
Analyzing Impacts of Change Operations in

Evolving Ontologies

Yalemisew M. Abgaz1, Muhammad Javed2, Claus Pahl3

Centre for Next Generation Localization (CNGL),
School of Computing, Dublin City University, Dublin 9, Ireland

{yabgaz1|mjaved2|cpahl3}@computing.dcu.ie

Abstract. Ontologies evolve over time to adapt to the dynamically
changing knowledge in a domain. The evolution includes addition of new
entities and modification or deletion of obsolete entities. These changes
could have impacts on the remaining entities and dependent systems
of the ontology. In this paper, we address the impacts of changes prior
to their permanent implementation. To this end, we identify possible
structural and semantic impacts and propose a bottom-up change im-
pact analysis method which contains two phases. The first phase focuses
on analyzing impacts of atomic change operations and the second phase
focuses on analyzing impacts of composite changes which include im-
pact cancellation, balancing and transformation due to implementation
of two or more atomic changes. This method provides crucial information
on the impacts and could be used for selecting evolution strategies and
conducting what-if analysis before evolving the ontologies.

Keywords: Ontology evolution, change impact analysis, structural im-
pacts, semantic impacts.

1 Introduction

Semantic web applications widely use ontologies to formally represent and ex-
plicitly specify the domain of discourse. Semantic web applications annotate
content using ontologies and make inference using reasoners [1] [2] [3]. In vari-
ous domains, ontologies serve as sources of semantics, which contain commonly
agreed meaning of concepts and relationships among concepts [7][8]. Despite the
agreement, neither the domain knowledge nor the ontologies are permanent. The
dynamics in a domain causes ontologies to evolve frequently over time [4].

Ontologies evolve whenever there is a change in the specification, representa-
tion or conceptualization of the domain [4]. These changes are additions of new
concepts, modifications of existing ones or removal of obsolete or erroneous repre-
sentations. The changing entities are concepts, properties, instances and axioms.
When ontologies evolve, a change of one entity may cause many unseen and un-
desired impacts on dependent entities [4] [9]. It is arduous and time consuming
to manually catch these impacts. However, they later cause inconsistencies in
the ontology [5] [6]. Thus, before permanent implementation of the changes, it

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11311129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is vital to conduct change impact analysis to understand which structural and
semantic impacts occur and which entities are affected [10].

Despite the importance of impact analysis in evolving ontologies, only a few
approaches proposed. In [11], we proposed a framework for change impact analy-
sis, focussing on empirical observation to understand and define necessary com-
ponents of the framework. A six-phase evolution framework is widely used to
evolve ontologies [12] [13] [14]. The semantics of change phase deals with de-
rived change operations to consistently evolve the ontology. Our work provides
detailed analysis of how and why the changes affect the entities. Closely related
research [5] [15] focuses on formal approaches for evolving RDF/S ontologies us-
ing a formal, well-specified way which is inspired by belief revision principles. [6]
discusses evolution of OWL ontologies with the aim of guaranteeing validity of
data instances. Our approach takes this further to analyze impacts numerically
and compare different implementation results based on different metrics. Others
suggest promptDiff [16] to analyze the structural changes between two versions
of ontologies. We only require the original version and the change operations to
process the potential impacts and allows the user to analyze different scenarios.

Many of these works focus on addressing the changes in terms of consis-
tency of the ontology, focusing less on the structural and semantic impacts of
the changes on the entities. In [10], the authors provide a critical evaluation of
existing evolution approaches and propose an analysis of after-effects of ontol-
ogy evolution. [17] highlights assertional effects of ontology editing activities in
OWL. Their work is closely related to our work, but focuses more on highlighting
the consequences of terminological axioms on the assertion axioms.

Here, we propose a bottom-up approach to analyze the impacts of atomic
and composite change operations. Analyzing the impacts of individual change
operations and also composite change operations enables us to understand the
impact, i.e. entities impacted and the reason for the impact. This provides the
user with semantic and structural impacts of a change operation before the
change is permanently implemented. It allows us to compare different imple-
mentation strategies and suggests the optimal strategy with minimum impact.
This feature can be exploited in a fully automated evolution environment. It
further makes the evolution process transparent to the user by providing details
on the number of changes, the statement types and the additions and deletions
of entities.

The paper is organized as follows: Section 2 gives background on representa-
tion of ontologies and dependencies between entities. Section 3 introduces struc-
tural and semantic impacts. We discuss the change impact analysis method in
Section 4 and a comparative evaluation in Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Graph-based Representation of the Ontology

In this research we use graphs to represent OWL-DL ontologies. We represent
classes, properties and instances as nodes and axioms as edges that connect

these nodes. An ontology O is represented by a directed labeled graph O =
(N,E) where N is a set of nodes {N1, N2, . . . Nm} which represents classes, data
properties and object properties and instance. The nodes represent named or
anonymous classes and instances. They further represent user-defined properties
or OWL/RDFS properties such as rfds:subClassOf and owl:disjointClass. E is
a set of labeled edges { E1, E2, . . . En }. An edge Ei is written as (N1, α,N2)
where N1, N2 ∈ N and α represents class axioms, data property axioms, object
property axioms, class assertion axioms and restriction axioms 1. The label of
any edge Ei = (N1, α,N2), which is represented by α , is a string given by
label(Ei). The type of any node is given by type(N) which returns the type
of a node as class node, data property node, object property node and instance
node. A sample graph representation of university domain ontology in OWL
language is give in Fig 1.

Person

Student Teacher

Undergraduate Postgraduate LecturerProfessor

rdfs : subclassOf rdfs : subclassOf

rdfs : subclassOf rdfs : subclassOf rdfs : subclassOfrdfs : subclassOf

hasSupervisor

rdfs :domain rdfs :range

owl: disjointWith

Yalemisew Claus

rdf :typerdf :type

James cngl : hasSupervisor

rdf :type
SuperviserOf

owl: inverseOf

Fig. 1. A Graph representation of university ontology

2.2 Entity Dependency in Ontologies

Understanding the dependencies between entities is a starting point for analyzing
the impacts of change operations on dependent entities [18]. Thus, characteriza-
tion, representation and analysis of dependencies within and among the ontology
entities is the major input for impact analysis. We define dependency as a re-
liance of one node on another node to get its structural and semantic meanings.
The edges between two nodes indicate the dependency of one node on the other
node. Given an ontology graph O = (N,E), and two nodes N1, N2 ∈ N ,N1 is de-
pendent on N2 represented by Dep(N1, N2), if ∃ Ei ∈ E where Ei = (N1, α,N2).
Where N1 is the dependent entity and N2 is the antecedent entity.

The dependency between two entities provides substantial information about
how a change in one entity affects the structure and the semantics of the de-
pendent entities. This research exploits different dependency types to analyze
impacts and identify affected entities whenever an antecedent entity evolves.

1 http://www.w3.org/TR/owl2-syntax/

2.3 Types of Dependency

We identify eight different types of dependencies between entities [19]. The de-
pendencies can be direct or indirect. Indirect dependencies are identified by it-
eratively implementing direct dependencies. Due to space constraint we present
only three of the dependencies that we use in consecutive examples. Details of
the dependencies can be found in [19].

1. Concept-Concept Dependency: for a graph O = (N,E) and concept
nodes C1, C2 ∈ N , C1 is dependent on C2 represented by CCDep(C1, C2),
if ∃ Dep(C1, C2) ∧ (label(Ei) = “rdfs : subClassOf”) ∧ (type(C1) =
type(C2) = “Class”). Concept-concept dependency is transitive.

2. Concept-Axiom Dependency: for a graph O = (N,E), a class node
C1, and any node Ni ∈ N and an edge E1 ∈ E, E1 is dependent on C1

represented by CADep(E1, C1), if (E1 = (C1, α,Ni) ∨ E1 = (Ni, α, C1)) ∧
(type(C1) = “class”).

3. Concept-Instance Dependency: for a graphO = (N,E) and an instance
node I1 and a concept node C1 ∈ N , I1 is dependent on C1 represented by
CIDep(I1, C1) if ∃ Ei ∈ E where Ei = (I1, α, C1) ∧ (label(Ei) = “rdf :
type”) ∧ (type(I1) = “instance”) ∧ (type(C1) = “class”).

3 Impacts of Change Operations

Impacts of change operations are diverse. For a better analysis, we divide them
into structural and semantic impacts. We further studied the change operations
that cause the impacts and the reasons why the impacts occur. All entities in
an ontology are subject to change and are impacted by change operations in one
way or another way. To represent all the constructs of an ontology collectively,
we use the term Entity (E). However, to refer to a specific constructs, we replace
the term Entity (E) by Class (C), Data Property (DP), Object Property (OP),
Instance (I), Axiom (A) and Restriction(R) whenever appropriate.

Structural impacts are impacts that affect the structure of the ontology enti-
ties. They occur when there is a structural change in the ontology [4]. From an
empirical study [11], we identify the following structural impacts.

StrImp = {OC,CCR,OPCR,DPCR,OI,AE,DE}

– Orphan Concept (OC) occurs when a given concept is introduced without
a superclass other than the default “Thing” class. Generally OWL allows
orphan classes, but sometimes the application requirement do not.

– Concept Cyclic Reference (CCR) occurs when a change operation in-
troduces a cyclic reference between concepts.

– Object Property Cyclic Reference (OPCR) occurs when a change op-
eration introduces a cyclic reference between object properties.

– Data Property Cyclic Reference (DPCR) occurs when a change oper-
ation introduces a cyclic reference between data properties.

– Orphan Instances (OI) occurs when a change operation introduces/makes
an instance with noa link to a specific class.

– Addition of new Entity (AE) when an entity is added to the ontology.
– Deletion of existing Entity (DE) when an entity is removed.

The last two structural impacts directly correspond to the change operations
and are straight forward. We consider them as impacts because they are side
effects of the evolution process and they play a significant role during composite
change impact analysis.

Semantic impacts are impacts that change the interpretation of the entities.
Whenever a change occurs, it may change the existing information about the
target entity or the dependent entities. The semantic impacts are derived from
either structural or semantic changes [6].

SemImp = {EMD,ELD,PMR,PLR,AME,ALE,EG,ES,EI, UE, IE}

– Entity More Described (EMD)={CMD, DPMD, OPMD, IMD} occurs
when we add previously unknown semantic (facts) about an entity.

– Entity Less Described (ELD)={CLD, DPLD, OPLD, ILD} occurs when
we remove an existing semantics (facts) about an entity.

– Property More Restricted (PMR)={OPMR, DPMR} occurs when the
existing semantics of a property is more restricted.

– Property Less Restricted (PLR)={OPLR, DPLR} occurs when the ex-
isting semantics of a property is less restricted.

– Axiom More Expanded (AME) occurs when an axiom further extends
its semantics to other entities.

– Axiom Less Expanded (ALE) occurs when an axiom further restricts its
semantics to fewer entities.

– Entity Generalized (EG)={CG, DPG, OPG, IG} occurs when an entity
become more general (move up in the hierarchy).

– Entity Specialized (ES)={CS, DPS, OPS, IS} occurs when an entity
become more specific (move down in the hierarchy).

– Entity Incomparable (EI)={CI, DPI, OPI, II} occurs when a change on
an entity neither generalize nor specialize the entity.

– Unsatisfiable Entity (UE)={UC, UDP, UOP, UA} occurs when a change
on a given entity introduces logical contradiction [20].

– Invalid Entity (IE)={II, IIP} occurs when a change on a given instance
or instance property(IP) introduces invalid interpretation [6].

4 Change Impact Analysis Process

Change impact analysis process takes a change request from the user and iden-
tifies the impacts of the change operations used to implement the request. It
further identifies which entities are impacted by the change. We use a bottom-
up approach which identify the possible impacts of individual atomic changes
then analyze impacts of composite and domain specific change operations.

4.1 Individual Change Impact Analysis

Individual change impact analysis takes a single and atomic change operation
and identifies the structural and semantic impacts together with the impacted
entities. This phase uses addition and deletion operations, the target entities (E)
and the parameters to determine the impacts of the atomic change operation.
We studied and identified the possible impacts and preconditions for the impacts
of atomic change operations. We present only five of the change operations and
their associated impacts in Table 1.

Table 1. Impacts of selected atomic change operations

No Change Oper-
ation

Impact
Type

Impact (Entity) Impact Precondition

1 Add Class (C) Structural AC(C), OC(C) None
2 Add subClass Structural AA (FullAxiom) None

(C1, C) CCR(C1), CCR (C) ∃ CCDep(C, C1)
Semantic UC (C1) ∃ CCDep(C1, D) ∧

disjointClass(C, D)
CMD(C1), CMD(C) None

10 Delete Class Structural DC (C) None
(C) Semantic UA (ai) ∃ CADep(ai, C)

11 Delete subclass Structural DA (FullAxiom) None
(C1, C) OC (C1) ∃ CCDep(C1, C) ∧ � ∃ CCDep(C1, D)

∧ C �= D
Semantic CLD(C1), CLD (C) None

22 Add Disjoint Structural AA (FullAxiom) None
Class(C1, C2) Semantic UC (C1), UC(C2) ∃ CCDep(C, C1)∧ CCDep(C, C2)

II(I) ∃ CIDep(i, C1)∧ CIDep(i, C2)

Let us use examples from Figure 1 to elaborate the impacts presented in Table
1. The AddClass(Student) change introduces a new class AC(Student) and the
class becomes orphan OC(Student). When we use Add subclassOf(Student, Per-
son), we add a new axiom (AA) and since the precondition is not satisfied, we do
not assign CCR(Student) and CCR(Person). The addition of the axiom seman-
tically describes the two classes CMD(Student) and CMD(Person). Whenever
we delete a class, say DeleteClass(Faculty), we remove the class DC(Faculty)
and create unsatisfiable axioms which refer to the deleted class. All the three
subcalssOf axioms referring to the deleted class become unsatisfiable (UA).
Whenever we delete a subclass axiom, say, Delete subclass (Faculty, Person),
we delete the axiom (DA) and we may introduce orphan class OC(Faculty) if
Person is the only parent class of Faculty. But if Faculty has another super
class, OC(Faculty) will not occur. However, both classes become semantically
less described CLD(Faculty), CLD(Person) due to the removal of a previously
known fact about Faculty and Person.

We take another example to further elaborate atomic change impact analysis.
The impact ofDelete subclassOf(Lecturer, Faculty) operation, without additional
change operations, is given in Table 2.

Table 2. An Example of impact of single atomic change operation

Change Operation Structural Impact Semantic Impact
Delete subclassOf(Lecturer,Faculty) DA(FullAxiom) CLD(Lecturer)

OC(Lecturer) CLD(Faculty)

Single atomic change operations are frequently used by ontology engineers.
But despite their simplicity and atomicity, they may have complex impacts which
are difficult to identify manually. Thus, individual impact analysis serves this
purpose and is used as an input for composite change impact analysis phase.

4.2 Composite Change Impact Analysis

Ontology engineers compose two or more atomic change operations to perform
a single task. In such cases, they group related atomic changes and implement
them as a transaction. Two or more atomic change operations that are executed
together as a transaction are called composite change operations [4]. When a
composite change operation is implemented, the impacts of the composite change
may not be the same as the aggregation of the impacts of its constituent indi-
vidual atomic change operations. Composite change impact analysis identifies
techniques to analyze the impacts of composite change operations. To analyze
these impacts we employ novel techniques such as impact cancellation, impact
balancing and impact transformation.

Impact Cancellation is applied on impacts of two change operations when
the impact of one operation cancels or overrides the impact of the other opera-
tion. This means, if the impact of a given change operation nullifies the impact
caused by another operation, or when one impact subsumes the other impact,
we say one impact cancels the other. We use heuristics to identify impacts that
cancel each other. The heuristic rules are derived from our observation of case
studies and are validated using experiments [11].

Rule 1. When a target entity is affected by a given change operation but
if that target entity is deleted by another change operation, all the structural
and semantic impacts of the first operation will be canceled by the structural
impact(DE) of the second operation. Based on this we identify canceling and
canceled impacts. Using Rule 1, the delete entity DE(x) impact overrides or
cancels all the semantic and structural impacts of the entity x.

Rule 2. When a change operation is executed, if it introduces an impact, but
if another change operation falsifies the precondition of the previous impact, the
first impact of the entity will be canceled. For example, the impact of addclass(x)
is OC(x), because x is not yet linked to a parent class. But if the composite
change contains addsubclass(x, y), this statement falsifies the precondition of the
first statement, thus we cancel the OC(x) impact of the first change operation
due to the second change operation which makes x no more orphan.

A typical characteristics of cancellation is, it occurs between two additions
or two deletion operations, but one acts on a node (e.g. class) and the other on
the edge (e.g. subclassOf) linked to that node. Impact cancellation is used to
filter out impacts which are overridden or nullified by other impacts.

Table 3. Impact cancellation using heuristic Rule-1

No Change Operation Before cancellation After cancellation
StrImp SemImp StrImp SemImp

1 Delete SubClassOf OC (Faculty) CLD (Faculty) None CLD (Person
(Faculty, Person) CLD (Person)

2 Delete Class(Faculty) DC (Faculty) None DC (Faculty) None

The example in Table 3 elaborates how the impact cancellation process is
used to analyze impacts of composite change operations. The first change opera-
tion deletes the subclassOf axiom, and introduces OC (Faculty), CLD (Faculty)
and CLD (Person) impacts. However the following change operation deletes the
class Faculty and causes DC (Faculty) impact. Based on Rule 1, the OC (Fac-
ulty) and CLD (Faculty) impacts are canceled from the first operation because
the class Faculty is removed. Note that the CLD (Person) impact is still there.

Impact Balancing The impacts of two change operations balance each
other when one change operation introduces an impact to an entity and another
change operation removes the impact from the entity. Unlike impact cancellation,
impact balancing only occurs between an addition and a deletion operation with
the same target entity (class with class and subclass with subclass).

Rule 3. When a given change operation affects the target entity with an im-
pact, and when another change operation affects the same entity with a counter
impact or vice versa, the two change operations can be balanced.

Table 4. Candidate impacts for balancing

Impacts Counter-Impact
Entity More Described (EMD) Entity Less Described (ELD)
Axioms More Expanded (AME) Axioms Less Expanded (ALE)
Object Property Less Restricted (OPLR) Object Property More Restricted (OPMR)
Addition of new Entity (AE) Deletion of existing Entity (DE)

Let us take two atomic change operations from the previous example. Add
subclass (Professor, person) and delete subclass (Professor, Faculty). When we
delete Faculty, depending on our strategy we may link the subclasses of Faculty
with the class Person. Thus, when we execute the two change operations as part
of a composite change, we balance the impacts as follows.

Table 5. Impact balancing using Rule-3

No Change Operation Before balancing After balancing
StrImp SemImp StrImp SemImp

1 Add SubClassOf AA (FullAxiom) CMD (Professor) None None
(Professor, Person) CMD (Person)

2 Delete SubClassOf DA (FullAxiom) CLD (Professor) None CLD (Faculty)
(Professor, Faculty) CLD (Faculty)

After balancing of the operations in Table 5, we remove the CLD and CMD
semantic impacts and the AA and DA structural impacts. However, when two
change impacts balance each other, they may introduce a higher level impact
which is caused by composite change operations. Some change operations may
introduce impacts such as specialization or generalization of the entities, more
restriction or less restriction on cardinalities of properties. Thus, the original
change impacts are transformed to create another change impacts. In such situ-
ations, we move to impact transformation step.

Impact Transformation When one impact is balanced with another im-
pact, it may introduce another set of impacts that are created due to more than
one change operation. The balancing of two or more impacts transform existing
impacts to another impact set which are not observed at atomic change levels.
Two balancing change operations may introduce generalization, specialization

or incomparability of entities. We present one of the heuristics that is used to
check transformation of impacts related to entity hierarchies.

Rule 4.When impacts of two change operations balance and if the operations
are applied to subclass, subDataProperty, subObjectProperty or classAssertion
axioms, the balancing impacts transform to generalization, specialization or in-
comparable impact depending on the new location of the entity in the hierarchy.

For all balancing impacts, we need to check whether those balancing impacts
further indicate other impacts. In Table 5, class Professor has CMD(Professor)
and CLD(Professor) impacts by the the two change operations. However, the
concept Professor is generalized CG(Professor) and becomes a direct subclass
of Person. Generalization means that the entity moves up the hierarchy; spe-
cialization when it moves down.

Table 6. Impact transformation using Rule-4

No Change Operation Before Transformation After Transformation
StrImp SemImp StrImp SemImp

1 Add SubClassOf AA (FullAxiom) CMD (Professor) None CG(Professor)
(Professor, Person) CMD (Person)

2 Delete SubClassOf DA (FullAxiom) CLD (Professor) None CLD (Faculty)
(Professor, Faculty) CLD (Faculty)

In this case, the second structural impact of the second change operation will
be reduced due to impact balancing. However, the semantic impact of the first
change operation will be transformed to another impact and the transformation
is determined by the current location of the target entity. Thus, the semantic
impact is generalization, as Professor class goes up the hierarchy.

4.3 Exploiting Impact Analysis to Evolve Ontologies

Change impact analysis method is used to identify possible impacts of change
operations and helps to make an informed decision about the impacts of the
change on both the structure and the semantics of the ontology. It further allows
us to compare different implementation strategies and select the one with a
minimum impact on the ontology. Now let us take the Delete class (Faculty)
operation and see how the change impact analysis can be exploited.

When we delete Faculty, we need to make a decision either to link its sub-
classes to Person class, delete all the subclasses together with the class or just
delete the class Person and its references from the ontology. Thus, “Attach”
strategy attaches the subclasses to Person and “Cascade” strategy cascades the
deletion to dependent subclasses and “No Action” strategy takes no action ex-
cept deleting the class and its references. We generate the respective composite
change operations and analyze their impacts following the approach discussed
above. The results are discussed in Table 7.

At this stage of the research, we use number of impacts to compare the
strategies by analyzing the number of impacts. However, strategy selection can
be analyzed using different metrics such as the severity of the impacts and the
amount of change in the inferred ontology using a reasoner. Using the number
of impacts, a preferable strategy is the one with minimum number of impacts.

Table 7. Comparison of impacts of different implementation strategies

Impact Frequency
Attach to parent Cascade No Action

Semantic Impacts
Class Less Described (CLD) 1 3 3
Object Property Less Described (OPLD) 0 1 0
Instance Less Described (ILD) 0 1 0
Concept Generalized (CG) 2 0 0

Structural Impacts
Orphan Class (OC) 0 0 2
Deleted Class (DC) 1 3 1
Deleted Axiom (DA) 1 6 3
Deleted Instance (DI) 0 1 0
Total structural and semantic Impacts 5 15 9

Additional analysis
Addition Operation 2 0 0
Deletion Operation 4 10 4
TBox Statements 6 7 4
ABox Statements 0 3 0
Time required in milliseconds 100 150 75

“Attach” strategy ranks first with 5 impacts and the “No Action” strategy ranks
second with 9 impacts. Thus, in terms of number of impacts, the first strategy is
better. However, if we compare “cascade” and “no action” strategies, the latter
strategy introduces orphan class. If we don’t allow orphan classes, this strategy
becomes less preferable in terms of keeping the consistency of the ontology. If a
strategy introduces impacts such as OC, UE and IE, in general they are less
preferable. However, this comparison requires further analysis on the severity
of the impacts in a given ontology. The additional information can be used
to further enhance the selection by evaluating the additions, deletions and the
statement types that are affected by a given strategy.

5 Evaluation

We build a prototype to implement our method and compare it with the function-
alities of existing tools. We selected widely used editors (Protege and Neon) and
compare them with our prototype based on availability of structural and seman-
tic impacts, transparency of the evolution, available strategy, optimal strategy
suggestion and reversibility [21].

For the purpose of the evaluation, we use an ontology built for software help
management which contains 80 classes, 8 data properties, 10 object properties
and more than 500 axioms. We use 10 change operations representing differ-
ent change scenarios. Two ontology evolution experts and two ontology users
participate in the comparative evaluation.

The results in Table 8 show that our approach is capable of filling the gap
observed in existing ontology editors. The available tools do not support impact
analysis. But, we introduce change impact analysis with structural and semantic
impacts capable of comparing and selecting best strategies. It shows each change,
detailed impacts and the causes of the impacts. This feature provides a trans-
parent evolution process. The change impact analysis compares implementation
strategies based on their structural and semantic impacts. The analysis results
can be used to automatically select implementation strategies. Our approach
preserves features of other editors such as undo and redoes functionalities.

Table 8. Comparison of impacts of different implementation strategies

Criteria Protege Neon Ours
Structural Impact does not show details

of structural impact
shows structural
changes

shows changes, impacts, im-
pacted entities and gives ex-
planation

Semantic Impact does not show seman-
tic impact before im-
plementation

does not show seman-
tic impact before im-
plementation

shows impacts, impacted en-
tities and gives explanation

Transparency user don’t know which
entities are affected be-
fore the change

structural impacts are
transparent but not se-
mantic impacts

users are able to see de-
tailed impacts of atomic or
composite changes (how and
why)

Implementation
strategy

Delete target entity
and delete entity and
its reference

allow composition by
adding or removing
atomic changes

allows attach all, cascade, no
action for TBox and ABox
whenever applicable

Optimal strategy
suggestion

Not available Not Available compares and shows the op-
timal strategy

Reversibility provides undo and redo provides undo and redo provides undo and redo

6 Conclusion and Future Work

Changes in ontologies cause different impacts on entities and dependent sys-
tems. It is difficult to manually identify the structural and semantic impacts of
these changes. We presented a change impact analysis method which begins with
atomic changes and move to composite change operations to analyze semantic
impacts including unsatisfiable statements and invalid instances. The proposed
approach benefits users by enabling them to view the actual impacts of change
operations and the causes of the impacts. It further enables them to compare
implementation strategies in terms of impact. It allows transparent evolution
by providing the impacts of changes as individual and/or composite operations.
The process allows users to conduct a what-if analysis before they permanently
implement changes. This approach has a potential for automatic selection of
optimal implementation strategies which ensure consistent evolution whenever
there is an alternative implementation strategy. Exploiting change impact anal-
ysis for the selection of optimal strategy based on criteria such as severity of
impacts, number of change operations, statement types, incremental and decre-
mental changes is our future task.

Acknowledgment. This material is based upon works supported by the Sci-
ence Foundation Ireland under Grant No. 07/CE/I1142 as part of the Centre for
Next Generation Localisation (www.cngl.ie) at Dublin City University (DCU).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

2. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied computing. (2005) 1634–1638

3. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management:requirements and
survey of the state of the art. Web Semantics: Science, Services and Agents on
World Wide Web. 4(1) (2006) 14–28

4. Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis, University
of Karlsruhe (2004)

5. Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.: A formal ap-
proach for rdf/s ontology evolution. In: Proceedings 18th European Conference on
Artificial Intelligence ECAI 2008. (2008) 70–74

6. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology
evolution over the semantic web. Inf and Softw Techn. 51(1) (2009) 83–97

7. Holohan, E., Melia, M., McMullen, D., Pahl, C.: The generation of e-learning exer-
cise problems from subject ontologies. Sixth International Conference on Advanced
Learning Technologies. (2006) 967–969.

8. Pahl, C., Giesecke, S., Hasselbring, W.: An ontology-based approach for modelling
architectural styles In: European Conference on Software Architecture ECSA’2007.
Springer-Verlag (LNCS Series) (2007) 60–75

9. Gruhn, V., Pahl, C., Wever, M.: Data Model Evolution as Basis of Business Process
Management. In: 14th International Conference on Object-Oriented and Entity
Relationship Modelling O-O ER95. Springer-Verlag (LNCS Series). (1995)

10. Khattak, A., Pervez, Z., Lee, S., Lee, Y.K.: After effects of ontology evolution. In:
5th International Conference on Future Information Technology. (2010) 1–6

11. Abgaz, Y., Javed, M., Pahl, C.: A framework for change impact analysis of
ontology-driven content-based systems. In: On the Move to Meaningful Internet
Systems: OTM 2011 Workshops. Lecture Notes in Computer Science. (2011)

12. Stojanovic, L., Stojanovic, N., Handschuh, S.: Evolution of the metadata in the
ontology-based knowledge management systems. In: Proceedings of the 1st German
Workshop on on Experience Management: Sharing Experiences about the Sharing
of Experience, GI (2002) 65–77

13. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution
in collaborative environments. In: 5th International Semantic Web Conference,
Springer-LNCS (2006) 544–558

14. Plessers, P., De Troyer, O., Casteleyn, S.: Understanding ontology evolution: A
change detection approach. Web Semant. 5(1) (March 2007) 39–49

15. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: On-
tology change: Classification and survey. The Knowledge Engineering Review
23(02) (2008) 117–152

16. Noy, N.F., Musen, M.A.: Promptdiff: A fixed-point algorithm for comparing on-
tology versions. In: AAAI/IAAI’2002. (2002) 744–750

17. Pammer, V., Serafini, L., Lindstaedt, S. In: Highlighting assertional effects of
ontology editing activities in OWL. Volume 519. CEUR Workshops (2009)

18. Cox, L., Harry, D., Skipper, D., Delugach, H.S.: Dependency analysis using con-
ceptual graphs. In: Proceedings of the 9th International Conference on Conceptual
Structures, ICCS 2001, Springer (2001)

19. Abgaz, Y., Javed, M., Pahl, C.: Dependency analysis in ontology-driven content-
based systems. In Rutkowski, L. et al., eds.: Artificial Intelligence and Soft Com-
puting. LNCS 7268. (2012) 3–12

20. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York, NY, USA (2003)

21. Stojanovic, L., Motik, B.: Ontology evolution within ontology editors. Proceedings
of the OntoWebSIG3 Workshop 68 (2002) 568–580

22. Javed, M., Abgaz, Y.M., Pahl, C.: A pattern-based framework of change operators
for ontology evolution. In: On the Move to Meaningful Internet Systems: OTM
Workshops. Volume 5872 of LNCS., Springer (2009) 544–553.

