and j  <  Ny/2.  In  a ll other rows the M -m a trix  structure is 

guaranteed by the choice of the upw ind fin ite  difference operator (see [15, §2.4]). A  

typ ical fin ite  difference equation for a mesh point in  the corner region is as follows
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, i,j | , (a2)i,j ^  ryN I i,j ryN
' hk +  hk )  +  k J ^ 'j+1 +  hk 1+1'> + V

We w ill assume tha t bij >  0 and thus bfj =  bi:j  and b~j =  0. The case b ĵ <  0 

is analogous. I t  is clear tha t the system m a trix  is irreducib ly  diagonally dominant. 

Also the coefficient of in  the above expression which corresponds to the diagonal

o f the system m a trix  w ill be negative once the follow ing inequality is satisfied

ahj _  , 2a .  >  n
h2 hk k2

This follows d irectly from  the e llip tic ity  conditions (4.3.Id )  by setting r  — \  and 

s  =  — p  A ll the coefficients o f the other Z N in  the above expression which correspond 

to off-diagonal elements in  the system m a trix  w ill be non-negative once the following 

inequalities are satisfied

ai,j _  v  n >  n
h2 hk ~  ’ k2 h k ~  '

Together they require tha t the following hold

bj,j <  ^  <  ai<o
Citj k bitj

Using the expressions for the mesh w idths given in  (4.5.4) th is becomes

h i  <  ZlEy <  (4.5.6)
C'i.j O 2 A/"aj bi,j 

Depending on the values of a\  and cr2 we have the follow ing cases:

1. ai  — (72 =  1/2. We must have

bj,j ^  ^ Ty_ ^  ai,j
Ci,j Nx bij

We can always find an Nx and Ny to  satisfy these inequahties because from
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I t  is then tr iv ia l to ensure tha t the Nx and Ny so chosen are even to enable the 

construction of the mesh,

2. a i =  ~  \n(NxNy) ,a 2 =  1/2. We must have

7i bj,j ^  ^  a»,j
72Cij

To ensure tha t these inequalities can be satisfied we must have

7i bj,j ^  ai,j 
72ci,j i’i.j

This imposes conditions on the coefficients in  the d ifferential equation.

3. u i =  1/2,02 =  ^  ln(/Vx/Vy). We must have

^  ^  7 iQi,j 
Cij ^bij

To ensure tha t these inequalities can be satisfied we must have

bjj < 7 iQi,j 
<k,j 72ktj '

This imposes conditions on the coefficients in  the differential equation.

4. 0i  =  ~  \n(NxNv), cr2 =  ^  ln (7 \yVÿ). We must have

7 iA j  <  ^  <  T iO tj (4 .5.7)
72C»,j 72^tj

As in case 1 the inequality (4.3.2) ensures tha t we can always find an N x and 

Ny to satisfy these inequalities.



I

Thus we have shown tha t the system m a trix  corresponding to  the numerical 

method 4.5.1 is an M -m a trix  and the result follows. □

Remark 4.5.1. In  §4.7 we w ill prove tha t in  the perturbed case the numerical solutions 

generated by Method 4.5.1 converge un ifo rm ly to  the solution of the corresponding 

problem from Problem Class 4.3.1. Thus the m onotonicity o f our scheme depends 

on the inequalities in  Case 4 in  the preceding proof. However, in  Chapter 5 when 

we w ill present numerical results demonstrating our method, i t  w ill be convenient 

from a practical point o f view, to  take Nx =  Ny =  N .  In  this case the appropriate 

inequalities are the following
h  , <  ±± <bi,j ^  72 ^  ai,j 

h i  ’ci,j 7 i

and i f  we want to include the case when bij <  0 the inequalities become

1 h i
3

< ^ <
7 i

a,"1,3
M '

(4.5.8)

In  the sample problems we consider we shall ensure tha t these inequalities are satisfied, 

noting however tha t this restriction can be lifted  i f  we allow Nx and N y to  be different. 

This issue is discussed fu rther in  §5.4.

We w ill need the follow ing bound on the local truncation error of Method 4.5.1 in 

the next section. The proof is standard.

L e m m a  4.5.2 (Truncation E rro r). Let u be the solution of (4.3.1) and UN be the 

solution of the discrete problem (4.5.1) defined on . Then the following gives a 

bound on the local truncation error in the corner mesh region

LNe [U* -  u)(xu y j)| <  C  

+  h

e I h 

d2u

d3u
d x 3

+
d3u

d x 2dy
+  k

d3u
d y3

d 3u
d x d y 1

dx2 +  k
d2u

d y 2
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And the following expression gives a bound for  the local truncation error in the re

mainder of the mesh

\Le (UN — u)(xi,yj )\  <  C

+  II b

 ̂ ( O i+ l x i—1

d 2u

d 3u

dxdy

d x3 

“I" {Xi-\-l Xj)

+  i.Vj+1 -  Vj-i)  

d 2u

d3u

d x 2

d y3 

+  (.Vj+l -  Vj)
d2u
d y2

(92|LRemark 4.5.2. The la tte r expression contains the quantity  \\b\ 

the fact tha t our numerical method does not approximate the mixec 

outside the corner region.

which is due to 

derivative term

4 . 6  F i n i t e  d i f f e r e n c e  o p e r a t o r s  f o r  t h e  a p p r o x i m a 

t i o n  o f  m i x e d  d e r i v a t i v e s

In  this section we discuss the approximation of a mixed derivative w ith  a fin ite  d if

ference operator. In  particu la r we shall examine the issue of deriving a discrete com

parison principle sim ilar to  the one for the continuous operator (see Lemma 4.3.1). 

This is im portant as the derivation of our error estimates in  §4.7 depends crucia lly 

on the fact tha t the difference operator used is monotone. This however, is a non

tr iv ia l task, and there is a large lite ra ture  devoted to  th is subject (see [42], [33] and 

the references there in). Monotone schemes have been constructed for a large class of 

e llip tic  equations w ith  mixed derivatives, bu t these schemes are designed for classical 

equations. Hence, uniform  meshes are used in  each co-ordinate direction, and there 

are restrictions on the ra tio  of the mesh widths.

The numerical method tha t we introduced in  the previous section is based upon a 

tensor product of two piecewise-uniform meshes. Therefore the above schemes cannot 

be used. To construct a difference operator tha t satisfies a comparison principle (see 

Theorem 4.5.1) i t  was necessary to  employ an inconsistent operator to  approximate 

the mixed derivative. This is because in  regions o f our mesh where the mesh widths in  

each co-ordinate direction vary in  magnitude (i.e. in  the regions i <  N x/ 2, j  >  Ny/2  

and i >  N x/ 2, j  <  Ny/2  where the mesh is fine in  one dimension and coarse in  the 

other) the M -m a tr ix  structure o f the associated system m a trix  breaks down. To see
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th is consider the region i <  N x/2, j  >  N y/2  and assume th a t we have approximated 

the mixed derivative term  in  the entirety o f the mesh. In  th is  region the mesh w idths 

in  the x  and y  co-ordinate directions are h and K  respectively, w ith  h and K  defined 

as in  (4.5.4). When e is small the magnitude o f the former is significantly smaller 

than tha t of the la tter. So, for example, the coefficient o f the Z^_1 term  in  a typ ica l 

fin ite  difference equation in  this region is (assuming bij >  0)

We need th is quantity  to  be positive for our system m a trix  to be an M -m atrix . 

Therefore, we must have

bijK ,

which w ill not hold i f  £ is small.

Note tha t th is is not to  say tha t a method based on a consistent fin ite  difference 

operator w ill not be monotone just tha t its  associated system m a trix  w ill not be an 

M -m atrix . However numerical experiments have shown th a t this is indeed the case. 

We investigate the numerical performance of such a method in  §5.4.1.

One further point tha t should be made is th a t the actual form  of the discretisa

tion  of the mixed derivative (whether the scheme is consistent or not) seems to  be 

unim portant. A ny other simple choice for the discretisation would have suited our 

purposes just as well provided tha t we could prove a discrete comparison principle.

4 . 7  D e c o m p o s i t i o n  o f  n u m e r i c a l  s o l u t i o n  a n d  e r r o r  

e s t i m a t e s

In  an analogous manner to  the continuous case we decompose our numerical solution 

in to a regular and singular component

UN{xh y j ) =  V N(xu y j ) +  W N{xu %■), (a*, ys) e Q* ,
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where V N is the solution of the inhomogeneous problem

L * V N{xi,yj ) =  f { x i , y j ) in  (4.7.1a)

V N {xi ,y j ) =  v (x i , y j ) on dQ%, (4.7.1b)

and therefore W N is the solution of the problem

L » W N(xu y j ) =  0 in  f l *  (4.7.2a)

W N (xi ,y j ) =  w ( x i , y j ) on . (4.7.2b)

The error in  our numerical solution can now also be decomposed

(UN -  u){xu y j ) =  ((V N ~ v )  +  ( W N -  w))(x i , y j ) ,  (xi,yj ) e  Q * ,

and the error in  the regular component and the singular component can be estimated 

separately.

A s s u m p tio n  4 .7 .1 . For convenience we set N x — N y =  N  and assume that the 

inequalities (4.5.8) hold. Also we shall assume that e <  iV _1. This implies that

(7i =  2— In N,  cr2 =  2— In N.  (4.7.3)
7 i 72

T h e o re m  4.7 .2  (E rror in the Regular Component). Under Assumption 4-7.1 the 

error in the smooth component satisfies the following e-uniform error estimate

| ( V JV' — v ) ( x i , y j )\  <  C N - 1, (;x h y j ) E  0 , " ,

where V N is the solution of (4.7.1) and v is given by (4.4.4).

Proof. We begin by considering the local trunca tion  error w ith  respect to  the regular 

component. We firs t consider the case when i <  N /2 ,  and j  <  N /2 .  The expression
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d3v

for the local truncation error from Theorem 4.5.2 is

| L ^ ( V N - v ) { x u yj)\ <  C  e ( h

+  h

£ ^ h
(

d 3v
dx3 +

d 2v
+  k

d2v
dx2 d y2

dx2dy
+  k

d 3v
d y 3 +

d 3v
d x d y2

Using the bounds on the derivatives of v given in  Theorem 4.4.2 and the fact tha t 

h <  N ~ x, k <  AT-1 , we get

\L ? ( V N - v ) ( x i>yj)\ < C N ~ \

and applying the discrete m in im um  principle given in  Theorem 4.5.1 and a standard 

barrier function the required result follows.

A t all other points in  the truncation error is from  Theorem 4.5.2

Le (V  ~ v ) ( x i , y j )\ <  C

+

£  ( ( X i + i  -  X i - i )

d 2v

d3v

dxdy

d x 3 

+  (xi+1 -  Xi)

+  {Vj+i ~  Vj-i )  

d 2v

d3v

dx2

dy 3 

+  {.Vj+i — Uj)
d2v
d y2

Again using the bounds on v given in  Theorem 4.4.2 and the fact tha t

x i+i -  <  C N - 1, x i+1 - X i <  CAT-1 , yj+i  -  <  C N _1 and yj+1 -  yj <  C N -1
we get

|L ? ( V N - v ) ( Xi, y j )\ <  C i N - '  +  e

<  C N - 1,

since £ <  N  . The result follows as before. □

In  order to  estimate the error in  the singular component we require the following 

Lemma.

7L e m m a  4.7.3. The mesh function A^j, defined on i la , given by

(1 +  ^ )  \  0 < i < N / 2 ,  0 < j < N ,

^ /a j ( l  +  ^ f ) " (<" ^ /2 ), N / 2  +  l < i < N ,  0 < j < N ,
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>

V
I

•<s>

V
I

oo

N,

Ai,,- := - f £ A i+1 <  0, 0 <  i < N - 1,

D ^ A i j = 0, 0 < i < N,

e ó lA i j = 7 i ÌH+1 A 
As h Ai+l*'

1 < i  < N - 1,

< 0, l < i < N  ■- 1 ,

An/2,j < 2 N ~ \

Ai,j < 2Ai+itj ,  0 <  Ì <  N f  2 - - 1.

(4.7.5d) 

(4.7.5e) 

(4.7.5f) 

(4.7.5g)

Proof. The firs t four properties are obvious and can be verified by computation. Using 

these we have

i n a 7 iaì,j ( (a i)i,j .  h ì + i \  A

^  TKkj (  (« ik j  .. \  ,

<  0,

where we have also used the definitions of hi and ht given in (4.5.4), the defin ition of 

7 i given in  (4.4.7) and the pos itiv ity  of « i given in (4.3.1c).

Now

^ y " /2
2e )

2 In N \ - n/2 
N

<  2N ~ \

has the following properties, fo r all 0  <  j  < N ,

(4 .7 .5 a )

(4 .7 .5 b )

(4 .7 .5 c )

using (3.6.3).

A W J  =  ( 1 +  "27

<  1 +
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\ j  =  ( i  +  A+l , j

}  2 1 n i V \  .

~  [ 1 +  ~ N ~ ) Ai+1’j
<  2Ai+i j .

T h e o re m  4 .7 .4  (E rror in  Singular Component). Under Assumption 4.1.1 the error 

in the singular component satisfies the following e-uniform error estimate

\ (W N -  w)(xi ,y j ) \  <  C7V_1(ln iV )2, (x^y, )  G

where W N is the solution of (4.7.2) and w is the solution of (4.4.5).

Proof. We introduce the following decomposition of W N in to  separate layer compo

nents, which is analogous to the decomposition o f w  given in  (4.4.6).

W N(xu yj) =  W?{.xu yj) +  Wb f a ,  Vj) +  W c  0Xi, y j ), (x.h yj)  e ,

where

I>^WL(xi, yj) -  0 in  W £ ( x i , y j ) =  w L(xi , y j )

I Je W B ( x i , y j )  =  0  i n  i 2 ^ ,  W g ( x i , y j )  =  w B ( x i , y j )

L ^ W c (x i , y j )  =  0 in  Q*, W g ( x u y j ) =  wc {xi t yj)

The error in  the singular component can therefore be w ritten  as

(WN-w)(xuyj) =  ((W?-wL) + (Wg -wB) + (W$-wc))(xi>yj), ( n . f t j e l j ,

and the error in  each layer component can be estimated separately.

F irs tly  consider the term  (Wff  — Wl ). We w ill give separate proofs depending 

on the location of the mesh point Xi. Suppose tha t Xi & [oi, 1]. Using the triangle

Finally for 0 <  i <  N / 2  — 1 we have

on dQ%, 

on , 

on dn%.

99



inequality we get

\ (Wl — WL)(xi,yj)\ <  \ W £ ( x i , y j )| +  \wL(xu y j ) \ ,

and we shall estimate the two terms on the right-hand-side o f the inequality separately. 

Using the bound on w i  given in Theorem 4.4.3 and the form ula for a  given in (4.7.3) 

we get

\wL(xi,y j )\ <  C e - ™ / *

<  C'e“ 7lffl/2£

<  C A T 1.

To establish a sim ilar bound on \ W £ (x i ,  xj j )\ we introduce the mesh function 

=  & Ai,j ±  W ? ( x iy yj),  where C x =  ||0||r , urB .

Now, V'ttw =  CiA i iN >  0,

V’w.j ~  C i A Nj  >  0, 

iPaj =  C x ±<f>(0fyj)  >  0,

ipto =  C i A ,o ±  0 (* i,  0)e1(ici , 0) >  0,

and =  C \ L ^ A i j  <  0.

I t  follows from the discrete m in im um  princip le in Theorem 4.5.1 tha t

>  0 ,  ( x i t y j ) e  U ? .

This implies tha t, for Xj >

Im f a , y j ) \  <  c xAid

<  C\ A N/2J

<  C N ~ \

1 0 0



as required.

Now suppose tha t Xi 6 [0 ,01). I f  yj € [<r2, 1) the expression for the local truncation 

error from Theorem 4.5.2 becomes

| L f ( M ^ - W i)(x i)% )| <  C e
d 3w L
dx3 +  K

+  h
d2w L

+  K
d2w L

d x 2 d y 2

d3Wr
d y3

+
82Wr
dxdy

(4.7.6)

I f  yj 6 (0, (T2) the expression for the local truncation  error from Theorem 4.5.2 be

comes

Le (W £ - w L)(xi iy j)\  <  C

+  k

£

83w l
d y3

(9x3

+

+
d x 2dy

d x d y2 +  h
d 2Wr

d x2 +  k
d2wj
d y 2

The quantity  on the right-hand-side of (4.7.6) is the largest and therefore we w ill 

assume tha t the truncation error in  the whole region satisfies th is bound.

Using the bounds on Wl given in  Theorem 4.4.3 and the definitions o f h and K  

given in  (4.5.4) we have

| L f  ( W f  -  wL)(xh y j)| <  C { a 1£ - 2N ~ l +  e ^ N " 1 +  1).

For a ll 0 <  i <  N / 2  and 0 <  j  <  N  we introduce the mesh functions

=  C2« ^ i  -  x ^ a ^ N - 1 +  e - ' N - 1 +  1) +  TV '1) ±  ( W ?  -  wL)(xh Vj).

Now,

=  C2((T1(cT1£ -2iV -1 + £ - l iV - 1 +  1) + ^ - 1) > 0 ,

V'tto =  =  ^ ( ( e r i  -  x i )(a 1£_2iV “ 1 +  e ^JV -1 +  1) +  AT“ 1) >  0,

^ /2ii >  C'2JV-1 - C rJV-1 > 0 ,
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if C ì  is chosen sufficiently large. Also

L ^ f d <  —C2(a i) i j (ai£~2N ~1 +  e " 1 JV"1 +  1) +  G ( a X£ - 2N ~ x +  e ^ A T 1 +  1)

<  0,

a,gain i f  Ci  is chosen sufficiently large. Apply ing the discrete m in im um  principle in 

the region defined by 0 <  i <  N / 2  and 0 <  j  <  N  yields

> 0 ,  0 <  i <  N / 2, 0 <  j  <  N.

This implies tha t

\ {W ?  -  w L)(xui / i) | <  C2((o-1 -  Xi)(ciye~2N _1 +  e~l N ~ l + 1 )  +  N ~ x)

<  C ^ \ e - 2N ~ l +  cti£~xN ~ x +  <7! +  N - 1)

<  C ( N ~l (In AT)2 +  A T 1 I n N + e In N  +  N ~ l )

<  C A T 1 (In AT)2

sincc e <  N ~ l .
In  an analogous manner i t  can be shown tha t

|(W b  — w b )(®ì , 3^)| <  CW -1 (ln A f)2.

F ina lly  we consider the term ( W £  — % ) .  We wiU provide separate proofs in the 

corner region and outside the corner region. F irst suppose (x i t y j ) [0,<7i) x  [0, ero).

Using the triangle inequality we get

\{ W c -  w c ){ x u y j)| <  | W g { x i ,y j ) \  +  \w G { x i ,y j ) \ ,

and we estimate the two terms on the right-hand-side o f the inequality separately. 

Using the bound on w i  given in  Theorem 4.4.3, the formulae for a\ and a 2 given in
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|w c (* i.% ) l <

<  C xe ~ ^ /2E ( C : e - ^ /2£) ,  X i > a  ( y ,  >  a )

<  C N ~ \

To establish a sim ilar bound on \Wc [xi,yj )\  we introduce the mesh function

Z i j  =  A i j B i j ,  0 <  i  <  Nx, 0 < j < N v,

where Ai j  is given in (4.7.4) and Bt J is analogously defined as

f  (1 +  ^ ) ~ j , o < i < N ,  0 < j < N / 2 ,

i,j 1 Bn/2 (1 +  3£ ) ~ U~N/2). 0 < i < N ,  N/ 2  +  1 <  j  <  N.

I t  can be shown tha t Bitj  satisfies analogous properties to  those satisfied by Aia given 

in Lemma 4.7.3. Specifically we have, for a ll 0 <  i  <  N ,

B ii:i >  0, 0 < j < N ,  (4.7.7a)

D + B id =  o, 0 <  j  <  N  — 1, (4.7.7b)

D + B i j  =  0, 0 < j < N , (4.7.7c)

e82vBh  =  f £ ^ - B id+u l < j < N - l ,  (4.7.7d)

L ” B t j  <  0, 1 <  j  <  N  - 1 ,  (4.7.7e)

Bi,N/2 <  2N - \  (4.7.7f)

B i j  <  2Biij+u 0 <  j  <  N / 2  — 1. (4.7.7g)

We shall assume tha t birj >  0 so tha t i>t. =  and b~j =  0. The case when

bij <  0 can be handled in  a sim ilar manner. Now for a ll (x11 yj) (/ [0, <7i )  x [0,(72) we

have

L ? Z id =  L ? A idBitj

=  (Lg Ai j ' jBi j  +  A i ^ B i j )  <  0,

(4.7.3) and the fact that either Xi >  Oi or yj  >  u2 we get
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using (4.7.5a), (4.7.5c), (4.7.5e), (4.7.7a), (4.7.7c) and (4.7.7e). And for 

{Xi,yj) 6 [0, i ) x  [0,o 2) we have

L ? Z i j  =  Lg Ai'jBi j

=  (L?A,j)Btj  + + €btj(DiA,jD+Bu +  D;A^D; By)

=  £  ( ^  -  A u i j B t j  + g  ( 2 £ f i  -  M y )  A j Bw

hf.'Y i 'Y o

=  5  ( ~ 2 ^  +  26« 7172 +  ^  " (“ ' ),'i7 1 "  (“ 2>‘'i72)  A , j B 'd

< ^  K j7 i  +  26+ 7172 +  CijTf -  (ai)wTl -  («2),,>72)

<  0,

where we have used the definitions of 71 and 72 given in (4.4.7). Therefore for all 

(Xi ,yj ) G we have L * Z itj  <  0.

We introduce the mesh functions

i>tj ~  C i ( ® i >  %)» where C i =  ||^||rf>urfl •

Now,

=  C i ^ . jv >  0,

>  0,

=  C l£ 0j  =F <¿(0, Vj)e2{0,% ) >  0,

=  C iA ifi =F 0 )e i(x i, 0) >  0,

and

W j  =  C i i f z «  <  0-

I t  follows from the discrete m inim um princip le tha t

i f c  >  0, (xuv j)  €  n * .
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Using the fact that either X{ >  a x or y-j >  cr2, this implies that

\Wc (xu y j )\ <  C xZitj

<  C i Ai'jBij

< CiAN/2,j (CxBi<N/2), 
C N ~ \

Xi >  <yx {yj >  <r2)

as required.

Now suppose tha t (xt , y j ) €  [0, <j\) x  [0, <t2)- The expression for the local truncation 

error from Theorem 4.5.2 becomes

L g ( W c  — wc)(X i , y j )\ <  C  e ( h  (
dZWr
dx3 +

d 3Wr
d x 2dy

+  k
d3w c d 3Wc d2w c d2w c
d y 3

+
d x d y 2 ) ] + * dx2 •+* k

d y 2

Using the bounds on w c  given in Theorem 4.4.3 and the definitions o f the mesh 

widths h and k given in (4.5.4) we get

\L%{W g -  wc ){Xi ,y j) \  <  C e ~2N ~ \ ( tx +  cr2).

For a ll 0 <  i <  N x/ 2  and 0 <  j  <  N y/ 2  we introduce the mesh functions

ip t j =  C3iV_1(e_2(iTi(<Ti -  X i)  + a2(a2 -  x j j ) )  +  1) ±  ( W q  -  w c ) { x u %)•

Now,

Tj'oj = CzN~l {e~\a l  +  a2(a2 -  Vj)) +  1) > 0, 

ipifl ~  C3N - l (e~2((jx(crx -  Xi) +  a \ )  +  1) > 0, 

4*Nx/2j > CzN~x(£~2a2((T2 -  Vj) +  1) -  CN~l > 0,

-  C3N ~ l [e~2a x( a x -  x^  +  1) -  C N ~ l >  0,
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if C3 is chosen sufficiently large. Also

Le'tpt.j — 2N  ' ( ( a i ) i j cri  +  (a2)i,jcr2) +  Ce “N  1 (crj -t- or2)

<  0,

i f  C3 is again chosen sufficiently large. A pp ly ing  the discrete m inim um  princip le given 

in Theorem 4.5.1 in the region defined by 0 <  i <  N /2  and 0 <  j  <  N / 2  yields

^  0 < i <  A /2 , 0 <  j  <  N/ 2.

This implies tha t in  the corner region

|(W c -  u>c)(Xi,yj)I <  C zN ~l (e~2{ai(<Ji -  Xi) +  a2(a2 -  % )) +  1)

<  C3N  l (e 2(af  +  a f )  +  1)

<  C N ~ \ \ n N ) 2.

This completes the proof. □

The previous two theorems together give us the following e-uniform estimate of 

the error in our numerical approximations at the mesh points.

T h e o re m  4.7.5 . Let u be any solution from Problem Class 4.3.1 and U N be the cor

responding numerical solution generated by Method 4-5.1. Then, under Assumption  

4- 7.1, for  all N  >  4, we have

sup l i t / "  - u | U  <  C Ar-1 (ln AT)2,
0<e<l

where C  is a constant independent of  N  and s.
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Numerical results for elliptic 
problems

5 . 1  I n t r o d u c t i o n

In  this chapter we present extensive numerical results for the method introduced 

in  Chapter 4 applied to  some sample problems from  Problem Class 4.3.1. These 

problems w ill be generated, of course, from  the consideration of suitable problems 

from Problem Class 4.2.1. Various choices fo r the non-rectangular domain w ill be 

considered. The numerical results presented w ill include a validation of the theoretical 

result proved in  Chapter 4.

This chapter is organised as follows. In  §5.2 we introduce some special cases of 

domains for Problem Class 4.2.1 and show what form  the transformed Problem Class

4.3.1 takes. In  §5.3 we present detailed numerical results for some sample problems 

posed on parallelograms. In  §5.4 we discuss some im portant practical issues concern

ing the application of our method. Finally, in  §5.5 we consider more complicated 

geometries and present some sample numerical results.

A ll computations in  this chapter were performed using M A T LA B . The linear sys

tems generated were solved using the Unsymmetric M u ltiF ron ta l PACKage (UM F- 

PACK) [7]. This is a direct LU  based solver which is chosen in  preference to  an 

iterative solver due to memory restrictions.

C h ap ter  5
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5 . 2  S p e c i a l  c a s e s  o f  n o n - r e c t a n g u l a r  d o m a i n s

We consider the subclass of Problem Class 4.2.1 where the domain Cl =  Clp is a 

domain bounded by the lines

e =  m ,  t = i + m ,  (5.2.1 )

V =  0, n =  1, (5.2.2)

where tf>(rj) is sufficiently smooth. In  th is case the co-ordinate transform ation (4.2.2)

takes the simple form

x =  £-<i>{r}), y  =  r¡, u (x ,y )  =  ú(£,rj). (5.2.3)

Also in  this case the inverse transform ation can be easily found to  be

£ =  x +  (f)(y), T) — y.

So the transformed differential equation becomes

(e (( l -4- (cj) ) )uxx 2((/>) v<xy 'Uyy) “t- axiix -f- a2/ay) (x, y ) f  (x, y) in

where

o i(® ,y) =  ax(x +  (¡){y),y) -  a2{x +  (y) -  e<f)"(y), a2(x, y)  =  a2(x +  (p{y), y ) .
(5.2.4)

We now introduce the corresponding Problem Class.

P ro b le m  C lass 5.2.1.

(e (( l +  (4>')2)uxx -  2(j)'uxy +  Uyy) +  axux +  CL2uy) (x , y) =  f  (x , y) in (5.2.5)

n(x, y) =  0 on <9f2, (5.2.6)

w/iere a i and a2 are given by (5.2.4) and satisfy

ax( x , y ) >  0, a2(x, y) >  0, V ( x , y ) e Q .  (5.2.7)
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Figure 5.1: The domain ÛP .

Remark 5.2.1. The sign of the mixed derivative term  in  (5.2.5) is governed by the 

curvature of the boundary wall £ =  <j>(r¡).

Remark 5.2.2. The conditions (5.2.7) impose restrictions on the convective terms 

in the orig inal equation which necessarily depend on the geometry of the original 

domain. For small e, the larger the curvature o f the boundary wall is the bigger ô i 

must be relative to â2. This is illustrated in Figure 5.1 where the arrows indicate the 

direction o f the convective term  â.

One particu la rly  simple choice for the function specifying the boundary is (j>(ri) =  

—mri, where m  is a constant. In  this case the domain is a parallelogram. This is
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illustrated in Figure 5.2. The angle 6 satisfies

tan(# — 7r/2) =  m  i f  m  >  0, tan#  =  1 /m  i f  m  <  0.

For s im plic ity  we shall also assume tha t the convective terms in  the orig inal equa

tion  have constant coefficients. That is, ax =  a x and a2 =  ct2- For a ll calculations in  

this chapter we w ill take f ( x , y ) =  16a: (1 — x)y(  1 — y) as the inhomogeneous term. 

This choice guarantees tha t the com patib ility  conditions (4.3.4) are satisfied. The 

corresponding transformed Problem Class is

P ro b le m  C lass 5.2.2.

( e ( ( l +  m 2)uxx+  217111,̂  + Uyy) +  (a1 +  m a 2)ux + a 2Uy)(x,y)  =  f ( x , y )  in ft,

5 . 3  N u m e r i c a l  r e s u l t s  f o r  e l l i p t i c  p r o b l e m s  o n  a  

p a r a l l e l o g r a m

In  this section we present detailed numerical results fo r M ethod 4.5.1 applied to 

suitable sample problems from Problem Class 5.2.2 for a wide range o f choices of 

the parameter m. Due to  practical restrictions the maximum number o f mesh points 

tha t we are able to  generate solutions from  our method is 512. To examine the 

performance of the method we w ill tabulate the computed orders of convergence, p f ,  

and the computed e-uniform orders of convergence, p N. These are calculated from  

the two-mesh differences defined as

u(x, y) =  0 on dCl

where
OLi[x,y) + m a 2{x, y)  >  0, a 2( x , y ) >  0, V ( x , y ) e t t .  (5.2.8)

max \UN{xu y j ) -  U2N(xi , y j )\, D N
<i,j<N

(5.3.1)
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Figure 5.2: The domain Ûp  when <j)(rj) =  —rnr).

wliere i / 2A indicates the pieccwise bilinear interpolant o f the numerical solution U N. 

The Pg and pN are then defined as

a , . D? N DN
V e  = 1 ° g 2  7 « M >  P  =jy iN  ’ ‘ [ ) 2 N  '

£

As we are interested in  the performance o f our method in  the perturbed case we 

shall assume tha t £ <  N ~ l for the range of N  considered. This explains the values of 

e in the defin ition of D N in (5.3.1). As discussed in Remark 4.5.1 and §5.4 we shall 

be tak ing  Nx =  Ny =  N  and choosing our sample problems so tha t the inequalities 

(4.5.8) are satisfied. For problems from Problem Class 5.2.2 these take the form

m > 0 : 0 <
_  ~  » ’ (5.3.2)

m  <  0 : - 2m  <  ^  <  -2 m  -  — 0(2 —

The region defined by these inequalities is shown in  Figure 5.3. Note tha t as the 

magnitude of m  increases, and therefore the angle 6 at the vertex of the parallelogram
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deviates further from a righ t angle, the range of possible values o f £*i and a 2 are 

decreased. As mentioned in Remark 4.5.1 we can remove these restrictions i f  we 

allow the number o f mesh intervals in each direction to vary and satisfy (4.5.7). So

m

Figure 5.3: The region defined by (5.3.2).

to satisfy the inequalities (5.3.2) we w ill take

m  >  0 : <*i =  «2 =  1,

77i = 0: a i = l ,  0-2 = 1) (5.3.3)
m  <  0 : a i =  —2m,  a 2 =  1.

Note tha t w ith  these choices of » i and a 2 the couditions (5.2.8) are also satisfied. We

now define the subclass o f Problem Class 5.2.2 tha t we w ill be using for our sample

problems.
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P ro b lem  C lass 5 .3 .1 .

(e (( l ”1” TYl )uxx 2m U Xy ~|- Vtyy) (o^l ril(X2)lix “t” ^ 2 2 / )  f  j 2/) ̂

u(x , y) =  0 on 9 ft,

where a x and a 2 are given by (5.3.3).

In  Tables 5.1 and 5.2 we present the computed orders of convergence, p^,  and the 

computed e-uniform orders of convergence, pN, for m  — 1 , and m  =  —2, respectively. 

We see tha t, for the range o f e considered, the p^  are essentially independent of e, 

and are approaching 1, as N  is increased. For other values of m  the e-uniform  orders 

of convergence are shown in  Table 5.3 which indicates tha t our method performs 

un ifo rm ly well for all values of m  considered. These results validate Theorem 4.7.5. 

For these particular problems, the orders of convergence (over the range of N  E 

[8,128]) are higher than the theoretical rate given in  Theorem 4.7.5 (see [15, §8.3] for 

some sample values). The orders tend to  the order associated w ith  C TV“ 1 In N  for all 

values of p.
We also include graphs of some representative numerical solutions (see Figures

5.4 and 5.5), p lo tted on the orig inal domain to better illustra te  the interaction of the 

layers and the geometry of the problem.

5 . 4  C o m p u t a t i o n a l  i s s u e s

In  th is section we investigate some issues of practical importance concerning the 

application of Method 4.5.1. In  particu la r we w ill look at the following:

1. Consistent versus inconsistent difference schemes.

2. Using different number of mesh intervals in  each co-ordinate direction.

3. The effect of the mixed derivative term  on the layer structure.

To examine these points in  detail we shall consider some problems from Problem 

Class 5.2.2.
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Number of Intervals N
e 8 16 32 64 128

2"'J 0.72 0.75 0.75 0.81 0.84
2-io 0.71 0.75 0.74 0.81 0.84
2 -n 0.70 0.75 0.74 0.80 0.84
2-12 0.70 0.75 0.74 0.80 0.84
2-13 0.70 0.75 0.74 0.80 0.84
2-14 0.70 0.75 0.74 0.80 0.84
2-15 0.70 0.75 0.74 0.80 0.84
2-ie 0.70 0.75 0.74 0.80 0.84
2- n 0.70 0.75 0.74 0.80 0.84
2~is 0.70 0.75 0.74 0.80 0.84
2-19 0.70 0.75 0.74 0.80 0.84
2-20 0.70 0.75 0.74 0.80 0.84
pN 0.70 0.75 0.74 0.80 0.84

Table 5.1: Computed orders of convergence, p£ ,  and computed e-uniform  orders of 
convergence, p N, for M ethod 4.5.1 applied to  Problem Class 5.3.1 w ith  m  =  1.

Number of Intervals N
£ 8 16 32 64 128

2-9 0.73 0.75 0.75 0.82 0.84
2-io 0.72 0.75 0.74 0.81 0.84
2 -u 0.71 0.75 0.74 0.81 0.84
2-i2 0.70 0.75 0.74 0.80 0.84
2-18 0.70 0.75 0.74 0.80 0.84
2- u 0.70 0.75 0.74 0.80 0.84
2-15 0.70 0.75 0.74 0.80 0.84
2- w 0.70 0.75 0.74 0.80 0.84
2-17 0.70 0.75 0.74 0.80 0.84
2~18 0.70 0.75 0.74 0.80 0.84
2~19 0.70 0.75 0.74 0.80 0.84
2-20 0.70 0.75 0.74 0.80 0.84
pN 0.70 0.75 0.74 0.80 0.84

Table 5.2: Computed orders of convergence, p^,  and computed e-uniform  orders of 
convergence, pN, for Method 4.5.1 applied to Problem Class 5.3.1 w ith  m  =  —2.
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m
Number of Intervals N

8 16 32 64 128
-3 .0 0 0.86 0.80 0.76 0.83 0.84
-2 .75 0.85 0.77 0.76 0.83 0.84
-2 .5 0 0.83 0.76 0.76 0.82 0.84
-2 .2 5 0.76 0.76 0.75 0.81 0.84
-2 .00 0.70 0.75 0.74 0.80 0.84
-1 .75 0.66 0.72 0.74 0.79 0.84
-1 .50 0.66 0.73 0.73 0.78 0.83
-1 .25 0.57 0.67 0.74 0.79 0.83
-1 .0 0 0.53 0.63 0.67 0.73 0.79
-0 .75 0.60 0.71 0.78 0.78 0.83
-0 .5 0 0.70 0.75 0.74 0.80 0.84
-0 .2 5 0.89 0.81 0.78 0.80 0.82
0.00 0.53 0.64 0.68 0.74 0.80
0.25 0.90 0.81 0.78 0.79 0.82
0.50 0.83 0.76 0.76 0.82 0.84
0.75 0.72 0.75 0.75 0.81 0.84
1.00 0.70 0.75 0.74 0.80 0.84
1.25 0.71 0.75 0.75 0.80 0.84
1.50 0.74 0.76 0.75 0.81 0.84
1.75 0.78 0.77 0.75 0.81 0.84
2.00 0.83 0.76 0.76 0.82 0.84
2.25 0.85 0.76 0.76 0.83 0.84
2.50 0.86 0.79 0.76 0.83 0.84
2.75 0.86 0.80 0.77 0.83 0.84
3.00 0.87 0.81 0.77 0.83 0.83

Table 5.3: Computed e-uniform orders of convergence, pN, for M ethod 4.5.1 applied 
to Problem Class 5.3.1 w ith  various values of m.
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Figure 5.4: P lo t o f Numerical Solution generated by M ethod 4.5.1 applied to the 
problem from Problem Class 5.3.1 w ith  m  — 1, a x and a 2 given by (5.3.3), e — 2-10 
and N  =  128 on orig inal domain.
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Figure 5.5: P lo t of Numerical Solution generated by M ethod 4.5.1 applied to the 
problem from  Problem Class 5.3.1 for m  =  —2, a x and a 2 given by (5.3.3), e — 2-10 
and N  =  128 on original domain.

1 3
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5 .4 .1  C o n s is t e n t  v e r s u s  in c o n s is t e n t  d i f f e r e n c e  s c h e m e s

As demonstrated in  the previous section Method 4.5.1 performs well when applied to 

problems from Problem Class 5.2.2 providing tha t the singular perturbation parame

ter is small w ith  respect to the number of mesh intervals used. This is in  accordance 

w ith  the theoretical result proved in  §4.7. As discussed in  §4.6 th is necessitates the 

employment of an inconsistent fin ite  difference operator so tha t our method satis

fies a discrete comparison principle (see Theorem 4.5.1). However i f  we wish to  use 

a numerical scheme tha t is consistent (i.e. tha t approximates the mixed derivative 

throughout the mesh) then the theorem no longer holds. Therefore, i t  is interesting 

to investigate how a numerical method based on such a scheme performs and how 

the numerical solutions generated compare w ith  those from  our inconsistent scheme. 

This is the purpose of the present subsection. I t  is also convenient to  include here an 

investigation of the performance of our inconsistent scheme for large e.
Let Z N be any mesh function. We define the difference operator L^Con as

and 5£y and 8~ are defined in (4.5.2). Thus the operator L^C(m is the consistent 

analogue of L f  defined in  (4.5.1).

The corresponding numerical method is

M e th o d  5.4.1.

To compare the performance of Methods 4.5.1 and 5.4.1 we consider the problem

where

in 0%,

0 on dfl^.

118



from Problem Class 5.2.2 with a \  =  1, a 2 =  2 and m  =  2:

(e(5uxx +  2muxy +  uyy) +  5ux +  2uy)(x, y ) =  f ( x ,  y ) in  O, (5.4.3a)

u( x, y )  =  0 on dfl.  (5.4.3b)

This problem was chosen so tha t Method 4.5.1 w ill be monotone when applied to  it. 

This can be checked by verify ing tha t the inequalities (5.3.2) are satisfied. O f course 

Method 5.4.1 w ill not be monotone when applied to  this problem (see §4.6). Therefore 

i t  is interesting to  see i f  the numerical solutions generated by th is method exhibit non

physical oscillations not present in  the solutions generated by the monotone method.

In  Figure 5.6 we show the solution generated by M ethod 5.4.1 when applied to 

problem (5.4.3) for particu la r values o f e and N.  There seem to be no non-physical 

oscillations present. This is in  contrast to  what one norm ally finds when a non

monotone method is applied to  a singularly perturbed problems, for example when 

the firs t derivative is approximated by a central difference operator. In  Figure 5.7 

we show the absolute difference between the numerical solutions generated by the 

two methods for the same problem. Observe tha t the largest values occur away from 

the corner of the domain. In  Table 5.4 we show the maximum relative differences 

between the numerical solutions for a range of values of e and N.  The maximum 

relative difference is defined as

m a xg<ij<N  1 UN {xj, Vj) ~  Ucon(x u Vi) | 

m-&xo<i, j<N { \ U N ( x i , y j ) \ , \ U g on( x i , y j ) \ } '

We see from the table tha t for large e the maximum relative differences are approxi

mately constant while for small e they are proportional to  e. In  addition the difference 

between the two solutions for small e is smaller in  magnitude than the corresponding 

two-mesh differences for M ethod 4.5.1. To see th is we compare the computed orders 

of convergence, p^,  and the computed e-uniform  orders of convergence, p N for these 

two methods. Note tha t here we have defined D N for a wider range of values of e 

than we did in (5.3.1):

D n  =  max D f ,
e=l,2— 20

w ith  the definitions of p^  and pN changed sim ilarly. This is because we are interested

119



in  the behaviour of both  methods for large values of e also. We see from  Tables 5.6 

and 5.5 tha t the orders are approximately the same for small e. This is experimental 

justifica tion  for the choice of an inconsistent difference operator.

However, these tables also indicate tha t the use o f a monotone operator is, in  th is 

case, really only to  enable us to prove error estimates, as the non-monotone method 

appears to  behave in  an identical manner for small e, at least for the examples we have 

considered. Moreover, for values of e where our convergence result does not apply we 

see tha t Method 4.5.1 does not give acceptable results. For moderate values o f e (2-5 

and 2~6) we see tha t the computed orders of convergence decrease w ith  increasing 

values of N , whereas i t  can be seen tha t the ^-un iform  orders for the consistent 

scheme behave well. However, there is one drawback to  the non-monotone method 

which explains why Table 5.6 is smaller than Table 5.5. The direct solver uses more 

memory when solving the linear systems associated w ith  Method 5.4.1 than those 

associated w ith  M ethod 4.5.1. The performance of an itera tive solver has not been 

investigated as this would require even more memory.

5 .4 .2  D i f f e r e n t  n u m b e r  o f  m e s h  in t e r v a ls  i n  e a c h  c o - o r d in a t e  

d i r e c t i o n

In  §5.3 we remarked tha t for computational convenience we would choose sample 

problems from Problem Class 5.2.2 so tha t in  order for M ethod 4.5.1 to  be monotone 

i t  would suffice to  have an equal number of mesh intervals in  each co-ordinate d i

rection. This involved taking particular choices for the convection coefficients in  the 

original problem so tha t the inequalities (5.3.2) were satisfied. In  this subsection we 

demonstrate the application of the method for problems where the coefficients are 

not restricted in  th is way. In  this case the inequalities (4.5.7) must be satisfied and 

thus the number of mesh intervals in  each direction w ill possibly be different. For 

problems from Problem Class 5.2.2 these inequalities take the form  (for m  ^  0)

sgn(m) ( x + 7 T ^ )  -  ^  - SBn(m) (: + 3  ’ (5'4'4)

where a  — a \ / a 2. This shows exp lic itly  tha t for particu lar values of a x and a 2 
the number of mesh points required for our method to  be monotone depends on the

120



I •’■J _ I
X -2

Figure 5.6: P lot o f numerical solution generated by Method 5.4.1 applied to problem 
(5.4.3) w ith  e =  2~8 and N  =  128.
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Figure 5.7: P lo t of absolute difference of numerical solutions generated by Methods
4.5.1 and 5.4.1 applied to problem (5.4.3) w ith  e — 2-8 and N  =  128.



Number of Intervals A"
e 8 16 32 64 128 256
1 1.49e-001 1.69e-001 1.76e-001 1.80e-001 1.82e-001 1.82e-001

2~l 1.45e-001 1.61e-001 1.70e-001 1.75e-001 1.78e-001 1.79e-001
2 -2 1.27e-001 1.45e-001 1.62e-001 1.71e-001 1.76e-001 1.78e-001
2 -3 9.66e-002 1.13e-001 1.32e-001 1.43e-001 1.48e-001 1.51e-001
2-4 5.30e-002 7.22e-002 8.53e-002 9.49e-002 1.01e-001 1.04e-001
2-5 3.24e-002 4.01e-002 4.81e-002 5.54e-002 6.00e-002 6.27e-002
2-6 1.79e-002 2.25e-002 2.57e-002 3.02e-002 3.34e-002 3.53e-002
2“ 7 9.35e-003 1.19e-002 1.35e-002 1.59e-002 1.78e-002 1.90e-002
2-s 4.78e-003 6.09e-003 6.86e-003 8.22e-003 9.21e-003 9.93e-003
2-9 2.42e-003 3.09e-003 3.46e-003 4.19e-003 4.70e-003 5.09e-003
2- 10 1.22e-003 1.55e-003 1.74e-003 2.11e-003 2.38e-003 2.58e-003
2 -n 6.11e-004 7.79e-004 8.72e-004 1.06e-003 1.20e-003 1.30e-003
2-12 3.06e-004 3.90e-004 4.36e-004 5.31e-004 5.99e-004 6.53e-004
2-13 1.53e-004 1.95e-004 2.18e-004 2.66e-004 3.00e-004 3.27e-004
2-14 7.65e-005 9.76e-005 1.09e-004 1.33e-004 1.50e-004 1.64e-004
2-iS 3.83e-005 4.88e-005 5.46e-005 6.65e-005 7.51e-005 8.19e-005
2“ 16 1.91e-005 2.44e-005 2.73e-005 3.33e-005 3.76e-005 4.09e-005
2-17 9.57e-006 1.22e-005 1.37e-005 1.66e-005 1.88e-005 2.05e-005
2-i8 4.78e-006 6.10e-006 6.83e-006 8.31e-006 9.39e-006 1.02e-005
2-19 2.39e-006 3.05e-006 3.41e-006 4.16e-006 4.70e-006 5.12e-006
2-20 1.20e-006 1.53e-006 1.71e-006 2.08e-006 2.35e-006 2.56e-006

Table 5.4: M axim um  relative differences between numerical solutions generated by 
Methods 4.5.1 and 5.4.1 applied to  applied to  problem 5.4.3 for m  — 2.
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Number o f Intervals N
e 8 16 32 64 128
1 0.60 0.84 0.94 0.95 0.97

2-1 0.64 0.78 0.90 0.95 0.97
2~2 0.57 0.71 0.84 0.91 0.95
2 "3 0.79 0.83 0.78 0.84 0.91
2-4 0.81 0.50 0.47 0.83 0.66
2~5 0.86 0.69 0.64 0.55 0.53
2-6 0.86 0.78 0.75 0.78 0.58
2-7 0.85 0.78 0.75 0.81 0.83
2-s 0.84 0.77 0.75 0.82 0.84
2-9 0.84 0.76 0.76 0.82 0.84
2 - i° 0.83 0.76 0.76 0.82 0.84
2- u 0.83 0.76 0.76 0.82 0.84
2-ia 0.83 0.76 0.76 0.82 0.84
2 -is 0.83 0.76 0.76 0.82 0.84
2-14 0.83 0.76 0.76 0.82 0.84
2-15 0.83 0.76 0.76 0.82 0.84
2-16 0.83 0.76 0.76 0.82 0.84
2-17 0.83 0.76 0.76 0.82 0.84
2-18 0.83 0.76 0.76 0.82 0.84
2-19 0.83 0.76 0.76 0.82 0.84
2-2° 0.83 0.76 0.76 0.82 0.84

0.83 0.76 0.76 0.82 0.57

Table 5.5: Computed orders of convergence, . and computed e-uniform  orders of 
convergence, pN, for Method 4.5.1 applied to problem 5.4.3 w ith  m  =  2.
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e
Number o f Intervals N

8 16 32 64
1 0.47 0.76 0.88 0.94

2_1 0.59 0.81 0.91 0.95
2-2 0.58 0.79 0.90 0.95
2-3 0.61 0.87 0.93 0.94
2 "4 0.86 0.50 0.49 0.92
2-5 0.80 0.72 0.74 0.77
2-6 0.86 0.77 0.75 0.81
2 "7 0.85 0.77 0.76 0.82
2-8 0.84 0.76 0.76 0.83
2-9 0.84 0.76 0.76 0.82
2-io 0.83 0.76 0.76 0.82
2 -n 0.83 0.76 0.76 0.82
2~12 0.83 0.76 0.76 0.82
2-13 0.83 0.76 0.76 0.82
2~14 0.83 0.76 0.76 0.82
2-15 0.83 0.76 0.76 0.82
2-16 0.83 0.76 0.76 0.82
2-17 0.83 0.76 0.76 0.82
2-18 0.83 0.76 0.76 0.82
2-19 0.83 0.76 0.76 0.82
2-2° 0.83 0.76 0.76 0.82

PN 0.83 0.76 0.76 0.82

Table 5.G: Computed orders of convergence, p ^ , and computed e-uniform orders of 
convergence, pN, for Method 5.4.1 applied to  problem 5.4.3 w ith  m  =  2.
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geometry of the domain.

Consider firs t the case to  >  0. Suppose tha t we have a  =  2. Thus, the inequalities

(5.3.2) w ill not in  general be satisfied. In  this case the region defined by (5.4.4) is 

shown in  Figure 5.8. I t  can be seen tha t for to >  0.5 the lower lim it in  the inequality 

requires tha t Ny/ N x >  1 and the maximum value of this ra tio  is approximately 1.5. 

Also observe tha t as m increases both sides of (5.4.4) tend to 1. More generally for 

a  >  0 as m  increases the upper lim it in  inequality (5.4.4) decreases towards 1 and 

the lower lim it attains its maximum value when m  =  M  =  (1 +  y / T +  a 2) / a  and 

then decreases towards 1. Com puting the maximum value of the lower lim it in  the 

inequality shows tha t when m  =  M  we must take Ny and Nx to  satisfy

/vE> v r n ?
iV, -  1 +  M 2 ’

to guarantee the m onotonicity of our scheme. So for example i f  a, =  5 this bound 

shows tha t we must take more than 3 times the number of mesh intervals in  the y  

co-ordinate direction compared to the x  co-ordinate direction. Thus w ith  a maximum 

lim it of 512 mesh intervals in  each co-ordinate direction th is would severely restrict 

the extent of any illustra tive  table tha t we could produce.

I f  a  <  0 the situation is reversed in  tha t the number of mesh intervals in  the x  

co-ordinate direction may be required to  be greater than the number in  the y co

ordinate direction. However the magnitude of a  in  th is case is restricted by the fact 

tha t the conditions (5.2.8) must be satisfied. Now both sides of the inequality (5.4.4) 

increase w ith  increasing m  towards 1 (see Figure 5.9 which shows the situation when 

a  =  —1). So the smaller to gets the larger Nx must be relative to  N y.
Now consider the case to  <  0. Again the conditions (5.2.8) restrict a.  Specifically 

we must have a  >  —to. The region defined by the inequalities (5.4.4) for a  =  3 is 

shown in  Figure 5.10. I t  can be seen tha t for values of m  close to  0 we can take 

approximately the same number of mesh points in each co-ordinate direction. Also 

observe tha t for m  w ith  larger magnitudes both lim its  in the inequality tend to  0. In  

general the upper lim it in  the inequality decreases towards 0 as the magnitude of to 

increases. The lower lim it attains its maximum value when to  =  M  =  (1—V l  +  a 2) / a  
and then decreases towards 0. This shows tha t as we get closer to vio la ting  the
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m

restriction a  >  — m, wc must take Nx to be progressively larger than N y. Also when 

m  =  M  we must take Nx and Ny to satisfy

Ny V T T c ?
N , ~  1 +  M 2

to guarantee the m onotonicity of the scheme. So for example i f  a  =  5 this bound 

implies tha t we have to  take more than twice the number o f mesh intervals in  the y  

co-ordinate direction than in the x  co-ordinate direction.

To round off this subsection we present numerical results for some sample problems 

where it  is necessary to have a different numbers of mash points in each co-ordinate 

direction. Consider the following problem from Problem Class 5.2.2

Figure 5.8: The region defined by (5.4.4) for a  — 2 and m  >  0.
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m

Figure 5.9: The region defined by (5.4.4) for a  =  — 1 and m  >  0.

P ro b le m  C lass 5.4.1.

(e (( l +  mr)uxx +  2m u xy +  uyy) +  (3 +  m)ux +  uy)(x, y) =  f ( x ,  y)  in ft,

u(x, y)  =  0 on dft.

w ith  m  =  2 and m  =  — 2. I t  is easy to  see tha t for these choices o f m  the conditions

(5.3.2) are not satisfied. The inequalities (5.4.4) become

m =  2 • 2 < ^ t t < 2 5
$  (5.4.6)

m  =  - 2  : 0.4 <  ^  <  0.5.

Thus, i f  we choose Ny =  2N x in  the first case and Nx =  2N v in  the second case 

Method 4.5.1 w ill be monotone when applied to  the two problems. In Tables 5.7 

and 5.8 we present numerical results for this method applied to  these two problems. 

Note tha t the finest mesh tha t we can use here is one w ith  256 mesh intervals in one
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Figure 5.10: The region defined by (5.4.4) for o: =  3 and m  <  0.

co-ordinate direction and 512 rnesh intervals in the other and hence the tables shown 

here arc smaller than those in §5.3. Nevertheless i t  can be seen tha t Method 4.5.1 

used w ith  differing number of mesh intervals in each co-ordinate direction behaves in 

a s im ilar manner to the method w ith  equal number of mesh intervals.

5 .4 .3  T h e  e f f e c t  o f  t h e  m ix e d  d e r i v a t i v e  o n  t h e  la y e r  s t r u c 

t u r e

To conclude this survey of some o f the com putational issues relevant to  the application 

of Method 4.5.1 for problems from Problem Class 4.3.1, we demonstrate numerically 

the effect the mixed derivative term has on the layer structure o f the corresponding 

solutions. To this end consider the following sample problem from Problem Class
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e
Number o f Intervals Nx

8 16 32 64
2-8 0.90 0.80 0.76 0.75
2-i0 0.91 0.80 0.77 0.75
2- u 0.91 0.81 0.77 0.75
2-12 0.91 0.81 0.77 0.75
2~13 0.91 0.81 0.77 0.75
2 -u 0.91 0.81 0.77 0.75
2-i5 0.91 0.81 0.77 0.75
2“ 16 0.91 0.81 0.77 0.75
2-17 0.91 0.81 0.77 0.75
2~18 0.91 0.81 0.77 0.75
2-19 0.91 0.81 0.77 0.75
2-20 0.91 0.81 0.77 0.75

PN 0.91 0.81 0.77 0.75

Table 5.7: Computed orders o f convergence, p£ , and computed e-uniform  orders of 
convergence, pN, for Method 4.5.1 w ith  Ny =  2Nx applied to Problem Class 5.4.1 
w ith  m  =  2.
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£
Number of Intervals Ny

8 16 32 64
2-9 0.65 0.68 0.72 0.79
2- i° 0.63 0.67 0.71 0.78
2 -n 0.62 0.65 0.70 0.76
2 -12 0.61 0.65 0.70 0.76
2 " 13 0.61 0.65 0.69 0.75
2-14 0.61 0.64 0.69 0.75
2- is 0.60 0.64 0.69 0.75
2-16 0.60 0.64 0.69 0.75
2-17 0.60 0.64 0.69 0.75
2-18 0.60 0.64 0.69 0.75
2-19 0.60 0.64 0.69 0.75
2-20 0.60 0.64 0.69 0.75

PN 0.60 0.64 0.69 0.75

Tabic 5.8: Computed orders of convergence, , and computed e-uniform  orders of 
convergence, pN, for Method 4.5.1 w ith  Nx — 2Ny applied to Problem Class 5.4.1 
w ith  m  =  —2.
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5.2.2

(e(2uxx +  2uxy +  u yy)  +  2ux +  uy) (x, y)  =  f ( x , y )  in  ft, (5.4.7a)

u(x, y)  =  0 on 9 ft, (5.4.7b)

and the corresponding problem w ithou t a m ixed derivative term

(e(2uxx +  u y y ) +  2ux +  uy) (x, y)  =  f ( x , y )  in  ft, (5.4.8a)

u( x, y)  =  0 on 9 ft. (5.4.8b)

I t  is easy to  check tha t the inequalities (5.3.2) are satisfied and therefore tha t Method

4.5.1 w ill be monotone when applied to these problems. In  Figure 5.11 we show the 

absolute difference between the numerical solutions generated by M ethod 4.5.1 applied 

to the 2 problems (a) over the whole domain and (b) in  the corner mesh region for 

particu lar values of e  and N.  We see tha t the maximum value of the difference is 

approximately 0.2 and th is value is obtained in  the corner mesh region. Outside of 

th is region the difference is negligible in  magnitude and much smaller than e. Indeed 

for small values of e we can see tha t the maximum value of the difference remains 

constant and always occurs in  the corner region. This is illustra ted  in  Table 5.9 where 

we have calculated the maximum value of the difference for a range of values of e and 

N,  and the mesh point at which this occurs. This verifies the fact tha t, in  our analysis 

in Theorem 4.4.3 of the layer structure of solutions of problems from  Problem Class 

4.3.1, we saw tha t the m ixed derivative term  only had an influence when i t  came to

bounding the functions associated w ith  the corner layer.

5 . 5  A  m o r e  c o m p l i c a t e d  d o m a i n

In  the final section of this thesis we present some numerical results for Method 4.5.1 

applied to  a problem posed on a domain tha t is more complicated than a parallelo

gram. Consider the following choice for the function cj) in (5.2.1):

(f>(rj) =  —m i r f  -  m 2r], (5.5.1)
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0.02

0.015

0.005

0.02

0.015

Figure 5.11: Absolute difference between the numerical solutions generated by
Method 4.5.1 applied to problems 5.4.7 and 5.4.8 on (a) the whole mesh and (b) 
in  the corner mesh region w ith  e =  2-8 and N  =  128.

0.005

0.03
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Number of Intervals N
£ 32 64 128 256 512

2~^~
2- w
2- n
2 - 1 2

2 - 13

2 ~ u

2 - 1 5

2 - i e

2- n
2 - 1 8

2-19
2 - 2 0

0.0198(3,3)
0.0197(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)
0.0196(3,3)

0.0215(4,4)
0.0215(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)
0.0214(4,4)

0.0229(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)
0.0228(7,6)

0.0239(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)
0.0238(10,9)

0.0244(17,15)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)
0.0244(17,14)

Table 5.9: M axim um  absolute differences between the numerical solutions generated 
by Method 4.5.1 applied to problems 5.4.7 and 5.4.8.

where m i and m 2 are constants. In  this case the boundary of the domain Op  is in  gen

eral curved (see Figure 5.12). We w ill continue to  assume th a t the coefficients of the 

convective terms in  the orig inal d ifferential equation are constant. The corresponding 

transformed Problem Class is:

P ro b le m  C lass 5.5.1.

(.s(auxx +  2buxy +  c U y y )  +  a\ux +  a2uy)(x, y) =  f ( x ,  y ) in O,

u(x,  y) — 0 on dO,

where

a(x, y)  =  1 +  (2m iy +  m 2)2, b(x, y)  =  2m iy +  m 2, c(x, y)  =  l,  

ai(x,  y) =  a i +  (2m iy  +  m 2) a2 +  2emi >  0, a2(x, y) =  a 2 >  0.

We see in  th is case tha t some of the coefficients in  the differential equation are 

now variable, in  contrast to  the situation for Problem Class 5.2.2, and tha t depending 

on the values of m i and m 2 the coefficient of the m ixed derivative term  may change
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sign.

Figure 5.12: The domain i i p  with ( j >  as defined in (5.5.1).

For our example we shall take the following values for the constants f?ii, m-», a-j 

and cv?:

m i  =  1, m 2 =  —0.5, cti =  2, a 2 =  1. (5.5.2)

W ith these choices it can be verified that inequalities (4.5.8) are satisfied and so we 

may take N x  =  N y  =  N  in our calculations.

As in §5.3 we examine the performance of the method (in the perturbed case) 

by tabulating the computed orders of convergence, ,  and the computed £- uniform 

orders of convergence, p N ,  with these quantities defined as in that section. We see
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Number of Intervals N

e 8 16 32 64 128
2 " 9 0.86 0.74 0.64 0.67 0.76
2 -io 0.86 0.75 0.65 0.67 0.76
2 - n 0.85 0.75 0.65 0.67 0.76
2 -12 0.85 0.75 0.65 0.67 0.76
2 ~ 13 0.85 0.75 0.65 0.67 0.76
2 ~ u 0.85 0.75 0.65 0.67 0.76
2 -is 0.85 0.75 0.65 0.67 0.76
2 - 1 6 0.85 0.75 0.65 0.67 0.76
2 ~ 17 0.84 0.75 0.65 0.67 0.76
2 ~ 18 0.84 0.75 0.65 0.67 0.76
2 - 1 9 0.84 0.75 0.65 0.67 0.76
2 - 2 0 0.84 0.75 0.65 0.67 0.76
p N 0.84 0.75 0.65 0.67 0.76

Table 5.10: Computed orders of convergence, p £ ,  and computed e-uniform orders of 
convergence, p N , for Method 4.5.1 applied to the problem from Problem Class 5.5.1 
with m i, m2, « i and a 2  given by (5.5.2).

in Table 5.10 that the p ^  are essentially independent of e  and are approaching 1, as 

N  is increased. This indicates that our method is e-uniform for this problem for the 

range of e  considered. We also present a graph of a representative numerical solution 

plotted on the original domain for particular values of e  and N  (Figure 5.13) and 

an illustration of how the piecewise-uniform fitted mesh would look on the original 

domain (Figure 5.14).
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Figure 5.13: Plot of Numerical Solution generated by Method 4.5.1 applied to the 
problem from Problem Class 5.5.1 with m i ,  m 2 ,  a x  and a 2  given by (5.5.2), e  —  2-10 
and N  =  128 on original domain.

1 1
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Figure 5.14: Piecewise-uniform fitted mesh for the problem from Problem Class 5.5.1 
with m i ,  m 2 ,  a x  and a 2  given by (5.5.2) on original domain.
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C h a p t e r  6

C o n c l u s i o n s

In summary, we present what we believe to be the main results and findings of this 

thesis.

•  The nature and location of the boundary layers present in the solutions to prob

lems posed on non-rectangular domains depends on the relationship between the 

geometry of the problem and certain coefficients in the differential equation.

•  For a certain class of singularly perturbed parabolic problems posed on a non- 

rectangular domain it is possible to classify some of the problems into dis

tinct subclasses and apply numerical methods based on piecewise-uniform fitted 

meshes to resolve the layers present.

•  Singularly perturbed elliptic problems posed on non-rectangular domains present 

more difficulties than do corresponding parabolic problems, as a mixed deriva

tive term is introduced into the differential equation under a transformation of 
the independent variables. In particular the construction of a monotone finite 

difference operator is a non-trivial task.

•  It  is possible to construct a monotone finite difference operator for a singularly 

perturbed elliptic equation with a mixed derivative if one considers schemes 

which are inconsistent.

•  A numerical method based on a monotone, inconsistent difference scheme and
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a piecewise-uniform fitted mesh generates numerical solutions which 

uniformly convergent in the perturbed case, i.e. when e  <  C N -1 .
are e-
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