

Dual-Control Switching Materials: A Journey into the Nanoworld of Biochemical Interactions

Michele Zanoni¹, Amy Gelmi², Michael Higgins², Klaudia Wagner², David L. Officer², Gordon G. Wallace² and Dermot Diamond¹

¹CLARITY Centre for Sensor Web Technologies, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland. ² Intelligent Polymer Research Institute, University of Wollongong, Wollongong NSW 2522, Australia

INTRODUCTION

The study of conducting polymers leads to new fascinating applications $^{1-4}$. This work explores the innovative behaviour of hybrid conducting polymer/photo responsive materials, with particular emphasis for use in biomedical applications.

- Study the photochemical reactivity between a spiropyranterthiophene modified polymer and Fibronectin, FN
- Gain control of the surface properties to build interactions with an important biomolecule like FN
- Reproduce the interactions.

1- POLYMER PREPARATION

- BSP-2 obtained through chemical condensation of spiropyran over a terthiophene unit.
- Molecule characterised with UV-vis of BSP-2 (coloured MC-2 at 572nm) in Acetonitrile (ACN). p-BSP2 p-BSP2

p-BSP2 electrochemical polymerization:

- 20 mM solution in 0.1 M TBAP electrolyte
- ITO WE, Ag/AgCl as RE and Pt as CE.

(RED (OX at 0.8V) at -0.4V) (ACN)

2-AFM CANTILEVER **PREPARATION**

Nanoworld PNP-DB tips (a) with gold reflective coating were functionalized with **FN (b)**

- tips cleaned in plasma cleaner placed into a 1 % 3-EDSPA in toluene solution for 2 hours.
- Tips treated with 25 % GAH in PBS for_ 1 hour
- Tips were then placed into a 10 mg/ mL FN in PBS solution for 1 hour, then rinsed with PBS and stored in PBS in the fridge
- Fluorescence spectroscopy proved the presence of FN on the tip.

3-PHOTO-ACTUATION

Photo-actuation was repeated over 5 freshly polymerized films. Cycles of illumination were repeated for 10 times for each film.

4-AFM + FN + pBSP2 INTERACTION

(a) Surface and Topography study of p-BSP2.

(b) Representative curves of FN adhesion to p-BS2 and (c) for p-MC2.

DISCUSSION

- New physical interactions between p-BSP2 and FN manageable photonically
- Higher adhesion of the FN for p-BSP2 isomer
- p-MC2 has reduced affinity for FN surface-charge repulsion
- Good reproducibility pattern over the whole range of experiments.

CONCLUSION

- Measurable interactions between the p-BSP2 and FN.
- The affinity between **p-BSP2** and **FN** can be tuned **photonically**.
- High reproducibility pattern observed during the whole broad range of repetitions.
- Applications are multiple and fascinating: bio-active platforms for tissue regeneration or multi-selective surfaces for analytical devices.

REFERENCES

1. Gilmore KJ, Kita M, Han Y, Higgins MJ, Moulton SE, Clark GM, Kapsa R and Wallace GG., Biomaterials, 2009, 30 (29), 5292-5304.

2.Gelmi, A., Higgins, M.J., Wallace, G.G., Biomaterials, 2010, 31, 1974-1983. 3.X. Liu, J. Chen, K. J. Gilmore, M. J. Higgins, Y. Liu, G. G. Wallace, J. Biomed. Materials Res. Part A, 2009, 1004-1011. 4.D. Grafahrend, K.-H. Heffels, M. V. Beer, P. Gasteier, M. Möller, G. Boehm, P.D. Dalton, and J. Groll, Nature Materials, **2011**, 10, 68-73

This work is supported by Science Foundation of Ireland under grant 07/CE/I1147