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Abstract 

Investigation and Development of Implicit Numerical Methods for Building 
Energy Simulation 

Michael E. Crowley BSc, HDipEd, CEng, MCIBSE 

A variety of building energy analysis and simulation tools are increasingly used to determine 1 
peak heating and cooling loads, size thermal plant, anticipate annual energy consumption and 
analyse thermal comfort. Numerical solution techniques are considered the most flexible for 
building energy simulation. When applied to the differential equations modelling energy flows 
in buildings, they give rise to a system of non-linear algebraic (difference) equations. 

I 
In order to evaluate numerical methods for building energy simulation, the problem has been 
characterized mathematically and comprehensive test problems (equation sets) with these 
characteristics have been prepared. The principal attribute of the problem was found to be a 
stifiess ratio of the order of lo4. Candidate methods have been programmed and their outputs 
compared, in numerical experiments, with highly accurate (converged) solutions for the test 
problems. The accepted validation methods, empirical validation, analytical verification and 
inter-modal comparison were considered inappropriate. The first estimates total and not just 
numerical error, the second is too confined and the third lacks an absolute standard. The main 
evaluation parameter used was computational efficiency which is defined as accuracy attained 
per unit (computational) effort expended. 

An improved difference equation solver has been proposed and compared with the one used in 
the European reference model (ESP) and elsewhere. It was found to produce 27% less error 
than the currently used method. A fundamental method for estimating the pre-conditioning 
period of a building has been put forward in this part of the work. The trapezoidal rule (TR) is 
currently used in a number of building energy simulation packages including ESP. A known 
instability associated with the method is described and an implicit member of the Runge-Kutta 
family, possessing the necessary strong stability, has been shown, using the test problems, to 
be more efficient than TR by a factor of 4.27. 
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Notation

Bi Biot number, hcdy2/k s (dimensionless)

Bim finite-difference form of the Biot number, h ji /  ks (dimensionless)

c  specific heat of material represented by a node (J /kg K)

Clte local truncation error constant (dimensionless)

d  slab thickness (m)

dy2 slab half-thickness (m)

e(*) thermal excitation

E T  execution time

/,(■) derivative function

f/(-) time derivative of f t

f() vector of derivative functions

Fo Fourier number, a t  Jdy2 (dimensionless)

Fo{i mesh ratio or finite-difference form of 1he Fourier number, cck/h2

(dimensionless) 

g, G constituents o f f

h space increment (m)

hc convection coefficient (W /rtP- K)

hfr inside surface convection coefficient (W /m^ K)

hQS outside surface convection coefficient (W /wP- K)

i space step level, node number

I  identity matrix

j  time step level

J Jacobian matrix of f

k  time increment (s)

ks conductivity of slab (W /m K)

K  convergence factor

I linear dimension (m)

L  Lipschitz constant

Z Q  Laplace transform



m  mass of material represented by a node (kg)

M I  number of matrix inversions carried out during a test run

n  total number of equations or nodes

N Newton iteration matrix

N  number of machine operations per node/equation for a test run 

rQ  overall response function, amplification factor

r', r" successive time derivatives of r

R  alternative iteration function

s  number of Runge-Kutta stages

S  stiffness ratio

t  time (s)

t* dimensionless time

T  nodal temperature (K)

Ta air temperature (K)

Tm initial slab temperature (K)

T  * dimensionless temperature

j ' \ T n,T m successive time derivatives of T  

T vector of dependent variables

T' time derivative of T

«(•) unit response function

W complex number, kA

X space co-ordinate (m)

x* dimensionless space co-ordinate

z  exponent

|*| magnitude or modulus

||-|| spectral (/2) norm

Greek symbols

a  thermal diffusivity (m^ /s); parameter (dimensionless)

y  weighting factor (dimensionless); parameter (dimensionless)

5  mean temperature difference between reference solution and test solution (K)



[<5| mean absolute temperature difference between reference solution and test

solution (K)

S maximum absolute temperature difference between reference solution and test

solution (K)

£ round-off error in dependent variable

^  fraction of time step (dimensionless)

6>(-) temperature distribution function

A complex number

Aj eigenvalues of J

fj.t eigenvalues of Jacobian matrix of R

p  density (kg/m3)

er Stefan-Boltzmann constant

T  characteristic time scale of a thermal disturbance (s)

m̂in characteristic time scale of the most dynamic thermal disturbance (s)

<j) nodal heat gain (W)

Abbreviations

Alex2 Alexander’s second-order method 

BDF backward differentiation formulae 

BDF2 second-order backward differentiation formula 

BEM backward Euler method

BFD4 fourth-order backward-forward difference method 

CE computational efficiency 

DIRK diagonally implicit Runge-Kutta method 

ER Euler's rule

ESDIRK singly diagonally implicit Runge-Kutta method with an explicit first stage

FSAL first-same-as-last

IIE implicit improved Euler

IRK implicit Runge-Kutta method

Kvaemo3 Kvaemo’s third-order method

LE linearization by extrapolation

LL linearization by lagging



LMM linear multi-step method 

LTE local truncation error

MAT mean access time

MOLCOL modified one-leg collocation method

NR Newton-Raphson method

0 (•) order of magnitude

ODE ordinary differential equation

PC predictor-corrector

PDE partial differential equation

PM proposed method

RAM random access memory

Re( ) real part of a complex number

RK2 second-order Runge-Kutta method

ROS2 the method of Verwer et al.

SDIRK singly diagonally implicit Runge-Kutta method 

SM Scraton's method

TR trapezoidal rule

TR-BDF2 trapezoidal rule -  backward differentiation formula composite method 

TRX2 trapezoidal rule by two 

VS VO variable step, variable order



Chapter 1:

Introduction

1.1 Energy use in buildings

Ever since the first world energy crisis of 1973 there has been increasing scrutiny of energy use 

with a view to reducing reliance on non-renewable energy sources. The cost and availability of 

fossil fuels are always of concern, even more so now with the current surge in demand. 

Recently attention has also focused on the environmental consequences of energy conversion, 

namely atmospheric pollution and global warming. In parallel with this, increasing emphasis is 

being placed on human comfort within buildings and on the quality of the indoor environment.

Energy use strategies to meet these needs include the use of less polluting energy sources, 

control of harmful emissions and increased energy efficiency. Energy conservation is a most 

effective measure in this regard, in that it simultaneously leads to reductions in energy use and 

environmental improvements, particularly the reduction of carbon dioxide emissions that 

contribute to global warming.

In Europe and the United States over 50% of all energy use can be associated with buildings

[1,2] and a considerable portion of this is consumed to moderate internal environmental 

conditions - more than 60% in the United Kingdom, for example [1]. Rousseau and Mathews 

[3] have estimated that more than 10% of all energy consumed in the world is expended in 

building heating, ventilating and air-conditioning (HVAC) systems, and it is stated that this 

sector is growing rapidly.

Energy awareness in the design of new buildings and retrofitting of existing buildings can, 

therefore, lead to substantial and widely felt benefits. It is commonly agreed that energy 

savings of between 30% and 70%, relative to the 1973 figures, are achievable through use of 

improved design methods and new technologies [1]. Another source suggests that better design 

of new buildings could result in a 50% reduction in energy consumption while a 25% saving 

could be possible through retrofit of existing buildings [2],
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A recent study by Cole and Keman [4] confirms the dominance of building operating energy 

over embodied energy for commercial buildings. HVAC and lighting accounted for 

approximately 85% of the total life-cycle energy use of the buildings considered. They 

conclude that strategies for reducing the life-cycle energy use should clearly progress first by 

introducing those design considerations which significantly reduce building operating energy.

Building designers have always strived to minimize project cost while maximizing the fitness 

of the building for its purpose. In recent decades increasing emphasis has been placed on 

human comfort and especially on energy efficiency. These latter design goals are sometimes in 

conflict and are always difficult to optimize because of the complexity of the system in 

question. In order to deal with this complexity effectively, building energy simulation has 

received growing attention in recent years.

1.2 Building energy modelling

A building is a geometrically complicated entity composed of many different constructional 

elements and enclosed volumes of air containing fittings, furnishings and plant. From a thermal 

viewpoint these constituent elements and enclosures are characterized by thermophysical 

properties such as conductance, capacitance and surface heat transfer coefficients. The 

different parts of the building and its environmental control systems are thermally coupled 

(frequently, with more than one other element) and exchange energy by most heat and mass 

transfer mechanisms. The boundary conditions (originating in casual heat loads and the 

weather) are spatially non-uniform, incorporate a lot of temporal variation and, once again, 

involve most heat and mass transfer mechanisms. Many of the energy transfer modes are non­

linear, e.g. long-wave radiation varies with the fourth power of temperature, convection and 

infiltration are mildly non-linear and the thermal conductivity of some insulating materials has 

been shown to be marginally dependent on temperature.

Examples of heat transfer occurring in buildings (and mass transfer accompanied by heat 

transfer) would include:

• Conduction within solid building elements.

• Natural and forced convection at building surfaces and plant heat transfer surfaces.
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• Longwave radiant heat transfer between internal surfaces and from external surfaces to the 

sky and surrounding buildings.

• Solar (shortwave) radiation to external surfaces and, via windows, to internal surfaces.

This arrives as direct, diffuse and reflected radiation and its impact may be reduced by 

external shading, self-shading and reflection at building surfaces.

• Casual heat gains to internal surfaces and air masses brought about by people and heat 

producing equipment.

• Infiltration driven by buoyancy and wind pressure.

• Air movements within the building driven by pressure and temperature differences and by 

mechanical plant.

• Heat injection and removal by HVAC equipment (usually automatically controlled).

• Various forms of latent heat transfer occurring at chillers, cooling coils, steam boilers, 

humidifiers, cooling towers, ice thermal storage plant and even at building elements 

impregnated with phase change materials so as to trim peak cooling loads.

The building and its HVAC plant can be modelled by a large, non-linear set of coupled 

differential equations. The behaviour of the solution in time simulates the thermal performance 

of both. The exact (general) solution cannot be found and recourse must be made to 

approximate methods which, despite their description, can provide a very accurate but 

particular solution. Application of these methods involves solving a related discrete problem 

rather than the original continuous one. Inevitably, this requires subdivision of the problem. It 

might be felt that finer subdivision, made possible by ever increasing computing power, would 

always improve solution accuracy. This cannot be assumed, however, as some discrete 

methods can introduce instabilities not present in the original problem. This aspect will be 

discussed further in Chapter 4.

Assuming stable solution methods and sufficient computing power to allow

(i) an adequate subdivision of the problem,

(ii) full treatment of non-linearities,

(iii) inclusion of all coupling between the chosen nodes and

(iv) detailed physical modelling of the various energy storage and exchange processes

building energy modelling offers the designer an emulation of reality. Temperatures and 

energy flows at all points of interest within the building and its environmental control systems 

are available at closely spaced points in time. Gross air movements between internal spaces, as
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well as air exchange with the exterior, are also obtainable but details of the air movement 

w ithin any space are not. This latter problem belongs in the domain of computational fluid 

dynamics and is different from the building energy problem in terms of the amount of 

computation required and the character of the describing equations. The two problems can be 

solved in parallel, exchanging information at intervals [5]. This thesis is concerned with 

building energy modelling only. Virtually any question which might arise in this domain can 

be answered with the aid of the model including the often quoted ‘what i f  questions which 

allow building designers to optimize the design.

The principal benefits of environmental modelling, as outlined in Chartered Institution of 

Building Services Engineers (CIBSE) [6] and elsewhere, are:

1. Improved energy and environmental performance of buildings. Modelling allows more 

accurate estimation of peak thermal loads through a fuller consideration of thermal storage, 

infiltration and other heat transfer mechanisms. The designer can trim safety margins with 

confidence and the consequent reduction in cooling and heating plant sizes leads to less 

use of ozone-depleting refrigerants and lower emissions of green-house gases. Modelling 

can, simultaneously, be an effective mechanism for optimizing internal environmental 

conditions by providing details of air temperature, shortwave and longwave radiation in 

each space. These are the main components of a thermal comfort index.

2. Evaluation of innovative design concepts. Traditional load estimation methods are often 

not flexible enough to deal with new building/plant configurations such as chilled concrete 

slabs or precooling of buildings by use of night ventilation. Designers and clients require 

reassurance that these systems will work in their new buildings.

3. Detailed analyses for design optimization. A change in glass reflectance or absorptance 

reduces summer cooling load but also reduces daylight levels and the availability of 

passive solar gains in winter to offset heating demand. What are the optimum glass 

factors? How early can a building heating system be switched off without affecting 

comfort? Can a building's thermal mass be used to shift the peak cooling load outside of 

the occupied period? Modelling can provide answers to these questions.

4. Reduction of life-cycle costs. Modelling allows estimation of the annual energy 

consumption for any building/plant combination and so it can be used to optimize the form
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and fabric of a building together with its mechanical and electrical plant, within the 

constraints set by the client.

5. Ability to assess HVAC system and control performance to ensure that comfort and energy 

costs are acceptable mid-season as well as on ‘design’ days.

6. Assessment of overheating risk in ventilated buildings.

1.3 Energy modelling techniques

Design tools for the estimation of thermal loads and free-running temperatures can be

classified as follows (in order of increasing complexity and achievable accuracy):

(a) Steady state methods

These calculations quantify heat transmission through solid building elements by use of 

U-values or thermal transmittance coefficients. No account is taken of solar gains, casual 

gains or thermal storage within the building. The method is, therefore, best applied for 

heating plant sizing in continuously heated buildings where an extended cold spell with 

little sunshine might be expected to determine the ‘design’ heat loss. Dynamic response, 

when the building is intermittently heated or when rapidly changing thermal loads are 

imposed, is not well modelled.

(b) Simplified dynamic methods

These are, essentially, manual methods which take some account of building dynamics and 

thermal storage. The methods are often based on multiple runs of more powerful 

techniques and are presented in tabular or graphical form. The CIBSE admittance 

procedure [7], based on harmonic analysis, can be included here. An early example of this 

approach would be the Carrier load estimating method [8] in which analogue computer 

calculations using Schmidt's method were used to tabulate dynamic heat flow through 

walls. The intended purpose of most of these methods is the identification of peak thermal 

loads rather than simulation.
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(c) Dynamic methods

Most energy flow paths are modelled in these methods. There is sufficient subdivision of 

the problem to provide a detailed thermal history of building and plant at adequate 

resolution. There is strict compliance with the conservation laws. The coupling between 

different parts of the building and between building and plant is accounted for by solving 

the describing equations as a system, i.e. simultaneously. The two major techniques in this 

category are response function methods and finite difference methods. These and some 

other techniques (transfer function methods, state-space models, electrical analogue 

methods, artificial neural networks and genetic algorithms) will now be described.

The response function approach has two branches, time and frequency responses, the first of 

which is prevalent in North America. Frequency-domain response or harmonic analysis has 

been adopted by the CIBSE, in simplified form, for its manual load estimation method. 

Recognizing that exact solutions to complex, transient, heat transfer problems are not 

available, response function methods operate by building up approximate solutions to real 

building energy problems from analytical solutions for relatively simple constructional 

elements and boundary conditions.

For example, when using the time-domain approach, the exact response of a building element 

to a unit temperature or flux pulse [called the unit response function w(f)] is found by use of 

Laplace transformation. An arbitrary, time-varying, thermal excitation e(i) can be resolved into 

a series of such pulses and the overall thermal response to it r(t) established by superimposing 

individual responses:

Here u(t) has been represented by a time-series of response factors, each separated by a time

evaluated with an appropriate time adjustment. The present day form of the response function 

technique is associated with the names of Stephenson and Mitalas [9]. It can be used to 

estimate room loads and temperatures using unit response functions derived for multi-layered 

constructions.

(1.1)

increment A t . The summed response is made up of these factors, each scaled by e{t) which is
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The frequency-domain approach entails representing the thermal driving forces by Fourier 

series, i.e. a constant term plus a series of sine and/or cosine functions. Exact solutions are 

available for single sinusoidal excitations and the principle of superposition is invoked to allow 

the system response to be obtained by summing the individual effects of the separate 

harmonics. The CIBSE admittance method, based on the work of Milbank and Harrington- 

Lynn [7], is a simplification of this approach in which only a single frequency is considered -  

the 24 hour daily cycle.

Early, extended accounts of these techniques are to be found in Kimura [10] and Muncey [11]. 

A most detailed description and critique of the methods is available in Clarke [12].

To illustrate the relationship between all of the dynamic methods, the following example is 

introduced:

The input (driving force) is denoted by e(t) and the output (response of system) by r(t). Time- 

division of e(t) for the first approach leads to the series

each with domain interval A t , whereas frequency-splitting of e(t) for the harmonic approach 

gives

where T  is the period of e(t). Second derivatives rarely arise in building energy simulation

connections rather than model a particular reality. The Laplace transform L(f) of any function 

fif)  will be denoted by an upper case letter and is defined by

ar" + br' + c r -  e { t\  r(o) = r'(o) = 0 (1.2)

(1.3)

(1.4)

except, maybe, in the context of control. The example is intended to demonstrate mathematical

(1.5)
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Integrating by parts, it can be shown that the Laplace transforms of successive derivatives of 

fit)  are

L ( f ’) = s L { f ) - M  = sF  (1.6)

L ( f )  = s 1L ( f ) - Sf ( 0 ) = S1F  (1.7)

Taking the Laplace transform of both sides of Equation (1.2) yields:

as2R  + bsR + cR = E(s) (1.8)

: .R (s ) = U(s )e (s ) (1.9)

where

£/(i) = ^ - J - ------ (1.10)
as +bs + c

is the so-called transfer function which depends neither on e(t) nor on the initial conditions. It 

is a function of the system parameters (a, b and c) only and it relates output to input in (the 

transformed) .v-space. The inverse transform of E  is e. From Equation (1.9), the inverse of the 

transfer function U, if it can be found, is clearly the unit response u to an arbitrary input e{t). 

(For this example, it can be found using partial fractions and a table of Laplace transforms). 

The inverse transform of the product UE is established by use of the convolution integral:

r(t)=  ^ u ( t ) e ( t - r ) d r  (1-11)

which is normally evaluated numerically, as in Equation (1.1), to give the output or system 

response.

In the mid-1970s, when dynamic methods began to be developed, computer power was limited 

and the response function techniques offered short computation times. This was achieved by 

pre-calculating unit response functions for commonly occurring constructions. Then, only a 

series of products and summations are required to calculate a load. This can also be viewed as
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a disadvantage, of course, since the user is limited to these same constructions [3] and to the 

fixed time-step used in the calculations performed on them [6]. There are some other 

disadvantages. Time-domain methods will not, without enhancement, provide intra- 

constructional temperatures which might be used to estimate thermal storage or quantify the 

risk of interstitial condensation [13]. They are most suitable for use in constant temperature 

spaces, e.g. air-conditioned buildings. Special techniques are necessary if the room temperature 

is not constant [14]. Frequency-domain methods are not very appropriate for modelling thermal 

excitations such as those presented by casual gains and plant operation which do not vary 

smoothly and therefore require many harmonics to represent them well [13]. The CIBSE 

admittance procedure, which uses just one frequency, is more applicable to free running 

buildings than to air-conditioned ones [14]. The simplified dynamic methods of both the 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 

based on response factors, and the CIBSE (the admittance method) are reported to 

underestimate the effect of thermal storage resulting in predicted peak loads that are up to 25% 

higher than actual loads [3,6], The principle of superposition, applied in both branches of the 

response function approach, assumes linearity in the governing differential equations. Sources 

of non-linearity in the building equations are outlined in Section 1.2 and many plant models are 

also non-linear. Unit response functions could be computed anew at each time-step but this 

would negate the principle advantage of these techniques, namely their speed [1],

ASHRAE has adopted the heat balance method (HBM) which is formulated using conduction 

transfer functions as its baseline procedure for cooling and heating load calculations [15]. 

ASHRAE’s simplified radiant time series method is derived from the HBM. The example 

above demonstrates the close connection between the transfer function and the response 

function methods and, therefore, similar comments apply.

Prior to the solution of higher-order ordinary differential equations (ODE) like Equation (1.2) 

by a numerical method, it is normal to decompose them [and also partial differential equations 

(PDE) in the building energy context] into a set of first-order ODEs:

r' = q

r(0 )= *(0) = 0 (1.12)

aq' + bq + cr = e(t)

9



A larger linear set of this kind might be written in matrix form:

r ' = A r + B (1.13)

and if the right hand side were non-linear:

r '  = f(f,r) (1.14)

A variety of numerical methods can be applied, the most generally used coming from the 

family represented by the theta method:

A discrete model such as Equation (1.15) can be generated from the original continuous model 

by two means [16]:

2. Sub-division of the building and plant, and application of the conservation laws to each 

finite volume of material.

Finite difference techniques are considered the most general [1] and the most flexible [17]. 

Calculations are from first principles and not from reference to stored data or previous 

computations. Non-linear phenomena can be modelled. Innovative building/plant concepts can 

be handled. This approach generally requires more computation but the benefits obtained and 

the reducing cost of computer power are leading to increasing use of this means of simulation.

A state-space system representation has been used in building energy simulation [18-20], 

State-space techniques and transfer function methods are better known in the context of 

controls, the former being referred to as ‘modem control’ methods whereas TFMs are called 

‘classical’. The state-space form of Equation (1.2) evolves from Equation (1.13):

(1.15)

1. Direct replacement of derivatives and functions by their finite difference forms.

r '  = A r + Ce
(1.16)

y = X r + Ze
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and is usually expressed in linear form for the full-scale problem. The excitation (input) vector 

e in B has been written explicitly and the output vector y has been expressed as a function of 

the state vector r  and of e. The transfer function for the system described by Equation (1.16) 

can be shown [21] to be

U(s) = X (s I -A )_1C + Z (1.17)

Matrix methods can be used to solve Equation (1.16) but, because non-linearity has not been 

addressed, the solution would be expected to be less accurate than a numerical solution of the 

more representative Equation (1.14).

Electrical analogue methods make use of electrical networks to represent coupled building 

elements and, for small problems at least, assist in visualizing the thermal interactions.

Thermal resistance h/ks and capacitance hpc are replaced by their electrical counterparts R 

and C respectively and voltage is the analogue of temperature. Solution methods from the 

theory of electrical circuits and even from electrical transmission line theory [22] have been 

employed. The electrical analogy is most often used in linear form and, since it leads to the 

same set of equations [Equation (1.13)] as the finite volume approach [3], matrix methods can 

be applied but with the shortcomings mentioned in the last paragraph. Finally, successful 

physical analogues of this type have been constructed [23] but this approach is perhaps not the 

most flexible.

Artificial neural networks (ANN) are based on simple models of the brain. Several layers of 

neurons (nodes) exchange information through a network of synapses (connections). The 

output from a neuron is determined by the sum of the incoming activations, each multiplied by 

a synaptic weight. ANNs can be used for prediction and pattern recognition provided they are 

first ‘trained’ for the intended application using known data. This is done by adjusting the 

synaptic weights so as to minimize the output error for many input data sets. Although training 

times can be lengthy and it can be difficult to decide on the correct network architecture [24] 

the technique has been usefully applied to the short-term prediction of energy use in buildings, 

optimal control of thermal storage and load/demand management [25],

A genetic algorithm (GA) models evolution by natural selection. A natural population of 

organisms is stressed by its environment (living and inanimate) and the least fit are 

underrepresented in the next generation. Sexual reproduction produces replacement individuals
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with new combinations of genetic material to be tested and filtered again. From time to time 

random gene mutations occur and are retained in the gene pool if beneficial. A GA operates on 

a set of digital entities by quantifying their fitness in some appropriate way and discarding a 

fraction of the population. New individuals are ‘bred’ from the fittest by copying and 

combining some of the digital make-up of each of two ‘parents’. Mutation is also modelled lest 

the entire breeding stock congregate around a local fitness maximum and lose diversity. This 

deliberate disturbance of the ‘gene pool’, while necessary to escape genetic dead-ends, should 

be infrequent so as to allow successful gene combinations to build up in the population. The 

GA was originally developed [26] as a general-purpose self-adapting strategy for sampling a 

(usually enormous) search space. The algorithm rapidly increases the number of digital strings 

in promising parts of the solution space. Of prime importance is the fact that the GA in 

essentially a parallel algorithm, since offspring can be evaluated independently. It is, therefore, 

naturally suited to new generation computers featuring parallel processing. GAs have now 

been tested in a wide variety of uses including the control of a gas pipeline system and the 

design of a jet engine turbine.

An interesting recent application is to the solution of ODEs [27]. Candidate solutions are 

represented digitally (as a set of points) and assessed on how well they satisfy the differential 

equation and boundary conditions. The proposed algorithm is capable of handling linear and 

non-linear equations, both stiff and non-stiff. However, it does not always offer the precision 

of advanced conventional solvers. This would not rule out its use in building energy simulation 

where the requirement for accuracy is not great. Of greater concern would be the number of 

iterations (‘generations’) required for convergence. The test examples given require between 

50 and 200 iterations each to achieve modest accuracy. Every iteration includes an assessment 

which incurs a function (differential equation) evaluation for each point of each aspirant 

solution. By way of comparison, the numerical methods advocated in this dissertation require 

typically two iterations at each solution point and two or three function evaluations per 

iteration so GAs do not appear to be competitive in this application.

1.4 Energy modelling programs

A recent count on the number of building energy models available [28] concluded that there 

were over 300 in existence. Table 1.1 below lists 16 participating programs in one of the most 

extensive empirical validation projects ever carried out [29]. This list is reported to include
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‘well respected, detailed dynamic simulation programs’ [30] which are ‘among the best in the 

world’ [31].

Table 1.1 International Energy Agency validation of building energy programs
Program Solution method(s) 

available
Program authors/vendors/support office

APACHE Finite difference, 
explicit.

IES Ltd., UK.

BLAST Response function. Colorado State University (CSU), USA.
CHEETAH Response function. CSIRO, Australia.
CLIM2000 Finite difference, 

implicit.
Electricite de France (EdF).

DEROB Finite difference, 
implicit.

USA.

DOE Response function. Lawrence Berkeley Laboratory (LBL), USA.
ENERGY2 Finite difference, 

explicit.
Arup R&D, UK.

ESP-r Finite difference, Energy Simulation Research Unit (ESRU),
implicit/explicit. University of Strathclyde, UK.

HTB2 Finite difference, University of Wales College of Cardiff (UWCC),
explicit. UK.

SERI-RES Finite difference, 
explicit.

Ecotope, USA.

S3PAS Response function. Escuela Superiore Ingenieros Industriales, 
Sevilla, Spain.

TASE Response function. Tampere University of Technology, Finland.
TAS Response function. Environmental Design Solutions Ltd. (EDSL), 

UK.
TRNSYS Finite difference, 

explicit.
University of Wisconsin, Madison, USA.

TSBI3 Finite difference, 
implicit.

Danish Building Research Institute (SBI).

WG6TC Finite difference, 
implicit.

Institute di Fisica Technica, Udine, Italy.

3TC Other. Facet Ltd., UK.

Following a review of practicable numerical solution methods used in this and other domains 

in Chapter 2, the test methodology is presented in Chapter 3. Here, the method of quantifying 

computational efficiency is detailed and the problem is mathematically characterised. In 

Chapter 4, stiffness is discussed and then the main work of investigation, development and 

testing of numerical methods is described. First the difference equation solver used in the 

European reference model (ESP) is analyzed and related methods are proposed and tested. 

Then suitably stable methods are introduced, tested and ranked for this application.
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Chapter 2:

Literature Review

The evolution of building thermal design tools has been classified into generations by Clarke

[12]. The first generation is characterised by a range of simplified calculation techniques used 

to quantify and assess building performance at design stage. In the mid-to-late 1970s, 

following on the ‘oil crisis’ and partially driven by it, dynamic performance of buildings was 

increasingly stressed in order to improve the integrity and overall accuracy of modelling 

methods. Initially, much effort was put into response function methods (described by Clarke as 

second generation) because of the limited demand they make on computer power. Numerical 

methods, the subject of this work, were increasingly used from the mid-1980s and design tools 

based on these solution methods are described as third generation. The fourth generation, 

dating from the mid-1990s, features quality input/output and visualisation software, and a high 

degree of integration and interoperability. But the basic solution strategy used in most design 

tools remains largely unchanged [32] chiefly because the mathematics and building physics are 

intimately mixed and a change of solution method would affect most of the program structure.

2.1 Numerical simulation software

The number of simulation environments and programs that are used to model energy flows in 

buildings and HVAC systems is very large [33-36], An extensive collection of those utilising 

numerical solution techniques is listed in Table 2.1. It can be seen that a good fraction of these 

tools make use of explicit numerical methods [Predictor-corrector methods (PC), Euler’s rule 

(ER), Runge-Kutta method (RK), modified Euler, the explicit finite difference method]. One of 

the principal properties of the building energy simulation problem is ‘stiffness’, characterised 

by a wide range of thermal time scales for the building elements (Section 3.4.3; Section 4.1), 

and implicit methods are widely regarded as being more efficient for the solution of stiff 

systems [37-45],
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Table 2.1 Building and HVAC system numerical simulation software
Environment or 
program name

Citation(s) Numerical 
method(s) used

Validation method(s) 
used

Comments

APACHE [46] Hopscotch Inter-model
comparison

BRIS [47] Crank-Nicolson Empirical validation
BSim [48] The implicit finite 

difference method
Inter-model
comparison

Contains
TSBI5

DEROB T491 Crank-Nicolson Empirical validation
EKS [50,51] VSVO BDF, IRK, 

PC, ER, LMM
Not described

ENERGY2 [71] ‘Explicit finite 
difference’

Not described

ESACAP [52] VSVO BDF Empirical validation 
via CLIM2000

Used within 
CLIM2000 
and MSI

ESP-r [1] Crank-Nicolson, 
The implicit finite 
difference method

Analytical 
verification, inter­
model comparison, 
empirical validation

HTB2 [53] The explicit finite 
difference method

Empirical validation

HVAC SI M+ T54] VSVO BDF Not described
IDA ICE [55-57] MOLCOL Inter-model

comparison
MotorLab T58] VSVO BDF Not described
Smile T59] TR, RK Empirical validation
SPARK [60] ER, BEM, TR, 

BFD4, 3 no. PC 
methods

Inter-model
comparison

SUNCODE-PC [61] ‘Explicit finite 
difference’

Empirical validation Equivalent to 
SERI/RES

TRNSYS ¡62] Modified Euler Empirical validation
WG6TC [71] ‘Implicit finite 

difference’
Not described

ZOOM T631_ Not specified Not described

Most of the rest of the simulation tools use well known implicit linear multi-step methods 

[backward Euler method (BEM), trapezoidal rule (TR) and backward differentiation formulae 

(BDF)]. Much recent research work in the numerical mathematics field [64] has centred on 

implicit Runge-Kutta (IRK) methods and the related Rosenbrock methods in an effort to 

improve on the performance of linear multi-step methods (LMM). Of particular interest are the 

diagonally implicit Runge-Kutta (DIRK) methods which inherit most of the advantages of the 

parent IRK family but not its highly implicit nature which makes IRK uncompetitive. In the 

present study, these and other recently developed families of implicit methods are assessed for 

use in building energy simulation.
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It would be difficult to trace all the validation work carried out on the software listed in 

Table 2.1 because of (i) the number of programs listed, (ii) the lengthy periods some have been 

in existence and (iii) the number of authors/vendors/users that might have carried out the work. 

However, the validation methodology used in this domain is well documented. Most early 

developers of simulation software attempted to compare their program’s predictions with 

measured data from a real building. A more general validation methodology began to emerge 

in the 1980s and papers by Judkoff et al [65] and Bloomfield [66] would be representative of 

this trend. This methodology, with some refinements and extensions, has become the accepted 

standard (ASHRAE, 2001) and virtually all of the major validation exercises undertaken in 

recent years have used it [68-72]. The International Energy Agency (IEA) on whose work the 

ASHRAE standard is based [73] has recently described an ongoing research project [74] aimed 

at further developing this same methodology. The main elements of the method are as follows:

(a) Empirical validation — in which program predictions are compared to measured data 

from a real structure.

(b) Analytical verification — in which output from a program is compared with an exact 

solution for a simple, building-related problem.

(c) Inter-model comparison — in which program predictions are compared with those of 

other programs.

The first estimates total (including measurement) error and not just numerical error, the second 

is too confined to be representative and the third lacks an absolute standard.

The test methodology employed in this study allows representative problems of appropriate 

scale and complexity to be used for testing, and solutions to these problems of arbitrary 

accuracy to be generated. Because the test problems are purely mathematical and do not 

include measurements, the only significant error present in such a test is that associated with 

the numerical method under scrutiny.

2.2 Monographs

In addition to those cited in Table 2.1, there exist a number of more extended works offering 

reviews or evaluations of numerical methods for building energy simulation. The PAS SYS 

project [13, 77], initiated by the Commission of the European Communities as part of its Solar
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Energy R&D programme, was at the time the largest passive solar research project in the 

world. It set out to develop reliable and affordable test procedures for passive solar (building) 

components (PCS) and to increase confidence in their use. Because PCSs are strongly coupled 

to the building, energy simulation software programs came into focus and the validation of 

these became a major objective of the project. A validation methodology was formulated 

which included as its main components those described above, and it was tested by applying it 

to Environmental Systems Performance (ESP-r) [1] which was selected by the Commission of 

the European Communities as the European reference program for simulation of the thermal 

performance of buildings and passive solar systems [72]. A review of the theory of finite 

difference methods was undertaken but it was limited to those of the family containing the 

Crank-Nicolson method (the only method implemented in ESP-r at the time) which also 

includes the explicit and the implicit methods. Analytical conduction tests were carried out on 

the Crank-Nicolson scheme and while the results were generally excellent, slowly damped 

unrealistic fluctuations in the solution were observed for certain combinations of space and 

time step -  leading to a recommendation that further work was required on this aspect.

The dissertation of Nakhi [78] was concerned with the development of new simulation 

schemes for adaptive construction modelling. One part of the work investigated the possibility 

of improving conduction modelling within building energy simulation packages by varying the 

number of nodes representing each homogeneous layer of material. This idea was tested using 

simple conduction problems with known solutions, i.e. analytical verification. Since the study 

was carried out within the ESP-r environment the only finite difference methods assessed (with 

different node separations and for various time steps) were those of the theta method family 

once more. Here again, persistent unrealistic solution fluctuations were sometimes observed 

with Crank-Nicolson, and more stable members of the family, such as the implicit method, 

were proposed as possible alternatives.

An earlier dissertation by Wright [79] examined a greater range of finite difference methods 

with a view to developing a model for investigating the thermal behaviour of industrial 

buildings. The methods assessed were (i) the family referred to earlier including the explicit, 

implicit, Crank-Nicolson and Douglas schemes, (ii) the three-level fully implicit scheme (3LFI) 

and a ‘Douglas-like’ variant of it and (iii) a weighted average of 3LFI over three adjacent 

nodes. Analytical verification was used to evaluate the methods. The three-level schemes were 

ruled out early and the Douglas method proved disappointing despite its small truncation error. 

The implicit scheme was finally chosen over the Crank-Nicolson method in order to avoid
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persistent oscillations for long time steps, even though the latter has a smaller temporal 

truncation error.

A recent text by Underwood and Yik [80], which reviews the various state-of-the-art methods 

for modelling energy exchange and fluid flow problems in buildings, includes a survey of 

numerical methods used in this domain. The explicit, implicit and Crank-Nicolson methods are 

the only ones reviewed for heat transfer in building envelopes. For the solution of stiff sets of 

ordinary differential equations that arise when modelling control systems, Rosenbrock and 

VS VO BDF methods are mentioned. In addition, the three general validation methods outlined 

above are described as being ‘widely established for testing the performance of building 

energy calculation methods and programs’.

The number of numerical methods examined in these works is again small and the validation 

methodology is limited as regards testing of competing methods.

2.3 Related literature

Finally, it is worth searching the literature of related disciplines for numerical techniques used 

in their specific applications which may be efficient in this domain.

Table 2.2 Numerical simulation software from other domains
Environment or program 
name

Citation(s) Numerical method(s) 
used

Domain

ACSL [81] VSVO BDF General purpose
ASCEND [82] Various Chemical processes
ATP-EMTP [83] TR Electromagnetic

transients
NEPTUNIX [84] VSVO BDF General purpose
SPICE [85] TR, VSVO BDF Electrical circuits

Many simulation software packages, such as ASCEND, can now be used with a variety of 

numerical methods because the solver is a separate module within the program. Some, such as 

SpeedUp [86], gPROMS [87] and IDA ICE exploit DAE (differential-algebraic equation) 

rather than ODE (ordinary differential equation) solvers. The two solver types are, however,

18



closely related and the most commonly used codes for the numerical solution of DAEs are 

DASSL [88] and RADAU5 [89] utilising VSVO BDF and IRK respectively [90, 91].

A composite of BEM and TR called implicit improved Euler (HE) was proposed by Hanna [92] 

and investigated further by Ashour [93] in the context of chemical engineering. The method is 

second-order accurate and more stable than the frequently used TR method.

Bank et al [94] developed a composite method, TR-BDF2, for the simulation of circuits and 

semiconductor devices which is based on TR and the second-order backward differentiation 

formula (BDF2). It inherits the strong stability of BDF2 without the disadvantage of being 

multi-step. Hosea and Shampine [95] analysed the method and proposed a related one, TRX2, 

equivalent to a double step of the trapezoidal rule. In the same paper they show that both 

methods can be viewed as DIRKs and they compare them to one of the earliest and best known 

DIRKs by Alexander [96], In Carroll [97] and Carroll [98] the trapezoidal rule in TR-BDF2 is 

replaced by the theta method and the resulting family can be expressed in conventional or 

DIRK form.

A stable Rosenbrock method has been applied by Verwer et al [99] to photochemical 

dispersion problems arising in the field of air pollution modelling. The method is second-order 

accurate and less computationally intensive than most others of this family and may, therefore, 

be suited to the building energy simulation problem.

The dissertation of Sundnes [100] seeks efficient numerical solution techniques for a 

mathematical model describing the electrical activity of the heart. The model consists of some 

partial differential equations (PDE) and a large number of non-linear ODEs and bears some 

resemblance to the building energy model. One of the best suited methods for the application 

was found to be a DIRK method developed by Kvaemo [101] and first presented in an 

unpublished manuscript in 1992.

2.4 Objectives of the current work

The dynamics o f energy flow in buildings is sometimes treated as a control application or 

compared with a complex electrical circuit and solution methods are drawn from well 

established (usually linear) theory in these areas. A more fundamental approach is to consider 

the building directly rather than via an analogue and formulate a detailed, dynamic energy 

model in the form of a set of coupled non-linear differential equations. Approximate solution
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methods must be used and the finite difference approach is considered to have the greatest 

potential because of its generality and flexibility. However, the associated computational load 

is still substantial even on a workstation [12]. Faster processors continue to be developed but 

the demand for increased computing power is never ending. In this application it would allow 

faster simulations at the same error tolerance or, by tightening the tolerance, greater accuracy 

for the same computing time. Alternatively, it could facilitate a finer sub-division of the 

building; for example: (i) local two- or three-dimensional modelling of thermal bridges and 

building junctions; (ii) further sub-division (orthogonal to the direction of heat flow) of planar 

surfaces such as floors; or (iii) more nodes per homogeneous material layer. Or the additional 

computational power might be utilized to remove some modelling simplifications such as the 

linearization of convection and radiation terms. One further use for it might be to include more 

of the building’s surroundings in the model so as to portray more accurately any local 

distortions of the recorded weather data.

One other way of achieving these same goals is to use a solution method with greater 

computational efficiency; this can be thought of as the accuracy attained per unit of 

computational effort expended. The main objective of this work is to identify and/or develop 

numerical solution methods that are computationally more efficient than those commonly used 

in this field. This calls for (i) a discerning test methodology which is sensitive only to error due 

to the numerical method and (ii) a means of quantifying the computational effort required to 

solve a typical problem. This, in turn, requires that the building energy problem be 

characterised mathematically so that (a) representative test problems can be formulated and (b) 

a set of feasible numerical methods can be identified.

It will be seen (Section 4.3.2.2) that all of the numerical methods of the last three paragraphs of 

Section 2.3 possess properties which make them potentially efficient for the solution of the 

building energy simulation problem. In this work, they are evaluated, together with the 

methods commonly used in this domain, by use of complex test problems tailored to this 

application.
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Chapter 3:

Methods of Investigation and Evaluation

A mathematical model is a set of equations (or equation) which when solved allow acceptably 

accurate prediction of quantities of interest. The equations are just (shorthand) statements 

describing the states and/or interactions of the system components. Simulation in this context 

corresponds to solving the equations for a set of values in the case of a steady-state system 

(represented by algebraic equations) or for a set of functions in the case of a dynamic system 

(represented by differential equations). In general, linear equations permit general (analytical, 

exact) solution whereas nonlinear equations do not and particular (approximate, numerical) 

solutions have to be estimated for each set of initial/boundary conditions.

Figure 3.1 Building energy model and solution flowpath
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Thermal conditions in a building are rarely steady because of the relative sizes of the thermal 

time constants associated with the building, its conditioning plant and the extant thermal 

driving forces. Coupled equations are contributed to a nonlinear set as depicted in Figure 3.1. 

The equations originate in building and solar physics, plant thermodnamics and control theory. 

Generally, they comprise conservation or ‘rate’ equations for energy and mass. The equations 

defining the building energy models used in this work are described in Appendices B and C 

and detailed in Cube acc.mcd and Room acc.mcd on the attached CD ROM. Figure 3.1 

highlights a point of some importance in connection with the present project: improvements in 

the numerical solver have a global impact on performance whereas enhancements to any of the 

constituent models probably have a more limited effect. The overall performance of a 

numerical method, as measured by its computational efficiency, dependents on the error it 

incurs and the computational effort expended when it is applied to problems of appropriate 

character. It is to these aspects we turn in the remainder of this chapter.

3.1 Classification of error

Numerous error types can be identified, all of which may contribute to an inaccurate thermal 

prediction. The sources of these errors range from program users to the methods and 

measurements they use to the machines on which they use them.

3.1.1 Input data

The dimensions of each building element include a tolerance, as do the thermophysical 

properties of the materials used such as density, specific heat, conductivity, emissivity and 

absorptivity. Weather measurements include error and interpolation of these hourly data incurs 

further error. Heat loads generated by people and small office equipment are statistical in 

nature as are the positions of window blinds, doors and other variable openings. Initial 

conditions, such as initial nodal temperatures, are at best estimates. The associated error can, 

however, be reduced without limit by including a sufficiently long pre-conditioning period. 

Error associated with program users has been commented on by Bloomfield [66] among others. 

Incorrect data may be entered; an inappropriate model may be chosen where alternatives are 

offered; incorrect control strategies or usage profiles may be specified.

22



S. 1.2 Mathematical modelling

Modelling is an integral part of the scientific method. A hypothesis, usually in the form of a 

mathematical model, is put forward, tested, and improved upon or replaced if necessary. Some 

models, such as those describing the diffusion of heat in homogenous material or the position 

of the sun, are well tested and accepted. Other phenomena are inherently less easily modelled 

because they include a statistical or chaotic element, often in the form of fluid turbulence. This 

latter category includes convection at external building surfaces and solar radiation intensity 

through variable cloud density. However, even the first category of model may include 

simplification error. For example, two- and three-dimensional heat diffusion are often 

modelled as one-dimensional to reduce the computational load; also, assumptions about 

homogeneity of materials or linearity of conduction may not be valid.

3.1.3 Numerical methods

Stable numerical solution methods suffer from just one significant source of error. Truncation 

(or discretisation) error occurs because the numerical solution through a point agrees with a 

Taylor expansion of the exact solution through the same point for a finite number of terms 

only; say, terms including the p & power of the step size k  and less. The accuracy of such a 

method is said to be of order p  and the error is 0(bf,+I). Reducing the step size, therefore, 

reduces this error, and step size control to keep an estimate of the error within an appropriate 

tolerance is desirable, especially for stiff systems. As the calculation proceeds from point to 

point, the ‘local errors’ described above accumulate to a ‘global error’ which is normally 0(V) 

but reduces to 0 (lf+I) [37, 102] for physically stable systems (Section 3.2; Section 4.1) 

including (generally) the building energy problem.

Compounding of error over multiple steps occurs if a numerical method is used outside of its 

stability region. Finally, if an interpolation method is used in conjunction with a numerical 

solver, it is usually chosen to be of the same order of accuracy as the numerical method. Thus, 

the error behaviour of the combination is no worse than that described above.
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3.1.4 Computer related error

This category includes computer hardware and software errors. Roundoff errors occur because 

computers use a finite number of memory bits to store real numbers whereas most require an 

infinite number of digits for their complete specification. Single- and double-precision 

floating-point numbers have about 7 and 16 decimal digits of precision, respectively. The latter 

is built into the hardware of almost all modem microprocessors and enables more than 

adequate accuracy to be achieved for most practical purposes [102]. As mentioned in the last 

subsection, however, rounding error can be compounded and grow without limit if an unstable 

numerical method is used. Finally, logic errors may be programmed into an intended computer 

algorithm or simple coding errors may exist undetected.

3.2 Validation methodology

The accepted validation methodology for building energy simulation software, which has 

recently been standardised [67], has as its main elements:

(a) Empirical validation — in which calculated results from a program are compared to 

monitored data from a real building, test cell or laboratory experiment.

(b) Analytical verification — in which output from a program is compared with a known 

analytical solution.

(c) Inter-model comparison — in which the predictions of the target program are 

compared with those of other, better known, programs for the same (hypothetical) 

building. It is also used to make comparisons between a program and a previous 

version of itself -  after a sub-model has been added or substituted for instance.

Empirical validation, though a necessary and appropriate application of the scientific method 

for whole model validation, is unsuitable for this project because it quantifies total error and 

not the error due to the numerical method which is sought. Inter-model comparison does not 

involve an absolute standard and can, therefore, be rejected for this work. Analytical 

verification makes use of exact solutions to simple problems usually involving heat transfer 

within and at the surface of homogenous layers of material [22, 75, 76]. As such, they are of 

the type required to test numerical methods in this application. However, being limited usually 

to linear problems with simple boundary conditions, they are too constrained to be 

representative of the problem in hand. Building energy flows are describe by a coupled set of
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non-linear differential equations driven by a great variety of boundary conditions some of 

which are not even continuous.

The test methodology employed in the present study is the one almost universally used with 

newly developed numerical methods in the numerical/computational mathematics literature. 

There, numerical experiments are undertaken in which the proposed method is applied to a set 

of test problems possessing vaiying degrees of stiffness, non-linearity and other properties of 

interest [89, 103-107], Exact solutions are known for some of the test problems and in the case 

of the others highly accurate reference solutions are generated by applying a convergent 

numerical method with a sufficiently small time step to the problem. All useful methods, 

including those used to produce reference solutions in the present study, have been shown to 

be convergent [42, 108] and consequently the reference solution approaches the exact solution 

as the time step is reduced. The only significant error present in a numerical experiment, 

therefore, is that associated with the numerical method under test. A wide variety of problems 

is typically used to test a new numerical method for general use. Here we seek the 

computational efficiency of methods in one specific application and consequently a test 

problem with the mathematical characteristics of the building energy problem is formulated 

and variants of it are used in the evaluation process.

All of the foregoing, of course, refers to temporal convergence. Spatial convergence is also an 

issue in building energy simulation since some of the describing equations are functions of 

space as well as time (Section 4.2.1). While temporal convergence is easily confirmed (Section 

4.3.3.1), spatial convergence has proved more difficult to demonstrate [109]. This is possibly 

because three-dimensional heat flow in buildings is usually represented by one-dimensional 

heat flow in sets of slabs which enclose ‘lumps’ of material such as air and furniture, and 

spatial convergence is sought in Waters [109] by reducing the nodal separation h in all of the 

slabs simultaneously but no subdivion of the lumps is undertaken. A second-order, central- 

difference approximation is almost invariably used [12, 80] to discretize the spatial derivative 

in the diffusion equation (Section 4.2.1). For partial differential equations, the accuracy 

achieved with high-order difference formulae is usually disappointing in practice [110]. Also, 

three nodes per homogeneous slab of masonry is considered sufficient subdivision for 

acceptable accuracy [12] and is often the default in simulation software. This same type and 

degree of spatial discretization is used here for both reference solutions and test solutions, and 

the reference solutions are temporally but not spatially converged. Candidate numerical 

methods are, consequently, tested here on differential equations in the form they normally crop 

up in building energy simulation.
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Other test types used in the building energy simulation field include:

(d) Sensitivity tests — which examine the effect on output of small changes in input 

values.

(e) Range tests — which exercise the program over a wide range of input values.

The term ‘sensitivity analysis’ as used in the building energy simulation context describes the 

process of estimating bounds for the output values of a model when the input values are 

allowed to vary over their expected range of uncertainty [111]. If, during an empirical 

validation session, a particular program produces output within the estimated bounds, it is 

considered a success at some level. This procedure implicitly assumes that both the physical 

processes being modelled and the mathematical solution methods being used are stable. Since 

there is no experimental uncertainty in a numerical experiment, sensitivity tests are not 

relevant here.

If, on the other hand, extreme sensitivity to initial conditions (instability) exists, it is of interest 

here and the ever present rounding error is sufficient to provoke it. When it occurs it may be 

the result of inherent physical instability -  for example, the operation of an unstable control 

configuration. It may also result from mathematical instability, that is an induced sensitivity 

due to a flawed mathematical process leading to unlimited amplification of error; examples, in 

this case, include ill-conditioning brought about by the use of Gaussian elimination without 

pivoting, and the use of an unstable numerical integrator. Numerical experiments will certainly 

pick up mathematical instability in the numerical method being tested because reference 

solutions are produced using stable methods. Systems exhibiting inherent physical instability 

are rarely of interest (and always difficult to simulate) but should one arise in the testing 

process, it will be noticed that the difference between the reference and test solutions will 

increase without limit.

Range tests are generally used to probe the limits of applicability of the modelling equations 

rather than the accuracy of the solution process. If the use of extreme input values leads to 

increased error or reduced stability in the numerical method under test, this will be detected in 

a numerical experiment because the reference solution is the product of a stable and very 

accurate process.
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3.3 Computational efficiency

The accuracy of any convergent numerical method can be improved by reducing the step size 

or, in the case of an adaptive step size algorithm, by reducing the tolerance demanded. This, of 

course, requires additional computer effort. Accuracy, therefore, should not be the sole 

criterion on which numerical methods are compared. Computational efficiency (CE) may be 

defined as the accuracy achieved per unit computational effort expended [112]. It will be 

quantified here by use of the formula

CE = —r-—  (3.1)
S E T

in which 5  is the maximum absolute temperature difference between the reference solution

and the test solution and E T  is the execution time for the test run, which includes processor 

operations and memoiy (RAM) read/write operations but not input/output operations. The
A

maximum error 8  incurred during a test run is straightforwardly found. Execution time

depends on the building size, the complexity of the building energy model and the type of 

computer processor, as well as the numerical solver in use. Since this project is solely 

concerned with the relative efficiencies of numerical methods, they are compared for a typical 

building size using a representative building energy model and performance figures (timings) 

for a mainstream workstation.

A typical, medium-sized building of 7500 m2 floor area is described in Appendix D and it is 

shown that it can be modelled by approximately 4000 equations. Buildings of roughly this size 

are likely to form the majority of those requiring simulation. Since large buildings are a lot less 

numerous and small buildings compute very quickly anyway, a mid-range building can be 

justified for this work. The significant elements of computational work required to solve the 

mathematical model representing this building are examined in Appendix E and execution 

times for a single application of each on a workstation are estimated. LU decomposition 

(factorisation) of the system matrix is found to be the dominant computational task, even when 

the frequencies of the various linear algebra operations are factored in. The other tasks 

examined are forward/back substitution, matrix evaluation and derivative function evaluation; 

each requiring about two orders of magnitude less computing time than factorisation.
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The detailed test problem described in Appendix C is a representative building energy model 

for one space. It includes most of the heat flow paths and heat transfer modes, treated at a level 

similar to that found in detailed simulation programs. During a typical test run with this 

problem the frequency of each of the significant computational tasks is recorded. They are 

finally multiplied by their respective execution times and accumulated to give the expected 

computational effort for the 7500 m2 building. Simulation software written by others is 

generally unsuitable for the task undertaken here. The system Jacobian matrix (Section 3.4.3) 

is normally not available and would be difficult to assemble. In addition, the numerical solver 

is usually inextricably mixed with the rest of the program and, consequently, difficult to 

replace at will [32], The chosen test problem has the required mathematical character (Section 

3.4) and is, therefore, representative for the task in hand.

Performance data for a Hewlett-Packard RX2600 workstation with an Intel Itanium 2 processor 

are used. The Itanium 2 is representative of a new generation of 64-bit processors offering fast 

linear algebra. An important contributor to this performance, and one shared by many of these 

processors [113], is the FMAC unit which offers a hard-wired ‘fused multiply-accumulate’ 

operation so common in matrix/vector processing, e.g. in dot product and matrix 

multiplication. The HP RX2600 outperforms most machines in its class for a range of relevant 

benchmarks [114]. The processor is a joint initiative of Intel and Hewlett-Packard, two of the 

most respected names in the industry. Most of the major computer manufacturers have plans to 

use the Itanium processor in some of their high performance products [115]. Performance data 

for the Itanium 2 rather than the original Itanium (1) processor are used because a better match 

between memory bandwidth and processor floating point performance is reported for the 

former [116, 117]. The limitations of this project required the work to be carried out on a 

personal computer (PC) rather than a workstation; hence, estimated rather than measured 

execution times are used for the various linear algebra operations. However, the relative sizes 

of the estimates are consistent with expectations based on the scaling properties of the 

individual operations (Appendix E).

3.4 Characterisation of problem

The building energy problem is now characterized mathematically so that suitable implicit 

solvers can be selected for comparison and appropriate test problems constructed to evaluate 

them.
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3.4.1 Equation types

The equation set comprising a building energy model is composed mostly of ordinary 

differential equations (ODE) representing the dynamic thermal behaviour of small thermal 

masses, e.g. room air masses, glass sheets. Continuous material such as masomy is described 

by the heat diffusion equation. To facilitate solution, this is semi-discretised (spatially) into 

ODEs which contribute to the set. Bulk air movements between internal spaces, as well as air 

exchange with the exterior, are usually modelled by algebraic equations (AE), as are the 

thermal interactions between heating/cooling plant and the building because the time constants 

for these processes are small. The computational burden associated with solution of these 

algebraic equations is small because there are relatively few of them [12, 118]. The equations 

requiring solution are, therefore, collectively DAEs (differential-algebraic equations) rather 

than ODEs, but the solution processes used for both are closely related (Section 2.3). The 

solution method used here, and in the building energy domain generally, is to apply a 

numerical integrator to the ODEs. This requires values for dependent variables in the AEs at 

each time step as the two equation sets are coupled. An iterative solution method is used to 

provide these since the AEs are generally nonlinear. Appropriate solver types are, therefore, 

applied in turn to the ODEs and the AEs, swapping dependent variables as required [40],

Given that the dominant task in numerical integration is the solution of a set of AEs emerging 

from the discretisation of ODEs, a much larger set in this case than that describing bulk air 

flow and plant, the computational work associated with solving the latter is relatively small.

3.4.2 Required accuracy

A relative error between KT1 and 10 6 is frequently requested when testing numerical 

methods that include automatic interval adjustment [119]. An error of 0.5 K may be considered 

adequate for most building energy simulation work. However, since a number of error types 

contribute to a composite error (Section 3.1), a tolerance of 0.1 K, or 1(T3 relative to a typical 

range of solution values of 100 K, is demanded of the numerical solvers under scrutiny. Hence 

this is a low to intermediate accuracy problem and the solution is most economically obtained 

using low to intermediate order numerical methods [45],
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3.4.3 Spectrum

If a building energy model is represented by the vector equation T' = f  (t, T) and Xt are the

eigenvalues of J, the Jacobian matrix of f(i,T ), then the set At is called the spectrum of J

and it has a large bearing on the character of the problem. The building energy problem is 

generally over-damped implying negative real eigenvalues. Complex eigenvalues, when they 

occur, can usually be traced to the plant control system and manifest themselves as oscillating 

temperatures or energy flows. The spectrum for the building ODE system contains a great 

range of values resulting from the application of the method of lines (spatial semi­

discretisation) to plane slabs such as walls [42, 102], and the widely vaiying thermal response 

times of the different component parts of the building. Consequently, the ODE set is ‘stiff 

(Section 2.1). The extent of this property is usually measured by the stiffness ratio

Max, |Re(4)| 
Min, |Re(4)|

Systems may be considered marginally stiff if the stiffness ratio is 0 ( l0 ) , while ratios of up to

o(io6) are not uncommon.

The detailed test problem described in Appendix C is used to gauge the expected range of 

values of S . Descriptions of slow thermal response (heavyweight) buildings and fast response 

(lightweight) buildings due to CIBSE [120] are used to produce extreme versions of the test 

problem and many other variants between these limits. The stiffness ratio for each is 

determined by computing eigenvalues and can be found in Table 4.9. Approximate values of 

S for the various building weights are as follows: heavyweight, 6,500; mediumweight, 11,500; 

lightweight, 2.1 x 107 . Two very responsive elements included in the lightweight building 

specification are chiefly responsible for its exceptional stiffness ratio; an air-gap in each 

partition wall and a thin aluminium facing on the external curtain wall. If the air mass, 

originally treated as just another thermal mass for convenience, is replaced by a more detailed 

convection/radiation model or by an equivalent thermal resistance [120] and if the metal facing 

is simply ignored because of its low thermal mass and its inability to support a temperature 

gradient, the stiffness ratio for the lightweight building reduces to 3,400. As a check, highly 

accurate reference solutions for the lightweight building, both with and without these changes,
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are compared using Load & compare; 2 RUNS; light wt & light[2] wt.mcd on the attached 

CD ROM. Air temperatures differ by 0.05 K and internal surfaces by 0.08 K or less. The only 

significant divergence between the two solutions occurs near or at the outside surface where 

the temperature difference is 1.2 K. If deviations at this location are not considered of 

importance, then the lower stifftiess ratio can be used for the lightweight building. Finally, in 

order to confirm the stiffness ratios established by computing eigenvalues for the test problem, 

thermal time constants (t  = d 2j  a )  are calculated for a representative range of construction 

materials [120] and for the expected range of thicknesses of each. Since \A,\ = l / r  the scope of

S  can be estimated. Identical results cannot be expected, however, since t is a property of an 

individual building element whereas X is a system property. The ratio of extreme time 

constants led to an expected stiffness ratio of o(lC)4) for the building — consistent with the 

above.

Accordingly, the building energy system can be considered moderately stiff and test problems 

with stiffness ratios of i?(l04) and lower are used here to evaluate numerical solvers. In 

addition, the performance of each method when applied to the highly stiff lightweight building 

is reported but not included in the calculation of computational efficiency. Implicit methods 

are widely regarded as being more efficient for the solution of stiff systems (Section 2.1). 

However, explicit methods, used with small time increments, may be competitive when low 

accuracy is adequate and the stiffness ratio is not too large. Only implicit methods have been 

examined here.

3.4.4 Non-linearity

A set of differential equations used elsewhere to test ODE solvers includes terms up to the 

twelfth power in the dependent variable. The building energy model may, therefore, be 

described as moderately non-linear due to the presence of long-wave radiation terms 

containing the fourth power of temperature. Other mildly non-linear terms appear due to 

convection and infiltration. Also, the thermal conductivity of some insulating materials has 

been shown to be marginally dependent on temperature. The problem is often linearized in 

order to simplify it. Here, the original form of the problem is retained (when testing numerical 

methods for ODEs) and the search for efficiencies is considered more appropriate to the linear 

algebra stage of the solution which is discussed next.
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3.4.5 Dimension

A single zone requires 50-250 nodes to represent it and a building may contain hundreds of 

zones. The dimension of this problem is obviously large though not as large as that 

encountered in the solution of partial differential equations, for example in the field of 

computational fluid dynamics. In the case of implicit methods, large dimension leads to an 

equally large set of difference equations which generally require iterative solution at each time 

step. Simple fixed-point iteration, if applied to this set, fails to converge unless the time 

increment is restricted to values comparable with explicit methods (Section 4.2.2). The 

Newton-Raphson method, or some variant of it, is almost always used. The most 

computationally expensive step in the process is the solution of linear systems involving A , 

the Newton iteration matrix which is a simple function of J  (Appendix E). Saved triangular 

(LU) factors of A are reused within the iteration loop and often for a number of consecutive 

time steps. When factorizing A , advantage is taken of sparsity or any regular structure that 

might exist.

Dimension obviously affects the amount of computation required but not the choice of ODE 

solver because each of the numerical methods examined presents just one matrix for 

processing at each step. The same modified Newton-Raphson process is used with each of the 

methods.

3.4.6 Matrix properties

Matrices arising in this application possess few special properties, such as being symmetric or 

diagonally dominant [32]. Heat exchanged between two objects, for example, would lead to 

symmetric matrix entries if  their thermal masses were the same, but this is rarely the case. 

Programs in the folder Diagonal dominance on the attached CD ROM investigate three models 

for diagonal dominance, (i) the detailed test problem (Room), (ii) the simple test problem 

(Cube) and (iii) an even simpler room model (Dim) originally designed to examine control 

modes. The system matrices for various versions of the third model do not possess this 

property so diagonal dominance cannot be assumed. System matrices for the building energy 

problem are certainly sparse; an estimate of 5.62 for the ratio of non-zero elements to matrix 

order is used here (Appendix E). They also feature diagonal lines and bands expected of a
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three-dimensional problem though these are not as regular as might result from the 

discretisation of a solid. Finally, the system matrix presented at each time step is ill- 

conditioned as a consequence of the stiffness of the equation set [42].

3.4.7 Discontinuities

Driving forces in engineering problems are rarely entirely continuous or smooth. The building 

energy problem usually includes discontinuities (step changes) and discontinuous derivatives 

(‘knee’ events) in the thermal driving terms. Examples of step events are the daily switching on 

and off of internal lighting and plant and the operation of simple on/off control of thermal 

plant. Knee events can result from (i) interpolation of weather data, (ii) sign reversal in a 

convection term, (iii) a ceiling on the output of a proportionally controlled terminal unit and 

many other causes. All of those explicitly mentioned above are included in the test problems 

except on/off control of thermal plant -  the terminal unit is controlled proportionally.
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Chapter 4:

Numerical Experiments

Numerical methods, when applied to the ordinary differential equations (ODE) modelling 

energy flows in buildings, give rise to a system of non-linear algebraic equations (AE) known 

as difference equations. In Section 4.2, a frequently used direct solution method for AEs 

involving linearization is analysed and a related method proposed. These and one other 

connected method are compared using numerical experiments. Then, in Section 4.3, numerical 

methods for ODEs are assessed. A known instability in a commonly used method is described 

and alternative processes with suitable stability properties are identified. Numerical tests are 

used to compare a range of implicit solvers on the basis of accuracy and computational effort. 

But first, the central concept of stiffness and its implications are outlined in Section 4.1.

4.1 Stiffness

One of the primary influences on the selection of a numerical method for use in this domain is 

the extent of stiffness of the building energy model. Not only can stiffness have a large bearing 

on the relative efficiencies of numerical solvers, but it can effectively rule out whole families 

of well-known methods when it exists in significant degree. The concept has already been 

introduced in Chapters 2 and 3 but it will be discussed further here considering its pivotal role.

The first use of the term ‘stiff is in a paper by Curtiss and Hirschfelder [121] on chemical 

kinetics. It describes a differential equation as stiff if the backward Euler method (BEM) 

performs much more efficiently in solving it than Euler's rule (ER). A generalisation of this 

definition, using the relative performances of implicit and explicit methods as indicators of 

stiffness, is still used. The paper also introduces the backward differentiation formulae (BDF) 

in the context of stiff equations. At first, stiff systems of equations were thought to be unusual 

but it was soon realised that they are pervasive. This is reasonable in that they are associated
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with physical systems that exhibit a great range of time scales or, more generally, characteristic 

values (eigenvalues) -  a much more likely event than uniform eigenvalues if the factors 

responsible for their magnitudes are not strongly correlated. Stiffness is not uncommon in 

practical problems arising in such fields as chemical kinetics, nuclear physics, process control, 

electronics and mathematical biology.

Figure 4.1 Solution space for a stiff equation, T ' = —20(71 — cos t)

An ordinary differential equation (ODE) T ' — f ( t ,  T )  is stiff if d f jdT  is negative and

d f( b - a )
d r

» 1 (4.1)
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where (b -  a) is the integration interval. A large, negative d f  jd T  leads to a transient solution 

component which converges rapidly onto the ‘steady’ component sought (Figure 4.1). More 

precisely, if the time scale z  = l/|{df /ÔT )) is small relative to the interval of interest (b -  a ) ,

the general solution behaviour depicted in Figure 4.1 results. We will see shortly that time 

steps for explicit numerical methods have to be of the order of r  for stability, resulting in veiy 

many steps and excessive computational effort when they are applied to stiff equations.

A system of ODEs T' = f(i, T) is stiff if the eigenvalues Àl of J = d i / c f i , the Jacobian 

matrix of satisfy the following inequalities:

Re(A ,)<0 (4.2)

Max, |Re(l; J »  M ini ¡Re(/I, )| (4.3)

The extent of this property is given by the stiffness ratio

Once again, explicit numerical methods are required to take time steps approximating the 

fastest transient 1jM a x i |Re(/l- )| for stability, and a large number of such steps is required to

pass through the slowest transient solution [with time constant \jM in , |Re(/l, )| ] to steady state 

if the system is stiff.

To examine the stability of a numerical method for ODEs, the method is applied to the scalar 

test equation

T ' = XT  (4.5)

to get

T J+1 = r(w )TJ (4.6)
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where r is a function of w = kZ, k is the time step and 1 represents df  /dT if a single ODE 

is being analysed and it represents a typical eigenvalue in the case of a system. If an error, s1, 

exists at the /*  time level it will be processed through Equation 4.6 to give

TJ+1 + eJ+l = r{wfrj + e j ) (4.7)

Subtracting Equation 4.6 from Equation 4.7 gives the error propagation equation

s j+l = r(w)eJ (4.8)

in which r(w) is described as the growth or amplification factor and sometimes the 

attenuation factor. Clearly the condition for error reduction, and therefore stability, is

|rM | < 1 (4.9)

If a rational numerical method is stable when applied to Equation 4.5, it is usually stable also 

for the general non-linear differential system T ' = f(i,T )[42].

When Euler’s rule (ER), T J+l = T J + is used to solve the test equation, T ' = X T ,

it gives

TJ+1 = (l + kX)Tj (4.10)

and so the condition for stability is

Maxt\l + kA'\<  1 (4.11)

If any of Xt is large in magnitude, as is the case for stiff systems, k must be small to satisfy

this condition. When the backward Euler method (BEM), T J+l = T J + k f( tJ+l,T J+l), is 

applied to the test equation, it leads to

T J+l = —^ T J (4.12)
1 - k /1
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implying stability for all (negative) values of Re(w>) and, since Re(/l()<  0 for stiff systems, 

long time steps are not precluded.

Both methods are applied to a marginally stiff equation in Figure 4.2. Since o f  ¡dT = —20 for

the ODE, the stability criterion for ER is |l — 20&| <1 or k < 1/10. A time step of 0.3 is used

and ER is clearly unstable. Figure 4.2, first used by Gear [45], allows graphical interpretation 

of the performance of the two methods. The formula for ER calls for k times the derivative 

( / )  of the solution be added to the present solution estimate to get the next.

.....x...... Euler’s rule (ER)

----□—  backward Euler method (BEM)

Figure 4.2 Explicit and implicit solutions for T' — - 20(71 — cos t)
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That is, it moves from the present point to the next along a tangent drawn at the current 

solution estimate. But the slope of this tangent is veiy different from the slope of the required 

solution because of the stiffness of the equation and the size of the previous step. The error is 

thus magnified from step to step. BEM, on the other hand, moves from the present point to the 

next along a tangent drawn at the next solution estimate which maches veiy closely the slope 

of the solution sought. Of course, the required derivative is not explicitly available as it is for 

ER and so the implicit BEM equation has to be solved iteratively -  a more demanding task. 

Graphically, this process corresponds to repeatedly drawing tangents to the solution at points 

on the next time line until one of them passes through the current solution point. Paradoxically 

then, the high stability of stiff ODEs, demonstrated by the rapidly converging solutions in 

Figure 4.1, leads to instability in the very popular explicit numerical methods.

4.2 An Improved Direct Solution Method

4.2.1 Model formulation and discretization

A dynamic thermal model of a building consists of a set of partial differential equations (PDE) 

and ordinary differential equations (ODE) for the dependent temperatures and heat fluxes, 

which generally cannot be solved analytically. For example, the diffusion of heat through a 

solid building element, such as a homogeneous wall layer, is most often treated as one 

dimensional and so the resulting temperature field can be described by the equation

(4.13)
d t  d x 2

The finite difference approach involves replacing the differential equations with consistent 

difference equations which are tractable. Solutions are obtained at discrete points in space and 

time rather than as continuous functions. One way of implementing this approach would be to 

decompose Equation 4.13 into a set of ODEs by the method of lines [42], in which space is 

discretized but not time. A typical nodal equation would be
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(4.14)

To these must be added ODEs for room air masses and other finite volumes of material 

assumed to have spatially uniform temperatures. Each volume is represented by a single nodal 

temperature which varies in time according to an equation of the form

where the right hand side represents the sum of the thermal driving forces acting on that node. 

The (p are in general non-linear functions of T . A complete building energy model can, 

therefore, be written succinctly as

a vector equation depicting a non-linear system of first order ODEs.

The above is, of necessity, a very brief description of a building thermal model. A detailed 

treatment of the construction of such a model is given by Clarke [1]. To complete the process 

of discretization, numerical methods for ODEs are applied to Equation 4.16. For instance, the 

first order accurate Euler method (ER) gives the difference equation

and the second order trapezoidal rule (TR) (equivalent to the Crank-Nicolson scheme for 

PDEs) gives

when applied to the same equation. The stability of any numerical method applied to Equation

the Jacobian matrix of f  . For ER  the produces) must lie within a unit circle in the complex

(4.15)

T' = f(i,T ) (4.16)

(4.17)

(4.18)

4.16 is determined by the value of the product k d f  /  dT  for a single equation and the products 

kXi for a system of equations where the /L, (i = 1,2,. . . ,n)  are the eigenvalues of J = d i j  ¿7T,
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plane centred at (-1,0). The size of the time increment k  is, consequently, limited if ER is

inefficient for stiff systems of equations, and this is the case for most explicit methods. TR on 

the other hand, is described as being A-stable because its region of stability is defined by 

R e (£ l)< 0 , that is, the whole of the left half-plane. So it is stable for all values of k  but, of 

course, accuracy as well as stability must be considered when choosing a time increment.

A stiff system is often referred to as one with a large Lipschitz constant L where

When the physical entities or processes modelled by the equations have widely differing time

attention to a useful quantity which can be extracted from J . It is the pre-conditioning period 

of the building represented by Equation 4.16. The pre-conditioning period is the simulation 

time required to allow the temperatures of all nodes to converge to values which are no longer 

affected by their arbitrarily chosen initial values. A number of different methods have been 

proposed to quantify it including empirical relations and simulation experiments [122]. In this 

case an estimate is provided by calculating the time taken for the slowest transient solution of 

Equation 4.16 [with time constant \jM in, |Re(/l,)(] to decay to, say, one per cent of its initial 

value. For the mediumweight test room used here (Appendix F), the largest time constant is 

1 /(2.89x 10-6) implying a pre-conditioning period of 18.5 days. This is of the same order of 

magnitude as an estimate in Pinney and Parand [122] for a ‘modem heavyweight’ domestic 

building.

4.2.2 Solution of difference equations

The set of equations represented by 4.18 is implicit requiring simultaneous solution at each 

time step. However, the additional work that this entails is often more than offset by a 

reduction in the number of steps needed. For instance the time increment for Euler's method, 

an explicit method, must satisfy

applied to a building thermal model for which |/l, | is large. It is therefore computationally

(4.19)

constants [ l/jRe(A; )j ] stiffness ensues. In connection with time constants, it is worth drawing

(4.20)
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resulting typically in a limiting value for k  of the order of minutes. Simulation runs ranging 

from a few days to a year are routinely undertaken.

As well as being implicit, Equation 4.18 is non-linear and so an iterative solution method is 

indicated. The Newton-Raphson process is the most widely accepted method for stiff systems 

[42]. Applied to Equation 4.18 it would take the form

Ty+1 _  T 7+i _  j j  _  jTy+i )j t j+i -  Ty —|{ f ( /7,Ty)+ f( tM ,T J+1 )}
2

(4.21)

The Newton-Raphson method converges quadratically and generally it will converge for any 

time increment. However, a good initial estimate for T7+1 is required. A modified, linearly 

convergent Newton-Raphson method is almost invariably employed in which triangular (LU) 

factorisation of the matrix (i — AJ/2) replaces inversion and the same factors are used 

throughout the iteration. If the Jacobian does not vaiy too rapidly, it is often possible to retain 

the factors for a number of integration steps.

A simple fixed point iteration can also be used in which Equation 4.18 is iterated directly for 

T7+1. The process is linearly convergent and will converge for any starting value, provided all 

the eigenvalues of the Jacobian matrix of the right hand side are less than one in magnitude, in 

the neighbourhood of the solution. Differentiating the right hand side of Equation 4.18 with 

respect to each of the elements of T7+1 one gets k j ( tJ+1, T7+1 j/2 , leading to the convergence 

condition

^M a x ,\X t\ <1 (4.22)

Assuming Equation 4.16 is stiff, this condition restricts the time increment to values similar to 

explicit methods; compare with condition (4.20). It is possible, however, to rearrange Equation 

4.18 so that a different iteration function appears on the right hand side. It is shown in 

Appendix A that, for this revised iterative method, stiffness actually promotes rapid 

convergence and long time steps are facilitated rather than prohibited.
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In Clarke [1], for example, the function f  in Equation 4.18 is first decomposed in the manner 

done in Equation Al. For instance, the T* -  T* expression in the longwave radiation model is 

factorized to give (t^  + Jj2 ̂ T2 + 7j )(T2 — 7j) and the first two factors are included in G . 

There is no contribution to g from this expression. The terms are then rearranged to give 

Equation A4, the alternative iterative method, which is renumbered and repeated here:

j l  + |G ( f '  , T j  ) | t 7 + ~{g(tj , T J )+ g(i'+1,T '+1)}

(4.23)

Notice the superscript notation of Appendix A has been dropped and full arguments restored 

because the arguments in later equations may be evaluated at different time step levels.

4.2.3 Proposed method

Non-linear systems such as Equation 4.18, when they crop up in building energy simulation [1] 

or more generally in conduction modelling [123], are usually linearized before being solved by 

matrix inversion or some equivalent direct process. Linearization methods, such as 

extrapolation and lagging of dependent variables by one time step, eliminate the need for 

iteration. Equation 4.23 is linearized in Clarke [1] to give

| l + ) | t ; + )+g(f;+1,T ; )}

(4.24)

in which the dependent variables are evaluated one time step in arrears. All the terms on the 

right hand side of Equation 4.24 are known and so it can be solved directly for Ti+1.

Linearization simplifies the solution of the problem but there are some advantages in viewing 

the resulting direct solution process as the first iteration of an underlying iterative method:

1. It is possible to investigate the benefits and costs of iterating more than once. Generally, 

stiffer systems require fewer iterations to achieve a given level of accuracy.

2. The convergence factor K  can be estimated using Equation A5.
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3. A number of apparently different direct methods can be produced by changing the initial 

estimate used and iterating just once.

Regarding the final point, it is necessary to estimate T7+1, the unknown, on the right hand side 

of Equation 4.23 before iteration can commence. Equation 4.24 is generated by substituting for 

both T7+1 and TJ in Equation 4.23 even though the latter is already known. If this unnecessary 

substitution is eliminated, another direct method can be put forward:

T 7+1 =<!l-

(4.25)

Notice that the proposed method requires just one vector of starting values whereas Equation 

4.24 requires two and so must be primed using an independent single-step method. One further 

initial estimate can be formed by using a Newton-Gregory extrapolation from previous time 

steps. T7+1 in Equation 4.23 is replaced by T7+1 = 2T7 — T7”1 leading to the method:

T 7+1 = j l  -  G(f7+1,T7+1 )j [ i l  + ̂ -G^7,T7 ) | t 7 + ~  {g(f7,T7 )+ g(/7+1,T7+1 )}

(4.26)

4.2.4 Evaluation of numerical methods

Three direct solution methods, arising from the iterative method specified by Equation 4.23, 

are available for assessment. They will be referred to as LL [linearization by lagging, Equation 

4.24], PM [the proposed method, Equation 4.25] and LE [linearization by extrapolation, 

Equation 4.26], The Newton-Raphson (NR) method was also included for comparison 

purposes because it is so widely used, together with the trapezoidal rule, to solve stiff systems 

in a wider context. Each method can, of course, be iterated to convergence but few practical 

building energy applications require such rigour [1],
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4.2.4.1 Computational procedures

The test problem described in Appendix B was used for the assessment. Fixed time step 

programs for the four numerical methods being assessed were produced and applied to this 

problem. Each incorporated one iteration and one matrix inversion per time step and so 

incurred similar computational expense. A Newton-Gregoiy extrapolation was used to 

construct a starting value for the Newton-Raphson method.

The work was carried out on a personal computer using a general purpose mathematical 

software package [124]. During a typical test run two independent solutions were generated 

using built-in differential equation solvers and a reference solution was formed by averaging 

them. Both of these methods, the method of Rosenbrock and the fourth order Runge-Kutta 

method [41, 124], include adaptive step-size control and the tolerance variable was set to 10-6 

in each case. The agreement between these two solutions was excellent -  see Table 4.1 which 

presents accuracy statistics for a test cell of 100 mm concrete construction with an active 

terminal unit (test 1) and an inactive one (test 2). Other details for tests one and two are to be 

found in Table 4.3. The four test solutions were calculated at 15 minute intervals and also at 

one hour intervals. The longer time increment led to large errors in the test solutions at step 

changes in the casual load, especially when the terminal unit was inactive (highlighted in Table

4.1). Further iteration reduced these errors but they were still appreciable indicating the need 

for shorter time steps, at least where thermal disturbance was most intense. It was decided to 

carry out the assessment using a time increment of 15 minutes. The reference solution was 

subtracted from each of the test solutions in turn at every node and time step over a four day 

period following the pre-conditioning period. The statistics presented in Table 4.1 were 

extracted from the sets of differences for two test runs. The cross-correlation coefficient gives 

a measure of the phase relationship between the reference solution and each of the other 

solutions. It is defined within each of the test programs TR+*.mcd on the attached CD ROM.
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Table 4.1 Accuracy statistics for test runs one and two
Numerical method Terminal

unit
status

Time
increment

(s)

Temperature difference between reference 
solution and other solutions (K)

Mean
difference

8

Mean absolute 
difference

14

Maximum
absolute

difference

Cross­
correlation at 

zero time delay 
(air point node

only)

A

<5

Rosenbrock On variable -9 .1 0 x l0 “8 4.53 xlO “7 1.38 xlO"5 1 . 0 0 0 0

Off variable 2.71 xlO"7 6.50 xlO -7 2 .19x10^ 1 . 0 0 0 0

Runge-Kutta On variable 9 .10xl(T 8 4.53 xlO"7 1.38 xlO“5 1 . 0 0 0 0

Off variable -2.71 xlCT7 6.50 xlO “7 2.19 x 10"4 1 . 0 0 0 0

LL On 900 2.36 x 1(T5 1.46 xlO"3 4.41 xlO"2 1 . 0 0 0 0

3600 -5 .58x10  4 6.66x 10”3 1.80 xlO"1 0.9999
Off 900 6.95x1 O'4 6.18 x 10~3 1.41 1 . 0 0 0 0

3600 5.74x1 O'3 4 .93x10“2 H I 0.9997
PM On 900 1.40 x 10~5 8.77 xlO"4 2.70 xlO“2 1 . 0 0 0 0

3600 -8.20 xlO -4 6.05 x 10-3 9.09 xlO“2 0.9999
Off 900 4.48 xlO"4 5.46x1 O'3 1.41 1 . 0 0 0 0

3600 1.88x10 '3 1.92 xlO “1 7.26 0.9996
LE On 900 1.25 x 10-5 6.52 x 10~4 2.53 xlO ”2 1 . 0 0 0 0

3600 -4.19 x 10~4 4.57 xlO"2 7.69 x 10"1 0.9999
Off 900 3.54x10 4 7.59 xlO “3 1.35 1 . 0 0 0 0

3600 -3.80 x 10-3 9.28 xlO “2 M 0.9997
NR On 900 2.66 x 10”5 7.29 xlO"4 4.25x1 O'2 1 . 0 0 0 0

3600 -9 .0 6 x  10”4 5.70x 10”3 6.39 xl0~2 0.9999
Off 900 3 .11xl0-4 4.91 x 10“3 9.18 xlO"1 1 . 0 0 0 0

3600 7.85 x 10-4 3.45 x 10”2 2.59 0.9998
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Table 4.2 Material properties
Thickness

(m)
Conductivity

(W/mK)
Density
(kg/m)

Specific heat
(J/kgK)

Thermal
diffiisivity

(m^/s)
Aluminium 0.002 200 2800 880 81.17 x lO '6
Insulation 0.10 0.045 50 840 1.07x1 O'6
Concrete 0.20 1.9 2300 840 0.98 xlO"6
Wood 0.10 0.14 500 2500 0.11 xlO-6
Glass 0.005 1.051- 2500 750 0.56 xlO"6
t  not utilized

Test runs were carried out using slabs of the first four materials listed in Table 4.2, which 

between them virtually span the range of thermal diffusivities encountered in building 

materials. A variety of slab thicknesses was used leading to characteristic conduction times, 

d 2ja ,  ranging from one second to 26 days and a correspondingly large range of stiffness 

ratios. Discontinuities in the heat gains were expected to lead to the greatest thermal 

disturbance so tests were carried out with both the step changes and the discontinuous 

derivatives occurring a fixed amount of time before some of the assessment points. Time 

delays (prior to assessment) of between two and eight minutes were used, the shortest time 

constant for 0.1m concrete construction being five minutes in the absence of the terminal unit 

and less than one minute with the unit active. The casual heat gain period was also moved back 

and then forward by one hour so as to substantially change its time of application relative to 

other loads. These changes in timing were examined lest fixed relative times favour some 

numerical methods. In all cases tests were done with the free running cell, and then repeated 

with the terminal unit active and sized for 120% of the peak thermal load. A 2 K proportional 

band was used.

4.2.4.2 Comparison o f methods

The results obtained for the test runs outlined in Section 4.2.4.1 are given in Table 4.3. Once 

again, the largest error occurred at step changes in the casual load when the terminal unit was 

inactive -  the even numbered test runs in Table 4.3. The difference statistics for LL were 

divided into the corresponding statistics for each of the other three methods in turn. The 

geometric mean values of these ratios, calculated for the full set of test runs in each case, are 

presented in Table 4.4. They measure the average factor by which the difference statistic is 

changed when LL is replaced by one of the other methods.
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Table 4.3 Accuracy achieved for the test problem
Test Test space Slab Characteristi
run constructio thicknes c

n s conduction
d time

(m) d 2j a

(s)

1 Concrete 0.100 1.02 x 104
2 Concrete 0.100 1.02 xlO4
3 Insulation 0.100 9.35 xlO3
4 Insulation 0.100 9.35 xlO3
5 Wood 0.100 9.09 xlO4
6 Wood 0.100 9.09x10“
7 Aluminium 0.100 1.23 x 102
8 Aluminium 0.100 1.23 xlO2
9 Concrete 0.050 2.55 x 103

10 Concrete 0.050 2.55 xlO3
11 Concrete 0.200 4.08x10“
12 Concrete 0.200 4.08x10“
13 Concrete 0.100 1.02 x 10“
14 Concrete 0.100 1.02 xlO4
15 Concrete 0.100 1.02x10“
16 Concrete 0.100 1.02x10“
17 Concrete 0.100 1.02x10“
18 Concrete 0.100 1.02x10“
19 Concrete 0.100 1.02 x 10“
20 Concrete 0.100 1.02x10“
21 Concrete 0.100 1.02x10“
22 Concrete 0.100 1.02x10“
23 Concrete 0.100 1.02x10“
24 Concrete 0.100 1.02 x 10“
25 Concrete 0.100 1.02x10“
26 Concrete 0.100 1.02x10“
27 Concrete 0.100 1.02 x 10“
28 Concrete 0.100 1.02x10“
29 Wood 0.500 2.27 x 106
30 Wood 0.500 2.27 xlO6
31 Aluminium 0.010 1.23
32 Aluminium 0.010 1.23

stiffness
ratio

unit
status

prior to
assessment

(s)

Displacement 
of casual heat 

gain
(s)

Accuracy achieved for the following numerical methods

LL PM LE

14 14
NR

14
309
49
57
49

700
122

1769
1881

146
43

690
120
309 

49
310 

49
309
49

309
49

309
49

309
49

309
49

309
49

9311
1745

17530
19580

On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off
On
Off

180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
180
120
120
240
240
300
300
360
360
420
420
480
480
180
180
180
180

0
0
0
0
0
0
0
0
0
0
0
0

-3600
-3600

+3600
+3600

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1.46 xlO“3 
6.18 xlO"3 
5.02 x 10'3 
3.67x1 O'2 
2.38 xlO '3 
1.08 xlO '2 
1.02x1 O'3 
5.66 x 10 '3 
1.89 x 10'3
6.79 xlO-3 
9.25 x 10" 
5.97 xlO“3
1.46 xlO '3 
6.76 x 10'3 
1.45 x 10~3
6.20 x 10'3
1.48 xlO '3
7.80 xlO '3
1.43 x 10"3 
5.06 xlO”3
1.43 x 10'3 
3.88 xlO“3
1.44 xlO '3
3.20 xlO“3
1.45 x 10"3 
3.17 x 10'3
1.48 x 10'3 
3.62 xlO"3 
1.37 xlO '3 
5.59 x 10“3 
2.01 xlO"3 
6.60xlQ-;

4.41 xlO-2
1.41
1.27 xlO“1 
1.47
4.09 xlO '2 
1.34
4.91 x 10'2 
1.65
3.96xl0~2
1.40
5.22 xl0~2 
1.61
4.56 xlO '2 
1.72
4.35x1 O'2
1.25
4.43 x 10~2
1.94
4.40 xlO '2
1.25
4.39 xlO '2 
1.24
4.38 xlO '2
1.23
4.37 x 10~2 
1.21
4.36 xlO"2 
1.20
3.95 xlO '2 
1.07
6.83 xlO '2 
1.54

8.77x10" 
5.46 x 10"3
3.07 xlO '3 
3.10 xlO"2 
1.39 x 10'3 
1.01 xlO '2 
6.70x10" 
4.50 x 10'3 
1.19 xlO '3 
5.97 xlO '3 
7.45x10" 
4.86 xlO '3 
8.42 x 10" 
5.53 x 10'3 
9.04x10" 
5.64 x 10'3 
9.41x10" 
7.05 x lO '3
8.22 x 10" 
4.30 xlO '3 
7.91x10"
3.08 xlO '3 
7.87x10" 
2.17 x 10'3
8.08 x 10^ 
1.84 x 10'

0"
r3

8.45x10"
2.30x10 
1.00 xlO '3 
5.75 xlO '3 
1.28 xlO '3 
5.52 xlO '3

2.70 xlO '2
1.41
9.21 xlO '2 
1.47
2.89 x 10'2 
1.34
2.81 xlO '2
1.65
2.66 x 10'2
1.40
4.49 x 10"2 
1.61
2.60 xlO '2 
1.72
2.64 xlO '2 
1.25
2.71 xlO '2 
1.94
3.15 xlO '2 
9.88 x lO '1 
3.30 xlO '2 
6.51x10" 
3.36 xlO '2 
4.63 x 10"
3.40 xlO '2 
4.45x10" 
3.43 x 10'2 
5.06x10"
3.42 x 10'2 
9.99 x 10" 
2.80 xlO '2 
1.54

6.52 x 10" 
7.59 x 10'3 
8.90 xlO '3 
7.79 xlO '2 
9.43x10" 
1.51 xlO '2 
5.53x10"
2.01 xlO '2 
7.57 x 10" 
9.55 xlO"3 
7.92x10"
1.02 xlO '2 
6.38x10" 
1.35 xlO '2 
6.08x10" 
5.49 xlO '3 
7.07x10" 
9.10 xlO '3 
5.97x10" 
6.34 xlO '3 
5.68x10" 
5.20 xlO '3 
5.63x10" 
4.39 x 10'3 
5.80x10" 
3.82 x 10'3 
6.25x10" 
4.24 x 10'3 
7.54 x 10" 
8.28 xlO '3 
9.61x10" 
2.45x IQ'2

2.35 xlO '2
1.35
3.87x10"
1.55
2.51 xlO '2 
1.28
2.19 xlO '2
3.04
4.33 xlO '2
1.35
3.55 xlO '2
1.51
2.21 x 10'2 
1.61
2.36 xlO '2
1.21
1.48 xlO '2 
1.87
3.17 xlO '2 
9.24x10"
3.33 xlO '2 
5.88x10" 
3.38 xlO '2 
3.23 x 10"
3.40 xlO '2 
4.84x10" 
3.42 x 10'2 
6.37x10"
3.41 xlO '2
1.05
4.44 x 10"2 
2.83

7.29 x 10" 
4.91 xlO '3 
1.35 xlO '3
2.52 xlO '2 
9.22 x 10" 
9.32 x 10'3 
6.50x10"
4.26 xlO '3 
7.96x10" 
5.38 xlO '3 
7 .44x10" 
4.44 x 10'3 
7.28x10"
5.26 xlO '3 
6.86x10" 
5.01 xlO '3 
7.66x10" 
6.57 x 10'3 
6.82 x 10" 
3.84 xlO '3 
6.56x10" 
2.96 xlO '3
6.52 x 10"
2.30 xlO '3 
6.94x10" 
2.06x10“'O'3 
7.70x10"
3.47 xlO '3 
7.98x10" 
3.83 xlO '3 
8.74x10" 
5.31 x HT3

4.25 xlO '2 
9.18x10" 
5.11 xlO '2
1.14
3.90 xlO '2 
8.51x10" 
4.20 xlO '2
1.15
4.03 xlO '2 
9.18x10"
6.06 xlO '2 
1.08
4.05 xlO '2 
1.18
4.07 xlO '2 
7.83x10"
4.26 x 10'2 
1.44
4.63 xlO '2 
5.03x10" 
4.80 xlO '2 
4.80x10" 
4.86 xlO '2 
5.58x10" 
4.88 xlO"2 
7.49 x 10"
4.90 xlO '2 
9.04x10" 
4.61 xlO '2 
6.21x10" 
3.94 xlO"2
1.08
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Table 4.4 Geometric mean reduction in error achieved for the 
test problem when LL is replaced by other numerical methods

Accuracy statistic Numerical method
LL PM LE NR

S 1.000 0.709 0.880 0.610

3 1.000 0.731 0.769 0.757

All three methods achieve a reduction in both mean absolute difference and maximum absolute 

difference when compared with LL. The decrease in maximum error is greatest for PM at 27%. 

Mean error reduction is greatest for NR but this method requires the construction of a Jacobian 

matrix or, at least, an approximation to it. PM achieves a reduction in mean error of 29%. At 

first sight, the performance of LE is not as good as might be expected considering its initial 

estimate is extrapolated from two previous solution values and should, therefore, be better than 

the one used with the proposed method. However, extrapolation can lead to poor initial 

estimates where the solution is changing rapidly, for example, at the times the casual gain is 

switched on or off. LL performs as expected. Its initial estimate is the same as that used with 

PM, namely the last solution value, but an unnecessary substitution is also made which reduces 

the accuracy of the method.

Time (hours)
------  Reference solution
' KS>' TR + LL solution

Figure 4.3 Air temperature predictions for TR + LL (Test 2, k = 15 min)
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28

Time (hours)
------  Reference solution
H-X TR + PM solution

Figure 4.4 Air temperature predictions for TR + PM (Test 2, k  = 15 min)

Figures 4.3 and 4.4 allow a visual comparison to be made between the performance of LL and 

that of PM over part of the interval for test run two (Table 4.3). The time step (k) is 15 minute 

for the test solutions and variable for the reference solutions; output for all solutions is shown 

at 15 minute intervals.

4.2.5 Conclusions

The use of finite difference methods to discretize the differential equations representing heat 

flows in buildings and elsewhere produces a system of algebraic equations which are, in 

general, non-linear. A commonly used linearization procedure results in a direct solution 

method which can be regarded as the first iteration of an underlying iterative method. The 

iterative process is examined and found to be well suited to the solution of stiff systems. Two 

other direct methods emerge from this iterative procedure. One is a proposed change to the 

previously mentioned linearization scheme and the other involves extrapolation. The proposed 

method was found to be the most accurate of the three direct solution methods for a 

representative test problem. The improved accuracy can, of course, be traded for greater speed 

of execution. The proposed method is a single step one requiring only minor changes in
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building energy simulation software that includes the more commonly used linearization 

method.

All of the tested methods can, of course, be used in conjunction with other implicit solvers for 

ODEs and it is to these we turn next. It is well-known that TR is just marginally stable for stiff 

systems and some the consequences of this for building energy simulation have been explored 

by Nakhi [78], Wright [79] and Waters [109]. A range of more stable methods is introduced 

and assessed in Section 4.3. The difference equations in each case are solved using a modified 

Newton iteration because it is a well-known and accepted standard and it does not require prior 

linearization of the problem.

4.3 Evaluation of Implicit Numerical Methods

4.3.1 Introduction

A dynamic thermal model of a building must include a means of modelling transient 

conduction in multi-layered building elements such as walls. The layers are most often treated 

as plane slabs of a homogeneous material and one dimensional heat flow is assumed. In this 

case Equation 4.13, the diffusion equation, together with suitable initial and boundary 

conditions, models the heat conduction process well. The equation and its solution are greatly 

simplified when presented in non-dimensional form [16]. This is done by arranging the 

relevant variables into suitable groups.

T  *— a
T - Tin a

(4.27)

x
(4.28)x

(4.29)
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Equation 4.27 gives a dimensionless form of the dependent variable which must therefore lie in

if the slab temperature is Tm initially and identical convective boundary conditions exist at 

x = -d y 2 and x  = dy2. It follows that the transient temperature distribution in the slab must be 

of the form

where Bi = hcdy2/k s is the Biot number. For a given geometry, then, transient conduction is 

characterized by the Fourier and Biot numbers.

For most cases of interest the function 0  in Equation 4.33 cannot be found exactly and 

recourse must be made to approximate methods involving spatial, and possibly temporal, 

discretization. Fundamental studies using electrical analogies have been carried out with a 

view to optimizing the distribution of a given number of nodes within a wall or roof, and these 

are summarized in Waters and Wright [125]. A number of workers considered the application 

of step and sinusoidal thermal excitations to the surface of a solid building element and 

equivalent discretized or lumped networks. It was found that the most crucial parameter 

governing system response was the Fourier-like dimensionless ratio a t jd 1 . In the case of a 

step change t was the time since the step was taken and for a sinusoidal excitation t was the

the range 0 < T  *< 1. A dimensionless spatial co-ordinate is defined by dividing X by dy2, the

half-thickness of the slab, and it satisfies -1  < x* < 1. A dimensionless time is defined by 

Equation 4.29 and it is equivalent to the Fourier number. With these changes of variable 

Equation 4.13 simplifies to

Ô T * d 1! *
~dtT ~ dx*2

(4.30)

and the initial and boundary conditions become

(4.31)

(4.32)
dx*  . dx*  .X =1 x =-1

(4.33)
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inverse of its angular frequency. The smaller the value of this ratio the more difficult it was to 

achieve accurate modelling.

The quantity d 1 / a  is a characteristic time for conduction of heat through the thickness of the 

slab and the results above can be understood in the following way. When a thermal disturbance 

with a characteristic time scale, r ,  is applied to the surface of a slab with a much larger 

conduction time scale its effects are, in the short term at least, confined to a small region near 

the surface. In the model, on the other hand, the disturbance is applied simultaneously to all 

parts of a high capacity lump and so its short term effects are diluted and unrealistic.

Waters and Wright [125] examined a family of finite-difference schemes

T/ " - T / =  Foa \r{T£' -  2 +  T* ' )+ (l -  r f e  -  2T / + 7;i)} (4.34)

which are used in many building thermal models to approximate Equation 4.13. Setting the 

dimensionless parameter y  = 0 , 1/2 and 1 gives the explicit, the Crank-Nicolson and the 

implicit schemes respectively. The mesh ratio, Fofd = a k jh 1, is a finite-difference form of the 

Fourier number. It was concluded that, for a given number of nodes, truncation error is 

minimized if nodes are distributed in a multi-layer wall in such a way that

(a) a node appears on each internal boundary between materials and

(b) the mesh ratio is everywhere the same.

Since the time step, k , is usually the same throughout, this amounts to selecting the nodal 

separation, h , within each layer so that the conduction time scale, h2 j  a , is the same for every 

layer.

In the light of the above, the following strategy for the distribution of nodes in a multi-layer 

wall or roof would seem logical:

1. Select k  to satisfy the relation

k  = b r ^  (4.35)
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where rmm is the characteristic time scale of the most dynamic thermal excitation of 

interest. A small value is chosen for the constant, b , when it is required to follow the 

system response in detail.

2. Place a node on each internal boundary as depicted in Waters and Wright [125], and 

additional nodes within the layers so that the characteristic conduction time of the slice 

associated with each node is, as nearly as possible, the same. This time constant should be 

a small fraction of rmin for accuracy. The nodal separation or slice thickness, h , should 

therefore satisfy

or

h = ■yjipck) (4.37)

Use of the same constant, b , leads to a corresponding subdivision of space and time. This 

condition can be written more simply as

Foa = 1 (4.38)

This strategy merely distributes error evenly over the whole construction. To control the 

magnitude of the error and to avoid prolonged simulation runs, it is required to change h and k 

dynamically as the simulation proceeds. Changing the former essentially involves changing the 

number of equations in the model and is not ordinarily done. An algorithm for changing k  is 

used in the assessment below.

4.3.2 Stability of numerical methods

Much of the earlier work, then, was concerned with local truncation error which results from 

replacing derivatives by finite-difference approximations. Another error type, round-off error, 

is inevitably introduced in computer calculations because numerical values are processed using 

a fixed number of significant digits. Rounding errors can normally be controlled by selective
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use of double-precision arithmetic unless the numerical method being used is unstable, in 

which case the error grows exponentially.

4.3.2.1 Commonly used methods

Crandall [126] has examined the stability and truncation error of the family of schemes 

represented by Equation 4.34. This work shows that large Foa values lead to instability or

oscillatory solutions unless y  > 1/2. The temporal truncation error, which is o {k3) for 

y  = 1/2, degrades to o ( k 2) for any other value of y. The spatial truncation error is o (h 3) for 

all y. Hensen and Nakhi [127] have applied these results with a view to improving conduction 

modelling within building energy simulation packages, many of which use the Crank-Nicolson 

scheme (y = 1/2) for accuracy. Its performance under various circumstances is demonstrated 

in Hensen and Nakhi [127] using a test example for which an exact solution is known [128]. 

Homogeneous slabs with thermophysical properties and dimensions as shown in the first three 

rows of Table 4.2 are each represented by three nodes. One node is located centrally and 

represents half of the slab's thermal capacitance. Two surface nodes represent a quarter of the 

thermal capacitance each. The slab is initially at a temperature of 0°C, as are its surroundings. 

Ambient air temperature is suddenly raised to 20°C on both sides. There is no radiant heat 

exchange, and the convective heat transfer coefficient is assumed to be 3 W /m^ K. The 

Crank-Nicolson predictions [127] for aluminium in Figure 4.5 show large temperature 

oscillations because of the magnitude of Foa . Similar unrealistic temperature behaviour is 

predicted by the Crank-Nicolson scheme, in Figure 4.6, for a slab of insulation. In this instance 

a large value for B ia = hch  /  ks, the finite-difference form of the Biot number, was mainly 

responsible for the instability [78], The predictions for concrete (Foa = 0.35, Bia = 0.16) 

were quite stable with a one hour time step. Equation 4.34 with a higher degree of implicitness, 

up to y  = 1, is proposed [127] for use with these problematic, but commonly occurring, layers 

of material. The temporal accuracy of the method is, however, just first-order when y  ̂  1/2. 

One of the principal objectives of the present work is to identify numerical methods which are 

at least as accurate as the Crank-Nicolson scheme, and are stable and free of persistent 

oscillations in all circumstances.
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Figure 4.5 Surface température prédictions for 2 mm aluminium using a 1 h time step 

(Foa  = 2.92 x 105 ;Bim = 1.5 x 10“5 ;max, |Re(/U, )  = 1.17 x 106)
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Figure 4.6 Surface temperature predictions for 100 mm insulation using a 1 h time step 

{Fou = 1.54 ;BiK = 3.33;max,|Re(U,)| = 14.2)
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So far the discussion has centred on partial differential equations (PDE) and the accuracy and 

stability of finite-difference approximations to them. In Section 4.2.1 PDEs representing 

masonry slabs were semi-discretized and grouped with ordinary differential equations (ODE) 

describing the thermal behaviour of air masses and other ‘lumps’ of material to give a vector 

equation for a building energy model, Equation 4.16. If t is included among the dependent 

variables this equation can be written even more succinctly as

T ' = f(T ) (4.39)

a first-order, autonomous system of non-linear ODEs of dimension n + 1 representing n nodes 

(z = 1,2,...,«) and time (i = O).

Numerical methods for ODEs exist which correspond to the finite difference methods 

previously applied to Equation 4.13. For instance, the theta method applied to Equation 4.39 

gives the difference equation

T J+1 = T J + k { y f ( jM )+ (l -  y )f ( t 7 )} (4.40)

which is equivalent to Equation 4.34. Setting y=  0, 1/2 and 1 as before gives Euler's rule 

(ER), the trapezoidal rule (TR) and the backward Euler method (BEM) respectively; the ODE 

equivalents of the explicit, the Crank-Nicolson and the implicit schemes.

When the theta method is used to solve the test equation, T ' = A T , it gives

jv +1 -  1 0- ~ Y fJ  (4.41)
1 -y k /1

Figures 4.7 and 4.8 show the amplification factors for the three special cases when y  = 0, 1/2 

and 1. ER is stable in the limited interval (-2, 0). TR and BEM are stable for all (negative) 

values of Re(w) and, as such, are described as A-stable methods. Equation 4.39, when 

representing a building energy model, is a stiff system. A-stable methods are considered 

appropriate for stiff systems because large negative values of Re(/l), implied by the definition 

of stiffness, require small time steps, k, if ER and other methods with restricted stability 

intervals are to attenuate rather than magnify introduced errors. When Re(w) is large, in a
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negative sense, the amplification factor for TR approaches minus one and slowly damped 

oscillations result. These are apparent in Figures 4.5 and 4.6. A stronger stability property, 

namely L-stability, will quickly preclude these long-lived oscillations. A numerical method is 

L-stable if it is A-stable and, in addition, r(w) approaches zero as Rc(w) approaches minus 

infinity. The first-order BEM alone, of all those emerging from the theta method, possesses 

L-stability. All other methods assessed here are at least second-order accurate and most are 

L-stable.

Re(w)
-XXX ER 
-H-+- TR 
E3E3E BEM 
—©— BDF2 
X-XX TR-BDF2 
OOO SDIRK 
-H -+  HE

Figure 4.7 Amplification factors, r(w ), over a small range of (real) values for W
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— BDF2 
X-XX TR-BDF2 
OGO SDIRK 
-H -h  HE

Figure 4.8 Amplification factors, r(w ), over a large range of (real) values for w

It is worth noting that the stiffness ratio of a system of equations, such as Equation 4.14, 

representing a plane slab increases as the number of nodes is increased [42,44, 102]. As a 

consequence attempts to reduce spatial truncation error by reducing h can result in undesirable 

oscillations unless the numerical method being used is L-stable.

4.3.2.2 More stable alternative methods

The backward differentiation formulae (BDF) are among the most widely used numerical 

methods for stiff systems; one of the best known codes being due to Gear [45]. The second- 

order BDF (BDF2) applied to Equation 4.39, the general non-linear system, gives

3TV+1 -  4 T J + T J-' = 2H (t j+i ) (4.42)
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and its amplification factors can be shown to be

( 4 .4 3 )

3 - 2  w

The positive root is associated with the principal solution and this factor is plotted in Figures

4.7 and 4.8. BDF2 is seen to be L-stable. The BDF are not A-stable above second-order. The 

first-order BDF is just the BEM. All other methods examined here, except BDF2, are single- 

step requiring just one previous solution value to progress. A variable-step implementation of 

BDF2 was prepared for this evaluation.

A composite of BEM and TR called implicit improved Euler (IIE) was first proposed by Hanna 

[92] and later investigated further by Ashour [93].

T C = T i „ + i f t e )  (4.44)

r * '  = T '+ i * f r i« + T i' M] (4.45)

Equation 4.44 is solved implicitly at each step and this is followed by a trapezoidal 

improvement retaining the backward Euler derivatives. The method offers no advantage over 

BEM in terms of LU factorisations and derivative function evaluations. It is, however, second- 

order accurate and more stable than the frequently used TR. Its growth factors are

^ ( l  + B ) ± ^ ( l  + B f  + 4B  | where B  = ^   ̂ (4.46)

The factor associated with the principal solution is shown in Figures 4.7 and 4.8. It approaches

l / y[2 as w increases in magnitude and so the error damping propereties of HE are intermediate 

between BEM and TR.

Bank et al [94] developed a composite method, TR-BDF2, for the simulation of circuits and 

semiconductor devices which is based on TR and BDF2. It inherits the strong stability of 

BDF2 without the disadvantage of being multi-step. Each step of length k  consists of a 

fractional step of length £ k  using TR
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T J + i  =  T J + 1  ̂ { f  ( t 7 )+  f  (Ty+i )} (4.47)

followed by a step of length k  using the known values of T  at time levels j  and j  + £ in

BDF2

form, thereby decreasing the effort required to solve the non-linear difference equations 

presented at each step. This value of Ç also minimizes the local truncation error and is the one 

exclusively used below. Hosea and Shampine [95] analysed the method and proposed a related 

one, TRX2, equivalent to a double step of the trapezoidal rule. In the same paper it is shown 

that both methods can be viewed as DIRKs. In Carroll [97] and Carroll [98] the trapezoidal 

rule in TR-BDF2 is replaced by the theta method and the resulting family can be expressed in 

conventional or DIRK form. TR-BDF2 and the method of Carroll are L-stable but TRX2 lacks 

this property because of its origin. All three methods are second-order accurate.

One of the earliest and best known DIRKs due to Alexander [96] takes the following form.

C(2 -  Ç )TJ+1 -  T J+C + (l -  c f  T J = C(l -  Ofef (T ;+1 ) (4.48)

The amplification factor for TR-BDF2 is

(4.49)

Choosing £ = 2  — V~2 reduces the Newton iteration matrices for TR and BDF2 to the same

(4.50)

k 2 = f  (t ; + (l — a)&k, + aAk2 ) (4.51)

T-/+1 =  T y + (l -  a)là il + a k k 2 (4.52)

It is L-stable and second-order with a  = 1 - 1/ 4 2  . Its amplification factor is
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1 + (l -  2 a)w
(l -  aw f

(4.53)

The method is more commonly described as an SDIRK now, in that the solution of the implicit 

stage equations for k j and k 2 by Newton iteration requires a single LU factorisation, the 

same for each stage. Methods now described as DIRKs require s different factorisations, s 

being the number of Runge-Kutta stages. IRKs entail the factorisation of a matrix of order sn, 

for a system of order n. This is often considered prohibitively expensive.

SDIRKs and other methods can suffer from order reduction when applied to stiff ODEs, 

whereby the apparent order of accuracy of the method is the stage order (often one) rather than 

the classical order [42]. The phenomenon is known to be problem dependent and is thus not a 

property of the method alone. Kvaemo [101] has constructed L-stable SDIRK. methods with an 

explicit first stage (ESDLRKs) for which the stage order is two for large classes of stiff ODEs. 

A third order (classical) version will be assessed here and its structure is as follows.

(4.54)

(4.55)

(4.56)

(4.57)

4
with bA - y (4.58)

i=i

The coefficients are next given in terms of /  = 0.4358665215 .

" — 4 y + 6 y —l ? - 2 /  + 1
b. = -----------------------  o ,  = -------------

4 y  Ay

(4.59)

b
-1 - 6  y 2 + 6 y - 1 

6 y - 3
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Rosenbrock methods are essentially equivalent to a single iteration of an implicit Runge-Kutta 

method [129]. They have been studied extensively (almost exclusively) in the engineering 

literature [130], They were first developed to eliminate the need for iteration, and possible 

problems with convergence, when solving nonlinear problems [131]. They are direct solution 

methods but they require an exact jacobian implying that J  must be evaluated and 

decomposed at every step. All other methods examined in this work can reuse triangular (LU) 

factors for many consecutive time steps (up to ten here) and the modified Newton iteration 

used in conjunction with them presents few convergence difficulties in practice. Since LU 

factorisation is the dominant computational task, Rosenbrock methods are not considered 

further here.

Attempts to circumvent the need for an exact jacobian began with Steihaug and Wolfbrandt 

[132] and since then numerous other Rosenbrock-like formulae, known as W-methods, have 

been put forward that allow reuse of LU factors over several time steps [99, 119, 133, 134]. Of 

these, only the formula of Verwer et al [99] evaluates f  (Tj,+1), the derivative function at the 

next time point. For this reason it was the sole W-method included in the present assessment. 

The method of Scraton [119], for example, utilises f(T 7+2'/3) and, as a result, mistimes the 

application of discontinuities in the thermal forcing functions which occur at or near the end of 

the proposed step. This can lead to large error [135], Formulae from other families of methods 

were found to perform poorly for the same reason; these included the implicit mid-point rule 

[42], the Hopscotch method [136] and the optimal second-order one-leg method [137, 138], 

Consequently, only those methods that sample the thermal driving forces at the next time level 

are evaluated here. The details of the second-order method of Verwer et al [99] are as follows.

It is L-stable with y  = 1 + 1/V2 .

(4.60)

(4.61)

T J+1 = T 7 + - * k ,  + - * k
2 1 2

(4.62)
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All but two of the formulae compared are second-order accurate. Methods with a low order of 

accuracy are likely to be the most efficient in the building energy simulation application for the 

following reasons.

(a) Discontinuities in f(T) and its derivatives due to step changes, knee events and the 

like (Section 3.4.7) mean that the higher derivatives, which are presumed to exist for 

higher order methods, are likely to be poorly approximated at points of disturbance in 

the solution.

(b) An Error-Cost plot shows that low accuracy solutions (Section 3.4.2) are most 

economically obtained using low order numerical methods [38, 45].

(c) The order of an A-stable linear multistep method cannot exceed two [139].

(d) High order methods may suffer order reduction (to first- or second-order) because the 

building energy problem is stiff.

(e) Spatial derivatives are usually approximated to second-order in this problem (Section

3.2); second-order temporal approximations would be consistent.

Nonetheless, a method of order one and another of order three are included in the assessment

Figures 4.5 and 4.6 show the performance of a number of these methods when applied to 

demanding test examples in which Foa or Bim, or more generally |Re(w)|, is large. Rapid 

attenuation of rounding error is evident for the L-stable methods because, as is clear from 

Figures 4.5 and 4.6, |r(w)| is small even when |Re(w)| is large. IIE is seen to be erratic and 

slow to settle.

4.3.3 Evaluation of numerical methods

The list of methods selected for assessment is as follows: BEM, TR HE, BDF2, TR-BDF2, 

TRX2 and the methods of Alexander (Alex2), Carroll (Carroll), Kvaemo (Kvaemo3) and 

Verwer et al (ROS2); the corresponding program names for the latter four are shown in 

brackets. Variants of these methods are also tested. As well as a conventional implementation 

of TR a version that uses converged derivative functions where appropriate is included. The 

term ‘converged’ is used here to describe those f  values produced in the process of finding 

T 7+1 using Newton iteration as part of a stable implicit process. A conventional f  value at the
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same solution point is found by evaluating it using T 7+1 as argument. Because f  for a stiff 

system is ill-conditioned, small errors in T 7+1, such as the inevitable rounding errors, are 

greatly magnified. For this reason converged f  values are normally preferred [40, 95] and are 

generally used here. There are some exceptions: (i) ROS2 which does not involve iteration, (ii) 

ESDERK methods such as Kvaemo3 which use an explicit (conventional) first stage to mitigate 

the effects of order reduction and (iii) TR-BDF2, TRX2, Carroll and TR each of which 

includes an explicit first stage as part of its specification. Because it is so well known and so 

widely used, conventional TR is used as the bench mark in the present study.

A property of some methods, described as first-same-as-last (FSAL), allows one function 

evaluation to be saved by using the final converged f  value in place of the explicit first stage. 

And, where present, it is advised that this feature be used to avoid error amplification in the 

first stage [95]. Kvaemo3, for example, has this property but the explicit stage is included by 

design to alleviate order reduction and so is left in place during testing here. It was observed 

during this project that use of the FSAL property in TR-BDF2, TRX2, Carroll and even TR all 

of which include an explicit stage, could lead to order reduction. Since it is unclear where the 

balance of advantage lies, it was decided to include versions with and without the explicit first 

stage for several of these methods.

4.3.3.1 Computational procedures

The more detailed test problem described in Appendix C was used for the assessment. In order 

to control error and solve stiff differential equations efficiently, some form of interval 

adjustment must be used, as is evident from Table 4.1. This entails varying the time increment 

until local truncation error (LTE) is within a specified tolerance which was set to 0.1 K per 

step for this work. The principal part of the LTE for a proposed time step, k J , is given by

(4.63)

for BEM, and by

(4.64)
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for a number of the second-order methods being assessed. The error constants (C]te ) for these

methods are given in Table 4.5. The error expressions for the other members of the assessment 

set are not so simple. They include derivatives different from those shown above and, 

consequently, are not directly comparable in this way. All of the foregoing pertains to local 

temporal truncation error. Local spatial truncation error is not controlled here because the 

space increment is constant throughout each simulation run. However, all methods are affected 

equally.

Table 4.5 Local truncation error constants
Numerical method TR BDF2 TR-BDF2 TRX2 Carroll

Rational form 

Decimal form

1
12

0.0833

2
9

0.2222

3V2-4
6

0.0404 0.0303* 0.0349
* An approximation [95]

Adaptive step size versions of the numerical methods were programmed, each including a 

routine to force a small time increment at step changes in the casual load and at on/off times 

for the terminal unit. These are considered to be the only predictable discontinuities.

Depending on the estimated error in the solution, the proposed step, k J+l, is doubled or 

repeatedly halved until the error is within tolerance. The limit of two placed on the factor by 

which the time step can be increased is an expression of conservatism when extrapolating; it 

helps limit expensive step failures. An initial step size of the order of the smallest time scale

( i / W J  in the problem was used [129].

ROS2 does not require iteration; for all other methods a modified Newton-Raphson method 

was used in which the Newton iteration matrix is updated and inverted at least once every ten 

time steps, but not normally within the iteration loop. More frequent updating can be triggered 

by failure of the iteration to converge, which occurs when k  is too large or when J needs 

updating [40]. Since both require a subsequent, expensive decomposition of the iteration 

matrix, k is halved and J is re-evaluated whenever the Newton iteration fails to converge. 

Previously [135] it was found that just one iteration per time step was generally adequate for 

the simple test problem provided the initial approximation was generated using Newton's 

divided difference interpolation formula. The use of the more detailed test problem and 

especially the inclusion of less robust methods in the test set has necessitated a change in 

strategy. An extrapolated initial estimate led to poor results for some methods so T J , the latest 

solution value, was used to seed the next iteration for all methods. A number of methods
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performed poorly when a fixed (low) number of iterations per time step was specified, 

Kvaemo3 being the least stable in this regard, so the stopping criterion described in Hairer and 

Wanner [89] was introduced to terminate the iteration process. The implementation of ROS2 

matches as closely as possible the foregoing. The system matrix is updated and inverted at least 

once every ten time steps. When the estimated error is exceeds the tolerance, J  is re-evaluated; 

if the problem persists, k  is reduced until the step succeeds.

Any change in step size is based on an estimate of the local error. Since each adjustment in k 

necessitates an LU decomposition, change is undertaken conservatively. Error estimation 

methods include:

(a) Principal local error: Expressions for the principal local error such as 4.63 and 4.64 

can be used with Newton or Hermite approximations to the derivative. Sometimes / "  

is approximated in place of T m (using Equation 4.39) or f  in place of T " ; when this 

is done converged f  values are used except in the case of the bench mark version of 

TR.

(b) Embedding: Each step is repeated using another method of order one greater than the 

numerical method of interest. The difference between the two is the principal error for 

the lower order method. Newton or Hermite interpolation formulae can be used to 

provide the higher order estimate.

(c) Milne’s device: The difference between two numerical methods of the same order and 

with principal local error expressions of the same form can be related to the error of 

either.

(d) Jay’s device: Sometimes the only suitable secondary method available for error 

estimation is one or more orders of accuracy less than the primary method. Jay [140] 

describes a reduced tolerance in terms of the original tolerance and the orders of the 

two methods. If k  is selected so that the error of the lower order formula (i.e. the 

difference between the two methods) is approximately equal to the lower tolerance, the 

chosen step size is appropriate for the primary method. This device is used here with 

IEE, Kvaemo3 and ROS2.

(e) Step-halving: Each step of length k  is repeated using two steps of length kl2. An error 

estimate can be extracted from the difference. The method is rarely used now because 

it doubles the number of LU decompositions required.
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A prime requirement of any error estimate is that it be cheap. Step-halving fares badly in this 

regard. Embedding, Milne’s method and Jay’s device appear expensive, at first sight, but the 

primary and secondary numerical methods are usually closely related and generally share LU 

factors and even derivative function evaluations. The behaviour of error estimates (E) for large 

step sizes (£) has received recent attention in the context of stiff systems. If, for instance, E 

approaches a limit or even decreases as k  increases, the error control strategy will not perform 

as expected. Error behaviour is analysed by applying the numerical method to the simple test 

equation T ' = I T  once again. The error estimate for a proposed step k J can be put in the 

form E  = (j){kJ x)jrj for some function <f). According to Scraton [119] <fi should ideally 

satisfy the following criteria:

\(j){kX  ̂ increases monotonically with k (4.65)

M m )  —>oo as k  —> oo (4.66)

The more stringent criterion proposed by Hosea and Shampine [95] requires E to be 

asymptotically correct for small and especially large step sizes. That is

(f)(kX)
Qxp{kl)~ r {k l)

Here, exp(&7/ l ) r J is the exact solution and r{kJX)TJ the numerical solution of the test 

equation for the step in question. Criterion (4.67) is difficult to meet in practice and the 

filtering technique used in Hosea and Shampine [95], and first proposed by Chua and Dew 

[141], to ensure its satisfaction is considered in Scraton [119] to ‘generally lead to a saving in 

computer time, but with considerable loss of accuracy’. In this study, error estimates are 

chosen to satisfy criterion (4.65) and especially (4.66). Criterion (4.67) is generally not 

satisfied except where the above-mentioned device is included as part of an algorithm -  as in 

the cases of TR-BDF2 and TRX2 in Hosea and Shampine [95]. Table 4.6 names the variants of 

the selected numerical methods and describes the error estimator used with each, as well as 

some other particulars of each implementation. The first version listed is generally the closest 

to the original implementation. An exception is TR-BDF2(a) which is implemented broadly as 

in Hosea and Shampine [95] where the error estimate used in the original source [94] is
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critisized. The coded algorithms for all the numerical methods examined here, and variants of 

same, are to be found in the subfolder Methods on the attached CD ROM.

Table 4.6 Variants of numerical methods selected for evaluation
Numerical
method

Important particulars of the implementation

Alex2 Hermite extrapolation used to form error estimate (embedding).
BDF2 Principal local error used, with Newton approximation to f "  .
BEM Principal local error used, with Newton approximation to f .
Carroll(a) Principal local error used, with Newton approximation to f " .
Carroll(b) FSAL version. Principal local error used, with Hermite approximation to

rpftt

TTF, Jay’s device used to form error estimate.
Kvaemo3 Jay’s device used to form error estimate.
ROS2(a) Jay’s device used to form error estimate.
ROS2(b) Hermite extrapolation used to form error estimate (embedding).
TR(a) Principal local error used, with Newton approximation to f  (employing

conventional /  values).
TR(b) Principal local error used, with Newton approximation to f " .
TR(c) FSAL version. Principal local error used, with Newton approximation to

f -
TR-BDF2(a) FSAL version. Embedded error estimator used, modified by the filtering

technique of Chua and Dew.
TR-BDF2(b) FSAL version. Principal local error used, with Hermite approximation to

rpm
TR-BDF2(c) Hermite extrapolation used to form error estimate (embedding).
TR-BDF2(d) Principal local error used, with Hermite approximation to T " .
TRX2(a) FSAL version. Embedded error estimator used, modified by the filtering

technique of Chua and Dew.
TRX2(b)_______ Hermite extrapolation used to form error estimate (embedding)._________

The work was carried out on a personal computer using a general purpose mathematical 

software package [124], During a typical test run two independent solutions were generated 

using built-in differential equation solvers and a reference solution was formed by averaging 

them. Both of these methods, the method of Rosenbrock and the fourth order Runge-Kutta 

method [41, 124], include adaptive step-size control and the tolerance variable was set to 10~6 

in each case. The agreement between these two solutions was excellent -  see Table 4.7 which 

presents accuracy statistics for the medium weight test problem with an active terminal unit 

(test 3). Other details for tests run three are to be found in Table 4.9 and a computer file 

referred to therein. The reference solution was subtracted from each of the test solutions in turn 

at every node and every hour (on the hour) over a four day period following the
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pre-conditioning period. The statistics presented in Table 4.7 were extracted from the set of 

differences for one test run. Mean absolute difference gives an overall measure of accuracy but 

it was felt that maximum absolute difference should be used in the calculation of 

computational efficiency (Section 3.3) lest a small number of unacceptable errors be concealed 

by the averaging process. These might be anticipated at times of rapid change in the solution. 

Mean difference detects any bias towards over- or under-estimation of the solution and the 

cross-correlation coefficient, which is defined in Run, save & test; METHOD.mcd on the 

attached CD ROM, gives a measure of the phase relationship between the reference solution 

and each of the other solutions.

Table 4.7 Accuracy statistics for test run number three____________________________
Numerical method Temperature difference between reference Cross­

solution and other solutions (K) correlation at
zero time delay 
(air point node

___________________________________________  only)
Mean Mean absolute Maximum

difference difference absolute
5  |<5| difference

3

Rosenbrock 3.12x10^ 4.64 xlO-6 2.04x10^ 1.0000
Runge-Kutta -3 .12X 10“6 4.64 xlO-6 2 .04x10^ 1.0000
Alex2 0.00059 0.0010 0.051 1.0000
BDF2 0.00244 0.0045 0.097 1.0000
BEM -0.00740 0.0228 0.295 1.0000
Carroll(a) 0.00100 0.0028 0.155 0.9998
Carroll(b) 0.00022 0.0030 0.155 0.9998
HE 0.00268 0.0093 0.422 0.9997
Kvaemo3 0.00352 0.0055 0.145 0.9998
ROS2(a) 0.00609 0.0139 0.430 0.9994
ROS2(b) -0.00005 0.0012 0.120 0.9999
TR(a) 0.00061 0.0044 0.242 0.9995
TR(b) 0.00258 0.0057 0.242 0.9995
TR(c) -0.00018 0.0044 0.243 0.9995
TR-BDF2(a) 0.00097 0.0038 0.170 0.9998
TR-BDF2(b) 0.00028 0.0033 0.171 0.9998
TR-BDF2(c) -0.00022 0.0017 0.087 0.9999
TR-BDF2(d) 0.00008 0.0033 0.171 0.9998
TRX2(a) 0.00219 0.0040 0.122 0.9999
TRX2(b) 0.00018 0.0012 0.060 1.0000
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Table 4.8 Measures of computational effort for test run number three
Numerical
method

LU
decompositions

Forward/back 
substitution pairs

Matrix
evaluations

Derivative
function

evaluations
Alex2 395 2788 298 2788
BDF2 414 1054 388 1028
BEM 330 1202 280 1152
Carroll(a) 206 1248 188 1542
Carroll(b) 205 1124 194 1124
HE 267 911 238 882
Kvaemo3 208 1576 208 1838
ROS2(a) 243 732 230 691
ROS2(b) 427 2018 358 1904
TR(a) 268 850 243 1248
TR(b) 272 863 245 1237
TR(c) 272 879 239 1252
TR-BDF2(a) 197 1398 185 1228
TR-BDF2(b) 191 1120 177 1386
TR-BDF2(c) 379 2469 312 3019
TR-BDF2(d) 199 1132 186 1402
TRX2(a) 187 1255 183 1008
TRX2(b) 394 2552 303 3099

Each of the test programs was equipped to keep a tally of the most expensive steps in the 

solution process. They are LU decomposition (factorisation), forward/back substitution, matrix 

evaluation and derivative function evaluation, and execution times for a single application of 

each are estimated in Appendix E. Table 4.8 lists these measures of computational effort and 

gives their frequencies for a single test run. The totals for each are finally multiplied by their 

respective execution times and accumulated to give the expected computational effort for the 

typical 7500 m2 building described in Appendix D.

Ten variants of the test problem described in Appendix C were used for the assessment. 

Descriptions of slow thermal response (heavyweight) buildings and fast response (lightweight) 

buildings due to CIBSE [120] were used to produce extreme versions of the test problem and 

the rest lie between these limiting cases. The stiffness of the lightweight building was 

exceptional so minor changes were made to its specification with modelling consequences 

which may be considered acceptable (Section 3.4.3). This reduced its stiffness ratio to the 

same order of magnitude as the rest. Results for the original fast response building 

specification were not used in the assessment process but are reported nonetheless. The 

different versions of the test problem include building elements of various materials and 

thicknesses. The pre-conditioning period changes and so different thermal driving forces
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(weather data) are applied. Internal heat gains were varied, as were the set point and 

proportional band of the terminal unit. On/off times for both the casual heat gain and the 

terminal unit were moved back and forward. Discontinuities in the heat gains were expected to 

lead to the greatest thermal disturbance so the tests were carried out with these on/off times 

occurring just before some of the assessment points. The time gap (prior to assessment) was set

to the shortest time scale (rmjn = l/|/t |max) for the particular variant of the problem. Limited 

experimentation indicated that numerical error peaked after a delay of this order. Values for 

r min were found to be in the range one half to two minutes. In all cases tests were done with 

the free running cell, and then repeated with the terminal unit active and sized for 120% of the 

peak thermal load. Further details of the variants used are to be found in a file named Building 

types, mcd on the attached CD ROM.

4.3.3.2 Comparison o f methods

The performance of a numerical method should be judged not just by the accuracy achieved 

but also by the computational effort expended because one can usually be traded for the other.

The measure of computational efficiency used here is CE = \j[ s \E T  ], where S is the

maximum absolute temperature difference between the reference solution and the test solution 

(Table 4.7) and E T  is the execution time for the test run. The results obtained for the test runs 

outlined in Section 4.3.3.1 are given in Table 4.9. In contrast with Table 4.3, the results 

achieved for the different problem variants (Table 4.9) did not generally deteriorate when the 

terminal unit was switched off because error is controlled in this case by interval adjustment. 

CE is not a smooth function because of the use of peak rather than average temperature 

deviations, but the number of tests undertaken allows a statistical comparison of the 

performances of the numerical methods. To this end the CE for the bench mark method, TR(a), 

was divided into the CEs of each of the other methods in turn. The geometric mean values of 

these ratios are presented in Table 4.10 for a short list of methods. Some poorly performing 

methods and variants were eliminated as testing progressed. Some others, such as TR and 

BEM, were retained for comparison, despite their relatively low efficiencies, because they are 

so widely used. CEs were calculated for the full set of ten test runs in the case of the nine 

short-listed methods only. The factors in Table 4.10 represent geometric mean improvements 

in computational efficiency over TR(a) for each of the short-listed numerical methods. Alex2 

[96] is seen to be more efficient than TR(a) by a factor of 4.27.
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Table 4.9 Computational efficiency for the test problem________

Terminal unit CE for the following numerical methods

Test
run

Weight
variant1

Average
Stiffness

ratio

Casual
Load

(W/m2)
Set

point
(°C)

Propor
-tional
Band
(K)

Status 3
3
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H
PiH
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-B
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F2
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griss
i8N
(Nsspi,H

TR
X

2(
a) S'

P
1 Heavy 6,130 50 20 2.0 On 20.57 7.87 13.71 9.56 15.77 3.81 3.45 15.50 13.21
2 Heavy 6,990 50 20 2.0 Off 29.42 5.68 16.72 16.62 15.20 3.70 3.31 16.48 23.60
3 Medium 10,480 50 20 2.0 On 25.69 13.80 5.61 16.37 16.70 4.86 17.00 5.26 10.52 8.39 8.28 8.23 15.60 16.06 15.74 15.45 23.12 21.93
4 Medium 12,440 50 20 2.0 Off 36.35 18.91 9.01 30.77 33.21 31.78 10.19 10.82 11.51 31.07 29.77 27.91 29.43 43.47 37.38
5 Light[2] 3,190 50 20 2.0 On 23.54 5.14 8.61 5.72 16.26 2.58 2.91 10.48 10.99
6 Light[2] 3,555 50 20 2.0 Off 14.02 4.53 7.75 8.20 18.78 5.87 5.14 11.67 12.87
7 Medium[2] 9,120 70 21 3.0 On 42.24 10.31 9.04 20.41 20.75 6.73 6.93 14.56 27.96
8 Medium[2] 10,960 70 21 3.0 Off 39.67 18.95 7.47 21.66 3.60 9.19 8.89 17.60 31.21
9 Medium[3] 7,640 60 22 2.5 On 14.90 7.99 4.64 11.79 15.28 7.70 14.07 6.35 8.41 5.39 6.06 5.91 11.45 11.99 12.77 11.89 17.52 16.46

10 Medium[3] 9,600 60 22 2.5 Off 25.31 18.03 9.72 20.50 18.25 9.61 8.26 17.87 25.51
11 Light2 2.21 xlO7 50 20 2.0 On 16.43 10.47 11.68 12.96 7.11 3.22 9.21 3.87 1.75 2.47 2.36 3.13 12.66 5.45 6.45 5.41 10.24 16.32

12 Light2 2.24 xlO7 50 20 2.0 Off 13.55 12.26 10.06 18.68 10.42 6.75 7.87 16.35 20.11

'Details to be found in the file Building types.mcd on the attached CD ROM 
*Not used in the quantitative assessment
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Table 4.10 Geometric mean improvement in computational efficiency over TR(a)
Improvement factors for the following numerical methods

Alex2 BDF2 BEM Carroll(b) Kvaemo3 TR(a) TR(c) TR-BDF2(a) TRX2(a)
4.27 1.63 1.45 2.51 2.58 1.00 0.98 2.59 3.52

To gauge the significance of any one of these improvement factors in terms of its probably of 

occurance, the CE data (Table 4.9) for the two numerical methods are paired and the 

differences for the ten tests are statistically analysed in what is termed a ‘paired difference 

experiment’ [143]. The 95% confidence interval for //D, the mean difference in CE, is 

expressed in terms of 3cD, i D and nD, the sample mean, standard deviation and size 

respectively. It is

X D ±  ¿0.05/2 - J ^ =  (4 ‘6 8 )

where t0 05/2 = 2.262 is extracted from a table of Student’s t-distribution with nD — 1 degrees

of freedom. Substituting the calculated values of the sample statistics for Alex2 and TR(a) for 

example, we obtain

o oc
20.63 ± 2.262 = 20.63 ± 6.33 = (14.30,26.96)

VlO

So the true mean difference between the two CEs lies between 14.30 and 26.96, with 95% 

confidence. Since the interval falls above zero, it can be inferred that /iA|ex2 -  > 0; that

is, the mean CE for Alex2 exceeds the mean CE for TR(a). If t0 m ,2 = 4.781, the largest

tabulated value, is used in Expression (4.68) the interval becomes (7.25,34.0l), still well 

above zero; so we can assert with greater than 99.9% confidence that Alex2 is more efficient 

than TR(a).

Figures 4.9 and 4.10 allow a visual comparison to be made between the performance of TR(a) 

and that of Alex2 over part of the interval for test run three (Table 4.9). The time step (k) is 

variable for both reference and test solutions; output for all solutions is shown at one hour 

intervals.
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4.4 Summary and Discussion

Following an introduction to stiffness in Section 4.1 and a discussion of its influence on the 

choice of solution method, the first of two related investigations is undertaken in Section 4.2.

A direct solution method for difference equations which is used within ESP [1], the European 

reference model, and more widely in conduction modelling [123] is interpreted as the first 

iteration of an underlying iterative method. Rapid convergence of the iterative method is 

demonstrated. Then this method (iterated just once) is used with a simpler initial estimate to 

generate a novel direct solver (PM). PM was found to produce 27% less error than the 

commonly used method and being single-step it is also easier to implement.

The trapezoidal rule (TR) is currently used in a number of building energy simulation 

packages, including ESP, to solve ordinary differential equations. Because it is well-known 

that TR is just marginally stable for stiff systems, a range of more stable methods is introduced 

and assessed in Section 4.3. A short-list of the better performing methods together with their 

relative efficiencies is given in Table 4.10.

The performance of Kvaemo3 was disappointing considering its high order of accuracy and its 

resistance to order reduction. It was often the slowest to converge and it was the least tolerant 

of an extrapolated initial estimate. Even with a more suitable initial estimate, it sometimes 

produced temperature oscillations well in excess of the chosen tolerance. It should be noted 

that the use of Jay’s device was not mentioned in Kvaemo [101]. Without it, more conservative 

time steps would be chosen, which would make the program more robust but less efficient.

With BDF2 it was found necessary to relax the tolerance used to terminate Newton iteration 

due to frequent convergence failures and this may have reduced its accuracy. Nevertheless it 

still generated temperature spikes at some step changes that exceeded the tolerance. This poor 

behaviour at discontinuities has been noted before [142] and is essentially due to the multi-step 

nature of BDF2. It extrapolates information from the last two solution points before the 

discontinuity in forming an estimate the next, but this next point in fact departs very much 

from the trend. All other methods examined in this work are single-step.

TR’s tendency to oscillate was generally held in check by the error control routine but at the 

cost of smaller time steps. TR(b) and TR(c) each produced IK temperature spikes during 

testing. TR(a), which includes a ‘conventional’ f evaluation, performed as well as the other
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two versions (perhaps unexpectedly) probably because none of the test problems was 

exceedingly stiff. TRX2(a) performed well, without any overt indications of its marginal A- 

stability. Its CE was greater than that of TR, presumably because of its smaller local error 

constant.

Alex2 proved the most effective numerical method for the detailed test problem. It is the 

optimal SDIRK formula of order two in two stages [96] but it admits no embedded third order 

companion formula [95] which might provide an asymptotically correct error estimate. Step- 

halving, used in Alexander [96] to test the method, is too expensive. The companion used here, 

a third order Hermite extrapolant, satisfies the second criterion (4.66) of Scraton [119] but 

clearly overestimates the error though not excessively so. The method offers an improvement 

of 327% over TR(a), the bench mark method for this study, and the statistical significance of 

this result is demonstrated. Also, Alex2 did not generate unrealistic temperature spikes or 

oscillations during testing. Of the remainder of the short-listed group, the only other methods 

to show evidence of spikes or oscillations were Carroll(b) and TR-BDF2(a) and they were 

within the tolerance of 0.1 K in both cases. None of the methods under-performed for the 

relatively stiff test runs 11 and 12 (Table 4.9).
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Chapter 5:

Conclusions and Recommendations for Further 

Work

5.1 Conclusions

In Europe and the United States over 50% of all energy use can be associated with buildings 

and a considerable portion of this is associated with internal environmental moderation. The 

cost of this energy together with the global warming effect of the carbon dioxide produced by 

its conversion make energy conscious design and operation of buildings imperative. Hence, a 

variety of building energy simulation tools are increasingly used to anticipate the thermal 

performance of buildings and size thermal plant. A dynamic thermal model of a building takes 

the form of a set of differential equations. The main goal of this work was to identify and/or 

develop more efficient numerical solution methods than those commonly used for the 

simulation of thermal energy flows in buildings.

To this end the building energy simulation problem has been characterised mathematically and 

a representative set of test problems formulated. These same characteristics were used to select 

a set of feasible numerical methods for testing. The kernel of the investigation falls into two 

parts; firstly, a commonly used direct solution method for difference equations was analysed 

and a related method developed and tested, and secondly, a collection of recently developed 

numerical methods for ordinary differential equations (ODE) was compared with those 

commonly use in this field. Testing, in both cases, was by means of numerical experiments. 

The tests used were realistically complex and selectively sensitive to numerical error. The 

chief measure of performance used was computational efficiency (CE) which is here defined to 

be the inverse of the product of numerical error and execution time. The latter was estimated 

rather than measured but this is not critical since processing time is dominated by matrix 

decomposition. Consequently, a correct tally on this operation alone ensures an accurate 

estimate of CE.

80



The maximum error for the direct solution method proposed in Section 4.2 has been shown to 

be 73% of that for a commonly used difference equation solver, by means of the test problem 

described in Appendix B. Since the test programs for each incorporated just one matrix 

inversion per time step and so incurred similar computational expense, the CE for the proposed 

method is greater by a factor l/(0.731) or 37%. In the second part of the investigation, a set of 

numerical methods for ODEs developed in recent times has been compared with the more 

established methods frequently used for building energy simulation. The CE for each of the 

modem methods was found to be greater than that of the more frequently used ones -  the most 

efficient being Alex2, the second-order method of Alexander [96]. Using the test problem 

described in Appendix C, Alex2 has been shown to be 4.27 times as efficient as the trapezoidal 

rule, the chosen bench mark method. Multiple tests were carried out and used to confirm the 

statistical significance of the result. In addition to being efficient, Alex2 proved to be very 

robust; it did not generate any spurious temperature spikes or oscillations during testing.

A comprehensive and discriminating test methodology has been adapted to the assessment of 

numerical methods for building energy simulation and is available to assess the suitability of 

further groups of numerical methods for this task. While it is unwise to prejudge any future 

candidate methods, some conclusions regarding suitable characteristics of implicit numerical 

methods (and associated program components) for this problem can be drawn from the work 

carried out to date:

(a) They are L-stable, or at least A-stable.

(b) They include a derivative function evaluation at the end of the proposed time step.

(c) They are single-step methods.

(d) They have small principal local error terms.

(e) They are of low order -  probably second-order.

(f) They are used with an interval adjustment routine.

(g) They are used with an error estimator with appropriate behaviour for large time steps.

(h) The associated difference equation solver does not limit the time step.

(i) A simple initial estimate rather than an extrapolated one is used to seed the iterative 

difference equation solver.

It has been stated in Waters and Wright [125] and elsewhere that fmite-difference schemes 

such as the theta method are used in many building thermal models because they are relatively 

simple and no single scheme is known to be superior to all others. Many other studies reviewed 

in Chapter 2 have also concluded that traditional methods such as BEM, TR (both emerging
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from the theta method) and BDF are the most appropriate for building energy simulation. In 

this work a number of implicit numerical methods that are appropriate to the character of the 

building energy problem have been identified and their efficiencies in this application 

quantified. The numerical method being promoted, Alex2, offers superior stability and second- 

order accuracy. Its computational efficiency was found to be substantially greater than that of 

commonly used methods for a representative test problem. It is a single-step method and 

therefore relatively uncomplicated to program. It is recommended for inclusion in new and 

existing building energy simulation software. Increased computational efficiency, coming from 

hardware or software improvements, can always be applied to advantage. It can be used to 

achieve: (i) faster simulations, (ii) greater accuracy, (iii) removal of modelling simplifications, 

(iv) finer sub-division of the building, or (v) enlargement of die problem domain.

5.2 Recommendations for further work

Regarding possible directions for future research, a better-matched error estimator for Alex2 

would be of benefit in this application and probably many others in science and engineering. 

While the companion proposed here performed well, even at relatively high stiffness ratios, it 

does not satisfy all of the criteria considered ideal for the solution of stiff systems. Secondly, 

an investigation of the computational efficiency of explicit numerical methods in this field 

would be worth undertaking. They are probably not appropriate for the stiffer problems 

discussed in this work but they might prove competitive for the moderately stiff variants used 

for testing here.
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Appendix A: Alternative iterative method

Another iterative solution method for Equation 4.18 can be constructed if the function f  can 

be decomposed in the following way:

f (a t )  = g(V, t ) t  + g(V, t ) (Al)

where |G | is large and ||i?g/<?T|| is small over the interval of interest, that is, the stiffness of 

f expresses itself in G rather than in g . In this case Equation 4.18 becomes

T ;+1 = T J + ^ ( g j T j + gJ + G7+1T 7+1 + g7+1) (A2)

Here superscripts have been placed on the functions to indicate the time step level. Equation 

A2 can be rearranged to give

I - - G +1 
2

rp 7 + 1 _ I  + ̂ G 'V + Ì - f e '+ g '* 1)
2 J  2

(A3)

, - i
J 7 + 1  - I - - G +1

2
I  + —G J (A4)

Equation A4 is another possible fixed point iteration. If its right hand side is denoted by R  

and if fJ,t (i = 1,2,.. ,,n) are the eigenvalues of , the Jacobian matrix of R , the

condition for convergence of Equation A4 is

(A5)

and small values for K  result in rapid convergence. A typical column of the Jacobian would be
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(A6)

The identity

—̂ --------------- ¿ = -M  --------M
âT âT

(A7)

has been used here. The derivative of an array M (matrix or vector) is defined as an array 

whose elements are the derivatives of the elements of M .

Substituting from Equation A3 for the final expression in braces, Equation A6 simplifies to

d T /+1 { 2

\- i f dGM 
yd T /+l

Ty+1 +
7+ 1 A

â T /+l j
(A8)

The properties of the alternative iterative method can be deduced from this last equation. Most 

importantly, G appears only in the inverted expression and, because |G | is assumed to be

large (and found to be so for the systems examined), ¿t’R./d T ;+1 will have small elements and

so ||^ R /^ T >+1|| will be small. Stiffness, therefore, increases the rate of convergence since

K  = Maxj \ju: | < I ^ R /^ T 7'11. It can also be inferred from Equation A8 that K  increases only

very slowly with k  when the kG j+l/ 2 term dominates the inverted expression. In other words 

large time increments do not jeopardize convergence. The convergence rate of Equation A4 is, 

of course, also dependent on the magnitudes of T J+1, d g j+1 /  d T /+l and d G j+] j  d T /+l as 

measured by their norms.

Finally, it is worth noting that the three iterative methods:

(i) simple fixed point iteration [Equation 4.18],
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(ii) the alternative iterative method [Equation A4] and

(iii)the Newton-Raphson process [Equation 4.21] 

become one when |) j | | , and consequently l o i , is small.
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Appendix B: Simple test problem

The purpose of the test cell specification set out below is to facilitate the construction of a set 

of test equations with the mathematical characteristics of the building energy problem. The 

equations are generated by considering the heat flows at a cubic space enclosed by five 

identical plane slabs and one vertical glass sheet (Figure Bl).

Figure B l Test cell for simple test problem

Each three metre square slab is represented by three nodes and exchanges heat by convection 

with the enclosed air mass, as does the glass sheet which is represented by one node. The 

convection coefficient used is simple but appropriately nonlinear. Internal long-wave radiation 

is exchanged between opposite faces only -  sufficient to introduce fourth power radiation 

terms to the problem. For simplicity, the emissivity is taken to be unity. External surfaces are
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exposed to a sinusoidally varying air temperature with a period of 24 hours, and no other

temperature dominating the other thermal loads through the large glass sheet. Short-wave 

radiation, entering through the glass, acts on just one internal surface -  the back wall. This 

solar term is represented by the positive part of a 24 hour sinusoid with a 15% ripple 

superimposed to represent the effects of cloud. The period of the sinusoidal ‘ripple’ is 3.2 days

shading coefficient and 0.3 as glass fraction; the latter to reduce, again, the influence of the

is switched on in the morning and off again in the afternoon. A proportionally controlled 

convective air-conditioning terminal unit can be activated for the whole of the simulated 

period. Its capacity is 20% in excess of the cooling load and the proportional band of the 

controller is 2K.

The set of 17 differential equations, one per node, representing these interactions are set out 

below. Equation BO for time (t = T0 ) can be included to make the set autonomous.

thermal influence. The diurnal range of the sine wave is reduced to prevent outside air

approximately; less than the four day test period. The solar function includes the factors 0.5 for

large window included in this very simple structure. A casual heat gain to the internal air mass

(BO)
dt

(Bl)

(B2)

(B3)

; = 6 to l0  (B4)

(B6)
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Pp.c. ^  = '2| t  K (t> -  r„)+ K(T„ - T j + + ?„ I (B7)

where:

/? = 1 4\T -  T  1°33 h = *A,is A - ^ K  surface ^ 1 7 1 " o s  q

ĉasual = 50 W/m2 [Casual gain; eight hour square wave]

?soi = 0.3x 0.5{l + 0.15 sm(iySOI1i)}{500 cos (o)so]2t + Sso])}
2n In  12

£ysoU “  2.883 x 602 ^  24 x 602 sd ~ 24 X *
[Solar ingress (W/m2); peaks at 12.00pm]

T  —T
qbi = — —----- — x qtu (max) [Terminal unit output;

pb/2
maximum = cooling load (W/m2) plus 20%]

r os = 2 0  + 2 cos(oJost + Sos) [Outside air temperature (°C); peaks at 3.00pm]
2 n  15

&>ns = --------- t- oo, = ------ x 2tt
24 x 60 24

This test example is small enough to compute quickly and yet detailed enough to capture the 

essential features of the application. It is a demanding problem which includes step changes 

and discontinuous derivatives in the thermal driving terms. It consists of 17 differential 

equations which are, in general, non-linear, and stiffness ratios ranging from 0 (l0 )  to i)(l04 ) 

are generated during the testing process by varying the slab thickness and material and other 

details of the problem.
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Appendix C: Detailed test problem

5000

1 —  - l l l l I _  ----------------- n
T.......

Nodes 3 ,14,„JB,5 : Nodes 6,22.^26, 7

Nodes 2, 8,^13 LI

Node 1 Nodes 4,19,.,,, 21 oo Node 27 (air)
CO

Nodes 5 . 3

C  - L Nodes 7.20,. J22, 6

i
r

----------------------------------------------------------- ----------- ii

ELEVATION PLAN

Figure Cl Test room for detailed test problem

The hypothetical structure depicted in Figure Cl and specified below is used to characterise 

the building energy problem mathematically and to test the performance of various numerical 

methods in this application.

C.l Construction details and discretization

A typical office on an intermediate floor of a large office building is used for the work. It has 

one external wall facing due south and, other than the single glazed window, all enclosing 

masonary elements are made up of three homogenous layers. The dimensional data and 

thermophysical properties of these layers, together with other details which vary between 

versions of the test, are detailed in the file Building types.mcd included on the attached CD 

ROM. Glass is represented by a single node because of its low Biot number and the small 

enclosed air mass is also characterised by just one node point. All other homogenous layers are 

represented by three nodes, one at the centre associated with half the mass and one at each 

surface representing a quarter of the mass in the case of a free surface or a quarter of each of 

two adjacent masses in the case of an interface. This is typical of building energy simulation 

software, as is the one dimensional representational of heat flow implied by it.
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The total number of nodes required to represent the structure is apparently 44 but this can be 

reduced to 27 if the room is considered to be surrounded by identical rooms experiencing 

similar casual loads. In this case each floor/ceiling would clearly be irradiated identically (both 

spacially and temporally) by the sun and so the temperature distribution through each would be 

the same. For the same reason the temperature distribution through each side wall would be 

identical. If it is assumed that the internal design temperature is the same for all rooms and that 

solar flux never reaches the north wall, the temperature distribution through that wall would be 

symmetric about its centre-plane. Internal temperatures can, in fact, be expected to vary for the 

free running building because rooms facing north will not be directly irradiated but the 

assumption of uniformity is maintained to bring the computing burden within the constraints of 

the project. This or other minor modelling discrepancies should not invalidate the results 

provided all numerical methods are applied to the same problems and these problems are of an 

appropriate mathematical character. Figure Cl includes 27 distinct nodes numbered from 

inside the space to outside in all cases.

C.2 Thermal driving forces

The weather data used is taken from a test reference year (TRY) for Kew in England [144]. A 

TRY is composed of hourly weather data for 12 typical months, forming a year. It is used in 

simulating the performance of buildings and HVAC systems so that annual energy 

consumption, indoor comfort conditions and other quantities of interest can be estimated. Two 

months data were required for the present project because some of the test runs were 45 days in 

duration. May and June were used as these were the only consecutive months in the TRY that 

were taken from the same year (1963). Unrealistic discontinuities were thus avoided in 

progressing from one month to the next. The data is contained in the file try03-MJ.txt on the 

CD ROM. Data columns 0, 1,2, 6, 8, 9 and 10 were used in this work and they contain dry 

bulb temperature (0.1 °C), global radiation (J/cm2), diffuse sky radiation (J/cm2), wind speed 

(0.1 m/s), month, day and hour respectively. Where intermediate values are required, the 

hourly meteorological data are interpolated using cubic splines.

The impact of short wave radiation on the test room requires knowledge of solar position and 

intensity. Solar altitude and azimuth angles are known functions of hour and month. Direct 

radiation from the TRY is assigned a direction using these and its influence on any building 

surface quantified. An anisotropic diffuse sky model [145] is used to distribute the given
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diffuse radiation data because it is known to be more intense around the solar disc and at the 

horizon. Direct and diffuse short wave radiation, together with a ground reflected fraction (0.2) 

of the global radiation, are then summed for each surface of the test room. Solar transmissivity 

and absorptivity of glass are calculated as functions of the angle of incidence; in this context, 

diffuse radiation is considered to have an incidence angle of 51°, representing the average 

approach angle for anisotropic sky conditions [1, 13]. Self-shading by the building is 

considered. Solar radiation on internal surfaces is modelled as far as the first reflection.

Internal long wave radiation calculations take into account multiple diffuse reflections directly 

between each pair of surfaces and reflections between the pair involving any third surface [1]. 

View factors are calculated using an area weighting method since the space approximates a 

cube. Net external long wave radiation exchange is estimated using a mean black body 

equivalent temperature of the surroundings (sky, ground and adjacent buildings) which 

requires calculation of the mean sky temperature as a function of time. The expression of 

Berdahl and Martin [146] is used here and it reduces to the clear sky formula due to Swinbank 

[147] when the cloud cover factor is zero. Ground temperature and that of adjacent buildings 

are estimated as in Clarke [1].

The formulae of Alamdari and Hammond [148] are used to calculate the natural convection 

coefficients for internal surfaces. To calculate the forced convection coefficient at an external 

surface the local wind direction and speed is first estimated using the algorithm in ESP-r and 

described in [13]. This is substituted into Allen's [149] expression for the surface coefficient.

Infiltration due to wind pressure and air density difference, acting on the perimeter crack 

around the window, is included as a set of algebraic equations which are solved at every time 

step. A casual heat gain to the internal air mass is switched on in the morning and off again in 

the afternoon. A proportionally controlled convective air-conditioning terminal unit can be 

activated for any desired period. Its capacity is 20% in excess of the cooling load and the 

proportional band of the controller is variable. The 27 differential equations representing the 

test room (plus one for time to make the set autonomous) are too lengthy to reproduce here and 

can be found in Room acc.mcd on the attached CD ROM.
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Appendix D: System matrix for a medium-sized building

A typical, medium-sized office building of 7500 m2 is described in this appendix and it is 

shown that it can be modelled by 3800 equations. Buildings of roughly this size are likely to 

form the majority of those requiring simulation. Since large buildings are a lot less numerous 

and small buildings compute very quickly anyway, a mid-range building can be justified for 

this study.

Window: nodes 0, 1*. Ext. wall: nodes 2 - 9 .  _L

West wall, north: 
nodes 18 — 21. Floor, east: nodes 3 4 -3 7 . 

Floor, west: nodes 38 -4 1 .

East wall, north: 
nodes 10 -13 .

West wall, south: 
nodes 22 -2 5 . Ceiling: nodes 42 -  45.

East wall, south: 
nodes 14-17.

South wall, South wall,
west: east:
Nodes 26 -  29 Nodes 30 -  33

♦Nodes for each building element are numbered from inside notional space

Figure D1 Notional space in a typical medium-sized building

The building is assumed to have six floors each of 1250 m2. Each is considered to consist of 

about one-third small offices (36 x 12 m2), one-third medium-sized spaces (6 x 70 m2) such as 

lobbies or large offices and one-third large spaces (1 x 400 m2), for example, an open-plan 

office or a lecture room. It is assumed that the small offices divide into six groups and within 

each the offices are identical. The number of different spaces to be considered on each floor is 

then 13 and the aspect ratio of the floors is taken to be between 2:1 and 3:1. The total number 

of spaces in the building i s 6 x l3  = 78.
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external wall (8 nodes)

X X X X X window (2 nodes)XX X X X X X X
xc XX x x x x x x x x x x x

XXX XXX XXX XXX XXX XXXxcX X  XX x x x x x x x x x
XXX r  east wall, north (4 nodes)

XXXxsX X  x x x x x x x x x x xXXX r east wall, south (4 nodes)
XXXxsX X  X X XX x x x x x x xXXX r  west wall, north (4 nodes)

XXXxsX X  X X  X X X X X X X X XXXX r  west wall, north (4 nodes)
XXXxs

X X  X X X X XX X X X X X L ^
XXX r  south wall, west (4 nodes)

XXX 1xs
X X  X X X X x x x x x x x ,  j ^

XXX I- south wall, east (4 nodes)
XXXxs

X X  x x x x x x x x  X X X

]-

}
}
}

xsX X  x x x x x x  x x x x x

XXX r floor, east (4 nodes)
XXX 1

xsX X  x x x x x x x x x x x x

XXX r floor, west (4 nodes)
XXX 1

xs
X X  X X X X X X X X X  XX X

XXX r  ceiling (4nodes)
XXX

X X  x x x x x x
XX r  rooni contepis (2 nodes)XX -J terminal ui)U (1 node),

X X X X XX enclosed air volume (1 node)

Figure D2 System matrix (50 x 50) for the notional space of Figure D1

A notional space in the office building is represented in Figure D 1. It is bounded by six planes, 

one of which will likely be an external wall in a building of this size and shape. The external 

wall and window cannot exchange long wave radiation and it is assumed that four of the 

remaining five building elements (excepting the ceiling, say) are also divided into coplanar 

pairs each with zero relative view factors. This is clearly necessary in the case of the south wall 

and is done to improve modelling accuracy (say) in the case of the other surfaces, A typical 

building element is represented by approximately eight nodes and half of these are associated 

with the room in question for all except the external wall which is represented in its entirety 

within this room model.

The non-zero elements of the system matrix are shown in Figure D2 and these signify thermal 

coupling between the nodes of the notional space. In addition, some entries are represented 

differently indicating that these nodes also interact with nodes outside the space in question. 

The two elements marked ‘e’ are coupled to the external surface node of a space on the south 

face of the building immediately behind the notional space. This node, of all those within the
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system, best approximates the thermal conditions on the south face of the building opposite 

with which the elements marked ‘e’ actually exchange heat. The nine elements marked ‘s’ are 

coupled to adjacent spaces through the centres of common walls.

Figure D3 Part of the system matrix for a typical medium-sized building

Figure D3 represents part of the system matrix for the 7500 m2 building. Nodes are assumed to 

be numbered from west to east and then from north to south on each floor, and from top to 

bottom of the building. As can be seen from the indicated separations (in terms of matrix entry
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positions) between sub-matrices representing rooms, the main diagonal has been compressed 

so that all spaces interacting with the notional space can be included. The only non-zero matrix 

elements shown, outside of the diagonal blocks, are those for heat flow to the notional space. 

The structure of the building matrix is, broadly speaking, block diagonal with a number of 

parallel, diagonal lines. In practice, the lines are not perfectly straight but include steps and 

gaps because the building is not perfectly regular. The total number of nodes in the building is 

78 x 50 = 3900.
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Appendix E: Computational effort for building energy problem

A typical, medium-sized building of 7500 m2 floor area is described in Appendix D and it is 

shown that it can be modelled by 3800 equations. The significant elements of computational 

work required to solve the mathematical model representing this building are examined here 

and execution times for a single application of each on a workstation are estimated. 

Performance data for a Hewlett-Packard RX2600 workstation with an Intel Itanium 2 processor 

operating at 1 GHz are used. During a typical test run the frequency of each of the significant 

computational tasks is recorded. They are finally multiplied by their respective execution times 

and accumulated to give the expected computational effort for the 7500 m2 building.

The tasks chosen for examination are those normally counted in numerical experiments. They 

are LU decomposition (factorisation), forward/back substitution, matrix evaluation and 

derivative function evaluation. Each requires at least 0(n)  operations, where n is the number 

of equations. In the past, it was felt sufficient to keep a tally of floating point functions and 

operations, and this together with a unit time for each was used to estimate computational 

effort. In recent times, however, processor performance has been increasing much more rapidly 

than that of random access memory (RAM); for example, for the Itanium 2, a basic 

arithmetical operation takes 5 clock cycles or less and a reference to RAM about 200 [150, 

151]. To address this bottleneck, small, fast cache memories have been interposed between the 

processor and main memory (RAM). Their purpose is to retain data and instructions that are 

frequently used or that may be used in the near future. The Itanium 2 has three levels of cache, 

the smallest and fastest being closest to the processor. Memory performance, therefore, is 

beginning to dominate computational effort, making it increasingly difficult to estimate. The 

approach taken in this project was to use published timings where available.

E .l Factorisation and solve

The most time consuming task is expected to be LU factorisation and with this will be 

considered the subsequent two triangular solves (forward and back substitution). Solution 

methods for linear systems can be classified as direct or iterative. Iterative methods usually 

require less work if convergence is rapid and they are best applied to large, regular, three- 

dimensional problems. Building energy simulation throws up matrices that are nonsymmetric,
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ill-conditioned and not always diagonally dominant. For these, iterative methods tend to be 

significantly less reliable [102], Modified Newton iteration, used here, leads to the solution of 

systems with multiple right hand sides and this again points to the use of direct methods. 

Consequently, published timings for MA48, a state of the art direct solver for large, sparse, 

unsymmetric, linear systems, were used [152], Eight test matrices were selected from Table 1 

of Duff and Reid [152] for their similarity to the building matrix of Appendix D in that they 

were real, sparse, unsymmetric and dense around the diagonal. Their nnz/n ratios (i.e. number 

of non-zero elements divided by matrix order) were also close to that of the building matrix 

which, from Appendix D, is 78 x (270 + 11)/ (78 x 50) = 5.62. The chosen matrices were cases

2, 6, 8, 9, 11, 13, 15 and 17. Timings from Table 2 of Duff and Reid [152] for ‘first factorise’ 

on one processor of a Cray YMP-8I/8128 were fitted with a function of the form an2 + b which 

was then extrapolated to n = 3900 (the order of the building matrix of Appendix D) to give 

2.66 seconds. This was repeated for ‘solve’ timings (taken from the same table and including 

both forward and back solves) using the fitting function anm + b to give 0.0198 seconds for n 

= 3900. The fitting functions used reflect the expected scaling for sparse, direct methods 

applied to a regular, three-dimensional problem. The building energy problem presents a 

somewhat less regular matrix but the fitting functions are, nevertheless, considered the best 

available for the purpose. Timings from Table 4 of Duff and Reid [152] for an IBM RS6000, 

model 550 were processed in a similar way to give 5.48 s and 0.0676 s for ‘factorise’ and 

‘solve’ respectively. Since Duff and Reid (1996) did not present results for a HP RX2600 

Itanium 2, the extrapolated execution times above were scaled to give the expected times for 

the HP workstation using performance data collated by Dongarra [153]. The figures quoted 

there are processing rates for a wide range of computer systems for the solution of a linear 

system of order 1000. They are close to the peak performance for the processor in each case, as 

are the results for MA48. They are: HP RX2600, 3528 Mflops/s; Cray YMP, 313 Mflops/s and 

IBM RS6000, 70 Mflops/s. The Cray times were scaled by the factor 313/3528 and the IBM 

times by 70/3528 before the results were averaged (in pairs) to give the final estimated timings 

for the Hewlett-Packard RX2600 workstation as ‘factorise’, 0.173 s and ‘solve’, 1.55x10 '3 s.

E.2 Matrix and function evaluation

The related tasks of evaluating the building matrix (the jacobian J for the most part) and the 

derivative function f  have little regularity and so the performance data of Dongarra [153] are 

not applicable. The task on which these data are based involves a high degree of data re-use.
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Typically, the matrix is decomposed into b x b blocks, where b is determined by the cache size, 

and o (è 3) operations are performed on each block before the next is loaded. This recent 

optimisation is in response to the ‘memory bottleneck’. Neither can the performance data of 

McCalpin [154] be used. They are measures of sustainable memory bandwidth for many 

computer systems and are specifically intended to eliminate the possibility of data re-use. They 

are found by presenting regularly arrayed data (long vectors) to the machine for simple 

processing, such as copying or adding. The evaluations of f  and J offer little scope for data re­

use or the ‘streaming’ of data to/from memory. Instead, each of the subfunctions [e.g. It( ), 

incid( ), hnc( )] listed in Room acc.mcd on the attached CD ROM, that make up the components 

of f  and J for the detailed test problem of Appendix C, was further analysed into its basic 

mathematical functions and operations [e.g. tan, exp, division, fma (fused multiply- 

accumulate)]. Timings for these fundamental functions are available [151] and the frequency 

of the subfunction calls is easily established. For example, incid( ), the solar incidence angle, is 

evaluated once per façade per time step and hnc( ), the convection heat transfer coefficient, is 

evaluated once per internal surface per time step.

Memory access times (hit times) are also readily available for the Itanium 2 processor [150]. It 

has three levels of cache, all mounted on the chip, the nearest to the arithmetic and logic unit 

(ALU) being L I. Hit times for the various memory levels are as follows:

Table E l Memory access times for the Itanium 2
Memory
level

Hit times (clock cycles or 10' s)
Floating point data Instructions

LI * 1
L2 6 13
L3 15 15
RAM 225 225
* Floating point data bypasses LI

The difficulty in using these figures is that it is not known where the data and/or instructions 

for the next function or operation reside. The broad strategy used by programmers for cache 

management is to ensure that recently addressed information together with adjacent 

information (the next block of instructions or array elements) is available in the caches. 

Generally, the more locality (of either kind), the higher the hit rate. The concept of mean 

access time (MAT) is used here to allow an estimate of memory use time to be added to the 

execution times for basic mathematical functions and operations [155].
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MAT = hit time + miss rate x miss penalty (El)

where the ‘miss penalty’ is the time to look up the data in the next (slower) level of memory 

plus the time to transfer it to the faster level (loading time).

Miss rates for a wide range of advanced engineering programs have been measured by Wallin 

et al 1156] and simulated by Zhong et al [157] with consistent results which were averaged for 

use in this project. The averages are (a) 3.9% between LI and L2, (b) 2.3% between L2 and L3 

and (c) 2.3% between L3 and RAM. Results (b) and (c) are the same because the cache line 

size is 128 Bytes for both L2 and L3 whereas for LI it is 64 B. Loading time is just load size 

divided by loading rate and the latter is 32 B per clock cycle for all memory levels [117]. The 

load size is 8 B for a floating-point number and approximately 77 B for an instruction. The 

second figure is justified as follows. The largest of the basic mathematical functions used here 

are sin and cos, both of which make use of a common 768 B table [158]. The other functions 

requiring the loading of a table are rarely called from f  or J. Division requires about ten 

program lines at perhaps 5 B per line. Most other basic functions require much less memory 

space or are rarely used here. Addition, subtraction and multiplication are hardware operations. 

By inspection, about 10% of the basic function calls are to sin, cos or divide, so approximately 

768/10 = 77 Bytes of instructions must be loaded for an average basic fimction call. This is an 

estimate but subsequent calculations will show that MAT is not a sensitive function of load 

size. Finally, the loading time for floating-point data is 8/32 = 0.25 cycles and for instructions 

is 77/32 = 2.4 cycles; each clock cycle having a duration of 10"9 seconds.

Equation El is next used repeatedly to find the MAT for data (D) and instructions (I) between 

successive pairs of memory levels.

Between L3 and RAM:

MATD = 15 + 0.023(225 + 0.25) = 20.2 cycles (E2)

MATi = 15 + 0.023(225 + 2.4) = 20.2 cycles (E3)

Between L2 and L3:

MATd - 6  + 0.023(20.2 + 0.25) = 6.5 cycles (E4)
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MAT! = 13 + 0.023(20.2 + 2.4) = 13.5 cycles (E5)

Between LI and L2;

MATj = 1 + 0.039(13.5 + 2.4) = 1.6 cycles (E6)

The mean access times for floating-point data and instructions are 6.5 cycles and 1.6 cycles 

respectively, and these together with timings for the basic mathematical functions [151] were 

used to estimate evaluation times for f  and J. Some subfunctions are called by both f  and J. 

Their cost is included in the estimate for f  but not that of J because f  is evaluated far more 

often than J and whenever J is evaluated f  is also evaluated in the same time step.

Table E2 Computational effort for the most demanding tasks
Computational task Execution time (s)

LU factorisation (decomposition) 1.73 x1er1
Triangular solves (Forward/back substitutions) 1.55 xlO-3
Matrix evaluation l . l l x lO -3
Derivative function evaluation 1.07 xlO “3

The final timings for the major computational tasks are presented in Table E2. LU 

decomposition (factorisation) of the system matrix is the dominant computational task, even 

when the frequencies of the various linear algebra operations are factored in (see Table 4.8).

I l l



Appendix F: Published work

Papers in Refereed Journals

Crowley, M.E. and Hashmi, M.S.J., 1998. Evaluation of implicit numerical methods for 
building energy simulation. Proceedings o f the Institution o f Mechanical Engineers, Part A, 
Journal o f Power and Energy, 212 (A5), 331-342.

Crowley, M.E. and Hashmi, M.S J., 2000. Improved direct solver for building energy 
simulation. Proceedings o f the Chartered Institution o f Building Services Engineers, Series A, 
Building Services Engineering Research and Technology, 21 (3), 169-175.

Refereed Conference papers

Crowley, M.E., Hashmi, M.S J., 1998. Analysis of quasi-linear solution method in 
Environmental Systems Performance and presentation of a new related method. In: 3rd 
International Congress on Heating and Air Conditioning o f Buildings: Energy and 
Environment, Maribor, Slovenia, May 1998. Slovenia: University of Maribor, 221-233.

Crowley, M.E., Hashmi, M.S.J., 1998. Evaluation of implicit numerical methods for building 
energy simulation. In: 2nd European Conference on Energy Performance and Indoor Climate 
in Buildings and 3rd International Conference on Indoor Air Quality, Ventilation and Energy 
Conservation in Buildings, Lyon, France, November 1998. Lyon: Ecole Nationale des Travaux 
Publics d e l’Etat, 831-836.

Crowley, M.E., Hashmi, M.S.J., 2000. Development of exponential-fitted numerical methods 
for building energy simulation. In: Dublin 2000, “20 20 Vision ”: Conference jointly 
sponsored by the Chartered Institution o f Building Services Engineers (CIBSE) and the 
American Society o f Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Royal 
College o f Surgeons, Dublin, September 2000. London, CIBSE.

Conference Papers

Crowley, M.E., 1999. Computer simulation in building services engineering and related 
disciplines. Paper delivered to The Chartered Institution o f Building Services Engineers 
(Republic o f Ireland Branch), IEI, Clyde Road, Dublin, February 1999.

Crowley, M.E., Hashmi, M.S J., 2001. Development of a direct solution method for building 
energy simulation. In: 8th Annual Symposium o f the Irish Society for Scientific and 
Engineering Computation, University College Dublin, May 2001. Dublin, ISSEC.

Crowley, M.E., Hashmi, M.S.J., 2002. Efficient, implicit solvers for building energy 
simulation. In: 9th Annual Symposium o f the Irish Society for Scientific and Engineering 
Computation, University College Galway, May 2002. Dublin, ISSEC.

Crowley, M.E., 2002. Development of an improved direct solver for building energy 
simulation. Annual Patrick Benson Memorial Lecture, D.I.T. Bolton St., Dublin, November 
2002.

112



Crowley, M.E., 2005 Numerical methods for building energy simulation. Energy and 
Buildings Seminar, Focas Institute, DTT, April 2005.

Articles in Professional Magazines

Crowley, M.E., Costelloe, B. and Demetriou, L., 2001. Dublin Institute of Technology. 
BEPAC Research Update, 3,47-48.

113



Appendix G: Attached CD ROM

The files and programs used to test numerical methods in this project are included in two 

formats on the attached CD ROM. Those within the folder Mathcad can be run and amended 

within Mathcad 2000 Professional and the copies in the folder Acrobat are ‘read only’ and 

were created using Acrobat 5.0. Subfolders within these folders contain the files associated 

with the investigations described in Sections 4.2 and 4.3. The following notational switches 

should be noted in moving from the dissertation text to the program files:

T - + y  f  —► D G —> M g —► c j -+ r S-* cs

G.l An Improved Direct Solution Method

Eigenvalues for the simple test problem (Appendix B) are computed in Cubeeig.mcd and then 

used to calculate the stiffness ratio, the pre-conditioning period and the terminal unit (FCU) 

output. Cube acc.mcd was used to generate accurate (converged) solutions to the variants of 

the test problem and these are included as files of the form zt_*.prn and zzt_*.prn. The 

programs TR+ *.mcd are used to test four direct (difference equation) solvers. They compute 

and evaluate test solutions quickly and so the results are not saved to disc. The properties of 

the construction materials used in the various tests are to be found in Materials.mcd in a form 

suitable for copying and pasting into the programs above. Finally, geometric means are 

calculated in the program GM.mcd.

G.2 Evaluation of Implicit Numerical Methods

Eigenvalues for the detailed test problem (Appendix C) are computed in Room eig.mcd and 

then used to calculate the stiffness ratio, the pre-conditioning period, the time ‘gap’ between 

discontinuities and the consequent peak disturbance and, finally, the terminal unit (FCU) 

output. Room acc.mcd was used to generate accurate (converged) solutions to the variants of 

the test problem and these are included as files of the form zt; *; *.prn and zzt; *; *.prn. The 

numerical methods for testing are in the subfolder Methods and they are copied and pasted into 

Run, save & test; METHOD, mcd to produce a result which is saved in the subfolder Results. 

The results are examined using Load & test; RUN.mcd. Since the test variant light[2] wt has
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fewer nodes than any of the others, a parallel set of programs with the italisized term in their 

titles was included to process this test. The program Load & compare; 2 RUNS; light wt & 

light[2] wt.mcd allows results for two versions of the lightweight building to be compared. The 

files Perez.prn and try03-MJ.txt are for use within the above programs. The properties of the 

construction materials and the values of other quantities which vary from test to test variants 

are to be found in Building types.mcd in a form suitable for copying and pasting into the 

programs above. Finally, geometric means are calculated in a program of that name.

Programs in the folder Diagonal dominance investigate three models for this property, (i) the 

detailed test problem (Room), (ii) the simple test problem (Cube) and (iii) an even simpler 

room model (Dtm) originally designed to examine control modes. The system matrices for 

various versions of the third model do not possess this property so diagonal dominance cannot 

be assumed.
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