
Implementation of an Identity Based Encryption
sub-system for secure e-Mail and other Applications

N e i l C o s t ig a n

B a ch e lo r o f Sc ience (C o m p u te r A p p lic a t io n s)

A d is se r ta t io n su b m it te d in p a r t ia l fu lf ilm en t o f the

requ irem en ts fo r th e aw ard o f

M S c . (R e se a rc h) C o m p u te r S c ie n ce .

to th e

D u b lin C i t y U n iv e rs ity

S c h o o l o f C o m p u t in g

S u p e rv is o r : D r . M ic h a e l S c o t t

July, 2004

Declaration

I hereby c e r t ify th a t th is m a te r ia l, w h ich I now su b m it fo r assessm ent on the p rog ram m e

o f s tu d y le ad in g to th e aw ard o f M S c . (R e se a rc h) is e n t ire ly m y ow n w o rk and has not

been taken from the w o rk o f o the rs save and to the ex ten t th a t su ch w o rk has been c ited

and acknow ledged w ith in the te x t o f m y w o rk .

D a te Ju ly , 2004

i

A c k n o w l e d g m e n t s

I ’d lik e to th a n k m y su pe rv iso r , M ik e S co tt , w ho to o k the b rave de c is ion to take th is

m a tu re , und e r-qu a lif ie d ca n d id a te in to h is research g roup . I hope the tru s t has been

repa id .

M y co lleague N o e l M c C u lla g h w ho answ ered m y coun tle ss t r iv ia l question s in a m anner

b e f it t in g h is end less pa tience . A tru e gent.

B a rry , C la ire , D a v id , D ru , G a v , Hego, K a r l, N ia l l , N o reen , R o h a n , Tunney , & the coun tless

o the rs w ho g raced th e p o s t-g rad D ilb e r t zone.

E n te rp r is e I re la n d w ho sponso red the ca n d id a te s research w o rk und e r R I F fund .

M y s is te r C a ro ly n fo r ta k in g the t im e to e d it m an y d ra fts , m y b ro th e rs P a u l and D a v id

fo r c o n s ta n t encou ragem ent.

M y fo rm e r p a rtn e rs an d co lleagues a t C e lo C o m m u n ic a t io n s & G e m p lu s w ho, in a way,

p a id fo r th is .

R e s id en ts and fr ien d s o f :

Rathnapish Carlow. Collins Ave, 123 Swords Rd, Grace Park Heights, Dalcassian Downs, Russell
Avenue, 147 Pearse Street, 65 Dame Street & 25 Percy Lane Dublin. Finsbury Park, Brixton, Archway
:- Loudon. Comm Ave :- Boston. Uppsalla. Sodermalm, Birkaslan, Stora Essingen, Arsta, Norrviken,
Hammerby SjoStad :- Stockholm. Geary&Laguna, Bay&Stockton : - San Francisco. Avenue des Infirmeries
:- Aix-en-Provence. Kalviksholm Lulea.

M u m & D a d fo r en cou rag ing us to s t ic k to th e b oo k s regard less o f the cost to them se lves.

I hope th e y s t i l l t h in k it w as w o rth it.

In M e m o ry o f m y b ro th e r Jo e w ho c e r ta in ly liv ened up the f irs t a t te m p t at a degree.

To Vicki.

Fo r su ffe r in g m e an d o u r m an y re - lo ca t io n s I ’ l l w r ite th e n e x t thesis in Sw ed ish . I

p rom ise .

Im p lem en ta tio n o f an Id e n t ity Based E n c ry p t io n sub -sys tem fo r secure e -M a il and o the r

A p p lic a t io n s N e il C o s t ig an

Abstract

T h is thesis de sc rib es th e requ irem en ts for, and design of, a su ite o f a sub -system s w h ich

su p p o rt the in tro d u c t io n o f Id e n t ity Based E n c ry p t io n (IB E) to In te rn e t com m u n ica t io n s .

C u r re n t m e thod s fo r se cu rin g In te rne t t ra n sm is s io n are o ve rly co m p le x to users and re­

qu ire expens ive and co m p le x su p p o rt in g in fra s tru c tu re fo r d is t r ib u t in g c re den tia ls such

as ce rt if ica te s o r p u b lic keys. Id e n tity B a sed E n c ry p t io n ho ld s a p rom ise o f s im p lify in g

the p rocess w ith o u t co m p ro m is in g the se cu rity . In th is thes is I w il l o u t lin e th e theo ry

b e h in d the c ry p to g ra p h y requ ired , g ive a b a ckg round to e -M a il and m essag ing p ro to co ls ,

th e cu rre n t s e cu r ity m e thods, th e in fra s tru c tu re used, the issues w ith these m e thods, and

the b re a k th ro u g h th a t recen t innova tio n s in Id e n t ity B a sed E n c ry p t io n hopes to de live r.

1 w il l d e sc r ib e an im p le m e n ta t io n o f a sub -sys tem th a t secures e -M a il and o th e r p ro to co ls

in de sk top p la t fo rm s w ith as l it t le im p a c t on the end user as poss ib le .

C o n t e n t s

A c k n o w le d g m e n t s i i

A b s t r a c t i i i

C o n t e n t s iv

L i s t o f F ig u r e s v i i i

1 I n t r o d u c t io n 1

1.1 B a ck g ro u n d 1

1.2 R e q u ir e m e n t s ... 2

2 C r y p t o 101 3

2.1 C ry p to g ra p h ic c o n c e p t s 3

2.2 R a n d o m num bers on com p u te rs 4

2.3 Som e b u ild in g b lo c k s used in M o d e rn C r y p t o g r a p h y 4

2.3.1 H a sh f u n c t io n s .. 4

2.3.2 E x c lu s iv e O R (X O R) .. 5

2.3.3 M o d u la r a r ith m e t ic .. 5

2.3.4 P r im e n u m b e r s 6

2.3.5 G ro u p s .. 7

2.3.6 R a n d o m N u m b e r s ... 8

2.3.7 R a n d o m O ra c le p ro o fs 9

2.4 T y p e s o f c r y p t o g r a p h y ... 10

D e c la ra tio n i

iv

2.4.1 S y m m e tr ic K e y .. 10

2.4.2 A s y m m e tr ic K e y ... 11

2.5 C o m m o n ly U sed S y m m e tr ic A l g o r i t h m s .. 13

2.5.1 D E S ... 13

2.5.2 A E S ... 14

2.6 C o m m o n ly U sed A s y m m e tr ic A lg o r ith m s ... 16

2.6.1 R S A ... 16

2.6.2 E C C ... 17

2.6.3 P a i r i n g s .. 22

2.6.4 O th e r ‘ h a rd p ro b le m s1 23

2.7 C o m p u ta t io n E x p e n se ... 24

2.8 Id e n tity B a sed E n c ry p t io n (I B E) .. 24

3 e - M a i l C o m m u n ic a t io n P r o t o c o ls 2 7

3.1 M essage t ra n s m is s io n .. 27

3.1.1 S M T P ... 27

3.1.2 P O P 3 ... 29

3.1.3 I M A P ... 31

3.1.4 M I M E ... 31

3.2 Secure e - M a i l ... 32

3.2.1 S / M I M E .. 32

3.2.2 P G P m a i l ... 32

3.3 A pp ro a ch e s to ad d in g se cu r ity to an e -M a il s y s te m ...35

3.3.1 N ew E m a i l c l i e n t ... 35

3.3.2 D e ve lo p add -ons to e x is t in g m a il c l i e n t s ... 35

3.3.3 C a tc h th e m essage en r o u t e .. 36

3.4 M essage fo rm a t .. 37

3.4.1 X M L ... 37

3.4.2 W h y a l l th is for I B E ? ... 38

Contents v

4 P K I &c I B E in p r a c t i c e 4 1

4.1 P K I is s u e s ..41

4.1.1 P K I re p u d ia t io n p r o b l e m ... 42

4.2 I B E iss\ies ... 42

4.2.1 I B E P u b lic K e y c o n s tru c t io n .. 42

4.2.2 F u tu re E n c ry p t in g ..43

4.2.3 K D C sy s tem pa ram e te rs and p o lic y ...45

4.2.4 L o c a t in g K D C p a ra m e te rs ... 45

4.3 I B E V s . P K I ... 46

4.3.1 C o m p a riso n P o i n t s 46

4.3.2 I B E A d v a n t a g e s .. 47

4.3.3 I B E D is a d v a n ta g e s ...47

5 I m p le m e n t a t io n 4 9

5.1 T h re a d O v e r v ie w .. 49

5.1.1 T h re a d o f C o n t r o l ... 49

5.2 O ve rv iew o f M u l t i t a s k i n g ... 50

5.3 O ve rv iew o f M u lt i- t h r e a d in g ..50

5.4 W h y T h r e a d s ? .. 51

5.5 Sockets ... 52

5.6 I B E fo r a l l T C P P r o t o c o ls ... 52

5.6.1 E m a il is a sp e c ia l case o f generic ne tw o rk p ro x y 56

5.7 N o n -B lo c k in g I / O ... 56

5.7.1 I /O m u lt ip le x in g ... 57

5.7.2 P o l l in g ... 57

5.7.3 S ig n a ls ... 57

5.7.4 A p p r o a c h ... 58

5.7.5 T h e In p u t/O u tp u t l o o p ... 58

5.7.6 S e cu r ity issues w ith socket l is te n e rs ... 61

5.8 M I R A C L .. 62

5.9 Im p lem en ta tio n language ... 62

Contents vi

5.9.1 C Vs C+4- Vs Java Vs.. 62

5.9.2 Coding/ Coding guidelines... 63

5.9.3 Code design for reuse.. ... 64

5.9.4 V ersioning.. 65

5.9.5 Invocation 66

5.10 Windows Package Versions 66

5.10.1 Windows Advanced G U I .. 66

5.10.2 Windows light GUI.. 70

5.10.3 Windows NT Service.. 70

5.10.4 Event L o g .. 74

5.11 Random Number generation... 75

6 C o n c lu s io n s 7 9

B ib l io g r a p h y 81

A P a t e n t 86

A .l Patent F i l i n g 86

A.1.1 In t r o d u c t io n 86

A.1.2 Statem ents o f In v e n t io n .. 87

A. 1.3 D etailed D escriptio n o f th e In v e n t io n 88

A. 1.4 C l a i m s ... 90

B A n n o t a t e d C o n f ig u r a t io n 91

Contents v ii

C h a p t e r 1

Introduction

1.1 B ackgr ound

The original Internet (DARPANET) developed by the US Departm ent of Defence in 1969
was never intended to be the global disparate network it has evolved into. Its design
was modest. Its developers envisaged a respectful, honest, user-base where privacy and
security was based on trust. The network was build for military purposes, to design a data
network th a t withstood outrages such as lose of nodes from military attack. This rapidly
grew into the Internet, based on T C P /IP protocols, as we know it today. The designers
never foresaw the evolution into a communications network which is a fundamental part
of modern society where academic, commercial, and ’ordinary’ users rely on it for much
more than can be supported by its insecure basic structures.

Unfortunately this growth has introduced as communities of users intent on abusing the
freedoms and trust given to others. The commercial reality is th a t business and personal
use of data networks required security before they will be adopted. Since the internet’s
inception there has been a rapid rise in the number of attacks by so called ‘hackers’ against
personal and business interests. A recent BBC news article [5] claimed tha t the to ta l hack
attacks for the first eight months of 2002 reaching over 31,000 - more than the to ta l for
the whole of 2001 with conservative projections suggesting there could be up to 45,000
hack attacks across the globe in 20 0 2 .

The original set of internet protocols were designed to be simple to implement, low on
bandwidth requirements, and robust. They included remote term inal services, simple file
transfer and a form of messaging. All of the protocols transm it the data payloads in plain
text easily readable by anyone who can intercept the traffic. None of the original protocols
included security features, later revisions added in simple user password authentication,
less for the security benefits, bu t more for multi-user convenience.

Computing power at th a t time didn’t allow for inclusion of computationally expensive real
time encryption and even options to include such security features didn’t distract from

1

C h a p t e r 1 : I n t r o d u c t i o n 2

the higher priorities of robust, easy to implement protocols.

1.2 Requirements

At project start the desirable design requirements where that the code be portable, the
application be lite-weight, to have low impact in implementation, that we secure with IBE
(and AES) at least email POP3 & SMTP and we attempt to support all email clients
without any requirements on servers.

C h a p t e r 2

Crypto 101

This chapter outlines the background to the mathematics of cryptography, details a num­
ber of the standard algorithms, then evolves to a description of Identity Based Encryption
(IBE).

2.1 Cryptographic concepts

As a background to cryptography and an introduction to security protocols. I ’d like to
provide an historic example of an algorithm called the Caesar Cipher attributed to Julius
Caesar. The algorithm is a very simple but effective example of the principles involved in
the encryption of messages.

In the Caesar cipher the algorithm is a simple symbol swap. All the letters of the alphabet
A through W are substituted w ith the character three places after it in sequence, with
X, Y and Z been represented by A, B, C. Hence A is represented by D, N by Q etc. For
example the message “ATTACK GAUL” can be encoded to “DWW DFN JDXO”. A simple
backward step of subtracting 3 places lets one arrive at the original message. This is a
crude cipher on which the success of keeping the content secret depends on the casual
observer having no knowledge of the algorithm (the simple alphabet switch) and the offset
(3). Simple improvements include having a jumbled up alphabet (A=B ,B=Z, C=N etc.)
as a look-up table with both sides knowing the new lookup table and possibly having an
increment on the offset in some formula also agreed by the participants. The fundamentals
of modern cryptography build on these simple ideas of message, algorithm and key.

Messages can be transformed to numbers via simple ASCII (American Standard Code
for Information Interchange) representation of the characters making up the message [23].
This Is where each character/letter of the message is represented by a well know number
(’a ’=97, ’b ’=98, ’z’= 122 etc.) and th a t in computers these numbers are represent by
binary (1 or 0) bits.

3

C h a p t e r 2 : C r y p t o 1 0 1 4

Operations which transform these ASCII numbers are equivalent to transforming the ori­
ginal message they represent. There are other methods of cryptography but the mathem­
atical methods described below are believed to be the strongest. Modern cryptography
relies upon the mathematics of making transform ation operations, which are hard to in­
vert, even when one knows the transform ation used e.g RSA or the solving of the discrete
logarithm problem El Gamal etc. It is the hidden or secret param eters of the operation
that provide the security.

2.2 Random numbers on computers.

Computers are by their nature deterministic finite state machines and thus cannot gen­
erate tru ly random numbers. Strong random numbers are crucial to the security of the
m athematics used in cryptography. Random numbers are often used as keying material
to encryption algorithms. So non-randomness can result in predictable keys and lead to
security weaknesses.

To overcome this lim itation various techniques are used to substitute for the determin­
istic issues and the making of secure random number devices has evolved and created a
commercial market all of its own. Most dedicated cryptographic hardware will contain a
random number generating device.

Common sources of randomness derive from random physical sources such as white noise
input on sound cards, samples of raw Ethernet traffic, contents of memory page files,
even a dedicated co-processor on the Intel Pentium 4 (now discontinued), all of which are
deemed to be relatively hard to guess.

Random devices rated for military grade use are certified by the US Government’s stand­
ards bureau NIST [44] to FIPS [46] standard and usually contain some Geiger counter
inputs which detect radioactivity as an source of randomness.

Randomness is such an im portant concept inside a security protocol th a t a deeper discus­
sion is merited 2.3.6 on page 8 and a section 5.11 on page 75 is dedicated to the methods
used by our sub-system.

2.3 Some building blocks used in Modern Cryptography.

2.3.1 H ash func tions

x = H (m)

Hash functions are functions which map (hash) a message to a collision free value (also
called a hash value just to further confuse) and so this new, usually shorter, value can be
used as a representation of the original message.

C h a p t e r 2 : C r y p t o 1 0 1 5

Hash functions without full uniqueness are commonly used in other fields of computer
science but for cryptography its a ‘must have’ property th a t the hash value is unique.

A useful hash will hash arbitrary sized messages to a usually much-condensed fixed sized
hash, typically 160 bits. Commonly used hash functions are the relatively fast MD5
[51] and SHA-1 [47]. Recently MD5 has fallen out of favor because of recently exposed
weaknesses in its ability to always product a strong hash [16] and is only now used in
legacy systems.

One way hashes are hash functions where given the hash of a message and the algorithm,
it is impossible to find the original message.

2.3.2 E xclusive O R (X O R)

The bitwise operation XOR denoted 0 is identical to additional modulo 2 and can be
represented as a table

y \x 0 1

0 0 1

l 1 0

The advantage to cryptography is tha t if you XOR a number w ith itself it disappears from
the equation, e.g.

Message ® a ® a = Message

= Message ® 97 ® 97 = Message

= Message ® 1100001 ® 1100001 = Message

2.3.3 M o d u la r a r ith m e tic

Modiilar arithmetic deals w ith a set of integers where if N is positive then the numbers
modulo N are the set of numbers { i | 0 < i < N } . If two numbers have the same
remainder when divided by the modulo N then we say they are congruent modulo N .

An everyday example of m odular arithmetic is the set of hours on a clock

0 ,2 ,3 ,4 ,6 ,7 ,8 ,9 ,1 0 ,1 1 mod 12. So if it is two o’clock and we add three hours it is five
o’clock as it will also be in fifteen plus two hours

2 + 1 5 mod 12 = 5.

Two of the most popular public key algorithms use modular exponentiation as their un­
derlying m athematical process.

Chapter 2: Crypto 101

2 .3 .4 P r i m e n u m b e r s

6

Webster’s New Collegiate Dictionary defines a prime as follows:

Prime \ 'p r im \ n [ME, f r . MF, fern. of p r in f i r s t , L primus;

akin to L p rio r] 1 : f i r s t in time : ORIGINAL 2 a :

having no fa c to r except i t s e l f and one <3 is a ~ number> b :

having no common fa c to r except one <12 and 25 are r e la t iv e ly ~> 3 a :

f i r s t in rank, a u th o rity or s ig n if ic a n c e : PRINCIPAL b :

having the h ig h est q u a lity o r value <~ te le v is io n time>

Simply put, a prime is a number th a t has exactly two positive integer factors, 1 and itself.

A great description of how to find primes comes from the 2003 best selling novel “The
curious incident of the dog in the night tim e” [26].

Eratosthenes (275-194 B.C., Greece) devised a ‘sieve’ to discover prime numbers. Using
this m ethod to find all the prime numbers first write down all the positive whole numbers.

1 2 3 4 5 6 7 8 9 10

1 1 1 2 13 14 15 16 17 18 19 20

2 1 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 etc.

Then you take away all the number th a t are multiples of 2 , then all the numbers th a t are
multiples of 3, then 4, 5, 6 , 7 and so on (numbers known as composite numbers).

The numbers th a t are left are prime numbers.

2 3 5 7

1 1 13 17 19
23 29

31 37 etc.

Prime numbers have fascinated m athematicians for centuries. The problem is no one has
yet figured out a computationally efficent m ethod to say if a number is a prime nor how
to predict what the next prime number will be. The only known m ethod is brute force
(exhaustive search) i.e going through all possibilities. Picking a number large enough
brings us to primes th a t are usable in cryptography.

C h a p t e r 2 : C r y p t o 1 0 1 7

2.3.5 G ro u p s

A group is a set of numbers with an operator. This is a relatively simple group to illustrate
the properties useful for cryptography. The numbers 1 to 4 and an operator being multiply
x mod 5.

[x , 1, 2 ,3 ,4 mod 5]

The group is closed when the answer is always within the group

(3 x 2) = 6 mod 5 = 1

The group has an identity which is a number which when applied by the operator does
not change the element.

2 x 1 = 2

It is associative

(2 x 3) x 4 = 2 x (3 x 4) mod 5

Every element has an inverse

(3 x 2) = 6 = 1 mod 5

2 is the inverse of 3

A group is cyclic if it has a member tha t when subjected to repeated applications of the
operator will give every member of the set

2 = 2 mod 5 = 2

2 x 2 = 4 mod 5 = 4

2 x 2 x 2 = 8 mod 5 = 3

2 x 2 x 2 x 2 = 16 mod 5 = 1

If you want to find how many times to apply the operator to get 3 you simply keep applying
it - a m ethod known as exhaustive search.

2 x 2 x 2 = 3 mod 5

This is easy since this group has 4 members. The groups th a t we use have around

2512 elements. So the above approach would take too long. Therefore, the determination
of x given 2X in the group is very difficult.

The point here is th a t applying the operation N times is easy. Finding out how many times
an operation was applied is computationally too expensive. This is a one way function.

y = gx mod p

The formula can be used to generate elements of the group over the field Fg. In this
context g can be described as the generator of the group. The number of elements in the
group will be a divisor of p — 1. In our example 2 is a generator of group of order 4 over

Fs-

C h a p t e r 2 : C r y p t o 1 0 1 8

2.3.6 R an d o m N u m b ers

As mentioned earlier, a critical function of any crypto related applications is the secure
treatm ent of the keys used in the cryptographic operations and protocols. While most
emphasis is on the secure placement / storage or transport of keys there also exists a
requirement to stop an attacker gaining access to the keys by either deducing or by guessing
what they could be. Even a guess which reduces the time or computation required for
a brute force attack is a risk. One of the techniques used to foil such an attack is the
use of ephemeral keys for any session and the generation of hard to guess keys by use of
good random sources. If the generation of keys is not tru ly random then even the most
advanced key protection methods will fail.

A computer by its very nature is a finite state machine. Any attem pt to generate a
truly random event is futile as any observer can just replay events until the similar state
exists. One then has to rely on pseudo random events tha t hold statistical properties
which overwhelm any attem pt to pre-empt or guess their outcome. The best way would
be if the computer, especially an im portant one in the infrastructure, had access to either
specialized key generation hardware (AEP [60], nCipher [42] etc.) or can use the same
techniques as such hardware by observing tru ly random external nature events such as
room noise in a noisy environment, radioactive decay, Brownian motion in liquids etc. It
is not practical for each machine to have such (expensive) hardware. So we make do with
the practical inputs available and attem pt to get this as close to cryptographically secure
by a few tricks available to us.

Most programming languages do provide a random function which can be suitable for
trivial applications such as games and statistical input. However for cryptographic pur­
poses this function is weak. For example, consider functions based on some initial value
called the seed. W hen given the same seed, two different instances of a program utilizing
rand() will produce the same random values. In many implementations of C, if a seed is
not explicitly specified, it is calculated from the current value of the system timer which
is not considered genuinely random input as it is very easy to guess if you know when
a protocol took place. To overcome this we can mix numerous sources of data into one
virtual data source taking care th a t in doing so we don’t weaken the outcome. The most
common ‘mixer’ is use of a good, fast hash function such as MD5 [51] or SHA1 [47] [52],

The measure of the randomness of data is known as entropy. The definition given to us by
the Handbook of Applied Cryptography [1] ‘the entropy of a data source is the uncertainty
about the outcome before an observation of the data source’. W hat we are trying to do is
produce sufficient entropy so tha t the randomness is random enough for our purposes : to
distill 160-bits of genuine randomness. Once you have enough entropy to seed a random
number generator, you have enough for all keys used out of th a t generator. W hat we
want to do is to gather enough entropy (the accumulator function in the language used
by Peter G uttm ann in his cryptographic secure architecture thesis [25]) to seed a secure

C h a p t e r 2 : C r y p t o 1 0 1 9

mixer (state/PR N G) which can henceforth supply us with good random data used for
ephemeral keys.

There is a classic case of a weak entropy random number source being used to seed key
generation. In 1995 it was discovered tha t Netscape (authors of one of the first widely used
web browsers) was using a very small domain (current time in seconds, process number,
some bit shifting and an MD5 hash of the inputs). By analyzing the potential inputs
it was noticed th a t the values used as session keys in the critical SSL/TLS protocol [61]
could be deduced from only 47-bit entropy for their 128 bit keys, and so could easily found
by a brute force attack. Similar weaknesses have been found (and fixed !) in a number
of applications including Kerberos [30], and the Java 1.1 SDK [40]. A good source of
information on the nature and use of randomness is given in RFC 1750 [11],

So what can be measured on a PC or smart-phone th a t can be viewed in some way as
non-deterministic and sufficient for cryptographicly secure entropy ?

There is programmable access to various time measurements (which we have seen to be
weak)

• Raw samples of Ethernet traffic,

• The sound card for background room noise

• Disk for I /O measurements (page-files etc.)

• Network card for MAC identifiers (unique to each machine)

• Location of the mouse pointer as the mouse is moved.

None of the above can be taken on their own, but mixed together they can provide close
enough true randomness for most applications. It has to be noted tha t Linux and most
Unix operating systems use the steps outlined to take care of the generation of crypto­
graphic secure entropy at the kernel layer. Linux for example can be configured so th a t at
boot time the /d e v / r a n d o m pseudo device driver will only be active (and allow use) if
the underlying device has gathered statistically enough random data to allow for its secure
use. The Unix implementation uses this driver as a random source, as do common server
components as the Apache [24] web server.

2.3.7 R an d o m O racle proofs.

To prove th a t public key cryptography systems are as secure at their inventors claim, one
of the methods cryptographers enlist is a security proof called the Random Oracle Model.

Under the random oracle model it is assumed that all parties including an adversary
have access to an infinite amount of idealized random functions. These oracles are like a

C h a p t e r 2 : C r y p t o 1 0 1 10

1. Distribute the secret key. Done in advance by secure
channels.

2. Feed plain text into the symmetric cipher to encrypt it
under the key.

3. Store or transmit the ciphertext.
4. Retrieve or receive the cipher text, and feed it into the

symmetric cipher algorithm to decrypt it under the key.
5. The result should be the original plain text

Figure 2.1: Symmetric Key (source [17])

Utopian SHA or MD5 functions th a t are deterministic, efficient, and uniform where the
output is actually tru ly random i.e not just random against a computational attack and
is collision-resistant. One then replaces the random oracle with a ‘strong cryptographic
hash 1 and assumes the security proof holds.

Weaknesses have been shown in this model and it is out of favor in some circles. While
it is still commonly used as a security proof and no ‘random oracle proved algorithm’ has
been shown to be weak unless one employes a selectively weak hash, protocols th a t only
are provable in the random oracle are still viewed by some as open to potential weakness
‘in the real world’.

2.4 Types of cryptography

There are two main types of m athematical cryptography

• Symmetric or secret key

• Asymmetric or public key

2.4.1 S y m m etric K ey

Symmetric key is an easier to understand concept. Essentially one party (the encryptor)
uses a secret key to a m athem atical function which encrypts the plaintext message to a

C h a p t e r 2 : C r y p t o 1 0 1 11

Cipher Text

Plain
T ext

2 Asymmetric
* Cipher

Encrypt

h
2

4] Asymmetric c
> Cipher — ►

Decrypt

A

Plain
Text

Sending Process

Public < Asym m etr ic j > Private
Key Key Pair \ Key

________ G e n e ra t io n \ ________

Receiving Process
1. Secure generation of the public/private key pair,

probably performed by the receiver, and distribution of
the public key.

2. Encrypt the plain text under the public key.
3. Transmit orstore the ciphertext.
4. Receive or retrieve the ciphertext and decrypt it using

the private key.
5. The result should be the original plain text.

secure form. The message is passed to the decrypter who uses the same key to an inverse
m athematical function which decrypts the message returning it to its ordinal plaintext.
The principal issue in symmetric cryptography is the secure transport of the key between
the parties. Examples include DES and its variants, IDEA, & AES.

2.4.2 A sy m m etric K ey

Background

Asymmetric key is a harder to grasp concept but is generally more useful to e-commerce.
The key is broken up into two parts known as the public key and the private key. The
public is used to encrypt the message and the private to decrypt. Asymmetric is popularly
known as public key cryptography.

The original discovery of methods suitable for public key cryptography have tradition­
ally been attributed to Diffie, Heilman & Merke in 1977, more commonly known as the
Difhe-Hellman [15] method. However in 1997 history has corrected itself with the declas­
sification of papers from the British secret services which lay claim to the fact the James
Ellis probably invented and th a t Clifford Cocks probably discovered a m ethod for public
key cryptography long before Diffie et al. But, suitable to persons working inside the in­
telligence services, they kept the claim to themselves. GCHQ (now CESG [9]) have since
backed up their claims w ith documentary evidence [18]. The American equivalent (NSA)

Figure 2.2: Asymmetric Key (source [17])

C h a p t e r 2 : C r y p t o 1 0 1 12

have claimed an even earlier idea but evidence is scant. Background to this interesting
story is in Wired magazine [35] where Diffie (a colorful character in his own right) visits
a retired Ellis and brings him to a pub in England attem pting to prise the real story out
of him. Ellis is too humble (and clever !) and leaves Diffie none the wiser bu t doubtful of
his own place in history.

T echn ical

Asymmetric key protocols are commonly based on the one-way function.

y = gx mod p where p is a prime.

Assume g and p are public. Then given x finding y is ’’easy”. However given y to find x is
assumed to be very hard. This is based upon the fact th a t certain problems are intractable.
The issues with the above equation (also w ritten as x = logg(y)) is known as the discrete
logarithm problem (DLP). Based on this we can build asymmetric key encryption. The
function looks “simple” and it would seem th a t with a simple “try every x ” or brute force
attack would yield y. However, for acceptable levels of protection to make such an attack
unfeasible it is required to use a p with at least 1024 bits and the exponent x with at least
160 bits. The size of p is referred to as the field size, and x as the group order size. The
field size is so much larger than the order size as there exists index-calculus methods for
solving the discrete logarithm problem, which require a relatively large field size to resist.

As an alternative to the one way function above there also exists a similar ‘hard problem’
on an Elliptic Curve.

y = x 3 + A x + B mod p

Take a point on the curve P (x ,y) . Then assume P is used as a ‘public’ group generator.

Y = x P

is also a hard one way problem. If we know x then calculating Y is easy. However given Y
finding x is hard. This is basically the same Discrete Logarithm problem. The advantage of
using Elliptic Curves is th a t index calculus methods used to attack the modular equation
are not known and hence both the field and order sizes can be as low as 160 bits for
practical security. This lower bit size reduces computation overhead and allow for efficient
use in restricted devices such as mobile phones or smart cards.

The advantage of all this asymmetric cryptography lies with the property tha t possessing
the public key provides no clue to the private key allowing the public key to be freely
published to allow anyone to encrypt to the holder of the private key. This unique property

C h a p t e r 2 : C r y p t o 1 0 1 13

overcomes the limitations of symmetric cryptography which requires prior ‘key swapping1

before use. However this advantage comes with a performance penalty. Asymmetric
algorithms are much more computationally expensive than symmetric and are not suitable
to encrypt large amounts of data.

The solution to practical use is using a combination of both methods to provide both
practical performance together with the benefits of usability.

2.5 Commonly Used Symmetric Algorithms

2.5.1 DES

B a ck g ro u n d

The D a ta Encryption S tandard (DES), is the common name of the Federal Information
Processing Standard (FIPS) 46-3, which describes the data encryption algorithm (DEA)
widely used in American government and banking circles. Its since been adopted for most
security protocols bu t is currently being replace by its successor AES (see 2.5.2) DES is
an improvement of the algorithm Lucifer developed by IBM in the 1970s. Differential
cryptoanalyis, a form of attack against block ciphers, was ‘discovered’ in the late 1980’s
but it has since been acknowledged that it was known to the NSA as far back as the early
1970s. It has emerged the team behind the creation of DES have adm itted tha t defending
against differential cryptanalysis was a design goal of DES, and the technique was the
reason the design process of DES was kept secret [[64]]

DES has been extensively studied since it was so widely adopted. Its easily the best known
and most widely used symmetric algorithm.

T echn ical

DES used a 64—bit block size (breaks data into 64— bit chunks before encryption) and
uses a 56—bit key during execution (8 parity bits are removed from the 64—bit key). D ata
passes through 16 rounds of byte substitution (S-boxes). Like Lucifier, its predecessor, it
was originally designed for implementation in 1970s hardware.

Like most symmetric block ciphers DES can operate in a number of modes of operation, the
simplest being electronic codebook ECB where each block is encrypted with the same key.
This has a weaknesses where identical message blocks encrypted with the same key result
in the same ciphertext output. A more pragmatic mode is cipher block chaining CBC
where the results of the previous block encryption are XORed in as the key to the next
plaintext block. This has the effect of making each identical block encrypted not result in
the same output, as the input is actually different. Using DES in the wrong mode opens a

C h a p t e r 2 : C r y p t o 1 0 1 14

weakness which would allow an attacker to compromise the communications by ‘injecting’
malicious data into the data stream. To overcome this, most security protocols require a
check sum (MAC) using one of the hash algorithms mentioned in 2.3.1.

An improvement to the original design is to use a 128—bit key (actually 112—bit because
of the parity stripping) and, using a first 56-bit to encrypt, a second 56-bit key to decrypt
and finally the first key again to encrypt each block twice (as secure as 3 keys) the resulting
‘triple DES’ was the preferred mode of operation until AES was accepted.

2.5.2 AES

B a ck g ro u n d

By 1997 triple DES was viewed by many as flawed purely by the fact th a t it had been
around so long. Conspiracy theorists claimed th a t it was probably compromised by some
unknown methods attribu ted to large budget organizations with an interest in cracking
messages such as secret service agencies like the US’s National Security Agency (NSA),
the British GCHQ or Israel’s Mossad. Others claimed th a t organisations like IBM had
know of weaknesses for years.

The solution to these claims was for NIST [44] to propose an open international com­
petition for a new algorithm (the Advanced Encryption Standard) to replace DES. The
governing rule was th a t it be

• Unclassified,

• Publicly disclosed.

• Symmetric-key.

• Have minimum block sizes of 128, minimum keys sizes of 128—, 192— and 256—bits

• Strength of triple DES

• More efficient than triple DES

• Available royalty free world wide.

Fifteen candidates were chosen for a short list including some by world renown crypto­
graphers like Ron Rivest of RSA [50], Bruce Schneier of Counterpane [56] , and Paul
Kocher of Cryptography Research [34], This list was then further shortlisted to five and
the international community debated the various strengths and weaknesses of each. In
1998 NIST, to the surprise of many, selected a non-US winner (Belgium) by Daemen and
Rijmen called the Rijndael [13,14,12,48] cipher. The independence of the winner inspired
confidence in the choice.

C h a p t e r 2 : C r y p t o 1 0 1 15

Figure 2.3: AES rounds (source [43]).

Increased use of AES as default symmetric algorithm with its minimum key size of 128—bits
has all bu t ended any speculation tha t there is a weakness known by the NSA or others.

We use AES exclusively as the preferred symmetric algorithm in our IBE subsystem.

T ech n ica l O verv iew .

AES (obviously) follows the minimum specification detailed in the competition, any com­
bination of allowed key size and fixed block size of 128-bits are usable. Its a block cipher
not unlike DES in its design with rounds of operations on blocks. Operations used in
AES are either byte-shuffling operations, or those defined over the finite field F2s. Addi­
tion in this field corresponds to the bitwise XOR operation outlined in section 2.3.2. The
multiplication operation in this field is harder, and often implemented with simple lookup
tables. AES does no arithm etic operations and assumes non-endianness. These properties
allow for very efficient implementation in hardware.

A simplified description : The basic operation is tha t of da ta processed by transformations
via ‘round’ operations on data stored in a four a four matrix. Each round 1 is a set of
4 operations on the matrix. The number of rounds depends on the key size chosen. The
4 operations in each round are ByteSubstitution (like a DES S-box), Mix-Column, Shift-
Row, Round-Key Addition.

A concise description suitable for implementors, by the authors of Rijndael, is available
in [14].

1 except the final round which is special.

C h a p t e r 2 : C r y p t o 1 0 1 16

2.6 Commonly Used Asymmetric Algorithms

2.6.1 RSA

B a c k g ro u n d

Discovered in 1977 and named after its inventors, Ron Rivest [50], Adi Shamir and Leonard
Adleman, RSA [49,53] encryption is based in factoring and transforms the message ”M”
into the number ”C” with the formula

C = M e mod N

The numbers e and N are the two public numbers you create and publish. They are your
’’public key.” As before the message M can be simply the digital value of a block of ASCII
characters.

The formula says: multiply the Message M by itself e times, then divide the result by
the number N and save only the remainder. The remainder th a t we have called C is the
encrypted representation of the message.

Example Application

Alice publishes the public key numbers e = 29 and N = 77. Bob wants to send Alice the
message ”1 have it”. In decimal ASCII the message is

73321049711810132105116. Break this number string into smaller blocks less then N like

73 32 10 49 71 18 10 13 21 05 11 6

To encrypt these blocks, apply the formula

C = M e(mod n)

to each block.

T echn ica l O verv iew

Here we present an alternative description due to Mao [37]

As before we deal with Bob attem pting to send a message to Alice.

K e y S e t-u p .

Alice creates her public and private key pair thus

1. Choose two large random prime numbers p and q such th a t | p \ < \ q \

C h a p t e r 2 : C r y p t o 1 0 1 17

2. Compute N = pq

3. Compute (j>(N) — (p — l)(g — 1)

4. Choose a random integer e < (¡)(N) such th a t gcd(e, = 1) and computing the
integer d such th a t ed = 1 (mod {4>(N)))

5. Publicise (N , e) as her public key, discarding p, q and <f>(N) and keeping d as her
private key. e can be small bu t d must be impossible to guess.

To e n c ry p t to A lice

To send a message M < N to Alice, the sender Bob creates a ciphertext C by

C <— M e(mod N)

F or A lice to d e c ry p t

To read the ciphertext C from Bob, Alice computes

M <— C d(mod N)

2.6.2 ECC

B ac k g ro u n d

Another form of ‘hard problem ’ th a t mathematicians have found useful to the field of
cryptography is th a t of Elliptic Curves.

The discovery of the use of Elliptic Curves for public key cryptography can be attributed
independently to Neil Koblitz [33] and Victor Miller [41] who bo th made discoveries in
1985.

T echn ica l

Note: Curves can be defined in Affine (2 dimensions) or Projective (3 dimensions co­
ordinates) - The equations I present are in Affine co-ordinates.

An elliptic curve is a graph (curve) which can be defined by equations of the form.

y 2 + a \xy + a3y = x 3 + a2x 2 + a^x + ae

C h a p t e r 2 : C r y p t o 1 0 1 18

F ig u re 2.4: E l l ip t ic C u rv e

W h ic h a l l th e a 's are con stan ts . F o rm a lly th is is de sc r ib ed as an elliptic curve Z (̂IF(/) , and

is th e set o f so lu t io n s {x,y) over F 9 to an eq ua tio n o f th e fo rm E : y2 + a\xy + «2?/ =

a:3 + fi2%2 + a^x + ag, w here a* e F fl and th e re a lso ex ists a point at infinity deno ted O [4j

T h e sp e c ia l p ro pe rt ie s are th a t e l l ip t ic cu rves behave ‘w e ll’ w hen o pe ra t io n s are pe rfo rm ed

w ith a p r im e m o d u lu s g rea te r th a n 3 an d any e l l ip t ic cu rve o f the fo rm (1) can be converted

b y th e t ra n s fo rm a t io n to a We.ierstra.ss fo rm 2.6.2.

y1 = x3 + C14X + ae

T o be m ore co n fu s in g and to fo llow genera l c ry p to g ra p h ic conven tion 0,4 is renam ed a and

«6 is renam ed 6.

T h is g ives us th e cu rve

y1 = xi + a*x-\-b m od p

T h is m eans we are o n ly a llow ed to use th e in tegers from zero to p - 1 as in p u t.

Fo r e xam p le le t us take an eq ua tio n w ith p = 11, a = 4 and b = 7.

y2 .= x3 + 4x 4- 7 m o d 11

P lu g in a l l va lues fo r x a n d we get th e assoc ia ted va lues for y p lu s th e p o in t a t in f in ity

(deno ted by O). N ow an y p a ir o f p o in ts th a t sa t is fy the eq ua tio n can be used.

T o add tw o p o in ts on a cu rve we c a n ’t s im p ly add the co o rd in a te s to f in d a p o in t w h ich

s t i l l sa t is f ie s th e cu rve .

C h a p t e r 2 : C r y p t o 1 0 1 19

However there are a set of rules which one can apply for curves of this type.

The rules are (see Smart [59])

• Rule 1: O + O — O

• Rule 2: (xi, yi) + 0 = (xi, 2/1)

• Rule 3: + (x i , - y i) = O

Now it becomes more complicated.

• Rule 4: if x x ^ x 2, (xl t yi) + (£2 , 2/2) = (x3,y 3)

where

x 3 = ((h - x i ~ x 2) mod p,

y3 = (P(xx - x 3) - mod p,

and

/? = ((V2 ~ y i) / (x 2 ~ mod p.

• Rule 5: if 2/1 ^ 0, {x^y-Cj + (¡ex, 3/1) = 2(xx,y i) = (x3,y 3)

where

x 3 = (/?2 - 2xi) mod p,

Vz = ((3{x 1 - x 3) - 2/i) mod p,

and

¡3 = ((3xf + a)/(2y1)) mod p.

The ‘why’ behind this is beyond the scope of this thesis. I recommend Nigel Sm art’s
‘Introduction to Cryptography’ [59], Wenbo M ao’s ‘Modern Cryptography’ [37] Meneze’s
‘Elliptic Curve Cryptography’ [39].

Using these rules two points on the curve may be added to yield a th ird point also on the
curve. For example in the figure above point P + Q = (P + Q) on the curve.

Note 1 : If we ever, in our calculations, divide by zero we can stop and say the result is
the point a t infinity (O).

Note 2: the point at infinity (O) acts like zero in regular addition : Add a point to the
point at infinity we get the original point. This is the additive identity for the group.

Note 3. Prime Modulus. The group is cyclic, it has a generator function such th a t when
this function is applied to any member of the group, it will only result in another member

C h a p t e r 2 : C r y p t o 1 0 1 20

Figure 2.6: 2 * P ,3 * P s o u r c e [38])

C h a p t e r 2 : C r y p t o 1 0 1 2 1

of the group. If applied to all members of the group then it will produce another set
containing all members of the original group. Interestingly the output sequence of the
results of the application of the generator holds a random distribution see [63]

Note 4 ■ Multiplication

Take a point P an (x , y) point and multiply it by an integer d. dP is d* P and we can
break down d* P to (P + P + ...P) i.e. P added to itself d times. Then apply the rules
of addition, in the illustrated figure 3P = P + P + P.

This integer d is called a scalar as opposed to the coordinate (point) P.

W h a t does a ll th is m e a n to c ry p to g ra p h y ?

We’ll take an elliptic curve (i.e. modulus p and parameters a and b) and a point on this
curve P.

Then take a scalar d and find d* P to get another point on the curve Q.

We keep d secret. We can use the curve (p, a, b) and points P, Q as the public key. The
challenge for any attacker is to find d. No-one has found a sub-exponential algorithm to
be able to compute d. This is another manifestation of the discrete logarithm problem.

If the modulus p is large enough (200 bits or so. a big number) then it would take
todays supercomputers many thousands of years. This is the basis for the application to
cryptography

Scalar multiplication on an elliptic curve is relatively easy, but the inverse, which is a
discrete logarithm problem is extremely hard.

To illustrate we will consider Key agreement using Elliptic Curve Diffie-Hellman.

Diffie-Hellman is a technique to allow unauthenticated key agreement using exponenti­
ation. I t ’s security rests on the intractability of the Computational Diffie-Hellman problem
and the Discrete Logarithm Problem.

Alice calculates her curve and makes p, a, b and a point P public.

She generates some random da and keeps this secret.

Alice sends Bob Qa which is equal to daP.

Bob gets Alice’s public components and generates his own random db.

He calculates Qb by computing d^P.

Bob then computes a secret value

S = dbQa

Since Qa is just daP what Bob has computed is

S = dbdaP

C h a p t e r 2 : C r y p t o 1 0 1 22

He sends Alice Qb and Alice uses this to compute her secret value

S — daQb

since Qf, is dbP, what Alice has done is to compute

S = dadbP

this is the same as Bob computed !

So Alice and Bob can ‘secretly’ get to the same point on the curve S, by using this
protocol. A simple m ethod to extract a key is just to ignore the y coordinate and take the
x coordinate as a number. This derived number can be used as a key. Bob can use this
secret value to make an AES encryption key. Alice can use the method outlined above
to get same encryption key. So what Bob encrypts, Alice can decrypt. The Attacker Eve
intercepting this exchange just knows p , a, 6, P, Qa, and Qb. The only way for Eve to figure
out S is to get either da or db which Alice and Bob are holding secret.

Apparently the only way she can get a d is to calculate one of the d's is by using the fact
tha t she knows either

Qa = daP and she knows Qa and P

Qb = dbP and she knows Qb and P.

This is exactly the discrete logarithm problem of ECC as outlined above and this is
computationally unfeasible with todays technology and for the foreseeable future.

2 .6 .3 P a i r in g s

Joux [32] and Sakai, Ohgishi & Kasahara [54] independently proposed using properties of
pairing-mapping functions applied to cryptography to establish ID-based PKI. Initially the
area of pairings had been discounted by Menezes as holding no promise for cryptographic
applications. It wasn’t until the Joux publication in English th a t countered this claim
th a t this whole area was opened to researchers culminating with Boneh & Franklin’s
much publicised paper in 2 0 0 1 .

Let G i and G 2 denote two groups of prime order q, where G i, with an additive notation,
denotes the group of points on an elliptic curve; and G2 , with a multiplicative notation,
denotes a subgroup of the multiplicative group of a finite field.

Multiplicative groups will be represented here as Z*, which is the set of positive integers
less than n and relatively prime to n. under multiplication modulo n. An integer is
relatively prime to another if their only common positive divisor is 1. For example, 8 and
15 , even though they are not prime numbers, are relatively prime.

C h a p t e r 2 : C r y p t o 1 0 1 23

A pairing is a computable bilinear map between these two groups. Two pairings have been
studied for cryptographic use. They are the W eil2 p a ir in g and the T a te p a ir in g . For
the purposes of discussion, we let e denote a general bilinear map, i.e. e:Gi x G i —> G2,
which can be either a modified Weil pairing or a Tate pairing.

In this notation the Diffie-Hellman (DH) solution described above is a tuple in Gi as
(P, x P , yP, z P) —> <Gi for some x, y, z (chosen at random) —> Z q*

satisfying z — xy mod q.

P ro p e r tie s o f P a irin g s

B ilin e a r: If P, Pi, P2, Q , Q i ,Q 2 e Gi and a e Z* , then e(P\ + P 2, Q) — e(Pi,Q).e(P2, Q),
and e(P, Qi + Q2) = e(P, Qi).e{P, Q2).

N o n -d e g e n e ra te : There exists a P s G i such th a t e(P, P) ^ 1.

C o m p u ta b le : If P, Q E G\, one can compute e(P, Q) in polynomial time.

2.6.4 O th e r ‘h a rd p ro b le m s4

As mentioned above the D iffie -H ellm an (D H) tuple in (Gi is a tuple (P, xP, yP, zP) £ G,\
for some x , y , z chosen at random from Z q satisfying z = xy mod q.

C o m p u ta tio n a l D iffie -H ellm an (C D H) p ro b le m : Given the first three elements in
a DH tuple, compute the remaining element. The CDH assumption: there exists no
algorithm running in expected polynomial time, which can solve the CDH problem
with non-negligible probability.

D ecision D iffie -H ellm an (D D H) p ro b lem : Given a tuple (P, xP, yP, zP) G Gf for
some x, y, z chosen at random from Zq, decide if it is a valid DH tuple. This can
be solved in polynomial time by verifying the equation e[xP ,yP) — e(P ,zP).. Note
th a t this is contrast to the suitation in the simple finite field where the DDH problem
is also hard.

B ilin e a r D iffie -H ellm an (B D H) p ro b lem : Let P be a generator of G\. The BDH
problem in G i, G2 , e is given (P, xP, yP, z P) C Gf for some x, y, z chosen at random
from Zq, compute W = e(P ,P)xyz G G2.

2 P r o n o u n c e d “V a y ” . A n d r e W e i l in t h e 1 9 4 0 ’s.

C h a p t e r 2 : C r y p t o 1 0 1 24

2.7 Computation Expense.

To perform either RSA or elliptic curve cryptography on a large set of data is very com­
putationally expensive and would take too long a time for real-time data communications
such as a VPN or an email system.

The solution is to use some other more efficient algorithm like a symmetric algorithm such
as AES or DES and perform the bulk data encryption and use the public key methods
(ECC or RSA) to encrypt the key(s) used by this efficient algorithm and transport them
with (usually by simply attaching them to) the encrypted data. This hybrid solution is
used by most common protocols such as SSL, SSH, IpSec and S/Mime.

2.8 Identity Based Encryption (IBE)

In 1984, Shamir [58] (the ‘S’ in RSA) proposed the first identity based signature scheme
and outlined a solution to this key distribution / certificate management problem calling
it Identity Based Encryption (IBE). However he didn’t have an implementation.

The idea was th a t if any string can be a public key, then one could use an identifier of
the recipient to be the public key in which case one doesn’t need to locate the public
key associated with an identity. The identity IS the key. Furthermore one can use the
‘identifier string’ combined with something like a date/tim e and encrypt messages to be
read into the future.

In this system our friends Alice and Bob are to communicate. Bob can simply use Alice’s
email address (alice@wonderland.com) and the public parameters of a trusted third party
as the public key to encrypt the message. W hen Alice receives the message, she contacts
the trusted th ird party (KDC key distribution center), validates herself and receives the
private key associated with her identity.

Shamir’s proposed IBE remained an elusive ‘holy grail’ for cryptographers until Cocks [8]
working at the British secret service GCHQ discovered a method relying on quadratic
residues. Unfortunately this method is impractical for widespread use because of the
bandwidth overheads. It has recently come to light tha t two Japanese researchers Sakai
and Kasahara [55] also made a significant discovery relevant to IBE using pairings but due
to language issues their implementation wasn’t widely known.

In 2001, Boneh and Franklin [7,6] announced a more viable m ethod using the Weil pairing
2.6.3. This method, while demonstrable, still lacked a pragmatic implementation which
could be considered widely usable. Optimizations of the pairing mathematics were pro­
posed by Barreto-K im -Lynn-Scott 3 [4] in 2002 which moved the processing overheads
close to th a t of the widely used RSA algorithm. These optimizations involved

3 M ic h a e l S c o t t is t h e M S c . s u p e r v is o r o f t h e a u t h o r

mailto:alice@wonderland.com

C h a p t e r 2 : C r y p t o 1 0 1 25

• Point tripling for super-singular elliptic curves over Fsm.

• Removal of irrelevant operations from conventional algorithms.

B ack g ro u n d

An IBE system involves, using the language of Boneh & Franklin’s seminal paper 4 a set
of four algorithms.

S e tu p : A key generator (KDC) which runs a ‘setup’ algorithm to generate global system
param eters and a master-key which the KDC keep safe. The whole security of the
system relies on the safe keeping of this master-key

E x tra c t: The KDC runs an extract algorithm inputting the users identity (or any bit
string) and using the master-key from the setup. The output is the users private-key
associated with the users identity. Its im portant th a t the private-key is transported
to the user in a safe m anner and th a t the KDC has made a full examination of the
user credentials before issuing a key corresponding to those credentials.

E n c ry p t: A probabilistic algorithm. Any user encrypts using the global system param et­
ers and public key ID. The output is the ciphertext.

D e c ry p t: This process takes the ciphertext from the encrypt function, global system
param eters and the private key issued by the KDC. The output is the corresponding
plaintext.

The Boneh &; Franklin’s paper provides a random oracle security proof for their IBE
method. T hat means it is secure against an adaptive chosen ciphertext attack assuming
the hardness of the so-called Bilinear Diffie Heilman problem.

Technical

(from Mao [37])

S e t-u p

1. Generate two groups G i , G 2 of prime order q and a mapping-in-pair e : G i 2 ■ -> G 2.

choose a generator P G i .

2 . Pick s Gy Zq and set Ppub <— [s]P; s is the master key.

3. Using a strong hash algorithm F : {0,1}* —> G i. To map the identity string ID to an
element in Gi.

4 Extended abstract in [6]

4. Specify another suitable hash algorithm 77 : G2 —» {0, l} '1.

The KDC keeps s as the system master-key and publishes the parameters

Chapter 2: Crypto 101 26

(Gi, G2 , e, n, P, Ppub, F, H)

P r iv a te K ey G e n e ra tio n (= E x tra c t)

Let ID denote an authenticated and validated user’s identity (it can be any string)

1. Compute Qid <— F(ID) this is an element in Gi and is the users public key.

2. Set the users private key d m as [s]Q/o.

E n c ry p tio n

To send encrypted message get the system parameters (Gi,G 2 P, Ppub,F,II). Using
them compute Qid = F(ID). To encrypt M € {0,1},! pick r Eu and compute

fjm e{QiD, H-Ppub) € G2,

C ^ { { r \ P , M @ H { g ID)).

The ciphertext is C <— ([r]F, M ® II(gw))-

D e c ry p tio n

To decrypt C using ID’s private key dio as [s}Qip, compute M = V ® H(e(djo, U)).

C h a p t e r 3

e-Mail Communication Protocols

In this chapter we introduce the background to the Internet protocols, outline the various
email standards, detailing document standards and the security of existing solutions.

Email messaging is one of the oldest Internet services w ith Ray Tomlinson credited with
sending the first email in 1971, and it is still among the most used, second only to a relative
newcomer hypertext transfer protocol HTTP.

Its fundamental workings, governing sending and receiving, remain unchanged since 1982.
It has been ‘on top of’ these communication protocols th a t user features such as attach­
ments, read receipts, etc. have been added. The benefits of this are an infrastructure
then hasn’t fundamentally changed in over 20 years allowing for easy deployment, a large
number of people versed in its inner workings and an ability to exploit the reliability and
connectivity of disparate networks.

3.1 M e ssag e tra n s m is s io n

Message transmission is defined by 3 mail protocols, one for sending

• SMTP the Simple M ail T ransport Protocol (RFC 821 [45])

And two for receiving

• PO P3 the P ost Office Protocol version 3 (RFC 1939 [31])

• IMAP the Internet Message Access Protocol (RFC 3501 [10])

3.1.1 SM TP

The Simple Mail Transport Protocol (RFC 821 [45]) usually resides on socket port 25. It
follows a simple line based A SC II/text command based communication over a very limited

27

C h a p t e r 3 : e - M a i l C o m m u n i c a t i o n P r o t o c o l s 28

command set. Each command is identified with mnemonic and ID number. The sequence
is very similar to transaction communications between two people

- Simple pleasantries : hello

- Introductions: who is who, and a decision whether or not to continue or not

- W hat the client wants to do: send messages etc. and again a decision to continue or not.

- Transaction: the message content

and finally

-OK and goodbye.

To illustrate:

By convention the server waits for connections on port 25.

W hen it receives a connection it replies with a short string which by convention identifies
the host, the server operating system, mail server software & version and the local time.

e.g 250 n e i l . c o s t i g a n . c o m hom egrow n m a i l - s e r v e r v e r s i o n

0 .1 O ct 290CT 1967 IMT

The client responds with an ”HELO” to this and the server will reply 220 command ’’Hello”
and again the server id (fully qualified host-name, possibly IP address)

e.g 220 H e l lo n e i l . c o s t i g a n . c o m 1 0 .0 .0 .1

Lately it is common for system administrators to remove the server software name and
version to try to thw art any attacks on known vulnerabilities of this software or operating
system. This technique is known as server fingerprinting. The client then issues a ’’MAIL”
command in which it identifies itself

e.g. MAIL From n e i l@ n o s p a m .c o s t ig a n .c o m

This allows the SMTP server to decide if it agrees to accept to process mail from the client
address. The reason for a failure here would be spam control or authentication etc.

It is possible in SMTP extensions to demand further authentication at this point.

The server replies w ith another ”250 OK” indicating it accepts the address

The client then tells the server the recipient(s) of the message. It can issue a number of
these if there are multiple recipients

e.g RCPT To: s a n ta @ n o r th p o le .c o m

Again this allows the server to determine if it will accept mail to this user or domain. The
main reason here for refusal is if it determines the user is unknown, spam management,
or, in the commercial world, if it can’t find a way to charge for the service. On success the
server issues its familiar ”250 OK”. The client then tells the server it will pass the mail itself

mailto:neil@nospam.costigan.com
mailto:santa@northpole.com

C h a p t e r 3 : e - M a i l C o m m u n i c a t i o n P r o t o c o l s 29

by issueing a DATA command. The server will reply w ith a description on how it wants to
receive the data. This is usually text (no binary), ending w ith < C R > < L F > .< C R > < L F >
i.e a (full stop) between the newlines.

e.g 354 S t a r t m a i l i n p u t ; e n d w i th <CRLF>. <CRLF>

The client then proceeds to deliver the message itself ending with the ’’carriage return
linefeed .

’’D a te : S a t , 01 Dec 02 1 3 :3 1 :1 2 GMT

From : n e i l@ n o s p a m .c o s t ig a n .c o m

To : s a n ta @ n o r th .p o le . com

S u b j e c t : C h r is tm a s a t my p l a c e

I 'v e b e e n good a n d I w an t a P o r s c h e t h i s y e a r .

Again the server replies, on success, with a simple ”250 OK” or it may add a queue message
”250 OK message queued with id 42a2ffe” this can help with any problems tracking lost
messages. Finally the client, issues a ’’QUIT” to break the session.

If the mail contains binary data (like a graphic or file attachm ent) the client can encode
the message to a Base 64 form. It acheives this by taking blocks of 6 bits and converting
them to a printable ASCII byte. The mail itself can contain multiple parts like a simple
body, rich text representation, HTML representation, and attachm ents. There is a conver­
sion format (MIME) which can transform all components of an email to a representation
another client can decode. However for the the server and for the communications between
the client and server, the contents of the ’DATA’ blob are ignored as long as they are in
printable ASCII.

3 .1 .2 P O P 3

The Post Office Protocol (RFC 1939 [31]) is similar to SMTP and usually resides on port
110. It also follows a simple line based A SCII/text command based communication over a
very limited command set. This command set is more suitable for a response / request as
the client is deciding w hat it wants. All commands are four letters long and all keywords
are separated by spaces. Like most of the early protocols each reply command is identified
with status indicator mnemonic + for success or - for failure followed by an OK or ERR
with a description depending on the previous command. The PO P3 command set follows a
concept of ’states’ which indicate what commands can legally follow a previous command.

mailto:neil@nospam.costigan.com

Some PO P3 responses are multi-line as indicated by a CRLF pair.

The sequence is also very similar to transaction communications between two people.

- Simple pleasantries : hello

- Introductions: who is who. decision to continue or not

- The server tells the client what is has for it

- The client decides (based on its message store) what it wants to do: get list of messages,
get a specific message etc. and again a decision to continue or not.

- Transaction: get the message content

finally

-OK and goodbye:

Next we illustrate a simple PO P3 email session.

The first thing is to open a TC P connection from your computer to your mail server
usually on port 1 1 0 .

W hen the POP3 server receives a connection it replies with a short string which by con­
vention identifies the host, the server operating system, mail server type & version.

The session is now in the authorization state.

e.g..

+OK POP3 s e r v e r r e a d y (7 .0 .0 1 6)

<F0CD2FB3F2445493E9CF51878AF7F4 0451A8 9525@ hawk. d c u . i e >

The client then responds to this by providing the USER command with user-name.

USER u se r-N a m e

This should give you:

+OK P a ssw o rd r e q u i r e d f o r u s e r -N a m e .

Or some other request for authentication

The client responds w ith the corresponding password

PASS p a s s w o rd

Any failure with the previous commands the server responds with an -ERR message like

-ERR [AUTH] P a s s w o rd s u p p l i e d f o r

"u se r-N a m e " i s i n c o r r e c t .

The password supplied was not the one expected by the server; retype the password, failing
that. Find out if you’ve got the correct password.

C h a p t e r 3 : e - M a i l C o m m u n i c a t i o n P r o t o c o l s 30

mailto:9525@hawk.dcu.ie

C h a p t e r 3 : e - M a i l C o m m u n i c a t i o n P r o t o c o l s 31

-ERR [AUTH] PAM a u t h e n t i c a t i o n f a i l e d f o r u s e r " u s e r -N a m e " : A u t h e n t i c a t i o
f a i l u r e (7)

On success this should yield an OK with

+0K u se r-N a m e h a s ? v i s i b l e m e s s a g e s (? h id d e n) i n ? ? ? ? ? o c t e t s .

At this point the session passes to the transaction state.

The server has indicated the number of messages in the mail drop and assigns them an
order number from 1 to N with the size of the message in octets.

The client decides what messages it would like to request or if it needs to see a list of the
messages with an associated size to see if it has them already. This usually happens if the
amount of messages on the server doesn’t match the amount the client believes it has.

PO P3 can be seen as the pull technology to match SMTPs push.

3 .1 .3 I M A P

The Internet Message Access Protocol was originally developed in 1986 at Stanford Uni­
versity. It allows a client to access and manage mail messages on a server. IMAP permits
management of remote message folders, called ’’mailboxes”, in a way th a t is equivalent to
having the mailboxes stored locally like in traditional PO P clients. IMAP also provides
the capability for an offline client to resynchronize with the server and includes opera­
tions for creating, deleting, and renaming mailboxes, checking for new messages, removing
messages, searching, and selective fetching of message attributes, texts, even portions of

Messages in IMAP are accessed by the use of numbers. These numbers are either message
sequence numbers or unique identifiers.

IMAP does not specify a means of posting mail. It is entirely read-only. Posting is handled
by a mail transfer protocol such as SMTP. The major benefit of IMAP is th a t the entire
body (the bulky part) does not need to be transported unless specifically requested by the
client.

3 .1 .4 M IM E

M ulti-part/Signed and M ulti-part/Encrypted or MIME (RFC 1847 [20]) is not a transport
protocol per se. We mentioned above th a t the original simple protocols allow for basic
ASCII text. To transport binary data just as images, propriety format documents, files
etc. we need to encode them to an ASCII form in a method th a t is easily decoded.

MIME defines the format of the contents of Internet mail messages and provides for multi­
part textual and non-textual message bodies.

Chapter 3: e-Mail Communication Protocols 32

3.2 Secure e-Mail

Securing the email message communications is more difficult than regular TCP Internet
client / server protocols because the sender and receiver of the message don’t usually com­
municate directly together making it difficult for the parties to swap security credentials
like keys. Instead the message is passed through a number of third parties who route,
store and forward the message as dictated by a complicated set of rules allowing for the
possibility that the receiver may be off line and/or not able to store the message because
of location, bandwidth, or storage restrictions. This is as a letter is transported through
the regular printed matter postage system.

The usual channel security mechanisms (SSL, VPN, SSH etc.) fail to be truly ‘end to end’
as the message is still essentially in the clear at the control points en route.

POP3 / SMTP / IMAP ignore the security issues assuming the security is solved inside
a higher or lower layer. Common approaches range from using simple, proprietary ’out of
band’ secret-sharing to decode symmetric cipher based encrypted messages, to complicated
public key infrastructures to allow for more large scale, widely distributed, user base. Un­
fortunately there are bandwidth and scalability overheads, which have made deployment
of such systems rare.

Inside these messaging protocols there are a number of different approaches to secure the
message being transported.

3 .2 .1 S /M IM E

S/MIME (RFC 1847 [20]) or Secure / MIME expands on MIME (3.1.4) to add secure
services to email messages using PKCS7. Currently S/MIME is at its third version. It was
originally proposed by RSA and is based on RSA’s public key cryptography. It has evolved
to include the Cryptographic Message Syntax (CMS) (RFC 3369 [22]) a cryptographic
algorithm independent format. The S/MIME message comprises of a Base64 encoded
PKCS7 of a MIME body which can itself include other MIME bodies. It is notoriously
difficult to code, leading to many interoperability problems between vendors.

3 .2 .2 P G P m ail

Pretty Good Privacy (PGP) was written by Phil Zimmermann in 1991 in a time when
crypto implementations were strictly controlled by the US government and RSA’s patent
lawyers. Zimmermann quickly got himself into trouble but not before his creation had been
uploaded to hundreds of bulletin boards and sites across the Internet. The implementation
was open sourced and portable, quickly becoming the de facto email security system
for non-US academics. Zimmermann found himself in legal tangles with both the US
government and RSA and became an Internet cult figure. It was five years before an

Chapter 3: e-Ma.il Communication Protocols 3 3

agreement was reached. During this time multiple illegal and non approved US and non-
US versions were created causing multiple interoperability problems which limited its
usefulness. In 1996 PGP was commercialised by Zimmermann and a free version was
published by MIT.

The main issue with PGP mail is its overly technical nature making it an unlikely candidate
for ordinary use.

As mentioned PGP exists in a number of forms, one is the commercial implementation
from Network Associates and another is the platform independent, freely available tool-set
from the GNU group called GnuPG. Most modern implementations of Linux have GnuPG
in their distribution. A number of email clients carry GUI front ends for integration of
PGP services.

Here we walk through a typical set up which allows two people to communicate using.
What we are trying to achieve is to pass a message encoded with a secret key to the other
party allowing them, and only them to decode it.

First both sides generate a public/private key pair. Here for simplicity and illustrative
purposes we use the command line tools for GnuPG.

9P3 --gen-key

Next follows is a small question and answer session. The first is to do with the encryption
algorithm for the public key pair. Choices are RSA and ElGamal. The second is about
the key length. One is given choices from 512—bit to 2048—bit, 1024—bit being the most
common. Then one is asked to supply the name, email address, and some comments about
the user. Then (finally !) a pass-phrase is required to secure the file that stores the private
key component on the local hard disk. This is very important as disclosure of the private
key effectively reduces the whole security to zero.

After the key generation is complete the user is left with a number of files on his or her
disk - gpg.conf, pubring.gpg, random_seed, secring.gpg, trustdb.gpg.

The file secring.gpg contains the private key in a binary format and is particularly import­
ant. The pubring.gpg contains the public keys of people with whom you have swapped
credentials, and the file trustdb.gpg contains information about the levels of trust you
place on the different private keys. This would typically depend on the mechanism by
which one had collected them.

Confused ? Read on !

To pass your public key to the person you want you need to extract (export) it is a suitable
format for transport, for example ASCII.

gpg -a --export <password> > bartkey.asc

This result is a simple text file which can be attached to any outgoing email. One then
emails it to the other party. They then extract the attachment and import it

Chapter 3: e-Mail Communication Protocols 34

gpg --import bart.asc

This will place the public key in the other users pubring and trustdb files as outlined
above. It is possible to view the contents of this files using

gpg --lis t-k e y s

After the above steps, one would get something like

pub 1024D/1234ABC 2004-04-01 Bart Simpson the

coolest kid on the block bart@simpson.com

corresponding to the key length, key id, date, full name and comments.

Now before one can send messages securely to this person one needs to sign their public
key to verify its level of security. This is associated with how sure you are that this key
actually did come from the person that sent it. The issue here is trust. To do this out of
band (say by telephone), first one gets the key’s fingerprint

gpg --fingerprint bartpub 1024D/1234ABC 2004-04-01 Bart Simpson

the coolest kid on the block bart@simpson.com

The output would be something like

key fingerprint = A12 3 B456 . . . C7890

Then one asks the other party to do the same thing on their side over the phone or by
secure courier. If the fingerprints match then one finally signs
gpg --edit-key Bart

which prompts for the pass-phrase for your secret key. One can then proceed with secret
message swapping by using the gpg encrypt and decrypt functions.

note: The GnuPG package also allows for digitally signed messages after such a set up.

note: Some of the email packages recognize the various attachment formats and will auto­
matically do the import step via GUI ’wizard’ steps.

As you can imagine, attempting to bring this type of set-up to a larger groups of users
(enterprise or Internet domain) in a scalable way requires that one introduces some in­
frastructural components, so that each user is not required to email everyone and then
required to verify the validity of the key set. There are a number of approaches usually
combining the use of a ’key server’ or directories of public keys on a publicly accessible
server. Then one needs to trust the signature of each downloaded public key (to avoid
a potential ’bad-guy’ masquerading as someone else). This signature trusting is achieved
by checking that the key was signed by someone you already trust (web of trust) or by a
trusted authority like a bank or government who one already trusts. As you can imagine
this opens a can of worms with regard to a simple chicken & egg problem. How do you
get the first trusted signature and how does every party interconnect with out overloading
the key servers ?

mailto:bart@simpson.com
mailto:bart@simpson.com

Chapter 3: e-Mail Communication Protocols 3 5

As you can gather from the above ’set-up’. The root of the problem of the lack of use
of security in email, messaging and other network traffic is the technical complexity. The
main issue here is that the number of complex questions the typical end user is required
to answer gegarding key length, algorithms, pass-phrases, key servers, trust etc. etc. are
not widely understood. Worst still is the cost associated with using such a system, from
training to installation and configuration.

3.3 Approaches to adding security to an e-Mail system.

There are a number of approaches to introducing encryption to email systems.

1. Develop a new email client.

2. Develop add-ons to existing mail clients.

3. Catch the message en route (a proxy)

3.3 .1 N ew E m ail clien t

While this approach seems to be the least complicated, we have to recognize that to
develop an email client which can satisfy expectations for all the features in a standard
off-the-shelf client, including robustness, address book management, junk mail filtering,
multi-format display, multi-server support, multi-protocol, support etc. etc. is beyond the
scope of this project. In practice we will not manage to ’move’ customers from an existing
installed base ’just’ to add an easy-to-use security feature.

Nevertheless developing a prototype email client allowed us to test and fine tune formats
and usage parameters etc. I will not go into detail on the client as it is very much a test
tool. But it suffices to say the client was developed in Java using the rich availability of
the language’s packages for SMTP and POP3 support.

3 .3 .2 D ev e lo p add-ons to e x istin g m ail c lien ts

Modern email clients have matured to the level that they allow for some level of customiza­
tion which allow third parties to develop ’add-ons’ which manipulate, among other things,
how messages appear, are transported, or filter what they contain.

This offered us some possibility to add in the IBE fuctionality by transforming the messages
before they leave and as they are received. The upside is that this overcomes the problems

• Of converting users to ’our’ email system - instead they can use familiar interface,
training etc.

Chapter 3: e-Mail Communication Protocols 36

• Of continually updating our client to whatever feature is currently in favor.

• Of supporting exotic or propriety email protocols like Microsoft’s Exchange, and
instead allows us to focus on the issue at hand (IBE).

The downside of this approach is that the ’add-ons’ are

• Propriety to applications: the API of an Outlook add-on is very different from that,
say, a Netscape add-on.

• Limited in some respects, making it hard to add on the crypto.

• May not be portable: Outlook’s SDK is unavailable on Outlook Mac X.

• Have stability issues: many plugin mechinisms may be poorly documented and prone
to crashing the client.

• May not even be possible on some popular clients (e.g. Eudora)

Nevertheless the approach is possibly the most commercially interesting and, given the
commercial nature of our funding, was pursued for the most popular client (Outlook) and
platform (Windows 2000 and higher). We developed such an IBE plug-in as a prototype.
I won’t go into the specifics of development it suffices to say that it was developed with
a combination of Visual Basic scripting and C++ using Microsoft COM technology. We
found that this environment was immature, and the effort in development did not reap
benefits which could be applied to other applications. A lot of the coding APIs were
undocumented and we found we were reverse engineering Visual Basic scripts to catch
event hooks. This avemie was abandoned in favor of the method outline in the next
section 3.3.3.

3.3 .3 C atch th e m essage en route

This approach involves either

• Adding software to the SMTP and POP3 servers, the advantages being central con­
trol and ease of deployment, while the main disadvantage is that it is not securing
the traffic end-to-end.

• Developing an ’agent’ which resides on the client machine and can filter Internet
traffic in some way which lets it grab emails as they are transmitted and intelligently
transform the mails to embed them in IBE wrapped messages. It overcomes the
problems associated with (3.3.1) and (3.3.2) and so allows for greater application and
platform support, freeing us from the problems of maintenance of ’other’ features.
The downside is that such an agent can difficult to program and may be frowned
upon by IT managers as ’yet another’ point of failure in the chain of message delivery.

Chapter 3: e-Mail Communication Protocols 37

The bulk of the work for this project was to attempt to write a generic solution which
could be deployed on both a client and a server, yet is possible to be used by non email
protocols like a VPN.

3.4 Message format.

3.4.1 XML

MIME and S/MIME were revolutionary in their abilities to encode and secure complex
data sets. Unfortunately S/MIME (which the reader will recall was developed by RSA)
is too explicit in its algorithm choices and while we could modify a version of it to a
non-standard implementation for our IBE it would be of little value as existing S/MIME
aware clients are likley to fail, possibly crash, attempting to decipher our encodings. A
better choice for a new format is the extended Markup Language : XML.

There is a lot of hype associated with XML, many people claiming it is the universal cure
for computing interoperability problems. While this may be an overstatement XML and
its associated technologies do appear to hold the answers for many of the common data
processing demands which most Internet applications require. Our IBE application is no
exception.

We do not require all of the features and we could have opted for a simpler XML-like
subset. But this would have excluded us from many of the rich parsing and transport
facilities available - Technologies which we would have had to develop anyhow.

The XML ’buzz words’ or technologies we use in the IBE application are XML, XML
Namespaces, DTD and/or XML schema.

I’ll try evolve my description of XML to briefly encompass these, then expand the IBE
requirements to show the decisions I’ve taken.

The simplest definition of XML is to say it is ’self describing data’. So instead of an arbit­
rary data blob whose contents, format, offsets etc. is know only to proprietary applications
XML data describes itself in some way

for example instead of AB123CDF we can describe this as

«productcode>AB123cdf</productcode> allowing for some context.

This would be XML in its simplest form. But who is to say what this product code is for
? What if we were to add context aswell?

Taking the previous example <productcode>ABi23CDF</productcode> we can expand this
to say
<product>
<drill>

Chapter 3: e-Mail Communication Protocols 38

«code» A B 1 23 C D F « /co de»

< / d r i l l >

</ p r o d u c t >

This allows for an easy evolution and adding more ’fields’ to the data is easy

« p r o d u c t »

« d r i l l »

< d e s c r i p t i o n > 3 i n c h d r i l l b i t < / d e s c r i p t i o n >

«co de»A B 123C D F «/code>

c / d r i l l : »

< / p r o d u c t >

This is a similar namespace problem which recent revisions to the C++ standard have
solved.

To give this some more power one can add a few wrappers like versioning, descriptions on
the data expected in a document (or namespace) and some limits on the data types to
allow for integrity checking.
<XML v e r s i o n 1 . 0 >

« c a t a l o g x m l s c h e m a u r l = " h t t p : / / s i t e . o r g / c a t a l o g . x s d = »

« p r o d u c t »

« d r i l l »

« d e s c r i p t i o n » 3 i n c h d r i l l b i t « / d e s c r i p t i o n »

« co d e » A B 12 3C D F «/cod e»

« / d r i l l »

« / p r o d u c t »

In addition a developer creates another document called an XSD document describing, in
XML, the fields and data types expected. Although XSD is falling out of favour, being
replaced by scheamas

3 .4 ,2 W h y all th is for IB E ?

There are a number of ’touch points’ for external data processing in the IBE mail applic­
ation

• Configuration : relatively static data like the SMTP relay servers name or IP address,
proxy servers etc.

• Public parameters like the server’s elliptic curve descriptions. This can be local or
served via the net

http://site.org/catalog.xsd=%c2%bb

Chapter 3: e-Mail Communication Protocols 3 9

<?xml version=" 1. 011 encoding="UTF-8" ?»
<IBEMessage>
<IBEEncryptedSessionKey>
<ds:Keylnfo»
<ds:KeyName>neil@ibe.dcu. ie</ds:KeyName>
</ds:Keylnfo>
<ibe_enc_sk>
<x>43 9da011d8b7b8e6c4f154C96 02
83be9b3 97a8 9c4eefd7ecea0d4931d
e4961b47bc3f8f71c57d89446a946b
cl5676b2a3c2eb4 0933bebl41fllb7
21850d33fd3</x>
<y>77a53e9al2633 OdO0916f2deaee
a0d5d471c3d3e81f26105425838e05
b939baa93ec7dal810ec03 084cl26e
6c324222e03 519aa731d4a7d87feb4
cc3a3cdbe68</y>
<v»0bce4270bl653 82 5f4bcbbd61b91d62e</v>
<w>82aec6fa590ebl04df2 84b7981671773</w>
</ibe_enc_sk>
</IBEEncryptedSessionKey>
<EncryptedData
xmlns="http://www.w3.org/2 0 01/04/xmlenc#"
xmlns:ds="http://www.w3.org/2 000/09/xmldsig#"
xmlns:xsi="http://www.w3.org/2 00l/XMLSchema-instance"
x s i:schemaLocation="http://www.w3.org/2 001/04/xmlenc#xenc-schema.xsd">
<EncryptionMethod Algorithm="http:/ /www.w3,org/200l/04/xmlenc#kw-aesl28" />
<CipherData>
<Transformsxds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"
/></Transforms»
< CipherValue >REEFCtTuOaqj 2 PbOPyQFUd6 9 fFU
3 6DLRlAnlKPVbceCEprvEdPC51vNfhBKmd6dYJOK
Guno2z+i2BLHSa+qCfS4FKNaMJwj jGpzPiMrD0e+
JryROxo+EpvhqEiTK7KSQtFfw3foLzavE9jRBm3ol/w==
</CipherValue»
</CipherData>
</EncryptedData>
</IBEMessage>

Figure 3.1: Sample IBE message

• The eMail messages passing through the application.

The specifications of each of the XML files are too detailed to expand on so to demonstrate
I’ll illustrate using just the actual email message on the wire.

Fortunately there has been a lot of work done in this area of adding encryption to XML
by the DigSig interest group [62], We are essentially adding on our XML tags on top of
this. Preference is given to using any existing tags that are relevant.

An actual email message in the IBE mail system looks like :

The interesting sections are

• <KeyName> which allows us to specify multiple IDs (public keys) that the message is
encoded to. Multiple recipients can have one body of symmetric encrypted data (in
AES) and only the ephemeral keys need to be IBEed to each ID key.

http://www.w3.org/2
http://www.w3.org/2
http://www.w3.org/2
http://www.w3.org/2
http://www.w3,org/200l/04/xmlenc%23kw-aesl28
http://www.w3.org/2000/09/xmldsig%23base64

• <ibe_enc_sk> is an actual session key encrypted in IBE, <x> and <Y> being points
on the elliptic curve.

• <EncryptedData xmlns="http://www.w3.org/2 001/04/xmlencif etc. >

describes the XML name space for XML encryption.

• <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aesl28" />

describes the algorithm used for the symmetric encryption. In this case 128 bit AES.

• <CipherDataxTransforms><ds: Transform Algorithra=

"http:/ /www.w3.org/2000/09/xmldsig#base64" />

describes the data as been encoded (transformed) to Base64.

Finally

Chapter 3: e-Ma.il Communication Protocols 40

• <cipherValue>REEFCtTuOaqj 2PbOP.. . > is the actual encrypted data.

http://www.w3.org/2
http://www.w3.org/2001/04/xmlenc%23kw-aesl28
http://www.w3.org/2000/09/xmldsig%23base64

P K I & I B E i n p r a c t i c e

C h a p t e r 4

4.1 PKI issues

While there are many advantages to public key cryptography some of the downsides are
the problems of

• Locating the public key in a communications setting like email where neither side
’speaks’ directly to each other. The solution is either the overhead and often im­
practical idea of each side issuing the public key in some out-of-band authenticated
channel, or for large public directories holding up to date public keys.

• Trusting the other side even if you don’t know them. This introduces the concept
of a Trusted Third Party (TTP) where each side has a TTP sign their keys to allow
the other to trust, not each other, but a third party (like a government agency or
bank) who makes sure (validates) the identity of each party. This solution is kind of
’chicken and egg’ because one also has to find a common TTP and make sure their
keys haven’t been compromised.

• Knowing that the public keys you have aren’t associated with a compromised private
key. What if, for example, your recipient has ’lost’ his/her private key and you use
its associated public key to encrypt a message ? It is possible that an adversary has
managed to find it and can therefore decrypt any messages with this stolen private
key.

The common solution to all these problems is the idea of a certificate. Each public key has
some additional information associated with it such as key validity dates, identification
data, information on where status information on the certificate can be located, and the
signature of a trusted third party who has validated that the certificate owner is, in fact,
who they say they are.

41

Chapter 4: PKI & IBE in practice 42

Then there acan be secure hardware holding the private keys. These range from smart
cards for client keys to expensive tamper resistant hardware for server or ’important’ keys.

Next there are more directories, directory entries, or signed lists of revoked certificates
and Certificate Revocation Lists (CRLs) holding information about certificates which are
no longer valid.

Then there are servers who can answer queries about certificates via OCSP (On-line Cer­
tificate Status Protocol) [36] which is a query to an authoritative server about the current
status of the certificate as viewed by another, usually a TTP.

This then introduces small insecurities around time shifting (can I really trust the revoc­
ation list I just got ?), and makes the whole usage extremely complicated for the non
specialist user of security. As you can see this ’simple’ concept gets rapidly complex and
expensive.

For more information on PKI see [3] and for a closer look at PKI standards see [28].

4.1 .1 P K I rep u d ia tion prob lem

A recent example of the scalability and centralisation problems of PKI was the recent
failure of Verisign’s Certificate Revocation structure as it apparently was not designed to
handle the load of large numbers of systems accessing crl.verisign.net. When the date
passed over from 2003 to 2004 a number of old code-signing certificates went out of date.
Verisign were forced to shed 50 percent of the load on their servers. Verisign redirected
traffic to several RFC1918 [21] (black) addresses, which are not routable on the Internet
but are frequently used in enterprise networks. It is claimed that Verisign had thus
created a Denial-of-Service issue on enterprise services using the same RFC1918 addresses
as internal systems checking for crl.versign.net. The consolidation of ’security network
power’ in a single company creates its own threat to the critical infrastructure when a
single certificate expires instead of being randomly distributed among several different
organizations.

4.2 IBE issues

4.2 .1 IB E P u b lic K ey con stru ction .

The models outlined previously hint at a Utopian world where there is a master elliptic
curve and key distribution center (KDC) that all parties worldwide subscribe to. In
reality its much more likely that there will be a multiple of KDCs as each enterprise and
Government is more likely to be able to verify users IDs locally and that they will be
concerned with escrow issues as a master system could be compromised or susceptible to
a remote countries data protection rights which may not be compatible with their own.

Chapter 4: PKI <fc IBE in practice 43

This then leads to some interoperability problems as users try to acquire the system
parameters for a domain from which the recipients keys are likely to be issued and the
policy that the specific KDC operates for the formatting of public key ID strings.

In practice the curve parameter distribution is simpler than the theoretical model. The
generation of unique KDC curve public parameters (<Gi,G2 , e,n, P, Ppub, F, H) is not re­
quired for the security of the system to be maintained.

While keeping their individual security intact each KDC can associate with a ’master
curve’ and can reuse most of the parameters. The KDC reuses the public parameters
(Oi, (G2, e, n, P: Ppub-, F, H) and only need to vary the master secret s (kept private) and
issue a new Ppub = sP.

To facilitate this concept of ’fixed parameters’ rather than a multiplicity, the project team
picked and named a small set of standard curves (IBEO, IBE1, etc.) and the software and
file formats are optimised to take advantage of these fixed curves. A message therefore
embeds the curve name rather than a list of all parameters.

This practice has been adopted before in other forms of ECC where a number of curves
have them ratified, numbered, and recommended by NIST.

There are numerous advantages to adopting such a scheme

• The curves can be placed under more rigorous security analysis.

• Interoperability testing can be restricted to a know set of curves.

• Bandwidth is saved and each KDC connection doesn’t need to download all the curve
parameters

4 .2 .2 Future E n cryp tin g .

The scheme outlined in Boneh & Franklin refers to an ID being used as the public key for
IBE and implies that this ID is an email address. In fact the system works for any string
and this opens up some interesting properties not currently available in existing systems.

If the ID string is simply concatenated with a date string it is possible to build encrypting
systems which encrypt into the future.

For example, consider a scenario in which the KDC issues identity-based private keys by
setting ID to be an ID concatenated with a date string, and Alice encrypts to Bob by
applying an IBE scheme to (Bob’s ID || ID = date), e.g. “bob@wonderland.com || 25th
December 2004”. This scheme is discussed in Boneh & Franklin’s paper.

Why is this arrangement useful?

Imagine Alice is going away for Christmas holidays. Alice can encrypt Bob’s Christmas
present and safely give Bob the cipher text knowing the Trusted party (KDC) will not issue

mailto:bob@wonderland.com

Chapter 4: PKI Sz IBE in practice 44

Bob a corresponding private key for the encrypted message until the message is presented
on the date encoded inside the (human readable) public key string.

Another scenario is a case that the KDC issues public keys like in the above example but
with a short window such as

“(Bob || week number || year)” e.g. (bob@wonderland.com || 42 || 2004)

In this case its possible for the KDC to issue Bob (on approving his credentials) a set of
keys for the future and allow Bob to remain offline from the KDC and yet still receive
messages.

The benefits here are multiple.

- The KDC doesn’t need to be a highly available system,

- If Bob loses a private key then it is only messages for the short window (like a week in
the example) that can be compromised.

- It is much more suitable for an environment where bandwidth is scarce as it limits the
need for the system to be connected to acquire decryption keys.

The problem is that Alice needs to understand how to construct a public key / ID string
for Bob for which she can be confident Bob will have a decryption key. Therefore its
important that in addition to the system parameters, the KDC issues a machine readable
policy on how to construct public keys for that particular curve.

- This concept of variable ID string is possible to expand upon infinitely and there have
been proposals that the ID could hold more data to perform full policy and role based
ID action strings. In an environment where IBE technology is used to authenticate users
as well as encrypt data (for example VPN etc.) it is possible that the ID could contain
information to the users intentions and/or roles and the KDC have, in real time, an
approval engine to allow for such keys to be issued.

As an example consider IBE used in a remote terminal client-server model. The encrypting
ID string could hold information about the connecting user, the reason why login is needed,
a time window for the policy to be allowed and the list of authorizing users that need to
sign off on access rights.

Another advantage is that the idea of keys generated to cover a short time window helps in
the area of revocation. One of the biggest problems with traditional PKI systems if that of
revocation. For a number of reasons, mainly commercial but with some technical inputs,
X.509 certificates are generally issued for a year. One needs to knowing that a public
key is still a valid token to use and that it hasn’t been reported as compromised since it
was acquired. IBE changes this model somewhat, as its switches the revocation model
from one dependent on the encryptor to one where its shared between the receiver and the
KDC. This switch puts much less demands on infrastructure and bandwidth requirements.

mailto:bob@wonderland.com

Chapter 4: PKI & IBE in practice 45

Now that the issue of worrying about compromised keys lies with the KDC we can see
that if the keys are only issued with a short time window (like a week or a day) then the
risks of compromise are much reduced.

4 .2 .3 K D C sy ste m param eters and p olicy

Sections 4.2.1 and 4.2.2 outlined how the simple model of encrypting to an identifier in
IBE quickly gets more complex than originally envisioned. One of the major issues for
client software to deal with is the issue of how exactly does it figure out how to construct
an ID suitable to use as a public string, knowing that it will be properly received and dealt
with by the receiving entity.

As mentioned in 4.2.1 it is unlikely that one unified method for public-key-ID formats will
be adopted, and even if such a policy existed one would still need to acquire (securely) the
KDCs curve parameters.

I believe that the following will be the model of choice for most KDCs

- Like most CAs in traditional PKI, the KDC will manage a number of curves, each with
separate policy for authentication and key issuance.

- The KDC will publish each curve’s identifier, unique parameters and a ’policy’ at a well
known URL.

- The Policy will be machine readable, and most likely encoded in XML.

- The Policy will describe the type of strings expected as ’IDs’ for a given curves e.g.

(id || week number || year) or (ID || begin-date-format || end-date-format)

- The Policy will describe measures take by the KDC to verifier a users ID credentials. This
is to satisfy any concerns an end entity may have about securing confidential information
using these parameters where the TTP may have given out keys in error.

- The Policy is likely to make a statement about its escrow policy.

- The Policy is likely to make a statement about the intent of the KDC to keep user’s
data, for example, to keep any authentication data for a period of time.

4 .2 .4 L ocating K D C param eters

To find a suitable KDC for an end user it is likely that the encrypting party will use a
KDC location dependent on the domain associated with an ID.

Most electronic identity contain some form of domain information

• An email identity is of the form user@domain.

Chapter 4: PKI k. IBE in practice 46

• An IP address is from a block assigned to a domain by an ISP

• A phone number is of the form + (country code)-(provider code)-number.

We contend that an end entity in IBE will make a lookup to a well known location based
on the domain part of an ID

Examples:

• For a user alice@wonderland.com the end entity could do a HTTP ‘GET’ to a URL
based on the domain wonderland.com for example

http://kdc .wonderland. com/kdc_policy.XML

• For a phone number +(353)-(87)-42222. The End entity could make a call to
+ (353.87.12345) where 12345 would return an encoded form of the 87 domain’s
policy.

• For a user alice@wonderland.com the end entity could do a DNS lookup to an new
mail record (MX) type, based on the domain wonderland.com e.g.

> dnsdig type=IBE_kdc wonderland.com

This method of associating the domain with the KDC was viewed by the projects sponsors
(Enterprise Ireland [29]) project team as a significant step in the commercial realization of
IBE technology and has since been put forward for intellectual property protection (patent)
under Enterprise Ireland’s Commercilisation of Research &: Development (CORD) scheme.
The actual claim to both the European and US patent offices is reproduced in Appendix
A.

4.3 IBE Vs. PKI

4 .3 .1 C om parison P o in ts

In a traditional PKI the main problem Alice faces when attempting to encrypt a message
to Bob is how to reliably obtain Bob’s public key and be certain that at the time of use that
Bob’s public key is still valid. Typically this involves a Certificate Authority (CA) who
validates Bob’s identity and if satisfied signs Bob’s key. Then the CA usually maintains
an infrastructure to publish this key and an on-line service to distribute up to the minute
information about a public key’s status.

An IBE scheme overcomes this by replacing the CA by a private key generator (PKG)
which publishes its public parameters and then operates like a CA in that it will verify
Bob’s identity before issuing him with a private key.

mailto:alice@wonderland.com
http://kdc
mailto:alice@wonderland.com

Chapter 4: PKI &c IBE in practice 47

An advantage of IBE over PKI is that the PKG does not need to manage infrastructure
hosting a public key database nor the parallel information server keeping real-time data
on public key status. This is because the public key of Bob is implicit in the identity :
Alice can generate Bob’s public key without needing to go on-line. The PKG solves the
revocation issue by embedding time period windows (e.g a week number) inside the ID it
assigns to Bob. Bob needs to renew his keys at the beginning of this next time window.

4 .3 .2 IB E A dvan tages

The main advantage to IBE is this ability of one end entity to generate a public key of
another’s without having to find it on the CA’s infrastructure or from the other entity in a
prior transaction. This saves on bandwidth requirements on the client and saves the cost
of always-on, highly-available, securely hosted servers available in a many-to-one model.
In comparison all the IBE PKG needs to do is distribution of private keys in a one-to-one
setting.

This also has business advantages over the PKI model where the services have to be
available to all, often third-party non-paying clients. In IBE the server can choose only to
work with paying registered clients and has no reduction on the security of the model.

Another advantage is the fact that, unlike PKI, the keys are generated centrally, and
that keys can be recreated on demand by re-entering the original parameters. When
there are legal demands for retaining keys, like those imposed by US regulatory bodies on
public companies, IBE makes it extremely simple to mange the potential large key set an
organization generates over time. Only one secret needs to be secured.

4 .3 .3 IB E D isad van tages

One disadvantage of IBE is the requirement that the channel over which an identity’s
private key is transported from the PKG to the identity needs to be secure. In a PKI
system there is no such equivalent transaction but there are demands that other channels
(OCSP) do need security.

Another potential problem is that of revocation. If, for example, Bob loses his private key,
does Bob need to change identity ? The solution is to modify the ID public key string
to add time window based keys. The management of the increased number of keys adds
some overheads to the end user.

The main perceived disadvantage of IBE over other security schemes is the issue of privacy.
The IBE scheme is inheirently, escrowed, in that the PKG has the ability do recreate the
keys if it so wishes and it therefore decrypt any IBE secured data. It is important that
the PKG is trusted and has some public policy on its powers of escrow. Many view this
as prohibitive to mass deployment in general - that there is some kind of big brother who

Chapter 4: PKI & IBE in practice 48

decides what can be read. The counter argument to this is that one often uses encryption

in a role rather than as an individual and that ownership of the encrypting keys belongs

to the PK G and is tied to that role.

PKI suffers from this escrow problem with respect to digital signing : if the CA wants to

sign data on behalf of an entity all it has to do is generate a fake key pair and sign the

public key saying it has been supplied by the entity.

This ability of the PK G to decrypt all data makes it a vulnerable point of attack and

subsequently it has to be managed in a highly secure manner.

These escrow problems for both the IBE and PKI systems can be overcome by methods

like splitting up the master secret or CA keys among a number of parties whereby they

can only be used in collusion. An alternative is a hierarchical IBE where the actual keys

are created not by the root PK G but by sub-PKGs.

C h a p t e r 5

I m p l e m e n t a t i o n

The software required to integrate IBE in both desktop and server applications with low
impact, with the highest level of code reuse with portability, requires analyzing a number
of software development technologies and trading off between ease of development and
functional requirements. The following chapter outlines just a few of the coding techno­
logies used in the actual delivery. We now describe the software developed to integrate
IBE into both desktop and server applications. The aim was to deliver industrial strength
software with low hardware requirements. Design decisions allowed for the highest levels of
code reuse, whilst allowing maximal portability across platforms. This required analyzing
a number of software development technologies and making various trade offs between ease
of development and functional requirements. The following chapter outlines just a few of
the coding methodologies used in the software, with arguments justifying the decisions
made.

5.1 Thread Overview

The inner workings of the proxy applications depend heavily on threading techniques. But
what exactly is a thread? The term thread is shorthand for thread of control. A thread
of control is, at its simplest, a section of code executed independently of other threads of
control within a single program.

5.1 .1 T h read o f C ontrol

Thread of control sounds like a complicated technical term, but it’s really a simple concept:
it is the path taken by a program during execution. This determines what code will be
executed: does the ‘if block’ get executed ?, or does the else block? How many times does
the while loop execute? If we were executing tasks from a ”to do” list, much as a computer
executes an application, what steps we perform and the order in which we perform them
is our path of execution, the result of our thread of control.

49

Chapter 5: Implementation 50

5.2 Overview of Multitasking

It is assumed that the reader is familiar with the use of multitasking operating systems
to run multiple programs simultaneously. Each of these programs has at least one thread
within it, so at some level, we’re already comfortable with the notion of a thread in a
single process. The single-threaded process has the following properties, which, as it turns
out, are shared by all threads in a program with multiple threads :

• The process begins execution at a well-known point. In programming languages like
C/C++ and Java, the thread begins execution at the first statement of the function
main().

• Execution of the statements follows in a completely ordered, predefined sequence for
a given set of inputs. An individual process is single-minded in this regard: it simply
executes the next statement in the program.

• While executing, the process has access to certain data : local variables are accessed
from the thread’s stack, instance variables are accessed through object references,
and static variables are accessed through class or object references.

5.3 Overview of Multi-threading

All of this leads us to a common analogy: we can think of a thread just as we think of a
process. We can consider a program with multiple threads running within a single instance
just as we consider multiple processes within an operating system.

Within a program, multiple threads have these properties:

- Each thread begins execution at a predefined, well-known location. For one of the threads
in the program, that location is the main () method; for the rest of the threads, it is a
particular location the programmer decides on when the code is written.

- Each thread executes code from its starting location in an ordered, predefined (for a
given set of inputs) sequence. Threads are single-minded in their purpose, always simply
executing the next statement in the sequence.

- Each thread executes its code independently of the other threads in the program. If the
threads choose to cooperate with each other, there are a variety of mechanisms (locks,
critical sections etc.) that allow that cooperation.

- The threads appear to have a certain degree of simultaneous execution. The degree
of simultaneity depends on several factors : programming decisions about the relative
importance of various threads as well as operating system support for various features.

- The threads have access to various types of data. Each thread is separate, local variables
in the functions that the thread is executing are separate for different threads. These local

Chapter 5: Implementation 51

variables are completely private; there is no way for one thread to access the local variables
of another thread. If two threads happen to execute the same method, each thread gets a
separate copy of the local variables of that function.

5.4 Why Threads?

Historically, threading was first exploited to make certain programs easier to write: if
a program can be split into separate tasks, it’s often easier to program the algorithm
as separate tasks or threads. Programs that fall into this category are typically special­
ized and deal with multiple independent tasks. Often, these programs were written as
separate processes using operating-system-dependent communication tools such as signals
and shared memory spaces to communicate between processes. This approach increased
system complexity.

The popularity of threading increased when graphical interfaces became the standard for
desktop computers because the threading system allowed the user to perceive better pro­
gram reaction. The introduction of threads into these platforms didn’t make the programs
any faster, one would need multiple or faster CPUs to achieve that, but it did create an
illusion of faster performance for the user, who now had a dedicated thread to service
input or display output.

Recently, there’s been a flurry of activity regarding a new use of threaded programs:
to exploit the growing number of computers that have multiple processors. Programs
that require a lot of CPU processing, like our IBE proxy, are natural candidates for this
category, since a calculation that requires one hour on a single-processor machine could
(at least theoretically) run in half an hour on a two-processor machine, or 15 minutes on a
four-processor machine. All that is required is that the program be written to use multiple
threads to perform the calculation.

While computers with multiple processors have been around for a long time, we’re now
seeing these machines become cheap enough to be very widely available. The advent of
less expensive machines with multiple processors, and of operating systems that provide
programmers with thread libraries to exploit those processors, has made threaded program­
ming a hot topic, as developers move to extract every benefit from these new machines.

However, threading in C/C++ (or Java) often has nothing at all to do with multiprocessor
machines and their capabilities; in fact, the first Java virtual machines were unable to take
advantage of multiple processors on a machine, and many implementations of the virtual
machine still follow that model. A correctly written program running in one of those
virtual machines on a computer with two processors may indeed take roughly half the
time to execute that it would take on a computer with a single processor. But it also
simplifies the external environment the software developer has to consider. One can write
for an ideal world of one external interface, and provided the code is constructed right,

Chapter 5: Implementation 52

the software benefits from the operating system multi-tasking all events and demands on
that interface through the threaded sub-system.

Threads are used in the IBE proxy to allow for a simple code architecture for both the
receiving and sending entities. The proxy can take and process any number of client
connections without any client-side connection noticing that it is sharing the resource with
another. The client in this case could be an advanced email client which can download
multiple mail messages in parallel from multiple accounts. Not designing the proxy with
threading would either involved a very complicated multiplex design, or exposing the
user to a perceived network failure by multi-connecting clients. It also allows us to have
a constantly updating GUI during the computationally heavy IBE processing. This is
achieved by placing the GUI code in one thread and each of the encrypting and decrypting
processing in another. The operating system will allow each thread some small time slot
on the CPU and to the user it appears as if they are working together.

5.5 Sockets

In the TCP/IP implementation of the OSI layered model, there are two main types of
connections, connection orientated or connectionless. The main difference being the guar­
antee of data arriving in some order or the acceptance that some data can be ‘lost’ in
transit. TCP is connection oriented and UDP is connectionless. Most of the applications
we are familiar with sit on top of TCP and UDP.

As a programmer the connection oriented connection is logically defined by a ‘socket’.
Its like an electrical analogy where there is a connection between two types of equipment
where a plug and socket exist at either end. TCP programming has this same jargon where
a conceptual socket exists. The socket is a combination of an IP address, eg. 10.45.34.1
and a port number eg. 23 of the host machine. Programming this socket is about building
and binding the socket and reading and writing data into this logical pipe. A library
providing a special Socket access library is now nearly universally delivered by modern
operating systems and commonly called the TCP/IP stack. The interface, or API, to this
stack is almost standard but subtle difference exist between platforms. All higher level
applications (web browsers, email, consoles etc.) use this stack. This common approach
allows us to manipulate connections to our purpose. While it would be possible to replace
the stack with a custom, security aware stack, this approach has failed in the past as
replacing operating system components is generally frowned upon by IT administrators.

5.6 IBE for all TCP Protocols

The best way to implement an application which does more than secure email is to catch
all protocols at a choke point. From the diagram in 5.5 notice how all TCP (and there-

Chapter 5: Implementation

Figure 5.1: TCP/IP Stack

Chapter 5: Implementation 54

[HKEY_CURRENT_USER\Software\DCU\Socket Relay\Rule4]
"disable"=dword: 00000000
"peer.addr.str"="localhost"
"peer.port.str"="5001"
"peer.mask.str"="255.255.255.255"
"dest.addr.str"="ibe.dcu.ie"
"dest.port.str" =" 25"
"secure. in"=dword: 00000001
"secure.out"=dword: 00000000
"ibe.public.parameters"="C:\ \ \ \ ib e \ \neil@ibe.dcu. ie.xml"
"ibe.private.parameters"="C:\\\\ ib e \\ib e .dcu.i e .xml"
" ibe.to . id" = "neil@ibe.dcu.ie "

Figure 5.2: Configuration ‘Rule’

fore socket based) applications require a server address either implicitly via DNS name
or explicitly by direct address and then pass into the TCP layer. To intercept the traffic
our solution is non-intrusive (from our design requirements), where the client/server ap­
plication itself isn’t modified but the client configuration is set to connect the client to
a 127.0.0.1 (locahost) address on a non-standard port where our ‘proxy’ application is
waiting to examine the connection and its data payload.

What we do is redirect the proxy client to a new server socket via a ‘rule’ which is just a
set of parameters in the application’s configuration. Listening on this new server socket
is our proxy, acting as a server, waiting to re-interpret (parse) the data pipe and redirect
this data stream to its original intended target.

An example of a Rule in the configuration illustrates this process.

Peer settings are where the data comes from, dest settings are where data is redirected to,
secure indicate if the payload contains a secure data header contains key data, ibe settings
are global curve data.

Our IBE client and server proxies (which can be the same application) essentially sit as re­
directors in the data stream at the choke points indicated. Inside this re-directed stream,
between the IBE client and IBE server we encrypt the data. The IBE proxy still resides
in the application layer.

In our generic case of any TCP stream we use the IP address concatenated with the port
number as the unique identity. This setup is possible to override by configuration.

Illustrated in steps

1 . The client application (e.g. Telnet) opens connection to server

2. The client proxy catches it and inserts ibe session header with random AES session
key.

3. The client proxy connects to the server specified in this port’s rule.

mailto:neil@ibe.dcu.ie.xml
mailto:neil@ibe.dcu.ie

Chapter 5: Implementation 55

Application

Transport

Network

Link

User process

-Ethernet

Figure 5.3: Socket Redirect

Chapter 5: Implementation 56

HELO bartspcMAIL FROM: bart@simpson.comRCPT TO: lisa@simpson.comDATAFrom:
"Bart Simpson" < bart@simpson.com >To: lisa@simpson.com Subject: itchy &
scratchy love each other..QUIT

Figure 5.4: Example SMTP stream
HELO bartspcMAIL FROM: bart@simpson.comRCPT TO: lisa@simpson.comDATAcibesess
>x,yc,v etc </ibesessxbody cipher=AES>abcdef123456abcdef. . . </ibesess>.QUIT

Figure 5.5: Encrypted SMTP stream

4. The server proxy ‘catches’ the connection and removes IBE session header to get the
bulk (AES) encryption session key.

5. The server proxy decrypts and passes data onto the intended server (also got from
its rule).

6. The client and server applications require no modifications besides updates to their
settings or configurations.

5.6.1 E m ail is a sp ec ia l case o f generic netw ork proxy.

In Chapter 3 we pointed out that securing email poses problems as the client and server
don’t directly connect allowing for each side to swap and verify security parameters like
public keys. We designed our proxy to make a special case when it is configured as an
email agent (i.e. listening to traffic on ports 25 or 110). The setting is explicit as the well
known ports may not be actually used by email clients and the overhead for auto-detect
by traffic analysis isn’t worth the benefit.

We do this by observing that if one flattens each side of each protocol we see it really is
just a deterministic token stream which we can parse

eg. SMTP

What we do is on sending (SMTP) is watch the data stream for the DATA token and splice
in the secure parameters (Example in figure 5.5. Parameters in red) and all subsequent
data is AES encrypted in blue.

What we then do in the reciprocal POP3 session is :- have the listening agent catch
the message by watching for first the POP header data, then catch the XML tag for
<ibesess>. Then strip out all the subsequent payload out and decrypting the data using
the AES session key which was encrypted in the ‘IBE session block’ in the header.

5.7 Non-Blocking I/O

In most programming languages, when you try to get input from the user, you execute
a read() method specifying the user’s terminal or some kind of GUI dialog. When the

mailto:bart@simpson.com
mailto:lisa@simpson.com

Chapter 5: Implementation 57

program executes the read() method, the program will typically wait until the user types
at least one character before it continues and executes the next statement. This type of
I/O is called blocking I/O : the program blocks until some data is available to satisfy the
readQ method.

This type of behavior is often undesirable. If you’re reading da,ta from a network socket,
that data is often not available when you want to read it: the data may have been delayed
in transit over the network, or you may be reading from a network server that sends data
only periodically. If the program blocks when it tries to read from the socket, then it’s
unable to do anything else until the data is actually available. If the program has a user
interface that contains a button and the user presses the button while the program is
executing the readQ method, nothing will happen: the program will be unable to process
the mouse events and execute the event-processing method associated with the button.
This can be very frustrating for the user, who thinks the program has hung.

Traditionally, there are three techniques to cope with this situation:

5.7 .1 I /O m u ltip lex in g .

Developers often take all input sources and iise a system call like select() to notify them
when data is available from a particular source. This allows input to be handled much like
an event from the user (in fact, many graphical toolkits use this method transparently to
the user, who simply registers a callback function that is called whenever data is available
from a particular source).

5.7 .2 P olling .

Polling allows a developer to test if data is available from a particular source. If data
is available, the data can be read and processed; if it is not, the program can perform
another task. Polling can be done either explicitly—with a system call like poll()-or, in some
systems, by making the readQ function return an indication that no data is immediately
available.

5 .7 .3 S ignals.

A file descriptor representing an input source can often be set so that an asynchronous
signal is delivered to the program when data is available on that input source. This signal
interrupts the program, which processes the data and then returns to whatever task it had
been doing.

While this issue of blocking I/O can conceivably occur with any data source, it occurs
most frequently with network sockets. If you’re programming sockets over the Internet,

Chapter 5: Implementation 58

the chances of this backlog happening are greatly increased; hence the chance of blocking
while attempting to write data onto the network is also increased.

5.7.4 Approach

Code steps inside the proxy application are

• Start.

• Thread random.

• Thread reading Config (GUI or Service is main()).

• Read Configuration as global data and then a set of Rules.

A Rule is :

What port to listen on (e.g 110)

What server IP / Host + Port to connect to, Socket Filters Etc.

• For each rule set up listening thread

• On connect:

Check rule /filters and set up tight read/write proxy I/O. (low memory overhead)

• In Input/Output loop

• Parse based on rule and inject or remove IBE session details

• Generate or extract random AES key encrypted with IBE and after which do AES
bulk {en|de}cryption using IBE session details

note: All logging data, GUI interaction etc. go through calling functions stubs for specific
operating systems or environments ensuring portable code construction.

5.7.5 The Input/Output loop

The following code snippet is the thread handler for an incoming socket this can be either
a client or server. The ‘rule’ is found for connections on that socket (and incoming IP) to
determine where to connect too. This rule (held in the data structure dst) also contains the
setting (dst - >secure_out) which determine to encrypt (adding an IB Encrypted AES key
in front of the data stream handled in secureParametersSendO) or to decrypt, stripping
our this header to get the key (in secureParametersRecv ()). The code has minor editing
changes from the source to make it more readable.

Chapter 5: Implementation 59

/ /
// This is the actual I/O thread. One of these per connection.
// Uses blocking I/O with select.
DWORD WINAPI streamloThread(PCONN conn)
{
SOCKADDR_IN deat;
SOCKET dest__socket;
#ifdef WIN32

FD_SET rfd;
#else

fd_set rfd;
#endif
PRULE dst;
char sesskey [IBE_HEADER_BUF__LEN] ;
char ntoa_jouf[128] ;
int rc , src_pending, dest_pending
STATE state;
aes_state aes_s;
m e m s e t d e s t , 0,sizeof(dest)) ;
initialiseProxyState(&state); // initialise STATE
// FindRule adds to the reference count,
// so we will have a valid rule handle even if the rule is
// later deleted by the user !
// And FindRule locks out FreeRule while it's searching,
// so we should be thread safe...
dst=FindRule(conn->src_addr,conn->port);
if((rc=ioThreadSetUp(conn, dst,dest, &dest_socket)))

return rc;
if(dst->secure_out={

rc=secureParametersSend{
dest_socket,dst->IBEPublicParameters,
dst~>IBEToID, sesskey,
IBE_HEADER_BUF_LEN, &aes_s) ;

}
if(dst->secure_in){

rc=secureParametersRecv(
conn->src,dst->IBEPublicPararaeters,
dst->IBEPrivateParameters , sesskey,
IBE_HEADER_BUF_LEN, &aes_s) ;

)
if(rc==0) {

rc=CAESInit(sesskey,&aes_s);
}

Then the function enters a loop, constantly polling the source and destination sockets to
see if any data is pending. If data is pending it determines which socket and then passes on
the connection into the ‘tightReadWrite()’ (see below). Notice how the socket parameters
to this function are switched depending on the socket polled allowing for reuse no matter
the function (encrypt or decrypt) required.

for(;;){
FD_ZERO(&rfd);
FD_SET{conn->src,&rfd);
FD_SET(dest^socket,&rfd);
if((rc=select(FD_SETSIZE,&rfd,0,0,0))<0) { break; }

Chapter 5: Implementation 60

src_pending=FD_ISSET(conn->src,&rfd),-
dest_pending=FD_ISSET(dest_socket,&rfd);
if(src_pending){

if(tightReadWrite(
conn->src, dest_socket, sesskey,
dst->secure_in,dst->secure_out ,&aes_s)

<=0)break;
}
if(dest_pending) {

if(tightReadWrite(
dest_socket,conn->src, sesskey,
dst->secure_out,dst->secure_in,&aes_s)

<=0){break;}
}

)

If either socket is closed (select() reports this) the loop is broken and the function cleans
up. The global statistic data is surrounded by a critical section to make sure it is thread
safe. This data is passed into the performance monitor data collection in windows or the
proc mon subsystem in Unix. The logging function writeLog is not a native event log or
syslog call. This thunking allows us to substitute an operating system dependent logging
function in a separate code module which is complied in depending on the OS environment
parameters.

I l l and clean up....
if(settings.stats_enable){

EnterCriticalSection(&stats_cs);
stats.n_active--,*

LeaveCriticalSection(&stats_cs);
}
rc=WSAGetLastError();
strncpy(ntoa_buf,inet_ntoa(conn->src_addr),aizeof(ntoa_buf));
if(settings.verbose){

WriteLog(ERR_INFO,cc_disconnect_msgID,src_filenarae,__LINE__,
"Disconnect %s.%d from %s.%d: %s",
ntoa_buf,ntohs(conn->src_port),inet_ntoa(dest.sin_addr) ,
ntohs(dest.sin_port),WSAErrStr(rc));

}
closesocket (dest_socket) ,•
closesocket(conn->src);
FreeRule(dst);
cc_free(conn)?
__heaprain() ;
return 0;
}

The design guide for the proxy specifies a low impact. This 10 thread simple reads and
writes the socket data inline, reading a maximum 1024 bytes, typically the size of a TCP
frame inside the TCP/IP stack, adding little extra buffering overheard.

static int tightReadWrite(SOCKET in, SOCKET out, const char ^sesskey,
const int recvSecure, const int sendSecure,

Chapter 5: Implementation 61

Figure 5.6: R oad /W rite Loop

{
aes_sCate *Paes_s)

int rc, wc;
char buf[IO_BUF];

memset(buf,0,IO_BUF);
i f ((rc=recv(in,buf,IO_BUF,0))<=0) // EOF on recv {

return rc;
}
if(recvSecure){ //decrypt

char aesBuf[TMP_AES_BUF];
int lenAES=0;
memset(aesBuf,0,TMP_AES_BUF);
lenAES-CAESdecryptFinish(buf, aesBuf,Paes_s);
if(XenAES>=0)memcpy(buf,aesBuf,lenAES);
rc=lenAES;

}

if(sendSecure) {
char aesBuf[TMP_AES_BUF];
int lenAES=0;
memset(aesBuf,0,TMP_AES_BUF); //encrypt
lenAES=CAESencryptFinish(buf, aesBuf,Paes_s);
memcpy(buf,aesBuf,lenAES);
rc=lenAES;

}

i f ((wc=send(out,buf,rc,0)) l=rc) {
return wc;

if(settings.stats_enable){
EnterCriticalSection(&stats_cs) ;

stats.n_incoming+=wc;
LeaveCriticalSection(&stats_cs) ,

}
return 1 ;

5.7.6 Security issues with socket listeners

Our generic solution can act in either client of server mode, meaning it can be expect to
be on the receiving end, or sending end of a pipe. Some security issues arise with this
scenario.

For example given our client side sockets are in listening mode intended for the client on
the local machine, there is an issue that any machine can connect to the socket, which, at
API level doesn’t have any special characteristics limiting the connections.

What we do is, at applications level above the socket, to examine all connections after

Chapter 5: Implementation 62

they occur and quickly compare to our own Rule (see figure 5.2) comparing the incoming
source address with our Rule setting.

5.8 MIR ACL

MIRACL [57]or Multi-precision Integer and Rational Arithmetic C/C++ Library is a
Big Number Library developed by Michael Scott which implements all of the primitives
necessary to design Big Number Cryptography. MIRACL is compact, fast & efficient,
portable with inline assembly for per processor optimizations. MIRACL does not merely
provide an interface set of Cryptographic methods, but can be seen as a set of tools that
enable any new number-theoretic technique to be implemented quickly. The primitives for
the math behind IBE were built using examples taken from MIRACL’s supporting code
documentation.

5.9 Implementation language

5.9.1 C Vs CH—b Vs Java Vs...

At the project start it was decided to use C++ wherever possible but to always consider
options. As the proxy is to effectively ‘add-on’ to existing user set-ups an important design
decision was to optimise performance wherever possible so as not to restrict distribution
possibilities because of perceived or demonstrable overheads.

At each corner (GUI images, executable size, 3rd party DLLs requirements, crypto pro­
cessing speed etc.) all options were considered and ultimately performance considerations
won out.

Java was considered and during the project life cycle various prototypes were developed in
Java including a standalone Mail client, a chat tool, and configuration management GUI.

The most optimal underlying crypto code was C++ based. Inside this library is processor
tuned assembly code that is rebuilt on a per platform basis. It was considered to implement
the proxy, GUI etc. in Java, but for both performance reasons (see below) and GUI quality
it was decided the C/C++ hybrid was best with Visual C++ for Windows development
and GCC/make for UNIX. Code was designed to be portable ANSI C.

It was my opinion before the project started that Java was nothing special and essentially
C++ for people who didn’t understand pointers. That the overheads of running virtual
machines and garbage collection made it useful for nothing else than having more engineers
available with the skills required to do basic software engineering. Its popularity came from
a marketing campaign by Sun leveraging a popular anti-Microsoft bias prevalent among
developers. ’’Some have called Java a cleaned-up version of C++ that eliminates the

Chapter 5: Implementation 63

confusing features of C++ rarely used and poorly understood” [2], During the course
of this project my opinion changed as I used it for rapid development of cross platform
GUI prototypes like the chat client/server. Java is more like an evolution of C++ with
C# being a not so distant evolution of Java (for similar commercial reasons as Java was
marketed). The Java VM’s ability to garbage collect in a relatively effective manner and
the huge amount of Java supported add-on packages for file I/O, crypto etc. has made
rapid coding and program maintenance much more streamlined. The fact that threading
and networking can be considered ‘native language features’ is a huge benefit to a modern
coding and system environment. Java’s library having all the tools to effectively work with
TCP/IP protocols like HTTP making accessing network resources as simple as working
with the local file system was an attractive proposition for this network centric project.
That the GUI is no longer platform specific is a huge bonus. However (at least currently)
GUI style, and GUI development, is still pretty primitive in Java, it being both ugly and not
up to commercial quality on most platforms. It seems like the lowest common dominator
of the supported systems came to prevail. For our project Java’s main downside came in
the poor native support of the elliptic curve processing primitives over the demonstrated
high performing MIRACL. It is also hard to use close to the bone memory management
techniques to tweak every ounce of performance from each native platform. The machine
abstraction is the price paid for turning memory management over to Java.

My colleague Noel McCullagh coded both a 100% Java IBE library and one that used the
JNI (java native interface) to thunk into the optimised MIRACL code. Both have been
shown to be usable with the only real obvious performance hit being on the PDA and smart
phone platforms (Pocket PC and SymbianOS on ARM processors) where IBE primitive
operations took over 20 seconds. In GUI / human interaction on standard desktop and
server machines the overhead, while still present, was negligible.

5.9.2 C oding/ Coding guidelines.

The proxy code uses C++ syntax but little of the advanced C++ features like overloading
and multiple inheritance. It mimics these features like Objective-C or the windows winsys
code by using Object Oriented design techniques. An example of this is the two main data
structures Rule and Config. Both are defined as C structs in a C++ ‘syntax-ed’ wrapped
header. Both are complex ‘deep C’ structs/structures requiring element level memory
management. Although any code with scope to see a variable of either type also has the
ability to ‘see’ into what would be ‘private’ data types because of the C. All access to the
data is via a read-only accessor or a modifier. Both are optimised with const qualifiers so
as to allow for compile time optimisation.

Example of header file coding guidelines

#ifndef _ibeRule_H_
#define _ibeRule_H_ // <<----------- protects namespace using

Chapter 5: Implementation 64

#ifdef _cplusplus

extern "C" {
#endif
Struct {

int numDestinations

char * ...

} Rule, *pRule:
const int getNurnDestinations () { return numDestinations; } //

//<<----------- use of const makes functions calling over heads
// negligible via complier optimisation

setNumDestinations(const _in){ return numDestinations =_in; }
#ifdef _cplusplus
}
#endif
#endif

The benefit is coding discipline allowing for better maintenance and proper de-coupling
of code. The requirement that the code should as easy to port to a restricted device like
a PDA, smart-phone, and also to high-end systems like Unix, or mainframes, limited the
choices. It was perceived that this decision (basic C++) would lead itself to portability.
In hindsight it would have been possible to use inheritance and STL features as a time
saver. There is a lot of simple data structure maintenance code which is error prone to
develop and maintain.

One limiting factor was the Microsoft Window GUI. Deciding not to use a Microsoft
framework like MFC/ATL or a third party like Qt, as it ties one too close to a particu­
lar variant of an operating system, made porting easier but each platform is then much
more painstaking. I choose to do native ‘raw’ Windows GUI and system coding for the
GUI, registry management, threading and shell interaction, even though there exist C++
wrapper classes. The C++ classes are heavy, have many dependences, have performance
overheads and don’t always support older (98, NT 3.x) systems. However there were huge
amounts of code management to keep the discipline of thread safe GUI and registry calls
coupled with robust memory management.

The code architecture decided the GUI implementation. In the advanced frameworks it’s
hard to truly separate out the portions, which are traditionally non-portable like GUI,
logging, and configuration.

5.9.3 Code design for reuse.

True to the design guidelines the application is delivered in many different forms depending
on the requirements with the core ‘engine’ being the same and written in a portable C++

//pre-processor rather then C++ namespace
// <<----------- allows for module to be called
//from c without non portable C++ name mangling

// <<----------- proper variable naming convention
// allows for maintenance

The goal was to

Chapter 5: Implementation 65

• Deliver just one .exe executable module for whatever platform/format.

• To have little or no dependencies on specific versions of static or dynamic libraries
being pre-installed.

• To have no installation location dependencies other than those required or suggested
by specific operating system guidelines.

• Run with user level (non-administration) privileges for the run-time feature set.

This is not to say that any installer will not default to common practice when setting up
or configuring defaults.

All the above features allow for painless upgrade for delivering maintenance releases.

The proxy application is packaged in the following formats

• Windows standalone with advanced GUI allowing for dynamic reconfiguration

• Windows lite-weight GUI for installations that have pre-configured settings which
won’t subsequently be updated. This allows for GUI to show ‘something; is happen­
ing without over loading the user with too much technical information.

• NT service. To allow for background and always on installations with control panel
applet for NT service remote configuration.

• Unix variants

Specific Platform/form dependencies tend to be

• GUI

• Configuration

• Installation

• Logging

In the following sections detailing each package I expand on the specifics of each. To
understand the mechanics of the code I detail the main windows package and then describe
the variations required for other package.

5 .9 .4 V e r s io n in g

Each application .exe or .dll containing versioning information. The ‘About’ button on
any of the GUI main screens allows one to see the currently installed components and the
relevant version information (see figure 5.7). In addition the ‘About dialog’ also gives a
data of current build of the running application.

Chapter 5: Implementation 6 6

About Socket Relay

http: //www. ¡be. dcu. ie/

This Build: Dec 10 2003

Version: 1 , 0 , 1 , 0

File Version A

ssr_perf.dll 1.0.1.5
ssrs.exe 1.0.7.8
srold.exe 1.0.1.0
SRLold.exe 1.0.3.0 V

OK

Figure 5.7: GUI ‘About’ Dialog

Figure 5.8: GUI Tray Dialog

5.9 .5 In voca tion

All applications are installed to open from the standard program start menu. Once run­
ning, any GUI based application can be opened from the system tray by clicking on the
gray/black circle icon see in figure 5.8. When there any network traffic passing through
the proxy this icon animates activity by spinning clockwise.

5.10 Windows Package Versions

5.10.1 W in d ow s A dvan ced G U I

This package is a one .exe executable binary with no dependencies and can be run from
any installation point by just double clicking. It required no parameters but you can
change the configuration registry load point and display a ‘sniffer’ window to show what
is passing through the proxy.

Command line parameters

- sniffer

the recommend installation point is

\Program Files\Dublin City University\Secure Relay\SR.exe

Chapter 5: Implementation 67

il" Registry Editor □ U S
File Edit View Favorites Help

+ I__I Identities
+ I__I Keyboard Layout

L J Network
+ '_] Note-lt
+ I_] Printers

__I Sessioninformation
- __I Software

♦ I Adobe
+ I. IJios

Classes

ù DCU
- L J Socket Relay

! ~l Rulel
M Rule2

[Google
I ~l Jasc
U Microsoft

Name Type Data

^ (D e fa u lt) REG_SZ (value not set)
^ jd es t.add r.s tr REG^SZ mail,ibe.dcu.ie
-iS3dest.port.str REG_5Z 110
.“ Si] disable REG_DW0RD 0x00000000(0)
.iJJbe.private,para... I REG 5Z c : \ibe\neil Jb e . dcu. ie. ibe
^ ib e , public, param... REG„SZ c:\ibe\server_curve0.ibe
>J]peer.addr.str REG_SZ localhost
* 3 peer, mask, str REG_SZ 255.255.255.255
i^Jpeer.port.str REG_SZ 110
S5dpop3 REG_DW0RD 0x00000001 (1)
.no] secure, in REG_DW0RD 0x00000001(1)
.5$ secure, out REG.DW0RD 0x00000000(0)

My Computer\HKEY_CURRENT_USER\Software\DCU\5ocket Relay\Rule2

Figure 5.9: Registry Settings

With no command line options it reads its configuration from

CURRENT_USER\Software\Dub1in City University\Secure Re1ay\SR. exe as per Mi­
crosoft guidelines. See 5.9

On start-up the application reads the current configuration into a set of data structures.
The configuration can be system wide like log level or specific to a ‘Rule’. All system wide
parameters are stored at the root of the configuration and the rules are a variable list of
sub keys under the root called Rulel, Rule2, . . . Rulen. These rules can be seen in
the screen shot of the Microsoft Registry editing tool in figure 5.9.

A full annotated description of the system settings is outlined in 5.5 on page 52. Each of the
system parameters are loaded into the data structure ‘Config’ in the function Configure
(HKey root) and then there is an array of Rules data structs allocated by the number of
sub-keys under the registry root.

The two data structures are Config and Rules

< con fig .h>

< ru le .h>

The data structure code is ‘C’ but with C++ class like accessors and modifiers compiled
as const to allow the compiler optimise out any function call. The benefits of not accessing
directly into the data structures allow us to carefully managed the memory allocations for
optimum use of resources and to allow for various methods of GUI modification including
distributed monitoring.

Chapter 5: Implementation 6 8

O Socket Relay
Fie Edit Log Help

U i x
Sellings Rules _Eiâ_ _ _______
4-6070> Configured 2 rules on 2 ports
4-6055> Listening on 25 localhost 255.255.255.255 to mail.ibe.dcu.ie 25 on all interfaces
4-6055> Listening on 110 localhost 255.255.255.255 to mail.ibe.dcu.ie 110 on all interfaces

Threads: active-0 idle-0 running-0, Bytes: in-0 out-0

Figure 5.10: GUI Main Screen Dialog

After reading the configuration from the Registry the application displays the main com­
mand dialog as shown in figure 5.10. This example (5.10) shows a system with two rules
one for POP3 and one for SMTP. Both have filters to accept connections from the local
machine only, and connect to the relevant servers on mail.ibe.dcu.ie. It is in full expanded
mode displaying each message ID for an administrator to trace any issues.

From this main start dialog it is possible to open either global settings or the rule editor
by using either the tool-bar or drop down menus.

The ‘Settings1 button opens a tabbed dialog like the example in figure 5.11. This example
reflects a setup that wants all types of logs to be recorded in expanded form but not to
the level of debug which would add source code locations (module/line) of any errors or
messages.

Selecting ‘Rules’ displays a dialog like the example in figure 5.12 and lets one create a new
rule, delete existing rules, change the priority of a rule (only relevant to rules on the same
ports) and edit any of the existing rules.

Selecting ‘edit’ or ‘new’ opens a dialog like the example figure 5.13. Note that any of the
items added in any ‘drop down combo box‘ are also saved to allow for reuse as ‘history’
for any list that appears when one choose to ‘drop down’ any combo box. The hosts in
the host box are pre-filled to include the hostname and localhost. The mask list contains
A, B and C net masks. The advanced button expands the dialog to include a few more
settings including rule enable/disable and binding to a named interface for machines with
a number of different interface cards.

Figure 5.14 outlines the interaction between each of the components outlined above. All
GUI applications that allow for settings changes reuse the dialogs and their handling code
which are implemented via callbacks.

Chapter 5: Implementation

r

Settings m a '
Log | Mise |

Type
lv> Serious Errors f~ No Log
1? Warnings — ,

W Verbose
IV» Information

Level
1? Expanded |^ax |0
l~ Debug

Log font |

OK Cancel

Figure 5.11: GUI Settings Screen Dialog

Socket Relay Confirmation

Rules

25 localhost 255.255.255.255 to mail.ibe.dcu.ie 25 on all interfaces
110 localhost 255.255.255.255 to mail.ibe.dcu.ie 110 on all interface

New,u.__| Edit... | Delete | Up | Down |

Help | CancelOK

Figure 5.12: GUI Rule Select Dialog

Chapter 5: Implementation 70

Socket Relay Rule m
Listening

Port |25|

Source

Host (localhost

Mask |255.255.255.255

Role

OK

" 3

~1\

Destination Modes

Host

Port
mail.ibe.dcu.ie

;25 -I

Advanced >>

Cancel Help

Figure 5.13: GUI Rule Dialog

5.10.2 Windows light G U I.

Is similar to the Advanced GUI version, includes all code and functionality but the GUI
components are substituted with a smaller dialog which doesn’t allow on to modify any of
the Rule or global settings. It reads data from the same registry location.

5.10.3 Windows N T Service

On modern Microsoft operating systems (NT 3.5 and higher, Windows 2000, XP, media
center and their future derivatives) there is a subsystem to allow for applications not
suitable for end user GUI and that may run when the user is not logged in.

This suits us for a number of usage scenarios

• Use by users not allowed by security policy to modify settings.

• Home user set up where possible intimating security GUI would be a put off.

• Used as endpoints for network VPN tunnels.

• High secure systems where secure logging is paramount.

• Systems requiring remote management, ease of upgrade, and performance monitoring

• Providing security resources to other machines on a network like a firewall applica­
tion.

Chapter 5: Implementation 71

Perfo mance \
mohlior daia Iinstai) program

statistics

’roxy maln{) &
it treads registry

Rule Manager
Dialog

Log file
(optional)

Rule Editor
Dialog Global

Setti ngs
Tab Dlaluq

Application System Services

Figure 5.14: Proxy Advanced GUI component interaction.

Chapter 5: Implementation 72

It also fits our design goal of high performance. A service is a critical system component
and puts demands on application design allowing for huge usage without over overwhelming
the limited resources. An NT service is an executable program (.exe) that runs as a
background task and whose lifetime is controlled by the service control management (SCM)
sub-system. Services maybe run at system start-up, or may be started (via the SCM) by
the interactive user, a process that a user is running, or by remote distributed system
management tools such as Microsoft own, IBM’s Tivoli or HP’s open-view.

Figure 5.15 outlines the interactions between the components outline below.

Based on the instructions given when the service is installed the SCM decides how and
when to load the service application when needed and involves no subsequent user inter­
action. This model is different from the way normal program executables are loaded and
run. i.e. when a user double clicks on an exe via an explorer GUI or programmatically
via another process. This ability to live independently of the individual user or depend on
specific call requests provides us with its useful properties.

Services can, but shouldn’t, have console or GUI feedback to the user. All information
should be passed via the system event log (see Logging)

Types of start-up state set on installation

• Manual. Required user interaction

• Automatic (most common) When the NT/2000/XP splash screen is being started
and the disk is still whizzing on system start-up.

• Disabled Start-up: Installed but required administrator rights to start-up

One sees and can modify the start-up options via the services panel on the administrator
portion of the control panel. We also provide access via a control panel applet, command
line or our own service and ‘rule’ management GUI.

We provide a number of command line settings to allow the user to tell the SCM how to
install the service on the common line.

To be part of a really effective client/server managed architecture an NT service should
be capable of remote management. We achieve this by having an ‘install relative’ registry
entries controlling all logic configuration set as per Microsoft service deployment guidelines
and then its up to the machine system administrator to provide rights to allow remote
access to qualified/approved remote admin.

All required entries for the IBE proxy are below a known registry root

”<known root>\Software\DCU/IBE Secure Relay”

following the convention of

Chapter 5: Implementation 73

Application System Services

Figure 5.15: System Interactions of NT service IBE proxy

Chapter 5: Implementation 7 4

”<user dependent>\Softw are\com pany\application name” which is depend­
ent on the context of the main (). If its compiled as an NT service then the ‘user de­
pendent’ settings have to be under LOCAL_MACHINE for permissions. This is because
at start-up the system may not know what user rights the application will be run as.
Straight inside the code block which implements the NT service entry point we call a Con­
figure (LOCAL_MACHINE) call to set the relative configuration access point. All other
configuration is exactly the same as any GUI based proxy.

To follow Microsoft guidelines a service should provide a management GUI independent of
the service management which modifies the set of registry entries. Ideally this is a control
panel application but we also provide a stand alone GUI capable of remote configuration
and management by utilizing the underlying SCM sub system if NT privileges allow so.
Not making this application stops any system carrying the ‘approved for Microsoft’ logo.

A service and service management apps are slightly different from a standard C/C++ pro­
gram code in that immediately after the main () process ‘thread of execution’ it has to make
a call to the SCM to register itself for control calls via a S tartserv iceC trlD isp atch er
() call. The main() does nothing else and the StartServiceC trlD ispatcher () is

then considered the application entry point.

This dispatcher starts a thread and holds a pointer to the real main () called the

ServiceMain () then it starts a new thread which registers itself to the SCM and is
called the control handler which at a minimum handles control operations stop, pause
or continue. The service also has to provide updates back to the SCM about its state
(running, paused etc.) via a status information. The dispatcher thread of control just
sits in a while () loop passing control requests from the SCM to the appropriate handling
functions which each which have the responsible of provided real time data on its state. At
a minimum these are stopped, starting, running, stopping, start pending (reading Config
etc.) stop pending (waiting for threads to finish I/O for example), pausing.

This allows the real main () (ServiceMain ()) to implement the logic of the service, dis­
patching worker threads doing I/O etc. it continues to do this until it receives a stop
request from the SCM where it cleans up its resources and terminates.

All this code is in the service.cpp source code module.

5 .1 0 .4 E v e n t L o g

On NT (including 2000 and XP), rather than each application writing to a separate file
with no standard format for logging errors, exceptions, etc., the creators developed a cent­
ral location via an operating system ‘sub-system’ called the EventLog. It is intended to
provide a central reporting facility for various operating system components. For applic­
ations with no GUI like drivers and service applications like our proxy in VPN tunnel
mode, they can report error conditions and detailed information to administrators and

Chapter 5: Implementation 7 5

users. This event log has a standard unified programming interface. The calling applica­
tion first registers itself with the subsystem as a log generator. There are three types of
logs.

• Error, Information, and Debug,

and four types of severity

• Success, Information, Warning, and Error.

Typically the event log viewer can filter or trigger on these types plus the event ID. The
application effectively sends the log type & severity, plus an application specific numeric
identifier for the log entry, data for the entry. Its interesting to note that the event log sub
system doesn’t actually copy the full entry but keeps the time/date, the calling application
binary locations and then uses the ID to locate a resource string back in the original .exe
file. It only does this when the log is being read/viewed or backed up. This mechanisms
required discipline on the application programmer to understand the type of log being
generated. To tag it appropriately and to provide a unique ID for the message. It’s also
optimal to keep the actual data short.

The Microsoft complier (Visual C++) provides a message complier which can take a text
file with a list of the log ids and strings and generates a C++ header file and a ‘.bin’ file
for inclusion into the linked binary. The header ,h file then can be used by the program
to refer to messages ids by a mnemonic rather than by a ‘magic’ number. The strings
are short macros with special substitution characters (%A, %B etc) on linking the .exe
these strings are complied into the application for lookup by the event log subsystem when
required. The strings also include a mechanism for language independence, which can be
useful to have one exe, but in the end users (viewers) native language.

To take full advantage of this system all log entries in the code are thunked into the stub
WriteLog () call located in the ccWritelog.c source module.

Because the event log is tightly linked to the operating system, and had unified API. It is
possible for remote monitoring of the application by an suitable privileged administrator
on a remote machine, and to place data mining (or filtering) tools.

5.11 Random Number generation.

As outline in the earlier section 2.3.6 described the importance of locating good random­
ness in any application using cryptography, In our Microsoft Windows 32 based imple­
mentations we start our entropy accumulator by threading out a random thread to run
in parallel as soon as the application starts attempting to emulate the operations of the

Chapter 5: Implementation 76

UNIX /dev/random inside the applications themselves. Inside this thread we poll a num­
ber of system resources, mixing them with MD5 (for speed), and settle into a loop which
constantly gathers variable system data in an attempt to add to the non deterministic
data.

/ / R a n d o m s e e d i n g m o d e l e d a f t e r N e t s c a p e S E C p a c k a g e

/ / b u t k e e p s l o o p i n g , s a m p l i n g t h e h i g h r e s o l u t i o n t i m e r

/ / a n d t h e c u r s o r p o s i t i o n p e r i o d i c a l l y . T h i s s h o u l d b e

/ / r a n d o m i f t h e r e i s a n y l o a d a t a l l o n t h e m a c h i n e ,

u n s i g n e d l o n g W I N A P I R a n d o m T h r e a d (P V O I D d u m m y)

{
UUID uuid;
POINT pt;
LARGE_INTEGER c i ;

MEMORYSTATUS mem;
DWORD dwl,dw2,dw3,dw4;
char vol [128] , f s [128] ;
void *p;
B dwl=GetTickCount () ;
A RAND_seed((unsigned char *)&dwl,sizeof(dwl));
C p=GetCurrentProcess();
RAND_seed((unsigned char *)&p,sizeof(p));
C dwl=GetCurrentProcessId();
RAND_seed((unsigned char *) &dwl, sizeof (dwl))
D p=GetCurrentThread();
RAND_seed((unsigned char *)&p,sizeof(p));
D dwl=GetCurrentThreadId();
RAND_seed((unsigned char *)&dwl,sizeof(dwl));
E dwl=GetLogicalDrives();
RAND_seed((unsigned char *)&dwl,sizeof(dwl));
F GetVoluraelnformation (0, vol, sizeof (vol) , &dwl, &dw2, &dw3 , f s , sizeof (f s))
RAND seed(vol,strlen(vol));
RAND seed(fs,strlen(fs));
RAND_seed((unsigned char *)&dwl,sizeof (dwl));
RAND_seed((unsigned char *)&dw2,sizeof(dw2));
RAND_seed((unsigned char *)&dw3,sizeof(dw3));
G GetDiskFreeSpace (0 , &dwl, &dw2 , &dw3 , &dw4) ;
RAND_seed((unsigned char *)&dwl,sizeof(dwl));
RAND seed((unsigned char *)&dw2,sizeof(dw2));
RAND_seed((unsigned char *)&dw3,sizeof(dw3));
RAND_seed ((unsigned char *) &dw4, sizeof (dw4)) ; mem.dwLength=sizeof (mem)
H GlobalMemoryStatus(&mem);
RAND_seed((unsigned char *)&mem,sizeof(mem)); dwl=sizeof(vol);
I GetComputerName(vol,&dwl);
RAND_seed(vol,dwl);
memset(&uuid,0, sizeof(uuid));
J UuidCreate(fcuuid);
RAND_seed((unsigned char *)&uuid,sizeof(uuid));

for (;;)
{

K Q u e r y P e r f o r m a n c e C o u n t e r (& c i) ;

R A N D _ s e e d ((u n s i g n e d c h a r *) & c i , s i z e o f (c i)) ;

L G e t C u r s o r P o s (& p t) ; R A N D _ s e e d ((u n s i g n e d c h a r *) Sc.pt, s i z e o f (p t)) /

M S l e e p (1 0 0 0) ;

B r a n d _ c b (g C t x) ;

}
return 0; // unreachable, but the function must have a return value !

Chapter 5: Implementation 77

• A RAND_seed((u n sign ed char *)& d w l , s iz e o f (d w l)) & ra n d _ c b (g C tx);

Allow for all gather data gathered is constantly feed into the mixer which is based
on the SSLEAY/OpenSSL [19] generator (see description in Peter Guttmann’s book
[25]) which hashes via SHAl an initial 20-byte all zero value then successive 20 byte
block blocks of 1 KByte randomness pool along with the randomness pool which we
supply from our updating random thread.Which then become the next 20-byte hash
value and XORed back into the pool. This is then feed into the PNRG generator
which mixes again and generates the output. This outline comes from notes made in
a conversation with Dr Stephen Henson [27] of the OpenSSL [19]team. The _seed()
is the constant background update, the _cb() binds it to the PRNG.

• B GetTickCount();

Retrieves the number of milliseconds that have elapsed since the system was started.

• C GetCurrentProcess () & GetCurrentProcessId();

• D GetCurrentThread() & GetCurrentThreadld();

Retrieves a pseudo handle and ID and for the current process or thread.

• E GetLogicalDrives();

Retrieves a bitmask representing the currently available disk drives. We use this for
seed and as input to F and G.

• F G etV o lum eIn form ation (0 ,v o l , s i z e o f (v o l) , &dwl,&dw2, &dw3, f s , s i z e o f (f s))

Retrieves information about a file system and volume from the directory specified in
E.

• G G etD isk F reeS p a ce (0 ,&dwl, &dw2, &dw3, &dw4);

Retrieves information about the disk from E, including the amount of free space on
the disk.

• H GlobalMemoryStatus(&mem);

Obtains information about the system’s current usage of both physical and virtual
memory.

• I GetComputerName(vol, &dwl) ;

The windows domain name is unique to a domain.

• J UuidCreate(kuuid);

Unique identifier creation, allows each application to come up with a uses include
CORBA and COM library interfaces /library name mangling, doesn’t actually need

Chapter 5: Implementation 7 8

to be random, but just not collide with another, in practice this takes the MAC
address of the primary network interface.

• K QueryPerformanceCounter(&ci) ;

A view into the windows performance monitor subsystem. All well written server
windows applications provide data to the system about their running state and
provide data 011 application specific data such as throughput, number of connected
users, speeds etc etc. This mixed up data should be tough to determine. Our
implementation of the proxy also contributes to this pool via the registration of its
global statistical information.

• L GetCursorPos(&pt);

Retrieves the cursor’s position, in screen coordinates.

• M Sleep(lOOO) ;

Put the thread in to hibernation for a second allowing for some of the counters to
be updated. It essentially puts our sample gather at one per second.

C h a p t e r 6

C o n c l u s i o n s

During the course of this work it has been shown that IBE based security protocols are
suitable for real world use in applications.

Ongoing research and future work in this area should include

• New key retrieval methods in agents. Currently the fall back of most IBE applica­
tions, including my own, is to assume a simplistic private key distribution method,
usually manual and without complex real world authentication techniques.

• Complex policy systems. Similarly the key management system usually is very
simplistic just asking the user to prove their identity. I believe future systems will
involved much more role based identities with complex key construction strategies.

• Systems which replace IBE Key Generation Center’s (KGC) Escrow capabilities.
The biggest controversy with any existing IBE system is the escrow property. While
useful in certain circumstances, it can discourage deployment. Ongoing research
hopes to reduce or eliminate the escrow issues with alternatives. This does not
appear to be possible for pure IBE but may be achieved for a hybrid IBE/PKI
scheme.

• Signatures. Often a parallel applications of security applications, Signatures re­
quirements are weakened by the presence of escrow as signature system are usually
restricted to systems where it is provable that only one party can produce a given
signature. However the role based models of IBE use propose to open up this field.
Future versions of the client software for email clients should integrate signature
schemes. Indeed recent research in this area includes the pioneering work of Noel
McCullagh [38] and Paulo Barreto in the area of pairing based signature, particu­
larly batch signature verification. 1. Noel’s work has give us a model of verifying
signatures in a manner that is much more efficient that those currently employed in

1 Noel is also a member of the team funded under the same Enterprise Ireland [29]RIF

79

Chapter 6: Conclusions 8 0

traditional PKI/RSA based systems where each signature must be checked individu­
ally involving relatively large computational expense on an operation that usually
resolves in a positive verification. The pairing based batch signature verification can
verify any amount of signatures in one operation. This model is more practical when
one thinks how email is normally retrieved from a server in batches periodically. In
a restricted device such as a phone, this efficient batch signature check may be malie
a big difference.

• Random Oracle Proof. The Random Oracle security proof has been questioned as
to its relevance to IBE. Future work include new IBE methods that do not require
random oracle proofs.

• Formal IETF adoption of IBE in XML signature and encryption RFCs, and in VPN
protocols like SSL and IPSEC. While my work presents IBE technology in a manner
that has made it pragmatic to deploy in current systems, a more idealistic approach
is to have IBE embedded in the lower layers of technology and thus truly reap the
benefit from its transparent capabilities.

B i b l i o g r a p h y

[1] S. A. Vanstone A. Menezes, P. C. van Oorschot. Handbook of Applied Cryptograpy,
volume 6 of Discrete Mathematics and Its Applications. CRC Press, Boca Raton, FL,
USA, 2001.

[2] Jeff Alger. C++ for Real Programmers. A P Professional. Morgan Kaufmann, New
York, 1998.

[3] Tom Austin. PKI - A Wiley Tech Brief. Wiley Tech Brief. Wiley Press, Hoboken,
New Jersey, 2001.

[4] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-
based cryptosystems. In Advances in Cryptology - Crypto’2002, volume 2442 of Lec­
ture Notes in Computer Science, pages 377-87. Springer-Verlag, 2002.

[5] BBC. Increased hack attacks. BBC Internet News Site, 2003. h ttp ://n ew s.b b c .
c o .u k /2 /h i/te c h n o lo g y /2231205.stm.

[6] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing, extended
abstract. In Crypto ’2001, volume 2139 of Lecture Notes in Computer Science, pages
213-229. Springer-Verlag, 2001.

[7] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal of Computing, 32(3):586—615, 2003.

[8] C. Cocks. An identity based encryption scheme based on quadratic residues. In
VIII IMA International Conference on Cryptography and Coding, volume 2260 of
Lecture Notes in Computer Science, pages 360-263. Springer-Verlag, 2001. http:
/ / www. c e s g .gov .u k /s ite /a s t /id p k c /m e d ia /c ir e n .p d f .

[9] CESG. Communications and Electronic Security Group, http: //www. cesg .gov .
uk.

[10] M. Crispin. Rfc 3501 - internet message access protocol. Internet Request for Com­
ments, March 2003. RFC 3501.

[11] J. Schiller D. Eastlake, S. Crocker. RFC 1750: Randomness Recommendations for
Security. IETF The Internet Engineering Task Force, December 1994.

81

http://news.bbc
http://www.cesg.gov.uk/site/ast/idpkc/media/ciren.pdf

Bibliography- 82

[12] J. Daemen and V. Rijmen. The block cipher rijndael. Smart Card Research and
Applications, LNCS 1820, 1820:288-296., 2000. Lecture Notes in Computer Science
No. 218.

[13] J. Daemen and V. Rijmen. The design of Rijndael: AES-The Advanced Encryption
Standard. Springer-Verlag, Berlin, 2002.

[14] J. Daemen and V. Rijmen. Rijndael, the advanced encryption standard. Dr. Dobb’s
Journal, 26(3), March 2001.

[15] W. Diffie and M. E. Heilman. New directions in cryptography. IEEE Trans. Inform.
Theory, IT-22:644-654, November 1976.

[16] H. Dobbertin. The status of MD5 after recent attacks. RSA ‘s CryptoBytes publication,
2(2) :1—6 , 1996.

[17] Kitty Niles. Donald E. EastlaKe. Digital cryptography: A subtle art. Sample
Chapter, 2002. h ttp ://w w w .a w p ro fe ss io n a l.co m /a r tic le s /a r tic le .
asp?p=2 9054&seqNum=4.

[18] J. Ellis. History of ID-PKI. Web page with links to slides, 2001. http://w ww.
c e sg . g o v .u k /s i te /a s t / in d e x . cfm?menuSelected=3&displayPage=31/.

[19] Dr. S. Henson et al. openssl libary. open source libary via web download, 1988.
h t tp : / /www.openssl. org.

[20] J. Galvin et al. Rfc 1847- security multiparts for mime: Multipart/signed and multi­
part/encrypted. Internet Request for Comments, October 1995. RFC 1847.

[21] Y. Rekhter et al. Rfc 1918 - address allocation for private internets. Internet Request
for Comments, February 1996. RFC 1918.

[22] Y. Rekhter et al. Rfc 3369 - cryptographic message syntax (cms). Internet Request
for Comments, February 1996. RFC 3369.

[23] American Standard Code for Information Interchange. : h ttp : / /www. ansi . org/.

[24] Apache Software Foundation. Apache http server. Open Source http server, 1996.
h t tp : / /www. apache.org.

[25] Peter Gutmann. Cryptographic Security Architecture Design and Verification.
Springer-Verlag, Berlin, 2004. h ttp ://w w w .cs.au ck lan d .ac.n z/~pgu t0 0 l / .

[26] M. Haddon. The curious incident of the dog in the night-time. Jonathan Cape, Great
Britain, 2003.

[27] Dr. S. Henson. Renowned security expert and open source developer, 2002. h t tp :
/ / www. d rh -con su ltan cy . demon. c o .uk.

http://www.awprofessional.com/articles/article
http://www
http://www.openssl.org
http://www.apache.org
http://www.cs.auckland.ac.nz/~pgut0
http://www.drh-consultancy.demon.co.uk

Bibliography 8 3

[28] IEEE Std 1363-2000. Standard Specifications for Public-Key Cryptography. IEEE
P1363 Working Group, 2000.

[29] Enterprise Ireland, h ttp ://w w w .en terp rise-ire lan d .com .

[30] C. Neuman J. Kohl. RFC 1510: The Kerberos Network Authentication Service (V5).
IETF The Internet Engineering Task Force, 1993.

[31] M. Rose J. Myers. Rfc 1939 - post office protocol - version 3. Internet Request for
Comments, May 1996. RFC 1939.

[32] A. Joux. A one round protocol for tripartite Diffie-Hellman. In In W. Bosma Ed.,
editor, Algorithm Number Theory Symposium - IVth Sympisium, volume 1838 of
Lecture Notes in Computer Science, pages 385-394. Springer-Verlag, 2000.

[33] N. Koblitz. Elliptic Curve Cryptosystems, 1987.

[34] Paul Kocher. President Cryptography Research, http ://www. cryptography.
com/company/ Paul- Kocher.html.

[35] Steven Levy. The open secret. Wired, 07(04), April 1999.

[36] Malpan S. Galperin C. Adams M. Myers, R. Ankney. RFC 2560. X.509 internet
public key infrastructure online certificate status protocol - OCSP. Internet Request
for Comments, 1999. RFC 2560.

[37] Wenbo Mao. Modern Cryptography: Theory and Practice. Prentice-Hall, PTR. HP
press, Upper Saddle River, New Jersey, USA, 2004.

[38] NoelMcCullagh. god like genius, http://w w w .com puting.dcu.ie/~nm cculla.

[39] A. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,
1993.

[40] Sun Microsystems. Java 1.1 SDK. Toolkit, 1998. h ttp ://ja v a .su n .co m /
p ro d u cts /a rch iv e /jd k /1 . l/in d ex .h tm l.

[41] V. Miller. Uses of Elliptic Curves in cryptography. In H.C. Williams, editor, Advances
in Crytology - CRYPTO ’85, pages 417-426.

[42] nCipher. A provider of hardware security products and developer toolkits, h ttp :
/ / www.ncipher. com.

[43] Faranak Nekoogar. Digital Cryptography: Rijndael Encryption and AES Ap­
plications. h ttp : / / www.techonline. com /com m unity/related_content/
14754.

[44] N.I.S.T. U.S. department of commerce/n.i.s.t., national technical information service,
http : / / www.i t i .n is t .g o v /.

http://www.enterprise-ireland.com
http://www.computing.dcu.ie/~nmcculla
http://java.sun.com/
http://www.ncipher.com
http://www.techonline.com/community/related_content/
http://www.iti.nist.gov/

Bibliography 84

[45] Jonathan B. Postel. Rfc . simple mail transfer protocol. Internet Request for Com­
ments, August 1982. RFC 821.

[46] Federal Information Processing Standards Publications. U.S. department of commer-
ce/n.i.s.t., national technical information service, h t tp : //w w w .it l .n is t .g o v /
f ipspubs/.

[47] Federal Information Processing Standards Publications. Standard specifications for
secure hash algorithm -1. FIPS PUB 180-1, 1995. http : / /www. i t l . n i s t . gov/
f ip s p u b s /f ip l8 0 -1 .htm.

[48] Federal Information Processing Standards Publications. Standard specifications for
the advanced encryption standard. FIPS PUB 197. PDF, 2001. h t t p : / /c s r c .
n i s t . g o v /p u b lic a tio n s/ f ip s / f i p s l 9 7 / f ip s - 197.pdf.

[49] A. Shamir R. Rivest and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. In Communications of the ACM, volume 21(2) of
Communications of the ACM, pages 120-126. ACM, 1978.

[50] Ron L. Rivest. Founder RSA security and professor electrical engineering MIT. http :
/ / th eo ry .l e s .m it . ed u /~ r iv est/.

[51] Ronald L. Rivest. Rfc 1321. the MD5 message-digest algorithm. Internet Request for
Comments, April 1992. RFC 1321.

[52] M. J. B. Robshaw. MD2, MD4, MD5, SHA and other hash functions. Technical
Report TR 101, RSA Laboratories, July 1994.

[53] RSA Data Security, Inc. PKCS #1: RSA Encryption Standard, June 1991. Version
1.4.

[54] K. Ohgishi Ryuichi SAKAI and Masao KASAHARA. Cryptosystems based on pair­
ing. In In Proceedings of Cryptography and Information Security, Jan 2000.

[55] Ryuichi SAKAI and Masao KASAHARA. ID based Cryptosystems with Pairing
on Elliptic Curve. Cryptology ePrint Archive, Report 2003/054, 2003. h t t p : / /
e p r in t . ia c r .org/.

[56] Bruce Schneier. Founder and CTO Counterpane, http://w w w .schneier.com .

[57] Micheál Scott. Miracl multiprecision integer and rational arithmetic c/c++ library.
Shamus Software Internet Site, 2002. http : / /h ttp : / / indigo . ie /-m sc o tt /.

[58] A. Shamir. Identity-based cryptosystems and signature schemes. In Springer-Verlag,
Lecture Notes in Computer Science, volume 30 of Lecture Notes in Computer Science,
pages 47-53. Springer-Verlag, 1984.

http://www.itl.nist.gov/
http://csrc
http://www.schneier.com

Bibliography 85

[59] N. Smart. Cryptography, An Introduction. McGraw-Hill, Maidenhead, England, 2002.

[60] AEP Systems. A leading provider of security and acceleration hardware products,
h ttp ://w w w .aep-crypto . com.

¡61] C. Allen T. Dierks. RFC 2246: The TLS Protocol. IETF The Internet Engineering
Task Force, January 1999.

[62] W3C. Xml-signature syntax and processing. W3 Internet Site, 2002. http://www.
w 3.org/TR /xm ldsig-core/.

[63] Eric W. Weisstein. Group generators. From MathWorld-A Wolfram Web Resource,
h ttp : / /mathworld.wolfram.com/GroupGenerators.html.

[64] Wikipedia. Differential cryptanalysis. Wikipedia fact index, 2003. http://www.
fact-ind ex .com /d /d i/d ifferen tia l_cryp tan alysis.h tm l.

http://www.aep-crypto.com
http://www
http://mathworld.wolfram.com/GroupGenerators.html
http://www

A p p e n d i x A

P a t e n t

In September 2002 the team filed a joint patent at both the US and European patent
offices with the author as co-inventor.

A .l Patent Filing

A cryptography system and method

A .1.1 Introduction

The invention relates to Public Key Infrastructure (PKI) cryptography.

Such cryptography involves a sender encrypting a message using the public key of the
receiver. The receiver decrypts the message using his/her private key. The public key is
made publicly available by the receiver, but the private key is kept private and secure.
Such cryptography has been effective from a security viewpoint. However, it has suffered
from the problem of being difficult to use. In practice, many people do not go to the
trouble of locating the public key of the person they wish to send a message to.

This has led to the “identity based encryption” (“IBE”) approach, in which an arbitrary
string is used as the public key. For example, if Alice wished to send Bob an encrypted
email, there is no need for Alice to obtain Bob’s public key certificate. Instead, Alice
would be able to encrypt a message to Bob using only his email address as the public key.

While Adi Shamir proposed such a scheme in 1984, IBE remained an unsolved problem
until recently. In June 2001 Cocks described a system using the quadratic residuosity
problem. In 2001 Boneh et al described an IBE system using the Weil Pairing.

There are four steps in an IBE scheme:

• Setup. This function generates global system parameters and generates a master-key.
This is essentially picking the parameters of the elliptic curve set out above.

8 6

Appendix A: Patent 8 7

• Extract. This function uses the master-key to generate a private key that corresponds
to an arbitrary public key string ID.

• Encrypt. Takes a message and encrypts it using the public key ID.

• Decrypt. Decrypts a message using the corresponding private key.

To encrypt a message the encrypting party needs to have access to the public global
system parameters of the Key Generator and (optionaUy) the policy of the Key Generator
for constructing a public key string from an identity.

At present, there exist relatively few practical implementations of the IBE scheme. These
schemes have yet to solve the problem of scalability of the system, focusing on the direct
crypto aspects and assume that the parameters and/or policy we speak of are fixed in a
global solution or distributed manually with each instance.

We believe this approach to be limiting.

An object of the. invention is to enhance the IBE scheme with methods to allow for more
scalable, distributed, dynamic model. Another object is to allow for multiple closed groups
with their own security parameters, to offer a model with multiple realms of security policy.

A .1.2 S ta tem en ts o f In ven tion

According to the invention, there is provided a cryptography method comprising the steps
of a sender encrypting a message using a recipient’s public key and the recipient decrypting
the message using a private key, wherein the public key is generated using parameters and
a policy retrieved from a domain.

In one embodiment, the domain is associated with the recipient.

In another embodiment, the domain provides the parameters and policy either before or
after the recipient has registered with it.

In a further embodiment, the domain also provides a private key to the recipient.

In one embodiment, the domain comprises a key distributor which distributes private keys
to registered users, and parameters and policies for potential senders to construct public
keys.

In another embodiment, the domain address is made available via search engines in a
manner whereby it is easy to locate because of the business or other link with the recipient.

In a further embodiment, the domain enables only read-only access by potential senders.

Appendix A: Patent 8 8

The invention will be more clearly understood from the following description of some
embodiments thereof, given by way of example only with reference to the accompanying
drawings in which:-

A .1.3 D e ta i le d D e s c r ip tio n o f th e In v e n tio n

Fig. 1 is a message transfer diagram illustrating a cryptography method of the invention.

In the invention, a cryptography method includes locating the global system parameters
and/or policy for an identity based on a domain that identity is a member of. This
domain is possible to derive from the identity. For example, to encrypt a message to
neil@costigan.com one does a ’network lookup’ to the domain costigan.com to locate the
global public parameters (and/or policy) to initialise an Encrypt operation.

Examples of methods of lookup could be:-

• a DNS lookup request to an IBE record in a DNS host table similar to how a mail

mailto:neil@costigan.com

Appendix A: Patent 89

relay finds an MX record to locate a mailhost.

• a HTTP request to the URL ibe.costigan.com.

A would-be infringer would have to include a lookup function based on the concept that an
identity is described by a string and that identity can be placed in a domain. This domain
is used to dynamically locate the correct parameters to secure data being transmitted to
the identity.

In more detail, a Key Generator (KG) publishes parameters and various policies relevant
to construction of public keys for entities it will distribute private keys to. To encrypt
data to the identity Bob the encrypting entity Alice needs to locate suitable parameters
and policy to construct a public key for ’Bob’.

To do so they will determine a likely Key Generator for the domain or group ’Bob’ is likely
to be able to get a suitable private key from.

This relationship between Bob and the Key Generator does not need to be in place at the
time of encrypting.

Alice derives the source of the parameters and policy for ’Bob’ based on a domain ’Bob’
is part of.

For example:

To encrypt and send a message to bob@un.org, Alice drives via a mapping function (f in
Fig. 1) to the domain for Bob (un.org), and then does a lookup of the parameters from a
key generating source for un.org. The parameters could be generated based on the request.

At some time Tia the domain key generator DKG publishes parameters and a policy.

At some time Tif, the domain key generator DKG gives a private key on request to Bob
who should authenticate himself to obtain this key.

At a time T2 prior to encrypting data to Bob@un.org. Alice drives via a mapping function
F () a suitable domain for Bob based on his identity, i.e. for Bob (un.org) .F(bob@un.org) =un.org.
Alice either determines she already has, or needs to request public parameters and policy
from this domain . If she needs to request Alice then does a lookup of the parameters
and/or policy from a key generating source (DKG) for un.org. The parameters could be
generated based on the request type or contents.

At some time X3 after T2 Alice uses these parameters to form the public-key for the identity
Bob.

It will be appreciated that the invention allows for much simpler location of the set of
parameters that an identity is most likely to be associated with. This is achieved by use
of a domain associated with the recipient.

The invention is not limited to the embodiments described but may be varied in construc­
tion and detail.

mailto:bob@un.org
mailto:Bob@un.org
mailto:bob@un.org

Appendix A: Patent 90

A . 1.4 C laim s

1 . A cryptography method comprising the steps of a sender encrypting a message using a
recipient’s public key and the recipient decrypting the message using a private key, wherein
the public key is generated using parameters and a policy retrieved from a domain.

2. A cryptography method as claimed in claim 1, wherein the domain is associated with
the recipient.

3. A cryptography method as claimed in claim 1 or 2, wherein the domain provides the
parameters and policy either before or after the recipient has registered with it.

4. A cryptography method as claimed in claim 3, wherein the domain also provides a
private key to the recipient.

5. A cryptography method as claimed in any preceding claim, wherein the domain com­
prises a key distributor which distributes private keys to registered users, and parameters
and policies for potential senders to construct public keys.

6. A cryptography method as claimed in any preceding claim, wherein the domain address
is made available via search engines in a manner whereby it is easy to locate because of
the business or other link with the recipient.

7. A cryptography method as claimed in any preceding claim, wherein the domain enables
only read-only access by potential senders.

8. A cryptography method substantially as described with reference to the drawings.

9. A server for performing the operations of a domain as claimed in any preceding claim.

10. A computer program product comprising software code for performing a method of
any of claims 1 to 8 when executing on a digital computer

A p p e n d i x B

A n n o t a t e d C o n f i g u r a t i o n

Windows Registry Editor Version 5.00

[HKEY_CURRENT_USER\Software\DCU]

location defined by Microsoft guidelines.

[HKEY_CURRENT_USER\Software\DCU\Socket Relay]

"pos,x"=dword:OOOOOObO

"pos,y"=dword:000000e 8

"pos.cx"=dword:00000310

"pos.cy"=dword:0 0 0 0 0 1a2

To save windowing position every time the application is closed we save the cordinates of
the top right and bottom left corners and reopen the applicaion using these points.

"verbose"=dword: 00000001

"debug"=dword: 00000000

Level of detail in output log window.

"thread.pool.enable"=dword:00000001

91

Tells the application to build a pool of worker threads ready to take action on connections.
Improves performance by requesting resources.

"perf.mon.enable"=dword:00000000

Enables forwarding of some statistical information to the XT performance monitor sub­
system.

"tcp. linger"=dword:00000001

" tcp. nodelay11 =dword ¡00000001

Enables small TCP optimisations.

"log.nolog"=dword: 00000000

"lo g .err"=dword¡ 0 00 00 00 1

"log.warn"=dword: 00000001

"log.info"=dword¡0 0 0 0 0 0 0 1

"log.debug"=dword: 00000000

"log.detailed"=dword¡000 000 01

"log.max"=dword¡00000000

Allows the application user to filer the GUI display to relevant logging detail.

"toolbar. size"=dword¡00000000

Enables a GUI option to have small or large tool-bar icons.

[HKEY_CURRENT_USER\Software\DCU\Socket Relay\Rulel]

Each rule is a TCP port to listen on and an action to take on connections to the port and
incoming, connecting, IP address pair.

Appendix B: Annotated Configuration 92

"disable"=dword:00000000

Enable the rule or not.

"peer.addr. str"="localhost"

"peer.port. str"="25"

"peer.mask.str"="255.255.255.255"

The listening IP Port in number or name. A connecting IP address, fully resolved or by
hostname. Mask applied to this address.

"dest.addr. s tr "="mail. ib e .dcu. i e "

"dest.port. str"="25"

Port and server address to connect to.

"secure. in"=dword: 00000000

"secure.out"=dword: 00000001

Determines if there is encryption on incoming or outgoing connections. Ignored if SMTP
or POP3 settings as enabled.

"smtp"=dword: 00000001

SMTP setting.

"ibe.private.parameters"="c:\\ ib e \\n e il_ ib e .d c u .ie . ibe"

Location of ID key if using direct VPN mode.

"ibe.public.parameters"="c:\\ibe\\server_curveO . ib e"

Location of Server domain parameters if explicitly set.

[HKEY_CURRENT_USER\Software\DCU\Socket Relay\Rule2]

Appendix D: Annotated Configuration 93

"disable"=dword:00000000

Appendix D: Annotated Configuration

"peer.addr. s t r "="lo ca lh o st"

"p ee r.p o rt.str"="110"

"peer.m ask .str"="255.255.255.255"

"d est.addr. s t r " ="m ail. ibe .dcu .ie"

" d e s t.p o rt . s t r "="110"

"secure. in"=dword:00000001

"secure .o u t"=dword:00000000

"pop3"=dword:00000001

Set for POP3

"ib e .p r iv a te .param eters"="c :\ \ i b e \ \n e il_ ib e .dcu. i e . ib e "

"ibe.public.param eters"="c: \\ib e \\se rv e r_ cu rv e0 . ib e "

