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A food quality sensor is a device that responds to some property associated with food 

quality and transforms the response into a signal (1). This signal may provide direct 

information about the quality factor to be measured or may have a known relationship to 

the quality factor. On-line food quality sensors operate directly in the process stream, 

giving a real-time signal that relates to the quality factor in question. Therefore, an on

line sensor has the advantage of giving an immediate measurement allowing processes 

to be adjusted if  necessary (1). This thesis is based on 3 projects describing the design 

and development of on-line food quality sensor systems for specific food applications as 

outlined below:

Project 1: Development of an autonomous, wireless pH and temperature

sensing system for monitoring pig meat quality 

Project 2: Development of a web-based wireless temperature sensing system

for the fishing industry 

Project 3: Development of on-package sensors to detect shellfish spoilage

Projects 1 & 2 describe pH and temperature sensors which are coupled with wireless 

communications to create autonomous, wireless sensing devices capable of delivering 

data in real-time to a remote PC where the data can be analysed or automatically 

uploaded onto the internet via specifically designed web-enabled software. Project 3 

focuses on the development of pH sensitive polymer membranes that change colour in 

response to spoilage volatiles released by shellfish packed in sealed containers. Field 

trials performed with the aid of Irish food industries and collaborating Irish research 

institutes played a major role in obtaining the results for each of the mentioned projects. 

These include the Department of Food and Nutritional Sciences, University College 

Cork; Galtee Meats, Mitchelstown, Co. Cork; Bord Iascaigh Mhara (BIM) coastal staff 

and Errigal Iasc, Carrick, Co. Donegal. The following thesis gives a detailed account of 

the recent challenges faced by the Irish food sector including the detection of poor 

quality pig meat, traceability and temperature control within the fishing industry and 

methods to evaluate seafood spoilage. The research activities carried out to overcome 

such challenges are discussed including the potential impact on the Irish food industry.

Abstract

(,) Holm, F., Food Quality Sensors, in Flair-Flow 4 Report, FoodGroup Denmark, (2003)
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Abstract

A food quality sensor is a device that responds to some property associated with food 

quality and transforms the response into a signal (1). This signal may provide direct 

information about the quality factor to be measured or may have a known 

relationship to the quality factor. On-line food quality sensors operate directly in the 

process stream, giving a real-time signal that relates to the quality factor in question. 

Therefore, an on-line sensor has the advantage of giving an immediate measurement 

allowing processes to be adjusted if necessary (1). This thesis is based on 3 projects 

describing the design and development of on-line food quality sensor systems for 

specific food applications as outlined below:

Project 1: Development of an autonomous, wireless pH and temperature

sensing system for monitoring pig meat quality 

Project 2: Development of a web-based wireless temperature sensing system

for the fishing industry 

Project 3: Development of on-package sensors to detect shellfish spoilage

Projects 1 & 2 describe pH and temperature sensors which are coupled with wireless 

communications to create autonomous, wireless sensing devices capable of 

delivering data in real-time to a remote PC where the data can be analysed or 

automatically uploaded onto the internet via specifically designed web-enabled 

software. Project 3 focuses on the development of pH sensitive polymer membranes 

that change colour in response to spoilage volatiles released by shellfish packed in 

sealed containers. Field trials performed with the aid of Irish food industries and 

collaborating Irish research institutes played a major role in obtaining the results for 

each of the mentioned projects. These include the Department of Food and 

Nutritional Sciences, University College Cork; Galtee Meats, Mitchelstown, Co. 

Cork; Bord Iascaigh Mhara (BIM) coastal staff and Errigal Iasc, Carrick, Co. 

Donegal. The following thesis gives a detailed account of the recent challenges faced 

by the Irish food sector including the detection of poor quality pig meat, traceability 

and temperature control within the fishing industry and methods to evaluate seafood 

spoilage. The research activities carried out to overcome such challenges are 

discussed including the potential impact on the Irish food industry.

(1) Holm, F., Food Quality Sensors, in Flair-Flow 4 Report, FoodGroup Denmark, (2003)

XII



1 Theory and Background
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1.1 Project 1: Development o f an Autonomous, Wireless pH and 

Temperature Sensing System fo r M onitoring Pig Meat Quality

1.1.1 Introduction

This project focuses on the development of a unique wireless pH & temperature 

monitoring system to assess pig meat quality. PSE (pale, soft and exudative) pig meat 

continues to be a major problem in the pig meat industry today. The PSE condition in 

pork is related to a number of factors including genetics, pre-slaughter stress and 

insufficient chilling of pig carcasses, which cause a rapid rate of glycolysis post-mortem 

(<lhr). As a result the pH drops to low levels while the muscle temperature is still high. 

A wireless dual channel system that monitors pH & temperature simultaneously has 

been developed to provide pH and temperature data of the carcass during the first 24 

hours after slaughter. It has been demonstrated that this approach can distinguish in real 

time, pH and temperature profiles that are ‘non-normal’, and identify carcasses that are 

PSE positive quickly and easily. The results from this project have been published in the 

international journal Meat Science (1).

1.1.2 Background Project Information

This sub-project is part of a larger project designed to assess the incidences of PSE in 

pig meat within Irish slaughtering plants. There are four partners involved: The 

Department of Food and Nutritional Sciences, University College Cork, Ireland; 

Teagasc, The National Food Centre, Castleknock, Dublin 15, Ireland; The National 

Microelectronics Centre (NMRC), Co. Cork, Ireland and The National Centre for 

Sensor Research (NCSR) at Dublin City University.

One of the biggest challenges confronting the pork manufacturing industry today is the 

demand for high quality meat products. PSE pig meat is a major problem causing huge 

financial costs within meat processing industries. A recent study carried out in Ireland 

indicated that cooked hams manufactured from severe PSE pork had an estimated 

financial loss of 50% in comparison to those manufactured from normal pork (2). The 

results from this study indicate that PSE muscles are difficult to process into high 

quality products. Pre-slaughter handling, method of slaughter and chilling at the 

processing plant are all factors that influence pork quality (3-7). It is difficult to 

establish standard procedures for measuring the quality of pork within the industry as

2



pork quality characteristics change dramatically with time. In recent years many novel 

techniques have been assessed for their ability to measure the quality of meat in the 

early post-mortem period (8-10). These include measurement of muscle electrical 

properties, colour, pH and reflectance using fibre optic probes (10-12). Muscle has 

certain electrical characteristics such as impedance and conductivity, which change with 

time post-mortem (12). If these complex electrical changes are correlated with muscle 

pH decline, they may be of value in the assessment of meat quality. However at the 

critical time (45 minutes post-mortem), neither optical nor electrical methods are yet 

sufficiently reliable for accurate diagnosis of PSE (13). pH has been repeatedly shown 

to be the best among the known predictors of technological yield and the accuracy and 

precision is better than that of any other examined technique (14). The results of recent 

studies suggest that the potential sources of error arising from unrecognised 

temperature-related pH effects should be taken into consideration (15). It is also advised 

that industries establish an agreed temperature at which meat pH is reported so that 

valid comparisons of different pH measurements may be made (16). As the output 

signal from a pH combination electrode is temperature dependent, for accurate 

measurements and compensation for temperature effects, the temperature must be 

simultaneously measured. This is especially important when using pH measurements for 

the prediction of meat quality or when measurements from different sources are 

compared. Therefore, it would be far more effective to improve the existing pH 

measuring system to meet the specific demands and requirements of the meat industry 

by facilitating pH/temperature measurements at point-of-need in the production line. 

The following section explains how the integration of wireless communications and 

sensor technology to form a Wireless pH/Temperature Monitoring System can assist the 

pork industry in assessing pork quality before it enters the processing stream thereby 

increasing the overall yield and value of the pork.

1.1.3 Post-mortem Changes in Muscle Tissue

There are three pork quality categories discussed in this project; REN (red, firm and 

non-exudative), DFD (dark, firm and dry), and PSE (pale, soft and exudative). After an 

animal is slaughtered, the circulatory system shuts down depriving the muscle tissue of 

oxygen, which causes the metabolic processes to shift from aerobic metabolism to 

anaerobic metabolism (17). Lactic acid is a by-product of anaerobic metabolism and 

builds up in the muscle. As lactic acid accumulates, the pH of the muscle drops from

3



approximately 7.2 in living tissue to approximately 5.6 in meat within about 24 hours 

after slaughter (18). As the carcass is chilled, a moderate rate of pH decline over a 

prolonged time period gives rise to high-quality meat that is red in colour, firm in 

texture and non-exudative (RFN), Figure 1-1 a. Alternatively, a rapid rate in pH decline 

early post-mortem ( < 1  hour) creates an acidic environment while the carcass 

temperature is still high, denaturing muscle proteins and reducing their ability to hold 

water. The resulting meat is pale, soft and exudative (PSE), Figure 1-lb. The 

development of PSE muscle may be influenced by a number of factors including 

genetics and improper handling of the animal prior to slaughter (5, 6 , 19, 20). On the 

other hand, muscles destined for DFD meat have low levels of glycogen at the time of 

slaughter that confines the amount of acid that can be produced, and limits pH fall, 

Figure 1—1 c. While both RFN and PSE muscle end up with similar ultimate pH values 

of approximately 5.6 or 5.7, DFD muscle usually has an ultimate pH value above 6.0. 

This reduced acidity provides increased water-holding ability in the muscle, tightly 

binding water to muscle proteins, which contributes to the firm texture. A period of 

extended stress on the pig, caused by factors such as severe weather, long transport or 

unfavourable holding conditions, can deplete the muscle glycogen and triggers the DFD 

condition in pork muscle.

a . b .  c .

Figure 1-1 Quality variations in pork tissue a. (Red, Firm and Non-exudative) RFN or Normal b. 
(Pale, Soft and Exudative) PSE c. (Dark, Firm and Dry) DFD

1.1.4 Preventing PSE

Chilling meat as soon as possible after slaughter lowers the temperature of the meat and 

slows down metabolic processes, reducing the rate of pH decline (21-23). By slowing 

down the rate of pH decline, the dénaturation of proteins is reduced and the colour and 

the water-holding capacity of the meat may be improved. Therefore, intensive and early 

chilling may prevent mild cases of PSE by avoiding the combination of both high 

temperature and low pH (24). In severe cases of PSE, the rapid pH drop makes it 

difficult to lower the muscle temperature fast enough to prevent protein dénaturation. In
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muscle with normal post-mortem metabolism, if the temperature is dropped too rapidly, 

the ATP concentrations (needed to provide energy for the contraction cycle) may still be 

high. In this scenario, once the muscle drops below 15°C calcium is released from the 

sarcoplasmic reticulum. This calcium, together with the remaining ATP, can trigger 

severe muscle contraction and shortening. Once the ATP is depleted, this contraction is 

irreversible, causing the meat to be tougher and lose moisture (17)

1.1 .4 .1  Chilling and Chilling S ystem s

The purpose of any chilling system is to remove the heat from the carcass as quickly as 

possible after slaughter. This affects pork quality and is important to prevent microbial 

growth. Chilling can reduce the adverse effects of mild forms of PSE because as 

temperature decline is accelerated, the rate of pH decline will decrease. High post

mortem temperatures accelerate glycolysis (measured as the drop in pH), whereas low 

temperatures retard glycolysis. This is not surprising since higher temperatures are 

known to speed up the rate of chemical reactions, and therefore their effects in speeding 

up glycolysis in post-mortem muscle would be expected (17). Therefore, efficient 

chilling systems should aid in reducing the occurrence of PSE. However, this reduction 

in PSE is only apparent in some carcasses (24, 25).

At the time of death, muscle tissue is flaccid and highly extensible. Within a few hours 

it becomes inextensible and relatively rigid, a phenomenon known as rigor mortis 

(rigor). A number of factors can influence the time of onset of rigor mortis such as 

temperature, stimulation of respiration, or struggling at the time death. Offer (25) 

generated a model for the formation of PSE meat, reporting that the normal rate of pH 

fall in pork carcasses is about 0.01 pH units/min. This corresponds to a rigor time of 

about 150 minutes (assuming a linear pH decline). A marginal case of PSE is usually 

considered to correspond to a pH of 6.0 at 45 min, or about 0.02 units/min. In an 

extreme case, rigor is achieved in only 15 min corresponding to a rate o f 0 . 1  units/min. 

Protein denaturation in a carcass with a relatively moderate pH decline and a prolonged 

period of temperature abuse may be greater than in a carcass experiencing more severe 

conditions (elevated temperature and rapid pH decline) for a shorter period duration. It 

was reported, when the rate of pH decline occurred at the normal rate of 0.01 pH 

units/min, increasing the length of time to reach carcass half-cooling from 1 0 0  minutes 

to 700 minutes, produced an 18 fold increase in the fraction of denatured protein. A rate 

of pH decline of 0.02 units/min (marginal PSE) would increase the fraction of denatured 

proteins 7-fold. At a rate of pH fall of 0.1 units/min (severe PSE), this would only
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increase the fraction of denatured proteins by a factor of 1.7. It is apparent that more 

rapid chilling has greater benefits for carcasses experiencing slower and intermediate 

pH declines. The reason for this is that at very high rates of pH fall, rigor is attained 

very quickly before the carcass has cooled appreciably and the speed of chilling has 

little influence on the carcass temperature in the critical pre-rigor period.

Van der Wal et al. (26) tested three different chilling regimes. A moderate conventional 

chilling regime (0-4 °C; air velocity 0.5 m/s) served as a control and two forced chilling 

regimes; moderate rapid chilling (-5 °C) for 2h or ultra rapid chilling (-30 °C) for 30 

minutes with a downward air velocity of 1, 2 or 4 m/s. After forced chilling, the 

carcasses were delivered to the cooler for equalisation chilling (0-4 °C, 0.5 m/s) till 24h 

post-mortem. The authors found a significant effect on muscle temperature compared to 

control samples however meat quality parameters were not affected by the chilling 

regime. Maribo et al. (22) stated that the benefits of rapid chilling was acknowledged by 

the Danish Pig Industry, leading to the introduction of tunnel chilling operating at a 

temperature of approximately -20 °C. The authors reported that lowering of the muscle 

temperature early post-mortem resulted in a reduced rate of the pH fall and a higher pH 

from 2 to 6  hrs in the cooled carcasses. Taylor (27) found no difference in quality 

associated with different cooling rates. It can be clearly seen that the literature has 

conflicting recommendations on the conditions for different chilling systems to reduce 

the incidence of PSE.

1 .1 .4 .2  Pre-Slaughter Conditions

It is also reported that pre-slaughter conditions can affect the quality of the meat (4). 

Grandin reports that gentle handling, rest, and showering before slaughter helps lower 

body temperature (5). Monin et al. (28) reported that the control of muscle temperature 

is less important before than after the death of animals from the point of view of meat 

quality. However, in practice, the muscle temperature of pigs should be kept as low as 

possible before killing, as it determines directly the muscle temperature in the 

immediate post-mortem period (28).
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Continuous research through the years and the evolution of technology allows 

temperature measurements to be made very easily. Some research in the earlier years 

devised theoretical models to predict the cooling curves of pig carcasses. Theoretically 

calculated temperatures during slaughter and chilling were comparable with the 

measured values indicating that a finite-element calculation method in combination with 

a cylindrical model for heat transport could be used to predict muscle temperatures for 

various chilling regimes (26). Today, temperature data loggers allow continuous 

logging of carcass temperature from the moment of death. There’s a wide variety of 

temperature data loggers commercially available ranging from spear probes to tiny 

button type temperature data loggers that can be completely immersed into the carcass 

allowing the temperature to be monitored under severe conditions. A description of the 

temperature data loggers available on the market is discussed in greater detail in section 

1 .2 .
The merging of radio frequency communications and temperature sensing devices to 

form ‘wireless temperature monitoring systems’ allows the carcass temperature to be 

measured in real time at point-of-need. The benefit of such a system is that temperature 

data can be accessed in real time via a PC, a laptop or a palm computer, signalling ‘out- 

of-control’ situations where early intervention may allow corrective actions to be taken, 

ultimately ensuring successful carcass chilling and improving final meat quality.

The type and the design of temperature sensors are very important when taking 

temperature readings. Specially designed sensors may be necessary for specific 

applications. For example a temperature sensor incorporated into a stainless steel spear 

type probe is needed to monitor the internal temperature of pig carcasses, see Chapter 2. 

To accurately read a temperature it is important to understand what happens during the 

reading. When two bodies with different temperatures are connected to each other, heat 

will flow from the warmer body to the colder body. After some time they will both 

reach the same temperature. This is called thermal equilibrium. This process has 

important consequences that can strongly influence the reading, both positively and 

negatively (29):

■ Close contact between the measuring probe and the substance to be measured 

accelerates the heat transfer. The thermal resistance of the surface layer is very 

important.

1.1.5 Temperature Measurements of Pig Carcasses
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■ The thermal capacity of the reading instrument needs to be small enough 

compared to the body being measured so that the temperature of the body is not 

influenced by the measuring instrument, and that the temperature changes are 

accurately detected.

■ The measuring instrument and the body to be measured needs to be sufficiently 

separated from the external surroundings. Heat transfer from and to the external 

surroundings can influence the reading.

All of the above need to be taken into consideration when designing a temperature 

sensor for a specific application. Once again, referring to the stainless steel spear type 

probe designed for meat pH measurements, close contact with the muscle is achieved by 

completely immersing the temperature sensitive part o f the probe into the carcass. The 

probe design eliminates the temperature effects from external environments. The size of 

the probe is very important. It must be long enough to reach deep into the carcass 

muscle so a true value of the muscle temperature is obtained. The probe must have a 

narrow diameter to minimise destructive sampling. Chapter 2 describes in detail the 

benefits of using a spear-type probe compared to other temperature sensors for 

monitoring internal carcass temperatures.

1.1.6 pH Measurements

1.1 .6 .1  The Im portance o f pH

pH is one of the most common laboratory measurements because many chemical 

processes are dependent on pH. Changing the pH of the solution can often significantly 

alter the speed or rate of chemical reactions. The solubility of many chemicals in 

solution is dependent on pH. The physiological chemistry of living organisms has very 

specific pH boundaries. The quality of meat depends on the rate and extent of post

mortem pH decline, for example in pig carcasses, a moderate rate of pH decline over a 

prolonged time period results in good quality pork. In our modem lives, virtually 

everything we use has been tested for pH at one time -  from the tap water we drink, the 

food we eat, the medicines we take. The list is endless.
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1 . 1 . 6 . 2  T h e  D e f i n i t i o n  o f  p H

pH is an abbreviation of “pondus hydrogenii” and was proposed by the Danish scientist

S.P.L. Sorensen in 1909, and is defined as the negative log of the activity of hydrogen 

ions (aH+);

pH = -log10 aH+ Equation 1-1

pH represents the ‘activity ’ of hydrogen ions in a solution, at a given temperature. The 

term activity is used because pH reflects the amount of available hydrogen ions not the 

concentration of hydrogen ions. The activity of an ion a; is defined by:

a; = ttiCj Equation 1-2

Where Q  is the concentration of the ion i and a-, is its activity coefficient, ai is a function

of ionic strength (30), and consequently for accurate measurements of pH with an

electrode, ionic strength is often buffered to ensure a; remains constant, e.g. by adding a 

large excess of an ‘indifferent electrolyte’ to which the electrode is insensitive. This 

allows electrodes to be calibrated directly in terms of concentration.

1 .1 .6 .3  Measuring pH

pH is measured using two electrodes: the indicator (sensing) electrode and the reference 

electrode. These two electrodes are often combined into one body -  a combination 

electrode. When the two electrodes are immersed in a solution, a galvanic cell is 

established, whose potential is dependent on both electrodes. Ideal measuring conditions 

exist when only the potential of the indicator electrode changes in response to varying 

pH, while the potential o f the reference electrode remains constant, see section 1.1.6.5.

1 .1 .6 .4  The Electrochemical Measuring S ystem

The reference electrode in Figure 1-2 is a half-cell with an accurately known electrode 

potential E ref  that is ideally independent of the analyte concentration or any other ions in 

the solution under study. Examples of reference electrodes include the silver/silver 

chloride electrode (Ag/AgCl, KC1) and Calomel electrode (Hg/Hg2Cl2 , KC1).
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1 .1 .6 .4 .1  S ilver/S ilver Chloride Electrode

The silver/silver chloride electrode is prepared, e.g. by coating a silver wire anode with 

silver chloride electrolytically in O.lmol/L chloride solution. The silver chloride coated 

wire is immersed in KC1 solution of known concentration, usually saturated, i.e. >3 

mol/L. The response of the silver/silver chloride electrode is based on the following 

reaction:

AgCl(s) + e' <-> Ag(s) + CT (E° = 0.2224V)* Equation 1-3

Reference
Electrode

Eref

Sensing/Indicating
Electrode

EInd

Analyte Solution

Figure 1-2 Electrochemical measurement System

The silver/silver chloride electrode is the most reproducible reference half-cell, with 

good electrical and chemical stability at 25°C. All the constituents that alter the silver 

ion concentration affect the potential of the electrode. Thus, the electrode cannot be 

used directly (without an additional salt bridge) in solutions that contain proteins, 

bromide, iodide or sulphide ions that form insoluble compounds (precipitates) with the 

silver ions. The temperature hysteresis effect is very small with the silver/silver chloride

* E° is the standard electrode potential -  see section 1.1.6.7

10



reference electrode. For this reason it is recommended for applications in which the 

temperature cannot always be held constant. The indicator electrode, which is immersed 

in the analyte solution, develops a potential Eind that depends upon analyte activity. 

Most indicator electrodes used in potentiometry are highly selective in their responses 

i.e. pH electrodes are selective for H+. The high impedance voltmeter refers to the pH 

meter that measures the potential between the pH-indicating electrode Eind and the 

reference electrode Eref.

1 .1 .6 .5  pH electrodes

The majority of pH electrodes available are combination electrodes. They combine the 

reference and pH sensing elements into a single electrode. When the combination 

electrode in Figure 1-3 is placed in a solution the potential of the cell is as follows:

E Ceii =  E ind -  E ref *  Equation 1-4

Where Eref* =  Eref + Ej (Ej is the liquid junction potential)

(Ideally constant due to non-contact with the sample)

A mV

f
f -----*

g

A = glass electrode

B = reference half-cell (double junction)

C = combination pH electrode (A + B) 

d = seal

e = internal filling solution (saturated KC1) 

f  = internal reference electrode (Ag/AgCl) 

g = external filling solution (second salt- 

bridge containing a suitable salt) 

h = pH-sensitive glass membrane 

i = internal liquid junction 

j = external liquid junction
ia

k = fill hole

A B C

Figure 1-3 Typical electrode construction
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1 .1 .6 .5 .1  Liquid Junction Potentials

In a potentiometric cell, the reference electrode is connected to the sample via a salt 

bridge electrolyte. The salt bridge ensures electrical contact between the two half-cells 

of the electrochemical cell through free diffusion of ions. However, bulk mixing of the 

bridge and sample solutions must be avoided. This is achieved by ensuring the area of 

contact is minimised, by using for example, capillary contact or a ceramic frit. A liquid 

junction potential develops across the boundary between two electrolyte solutions that 

have different compositions, usually the reference electrode assembly and the sample 

(30). Figure 1-4 shows a very simple liquid junction consisting of a 1 M HC1 solution in 

contact with a 0.01 M HC1 solution. A porous ceramic frit prevents the two solutions 

from mixing. At the junction zone a concentration gradient is established, and this is the 

driving force for diffusion. Both H+ and Cl" ions diffuse across the boundary from the 

more concentrated solution to the dilute solution. H+ ions are more mobile than Cl' ions, 

thus, the H+ ions diffuse more rapidly than the Cl" ions resulting in a charge separation

i.e. a boundary potential. The charge developed counteracts the differences in diffusion 

rates of the two ions and a steady state equilibrium is achieved. The steady state 

potential developed is called the liquid junction or diffusion potential.

C e r a m i c  F r i t
A

0 .0 1  M  

H C 1

+

Figure 1-4 Schematic representation of a liquid junction potential Ej. The length of the arrows 
corresponds to the relative mobility of the two ions (30).

The value of the liquid junction potential is, in the majority of cases, unknown, and sets 

a limit on the accuracy of direct potentiometric measurements. The magnitude of the 

liquid junction potential can be minimised by ensuring the salt bridge between the
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reference electrode and the analyte solution is saturated with ions of almost equal 

mobility i.e. saturated K+C1\

In direct potentiometry it is essential that the differences in the liquid junction potentials 

between the calibration solutions and the sample solutions are minimal as a voltage 

change due to the liquid junction potential is misinterpreted as a pH change. In meat pH 

measurements there is a difference between the buffer solution matrix and the sample 

matrix that creates a liquid junction potential error. It is not recommended to use 

standard silver/silver chloride electrodes for meat pH measurements as the sample 

matrix contains proteins that react with the silver ions in solution to form an insoluble 

precipitate on the electrode junction resulting in unstable and inaccurate readings. The 

following section addresses the errors associated with standard silver/silver chloride 

electrodes when used to measure samples containing proteins.

1 .1 .6 .6  Glass electrodes

Both the composition of the glass electrode’s pH sensitive glass and the composition of 

the glass electrode’s inner solution have an influence on the potential that will develop. 

The response of the electrode is the voltage developed between the inside and outside of 

the membrane. This voltage is proportional to the difference in pH in the inner solution 

and the sample. The response is caused by an exchange at both surfaces of the swollen 

membrane between the ions of the glass and the H+ ions of the solution -  an ion 

exchange that is controlled by the concentration of H+ ions in both solutions.

The types shown in Figure 1-5 are examples of glass electrodes. Glass electrodes are 

available in a number of different shapes and lengths to fit a wide range of applications. 

The combination pH electrode KCMSW11 available from Thermo Russell, 

Auchtermuchty, Scotland, Figure l-5a, is used in this project to measure the pH of pork 

muscle. The internal half-cell consists of a high electrical resistance glass tube, which 

has a pH sensitive membrane at the lower end. Within the reference cell is an internal 

silver/silver chloride reference system held in a high stability gel matrix with an open 

inner junction, which connects to the sample via the external filling solution (3 M 

potassium chloride) and the ceramic junction. The inner electrolyte is a viscous solution 

comprising saturated AgCl and KC1. In standard Ag/AgCl electrodes the inner 

electrolyte contains Ag+ ions in solution, which are free to diffuse across the junction 

and react with proteins in the sample to form insoluble solids that block the junction. In 

the KCMSW11 double junction pH electrode the viscosity of the electrolyte prevents 

the Ag+ ions from diffusing across the junction. A second salt bridge (double junction)
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comprising saturated KC1 protects the sample further from the internal reference 

electrolyte. This pH probe was designed specifically for meat applications and addresses 

many of the problems posed by standard Ag/AgCl electrodes.

Figure 1-5 Different glass electrodes for different applications (Thermo Russell, Russell pH Ltd, 
UK)

1 .1 .6 .7  The Nernst Equation

The Nernst equation expresses the electrical potential o f an electrochemical cell at non

standard state conditions at any time during the electrochemical cell’s reaction.

The Nernst Equation is written as:

E = E ° -  2  30^RT log (a H +) Equation 1-5

Where;

■ E is the cell potential measured by the electrodes

■ E° is the standard potential o f the cell at 298.15°K

■ R is the universal gas constant = 8.3145 J/mol. K (Joule per mol and per Kelvin)

■ T is the temperature = 298.15°K
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* n is the number of moles of electrons transferred in the balanced equation or the 

charge/valency of the ion. Which in the case of the hydrogen ion n = 1

■ F is the Faraday constant, which is the electrical charge in coulombs (C) for 

every mole (mol) of reactant involved in the electrochemical cell, F = 96485.309 

C/mol.

At a temperature (T) of 298.15 °K (25°C) the Nemst equation can be written as:

E = E° + 8.312SJ/mo l.K x 298.15K 
96485.309C /mol

x 2.303pH Equation 1 -6

E = E° + 0.059VpH (1 J/C = 1 Volt) Equation 1-7

That is a change of 59 mV at 25° C per pH unit (the slope of the equation).

Temperature is a key variable in pH measurement, affecting not only the slope of the 

electrode, but sample and buffer pH values, plus the potential of the electrode (causing 

electrode drift). Temperature must therefore always be reported with the pH value. The 

slope of the equation must be determined by calibration in at least two solutions of 

known concentration. This is used to correct for the variation in the slope factor arising 

from a number of sources including the temperature factor T in the Nemst slope 

(RT/nF).
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Figure 1-6 Change of electrode slope with temperature

Plotting the pH versus mV at a number of different temperatures will, for most 

electrodes, reveal that the lines intersect at almost the same point, see Figure 1-6. This 

point is called the iso-potential point or iso-pH. If, by electrical circuitry or calculation, 

the pH and iso-pH are made to coincide, compensation is made for the electrode’s 

temperature dependence and measurements in a fairly large temperature range will be 

possible.

1 .1 .6 .8  Buffers

Calibration is required to allow the potential of the cells in unknown solutions to be 

converted to pH values. For this purpose a solution with a precisely known pH and 

which shows a certain degree of insensitivity when lightly contaminated with acid or 

alkaline species, i.e. it must have a buffering capacity, is used. In buffer solutions, the 

pH is maintained due to an equilibrium established between weak acids, bases and their 

salts. Equation 1-9 defines the equilibrium constant for the acid dissociation 

equilibrium reaction in Equation 1-8.

HA <-» A" +H+ Equation 1-8



A strong acid is one that completely dissociates in solution while weak acids only 

partially dissociate in solution. In weak acids the reaction in Equation 1-8 favours the 

left hand side of the equation. Adding the salt or conjugate base (A ) of the acid will 

increase the salt concentration which further pushes the reaction to the left hand side. 

Therefore, the acid is usually overwhelmingly in the HA form. Looking at Equation 1-9 

above, this means there is plenty of [A ] and [HA]. Adding small amounts of acid or 

alkali will increase or decrease [H+], and Equation 1-8 can shift to compensate and keep 

Ka constant. Hence, weak acids and their conjugate bases are used as buffers.

The chemicals used in buffer solutions must be pure and stable and the pH values 

should be well defined. There are two types of buffer solutions. Technical buffers with a 

high buffer capacity and IUPAC/NIST* buffers with a lower buffer capacity. The 

IUPAC/NIST buffers are directly in accordance with the pH definition thus ensuring 

better accuracy. IUP AC and NIST address the shifts in buffer pH with temperature. 

These standards are defined using a hydrogen electrode measuring system and are 

directly traceable to the hydrogen electrode-measuring set-up at one of the Primary 

Laboratories (e.g. NIST, IUP AC)

1 .1 .6 .9  pH Electrode Calibration

Electrodes cannot be produced with exactly identical characteristics. Zero pH and slope 

will vary with time and different manufacturers produce electrodes with different 

nominal values. The calibration matches the pH meter to the current characteristics of 

the electrodes. Calibration adjusts the slope and offset of the slope produced using the 

Nemst equation and is usually expressed as a percentage of a theoretically perfect slope 

(i.e. 100%). For a properly functioning electrode, the calibration slope should be 

between 95 -  102% of the theoretical value. The calibration process is generally 

performed by measuring the pH in two different buffer solutions. This enables both pH0 

(zero pH) and the slope to be determined. Zero pH is defined as the pH value at which 

the measured potential is zero.

Equation 1-9

* IUPA C (International U nion o f  Pure and A pplied Chem istry, w w w .iupac.org) 

N IS T  (N ational Institute o f  standards and Technology, U S, n'u n ,>a,vf,i>uv)

[h a ]
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F ig u re  1-7 pH  ca lib ra tio n  cu rv e

The slope is usually stated as a percentage of the theoretical value and should be 

independent of temperature. However, as mentioned before, the slope expressed as 

mV/pH is directly dependent on temperature. As an alternative a slope at 25°C is often 

used (100% = 59mV/pH). The calibration should be performed in a consistent manner. 

The two buffers should bracket the measuring interval i.e. for sample measurement 

between pH 4.5 and 6.7, it would be appropriate to use buffers with pH 4.01 and pH 

7.00.

1.1.7 Legislation for Temperature Monitoring in the Food Industry

Galtee Meats (Mitchelstown, Ireland) Ltd, processes over half a million pigs annually 

accounting 2 0 % of the national kill and has developed a significant customer base 

predominantly in the Irish & UK markets and also in the rest of Europe, USA and 

Japan. Galtee produces quality pork and bacon cuts in accordance with the standard 

specifications set out in manuals from the Irish Livestock & Meat Board and to other 

specifications as agreed with customers. Galtee is at all times concerned about the 

welfare of its consumers. Galtee operates HACCP (Hazard Analysis Critical Control 

Points) within the plant to ensure its products are produced to the highest quality 

standards. HACCP is a preventative system of food control aimed at food safety 

assurance. HACCP is a documented and verifiable approach for the identification of 

hazards, preventative measures and Critical Control Points (CCP), and the 

implementation of a monitoring system. The internationally agreed principles of
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HACCP can be applied to all sectors of food and drink manufacturing, distribution and 

retailing. In the HACCP system there is zero tolerance for exceeding a critical limit.

The HACCP system is comprised of 7 components and the fourth component states that 

control procedures should be established and implemented to monitor each Critical 

Control Point (CCP) to check that it is under control (31). Monitoring is the scheduled 

testing or observation of a CCP and its limits must be documented and determined at the 

time the production line is in operation. Ideally, the monitoring would be performed by 

mechanical methods continually during production, such as a temperature-recording 

device with an alarm system.

Food safety and quality has become an area of intense concern to the general public and 

because of this the food industry is coming under increased pressure to improve quality 

standards. The EU and European National legal systems, and the USA are moving 

towards regulating quality over the entire food chain, from harvesting to the 

supermarket shelf. It is therefore imperative that accurate monitoring systems are 

developed. This is where autonomous sensing devices will prove to be extremely useful.

1.1.8 Autonomous (Wireless) Sensing

One of the most dynamic areas of research and economic development is 

communications and computing where data transfer including text, graphics, images, 

videos and sound are becoming increasingly feasible. The mobile phone industry alone 

gives a clear indication of the numerous capabilities of computing devices where 

wireless communications allow motion pictures from one mobile phone to another to be 

transferred across the world in seconds. With computer devices becoming smaller and 

smaller, it is clear that these technologies will enable us to ultimately extend the desktop 

resources (including memory, computation, and communication) to almost anywhere we 

travel. More importantly, this constant access, augmented by battery powered body 

mounted sensors, will enable our computers to be sensitive to the activities in which we 

are engaged, and thus allow the computer to participate in a collaborative and active 

manner as we perform our tasks (32-34). Researchers at CENS, the Centre for 

Embedded Networked Sensing are investigating fundamental properties of Embedded 

Networked Systems that will monitor and collect information on such diverse subjects 

as plankton colonies, endangered species, soil and air contaminants, medical patients 

and buildings. At CENS they believe that Embedded Networked Sensing Systems will 

reveal previously unobservable phenomena (35). A recent publication describes the
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principle of Internet scale sensing where every analytical measurement is Internet 

enabled (36). The widespread adoption of this principle leads to the emergence of 

‘intemet-scale sensing and control systems’, in which millions of sensing devices and 

actuators are linked in a seamless manner with a wide variety of users, ranging from 

individuals, to Government agencies, industrial users or public service providers, across 

many application sectors.

The convergence of sensor technologies, communications and computing has made 

inexpensive, powerful, and ubiquitous sensing a readily achievable reality. This is the 

world of ‘silent technology’ in which computing capability becomes an invisible 

component of everyday items and activities (37). Silent technology refers to the new 

wave of computing in which everyday objects have embedded computing power that 

enables them to gather information and interact with other objects without human 

intervention (37). This ubiquitous sensing capability carries some potentially 

revolutionary consequences for all types of businesses. Sensors have a pivotal role to 

play in this world, as they are the primary sources of information about our 

environment. The revolutions in wireless communications and sensors bring many 

opportunities in remote sensing. One area of great interest and importance is the 

evaluation and monitoring of the quality of food we eat. This project explains how the 

merging of radio frequency communications with sensor technology to form 

‘autonomous sensing systems’ can be used in the pork industry to assess the quality of 

raw material and to provide scientific information of carcass condition.

1.1.9 Wireless pH and Temperature Monitoring of Pig Carcasses

Today, wireless communications greatly facilitate everyday operations such as 

transferring data and controlling equipment either at home or in the industry. In the past, 

wires or cables were necessary to carry out these operations but occasionally factors 

including distance and physical obstructions inhibit the installation of costly cables. 

Low power wireless network (LPWN) technology such as Radio Frequency (RF) 

communications would be a practical solution in situations where wires or cables are 

not suitable or are cumbersome to employ. RF communications can penetrate materials 

such as concrete and timber (excluding metal). Wireless Local Area Networks 

(WLANs) based on narrow band RF communications can achieve distances up to 3000 

metres depending on the transmission power (38) and a multi-directional radiation 

pattern does not require line-of-sight (LOS) for operation. The approach offers many
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advantages over hard-wired systems and can be particularly useful in many industrial 

applications where data collection is necessary on a large scale. For example, today 

abattoirs are becoming highly automated and extensive amounts of data (e.g. origin, 

carcass weight, breed, grade, temperature, pH etc.) need to be collected and sorted and 

transmitted to other locations where it can be analysed (39). Traceability is a major 

driving force for data collection in the food industry especially since the new EU Food 

Safety Law 178/2002, which took effect on the 1st January 2005, which requires 

traceability of all raw materials. The wireless sensor network system discussed in this 

thesis therefore offers an excellent means of tracking the pH and temperature history of 

pig carcasses soon after they have been slaughtered until they leave the chill room for 

further processing. Furthermore, coupling the pH and temperature monitoring system 

with RF communications allows the data to be analysed in real time from remote 

locations, and facilitates data integration within a plant, and at a higher level, both from 

multiple sources across multiple plants. Access to such information will become 

increasingly important for quality control, waste reduction and audit tracking within the 

food-processing sector.
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1.2 Project 2: Development of a Web-based Wireless Temperature 

Sensing System for the Fishing Industry

1.2.1 Introduction

Perishable foods require chilling to retard many of the microbial, physical, chemical and 

biochemical reactions associated with food spoilage and deterioration. Temperature 

abuse is one of the main contributors responsible for food spoilage and careful 

temperature control is of paramount importance for the quality and safety of chilled and 

frozen foods (40). For example, the relative spoilage of fish increases four times if the 

temperature is raised from 0°C to 10°C, and approximately 8  times if  the temperature is 

raised from 0°C to 20°C (41). By inhibiting microbial growth, food quality and safety 

can be preserved for extended periods (42).

For effective chilling the temperature must be controlled all the way from the raw 

material supply, through production, manufacture or slaughter, to the presentation of the 

product for final consumption, the 'cold-chain ’ (43-47). A breach in the cold-chain can 

affect the quality and safety of the product and the consequences may be serious for 

both the producer and the consumer. For this reason, continuous temperature monitoring 

is a prerequisite for maintaining the quality and safety of perishable foods.

1.2.2 Temperature Monitoring Devices

There is a large variety of temperature monitoring devices available on the market 

ranging from simple mercury thermometers to more sophisticated temperature data 

loggers. Glass mercury thermometers are perfectly adequate when, for example, a spot 

temperature reading of a solution is required during a laboratory experiment, but for 

safety reasons glass thermometers are not practical when spot temperature 

measurements o f solid food products, i.e. meat and cheese, are required. Where solid 

food products are concerned, electronic handheld temperature probes with digital 

displays are more appropriate. These types of temperature measuring devices are perfect 

for their described applications but are not suitable for permanent recording.

When permanent temperature records are required for traceability purposes, temperature 

data logging devices are more appropriate, giving the user a time stamped temperature 

history. Numerous temperature data-logging units exist on the market with varying
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temperature ranges and accuracies depending on the application. These units can store 

large amounts of data, i.e. up to 32,000 time-temperature values, depending on their 

memory capacity and can have a long battery lifetime i.e. up to 1 0  years. Internal clocks 

allow parameters such as sampling frequency and start/end times to be preset in advance. 

The loggers can be connected to a PC via serial ports (RS232 connections) for 

configuration and data downloads. These temperature-logging units are rugged, self- 

sufficient systems that once set up for a mission measure temperature and record the data 

in a protected memory. Examples of such temperature data-logging units include the 

DS1921 Thermochron iButton (available from Dallas Semiconductor), the LOGpen-lO 

(available from Advantech Automation Corporation) and the StowAway® Tidbit® 

(available from Onset). These are just a few of the vast amount of temperature data 

loggers available.

Figure 1-8 LOGpen-lO (48) (left). StowAway® Tidbit® and the DS1921 Thermochron iButton
(right).

The DS1921 Thermochron iButton is 16mm wide with a stainless steel casing that is 

robust and waterproof. It measures temperature from -40°C to +85°C in 0.5°C 

increments and has an accuracy of ±1°C. It has a real-time clock and a programmable 

alarm system that flags temperature values outside a pre-defined range, recording the 

exact time and how long the temperature stayed outside the permitted range. Up to 

2,048 temperature values taken at equidistant intervals ranging from 1 to 255 minutes 

can be stored. Data is transferred to a PC via a serial connection and the software allows 

the data to be displayed as a graph or histogram. The recyclable iButton logs data for 

more than 1 0  years or up to 1 million temperature measurements.

The LOGpen-lO as its name suggests has a pen-shaped design (19mm diameter 

x 130mm length) that’s robust, easy to carry and easy to insert any place for temperature

Tidbit
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measurement. The housing is made of stainless steel and brass and is chromium plated 

to provide excellent heat conductivity. It measures temperatures from -40°C to +80°C 

with an accuracy of ±1°C and can record 4,000 temperature readings. A sampling 

interval between 1 second and 18 hours can be selected and an internal clock allows the 

user preset the recording start time. When the memory capacity is reached, the device 

can either overwrite the earliest data or stop recording. The logger has a typical lifetime 

of 1-2 years depending on the sampling frequency. The logger is configured and the 

recorded data retrieved via a serial connection to a PC. A two-coloured LED indicates 

the operating status of the LOGpen-lO. When a temperature measurement outside a set 

limit is recorded, the LED turns from green to red. Users can therefore identify 

abnormal temperatures at a glance, without the need for downloading data to a PC.

The StowAway® Tidbit® is a waterproof temperature logger. There are two models 

available with different temperature ranges i.e. -5°C to 37°C and -20°C to 50°C. The 

unit possesses on-board memory with a memory capacity of up to 32,000 temperature 

readings. An Optic Shuttle™ that communicates with the logger via IR communications 

allows the temperature data to be transported back to a host PC where an Optic Base 

Station™ facilitates data transfer.

The three temperature monitoring systems described above are designed to work 

remotely. Unless the logger is conveniently located, i.e. immediately inside the door of 

a refrigerated container, the logger must be removed from the product being transported 

before any stored information can be downloaded. In reality, this means that the 

temperature profiles can only be analysed at the end of the transport run and not at any 

stage during the journey.

Disposable temperature indicators (TIs) and time-temperature indicators (TTIs) are an 

alternative to using conventional electronic temperature monitoring. TIs are small 

(postage stamp-sized) disposable labels that give a visible response if a predetermined 

threshold temperature is exceeded. However, for TTIs the extent of the colour migration 

is dependent on the extent of temperature abuse that has occurred (49). The performance 

of TIs and TTIs stored under isothermal and non-isothermal conditions was tested in a 

study performed at the National Food Centre (49). The results from this study indicated 

that the Chillcheck™ temperature indicators performed reliably under isothermal 

conditions. In varying temperature conditions, they responded more to surface/ambient 

temperature rather than to product core temperatures. In practical use, no colour change 

would indicate that the temperature control had been satisfactory. However, the authors 

advise that in the case of a colour change, caution must be exercised when interpreting 

the result as relatively minor temperature fluctuations may cause a colour change with
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little adverse impact on the product quality. In the same study the authors reported that 

full colour change of the time-temperature indicator, 3M Monitormark™ 51, could 

equally be obtained by subjecting a product to a temperature of 15°C for 42 hours or 

7°C for 48 hours. However, these two temperature conditions could have different 

quality and safety implications for a perishable product. The study showed that the 

time-temperature indicators were not sufficiently responsive to accurately integrate the 

time-temperature history for high-risk perishable food products.

Although the TIs and TTIs give an immediate indication of whether or not the product 

has been subjected to out-of-limit temperatures, there appears to be a certain amount of 

ambiguity regarding the colour change. When consumer safety is at stake there is no 

room for ambiguity.

To ensure maximum safety and temperature control in the food industry real-time 

temperature monitoring provides an excellent solution that can be achieved through 

wireless radio frequency transmission systems. Radio frequency systems have become 

very popular recently with more and more products being released on the market such 

as the i-Q line of radio frequency identification (RFID) tags available from Identec 

Solutions and the DigiTrak RF system available from Digitron. With radio frequency 

systems a contactless transfer of data between the data-carrying device and its reader is 

far more flexible. This gives the operator the ability to communicate directly with the 

data-logging device without the need to be connected to a computer.

The i-Q32T RFID tag (131 mm x  28 mm x 21 mm) with a plastic casing (IP 65) 

provides real-time data collection in wireless applications such as identification, 

tracking and tracing and temperature monitoring. It has an internal sensor temperature 

range of -40°C to +85°C and an optional external sensor with a temperature range of - 

127°C to +127°C. Using advanced UHF (430 to 440 MHz) radio frequency technology 

the i-Q32T tag transmits and receives data at distances up to 30 meters (open field) from 

a handheld device or up to 100 meters (open field) from a fixed interrogator. The tag 

has a 32,000 byte memory and stores user and process information as well as 

temperature data. This system can work with up to 2,000 tags in the radio frequency 

range. The i-Q32T tag can be programmed to take readings at user definable intervals 

from 1 to 255 min and can operate effectively for over 6  years.

The DigiTrak RF system comprises of a DT02 temperature transmitter (165 mm x 90 

mm x 26 mm) with a temperature range of -30°C to +93°C. It has radio frequency 

operating range of 120 meters (open field) operating at 8 6 8  MHz. The temperature data 

is sent wirelessly to the DTBASE base station connected to a PC or networked
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computer. The web-based software provides access control and multi user options via a 

PC or network.

Figure 1-9 The i-Q32T system (50). A handheld device allows the temperature data to be accessed 
via radio frequency communications.

Although the problems associated with previous monitoring systems have been 

addressed by the use of contactless technology, which eliminates the need to remove the 

monitoring device from its position to download the recorded data, the system described 

above must be within the specified range to communicate with the base station/receiver. 

The base station/receiver must be connected to a PC to allow user access/control and in 

many situations this may not be very practical i.e. setting up a PC on a cold storage 

haulage vehicle. The i-Q32T tags can be accessed by an operator via a handheld device, 

which addresses some of the impracticalities posed by other wireless systems. This 

system is perfectly adequate for tracking and identification applications where product 

data is only required at destination terminals. If perishable products were strictly 

maintained within the specified temperature range for the duration of the journey then 

the temperature monitoring systems described above would suffice as they would 

provide a time-temperature history that can be passed onto a potential customer. On the 

other hand, if the product temperature rises above a threshold value for long periods of 

time due to a refrigeration malfunction or high temperature setting the consequences 

could be serious. The temperature history can be retrieved upon arrival at the final
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destination where if necessary the products can be discarded without putting the 

consumer at risk but at a high cost to the producer. If a real-time monitoring system was 

installed that alerts the operator/driver of an out-of-control temperature situation a 

simple remedial action such as adjusting the temperature control setting may rectify the 

situation without posing any risk to the consumer or the producer.

1.2.3 Shelf life Prediction

The shelf life of fresh fish may vary from batch to batch and accurate prediction of shelf 

life is particularly important to ensure product quality. Studies in the past have shown 

that microbial models can accurately predict the shelf life of specific fish species i.e. 

cod (51). Seafood Spoilage Prediction (SSP) software has been developed to predict and 

illustrate the effect of constant and fluctuating temperatures on the growth of specific 

spoilage organisms (SSOs) and on the remaining shelf life of seafood (52). The 

inclusion of different types of spoilage models in SSP allowed the software to be 

applicable for shelf life prediction of many seafoods but each model has a specific range 

of applicability with respect to product characteristics and storage conditions. The SSP 

software allows growth of SSO and remaining shelf life to be predicted at constant 

storage temperatures, for simple temperature profiles entered manually within the 

software, and for temperature profiles collected by different data loggers. The ability of 

SSP to read temperature profiles collected by data loggers, and to predict their effect on 

remaining product shelf life can be applied directly, e.g. in the evaluation of chill chains 

in industry and within research. Combining shelf life prediction and electronic time- 

temperature data with information collected from the moment of catch i.e. from 

traceability systems, will further improve product quality assurance in the seafood 

sector (52).

1.2.4 Traceability

Since the 1980s, concerns about the safety and quality of food have increased at both 

government and consumer levels (53). According to the Centre for Disease Control and 

Prevention, 76 million people each year in the United States suffer from food-borne 

disease, of which 325,000 spend time in hospital and 5,000 die. Many articles have been 

published highlighting the importance of food traceability for public health and 

consumer protection and methods to effectively implement traceability systems in the
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food industry (53-59). The EU’s new food safety regulations, which were enforced on 

1st January 2005, place huge responsibilities on food and feed business operators to 

devise a safe system for supplying food. Article 18 of the EU’s new food legislation 

states that the traceability of food, feed, food-producing animals and any other 

substance intended to be, or expected to be, incorporated into a food or feed shall be 

established at all stages of production, processing and distribution. A report published 

by the food and beverage industry application centre at Intentia discusses the details of 

the new EU food safety regulations stating, “Traceability will become a licence to 

operate. And from January 1, 2005 all companies will be obliged by law to have 

adequate traceability systems in place. Because without them companies will be 

excluded from the food chain.”
With the new EU food regulations in place food industries are forced to face the 

inevitable and implement traceability systems that will allow them compete in the food 

chain. As data management technologies become more powerful and less costly, 

product traceability will be easily employed. Take for example the fisheries industry; 

little information is passed on from the fisherman to the fish processors and they rely 

heavily on reputation and long-term business relations. Today, information other than 

the area where the fish was caught cannot be given precisely, and information i.e. days 

on ice, temperature history of the catch, is not readily available. In order to establish full 

chain traceability it is necessary to include all players, starting with the fishermen, 

collectors, auctions and traders, continuing with producers and ending up with retailers 

(59). Transmission of all the required information physically with the fish products 

would be impracticable and so the use of information technology is preferable. The EU 

concerted project Tracefish established agreed specifications for an IT based traceability 

scheme for the fish industry (60). The Tracefish scheme pragmatically deals with the 

diversity and complexity of the captured fish distribution chains taking into 

consideration the commercial needs and sensitivities of the food businesses, whilst 

enabling whole chain traceability. A simply system for introducing traceability in the 

fresh fish chain was tested in Denmark (59). The fish were iced and sorted into boxes 

on-board the fishing vessel according to species. Each box was provided with 

information on fish species, catch date, vessel number and box number, readable in text 

and in the form of a bar code on a label. The information was entered into a computer 

and the data transmitted via a wireless mobile phone to a central database on a computer 

ashore. The computer used on-board was a laptop unit placed in the wheelhouse of the 

fishing vessel. A connection was made to a label-printing unit in the hold, where the 

labels were printed and attached to the boxes, as they were stored. Before the vessel
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entered the harbour the collector (an operator who takes care of the fish from when the 

fishing vessels enter the harbour until the fish is sold at the auction) retrieved the catch 

information from the vessel via the central database. The information was transferred 

between all the steps in the chain from the fishing vessel, collector, auction, and 

wholesaler to the retailer. The final customer received all the information on a printed 

label o f when the fish was caught, which vessel had caught the fish, and how it was 

handled on the way to the fish market (59).

Tracefish is an excellent traceability system that provides an accessible means of 

recording and transferring large amounts of data from ‘catch to consumer’. Integrating 

time-temperature information into traceability systems would gain consumers 

confidence in the product thereby adding value to the catch. Chapter 3 describes how a 

real-time web-based temperature monitoring system can be easily deployed on-board 

inshore fishing vessels and its overall potential to improve quality control and 

traceability within the fishing industry.
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1.3 Project 3: Development o f an On-Package Sensor fo r Detecting 

Shellfish Spoilage

1.3.1 Introduction

The previous project describes a unique temperature monitoring system initially used to 

monitor the temperature of salmon and mackerel catches onboard small inshore fishing 

boats off the south coast of Ireland, and was then transferred onto larger inshore fishing 

trawlers to monitor the temperature of whelk catches caught off the east coast of 

Ireland. The trials were also extended to include real time temperature monitoring on 

the refrigerated trucks that delivered the whelk from Howth Harbour, Co. Dublin to 

Errigal Fish Co. Ltd, Co. Donegal, a distance of approximately 300km. At Errigal Fish 

Co. Ltd, the whelk are processed and packed into sealed containers which are then 

exported to their foreign customers i.e. Japan. During long haul journeys abroad the 

products can easily become temperature abused rendering them ‘unsafe’ for human 

consumption. Ultimately, the consequences may be serious for both the customer and 

for Errigal Fish Co. Ltd. Today, great emphasis is placed on consumer safety and if 

customers receive goods that are already spoiled as a result of temperature abuse during 

transit this may reflect badly on the processor i.e. Errigal Fish Co. Ltd, but most 

importantly the consumers safety is at risk. For this reason, pH sensitive membranes 

placed inside the sealed containers that change colour in response to spoilage volatiles 

will give the consumer an immediate indication of whether or not the product is safe to 

eat. If strict measures have already been enforced to ensure quality and safety then such 

food quality sensors will benefit both the consumer and the processor as the consumer 

will be confident that the product they are receiving is safe and the processor will in 

return reap the rewards.

1.3.2 Methods to Evaluate the Freshness and Quality of Fish

Numerous methods exist to aid the evaluation of fish freshness including sensory, 

chemical, biochemical, microbial and various other instrumental methods as described 

below.
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1 . 3 . 2 . 1  S e n s o r y  E v a l u a t i o n

Sensory evaluation is defined as the scientific discipline used to evoke, measure, 

analyse and interpret characteristics of food as perceived by the senses of sight, smell, 

taste and touch (61). European fisheries research institutes have developed a rapid, 

objective sensory method for the evaluation of fish freshness called the Quality Index 

Method (QIM). QIM is based on the significant sensory parameters for raw fish. The 

scores for all the quality parameters (appearance, odour of skin, eyes, gills and outer 

slime) are added to give an overall score, the so-called quality index, which can be used 

to predict storage life (61, 62). QIM is primarily used on whole or gutted fish but the 

method is difficult to use with fish fillets and schemes for lightly preserved seafood are 

not yet available (63). Using sensory methods for evaluation of food gives valuable 

information on the food quality but accurate sensory assessment requires considerable 

training and skill and its application is time consuming and costly (63).

1 .3 .2 .2  Microbial M ethods

Spoilage is characterised by any change in a food product that renders it unacceptable to 

the consumer from a sensory point of view. The major cause of food spoilage is 

microbial growth and metabolism resulting in the formation of amines, sulfides, 

alcohols, aldehydes, ketones and organic acids with unpleasant and unacceptable off- 

flavours (64). The term ‘unacceptable’ when applied to food spoilage is product-specific 

-  for example, ammonia odours are part of a desirable odour profile in some dried and 

fermented fish products, but are not acceptable in most fresh and lightly preserved 

seafoods (64).

1.3.2.2.1 Total Viable Counts

The activity of microorganisms is the main factor limiting the shelf life of fresh fish. An 

estimation of the total number of microorganisms, named total viable counts (TVC), is 

used as an acceptability index in standards, guidelines and specifications (61). The total 

count represents, the total number of bacteria that are capable o f forming visible 

colonies on a culture media at a given temperature (65). If a count is made after 

systematic sampling and a history of the fish is known from catch i.e. temperature 

conditions, packaging etc., TVCs may give a comparative measure of the overall degree 

of bacterial contamination and the hygiene applied (65).
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1 .3 .2 .2 .2  Specific Spoilage Organisms

Spoilage reactions in food are complicated and dynamic in the sense that spoilage 

reactions and spoilage microorganisms may change as a function of product 

characteristics and storage conditions (52). It is well known that minor changes in 

processing and packaging of fish products cause a dramatic change in the development 

and composition of the spoilage association and a complete different type of spoilage 

(50). During storage, the microflora changes owing to different abilities of the 

microorganisms to tolerate the preservation conditions (64). Microbial activity limits the 

shelf life of packed as well as unpacked fresh fish products (6 6 ). Knowledge of the 

microorganisms involved in spoilage is needed to develop microbiological and chemical 

methods for evaluation of quality and shelf life (67). Despite the heterogeneity in raw 

materials and processing conditions, the microflora that develops during storage and in 

spoiling foods can be predicted based on knowledge of the origin of the food, the 

substrate base and a few central preservation parameters such as temperature, 

atmosphere, water activity and pH (67). However, only a few of the microbial 

community, the specific spoilage organisms (SSO), give rise to the offensive off- 

flavours associated with seafood spoilage (64). For example, it has been shown that the 

specific spoilage organism, photobacterium phosphoreum, is responsible for the 

microbial spoilage of packed cod, (6 8 ), and the activity of this SSO in model substrates 

allows the remaining shelf life of the product to be accurately predicted using the 

iterative approach (51, 6 6 ). The iterative approach is product related and it is based on 

initial studies with naturally contaminated products, where SSOs, their spoilage 

domains, and growth kinetics are determined, the data is generated and mathematical 

models allows the effects of intrinsic and extrinsic parameters to be quantified, and 

finally the model is validated by comparing it to data from storage experiments (51). 

Seafood Spoilage Predictor (SSP) software, discussed in section 4.1.2, has been 

developed to predict and illustrate the effect of constant and fluctuating temperatures on 

the growth of SSOs and on the remaining shelf life of seafood (52).However, to benefit 

from this property of kinetic models the initial level of SSOs in a batch needs to be 

determined by a rapid microbiological method (52). Traditional microbiological 

methods are laborious, time consuming, costly and require skill in execution and 

interpretation of results (65).
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1 . 3 . 2 . 3  C h e m i c a l  M e t h o d s

An alternative or supplementary method to microbial analyses involves the 

measurement of chemical changes associated with microbial growth processes in foods 

(69). Volatile compounds including amines, sulphides, alcohols, aldehydes, ketones 

and organic acids are released from fish flesh as it deteriorates and the composition and 

concentration of the volatile compounds change depending on the freshness of the fish 

(48). Therefore, measurements of characteristic volatile compounds can be used to 

monitor the freshness or spoilage stage of fish (61). Total volatile basic nitrogen (TVB- 

N) is one of the most widely used measurements of seafood quality (65). In seafood, 

TVB-N primarily includes trimethylamine (TMA), ammonia, and dimethylamine 

(DMA) (63). Each of these compounds, as well as levels of TVB-N, are useful indices 

of spoilage in different fresh and lightly preserved seafood. The European Commission 

(Council Regulation No. 95/145/EEC of March 1995) specified that TVB-N should be 

used if  sensory evaluation indicates doubt about freshness of different fish species (63).

1.3.2.3.1 Volatile Amines

Fish flesh naturally contains very low levels of carbohydrate, which is depleted during 

the struggle prior to death. This has two important consequences for spoilage. The 

absence of carbohydrate means that bacteria present on the fish will immediately resort 

to using the readily available nitrogenous materials, producing off-odours and flavours. 

Trimethylamine oxide (TMAO) occurs in appreciable quantities in marine fish as part of 

the osmoregulatory system and is reduced to TMA during microbial spoilage an 

important component in the characteristic odour of fish (70). Ammonia is formed by the 

bacterial degradation/deamination of proteins and amino acids, which are present in 

high quantities in seafood. The enzymatic decomposition of TMAO generates DMA at 

sub-zero temperatures and is therefore useful as a frozen storage index (63, 71-73). 

Numerous techniques have been developed over the years to aid the analysis o f the 

volatile compounds released as a result of microbial spoilage. Headspace methods for 

the analysis of volatile compounds involve the collection and concentration of the 

volatiles for subsequent chromatographic separation to identify and quantify the 

separated compounds (74). Due to the complexity, cost and lengthiness of 

chromatographic methods for the analysis of volatile compounds these techniques are 

suitable only for specialised research and analytical laboratories (61). There is an 

increased interest in the use of gas sensor array systems, so-called electronic noses, for
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the rapid assessment of volatile compounds in food (61, 63, 75-79). Electronic noses are 

the common name for sensors responding to odour (volatiles) using an array of simple 

and non-specific sensors and a pattern recognition software system. Essentially, each 

odour leaves a characteristic pattern or fingerprint on the sensor array, and an artificial 

neural network is trained to distinguish and recognise the odours (80). A study was 

carried out by the Icelandic Fisheries Laboratory to evaluate the quality of cod using 

two electronic noses, LibraNose and FreshSense (81, 82). The two electronic noses are 

based on different sampling procedures and sensor technologies. LibraNose is based on 

an array of eight thickness shear mode resonators coated with metalloporphyrins and a 

small metal capsule that is put on the surface of fish for sampling volatiles. FreshSense 

is based on four electrochemical sensors (CO, H2 S, SO2 , and NH3) and a larger 

sampling container allowing the analysis of the whole fillet (48, 82). The study showed 

that better performance is achieved when the data from both electronic noses are 

combined (81). The responses of electronic noses have been shown to correlate with 

objective measures of quality in fresh seafood. However, none of the electronic nose 

instruments which are available commercially have been implemented in the fish 

industry (82) as the stability of correlation between sensory data and electronic nose 

response still represents a problem for practical applications of gas sensors in seafood 

shelf life evaluation (63).

1 .3 .2 .4  M ulti-Sensor-Devices

Recently, multi-sensor-devices based on visible light spectroscopy, electrical properties, 

image analysis, colour, electronic noses and texture have been calibrated with sensory 

scores of QIM for attributes like appearance, smell and texture to give an Artificial 

Quality Index (AQI) that can be as accurate and precise as the QIM sensory scores. 

With the costs of labour and training of assessors set to increase and the cost of 

instrumentation set to decrease dramatically, it is believed that multi-sensor-devices will 

be adopted by the fishing industry in the future but that remains to be seen (48, 83).

1 .3 .2 .5  Visible Spoilage Indicators

With more and more seafood products being sold in sealed containers on display 

cabinets, it is difficult for the customers to use their sense of smell to detect off-odours 

at the moment of purchase. For this reason, use-by-dates are helpful but only if  the 

correct storage conditions have been maintained.
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Recently, the advent of visual spoilage indicators that respond to volatile compounds 

released by fish into the headspace of sealed containers proves promising for 

determining the spoilage of packaged fish (84-86). The concept was first patented 

under the title of “Food Quality Indicator Device”, United States patent application no. 

20020044891, (35), and has been licensed by COX Technologies, USA, under the trade 

name of Fresh Tag™. The patent gives a general description of a food quality indicator 

comprising of an indicator compound that changes colour due to the presence of volatile 

compounds, such as volatile bases, in spoiled food.

It has been demonstrated that increasing TVB-N levels in the confined headspace 

associated with packaged fish (i.e. cod and whiting) are possible to detect by monitoring 

changes in the colour of paper discs impregnated with an acidochromic dye using UV- 

Vis reflectance spectroscopy (84). The dye does not distinguish between the various 

bases (NH3 , TMA, DMA) but rather responds to any volatile base capable of 

deprotonating it. The authors found that fresh whiting produced larger, and more rapid 

colour changes than fresh cod, suggesting that the rate of release of volatile bases from 

whiting is faster. It was also suggested that a more reproducible result could be 

obtained if an automated approach was adopted (e.g. screen printing, spin coating) to 

deposit very precise amounts of the dye onto the substrate surface. Such materials may 

therefore play a role in the development of ‘intelligent packaging’ that conveys some 

idea of the freshness of the packaged food to the consumer (84). Recently, another 

method was developed using a pH indicator dye, cresol red, physically entrapped in a 

cellulose polymer film to respond to headspace TVB-N released from selected fish 

species (i.e. cod and orange roughy) during spoilage (85, 8 6 ). The authors approach was 

based on a study that describes the entrapment of a pH indicator dye into a plasticised 

cellulose acetate matrix to form a fast response pH indicator optode that was tested in a 

flow-cell for on-line monitoring of pH. Cellulose acetate was chosen as the polymer 

matrix due to its high permeability to basic gases and its excellent long-term stability 

(8 6 ). Once again the volatile amines released were monitored over time by measuring 

the response of the pH indicator dye using UV-Vis reflectance spectroscopy. It was also 

reported that the pKa of the dye in the polymer matrix did not vary significantly from 

that in free solution and there was a linear relationship between the colour intensity of 

the dye and the log of the NH3 concentration in the headspace (8 6 ). The results from 

these studies showed that there was a significant increase in the TVB-N content in the 

headspace of fish samples after an incubation period of 8 - 1 2  hours for cod and 12-15 

hours for orange roughy (85). Whiting obtained from a local supermarket and stored at 

room temperature, showed a definite and measurable increase in TVB-N levels between
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24 and 30 hours and the TVB-N levels o f deepwater fish, orange roughy and black 

scabbard, increased between 30 and 45 hours when stored at room temperature (8 6 ).

The major difference between the approaches adopted by Loughran et al. and Byrne et 

al., apart from the type of indicator dye used, is the technique employed to immobilise 

the dye onto a solid substrate. Loughran et al. describes a simple technique whereby the 

paper discs were impregnated with the dye by soaking them in the dye solution 

followed by a short drying process (84) whereas Byrne et al. employed a widely used 

technique in sensor applications whereby the indicator dye is physically entrapped into 

a cellulose acetate membrane (85, 8 6 ).

1.3.3 pH Indicators and Optical Sensors

Acid-base indicators (i.e. pH indicators) are dyes whose acid form has one colour and 

whose base form has another colour (87). The appearance of colour arises from the 

property of the coloured material to absorb selectively within the visible region of the 

electromagnetic spectrum (8 8 ). Optical sensors for acidic (HCL, SO2 , CO2 , acetic acid) 

or basic gases (NH3 , amines) often make use of pH indicator dyes immobilised in 

polymers (89). Trinkel et al. describes the development of an aqueous based optical 

sensor for detecting ammonia whereby a pH-sensitive dye (bromophenol blue) was 

immobilised as an ion pair with cetyltrimethylammonium in a silicone matrix (90). The 

colour of the bromophenol blue dye changed reversibly from yellow (protonated dye: 

m̂ax = 426 nm) to blue (deprotonated dye: = 608 nm) with increasing concentration
of ammonia in solution. The concentration of ammonia was determined by measuring 

the transmittance at a given wavelength. This study was based on work previously 

carried out by Werner et al. (91) where a lipophilic ion pair, see section 4.1, was 

obtained by reacting the indicator dye (bromophenol blue or bromocresol green) with 

the lipophilic salt cetyltrimethylammonium bromide (CTABr) as follows:

Indicator-S0 3 _Na+ + CTA+Br'—» Indicator-S0 3 'CTA+ + NaBr
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Figure 1-10 shows the protonated and deprotonated forms of the bromocresol green dye 

when exposed to ammonia in solution.

+  NH3 nh!

Figure 1-10 The yellow acidic form of the bromocresol green dye is deprotonated by ammonia to 
give a blue-green basic form.

The sensors described so far are based on the detection of dissolved ammonia. For 

ammonia gas detection the ammonia must first be solvated in water before reacting with 

the dye. The reaction scheme is illustrated in Figure 1-11. The overall reaction is similar 

to the reaction shown in Figure 1-10.

NH3(gas) + H20  -  N H / + OH-

Figure 1-11 Ammonia reacts with water to produce the hydroxide ion OH" which deprotonates the 
dye to its basic form. The overall reaction is similar to the reaction in Figure 1-10.

+  h2o
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Spectroscopy is the study of electromagnetic radiation and its interaction with matter 

(30, 92). The electromagnetic spectrum ranges from y-ray, X-ray, ultraviolet, visible, 

infrared, and microwave to radio frequency radiation. Electromagnetic radiation is 

commonly treated as a wave phenomenon, an electric field that undergoes sinusoidal 

oscillations as it moves through space characterised by a wavelength (/I) or frequency 

(v). Figure 1-12 represents a two-dimensional representation of a beam of 

monochromatic (i.e. single wave-length), plane-polarised radiation (oscillations of the 

electric field are in a single plane). The wavelength (X) is defined as the distance 

between adjacent peaks of the sinusoidal wave (usually expressed in meters, see Table 

1-1) and the amplitude A is the height of the wave. The frequency (v) is the number of 

wave cycles that travel past a fixed point per unit of time, and is usually given in cycles 

per second, or hertz (Hz).

1.3.4 Spectroscopy -  Properties of Electromagnetic Radiation

Region Unit Definition

X-ray Angstrom, Â 1 0 '1Ü m

Ultraviolet/visible Nanometer, nm 1 0 '9 m

Infrared Micrometer, pm 1 0 '6 m

Table 1-1 Wavelength units for various spectral regions

>

Figure 1-12 Representation of a beam of monochromatic radiation of wavelength k and amplitude 
A (adapted from Skoog, D.A, D.M. West, and F.J. Holler, Fundamentals of Analytical Chemistry. 
Sixth Edition, 1992, p509)
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All electromagnetic radiation travels through space at a velocity (c) of 3.00 x 10 ms" 

’(8 8 ). The relationship between wavelength, frequency and velocity is expressed as

follows (8 8 ):

c = vA = 3.00xl08ms 1 Equation 1-10

The rate of propagation of the electromagnetic radiation through a medium containing 

matter is slowed down as the electromagnetic field of the radiation interacts with the 

electrons in the atoms or molecules of the medium (30). To understand many of the 

interactions between radiation and matter, it is necessary to postulate that 

electromagnetic radiation is made up of packets of energy called photons or radiation 

quanta (30, 92). The energy of a photon depends upon the frequency of the radiation 

and is given by the equation:

E  =  H v  Equation 1-11

Where h is Plank’s constant (6.63 x 10‘34 J.s). When molecules absorb radiation the 

energy absorbed is quantised and only certain frequencies (and wavelengths) are 

affected. The molecule is promoted from an initial energy state (E1) to a higher energy 

state (E11) (92). The change in energy is expressed in the equation below:

This is the Bohr frequency rule and is the basis of all quantitative spectroscopy (92). In 

terms of wavelength and wavenumber ( v ), where the wavenumber is defined as the 

reciprocal of the wavelength in centimeters (1 A,), the equation is as follows:

1.3.5 Absorbance

Absorption is a process in which a chemical species in a transparent medium selectively 

attenuates certain frequencies of electromagnetic radiation (30), as mentioned 

previously. Every elementary particle (atoms, ions or molecules) has a unique set of 

energy states, and at room temperature most of these particles are in their ground state,

A E  =  E 11 -  E 1 =  h v Equation 1-12

E  
A

Equation 1-13
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the lowest energy state. When an elementary particle is subjected to a photon of 

electromagnetic radiation, absorption occurs if  the energy of the photon matches exactly 

the energy difference between the ground state and one of the higher energy states of 

the particle. The energy of the photon is transferred to the atom, ion, or molecule, 

converting it to the higher energy state, an excited state (see section 1.3.7).

I
<--------->

Absorbing solution of 

concentration c

Figure 1-13 Attenuation of a beam of radiation by an absorbing solution (adapted from Skoog, D.A, 
D.M. West, and F.J. Holler, Fundamentals of Analytical Chemistry. Sixth Edition, 1992, p519)

Figure 1-13 illustrates a beam of parallel monochromatic radiation passing through an 

absorbing solution with a concentration c and a path length /, (measured in cm). 

Interactions between the photons and the absorbing species decrease the intensity of the 

beam from Iq to I. The transmittance T of the solution is defined as the fraction of 

incident radiation transmitted by the solution and is often expressed as a percentage.

T  =  — Equation 1-14

The absorbance A of the solution can be defined by the following equation:

= - l o g i c  î ’  =  l ° g
( L \' O

v / y
Equation 1-15
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1.3.6 Beer-Lambert Law

The Beer-Lambert law states that the absorbance of a solution is directly proportional to 

the path length and to the concentration of the absorbing species (8 8 ) defined as 

follows:

A — log

A — absorbance

s = molar absorptivity (L.cm^.mol1), defined as the probability of an electronic 

transmission from the ground state to an excited state 

c = concentration of the analyte (mol. L'1)

/ = path length (cm)

Deviations from the linear relationship between absorbance and concentration occur at 

high analyte concentrations (usually > 0.01M) where the average distance between 

absorbing species is reduced affecting the charge distribution of neighbouring particles. 

This interaction can alter the ability of the particles to absorb a given wavelength of 

radiation (30).

1.3.7 Chromophores

pH indicators are weak organic acids with unsaturated functional groups, termed 

chromophores, which absorb in the visible region of the electromagnetic spectrum (30). 

Table 1-2 below presents a number of organic chromophores containing unsaturated 

double or triple bonds. To understand why chromophores are responsible for absorption 

it is necessary to describe the electronic transitions that occur within a molecule when it 

is subjected to electromagnetic radiation. Two types of electrons are responsible for the 

absorption of ultraviolet and visible radiation by organic molecules. These include 

shared electrons that participate directly in bond formation and are thus associated with 

more that one atom, and unshared outer electrons (i.e. non-bonding) that are localised 

about atoms such as oxygen and nitrogen (30). The wavelength at which organic 

molecules absorb depends upon the strength of the bonds within the molecule. For
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instance, the electrons may be in strong a  bonds (covalent bond formed between two 

nuclei), in weaker it bonds (bond formed by the sideways overlap of two parallel p  

orbitals) or non-bonding n (molecular orbitals that do not participate in bonding) (93). 

When energy is absorbed all these types of electrons can be elevated to excited 

antibonding states that can be represented diagrammatically as in Figure 1-14, the 

antibonding states represented as <r* and n* (8 8 ).

Chromophore Example •̂max (nm) Emax
Alkene C6H]3CH = CH2 177 13,000

Conjugated alkene c h 2 = c h c h = c h 2 217 2 1 , 0 0 0

Alkyne C 5HnC = C -C H 2 178 1 0 , 0 0 0

196 2 , 0 0 0

225 160

Carbonyl CH3COCH3 186 1 0 0 0

280 16

Carboxyl CH3COOH 204 41

Azo CH3N = NCH3 339 5

Nitro c h 3n o 2 280 2 2

Nitrate c 2h 5o n o 2 270 1 2

Aromatic Benzene 204 7,900

256 2 0 0

Table 1-2 Absorption characteristics of some common organic chromophores (30)

----------------------- --------- ------------  n

----------------------------------------  7T

------------------------------------------ G

Figure 1-14 Bonding and antibonding energy transitions

42



The shared electrons in single bonds such as C-C and C-H are so firmly held that their 

excitation requires energies corresponding to wavelengths below 2 0 0 nm in the vacuum 

ultraviolet region (a—* a* transitions) (30, 8 8 ). n —*• n* and n —>7t* absorptions occur in 

the near ultraviolet and visible region and result from the presence of chromophores (i.e. 

functional groups containing double or triple bonds) where the electrons are relatively 

loosely held and thus easily excited (30, 8 8 ). Chromophores have characteristic molar 

absorptivities s and absorb at fairly well defined wavelengths. The wavelengths of these 

characteristic absorptions and their molar absorptivities are often greatly changed due to 

the presence o f other chemical groups in the molecular structure. It has been found that 

groups such as -OH, -NH 3 and halogens, which all possess unshared electrons, cause 

the normal chromophore absorptions to occur at longer wavelengths (i.e. displaced 

towards the red end of the spectrum, known as a Red Shift) with an increase in the 

molar absorptivity. Groups that cause this shift are known as auxochromes (8 8 ).

1.3.8 Optically Responsive Polymer Films

Optically responsive polymer films typically consist of -33 wt% polymer (e.g. 

polyvinylchloride (PVC), cellulose acetate), -64  wt% plasticiser (e.g. dibutyl sebacate), 

-1-5 wt% host compound (e.g. pH indicator dye), and additives (e.g. lipophilic salts) 

(94). Polymers such as PVC and cellulose acetate have a high glass transition 

temperature (Tg) and are very brittle (89). Plasticisers are materials that are added to 

polymers to increase their flexibility (95). Without plasticisers, the high density of the 

polymer chains hinders diffusion of ions and gases in the polymer matrix. The 

immobilisation of the pH indicator dye and the role of lipophilic salts in the polymer 

membranes are discussed in detail in Chapter 4.
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2 Development of an Autonomous, Wireless pH and Temperature 

Sensing System for Monitoring Pig Meat Quality
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2.1 Introduction

Despite many efforts over the years, there is still very little consensus regarding 

methods o f  measuring the physical characteristics o f  meat and meat products. M any 

methods have been published but only one procedure to date has been agreed upon 

internationally, and that is for b eef (1). Standardisation o f  methods is essential i f  

investigations carried out by different groups are to be directly comparable. Thus som e  

agreement should be made regarding methods o f  measuring the physical quality 

characteristics o f  meat and meat products. In an attempt to standardise methods it has 

been reported that the rate o f  pH and temperature decline post-mortem, together with  

the final pH o f  the m uscle along with other conditions at the slaughter plant such as 

chilling regimes should all be documented (1). A s previously discussed, the rate o f  post

mortem lactic acid production in pig carcasses is closely  associated with carcass 

temperature. In this section, the initial work on capturing pig  carcass chilling profiles 

using self-contained, autonomous temperature sensing units is described. The continual 

carcass temperature monitoring attempts to show how closely  poor carcass chilling rates 

(affected by chill type, chill location o f  carcasses, chill density, and chill filling rates 

etc.) are linked to incidences o f  PSE in pigs. During the field trials it was soon realised 

that in order to establish an accurate relationship between carcass chilling rates and the 

incidence o f  PSE, detailed analytical data on the rate o f  pH and temperature decline is 

needed. This requirement has lead to the development o f  a new wireless battery 

powered data collection system  for monitoring pH and temperature.

2.1.1 RF Temperature Monitoring System

The RF Temperature M onitoring System  consists o f  a RF logger unit, a base unit, a 9- 

volt power supply m odule, a 9-pin R S232 cable for PC/laptop interface and RF 

Temperature Logger Control Software (RfTem pLogV06), Figure 2-1 and Figure 2-3. 

The RF temperature logger unit is controlled via the software through the RF base unit, 

which attaches to the PC/Laptop through the R S-232 port. A  9-volt power pack is 

included to power the RF base unit, Figure 2-1. The battery lifetim e o f  the RF logger 

unit depends on the sam pling frequency i.e. 1 year with hourly RF communication with 

the base Unit. The RF transmission frequency is 433M H z and the maximum RF 

operating range or m axim um  distance between the base unit and the logger unit for data 

transfer is approximately 10 metres in free space. The RF logger unit has the mem ory
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capacity to store 32,000 temperature readings. The operating range o f  the temperature 

sensor is from -1 8  to 85°C, resolution 0.5°C and accuracy 2°C.

Unit
Laptop

Figure 2-1 The RF Temperature Monitoring System
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Figure 2-3 The RF Temperature Logger Control Software

Once the software is installed selecting ‘Start’, ‘Programs’, ‘rftlv06’, m ay access it. A  

front panel w indow  w ill open with 4 selection buttons across the top allowing the user 

to choose the operation required.

'Start logging' operation begins a logging operation in one o f  two m odes, M ode 1 

logging for a predefined duration, or M ode 2 logging indefinitely until stopped by the 

user.

'L ogger Status' M ode 3 allows the user get an update on a loggers current operating 

m ode without interfering with the current operation o f  the logger.

'L ogger R eadback' M ode 4 allows the user get a more complete update on a loggers 

current operating m ode without interfering with the current operation o f  the logger. This 

m ode w ill return a graph o f  all temperatures recorded to date and allows the user the 

option to save an ASCII text file o f  this data for entry into a data analysis package.

'Stop Logging' M ode 5 allows the user stop an active logging session. This w ill stop 

both m odes 1 or 2  operation regardless o f  the current status.
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2 . 1 . 1 . 2  R F  T e m p e r a t u r e  L o g g e r  D e s i g n

Robust packaging is one o f  the m ost important requirements o f  the RF temperature 

logger unit. The unit must be sealed (in accordance with IP67 or IP68 rating (2)) able to 

function in hostile environments whether it is com pletely submerged in water or is 

submitted to very m oist conditions as in cold storage. A s a result a number o f  methods 

and different types o f  packaging were tested.

Initially the circuit boards and power supply (2 A A  Batteries) were placed in Datec- 

Pocket Boxes (Part No: A 9072119) with sealing IP65 (protection against spraying 

water), Figure 2-4a. IP65 rating is not sufficient protection for very w et conditions. To 

ensure maximum protection these boxes were then sealed with translucent sealant, 

Figure 2-4b, and finally with black insulating tape Figure 2-4c. Although the boxes are 

com pletely sealed, this method w ill only suffice for short-term use. For applications that 

require temperature monitoring over a longer period o f  tim e i.e. up to 1 year, a more 

robust package is required. For this reason a new com pletely waterproof box was 

specifically designed Figure 2-5. As the temperature sensor chip (A D 7814) is integrated 

onto the circuit board inside the box, it is important to design a robust box that 

sufficiently seals the circuit without compromising the temperature response time.

a. b. c.

Figure 2-4 Illustrates complete sealing o f the Datec-Pocket boxes (6.5 x 12.0 x 2.2 cm) a. OKW  

enclosure with seal b. silicon used to completely seal the box c. tape ensures maximum protection
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O-ring seal Allen locks

a. b.

Figure 2-5 The specially designed waterproof box (8.4 x 14.2 x 2.5 cm) with an o-ring seal a. robust 
box with two separate compartments b. 14 alien locks secure the lid in place and exerts pressure on 
the o-ring to form a tight seal. The temperature sensor is integrated onto the circuit board so the 
surface of the box was milled out to reduce the thickness of the box to maximise temperature 
response times

2.1.2 pH and Temperature Correlation

pH measurements are highly temperature dependent and this is especially important 

when pH is used to predict meat quality. For accurate pH measurements, electrodes 

must be carefully calibrated and the sample temperature noted. Today, m ost electrodes 

have a temperature sensor (thermistor) embedded in the body. The signal from the 

thermistor is fed back into the meter electronics to provide temperature compensation 

for changes in the N em st slope factor. However, this feature is unfortunately not 

included in the spear type electrode sourced for this project to perform pH 

measurements in meat and penetrable solids (KCMSW 11/KNIPHE; Thermo Russell, 

Auchtermuchty, Fife, Scotland), Figure 2-7. A  specialist logger was designed  

specifically for this application, Figure 2-6, and has several input channels allowing the 

pH and temperature o f  the sample (meat) to be accurately recorded. It also has an 

additional temperature input channel that records ambient temperature changes. For 

example, this unique feature allows the effects o f  the surrounding temperature 

environment (i.e. chill room temperature) on the carcass to be evaluated while  

sim ultaneously measuring the core carcass temperature near the site o f  the pH 

measurements. Finally, com m ercially available pH meters do not have RF (Radio 

Frequency) w ireless communications and networking capabilities. In contrast, the multi 

channel pH/temperature logger developed specifically for this project enables real-time 

temperature profiles to be captured in multiple carcasses from almost im m ediately after 

slaughter, through out the various processing stages, and particularly in cold storage. 

The use o f  a localised Low Power W ireless Network (LPW N) o f  sensing devices allows
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this to happen without cumbersome and awkward wiring, and facilitates remote access 

to the information e.g. via web links web-enabled databases o f  real-time and archived 

data.

2.1.3 Wireless pH/Temperature Monitoring System

The prototype W ireless pH/Temperature M onitoring System  was developed in 

collaboration with W histonbrook Technologies, London, UK , specifically for this 

project. The system  includes 2 logger units, a base station and an RS232 cable (links the 

base station to the PC), Figure 2-6. Each logger unit is powered by 3 A A  batteries and 

comprises a PIC microprocessor, EEPROM memory, a RF transmission m odule (RF 

transmission Frequency 433M H z), two temperature sensors (10K3A1 thermistor with a 

resistance o f  10k at 25°C ±  2%, a 5K thermistor with a resistance o f  5K at 25°C ± 1 % )  

integrated into two stainless steel probes, and a pH sensor. The combination pH glass 

electrode fits securely inside a stainless steel knife allowing safe penetration o f  sem i

solid materials, Figure 2-7. The integrated temperature and pH sensors take 

measurements at one-second intervals (M ode 1 for testing and calibration) or at five- 

minute intervals (M ode 2 for standard operations).

The base station is powered by  4 A A  batteries and comprises a PIC microprocessor, 

EEPROM memory, a RF receiver m odule (receiver frequency 433M Hz), an RS232  

transceiver and a real tim e clock. W hen the logging unit is within range o f  the base 

station (up to 10 meters) the logger transmits the pH & temperature measurements 

sim ultaneously to a base station via the low  power RF communications. Each logger has 

a unique identification code that enables the base station to recognise the incom ing data 

from each logger. Data is received by the RF receiver from the logger as a string o f  

values. The base station then sorts the data by logger id and stores the values on the 

EEPROM mem ory chips. The values are also transmitted via the RS232 cable to a 

PC/Laptop. Visual Basic software is used for data capture and real time traces are 

displayed. The sensors are designed to monitor the external ambient temperature and the 

internal m uscle pH and temperature o f  the carcass from the moment it enters the chill 

room, (see Appendix 1 for circuit board diagrams and software flow  charts for both the 

RF logger and the base station).
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and Temperature Sensors

Figure 2-6 Wireless pH/Temperature Monitoring System consists of a pH probe and 2 temperature 
probes attached to an RF data logging unit which transmits the pH and temperature data to the RF 
base station via low power radio frequency communications. An RS232 cable connects the RF base 
station to a laptop where the pH and temperature data are displayed in Visual Basic software.
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E xternal T em perature Probe

Temperature pH Probe Stainless Steel Knife Combination
Probe (K/KnipHe/11) (K/KnipHe) Glass Electrode

(KCMSW11)

Figure 2-7 Data logger with pH and temperature probes. The combination glass electrode 
(KCMSW11) fits securely inside a stainless steel knife (K/KnipHe) allowing safe penetration of 
semi-solid products i.e. meat products

2.2 Experimental

2.2.1 Measuring the Sensor Response Time o f the RF Temperature

Monitoring System

The RF Temperature M onitoring System was programmed to operate in M ode 2 and the 

sampling frequency was set to 1 minute. The loggers were allowed to equilibrate at 

room temperature before they were com pletely submerged into a polystyrene container 

o f  ice and water. The tim e taken for the temperature to reach 90% o f  the step change 

was used to determine the response time.
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2.2.2 Monitoring the Chilling Rates of Pig Carcasses

The Radio Frequency Temperature M onitoring System , Figure 2-1, was used to monitor 

the chilling rates o f  the pig carcasses. The accompanying software enables various 

logger parameters to be set prior to com m encing a run (start time, end time, delay). A  

Gateway Laptop PC was used to collect the experimental data. Post-run data processing 

was performed using M S-EXCEL ’97. Field trials using the RF Temperature 

M onitoring System  were performed with the assistance o f  the staff at Galtee Meats, 

M itchelstown, Co. Cork. The chilling rates o f  pig carcasses were monitored both 

directly (com plete contact with the meat) and indirectly (measuring the environment i.e. 

ambient temperature o f  the chill rooms). The RF Temperature Monitoring System was 

programmed to operate in M ode 2 and the sampling frequency was set to 1 minute.

2.2 .2 .1  Indirect Temperature Sampling

Sam pling points chosen were as follows:

■ 1st m ethod: Loggers were placed at various points in the selected chill room i.e. 

in the centre and outer edge o f  the chill room. The loggers were placed before 

the carcasses began entering the chill room.

■ 2nd m ethod: Loggers were strapped to the surface o f  carcasses at selected areas 

in the chill room, Figure 2-8a. The loggers were attached imm ediately as the 

carcass entered the chill room at 45m in post-mortem (the tim e taken for the 

carcass to reach the chill room after slaughter).
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2 . 2 . 2 . 2  D i r e c t  T e m p e r a t u r e  S a m p l i n g

The loggers were inserted to a depth sufficient to immerse com pletely the temperature- 

sensitive part o f  the logger and to m inim ise errors due to heat conduction from other 

areas, Figure 2-8a & Figure 2-8b.

a. b* c.

Figure 2-8a. Dlustrates the temperature logger strapped to the carcass (indirect sampling). Figure2- 
8 b & 2 -8c show the temperature logger inside the longissimus dorsi muscle (direct sampling)

2.2.3 Calibration o f the Wireless pH/Temperature Monitoring system

The buffers (pH 4.01 buffer capsules, Product Code BC54, and pH 7.00 buffer capsules, 

Product Code BC 57, Thermo Russell) used in the calibration were traceable to the 

IUPAC/NIST pH scale. The pH electrodes were supplied with specified pH and 

temperature values for the pH 4.01 and pH 7.00 buffers used.

2.2 .3 .1  Slope and Offset Calibration

The pH and temperature probes for both RF data-logging units were placed in the pH

7.00 buffer solution at 25°C. The pH and temperature values o f  the buffer solution were 

transmitted every second (M ode 1) via radio frequency communications to the base 

station connected to the laptop where the Visual Basic software displayed the data in 

real time. The offset w as adjusted manually in the software until a pH value equal to

7.00 was displayed on the screen. The same procedure was repeated using the pH 4.01 

buffer solution but this tim e the slope was manually adjusted to give a pH value equal
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to 4.01. This solution was replaced by  the pH 7.00 buffer solution. I f  the software 

displayed a pH value equal to 7.00 then the pH probe was calibrated correctly.

2 .2 .3 .2  Temperature Calibration

The pH 7.00 buffer solution was raised to 50°C. The solution was slow ly cooled  

(approximately 4°C per minute) to 2°C. A s the temperature decreased, a pH and 

temperature reading was transmitted every second (M ode 1) to the laptop where the data 

was plotted in real-time. The above procedure was carried out for each logger. The 

change in pH with temperature for the pH 7.00 buffer solution was then compared to the 

IUPAC specified values for the pH 7.00 buffer solution and the accuracy o f  the pH 

probes was determined. This procedure was repeated (n=2) for both loggers 8 months 

later as a stability study.

2.2.4 Measuring the Temperature Response Time o f the Wireless 

pH/Temperature Monitoring System

The W ireless pH/Temperature M onitoring System  was set up in M ode 1 (pH and 

temperature readings taken every second). The temperature probe was com pletely  

submerged in a mixture o f  ice and water contained in a polystyrene cup. The 

time/temperature data was recorded and processed.

2.2.5 RF Loggers and Base Station Set-up

The trials took place in selected chill rooms at the Galtee Meats abattoir, M itchelstown, 

Co. Cork. Before com m encing each trial run the pH and temperature probes o f  loggers 1 

& 2 were calibrated in M ode 1 as per section 2.2.3.1 above. The loggers were then set to 

the standard operating m ode (M ode 2) where the pH and temperature inputs were 

sampled at 5-minute intervals. For each trial run two carcasses were selected as the 

carcasses entered the chill room, approximately 45 minutes post-mortem (this is the 

approximate tim e taken for the carcasses to reach the chill follow ing slaughter) using an 

independent pH probe (Description: SenTix SP pH penetration probe). The probe was 

calibrated in buffers pH 4.01 and pH 7.00 (pH 4 buffer, BC54: pH 7 buffer, BC57: 

Thermo Russell) before taking measurements. The criteria for selecting carcasses were 

as follows: PSE carcass -  pH<5.8 at 45 minutes post-mortem; Normal or DFD carcass -
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pH >  6.0 at 45 minutes post-mortem. The pH electrode was inserted ~10cm  into the 

longissim us dorsi m uscle at the height o f  the 10 th dorsal vertebrae, near the fat layer. 

W hen the pH probe equilibrated a pH reading was recorded.

The position o f  the base station in the chill room relative to the loggers was very 

important. In these trials the distance between the loggers and the base station was kept 

to a m inimum i.e. ~  1 meter. The base station was secured to the wall o f  the chill room  

at an equal height from the ground (or slightly higher/lower) to that o f  the loggers, 

which were attached to carcasses, Figure 2-9. The carcasses were placed side by side in 

the chill room (on the outer edge) directly in front o f  the base station with no interfering 

carcasses. The pH and temperature probes were inserted ~  10cm into the longissimus 

dorsi m uscle. A  LED on the base station indicated that both loggers were transmitting 

data. The loggers remained attached until they were removed the next day (up to 24 

hours later) as the carcasses left the chill room for further processing.

B ase Station attached
to ch ill room  w all

k
a. b.

Figure 2-9 Illustrates the pH  and temperature monitoring system in operation. The pH probes are 
inserted to a depth of ~10cm into the longissimus dorsi muscle. The RF logger takes a pH and 
temperature reading every 5 min and transmits this data to the RF base station on the wall.

T em perature
Probe

pH  Probe
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2.3 Results and Discussion

2.3.1 Measuring the Sensor Response Time of the RF Temperature 
Monitoring System

Figure 2-10 indicates that when the RF temperature logger was submerged in a 

polystyrene container o f  iced water it reached 90% o f  the step change in ~8 minutes. 

The initial temperature (TO was taken as 20.5°C and the final temperature (Tf) was 0°C, 

the temperature o f  iced water. Therefore, a step change o f  90% (T90) is equivalent to 

2.1°C.

~8 minutes--------->

Time (minutes)

Figure 2-10 Illustrates the temperature response time for the RF Temperature Monitoring System. 
The temperature reached 90% of the step change (T90) in ~  8 minutes. T| = 20.5°C, Tf = 0°C (iced 
water), therefore T90 = 2.1°C.
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2.3.2 Monitoring the Chilling Rates of Pig Carcasses

2.3 .2 .1  Indirect Temperature Sampling

The loggers were placed in the chill rooms to monitor the ambient temperature and to 

compare the ambient temperatures o f  different chill rooms. The ambient temperatures o f  

three different chill rooms on three different days were compared, Figure 2-11. The 

graph clearly shows the variability o f  the ambient temperatures between the different 

chill rooms. A ll three loggers were placed in similar positions i.e. on the wall o f  the 

chill room. During the initial period there are large temperature fluctuations in all three 

chill rooms. There are two reasons for this. Firstly, the temperature increases as warm  

carcasses fill the chill room. Secondly, an initial defrost-freeze-defrost process slow ly  

chills the carcasses. During the blast freeze process the ambient temperature can fall 

below  -5°C  and during the defrost period the ambient temperature rises to 

approximately 10°C. Loggers were strapped to carcasses as another indirect approach to 

monitoring the cooling system. Figure 2-12 shows how  the ambient/carcass temperature 

can vary within a chill room. This graph indicates that the ambient temperature in the 

centre o f  the chill room is lower than the ambient temperature on the outer region.

Time (hours)

loggers placed in ----- a m  Room g
chill rooms

---- - Chill Room 6
----- Chill Room 7

Defrost-freeze-defrost cycle and warm carcasses entering 
the chill room cause the temperature to fluctuate

Figure 2-11 Comparison of ambient temperature of 3 different chill rooms on 3 different days

Once again, the temperature fluctuations due to the initial defrost-freeze-defrost process 

can be seen. The ambient temperature finally equilibrates between 3 and 4°C. The
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ambient air temperature is also monitored by Galtee M eats using a temperature probe, 

which is fixed close to the vents where the freezing air is expelled. The temperature 

loggers were attached to the warm carcasses. Therefore, this explains the temperature 

difference in the profiles obtained from the temperature loggers and the Galtee Meats 

temperature probe.

2 .3 .2 .2  Direct Temperature Sampling

The direct sampling approach indicates that the carcass temperature decreases 

exponentially over time. Figure 2-13 shows the relationship between the ambient 

temperature and the chilling rates o f  2 adjacent carcasses in the same chill. The 

m axim um  internal carcass temperature registered by the loggers was ~35°C almost 20 

minutes after the loggers were placed inside the carcasses.

Time (hours)

Figure 2-12 Illustrates the variation in ambient/carcass temperature within a single chill room
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Figure 2-13 Shows the cooling curves for 2 carcasses in the same chill room

Poor chilling at the slaughter plant w ill increase PSE because the internal temperature 

o f  the meat is lowered too slow ly. In this project, the autonomous temperature sensors, 

monitoring tim e and temperature give an indication o f  how  chill type and carcass 

location within the chill m ay have an affect on the chilling rates o f  carcasses. 

Temperature can be measured directly (com plete contact with the meat) or indirectly 

(measuring the environment i.e. ambient temperature o f  the chill rooms). The indirect 

approach is an easy m ethod and there is no sample destruction. However, measuring 

ambient temperature alone w ill not give an accurate internal carcass temperature 

profile. Furthermore, the ambient temperature varies in a chill room, Figure 2-12. This 

is due to an uneven distribution o f  cold air, which w ill therefore cause the internal 

temperature o f  the carcasses to cool down at different rates. Poor air-circulation in 

specific locations in a chill room w ill therefore increase the amount o f  PSE carcasses. 

Normal carcasses can eventually becom e PSE i f  the internal carcass temperature is 

lowered too slowly.

Figure 2-11 gives the ambient temperatures o f  three different chill rooms obtained with 

loggers placed in similar positions i.e. on the walls. The results vary greatly. The 

ambient temperature for chills 6 & 7 follow  similar trends from the beginning where 

the carcasses enter the chill room to the end where the carcasses leave the chill room. 

The graph shows that chill room  7 is a few  degrees lower during the entire temperature
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trace. On the other hand, the temperature profile for chill room 8 varies dramatically 

with ambient temperatures as high as 11 °C at the beginning w hile the chill room is 

being filled to below  0°C for the last 9-10 hours. During the last 9-10 hours o f  the 

temperature trace for chill rooms 6 & 7 the temperature equilibrates between 3 & 4°C. 

The varying ambient temperature for all three chill rooms indicates a lack o f  accurate 

and precise temperature control. Slower cooling rates allow  a longer period for lactic 

acid production, and can result in PSE where previously there m ay not have been any. 

The other extreme, very rapid chilling m ay reduce PSE incidence to a certain degree 

but other aspects o f  meat quality would be compromised, see section 1.1.4. Therefore, 

there is a need for temperature control in the chill rooms.

B y  inserting the loggers into the carcass to a depth sufficient to immerse com pletely the 

temperature-sensitive part o f  the logger, a more accurate temperature profile o f  the 

internal carcass temperature can be obtained, Figure 2-13. The RF Temperature Logger 

is relatively large (12cm  x  6.5cm  x  2.2cm ) and the temperature sensor is embedded on 

the circuit board inside the protective box. The air pocket inside the box must first be 

heated to the temperature o f  the carcass resulting in a sluggish response time. The 

response time for this particular application is too slow  as it took almost 20 minutes for 

the logger to register the internal carcass temperature, Figure 2-13. This method o f  

sampling is destructive and unappealing to the meat industry.

The internal carcass-chilling rate has been measured using an autonomous temperature 

m onitoring system designed and developed by the N C SR  and Analog D evices, 

Limerick. Limitations and challenges presented by the RF Temperature Monitoring 

System  have been identified during the field trials. To overcom e the limitations a 

unique W ireless pH/Temperature Sensing System  has been developed that not only  

monitors internal carcass chilling rates with excellent temperature response tim es and 

m inimum sample destruction it also monitors intramuscular pH. The results obtained by  

the W ireless pH/Temperature Sensing System  are displayed in the following section.

2.3.3 Measuring the Temperature Response Time of the Wireless 

pH/Temperature Monitoring System

Figure 2-14 shows that when the temperature probe was submerged in a polystyrene 

container o f  iced water it reached 90% o f  the step change in 5 seconds. This is a 

dramatic improvement in the temperature response time compared to ~8 minutes for the 

RF Temperature M onitoring System  Figure 2-10.
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Figure 2-14 Illustrates the temperature response time o f the Wireless pH/Temperature Monitoring 
System. The temperature reached 90% of the step change (T90) in 5 seconds. Tj = 20.10°C, Tf = 0°C 
(iced water), therefore T90 = 2.0°C.

2.3.4 Calibration o f the Wireless pH/Temperature Monitoring System

The determination o f  the temperature dependence o f  buffer pH 7.00 was carried out 

using the W ireless pH/Temperature Sensing System  according to the experimental 

procedure outlined. The results were then compared to the IUPAC values o f  the 

temperature dependence for buffer 7.00 (values are traceable to the IUPAC pH scale; 

Radiometer). Electrodes cannot be produced with exactly identical characteristics and 

different manufacturers produce different electrodes. The results from these studies 

prove that the pH probes o f  loggers 1 & 2 performed w ell and with great similarity. The 

results show that the pH probes perform closely  to the IUPAC pH scale. This allows 

valid comparisons o f  meat pH and temperature measurements between different 

carcasses to be made.
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2 . 3 . 4 . 1  L o g g e r  1 C a l i b r a t i o n

Figure 2-15 shows the experimental pH and temperature relationship for a pH 7.00 

standard buffer solution over the temperature range 0°C to 50°C. This illustrates the 

temperature dependence o f  pH and the possible error associated with it i f  the data is not 

corrected to the ‘true’ IU P A C  values.

Tem perature (degrees celcius)

Figure 2-15 The pH and temperature relationship for a pH 7.00 standard buffer solution over the
temperature range of 0-50°C demonstrated using the pH and temperature probes of logger 1 -  see
Appendix 1-6 for experimental data.

A  polynom ial curve is the best fit for both sets o f  data. The polynom ial equations are as 

follows:

Logger 1: y  = 5 x 1(T 5 x 2 -  0 .0075x +  7.1592 Equation 2-1

IUPAC: y  = 7 x 1 0 '5 x 2 -  0.0063x +  7.1167 Equation 2-2

The above polynom ial equations relate the pH o f  the standard buffer pH 7.00 with 

temperature over the range 0°C to 50°C. B y substituting the x values in the above 

equations with temperature values ranging from 0°C to 50°C (see Appendix 1-6) the 

curves in Figure 2-16 are obtained.
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Figure 2-16 Compares the temperature dependence for pH 7.00 standard buffer using logger 1 with 
the IUPAC pH scale

The pH probe o f  logger 1 was corrected to the IUPAC values (see Appendix 1-6) and 

the difference was expressed in  the form o f  a sim ple equation:

Y  =  2  X  1 0  s X 2 +  0 .0 0 1 2 X  +  0 .0 0 4 2 5  Equation 2-3

Equation 2-3 thus represents the correction formula applied to the pH and temperature 

profiles for logger 1. The same procedure was repeated for logger 2.

♦ IUPAC 

■ Logger 1

..........

*»«ii
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2 . 3 . 4 . 2  L o g g e r  2  C a l i b r a t i o n

Figure 2-17 shows the experimental pH and temperature data for pH 7.00 standard 

buffer as the buffer solution is heated from ~0°C to 50°C. This illustrates the 

temperature dependence o f  pH and the possible error associated with it i f  the data is not 

corrected to the ‘true’ IUPAC values.

Temperature (degrees celcius)

Figure 2-17 The pH and temperature relationship for a pH 7.00 standard buffer solution over the 
temperature range of 0-50°C demonstrated using the pH and temperature probes of logger 2 -  see 
Appendix 1-7 for experimental data.

A  polynom ial curve is the best fit for both sets o f  data. The polynom ial equations are as 

follows:

L ogger 1: y  =  6 x  10‘5 x2 -  0 .0073x +  7 .1486 Equation 2-4

IU PA C : y  =  7 x  10'5x2-  0 .0063x +  7 .1167 Equation 2-5

The above polynom ial equations relate the pH o f  the standard buffer pH 7.00 with 

temperature over the range 0°C to 50°C. B y substituting the x values in the above 

equations with temperature values ranging from 0°C to 50° (see Appendix 1-7) the 

follow ing curves in Figure 2-18 are obtained.
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Figure 2-18 Compares the temperature dependence for buffer pH7.00 using logger 1 with the 
IUPAC pH scale

The pH probe o f  logger 2 was corrected to the IUPAC values and the difference 

expressed in the form o f  a sim ple equation:

Equation 2-6 is the correction factor applied to the pH and temperature profiles for 

logger 2.

2.3.5 Repeat Calibration Studies

Repeat (n=2) pH-temperature correlation studies were performed 8 months later to 

evaluate the stability o f  the pH probes o f  both loggers, Figure 2-19 and Figure 2-21. The 

same experimental procedures and data processing techniques were followed as 

discussed in section 2.2.3. These repeat studies show that both pH probes were very 

stable considering their repeated use for the pH and temperature monitoring trials 

carried out at Galtee M eats, M itchelstown, Co. Cork. The margin o f  error was very 

narrow between all three studies for both probes. The standard deviation over the 8- 

month period was 0.012 pH units for logger 1 and 0.015 pH units for logger 2 over a 

temperature range o f  0°C to 50°C. The measuring temperature range for pig carcasses 

was approximately betw een 42°C (initial temperature at -4 5  minutes post-mortem) and 

3°C (final temperature at - 2 4  hours post-mortem). The largest standard deviation

Y  =  1 x 10’5 x 2 +  O.OOlx -  0.0312 Equation 2-6
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between 42°C and 3°C was 0.0069 pH units for logger 1, Figure 2-20, and 0.0096 pH 

units for logger 2, Figure 2-22. In the m eat industry an accuracy o f  ±0.05 pH is often 

expected (3). A s a result o f  performing the pH and temperature correlation studies and 

correcting the pH values for temperature effects using easily derived equations, the pH 

probes were extrem ely stable during the 8-month period and the error was w ell below  

the typical accuracy o f  0.05 pH units for meat measurements.

Tem perature (degrees celcius)

Figure 2-19 Repeat calibrations of logger 1 to illustrate the stability of the pH probe. An initial 
calibration was performed followed by 2 calibrations 8 months later.

Tem perature (degrees celcius)

Figure 2-20 Standard deviation curve of all three calibrations for logger 1. As the temperature 
increases from 0°C to 50°C the pH decreases. The largest deviation occurs at 50°C. STDEV = 0.012 
pH, at 50°C pH = 6.92 ±  0.012 (see Appendix 1-8 for STDEV values)
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0 10 20  30 40 50

Tem perature (degrees celcius)

Figure 2-21 Repeat calibrations of logger 2 to illustrate the stability o f the pH probe. An initial 
calibration was performed followed by 2 calibrations 8 months later.

Tem perature (degrees Celcius)

Figure 2-22 Standard deviation curve of all 3 calibrations for logger 2. As the temperature 
increases from 0°C to S0°C the pH decreases. The largest STDev occurs at 50°C STDEV = 0.015 
pH, at 50°C pH = 6.91 ±  0.015 (see Appendix 1-9 for STDEV values)
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A s already discussed in Chapter 1, the rate and extent o f  post-mortem pH decline has a 

large affect on meat quality. A  rapid rate o f  pH decline in the immediate post-mortem  

period results in low  quality PSE meat. The extent o f  pH decline at 24 hours post

mortem (pHu) w ill also affect meat quality. A  high ultimate pH (above 6.1) w ill likely  

result in meat that is DFD. The results in this section w ill show how the W ireless 

pH/Temperature Sensing System  helps demonstrate this effect.

Three Large W hite x Landrace carcasses were chosen based on spot pH measurements 

taken (at 45 minutes post-mortem) as the carcasses enter the chill room -  normal 

carcasses, PSE suspected carcasses and DFD suspected carcasses. The wireless 

pH/temperature sensors were attached to the carcass at 45 minutes post-mortem and 

removed the follow ing day as the carcasses left the chill room. The profiles were taken 

from carcasses placed in different chill rooms on different days. The carcasses were 

placed in similar positions in all chill room s i.e. near the outer wall o f  the chill room. 

Figure 2-23 and Figure 2-24 show pH and temperature profiles, over an approximate 

20-hour period, o f  a normal and suspected PSE carcass respectively. The PSE suspected 

carcass has a high internal carcass temperature (42°C) and very low  pH value (-5 .5 )  at 

45 minutes post-mortem. The normal carcass displays a gradual decrease o f  pH from 

6.4 to 5.6 over a 20-hour period. Today, pH is generally measured within one hour o f  

slaughter (initial pH or pH45) or at 24 hours (ultimate pH or pHu) post-mortem. If the 

initial pH is below  5.8, the pork m ay be PSE positive because pH dropped both too low  

and too quickly. This meat w ill have an ultimate pH value o f  -5 .6 , as demonstrated by  

the W ireless pH/Temperature M onitoring System  in Figure 2-24. In normal m uscles the 

pH drops to -5 .6  at a moderate rate over a prolonged period, as indicated in Figure

2-23. However, both normal carcasses and PSE carcasses end up with similar pH 

values. On the other hand, meat with an ultimate pH above 6.1 m ay be classified as 

DFD, because pH did not drop to normal levels. The pH profiles displayed in Figure

2-25 follow  these trends for the DFD, normal and PSE carcasses.

2.3.6 pH and Temperature Monitoring of Pig Carcasses
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Figure 2-23 Temperature and pH profile o f a normal carcass. The pH declines gradually from 6.4 
to 5.6 over a 20-hour period.
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Figure 2-24 Temperature and pH profile o f a PSE carcass. The pH is ~5.5 at 45 minutes post
mortem.
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Time (hours post-mortem)

Figure 2-25 pH profiles of PSE, Normal and DFD carcasses. The Normal and PSE carcasses have 
similar pHu values while the DFD carcass has a pHu value >6.0.

From Figure 2-25, at 45 minutes post-mortem, it is possible to distinguish severe PSE 

carcasses from DFD and normal carcasses. On the other hand, at pHu (ultimate pH ~  20 

hours post-mortem) it is possible to distinguish DFD carcasses from PSE and normal 

carcasses. It would be very difficult to differentiate between normal and PSE carcasses 

from pHu alone as both end up with similar ultimate pH values. In order to discriminate 

PSE from normal carcasses it would be necessary to know the rate o f  pH decline for 

both from 45 minutes post-mortem. Figure 2-25 confirms how  m isleading a single pH 

measurement would be either at pH45 or pHu.

There were also a number o f  shorter pH and temperature profiles o f  normal and PSE 

carcasses taken during the first couple o f  hours after slaughter. The results can be seen  

in Figure 2-26, Figure 2-27, Figure 2-28 and Figure 2-29. Figure 2-26 represents the pH 

and temperature profile o f  a typical PSE carcass. At 45 minutes post-mortem this 

particular carcass has a high internal m uscle temperature (42°C) and a low  pH (5.7). 

Figure 2-27 also represents a typical PSE carcass with a high intramuscular temperature 

(42°C) and a very low  pH (5.5) at 45 minutes post-mortem. From an early stage these 

carcasses can be described as PSE. Figure 2-28 represents a carcass suspected o f  being  

PSE. At 45 minutes post-mortem the internal carcass temperature is slightly lower 

(41°C) and the pH is 6.0.
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Figure 2-27 and Figure 2-28 represent 2 carcasses side by side on the same day. Both 

graphs show a dashed line in the pH and temperature curves. This represents a time 

period when the results from both loggers were lost. This can easily  be explained. 

During the trial a staff member accidentally pushed the carcasses out o f  range o f  the 

base station. The carcasses were returned to their original position and loggers 1 & 2 

continued to send the pH and temperature readings to the base station.

Time (hours post-m ortem )

Figure 2-26 Represents a pH & temperature profile o f a PSE carcass.

The added advantage o f  monitoring pH and temperature is that carcasses can be more 

easily identified from an early stage. Take for example Figure 2-28 -  at 45 minutes 

post-mortem the pH is 6.0. According to the literature this carcass falls into the 

‘suspected PSE ’ category. I f  the pH o f  the m uscle falls to 5.8 or lower w hile the m uscle  

temperature is above 35°C then the carcass is prone to PSE. From the graph w e can 

clearly see that this carcass falls into the PSE category. A s already mentioned, recent 

work at the Danish Meat Research Institute has shown that a few, critical pH and 

temperature measurements early post-mortem are sufficient to predict the quality o f  the 

meat. B y  focussing on the initial post-mortem period as in Figure 2-29 w e can see the 

varying rates o f  post-mortem pH decline between PSE and normal carcasses.
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Time (hours post-m ortem )

Figure 2-27 Represents the pH & temperature profile of a suspected PSE carcass. A loss of 
communication between the loggers and the base station due to interference is represented by the 
gaps in the profiles.
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Figure 2-28 Represents a pH & temperature profiles of a suspected PSE carcass
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Initial pH reading at 45 min post-mortem
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Normal
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Hours (post-mortem)

Suspected PSE ) [ PSE

Figure 2-29 Initial pH profiles of 9 carcasses

Figure 2-29 represents the pH profiles o f  nine individual carcasses, which were sampled 

using the w ireless pH/temperature monitoring system. From an early stage, it is evident 

that there is a clear distinction between PSE and Normal or DFD carcasses. A s can be  

seen from the graph, one carcass falls into the suspected PSE category and as time 

progresses the pH profile follow s that o f  a PSE carcass. This observation is 

strengthened further by the pH and temperature data supplied in Figure 2-28 that 

suggests that this carcass is a PSE carcass.

Rapid chilling o f  animal carcasses after slaughter is important for retarding the growth 

o f  both pathogenic and spoilage bacteria. A lso, immediate post-slaughter chilling can 

reduce the adverse effects o f  mild forms o f  PSE (4) because as temperature decline is 

accelerated, the rate o f  pH decline w ill decrease (5). M onitoring the ambient 

temperature and internal carcass core temperature is therefore essential to ensure that 

the m uscle temperature is lowered as quickly as possible soon after slaughter without 

comprom ising other m eat qualities such as tenderness. A s a guideline, normal pork 

m uscles need to be at least 35°C or lower within 2.5 hours after slaughter and should 

reach at least 7°C or low er by  22 hours after slaughter (6). Temperature monitoring is 

therefore essential to ensure acceptable temperature control within the chill rooms.
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The added advantage o f  monitoring pH and temperature in real time is that carcass 

quality can be more easily identified from an early stage. For example Figure 2-28 

shows that at 45 minutes post-mortem the pH is 6.0. According to the literature this 

carcass falls into the ‘suspected PSE ’ category. I f  the pH o f  the m uscle falls to 5.8 or 

lower w hile the m uscle temperature is above 35°C then the carcass is prone to PSE. The 

graph clearly indicates that this carcass falls into the PSE category. Without a detailed 

pH and temperature trace provided by the W ireless pH/Temperature M onitoring System  

this PSE carcass, unidentified during the early post-mortem period by the single pH45 

measurement, is likely to enter the production line and cause great financial loss as a 

consequence. Treating m ild cases o f  PSE in the early post-mortem period can greatly 

improve the p ig  meat quality and overall econom ic gain (4).

M ild forms o f  PSE m ust therefore be identified as soon as possible after slaughter in 

order for the tissue degradation to be prevented. This can be achieved by monitoring the 

course o f  the pH and temperature decline in real-time by the W ireless pH/Temperature 

M onitoring System. Out o f  control signals such as high temperatures and moderate to 

rapid decreases in pH decline m ay be detected by the pH and temperature sensors and 

transmitted to a control station, via RF communications, where a developing PSE 

carcass m ay be quickly identified allow ing corrective actions to take place accordingly

i.e. decreasing the ambient temperature o f  the chill room.

2.4 Conclusion

The ‘W ireless pH/Temperature Sensing System ’ provides valuable information with its 

ability to monitor three parameters simultaneously, internal carcass pH and temperature 

as w ell as ambient temperature. This new  prototype, which incorporates the temperature 

sensor into a stainless steel probe, has an excellent response time. This allows more 

accurate internal carcass temperatures to be recorded as soon as the temperature probe is 

inserted into the carcass in contrast to previous designs, which had a sluggish response 

due to inefficient heat transfer. The stainless steel probe allows the meat to be easily  

penetrated with minimum sample destruction. The purpose built stainless steel ‘knipH e’ 

pH electrode offers m axim um  protection against glass breakage than conventional glass 

pH electrodes designed for meat applications. The probe cuts through the meat, forming 

a slurry that allow s pH measurements to be taken easily with fast response times. This 

provides an easy m ethod o f  monitoring pH and temperature o f  individual carcasses on

line as they cool down. The probes remain attached to the carcass until it leaves the chill
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room for further processing which allow s the pH & temperature probes time to 

equilibrate, resulting in more accurate readings than spot measurements. This eliminates 

the need for taking spot pH and temperature measurements at defined intervals i.e. 

every hour, which can be very tim e consuming. Sampling errors are also m inimised, as 

the sampling position and sampling tim es are constant.

The W ireless pH/Temperature M onitoring System  is a predictive meat quality indicator. 

Real tim e pH and temperature analysis facilitated by wireless communications allows 

poor quality carcasses to be identified early post-mortem. This real-time analysis 

capability allows this prototype to act as a preventative system in quality control i.e. 

initiation o f  corrective protocols m ay prevent suspected cases o f  PSE from becom ing  

seriously PSE. The unique ability to track pH and temperature data from multiple 

sources over tim e forms an excellent traceability system  allow ing data to be accessed  

further down the process line, and facilitating information input into other traceability 

system s that integrate specific carcass information such as ‘farrow-to-fmish ’ operations

(7).
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3 Development of a Web-based Wireless Temperature Sensing

System for the Fishing Industry
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3.1 Introduction

Maintaining the quality o f  chilled fish at sea is very important for m axim ising shelf life  

and value. One o f  the major tools at our disposal for ensuring quality is remote 

temperature monitoring. Coupling temperature sensors with new technologies 

developed by the communications industry opens the door to temperature sensing 

system s that are autonomous, low  power, and capable o f  transmitting data to, and 

receiving instructions from, remote base stations. Autonomous sensing is necessary in 

order to realise the full potential o f  temperature profiling at sea as w ell as m axim ising  

quality control and traceability. W e have developed a unique temperature monitoring 

system  that incorporates both Radio Frequency (RF) and Global System s for M obile 

(GSM ) communications with temperature logging units, enabling temperature data to be 

easily accessed onshore w hile the fishing vessel is still at sea (1-3). The temperature 

data is transmitted to a base station on board the fishing vessel via RF communications. 

The base station is connected to a GSM m odem  phone that allows the temperature data 

to be continuously transferred to an on-line website. The value o f  temperature profiling 

o f  fish catches at sea has been previously demonstrated using comm ercially available 

temperature logging devices (4). The follow ing project highlights the benefits o f  using 

the new ly developed system  compared to previous designs, demonstrating the rapid 

technological developm ents in the area o f  autonomous sensing.

3.2 Preliminary Temperature Monitoring Field Trials using the RF 

Temperature Logging System

The RF Temperature Logging System, described in section 2.1.1, used to record the 

chilling rates o f  pig carcasses in cold storage w as also used to monitor the temperature 

o f  fish catches stored on-board fishing trawlers at sea. Although the bulky design o f  the 

temperature logger proved ineffective for recording the internal temperature o f  pig 

carcasses the same logger design is more suitable for recording the storage temperature 

o f  fish catches, as it is more feasible to submerge a bulky logger into a large container 

o f  iced fish than to submerge it into a single carcass. The effectiveness o f  the logger 

shape and design depends upon the intended application. A  spear type probe is more 

effective for m easuring internal carcass temperature but a bulky design is m ost effective  

for monitoring the temperature o f  a large container o f  fish i.e. 40kg container. The 

follow ing preliminary trials are based on recording the temperature o f  fish catches at sea
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using pre-programmed autonomous sensing devices which are submerged inside 

containers o f  freshly caught fish and retrieved from the containers as soon as the 

trawlers return to the shore where the data is downloaded and analysed.

3.3 RF-GSM Temperature Monitoring Field Trials

3.3.1 RF-GSM Temperature Monitoring System

The prototype W ireless RF-GSM  Temperature M onitoring System was built under 

contract by W histonbrook Technologies Ltd to a specification provided by the DCU  

team.

The prototype system  consists of:

■ 3 RF Temperature Loggers

■ RF Base Station

■ GSM  Base Station (Vodafone 087 network)

■ Rem ote Server Software (Visual Basic 6.0)

■ W eb Connection (M odem)

■ Web Server ( v w w .ioinoicscnsors.dcii.ic)

A  schematic o f  the w ireless temperature monitoring system  can be seen in Figure 3-1. 

A s illustrated, the logger com pletely submerged in a container o f  fish records the 

storage temperature o f  the fish in real time on-board the fishing vessel. W hile still at sea 

the logger communicates the temperature data to the base station via RF 

communications. The base station is connected to a GSM  m odem  phone that allows the 

temperature data to be transmitted to a remote server. Here, the data is automatically 

processed using the specially  designed software, Figure 3-3, which uploads the 

temperature data onto the web site, Figure 3-4. This system allows the temperature data 

o f  the fish catch to be accessed from anywhere in the world while the fishing vessel is 

still at sea.
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3.4 RF-GSM Temperature Monitoring Hardware Specification

Tem perature  Logger

Base S ta tio n

SERIAL/WIRELESS CONNECTION  
TO SERVER

Figure 3-5 Block diagram o f the prototype logger and base station system

3.4.1 Logger Description and Operating Method

The temperature is measured by a 5k 679-434 thermistor (Fam ell) in a sim ple potential 

divider circuit, through a TLV 2772 operational amplifier (Texas Instruments) to a 3V  

PIC16LF872 m icroprocessor (Microchip). The data is processed through the on-board
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10-bit A/D converter and C programmed CPU. The logger ID and 10-bit string 

containing the temperature value is generated and transmitted through a Micro TX RF 

transmitter (433MHz, LPRS Ltd) at 5-minute intervals. Aside from the thermistor, the 

entire system is enclosed within a rugged and waterproof plastic casing, Figure 3-6a & 

b. To ensure very rapid responses to changes in temperature, the thermistor is embedded 

in thermally conductive epoxy in the wall o f the casing Figure 3-6c & d.

c. d.

Figure 3-6a. Logger circuit board with 5k 679-434 thermistor b. Circuit board fixed into rugged 

waterproof plastic box (8.4 x 14.2 x 2.5 cm) c. Thermistor embedded in a cavity in the wall of the 

plastic casing d. The cavity filled with thermally conductive epoxy

3.4.2 Base Station Description and Operating Method

The data string transmitted by the logger is received by the base station via a AM- 

HRX3-433 RF receiver (433 MHz, LPRS Ltd), where it is processed by the 

PIC16LF870 microprocessor (5 V, Microchip) and transferred to the EEPROM memory 

as a 20-bit string containing the 4 bit logger ID, 4 bit temperature value and 12 bit time

89



and 12 bit time stamp. The base station keeps time through a RTC (real-time-clock) 

powered by a Lithium-ion battery. The base station sim ultaneously listens for RF/Server 

communications. On receiving a request from the central server, the base station 

transfers the data through the m obile phone network, via the TC35 GSM  modem  

(Siem ens), or through a direct serial connection. During field trials, communication 

betw een the server and the base station was always executed using the GSM  network; 

the serial connection was only generally used for diagnostic testing. The base station is 

encased within a water resistant plastic box and is powered by  a 12 V  lead-acid battery 

with a lifetim e o f  approximately 1 w eek with continuous operation.

3.5 Experimental

3.5.1 Preliminary Temperature Monitoring Field Trials using the RF 

Temperature Logging System

Although the RF Temperature M onitoring System  described in section 2.1.1 is capable 

o f  monitoring temperature in real tim e by transmitting the data via RF communications 

to a base station connected to a PC/laptop, for the purpose o f  this experiment the 

loggers were pre-programmed before com m encing each trial to operate remotely and 

data was retrieved once the trial was terminated. It was not practical to install the base 

station in the hold o f  the trawler, as there was no outlet from the trawler hold for the 

RS323 cable, which linked the base station to the laptop.

Six RF temperature loggers, ID numbers 01020A , 01020C, 01020E, 010215, 010206 & 

010202 were programmed as follows:

■ Sampling frequency -  1 temperature reading every 10 minutes

■ Start delay -  244 minutes (to allow for transportation o f  the loggers to the 

fishing port at Castletownbere, Co. Cork, Ireland)

■ M ode -  Logger in M ode 2 (logging until stopped)

The temperature loggers were programmed at Dublin City University. Once 

programmed the loggers were transported to the Irish Marine Fisheries, Bord Iascaigh 

Mhara (BIM ) based at Castletownbere, Co. Cork, Ireland. The coastal staff was 

responsible for placing the loggers in the fish boxes on-board the fishing trawlers. Once
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the fishing trawlers returned to the shore the loggers were retrieved and returned to 

D C U  where the temperature data was downloaded. The coastal staff provided a record

o f  events as follows:

■ Freshly caught fish were stored in containers packed with ice in the hold o f  the 

trawler.

■ The loggers were placed in the containers o f  fish once the fish were caught and 

removed from the containers when the trawler returned to the harbour.

■ Three containers o f  fish were monitored based on the type o f  fish, the weight o f  

the container and the position o f  the container in the hold.

■ Two loggers were placed in each container i.e. one in the centre and one at the 

outer edge (to assess temperature variation within a single container).

3.5.2 Measuring the Sensor Response Time of the RF-GSM Temperature 

Monitoring System

The RF-GSM  Temperature M onitoring System  was programmed to operate in ‘M odem ’ 

m ode and the sampling frequency was set to 5 seconds. The loggers were allowed to 

equilibrate at room temperature before they were com pletely submerged into a 

polystyrene container o f  ice  and water. The tim e taken for the temperature to reach 90% 

o f  the step change was used to determine the response time.

3.5.3 Temperature Monitoring Field Trials using the RF-GSM 

Temperature Monitoring System

During the salm on season, June and July 2003, field trials using the RF-GSM  

Temperature M onitoring System  were performed with the assistance o f  BIM , based at 

Dunmore East Harbour, Co. Waterford, on-board salmon and mackerel fishing boats 

Figure 3-7a. The salm on fishing boats were suitable for the initial temperature 

monitoring field trials, as there was already a system  in place under the Wild Salmon 

Quality Scheme to promote good temperature monitoring (i.e. insulated bins were 

distributed for use on-board vessels to store ice and fish Figure 3-7b). A lso, as 

individual salmon were tagged under the quality scheme, this presented a perfect 

opportunity to provide real-time temperature data for the tagged salmon, m axim ising  

the value o f  the catch.
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a. b.

Figure 3-7a. Salmon and mackerel fishing boats at Dunmore East Harbour, Co. Waterford b. 
Insulated bins for ice storage on-board salmon fishing boats

Five temperature-monitoring trials were carried out during the months o f  June and July 

2003. The field trials were performed on-board salmon and mackerel fishing boats, 

based at Dunmore East Harbour, Co. Waterford. The details o f  each o f  the trials are 

given in table 3-1 below:

Trial

N um ber
D ate o f  T rial

V essel N am e  

A nd F ish in g  Port
Species o f  Fish

Trial 1 17/06/03 An Searrach Salmon

Dunmore East

Trial 2 23/06/03 An Searrach Salmon

Dunmore East

Trial 3 24/06/03 An Searrach Salmon

Dunmore East

Trial 4 15/07/03 N ova Dawn Mackerel

Morning Trial Dunmore East

Trial 5 15/07/03 N ova Dawn Mackerel

Evening Trial Dunmore East

Table 3-1 Details of the salmon and mackerel trials
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3.5.4 RF-GSM Temperature Monitoring System Set-up on-board the

Fishing Vessel

3.5.4.1 Base Station

Before com m encing each trial, the RF-GSM  base station was switched “On” in 

“M odem ” m ode and was secured in place (with the aid o f  cable ties or a length o f  rope) 

at a safe elevated location, i.e. above the wheelhouse, on-board the fishing vessel, 

Figure 3-8a. & b.

a. b.

Figure 3-8a. & b. RF-GSM base station secured on top of the wheelhouse

a. b.

Figure 3-9a. Iced salmon b. Iced mackerel
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3 . 5 . 4 . 2  T e m p e r a t u r e  L o g g e r s

A s soon as the salmon and mackerel were caught they were placed in containers where 

they were washed down with seawater for ~10  minutes. The fish were then iced and the 

containers were allow ed to sit on the deck for the remainder o f  the trial, Figure 3-9a & 

b. The temperature loggers, immersed in the containers o f  iced fish, were programmed 

to transmit a temperature reading to the base station every 5 minutes, where the 

temperature data was stored. M odel D S 1921-FI iButton temperature loggers were 

attached to each RF temperature logger to allow  a direct comparison between the two  

system s Figure 3-10.

Figure 3-10a. RF temperature logger (iButton attached to the side of the logger) b. iButton and 

Tidbit temperature data loggers

3 .5 .4 .3  Remote Server Software

The Rem ote Server Software was programmed to allow  the server (based at Dublin City 

University) connect w ith the base station via GSM  communication every 30 minutes. 

After a successful connection the temperature data was retrieved from the base station 

and downloaded onto the server database from where the wwvv.rumoic.sunsors.dcu.lv; 

w ebsite was automatically updated. The above procedure was repeated every 30  

minutes, continuously updating the website. W hen the fishing vessel returned to the 

shore the RF temperature loggers were removed and the RF-GSM  base station was 

switched off. The temperature history o f  the salm on and mackerel from ‘ship to shore ’ 
was retrieved from the server database and further data processing was performed using  

M S Excel.
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3.6 Results and Discussion

3.6.1 Preliminary Temperature Monitoring Field Trials using the RF 

Temperature Logging System

The loggers were programmed to start on the 18th February 2002 and were stopped on

the 15th April 2002. The loggers were recording continuously for 57 days. A  total o f

8,022 data points were recorded by  each o f  the six loggers. During this time temperature 

profiles for two fish catches were captured:

■ First catch: From the 3/03/02 to 5/03/02

■ Second catch: From the 3/04/02 to 6/04/02

Figure 3-11 shows the temperature profiles obtained by  loggers 01020A  (placed at the 

outer edge) & 010206 (placed in the centre) o f  a 40kg container o f  haddock. The 

loggers were positioned at midday on the 3rd March 2002. Within 30 minutes, the 

loggers registered a value below  3°C. The temperature remained below  1.5°C for the 2 

days w hile the fish were stored in the hold o f  the trawler. On the 4th March at 9.30pm, 

the cooling was shut down for ~12 hours. During this tim e the temperature increased 

slightly and then fell as the cooling was turned back on the follow ing morning at 9am. 

The graph indicates that the temperature profiles for the centre (logger 01020A ) and 

outer edge (logger 01020A ) o f  the container were very similar signifying that there was 

little temperature variation within the container.
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Figure 3-11 Shows the temperature profiles obtained by loggers 01020A (placed at the outer edge)
& 010206 (placed in the centre) of a 40kg container of haddock.

Appendix 2-1 represents the temperature profile o f  a 40kg container o f  iced haddock in

stored in the hold o f  the trawler. Again, the graph indicates that there was little 

temperature variation within a container. Appendix 2-2 represents the temperature 

profile o f  a 25kg container o f  iced hake. Once again, the temperature remained below  

0°C for the 2 days w h ile the trawler was at sea. Unfortunately, there is no data for the 

exact position o f  the three fish containers in the hold but the graphs indicate that the 

temperature differences between the three containers are negligible. The temperature 

profiles o f  a 40kg container o f  iced hake caught on the 3rd April 2002 are presented in 

Figure 3-12. The recorded storage temperature for the hold was between -1°C & 0°C 

(data supplied by the Irish Marine Fisheries coastal staff). During the 3 -day period at 

sea no re-icing took place. The centre (logger 010215) and outer edge (logger 01020C) 

temperature profiles for this container o f  iced hake were similar and remained below  

0°C for the 3 -day period. A  second 40kg container o f  iced hake and a 40kg container o f  

iced haddock from the same hold were also monitored over the 3-day period and the 

temperature data is presented in Appendix 2-3 & Appendix 2-4. A ll six loggers 

recorded similar temperature profiles for the three containers o f  iced fish demonstrating

the same hold. The temperature remained below  0°C for the 2 days while the fish were



that there were no significant temperature fluctuations for the catch o f  fish stored in the 

trawler hold during this period. The temperature data recorded by the loggers is also in 

agreement with the trawler hold temperature recorded by the coastal staff.

03/04/02 04/04/02 04/04/02 05/04/02 05/04/02 06/04/02 06/04/02
12:00 PM  12:00 AM  12:00 PM 12:00 AM  12:00 PM 12:00 AM  12:00 PM

Time (dd/mm/yy hh:mm A M /PM )

Figure 3-12 Temperature profiles captured by loggers 010215 (placed in the centre) and logger 

01020C (placed at the outer edge) of a 40kg container of iced hake caught on the 3rd April 2002

3.6.2 Measuring the Sensor Response Time of the RF-GSM Temperature 

Monitoring System

Figure 3-13 indicates that when the 3 temperature loggers were submerged in a 

polystyrene container o f  iced water they reached 90% o f  the step change in -3 .5  

minutes. The initial temperature (Tj) for the 3 loggers was taken as 24.0 ±  0.1°C and the 

final temperature (Tf) w as 0 ±  0.1 °C, the temperature o f  iced water. Therefore, a step 

change o f  90% (T90) is equivalent to 2.4 ± 0.1°C. The temperature response time is 

significantly faster for the RF-GSM  Temperature Monitoring System compared to the 

RF Temperature Logging System, which was experimentally determined to be ~8 

minutes (see section 2.3.1).
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Figure 3-13 Illustrates the temperature response time for the RF-GSM Temperature Monitoring 
System. The temperature reached 90% of the step change (T90) in ~  3.5 minutes. Tj= 24.0°C, Tf = 
0°C (iced water), therefore T90 = 2.4°C.

3.6.3 Temperature Monitoring Field Trials using the RF-GSM 

Temperature Monitoring System

3.6 .3 .1  Trial 1

The fishing boat ‘An Searrach’ set out to sea at 5.00pm. The 3 RF temperature loggers 

were left out on the deck recording the ambient temperature. One salm on was caught 

and tagged (Tag ID No: 02651) at 7:40pm and was washed for 10 minutes before it was 

placed on ice. The 3 temperature loggers were also placed in the box containing the iced  

salmon. Unfortunately due to severe weather conditions the RF-GSM  base station had 

to be removed from the deck and the trial was terminated. Although the RF-GSM  

Temperature M onitoring System was shut down, the iButtons attached to the loggers 

continued to record the storage temperature. The fishing boat returned to the shore at 

8:30pm and the salm on was placed in cold storage overnight at Dunmore East harbour. 

The loggers were rem oved the next day and the iButton temperature data was 

downloaded, see Figure 3-14.
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Figure 3-14 Illustrates the storage temperature of an individual tagged salmon (Tag No: 02651) 
recorded by 3 iButtons.

3 .6 .3 .2  Trial 2

The fishing vessel left the harbour at 7:00 am. The 3 temperature loggers and iButtons 

were placed in a container o f  ice at 7:50 am. Four salmon were caught and tagged (Tag 

ID N o ’s: 02633, 02634, 02635, 02636) at 9:50 am and were washed for 10 minutes 

before they were placed in the container o f  ice along with the temperature loggers. Due 

to a fault in the software and communications early that morning there was a delay in 

starting the RF-GSM  Temperature M onitoring System. A s a result the system  only  

began recording temperature data from 11:00 am until the loggers were removed at 

2:30pm when the boat returned to the harbour. Only one logger out o f  the three loggers 

communicated with the RF-GSM  base station, see Figure 3-15.
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Figure 3-15 Illustrates the storage temperature of 4 salmon (Tag N o’s: 02633, 02634, 02635,02636) 

at sea captured via logger 3 o f the RF-GSM Temperature M onitoring System and the iButtons.

3 .6 .3 .3  Trial 3

On the 24th June 2003 the salm on fishing trial comm enced at 8 am. One salm on was 

caught at 12:30pm and was washed for 10 minutes before it was put on ice. The 3 

temperature loggers were also placed in the container along with the iced salmon at 

12:40pm. The salmon remained in ice for four hours on-board the boat before reaching 

the shore. During this tim e the temperature began to raise gradually but still remained 

below  5°C, see Figure 3-16. The temperature loggers were removed at 5:00pm as soon  

as the fishing vessel returned to the harbour. Once again only one logger out o f  the three 

loggers communicated with the RF-GSM  base station.

1 00



4 0

^  35 
.3
■g 30 
u

8 25 
mV
3  20
Vu
301 InV
I<u 
H

15

10

5 -

Fishing boat left Dunmore 
East Harbour at 8:00am

Logger placed on iced 
salmon at 12:40pm

Loggers were left out on 
the deck recording the 
ambient temperature

-------iButton

-------Logger 3

The logger was 
removed at 
5:00pmas soon 
as the fishing 
vessel returned

24/6/03 
7:40 AM

24/6/03  
9 3 6  AM

24/6/03  
1131 AM

24/6/03 
1-26 PM

24/6/03 
3 2 1  PM

24/6/03  
5:16 PM

Time (hours :mins)

Figure 3-16 Illustrates the storage temperature of an individual salmon on-board the fishing boat at 
sea captured via logger 3 o f the RF-GSM Temperature M onitoring System and an iButton.

3 .6 .3 .4  Trial 4 & Trial 5

Tw o field trials were carried out on the 15th July 2003. These trials took place on-board 

mackerel fishing vessels with the help o f  BIM  Coastal Staff. The first trial (Trial 4) 

comm enced at 4:00am. At 6:30am one o f  the loggers (logger 1) was placed in a box o f  

iced mackerel and was removed at 9:40am w hen the boat returned to the shore. 

Unfortunately, the RF-GSM  base station was shielded by a large metal mast, which 

prevented it from receiving any information from the RF loggers. W hen the vessel 

returned to the harbour the RF-GSM  base station was re-positioned and a second trial 

(Trial 5) comm enced at 3:45pm. Initially, the three loggers monitored ambient 

temperature and were placed in storage containers as the fish were caught; see Figure 

3-20 for temperature profiles. At 6:15pm logger 3 was placed in an upright position in a 

box o f  mackerel (no-ice) along with a Tidbit temperature logger (provided by BIM  

coastal staff), Figure 3-10  and Figure 3-17, see Figure 3-21 for temperature profile. The 

storage temperature o f  the fish remained between 16 and 17°C for aproximately 3.5 

hours w hile the boat w as at sea. At 7:45pm logger 2 was placed in a box o f  partially 

iced mackerel, Figure 3-18, see Figure 3-23 for temperature profile. The storage
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temperature o f  the fish quickly fell below  5°C and soon began to rise again. Re-icing at 

9:15pm caused the storage temperature to fall rapidly. A t 9:10pm logger 1 was placed in 

another box o f  mackerel (com pletely iced), Figure 3-19, see Figure 3-25 for temperature 

profile. The storage temperature quickly fell below  5°C. At 9:50pm the boat returned to 

the harbour and the loggers were removed from the fish boxes. The temperature data 

from all three loggers w as successfully transmitted and uploaded onto the web pages, 

see Figure 3-22, Figure 3-24 & Figure 3-26.

Figure 3-17 RF Temperature logger 3 placed in a box of mackerel (no-ice)

Figure 3-18 RF Temperature logger 2 placed in a box of mackerel (partially iced)

Figure 3-19 RF Temperature logger placed in a box of mackerel (fully iced)
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Figure 3-20 Illustrates the storage temperature of mackerel under different conditions at sea 

captured via the RF-GSM Temperature Monitoring System.
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Figure 3-21 Illustrates the storage temperature of a box of mackerel (no-ice) while at sea via logger 

3. The logger was placed in the full box of mackerel at 6:15pm and was removed at ~9:50pm when 

the boat returned to the harbour.
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Figure 3-22 The temperature profile for logger 3 displayed on the web page
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Figure 3-23 The storage temperature o f a box of mackerel (partially iced) while at sea captured via 

logger 2. The logger was placed in the full box of mackerel at 7:50pm and was removed at 9:50pm  

when the boat returned to the harbour.
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The field trials provided a perfect opportunity to test and improve the prototype RF- 

GSM  Temperature M onitoring System . The system was presented with a number o f  

challenges that were only realised through carrying out real trials at sea. Initially, 

comm unication links and software programs were problematic but were soon improved 

due to the numerous field trials that were carried out. A s a result, real time temperature 

profiles o f  fish catches at sea were successfully generated on the World W ide Web.

On the 24th June 2003, Trial 3, the temperature profile o f  an individual salmon stored on 

ice was successfully  captured using the RF-GSM  Temperature M onitoring System  and 

was continuously updated onto the web while the fishing boat was still at sea. Figure

3-16 compares the temperature data obtained by the RF-GSM  Temperature Monitoring 

system  and the iButtons o f  a salmon stored on ice for four hours on-board the boat 

before reaching the shore. During this tim e the temperature began to rise gradually but 

still remained below  5°C. The iButton temperature logger registered ambient 

temperatures at sea o f  ~25° before the logger was placed in the box. The RF 

Temperature Logger registered ambient temperatures as high as 36°C. The heat radiated 

by the sun was absorbed by  the black surface o f  the RF Temperature Logger and caused 

it to register a higher ambient temperature than expected. A  more reflective outer 

surface, i.e. a white surface, would help overcom e this problem. The iButton data for 

each trial was very useful as a reference temperature system.

Before the Wild Salmon Quality Scheme was introduced the salmon were stored in 

boxes on the open deck without ice until the boat reached the shore and then the salmon 

were placed in cold storage. Storage temperature plays an important role in fish spoilage  

rates. I f  the salmon were stored on-board the fishing vessel for several hours without 

ice, an ambient daytime temperature o f  25 °C during the salmon season months o f  June 

and July would have a dramatic effect on the overall quality and spoilage o f  the salmon. 

The mackerel fishing trials also provided very interesting results. The RF-GSM  

Temperature M onitoring System  illustrated how  icing fish at sea greatly reduced the 

storage temperature. In trial 5, the mackerel fishing boat was not at sea long enough to 

realise the benefits o f  using larger quantities o f  ice on the fish as indicated by logger 1, 

see Figure 3-25.
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Field-testing has allowed the system hardware to be evaluated. The main issues arising 

from the trials to date are as follows:

■ RF communications between the loggers and the RF-GSM  base station were 

problematic during the initial trials. The communication was improved by  

strategic placement o f  the RF-GSM  base station and the RF loggers on-board the 

fishing vessel ensuring the path between the loggers and the base station was 

com pletely free from any metal obstructions and also ensuring that the loggers 

were placed within the working RF range.

■ Data was successfully transmitted from the RF-GSM  base station to the DCU  

central server via the GSM  network at the specified time intervals (i.e. every 30 

m inutes) except on one occasion (Trial 2). The fault in this case was due to a 

software malfunction that w as rectified within a couple o f  hours o f  the trial 

comm encing.

■ The RF-GSM  base station operating controls, i.e. the O n/O ff switches, were 

originally covered over with a protective solid casing. This was replaced with a 

transparent window allow ing the user to check i f  the system  was in the correct 

operating m ode i.e. Serial/M odem and O n/O ff m odes, Figure 3-8. The 

transparent w indow  protecting the operating controls on the RF-GSM  base 

station also allowed the user to have a clear view  o f  the red and green LEDs. 

The green LED flashed each tim e it received information from one o f  the 

loggers i.e. 3 consecutive flashes every 5 minutes indicated that all 3 loggers 

were communicating with the base station at 5-minute intervals. A  flashing red 

LED indicated that the central server was communicating with the RF-GSM  

base station. This sim ple check confirmed that the RF-GSM  Temperature 

M onitoring system  was fully  functioning.

The field trials also highlighted a number o f  issues regarding the capabilities o f  the 

software. A s a result o f  developing the wireless data collection system, a significant 

amount o f  data was gathered w hich needs to be stored on the web site in a way that 

allows users access the information easily. The information gathered via the wireless 

RF-GSM  Temperature M onitoring System  includes logger ID, date, time and 

temperature. Other descriptive information which is not provided by the system  

includes: name/registration/location o f  the fishing vessel, name o f  skipper, fish species 

type (i.e. mackerel and/or salm on), individual fish registration number i f  necessary
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(individual salmon are tagged), time/date o f  catch, number o f  boxes o f  each species 

caught, weather conditions (warm summer days m ay affect temperature profiles i.e. re

icing m ay be required more often), location o f  catches, time/date fish reached the shore. 

In order for this information to be accessible on the web a system is needed that allows 

the operator to input this information at sea. The W ireless RF-GSM  Temperature 

M onitoring System  is controlled via the software on the DCU central server. The 

start/stop and dial up frequency parameters are all set via this software before any trial 

begins. An operator at D C U must control these parameters while another operator 

installs the RF-GSM  Temperature M onitoring System  on-board a fishing vessel. Before 

the system  operator on-board the fishing vessel sets out to sea, he/she must call the 

D C U  operator (via a m obile phone) to start the remote sensor software with the dial-up 

settings. Once the software is initiated, the external m odem  dials the GSM  modem  

phone (RF-GSM  base station) at user defined intervals via an analogue phone line and 

the time-temperature data is retrieved as a sim ple data/text file. This information is 

automatically updated onto the web. Currently, the operator on-board the fishing vessel 

has som e control o f  the system  such as changing the RF-GSM  base station to the 

ON/OFF position and switching the logger-sam pling m ode via a magnetic switch. 

Ultim ately, the system  operator on-board the fishing vessel should have more control 

over the RF-GSM  Temperature M onitoring System. Chapter 7 addresses these issues 

further and highlights the tremendous progress and ongoing research activities in this 

particular area since the com m encem ent o f  the project.

3.7 Conclusion

The purpose o f  the preliminary temperature monitoring trials was to demonstrate that 

time-temperature profiles for fish stored in the hold o f  a trawler w hile at sea could 

easily be captured using autonomous temperature data loggers. The RF Temperature 

Logging System  used initially was successfully programmed to operate independently 

on-board the fishing trawlers prior to comm encing the trials. The loggers were 

positioned in the containers o f  iced fish stored in the trawler hold where they remained 

recording the storage temperature for the duration o f  the trial. A s soon as the trawler 

returned to the shore the loggers were removed and the temperature data was 

successfully downloaded. A  more sophisticated approach to monitoring the temperature 

o f  fish catches at sea was demonstrated using a new ly developed RF-GSM  Temperature 

M onitoring System  where real-time temperature profiles were displayed live on the
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internet while the fishing vessel was still at sea. The field trials demonstrated the 

feasibility o f the system in real temperature monitoring applications and provided a 

perfect opportunity to pinpoint areas for further development in Hie area of autonomous 

temperature sensing.
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4 Fabrication and Characterisation o f pH Sensitive Membranes and 

their Response to Spoilage Volatiles Released by Cooked Shellfish
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4.1 Introduction

The following chapter gives a detailed account of the fabrication and characterisation of 

pH sensitive membranes. A preliminary investigation was performed to demonstrate the 

sensors response to the spoilage volatiles released by cooked shellfish over time under 

different storage conditions.

4.1.1 Fabrication and Characterisation of pH Sensitive Membranes

Most indicator chemistry is adapted to aqueous solution (for titration in water). 

Therefore, the molecules are water-soluble and if  dissolved in lipophilic polymers, they 

are rapidly washed out. In order to make dyes, ionophores and ligands soluble in 

polymers and to avoid leaching of the components, they have to be made lipophilic. 

Lipophilic molecules can be obtained, for example, by introduction of long alkyl chains, 

Figure 4-1 & Figure 4-2.

Figure 4-1 Water-soluble pH indicator (Nile Blue pK„ ~11.6)

Figure 4-2 Polymer/plasticiser-soluble pH indicator (Octadecyl Nile Blue)
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However, the chemical synthesis involved can be tedious. Therefore, an alternative 

strategy is to use ion pairing. For example, when the pH indicator dye bromocresol 

green, Figure 4-3, and the lipophilic compound tetraoctylammonium bromide, Figure 

4-4, are together in solution, the positive and negative ions come together to form a 

solvated unit called an ion-pair, Figure 4-5. The pH indicator is now lipophilic and 

polymer/plasticiser-soluble.

O

Figure 4-3 Bromocresol Green, Sodium Salt (BCG)

Figure 4-4 Tetraoctylammonium Bromide (TOABr)
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Figure 4-5 BCG and TOABr ion pair

4.1 .1 .1  Lipophilic Salt Selection

In order for the lipophilic salt to be effective the salt itself must be soluble and 

compatible with all the components in the membrane. Three lipophilic salts were chosen 

and their effectiveness in the polymer membrane was determined by their ease of 

solubility, their effect on dye leaching and their compatibility with other components

i.e. plasticisers. The structures of the 3 salts can be seen in Figure 4-4, Figure 4-6 & 

Figure 4-7.

/
, c h 3

h 3c

'3

Br

h 3c

Figure 4-6 Cetyltrimethylaramonium Bromide, CTABr

H3C Br

h 3c

Figure 4-7 Octadecyltrimetylammonium Bromide, OCTABr
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4.1.2 Monitoring of Headspace Spoilage Volatiles Released from Cooked 
Whelk in Different Storage Conditions using the pH Sensitive 
Membranes

Preliminary trials were carried out at DCU to correlate the sensor response to spoilage 

volatiles released by whelk, a gastropod from the molluscan shellfish family. Molluscan 

meats contain high levels of nitrogen bases, as do other shellfish. It has been reported 

that certain types of shellfish i.e. crustaceans, contain over 300mg of nitrogen/1 OOg 

meat, which is considerably higher than that for fish (1). The presence of high levels of 

nitrogenous bases makes them more susceptible to rapid attack by the spoilage flora. 

For this reason, it is important that the sensors are optimised for this particular species. 

As molluscan shellfish have higher levels of nitrogenous bases compared to fish the 

sensor formulation must be optimised so that it is not completely saturated by the initial 

levels of volatile basic nitrogenous compounds present. On the other hand, the sensor 

must be sensitive enough to detect the onset of spoilage by responding to increasing 

levels of Total Volatile Basic Nitrogen (TVB-N). Preliminary trials at Dublin City 

University and field trials at Errigal Fish Co. LTD (see Chapters 5 & 6 ) were conducted 

to aid the optimisation of a pH sensitive sensor suitable for detecting whelk spoilage.
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4.2 Experimental

4.2.1 Fabrication and Characterisation of pH Sensitive Membranes

4 .2 .1 .1  Membrane Components

The membrane components; pH sensitive dyes bromocresol green (BCG, sodium salt), 

bromothymol blue (BTB, sodium salt), and m-cresol purple (m-CP, sodium salt), 

lipophilic salts cetyltrimethylammonium bromide (CTABr), tetraoctylammonium 

bromide (TOABr), octadecyltrimethylammonium bromide (OCTABr) and solvent 

cyclohexanone (99.8%), were obtained from Sigma-Aldrich (Dublin, Ireland). The 

binder poly(vinyl chloride) (PVC, high molecular weight) and the plasticiser dibutyl 

sebacate (DBS) were supplied by Fluka Chemicals (Dublin, Ireland). Optically clear 

poly(ethylene teraphthalate) (PET) was obtained from Oxley pic (Cumbria, UK). 

Polypropylene reinforcement rings and polytetrafluoroethylene (PTFE) gas permeable 

membrane (Thread Seal Tape: 12m x 12mm x 0.075mm) were supplied by Radionics 

(Dublin, Ireland).

4 .2 .1 .2  Membrane Formulation

Ten membrane formulations in total were prepared and labelled “A” to “J”, as seen in 

Table 4-1. Formulations “A” to “£>” were initially prepared. Each formulation contains 

the same quantity of BCG (5mg), PVC (350mg) and CTABr (lOmg) but each 

formulation “A”, “B”, “C” & “D” contains 350mg, 262.5mg, 175mg & 87.5mg DBS, 

respectively. Formulations “E” and “F9’ contain a different lipophilic salt TOABr 

(lOmg), compared to formulations “A” to “D”. Each contains the same quantity of BCG 

(5mg) and PVC (350mg) but different concentrations of DBS, 350mg and 175mg 

respectively. Formulations “G” and “H” contain a third type of lipophilic salt OCTABr. 

Once again each have the same quantity of BCG (5mg) and PVC (350mg) but different 

concentrations of DBS, 350mg and 175mg respectively. Formulations and “J” both 

have the same quantities of PVC (350mg), DBS (350mg) and TOABr (lOmg) but the 

formulations contain different pH sensitive dyes. Formulation “i” contains BTB (5mg) 

and formulation “J” contains m-CP (5mg).
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Dye (mg)

BCG 5 5 5 5 5 5 5 5

BTB 5

m-CP 5

Binder (mg)

Formulation A B  C D E F G H I J

PVC 350 350 350 350 350 350 350 350 350 350

Plasticiser (mg)

DBS 350 262.5 175 87.5 350 175 350 175 350 350

Salt (mg)

CTABr
TOABr

1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0

OCTABr 1 0 1 0

Solvent (ml)

Cyclohexanone 8 ml 8 ml 8 ml 8 ml 8 ml 8 ml 8 ml 8 ml 8 ml 8 ml

Table 4-1 Components of each formulation A to J

All formulations were prepared following the same procedure. For example, 

formulation “A" was prepared by accurately weighing 5mg BCG, lOmg CTABr and 

350mg DBS into a 20ml disposable polypropylene container. 2ml of cyclohexanone 

were added and the container was swirled gently to mix the contents. 350mg of PVC 

was added all at once followed immediately by the remaining cyclohexanone. The 

container was sealed with a polypropylene cap and shaken vigorously for 1 0  minutes to 

prevent the PVC from aggregating. The solution was then sonicated until all the 

components were fully dissolved. The same procedure was carried out for formulations 

“ZT to “J”. Formulation “7” required a couple of drops of reagent grade methanol to aid 

the solubility o f the dye.
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4 .2 .1 .3  Sensor Fabrication

A schematic diagram illustrating each step of the sensor spot fabrication is shown in 

Figure 4-8. The PET sheets were manually cut into sections (~15cm x 10cm). The strips 

were washed in distilled water and allowed to air dry. Polypropylene rings were fixed to 

the PET surface (step 1). This formed a mould and a solid matrix for the polymeric pH 

sensitive films. 5.5|il aliquots of the sensor spot formulation were dropped into the 

centre of the polypropylene rings using a Brand® 0.5^1 -  10|xl transferpipette and the 

films were allowed to dry in a dark environment (to prevent photo bleaching of the dye) 

at room temperature for 24 hours (step 2). After solvent evaporation, the pH sensitive 

films attached to the PET surface were punched out in the shape of circular discs 6 mm 

in diameter (step 3). Polypropylene rings were fixed to the PTFE gas permeable 

membrane (thread seal tape) and the 6 mm circular discs were placed (pH sensitive layer 

facing down) inside the rings (step 4). An optically clear protective adhesive layer was 

placed on top to form a solid support for the sensor disc and the PTFE gas permeable 

membrane (step 5). The PTFE membrane protects the sensor surface from moisture 

while allowing gaseous compounds to permeate. Finally, a scissors was used to cut 

around the edges o f the polypropylene ring to give a circular shaped sensor spot (step 

6 ). Digital images were taken of steps 2, 3 & 6  during the sensor spot production and 

can be seen in Figure 4-9.

4 .2 .1 .4  Measurement o f Sensor Thickness

The thickness of 4 sensors was measured using a Dektak V 200-Si Profilometer. The 

Dektak V 200-Si is an advanced surface texture measuring system, which accurately 

measures surface texture and film thickness (2). The sensor thickness was also 

determined using a scanning electron microscope, SEM Hitachi S-3000N.

4 .2 .1 .5  Dye Leaching Studies

The effectiveness of the lipophilic salts CTABr and TOABr in preventing dye leaching 

was determined by allowing the sensor membranes to soak in distilled water for a 

known amount of time and analysing the distilled water using UV-Vis spectroscopy. 

Dye leaching can easily be recognised by the presence of a peak at the characteristic 

A,max for bromocresol green, 617nm, in the distilled water. The effect of plasticiser 

concentration on dye leaching was also determined.
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PET Surface Polypropylene Ring

Membrane Adhesive L a y e r

Figure 4-8 Schematic of the sensor fabrication process

Figure 4-9 Digital images of steps 2,3 &  6 of the sensor spot fabrication process

6  sensor spots prepared from each of the 6  formulations “A” to “F” were placed in 10ml 

polypropylene containers. 2 ml of distilled water was added to each of the 6  containers. 

The containers were sealed with polypropylene caps and allowed to sit for 3 hours. 

After 3 hours, 200fil o f distilled water from each of the 6  containers were deposited into 

the wells of a 96-well plate using a pipette. 200jj,1 distilled water acted as a blank. All 

samples were prepared in triplicate. A UV-Vis spectrum (350nm to 700nm) of each 

sample was obtained using a plate-well reader (Model ja-Quant, supplied by the Medical 

Supply Company, Dublin, Ireland).
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4 .2 .1 .6  Preparation o f  pH Buffer Solutions

Buffer solutions were prepared from pH 4.00 ± 0.02 and pH 7.00 ± 0.02 buffer tablets 

obtained from BDH Laboratory Supplies, Dublin, Ireland. For example, 1 pH 4 buffer 

tablet dissolved in 100ml of distilled water produces a solution of pH 4.00 ± 0.02. 

Buffer solutions ranging from pH 4 to pH 7 were prepared from stock pH 4.00 ± 0.02 

and pH 7.00 ± 0.02 buffer solutions. To prepare a pH 5.00 buffer solution, 4M NaOH 

was added dropwise to 50ml of pH 4.00 ± 0.02 buffer solution until the pH reached 5.00 

measured using a calibrated pH meter (Metrohm 713 pH Meter; Metrohm pH probe, 

code no: 0022 0018. The pH meter was calibrated before use according to the 

instrument guidelines using pH 4.00 ± 0.01 and pH 7.00 ± 0.01 standard buffer 

solutions obtained from Sigma Aldrich, Dublin, Ireland). Likewise, to prepare a pH 6.00 

buffer solution, 0.1M HC1 was added drop wise to 50ml of pH 7.00 ± 0.02 buffer 

solution until the pH reached 6.00 measured using a calibrated pH meter. A range of pH 

buffers were prepared following this procedure and were used in the pKa determinations 

of the dye in the sensor membrane.

4 .2 .1 .7  pKa Determination o f Dye in the membrane

The pKa of the dye in the membrane was determined using a newly developed handheld 

Colourmeter, which is discussed in detail in section 4.2.1.10, as well as using UV-Vis 

spectroscopy. For each technique, the pKa was determined by plotting the change in 

absorbance of the dye at Amax (or the change in the Colourmeter response) with changing 

pH and a best-fit sigmoid curve was fitted to the data using the Solver function in 

Microsoft Excel. The equation used was:

Abs(^max) = a
(l + exp[b(pH - z)D

+ d Equation 4-1

Abs (̂ max)= absorbance of the dye at l max in a pH buffer solution / au (absorbance units) 

a = peak height at A,max / au 

b = slope coefficient

z = pH from the beginning of the peak to the inflection of the rise (i.e. the pKa)
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d = baseline offset / au 

e = symmetry parameter for the sigmoid

The formula was entered into Microsoft Excel to model the fit of the data obtained. The 

residuals, the squared residuals and the sum of the squared residuals (SSR) were all 

calculated. Solver minimised the SSR values by changing the values a, b, z, d and e. 

The value of e was set to 1 and a best-fit sigmoid curve was obtained. The parameters of 

the best-fit curve were used to compute extrapolated values between the data points, i.e. 

every 0.01 pH units, to produce best-fit curves to the data collected. This facilitated the 

determination of the pKa of the dye.

4 .2 .1 .8  pKa Determination o f the Dye in the Membrane by UV-Vis 

Spectroscopy

Sensor spots of the optimised formulation “is” were prepared as described in section 

4.2.1.3. The 6 mm sensor discs were placed on the base of individual wells in a 96-well 

plate. 200j_il of buffer solution was added to each well. The sensor discs were allowed to 

sit in the buffer solutions for 1 hour to allow the buffer solutions impregnate the sensor 

membranes and react with the dye to give a colour change. Absorbance values were 

obtained using the plate-well reader. Sensors were prepared in triplicate for each buffer 

solution.

4 .2 .1 .9  The Effect o f Temperature on the pKa of the Dye in the Membrane

The 6 mm sensor discs o f formulation “E” were prepared and placed in the base a 96- 

well plate as described above. The buffer solutions and the plates with the sensor discs 

were all placed in the fridge (4°C, measured by a thermometer) for 2 hours to allow the 

temperature of the plates, sensor discs and the buffer solutions to reach equilibrium. 

2 0 0 (0,1 of the cold buffer solutions were then pippetted into the wells containing the 

sensor discs and the plates were immediately placed into the fridge for 1 hour. A UV- 

Vis scan for an entire row (12 wells) over a wavelength range of 400-700nm takes 

approximately 90 seconds to complete. The sensors were prepared in triplicate. If all the 

sensors were to occupy the 96-well plate they would fill 3 rows therefore a UV-Vis scan 

would take approximately 4 minutes to complete. This would be sufficient time to raise 

the temperature of the sensor discs and buffer solutions rendering the experiment futile.
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To minimise the temperature effects the sensors were placed in 3 separate trays and 

were scanned individually, each scan taking approximately 90 seconds.

4 .2 .1 .10  pKa Determination o f the Dye in the Sensor Membrane using 

the Handheld Colourmeter

4 . 2 . 1 . 10.1 I n s t r u m e n t a t i o n

The handheld Colourmeter comes with four interchangeable heads i.e. red, blue, green 

and yellow heads, Figure 4-10. The most suitable LED head for this application was 

selected by comparing the A.max of the LEDs with the A,max of the bromocresol green dye 

in its basic form in the sensor membrane. The LED head is connected to the handheld 

Colourmeter unit Figure 4-10, which is attached to a PC via an RS323 cable where the 

specifically designed Colourmeter software allows parameters such as sampling 

intervals to be programmed. Two control buttons on the front of the handheld 

Colourmeter unit allows the user to operate the system manually without the need to be 

connected to a PC. The handheld Colourmeter displayed in Figure 4-10 is the new and 

improved version of the original prototype, Figure 4-11, designed by Dublin City 

University and Whistonbrook Technologies Ltd to measure the reflected light intensity 

of fish spoilage sensor dots (3).

Figure 4-10 Yellow, green, and red interchangeable heads for the handheld Colourmeter (left). Red 
LED head attached to the handheld Colourmeter (right).

The original prototype consists of 2 yellow LEDs, with a Â ax of 590nm, positioned at a 

45° angle to the sensor surface to minimise reflection effects, and a photodiode detector 

(positioned at a 90° angle), Figure 4-11. Light emitted from the LEDs illuminate the 

sensor surface at a 45° angle (A). Light reflected back from a region of interest at 90° 

falls onto the photodiode detector (B). Light reflected back from the highly reflective
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sensor surface is at 45° and is therefore not measured by the photodiode. The LED 

illumination is pulsed to eliminate interference from ambient light.

Photod iode

Sensor
Surface

Figure 4-11 A photograph of the original prototype handheld Colourmeter (left) and a schematic 
diagram of the internal component configuration (right) (3)

The same principle described here is also used in the new and improved prototype 

handheld Colourmeter. The major difference between the two systems is that the new 

system has interchangeable heads with blue, red, yellow and green LEDs allowing more 

sensitive reflectance measurements to be performed over a wider wavelength range.

4 . 2 . 1 . 10.2  E x p e r i m e n t a l  S e t - u p

Buffer solutions were prepared as described previously and the apparatus shown in 

Figure 4-12 was set up. A circular disc of optically clear PET was attached to the Red 

LED Head. This protected the inner electronics from the pH buffer solutions into which 

it was immersed. The optical scanner is not designed for liquid immersion but for the 

purpose of this experiment a slight alteration of the head allowed the scanner to be 

immersed into liquids. A sensor prepared from formulation “E ” was attached to the 

head using epoxy glue. The glue was allowed to dry overnight. A circular o-ring was 

attached to the Red LED head also using epoxy glue. This allowed the head to sit at a 

fixed height in the apparatus. The head is positioned ~2mm from the white reflective 

surface in the base of the container. This provides enough space for the buffer solution 

to come in contact with the sensor without affecting reflectance. There is an inlet tube 

where buffer solution is pumped through using a syringe and a drainage tube at the 

bottom where the buffer solution can be easily drained.
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Figure 4-12 Experimental apparatus for pH buffer calibrations. A circular disc of optically clear 
PET was attached to the Red LED Head, which protected the inner electronics from the pH buffer 
solutions into which it was immersed. A sensor prepared from formulation “E ” was attached to the 
head using epoxy glue (top left). A circular o-ring was attached to the Red LED head, which 
allowed the head to sit at a fixed height in the apparatus (top right). The head is positioned ~2mm 
from the white reflective surface in the base of the container (bottom left). This provides enough 
space for the buffer solution to come in contact with the sensor without affecting reflectance. There 
is an inlet tube where buffer solution is pumped through using a syringe and a drainage tube at the 
bottom where the buffer solution can be easily drained (bottom right).
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4.2.1.11 Reproducibility o f  the Sensor Response in pH Buffer Solutions

Buffer solutions pH 4.00 ± 0.02 and pH 7.00 ± 0.02 were prepared as described 

previously. The Red LED was attached to the Colourmeter. A spot prepared from 

formulation was attached to the Red LED Head. The software was set to take a 

reading every 5 seconds. The height of the head in the calibration flow cell was adjusted 

to give the best response (no buffer solution inside). The flow cell was flushed out with 

buffer pH 4 solution. 2ml of pH 4 buffer solution was injected into the flow cell and the 

response was allowed to equilibrate. The flow cell was allowed to drain then washed 

through with buffer pH 7. The drain was closed using a clamp on the outlet tube and 

2ml of the buffer pH 7 solution were injected into the flow cell. The response was 

allowed to equilibrate. The cell was allowed to drain and washed with pH 4 buffer 

solution and the procedure was repeated several times to investigate the reproducibility 

of the step change from pH 4 to pH 7.

4 .2 .1 .1 2  Ammonia Gas Calibration

Measurements were performed using the handheld Colourmeter. The experimental set

up for the sensor measurements is shown in Figure 4-13. Mass flow controllers enabled 

known concentrations of ammonia gas to be delivered to the flow-cell by mixing
T « 1

different proportions of pure nitrogen (maximum flow rate 100-900cm min’ ) and
•3 1

0.01% ammonia in nitrogen (maximum flow rate 50cm m in'). The pure nitrogen was 

allowed to flow through a humidifier before it was mixed with 0 .0 1 % ammonia in 

nitrogen. The gas mixture entered the flow cell through the inlet tube where it reacted 

with the sensor. The sensor was attached to the Red LED head of the Colourmeter 

using epoxy glue and the Colourmeter head was secured inside the flow cell with the aid 

of a rubber o-ring seal. The Colourmeter was attached to a PC via an RS232 cable that 

enabled the LabView software Version 4.501 to record the sensor response to ammonia 

in real time at user-defined intervals (i.e. every 5 seconds). The data was saved as a 

DAT file in Microsoft Notepad. Data analysis was performed using Microsoft Excel. 

For the data analysis, the reported values (arbitrary units, au) are calculated as the 

average of 60 values of the final 5 minutes of the measurements subtracted from the 

initial value (i.e. initial value = the average of 1 2 0  values ( 1 0  minutes) before the 

measurement starts). This is taken as the baseline which represents Oppm NH3 .
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4 .2 .1 .1 2 .1  Experimental Set-up

Flow -cell Outlet

Hum idifier

Figure 4-13 Experimental set-up for sensor calibration using ammonia gas. Mass flow controllers 
enabled known concentrations of ammonia gas to be delivered to the flow-cell by mixing different 
proportions of pure nitrogen (maximum flow rate 100-900cm3 min'1) and 0.01% ammonia in 
nitrogen (maximum flow rate 50cm3 m in1). The pure nitrogen was allowed to flow through a 
humidifier before it was mixed with 0.01% ammonia in nitrogen. The gas mixture entered the flow 
cell through the inlet tube where it reacted with the sensor.
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4.2.2 Monitoring of Headspace Spoilage Volatiles Released from Cooked 

Whelk in Different Storage Conditions using the pH Sensitive 

Membranes

4.2 .2 .1  Materials

The membrane components, pH sensitive dye bromocresol green (BCG, pKa 4.7), 

lipophilic salt tetraoctylammonium bromide and solvent cyclohexanone (99.8%), were 

obtained from Sigma-Aldrich (Dublin, Ireland). The binder poly(vinyl chloride) (PVC, 

high molecular weight) and the plasticiser dibutyl sebacate (DBS) were supplied by 

Fluka Chemicals (Dublin, Ireland). Optically clear poly(ethylene teraphthalate) (PET) 

was obtained from Oxley pic (Cumbria, UK). Polypropylene reinforcement rings and 

polytetrafluoroethylene (PTFE) gas permeable membrane (Thread Seal Tape: 12m * 

12mm x 0.075mm) were supplied by Radionics (Dublin, Ireland). The sensors were 

fabricated as described previously. Self-adhesive clear covering film (33cm * lm) and 

500ml clear plastic containers were used.

4 .2 .2 .2  Equipment

The red LED head (Xmax = 659nm) of the Handheld Colourmeter was used to monitor 

the colour change of the pH sensitive membranes in response to spoilage volatiles. The 

Colourmeter was attached to a PC laptop (Dell, Latitude) via an RS232 cable that 

enabled the LabView software Version 4.501 to record the colour change. The data was 

saved as a DAT file in Microsoft Notepad. Data analysis was performed using 

Microsoft Excel. A digital camera (Sony DS1234 Cyber Shot) was used to capture 

colour digital images of the sensors as they changed colour. Model DS1921-F51 

iButton temperature data logger obtained from Dallas Semiconductor monitored 

ambient temperature conditions.

4 .2 .2 .3  History o f whelk Samples

4 .2 . 2 . 3.1 P r e l im in a r y  T r ia l  1

Whelks freshly caught on the day of the trial in Dublin bay were collected from a 

fishing trawler at Howth Harbour Co. Dublin, Ireland. The whelks were immediately
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placed into a polystyrene box containing foam refrigerant blocks and the samples were 

transported to DCU.

4 . 2 . 2 . 3.2  P r e l im in a r y  T ria l  2

6  whelks were purchased from Wright’s of Howth (Howth Harbour, Dublin, Ireland), 

The whelks were foil packed and placed into an insulated polystyrene container as 

described above and were immediately transported to DCU.

4 .2 .2 .4  Preparation and Cooking Whelk Samples

On arrival at the DCU laboratory the whelks were placed in boiling water. The water 

was allowed to boil again and the whelks were boiled continuously for 1 2  minutes, 

Figure 4-14. The whelks were then removed from the boiling water and allowed to cool 

for 5 minutes before they were placed into individual 500ml clear plastic containers.

Figure 4-14 Cooking and preparation of whelk samples
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4 .2 .2 .5  Experimental Set-up

4 .2 .2 .5 .1  Preliminary Trial 1

Figure 4-15 Sensor spot before and after spoilage

One sensor spot was attached to the self-adhesive clear covering film that was placed 

over the 500ml plastic container to form a tight seal. The Red LED Head of the 

Colourmeter was placed directly in contact with the sensor spot and secured in position 

with a retort stand, Figure 4-16. The Colourmeter was connected to a PC Laptop where 

the Colourmeter software version 4.501 was programmed to take a reading every 10 

minutes. A layer of tinfoil was placed over the set-up to eliminate ambient light 

interference. An iButton was also programmed to take a temperature measurement 

every 10 minutes. The whelk was allowed to spoil at room temperature over a 72-hour 

period.
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Figure 4-16 Red LED Head of the Colourmeter monitoring the colour change of the sensor spot 
over time as the whelk spoils. The software allows a reading to be taken at defined time intervals.

4 .2 .2 .6  Bertholot's Reaction -  A Test for the Presence o f Amines

After 72 hours 1ml of distilled water was syringed into the container. After 5 minutes 

the water was removed again from the container with the aid of a syringe and was 

allowed to react with Bertholot’s reagent. Bertholot’s reaction is used to determine the 

concentration of ammonia in water samples. The Bertholot Reaction Mechanism 

consists of three steps. The initial step involves the reaction of ammonia with 

hypochlorite to form a monochloramine,

Figure 4-17-1, which subsequently reacts with phenol to form the intermediate 

monochloramine,

Figure 4-17-2. Finally, this intermediate couples with a second phenolic molecule to 

form the blue indophenol chromophore (4),

Figure 4-17-3.
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Figure 4-17 Reaction scheme for indophenol formation (4)

4 .2 .2 .7  Preliminary Trial 2

Three sensor spots were attached to each of the 6  self-adhesive clear covering films, 

which were then placed over the containers to form a tight seal. Two of the whelk, 

labelled RT 1 and 2 (Room Temperature 1 and 2), were stored at room temperature 

(temperature monitored by iButton code no: AB34C00001E0E221). Two more whelks, 

labelled F to RT 1 and 2 (Fridge to Room Temperature 1 and 2), were placed in the 

fridge (temperature measured by iButton code no: DA34C00001E2B621) and then 

removed from the fridge approximately 14 hours later and stored at room temperature. 

The remaining two whelks, labelled F 1 and 2 (Fridge 1 and 2), were placed in the 

fridge for the initial 24 hours before they were taken out and stored at room temperature 

for the remainder of the experiment. The handheld Colourmeter was used to record the 

colour change of the individual sensor membranes at 0, 1, 2.5, 16, 24, 27.5 and 40 hours 

approximately. The Colourmeter software was set to take a reading every 2 seconds. 

The red LED head of the handheld Colourmeter was placed directly onto the sensor spot 

and held in place for approximately 12 seconds during the measurement. The reported
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measured value for each individual sensor spot at each of the time intervals is an 

average of six readings.

4.3 Results and Discussion

4.3.1 Fabrication and Characterisation of pH Sensitive Membranes

4.3 .1 .1  Measurement o f Sensor Thickness

The thickness o f four sensor spots was determined using a profilometer and the results 

are given in Table 4-2 below. The average sensor thickness is 8.78 ± 1.45jj,m.

Sensor Sensor Thickness (|om)

1 7.19

2 7.91

3 10.09

4 9.94

Average Thickness 8.78 ± 1.45

Table 4-2 Sensor thickness determined using a Profilometer

Images of the sensor surface were also captured using SEM Figure 4-18, which gives an 

indication of the film thickness Figure 4-19. The sensor was sliced in half using a sharp 

blade to allow the thickness across the diameter to be determined, which is ~10p.m. The 

image indicates that the thickness varies across the diameter of the sensor, which may 

also be due to the cutting process. The thickness measurements obtained by both 

techniques are very similar.
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Figure 4-18 SEM image of the sensor surface. The circular outer edge of the sensor can be seen 
towards the left hand side of the image. The straight edge at the bottom of the image indicates 
where the sensor was cut in half.

SE 3 0 -A u g -0 4  S3000N WD24.1mm 5 .0 0 k V  x900 50um

Figure 4-19 An SEM image showing the thickness of the sensor ~10(im
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4 .3 .1 .2  Solubility of the Salt

Formulations “A” to “J” all contain the same concentration of lipophilic salt. The 

concentration of the salt relative to the dye is 2:1 for each formulation. Formulations 

“A” to “£>” were prepared using CTABr. Formulations “E, F, I & T  contained TOABr 

while formulations “G & H” were prepared using OCTABr. The 

cetyltrimethylammonium bromide salt in formulations “A” to “£)” eventually dissolved 

after ~3 hours in the sonicator, followed by 1 hour sonication at a higher temperature 

35°C ± 2°C (measured using a mercury thermometer). The solutions were allowed to 

cool to room temperature before the sensor spots were prepared. Two days later, solid 

particles were visible in each of the formulation solutions ‘Vi” to “D”. The lipophilic salt 

appeared to have crystallised out. This may explain the presence of “leaf-like” 

crystalline structures on the surface of these spots, Figure 4-20.
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Figure 4-20 Images of the sensor surface with “leaf-like” structures. Magnification x 2 (left) and 
magnification x 10 (right).

All the components of formulations “is” and “F” including the lipophilic salt TOABr 

were completely dissolved after just 2 0  minutes in the sonicator while the lipophilic salt 

OCTABr in formulations “G” and “/ /” proved difficult to dissolve. For this reason, 

formulations “G” and “/ / ” were eliminated.

4 .3 .1 .3  Dye Leaching Studies

Leaching studies were carried out on the sensor spots prepared from formulations A” to 

“£>” in duplicate while leaching studies were carried out on formulations and “F” in 

triplicate. The presence of a peak at ~620nm indicates the presence of bromocresol 

green in the sample. If an absorbance band is seen at ~620nm, then this proves that dye 

is leaching from the sensor membrane into the distilled water. Formulations “A” to “D”
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all contain CTABr but have decreasing concentrations of DBS. From Figure 4-21 it is 

clear that within 3 hours in some cases dye leaching has occurred and that the degree of 

leaching decreases with decreasing concentrations of DBS for formulations A” to 

Formulations “F” and “F” contain the lipophilic salt TOABr and different DBS 

concentrations, 350mg and 175mg respectively. It is clear from the graph that, after 3 

hours, dye leaching is not evident in formulations “F” and “F” and plasticiser 

concentration does not appear to have any influence on the dye leaching. For this 

reason, formulations “A” to “D” were eliminated from the study due to their dye 

leaching, their difficulty in dissolving the lipophilic salt CTABr and finally the presence 

of crystalline structures on the surface of the sensor spots compared to the clear surface 

membranes of sensor spots prepared from formulations “F” and “F”. This leaves 2 

sensor spot formulations that could be used. Formulation “F” was chosen as from the 

literature, the greater the plasticiser concentration the faster the migration of gas 

molecules through the sensor membrane and the faster the response of the sensor. 

Formulation “F” is the optimised formulation. pKa determination of the dye in the 

sensor membrane was performed using UV-Vis spectroscopy to determine the effect of 

membrane components on the pKa of the dye. The pKa of the dye was also determined 

in pH buffer solutions using the handheld Colourmeter. The optimised sensor spots 

were calibrated with ammonia gas.

Wavelength (nm)

Figure 4-21 The presence of a peak at ~617nm in water samples indicates dye leaching after 3 hours 
from membranes made using formulations “A” to “F” (Table 4-1), and water as a reference.

136



4 .3 .1 .4 p K a Determination o f the Dye in the Membrane by UV-Vis 

Spectroscopy

A UV-Vis scan indicated that the Xmax of the dye shifted slightly from 620nm in free 

solution to 630nm in the polymer membrane “E ”, Figure 4-22. A best-fit sigmoid 

function was modelled to the absorbance data at 630nm to allow the pK* of the 

entrapped dye to be estimated, Figure 4-23. The value of the pKa was calculated to be

5.56 ± 0.01 (0.10% RSD, n=3).
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Figure 4-22 A UV-Vis scan of the dye in the polymer membrane in buffer solutions ranging from 
pH 4.91 to pH 6.01

4 .3 .1 .5  Effect o f Temperature on the pKa Dye in the Membrane

The pKa of the dye in the membrane at 4°C, Figure 4-24, was determined to be 5.56 ±

0.01 (0.10% RSD, n=3) which is identical to the pKa of the dye in the membrane 

determined at room temperature, Figure 4-23. Therefore, temperature has minimal 

effect on the pKa of the dye in the polymer membrane.
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Figure 4-23 A best-fit sigmoid function modelling the absorbance data at 630nm. The pK„ of the 
dye in the membrane at T = 20°C was calculated to be 5.56 ± 0.01, 0.10 % RSD, n=3.
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Figure 4-24 A  best-fit sigmoid function modelling the absorbance data at 630nm for the dye in the 
polymer membrane at 4°C. pK» = 5.56 ±  0.01,0.10 % RSD, n=3.
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4 .3 .1 .6  Reproducibility o f the Sensor Response in pH Buffer Solution

Figure 4-25 illustrates the reproducibility of the sensor response in pH 4.01 and pH 7.00 

buffer solutions. The noise at the top of peak number 4 is noise caused by the presence 

of a bubble in the flow cell. The average Colourmeter response for the sensor in buffer 

pH 4.01 is 81.98 ± 1.14 where n = 5, and in buffer pH 7.00 is 44.66 ± 0.88 where n = 5.
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Figure 4-25 This graph illustrates the reproducibility of the sensor response in pH buffer solutions. 
The average Colourmeter response for the sensor in buffer pH 4.01 is 81.98 ± 1.14 where n = 5, and 
in buffer pH 7.00 is 44.66 ±  0.88 where n = 5.

4 .3 .1 .7  pKa Determination o f the Dye in the Sensor Membrane using the 

Handheld Colourmeter

The most suitable LED head was chosen by comparing the spectral emission of the 

yellow and red LEDs with the spectral absorbance of the bromocresol green sensors in 

their basic form Figure 4-26. Both the red (̂ „nax 659nm) or yellow (Xmax 596nm) LED 

heads would be suitable as their emission spectra is close to the absorbance spectra for 

the bromocresol green sensors (kmax 630nm) but for the purpose of these trials only one 

LED was used, the red LED head.
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Figure 4-26 Comparison of the emission spectra of the red (A.mai 659nm) and yellow (Xmax 596nm) 
LEDs with the absorbance spectra for bromocresol green in the sensor membrane (Xmai 630nm).

The experimental set-up with the red LED head as shown in Figure 4-12 was used for 

the pKa determination of the dye in the sensor membrane. A number of buffer solutions 

ranging from pH 4.01 to pH 7.00 were prepared as described previously. Starting with 

buffer solution pH 4.01, each buffer solution was injected into the flow cell and the 

response was allowed to equilibrate. This procedure was repeated once and the results 

are plotted in Figure 4-27 and Figure 4-28. The calibration curves are displayed in 

Figure 4-29 and Figure 4-30. A best-fit sigmoid plot models the average response to 

increasing pH for the sensor, Figure 4-31. The pKa of the dye in the membrane was 

calculated to be 5.43 ± 0.02 (% RSD = 0.39, n = 2). Comparing this pKa value to the 

pK-a value determined using the plate-well reader, 5.56 ± 0.01(% RSD = 0.10, n=3), it is 

clear that there is very little difference between the two techniques.

This is an important factor as it demonstrates the reliability and accuracy of the 

handheld Colourmeter for measuring the sensor response. Compared to the plate-well 

reader the handheld Colourmeter has the added advantage of being portable and can be 

used at point-of-need giving an immediate quantitative result.
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Figure 4-27 Sensor response to increasing pH -  1st Calibration. The flow cell was allowed to drain 
before injecting a new buffer solution. This explains the presence of a ‘spike’ before each injection.

Time (minutes)

Figure 4-28 Sensor response to increasing pH -  Repeat Calibration. The flow cell was allowed to 
drain before injecting a new buffer solution. This explains the presence of a ‘spike’ before each 
injection.
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Figure 4-29 A best-fit sigmoid curve modelling the sensor response to increasing pH to determine 
the pKa (5.41) of the dye in the polymer membrane -  1st Calibration.
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Figure 4-30 A best-fit sigmoid curve modelling the sensor response to increasing pH to determine 
the pKa (5.44) of the dye in the polymer membrane -  Repeat Calibration.
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Figure 4-31 A  best-fit sigmoid curve modelling the average sensor response to increasing pH to 
determine the pK„ of the dye in the polymer membrane. The pKa of the dye in the membrane was 
calculated to be 5.43 ±  0.02, % RSD = 0.39, where n = 2.

4 .3 .1 .8  Ammonia Gas Calibrations

Calibration experiments (n=3) o f the sensor using the Colourmeter in the range between 

0 and 33ppm ammonia are displayed in Figure 4-32, Figure 4-33 and Figure 4-34 (see 

also Appendix 3-1 to Appendix 3-3). The sensor was exposed to increasing ammonia 

concentrations by adjusting the mass flow controller connected to the ammonia supply. 

The nitrogen flow was fixed to 100ml min'1. The ammonia concentration was calculated 

from the equation below:

f  >
V nh?,

C m , ~  T
[ V nh3 V n2J

C nh3 ~ concentration of ammonia in ppm 

V nh3 = volume of ammonia gas (ml min'1)

Vyv2 = volume of nitrogen gas (ml min'1)

x l 0 0  vEquation 4-2
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The concentration of the stock NH3 was 100 ppm therefore the values were multiplied 

by 100. The ammonia concentrations from 10, 20, 30 40 and 50 ml min' 1 1% ammonia 

in 100ml min 1 N2 were calculated to be 9, 17, 23, 29 and 33 ppm respectively. The 

repeatability of the measurements was evaluated by calculating the coefficient of 

variability (CV) when measuring each concentration in triplicate where:

s
C V  — ~  *  1 0 0  Equation 4-3

Jt

Where S  = standard deviation, X = mean

LOD 3 X S (background response)

The limit o f detection (LOD), defined as three times the standard deviation of the 

background response i.e. Oppm NH3, for 3 calibrations was calculated to be 0.23 ± 0.07 

ppm. The Oppm NH3 baseline value for each calibration was taken as the average of 120 

values of the initial and final baseline measurements. Figure 4-35 shows the calibration 

curve obtained from this experiment.

Time (hours)

Figure 4-32 Sensor response to increasing ammonia concentration (1st calibration -  See Appendix 
3-1 for experimental data)
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Time (hours)

Figure 4-33 Sensor response to increasing ammonia concentration (2nd Calibration -  See Appendix 
3-1 for experimental data)

Time (hours)

Figure 4-34 Sensor response to increasing ammonia concentration (3rd calibration -  See Appendix
3-1 for experimental data)
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70

NH3 (ppm)

Figure 4-35 A calibration curve of the sensors response to increasing ammonia concentration (n=3) 
-  See Appendix 3-3

Figure 4-35 shows how the sensor responds to the change in ammonia concentration. It 

is clear that the sensor does not respond linearly between 0 and 33 ppm. The increase in 

the amplitude of the signal is smaller at higher concentrations of ammonia, that is, the 

sensitivity of the sensor is higher at lower ammonia concentrations. The upper limit of 

the dynamic range is ~29ppm. From Figure 4-32, Figure 4-33 and Figure 4-34, it is 

evident that the sensor response time is concentration dependent i.e. it is very slow at 

low concentrations. This is very common in bulk optical sensors. The rate of diffusion 

of the gas molecules through the polymer membrane is dependent on the concentration, 

the concentration difference, and also on the sensor thickness. Additional calibration 

experiments were also performed in the linear region at lower ammonia concentrations. 

To obtain lower ammonia concentrations the flow rate of the N2 supply was increased to 

400ml min'1, therefore 10, 20, 30, 40 and 50 ml min"1 of ammonia in 400 ml min' 1 N2 

gave 2, 5, 7, 9 & 11 ppm NH3 respectively. This experiment was carried out in duplicate 

and a calibration curve can be seen in Figure 4-36. Once again Figure 4-36 illustrates 

that the sensor response is not linear with ammonia concentration. Increasing the flow 

rate of the N2 supply to 900 ml min' 1 further reduced the ammonia concentration. 

Therefore, 10, 20, 30 and 40 ml min' 1 NH3 in 900 ml min' 1 gave 1, 2, 3 & 4 ppm NH3 

respectively. The experiment was carried out in triplicate at 900ml min' 1 N2 . A linear
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sensor response to increasing ammonia concentration was obtained, as shown in Figure 

4-37.
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4-36 A  calibration curve of the sensors response to increasing ammonia concentration (n=2)

NH3 (ppm)

Figure 4-37 Linear sensor response to increasing ammonia concentration. The N2 flow-rate was 
increased to 900ml min'1 to achieve a concentration range between 0 and 4.3ppm (n=3) -  See 
Appendix 3-6 to Appendix 3-8.



The same experiment was carried out on 2 more sensors in duplicate. The 2 sensors 

were exposed to 1, 2, 3 and 4 ppm NH3 . The response for all 3 sensors to increasing 

ammonia concentration can be seen in Figure 4-38. An average response of the 3 

sensors to increasing ammonia concentration is plotted in Figure 4-39. The % RSD of 

the 3 sensors for each concentration is below 12%.

NH3 (ppm)

Figure 4-38 Response for 3 sensors to increasing ammonia concentration. Calibrations were carried 
out in triplicate for sensor 1 and in duplicate for sensors 2 and 3 -  See Appendix 3-8,3-11 &  3-14.
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Figure 4-39 Average response to increasing ammonia concentration for 3 sensors. The %RSD for at 
each concentration is below 12%. This demonstrates the inter-sensor reproducibility -  See 
Appendix 3-5 for experimental data.

4 .3 .1 .9  Precision -  Repeatability and Reproducibility

The precision of the sensor was determined by measuring the repeatability and the 

reproducibility. Repeatability was measured by repeating the same experiments on the 

same sensor, while reproducibility was measured by repeating the same experiments on 

different sensors. 3 sensors in total were used for the repeatability and reproducibility 

studies. The repeatability of the measurements was evaluated by calculating the 

coefficient of variability CV when measuring the concentration of four standards in 

triplicate (in duplicate in some cases). The reproducibility was evaluated by calculating 

the %CV between the responses of the 3 sensors at four NH3 concentrations. Sensors 1, 

2 and 3 showed excellent repeatability with a %CV < 5% for Sensors 1 and 2 and a 

%CV < 6.2% for Sensor 3. The reproducibility between the sensors was excellent with 

an overall %CV < 12% for all 3 sensors -  See Appendix 3-5. The %CV for individual 

sensors is given in the Appendix 3-4.

Although the inter-sensor reproducibility is excellent there is still a degree of variation 

between the sensors that must be addressed if  the sensors are to be deployed on a large 

scale. Currently, the sensors are prepared manually which definitely impacts the 

reproducibility. An automated process whereby the formulation is screen-printed or spin
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coated uniformly onto a rigid substrate would certainly minimise the variation between 

the sensors. The sensor response is relatively slow at low concentrations but this should 

not be an issue for the intended application where the sensors are expected to respond to 

high levels o f volatile compounds released into a confined headspace over time.

4.3.2 Monitoring of Headspace Spoilage Volatiles Released from Cooked 

Whelk in Different Storage Conditions using the pH Sensitive 

Membranes

4.3 .2 .1  Preliminary Trial 1

After 72 hours the sensor spot was visually assessed and a colour image of the sensor 

spot was captured using a Sony digital camera. The sensor spot changed from yellow to 

blue over the 72-hour period, Figure 4-15. The sensor response over time was measured 

via the Colourmeter and the data was processed in Microsoft Excel, Figure 4-40. The 

response curve indicates that the sensor began to change from the moment the container 

was sealed and continued to change over the 72-hour period. Microbial counts and 

TVB-N data are necessary to confirm that the sensor response is due to whelk meat 

spoilage.

From the graph there appears to be a regular wave pattern particularly noticeable in the 

latter part of the curve. As the experimental set-up was covered over by tin foil to 

eliminate ambient light effects the only other interfering factor that appears to correlate 

with the response is the ambient temperature recorded by the iButton, Figure 4-41. This 

interfering temperature effect needs to be addressed for future deployment of the system 

in a variable temperature environment. Integrating a temperature compensation factor 

into the software or applying a best-fit curve to the data may help achieve this. A best- 

fit curve was manually applied to the data to give an indication of how the sensor would 

respond if  the temperature effects were eliminated, Figure 4-42.
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Figure 4-40 Sensor response to the spoilage volatiles released by the cooked whelk at room 
temperature over time. This graph also illustrates the periodic wave pattern occurring in the sensor 
response.

Time (hours)

Figure 4-41 This graph illustrates the periodic temperature gradients of the laboratory during the 
experiment.
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Figure 4-42 Normalised sensor response to the spoilage volatiles released by the cooked whelk 
stored at room temperature over time. A best-fit curve was manually applied to the data.

4 .3 .2 .2  Bertholot's Reaction

This quick test was performed to ensure that amines were the spoilage compounds 

released from the cooked whelk sample. Approximately 1ml of distilled water was 

syringed into the headspace of the container and allowed to absorb the volatile amines 

for approximately 5 minutes. Using the same syringe, the water lodged at the bottom of 

the container was retrieved and allowed to react with a few drops of Bertholot’s reagent. 

In less than 2 minutes the solution turned from yellow to blue, Figure 4-43. This test 

signified the presence of ammonia/amines in the headspace of the container, and 

therefore supports the view that the volatile basic nitrogenous compounds released by 

the whelk meat were responsible for the sensor response in Figure 4-42.
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Figure 4-43 Bertholot’s reagent (yellow) turns green when reacted with a sample of water 
containing the spoilage volatiles released from the spoiled whelk. The colour change indicates the 
presence of amines.

4 .3 .2 .3  Preliminary Trial 2

Soon after the individual containers were sealed, the first sensor (left hand side) on each 

container turned greenish-blue. The photographs in Figure 4-45 clearly illustrate this. 

Looking at Figure 4-44, the whelks were placed in the exact same position in all 

containers with the opening of the shell also to the left hand side.

Figure 4-44 Cooked whelk arranged in the same position with the opening of the shell to the left 
hand side of each container.
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Fresh Molluscan shellfish contain high levels of nitrogenous compounds that can be 

extracted from the whelk meat by steam distillation. Similarly, during the cooking 

process some volatile ammonia and amines were released with the steam from the 

whelk meat into the atmosphere. This may explain the observations of this preliminary 

trial that some sensors changed to the blue form prematurely. The cooked whelks were 

packed while they were still warm as they were allowed to cool for only 5 minutes. 

There were still considerable amounts o f steam being released from the sample, which 

can be clearly seen in Figure 4-45. In all the trays, a layer of condensation was visible 

around the 1 st sensor, which in each case was situated above the opening of the shell 

directly exposed to the whelk meat. As ammonia is highly soluble in water, the layer of 

condensation on the permeable membrane adjacent to the sensor absorbed and pre

concentrated any ammonia liberated from the cooked whelk. Therefore, the ammonia 

concentration in the layer of condensation is higher compared to the ammonia in the 

surrounding headspace. The volatile ammonia diffused from the layer of condensation 

through the gas permeable membrane of the sensor and induced a colour change before 

the whelk spoiled.

Another probability was that the heat generated from the steam changed the 

characteristics of the diffusion control membrane separating the sensor from the 

headspace to allow excess water vapour to get through to, and eventually condense on 

the surface of the sensor. This would allow deprotonation of the dye to occur with or 

without the presence of basic ammonia/amine species. These arguments were supported 

by the fact that no/insignificant colour change was observed from all other sensors 

(sensor spots 2 & 3) on which no obvious condensation was observed. These sensors 

subsequently responded to the increase in concentration of the headspace spoilage 

volatiles released by the whelk meat over a time period as expected. As the 1st sensor 

spot on each container was completely saturated within the first 1 0  minutes, the results 

from this trial are taken from sensor spots 2 and 3 in each container.
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Figure 4-45 Digital images illustrate the colour change of the sensor spots over time as the cooked 
whelk are allowed to spoil at different temperatures. The images at 1 hour were taken with a black 
background to highlight the layer of condensation surrounding the first sensor in each container.
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The graph below illustrates the sensors response over time, measured via the handheld 

Colourmeter, to spoiling whelk stored at different temperature conditions. Two whelk 

samples were monitored at each temperature so each line on the graph represents 4 

sensors (n=4, sensors 2 and 3 from each container). Sensor 1 on each tray was 

eliminated from the results as it was saturated initially.

Time (hours)

Figure 4-46 Sensor responses (n=4) to the spoilage volatiles released by the cooked whelk stored at 
different temperature conditions. The R T  samples were stored at room temperature for the entire 
trial. The F  to R T  and F  samples were stored in the fridge until they were removed at 16 and 24 
hours respectively.

The RT samples were allowed to spoil at room temperature for the entire trial. The F to 

RT and F  samples were stored in the fridge for 16 and 24 hours respectively, before they 

were removed from the fridge and stored at room temperature. While the samples were 

stored in the fridge they were removed momentarily (i.e. up to 1 minute) at various time 

points to facilitate Colourmeter measurements. The graph illustrates how the sensors 

representing the RT samples responded a lot faster than those sensors representing the 

samples which were chilled for a period of time before they were exposed to room 

temperature. Chilling significantly slows down the growth of spoilage bacteria, 

therefore slows down the production of spoilage volatiles. The sensor response for the 

samples stored in the fridge increased initially for the first 2  hours and then remained 

relatively constant until they were removed from the fridge at approximately 16 and 24 

hours (F to RT and F samples respectively). Once the samples were exposed to higher
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temperatures there was a visible increase in the sensor response from the time they were 

removed. This increase in the sensor response represents the increase in the TVB-N 

concentration in the headspace. The temperature increase boosted bacterial growth and 

TVB-N production. The accompanying digital images in Figure 4-45 compliment the 

Colourmeter response to the sensors. Focusing only on sensors 2 and 3 in each container 

there is a visible difference in the sensor spots over time, changing from yellow to blue. 

Take for example the sensors representing the RT samples. At 10 minutes the sensor 

spots 2 and 3 are yellow. By 14 hours the same sensor spots are blue while the sensors 

representing the F to RT and F samples are a greenish-yellow. The sensors remain this 

colour until the samples are removed from the fridge. For example the sensors 

representing the F to RT changed from a greenish-yellow to blue after being stored at 

room temperature for ~ 6  hours. Likewise, the sensors on the F  samples changed from a 

greenish-yellow to blue after being exposed to room temperature for ~4 hours.

By ~40 hours all of the sensors on all o f the samples were the same colour illustrated by 

both the sensor response measured via the Colourmeter and the colour digital images 

captured with the digital camera. The results from this preliminary trial also 

demonstrate that the colour images of the sensors correlate well with the Colourmeter 

response.

4.4 Conclusion

Ten different membrane formulations were initially prepared. The optimised 

formulation was chosen based on a number of factors such as the solubility o f the 

membrane components in the solvent to produce an optically clear membrane and the 

absence of dye leaching when the membranes were submerged in water. The pKa of 

bromocresol green in the membrane was determined using two different instruments, a 

plate-well reader and a newly developed handheld Colourmeter, which gave a pKa of

5.56 ± 0.01 (0.10% RSD, where n = 3), and 5.43 ± 0.02 (0.39% RSD, where n=2), 

respectively. There is very little variation between the two techniques, which validates 

the reliability of the handheld Colourmeter for measuring the sensor response. 

Temperature was shown to have minimal effect on the pKa of the dye in the membrane. 

The sensors were calibrated in NH3 and the limit of detection was calculated to be 0.23 

± 0.07ppm. The sensors showed excellent reproducibility with an overall %CV < 12% 

(n=3). Preliminary trials were performed where the sensors were exposed to the 

spoilage volatiles released by cooked whelk stored at different temperatures. The sensor
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response was measured via the handheld Colourmeter. The trials demonstrated that 

sensors representing cooked whelk samples stored at room temperature responded a lot 

faster than sensors representing samples that were chilled for a period of time. The 

results obtained during the preliminary trials provided a basis for further optimisation 

and improvement in the sensor design.
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5.1 Introduction

With the current whelk package preparation protocol employed by the seafood 

producer, i.e. Errigal Fish, it is a major challenge to incorporate this sensor technology 

into sealed containers to monitor the spoilage of freshly cooked whelk. For example, 

some of the whelk meat products from Errigal Fish must undergo a pasteurisation 

process once they have been packed. The whelk trays are maintained at 90°C for 20 

minutes and then they are maintained at 95 °C for 105 minutes followed by cooling. 

There are three major concerns arising from the pasteurisation process. Firstly, the 

sensors have to be incorporated into the packaging before the pasteurisation process 

after which the sealed tray must not be tampered with. Secondly, sealed trays of cooked 

whelk meat subjected to high temperatures for long periods of time force the volatile 

nitrogenous compounds present in the whelk meat into the headspace saturating the 

sensor. Thirdly, the properties of the PTFE gas permeable membrane will be changed 

under such high temperature and pressure conditions allowing water vapours to be 

forced through the membrane and deprotonate the pH sensitive dye in the sensor.

The following chapters discuss how the sensor technology can be optimised to 

overcome these challenges to produce a robust sensor that operates reliably in a real 

industrial application.

5.1.1 Correlation o f the Sensor Response to Microbial Spoilage of Cooked 

Whelk Stored at Different Temperatures

As seen in the previous chapter, the volatile basic nitrogenous compounds released from 

the whelk meat as a result of the cooking process, saturated the sensors before the onset 

of spoilage. In a real situation, if the quality of the whelk meat depended solely on the 

sensor response then a ‘false positive’ outcome would result in huge losses for the 

whelk meat processors. The main components of the volatile basic nitrogen compounds

i.e. TMA, ammonia and DMA, each have pKas of 9.8, 9.25 and 10.70 respectively. 

Bromocresol green has a pKa of 4.7 (the pKa of bromocresol green in the polymer 

membrane is 5.4 determined in Chapter 8 ), which is readily deprotonated by the TVB-N 

released during cooking. In order for the sensor to respond at the critical threshold of 

interest, where the levels o f TVB-N released are relatively high, a dye with a pKa of 

around 2 pH units less than the pKas of the principal amine components of TVB-N must 

be selected. Two dyes were chosen: bromothymol blue (pKa 7.0) and m-cresol purple
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(pKa 8.3). Sensors were prepared containing the above dyes and their response to 

spoilage volatiles released by cooked whelk was assessed in a trial carried out at Errigal 

Fish, Carrick, Co. Donegal. The results of this trial are presented in the following 

chapter.

5.2 Experimental

5.2.1 Materials

The membrane components; pH sensitive dyes bromothymol blue (BTB, sodium salt), 

and m-cresol purple (m-CP, sodium salt), lipophilic salt tetraoctylammonium bromide 

(TOABr), and solvent cyclohexanone (99.8%), were obtained from Sigma-Aldrich 

(Dublin, Ireland). The binder poly(vinyl chloride) (PVC, high molecular weight) and 

the plasticiser dibutyl sebacate (DBS) were supplied by Fluka Chemicals (Dublin, 

Ireland). Optically clear poly(ethylene teraphthalate) (PET) was obtained from Oxley 

pic (Cumbria, UK). Polypropylene reinforcement rings and polytetrafluoroethylene 

(PTFE) gas permeable membrane (Thread Seal Tape: 12m x 12mm x 0.075mm) were 

supplied by Radionics (Dublin, Ireland).

5.2.2 Preparation o f Sensors

The same procedure as described in Chapter 4 was followed except m-cresol purple and 

bromothymol blue were used instead of bromocresol green.

5.2.3 Equipment

The handheld Colourmeter, a Sony Digital Camera and a Dell Latitude Laptop were 

used to monitor the sensor response and process the data.

5.2.4 History o f the Whelk Samples

5.2.4.1 Cooked Whelk-On-Shell

The cooked whelks were obtained from the production line at Errigal Fish. 454g ± 25g 

of cooked whelk-on-shell were weighed into individual plastic containers also supplied 

by Errigal Fish.
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5 .2 .4 .2  Cooked Whelk-No-Shell

The cooked whelk meats without shells were also obtained from the production line at 

Errigal Fish. They were placed into a plastic container also supplied by Errigal Fish.

5.2.5 E xpe rim en ta l Set-up

5.2 .5 .1  Cooked Whelk-On-Shell

The whelk samples were exposed to 4 different conditions as follows:

■ Unpasteurised cooked whelk-on-shell at Room Temperature ~ 25°C

■ Unpasteurised cooked whelk-on-shell at 0 to 4°C

■ Pasteurised cooked whelk-on-shell at Room Temperature ~ 25°C

■ Pasteurised cooked whelk-on-shell at 0 to 4°C

The sensors ability to respond to each condition over time was monitored using both 

subjective (visual assessment) and objective (digital images and Colourmeter 

measurements) techniques. Microbial tests (TVCs) were also carried out on the samples 

at regular time intervals.

10 packs of whelk were prepared for each condition i.e. 40 packs of cooked whelk in 

total. Packs from each of the above sampling conditions were removed at defined time 

intervals for microbial analysis. The time interval between each microbial analysis 

depended upon the conditions under which the samples were held. For example, 

microbial analysis were carried out more frequently on unpasteurised whelk stored at 

room temperature (every few hours) than pasteurised whelk (once a week) stored at 0  to 

4°C. Pasteurised whelk stored at 0 to 4°C have a shelf life of 5 weeks with an extra 3 

week period for safety.
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Figure 5-1 The Bromothymol Blue and m-Cresol Purple Sensors were attached inside the plastic 

covering before the packs were sealed.

One bromothymol blue and one m-cresol purple sensor were attached to 40 (weighing 

454g ± 25g) packs of cooked whelk-on-shell. The packaging equipment was manually 

operated so the sensors were attached inside the plastic covering, via double-sided 

sellotape, before the packs were sealed. All 40 packs were placed in cold storage until 

the following morning. The cold temperature inhibits or dramatically slows down 

bacterial growth allowing the experiment to be delayed until the next day. 

2 0  of the packs were placed in the laboratory fridge (these were not pasteurised) and 2 0  

more packs were placed in cold storage on the production line for pasteurisation the 

following morning. 15 hours after the whelks were packaged the 2 0  packs of whelk 

were removed from the laboratory fridge and randomly divided into 2  groups of 1 0 . 1 0  

of the packs were placed on the bench and initial readings using the Colourmeter were 

taken. These remained on the bench exposed to ambient temperatures for the remainder 

of the experiment. The trays of whelk were labelled: Unpasteurised Bench 1 to 10. The 

other 10 trays of whelk were put back into the fridge and were labelled: Unpasteurised 

Fridge 1 to 10. Trays 9 and 10 had only one spot (a bromothymol blue spot as some of 

the m-cresol spots were mislaid during the packing stage). The other 20 trays of whelk 

were pasteurised on the production line and were returned to the laboratory once the
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pasteurisation process was complete. Once again 10 packs were placed in the fridge, 

labelled Pasteurised Fridge 1 to 10, and the remaining 10 were placed on the bench, 

labelled Pasteurised Bench 1 to 10.

5 .2 .5 .2  Cooked Whelk-No-Shell

5 bromothymol blue and 3 m-cresol purple sensors were attached inside a shallow 

plastic container of shelled cooked whelk meats. The container was sealed and the tray 

was stored at room temperature for the duration of the experiment. The sensor response 

was monitored using the handheld Colourmeter and the digital camera.

5.2.6 Pasteurisation Process

The whelk trays were maintained at 90°C for 20 minutes and then they were maintained 

at 95°C for 105 minutes followed by cooling.

5.2.7 Microbial Testing

5.2 .7 .1  Total Viable Counts (TVC)

TVCs were chosen as the microbial test to be used in this trial for detecting whelk 

spoilage over time.

5 . 2 .7 . 1.1 M a t e r i a l s  a n d  E q u ip m e n t

(IMS) Industrial Methylated Spirits, Bunsen burner, chopping board, knife, MRD 

(Maximum Recovery Diluent), stomacher bags, Petri dishes and plate count agar.

5 . 2 .7 . 1.2  M e th o d

The sampling area was sanitised with IMS including the chopping board, balance and 

the outer surface of the whelk tray. The knife was dipped in IMS and flamed over the 

Bunsen burner. Using the knife 25g ± 0.5g of whelk meat (excluding the guts and nail) 

was chopped up and weighed into a stomacher bag. 225ml of MRD was poured into the 

stomacher bag and mashed for ~1 min. The contents were poured into a sterile container 

and the whelk meat was allowed to settle to the bottom. This represented the 10' 1 

dilution. Using aseptic techniques 1ml of this solution was transferred into 9ml of
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MRD. This represented the 10' 2 dilution. This procedure was continued until the 

required dilution was achieved. 1ml of each dilution was pipetted into a Petri dish (x2). 

A small amount of plate count agar was poured into the Petri dish and was gently 

swirled to evenly cover the bottom of the plate. The plates were allowed to set for 

approximately ten minutes. The plates were inverted and placed into the incubator at 

30°C for 48 hours. At 48 hours the plates were removed and the colonies were counted.

5.2.8 Total Volatile Base Nitrogen (TVB-N)

In Errigal Fish Co. Ltd, TVB-N is used as an indicator for whelk freshness.

5 . 2 .8 . 1.1  M a t e r i a l s  a n d  E q u i p m e n t

Kjeldahl flask, condenser, delivery adaptor, splash head, conical flask, heating mantle, 

10 grams of chopped whelk meat, 2ml of silicone anti-foaming agent (BDH: Product 

Code: 33151), 2g magnesium oxide heavy GPR (BDH: Product Code: 291104W), 

300ml of distilled water, 2% boric acid, 0.1M HCL

5 . 2 .8 . 1.2  M e th o d

Splash Head

Condenser

Delivery Adaptor 
(Distillate drops 
into conical flask 
containing 2 % 
boric acid)

1

n

y r
j i

n

Kjeldahl flask 
(Secured into 
heating mantle)

Figure 5-2 (Kjeldahl, macro determination unit for distillation from Lennox Laboratories Supplies 

online catalogue: Cat. No. 244/1620/00)

The above distillation apparatus was assembled for the TVB-N determination. 10g of 

chopped whelk meat were accurately weighed into the Kjeldahl flask. 2ml of silicone 

anti-foaming agent and 2g magnesium oxide and 300ml of distilled water were 

transferred to the flask. The flask was heated over a heating mantle. The mixture was 

boiled for 25 minutes from boiling point. The blue boric acid solution was titrated
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against 0.1M HCL until the blue colour disappeared. The titrate result was used in the 

following calculation to determine the TVB-N present in the whelk meat:

5 . 2 . 8 . 1.3 E x p r e s s i o n  o f  R e s u l t s

The equation below is the simplified method of calculating the % Nitrogen in a whelk 

meat sample given in the Errigal Fish Laboratory Sampling and Test Procedures 

Manual, Section No: EL -  3 -0, for the Determination of Total Volatile Bases.

iV L  n 2 = mg nitrogen 

M  flesh = 1 0 0  mg flesh

JT R = Titrate result

The following guidelines set out in Table 5-1 are used by Errigal Fish Co. Ltd to relate 

this value to whelk meat freshness:

mg nitrogen / 1 0 0 g flesh Freshness Description

0-15 Good

15-20 Going off

> 2 0 Gone off

Table 5-1 TVB-N guidelines relating to whelk meat freshness used by Errigal Fish Co. Ltd.

5.3 Results and Discussion

The 40 trays of whelk were placed in cold storage to delay spoilage. 20 packs were 

placed in the laboratory fridge and 2 0  packs were placed in cold storage on the 

production line. 15 hours later the 2 0  packs of whelk in the fridge were examined and

Equation 5-1

5.3.1 Cooked Whelk-On-Shell
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the bromothymol blue spots on the majority of the packs had changed from yellow to 

green/blue, Figure 5-3.

Figure 5-3 The Bromothymol Blue sensors on the majority of the packs (11 out of 20) had changed 

from yellow to blue after 15 hours in cold storage.

Tray No. 1 2 3 4 5 6 7 8 9 1 0

Bench B Y B Y B Y Y Y B Y

Fridge B Y B B B B B B Y Y

Table 5-2 Colour description of the Bromothymol Blue sensor on the Unpasteurised Bench and 

Fridge Trays (B = Blue, Y  = Yellow)

168



The bromothymol blue sensors on the trays labelled Unpasteurised Bench 2, 4, 6, 7, 8 & 

10 remained unchanged. For the Unpasteurised Fridge samples the bromothymol blue 

sensors on trays 2, 9 & 10 also remained unchanged.

Bromothymol 
Blue Censor

Immediate area 
surrounding the 
bromothymol blue 
sensor is free from 
condensation

Figure 5-4 Trays 2 from the Unpasteurised Bench and Fridge samples. The bromothymol blue 

sensor remained unchanged after 15 hours in cold storage.

The bromothymol blue spots in each of the above trays, Unpasteurised Bench Tray 2 

and Unpasteurised Fridge Tray 2, remained unchanged. Looking closely at the 

bromothymol blue sensors in each photo the immediate area surrounding each sensor 

appears free from condensation. This relates back to the preliminary trial carried out 

previously. Where there was condensation present the sensors had changed colour. This 

once again supports the fact that the condensation or layer of water surrounding the 

sensor absorbed and pre-concentrated the ammonia/amines released from the whelk into 

the headspace allowing the volatile compounds to easily diffuse through the PTFE gas 

permeable membrane and saturated it before the onset of spoilage.

Therefore, trays 2 from the Unpasteurised Bench & Fridge samples were used for 

colour measurements as the bromothymol blue sensors remained unaffected by the 

condensation and that any colour change over time may only be due to a response to 

increasing spoilage volatiles in the headspace. The spots on the remaining trays were 

also monitored but these trays were primarily used for TVC analysis over time. By 18
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hours there was no visual change in the any of the sensors from trays 2  of the 

Unpasteurised Bench & Fridge samples, Figure 5-5.

\  ■NPWI

I L J

• i  •

Figure 5-5 By 18 hours there was still no visual change in any of the sensors for the unpasteurised 

bench samples (left) unpasteurised fridge samples (right).

When the other 20 trays o f whelk returned from pasteurisation the spots were assessed 

for colour change and physical damage due to the extreme pasteurisation conditions. 

The photographs in Figure 5-6 clearly describe their appearance following 

pasteurisation. The bromothymol blue sensors once again changed colour and in some 

circumstances the sensor was completely destroyed. Clearly, the sensors were not able 

to withstand the harsh conditions of the pasteurisation process. At 22 hours a very 

interesting colour change in the bromothymol blue sensors in contact with the 

Unpasteurised Bench samples was observed. All the bromothymol blue sensors had 

reversed from blue to yellow. There was also no trace of condensation on the packs. The 

digital images in Figure 5-8 are of trays 2, 4, 5, 6 , 7, 8 , 9, & 10. Tray 3 was used for 

microbial analysis previously. The results from the Handheld Colourmeter verify this 

observation in the graph below, Figure 5-7.

170



Figure 5-6 The Bromothymol Blue sensor was completed saturated (left) or completed destroyed 

(right) following pasteurisation.

Time (hours)

Figure 5-7 The Colourmeter response to the sensor describes how the bromothymol blue sensor 

reverted back to its original colour by 22 hours. At T0 both the bromothymol blue and m-cresol 

purple sensors were yellow. The first Colourmeter reading was taken at 15 hours (all samples were 

placed in cold storage for ~15 hours to delay the experiment).

This graph clearly illustrates the colour changes experienced by the bromothymol blue 

sensors for the Unpasteurised Bench samples. The m-cresol purple sensor did not 

change colour during the course of the experiment.
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Figure 5-8 Digital images o f the bromothymol blue and m-cresol purple sensors on the 

Unpasteurised Bench samples taken at 22 hours

At 44 hours a TVB-N analysis was carried out on the cooked whelk meat stored in one 

of the trays held at room temperature. The result of the test indicated that the whelk 

meat contained 28mg nitrogen/lOOg, which according to the guidelines set down by 

Errigal Fish indicated that the sample was spoiled.

172



By 48 hours there was still no visual colour change in the m-cresol purple sensors. The 

Colourmeter results verify this observation, Figure 5-7. It was obvious at this stage that 

the sensors were not responding to the spoilage volatiles released by the whelk meat. 

The experiment was therefore terminated.

Time (Hours)

•  Unpasterised Bench a Unpasteurised Fridge
♦ Pasteurised Bench X Pasteurised Fridge

Figure 5-9 Total Viable Counts (n=2, the error bars are hidden behind the marker for some of the 

data points) for the cooked whelk samples exposed to different conditions i.e. Unpasteurised 

samples stored in the fridge and at room temperature (all the samples were placed in cold storage 

for ~15 hours prior to commencing the trial to delay spoilage) and pasteurised samples stored in the 

fridge and at room temperature (all samples were placed in cold storage for ~17 hours prior to the 

pasteurisation process which took ~2 hours -  the 1st TVC analysis was performed at 20 hours). 

Only 1 TVC test was performed on the pasteurised fridge samples, as the TVC was not expected to 

change within the given time frame -  See Appendix 4-1 for experimental results.

The Total Viable Counts o f the whelk samples exposed to different conditions are given 

in Appendix 4-1. The logarithmic values of the Total Viable Counts are represented in 

Figure 5-9. As expected the TVCs for the unpasteurised samples stored at room 

temperature increased at a much faster rate over the 48-hour period compared to the 

unpasteurised samples stored in the fridge and the pasteurised samples stored at room
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temperature. The TVC values are typically lower initially for the pasteurised samples 

compared with the unpasteurised samples. The cut-off threshold for accepting 

unpasteurised products at Errigal Fish is 100,000 CFU/g (the logarithmic value is 5). 

TVCs greater than 100,000 are regarded unfit for human consumption or spoiled. The 

cut-off threshold for pasteurised products is 10,000 CFU/g (the logarithmic value is 4). 

Using these guidelines, the unpasteurised samples stored at room temperature reached 

the critical cut-off point of 100,000 CFU/g at ~30 hours*. Storing the samples in the 

fridge slowed down microbial growth considerably with the unpasteurised samples 

reaching their critical threshold limit at -48 hours. Although the pasteurisation process 

kills any pathogenic and spoilage bacteria, if the products are not maintained at 0-4°C 

then microbial growth soon begins to accelerate. According to Figure 5-9, the 

pasteurised samples stored at room temperature reached their critical threshold limit of

10,000 CFU/g at -45 hours**.

5.3.2 Cooked Whelk-No-Shell

At To all the bromothymol blue and m-cresol purple sensors were yellow, Figure 5-10. 

By 18 hours the bromothymol blue sensors had changed to a greenish colour while the 

m-cresol purple sensors remained unchanged, Figure 5-10. The Colourmeter results in 

Figure 5-11 clearly illustrate this colour change in the bromothymol blue sensors. By 48 

hours the whelk meats were clearly spoiled as the container had expanded to 

accommodate for the increased production of gaseous compounds released into the 

headspace, Figure 5-12. The bromothymol blue sensors reversed back to their original 

yellow colour while the m-cresol purple sensors showed no sign of colour change.

* The samples were held in cold storage for ~15 hours prior to commencing the trial. For the remaining 15 

hours the samples were exposed to room temperature.

** The samples were held in cold storage for-17 hours prior to pasteurisation. The pasteurisation process 

took ~2 hours. The samples were then returned to the laboratory where they were exposed to room 

temperature for the remainder of the trial. Therefore, the time taken for the samples to reach the cut-off 

threshold when exposed to room temperature was ~25 hours.
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Yellow m-cresol 
purple sensor
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bromothymol 
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Figure 5-10 m-cresol purple and bromothymol blue sensors monitoring the spoilage of cooked 

whelk meats
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Figure 5-11 Colourmeter response of Bromothymol Blue (BTB) and m-Cresol Purple (m-CP) 

sensors after 18 hours exposed to room temperature.
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Figure 5-12 Digital image indicates the cooked whelks were well spoiled after 48 hours exposure to 

room temperatures. The container expanded to accommodate for the increased production of 

gaseous compounds released into the headspace. The Bromothymol Blue sensors reversed back to 

their original yellow colour while the m-cresol purple sensors showed no sign of colour change.

For these trials the bromothymol blue and m-cresol purple sensors did not respond to 

the microbial growth of the cooked whelk meat samples. This is surprising, as it has 

been reported in the past that pH sensitive membranes containing the pH sensitive dye 

cresol red, pKa of 8.1, responded very well to the onset of spoilage of a number of 

different fish species. The sensors containing the pH sensitive dyes bromothymol blue 

and m-cresol purple have pKas (7.0 and 8.3 respectively) close to that of cresol red and 

would be expected to behave in a similar fashion. With some shellfish i.e. crustaceans, 

the muscle has been reported to contain over 300mg of nitrogen/1 OOg of meat, which is 

considerably higher than that for fish and initial spoilage of crustacean meats is 

accompanied by the production of large amounts o f volatile base nitrogen, much as in 

the case with fish.

There is very little information in the literature describing the spoilage patterns of the 

whelk species. We can only look at the spoilage patterns of other species from the same 

molluscan shellfish family i.e. oysters, clams, squid and scallops and use this
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information as a guide to whelk meat spoilage. Molluscan shellfish differ in their 

chemical composition from both fish and crustacean shellfish in having a significant 

content of carbohydrate material and a lower total quantity of nitrogen in their flesh, 

Table 5-3.

% Water % Carbohydates % Proteins

Fish

Bluefish 74.6 0 20.5

Cod 82.6 0 16.5

Haddock 80.7 0 18.2

Halibut 75.4 0 18.6

Herring (Atlantic) 67.2 0 18.3

Mackerel (Atlantic) 6 8 . 1 0 18.7

Salmon (Pacific) 63.4 0 17.4

Swordfish 75.8 0 19.2

Crustaceans

Crab 80.0 0 . 6 16.1

Lobster 79.2 0.5 16.2

Mollusks

Clams, meat 80.3 3.4 1 2 . 8

Oysters 80.5 5.6 9.8

Scallops 80.3 3.4 14.8

Table 5-3 Approximate % Chemical Composition of Fish and Shellfish

The carbohydrate is largely in the form of glycogen, and with levels o f the type that 

exist in molluscan meats, fermentative activities may be expected to occur as part of the 

microbial spoilage. The higher content of carbohydrate materials in molluscan shellfish 

is responsible for the different spoilage pattern of these foods over other seafood. The 

microbial flora of molluscan shellfish may be expected to vary considerably, depending 

on the quality of the water from which these shellfish were taken and the quality of the 

wash water and other factors. As spoilage sets in and progresses, Pseudomonas and 

Acinetobacter-Moraxella species predominate, with enterococci, lactobacilli, and yeasts 

dominating the late stages of spoilage. Due to the relatively high level of glycogen, the 

spoilage of molluscan shellfish is basically fermentative but for squid meat, volatile
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base nitrogen increases as spoilage occurs much in the same manner as for crustacean 

shellfish. As already mentioned, for molluscan shellfish volatile basic nitrogenous 

compounds are released during the initial stages of spoilage but the final stages of 

spoilage are predominantly due to fermentative activities. Therefore, the total volatile 

compounds released during molluscan shellfish spoilage not only consist of total 

volatile bases (TVB) but also consist of total volatile acids (TVA). TVA includes acetic, 

lactic and other organic acids produced by lactic acid bacteria during the breakdown of 

carbohydrates in the fermentation process. While TVB production predominates 

initially, the overall headspace pH will be lowered by the production of volatile acids 

such as acetic and lactic acid at the later stages of spoilage. As the two antagonist 

processes ultimately lower the pH of the headspace this may explain why the 

bromothymol blue and m-cresol purple sensors did not respond as the whelk meat 

deteriorated. The concentration of basic compounds present in the headspace may not 

have been high enough to deprotonate the dye and cause a colour change due to the 

production of volatile acids.

These two antagonist spoilage processes present an interesting challenge for the pH 

sensor technology in detecting the spoilage volatiles and may also explain the colour 

changes observed by the bromothymol blue sensor while monitoring the spoilage of the 

shelled cooked whelk meats. Initially the bromothymol blue sensors were yellow. After 

18 hours of being exposed to room temperatures these sensors changed from yellow to 

pale green. By 48 hours the bromothymol blue sensors had reversed back to their 

original colour. The different spoilage patterns experienced by molluscan shellfish may 

explain these observations. The green colour at 18 hours may represent the initial stages 

of spoilage where TVB volatiles were predominantly produced. By 48 hours the bulging 

container clearly indicated that the cooked whelks were in the later stages of spoilage 

where fermentation activities produced large amounts of volatile organic acids such as 

lactic acid and acetic acid. The presence of large amounts of volatile acids in the 

headspace may have protonated the bromothymol blue sensors causing them to return to 

their original state.

The above phenomenon describes what would happen if the cooked whelk samples 

were allowed to deteriorate to such extremes that the packaging becomes distorted due 

the presence of colossal amounts of spoilage volatiles. In reality, the appearance of the 

bulging container alone would be enough evidence to indicate that the product is well 

past its sell-by date!

The initial stage of spoilage is primarily what needs to be addressed where there is an 

abundance of volatile bases present in the headspace. While it has been proven in the
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past by researchers studying the spoilage patterns of fish samples that the indicator dye 

needs to be approximately 1-2 pH units less than the pKaS of the compounds to be 

detected so that the sensors are not easily depronated by the headspace before the onset 

of spoilage, then the contrary may well be true in this case. A dye with a lower pKa i.e. 

bromocresol green (pKa 4.7), may be necessary to detect the spoilage volatiles without 

being reversed back to their acid form by acidic volatiles released in the later stages of 

spoilage.

5.4 Conclusion

The results from this trial indicate that the m-cresol purple sensors and the bromothymol 

blue sensors did not respond well to the microbial growth of cooked whelk meat 

samples. The trials also demonstrated that sensors were not robust enough to withstand 

the extreme conditions of the pasteurisation process. Developing a sensor to detect 

cooked whelk meat spoilage proves to be a challenging task. The obstacles described 

here must be taken into consideration for future optimisation of the pH sensor 

technology.
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6 Optimisation of the Sensor Design and Correlation of the Sensor 
Response to Microbial Spoilage of Cooked Whelk
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6.1 Introduction

The results from the last chapter clearly indicate that the sensors prepared from the two 

dyes bromothymol blue (pKa 7.0) and m-cresol purple (pKa 8.3) were not sensitive 

enough to detect the onset of spoilage using this experimental design, as there was no 

change in the sensor response when it was obvious that the samples were well spoiled 

according to the microbial data. Digital images of the sensors following pasteurisation 

clearly illustrated how the high temperatures and pressures affected their physical 

structure. The sensors are not yet robust enough to withstand the pasteurisation process 

and require further development before they can be incorporated into packaging 

materials destined for such processes. For this reason, subsequent trials were primarily 

focused on the spoilage patterns of unpasteurised cooked whelk products. From the 

preliminary trials, the bromocresol green sensors had their drawbacks. A combination of 

factors caused them to change colour prematurely. The reason behind this premature 

colour change has been discussed in detail in previous chapters. In the preliminary 

trials, the cooked whelks were packed while they were still warm. At Errigal Fish the 

time interval between cooking and packing can vary but in general it is long enough to 

allow the whelks sufficient time to cool down to ambient temperatures before they are 

packed. The volatile nitrogenous compounds released during cooking are allowed to 

escape into the atmosphere so by the time they are packed and sealed into the containers 

the amounts of amines being released initially into the container headspace are minimal 

compared to the amounts being released when they are packed straight after cooking. 

Allowing the whelks sufficient time to cool down to ambient temperature before 

packing and sealing eliminates the main factors that cause the sensors to change colour 

prematurely and allows the sensors to respond only to increased TVB-N concentration 

in the headspace as a result of spoilage. Focusing on unpasteurised products and cooked 

whelks that are allowed sufficient time to cool down before they are packed and sealed 

into containers provides a more practical environment for the sensors to perform 

reliably as they are designed to do.

6.1.1 Modification of the Sensor Design

Under high temperatures and pressures the components of the sensor would not be 

expected to behave as they would under standard temperature and pressure conditions. 

For example, the function of the hydrophobic PTFE gas permeable membrane is to
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allow gaseous compounds through to the sensor while still protecting the sensor surface 

from water that can cause a colour change with or without the presence o f basic gaseous 

compounds thus saturating the sensor before the onset of spoilage. The high temperature 

and pressures created during pasteurisation will force the water vapour through the 

PTFE membrane and saturate the sensor.

An alternative method of reducing the water vapour effects is to significantly reduce the 

amount of water vapour permeating through the hydrophobic gas permeable membrane. 

Mechanically modifying the physical morphology of the gas permeable membrane 

through stretching operations can provide a more tortuous route for the water molecules 

to travel and ultimately retards the migration through the membrane. A number of 

sensors were prepared with modified gas permeable membranes and their response to 

water vapours was measured with the aid of the handheld Colourmeter.

The aim of this experiment at Errigal Fish is to correlate the sensor response of the 

newly modified sensors to microbial growth as the whelk meat deteriorates at different 

storage temperatures and to accurately assess the sensor’s sensitivity to the spoilage 

volatiles.

6.2 Experimental

6.2.1 Materials

The membrane components, pH sensitive dye bromocresol green (pKa 4.7, lipophilic 

salt tetraoctylammonium bromide and solvent cyclohexanone (99.8%), were obtained 

from Sigma-Aldrich (Dublin, Ireland). The binder poly(vinyl chloride) (PVC, high 

molecular weight) and the plasticiser dibutyl sebacate (DBS) were supplied by Fluka 

Chemicals (Dublin, Ireland). Optically clear poly(ethylene teraphthalate) (PET) was 

obtained from Oxley pic (Cumbria, UK). Polypropylene reinforcement rings and 

polytetrafluoroethylene (PTFE) gas permeable membrane (Thread Seal Tape: 12m x 

12mm x 0.075mm) were supplied by Radionics (Dublin, Ireland). Fast Drying Super 

Glue and fast cure epoxy glue, Araldite, were also used.
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6 .2 .2  S en so r  F abrication

3 types of sensors were prepared for this experiment. All of the sensors shared the exact 

same chemical formulation and were fabricated identically as discussed in Chapter 4 but 

each type was prepared with a different gas permeable membrane structure as follows:

1. Sensor Type 1 had one layer of gas permeable membrane
2. Sensor Type 2 had two layers of gas permeable membrane but the first layer was 

stretched (see following section) before it was attached to the sensor followed by 

another layer of the membrane in its original form.

3. Sensor Type 3 had two layers o f gas permeable membrane in its original form.

6.2.3 Mechanical Transformation of the PTFE Gas Permeable Membrane 

Using Stretching Operations

Stretching the PTFE gas permeable membrane was carried out in two stages:

• Stage 1: A schematic of the stretching operations is shown in Figure 6-1. 8  cm 

of the PTFE membrane was laid out on a flat surface. Two lengths of adhesive 

tape (2.5cm in height) were secured to both sides of the membrane, which 

allowed the membrane to be pulled in opposite directions. The membrane was 

gently stretched to ~5 cm.

• Stage 2: Two more lengths of adhesive tape were secured to the top and bottom 

of the stretched membrane, which allowed the membrane to be stretched again 

in the opposite direction. The original 8  cm x 1.2 cm PTFE tape was reduced to 

the approximate dimensions 5 cm x 5 cm.

6.2.4 Observation

The morphology of the stretched membrane was observed using a scanning electron 

microscope (SEM Hitachi S-3000N).
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Figure 6-1 Schematic o f  the stretching operations
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6 .2 .5  S en so r  R e sp o n se  to  W ater V ap ou r

6.2.5.1 Materials and Equipment

2 sensors from each of the membrane types (Type 1, Type 2 and Type 3) prepared as 

described previously were used for this experiment. Epoxy glue, distilled water, the 

Handheld Colourmeter, a PC laptop (Dell, Latitude), Colourmeter Software Version 

4.501, a retort stand, a heating mantle and a 100ml beaker were also required.

6.2.5.2 Monitoring the Sensor Response to Water Vapour

The Type 1 sensor spot was attached to the red LED head of the Colourmeter with the 

aid of epoxy glue. The glue was allowed to air dry for 30 minutes. The red LED head 

was clamped into place using a retort stand over a 100ml beaker containing 50ml of 

distilled water. The beaker was positioned on top of a heating mantle. The distilled 

water was allowed to come to boiling point. As soon as the water reached a steady boil 

the red LED head was positioned at a fixed height directly above the mouth of the 

beaker allowing the water vapours to permeate through the membrane and react with the 

sensor. The LabView software Version 4.501 was programmed to record the colour 

change of the sensor every 2 seconds. The data was saved as a DAT file in Microsoft 

Notepad. Post-run data analysis was performed using Microsoft Excel. The above 

procedure was repeated for the Type 2 and 3 sensors. The response of each type of 

sensor to water vapour was compared.

6.2.6 Sensor Response to Microbial Spoilage of Cooked Whelk

6.2.6.1 Materials and Equipment

40 Bromocresol green Type 2 sensors were prepared and fabricated as discussed in 

chapter 10. The Handheld Colourmeter, Colourmeter software, laptop (Dell, Latitude) 

and a Sony digital camera.

6.2.6.2 Experimental Set-up

From the previous trial it is clear that the sensors are not durable enough to withstand 

the extreme pasteurisation conditions. For this reason pasteurised samples were not 

included. Only 2 sampling conditions were examined:
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• Unpasteurised whelk-on-shell stored at room temperature (25.9°C ± 1.0)

• Unpasteurised whelk-on-shell stored in the fridge (6.9°C ±1.1)

4 of the newly designed bromocresol green sensors were attached inside shallow yellow 

pack trays (x6 ) containing cooked whelk-on-shell (weighing ~ 1kg each). 3 trays were 

placed in the fridge at 0 to 4°C (labelled Fridge 1, 2, & 3) and the remaining 3 trays 

were left on the bench at room temperature for the entire experiment (labelled Bench 1,

2 & 3). 32 stomacher bags were filled with approximately 500g of cooked whelk-on- 

shell from the same batch and were divided into 2 sets of 16 bags. The bags were 

sealed and 1 set was placed in the fridge along with the 3 yellow pack samples and the 

other 16 bags were placed on the bench exposed to the same conditions as the 3 bench 

samples. TVC and TVB-N tests were performed on these samples at regular intervals 

using the same methodology as outlined in sections 5.2.7.1 and 5.2.8. The Colourmeter 

and digital images were used to track the sensor response.

6.2.7 Microbial Testing

6.2 .7 .1  TVC

Same methodology as outlined in section 5.2.7.1.

6.2.8 TVB-N

Same methodology as outlined in section 5.2.8

6.3 Results and Discussion

6.3.1 Mechanical Transformation of the PTFE Gas Permeable Membrane 
Using Stretching Operations

The SEM images show the structure of the PTFE porous membrane produced by the 

stretching operation. The original membrane comprises of a uniform lattice structure 

with well-defined pores, Figure 6-3 & Figure 6-5. It would appear from Figure 6-4 that 

the stretching operation produced larger pores in the lattice structure but increasing the 

magnification, Figure 6 -6 , exposes an important feature of the stretched membrane. The 

stretching operation appears to have formed a convoluted mesh consisting of tiny fibrils.
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6 .3 .2  S en so r  R e sp o n se  to  W ater V ap ou r

Two sensors of Type 1, 2 and 3 were subjected to extreme conditions by placing them 

directly into the steam produced from boiling distilled water while continuously 

monitoring the sensor colour with the Colourmeter. The results from this experiment are 

graphically displayed in Figure 6-2. Sensor Type 1 with 1 layer of gas permeable 

membrane reached 90% saturation within 2.5 minutes. The experiment was terminated 

before the sensors Type 2 and 3 reached saturation as prolonged exposure to steam may 

have permanently damaged the Handheld Colourmeter. It is evident from Figure 6-2 

that the Type 2 sensors with 1 stretched layer together with 1 layer of PTFE gas 

permeable membrane in its original form was most effective in reducing the amount of 

water vapours reaching the sensor membrane. This approach may not be the ultimate 

solution for protecting the sensor surface from water vapours but the results indicate 

that the situation can be improved and with further research into this area the sensor 

technology will eventually be incorporated into packaging that must undergo 

pasteurisation techniques that involve maintaining the product at high temperatures and 

pressures for extended periods of time without affecting the physical and chemical 

characteristics of the sensor.

Time (minutes) 

Figure 6-2 Sensor Type 1, 2 & 3 response to water vapour
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Figure 6-4 Stretched P T FE  membrane (Magnification x 120)
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Figure 6-5 PTFE membrane in its original form (Magnification x 900)

Figure 6-6 Stretched P T FE  membrane (Magnification x 900)
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There were 4 bromocresol green Type 2 sensors in total on each of the 6  trays of whelk.

3 trays were stored at room temperature (25.9°C ± 1.0) and 3 trays were stored in the 

fridge (6.9°C ±1.1) for the entire duration of the experiment. 12 sensors in total were 

used to detect the spoilage volatiles released over time for both sampling conditions. 

The average sensor response (n=12) to spoilage volatiles at both temperatures is shown 

in Figure 6 - 8  and Figure 6-9 -  see also Appendix 5-4 and Appendix 5-8. A best-fit 

model using the Solver function in Microsoft Excel was fitted to the average sensor 

response at the 2  sampling temperatures.
The TVB-N and TVC results obtained for the cooked whelk samples stored at room 

temperature and in the fridge are displayed in Figure 6-10 and Figure 6-11 - see also 

Appendix 5-9 and Appendix 5-10. Each TVC result is an average of 2 counts from the 

same sample whereas each TVB-N value was obtained from a single analysis at each 

time point. Statistically the TVC results in this trial are more reliable due to the very 

low standard deviation and % RSD. Under normal practices in Errigal Fish, TVB-N 

analyses are carried out on 6  samples simultaneously i.e. 6  x lOg samples. This would 

definitely improve the correlation. In some cases, a lOg sample could be taken from 1 

individual whelk, which is not representative of the entire batch. The procedure for 

determining TVCs is statistically more favourable because a larger sample is taken from 

a larger number of whelks i.e. 25g in total is necessary for each analysis.

Log TVC values versus time for the samples stored at room temperature and in the 

fridge are displayed in Figure 6-10. From guidelines set by Errigal Fish, Total Viable 

Counts < 100,000 CFU/g are acceptable for unpasteurised cooked whelk. TVCs above

100.000 CFU/g are deemed unacceptable or unfit for human consumption. From the 

graph, S h t  (t v c )  and Sf  (t v q  denote the approximate times at which the TVCs reach
100.000 CFU/g for the room temperature and fridge samples, i.e. ~9 hours and -29  

hours, respectively.

The TVB-N content for samples stored under both conditions is presented in Figure 

6-11. The guidelines followed by Errigal Fish regarding TVB-N levels are summarised 

in Table 5-1. Cooked whelk products containing <15mg nitrogen/lOOg are ‘OK’ to 

consume, samples containing 15-20mg nitrogen/lOOg indicate that the samples are 

‘going o ff  but are still safe to consume and samples containing >20mg nitrogen/1 OOg 

are considered ‘gone o ff  or unfit for human consumption. From the graph, Sr t ( t v b -n )  

and S,- (tvb-n) denote the times at which the TVB-N levels for the room temperature and

6 .3 .3  S en so r  R e sp o n se  to  M icro b ia l S p o ila g e  o f  C o o k e d  W h elk
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fridge samples reach the ‘gone o ff  threshold, i.e. ~11 hours and ~25 hours, 

respectively.
By integrating both sets of results, i.e. the TVB-N and TVC data, approximate spoilage 

thresholds were deduced. According to the TVC results the time taken for the room 

temperature samples to spoil is ~ 9 hours while according to the TVB-N data the 

samples spoiled after ~11 hours. An average of both gi ves an approximate spoilage time 

frame of 10 hours ± 1 hour. For the purposes o f this experiment, the lower limit i.e. 9 

hours, was selected as the spoilage threshold, S r t , for the room temperature samples. 

The same applies to the fridge samples where a spoilage time frame of 27 hours ± 3 

hours was obtained. Once again the lower limit i.e. 24 hours was selected as the 

spoilage threshold, S//, for the fridge samples. Therefore, Sf  and S r t  denote the 

estimated times at which the fridge and room temperature samples spoil, respectively, 

Figure 6-12. Rs is the sensor response at S^and Srt measured by the Colourmeter. Rsis 

equivalent at the critical spoilage threshold for the samples stored under different 

conditions.
Storing the cooked whelk in the fridge clearly slows down microbial growth as 

expected. According to the TVC results, the microbial growth for the fridge samples 

was always slower than that of the samples stored at room temperature and never 

reached the same levels of microbial growth for the duration of the trial, which is 

reflected in the sensor response.
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Figure 6-7 Digital images of sensors representing cooked whelk samples stored at room  

temperature (bottom) and in the fridge (top) taken at 14 hours. The sensors representing the room  

temperature samples are green (bottom) whereas the sensors representing the fridge samples are 

greenish-yellow (top). According to the microbial data and TVB-N values, at 14 hours the room  

temperature samples are ‘gone o f f  while the fridge samples are ‘going o ff . The colour of the 

sensors can be used as a crude indication of the on-set o f spoilage.
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Time (hours)

Figure 6-8 Average response of all sensors on all 3 trays stored at room temperature (n=12) -  See 

Appendix 5-4 for experimental data.

Time (hours)

Figure 6-9 Average response of all sensors on all trays stored in the fridge (n=12) -  See Appendix 5- 

8 for experimental data.
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Figure 6-12 Comparison of the models for the average sensor response to the spoilage volatiles 

released by cooked whelk stored in the fridge and at room temperature.

Figure 6-13 and Figure 6-14 combine the TVB-N, TVC and sensor response data for the 

cooked whelk samples stored under different conditions, at room temperature and 

refrigerated temperature, respectively. The graphs illustrate the effect of temperature on 

microbial growth and TVB-N production. This effect is also reflected in the sensor 

response, which is evidently faster for those samples stored at room temperature than 

those stored in the fridge. The TVB-N and TVC tests for the room temperature samples 

were ceased after 24 hours as at this stage the samples were clearly spoiled and the 

sensor response had almost reached a plateau. Focusing on the sensor response to whelk 

spoilage at each storage condition it is quite clear that the sensors begin to change as 

soon as they are placed inside the containers. Molluscan shellfish naturally contain high 

levels of nitrogenous bases and the initial sensor response may be due to the residual 

amines present following the cooking process. The sensor response continues to change 

overtime and the relationship between the TVB-N, TVC and sensor response data 

displayed in Figure 6-13 and Figure 6-14 indicates that this change is due to microbial 

spoilage. This high degree of correlation between the microbial spoilage and the sensor 

response demonstrates that these pH sensitive polymer membranes can potentially be 

used as spoilage indicators for cooked whelk meat products stored in sealed containers.
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Figure 6-13 Correlation of the sensor response with the TVB-N and TVC values obtained for the 

cooked whelk samples stored at room temperature.

s  w>
A  2w  ©
« r? 
a ^  
a. o 1
" M
U Z5 st

Ii-
3jg
O

V

&

pa
>H

t£
woo

Tim e (hours)

Figure 6-14 Correlation of the sensor response with the TVB-N and TVC values obtained for the

cooked whelk samples stored in the fridge.
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The colour of the sensors can be used as a crude indication of the on-set of spoilage. 

The sensors are yellow when they are first placed inside the containers and remain this 

colour for a period of time indicating that the samples are ‘OK’ to consume. As the 

microbial populations and TVB-N levels increase over time the sensors change to a 

greenish-yellow colour warning the user that the samples are ‘going o ff  but are still 

safe to consume. Once the samples are ‘gone o ff , i.e. ~9 hours for samples stored at 

room temperature or -25 hours for samples stored in the fridge, the sensors turn green 

and this colour intensifies to the point of saturation as the sample continues to 

deteriorate.

6.4 Conclusion

Sensors prepared from the pH indicator dye, bromocresol green, entrapped in a polymer 

matrix were placed inside a sealed container of cooked whelk. The volatile amines 

released during spoilage permeated through the PTFE gas permeable membrane and 

deprotonated the dye to produce a visible colour change that was successfully measured 

via a specially designed handheld Colourmeter. A high degree of correlation between 

the sensor response and the TVC and TVB-N data for samples held at different storage 

conditions indicates how the pH sensitive sensors can be used as spoilage indicators for 

packaged whelk meat products. These studies also indicate that the Colourmeter can be 

used to generate a ‘value’ that can be stored like a bar-code value for future objective 

analysis of the sensor spots.
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7 Overview, Ongoing Activities and Future Work
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Projects 1 and 2 give a detailed account of the development of wireless sensor 

technology designed for two specific food quality applications. The first application, 

Project 1 (Chapters 2), describes an autonomous pH and temperature sensing system for 

monitoring pig meat quality. A comprehensive review of the project background is 

provided in Chapter 1 - Section 1.1 where the importance of monitoring intramuscular 

pH and temperature as the carcass cools following slaughter is emphasised. Chapter 2 

describes a wireless temperature sensing system that was used initially to monitor the 

temperature of cooling carcasses but this particular system had a number of drawbacks 

that were soon identified during field trials carried out at Galtee Meats, Mitchelstown, 

Co. Cork. Consequently, a unique Wireless pH/Temperature Sensing System was 

designed to monitor post-slaughter pH and temperature. Field trials were performed to 

demonstrate the effectiveness of the system in distinguishing between different classes 

of pig meat quality i.e. DFD, RFN and PSE carcasses. The results from this project were 

published in the international journal Meat Science (1).

A number of issues arose during the trials that need to be addressed for future 

development of the Wireless pH/Temperature Sensing System. Firstly, the pH and 

temperature data is transmitted in real-time from the loggers (attached to the carcasses) 

via RF communications to the base station (attached to the chill room wall). On one 

occasion the RF link between the loggers and the base station was interrupted as the 

carcasses were accidentally moved out of the RF operating range to another location in 

the chill room. Fortunately, the carcasses were repositioned and the trial resumed. 

Secondly, an RS232 cable (~lm) which connects the base station to a PC allows the 

user view the information in real-time but for obvious reasons the PC was not set up in 

the chill room. The safest location was too far away (~50m) so the RS232 cable could 

not be used. For this reason the base station, holding all the pH and temperature data, 

was retrieved once the trial was complete and the data was then downloaded onto the 

PC. For the purpose of these field trials this approach was perfectly acceptable but for 

future large-scale deployment of these sensors a more user-friendly approach is needed. 

Finally, initial studies show measurements from 45 minutes post-mortem as processing 

conditions limit at what point measurements are made and the technologies that can be 

used. The logger needs to be attached immediately following slaughter to realise the 

benefits of a real-time pH and temperature monitoring system.
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In response to the above issues a number of recommendations are highlighted below to 

improve the existing Wireless pH/Temperature Sensing System:

■ Incorporating GSM communications into the base station design would 

eliminate the need for an RS232 cable connection. This approach has already 

proved effective in the real-time temperature monitoring of fish catches on

board fishing trawlers at sea as demonstrated in Chapter 3.

■ GSM enabled systems would also allow warning messages to be displayed on a 

PC or sent to a mobile phone as a text message indicating if a logger is out of the 

RF operating range. This would allow the operator to reposition the carcass.

■ Miniaturisation of the pH and temperature logger would allow the sensor to be 

embedded into the carcass immediately following slaughter but most 

importantly small low-power, low-cost sensors are necessary for large-scale 

deployment to be economically effective.

The second food quality application, Project 2 (Chapter 3), involves the development of 

temperature logging technology for the fishing industry. Chapter 1 -  Section 1.2 

emphasises the need for real-time temperature monitoring of fish catches stored on

board fishing vessels at sea and provides an overview of the temperature monitoring 

systems commercially available on the market today. Chapter 3 demonstrates the use of 

the autonomous sensing system described in Chapter 2 for monitoring the temperature 

of fish catches at sea. Once again, the limitations of the system were identified as the 

user could only access the temperature profiles once the fishing vessel returned to the 

shore. Consequently, a new RF-GSM Temperature Monitoring System was specifically 

designed to allow temperature profiles of fish catches to be conveniently accessed via 

the Internet while the fishing vessel was still at sea. Chapter 3 gives a detailed 

description of the new system and highlights the benefits of using such a system over 

existing temperature monitoring systems.

A number of software issues were highlighted in Chapter 3 and as a result of the 

extensive field-testing and ongoing research activities in this area researchers from the 

Adaptive Sensors Group and the Interoperable Systems Groups based at DCU have 

made excellent progress in improving the RF-GSM Temperature Monitoring System. 

Consequently, a web-based prototype with an XML database is now fully operational 

(2). The controlling software and database are completely web-based and can be
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accessed using a web browser on any Internet capable device (e.g. PC, laptop or PDA) 

through a password-protected connection. Field trials on-board larger inshore fishing 

trawlers have since been executed where the RF-GSM Temperature Monitoring System 

is controlled and monitored using a GPRS enabled XDA II Pocket PC. Through the web 

interface, the software allows the following procedures to be performed:

■ Initiation/cessation of a trial
■ In-trial verification of data acquisition and querying of previously recorded data

■ Access to a user-defined rule mechanism that allows triggers for particular 

events to be set, e.g. reporting problems such as temperatures outside of 

upper/lower control levels, loss of communication etc.

■ Data storage in a database with tabular or graphic output and query functionality

The field-testing has been extended to include temperature monitoring from the fishing 

port to the processing plant i.e. transportation of whelk catches from Howth Harbour, 

Dublin to Errigal Fish, Carrick, Co. Donegal.

Tremendous progress has been made in this project, which describes the development of 

a temperature monitoring system that first existed as an autonomous temperature- 

measuring device with limited capabilities to a fully operational web-based system 

remotely controlled through the Internet allowing the temperature of fish catches to be 

monitored in real time from the moment of catch to the shore and finally to the 

processing plant. This real time temperature monitoring system provides excellent 

traceability with added value as all the details of the catch are entered into a web based 

password-protected database to accompany the temperature data. The rapid 

technological and wireless communication developments in this project alone highlight 

the speed at which the communications and IT industry are growing. The demand for 

traceable systems and temperature control within the fishing industry is driven by both 

the consumer and the regulatory bodies and with the cost and size of electronic 

components continuously decreasing and data transfer becoming more and more 

feasible large-scale deployment of such Internet-based temperature sensing systems on

board fishing trawlers will be possible in the near future.

Chapters 4-6 of the thesis focus on the development of on-package colorimetric pH 

sensors to detect shellfish spoilage (Project 3). The theory and background behind this
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project is provided in Chapter 1 -  Section 1.3, which includes a comprehensive review 

of the current methods to evaluate the freshness and quality of fish as well as the 

fundamentals of UV-Vis spectroscopy and pH indicator chemistry.

Chapter 4 describes the fabrication and characterisation of pH sensitive polymer 

membranes. A number of different formulations were tested which involved varying the 

ratio o f binder to plasticiser, the type of lipophilic salt used and the concentration of the 

lipophilic salt. An optimised formulation was developed that contained 5mg BCG, 

350mg PVC, 350mg DBS, lOmg TOABr and 8 mls of cyclohexanone. UV-Vis 

spectroscopic techniques indicated that the ^nax of the dye shifted slightly from 620nm 

in free solution to 630nm in the polymer membrane. Studies also confirmed that 

temperature had minimal effect on the pKa of the dye in the polymer membrane. The 

sensors were calibrated in NH3 and the limit of detection was calculated to be 0.23 ±

0.07ppm. The sensors showed excellent reproducibility with an overall %CV < 12% 

(n=3). An account of the preliminary trials conducted to aid the optimisation of a pH 

sensitive sensor suitable for detecting whelk spoilage is also given in Chapter 4. The 

trials demonstrated that sensors representing cooked whelk samples stored at room 

temperature responded a lot faster than sensors representing samples that were chilled 

for a period of time. The sensor response was measured via the handheld Colourmeter 

and digital images of the sensors captured at selected time intervals provided a useful 

visual aid. An important issue arose during the preliminary trials regarding the sensors 

response to water vapours and nitrogenous compounds, released as a result of the 

cooking process, which caused the sensors to change colour prematurely. Chapters 5 &

6  discuss how the sensor technology can be optimised to overcome this obstacle to 

produce a robust sensor that operates reliably in real industrial applications.

Chapter 5 discusses an approach whereby the dye is replaced with a similar dye with a 

higher pKa that is not readily deprotonated by water vapours or the nitrogenous 

compounds released during the cooking process. Two dyes were investigated, 

bromothymol blue (pKa 7.0) and m-cresol purple (pKa 8.3). Unfortunately, sensors 

prepared from the bromothymol blue and m-cresol purple dyes did not respond to the 

spoiled whelk meat samples.

Chapter 6  describes a method of optimising the bromocresol green sensors by 

mechanically modifying the physical morphology of the gas permeable membrane
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through a number of strategic stretching operations. The sensors were used to monitor 

the spoilage rates of cooked whelk meat samples at two different conditions i.e. at room 

temperature and at refrigerated temperatures. Excellent correlation was obtained 

between the sensor response and whelk meat spoilage determined by TVC’s and TVB- 

N values for the samples stored at the two different conditions. Overall, the sensors 

performed remarkably well considering the complexity of the application and the harsh 

environments to which the sensors were exposed.

A number of areas that need to be targeted for the future development of pH sensitive 

membranes that detect fish and shellfish spoilage are listed below:

■ The pH sensitive membranes described in this project were all prepared 

manually. An automated fabrication process would certainly improve the 

reproducibility of the sensor response as well as the correlation between the 

response and microbial spoilage.

■ Some fish and shellfish products undergo a pasteurisation process once they 

have been packed inside sealed containers. Presently, the sensors are not robust 

enough to withstand the harsh conditions posed by the pasteurisation process so 

it is important to decide at what stage during the process the sensors can be 

incorporated into the packaging.

■ The working range of the sensor needs to be extended to allow the onset of 

spoilage to be accurately detected. Molluscan shellfish naturally contain high 

levels of nitrogenous compounds that are released into the atmosphere during 

the cooking process. These residual amines deprotonate the sensor causing a 

premature colour change before spoilage begins. By adding a compound that 

neutralises the residual amines present initially (i.e. a weak acid), the sensors 

will only respond to the volatiles amines released as a result of spoilage.

Researchers at Dublin City University have since made excellent progress in developing 

the pH sensors and a number of key issues have been addressed as follows

■ The sensor matrix now comprises FDA approved binders i.e. ethyl cellulose.

■ The ‘brightness’ of the sensors has been dramatically improved by the addition 

of titanium dioxide, which is used in paint technology.

■ The sensors are now fabricated using a simple screen-printing technique.
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■ Discussions with packaging companies regarding the integration of the sensors 

into food packaging in the form of ‘chemical barcodes’ are underway.

■ Finally, a new improved Colourmeter prototype is currently being used to 

measure the sensor response.

The 3 projects described in this thesis focus on the different sensing techniques 

developed for monitoring food quality and freshness. As seen from the research 

performed, monitoring the intramuscular pH of a pig carcass and monitoring the 

headspace pH of a sealed container of fish are two separate applications and require 

different sensing techniques. The Wireless pH/Temperature Monitoring System for 

detecting pig meat quality delivers data in real-time to a local PC allowing the user easy 

access to the information. The optical pH sensitive sensor for detecting fish spoilage 

provides a visual response in real-time at a glance. Integrating sensor technology with 

information technology and mobile communications paves the way for Internet scale 

sensing where the development of a Wireless RF-GSM Temperature Monitoring system 

allows temperature data of fish catches to be conveniently accessed via the Internet in 

real-time facilitating traceability and electronic auctions. Ongoing research activities at 

DCU have provided traceable temperature profiles of whelk caught in Dublin Bay all 

the way to the processing plant. Section B of the thesis has demonstrated how pH 

sensitive membranes incorporated into sealed containers of cooked whelk at the 

processing plant respond to whelk meat spoilage to give a visual colour change which 

can be easily detected by the customer. Combining the above sensing techniques, 

Internet enabled sensor technology for on-line traceable temperature monitoring and 

optical sensor technology for on-line detection of fish spoilage, and applying such 

techniques to different fish and shellfish species will facilitate future monitoring of the 

quality and freshness of fish products during every stage from “harvest-to-home
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1.1 Wireless pH/Temperature Monitoring System Specification

1.1.1 Logger Unit

Appendix 1

Appendix 1-1 Photograph of Logger circuit board

Appendix 1-2 Block diagram of temperature logger circuitry
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1.1.2 Base Station

Appendix 1-3 Photograph of base Station circuit board design

Appendix 1-4 Block diagram of base station circuitry
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Appendix 1-5 Software flow diagrams for the base station (top) and the logger unit (bottom)
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Temp °C IUPAC Logger 1 Difference
0 7.1167 7.1592 -0.0425
1 7.11047 7.15175 -0.04128
2 7.10438 7.1444 -0.04002
3 7.09843 7.13715 -0.03872
4 7.09262 7.13 -0.03738
5 7.08695 7.12295 -0.036
6 7.08142 7.116 -0.03458
7 7.07603 7.10915 -0.03312
8 7.07078 7.1024 -0.03162
9 7.06567 7.09575 -0.03008
10 7.0607 7.0892 -0.0285
11 7.05587 7.08275 -0.02688
12 7.05118 7.0764 -0.02522
13 7.04663 7.07015 -0.02352
14 7.04222 7.064 -0.02178
15 7.03795 7.05795 -0.02
16 7.03382 7.052 -0.01818
17 7.02983 7.04615 -0.01632
18 7.02598 7.0404 -0.01442
19 7.02227 7.03475 -0.01248
20 7.0187 7.0292 -0.0105
21 7.01527 7.02375 -0.00848
22 7.01198 7.0184 -0.00642
23 7.00883 7.01315 -0.00432
24 7.00582 7.008 -0.00218
25 7.00295 7.00295 0
26 7.00022 6.998 0.00222
27 6.99763 6.99315 0.00448
28 6.99518 6.9884 0.00678
29 6.99287 6.98375 0.00912
30 6.9907 6.9792 0.0115
31 6.98867 6.97475 0.01392
32 6.98678 6.9704 0.01638
33 6.98503 6.96615 0.01888
34 6.98342 6.962 0.02142
35 6.98195 6.95795 0.024
36 6.98062 6.954 0.02662
37 6.97943 6.95015 0.02928
38 6.97838 6.9464 0.03198
39 6.97747 6.94275 0.03472
40 6.9767 6.9392 0.0375
41 6.97607 6.93575 0.04032
42 6.97558 6.9324 0.04318
43 6.97523 6.92915 0.04608
44 6.97502 6.926 0.04902
45 6.97495 6.92295 0.052
46 6.97502 6.92 0.05502
47 6.97523 6.91715 0.05808
48 6.97558 6.9144 0.06118
49 6.97607 6.91175 0.06432
50 6.9767 6.9092 0.0675

Appendix 1-6

IUPAC: y = 7 E -  05x2 -  0.0063x + 7.1167

The above 2 equations were obtained by 
applying a polynomial curve to the experimental 
data (Chapter 2, Figure 2-15). By substituting 
the x-vaiues in the above equations with the 
temperature values ranging from 0“C to 50oC' 
the results in the following table are obtained.

The pH probe of logger 1 was corrected to the 
IUPAC values by calculating the difference.

The difference is then expressed by a simple 
equation:

Y = 2E-05x2 + 0.0012x -  0.0425

Logger 1: y = 5E-05x2 -  0.0075x + 7.1592

This equation was then applied to all the pH 
profiles obtained using logger 1.
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Temp °C IUPAC Logger 2 Difference
0 7.1168 7.14805 -0.03125
1 7.11057 7.14081 -0.03024
2 7.10448 7.13369 -0.02921
3 7.09853 7.12669 -0.02816
4 7.09272 7.11981 -0.02709
5 7.08705 7.11305 -0.026
6 7.08152 7.10641 -0.02489
7 7.07613 7.09989 -0.02376
8 7.07088 7.09349 -0.02261
9 7.06577 7.08721 -0.02144
10 7.0608 7.08105 -0.02025
11 7.05597 7.07501 -0.01904
12 7.05128 7.06909 -0.01781
13 7.04673 7.06329 -0.01656
14 7.04232 7.05761 -0.01529
15 7.03805 7.05205 -0.014
16 7.03392 7.04661 -0.01269
17 7.02993 7.04129 -0.01136
18 7.02608 7.03609 -0.01001
19 7.02237 7.03101 -0.00864
20 7.0188 7.02605 -0.00725
21 7.01537 7.02121 -0.00584
22 7.01208 7.01649 -0.00441
23 7.00893 7.01189 -0.00296
24 7.00592 7.00741 -0.00149
25 7.00305 7.00305 0
26 7.00032 6.99881 0.00151
27 6.99773 6.99469 0.00304
28 6.99528 6.99069 0.00459
29 6.99297 6.98681 0.00616
30 6.9908 6.98305 0.00775
31 6.98877 6.97941 0.00936
32 6.98688 6.97589 0.01099
33 6.98513 6.97249 0.01264
34 6.98352 6.96921 0.01431
35 6.98205 6.96605 0.016
36 6.98072 6.96301 0.01771
37 6.97953 6.96009 0.01944
38 6.97848 6.95729 0.02119
39 6.97757 6.95461 0.02296
40 6.9768 6.95205 0.02475
41 6.97617 6.94961 0.02656
42 6.97568 6.94729 0.02839
43 6.97533 6.94509 0.03024
44 6.97512 6.94301 0.03211
45 6.97505 6.94105 0.034
46 6.97512 6.93921 0.03591
47 6.97533 6.93749 0.03784
48 6.97568 6.93589 0.03979
49 6.97617 6.93441 0.04176
50 6.9768 6.93305 0.04375

Appendix 1-7

IUPAC: y = 7E -05x2-0.0063x + 7.1167

The above 2 equations were obtained by 
applying a polynomial curve to the experimental 
data (Chapter 2, Figure 2-17). By substituting 
the x-values in the above equations with the 
temperature values ranging from 0°C to 50°C 
the results in the following table are obtained.

The pH probe of logger 2 was corrected to the 
IUPAC values by calculating the difference.

The difference is then expressed by a simple 
equation:

Y = lE-05x2 + O.OOlx -  0.0312

This equation was then applied to all the pH 
profiles obtained using logger 2.

Logger 2: y = 6E-05x2 -  0.0073x + 7.1486
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Temp °C Average STD EV
0 7.152667 0.006358
1 7.144963 0.006352
2 7.137387 0.006376
3 7.129937 0.006422
4 7.122613 0.006484
5 7.115417 0.006556
6 7.108347 0.006633
7 7.101403 0.00671
8 7.094587 0.006782
9 7.087897 0.006847
10 7.081333 0.006901
11 7.074897 0.006942
12 7.068587 0.006967
13 7.062403 0.006975
14 7.056347 0.006965
15 7.050417 0.006934
16 7.044613 0.006883
17 7.038937 0.006809
18 7.033387 0.006713
19 7.027963 0.006594
20 7.022667 0.006452
21 7.017497 0.006285
22 7.012453 0.006095
23 7.007537 0.005881
24 7.002747 0.005644
25 6.998083 0.005384
26 6.993547 0.005102
27 6.989137 0.0048
28 6.984853 0.004479
29 6.980697 0.004143
30 6.976667 0.003798
31 6.972763 0.00345
32 6.968987 0.003111
33 6.965337 0.0028
34 6.961813 0.002545
35 6.958417 0.002384
36 6.955147 0.002359
37 6.952003 0.002495
38 6.948987 0.002788
39 6.946097 0.003214
40 6.943333 0.003745
41 6.940697 0.004356
42 6.938187 0.005032
43 6.935803 0.005763
44 6.933547 0.006541
45 6.931417 0.007361
46 6.929413 0.008221
47 6.927537 0.009118
48 6.925787 0.01005
49 6.924163 0.011017
50 6.922667 0.012018

Appendix 1-8 The average and standard deviations for all three 
calibration studies performed using logger 1. The largest standard 
deviation occurs at 50nC. The measuring range for this application 
is between 3°C and 42®C. The largest standard deviation within 
this range is 0.0069.
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Teinp "C Average STDEV
0 7.15625 0.008772
1 7.148837 0.008622
2 7.14153 0.008462
3 7.13433 0.008293
4 7.127237 0.008116
5 7.12025 0.00793
6 7.11337 0.007737
7 7.106597 0.007535
8 7.09993 0.007326
9 7.09337 0.00711
10 7.086917 0.006887
11 7.08057 0.006659
12 7.07433 0.006426
13 7.068197 0.006189
14 7.06217 0.00595
15 7.05625 0.005709
16 7.050437 0.005469
17 7.04473 0.005231
18 7.03913 0.004999
19 7.033637 0.004776
20 7.02825 0.004566
21 7.02297 0.004374
22 7.017797 0.004205
23 7.01273 0.004066
24 7.00777 0.003962
25 7.002917 0.003902
26 6.99817 0.00389
27 6.99353 0.003931
28 6.988997 0.004027
29 6.98457 0.004178
30 6.98025 0.004382
31 6.976037 0.004636
32 6.97193 0.004936
33 6.96793 0.005277
34 6.964037 0.005655
35 6.96025 0.006065
36 6.95657 0.006506
37 6.952997 0.006973
38 6.94953 0.007465
39 6.94617 0.007979
40 6.942917 0.008514
41 6.93977 0.009068
42 6.93673 0.00964
43 6.933797 0.01023
44 6.93097 0.010836
45 6.92825 0.011458
46 6.925637 0.012095
47 6.92313 0.012747
48 6.92073 0.013414
49 6.918437 0.014094
50 6.91625 0.014789

Appendix 1-9 The average and standard deviations for ail three 
calibrations performed using logger 2. The largest standard 
deviation occurs at 50°C. The measuring range for this application 
is between 3“C and 42°C. The largest standard deviation within this 
range is 0.0096.
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Appendix 2-1 Temperature profiles of a 40kg container of iced haddock. The temperature 
remained below 0°C for the 2 days while the fish were stored in the hold of the trawler. The graph 
indicates that there is little temperature variation within a container.
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Appendix 2-2 Temperature profiles of a 25kg container of iced hake. The temperature remained 
below 0°C for the 2 days while the trawler was at sea.
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Appendix 2-3 Temperature profiles of a 40kg container of iced hake. The loggers were placed in the 
containers at 6:30pm on the 3rd April and were removed at 7:00am on the 6th April. The 
temperature remained constant over the 3-day period.
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Appendix 2-4 Temperature profiles of a 40kg container of iced haddock. The loggers were placed in 
the containers at 6:30pm on the 3rd April and were removed at 7:00am on the 6th April. The 
temperature remained constant over the 3-day period.

215



Appendix 3
C alibration 1%  am m onia in N itrogen A m m onia Colourm eter Sensor

Sensor 1 nitrogen (m l.m in 1) (m l.m in '1) Cone, (ppm) V alues (AU) Response (AU)

1 0 100 0 157.08 0

10 100 9.09 124.27 32.81

20 100 16.67 104.46 52.62

30 100 23.08 96.45 60.63

40 100 28.57 93.95 63.13

50 100 33.33 92.27 64.81

2 0 100 0 159.14 0

10 100 9.09 123.05 36.08

20 100 16.67 105.26 53.88

30 100 23.08 97.41 61.73

40 100 28.57 94.35 64.78

50 100 33.33 93.75 65.38

3 0 100 0 158.63 0

10 100 9.09 119.50 39.13

20 100 16.67 104.29 54.33

30 100 23.08 98.85 59.77

40 100 28.57 95.28 63.34

50 100 33.33 93.59 65.03

Appendix 3-1 Results for the ammonia calibration (n=3) performed using Sensor 1 (0 to 33ppm)

A m m onia Concentration (ppm ) A verage C olourm eter V alues (AU) SD CV% n

0 158.28 1.07 0.68 3

9.09 122.27 2.48 2.03 3

16.67 104.67 0.52 0.50 3

23.08 97.57 1.21 1.24 3

28.57 94.53 0.68 0.72 3

33.33 93.21 0.81 0.87 3

Appendix 3-2 Average Colourmeter values (n=3) for each ammonia concentration (Sensor 1)

A m m onia C oncentration (ppm ) A verage Sensor R esponse (AU) SD CV% n

0 0 0 0 3

9.09 36.01 3.16 8.77 3

16.67 53.61 0.89 1.65 3

23.08 60.71 0.98 1.62 3

28.57 63.75 0.9 1.41 3

33.33 65.07 0.29 0.45 3

Appendix 3-3 Average sensor response (n=3) for each ammonia concentration (Sensor 1)
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Sensor Concentration Average Sensor Response S D  C V %

(ppm) (AU)

~ T ~  1.10 5.88 0.29 4.96 3

2.17 13.64 0.34 2.52 3

3.23 22.23 0.24 1.09 3

4.26 26.89 0.44 1.63 3

2  1.10 6.08 0.28 4.61 2

2.17 15.03 0.71 4.72 2

3.23 19.82 0.99 4.99 2

4.26 28.53 0.37 1.30 2

3 1.10 6.93 0.12 1.73 2

2.17 17.07 0.64 3.75 2

3.23 24.20 0.98 4.05 2

4.26 30.75 1.88 6 .11 2

Appendix 3-4 Average results (n=3 for Sensor 1; n=2 for Sensors 2 & 3) for the calib 
experiments using ammonia gas (0 to 4ppm)

C oncentration

(ppm)

A verage Sensor Response 

(AU)

SD CV% n

1.10 6.30 0.56 8.88 3

2.17 15.25 1.72 11.30 3

3.23 22.08 2.20 9.94 3

4.26 28.72 1.94 6.74 3

Appendix 3-5 Average sensor response (n=3) to ammonia gas (0 to 4ppm)
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C alibration 

Sensor 1

1%  am m onia in

nitrogen

(m l.m in '1)

N itrogen

(m l.m in '1)

A m m onia

Concentration

(ppm)

Colourm eter

Values

(AU)

Sensor

Response

(AU)

1 0 900 0 157.20 0

10 900 1.10 151.52 5.68

20 900 2.17 143.20 14.00

30 900 3.23 135.25 21.95

40 900 4.26 130.52 26.68

2 0 900 0 157.22 0

10 900 1.10 151.47 5.74

20 900 2.17 143.89 13.32

30 900 3.23 134.84 22.38

40 900 4.26 129.82 27.40

3 0 900 0 157.20 0

10 900 1.10 150.99 6.21

20 900 2.17 143.60 13.60

30 900 3.23 134.84 22.35

40 900 4.26 130.60 26.60

Appendix 3-6 Results of the calibration experiments (n=3) performed using Sensor 1 (0 to 4ppm)

A m m onia Concentration 

(ppm )

A verage

C olourm eter V alues (AU)

SD CV% n

0 157.20 0.01 0 .11 3

1.10 151.33 0.30 0.03 3

2.17 143.56 0.35 0.62 3

3.23 134.98 0.24 0.93 3

4.26 130.31 0.43 1.75 3

Appendix 3-7 Average Colourmeter values (n=3) for each ammonia concentration (Sensor 1)

A m m onia Concentration 

(ppm )

A verage

Sensor R esponse (AU)

SD CV% n

0 0 0 0 3

1.10 5.88 0.29 4.96 3

2.17 13.64 0.34 2.52 3

3.23 22.23 0.24 1.09 3

4.26 26.89 0.44 1.63 3

Appendix 3-8 Average sensor response (n=3) for each ammonia concentration (Sensor 1)
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C alibration 1% am m onia in  N itrogen A m m onia Colourm eter Sensor

Sensor 2 nitrogen Concentration Values Response

(m l.m in 1) (m l.m in 1) (ppm) (AU) (AU)

1 0 900 0 150.46 0

10 900 1.10 144.58 5.88

20 900 2.17 135.93 14.54

30 900 3.23 129.95 20.51

40 900 4.26 122.20 28.27

2 0 900 0 149.67 0

10 900 1.10 143.39 6.28

20 900 2.17 134.13 15.53

30 900 3.23 130.55 19.12

40 900 4.26 120.88 28.79

Appendix 3-9 Results of the calibration experiments (n=2) performed using Sensor 2 (0 to 4ppm)

A m m onia Average SD CV % n

C oncentration Colourm eter V alues

(ppm) (AU)

0 150.06 0.56 0.38 2

1.10 143.99 0.85 0.59 2

2.17 135.03 1.27 0.94 2

3.23 130.25 0.42 0.32 2

4.26 121.54 0.93 0.77 2

Appendix 3-10 Average Colourmeter values (n=2) for each ammonia concentration (Sensor 2)

A m m onia

Concentration

(ppm)

A verage 

Sensor R esponse 

(AU)

SD CV% n

0 0 0 0 2

1.10 6.08 0.28 4.61 2

2.17 15.03 0.71 4.72 2

3.23 19.82 0.99 4.99 2

4.26 28.53 0.37 1.30 2

Appendix 3-11 Average sensor response (n=2) for each ammonia concentration (Sensor 2)
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C alibration 

Sensor 3

1%  am m onia in

nitrogen

(m l.m in '1)

N itrogen 

(m l.m in ')

A m m onia

C oncentration

(ppm)

Colourm eter

Values

(AU)

Sensor

Response

(AU)

0 900 0 147.42 0

10 900 1.10 140.58 6.84

20 900 2.17 129.90 17.52

30 900 3.23 122.52 24.90

40 900 4.26 115.34 32.08

2 0 900 0 147.66 0

10 900 1.10 140.64 7.02

20 900 2.17 131.05 16.61

30 900 3.23 124.15 23.51

40 900 4.26 118.24 29.42

Appendix 3-12 Results of the calibration experiments (n=2) performed using Sensor 3 (0 to 4ppm)

A m m onia

C oncentration

(ppm)

A verage

C olourm eter Values 

(AU)

SD CV% n

0 147.54 0.17 0 .11 2

1.10 140.61 0.04 0.03 2

2.17 130.47 0.81 0.62 2

3.23 123.34 1.15 0.93 2

4.26 116.79 2.05 1.75 2

Appendix 3-13 Average Colourmeter values (n=2) for each ammonia concentration (Sensor 3)

A m m onia

Concentration

(ppm)

A verage 

Sensor R esponse 

(AU)

SD CV% n

0 0 0 0 2

1.10 6.93 0.12 1.73 2

2.17 17.07 0.64 3.75 2

3.23 24.20 0.98 4.05 2

4.26 30.75 1.88 6 .11 2

Appendix 3-14 Average sensor response (n=2) for each ammonia concentration (Sensor 3)
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Appendix 4

TVC (CFU/g)

Unpasteurised Unpasteurised Pasteurised Pasteurised Fridge

Bench Fridge Bench

Time Sample 1 Sample 2 Sample Sample Sample 1 Sample 2 Sample Sample 2

(h) 1 2 1

18 24 x 10' 14 x 10' 3 x 1 0 ' 10 x 10' - - - -

20 99 x 10' 96 x 101 - - Ox 10' 1 x 10' O x 10' 1 x 10’

25 129 x 10' 131 x 101 38 x 102 41 x 102 2 x 10' O x 10' ■ -

30 212 x lO 3 2 0 6 x 10* - - - - - -

40 84 x 105 92 x 105 - - - - - -

44 402 x 105 4 1 2 x 10s 40 x 102 46 x 102 25 x 102 26 x 102 - -

49 608 x 105 - 76 x 10} - 168 x 103 188 x 103 - -

Appendix 4-1 TVC results for cooked whelk-on-shell trial
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Appendix 5
Sensor Response to Cooked Whelk-On-Shcll - Sample Tray 1

Time

(Hours)

Sensor 1 

(au)

Sensor 2 

(au)

Sensor 3 

(au)

Sensor 4 

(au)

Ave Response 

(au) STDev %CV

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 6.6 3.2 3.2 5.5 4.6 1.7 37.1

3.3 14.1 8.8 8.8 12.2 11.0 2.6 23.8

5.1 22.4 17.0 13.7 24.9 19.5 5.1 25.9

7.4 30.0 19.9 17.3 26.7 23.5 5.9 25.1

9.0 23.2 19.1 17.4 24.2 21.0 3.2 15.4

11.8 23.2 21.5 18.7 23.7 21.8 2.3 10.4

18.4 34.0 24.2 25.0 26.0 27.3 4.5 16.6

21.3 28.2 23.1 23.2 23.7 24.6 2.4 9.8

24.4 27.9 19.5 25.2 25.8 24.6 3.6 14.7

28.9 37.6 27.5 27.8 28.4 30.3 4.9 16.0

31.5 32.2 25.3 25.8 22.8 26.5 4.0 15.1

43.0 33.7 22.1 27.9 26.9 27.6 4.7 17.1

59.6 46.6 44.7 49.0 43.8 46.0 2.3 5.0

Appendix 5-1 Sensor response for tray 1 (cooked whelk-on-shell samples stored at RT)

Sensor Response to Cooked Whelk-On-Shell - Sample Tray 2

Time

(Hours)

Sensor 1 

(au) Sensor 2 (au)Sensor 3 (au)Sensor 4 (au)

Ave Response 

(au) STDev %CV

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.4 3.5 5.7 6.9 4.7 5.2 1.5 28.4

3.3 11.4 12.3 1 1 .1 9.3 11.0 1.2 11 .2

5.1 28.2 22.5 18.0 8.8 19.4 8.2 42.2

7.4 30.6 28.0 2 1.2 16.4 24.1 6.4 26.7

9.0 30.9 27.0 23.1 18.1 24.8 5.5 22.1

11.8 33.8 31.8 28.5 25.3 29.9 3.7 12.5

18.4 40.0 39.4 35.9 32.8 37.0 3.3 9.0

21.3 37.3 37.0 28.8 34.2 34.3 4.0 11.5

24.4 34.9 33.2 29.2 28.3 31.4 3.1 10.0

28.9 48.5 47.4 38.2 40.0 43.5 5.2 11.8

31.5 32.8 39.4 36.0 30.4 34.6 3.9 11 .2

43.0 37.1 32.3 31.1 27.2 31.9 4.1 12.8

59.6 40.4 46.2 37.8 43.2 41.9 3.6 8.6

Appendix 5-2 Sensor response for tray 2 (cooked whelk-on-shell samples stored at RT)





Sensor Response to Cooked Whelk-On-Shell - Sample Tray 3 

Time Sensor 1 Ave Response

(Hours) (au) Sensor 2 (au)Sensor 3 (au)Sensor 4 (au) (au) STDev %CV

0.0 0.0 0.0 w 0.0 0.0 0.0 0.0

1.4 5.0 3.0 1.7 5.0 3.7 1.6 43.7

3.3 13.3 9.0 3.8 10.2 9.1 4.0 43.6

5.1 17.0 12.1 10.3 14.9 13.6 3.0 21.9

7.4 32.4 21.8 18.6 26.0 24.7 6.0 24.2

9.0 28.9 18.4 19.9 22.9 22.5 4.6 20.5

11.8 37.3 26.4 30.0 33.5 31.8 4.7 14.8

18.4 39.3 34.2 38.3 44.2 39.0 4.1 10.6

21.3 36.2 37.8 35.6 36.9 36.6 1.0 2.7

24.4 30.7 35.1 30.3 33.4 32.4 2.3 7.1

28.9 43.7 36.3 36.7 38.8 38.9 3.4 8.7

31.5 28.5 27.6 30.8 34.5 30.3 3.1 10.2

43.0 33.6 36.0 27.5 30.6 31.9 3.7 11.6

59.6 37.9 33.9 30.7 29.3 33.0 3.8 11.6

Appendix 5-3 Sensor response for tray 3 (cooked whelk-on-shell samples stored at RT)

Sensor Response to Cooked W helk-On-Shell -  Average of 3 Sample Trays

Time

(Hours)

Tray 1 

(au)

Tray 2 

(au)

Tray3

(au)

Ave Response 

(au) STDev %CV n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 3

1.4 4.6 5.2 3.7 4.5 0.7 16.6 3

3.3 11.0 11.0 9.1 10.4 1.1 10.7 3

5.1 19.5 19.4 13.6 17.5 3.4 19.4 3

7.4 23.5 24.1 24.7 24.1 0.6 2.5 3

9.0 21.0 24.8 22.5 22.8 1.9 8.3 3

11.8 21.8 29.9 31.8 27.8 5.3 19.1 3

18.4 27.3 37.0 39.0 34.4 6.3 18.2 3

21.3 24.6 34.3 36.6 31.8 6.4 20.1 3

24.4 24.6 31.4 32.4 29.5 4.2 14.4 3

28.9 30.3 43.5 38.9 37.6 6.7 17.8 3

31.5 26.5 34.6 30.3 30.5 4.1 13.4 3

43.0 27.6 31.9 31.9 30.5 2.5 8.1 3

59.6 46.0 41.9 33.0 40.3 6.7 16.6 3

Appendix 5-4 Average sensor response for the 3 trays (cooked whelk-on-shell stored at RT)
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Sensor Response to Cooked Whelk-On-Shell - Sample Tray 1

T im e

(H ours)

S en so r 1 

(au)

S ensor 2 

(au)

S en so r 3 

(au)

S enso r 4 

(au)

Ave R esponse 

(au) STD ev % C V

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.8 11.5 12.2 17.3 7.7 12.2 3.9 32.3

3.6 9.9 7.9 19.1 22.1 14.8 6.9 46.7

5.4 13.7 12 .1 19.2 19.5 16.1 3.8 23.4

7.6 15.7 13.6 21.0 26.2 19.1 5.7 29.6

9.3 18.2 15.5 27.1 30.8 22.9 7.2 31.6

12.1 18.8 20.1 23.8 33.6 24.1 6.7 27.8

18.7 19.5 16.6 23.2 34.1 23.3 7.7 32.9

21.7 20.1 25.9 22.6 36.8 26.4 7.4 28.0

24.7 23.7 22.4 27.9 38.7 28.1 7.4 26.3

29.2 20.5 25.6 23.5 37.0 26.7 7.2 27.0

42.8 24.6 20.5 22.3 35.6 25.7 6.8 26.3

49.8 21.5 22.3 26.4 37.8 27.0 7.5 27.8

54.2 2 1 .1 31.6 27.4 33.5 28.4 5.5 19.2

70.9 19.5 27.9 25.7 37.7 27.7 7.5 27.2

A pp en d ix  5-5 S enso r re sp o n se  fo r  T ra y  1 (cooked w helk -on-sheil sam ples s to re d  in  th e  fridge)

S enso r R esponse to  C ooked  W h elk -O n-S hell - S am ple  T ra y  2

T im e

(H ours)

S en so r 1 

(au) S en so r 2 (au )S enso r 3 (au )S en so r 4 (au)

A ve R esponse 

(au) STD ev % C V

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.8 7.2 -0.6 11.9 11 .2 7.4 5.7 76.9

3.6 12.7 11.3 17.9 20.8 15.7 4.4 28.3

5.4 14.0 11.0 16.3 20.9 15.5 4.2 26.9

7.6 22.2 14.1 21.0 27.0 2 1 .1 5.3 25.3

9.3 21.5 17.7 23.8 28.3 22.8 4.5 19.6

12.1 23.4 20.3 25.1 28.1 24.2 3.3 13.5

18.7 13.9 7.1 27.7 24.4 18.3 9.5 52.0

21.7 13.5 12.0 24.2 25.5 18.8 7.0 37.4

24.7 12.5 17.6 31.0 26.6 21.9 8.4 38.2

29.2 17.6 15.2 22.5 25.4 20.2 4.6 22.9

42.8 15.3 13.7 24.9 17.6 17.9 5.0 27.9

49.8 24.4 18.1 25.6 27.2 23.8 4.0 16.7

54.2 30.0 18.2 27.1 28.8 26.0 5.4 20.7

70.9 28.5 26.6 25.0 29.5 27.4 2.0 7.3

Appendix 5-6 Sensor response for Tray 2 (cooked whelk-on-shell samples stored in the fridge)
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Sensor Response to Cooked Whelk-On-Shell - Sample Tray 3

Time

(Hours)

Sensor 1 

(au) Sensor 2 (au)Sensor 3 (au)Sensor 4 (au)

Ave Response 

(au) STDev %CV

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1.8 3.1 15.3 8.0 17.5 10.9 6.6 60.7

3.6 11 .2 13.5 18.9 17.4 15.2 3.5 23.2

5.4 1 1 .1 13.7 19.2 21.9 16.5 5.0 30.2

7.6 10.1 14.2 27.3 22.0 18.4 7.7 42.0

9.3 15.7 20.6 29.4 18.6 2 1 .1 5.9 28.2

12 .1 12.1 17.1 28.9 20.9 19.8 7.1 35.9

18.7 10.1 14.1 1 1 .1 16.3 12.9 2.8 22.0

21.7 12.3 15.4 32.6 26.9 21.8 9.6 43.9

24.7 15.1 16.8 18.8 26.5 19.3 5.0 26.1

29.2 10.4 12.5 25.8 22.1 17.7 7.4 42.1

42.8 9.8 19.2 27.0 23.6 19.9 7.4 37.4

49.8 10.8 17.9 32.9 37,0 24.7 12.4 50.1

54.2 10.5 15.4 33.1 24.0 20.7 10.0 48.0

70.9 10.5 20.0 31.3 35.5 24.3 11.3 46.6

Appendix 5-7 Sensor response for Tray 3 (cooked whelk-on-shell samples stored in the fridge)

Sensor Response to Cooked Whelk-On-Shell -  Average of 3 Sample Trays

Time

(Hours)

Tray 1 

(au) Tray 2 (au)

Tray3

(au)

Ave Response 

(au) STDev %CV n

0.0 0.0 0.0 0.0 0.0 0.0 0.0 3

1.8 12.2 7.4 10.9 10.2 2.5 24.3 3

3.6 14.8 15.7 15.2 15.2 0.5 3.0 3

5.4 16.1 15.5 16.5 16.0 0.5 2.9 3

7.6 19.1 2 1 .1 18.4 19.5 1.4 7.1 3

9.3 22.9 22.8 2 1 .1 22.3 1.0 4.6 3

12 .1 24.1 24.2 19.8 22.7 2.5 11 .2 3

18.7 23.3 18.3 12.9 18.2 5.2 28.7 3

21.7 26.4 18.8 21.8 22.3 3.8 17.1 3

24.7 28.1 21.9 19.3 23.1 4.5 19.6 3

29.2 26.7 20.2 17.7 21.5 4.6 21.5 3

42.8 25.7 17.9 19.9 2 1.2 4.1 19.3 3

49.8 27.0 23.8 24.7 25.2 1.7 6.6 3

54.2 28.4 26.0 20.7 25.1 3.9 15.7 3

70.9 27.7 27.4 24.3 26.5 1.9 7.1 3

Appendix 5-8 Average sensor response for 3 Trays (cooked whelk-on-shell stored in the fridge)
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TVC (CFU/g)

Room Temperature Samples Fridge Samples

Time Sample 1 Sample 2 Sample 1 Sample 2

(h) (CFU/g) (CFU/g) (CFU/g) (CFU/g)

0.0 - - - -

2.8 81 x  102 59 x 102 - -

3.9 - 75 x 102 68 x  102

5.8 70 x 102 90 x  102

7.8 65 x  103 75 x  103

8.9 - - 91 x  102 119 x  102

10.8 16 x  104 17 x 104

11.9 - - 87 x  102 105 x  102

19.0 70 x  10s 63 x  10s

20.1 - - 22 x  103 25 x 103

23.5 34 x  106 29 x  106

45.1 - - 80 x  104 90 x  104

Appendix 5-9 Total Viable Counts for samples stored at room temperature and in the fridge

TVB-N (mg Nitrogen/lOOg)

Time Room

(h) Temperature

Samples Fridge Samples

0 .0

1.3 14.0

1.4 ' 14

5.5 16.8

7.5 18.2

8.6 - 16.8

10.5 16.8

11.6 - 17.5

18.8 19.6

19.9 - 16.8

23.5 35.0

32.6 - 27.0

37.1 - 25.5

57.6 - 34.3

Appendix 5-10 TVB-N results for samples stored at room temperature and in the fridge
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(a)

(b )

(c)

(d)

Time (hours)

Appendix 5-11 Average sensor response of (a) all 3 trays n=12 (b) tray 1 n=4 (c) tray 2 n=4 (d) tray
3 n=4 for samples stored at room temperature
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(a)

( b )

(c)

(a)

o
Z

Time (hours)

Appendix 5-12 Sensor response for tray 1 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4 for
samples stored at room temperature
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(a)

( b )

(c)

(d)

Time (hours)

Appendix 5-13 Sensor response for tray 2 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4 for
samples stored at room temperature
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(a)

( b )

(c)

( d )

Time (hours)

Appendix 5-14 Sensor response for tray 3 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4 for
samples stored at room temperature
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(a)

( b )

(c)

(d)

Time (hours)

Appendix 5-15 Average sensor response for (a) all 3 trays n=12 (b) tray 1 n=4 (c) tray 2 n=4 (d) tray
3 n=4, for samples stored in the fridge
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(a)

(b )

(c)

(d)

Time (hours)

Appendix 5-16 Average sensor response for tray 1 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4,
for samples stored in the fridge
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(a)

(b)

(c)

(d)

Time (hours)

Appendix 5-17 Sensor response for tray 2 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4, for
samples stored in the fridge
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Appendix 5-18 Sensor response for tray 3 (a) sensor 1 (b) sensor 2 (c) sensor 3 (d) sensor 4, for
samples stored in the fridge
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