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A b s t r a c t

The development of a computational model is reported which facilitates the 
study of emergent principles of human immune system effector T  cell clono- 

type repertoire and its d istribution and differentiation. In  particular, the 

question of systemic self-organisation is addressed. The model represents 

an extension to earlier immune system shape space formalism, such that 

each activated effector T  cell clonotype and respective immunogenic vira l 

epitope is represented as a node in a two-dimensional network space, and 

edges between nodes models the affin ity and clearance pressure applied to 

the antigen presenting cell bearing the target epitope. As the model is re­

peatedly exposed to infection by heterologous or mutating viruses, a distinct 

topology of the network shape space emerges which may offer a theoretical 

explanation of recent biological experimental results in  the field of murine 
(mouse) cytotoxic T  cell activation, apoptosis, crossreactivity, and memory

- especially w ith  respect to repeated reinfection. In  the past, most discrete 

computational models of immune response to v ira l infections have used sep­

arate real space or shape space formalisms. In  this work, however, we have 

developed a model based on a combination of the two, w ith  the objective of 
demonstrating how emergent behaviour and principles of self organisation 

may arise from a many-particle microscopic system. This is achieved by 

using a stochastic model of the lymphatic system as stimulus to a network
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shape space model. The extension to the shape space formalism presented 
here was partially motivated by the need to  address unrealistic restrictions 
imposed by early network models, bu t also by the  need to  propose a model 
by which mediation of early and protective immunity by memory T cells 
generated by a  previous heterologous viral infection, can be explained. We 
propose th a t the variable topology of the emergent network in immune sys­
tem shape space offers a  mechanism by which the  course of identical primary 
infection events across two individuals can vary in both duration and out­
come.
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CHAPTER 1

I n t r o d u c t i o n

Almost, since the invention of the software programmed computer, scientists 
and researchers have been designing and implementing models of biological 
processes. A popular early fore-runner of biological simulation was “The 
Game of Life” {Life), first presented by Gardner (1970). This application 
demonstrated how the ‘survival’ or ‘death’ of a point on a two-dimensional 
grid (or lattice) could be modelled as a function of the properties of its 
neighbours.

Although the early biological simulations were necessarily limited in scale 
due to the restricted computational resources available, they demonstrated 
that, in principle, computer systems could bo utilised to model discrete 
biological processes. Following its publication, Life was the focus of atten­
tion because of the surprising ways in which systemic patterns emerged. In 
fact, Life is an example of a class of systems which manifest the ability to 
self-organise, in that their internal organisation increases without external 
influence. This class of system will be of particular interest in the work 
presented here, and is discussed in detail below.

As Computational power increases according to Moore’s Law (Moore,
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1965), which states that the number of components on a CPU doubles ap­
proximately every 18 months, the ability to numerically simulate systems of 
massive complexity has become ever more feasible. For example, Apple have 
recently demonstrated an application (running on ‘off-the-shelf’ technology), 
which can simultaneously model the trajectory of all known geo-stationary 
satellites currently in orbit around the earth.

Over the years, the use of computers in biology has emerged as a re­
spected research area in its own right, and is now commonly referred to as 
Computational Biology, which can be defined as the development and ap­
plication of data-analytical and theoretical methods, mathematical modeling 

and computational simulation techniques to the study of biological, behav­
ioral, and social systems

Numerous publications have come into existence to support this burgeon­
ing field, including, but not restricted to Bioinformatics (Oxford University 
Press), The Journal of Bioinformatics and of Computational Biology (World 
Scientific) and Journal of Molecular Modeling (Springer-Verlag Heidelberg), 
and over the last decade, the number of papers being published in this field 
has risen dramatically. For example, Liebman (2001) has noted that by the 
middle of 2001, some 1,974 papers with Bioinformatics in the title were 
published, compared to only 12 papers in 1987.

As mentioned above, there are two complementary strategies in the field 
of Computational Biology.

1. Bioinformatics: The computational technologies for the study of how 
information is collected and transmitted in biological systems, starting 
from the molecular level, which then makes possible prediction and 
knowledge discovery (Bergeron, 2002).

2. Modelling: the design of in machina models of biological processes in 
order to aid the understanding of discrete complex biological phenom­
ena (Chao et a l, 2004).

Recently, a further development in the field of computational biology

1NIH working definition of Bioinformatics and Computational Biology, July 17, 2000
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has been the emergence of computational immunology. Petrovsky and Bru- 
sic (2002) have observed that the role of computational immunology is to 
transpose immunological problems into computational problems, to solve 
these problems using mathematical and computational methods and then 
to convert these results into biologically meaningful interpretations. This is 
the approach adopted in this thesis.

This research exploits the modelling process as a tool for hypothesis 

testing. Classical hypothesis testing does not set out to prove or disprove the 
hypothesis (Kanji, 2000), but rather, that an idea is untenable as it results 
in an unsatisfactorily small probability. However, in this research, such a 
strategy would be unsuitable. The system under study is not a naturally 
occurring one (such as an ant colony, or the population of a country), but 
is one constructed, ab-initio, as a model of a naturally occurring system 
(the immune system). As a model, it will be constrained, in part, by the 
selection of model parameters, and by extension, by the exclusion of other 
parameters.

Conversely, if an attempt is made to introduce every parameter from the 
naturally occurring system into the model, the model itself assumes a level of 
complexity approaching that of the system being modelled. If this happens, 
the value of modelling is reduced, or eliminated (Solomon, 2001). Thus, a 
key strategy in modelling large-scale complex systems, is the selection of 
appropriate parameters.

Mindful of this limitation, it is however, acceptable to pose hypotheses 
regarding model fidelity. In particular, in this work, the results of model 
simulations are qualitatively validated against relevant biological results, 
enabling further speculative questions to be raised about the system being 
modelled. Thus, modelling enables a range of experiments to be conducted 
which may be difficult or impossible in a clinical laboratory context. The 
focus of the last two chapters of this thesis will be to present some core (and, 
it is hoped, well-founded) assertions on the nature of specific immunological 
phenomena.
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1.1 System s of Self-Organisation

Many naturally occurring systems exhibit some form of self-organisation. 
For example, collections of stars form galaxies, which in turn are recognis­
able from the spiral structures they adhere to. Molecules form chemical 
compounds characterised by structural regularity and symmetry, and recog­
nisable societies emerge from populations of unrelated individuals.

Traditional scientific theory sets out to explain such features by referenc­
ing the microscopic properties or laws applicable to their component parts, 
thus leading to fields of specialisation which although highly successful in 
deriving domain-specific models. This approach, often termed Reduction- 
ism, has been very successful, and can be illustrated by noting that over 150 
years of disease research has come to identify genes as the source of many 
diseases and cellular dysfunction (see, for example, Wallis (1999)).

It is possible to approach the study of such systems in a different manner, 
looking instead for properties applicable to all such many-body problems, 
regardless of size or nature. If some form of self-organisation is evidently 
at work in the examples given above, it is reasonable to ask if such systems 
therefore share organising principles in common. It is here that modern 
computers prove essential, enabling the investigation of dynamic changes 
that occur over vast numbers of time steps and with a large numbers of 
initial options.

1.2 Emergent Behaviour

Emergent Behaviour can be defined as the appearance of a property or feature 

not previously observed as a functional characteristic of the system (Dim­
itrov, 1997). Generally, higher level properties are regarded as emergent. 
There are three relevant aspects to emergent behaviour.

1. Supervenience. The emergent properties will no longer exist if the 
lower level is removed.

2. Non-aggregation. New properties are not aggregates in that they are
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3. Causality. Emergent properties are not phenomenological (either illu­
sions or descriptive simplifications only).

This means that the higher level properties should have causal effects on 
the lower level ones, a property known as downward causation (Campbell, 
1974). This implies also that the emergent properties restrict the freedom 
of the parts by imposing boundary conditions or constraints. In examples 
reported in this thesis, the principle of emergent behaviour is demonstrated 
in our model.

1.3 M otivation for this work

Biological systems are, by their nature, complex systems. Most are high- 
order and non-linear, with behaviour which is always more than the sum 
of their parts. The immune system is a good example of such a system. 
The following description is consistent with most undergraduate texts in 
immunology, (for example, Janeway et al. (1999)). The immune system 
consists of some 10 12 cells (though this number may increase by several 
orders of magnitude depending on the context), 10 distinct cell lineages, 
and can defend the host against an almost infinite variety of challenges. 
The immune system has no central control, yet is capable of exquisite self­
organisation, co-ordination and lethal retaliation. As well as being both 
robust and error tolerant, the immune system is adaptive in that it can 
dynamically alter its behaviour to suit a rapidly changing context.

Since Edward Jenner’s discovery (in 1796) that cowpox (also known as 
vaccinia) induced protection against the often fatal disease of smallpox, and 
went on to call this procedure vaccination, 200 years of research has identi­
fied much at the individual immune cell-level. Furthermore, many important 
discoveries have helped eradicate diseases which once took a massive toll on 
populations. For example, in 1979, the World Health Organisation declared 
smallpox to be eradicated. However, very little is known about the gov­
erning and self-organising principles of the immune system as a whole. For

not just the predictable results of summing part properties
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example, the underlying dynamics which affect the outcome of an identical 
strain of infection across two similar individuals are largely unresolved (Selin 
et a l, 1998).

A commonly cited shortcoming of immunological research is the typically 
reductionist nature it follows. To solve cell population questions, intra­
cell behaviour is addressed, leading to individual cell signalling analysis, 
which then requires a study of internal cell chemistry, thereby leading to 
exploration of molecular kinetics, and, finally, to gene expression research. 
Therefore, the following objective is set for this thesis.

To construct a theoretical computational model of the im­
mune system which can provide a high-fidelity localised view­
point of the secondary lymphatic system, and to show how pat­
terns of emergent and self-organising behaviour may arise. This 
self-organisation is then expected to provide insight into how the 
course of an infection may differ in terms of duration, severity 
and outcome across individual immune systems.

Focusing on the emergence of individual variation is particularly relevant 
when presenting population models, because in many models of individual 
responses (see, eg, Nowak and May (2000)), populations are treated as en­
sembles of homogeneous individuals, although clearly they are not. A fuller 
description of the immune system may be found in texts such as Janeway 
et al. (1999).

1.4 Organisation of the Thesis

The remainder of this thesis is arranged as follows. Chapter 2 is an intro­
duction to immunological phenomena, as well as a study of related models 
of immune response. The chapter is intended to give the reader sufficient 
grounding in adaptive-cellular immunology such that they will be able to 
read the remainder of the work without the need to refer to further sub­
ject matter material. The chapter also traces the development of relevant 
immunological models, with the objective of defining the state of the art.
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Chapter 2 also serves to identify some of the limitations of previous 
work with a view to addressing some of these in later chapters. Chapter 3 
introduces the basics of the model to be explored in subsequent chapters, 
and explores its behaviour under various infection regimes. The objective 
in Chapter 3 is to study how stochastic events (such as chance transitions 
from active cell to memory cell) may be crucial in determining the course 
of an infection. Chapter 3 also demonstrates the fidelity of the model at a 
microscopic level, in order to examine purely localised model dynamics.

Chapter 4 introduces an extended model which illustrates hybridisation: 
the microscopic model of Chapter 3 is coupled with a shape space model, in 
order to study the principle of downward causation. A single strain pathogen 
is presented to the simulation and the globalised and localised effects which 
result, are analysed. The material presented in Chapter 4 then sets the 
foundation for the proceeding chapters.

In Chapter 5, the model is extended in order to support visualisation 
of shape space in order that patterns of stimulation may be studied and 
classified.

Chapter 6 presents a theoretical network model of shape space, and 
shows how such a network naturally emerges and develops over time. This 
chapter is crucial in identifying the link between network topology and im­
mune function. The chapter presents a study of the robustness of the shape 
space network, describing the model behaviour when network nodes are re­
moved randomly and in a targeted manner.

Finally, Chapter 7 is a summary of the key findings, and presents the 
next steps to be taken in this research.



CHAPTER 2

B a c k g r o u n d  a n d  R e l a t e d  W o r k

2.1 Immunology Background

Common to all vertebrate immune systems is the principle of sensing of 
localised space for the purposes of intrusion detection (Coles et a l, 2002). 
Intrusion, in this case, is the appearance of a bacteria, viral particle or in­
fected cell which has the property of agonist (triggering an immune response 
against it). Agonist genetic material discovered must be eliminated in or­
der to prevent infection (or even death), of the host. Broadly speaking, the 
means by which the intruder gained access to the blood stream or lymphatic 
compartments is not of interest 1.

Sensing of the lymphatic compartments (of which there are many) for in­
truders, is a systematic function of immune cell (lymphocyte) recirculation. 
The immune system responds to challenge using one of two approaches (in 
some texts, known as response arms): (i) the humoral response, consisting 
of B-cell and antibody production, or (ii) the cellular response, consisting

1Some viruses, for example, the influenza and corona viruses, enter the host through 

the air passages and not through tissue damage.
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of T helper ceU (Th) and cytotoxic lymphocyte (CTL) cell production. Cy­
totoxic lymphocyte precursor cells constantly recirculate and sample their 
environment in the search for foreign pathogens. A precursor cell is one 
which is naive or undifferentiated. It is a cell which has not met with a prior 
agonistic challenge.

The process of sampling involves two cells binding for some small time 
period, during which the immune cell senses the receptors of the bound 
cell to determine if the bound cell is an invading pathogen (or not). If the 
bound cell is an invading pathogen, the immune cell may be stimulated to 
produce clones of itself in order to attack and remove other cells bearing 
the same genetic material. Under normal circumstances, the production of 
clones ceases after some fixed period of time (usually, 5-6 days), and once 
the infection has been cleared, most CTL cells will undergo programmed 
death (apoptosis).

A small percentage of the clone population will remain activated indef­
initely, and this population represents effector memory. A specific class of 
cell (known as the antigen presenting cell or APC), has the job of engulf­
ing pathogens in order to display the pathogen’s genetic markers on their 
surface (hence the name “presenting”), and thus to alert any recirculating 
cytotoxic lymphocyte precursor cells to the infection.

2 .1 .1  In fec tio n  T ake-up and R esp o n se

When a pathogen or antigen has been taken up by an antigen-presenting 
cell, such as a dendritic cell, it is degraded into one or more peptide chains 
within the cytosol region of the APC, and is then bound to the major his- 
tocompatible complex (MHC) class I molecule (a process known as antigen 

processing) before finally being presented on the surface of the APC as an 
MHC:peptide complex, a process known as antigen presenting.

As the immune system may be faced with an infinite number of genet­
ically varied challengers, the final form of the MHC:peptide complex may 
be characterised by enormous structural variability. To reliably detect this 
antigenic variation, the immune system generates its own diversity in the
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form of a set of T cells capable of recognising MHC:peptide sequences, by 
means of a T cell receptor (TCR), with variable degrees of efficacy (Buseyne 
and Riviere, 2001). The complete TCR set is known as the repertoire. A set 
of T cell clones possessing the same TCR is said to be of the same clonotype.

During T cell maturation in the thymus, genes encoding for the T cell 
receptor undergo several cycles of rearrangement, resulting in a mature im­
mune repertoire capable of recognising a large range of MHC-bound non-self 
peptides. The affinity with which a T cell receptor binds to the MHC:peptide 
complex arises from the sum of the binding interactions among the Comple­
mentarity Determining Region (CDR) and the exposed peptide (Germain 
and Stefanova, 1999). Variation in affinity at the TCR:MHC:peptide bind 
site can dictate whether the pathogen challenge has the properties of agonist, 
partial agonist, antagonist or null compound.

All agonists (both strong and weak) will cause the T cell to begin a pro­
cess which will eventually end in the death of the infected APC, and which 
is characterised by the onset of clonal expansion (whereby the T cell which 
successfully bound the MHC:peptide complex gives rise to a population of 
clones, each sharing the same phenotype). Partial agonists may not trigger 
T cell effector response, and thus may not result in the death of the infected 
APC. Antagonists inhibit the functioning of the T cell effector, and null 
compounds do not interact with the TCR strongly enough to cause any sig­
nal transmission. The T cell will simply sample the MHC:peptide complex 
and move on.

2 .1 .2  B io lo g ica l A ssu m p tio n s

In this thesis, only the cellular or cell-mediated arm of the immune response 
is studied. This is because most of the initial reaction to viral pathogens 
encountered by the immune system is dominated by the cell-mediated re­
sponse (Fuller et a i, 2004). Furthermore, only a subset of the cellular re­
sponse entities is modelled, which are the effector T cell and the antigen 
presenting cell. These two components are modelled because they play the 
most crucial role in determining the detection and clearance of a viral chal­
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lenge (Buseyne and Riviere, 2001; Klenerman et al., 2002). The action of 
CD4+T helper cells and cytokine molecules are considered implicit in this 
model and are not treated directly.

2.2 Related Work

Classifying such a diverse research arena as theoretical immunology is bound 
to be fraught with difficulties. For one thing, much work is hard to unam­
biguously categorise, and many authors have presented work which draws 
together disparate areas of research, for example, Weisbuch et al. (1990) 
(mathematical networks), Stauffer and Weisbuch (1992) (statistical physics) 
and Chao et al. (2004) (statistical computing). However, in order to present 
a structured time-line on relevant work over the years, models will be re­
viewed which may generally be classified by one of more of the following 
general headings.

1. Mathematical-Network Models: typically continuous; either ordinary 
differential equations (ODE) or partial differential equation (PDE), 
discrete or network based.

2. Discrete Automaton Models: discrete and usually agent-based, mean­
ing the status of each component in the system is individually calcu­
lated.

3. Emergent Network Models: an intersection of graph theory and com­
plex systems.

2 .2 .1  M a th em a tic a l-N e tw o rk  M o d els

One of the earliest and most influential mathematical-network models pre­
sented was that of Jerne (1974). In this work, a mathematical model was 
proposed which attempted to explain the means by which immunological 
memory could be maintained. To this end, the concept of the idiotypic net­
work was introduced, in which it was hypothesised that the immune system, 
rather than being a set of discrete clones that respond only when triggered
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by antigen, is a regulated network of molecules and cells that recognise and 
stimulate each other even in the absence of antigen. The theory states that 
because antibodies are created in part by random genetic mechanisms, they 
must look like novel molecules to the rest of the immune system and thus 
should be treated like antigens.

The novel or idiosyncratic parts of an antibody are called idiotopes. The 
set of idiotopes that characterises an antibody is called its idiotype. Due to 
the completeness of the repertoire, the immune system should recognise the 
idiotopes on its own antibodies and make antibodies against them. Jerne 
suggested that during an immune response antigen would directly elicit the 
production of a first set of antibodies Abl . These antibodies would then act 
as antigens and elicit the production of a second set of antibodies Ab2, which 
recognise idiotopes on Abl antibodies. Similarly, a third set of antibodies 
Ab3 could be elicited that recognised Ab2 antibodies, and so forth.

A seminal work in theoretical immunology was the paper on generalised 
shape space (Perelson and Oster, 1979). The shape space formalism was 
introduced as a way to represent antibody-antigen binding dynamics. In 
shape space, of primary interest is the clonotype repertoire distribution and 
its differentiation. Since it is referred to extensively in what follows, an 
outline of this important paper follows. For simplicity, assume that the 
features which govern the clonotype of the CTL receptor and APC, can be 
represented by N  integer parameters. If the N  parameters are combined 
into a vector, the clonotype for each CTL and APC can be considered as 
points within an iV-dimensional Euclidean space of length L s. Cells having 
the same clonotype have identical shape space vectors, and reside at the 
same location in shape space. Denoting CTL and APC clonotype vectors as 
c and a respectively, shape space develops as follows:

Surrounding each c is a disc of radius r  (clearly, with N  =  2, the area 
of this disc is 7rr2). Any a located within this disc will be subject to a 
clearance pressure inversely proportional to the distance (d) between the c 
and a in shape space (d =  ||c — a||). A strong agonist is one for which 
d —> 0. An increasingly weak agonist is one where d, —> r, while for a null 
compound d >  r. Every c will have a set of agonist APC clonotypes, Ac ,
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where |AC| > 0. Conversely, every a belongs to at least one Ac (if this 
were not the case, then some a would remain undetected indefinitely). It 
is axiomatic that shape space is always completely covered. That is to say, 
with n CTL clonotypes and N  =  2:

mrr2 »  I?s (2.1 )

A suitable value of N  (the dimensionality of the shape space) has been 
the subject of much discussion and debate in the years that followed the 
publication of this paper. The authors originally suggest 5 < N  <  10 
would be sufficient, but numerous papers subsequently modelled 1 < N  <  5 
(for example, Weisbuch et al. (1990); De Boer et al. (1992); Papa and 
Tsallis (1996)). Later criticism of shape space (Carneiro and Stewart, 1994) 
specifically suggested N  >  20 as a minimum requirement. This is because 
the authors experimentally demonstrated that shape complementarity alone 
was insufficient to predict binding strength.

By the authors’ contention, a realistic shape space would required at least 
20 dimensions. Later work has sharply disagreed with this position. Papa 
and Tsallis (1996) introduced a hybrid real-space shape-space model (re­
viewed below) with N  =  1. Indeed, the models bit-string models of Chao 
et al. (2004) do not address the question of dimensionality, but focus instead 
on the cardinality of distinct clonotypes which may be represented. The spe­
cific criticisms of Carneiro and Stewart are dealt with in Section 2.2.3.

Other authors have introduced alternatives to shape space. In their 
presentation of IMMSIM, Seiden and Celada (19926) implemented a de­
terministic recognition rule in which any infected cell may be recognised 
and cleared by any lymphocyte. Other models use iV-length bit-strings to 
represent the parameters which determine binding and recognition. Such 
models are usually discrete, agent-based and computational, as opposed to 
continuous mathematical models. The affinity between two cells with bit- 
string receptors is calculated as an extended form of Hamming distance. 
Bit-string models are not traditionally implemented as co-ordinate points in 
an iV-dimensional Euclidean space, although in principle there is no reason
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why not.
A further development of idiotypic networks and shape space was pro­

posed by De Boer et al. (1992). In their B-cell idiotypic network model 
(based on a PDE implementation), the authors demonstrate the concept of 
pattern formation in shape space in response to perturbations (a perturba­
tion, in these models, is generally the appearance of an infected cell, and the 
reaction which follows). The authors include in their model a continuous 
bell-shaped Gaussian activation function. This function controls the sensi­
tivity of the network to perturbations. Low stimulation or over-stimulation 2 
causes little or no B-cell activation. As such, this was an inclusion of bio­
logical function known to occur when B cells were presented with various 
concentrations of antigen in vitro. However, as discussed in Section 2.2.2, 
some of the features observed in the work are difficult to account for from a 
biological point of view.

The idea of pattern formation in shape space was further developed 
by Noest et al. (1997), in their continuous B-cell only idiotypic network 
model. This model was one of the first to include the parameter of cross- 
linking (as well as binding between infected cell and immune lymphocyte 
cell). Cross-linking is the process by which a secondary stimulatory signal 
(beyond the recognition of antigen) is required by the B-cell to induce clonal 
expansion of the B-cell. This PDE model produced two interesting pattern 
formation classes in shape space which the authors designated “domains” 
and “dots”. These formation patterns emerged from a two-step infection- 
stimulation. Step one caused the emergence of a mixture of stable and 
unstable domains. The stable domains represented an uninitialised shape 
space, and the unstable domains were immunised-suppressed (or suppressed- 
immunised). In step two, when the model was stimulated a second time, 
the unstable domains broke into stable “dots” equivalent to memory of the 
infection. Although the model was implemented as a set of differential equa­
tions in a continuous shape space, the approach further developed the grey 
scale techniques of shape space visualisation by showing how development

2 Over-stimulation was later proposed by Wick (1998) to explain G D 4 + T  cell loss in a 

model of H u m a n  Immunodeficiency Virus (HIV).
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over time could be shown, and demonstrating an “imprinting” technique. 
Previous work (De Boer et al., 1992) had the limitation of once-off snapshots 
of shape space at the end of the simulation. In Chapter 6, an alternative 
approach to shape space development over time is presented, which further 
improves the formalism by demonstrating how an emergent network links 
topology and function.

The shape space formalism was extended by Weisbuch et al. (1990); 
Weisbuch (1990), such that the B cells and antibodies occupied a gener­
alised shape space. In these models, the dimensionality of shape space was 
low, (N  =  1 or N  =  2), but the work was notable in that it brought to­
gether the formalisms of shape space and idiotypic networks, explaining how 
mean field theory (the affect of localised or neighbouring clonotypes within 
a ‘field’) could be used to model clonal excitation. However, the early idio­
typic network models of Weisbuch and others lack any analysis of topological 

network features such as node and edge addition and deletion 3. This is be­
cause these networks had static and symmetrical topology, and generally 
presented little stochastic features. In fact, the authors do not directly refer 
to nodes and edges (or their equivalent) at all, generally leaving it up to 
the reader to infer such detail. The network dynamics of these early im­
mune networks are as follows. Each clonotype node (i ) in shape space is 
surrounded by a local field (hi), computed as:

hi =  ^  J i jX j  (2.2)
3

where ■Jlj is the affinity matrix mapping some affinity constants from 
each of the Xj neighbours of the i-th node. Edges are implicit in Eqn. (2.2), 
in that any non-zero element at the row/column intersection of Jij indicates 
an edge from i to j .  Prom Eqn. (2.2) it is easy to see why this class of net­
work suffered from spatial instability. As the population of nodes in shape 
space increased, the next neighbours would be stimulated and increase in 
population, and this process would repeat, causing a system-wide cascade or

3Later in this thesis, a shape space network topology is developed which plays a key 

role in regulating immune function.
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percolation (especially in higher dimensions of shape space (Fortunato et al, 
2003), where N  >  5). This would then require some form of field dampening 
in order to maintain network stability. Weisbuch et a l (1990) considered 
an a priori network topology, known as a Cayley Tree 4, (Fig 2.1), which 
demonstrated how an idiotypic network can attain localised stability (which 
represents immune memory) without addressing the question of spatial in­
stability inherent in models using pre-defined network topology.

Figure 2.1: Two simple n-Cayley trees, in (a) n =  3 and (b) n =  4.

The Cayley tree approach was pursued up by Anderson et al. (1993), in a 
PDE model in which antibody dynamics were explicitly modelled. The au­
thors experimented with the effects of increasing co-ordination number 5. 
Further statistical-mechanical properties of Cayley trees were identified, 
such as limit cycles and localised chaotic attractors. Neumann and Weis­
buch (1992) were the first to experiment with randomised idiotypic network 
structures, an important step in addressing the limitation of homogeneous 
edge configuration of earlier models. The authors found that variation in 
topology does indeed play a major role in the preservation or loss of lo­
calised attractors (which in turn represent memory or immunised states).

4A n  acyclical tree in which each non-leaf vertex has a constant number of edges.

sThe exact number of edges to each node, being homogeneous in a Cayley tree, is 

referred to as the co-ordination number.

17



This, while important, still did not address previous concerns with idiotypic 
network models in that topology is still constructed a priori and biological 
relevance is applied to the model, rather than evolving from the model.

Further, the model does not readily address perturbations in the net­
work, and a suppression mechanism (mentioned earlier) is needed to pre­
vent memory loss when closely related antigens are presented to the net­
work. Again, due to their pre-determined nature, these models have had 
limited success in replicating specific immune phenomena, largely because 
analysis reveals features which do not necessarily have a clear immunological 
equivalent, a point acknowledged by Weisbuch et al. (1990).

2 .2 .2  A  C om m en t on  Im m u n e N etw o rk  M o d els

It is interesting to note that research on network models of the immune 
system seems to have declined in the last five to six years. Perelson and 
Weisbuch (1997) concluded this was because biological experiments which 
can be done have already been done, and as such, no exciting new results 
have emerged to stimulate further research into immune networks. However, 
a number of additional reasons can be identified for this.

1. Idiotypic network models focused on B-cell inter-clonotype stimulation 
as a means to model humoral memory. It is generally accepted at this 
time that the phenomenon of immune memory, especially effector T 
cell memory is a function of long-lived primed effector T cell popula­
tions (Murali-Krishna et al., 1999; Swain et al., 1999; Crotty et al., 
2003; Liu et al., 2003; Naumov et a l, 2003; Kim and Welsh, 2004), 
and not constant inter-clonotype stimulation, as had been believed for 
many years. In the light of this fact, one of the central threads of 
idiotypic network models has lost any direct biological counterpart.

2 . Although such models used shape space as a means to differentiate 
clonotypes, they make the compromise that the affinity between clono- 
types was modelled either as a binary variable, or as a three-state vari­
able (where affinity is low, high or none). In the original work (Perelson
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and Oster, 1979), affinity decreased as a function of increasing distance 
in space between the lymphocyte and the antigen, to a cut-off point p 

(also known as the clonal cutoff\ or threshold).

3. The rigid a-priori topology of idiotypic networks tended to force re­
searchers to find biological parallels to statistical-physical phenomena. 
Although spatial instability could be used to explain the process of 
autoimmune disease (for example), this dysfunction is actually quite 
rare. On the other hand, percolation was an inherent part of idiotypic 
networks, and again, the problem of identifying regularly occurring 
biological processes to match the characteristics of idiotypic networks 
to has remained. Another such feature is chaotic attractors: regions 
of the network where attractor nodes (or clusters of nodes) randomly 
appear and cycle unpredictably through the system. These networks 
usually have bi-directional edges, connecting B-cell idiotypes 6 to one 
another, and are therefore susceptible to percolation processes.

2 .2 .3  V a lid ity  o f  S h ap e Space

One of the criticisms that Carneiro and Stewart (1994) direct at the Con­
tinuum Shape Space theory is that the function / ( Ab, Ag), where Ab is an 
antibody and A g is an antigen, must be highly irregular and discontinuous. 
This assertion is based on work by chemists which has shown that predict­
ing affinity and bonding between two molecules is not simply a deterministic 
issue of understanding the dynamics between the individual molecular con­
stituents. However, Perelson and Oster clearly indicate that shape space 
does not need to be characterised by a uniform distribution of antibody 
shapes. Further criticism of the shape space paradigm is the question of the 
value for N.

Although Carneiro and Stewart suggest the original value of 5 < N  < 10 
is too small (they suggest a value closer to N  >  20), they do not, in principle, 
question the theoretical foundation of representing antigenic determinants 
by a fixed, /V-sized set of parameters. The actual value for N  is clearly

8The set of unique differentiating markers on the cell surface.
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something that is system-specific and may vary. In fact, Yates et al. (2000) 
have shown how the presence of cytokine regulatory molecules crucially af­
fects the dynamics of helper T cell populations. The presence of cytokines 
can up- or down- regulate function to an extent which can effectively negate 
or enhance the size of N .

It is therefore plausible that the actual value and parameters of N  are 
not only dependent on the characteristics of Ab and Ag, but also of external 
and localised state information such as the density of cytokines. It seems 
reasonable to conclude that setting N  to a fixed and relatively small number 
is sufficient to represent the antigenic determinants.

2 .2 .4  D isc r e te  A u to m a to n  M od els

Discrete automata models have characteristics, which in some respects make 
them preferable to continuous mathematical models already discussed. In 
particular, the immune system itself is a discrete system in which the indi­
vidual behaviour of each single cell collectively determines the system-wide 
characteristics. Cellular Automata (CA) have been applied to numerous 
areas of complex physical systems modelling (Wolfram, 1982; Brass et al, 
1993; Bernardes and Zorzenon dos Santos, 1997; Bandini et al., 2001). CA 
have several important characteristics which make them amenable to ef­
ficient computational implementation, including ease of representation (in 
the form of n-dimensional arrays). Furthermore, the CA model types are 
an obvious choice, given the discrete nature of the underlying computations, 
simplicity of rules or laws which are programmed into the CA, and the highly 
repetitious nature of the processing steps.

However, cellular automata possess additional fascinating properties, not 
least the ability to produce patterns of self-organisation of a highly complex 
nature which cannot be derived analytically from the rules on which the 
underling cellular automata is based.

As a result of this complexity, Wolfram (2001) has postulated that some 
form of CA must underlie many complex physical phenomena visible in 
nature. Furthermore, with the application of non-deterininistic (stochastic)
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cellular automata, the idea of randomness in CA site selection and update 
rule enforcement has yielded further insight into modelling natural stochastic 
systems such as molecular motion, turbulence in water flow and various 
biological processes, especially models of the human immune system.

Cellular automata have been the basis of many microscopic computa­
tional models of immune response (Stauffer and Pandey, 1992; Castiglione 
et al., 1997; Mannion et al., 2000; Bernaschi and Castiglione, 2001). Such 
microscopic models are usually, but not always, implemented on regular lat­
tices (Wolfram, 1982; Bandini et al., 2001; Wolfram, 2001), and are often 
described as “agent-based” in that each site of the lattice behaves indepen­
dently according to the conditions found in the local neighbourhood.

Thus, agent-based models are often a good choice when patterns or struc­
tures in local space have significant effect on model fidelity. The state of the 
lattice over time is simply a sequence of random variables x(°),xW...,x^ 
defined on a finite space X. The sequence is a Markov chain (Liu, 2001) as 
the value of x̂ i+1) is dependent on its history only through its recent past 
xW.

Several common neighbourhood specifications exist, including von Neu­
mann, which includes neighbouring cells at a distance of 1 along exactly one 
of each of the coordinate lines (left and right in one). The Moore, includes 
the von Neumann neighbourhood as well as the the cells found on the di­
agonals, to yield 8 neighbours in a two dimensional lattice. Other authors 
choose less common specifications, for example Bernaschi and Castiglione 
(2001), use a 6-neighbour model arranged in the form of a diamond in order 
to more realistically model the number of neighbours which participate in 
site update evaluation.

In the model presented in later chapters, a square neighbourhood of 
radius r =  1 , in two dimensions, is employed, yielding 8 nearest neighbours 
when the diagonals are included. Stauffer and Sahimi (1994) noted that 
variation in neighbourhood structure has a quantitative but not a qualitative 

effect on results; this finding is used to support the choice of neighbourhood 
size in the model developed in this thesis.

Finally, agent-based approaches have yet a further benefit which is suit­
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ability for incorporation of stochastic events. Germain (2001) has proposed 
that stochastic events may be crucial in determining immune response and 
the course of infection.

The first direct computational model of the local spaces of the secondary 
immune organs was presented in Seiden and Celada (1992 a, b), though more 
recently appearing as IMMSIM (Puzone et a l, 2002). These models were 
implemented using a cellular automaton to mimic the behaviour of individ­
ual immune cells within the thymus.

Each lymphocyte and antigen carried an 8-bit string which acted as the 
antigenic determinant. Even though the early models were limited in scope, 
due to the modest computational resources available at the time 7, recent 
models have been quite successful in reproducing the localised behaviour of 
the immune system. For example, recent versions of IMMSIM now incorpo­
rate humoral and cellular arms of the immune response, as well as B-cells, 
T cells, antigen, antigen presenting cells and stimulatory cytokines.

The work of Seiden and Celada gave rise to many further CA models for 
work on specific phenomena of the immune response, for example, Brass 
et al. (1993); Castiglione et al. (1997); Pandey (1998); Mannion et al. (2000, 
2002); Sloot et al. (2002); Castiglione et al. (2001); Bernaschi and Castiglione
(2001).

An early large scale automaton model of shape space only (as opposed to 
the continuum shape space models discussed in Section 2.2.1) was developed 
by Stauffer and Sahimi (1994), applying large computational resources for 
calculating update rules on hypercube lattices of dimensions 160002, 35s, 
79, and 510. The authors find that when shape space dimensionality is in 
the region of 5 — 10, sharp phase transitions between the immune states of 
uninitialised and immunised appear, but in lower dimensions, such phase 
transitions are absent. This finding has been interpreted as being in agree­
ment with the original Perelson and Oster value of N.

In contrast to the agent-based models of secondary lymphoid organs dis­
cussed above, a number of cellular automaton models of shape space have 
been proposed; for example, Stauffer and Weisbuch (1992) and more re­

7For example, the m a x i m u m  concentration of T  cells was limited to around 800.
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cently, Stauffer and Proykova (2004), introduce a high-dimensional discrete 
computational shape space model (5 <  N  <  10) in part to address an ob­
servation made in the original shape space paper on the appropriate value 
of N.

The authors do not, however, directly tie model results to any biological 
phenomena, and neither do they comment on the improvement obtained in 
higher dimensions. It is interesting to note too that the authors observe 
no qualitative difference in results beyond N  >  5, which supports one of 
the comments made in Perelson and Oster (1979). Bernardes and Zorzenon 
dos Santos (1997) develop this work further and explore the behaviour of 
a discrete n-dimensional hypercube shape space at the edge of chaos. The 
point at which a phase transition occurs in shape space which represents 
a transition from the uninitialised state to the immunised (or memorised) 
state. Significantly, these authors also conclude that there are no qualitative 
differences (in their model) between low (N  =  3) dimensions and high (N  =  

5) dimensions.
More recently, a deterministic model of shape space consisting only of 

the B-cell repertoire (but including antigen presenting) was presented by La- 
greca et al. (2001). Here, shape space dimension was modelled as N  =  12 
(implemented as a bit-string, where this results in a repertoire size of only 
4096), and the model included re-infection. The authors demonstrate how 
exposure to an antigen previously seen resulted in faster elimination and 
higher densities of antibody generation, Hershberg et al. (2001) also pro­
posed a HIV-specific model based exclusively on shape space, which is con­
sidered in some detail here. Notably, the authors do not model real spaces 
of the immune system. Instead, they assume infected cell and killer cell 
will meet with some constant probability A. No distinction is made between 
virion particles (a complete virus particle with its DNA or RNA core and 
protein coat as it exists outside the cell) and infected CD4+ T cells. In 
fact, they do not make any distinction between CD4+ T cells and effector 
cytotoxic lymphocytes (CTL) cells. This lack of distinction somewhat re­
duces the biological fidelity of the model, because under no circumstances 
are CD4+ T cells and CTL cells synonymous. This is an important consider­
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ation because HIV is a rather atypical pathogen in that it specifically targets 
CD4+ T cells (McKinney et al., 2004; Palmer et al., 2004), thus impairing 
the ability of the immune system to mount an effective CTL response.

This work also modelled shape space affinity as a lock-and-key relation, 
in that either full recognition of the antigen, or no recognition occurs. In 
recent immunological research, however, this assumption has been aban­
doned (Mason, 1998; Brehm et al., 2002). It does seem unlikely that there 
is a constant probability of an immune cell 8 encountering an infected CD4+ 
T cell, for the obvious reason that immune recirculation dynamics are known 
to alter once an infection has been detected (see, e.g., Janeway et al. (1999), 
pp 265). The model represents viral strain mutation as the probability of 
a specific strain diffusing across the shape space lattice. Thus, in this re­
spect, every mutation is an escape mutation. The authors reach a similar 
conclusion to Nowak and May (1991) in noting that antigenic diversity is a 
key determinant in the outcome of HIV. Interestingly, this work on diversity 
presents a mechanism to combine microscopic and macroscopic dynamics.

Of the former, the dynamics of recognition and removal of infected cells 
is the determinant dynamic, and of the latter, the rate of diffusion (ie, 
mutation) of the HIV virions across the shape space is the determinant. 
Their findings are in broad agreement with Zorzenon dos Santos (2000), who 
demonstrated a stochastic cellular automaton model which reproduced the 
characteristic three phases of the HIV infection quite well. It is important 
to observe that HIV pathologically affects recirculation dynamics Kirschner 
et al. (2000), and that any model of this virus would need to explicitly 
include mobility as a factor. The work of Mannion et al. (2002) was notable 
in addressing this aspect.

Discrete agent-based models combining both real space and shape space 
formalisms are somewhat less common in the literature, the main contribu­
tion in this respect being Papa and Tsallis (1996). In this paper, the authors 
presented an interesting B-cell model, but one which was constrained in size 
(two dimensional 20 x 20 real space, and a shape space of one dimension,

8Again, immune cell meaning C T L  cell, although the authors do not make this distinc­

tion explicit.
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with 18 clonotypes), and which did not include any antigen presentation.
Because of the limited capacity of shape space, the authors employed 

a very much simplified recognition rule which triggered a recognition event 
if clone A  was exactly r,r — l ,r  +  1 units from clone B, where r  is the 
radius of the periodic one-dimensional shape space arranged as a ring (see 
Fig. 2.2). This approach admitted the possibility of only 3 clones being 
allowed to stimulate a given clonotype, and as the shape space was limited 
to 18 clonotypes, the probability of some recognition is given by p =  0.166, 
which is an unrealistically high value (in the original work of Perelson and 
Oster, for example, the fraction of clonotypes which bind a randomly se­
lected antigen was estimated conservatively at 10-3 ). Although this work 
demonstrated simple structure formation in real space, the authors did not 
present any shape space dynamics. This may have been due to the formulaic 
structure adopted in shape space. From Fig 2.2 it can be seen that the ring 
implementation does not support stochastic evaluation of binding.

19 20  1

Figure 2.2: A ring based shape space, with r  =  10. The cells at 10 and 
15 are suppressed by cells exactly r, r  — l ,r  +  1 units away (19,20,1 and 
14,15,16, respectively).

Recently, discrete computational stochastic stage-structured models were 
presented (Chao et a l, 2003, 2004). Here, the authors avoid the computa­
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tional overhead inherent in agent-based models, by dividing the cell life-cycle 
into distinct stages. All cells in a particular stage are considered identical 
and thus do not require specific data/memory structures to represent them. 
State transitions from one stage to another are controlled by probabilities 
which apply to all cell populations in a particular stage. Although this 
approach addressed the computational overhead of agent-based systems, it 
may not be necessary in that modest sized, off-the-shelf PC clusters can 
efficiently scale to simulate 106 agents when coded to limit memory alloca­
tion (Burns and Ruskin, 2004a). This model used only 40M B  of physical 
memory with a 106 real space lattice, and taking approximately 4hrs to run 
on a single CPU machine.

These models have succeeded well in replicating the dynamics of effector 
T cell memory (in particular), although, as these models do not explicitly 
include individual cell kinetics, no emergent systemic behaviour is addressed. 
In fact agent-based computing does not have to be prohibitively expensive. 
In a recent paper (Burns and Ruskin, 2004a), an agent-based model, which 
was coded efficiently and reproduced cell density levels typically observed in 
murine (mouse) experimentation, was presented.

2 .2 .5  E m ergen t N etw o rk  M o d els

From the perspective of theoretical modelling, the study of complex systems 
and emergent behaviour offers a mechanism by which well understood mi­
croscopic features of immune models may be used to predict macroscopic 
behaviour. For example, complex adaptive systems can usefully be repre­
sented as a network in which each entity is represented as a node, and inter­
action as edges between nodes. When the topology of networks as diverse as 
the metabolic system, protein interaction and protein domains are studied, 
non-random organising features become apparent (for example, Jeong et al. 

(2000); Wuchty et al. (2003); Barabasi et al. (2004)).
Principles such as scale free degree distribution, addition and deletion 

of nodes and preferential attachment 9 have been observed across many

9The process by which a new node preferentially attaches an edge to a node with a
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heterogeneous network domains (for example, Albert and Barabasi (2000, 
2002); Wuchty and Stadler (2003)).

As biological systems are characterised by evolution and adaptation, 
networks to model specific aspects of such systems must be capable of sup­
porting edge and vertex addition and deletion, along with edge rewiring, and 
such networks are then termed evolving or dynamic. In evolving networks, 
non-random organising principles lead to the study of emergent topology 

which may provide insight into network-wide characteristics, in this sec­
tion some important characteristics associated with complex networks are 
reviewed.

1. The degree deg(k) of a node is the number of edges associated with 
that node. The average degree (k) characterises the overall graph, and 
the variance of (k) is captured by the degree distribution P(k).

2. The shortest path kj  between two nodes i and j  is used to calculate 
the mean path length for the network:

»  = jw h x î j t 1«  (23)

One further description is appropriate when considering the mean path 
length, the concept of small worlds, meaning that any node on a net­
work can be reached by any other node by using a small number of 
steps (the 6-degrees of freedom theory, in fact). This is a measure 
of how easily a network may be traversed. A network which can be 
crossed with relatively few steps is said to possess a small world quality. 
This attribute is also known as the “six degrees of freedom” attribute.

3. The clustering coefficient Ci for node i is a measure of the average 
connectiveness of its neighbours and is given by:

large number of existing connections.
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were nl is the number of links connecting the kt neighbours of i to 
each other.

The mean clustering coefficient (C ) of the overall network is:

<C) =  i f >  (2.5)

A further measure of network structure, based on (C), is the function 
C(k),  which determines the average cluster coefficient for all nodes 
of degree k. If C(k)  turns out to be independent, of the choice of k. 
this may indicate that the network is either homogeneous (all nodes 
having the same degree), or else dominated numerous small, tightly 
knit clusters.

On the other hand, if C(k)  follows C(k)  ~  A:-1 , the network is charac­
terised by sparsely connected within highly connected areas. An ex­
ample of the two network structures is shown in Figs. 2..'5 (a) and (b). 
The class of sparsely-connected, highly-connected networks is typical 
of the structure found (for example) in metabolic networks (Ravasz 
et al., 2002).

(b)

Figure 2.3: Homogeneous and hierarchical network structures, (a) and (b) 
respectively.

In Fig. 2.3 (a), the network is homogeneous, with k =  4, and (C) — 1 (ie,
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the most highly connected). In comparison, Fig. 2.3 (b) is more hierarchical 
with one node connecting two highly clustered areas.

In addition, Wuchty and Stadler (2003), note the following three central­
ising metrics associated with the nodes of evolving networks. The centre, 
the median and the centroid. The center C  of a network G is the node 
x e  V  which minimises the furthest distance between itself and any other 
node y G V:

C(G) =  minxev (‘maxyevd(x ,y)) (2 .6)

The median M  of G is a function which minimises the average distance 
to it from all other nodes:

M( G)  -= minxevC£2 d(x ’y^
y€V

Finally, the centroid Q of G is:

Q(G) =  m inxev (^ 2  d{x) -  m inx^y( ^ j d[x, y))) (2.8)
xeV y e v

Large scale graphs with no (apparent) design principle have been de­
scribed as random graphs. In such graphs, two nodes are linked together 
with a probability p, yielding a graph with around p N (N  — l) /2  randomly 
distributed links.

Several biological networks such as protein and metabolic networks, (see, 
eg, Jeong et al. (2000, 2001); Ravasz et al. (2002)), have been analysed, and 
found to follow a power law degree distribution distribution:

P(k)  ~  AT7. (2.9)

In the work conducted by Baxabasi and co-workers, the scale-free net­
works identified all possessed the property of 2 < 7  < 3. In Jeong et al. 
(2000), 7  t± 2.2. The apparent wide-spread existence of scale-free networks 
in biological systems may help to explain why such systems are usually 
extremely robust. Elimination of random nodes and edges (due to, for ex­
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ample, mutation), has little impact on the network topology - indeed, the 
average diameter of the network would remain unchanged. However, when 
nodes possessing high cluster coefficients are eliminated, the connectedness 
of the network is reduced. If enough connected nodes are eliminated, the 
functioning of the network collapses.

In a recent paper, Albert et al. (2000) has compared the robustness of two 
types of random networks to node elimination: the Erdos-Renyi (ER) and 
the scale-free networks. The ER network is homogeneous, with every node 
having on average, the same number of edges, with probability p. On the 
other hand, scale-free networks are characterised by preferential attachment. 
The probability of a new node i being connected to another node I, is given 
by:

N
P(i) =  k /  (2-10)

I

2.3 Summary and Conclusions

In this chapter an overview of some important research, which forms the 
basis of the work presented in the rest of this thesis, was presented. Several 
important observations regarding the limitations of previous work have been 
made.

In order to examine how individual immune systems may develop mi­
nor topological variations in immune system shape space which affect the 
clearance rates and therefore the duration and pathology of infection, the 
following points need to be addressed:

1. Shape space is an important formalism in modelling global character­
istics of the immune system repertoire (notwithstanding the comments 
of Carneiro and Stewart (1994)). However, any shape space model will 
need to address the question of dimensionality (TV).

2. Shape space -only models suffer from the effects of not modelling recir­
culation dynamics. As these dynamics are crucial in determining cell
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interaction kinetics (as well as being highly non-linear), omission of 
recirculation dynamics may result in over-simplification of the model.

3. Pre-determined network models of immune system shape space suffer 
from the difficulty of applying (almost retrospectively) immune phe­
nomena to the known statistical-physical function of the network.

4. Real space models are good at reproducing localised phenomena, but 
do not offer a means to capture and analyse system-wide behaviour 
over time.

5. Adaptive and complex network analysis of large-scale microscopic sys­
tems has yielded several methods with which to characterise and pre­
dict the behaviour of the underlying system to various stimuli.

For earlier shape space network models, the network edges are a loose 
notion, meaning is capable of interacting with due to complementarity. In 
Chapter 6, the network model is developed further by assuming that an 
edge means has been stimulated by, and additionally, each edge carries a 
flow (weight) equal to the distance (and hence, the affinity or stimulation) 
between the shape space entities. Furthermore, by modelling the network 
with directed edges, the problem of spatial instability is removed.

It can be concluded by saying that any model which seeks to address 
the emergent behaviour of the immune system will need to address the five 
observations above in order to extend knowledge in this field of research.
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CHAPTER 3

In i t ia l  M i c r o s c o p i c  M o d e l

In the work developed in this thesis, each chapter builds on the work of 
the preceding chapters. As the work is concerned with developing a model 
of how the adaptive immune response reaches a system-wide condition (a 
condition which may then be used to predict disease clearance dynamics), a 
logical starting point is to consider the microscopic dynamics which underpin 
system-wide development.

Firstly, the term microscopic is used throughout this work to mean the 
localised, real space compartments of the secondary immune organs, and 
in particular, to mean the lymph nodes. There are, in fact, many lymph 
nodes, distributed throughout the body, but in this work only an idealised 
and singular node (or compartment) is considered. This is because the 
clinical structure of each node is remarkably similar, and because each node 
is designed for the same function, (to trap foreign pathogens drained from 
the blood, and to enable lymphocytes to mount an appropriate response) an 
assumption of one idealised compartment is not a crucial over-simplification.

Microscopic modelling shall be the lowest level of detail addressed in 
this thesis, with the objective of developing an initial model which is flexi-
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ble enough for extension in later chapters, while at the same time, accurate 
enough to simulate a simplified immune system consisting of antigen present­
ing cells, cytotoxic effector T cells, one generalised lymphatic compartment, 
and initial, secondary and repeat infection events. A simplified lymph node 
structure is shown in Fig. 3.1.

Figure 3.1: A simplified lymphatic compartment showing the; different re­
gions in which immune cells circulate.

Infected antigen presenting cells enter the lymph node as part of the 
blood supply to the artery, and progress from the Medulary Sinus to the 
B cell germinal area, by penetrating the consecutive walls separating each 
area. When the infected APCs reach the T cell paracortical area, they come 
in contact with recirculating T cells (both precursor and active), triggering 
an immune response if the epitope (any part of a viral protein detectable by 
the immune system) on the APC surface is immunogenic.

Cells leave the lymph node via the blood supply to the vein, and con­
tinue to cycle through the other lymph nodes. Kirschner et al. (2000), have 
estimated that in a one day period, lymphocytes spend a total of 30 min­
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utes in the blood stream, the remainder of the time being spent recirculating 
through the various lymphatic compartments.

The pattern of lymphocyte recirculation in and out of the lymphatic com­
partment depends on the route and severity of the infection. HIV (Human 
Immunodeficiency Virus), a viral pathogen which mainly enters the immune 
system by way of infected blood supply or sexual activity, is marked by in­
tense lymphocyte production and death within the lymphatic compartment 
itself (Buseyne and Riviere, 2001). By contrast, bacterial infections which 
enter the body through mucosal membranes or skin damage, will induce 
migration of activated T cell lymphocytes from the lymphatic compartment 
to the region where the detection arose.

In this model, the following approach is adopted. Infection notifica­
tion arises when antigen presenting cells are introduced into the generalised 
model of the lymphatic compartment. The response which follows is based 
solely within the lymphatic compartment, because clearance of infected anti­
gen presenting cells from the lymphatic compartment is a feature common 
to all infection dynamics, notwithstanding the fact that some responses may 
subsequently induce T cell migration.

Furthermore, the approach taken here also avoids a modelling process in­
fluenced exclusively by current experimental immune system research trends. 
More precisely, the study of stochastic events, which appear to play a cru­
cial role in certain immune system functions (Germain, 2001), will be of 
particular interest. Therefore, in this, the initial microscopic model of the 
generalised lymphatic compartment, the life-cycle of the CTL cell and APC 
will be examined first. This is the subject of the following sections.

Although this model uses a 2-dimensional real space to model the lym­
phatic compartment (which is clearly a 3-dimensional structure), it was 
noted by Mannion et al. (2002) that this has little impact on overall model 
results, although in their model, a limited neighbourhood structure may 
have accounted for this.
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3.1 Life-cycle of the effector T cell

The dynamics of immune response to initial infection and reinfection by the 
same pathogen sometime later, are considerably different. Primary response, 
which follows initial infection, is characterised by relatively slow precursor 
cell activation and population growth rates, with a consequent elongated 
pathogen clearance profile, typically extended over six to eight days (Busch 
et al., 1999; Busch and Pamer, 1999).

On the other hand, secondary response (to reinfection by the same 
pathogen some time later) is notable for short effector activation time, high 
specificity of response, rapid pathogen elimination and high degree of mem­
ory cell participation (Blattman et al., 2000; Barber et al., 2003). In some 
cases, secondary response is so effective, the infection does not become symp­
tomatic. The effectiveness of the secondary response is largely dependent on 
the class of effector T ceU from which the response originates: the memory 

effector T cell.
Here, a seven state non-deterministic finite automata (NFA) of the effec­

tor T cell life-cycle, which is encoded as a set of states and state transitions, 
is developed. The objective is to study the degree to which variable infec­
tion outcome is the consequence of premature, delayed or even failed state 
transitions. Small variation in crucial state transition probabilities during 
the life-cycle is shown to induce widely variable infection outcomes.

It is worth noting that Asquith and Bangham (2003), have observed that 
splitting the CTL population into “memory” and “effector” subpopulations 
may be an over-simplification, in that the relationship between the two sub­
populations is unclear. In their model of CTL fratricide (inter-CTL cell 
destruction) the authors implemented a continuous mathematical model of 
the CTL life-cycle using what they term a continuously varying phenotype. 

They noted that this approach supports the CTL effector phenotype when 
infected cell concentrations were high, and the CTL memory phenotype 
when levels were low. Although their approach is slightly at variance with 
the one presented in this research, there is agreement on a core assumption, 
that of the effectiveness of the secondary response based on memory CTLs.
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The key features of this chapter are as follows: (i) an extended non- 
deterministic state transition model of the effector T cell life-cycle is in­
troduced. This model successfully reproduces time-realistic effector and 
pathogen population dynamics during primary and secondary response, and 
during repeated reinfection, (ii) a crucial state transition in the effector T 
cell life-cycle is identified which is critical in regulating secondary response, 
and (iii) the model is scaled to cell density levels in the order of 106 CTL cells
- which approaches levels typically observed in in-vivo murine experiments.

A note on murine experiments: Murine experiments are conducted on 
laboratory bred mice (non-wild type), with typical experiments involving 
the injection of around 5000 infected cells, with the animals being tested 
at regular intervals for disease progression. Often, the organs are removed 
some point in the experiment (usually 20-40 days after exposure), and cells 
levels and activation patterns are studied. In some experiments, animals 
are specifically bred with some genetic deficiency (for example, lacking in 
CD4+T cells) in order to study the consequences of such deficiencies.

3.2 Initial M odel Development

The model runs in discrete 30-minute time-steps, and all entities in the 
model act asynchronously at each time-step (r). The 30-minute time-step 
is used because most cell milestones are in the order of hours, as opposed 
to minutes or days. As primary response normally consists of 4 days of cell 
replication (clonal expansion), the cells in the model will stop dividing at 
t =  192. The recirculation space of the lymphatic compartment is modelled 
as a two dimensional stochastic cellular automata lattice of length L =  103, 
with periodic boundary conditions and neighbourhood radius r  =  1  (in two- 
dimensions), with a maximum of 8 neighbours (the Moore neighbourhood).

An asynchronous CA (Chopard and Tomassini, 2004) is used, in which 
each site is selected at random for update during a time-step, but every site 
will be visited at each time-step, and each site can be updated at most once 
in any given time-step. The site to be updated is selected randomly from a 
uniform distribution ~  t/[0, 1 ], without replacement, with the justification
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that, in biological and noisy systems, agents act at different and uncorrelated 
times, which precludes a global clock or synchronisation protocol (Chopard 
and Tomassini, 2004). Thus, an asynchronous site update strategy is prefer­
able in approximating the true characteristics of the underlying system.

At t  =  0, 5000 APCs are introduced into randomly selected sites on 
the lattice (following a uniform distribution), and the model executes until 
r =  3000 (62.5 days of elapsed time). The value of 5000 is specifically 
selected as it is a value typically used in murine experiments. With respect 
to the layout the simplified lymph node (Fig 3.1), is equivalent to the infected 
antigen presenting cells all appearing within the T cell paracortical area at 
exactly the same time. A more biologically exact simulation would model 
a diffusion of the APCs into this region over some number of time-steps. 
All APCs introduced into the real space display the epitope markings of the 
pathogen engulfed. In this model, there are no pathogen-free APC.

The CTL population grows exponentially in response to APC stimula­
tion, with a rate which is a function of the distance between the CTL and 
APC in shape space (but never exceeding 0.036). Each lattice site may con­
tain only one entity at any given time-step. The set of entities and states 
supported is shown in Table 3.1, which also introduces some important no­
tation used throughout this chapter.

In contrast to other models (for example, Bezzi et al. (1997)) which at­
tempt to directly simulate human immune system lymphocyte levels (the 
order of ~  1012), the model cell concentration levels are limited to realis­
tic amounts normally observed in murine experimentation, typically of the 
order of 1.8 x 104 during primary response (Bousso et al., 1999). The justifi­
cation for this is that not every lymphocyte is active during a given immune 
challenge. Using this approach, individual behaviour of each cell can be 
directly modelled without resorting to approximate methods (for example, 
the stochastic stage structured models of Chao et al. (2003, 2004)).

A comm,ent on simulation structure: Most of the simulations results 
presented in this thesis are averages, over several simulation runs. For each 
parameter set, some 30 simulations are usually carried out, with average cell 
levels shown in the figures, without reference to the sample variances. Typi­
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cal variance levels are in keeping with stochastic computational simulations 
(see, eg, Law and Kelton (2000)), and are not treated further in this work.

3 .2 .1  N o n -D e te r m in is t ic  F in ite  A u to m a ta

To allow the study of a distribution of possible outcomes (for example, im­
munised, chronic infected and collapse), a subset of the CTL life-cycle state 
transitions is identified, and the certainty of a transition from state ui to 
state v on event e is replaced with some probability (< 1 ) of state transition. 
First, the definition of state transition relaxation is defined as follows. If X  
is a discrete random variable (drv) representing the transition from state w 

to state v, and e is some event linking wv, the relaxed state transition X r

P { X r \e) =  0 <  ip < 1 (3.1)

The choice of value for ip will naturally depend on the wv in question. 
A concrete example of this rule is the case where a CTL in the clonal ex­
pansion state (w), will transition to the effector state (v) when the event 
r =  192 occurs (e). In contrast to earlier models Eqn. (3.1) implies 
duality in the presence of event e: transition on e (Xr ) or not (Xr). This 
extension results in a non-deterministic finite automaton (NFA) (Hopcroft 
and Ullman, 1979). Fig. 3.2 is a non-deterministic finite automata model of 
the life-cycle of the CTL (and follows notation explained in Table 3.1). E  is 
the set of events for the model, and consists of both deterministic and non- 
deterministic elements. A subset of three critical non-deterministic events
S c  E  is defined as: S =  {e<2 , e3, es, e«}- Each e* 6 S' is defined as follows:

e2 ,e$ An infected antigen presenting cell will be destroyed by a bound cy­
totoxic lymphocyte cell which recognises it. Recognition is a function 
of the distance between the two cells in shape space.

e3 An activated proliferating immune cell (state c tl1 *) will normally end 
clonal expansion on the event (e3 : age(ctl+*) >  192) time-steps.

1in which P(XT |e) =  1
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ee Memory cells are primed from the point of a previous infection and 
they confer an advantage during reinfection in that they produce 
armed effector cells without spending time in clonal expansion. Nor­
mally the majority of ctl+1 enter ctl+* on event (ee : age(ctl+ )̂ >  192).

erpt Repeated reinfection events, resulting in repeated doses of infected 
antigen presenting cells introduced into the simulation, at time-step 
r +  300n, n =  0,1,..., 9.

Each of the above events (en) has an associated probability ipn. The set 
{ipi, -023 ^3 ,^ 4}, therefore fully describes each simulation configuration of the 
model (all other parameters being kept constant). In the results presented 
in the following section, the following four experimental configurations of V  

are defined:

ipi V i : {0.9,0.9,0.9,0.0}

ip2 V 2 : {0.9,0.9,0.95,0.0}

V>3 V 3 : {0.9,0.9,0.9,1}

ip4 V i : {0.9,0.9,0.95,1}

The first two configurations of V  test the fidelity of the model response 
when confronted with a singular secondary infection event some 30 days after 
the initial infection. The first configuration represents a normal response 
and is intended to calibrate the model for near optimal conditions. For Vi, 
it would be expected to see CTL production levels broadly characterised 
by a low, elongated peak for primary infection, followed by an increase in 
memory CTL. Another expected observation is APC clearance, being over
6 — 10 days for primary response, and significantly faster during secondary 
response. The second configuration is an increase in ip3 from 0.9 to 0.95 and 
is intended to test the impact of a 5% decline in the number of cells which 
transition to the effector memory state (ctl+Jf —> ctl+e).

Some viral infections are known to cause damage or loss of the mem­
ory pool (Kim and Welsh, 2004), and the impact this has on the model is
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tested. Repeated reinfection is tested with normal and depleted memory 
cell production (V3 and V4 , respectively). Many pathogens are known to 
lead to acute and persistent viral infections. For example, Wherry et al.
(2002) have found that memory function correlates to epitope expression 

levels: if excessively high levels of epitope are expressed during primary 
infection, the quality of memory function is reduced. Tewari et al. (2004) 
found that prolonged exposure to antigen during chronic infection tends 
to impair memory function, suggesting that infections which are not elimi­
nated rapidly, but which linger, cause damage to memory efficacy. Wu et al. 
(2004) demonstrated that viral FLIP (a type of protein expressed by cer­
tain viral antigen) quickly inhibit the production of memory cells, even after 
normal primary response. In an important and fascinating report, Williams 
and Bevan (2004), observed that the formation of CTL effector memory in 
murine in-vivo experiments, was impaired with treatment of ampicillin 24hrs 
post-infection. This indicated that early termination of infection leads the 
generation of fewer effector memory cells. More generally, this finding may 
support the observation that treatment of infection with penicillin should 
be done conservatively and not before the infection has become chronic.

The importance of memory ceU production is examined in these cases. 
Again, memory cell production is impaired by 5%, and the consequences of 
this loss on the effectiveness of infected cell clearance is studied. Section 3.3.1 
examines the outcome of persistent infection in the model. Table 3.2 shows 
the set of state transitions possible for the NFA shown in Fig. 3.2.

3.3 Initial Results

The model is initially executed with parameter set V\ and V 2 (with no 
repeat reinfection), and the results are shown in Fig. 3.3. In (a), the initial 
infection is visible at r  =  0 with pathogen density Pd =  5000, and consequent 
effector response reaching a maximum value at r =  300 (6.25 days), with 
the concentration of effector cells, e,i =  8.2 x 103. Antigen presenting cell 
density is shown by the broken line, with the solid line indicating levels 
of effector memory and activated cells combined. For clarity, (b),(d) show
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Figure 3.2: Seven-state non-deterministic finite automaton of the cytotoxic 
lymphocyte cell life-cycle. Transition events (en), carrying the same sub­
script are non-deterministic.

population levels for APC for each V.
Fig. 3.3(b) shows the antigen presenting cell population level (only). 

No memory cells are present during primary response, and as such, the 
effector cell population is made up entirely of clones produced by stimulated 
precursor cells. To the right of each effector cell peak is a plateau of memory 
cells. The slope of the CTL density peak is extreme, indicating that the state 
transitions from ctl+* to ctl+>[ to ctl+® (or ctl+*) occur with a high degree 
of certainty.

At time r =  1500 (day 31), secondary exposure to the same pathogen oc­
curs, and the model exhibits following general behaviour: (i) the secondary 
immune response is preceded by a pool of committed CTL memory cells 
which have already been primed to respond to the re-appearing pathogen, 
(ii) the activated CTL density is some 10 times higher than primary re­
sponse, and does not last as long, and (iii) the pathogen is reduced to half 
its original level much more rapidly than during primary response. With
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Table 3.1: Notation and definition of model entity states

Notation Definition

ctlr naive recirculating effector precursor
ctl+* proliferating lymphocyte
ctl+• dead activated lymphocyte (apoptosis)
ctl+® memory effector
ctl+®* activated proliferating memory effector
ciZ+et armed memory effector
ctl+] armed activated effector
apc+ active infected antigen presenting cell
apc+* dead infected antigen presenting cell

V i, the model exhibits efficient detection and clearance behaviour associ­
ated with a healthy immune system.

From Fig. 3.3, it can be seen the advantage in both time and infected 
cell clearance which is conferred on a response based largely on memory 
The half life of the virus during primary response is around 3.25 days, with 
90% pathogen clearance achieved at around r  =  480, or 10 days of simula­
tion time. Compared to secondary response on reinfection an infected cell 
half-life of r  k, 60 or 1.25 days - an efficiency of around 87% is observed. 
Effectively, this is because memory cells, having already been primed by 
a previous encounter with the specific pathogen, undergo expansion with 
lower death rates than during primary response, and therefore accumulate 
more quickly (Grayson et al., 2002).

The results for V 2 are shown in Fig. 3.3(c) and (d). Here, the probabil­
ity of entering apoptosis is increased from 0.9 to 0.95. This means that the 
memory ceU population would be around 5% of that activated effector pop­
ulation post-primary response. Recent work (notably Grayson et al. (2002)) 
has shown that some as 90% of activated effector undergo apoptosis after 
primary response. Therefore, ips =  0-95 would represent an unusually high 
suppression of memory function.

Clearly, the reduction of memory effector production should not affect
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Table 3.2: Event Transition and Definition

Notation Definition

el Recirculating CTL does not detect APC
e-2 Recirculating CTL detects APC and enters clonal ex­

pansion, or does not
63 Activated APC continues clonal expansion or ends be­

comes activated killer CTL
e4 Activated killer CTL does not detect APC
es Activated killer CTL detects and kills APC
ee Activated killer CTL enters apoptosis at age > 192 or

becomes a memory CTL
Memory CTL does not detect any APC

es Memory CTL detects APC but does not kill it or kills
APC and becomes a proliferating effector

eg Proliferating memory CTL becomes activated killer
eio Activated memory CTL becomes a resting memory

CTL or dies

primary response, and this is borne out by CTL density levels prior to 
r  =  1500 (c). A normal 10-day clearance regime (d) is seen during primary 
response, but a less effective response during reinfection. In fact, the memory 
cell pool in the time range 500 < r < 1500 has fallen to ~  500. Once 
reinfection occurs, the APC population is cleared some 31% more effectively 
than during primary response. The APC half life is r =  108, 90% clearance 
is achieved after reinfection at r «  1788 (or some 5.9 days of simulated time). 
However, the characteristics of V 2 are significantly degraded compared to 
that observed in V \ .

3 .3 .1  P e r s is te n t re in fection

Some viral pathogens are capable of persistent reinfection. That is, although 
population levels of infected antigen presenting cells may decline in response 
to clearance pressure by a specific CTL response, over time, the number 
of infected cells rises to chronic and sometimes acute levels. Examples of
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(a) (b)

(o) (d)

Figure 3.3: CTL and pathogen lattice density levels (a),(d) over a simulated
62.5 day period, with an initial infection at time r =  0 (x-axis), and a 
reinfection by the same pathogen occurring at r =  1500, for 3 values of 
V . The y-axis indicates the average concentration of CTL cells over 30 
simulations.

such viruses are HIV, Human T Cell Lymphotropic (HTLV), hepatitis C 
(HCV), hepatitis B virus, Cytomegalovirus (CMV) 2, Ebola Virus (EBV) 
and rubella (Kim and Welsh, 2004). Such persistent reinfection pathogens 
have been associated with normal immune function suppression. In this 
section, persistent reinfection was simulated by randomly scattering a repeat 
‘dose’ of the pathogen into the lattice, introduced at r +  300n,n =  0 ,1,...,9. 
This reinfection pattern represents a resurgence of infected cells every 6.25 
days, in discrete bursts. The results of this simulation are shown in Fig. 3.4.

2 The same group which causes Epsteiu-Barr Syndrome.
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(a) (b)

(c) (d)

Figure 3.4: The model is exposed to repeated infection events, arising at 
time r =  300n, n =  0,1,..., 9 (x-axis), equivalent to an infection every 6 
days. The y-axis indicates the average concentration of CTL cells over 30 
simulations.

With respect to Fig. 3.4 (a), the response to the first reinfection is clearly 
strong. Some 3.8 x 105 lymphocytes are generated and the reinfection is 
rapidly eliminated. As further infections arise starting at r =  600, the 
existing memory pool never falls below 1.8 x 105, and is critical in bringing 
the repeated reinfections under control in time periods (b) which rarely 
exceed 130 time-steps (or 2.8 days of simulated time).

From (a) it can also be seen that slightly lower responses are sufficient in 
order to effect optimal clearance. Results from (a) and (b) support the clin­
ical findings that the memory cell levels tends to be higher after secondary 
and tertiary infections (Grayson et al., 2002), which in turn, supports the
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clinical practice of vaccination boosting.
Finally, when the simulation is executed with diminished memory cell 

creation and repeatedly stressed with reinfection {V/Cj, average primary and 
secondary response levels are similar (around 1.2 x 104). Each response 
is characterised by rapid expansion and reduction of effector lymphocyte 
clones. There are no memory cells to confer clearance advantage, and each 
response is initiated from low levels (around 1.2  x 102).

3.4 Chapter Summary

The approach taken in this chapter was to build an initial microscopic model 
of the effector T cell life-cycle, in order to study a distribution of possible 
simulation outcomes. The model reproduces well the time and space dy­
namics of initial and secondary infection. In addition, the research is novel 
in modelling the relationship between repeated reinfection and effector cell 
transition to memory or apoptosis.

The work demonstrates how repeated reinfection can be controlled only 
within a limited range of ipa. Too much memory causes the lymphatic com­
partment to fill-up, too little memory induces the need for clonal expansion 
from naive precursor cells, and a elongated APC clearance profile. When 
the ratio of apoptosis to memory is ‘just right’ (0.88 < ipz <  0.92), antigen 
presenting cell levels (during repeated reinfection) are brought under con­
trol in increasingly rapid time frames. Very recent clinical work (Kim and 
Welsh, 2004) suggests that the immune system must periodically preferen­
tially eliminate some memory cells which exhibit poor cross-reactivity. One 
of the benefits of the stochastic effector T cell life-cycle model presented 
here is the relative ease with which this theory could be investigated.

This chapter has put an important foundation into place. A micro­
scopic model of an idealised lymphatic compartment succeeded in simulating 
known clinical CTL concentration levels and infected cell removal rates dur­
ing primary secondary and repeat infection events. In particular, the CTL 
concentration levels matched those known to arise in murine laboratory ex­
periments. Therefore, this model is a strong basis upon which to build the
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crucial important thesis objective of integrating a local space model to a 
system-wide (or global) model. This is the subject of the next chapter.
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CHAPTER 4

R e p e r t o i r e  D i s t r i b u t i o n  a n d  D i f f e r e n t i a t i o n

In the previous chapter, an agent-based model was developed which en­
abled detailed study of immune response to primary, secondary and repeat 
reinfection events. The model also supported reinfection by both the same 
and unrelated pathogens, and demonstrated qualitatively realistic space and 
time dynamics during initial, secondary and repeated reinfection events 
when compared to murine experimentation results. In addition, the non- 
deterministic state transition model of the effector T cell life-cycle repro­
duced well the sensitivity of response efficacy to effector cell state transition 
to apoptosis versus state transition to memory cell.

It is worth noting that in this work, many of the conclusions are cal­
ibrated against murine (mouse) experiments. This is because murine ex­
periments contain more computationally tractable cell levels (eg, 106), and 
murine experiments tend to be more ambitious (for obvious reasons).

The features of the model from the previous chapter were purely micro­
scopic in that only local (or real) space dynamics were studied. What was 
missing from this approach was a method to represent system-wide immune 
condition. Only when system-wide immune condition is properly modelled
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can assumptions about infection duration and outcome between individuals 
and within a population, be made.

The concept of the immune repertoire is crucial in respect of system- 
wide immune condition, and could be defined as the set of precursor and 

activated T  cell clonotypes, in both the memory and non-memory pools. The 
immune repertoire transcends the local spaces of the immune system (Nau­
mov et a l, 2003). Furthermore, certain properties, such as clonotype activa­
tion and distribution, can be modelled directly in the repertoire, but would 
be impossible to represent in an entirely local space model, as such mod­
els capture only individualistic agent-based information. The state of the 
repertoire can be categorised by analysing the distribution of uninitialised, 
activated and immunised spaces within it. If there were a means to repre­
sent the repertoire as part of a microscopic model, this would enable both 
the repertoire condition to influence local space dynamics, and crucially, for 

local space dynamics to influence the evolution of the repertoire.
In this chapter the model presented in Chapter 3 has been further de­

veloped by devising an integrated shape space and real space model. This 
chapter addresses two important points (from Chapter 2), namely, (i) that 
shape space is an important formalism in representing the immune system 
repertoire, and (ii) that shape space -only models suffer from the effects 
of not modelling recirculation dynamics. The objective of this chapter is 
twofold:

1. To outline the method by which real space and shape space are inte­
grated.

2. To examine the sensitivity of the primary immune response to shape 
space parameters.

4.1 Downward Causation

The principle of downward causation is central in demonstrating that a for­
malism is capable of emergent behaviour. Downward causation is the con­
dition by which all processes at the lower level of a hierarchy are restrained
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by and act in conformity to the laws of the higher level (Campbell, 1974). 
In this thesis, the immune repertoire is the core high-level process which 
influences and restrains the evolution of key immunological processes such 
as antigen presenting cell recognition and clearance and effector cell clonal 
expansion, all of which are lower level process in the hierarchy.

In Fig. 4.1 this concept is presented in a simplified form. The reper­
toire state affects how processes such as APC Recognition proceed, which in 
turn, influences CTL Activation. Subsequently, the CTL Activation process 
changes the state of the repertoire as the clonotype in question has become 
activated.

Figure 4.1: A simplified hierarchy of causation, with the repertoire acting to 
influence processes below and in turn, being affected upward by lower level 
processes.

The hybrid model can understood as a mapping from real space to shape 
space as shown in Fig. 4.2. In the lower section of the figure, the real space 
compartments are shown with CTL cells (white circles) and infected cells
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(grey circles). When an infected cell comes into contact with a CTL, shape 
space is used to determine the affinity between the cells. If the affinity falls 
within the clonal cutoff region (denoted in the figure by the circle radius, 
r), then clonal expansion begins. When shape space has been stimulated by 
further CTL activation, the network topology emerges (top panel).

Figure 4.2: A mapping from the real space compartment to shape space, 
showing three time points, (0,500,1500). At time step 1500 (top panel 
only), the network structure is beginning to take form in shape space.

As mentioned earlier, shape space can be used to represent the immune 
repertoire. In addition, shape space has the further important property of 
being suitable to model binding affinity. Affinity, in turn, drives the rate of 
clonal expansion, and in the following work, the term shape space is used to 
encompass the characteristics of the immune repertoire.
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4.2 Shape Space Integration

The question of how the repertoire is integrated into the local space models 
of previous chapters is now addressed. Fig. 4.3 is a logical view of how 
shape space and real space are integrated. Each site in the real space lattice 
(ko, ki,..., kn) has a pointer to a C language structure l . Pointers are used 
in order to implement fast movement about the lattice. To move occupants 
around, a pointer swap is all that is required.

On the right, the lattice of sites ssq, ssi ,  . . . ,  ssn is the array holding 
shape space information (such as clonotype density levels). Information 
flows bi-directionaUy from shape space in that local space entities are as­
signed their clonotype or epitope co-ordinate, and local space population 
changes are updated in shape space. Each lattice site maintains information 
on the particular model entity occupying kt at that point in time, such as:

1. Type: describes the current occupant of the lattice site kL with values 
drawn (for example, ctl~ or ape 1 ) from Table 3.1

2 . Age: age of the cell occupant, increases by 1  at each time-step

3. Proliferation Rate: the rate at which this cell proliferates, calculated 
according to the probability of binding (Eqn. (4.3)). Applies to ctl+ 

cells only.

4. Shape space coordinate: vector of length N  containing the CTL clono­
type or epitope position in shape space.

5. Activated by: the shape space coordinates of the apc+ which stimulated 
this ctl~ into proliferation.

In the particular example shown in Fig. 4.3, the antigen presenting cell 
has two cytotoxic lymphocyte cells as nearest neighbours. When ape and 
ctl~ are adjacent in real space, shape space affinity rules determine whether 
binding between the two will occur. Shape space is used to model the affinity

1These models are compiled and executed using gcc and under Solaris 9. A  port to 

Fortran is not yet available
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between CTL clonotype and viral epitope (and is discussed in Section 4.2.1), 
whereas the life-cycle of the real space effector T cells is the same as that 
presented in Chapter 3.

Figure 4.3: On the left, the array of lattice sites kg, k\,.. ■, kn represents the 
real space data structures in memory. Each ki holds a pointer to a structure 
describing the site occupant for the current time-step r.

Throughout this research, uppercase letters identify shape space com­
ponents (so the activated CTL clonotype in shape space is denoted C T L +) 
and lowercase denote real space components (an activated CTL cell in the 
real space compartment is therefore denoted ctl+ ). The superscript is an 
activation indicator, where +  implies activated, and — implies a precursor 
or naive cell.

4 .2 .1  C lonal A ffin ity  and S h ap e Space

The dynamics governing affinity between antigen and lymphocyte are devel­
oped directly from the shape space formalism (the original paper is reviewed 
in some detail in Chapter 2). In shape space, each antigen epitope and CTL 
clonotype is represented as a point within the two dimensional (N  =  2) 
discrete space, of size 50 x 50. Surrounding each CTL clonotype is a disc of 
radius p (although models such as Smith et al. (1998), have placed the anti­
gen epitope at the locus of the disc of influence, without loss of generality).
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Any antigen epitope-bearing APC located within the disc will be subject 
to clearance pressure with a force inversely proportional to the distance 
between the two. Shape space is used to model the density and distribution 
of the CTL clonotype repertoire, and to provide analytical underpinning 
into the critical nature of the measure of crossreactivity, which is denoted 
by p. Crossreactivity is the probability that a CTL clonotype stimulated 
by one viral epitope, ej will also react with a structurally different epitope 
ej, or, conversely, the number of different clonotypes which respond to the 
same (randomly selected) epitope.

Thus the selection of a value for p affects the average number of C T L  

clonotypes stimulated by some randomly selected epitope drawn from a uni­
form distribution. Some research (for example, Mason (1998)), has sug­
gested this figure to be in the range of 50 — 111 clonotypes, whereas oth­
ers (Valitutti et al., 1995; Itoh et at, 1999) have suggested the range 80—200. 
However, these estimates are controversial, and Borghans and De Boer 
(1998) have estimated a much lower level of around 5.2. In this model, 
this issue is treated by considering the statistical expected value E (X ) .  De­
noting the number of shape space clonotypes as 0 ct/, the length of the shape 
space as i g, it is expected that the average number of clonotypes stimulated 
by a randomly selected epitope is:

E ( X )  =  Qcti'rvp'2 / L 2s (4.1)

With p =  10, Qcti =  100 and L s =  50, E ( X )  =  12.5, which is above 
the conservative estimate, but well below the rather high estimate suggested 
by Mason (1998). Clearly, from Eqn. (4.1), the average number of clonotypes 
responding to a randomly selected antigen in shape space is dependent on 
the crossreactivity p, and this dependence is further explored in Section 4.3.

For simplicity, assume that the features which govern the CTL clonotype 
and epitope-bearing APC binding can be represented by N  parameters, tak­
ing integer values only. If the N  parameters are combined into a parameter 
vector, each CTL clonotype and antigen epitope can be considered as points 
within an iV-dirnensional Euclidean space of length L s. Cells of the same
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clonotype have identical shape space vectors, and reside at the same location 
in shape space.

Shape space is a dynamic and evolving iV-dimensional Euclidean space 
that contains one vector u for every immune system CTL clonotype, and 
one vector v  for every pathogen epitope. Around each v  in shape space is 
a disc of influence of radius p. Any u falling inside this disc of influence is 
subject to some pressure. That is to say, the pathogen will be removed from 
the real space system with some probability P( X ) ,  inversely proportional 
to the distance between v and u in shape space. If the distance d between 
the two points exceeds the critical value p, then there is no CTL pressure 
on the pathogen, and no affinity or binding takes place.

A simplified shape space is shown in Fig. 4.4; in this figure, three C TL  

clonotypes have been activated by the epitopes ei, £2, £3- The crossreactive 
cutoff (p) is the radius of the disc surrounding each C TL, and any epitope 
falling within this disc will have some clearance pressure applied against 
it. Shape space uses periodic boundary conditions, such that any activated 
C T L  clonotype of less than p units from the space boundary will have a disc 
that simply ‘wraps-around’.

The distance calculated between the C T L  and antigen epitope is shown 
in Eqn. (4.2) and the probability of binding is given in Eqn. (4.3).

d =  11 v  — ull =
2 — 1

P { X)  = 1
d,
0

d =  0
0 < d < p  (4.3)
d >  p

It is axiomatic that shape space is always completely covered. With n 

CTL  clonotypes and N  =  2:

m rr2 L 2S (4.4)

It should be emphasised at this point that Eqn. (4.2) and Eqn. (4.3)
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Figure 4.4: A simplified shape space in two-dimensions, with three activated 
C T L  elonotypes, denoted by C T L \, C T L 2  and CTLz, with the stimulant 
viral epitopes denoted by (.[.6 2 ,€3 respectively.

will be evaluated if and only if there is some contact between an antigen 
presenting cell and a cytotoxic cell within the real space model. Contact 
means that, the two cells are no more than radius r  =  1 from each other 
within the Moore neighbourhood (Fig. 4.5 (a)).

If Eqn. (4.3) does result in the activation of the CTL clonotype P ( X )  is 
used as the stimulation rate (S') for the exponential growth during the Clonal 
expansion phase. Therefore, the total number of activated clones which an 
activated CTL clonotype may give rise to at time r  is:

C T L t =  e0 036rS (4.5)

where the power of e depends on three parameters, r, the duration of the 
expansion phase, S’, the stimulation rate (dependent on the distance between
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(a)

ctl

Figure 4.5: (a) A typical square lattice, with ctlr at the centre and a Moore 
neighbourhood of radius r =  1 shaded in grey In (b), the possible locations 
into which any cell &,■ may move at each time step are shaded.

the antigen epitope and CTL clonotype in shape space), and a constant 
factor 0.036. At the end of the clonal expansion phase, when r =  192 
(representing some four days of actual time), and 5  =  1 , some 1000 clones 
have been produced. This is what would be expected in a healthy immune 
system (Janeway et al., 1999). At the start of each simulation, shape space is 
characterised by two (non-zero) subpopulations, denoted C TL~  and A P C +
- representing the number of precursor cytotoxic lymphocyte and active 
infected antigen presenting cell clones respectively.

As time progresses, a further subpopulation emerges: C T L + , represent­
ing activated cytotoxic lymphocyte clones. The C T L + subpopulation is 
recruited from the available pool of C TL~. The process by which naïve 
cytotoxic lymphocytes are stimulated to become activated cytotoxic lym­
phocytes occurs (C TL~  - v C T L +) is described later in this section. In a 
healthy individual, the typical clearance rate of infected antigen present­
ing cells from the lymphatic system is of the order of 3-5 days, (a range 
commonly used in immunology texts, such as Janeway et al. (1999),p390).

At the end of primary response, the subpopulation of infected antigen 
presenting cells will tend to be eliminated (A P C + —> 0). As the thymus 
ensures a supply of mature cytotoxic lymphocyte precursor cells into the
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lymphatic system, our model follows this by ensuring that a non-zero naïve 
cytotoxic lymphocyte subpopulation exists at all times (C TL~ >  0). Fi­
nally, to support secondary immune response there is always some non­
zero subpopulation of activated cytotoxic lymphocytes (C T L + > 0). These 
shape space subpopulation invariants are summarised in Table 4.1.

Table 4.1: Shape space subpopulation invariants.
Time Invariant

0 C T L ~  >  0 C TL+  =  0 A P C + > 0
0 < r < 475 0 <  C TL+ <  C TL~ C TL~  -»• C T L + A P C + > 0
475 C T L ~  > 0 C T L +  >  0 APC+  -» 0

4 .2 .2  H yb rid  P ro c essin g

The state of the lattice over time is simply a sequence of random vari­
ables defined on a finite space X. The sequence is a Markov
chain (Liu, 2001) as the value of x't+l) is dependent on its history only 
through its recent past . An update algorithm U  is conditionally applied 
to each selected location in the lattice, depending on the occupant type - at 
each time step r (U  is defined in Appendix A).

Each location is sampled for update following a uniform distribution. 
For this reason, the update sampling step is called a Monte Carlo time step. 
At each Monte Carlo time step, U  is repeatedly applied to the lattice such 
that the coverage degree $  (the fraction of non-duplicate locations selected 
for update at each Monte Carlo time step) is in the range 0.99 < $  < 1. 
This reduces the effect of the pseudo-random number generator as a source 
of errors from the simulation. Each simulation is terminated when r =  475, 
or after 10 days of simulation time has elapsed. This ensures that the full 
duration of the primary immune response is captured.

On the lattice, each immune cell k{ has two neighbourhoods: a Moore 

and an extended Moore (Fig. 4.5 (a) and (b), respectively), also denoted 
Ri and Ra, respectively. Neighbourhood sizes are /?.j| =  8 and R0 =  16.
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W ith  reference to  Fig. 4.5 (a), any antigen presenting cell w ith in  the M oore 

neighbourhood is considered to  b e in contact w ith  th e  ctl~ . In Fig. 4.5 (b), 

th e  possib le locations into w hich any cell ki m ay m ove at each tim e step  are 

shaded; \Ri\ is shaded light grey, and the dark grey denotes |i?0 |.

A s part of th e  u pdate algorithm  U, each ki recirculates w ith in  th e  real 

space, im plem ented as follows. F irst, Ri is exam ined in order to  locate an  

unoccupied position  into which the im m une cell m ay move. If an em pty cell 

is located  w ith in  Ri, ki w ill m ove into it w ith  probability  P (in n er ) =  0.9. 

If no space is available w ith in  Ri, R0 is searched for a free space. If a free 

space is located  in R 0, ki w ill m ove into it w ith  probability  P(outer) =  0.7.

If b oth  Ri and R0 are occupied, then  no m ovem ent of ki w ill occur in  

th is tim e-step . If a free location  is found in  R,t or R0, th e  new  coordinates 

of ki are calculated and th e  cell is moved. T h e  values chosen for P(inner) 
and P(outer) are subjective and reflect the concept of cell m otion into prox­
imate and nearby space, respectively. In the results presented here, b oth  

param eters are kept constant. R educing P(inner)  w ould have th e  effect 

o f restricting m obility  and would therefore reduce the rate at which the  

real space la ttice  is sam pled  by the recirculating lym phocytes. T his in  turn  

w ould slow  th e  clearance rate of infected antigen presenting cells.

T he u pdate algorithm  U is sum m arised as A lgorithm  1 in A ppendix A. 

T h e com bination of real and shape space as introduced above, results in a 

hybrid or coupled m odel. T h e activ ities w ith in  real, shape or hybrid space 

are defined as follows:

1. Physical Space

(a) Each ctl~ and a/pc1 recirculate inside th e  real space following  

the m otion  rules o f U. T h e ctl~  are actively  sensing the local 

environm ent for sign of in fected  apc+ .

(b) O nce a ctl~  and apc+ have com e into contact, th e  sim ulation  

transfers to  shape space, in th e  sense th at th e  following sequence  

of steps is initiated:

2. Shape Space
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(a) T h e shape space d istance betw een the two entities is calculated

(b) If recognition occurs, clonal expansion rate  is calculated (S ). If 

not, th e  ctl~  returns to  its recirculation process ( la ) .

(c) T he process of im m unodom inance em erges as CTL~ C T L + 
recruitm ent starts. A t th is point, the follow ing steps arise in both  

real and shape space:

3. Hybrid Space

(a) T h e  population  concentration increases for each C T L  clone stim ­

ulated, g iving rise, after r  tim e steps to  a concentration level 

C T L f  =  e0 036r‘?

(b) Infected antigen presenting cells are rem oved from  th e real space 

system  by recirculating activated effector C TL cells.

(c) At r  >  475, effector cells undergo program m ed death  (apoptosis) 

and th e  prim ary im m une response com es to  an end.

4.3 Single-Strain Challenge

W ith in  th e  real space, Lp is th e  length  of one side of th e  square lattice, D cU 
is th e  density of th e  C TL cells and D apc is th e  num ber o f A P C  introduced  

into the la ttice  at th e  start of each sim ulation. T h e num ber of clonotypes 

in shape space is denoted  Qcti, w hile the number of epitope-bearing A PC  

in  shape space is denoted  0 apc, w hich is th e  number of infection  strains. In 

th is sim ple experim ent, 0 opc =  1. At each of th e  sim ulations, all param eters 

other than  p are kept constant. In shape space, th e  largest value of p is 

know n as pmax , the value of w hich is show n in Eqn. (4.6).

P m ax  is a m easure of th e  maximum  crossreactivity o f a given clone in shape  

space. S ettin g  p =  pmax w ould b e  equivalent to  having every CTL cross- 

react w ith  every A P C . A lthough this configuration is not explored further,

60



it is w orth noting th at it could represent a clinical condition  known as 

auto-im m une disease, w here th e  im m une system  attacks b oth  itse lf and in­

vading pathogens w ithout discretion. T his disorder is, however, relatively  

rare (Orosz, 2001).

O f in itia l interest is th e  behaviour of th e  m odel as p —► pmax, which is 

expressed as the ratio of p to  pmax as p, and w hich takes values in  the range 

A  =  {0 .7 1 ,0 .5 ,0 .2 5 ,0 .1 4 } . A  represents one possib le set of values for p in  

order o f decreasing crossreactivity. A ny values could have been chosen for p 

that satisfy  0 <  p <  1. From Eqn. (4.6), the value for pmax in our m odel is 

f« 28. T he m odel param eter in itia l values are sum m arised in Table 4.2.

T able 4.2: M odel param eters

Param eter D efin ition Value

D cti CTL precursor density, real space 50000

Pape A P C  density, real space 5000

®ctl C TL clonotype density, shape space 100

©ape A P C  density, shape space 1
L/j. L ength o f side of real space 1000

L s L ength of side of shape space 50
T N um ber of tim e steps per sim ulation 475
Pmax M ax. shape space crossreactivity »  28
A R ange of values for p { 0 .7 1 ,0 .5 ,0 .2 5 ,0 .1 4 }

4.4 Sim ulation R esults

In the results presented in Fig. 4.6 (a) and (b), elem ents A i .a are represented  

by *, o, o, •  respectively. Fig. 4.6 (a) shows th e  density levels for th e  10 most 

active shape space clonotypes w hen r  =  475, arranged in rank order.

T h e values o f A  have generated tw o d istinct c lonotype activation pat­

terns, which m ay b e  characterised as (i) sharp peak, narrow spread (o, •)  

and (ii) low peak, broad spread (*, o). As crossreactivity decreases, more 

C TL cells are generated in  order th at im m une function rem ains effective.
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R educing crossreactivity from 0.5 to  0.25 causes an alm ost 10-fold in­

crease in the CTL produced, as well as a narrowing of c lonotype response 

distribution  from around 10 active clonotypes to  around 4. T his agrees w ith  

th e  expectation  th at fewer clonotype recognition events are occurring, but 

those that do arise are closer to  exact m atches. This can be thought of in  

term s of the disc of influence in shape space having sm aller area such that 

those epitopes which do appear w ith in  th is disc are consequently closer to  

the locus and therefore closer to  an exact m atch, and in turn, cause higher 

stim ulation  because of th is increased proximity.

In Fig. 4.6 (b ), th e  corresponding clearance of infected  A P C  from the  

lym phatic m icroscopic m odel is shown. Following from th e  assum ption that 

shape space is always covered (Eqn. (4 .4)), pathogen clearance from the  

lym phatic space is always achieved. T he consequence of reducing crossre­

activ ity  from 0.5 to  0.25 is an increase in the tim e taken to  clear A PC  by 

around 100 tim e steps (or 2 days of elapsed tim e). T his is obvious in that 

if the probability of recognition  is reduced and the rate of cell recirculation  

rem ains constant, m atches w ill occur less frequently.

Increasing specificity  results in  the im m une system  expending more re­

sources in term s of effector C TL in  order to  achieve the sam e end result, that 

of pathogen removal at th e  end of the prim ary response phase. T he m ost 

successful clearance is obtained w ith  highly crossreactive CTL (*), where 

th e  A P C  half-life is around 10 tim e steps, or 5 hours of elapsed tim e.

T his is som ew hat in excess of known clinical rem oval rates in healthy  

individuals (Corbin and H arty, 2004). It is also clear that the two m ost 

successful clearance ranges (*, o )  are characterised by a broad activation  

and low density levels in shape space. T his is in  keeping w ith  van den Berg  

et al. (2001), w ho presented a m athem atical m odel w hich dem onstrated  

th at a successful im m une repertoire can be based on degenerate (ie, having  

w ide-spread activation  in shape space) low-affinity CTL receptors.

T h e results also dem onstrate a further interesting property, that of im- 
munodominance\ th is is th e  process whereby a sm all num ber of specific 

clonotypes are responsible for clearing the infected cell challenge. In Fig. 4.6 

(a), th e  around 90% of the response is m ounted by th e  only 1 subset of clono-
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(a) (b)

Figure 4.6: T h e values of param eter set A  have resulted in tw o clonotype ac­
tivation  patterns characterised by high concentration, narrow distribution  
(o, • )  and low concentration, broad d istribution  (* ,o ). In (a), concentra­
tion  levels of th e  ten  m ost active clonotypes are show n (y-axis), and in (b) 
clearance rates of infected  A P C  (y-axis) are show n over 500 tim e-steps.

types ( o , « ) .  W hereas high crossreactive response is characterised by lower 

im m unodom inance levels. A n  im m une response which com m its a single- 

clonotype only m ay have a reduced chance of dealing w ith  an epitope mu­

ta tion  (such as th at seen in H IV ), com pared to  a response w hich is charac­

terised  by m ultiple c lonotype activation.

4.5 Chapter Sum m ary

T h e starting  point for th e  work presented in  th is chapter is to  assum e that 

th e  im m une repertoire has not been exposed  to  any prior pathogen, that 

it is uninitialised. Therefore, im m unological m em ory or reinfection was not 

m odelled. T he objective has been  to  dem onstrate th e  benefit of a m odel 

w hich com bines tw o usually  separate form alism s, that of im m une system  

shape space and local (or real) space m icroscopic sim ulation.

In itia l results from th e m od el suggest th at a low-affinity CTL clonotype  

shape space provides th e  m ost efficient A P C  removal. T he findings are in 

agreem ent w ith  work presented by other authors, n otab ly  van den Berg  

et al. (2001). T w o d istinct c lonotype activation patterns were noted in the
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results, observing (i) high peak, narrow distribution  and (ii) low peak, broad 

distribution. For all other m odel param eters being unchanged, it was show n  

that reducing crossreactivity causes significantly different evolution of the  

shape space and correspondingly poorer A P C  removal.

C rossreactivity is one of th e  m ost crucial regulating param eters w ith in  

th e  im m une system . It has also been seen how im m unodom inance natu­

rally em erges in  shape space; th e  concentration  and d istribution  of im m un­

odom inance w ith in  th e  CTL clonotype space is o f particular interest, as a 

correlation betw een disease clearance rates and p can b e  found.

In th is chapter, th e  earlier m odels have been  extended  in order to  in­

corporate shape space. T h e  principle of downward causation was observed  

in that changes to  the crossreactivity of shape space clonotypes resulted in  

alteration  of th e  dynam ics of th e  m icroscopic m odel. T h is is one of the key 

requirem ents for dem onstrating th e  principle of em ergent behaviour. T h e  

hybrid m odel presented here has another crucial characteristic namely, that 

of providing a m eans to  study self-organisation.

In constructing a hybrid m odel, th e  capability to  stu d y  emergent patterns 
in shape space becom es available, so that v isualisation  of shape space is 

th en  feasible. T his is o f m ajor interest because the hallm ark o f m any self- 

organising system s their tendency to  exhibit v isib le structures or patterns. 

T h e topic of m odel v isualisation  is th e  subject of th e  next chapter.
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CHAPTER 5

Pattern Formation in Shape Space

5.1 Introduction

In th e  previous chapter, an im m une system  m odel was developed which had  

the capacity to  represent im m une repertoire and its developm ent. Such de­

velopm ent includes transition  from  th e uninitialised  (or uninfected) state  to  

th e  activated (or stim ulated) state . As m entioned, the shape space formal­

ism  is ideal for m odelling th e  im m une repertoire, not least because, w hile  

shape space was originally proposed as a m eans to  m odel binding between  

clonotype and ep itope, it can also b e  refined to  include clonotype state, such  

as precursor, activated , effector, m em ory and dead. T hus, know ing the sta te  

of clonotypes in  shape space (and not ju st their presence or absence from a 

specific co-ordinate in  th e  space) provides a fuller p icture of th e  health  of 

th e  im m une repertoire, and by extension , o f the im m une system  overall.

O ne lim itation o f th e  m odel developed thus far is that although a system - 

w ide (or global) perspective was developed, no m ethod  was identified to  

stu d y  th e  emergent behaviour w hich m ay b e  present in  the m odel. Emer­

gent behaviour is th e  process whereby global features or structures em erge
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naturally  from a local system  in w hich such features are not m erely ag­

gregates of m icroscopic interactions. However, em ergent behaviour can be  

a difficult property to  unam biguously identify, and therefore em ergent be­

haviour is often characterised by th e  process o f system ic self-organisation 
where the higher-level com ponents of th e  m odel take on non-random  spatial 

structures.

A  w idely cited  exam ple of a C A  m odel possessing self-organisation is 

C onw ay’s “G am e of Life” (Gardner, 1970; Berlekam p et al., 1982). A  screen  

shot of th is CA m odel is show n in F ig  5.1.

Figure 5.1: Screen shot of “T h e  G am e of Life” . In the centre, two patterns  
of self-organisation.

Self-organisation becom es apparent through visual representation o f sys­

tem  com ponents and patterns of change w hich occur over tim e. M any cel­

lular au tom ata (C A ) m odels im plem enting even sim ple rules w ill be capa­

ble of astonishingly varied pattern  form ation w hen view ed in an extended  

spatio-tem poral context. For exam ple, W olfram  (2001) has done much work 

in  classifying and analysing som e of the m ore interesting determ inistic CA, 

w here such classification typ ically  specifies self-organising patterns, typically  

know n as attractors. Very recently, som e extended C A  m odels of biological 

system s have been dem onstrably successful in  m odelling tw o-dim ensional 

visu al characteristics of capillary developm ent (Merks et al., 2004), as well 

as in  investigating th e  efficacy of current and potentia l therapies of non- 

H odgkin’s lym phom a (R ibba et al., 2004). In  b oth  cases, th e  m odels dis­

played interesting em ergent self-organising features.

In th is chapter, th e  th em e of pattern  form ation in shape space is devel­
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oped as follows (i) a sim ple two dim ensional v isualisation  of shape space is 

presented, and (ii) patterns and clusters w hich em erge in the shape space 

of activated  CTL clonotypes, in response to  single strain infections, under 

varying crossreactive regim es, are analysed.

Visualisation is a burgeoning field o f scientific com puting which seeks to  

provide m ulti-dim ensional graphical representation  of underlying m odels or 

data. Such representations can typ ically  be subject to  m anipulation such  

as rotation , transform ation, anim ation and so on. C om plex data  sets are 

transform ed into v isually  m eaningful 2-D or 3-D realisations in order to im­

prove understanding of the underlying data, and to  aid in its interpretation. 

R ecent v isualisation  applications have developed enhanced virtual reality 

environm ents w ith in  which com plex and often  dangerous real world proce­

dures can b e  practised, including th ose as extrem e as facial surgery (Everett 

et a l, 2003). H agen et al. (2003) identified a further category of visualisa­

tion  know n as Intelligent Visualisation; here, a m ulti agent m odel sim plifies 

the m onitoring and tuning of m any o f the param eters norm ally controlled  

by th e  user, such as fram e-rate, rendering, library selection, load-balancing  

and distribution.

A n excellent review  of techniques in  v isualisation  program m ing (using  

O pen GL) can be found in M cR eynolds and B ly th e (1999), w hich includes 

a section on the representation of scalar field data. A scalar field is a single­

com ponent elem ent w hich can take on  values only in a pre-defined range 

(or scale), and th e  data  sam pled from  shape space is a form of scalar field 

com ponent. In fact, th e  shape space scale is restricted to  th e  set 0 ,1 ,2 ,3 ,  

denoting no cell, precursor CTL, activated CTL or infected APC, respec­

tively. Typically, the scalar field data  being visualised  is not continuous (as 

th e  original scalar field is), but is com posed of a set of discrete sam pled  

values. T h e sam ple spacing m ay be regular, form ing a grid, or th e  sam ple  

spacing m ight b e irregular, w ith  varied spacing betw een sam ples values.

Several previous m odels have presented visualisations of shape space, 

w ith  th e  work of D e Boer (D e Boer et al., 1992) notable in this respect. T he  

m odel produced som e interesting one- and two- dim ensional spatial patterns 

in response to  an analytical O D E m odel of B cell stim ulation, and as such the
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m odel was an exam ple of vector field v isualisation . As opposed to  a scalar 

field, v isualisation  of a vector field (in w hich each point is an n-dim ensional 

vector) often  arises in applications such as com putational fluid dynam ics, 

and typ ica lly  represent the flow of a gas or liquid.

T he results in D e Boer et al. (1992) were notew orthy in that th ey  dem on­

strated  shape space state (such as uninitialised , infected and suppressed) as 

w ell as cell concentration levels, by m eans o f grey-scale shading technique. 

Strictly  speaking, cell concentration levels in shape space was not originally  

included in th e  early research on shape space, possib ly  because such infor­

m ation can lead to  v isual clutter. A dditionally, th e  m odel did not exhibit 

any characteristics o f em ergent behaviour or self-organisation, and there­

fore the patterns were sim ply visual representations of an analytical and  

determ inistic solution. Zorzenon dos Santos and C outinho (2001) proposed  

a cellular autom aton  m odel of HIV in w hich four d istinct patterns of self­

organisation w ere visually  represented w ith in  a square lattice and m odelled  

over a tim e-scale of 5,18,25 and 200 weeks.

In th is chapter, a sim plified visualisation of a 2-dim ensional shape space  

is presented. T his is in order that an effective representation of CTL acti­

vation  patterns, especially  in respect to  d istribution  of stim ulation , m ay be  

studied. Section 5.2 d iscusses th e  m eth od  by w hich shape space is reported  

and rendered as a bounded  tw o-dim ensional figure, and as such serves as an  

in troduction  to  the steps involved in visualisation  of shape space. Section 5.3 

introduces and discusses th e  patterns w hich em erge w hen th e  m odel is ex­

posed  to  a single-strain  viral infection, under various crossreactive param e­

ter regim es. Section 5.4 d iscusses th e  relevance of the results and suggests 

som e p oten tia l b iological im plications, and concludes w ith  com m ents on the  

next steps for m odel developm ent. U se of previously established notation  

(introduced in C hapter 4) is continued in th is chapter.

5.2 R eporting and R endering Shape Space

In keeping w ith  the design of m ost software system s, the m odel presented  

in th is d issertation  supports various levels of logging (or reporting). A l­
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though there exist predefined logging services (such as the Java Logging  

Service j a v a . u t i l . l o g g i n g ) ,  the reporting carried out by m ost applica­

tions is h igh ly  idiosyncratic and ad-hoc in nature, ranging from the verbose  

to  th e  cryptic, the terse to  th e  self-explanatory. In order to  report useful 

inform ation on the internal data  structures of th e  m odel during run-tim e, 

the following five points need to  be addressed.

1. R eport Frequency - how often is th e  data  collected from the sim ula­

tion?

2. R eport Form at and D ata  Specification  - w hat is th e  best structure for 

the data  on the disk?

3. D ata  Pre-processing - w hat conversion does th e  raw data require before 

analysis can begin?

4. D ata  A nalysis - w hat tools are required to  analyse th e  data?

5. D ata  R epresentation  - w hat v isual m ethods are best to  explain the  

d ata  collected?

In m ost of the figures presented as output from the m odels in this thesis, 

each of th ese  five points is likely to  be addressed differently, depending on the  

d ata being reported and the analysis required. For exam ple, w hen reporting  

on m ean density levels of CTL cells (see, e.g ., Chapter 3, Fig. 3.3), the  

pre-processing step  (3.) consists of a C-program  reading each of the input 

files from each sim ulation and calculating th e  m ean density levels for each 

tim e-step . In contrast, the pre-processing stage for reporting activated CTL  

clonotypes in  shape space is perform ed by a script executing w ith in  the  

R  Statistica l Software environm ent w hich converts raw files to  internal R  

m atrix structures. A lthough th is m odel is flexible enough to  execute ad- 
infinitum, th e  sim ulation  is always im plem ented as an event terminating 
simulation (see, e.g., Law and K elton (2000), pp 502-503), in  th a t there is 

always som e signal or event w hich as a consequence w ill end th e  sim ulation.
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T he visualisation  of shape space is a sequential, non-iterative activ ity  in  that 

the m odel reports th e  space configuration twice: on in itia l start-up of the  

sim ulation, and just after the clonal expansion phase has finished (r  =  192). 

T his is a logical point at w hich to  sam ple th e  space, because at any tim e  

after this, apoptosis w ould begin  and effector cells start to  die. Therefore, 

the second sam ple of shape space captures the clonotype d istribution  at the  

peak of the expansion phase. T h e process for v isualising shape space is 

sum m arised in th e  following s ix  steps:

1. S im ulation Starts

2. A t t  =  0 th e  in itia l (uninitialised) space is sam pled to  report the  

CTL~  d istribution . T h e data  is w ritten  to  file s s _ i n i t _ c t l . d a t ,  in  

th e  format: l i n e  1 < x -co o rd >  and l i n e  2 < y -co o rd >

3. A t t  =  0 th e  in itia l (uninitialised) space is sam pled to  report the  

A P C + d istribution . T h e d ata  is w ritten  to  file s s _ i n i t _ a p c .d a t ,  

using th e  file format show n above.

4. A t t  =  192:

•  iterate over real space la ttice  and w rite each location  shape space  

co-ordinate to  one of tw o files based  on th e  cell typ e (either C T L  1 

or A P C + ), called s s _ f i n a l _ c t l . d a t  and s s _ f in a l_ a p c .d a t ,  

respectively, T he file form at is show n above.

5. S im ulation Stops

6. T h e R  sta tistica l too l is started  and th e  following script is executed  

for each raw file:

(a) each x ,y -coord in each of the d ata  files is m apped to  a row-col 

index for an L s x  L s size m atrix  M . At th e  intersection of th e  

row-col index, a num ber is p laced indicating th e  cell occupant

5.2.1 Output D ata Analysis
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typ e (C T L ~ ,C T L + ,A P C + ), w hich is determ ined by th e  file be­

ing read at the tim e. A n exam ple of a typ ica l output file which  

logs shape space co-ordinate inform ation for each real space lym ­

p h ocyte  in show n in Fig. 5.2.

(b) the m atrix  M  is then  used as a param eter to  the R  function  

p o i n t s ( ) ,  w ith  X l lO  enabled, and th e  im age is w ritten  as an  

E ncapsulated  P ostscript (.eps) file.

A  sam ple of th e  raw data  file structure is show n in Fig. 5.2. T he first line  

is the x-coord inate part, and the second line th e  y-coordinate part. A real 

file w ould contain m any m ore colum ns than  th e  20 show n here (but always 

two lines, for each dim ension of shape space). T here are two (06 : 05) pairs 

(at p ositions 2 and 14), indicating that two real space ctl~  are of the sam e 

shape space clonotype.

T h e above process of v isualising shape space requires an exhaustive  

search of the real space lattice  in  order to  record th e  x , y-coorclinates of 

each la ttice  occupant. A t th e  end of clonal expansion, there m ay b e  104 

cells w hich share th e  sam e clonotype, but th e  procedure described above 

requires all duplicate c lonotype data b e w ritten . This lim itation  does not 

im pact on perform ance tim e very much, as shape space is only sam pled tw ice  

during th e  sim ulation , at the beginning, and at th e  end of clonal expansion  

(w ith  r  =  192).

16 06  17 15 06  25  36 4 6  47  06  00  37  31  06  11 32  3 4  12 3 4  42  
19 05  30  24  14  30 41 11 4 3  27  10 02  0 3  05  01 10 16  04  0 5  12

Figure 5.2: A truncated  sam ple of a raw file containing shape space co­
ordinates o f th e  C T L ~  clonotypes.

5.3 P attern  Formation

In the results presented here, th e  dynam ics of response w hen th e  im m une 

system  is challenged by single strain pathogens is analysed. Therefore, th e
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shape space A P C + d istribution  is confined to  one single point in  space (and  

is show n by th e  asterisk, *). A t tim e r  =  0, apc+ =  5000, representing  

infected antigen presenting cells entering th e  lym phatic com partm ent, and 

in turn, triggering prim ary response. T h e param eters of th e  sim ulation  

are: D cti =  50000, D apc =  5000, @cti =  1000 (w ithout replacem ent) and  

Qapc =  1. T h e value for Qca is selected  in order that shape space fully  

covered, especially  for sm all values o f p.
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:* : : 
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Figure 5.3: T w o d im ensional shape space show ing the in itia l distribution of  
CTL~  and A P C + cells (circle and asterisk, respectively) at tim e r  =  0.

Fig. 5.3 shows a typ ica l in itia l shape space at tim e r  =  0 (for sim plifica­

tion , CTL~  is denoted  by a sm aller point com pared to  b o th  the A P C  1 and  

C T L  1). At th is tim e, one antigen presenting cell is show n, and no recruit­

m ent from CTL~~ —̂  C T L + has occurred. Biologically, th is sta te  represents 

the point at w hich an antigen has been  taken up by an antigen presenting  

cell (such as a dendritic cell), but has not yet b een  detected  by the recir­

culating cytotoxic lym p h ocytes in the lym phatic com partm ent. T he shape  

space at th is  tim e has not b een  exposed  to  any previous infection.

T w o prim ary conditions determ ine how th e  in itia l shape space distri­
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bution w ill evolve: (i) apc+ and ctl~ m ust com e into contact in real space 

(mobility) and, (ii) th e  distance betw een clonotype and ep itope in  shape  

space m ust b e  w ith in  th e  crossreactive threshold p. T h e  conditions control­

ling (i) are not altered during sim ulation executions here. W ith  respect to  

(ii), a lthough p m ay b e  assigned any value in th e  continuous range 0 <  p <  1, 

it is here restricted to  six  representative values, based on the requirem ent of 

testin g  extrem e values ( ¿ l i , ^ )  and a selection  of interm ediate values:

{0 .9 2 8 ,0 .6 ,0 .3 9 ,0 .2 5 ,0 .1 6 4 ,0 .1 0 7 }  (5.1)

T he effect of declin ing crossreactivity in shape space is analysed from  

four perspectives:

1. Clearance rate o f the apc+ subpopulation.

2. D en sity  levels of C T L + and ctl^ .

3. A ctivation  d istribution  pattern  as th e  C T L + subpopulation  is re­

cruited from th e  CTL~  pool.

4. Efficiency o f response: the m easure by w hich th e  apc+ challenge is 

responded to  in proportion to  th e  threat posed, so th at im m une re­

sources are not spent unnecessarily.

Each sim ulation  (A i) is repeated 30 tim es, and th e  results are averaged. 

Shape space is confined to  2.5 x  103 positions w hile real space is m odelled  

as a tw o-dim ensional array w ith  1 x  106 positions. T h ese sm all sizes repre­

sent exploratory analysis w ith  m odest com putational resources and should  

clearly b e  extended. A  m ore num ericahy realistic size w ould require a real 

space capable of m odelling  som e 109 lym phocytes. R epresenting a high- 

order system  in term s of a low-order one can result in  finite size effects, 

w ith  particular im pact w hen th e  m odel exhibits first- or second- order phase  

transitions (Landau and B inder, 2000). Phase-transitions in im m une system  

m odels w ould b e points at w hich (for exam ple, in H IV ), im m une collapse  

occurs due to  destruction  of helper cells, and th e  host is in  danger of death  

by opportunistic infection.
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In the results w hich follow, the consequences of finite size effects are 

not im m ediately relevant. W ith  biological practice, m ost in vitro experi­

m ents act on num erically reduced cell populations, and th e  results are taken  

m erely as indications of possib le in vivo outcom e, and are therefore h ighly  

qualitative.

(b)

.■.f
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(c) (d)

Figure 5.4: Four sh ap e space activation  patterns at tim e r  =  300, showing  
the effect of declin ing p w ith  values drawn from A l , . . ,4-

Fig. 5.4 shows th e  activated clonotype d istribution  pattern  in shape space 

for each value drawn from A , at th e  end o f th e  sim ulation  (r  =  300), w ith
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(a) to  (e) representing A \ to  A i, respectively  1. For clarity, Fig. 5.5 shows 

th e  activated  clonotype d istribution pattern  in  shape space for the values in 

A, (a) and (b) representing A-, and A&, respectively.

(a) (b)

Figure 5.5: T w o shape space activation patterns at tim e r  =  300, showing  
th e  effect o f declining p w ith  values drawn from

As crossreactivity declines, average d istance of C T L + from th e initial 

point of stim ulation  (A P C + ) declines consisten tly  and th is is certainly in  

keeping w ith  expectations. It is im portant to  observe th at the number of 

C T L + in (a) and (b) is alm ost identical (rs 100). At first th is m ay seem  

paradoxical. A fter all, it is assum ed that a h ighly crossreactive clonotype  

repertoire w ould b ecom e activated  by every in fected  antigen presenting cell 

it com es into contact w ith . T his should  result in  greater clonotype activa­

tion  and, conversely, a reduction  in  crossreactivity of som e 35% m ust surely  

reduce the concentration o f activated im m une lym phocytes. T he explana­

tion  becom es clear w hen  th e  coverage constraint of Eqn. (2.1) is considered. 

In the range A] ,2 th e  h ighly m obile nature o f th e  recirculating real space 

cells ensures that sufficient A P C + and C T L + com e into  contact, w hich in  

turn com pensates for th e  declining crossreactivity. T his is intuitive in that

1 A s in  re a l space, p e rio d ic  b o u n d a ry  co n d itio n s  a re  en fo rced  in  sh a p e  space, th e  re su lts  
o f w h ich  a p p e a r  in  th e  fo rm  of w ra p -a ro u n d  of C T L + in  F ig . 5.4 (a ), (b ) a n d  (c)
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if the sam pling rate o f the im m une lym phocytes of their environm ent is high  

enough then, theoretically, a p o f ju st greater than 0 w ould b e sufficient to  

su sta in  norm al clearance rates. However, realistically, such a sam pling rate 

w ould be beyond th e  capability of th e  im m une lym phocytes.

In the results show n in (a) to  (d), the reduction of p is not accom panied  

by a com m ensurate reduction in activation levels. T his supports th e  asser­

tion  th at recirculation rates are high enough to  ensure significant levels of 

lym p h ocyte activation, and as such, there is non-linear relationship  between  

p and activation concentration. As can b e seen, narrowing crossreactivity  

causes a sharp clustering of activated lym phocytes in  th e  neighbourhood  

of th e  A P C +. W hen th e  activation  pattern  for Ac, is exam ined (Fig. 5.5 

(a )), it is clear th a t th e  concentration  of C T L + has dropped significantly  

- to  «  12 (a decline of 88%). At th is point, th e  recirculation rate is not 

sufficiently high to com pensate for declining crossreactivity, and as a result, 

a com m ensurate decline in activation levels follows.

(a) (b)

F igure 5.6: C oncentration of CTL clonotypes cells across th e  100 m ost active 
shape space clonotypes. For clarity, (a) shows ^ 1 ,2 ,3  and (b) shows *4 4 ,5 ,0  • 
A it...fi are denoted • ,  o, o ,* , *, x , respectively. O nly m ean values are shown, 
from 30 sim ulation  runs.

Fig. 5.6 shows the real space concentration levels for th e  100 m ost active 

clonotypes in sh ap e space. For clarity, th e  figure is show n in  two parts, (a) 

and (b), w hich represent th e  results for the param eters ^ 1 ,2 ,3  and ^.4 ,5 ,6 , 

respectively. T his figure provides insight into how the activation  patterns 

observed in  shape space are related in term s of concentration levels in real
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space. There are two m ain C'TL+ concentration signatures: (i) low fre­

quency and broad d is tr ib u tio n  (A l,2,3), and (ii) h igh frequency narrow con­

centration (*44,5,6)- Low crossreactivity has resulted in  a consistently lower 

overall C T L+ activation spread at the end o f clonal expansion, and con­

versely, higher crossreactivity has resulted in a narrower activation spread 

o f C T L+ far larger concentration of effector cells being produced in  real 

space.

A n  immune response cannot a prio ri know the numerical strength of 

each pathogenic challenge (where strength is measured by the number of 

infected antigen presenting cells entering the lym pha tic  com partm ent at a 

given tim e). Th is leads to  a risk and tradeoff in  terms of number o f lym ­

phocyte cells produced and tim e  spent in  clonal expansion in  th a t enough 

effector cells must be activated at the end of the process to effect clearance of 

infected antigen presenting cells, bu t a h igh ly agonist (ie, s tim u la to ry) chal­

lenge could result in  over-production o f effectors. Segel and Bar-O r (1999) 

and Segel (2000) have suggested th a t th is balance is achieved by a form  

of feedback, where lym phocyte cells w ill look for ‘scalps’ (ie, dead antigen 

presenting cells) in  order to  continue to  spend tim e  in  clonal expansion. In  

the absence of such s tim u la to ry  signals, it  is suggested, the  clonal expan­

sion phase w il l  end and effector cells w ill s ta rt to  die. Th is theory goes 

some way to  explaining how the immune system knows when to  end the cell 

reproduction phase.

However, a d ifferent v iew point has been proposed by C orb in  and H arty 

(2004) in  a clin ical context. M urine  experim entation has demonstrated tha t 

even when the in it ia l s tim u la tion  (in  the form  of antigen presenting cells) are 

removed from  the lym pha tic  system once p rim ary  response has begun (by 

manual in tervention), over tim e, the concentration of lymphocytes produced 
remains broadly comparable to the case where the stimulation is not manu­
ally removed. Th is approach is the one adopted here. In  th is  model, i f  the 

s tim u la tion  were to  be removed, the lymphocytes com m itted to  the clonal 

expansion phase would continue to  d iv ide and activate. T h is  approach has 

also been adopted in  a number o f com putational immune response mod­

els (Chao et a l, 2003, 2004).
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A t the end o f clonal expansion, there should be a popu la tion  o f acti­

vated effector T  cells in proportion to  the in it ia l th rea t (which in  these 

sim ulations is 5000 apc+). I t  is evident from  Fig. 5.4 th a t a lthough A\$  
resulted in  the broadest 2 shape space C T L+ activation d is tribu tion , real 

space concentration levels are s ign ificantly  more p roportiona l to  the infected 

antigen challenge than the other parameter values o f A ■ F ig  5.7 (a) shows 

the concentration of infected antigen presenting cell to  activated effector 

lym phocyte, in  order to  convey the  increasing ineffectiveness o f higher levels 

o f effector lym phocyte production . As the crossreactivity declines, the to ta l 

number o f cells generated increases by some 50% when comparing A i to  Ac,.
Fig. 5.7 (b) shows the clearance rate o f infected apc+ from  the lym phatic  

com partment during  p rim ary  response. As crossreactivity declines, the rate 

at which apc+ is cleared varies considerably. For bo th  sets of parameter 

values A \ and A%, a fu ll clearance o f apc+ is achieved at the  end of p r i­

m ary response - w ith  A \  clearing more quickly. The figure shows th a t as 

crossreactivity declines, sensitivity to  antigen presenting cell increases, and 

the response is characterised by a larger pe rtu rba tion  from  the equilibrium  

po in t (of no activated effector cells).

A  fu rthe r feature emerges when comparing the clearance rates o f A i 
and A<2- In  shape space, (Fig. 5.4 (a) and (b)), the activation levels are 

almost identical, significantly, the  m ain difference is the pa tte rn  of clustering 

(a broad spread as opposed to  a more focused one) which has emerged 

around the central s tim u la tion  po in t of the in it ia l AP C + infection. This 

implies th a t there is a qua lita tive  difference between d is tr ib u tio n  patterns. A  

broad d is tribu tion  w ith  high mean distance from  the centre results in  greater 

efficiency in  AP C + clearance than  does one w ith  smaller mean distance from  

the centre.

Furthermore, a lthough high crossreactivity results in  large C T L+ pro­

duction  (Fig. 5.6 (a)), clearance rates s t il l degrade from  *4.4,5,6 leading to  an 

im m une response which, although marked by h igh lym phocyte production, 

is, in  effect, wasting the lym phocyte clones produced, as almost no APC+ 
are cleared (Fig. 5.6 (a) - square, triang le  and circle, respectively). These

2M easu red  as th e  m e a n  d is ta n c e  o f  C T L + fro m  th e  A P C +.
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wasted resources represent a double th rea t, in  th a t (i) valuable response 

tim e  is wasted in  clonal expansion for a largely ineffective activated lym ­

phocyte pool, and (ii) the excessive ctl+ represents wasted resources in  cell 

generation.

(a) (b)

F igure 5.7: Concentration o f C T L  effector to  APC  for each of A ,...,6 (a), 
and (b), the clearance rate o f infected antigen presenting cells from  the 
lym pha tic  model after 300 tim e  steps, where A i =  o, A 2 =  A , A 3 =  + ,
A 4 =  x , A$ =  o, A s = *.

The appearance o f immunodominance is evident at the  end o f p rim ary  

response. A t th is  tim e ( r  =  300), w ith  the clonal expansion phase complete, 

the concentration and d is tr ib u tio n  of ctl+ and C T L+ (Fig. 5.6 (a) and (b)) 

represent preferentia lly  stim ulated armed effectors. In  As and .4.6, around 

90% of the  immune response is concentrated against three C T L+ clonotypes.

A  response o f th is  nature is deficient in  several ways. In  the case of 

a m uta ting  pathogen (in  effect, the migration o f the clonotype from  one 

shape space “position” to  another w ith in  a tim e period of a few days of 

simulated t im e ), a high concentration response targeted against one epitope 

or a few epitopes could po ten tia lly  fa il to  respond in  sufficient tim e in  order 

to  elim inate the m utated challenge. W here the pathogen is also proliferating , 

the  tim e period during  which the pathogen remains undetected is crucial in  

affecting the course o f the  infection. A  high concentration response risks
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wasting immune resources since a large fraction  may be unnecessary. This 

is the case in  delayed-type hypersensitiv ity reactions which can take 24-72 

hours to  appear (see, e.g., Janeway et al. (1999), pp 66).

W ith  parameter set A\ and A 2, the  response pa tte rn  is different (but 

in  agreement w ith  expected response patterns, Fig. 5.4). The response to 

single pathogen stra in  results in  over 100 d is tinc t C T L  clonotypes being 

activated. I t  was found th a t spreading the response across a broad range 

of C T L  clonotypes (seen in  Ay and A 2) ensures tha t real space sampling 

rate is not a decisive factor in  ensuring an effective response. In  related 

work, K irschner et al. (2000) have shown how a model of H IV  in  which 

altered recircu la tion dynamics o f lym phocyte C D +4  T  cells (causing them 

to  home to  the lym pha tic  compartments from  the b lood system) was able 

to  expla in the success o f H IV .

5.4 Chapter Sum m ary

In  th is  chapter, a novel m ethod was developed to  study the emergence and 

dynamics of C T L  clonotype d ivers ity  in  an immune system sim ulation simu­

la tion. In  pa rticu la r, the model constructed has demonstrated the follow ing 

properties: (i) shape space activation and its  dependence on crossreactivity 

(ii) clearance rates are dependent on activation d is tr ib u tio n  (distance from  

shape space locus o f the A P C + ) (iii)  h igh crossreactivity is more efficient in  

terms o f infected cell clearance rate and lym phocyte production  levels (iv) 

increased recircu la tion  rates can compensate to  some extent for declining 

crossreactivity. Th is model raises the fo llow ing two experim entally testable 

hypotheses.

1. Im m unisation  is like ly  to  be more effective when a spread o f memory 

effector cells are activated. Th is may require several stages of stim ­

u la tion  o f the immune response w ith  genetically varied strains o f the 

same v ira l pathogen. Oxenius et al. (2001) have noted th a t m uta tion  

has been identified in  antigen epitopes which improve clonotype recog­

n itio n  w ith o u t a lte ring  specificity. Such m utant antigens are able to

80



target a specific clonotype and deliver an enhanced activation signal, 

which in  tu rn  can lead to  up to  a 40-fold increase in  effector function 

(for example, cytokine production). Such m utant antigens w ill be of 

use for boosting immune responses to  specific antigens. The authors 

have also shown th a t such clonotypes respond to  lower concentrations 

o f the m utant antigen.

2. A n  increase in  crossreactivity can contribu te  to  effective immune re­

sponse. Brehm et al. (2002) have shown th a t it  is possible to  stim ulate 

such crossreactivity in vitro, and th a t the resu lting clonotype activa­

tio n  pa tte rn  is beneficial in  contro lling  heterologous viruses.

The model presented here leads to  the fo llow ing conclusions. Preferred 

types of activation patterns in  shape space give more efficient and effective 

real space clearance rates than  do others. As the mean distance between 

C T L+ and A P C + declines (broadly regardless of the mean activation con­
centration), the clearance o f infected antigen presenting cells from  the real 

space model becomes progressively less efficient. In  agreement w ith  the c lin ­

ica l findings of bo th  Mason (1998) and van den Berg et al. (2001), the shape 

space of the model exhib its high crossreactivity which results in  an immun- 

odominance configuration which enhances antigen clearance from  the real 

space.

Furtherm ore, the results here suggest th a t the “ lock-and-key” formalism 

o f theoretical im m unology would require p roh ib itive ly  vast reperto ire sizes, 

and tha t effective pathogen removal is more like ly to  be carried out by a 

degenerate d is tr ib u tio n  o f activated clonotypes.

A  process has been presented by which shape space may be visualised, 

and patterns observed for clonotype activation which would not be apparent 

from  a pure ly  real space sim ulation. V isualisation is a crucial step in  classi­

fy ing  emergent behaviour and self-organisation inherent in  complex systems. 

The strategy in  th is  chapter has been to  challenge the immune response w ith  

a single-strain infection, and as such, i t  is lim ited  in  scope.

A  more realistic s tudy would involve exposing the model to  m ultip le  

single-strain and m u ltip le  heterogeneous strains over an extended tim e pe­



riod  in  order to  examine the dynamics o f crossreactive memory cells and

non-memory cells, and hence to  develop a theory of how self-organisation 

can be modelled in  the context o f the immune system. This is the subject 

of the next chapter.
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CHAPTER 6

Em ergent Networks in Immune System  Shape Space

In  the previous chapter, a process for visualis ing shape space was presented 

as pa rt o f a hybrid  real-space, shape-space model o f a s im plified immune 

system at end o f the p rim a ry  response phase. A lthough only a subset of 

im m une entities was implemented, the model was shown to  be sufficiently 

powerfu l to  demonstrate emergent activation patterns o f C T L  clonotypes 

when subject to  a single stra in  pathogen challenge.

The benefits o f th is  approach were twofold: (i) v isualisation of the C TL  

activa tion  patterns in  shape space demonstrated how C T L  clonotypes clus­

tered around the stim ulant APC , fo llow ing varying degrees of cluster di­

ameter, dependent on the crossreactive ra tio  p. Im portan tly , these clusters 

emerged na tu ra lly  from  the hyb rid  model, and were not pre-programmed in  

any sense, and (ii) the crossreactive ra tio  also induced varying degrees of 

infected cell clearance efficiency, w ith  h igh crossreactive, low a ffin ity  C T L  

reperto ire being the most successful (a find ing  supported by van den Berg 

et al. (2001)).

Taken together, these two points lead to  an im portan t conclusion. Ac­

tiva tio n  clusters in  shape space can be used to analyse and predict the rate
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at which infected antigen presenting cells are removed from the real space 
compartment. In  tu rn , th is conclusion implies th a t the diameter of such 

clusters has a bearing on infection du ra tion  and classification. These can be 

classified as healthy (in fection cleared w ith in  6-8 days), chronic (infection 

lingers beyond 10 days), or acute (fa ilure to  significantly reduce infection 

levels).

However, the work developed in  Chapter 5 lacked a realistic tem pora l 

context. O n ly  once-off infection events were studied and only at the end of 

clonal expansion. Clearly, no real im m une system is th is naive (Welsh and 

Selin, 2002). Furthermore, the model presented in  the previous chapter did 

not reflect the  dynamics of C T L  cluster creation and development. Th is 

is p a rticu la rly  relevant as the clusters studied in  the previous chapter were 

a ll visualised once-off, and therefore, i t  is reasonable to  ask i f  these clusters 

were dynam ical structures (which undergo diameter growth, contraction) or 

were more sta tic  structures (and subject to  lit t le  fu rthe r development after 

in it ia l appearance).

To address th is im portan t question requires the model to  execute for a 

longer period of tim e (beyond clonal expansion), to  be stim ulated by more 

than  one infection (in  order to  study the im pact on cluster properties), 

and crucially, to  be visualised more regularly over the sim ulation life-tim e 

in  order to  analyse cluster change. Clearly, some underlying dynam ical 

process must exist in  order fo r c lustering to  arise in  the firs t instance, and 

it  is the aim  o f th is chapter to  iden tify  a theoretical framework to  support 

the emergence and development o f activated C T L  clusters in  shape space.

Here, the  model is extended to  enable the study o f emergent principles 

of immune system C T L  repertoire, incorpora ting  the stochastic cellular au­

tom ata model firs t presented in  Chapter 3. A n  extension to  the hybrid  

model presented in  Chapter 4 is developed such tha t each activated C T L  

clonotype and v ira l epitope are represented as nodes in  shape space, and 

edges between nodes models the a ffin ity  or clearance pressure applied to 

the antigen presenting cell bearing the target epitope. W hen the model is 

repeatedly exposed to  infection by heterologous viruses, a d is tinc t topology 

o f the network space emerges.
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This topology can be used to  fu rth e r understanding of immune system 

function  in  th a t nodes representing m em ory cells, fo rm  a crucial backbone 

of in fection regulation, and d isrup tion  to  these nodes results in  an im pa ir­

ment o f response akin to  an immune system which never learns and never 

remembers. In  tu rn , d isrup tion  to  the memory cell nodes results in  infected 

cell clearance reminiscent o f chronic infection.

6.1 C om plex Network Approach

Understanding o f large scale systems o f many partic le  interactions can often 

be achieved by m odelling the re la tionship between the constituent parts 

in  the form  of a network. This approach has been successfully applied to  

such diverse areas as in form ation propagation (Rosvall and Sneppen, 2003), 

movie-actor collaboration and pro te in  folding, to  name b u t a few (see A lb e rt 

and Barabasi (2002) for a comprehensive review).

Recent w ork has characterised the dynamics o f the w orld  wide web as 

a directed graph (Tadic, 2001), w h ile  A lb e rt et al. (2000) have have shown 

th a t the  w orld  w ide web is rem arkably robust when subjected to  random 

node e lim ination  (robustness is the  degree o f network function  under node 

e lim ination). In  bo th  cases cited, global properties o f the system (such as 

robustness) were analysed by studying the topology o f web pages and web 

links.

In  evolving networks, non-random organising principles lead to  the  study 

of emergent topology which may provide insight in to  network-wide charac­

teristics. O n the other hand, scale-free networks are characterised by the 

p rinc ipa l o f preferential attachment. The p ro b a b ility  o f a new node i  being 

connected to  another node I, increases w ith  connectedness o f i:

A dd itiona lly , a network can apply a parameter (such as cost, capacity, 
pressure, usage and so on) and (sometimes) d irection to  each of the edges 

o f the graph.

(6.1)
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In  the  work conducted by Barabasi and co-workers, the scale-free net­

works identified a ll had the p roperty  o f the mean degree ({&}) in  the range 

2 <  (k) <  3. Th is range for (k) tu rns out to  be the same in a ll scale-free 

networks, For example, in  Jeong et al. (2000), (k) =  2.2, where again, (k) is 

the average number o f node edges.

The apparent wide-spread existence of scale-free networks in  biological 

systems may help to  expla in why such systems are usually extremely robust. 

The e lim ination  of random  nodes and edges (due to, for example, m utation), 

has li t t le  im pact on the network topology - indeed, the average diameter of 

the network would rem ain unchanged. M u ta tio n  o f a pathogen would have 

the effect of shifting the  epitope co-ordinates in  shape space. Th is shift 

would subsequently have an im pact on network topology in  th a t some edges 

would be broken, and others re-wired. A  discussion of m uta tion  is presented 

Chapter 7. W hen nodes of high degree are elim inated, the connectedness of 

the network is reduced. I f  enough connected nodes are elim inated, network 

function  collapses.

A lb e rt et al. (2000) have compared the robustness o f two types o f ran­

dom networks to  node elim ination: Erdos-Renyi (ER) and scale-free. The 

E R  network is homogeneous, w ith  every node having on average, the same 

number o f edges, w ith  p robab ility  p. O n the other hand, scale-free networks 

are characterised by the princ ip le  of preferentia l attachment (Eqn. (6.1)).

Fig. 6.1 shows two simple random  networks w ith  (k) =  2. In  (a), an 

Erdos-Renyi netw ork is shown in  which each node has, on average, the same 

degree, and in  (b) a scale-free network is shown, w ith  a small number of 

h igh ly connected nodes.

Fig. 6.2 shows a histogram  o f the degree frequencies for each o f the two 

topologies (from  Fig. 6.1). The E R  graph (a) has a w ider degree and fla tte r 

d is tribu tion  whereas the scale-free network has one peak occurring at deg(l).
As biological systems are characterised by evolution and adaptation, 

networks to  model specific aspects o f such systems must be capable of sup­

po rting  edge and node add ition  and deletion, along w ith  edge rewiring (the 

process in  which an edge between nodes xy is removed and added between 

nodes xk ), and such networks are then termed evolving or dynamic, since
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(a) (b)

Figure 6.1: Tw o network topologies. The random  E R  graph (a) and the 
scale-free graph (b), w ith  average degree (k) =  2, and 20 nodes (labeled 
vl ,v2,  ...,v20).

these w il l  change as the modelled system changes.

6.2 Network A pplicability

Networks offer a way to  categorise systems o f very different origins using 

a single well defined ana lytica l fram ework o f s ta tis tica l mechanics (A lbe rt 

and Barabasi, 2002). I f  a system can be represented as a network, then 

ana lytica l network metrics, such as degree distribution, cluster coefficient, 
along w ith  geometric cen tra lity  measures, for example, centre, median and 

centroid (W uchty and Stadler, 2003), can be used to  study the properties of 

system evolution, ra the r than  synthesising a set of metrics de-novo.
Due to  the broad app licab ility  o f complex networks, and because the 

topology and grow th o f such networks is closely allied to  underlying func­
tion (A lb e rt et al., 2000), the characteristics o f the hyb rid  model outlined 

in  the previous chapters w ill be represented in  th is  chapter in  network form, 

as nodes and edges, and w ith  node/edge add ition  and deletion (tha t is, net­
work growth). The goal o f th is strategy is to  iden tify  any emergent network 

topology which may arise, and thereby to  gain insight in to  specific aspects
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(a) (b)

Figure 6.2: H istogram  showing the two network degree frequency. The 
random  E R  graph (a) and the scale-free graph (b), w ith  average degree 
(k) =  2, and 20 nodes. The .x-axis represents the degree o f each node, and 
the y-axis represents the re lative frequency.

of im m une function , such as reperto ire development, and the capacity for 

recall (where the im m une system remembers an infection from  a previous 

encounter). I f  an emergent network can be identified, th is  means tha t the 

topology of ind iv idua l immune system networks may then be compared. In  

tu rn , th is  may provide a means to  explain w hy s im ila r 1 in it ia l infections 

result in  such different disease outcomes across the popula tion.

Various network models o f the immune system have already been con­

sidered in  Chapter 2. To b rie fly  reiterate the findings from  th is  section, i t  

was noted th a t much early research in  network models was constrained by 

the fo llow ing two assumptions.

1. The approach to  network topology derivation was determ inistic and a 
priori predefined

2. Im m une m em ory was m aintained by id io typ ic  networks of comple­

m entary an tibody secretion, which in  tu rn  implies th a t memory is a 

function  of constant B cell to  B cell s tim ulation. Recent work has con­

1In  te rm s  of dose  a n d  ro u te
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trad icted th is  assumption (M ura li-K rishna  et al., 1999; Swain et al, 
1999; C ro tty  et al., 2003), and th is is one possible reason why such 

models d id  not d irec tly  support c lin ica l phenomena. Hagmann (1999) 

has pointed out th a t such constant s tim u la tion  could have a counter­

productive effect, eventually causing the memory T  cells to  go in to  

overdrive, and fina lly, to undergo apoptosis.

In  th is work, a different approach is adopted. Instead o f enforcing a specific 

network topology, a theory for specifying exactly what constitutes a node 

and an edge in  re la tion  to  the immune system shape space is proposed. C ru­

cially, however, the node and edge creation and deletion dynamics emerge 
spontaneously from the microscopic model interactions.

A  theoretical fram ework to  support th is  approach is proposed and dis­

cussed in Section 6.2.1. W ith  respect to  Item  (2.) above, th is is driven by the 

assumption th a t C T L  cells do not d irectly  stim ulate other complementary 

C T L  cells to  pro liferate. In  reality, they do not: memory cells are long-lived 

cells which decay only slowly over tim e (L iu  et al., 2003). Th is assumption 

also eliminates the problem  of spatia l in s ta b ility  inherent in  earlier models, 

where spatia l in s ta b ility  was triggered by antibody A b l b ind ing  to  Ab2, and 

Ab2 is stim ulated in to  producing antibodies which in  tu rn  binds to  Ab3, and 

so on, causing a system-wide cascade.

6.2.1 A T heoretical N etw ork  M odel

The idea o f shape space is now developed using graph theory (see, e.g., D i- 

estel (1997)) to  model the re lationship between infected antigen presenting 

cell bearing an immunogenic target epitope (denoted A PC  1 ), and an effec­

to r activated C T L  clonotype (denoted C T L+). As discussed in  Chapter 4, 

uppercase letters iden tify  shape space components, so an activated C T L  

clonotype in  shape space is denoted C T L+ .
In  th is approach, shape space is a graph consisting o f a pa ir G =  (V, E) 

o f sets satisfying E  C [V]2 (where E  is the set o f edges and V  the set of 

vertices or nodes). The set o f nodes V  is made up o f bo th  C T L+ and APC  1 . 

Edges connect an A P C + to  the set o f C T L+ stim ulated by its presence to
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become activated. Each G is directed and weighted.

A t any tim e >  To, a new node may be added in  shape space w ith  

p robab ility  dependent on bo th  apc+ and ctl~  being neighbours in  real space 

and distance between A P C + and CTL~  in  shape space is less than or equal 

to  the  crossreactive cu t-o ff p. In  shape space, a new ly stim ulated C T L  

clonotype node is designated C T L + (ind ica ting  i t  has been recruited from  

the CTL~  pool).

D uring  p rim a ry  infection, when a new C T L+ node is added, an edge 

is added by jo in in g  the  C T L+ to  the A P C + node which stim ulated its 

activation. Thus the re la tionsh ip  represented by an edge between two nodes 

can be understood as: the  C T L + was recruited from  the  CTL~  pool by the 

presence of the A P C + , and, the C TL  1 acts against the stim ulant APC +:

C TL~ AI^ + C T L+ (6.2)

and

C T L+ att-^ ks AP C + (6.3)

respectively.

Fig. 6.3 depicts the steps of Eqn. (6.2) and Eqn. (6.3), over four tim e 

steps. From le ft to  r ig h t, top  to  bottom , the shape space begins in  an 

un in itia lised state, w ith  the seven nodes a ll C T L~ , and no edges in  network 

(an unconnected graph). In  the second frame, the APC  1 denoted by the 

black square, is in troduced in to  the immune system. Over the next two 

tim e steps, firs t one CTL~  becomes activated Eqn. (6.2), then two more. 

A t th is  po in t, clearance pressure is applied against the A P C + , according to 

Eqn. (6.3).

There are two types of C T L+ , denoted a and ¡3. A n  cc-node is one which 

although emerging in  response to  one ind iv idua l A P C + , actua lly affects 

clearance pressure against other A P C + appearing later. A  /3-node is one 

which acts only against the A P C + which stim ulated its  activation.

Fig. 6.4 shows the state of shape space having been subjected to  three 

unrelated infections. The a-node acts against three A P C + clonotypes (as 

the A P C 1 is the median node in  each subgraph, the no ta tion  m,; is used).
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Figure 6.3: Simplified recruitment over four time steps. Left to right, top 
to bottom.

In so doing, it connects the otherwise unconnected subgraphs of Q. R and
5.

The importance of the a-node is clear. Such nodes represent immune 
memory, not only targeting the stimulant infected cell but also other A P C 1 
nearby 2 in shape space (Fig. 6.4, the mi, and m3 nodes, respectively). 
Such «-nodes are unique in that the function they illustrate is a component 
of Eqn. (6.3) without having first been a component of Eqn. (6.2). The /? 
nodes are actually leaf nodes (a leaf node is a node of ifei/(l)), which are non- 
cross reactive. but persist (beyond the end of the infection which stimulated 
them from the precursor pool), and do not apply pressure against any A P C ' 
other than the one which first stimulated it.

In shape space, clearance pressure (the strength of the C T L V response 
against, the stimulant A P C 1) acts along a directed and weighted edge. A 
directed edge is one which is defined by the triple:

2FaIling within the crossreactive cut-off distance p.



E :=  {{e,x,y)\e G E\ x , y  G V ; e =  xy} (6.4)

Where e is an edge from  the set E,  and x and y are b o th  nodes from  the 

set V.  The weight applied to  each edge is a function  of the distance between 

the C T L + and A P G + in  shape space, and is therefore an ind ica tion  of 

the a ffin ity  between the C T L + and A P C +. Fig. 6.4 shows a sim plified 

network topology after three infections (by heterologous pathogens) have 

arisen, w ith  median nodes m i , m 2, m s .  B o th  a  and (3 nodes are active 

in  in fection regulation (a fact demonstrated by the edges connecting the 

median nodes to  each). However, though orig ina lly  activated by mi,  the 

node denoted a now affects clearance pressure against b o th  m 2 and m 3 . 

The a-node clearance pressure acts in  three directions (for i  =  1, ..,3): 

e *=  (ei,a,rrii),  w ith  example weights marked along each edge.

Figure 6.4: Three subgraphs w ith  median nodes (stim ulant APC +) at mi, 
connected by the a node. Leaf (¡3) nodes on ly apply clearance pressure 
against the ir stim ulant APC . Weighted edges indicate the force of the clear­
ance pressure applied to  the median nodes by the a node.
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Recent work (Selin et al., 1998; Brehm  et a l, 2002) has shown th a t effector 

C T L  memory cells are capable o f recognising diverse epitopes o f unrelated 

viruses, and the authors concluded th a t crossreactivity between heterologous 

viruses (derived from  a separate genetic source) may be a key factor in  in­

fluencing the hierarchy o f C T L  responses and the shape of the memory C T L  

pools. Therefore, i t  is proposed here th a t shape space can be used to  model 

bo th  homogeneous viruses w ith  conserved and m utated epitopes (Nowak 

and M ay, 2000), as well as heterologous viruses w ith  crossreactive epitopes.

A  network model o f shape space emerges na tu ra lly  from  the real space 

model as follows. Each immunogenic epitope rrifc and activated C T L  clono- 

type Cj are considered as nodes in  the space. As mentioned already, clearance 

pressure applied between two nodes Cj and mfc is represented as a directed 
edge between them. Each edge carries an im p lic it weight, representing the 

distance between the two nodes in  shape space and therefore, a measure of 

the  a ffin ity  between the nodes 3.

A fte r in it ia l infection, most Cj undergo apoptosis (a crucial regulator of 

im m une system homeostasis). However, recru itm ent to  the memory pool 

consumes around 5 — 10% of activated C T L  (M ura li-K rishna  et al., 1999; 

De Boer et a l, 2001; Badovinac et a l, 2004), therefore, these nodes remain 

active in  shape space, preserving the edge connected to  the stim u la to ry  

epitope mfc.

6.3 Im plem entation

Having discussed the theoretica l basis for the network model, in  th is section, 

the model im plem entation is developed. The m ain objective is to  study the 

topology of the network model, especially how i t  emerges and evolves over 

tim e. In  addition, o f pa rticu la r interest is the means by which network 

topology can represent the phenomena o f crossreactive memory, the process 

by w hich CTLs prim ed by exposure to  one antigen, can days or years later

3C onversely , a  m e a su re  o f th e  v ig o u r w h ich  Cj m o u n ts  a g a in s t, o r su p p re sses rrik.

6.2.2 Biological Refinement
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affect clearance pressure against a genetically unrelated antigen.

M odelling immune m emory leads to  a possible explanation for the w ide ly 

observed c lin ica l process th a t d ifferent immune responses may arise when 

the same stim ulus is applied to  two immune systems s ta rting  in  the same 

in it ia l state. Selin et al. (1998) has noted th a t crossreactive responses by 

C T L  against viruses as diverse as lym phocytic  choriom eningitis (LC M V ) 

and vaccinia, have conferred beneficial immune function. O ther authors 

(notab ly Brehm  et al. (2002); Mason (1998); Borghans and De Boer (1998)) 

have also found in  favour of crossreactive C T L  responses. Th is feature 

w il l  be o f special interest in  supporting  the phenomena o f network cluster 

coalescence (discussed below).

6.3.1 M odel Parameters

Crossreactivity: As discussed, the number o f different clonotypes which re­

spond to  the same (random ly selected) epitope is a ra tio  of a given clonal 

cu to ff parameter to  the m axim um  clonal cu to ff parameter (from  Eqn.( 4.6), 

known as pmax) or p/pmax =  P■ Th is  crucia l parameter is known as crossre­
activity. W ork by some authors (for example, Mason (1998)), has suggested 

th is  figure to  be as high as 50 — 111. In  the orig ina l work o f Perelson and 

Oster (1979), the fraction  of clonotypes which b ind  a random ly selected 

antigen was estimated conservatively at 10 —3, so tha t, for a shape space of 

size 2.5 x  103 (used here), the number o f different clonotypes which respond 

to  the same epitope would be ~  2.5.

In  previous w ork (Burns and Ruskin, 20046), i t  was found th a t in  a 

m odel of healthy p rim a ry  response, the number of clonotypes responding to 

a random ly selected epitope was on average 12.5 (w ith  p =  0.35), and th is 

value is also used in  the model presented here. Th is value is a m id-range 

figure between the low estimate o f Perelson and Oster (1979) and the high 

estimate of Mason (1998), b u t supported by the findings of B la ttm an  et al. 
(2002) who estimated a figure o f around 20 .

In  Chapter 5 it  was noted th a t extremely low values o f p (for exam­

ple 0.107 <  p <  0.164) resulted in  poor removal of antigen presenting cells
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(Fig. 5.7, (b)). Conversely, as p approaches unity, a random ly selected 

epitope w ill be recognised by every clonotype in  the repertoire. Th is is c lin ­

ica lly never the case. T  cell response to  s tim u la tion  by antigen is always 

characterised by expansion o f an antigen specific T  cell popu la tion  (Busch 

and Pamer, 1999), leading to  an immunodominant popu la tion  (Yewdell and 

Bennink, 1999). In  th is  chapter, i t  is intended to  study the median be­

haviour o f the immune system, and thus lim it the value o f p to  a value 

which approximates norm al immune function . This value is calibrated by 

the fo llow ing two observations:

1. A  typ ica l v ira l in fection always leads to  a subset of activated clono- 

types (Yewdell and Bennink, 1999). Th is rules out p =  1, and p <C 0.1. 

Therefore, p can be calibrated by exam ining the results from  Chap­

ters 4 and 5, where normal in fection clearance rates are observed. 

Generally, norm al clearance occurs in  the range 0.6 <  p <  0.3.

2. The number of clonotypes which respond to a single random  epitope 

in  th is  model supports the findings of c lin ica l researchers. The low end 

o f which is Borghans and De Boer (1998) (around 5.2), B la ttm an  et al. 
(2002) (around 20) and the higher estimates of V a litu tt i et al. (1995); 

Ito h  et al. (1999) (around 80 — 200). From the models developed in  

previous chapters, i t  was noted th a t a median value of 12.5 emerged 

w ith  p =  0.35. I t  can be concluded therefore, th a t a healthy response 

is one which typ ica lly  m aintains p =  0.35.

The popu la tion  o f rec ircu la ting  precursor CTLs (D cti ) is 50000, the num­

ber o f clonotypes in  shape space is Qcti =  100, resu lting in  500 precursor cells 

in  each group of clonotype. Selection o f these values is constrained by the 

space/tim e trade-off th a t on ly 10 6 spaces are available on the la ttice  at the 

s ta rt of each sim ulation. Conservatively, i f  each stim ulated C T L  produced 

1000 clones at the end of clonal expansion, and 500 exact matches arose, the 

la ttice  would be 50% fu ll, and re infection would increase th is  level even fu r­

ther. Another ca lib ra tion  po in t is th a t m urine experiments have shown the 

expanded T  cell reperto ire results in  some ~  105 cells being produced (K im
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et al., 2002). In  ligh t of th is, the selection o f parameter values in  th is  model 

is appropriate.

E x p e r im e n t  1

Objective: To analyse the c ritica l na ture o f crossreactive m emory in  re­

sponse to  epitopes from  heterologous antigens. In  particu la r, the emergent 

network in  shape space is studied in  an effort to  understand principles of 

self-organisation.

Method: A t tim e  r  =  0, 5000 antigen are placed at random  locations on 

the real space la ttice, to  simulate antigen-presenting ceUs entering the lym ­

phatic  com partm ent w ith  marker epitopes displayed on the cell surface. A t 

th is  stage, the immune system w ill be in  a p ris tine  state w ith o u t having 

been exposed to  any previous antigen. A  p rim a ry  response w ill ensue, and 

a low level fraction  o f cells w ill enter the  long-lived memory pool, and the 

remainder of the  effector cells w il l  undergo apoptosis.

A t tim e  r  =  1500, r  =  3000, r  =  4500, fu rthe r infections are introduced, 

th is  is equivalent to  a v ira l in fection reappearing every 31.25 days (by the 

calculation 1500/48). The choice o f period for re infection is somewhat ar­

b itra ry , and in  fact does not need to  be period ic at all. Further in fection is 

included in  th is model because many severe v ira l infections are characterised 

by chronic and persistent phases in  w hich the infected cells are either not 

fu lly  cleared, or undergo period ic resurgence (K im  and Welsh, 2004). Th is is 

an im po rtan t p a rt o f the v ira l pathology. O f interest here is the development 
of activated clonotype topology in  shape space, and to  th is  end, any rela­

tive ly  frequent s tim u la tion  which affects space transform ation would also be 

w o rth  considering.

A t each infection po in t, a ll antigen presenting-ceUs carry the same epi­

tope, b u t the epitope is different to  the one seen at the previous infection 

po in t 4. In  th is  way, four heterologous infections challenging the immune 

system are simulated, and th is  enables the study of the activation network, 

as well to  study the c ritica l nature o f crossreactive memory. The sim ulation

4I n  all, fo u r d is t in c t  e p ito p e s  e i , e 2 , e 3 , e 4 , w ill b e  p re se n te d  to  th e  re a l sp ace  m odel.
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executes for 6000 time-steps, sim ulating some 125 days o f real time. This 

scenario is referred to  as £\ in  the rest o f th is chapter.

A s s u m p t io n s

In  £i, a case o f non-pro life ra ting  antigen is assumed, and therefore the clear­

ance ra te  o f infected cells from  the real space is a function  o f recognition and 

s tim u la tion  only (ie, affinity). In  b o th  experiments, C T L  cells have a 8% 

chance o f entering the memory pool once the in fection has been cleared. I t  

is assumed th a t shape space is completely covered (Eqn. (2.1)). Eqn. (2.1) 

is a realistic assumption in  tha t an escape m u ta tion  does not im p ly  th a t no 

clearance pressure is ever brought to  bear on the m utated antigen.

On the contrary, in  th is  model, escape m uta tion  means th a t no active 

effector cells (either memory or p rim a ry  response) can apply clearance pres­

sure at the time of mutation. In  such a case, the immune response is syn­

thesised as a de novo p rim ary  response - characterised by re la tive ly slow 

precursor cell activa tion  and popu la tion  grow th rates, w ith  a consequent 

elongated antigen clearance profile, typ ica lly  extended over eight days or 

more. The on-going thymus generation of cyto toxic T  cell precursors was 

replicated by in jecting  in to  the la ttice  some 5 x  103 precursor C T L  cells 

(ctl~ ) at the  s ta rt of each in fection event.

6.3.2 Initial Results

The ou tpu t o f the  experiment (£ i)  is summarised in  Figs. 6.5 and 6 .6 . The 

network topology o f shape space is shown in  Fig. 6.5, at the end o f the 

four infections, in troduced at r  =  {0,1500,3000,4500}. O n ly  C T L  mem­

ory clonotypes are shown in  Fig. 6.5. A t the centre of each cluster is the 

immunogenic epitope, and each edge connected to  the cluster centre is a 

stim ula ted C TL.

To m on ito r the  state o f the C T L  memory pool, the la ttice  was sampled 

at t  =  {1500,3000,4500,6000}, and at each sample, the position o f C TL  

memory clonotypes and immunogenic epitopes was recorded. As such, C T L  

cells which had not undergone apoptosis, or become memory cells, are not
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shown. Clearly, most immune challenges do not present themselves at equal- 

dose and equally-spaced tim e intervals, so the choice of in fection tim e and 

sample tim e is somewhat contrived. However, as i t  serves to  illus tra te  the 

underly ing theory, th is  configuration w il l  be retained.

A fte r the firs t in fection has been cleared, the C T L  memory cells are ar­

ranged in  a cluster fo rm ation around the immunogenic epitope (Fig. 6.5(a)). 

As discussed in  Section 6.3.1, there is a spread of memory w ith in  a disc of 

radius p from  the epitope. As th is model is stochastic, the shape space 

activation spread is “ irregu la r” in  nature.

Real space clearance rates o f the infected cells, and C T L  density levels 

are shown in  Fig. 6.6 (a) and (b), respectively, w ith  plots superimposed to  

convey cell concentrations. In  (b) cell levels are denoted by the symbols 

• ,o ,o ,* ,  to  represent firs t, second, th ird  and fou rth  infections, respectively. 

The firs t in fection (•)  is cleared w ith  an infected cell half-life  of about 3.2 

days ( r  =  156), w ith  5% rem aining after 10.2 days, and th is is broadly in 

keeping w ith  clearance profiles expected du ring  p rim ary  response (Bousso 

et a l, 1999).

W hen the second infection has been cleared, the shape space network 

has developed fu rthe r (Fig. 6.5(b)), and two unconnected clusters emerge. 

Clearance rate associated w ith  the second infection (Fig. 6.6 (a), (o)) in­

dicates th a t no advantage was conferred on the immune response during 

e lim ination  of the second pathogen. A  norm al p rim ary  response was re­

quired - and the clearance ra te  was almost identical to  the firs t in fection 

(•) , w ith  a ha lf life of 132 <  r  <  144, and a 95% clearance obtained at 10.25 

days’

As can be seen from  Fig. 6.6 (a), bo th  firs t and second infections are 

s im ilar in  clearance profile  ind ica ting  th a t no previously prim ed memory 

cells partic ipa ted  in  cell removal, and th is  is borne out by the two-cluster 

configuration in  shape space in  Fig. 6.5 (b).

The random ly chosen epitope location in  shape space for the th ird  infec­

tion  places i t  w ith in  the disc of influence of the previous infection C TL , and 

some crossreaction between memory C T L  arises. Between the two clusters, 

some 8 C T L  have deg(2), and the two clusters are fused in to  one. The ad-
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(a) (b)

(c) (d)

F igure 6.5: The development o f a four-epitope network in  shape space rep­
resented over 6000 time-steps.

vantage conferred on the immune system when memory ceUs respond to  a 

challenge is clear: given th a t these are prim ed from  the po in t of a previous 

infection they produce armed effector cells w ith o u t spending tim e  in  clonal 

expansion. Having already been prim ed by a previous encounter w ith  the 

specific pathogen, these cells undergo expansion w ith  lower death rates than  

during  p rim ary  response. Accum ulation thus occurs more rap id ly  (Grayson 

et a l, 2002).

The firs t two infections (a) and (b) do not result in  any crossreaction 

between memory cells. A t the po in t o f the th ird  infection (c), there exists 

a pool o f memory C T L  clonotypes some o f w hich are close enough in  shape
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(a) (b)

Figure 6 .6 : Real space density levels o f antigen presenting cell (a) and C T L  
cell (b) respectively in  the model o f the lym pha tic  com partment over the 
course o f each infection. The y-axes show the real space concentration levels 
of the  respective cell types.

space to  effect clearance pressure against the heterologous virus. These are 

non-leaf nodes w ith  deg(2). D uring  the fina l in fection (d), the crossreactive 

con tribu tion  o f memory cells, specific to  one v irus, on suppression o f the last 

in fection results in  the topology of shape space network becoming connected.

From  6.6 (a), the  ha lf life  o f the th ird  infected cell popu la tion  (o) is ~  72, 

w hich is an efficiency improvement of around 50% compared to  the previous 

two. W hen the fina l in fection is analysed, an im po rtan t condition has arisen 

in  the shape space network: a ll small clusters have jo ined together and 

merged in to  one large cluster, due to  the c r itica l influence of crossreactive 

m emory clonotypes. O n ly  one clonotype is responsible for connecting the 

two clusters o f Fig. 6.5 (c) in to  one large cluster.

The benefit o f th is  single cluster network shape space is demonstrated 

by the clearance dynamics o f 6.6 (a): the fin a l in fection (*) is cleared so 

rap id ly  (ha lf-life  ~  36) th a t i t  would probab ly  be asymptomatic. Analysis 

o f the C T L  density levels in  real space (Fig. 6.6  (b )) explains how clearance o f 

infected cells is so rap id . Each consecutive challenge with the same level dose 
of infected cells, is met w ith  increasingly rap id  effector popu la tion  growth,
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and a gradually increasing im m unity.

As each in fection is in troduced and cleared, the average degree o f the 

network in  shape space increases. The conditions under which im m un ity  to  

one virus can reduce the effects of challenge by a second v irus are clear from  

Fig. 6.5. One or more nodes in  the firs t cluster must also have an edge to  

the second cluster. Thus, damage to  or suppression o f these critica l nodes 

w ill have a s ign ificantly greater im pact than damage to  leaf nodes.

Also from  Fig. 6.5, the c lin ica l phenomena by w hich two identical infec­

tions have a different disease outcome has a possible explanation reflected 

by shape space network topology. The density and d is tribu tion  o f a nodes 

w ill play a crucia l role in  determ ining i f  the ensuing immune response is 

p rim ary  or secondary.

In  Fig. 6.7, the  degree d is trib u tio n  o f the shape space network at tim e 

r  =  6000 (a), is compared w ith  th a t o f a random  network (b) in  which each 

the degree o f each node is drawn from  a un ifo rm  d is tr ib u tio n  in  the range 

[0,50]. Clearly, Fig. 6.7 (a) is not a random  d is tr ib u tio n  and is typ ica l o f 

the density d is tribu tions  observed over many tria ls . I t  has a clear mode at 1 

(from  Fig. 6.5 (d), the m a jo rity  of nodes of deg( 1)) and three m inor modes 

centred around 20, 35 and 49, which represents the cluster “centres” of the 

immunogenic epitopes.

This non-random  degree d is trib u tio n  clearly demonstrates some form  of 

consistent s tructu re  emerging from  a h igh ly  stochastic model o f the real 

space, where the  emergent network topology after four infections is ar­

ranged around immunogenic epitopes connected in  hub-and-spoke form ation 

to  memory C T L  cells, and in  tu rn , crossreactive memory C T L  clonotypes 

connect cluster form ations to  each other such th a t the overall network is 

connected at the end o f the simulation.

6.4 N etw ork R obustness

One measure o f any complex network is th a t o f robustness: the ab ility  of the 

network to  continue to  function  in  the  face o f node e lim ination. The policy 

under which nodes are selected for e lim ination  is crucia l (A lbe rt et a l, 2000).
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Figure 6.7: E dge degree d istribution  in sh ap e space network (a) and random  
network (b).

If the em ergent network presented in Section 6.3.2 was indeed a random  

network (where every new  edge attaches to  a given  node w ith  equal prob­

ability), then it is likely th at, on average, random  node elim ination would  

impair network function gradually and w ithout sudden loss or collapse.

Conversely, if th e  network was constructed  following the heuristic of 

preferential attachm ent (for exam ple), than  a com pletely different network  

capability under random  node elim ination  would be expected . A s m ost real- 

world environm ents are noisy, a  robust network should b e able to tolerate  

some random ised n od e elim ination , but not targeted node elim ination.

T hus, it is certain ly  to  be exp ected  that any valid m odel o f the im m une  

system  should  exh ib it the crucial real-world characteristics o f robustness 

and fault-tolerance, ju st as m any com m unications system s must be able 

to transm it data  w ith  a  high-level o f accuracy in bu sy  or noisy network  

environm ents (R osvall and Sneppen, 2003).

To test th a t the m odel derived in th is research displays such desirable  

characteristics, tw o further te sts  (£ 2 a  and £211) are developed as follows:



£2a The p robab ility  of any given node not activa ting  when it  is supposed 

to  is taken from  the set V  =  {0 .1 ,0 .3 ,0 .5 ,0 .7 ,0 .9 }, corresponding to  

each sim ulation run. The sim ulation is repeated 30 times and the 

results are averaged.

£'2b The p robab ility  of a nodes not activating when they are supposed to  

is again taken from  V, and the sim ulation is repeated 30 times and 

the results are averaged.

There is noth ing pa rticu la rly  significant about the values selected for V, 
as long as they test the  extremes of node loss, and a sample in  between. 

O ther values would be equally acceptable. I t  is not the  in tention  here to 

iden tify  the  c ritica l values for node loss versus immune function  as the p r i­

m ary po in t of interest is to  determ ine how emergent network topology is 

related to  immune function. Clearly, £%a tests randomised node d isruption 

whereas £2b tests targeted d isruption. A lb e rt et al. (2000) have shown tha t 

the loss of network function  can be described pure ly in  reference to  the net­

w ork topology and the  cluster coefficient C. However, o f interest here is the 

loss o f function, w hich is studied by measuring the clearance rate of infected 

antigen presenting cells from  the model o f lym pha tic  compartment.

6.4.1 Further Results

The antigen presenting cell density levels for £%a and £2b are presented in  

Figs. 6.8 (a) and (b), respectively. P lots are superimposed for each V  to  

show cell levels th rough  prim ary, secondary and repeat re-infection events. 

Parameters 1,..., 5 in  V  are denoted * , 0 , 0 , * , * ,  respectively.

Tw o qua lita tive  trends are noticeable in  Fig. 6.8 (a). A t the  firs t infection 

(peak 1 ) immune function  is not degraded u n til the p robab ility  of random 

node e lim ination  (paff) reaches pap =  0.9. Th is  makes sense when the quan­

t ita tiv e  values o f the s im ulation are considered. From Chapter 4, Table 4.2, 

the density of precursor C T L  (D cti) is 5000. O n ly  when around 90% of 

these effectors are suppressed does the p rim a ry  response fail. Naturally,

E x p erim en t 2
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once the p rim a ry  response has ended and the memory pool is in itia lised, 

randomised node loss over the next in fection events (peaks 2,3,4) does not 

have a noticeable effect on the pa tte rn  o f infected cell e lim ination.

A fte r each infection event the increasing memory pool is sufficient to 

supply rap id  effector cells in  order to  b ring  the infection under control. A  

qua lita tive ly  different dynam ic is noticeable when a-nodes are specifically 

targeted for d is rup tion  (Fig. 6.8 (b)). Clearly, e lim inating  a-nodes should 

not have any effect on p rim a ry  response, and th is is indeed supported by the 

results. The clearance regime of V  from  the p rim ary  response (firs t peak and 

ta il)  is almost the same for each element in  V. For second and subsequent 

infections (peaks two, three and four), the clearance ra te  of infected antigen 

presenting cells drops by 63% when the p robab ility  of a-node d isruption  

0.7 <  pa <  0.9 (second peak, *).

However, there is lit t le  qua lita tive  difference in  clearance profiles in  the 

parameter region 0.1 <  pa <  0.7 which tells us th a t network function contin­

ues w ith  up to  70% of crossreactive mem ory absent. Th is is not surprising 

given the fact th a t /3-cell function  remains unaffected in  £±b , and therefore 

infected cell clearance continues under loss of crossreactive memory. I t  is 

noticeable from  Fig. 6.8 (b) from  le ft to  righ t, th a t clearance effectiveness 

improves over time. Th is  is because the lym pha tic  com partm ent is fillin g  up 

w ith  effector memory cells which (due to  the ir longevity) continue to  target 

and remove infected cells over the 104 days of th is sim ulation.

Some form  of on-going purge would be required to  prevent the lym phatic  

com partm ent from  fillin g  up, bu t th is process is not modelled here as the 

precise mechanism has not been c lin ica lly  identified (K im  and Welsh, 2004). 

Interesting aside: some c lin ica l observations (again, K im  and Welsh (2004)) 

have suggested th a t m em ory clonotypes w ith  less crossreactive capability 

are progressively lost (or deleted) in  favour o f the strongly crossreactive. 

Th is  is logical, as over tim e, the lym phatic  com partment would begin to  f i l l  

up w ith  memory cells retained from  a ll the previous infections. W ith  space 

at a ‘p rem ium ’, i t  would be advantageous to  keep only the most crossreactive 

memory cells. Th is illustra tes one o f the advantages o f the model in  tha t 

the trade-off between increasing memory pool size and lim ited  lym phatic
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space can be studied in  re la tion  to  the effect o f memory recall to  repeat 

reinfection.

F igure 6 .8 : Clearance dynamics of infected antigen presentation cell over 
four in fection events. In  (a), the effect of random  loss of a or (5 -nodes 
is contrasted to  (b) where specifically, a-nodes are targeted for loss. The 
y-axes shows the  real space concentration levels o f infected APCs.

A  fu ller p ic tu re  o f the immune response to  randomised and targeted 

cell d isrup tion  emerges when considering the density levels of effector cells 

when challenged during prim ary, secondary and repeat infection. Fig. 6.9 

shows the density of effector cells for £2a and £20 ((a) and (b), respectively). 

Again, plots are superimposed for each V  to  show cell levels th rough prim ary, 

secondary and repeat re-infection events, and parameters 1,..., 5 in  V  are 

denoted * , 0 , 0 , * , * ,  respectively.

A  comparison o f the  density levels for activated effector cells demon­

strates the consequences o f randomised and targeted node loss. Whereas 

Fig. 6.9 (a) shows a re la tive ly  norm al p rim ary  and secondary response pro­

file  (qua lita tive ly  s im ila r to  those shown in  Chapter 3, Fig. 3.3), ind icating 

broad network function , Fig. 6.9 (b) shows tha t, w ith  the exception of m inor 

«-node loss (•), each in fection event broadly results in  the same density pro­

file  as seen in  p rim a ry  infection, dem onstrating th a t the  immune system is 

constantly m ounting a primary response to  an infection norm ally  controlled
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by memory response.

In  effect, the benefits o f having been immunised (by clearing the infection 

at some earlier tim e) are lost, and the immune system is constantly having 

to  re-acquire responses which should be already available to  it. Therefore, 

the study o f targeted and randomised cell d isrup tion  can be concluded by 

observing th a t moderate «-cell loss does not lead to  fa ilu re  in  infected cell 

clearance (Fig. 6.8 (b )), b u t ra ther, i t  leads to  an qualitative im pairm ent 

o f memory. The value conferred by p rio r exposure to  heterologous infec­

tio n  is elim inated, and each repeat exposure is marked by ab-initio p rim ary 

response dynamics.

(a) (b)

F igure 6.9: Concentration levels fo r activated effector cells du ring  prim ary, 
secondary and repeat re in fection events (y-axes). In  (a), density levels under 
randomised node e lim ination , and (b) shows density levels under targeted 
node e lim ination.

6.5 D iscussion

M ost discrete com putational models o f immune response to  v ira l infections 

have used real space or shape space formalisms. In  th is  work, however, 

a model based on a com bination of the two has been presented, w ith  the 

objective o f dem onstrating how emergent behaviour and principles of self
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organisation may arise from  a m any-partic le microscopic system. This is 

achieved by using a stochastic model o f the lym phatic  system as the stimulus 

to  shape space d iffe rentia tion  and d is tribu tion .

A n  extension to  shape space has been developed which goes beyond 

restric tive  early network models, to  demonstrate a mechanism by which early 

and protective im m un ity  can be mediated by memory T  cells generated by 

a previous heterologous v ira l infection. Th is im portan t feature emerges in  

the shape space network as a m emory T  cell node v o f deg(v) >  2. A n  edge 

between two nodes Cjrrik is added whenever one exerts clearance pressure 

against the  other. The pressure applied between two nodes c3 and mk is 

represented as a directed edge between them. Each edge carries an im p lic it 

weight, representing the distance between the two nodes in  shape space and 

therefore, provid ing a measure o f the  a ffin ity  between the nodes.

O f course, the degree o f protective im m un ity  offered by crossreacting 

memory cells is dependent on the  distance between the memory T  cell clono- 

type and the immunogenic epitope, w ith  op tim a l im m un ity  arising when 

re infection is by the same antigenic epitope. In  the results, increasingly ef­

fective clearance dynamics are seen as the memory pool increases, and each 

T  cell clone has a 8% chance o f becoming a long-lived mem ory cell.

A lthough  it  has not been modelled here, the immune system cannot 

continua lly  increase the size o f the memory pool. As mentioned in  the aside 
earlier, Brehm et al. (2002) has suggested th a t some (as yet undefined) 

process probably exists to purge non-crossreactive (or at the very least, the 

re la tive ly weaker crossreactive) mem ory cells in  order th a t the pool does 

no t grow beyond the real lim its  imposed by the restrictive spaces of the 

lym pha tic  system. However, th is  purg ing method, i f  i t  exists, is as yet 

unknown, bu t is like ly  to  consist of progressive and selective deletion of 

low crossreactive memory cells. The network im p lica tion  o f a-nodes is tha t 

each edge connection formed from  a median node to  an «-node acts as a 

back-bone in  jo in in g  disparate subgraphs.
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6.6 C h a p te r  C onclusions

Ind iv idua ls  vary considerably in  the ir responses to  v ira l infections, ranging 

from  subclin ical to severe. There are many factors th a t contribute to  th is 

varia tion  in  responsiveness, includ ing the dose and route o f infection, as well 

as the physiological state and genetic background o f the host (Selin et al., 
1998). In  th is study, i t  was demonstrated th a t memory T  cells in  immune 

system shape space (C T L+ ) which are specific to  unrelated viruses may also 

contribu te  to  the immune p rim a ry  response to  a second virus.

The presence of memory T  cells has the effect of re tard ing the spread 

of in fection, thus allow ing tim e  for fu rthe r specific immune responses to  

develop. I t  is expected that the effect of these cells may be the difference 
between clinical and subclinical infections or lethal and nonlethal infections, 

and i t  is proposed th a t such c lin ica l outcomes may be explained, at least in  

pa rt, by the varying topology o f the immune system shape space network of 

memory C T L  cells.

In  the results presented here, i t  has been proposed th a t a-nodes have 

strong bio logical equivalent, namely cytotoxic T  lym phocyte memory cells. 

Such cells, having been prim ed by way o f a previous immune challenge, 

require less tim e to  respond, and, crucially, tend to  be beneficia lly crossre­

active. Thus, these cells are the source o f the beneficial effects of protective 

m em ory T  cell im m unity. Th is find ing  is in  agreement w ith  Brehm  et al. 
(2002) and others.

D isrup tion  to  «-nodes results in  a significantly degraded pathogen clear­

ance than  d is rup tion  to  /3-nodes does. Th is  supports the theory th a t during 

p rim a ry  and secondary response, some cytotoxic clonotypes are more im­
portant than others.

Finally, a key objective of the investigation has been established. I t  has 

been demonstrated th a t a complex network in  immune system shape space 

has emerged naturally from  the lower level processes in  the model hierarchy 

(tha t is, from  the real space model o f the idealised lym pha tic  com partm ent). 

I t  was shown here th a t th is complex network demonstrates two qua lita tive ly  

d ifferent node classes, corresponding to  crossreactive memory effector and
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non-crossreactive memory effector T  cells (or a and (3 cells respectively). 

W hen th is  complex network topology was d isturbed (by randomised or ta r­

geted node e lim ination), immune function qua lita tive ly  altered in  response, 

thereby dem onstrating a causal lin k  between network topology and model 

function.
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CHAPTER 7

Summary, Conclusions and Future Research

7.1 Introduction

Segel (1995) has observed that the defining characteristic of a complex 
system is that it cannot be represented by one single model. This is un­
doubtedly true with respect to the immune system. All one can hope to do 
is to shed light on some specific aspects of the system and at the same time, 
justify key model parameters from the biological point of view, in order to 
operate within accepted theoretical immunology understanding.

All research builds on the work of others; to this end, the formalisms 
of Stochastic Cellular Automata, Shape Space and Complex-Emergent Net­
works have been important components in the models developed in this 
work. The benefits of a combination of these formalisms have been to bring 
together reductionism  and globalism into one model, in order to provide 
further insight into immunological phenomena, particularly with respect to 
how individuals vary in their responses to viral infections.
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7.2 S u m m ary  of F in d in g s

M ost software development is characterised by the m iddle-out approach. 

The designer has the oppo rtun ity  to  firs t tackle tractab le  m id-level com­

p lex ity  before embarking on high- and low- level design issues, the d iffi­

culties and subtleties o f which may only become apparent once m id-level 

model com plexity has m atured. Th is approach also has the benefit o f help­

ing to  guide model development by avoiding unw ieldy and overly-complex 

high-level designs and, conversely, avoiding swamping the approach in  ab­

struse technicalities. In  th is research, a form  of m iddle-out development was 

adopted.

In  Chapter 3, a h igh-fide lity  stochastic m icroscopic model o f a subset o f 

known im m unological dynamics was b u ilt. A  seven state non-determ inistic 

fin ite  autom ata (NFA) of the effector T  cell life-cycle, which was encoded 

as a set of states and state transitions. W hen abnormal transitions (such as 

fa ilure or delay in  moving from  activated effector to  memory effector) were 

studied, the model demonstrated a re lationship between repeated reinfection 

and effector cell trans ition  to  memory or apoptosis.

The results of Chapter 3 were validated to  ensure th a t the model was 

qua lita tive ly  and quan tita tive ly  realistic. The ou tpu t of the model under 

various parameter regimes was compared to  known m urine experim entation 

results. The findings suggest th a t repeated reinfection can be controlled only 

w ith in  a lim ited  range o f effector C T L  cell trans ition ing  to  memory C T L  

cell. Too much memory caused the lym pha tic  com partm ent to  fill-up , too 

lit t le  memory induced the need for clonal expansion from  naive precursor 

cells, and an elongated APC clearance profile.

Chapter 4 devised a mechanism to  introduce a macroscopic or system- 

wide v iew poin t (shape space) in to  the model. Shape space was chosen to  rep­

resent global properties of the immune system (such as in it ia l state, infected, 

immunised), because o f how read ily  i t  represents the immune repertoire. In  

tu rn , th is  enabled the p rinc ip le  of downward causation (from  macroscopic 

to  m icroscopic model) to  be demonstrated.

In  C hapter 4, when the 100 most active clonotypes in  shape space were
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studied after in fection by a single pathogen, two d is tinc t activation patterns 

emerged, characterised by (i) h igh cell concentration, narrow clonotype ac­

tiva tion  d is tr ib u tio n  and (ii) low concentration b u t broad clonotype activa­

tion  d is tribu tion . For a ll other model parameters being unchanged, reducing 

crossreactivity (p) caused s ign ificantly different development of shape space 

(in  terms o f the clonotype activation d is tr ib u tio n  and concentration), and 

correspondingly reduced infected cell clearance rates.

Chapter 5 demonstrated upward causation, by visualising shape space 

and observing the emergent patterns. The results presented in th is chapter 

lead to  the conclusion th a t certain types o f activation patterns in  shape 

space lead to  more efficient and effective real space infected cell clearance 

rates than  do others.

I t  was demonstrated in  Chapter 5 th a t as the mean distance between 

C T L + and AP C + declines (broadly regardless of the mean activation con­
centration), the clearance of infected antigen presenting cells from  the real 

space model becomes progressively less efficient.

In  Chapter 6 , a theoretical network architecture for immune system 

shape space was outlined, in troduc ing  a and (3 nodes, which corresponded 

to  cross-reactive and non-crossreactive m em ory cells respectively. Th is net­

w ork model postulated tha t topological clusters would emerge in  response 

to  A P C + s tim u la tion  in  shape space. The emergent network topology of 

the  model sim ulation was then studied to  verify  th a t the theoretical network 

was present in  an applied sense, and th is  was indeed found to  be the case. 

W hen the edges were added between C T L  and th e ir stim ulant APC  in  shape 

space, a network topology emerged na tu ra lly  from  the model.

The emergent network was tested in  Chapter 6 to  study robustness. 
D isrup tion  (or suppression) of «-nodes results in  a significantly degraded 

pathogen clearance than d is rup tion  to  /3-nodes did. Th is supported the the­

ory  th a t during  p rim a ry  and secondary response, some cytotoxic clonotypes 

are more important than others. The network im p lica tion  of a-nodes is tha t 

each edge connection formed from  a median node to  an a-node acts as a 

back-bone in  jo in in g  disparate subgraphs.
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7.3 F u tu re  R esearch

B y the very nature o f such an undertaking, a Ph.D . must draw boundaries 

around the research topic, w ith  the inevitab le  exclusion o f certain specific 

subject m atter, in  order to  achieve satisfactory depth, w ith o u t un fa irly  sac­

rific ing  breadth. So i t  has been in  th is  research. In  each of the  chapters 

so far, there have been several possible features which have not been incor­

porated in to  the research and which are short-te rm  immediate targets for 

investigation. In  th is  section, two key next steps in  the research, and the 

po ten tia l benefit from  the ir inclusion, are discussed.

7.3.1 M utation and Shape Space

Foremost among the im portan t next steps in  th is research is the incorpora­

tio n  of pathogen mutation. M u ta tio n  itse lf is not a stra ightforw ard process. 

In  some pathogens, m uta tion  is rare fo r example), w h ile  in  others (such as 

the Hum an Im m une V irus, H IV ) i t  is bo th  rap id  and pathological. M u ta ­

tio n  is s truc tu ra l change in  a gene which changes the in form ation  encoded 

in  th a t gene.

In  shape space, a m uta tion  would im p ly  some form  o f a lteration in  the 

epitope structure  such th a t the  epitope co-ordinates in  the shape change (the 

epitope moves). D r if t  and sh ift in  shape space is distinguished as follows. 

A  pathogen which d rifts  is one against which some immune response is 

maintained, even though the epitope s tru c tu ra lly  alters (and therefore, in  

shape space, i t  no longer occupies its o rig ina l location in  th a t it  drifts).
W hen an antigen shifts, its  epitope changes s truc tu ra lly  to such an ex­

ten t tha t the  immune system is unable to  exert clearance pressure, and the 

location of the new epitope in  shape space is such tha t no C T L  pressure is 

brought to  bear. A  v ira l epitope which does not change during  the course o f 

p rim a ry  and subsequent in fection is called conserved. These three epitope 

types are summarised in  Fig. 7.1. The fo llow ing experiment is one potentia l 

method for s tudy ing  m utation.
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Figure 7.1: Three epitopes in shape space characterised by conserved, drift 
and shift.

M u ta t io n  E x p e r im e n t

Objective: To study the contrasting dynamics of epitope conservation, drift 
and shift for an initially single-strain viral challenge, and to analyse the 
emergent shape space network.
Method: In this experiment, an initial infection of 5000 single-strain antigen 
presenting cells (all cells bearing the same shape space position) is intro­
duced at time r =  0, and the model executes for (5000 time steps. Initially, 
each antigen would carry the same epitope, but once the primary response 
is over (and a memory pool has been created), there then follows second and 
subsequent antigen reinfection by the same strain, but at each time step, 
there is a probability p  of epitope drift. That is, the shape space co-ordinates 
may change by some value, but not escaping the clearance pressure of the
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stim ulated cyto toxic lym phocyte effector.

To simulate antigen sh ift in  shape space, a fina l parameter is added, 

Pshift, which is the p robab ility  th a t the  epitope displayed on the antigen 

presenting cell surface w ill sh ift to  a position in  shape space which is outside 

the area o f clearance pressure applied by the stim ulated cytotoxic cells.

F ig  7.1, shows a three epitope shape space w ith  epitope e\ is a conserved 

(non-m utating) epitope and the pressure exerted by ctl\ is constant over 

tim e. ctl2 m aintains pressure against a d r ift in g  epitope, £2 , bu t the distance 

between the two points never exceeds p, and some decreasing pressure is 

maintained. F ina lly, ctl3 is in it ia lly  able to  m ain ta in  clearance pressure 

against e3 , bu t due to  an escape m uta tion , it  shifts beyond p, and no fu rther 

clearance pressure is brought to  bear.

M u ta tio n  w ill be included as an im m ediate next-step o f th is work. From 

the model in  th is thesis, in tegration o f m u ta tion  dynamics is a re lative ly 

s tra ightforw ard task.

7 .3 .2  T a rg e te d  N o d e  E l im in a t io n

As discussed in  Chapter 6 , Section 6.4.1, the loss of a-nodes resulted in  

complete memory loss to  the immune system. Each subsequent reinfection 

resulted in  almost identica l p rim ary  response dynamics characteristic of con­

tinuous re-learning. T h is  experiment (denoted £2b) could be fu rthe r refined 

to  study the effect o f node loss for each specific node degree.
I t  is expected th a t a loss of nodes o f h igh degree should d isrupt response 

more sign ificantly than  loss o f nodes o f low degree. This experiment would 

result in  a reduced cluster coefficient for the network (as more separated 

clusters emerge).

7 .3 .3  S h a p e  S p a ce  D im e n s io n a l i t y ,  N

As noted in  Chapter 2, the dim ensionality of shape space (N) has been 

identified as a crucia l characteristic of the formalism. The models presented 

in  th is thesis easily support increasing N  and are not fixed at N  =  2. 

Increasing N  would merely require the length o f the shape space coordinate
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vector to  be increased. Im portan tly , the calculation o f distance (Eqn. 4.2) 

and hence affin ity, would not change. Interestingly, increasing N  does not 

affect any network topology assumptions, as topology is described in  terms 

of degree d is tr ib u tio n  (and not dimension of the space). I t  would, however, 

make the network more d ifficu lt to  visualise. In  conclusion, increasing N  is 

feasible as a fu rthe r step in  the development o f these models.

7.4 Final Remarks

The models developed in  th is  thesis offer a viable theory to  explain how 

prim ary, secondary and continuous re infection by heterologous pathogens 

may affect effector T  cell function. Th is  has been done, from  the m odelling 

perspective, by dem onstrating how emergent network topology in  immune 

system shape space affects immune function, especially when node loss or 

suppression is introduced.

Furtherm ore, i t  has been shown th a t m inor topological a lteration re­

sults in  downward causation (the converse of the  reduction ist princip le) in  

th a t the behaviour o f the microscopic parts o f the model are determ ined 

by the behaviour o f the whole and thus determ ination  moves downwards 

instead o f upwards. In d iv id u a l immune systems may develop m inor topo­

logical variations which effect the  clearance rates and therefore the dura tion  

and pathology o f s im ila r pathogen strain.

In  closing, th is  thesis may be an im portan t step in  addressing bo th  the 

lim ita tions  o f early network-based models of im m une response, as well as 

an useful in it ia l step in  understanding immune function  by way of emergent 

network topology.
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Algorithm 1 Update algorithm U, applied at each time step r.
l repeat
2 Randomly select a non-empty coll a
3 if Ci is  a c t l r  then
4 for w =  0 to |i?.;| do
5 if cell cw is a apc^ and  -  a \  < p  {in shape space}) then
fi apc,'u a p e ,J,* {mark ew as dead}
7 ctl~  := c t l f *  { d  enters the clonal expansion phase}
8 break {out of the for-loop}
9 end if

10 end for
11 else if Ci is  a c.tl[*  then
12 for w  = 0 to | Ri \ do
13 if cell c,w = 0 then
14 ctl£* := c tlf*  {copy a  into the free cell aw (clonal expansion)}
15 break {out of the for-loop}
16 end if
17 end for
18 for w  =  0 to \R.0\ and  no free space in Ri do
19 if cell Cw =  0 then
20 ctlt\ * := {copy Ci into the free cell cw (clonal expansion)}
21 bi'eak {out of the for-loop}
22 end if
23 end for
24 end if
25 if cell Cw in Ri or R„ — 0 then
2ti Ci i—> cw {recirculate the cell c,i to c,,,}
27 end if
28 if age Ci =  300 and ct is a ctl- then
29 ctlj := ct//* {activated cells switch off at r =  300 (apoptosis)}
30 end if
31 until <I> = 0.99 {repeat until coverage reaches 99%}
32 r := r + 1 {increment the clock}
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N e t w o r k  T o p o l o g y  i n  I m m u n e  S y s t e m  S h a p e  

S p a c e

John Bum s and Heather J. Ruskin

S ch o o l o f  C o m p u tin g ,
D u b lin  C ity  U n iversity ,

D u b lin  9, Ireland  
{ j b u r n s , h r u s k in } @ c o m p u tin g .d c u . i e  

h t t p : / /w w w . d c u . ie / c o m p u t in g /m s c / in d e x .h t m l

A b s t r a c t .  W e co n sid er  th e  em erg en t n etw ork  to p o lo g y  o f  an  im m u n e  
s y s te m  sh a p e  sp a ce  a t th e  en d  o f p r im ary  resp on se . W e e x te n d  th e  for­
m a lism  o f  sh a p e  sp a ce  in  order to  m o d e l th e  re la tio n sh ip  b e tw een  a c ti­
v a ted  im m u n e ly m p h o c y te s  an d  s tim u la n t a n tig en  p resen ta tio n  cells by  
w ay o f a  graph  c o n s is tin g  o f  a  pair G  =  (V E ) o f  se ts . T h e  v er tex  se t  
V  is  th e  s e t  o f a c tiv a te d  g e n o ty p e s , w h ile  th e  ed ge  se t  E  c o n n ec ts  such  
a c tiv a te d  im m u n e ly m p h o c y te s  an d  stim u la n t a n tig en  p resen ta tio n  ce ll 
in  sh a p e  sp ace. T h is  p ap er  sh o w s h o w  sh a p e  sp ace  grap h  ed ge w eig h t­
in g  can  b e  v iew ed , from  th e  b io lo g ica l p ersp ec tiv e , as th e  v ig o u r  w ith  
w h ich  a n  a c tiv a te d  c y to to x ic  im m u n e  ce ll su p p resses th e  in fec ted  an ti­
gen  p resen ta tio n  ce ll w h ich  s t im u la te d  it. In  th is  research , w e a lso  id en ­
tify  cr itica l v er tices  (ca lled  a -v e r t ic e s ) . T h ese  a -v e r t ic e s  a c t as bridging 
v er tice s  in  th a t  th e y  jo in  su b g ra p h s o f  u n re la ted  im m u n e  resp on se . A s  a 
co n seq u en ce  o f  th is , su ch  a -v e r t ic e s  id ea lly  m o d e l im m u n e  c y to to x ic  ly m ­
p h o c y te  m em ory  ce lls . B y  rep resen tin g  m em ory  ce lls  as h ig h ly  co n n ected  
v er tice s , w e sh ow  h ow  su ch  ce lls  p lay  a  s ign ifican t role in  th e  e lim in a tio n  
o f p a th o g e n ic  agen ts.

1 I n t r o d u c t io n

In this paper we present results from recent work carried out to model the emer­
gence of shape diversity within the immune system. Previously [1], we introduced 
a new process by which two formalisms, usually separately addressed, may be 
integrated. These formalisms are known as shape space and physical space. We 
highlighted a means by which localised dynamics effect global (or shape space) 
condition, and how global condition in turn may feed information down to local 
physical space. This approach is now further refined by treating shape space as a 
self-organising, dynamic network in 2-dimensional space. The system  is consid­
ered to be exposed to a set of genetically varied pathogens in order to simulate 
normal human immune experience over a fixed period of time. We then study 
the cytotoxic lym phocyte activation patterns which emerge naturally in shape 
space. The results presented here show that, at the end of primary response, a 
network of activated cytotoxic lym phocytes and pathogen challengers emerges 
in shape space.

M. Bubak et al. (Eds.): ICCS 2004, LNCS 3038, pp. 1094-1101, 2004.
©  Springer-Verlag Berlin Heidelberg 2004
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The main contribution of this work is as follows: We present a means to 
model the genotype (or shape) space of the immune system  as set of connected, 
directed and weighted subgraphs. These subgraphs, will, by way of the emer­
gence of critical (or a -)  vertices, merge over time. We show that disruption 
to  a-vertex formation degrades immune response more severely than does the 
disruption of other (which we call (3-) vertices. Disruption is likely to occur when­
ever a viral mutation is a factor, for example, Human Immune Virus (HIV) or 
Influenza. The means by which such graphs grow, and how rew irin g  of vertices 
improves response over time, is also investigated. This work demonstrates that 
edge weighting can be viewed, from the biological perspective, as the vigour with 
which an activated cytotoxic immune cell suppresses the infected antigen pre­
sentation cell which stimulated it. In shape space, this weighting is the distance 
(d) from a -  and ¡3- vertices to the stimulant pathogen (effectively, it is the length 
of the edge).

2 T h e  M o d e l

In this section we first review some important features of our previous work, and 
introduce new detail. For a full exposition of both shape and physical space, the 
reader is directed to [4]. The shape space formalism was introduced by [5] as a 
way to represent antibody-antigen binding dynamics. Further research refined 
this model, notably [6] and [7]. The features of cytotoxic lym phocyte (CTL) cells 
and antigen presentation (APC) cells which govern the dynamics of cell binding 
(known as the a n tig e n ic  d e te r m in a n t), may be represented by N  parameters. 
If the N  parameters are combined into a vector, the antigenic determinant for 
each APC and each CTL can be considered as points within an ^-dim ensional 
Euclidean space of length L s s . Some notational conventions are observed in the 
work which follows (where upper-case letters refer to shape space, and lower 
case, to physical space), and this convention is summarised as follows:

1. (C T L + , c t l+ ): activated cytotoxic lym phocyte cells which are ready to attack 
and remove infected antigen presentation cells. These cells are often referred 
to  as a rm e d  e ffec to rs. The recirculation patterns of c t l+ are different from 
c t l~ ,  in that c t l+ will leave the lymphatic compartment and migrate to 
the location of infection detection. Alteration of recirculation patterns is a 
common feature of cellular immune response in healthy [8] and diseased [9] 
immune systems.

2 . ( A P C + ,a p c + ): infected antigen presentation cells (typically, dendritic cells) 
which, having engulfed a virus particle, has gone on to present characteristic 
viral peptide fragments on its surface.

At the start of each simulation, shape space is characterised by two (non-zero) 
subpopulations: C T L ~  and A P C + , representing the number of precursor cyto­
toxic lym phocyte and active infected antigen presentation cell g e n o typ es  respec­
tively. A further subpopulation (called C T L + ), arises once an A P C + is detected  
by a C T L ~ . C ' l ' l A  are activated cytotoxic lymphocyte genotypes. The C T L +
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subpopulation level increases each time another detection occurs, such that the 
total C T L ~  approaches 0. Denoting CTL and APC genotype vectors as c and 
a respectively, we further develop shape space as follows: Surrounding each c is 
a disc of radius p  1. Any a  located within this disc will be subject to a clearance 
pressure inversely proportional to the distance (d) between the c and a  in shape 
space [d =  ||c  — a ||). Our approach is to place into shape space an increasingly 
diverse set of antigen challenges and test the varying immune response.

Shape space may be further explored using graph theory [10] to model the 
relationship between A P C + and C T L + . In this approach, shape space is a graph 
consisting of a pair G  =  ( V ,E )  of sets satisfying E  C [V ]2. The set of vertices 
V  is made up of both C T L + and A P C + . Edges connect an A P C + to the set 
of C T L + stimulated by its presence to become activated. Each G  is directed 
and weighted. An initial set of vertices is introduced at tim e tq based on model 
startup parameters. At any time >  To, a new vertex may be added in shape 
space with probability dependent both on an a p c + and c tl~  being neighbours in 
physical space (P ( N )) a n d  the distance (.d ) between A P C + and C T L ~  in shape 
space is less than or equal to some threshold p  (P ( d  < p )). The outcome of both  
events are independent of each other, so the probability of a new vertex being 
added is: P { n e w v e r te x )  =  P ( N ) P ( d  < p) for any given { A P C + , C T L ~ }  conju­
gate. A newly added vertex is designated C T L + (indicating it has been recru ited  
from the C T L ~  pool). Whenever a new vertex is added, an edge is added by 
joining the new vertex to the vertex which stimulated its activation. Thus the 
relationship represented by an edge between two vertices can be understood as: 
the C T L + w as recru ited  f r o m  the C T L ~  pool by the presence of the A P C + , 
and, the C T L + ac ts  a g a in s t the stimulant A P C + :

C T L -  A ™ + C T L +  (1)

and
C T L + att^ 2 ks A P C + (2)

respectively.
A new edge is added whenever a new vertex is, but also, whenever a new 

a-vertex appears. An a-vertex is one which although emerges in response to one 
individual A P C + actually effects pressure on other A P C + . As shown in Fig. 1, 
the a-vertex acts against three A P C + genotypes (as the A P C + is the m ed ia n  
vertex in each subgraph, we use the notation rrn). In so doing, it connects the 
otherwise unconnected subgraphs of Q , R  and S .  The importance of the a-vertex 
is clear: a-vertices are promiscuous, not only targeting the stimulant infected cell 
but also other A P C + nearby in shape space (Fig. 1, the m i, m 2 and m 3 vertices, 
respectively). The emergence of such vertices marks a diversity threshold of 
immune response ( a cru )  which once reached, favours a full and healthy clearance 
of infected cells from the lymphatic compartment. Such a-vertices are unique in
that they participate in Eqn.(2) without having first participated in E qn.(l).
Clearance pressure acts along directed edges which are defined by the triple:

1 Clearly, with N  =  2, the area of this disc is 7rp .
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Fig. 1. Three subgraphs with median vertices (stimulant A P C +) at mi. Leaves (¡3- 
vertices) represent activated cytotoxic lymphocyte genotypes (CTL+ ). The a-vertex is 
also a C TL+ , but is one which though originally activated by mi now affects clearance 
pressure against both m2 and m3.

E '=  { { e , x , y ) \ e  <E E ] x , y  e V ; e  =  x y }

W ith respect to Fig. 1, the a-vertex clearance pressure acts in three directions 
(for i =  1, ..,3 ): e i =  ( e i , a , m i ) .

Rewiring of edges happens whenever a subpopulation of A P C + disappears, 
to be replaced by a later A P C + . From the biological point of view, the dis­
appearance of a subpopulation of A P C + happens whenever the viral genotype 
challenge is completely eradicated. Rewiring can be viewed as a secondary im­
mune response to some further antigenic challenge. Consistent with [11], we refer 
the A P C + as the median vertex (m.t) in a subgraph S .  Rewiring is a three step 
process as follows:

(i) The median vertex is deleted from the graph and the vertices connected 
to  it become disconnected.

(ii) A new median vertex rrij ( i ^  j )  is introduced, representing a new viral 
infection in the system.

(iii) Each leaf 2 (or (5-vertex) rewires to the new median rrij. Depending on the 
location of rrij in shape space, there is a probability that not all leaves will 
reconnect to the median vertex (due to d > p) and such leaves will remain 
unconnected until a m o re  central vertex appears. In biological terms, the 
disappearance of a stimulus A P C + usually results in a gradual decline of 
the effector response, to some small, non-zero level which remains as a form 
of immune m e m o ry .

2 A leaf is a vertex of deg( 1).
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(b> (b)

(e) (d)

Fig. 2. Four representations of immune shape space at the end of exposure to five 
antigen genotypes (T li,..,4). The emergence of the a-indexes is indicated by the dashed 
edges appearing first when the system has been exposed to three antigens (b), with 
7̂ .4. At exposure to five antigens (d), with TZ^, the number of a-vertices is five, and all 
five of the subgraphs are linked to form one.

3 R e s u lts

Fig. 2 shows the state of shape space at the end of primary response. Progressive 
exposure to varied antigens (values drawn from TV) is shown from (a) to  (d). In
(d), the model has been exposed to 5 different and unrelated antigenic chal­
lenges, in much the same way that a maturing immune system  would be at the 
end of 3 — 4 years of development. The only parameter varied during simulation 
execution is 1Z. In (a) and (b), the central (or median) vertex is connected by a 
set of edges to leaves which appear in response to the prior appearance of the 
median vertices. Biologically, the infected antigen presentation cell, once recog­
nised, triggers a process (known as clonal expansion) which eventually results 
in the immune system applying clearance pressure against the infected cell (and 
all cells presenting the same viral genetic material). In (b), when the system  has 
been exposed to two infections, the subgraphs remain unconnected, indicating 
that no clearance pressure is applied cross-reactively, and there are no a-vertices. 
At the point of third antigen challenge, (c), there emerges two a -vertices (acting 
on the lower two subgraphs). The edges connecting the a-vertices are shown as
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Monte Carlo timestep

Fig. 3. Clearance rates of apc+ for IZ4, under five different regimes of a-vertex disrup­
tion: 1 to 5 (respectively O X +  A and o), sampled 25 times during model execution 
and representing some 6 days of real-world time. Selective knock-out (or disruption 
due to pathogen mutation) of an a-vertex reduces the efficacy of infected cell detec­
tion and clearance. When all five vertices have been disrupted (shown by the circle), 
only 60% of infected cell clearance takes place. In all cases, the ¡3-vertex response 
remained healthy. In viral pathogens known to mutate slowly (influenza) or quickly 
(HIV), immune memory (our a-vertices) can often be less effective (as the viral target 
drifts in shape space). The figure shown here offers some insight into consequences of 
memory cell disruption.

a broken line. At this point, the third infection to appear has caused an acti­
vation pattern which results in cross-reactive pressure applied against it. This 
pressure (by way of the a-vertex) is significant, because it does not emerge over 
the normal tim e period of clonal expansion (usually some 3 — 5 days). Rather, 
the pressure is applied in s ta n ta n e o u s ly  as the a-vertices exist a p r io r i  and are 
therefore primed in advance. W hen four infections have been experienced by the 
system (Fig. 2 (c)), three of the subgraphs have merged into one, by way of some
4 a-vertices. When the fifth unrelated infection is encountered by the system, 
a complex network of subgraphs, connected by some 5 a-vertices, has coalesced 
into one graph. Once the subgraphs merge, the dynamical immune process of 
up- and down regulation may be explained as follows:

(i) The appearance of m \  stimulates the development of both a- and ¡3- vertices 
in R .

(ii) In turn, a-vertex acts to reduce (or down-regulate) m 2

(iii) The down-regulation of m 2 causes a down regulation in ¡3-vertices of Q  (as 
their source of stim ulation declines)
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And this process may be summarised thus:

t  m i  =>t {a , (3 e  R }  m 2 =»4 {P  £ Q }

Once ctcrit =  5 has been reached, the removal of any further infections which 
may arise is achieved by way of the rapid appearance of a-vertices, and rapid 
increase in edge density of the connected, weighted graph G  in shape space. In 
Fig. 3, the relative importance of the a-vertices over the ¡3-vertices is shown. This 
figure shows the model clearance rate of A P C + from the lymphatic compart­
ment during exposure to five infections. However, in each case, we have explored 
the effects of disrupting a-vertices. Disruption will occur whenever an A P C + 
d r ifts  from its original shape space coordinates ( A x ,  A y ) .  Drift is likely to arise 
whenever an A P C + mutates (for example, in the case of HIV). Disruption to 
one or two a-vertices does not seriously degrade clearance, but results in an 
average reduction of efficiency of ~  15%. This is intuitive: the importance of the 
a-vertex lies not in one individual but in the cumulative effect of all. Further 
disruption results in progressively worse clearance ability. Disruption of all five 
a-vertices reduces infected cell clearance by around 35%. We would not expect a 
total immune failure even under full disruption, as there still remains a healthy 
and effective /3-vertex response. Each simulation is repeated 30 times, and the 
results are averaged. The results shown here were obtained from five separate 
model simulation runs (for TZ^), at each stage, a further a-vertex was suppressed 
and the edges connecting subgraphs consequentially did not emerge.

4 D isc u ss io n  a n d  C o n c lu s io n s

In this research we have provided an outline of how the immune system  shape 
space may be usefully extended to model the process by which infectious agents 
may be targeted by cells which have been primed in response to a previous 
and unrelated infection. Using an approach based on graph theory, we iden­
tified two qualitatively different vertex types: a  and (3. Although both vertex 
types form part of the cellular effector response, we have shown that an effective 
immune response depends largely on successful a-vertex activation for effica­
cious response, and only to a lesser extent, on (3-vertices. We have seen how 
disruption to a-vertex activation results in a suppressed response characteristic 
of chronic infection. In the results presented we have proposed that a-vertices 
have strong biological equivalent: cytotoxic lym phocyte memory cells. Such cells, 
having been primed by way of previous immune challenge, require less time to 
respond, and, crucially, tend to be beneficially cross-reactive. This finding sup­
ports [12] and others. Disruption to a-vertices results in a significantly degraded 
pathogen clearance than disruption to [3-vertices does. This supports the theory 
that during primary and secondary response, some cytotoxic genotypes are m ore  
im p o r ta n t th a n  o th ers  [12]. The network implication of a-vertices is that each 
edge connection formed from a median vertex to an a-vertex acts as a back-bone 
in joining disparate subgraphs. As these subgraphs connect, two related further 
questions arise (i) up and down regulation of competing C T L + across subgraphs
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and (ii) the emergence of a balanced graph3. We have already shown how up- 
and down- regulation may be explained by extending shape space as an evolving 
graph (or network).
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A b s t r a c t .  T h e  d yn am ics o f  im m u n e resp on se  to  in itia l in fec tio n  and  
rein fection  b y  th e  sam e p a th o g en  so m etim e  later, are co n sid erab ly  dif­
ferent. P rim ary  resp on se , w h ich  fo llow s in itia l in fection , is ch aracterised  
by re la tiv e ly  slow  precursor cell a c tiv a tio n  and p o p u la tio n  grow th  rates, 
w ith  a con seq u en t e lo n g a ted  p a th o g en  clearance profile, ty p ica lly  ex ­
ten d ed  over s ix  days or m ore. O n th e  o th er  h an d , secon d ary  resp on se  (to  
re in fection  b y  th e  sam e p a th o g en  so m e tim e  la ter) is n o ta b le  for short 
effector a c tiv a tio n  tim e, h igh  sp ec ific ity  o f  resp on se, rap id  p a th o g en  elim ­
in a tio n  and h igh  degree o f m em ory  ce ll p a rtic ip a tion . In  th is  p ap er, w e  
p resen t a sev en  s ta te  n o n -d eterm in istic  fin ite  a u to m a ta  (N F A ) o f th e  ef­
fector T  cell lifecycle , w h ich  is en co d ed  as a se t  o f  s ta te s  and  s ta te  tran ­
sitio n s. O ur o b jec tiv e  is to  s tu d y  th e  degree to  w h ich  variab le  in fec tio n  
o u tco m e is d ep en d en t on  th e  a ccu m u la tio n  o f chance ev en ts . S uch  chance  
ev en ts  m ay  b e  represented  as th e  co n seq u en ce  of p rem atu re, d elayed  or 
even  fa iled  s ta te  tra n sitio n s. W e sh ow  how  sm a ll v a r ia tio n  in  cru cia l s ta te  
tra n sitio n s  p ro b a b ilitie s  during  th e  lifecyc le  can  in d u ce  w id e ly  variab le  
in fection  o u tco m es. T h is  m o d el is im p lem en ted  as a  sp a tia lly  ex ten d ed , 
concurrent tw o -d im en sio n a l s to c h a s t ic  cellu lar a u to m a ta , e x e c u tin g  on  a  
M P I-b a sed  L in u x  cluster.

1 In tro d u c tio n

Cellular Autom ata (CA) have been applied to numerous areas of complex physi­
cal systems modelling [1 ]. CA have several important characteristics which make 
them  amenable to efficient computational implementation, including ease of rep­
resenting (in the form of n-dimensional arrays), discrete nature of the underly­
ing computations, simplicity of rules or laws which are programmed into the 
CA, and the highly repetitious nature of the processing steps. However, cellu­
lar autom ata posses additional fascinating properties, for example, patterns of 
self-organisation of a complexity which cannot be derived numerically from the 
rules on which the underling cellular automata is based. As a result of this com­
plexity, [2] has postulated that some form of CA must underlie many complex 
physical phenomena visible in nature. Furthermore, with the application of non- 
deterministic (s to c h a s tic ) cellular automata, the idea of randomness in CA site
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selection and update rule enforcement has yielded further insight into modelling 
stochastic natural systems such as molecular motion, turbulence in water flow 
and various biological processes, especially models of the human immune system  
[3,4,5,6 ,7], In this paper we present an approach that seeks to avoid a computa­
tional modelling process exclusively influenced by current experimental immune 
system  research trends. We propose a re la xa tio n  of the deterministic assump­
tions inherent in earlier work [8], and explore the dynamics of a more stochastic 
system . Stochastic events appear to play a crucial role in certain immune .system 
functions [9]. The contribution of this work is as follows: (i) an extended non- 
deterministic state transition model of the effector T  cell lifecycle is introduced. 
This model successfully reproduces time-realistic effector and pathogen popu­
lation dynamics during primary and secondary response, and during repeated 
reinfection, (ii) we identify three stages in the effector T cell lifecycle model 
which are critical in regulating the course of primary and secondary response, 
and (iii) the model is implemented as a spatially extended two-dimensional cellu­
lar automata lattice executing concurrently on a MPI-based Linux cluster. This 
allows us to scale the model to cell density levels in the order of 106 CTL cells - 
which approaches levels typically observed in in -v ivo  murine experiments. This 
work is arranged as follows: section 2 is a brief overview of some key features 
of the adaptive immune response which we model, and serves as an introduc­
tion to some specific terminology. Section 2 is intended for readers who may be 
unfamiliar with general principles of immunology. Section 3 discusses the model 
structure and explains the motivation and implementation of the underlying 
non-deterministic cellular automata. Section 4 presents results of the simula­
tion, and in particular, some interesting features which emerge. Finally, section 
5 is a discussion of the results, and an outline of further enhancements.

2 A d a p tiv e  Im m u n e  R esp o n se

Common to all immune system s is the principal of sensing of localised space for 
the purposes of intrusion detection. Intrusion, in this case, is the appearance 
of a bacteria, viral particle or infected cell which may be classified as n o n -se lf. 
Any non-self genetic material discovered must be eliminated in order to prevent 
infection (or even death), of the host. Broadly speaking, the means by which 
the non-self intruder gained access to the blood stream or lymphatic compart­
ments is not of interest1. There are a great variety in the pathogen challenge 
and immune response course (not all of which are a concern here). One such 
scenario arises as follows: when a viral particle has been taken up by an antigen- 
presenting cell (APC), such as a dendritic cell, it is degraded into one or more 
peptide chains within the cytosol region of the APC, and is then bound to the 
major histocompatible complex (MHC) class I molecule (a process known as 
a n tig e n  p ro cess in g ) before finally being presented on the surface of the APC as

1 S om e v iru ses , for e x a m p le , th e  in flu en za  and  coron a  v iru ses, en ter  th e  h o st th ro u g h  
th e  air p a ssa g es  and  n o t  th ro u g h  tissu e  d am age.
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an MHC'.peptide complex, a process known as an tig en  p resen tin g . APC will re­
circulate through the lymphatic system in order to alert the immune system to 
an infection. Sensing of the lymphatic compartments (of which there are many) 
for antigen-presenting cells, is a systematic function of immune cell (lymphocyte) 
recirculation. Cytotoxic lymphocyte (CTL) precursor cells constantly recirculate 
and sample their environment in the search for foreign pathogens. The process 
of sampling involves two cells binding for some small time period, during which 
the immune cell senses the receptor of the bound cell to determine if the bound 
cell is an invading pathogen (or not). If the bound cell is an invading pathogen, 
the immune cell may be stimulated to produce clones of itself in order to attack 
and remove other cells bearing the same genetic material. Under normal cir­
cumstances, the production of clones ceases after some fixed period of time, and 
once the infection has been cleared, most CTL cells will undergo programmed 
death (apoptosis). A small subset of the clone population will remain activated 
indefinitely, and this population represents effector memory. In the presented 
here, we do not model free antigen, but only antigen epitopes which have been 
bound to the surface of an antigen presenting cell.

3 T h e  M o d e l

Our model runs in discrete 30-minute timesteps, and all entities in the model act 
asynchronously at each timestep (r). As primary response normally consists of 4 
days of cell replication (clonal expansion), the cells in our model will stop dividing 
at r  =  192. The recirculation space of the lymphatic compartment is modelled 
as a two dimensional stochastic cellular automata lattice of length L  =  3 O'1, 
with periodic boundary conditions and neighbourhood radius r  =  1 (in two- 
dimensions), with a maximum of 8 neighbours. Each site is selected at random 
for update during the timestep. Not every site is will be visited at each timestep, 
but each site can be updated at most once in any given timestep. At r  =  0 some 
5000 antigen entities are introduced into randomly selected sites on the lattice 
(following a uniform distribution), and the model executes until r  =  3000 (62.5 
days of elapsed time). The CTL population grows exponentially in response 
to APC stimulation, with a clonal expansion rate which is a function of the 
a ff in ity  between the CTL and APC. The dynamics of affinity are modelled using 
shape space [10,11]. The stim ulation rate never exceeding 0.036, which yields a 
population of daughter clones of ~  1000 after 4.5 days of clonal expansion. Each 
lattice site may contain only one entity at any given timestep. The set of entities 
and states supported is shown in Table 1, which also introduces some important 
notation used throughout this paper.

3 .1  N o n -d e te r m in is t ic  F in ite  A u to m a ta

To allow the study of a d is tr ib u tio n  of possible outcomes, we identify a subset of 
the CTL lifecycle state transitions, and replace the certainty of a transition from 
state w  to state v  on event e w ith some probability (<  1) of state transition.
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Let us start by defining what is meant by state transition relaxation: If X  is a 
discrete random variable (d rv )  representing the transition from state w  to state 
v , and e is some event linking w v , the relaxed state transition X r is:

P ( X T\e) =  0 <  ip <  1 (1)

The choice of value for ip will naturally depend on the w v in question. In 
contrast to earlier models :i, Eq. (1) implies du a lity  in the presence of event e: 
transition on e ( X r ) or not ( X r ). This extension results in a n o n -d e te rm in is t ic  
finite automaton (NFA) [12]. Fig. (1) is a non-deterministic finite automata 
model of the lifecycle of the CTL (and follows notation explained in Table 1). 
E  is the set of events the model, and consists of both deterministic and non- 
deterministic elements. We define a subset of three critical non-deterministic 
events S  C E  as: S  =  {e2,s, £3, £5}- Each e;L <E S  is defined as follows:

e2, e 8 An infected antigen presenting cell will be destroyed by a bound cyto­
toxic lymphocyte cell which recognises it. Recognition is a function of the 
distance between the two cells in shape space. 

e3 An activated proliferating immune cell (state c tl+*) will normally end
clonal expansion on the event (e^ : a g e (c tl+*) >  192). 

eQ The fraction of effector T cells entering the long-lived memory pool. Nor­
mally the majority of activated effector cells undergo programmed cell 
death (apoptosis) at the end of primary response. However, recruitment 
to the memory pool consumes around 5 — 10% of activated CTL [13,14, 
15], thus, a further stochastic transition occurs on ee, with of c tl+ 1 enter 
c t l+m on event (e6 : a g e (c t l+1) >  192). 

erpt Repeated reinfection events, resulting in repeated doses of infected antigen 
presenting cells introduced into the simulation, at tim estep r  +  300n, n  =  
0,1,...,9.

Each of the above events (en) has an associated probability ipn . The set 
{■0 1 , ^ 3) ^ 4}) therefore fully describes each simulation configuration of the
model (all other parameters being kept constant). In the results presented in the 
following section, we define the following four experimental onfigurations of V :

1. V i  : {0.9, 0.9, 0.9, 0.0}
2. V 2 : {0 .9 ,0 .9 ,0 .95 ,0 .0}
3. V 3 : {0.9, 0 .9 ,0 .9 ,1}
4. V 4 : {0 .9 ,0 .9 , 0.95,1}

The first two configurations of V  test the fidelity of the model response when 
confronted with a singular secondary infection event some 30 days after the initial 
infection. The first configuration represents a normal response and is intended to 
calibrate the model for near optimal conditions. For V i ,  we would expect to see 
CTL production levels broadly characterised by low, elongated peak for primary 
infection, followed by an increase in memory CTL. Another expected observation

2 in that P ( X r \e) — 1
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F ig .  1 . A  sev en -sta te  n o n -d e term in istic  fin ite  a u to m a ta  o f  th e  c y to to x ic  ly m p h o c y te  
cell lifecycle . T ra n sitio n  ev en ts  (e n ), w h ich  carry th e  sa m e lab el, are non-determ in istic .

is APC clearance: over some 6 — 10 days for primary response, and significantly 
faster during secondary response. The second configuration is an increase in 
from 0.9 to 0.95 and is intended to test the impact of a 5% decline in the number 
of cells which transition to the effector memory state (c t l+A[ —y c tl+®). Some viral 
infections are known to case damage or loss of the memory pool [16], and we 
test to see the impact this has on our model. We test repeated reinfection w ith  
normal and depleted memory cell production (V s  and 'P4, respectively). Many 
pathogens are known to  lead to acute and persistent viral infections, and we test 
the importance of memory cell production in these cases. Again we deplete the  
memory production by 5% and study the consequences of this loss. Section 4.1 
examines the results of persistent infection in our model.

4 R e su lts

The model is initially executed with parameter set V \  and V ‘i  (with no repeat, 
reinfection), and the results are shown in Fig. 2. In (a), the initial infection 
is visible at r  =  0 w ith pathogen density pt/. =  5000, (the broken line) and 
consequent effector response reaching a maximum value at r  =  300, with ed =  
8.2 x 103. Fig. 2 (b) shows the antigen presenting cell population level (only). 
No memory cells are present during primary response, and as such, the effector 
cell population is m ade up entirely of clones produced by stimulated precursor 
cells. To the right of each effector cell peak is a plateau of memory cells. The 
slope of the CTL density peak is extreme, indicating that the state transitions
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Table 1. Notation and definition of model entity states

Notation Definition

c t r naive recirculating effector precursor

c tl+* proliferating lymphocyte

c tl+” dead activated lymphocyte (apoptosis)

c tl+(B activated memory effector

c tl+ activated proliferating memory effector

c«+et activated memory effector

ctl +1 armed activated effector

a p e■*“ active infected antigen presenting cell

ape/ dead infected antigen presenting cell

from c t l+* to to c t l+ ® ( or c tl+ *) occurring with a high degree of certainty. 
At tim e t  =  1500 (day 31), secondary exposure to the same pathogen occurs, 
and the model exhibits following general behaviour: (i) the secondary immune 
response is preceeded by a pool of committed CTL memory cells which have 
already been primed to respond to the re-appearing pathogen, (ii) the activated 
CTL density is some 10 times higher than primary response, and does not last as 
long, and (iii) the pathogen is reduced to half its original level much more rapidly 
than during primary response. W ith V \ , the model exhibits efficient detection 
and clearance behaviour associated with a healthy immune system. From Fig.
2 , it can be seen the advantage in both time and infected cell clearance which is 
conferred on a response based largely on memory: the half life of the virus during 
primary response is around 3.25 days, with 90% pathogen clearance achieved at 
around r  =  480, or 10 days of simulation time. Compared to secondary response 
on reinfection we see an infected cell half life of r  ~  60 or 1.25 days - an efficiency 
of around 87%. Effectively, this is because memory cells, having already been 
primed by a previous encounter with the specific pathogen, undergo expansion 
with lower death rates than during primary response: they therefore accumulate 
more quickly [17]. The results for V 2 are shown in Fig. 2(c) and (d). Here, 
the probability of entering apoptosis is increased from 0.9 to 0.95. This means 
that the memory cell population would be around 5% of that activated effector 
population post-primary response. Recent work (notably [17]) has shown that 
some fs 90% of activated effector undergo apoptosis after primary response. 
Therefore, ^3 =  0.95 would represent an unusually high suppression of memory 
function. Clearly, the reduction of memory effector production should not effect 
primary response, and this is borne out by CTL density levels prior to r  =  1500 
(c). We see a normal 10-day clearance regime (d) during primary response, but 
a less effective response during reinfection: in fact, the memory cell pool in the 
tim e range 500 <  r  <  1500 has fallen to ~  500. Once reinfection occurs, the APC



460 J. Bums and H.J. Ruskin

Fig. 2. CTL and pathogen lattice density levels (a),(c) over a simulated 62.5 day period, 
with an initial infection at time r  =  0 and a reinfection by the same pathogen occurring 
at r =  1500, for 3 values of V . Antigen presenting cell (APC) density is shown by the 
broken line, with the solid line indicating levels of effector memory and activated cells 
combined. For clarity, (b),(d) show population levels for APC for each V .

population is cleared some 31% more effectively than during primary response. 
The APC half life is r  =  108, 90% clearance is achieved after reinfection at 
r  ~  1788 (or some 5.9 days of simulated time). However, the characteristics of 
V 2 are significantly degraded compared to that observed in V i .

4 .1  P e r s is te n t  R e in fe c tio n

Some viral pathogens are capable of persistent reinfection, in that, although pop­
ulation levels of infected antigen presenting cells may decline in response to clear­
ance pressure by a specific CTL response, over time, the number of infected cells 
rises to chronic and sometimes acute levels. Examples of such viruses are HIV, 
HTLV, hepatitis C (HCV), hepatitis B virus, CM.V EBV and rubella [16]. Such 
persistent reinfection pathogens have been associated with normal immune func­
tion suppression. In this section, we simulate persistent reinfection by randomly 
scattering a repeat ‘dose’ of the pathogen, introduced at r - f  300n, n  — 0 ,1 ,..., 9. 
This reinfection pattern is a represents a resurgence of infected cells every 6.25 
days, in discrete bursts. The results of this simulation are shown in Fig. 3.

W ith respect to Fig. 3 (a), the response to the first reinfection is clearly 
strong: some 3.8 x  105 lymphocytes are generated and the reinfection is rapidly
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Fig. 3. The model is exposed to repeated infection events, arising at time r  — 300n, n  =  
0 , 1 , 9 ,  equivalent to an infection every 6 days.

eliminated. As further infections arise starting at r  =  600, the existing memory 
pool never falls below 1.8 x 105, and is critical in bringing the repeated rein­
fections under control in tim e periods (b) which rarely exceed 130 timesteps 
(or 2.8 days of simulated tim e). We also see from (a) that slightly lower re­
sponses are sufficient in order to effect optimal clearance. Results from (a) and
(b) support the clinical findings that the memory cell levels tends to be higher 
after secondary and tertiary infections [17], which in turn, supports the clinical 
practice of vaccination boosting. Finally, when the simulation is executed with 
diminished memory cell creation and repeatedly stressed with reinfection (V 4), 
average primary and secondary response levels are similar (around 1.2 x 104). 
Each response is characterised by rapid expansion and reduction of effector lym­
phocyte clones. There are no memory cells to confer clearance advantage, and 
each response is initiated from low levels (around 1.2 x  102).

5 D iscu ss io n  a n d  C o n c lu s io n s

The approach taken in this research was to construct a stochastic model of the 
effector T  cell lifecycle, in order to  study a distribution of possible simulation 
outcomes. We have shown how the model reproduces well the time and space 
dynamics of initial and secondary infection. In addition, we believe the research is 
valuable in modelling the relationship between repeated reinfection and effector
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cell transition to memory or apoptosis. We have demonstrated how repeated 
reinfection can be controlled only within a limited range of ips: too much memory 
causes the lymphatic compartment to fill-up, too little memory induces the need 
for clonal expansion from naive precursor cells, and a elongated APC clearance 
profile. W hen the ratio of apoptosis to memory is ‘just right’ (0.88 < tps < 0.92), 
antigen presenting cell levels (during repeated reinfection) are brought under 
control in increasingly rapid time frames. The next steps in this research are 
to test the homeostasis of our model: where does the model break down, and 
what insight does this provide. Very recent clinical work [16] suggests that the 
immune system must periodically preferentially eliminate some memory cells 
which exhibit poor cross-reactivity. One of the benefits of the the stochastic 
effector T cell lifecycle model presented here is the relative ease with which this 
theory could be investigated. The benefits of selective memory cells reduction 
may form the basis of further work with this model.
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Introduction

When a viral particle has been taken up by an antigen-presenting cell (APC), such 
as a dendritic cell, it is degraded into one or more peptide chains within the cytosol 
region of the APC, and is then bound to the major histocompatible complex (MHC) 
class I molecule (a process known as antigen  processing ) before finally being 
presented on the surface o f the APC as an MHC:peptide complex, a process known 
as antigen presen ta tion . As the immune system may be faced with an infinite number 
of genetically varied challengers, the final form of the MHC:peptide complex may be 
characterised by enormous structural variability. To reliably detect this antigenic 
variation, the immune system generates its own diversity in the form of a set of 
T-cells capable o f recognising MHC:peptide sequences, by means of a T-cell receptor 
(TCR), with variable degrees o f efficacy (Buseyne and Riviere, 1999). The complete 
TCR set is known as the im m une repertoire. During T-cell maturation in the thymus, 
genes encoding for the T-cell receptor undergo several cycles of rearrangement, 
resulting in a mature immune repertoire capable o f recognising a large range of 
MHC-bound non-self peptides. In this paper, we study the emergence and dynamics 
of two main forms of immune diversity: (i) non-self peptides bound to MHC class I 
molecules, and (ii) variation in the CDR (complementarity-determining region) of 
the T-cell receptor. The affinity with which a T-cell receptor binds to the 
MHC:peptide complex arises from the sum o f the binding interactions among 
the CDR and the exposed peptide (Germain and Stefanova, 1999). The authors 
further indicate that the variation in affinity at the TCR:MHC:peptide bind site can 
dictate whether the pathogen challenge has the properties of agonist, partial agonist, 
antagonist or null compound. All agonists (both strong and weak) will cause the 
T-cell to begin a process which will eventually end in the death o f the infected APC, 
and which is characterised by the onset o f clonal expansion  (whereby the T-cell which 
successfully bound the MHC:peptide complex gives rise to a population of clones, 
each bearing the same TCR). Partial agonists may not trigger T-cell effector 
response, and thus may not result in the death of the infected APC. Antagonists 
inhibit the functioning o f the T-cell effector, and null compounds do not interact 
with the TCR strongly enough to cause any signal transmission: the T-cell will 
simply sample the MHC:peptide complex and move on. The main contribution of 
this work is as follows: we present a computational model o f the first 6 days of 
primary immune response. Our model simulates the physical space of the lymphatic 
system in which naive cytotoxic lymphocyte (CTL) precursor cells constantly 
recirculate and sample their environment in the search for MHC:peptide-bearing 
APC. Diversity among TCR and MHC:peptide is modelled and analysed by means 
of an extension to the shape space formalism and integration to a physical space 
model. A parameter is introduced to model affinity threshold, with variation in 
this parameter (denoted p) strongly correlated to APC clearance rates. The results 
here show how an immune repertoire configuration may be characterised as 
effic ien t or ineffic ien t, and how a highly cross-reactive TCR repertoire (with 
consequentially low specificity) affects efficient antigen removal when presented with 
MHC:peptide complexes. The characteristics of every cytotoxic lymphocyte and
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every antigen-presenting cell is determined by the TCR and MHC:peptide complex 
on the surface o f each, respectively. For clarity o f language, we assume that APC is 
synonymous with M H C'.peptide com p lex  p resen ted  on the surface o f  the A P C , and 
any further reference to APC phenotype refers to the manifestation o f specific 
structural and binding properties o f the peptide complex on the cell surface. This 
paper is organised as follows: the next section introduces the model, and explains the 
underlying details o f both physical and shape space. The third section presents the 
results and explores the role o f key model parameters. Finally, the last section is a 
discussion of the implications of the work.1

The model

The shape space formalism was introduced by Perelson and Oster (1979) as a way 
to represent antibody-antigen binding dynamics. Further work refined this model, 
notably de Boer et al. (1992) and Smith et al. (1997). In this paper, we extend the 
formalism to model CTL and APC diversity and immunodominance, as well as to 
show how strong and weak agonists can be modelled and analysed. In shape space, 
we are primarily interested in phenotype repertoire distribution and its differentia­
tion. For simplicity, assume that the features which govern the binding of the CTL 
receptor and APC, can be represented by N  integer parameters. If the N  parameters 
are combined into a vector, the p h en o typ e  for each CTL and APC can be considered 
as points within an TV-dimensional Euclidean space o f length L s. Cells o f the same 
phenotype have equal shape space vectors, and reside at the same location in shape 
space. Denoting CTL and APC phenotype vectors as c and a, respectively, we 
further develop shape space as follows: Surrounding each c is a disc o f radius r.2 Any 
a located within this disc will be subject to a clearance pressure inversely 
proportional to the distance (d) between the c and a in shape space (d  =  ||c — a||). 
A strong agonist is one for which d  -> 0, an increasingly weak agonist is one where 
d  -> r, while for a null compound d >  r. Every c will have a set o f agonist APC 
phenotypes, A c, where \A C\ >  0. Conversely, every a belongs to a t least one A c (if this 
were not the case, then some a would remain undetected indefinitely). It is axiomatic 
that shape space is always completely covered. That is to say, with n  CTL phenotypes 
and N  =  2:

With the same dimensionality o f (1), this leads to rmax, the fixed upper-bound o f r.

0)

(2 )

A copy of the source code is available for download at http://www.computing.dcu.ie/~jburns/ 
2Clearly, with N  — 2, the area of this disc is n r .

http://www.computing.dcu.ie/~jburns/
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Table 1. Shape space subpopulation invariants.

Time Invariant

0
0 < t <300
300

CTLT> 0 
0 <  CTL+ < CTLT 
CTL~ > 0

CTL+= 0 
CTL~^CTL+ 
CTL+> 0

APC+> 0 
APC¥> 0
APĈ  ->0

Cross-reactivity, the probability that a CTL will bind to an APC, is denoted by p, 
and calculated as p  =  r / r msx. Cross-reactivity is a system-wide parameter in shape 
space with the following effect: increasing cross-reactivity results in decreasing 
specificity, in turn this causes lower stimulation to the CTL during clonal expansion. 
Below the affinity threshold (d  <  r), the stimulation rate S r, used during the clonal 
expansion phase is calculated as

At the start o f each simulation, shape space is characterised by two (non-zero) 
subpopulations: C T L ~  and A P C + - representing the number of precursor cytotoxic 
lymphocyte and active infected antigen-presenting cell phenotypes, respectively. As 
time progresses, a further subpopulation emerges: C T L +, representing activated 
cytotoxic lymphocyte phenotypes. The C T L + subpopulation is recruited from the 
available pool o f C T L ~ .  The process by which naive cytotoxic lymphocytes are 
stimulated to become activated cytotoxic lymphocytes occurs ( C T L ~ ^ C T L +) is 
described later in this section. In a healthy individual, the typical clearance rate of 
infected antigen-presenting cells from the lymphatic system is o f the order of 3-5 
days. At the end o f primary response, the subpopulation of infected antigen- 
presenting cells will tend to be eliminated (.A P C + —> 0). As the thymus ensures a 
supply of mature cytotoxic lymphocyte precursor cells into the lymphatic system, 
our model follows this by ensuring that a non-zero naive cytotoxic lymphocyte 
subpopulation exists at all times (C T L ~  >  0). Finally, to support secondary immune 
response,3 there is always some non-zero subpopulation o f activated cytotoxic 
lymphocytes ( C T L + >  0). These shape space subpopulation invariants are sum­
marised in Table 1.

The phenomenon whereby a preferred subset o f the general C T L  population is 
stimulated to proliferate into armed effectors is known as im m unodom inance  
(Yewdell and Bennink, 1999). A stronger im m unogenic  viral peptide stimulates a 
stronger CTL response, which in turn down-regulates the infected antigen-presenting 
population level. In our model, immunodominance arises as a consequence of 
competition between CTL responses for antigenic stimulation. In shape space, 
immunodominance is restricted to the C T L + subpopulation only. The concentration

d  =  0,
0 > d  < r.

(3)

3And, as a consequence, immunological memory.
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and distribution within this subpopulation (discussed in Section 3) is o f particular 
interest, as we see correlation between disease clearance rates and p. A C T L + 
distribution pattern characterised by low concentration but broad activation, proves 
to be significantly advantageous in obtaining healthy clearance rates o f infected 
antigen-presenting cells. The dynamics o f the lymphatic compartment (referred to 
here as p h ysica l space) are modelled by way of a square cellular automaton lattice 
(Wolfram, 2001) of finite length, observing periodic boundary conditions. Within 
physical space, cytotoxic lymphocytes constantly recirculate, sampling their adjacent 
neighbours in order to detect the presence o f infected antigen-presenting cells. The 
state of the lattice over time is simply a sequence o f random variables x(0), x (1)..., x w 
defined on a finite space %. The sequence is a M a rko v  chain  (Liu, 2001) as the value of 
x (,+ 1) is dependent on its history only through its recent past x w . We define an 
update algorithm U  which is conditionally applied to each selected location in the 
lattice depending on the location occupant type-at each time step x. Each location is 
sampled for update following a uniform distribution. For this reason, the update 
sampling step is called a M o n te  Carlo  time step. Each location occupant can be 
one of three mutually exclusive types: (i) naive cytotoxic lymphocyte precursor,
(ii) activated cytotoxic lymphocyte, and (iii) active infected antigen-presenting cell. 
Following shape space notation (Table 1), these entities will be referred to as c tl~~, 
c tl+ and apc+, respectively (for clarity, lattice sites are here denoted with one 
subscript). An instance o f these entities at location i determines the subscript (for 
example, c t l j  is the cytotoxic lymphocyte precursor at position i on the lattice). 
Additionally, we define two further substates which have relevance in physical space: 
proliferation (★) and death  (•) . The set o f state transitions for a lattice cell at 
position i is as follows:

(1) c tly  c t l f*
(2) c t l f*  — c tt[
(3) c t l f  — c t l f
(4) apc'l —>• apcf*

At each Monte Carlo time step, U  is repeatedly applied to the lattice such that the 
coverage degree $  (the fraction of non-duplicate locations selected for update at each 
Monte Carlo time step) is in the range 0.99 < <D < 1. This reduces the effect o f the 
pseudo-random number generator as a source o f errors from the simulation. Each 
simulation is terminated when r =  300, or 6.25 days o f simulation time has elapsed. 
This ensures that the full duration o f the primary immune response is captured. On 
the lattice, each immune cell Cj has two neighbourhoods: an inner and an outer, 
denoted 0t\ and respectively, with \&t\\ =  8 and \0to i =  16 (with radius 1 and 2, 
respectively). As part o f the update algorithm U, each Cj recirculates within the 
physical space, implemented as follows: first, 0t\ is examined in order to locate an 
unoccupied position into which the immune cell may move. If an empty cell is 
located within C\ will move into it with probability P(inner) =  0.9. If no space is 
available within 0L\, 8%0 is searched for a free space. I f a free space is located in 2̂0, C; 
will move into it with probability P (outer) =  0.7. If both and P/tQ are occupied,
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then no movement of cx will occur in this timestep. If a free location is found in 0 tx or 
® 0, the new coordinates o f cx are calculated and the cell is moved. The values chosen 
for P(inner) and P (outer) are subjective and reflect the concept of cell motion into 
p ro x im a te  and nearby  space, respectively. In the results presented here, both 
parameters are kept constant. U  is summarised as Algorithm 1.

Algorithm 1 Update algorithm U, applied at each time step t .

1: Repeat
2: Randomly select a non-empty cell Cj
3: if Cj is a c t l j  then
4: for w =  0 to |i?;| do
5: if cell cw is a apc+ and (|cvv — c,-| < p  {in shape space}) then
6: apc+  := a pc \*  {mark cw as dead}
7: c t l j  := c t l f  * { a  enters the clonal expansion phase}
8: break  {out o f the for-loop}
9: end if
1 0 : end for
11: else if c, is a c t l f*  then
12: for w  =  0 to \Rj\ and  no free space in R { do
13: if cell cw =  0 then
14: c tl'l*  := c t l f *  {copy c;- into the free cell cw (clonal expansion)}
15: b reak  {out o f  the for-loop}
16: end if
17: end for
18: for w =  0 to \R a\ and no free space in Rj do
19: if cell cw =  0 then
20: := c t^ t*  {c°Py ci into the free ceU c w (clonal expansion)}
21: break  {out o f the for-loop}
2 2 : end if
23: end for
24: end if
25: if cell cw in i?,- or R 0 — 0 then
26: Cji—> cw {recirculate the cell c,- to cw)
27: end if
28: if age c, =  300 and c,- is a c t l \  then
29: c t l f  := c t l f  * {activated cells switch off at z =  300 (apoptosis)}
30: end if
31: until 0  =  0.99 {repeat until coverage reaches 99%}
32: t := t +  1 {increment the clock}

The combination of physical and shape space as introduced above, provides a 
h yb rid  model. Each process acts within physical, shape or hybrid space and each is 
defined as follows:



J. Burns, H .J. Ruskin / Theory in Biosciences 123 (2004) 181-193 187

(1) P hysica l space
(a) Each ctl~  and a p c + recirculate inside the physical space following the motion 

rules o f U. The c tV  are actively sensing the local environment for sign of 
infected a p c + .

(b) Once a c tV  and a p c + have come into contact, the simulation transfers to 
shape space, in the sense that the following sequence of steps is initiated.

(2) Shape space
(a) The shape space distance between the two entities is calculated
(b) If recognition occurs, clonal expansion  rate is calculated (S ,). If not, the ctl~  

returns to its recirculation process (la).
(c) Immunodominance emerges as C T L ~ - ^ C T L + recruitment starts. At this 

point, the following occurs in both physical and shape space.
(3) H y b r id  space

(a) The population concentration increases for each C TL  phenotype stimulated, 
giving rise, after x time steps to a concentration level C T L f  =  e0036T‘sV.

(b) Infected antigen-presenting cells are removed from the physical space system 
by recirculating activated effector CTL cells.

(c) At t >  300, effector cells undergo programmed death (apoptosis) and the 
primary immune response comes to an end.

Results

In the results presented here, we analyse the dynamics o f response when the 
immune system is challenged by single strain pathogens. Therefore, the shape space 
A P C /  distribution is confined to one single point in space (and is shown by the 
asterisk, *). A multiple strain model was previously presented (Burns and Ruskin, 
2003b). At time x =  0, apc+ =  100, representing infected antigen-presenting cells 
entering the physical space, and in turn, triggering primary response. In shape space, 
C T L ~  are distributed across 103 locations ensuring that the coverage requirement of 
Eq. (1) is always met. At the beginning of each simulation, shape space is configured 
by uniformly distributing the C T L ~  and A P C + subpopulations. Fig. 1 shows a 
typical initial shape space at time x =  0 (for simplification, we show the C T L ~  in all 
cases, as a smaller point compared to both the A P C + and C T L +). Two primary 
conditions determine how the initial shape space distribution will evolve: (i) apc+ and 
ctl~  must come into contact in physical space (m o b ility ) and, (ii) shape space distance 
d  <  r. The conditions controlling (i) are not altered during simulation executions 
here. With respect to (ii), although p may be assigned any value in the continuous 
range 0 <  p <  1, it is here restricted to six representative values, in the set:

m  =  {0.928, 0.6, 0.39, 0.25, 0.164, 0.107}. (4)

Setting p =  1 would represent m a x im a l recognition and binding behaviour such that 
every A P C  would bind to every C T L . This case would rarely arise, as such cross­
reactive C T L  would represent a threat to immune health and may give rise to
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Fig. 1. T w o-dim ensional shape space show ing the initial distribution o f  CTL~ and A P C + 
cells (circle and asterisk, respectively) at time t  =  0. A t this tim e, one antigen-presenting cell is 
show n, and no recruitm ent from  CTLT-^CTL+ has occurred. B iologically, this state 
represents the poin t at w hich an antigen has been taken up by an antigen-presenting cell (such  
as a dendritic cell), but has n o t yet been detected by the recirculating cytotoxic lym phocytes in  
the physical space.

autoimmune disease and is therefore excluded from the simulation. Likewise, p =  0 
implies an immune system in which no cross-reactivity exists, and again the case is 
excluded from the simulation. We are interested in analysing the effect in shape space 
and physical space of declining cross-reactivity, from four perspectives:

(1) Clearance rate o f the apc+ subpopulation.
(2) Density levels of C T L + and c tl+.
(3) Activation distribution pattern as the C T L + subpopulation is recruited from the 

C T L ~  pool.
(4) Efficiency o f response: the measure by which the apc+ challenge is responded to 

in proportion  to the threat posed, and that immune resources are not spent 
unnecessarily.

Each simulation (5?i) is repeated 30 times, and the results are averaged. Shape 
space is confined to 2.5 x 103 positions while physical space is modelled as a two- 
dimensional array with 1 x 104 positions. These small sizes represent exploratory 
analysis with modest computational resources (single CPU) and should clearly be 
extended. A more numerically realistic size would require a physical space capable of 
modelling some 109 lymphocytes. Representing a high-order system in terms of a 
low-order one can result in finite size effects, with particular impact when the model 
exhibits first- or second- order phase transitions (Landau and Binder, 2000). In the 
results which follow, we believe the consequences o f finite size effects are not 
immediately relevant. With biological practice, most in vitro experiments act on 
numerically reduced cell populations, and the results are taken merely as indications 
of possible in vivo outcome. Fig. 2 shows the activation distribution pattern in shape 
space for each value drawn from 0t, at the end of the simulation (t =  300), with (a) to
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Fig. 2. Six shape space activation  patterns at tim e t  =  300, show ing the effect o f  declining p 
w ith values drawn from  ^ i„ .j6 .In (a )^ ? i =  0.928, A P C + — 0 (indicating full eradication from  
the physical space), represented as a d iam ond (o) to indicate the location  it once  
occupied. In (b) =  0.6, (c) # 3 =  0.39, (d ) * 2 =  0.25, (e) =  0.164, a n d (f ) ^ 2 =  0.107.
In (b ) — (f), A PC + >  0, represented by an asterisk (* )  indicating incom plete physical space 
eradication (apc+ >  0 ).
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(f) representing 0t \  to respectively (as in physical space, periodic boundary 
conditions are enforced in shape space). As cross-reactivity declines, average distance 
of C T L + from the initial point of stimulation (A P C +) declines consistently and this 
is certainly in keeping with expectations. It is important to observe that the 
concentration of C T L + in (a) and (b) is almost identical (» 1 0 0 ). At first this may 
seem paradoxical -  after all -  if one assumes that a highly cross-reactive T-cell 
repertoire would become activated by every infected antigen-presenting cell it comes 
into contact with -  this should result in greater T repertoire activation and, 
conversely, a reduction in cross-reactivity o f some 35% must surely reduce the 
concentration o f activated immune lymphocytes. The explanation becomes clear 
when the coverage constraint o f Eq. (1) is considered: in the range ^ 1,2 the highly 
mobile nature o f  the recirculating physical space cells ensures that su fficien t A P C + 
and C T L + come into contact, which in turn compensates for the declining cross­
reactivity. This is intuitive: if the sampling rate of the immune lymphocytes of their 
environment is high enough then, theoretically, a p o f ju s t  greater than  0 would be 
sufficient to sustain normal clearance rates. However, realistically, such a sampling 
rate would be beyond the capability o f the immune lymphocytes. In the results 
shown in 2(a)-(e), the reduction in absolute value of p is not accompanied by a 
commensurate reduction in activation levels. This supports the assertion that 
recirculation rates are high enough to ensure significant levels of lymphocyte 
activation, and as such, there is non-linear relationship between p and activation 
concentration. As can be seen in 2(c)-(f), the narrowing cross-reactivity causes a 
well-defined clustering of activated lymphocytes in the neighbourhood of the A P C +. 
When the activation pattern for 01^ is examined (Fig. 2(f)), it is clear that the 
concentration of C T L + has dropped significantly -  to ~  12 (a decline of 88%). At 
this point, the recirculation rate is not sufficiently high enough to compensate for 
declining cross-reactivity, and as a result, we observe a commensurate decline in 
activation levels. Next, the model is analysed from the hybrid view point, specifically 
by examining the concentration levels o f c tl+ in physical space by way of o f shape 
space C T L + (phenotypes). These data are shown in Fig. 3(a), which provides insight 
into how the activation patterns observed in shape space are related in terms of 
concentration. Notice in 3(a) that there are two main C T L + patterns: (i) low level —  
representing ^ 1,2,3, and (ii) high level responses —  representing ^ 4,5,6- Low cross­
reactivity has resulted in a consistently lower overall C T L + subpopulation at the end 
of clonal expansion, and conversely, higher cross-reactivity has resulted in greater 
immune resources being generated. An immune response cannot a p rio ri know the 
numerical strength of each pathogenic challenge. This leads to a risk and tradeoff in 
terms of resources allocated and time spent in clonal expansion:enough effector cells 
must be activated at the end o f the process to effect clearance o f apc+, but a highly 
agonist challenge could result in over-production of effectors. Heuristically, at the 
end of clonal expansion, we should see a population o f c tl+ in proportion  to the 
initial cipc+ threat. We thus consider the question of immune response in proportion 
to threat. Observable from Fig. 2 is that although y1>2 resulted in the broadest4 shape

4Again, measured as the mean distance of CTL+ from the APC+.
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(a) TCR genotype

Fig. 3. (a) Concentration and distribution o f  ctV across the 10 m ost active shape 
space phenotypes, and (b) the clearance rate for apc+ removal from the physical space at 
the end o f the primary response (some 6.25 days). In both figures, 0t\ — o, 3%2 — A , ^3  =  + ,  
^4 = x, ^5 = o, - *.

space C T L + activation distribution, physical space concentration levels are 
signifficantly more in proportion to the infected antigen challenge (APC+ =  102) 
than the other parameter values of 0t. In fact, the immunodominant concentration 
level o f  the most active CTL for is 163 compared to 388 for and 442 for $(,. 
Thus, low cross-reactive configurations expend less immune resources when 
mounting a response than do the highly cross-reactive configurations. Consequently, 
the clonal expansion phase for is shorter than for ^ 4,5,6- In the case o f a rapidly 
proliferating viral challenge (such as influenza) this shorter clonal expansion phase 
may save valuable time. Additionally, lower levels o f c tl+ reduces the risk 
of autoimmune disease or, for that matter, o f allergic reaction. With respect to 
Fig. 3(b), an interesting picture emerges. This figure shows the clearance rate of 
infected apc+ from the physical space over the duration o f the primary response. As 
cross-reactivity declines, the rate at which apc+ is cleared varies considerably: for 
both 0t \  and 3 ti  a full clearance of apc+ is achieved at the end o f primary response -  
with 0 l\ clearing more quickly. A further notable feature arises when comparing the 
clearance rates of and in shape space, (Fig. 2(a) and (b)), the activation levels 
are almost identical, significantly, the main difference is the pattern of clustering 
(a broad spread as opposed to a more focused one) which has emerged around the 
central stimulation point o f the initial A P C + infection. This implies that there is a 
qualitative difference between distribution patterns: a broad distribution with high 
mean distance from the centre results in greater efficiency in A P C + clearance than 
does one with smaller mean distance from the centre. Further, we see that although 
high cross-reactivity results in large C T L + production (Fig. 3(a)), clearance rates still 
degrade from ^ 4,5,6 leading to an immune response which, although marked by high 
lymphocyte production, is, in effect, wasting the lymphocyte clones produced, as 
almost no A P C + are cleared (Fig. 3(a) -  square, triangle and circle, respectively).

100-"
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These wasted resources represent a double threat, in that (i) valuable response time is 
wasted in clonal expansion for a largely ineffective activated lymphocyte pool, and
(ii) the excessive c tl+ represents wasted resources in cell generation.

The appearance o f immunodominance is evident at the end o f primary response. 
At this time (t =  300), with the clonal expansion phase complete, the concentration 
and distribution of c tl+ and C T L + (Fig. 3(a)) represents preferentially stimulated 
armed effectors. In ^4 and 90% o f the immune response is concentrated against 
one A P C + phenotype. A  response o f this nature suffers from a number of 
deficiencies: in the case o f mutating pathogen (in effect, the m igration  o f the 
phenotype from one shape space position to another), a high concentration response 
targeted against only one or a few MHC:peptide complexes could potentially fail to 
respond in sufficient time in order to eliminate the mutated challenge. Where the 
pathogen is also proliferating rapidly, such as in the case o f HIV (Ramratnam et al., 
1999), the time period during which the it remains undetected may be crucial in 
effecting the course of the infection. A high concentration response risks wasting 
immune resources a large fraction o f which may be unnecessary. This reaction type 
may even result in tissue damage as a result o f cell-mediated cytotoxicity or graft 
rejection. With M \ and ^2  the response pattern is different (with findings in 
agreement with expected response patterns shown in Fig. 2): the response to single 
pathogen strain results in over 100 distinct CTL phenotypes (only the 10 most active 
are shown) being activated. Spreading the response across a broad range of CTL 
phenotypes ensures that physical space sampling rate is not a decisive factor in 
ensuring an effective response.

Discussion and Conclusions

In this paper we have presented a novel method to study the emergence and 
dynamics of diversity in a computational immune simulation. Our model integrates 
two formalisms, shape space and physical space, which are usually separately 
addressed. The combination allows us to show how localised dynamics effect global 
condition, and how global condition in turn feeds information back down to local 
physical space. We believe this model provides a basis for further experiment. In 
particular, our model permits investigation of the following properties: (i) shape 
space activation depends on cross-reactivity (ii) clearance rates are dependent on 
activation distribution (distance from shape space locus of the A P C +) (iii) high 
cross-reactivity is more effcient in clearance and effort spent (iv) increased 
recirculation rates can compensate to some extent for declining cross-reactivity. 
Notwithstanding the fact that shape space initially attracted considerable criticism 
from Carneiro and Stewart (1994) (a response to which may be found in Burns and 
Ruskin (2003a)), we suggest two experimentally testable hypotheses:

(1) Immunisation is likely to be more effective when a spread o f memory effector 
cells are activated. This may require several stages o f  stimulation of the immune 
response with genetically varied strains o f the same viral pathogen. Oxenius et al.
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(2001) has identified mutations in peptide-MHC antigens that improve T-cell 
recognition without altering specificity. These mutant antigens are able to target 
a specific T-cell and deliver an enhanced activation signal. This, in turn, can lead 
to up to a 40-fold increase in effector function (for example, cytokine 
production). Such mutant antigens will be o f use for boosting immune responses 
to specific T-cell antigens. It has also been shown that T-cells respond to lower 
concentrations of the mutant antigen.

(2) An increase in cross-reactivity can contribute to effective immune response. 
Brehm et al. (2002) have shown that it is possible to stimulate such cross­
reactivity in vitro, and that the resulting T-cell activation pattern is beneficial in 
controlling heterologour5 viruses.

The model presented here leads to the following conclusions: preferred types of 
activation patterns in shape space lead to more efficient and effective physical space 
clearance rates than do others. As the mean distance between C T L + and A P C + 
declines (broadly regardless o f  the m ean activa tion  concentra tion), the clearance of 
antigenic from the physical space model becomes progressively less efficient. In 
agreement with the clinical findings o f both Mason (1998) and van den Berg et al. 
(2001), the shape space o f our model exhibits high cross-reactivity which results in an 
immunodominance configuration which enhances antigen clearance from the 
physical space.
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A b s t r a c t .  W e p resen t a  s to c h a s t ic  ce llu la r  a u to m a ta  m o d e l th a t  a l­
lo w s u s  to  s tu d y  b o th  lo c a liz e d  a n d  g en era lized  a sp e c ts  o f  th e  im m u n e  
s y s te m  (IS ). W e sh o w  h o w  cr it ic a l v a lu e s  for T  C ell R e c e p to r  (T C R )  
a ffin ity  a n d  c r o ss -r e a c tiv ity  (p) c a n  d e te r m in e  th e  cou rse  o f  a  v ira l in ­
fe c tio n . T h e  m o d e l p r e se n te d  h ere  offers in s ig h t in to  th e  w id e ly  va ry in g  
p a th o lo g y  o f  in fe c tio u s  a g e n ts  a cro ss  in d iv id u a ls . A d d itio n a lly , our m o d e l 
p o in ts  to  w a y s in  w h ich  a u to -im m u n e  d ise a se  can  o ccu r. W e sh o w  th a t  
b y  in te g r a tin g  m o d e ls  o f  p h y s ic a l sp a c e  a n d  sh a p e  sp a ce  w e ca n  a n a ly z e  
im m u n e  rep erto ire  e v o lu tio n  a n d  d is tr ib u tio n  over var iou s t im e  p er io d s  
ra n g in g  from  a  few  d a y s  up to  th r e e  years.

1 I n t r o d u c t io n

One of the questions that has long exercised immunological researchers is why 
different people (or, more precisely, their immune system s) respond differently to 
the same viral or antigen challenge. This question is exemplified by the pathology  
of the Human Immune Virus (HIV). In particular, the progression of the HIV 
infection from inital exposure to the onset of full blown AIDS (Acquired Immune 
Deficiency Syndrome) is known to occur over tim e (i), w ith range 2 <  t  <  20 
years [1]. Computer models that successfully reproduce the behaviour of the HIV 
pathogen are extrem ely good at replicating the localized intra- and inter- cellular 
behaviour over a certain period of tim e and space. In particular, the affect of 
viral m utation on the immune response has been demonstrated by [2] and [10] 
while the work of [4] and [5] have shown, at least in outline, how bit-string models 
can represent the state of the imm une repertoire. However, to  our knowledge, 
there are no computer models that successfully address the issue of why it is 
that different immune system s respond differently to the same viral exposure. It 
follows from this that in addition to m odelling intra-cellular localized interaction, 
there is a challenge to find a way to express the generalized distinction that exists 
between the immune system s of different people. In this paper we postulate that 
the course of an infection is crucially dependent on the density and distribution  
of the immune repertoire, and furthermore, that T cell receptor cross-reactivity 
is a crucial factor in determining the success or otherwise of the immune response 
to pathogen challenge.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 75-84, 2003.
©  Springer-Verlag Berlin Heidelberg 2003
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2 M o d e l

The synthesis of two distinct approaches is the key to our model. Firstly, we 
model the physical space of the secondary immune organs (such as the lymph

w ith periodic boundary conditions. This physical space m odel is the location in 
which host invading intra-cellular pathogens, having been engulfed by antigen 
presentation (APC) cells, are presented on the cell surface to naive recirculating 
cytotoxic T  lym phocyte (CTL) cells. Upon recognition of a specific antigen, 
naive lym phocytes stop recirculating and undergo cell division. The process of 
cell division is lim ited to clones of the original lym phocyte that recognized the 
viral pathogen (this original lym phocyte is known as a C T L -p r e c u r s o r ) , and 
all cloned daughters inherit the specific T  cell receptor that was successful in 
this recognition process. The daughters of the CTL-precursor cells will normally 
divide at a rate of 2-4 every 24 hours and this process continues for some 3-5 
days [9]. This process is known as c lo n a l e x p a n s io n , and forms the basis of our 
physical space model. In our model, we assume that all antigen presentation 
cells carry the major histocom patibility com plex (MHC) class I molecule which 
is required by CTL-precursors in order to produce armed effector CTL cells at 
the end of the clonal expansion process

The second component to our m odel is an im plementation and extension of 
the shape space formalism originally presented by [7]. We utilize shape space 
to  model the density and distribution of the T Cell Receptor (TCR) repertoire, 
and to  lend analytical insight into the critical nature of the measure of cross­
reactivity, which we denote as p. In our model, shape space is a dynamic and 
evolving TV-dimensional Euclidean space that contains one vector u for every 
immune system  CTL-p genotype, and one vector v for every pathogen genotype. 
Around each v in shape space is a disc of influence of radius p. Any u falling 
inside this disc of influence is subject to some pressure. That is to say, the 
pathogen will be removed from the physical space system  w ith some probability 
P ( X ) ,  inversely proportional to the distance between v and u in shape space. If 
the distance d  between the two points exceeds the critcal value p, then there is 
no CTL pressure on the pathogen, and no affinity or binding takes place. The 
process is summarized in equation (1) and equation (2)

be evaluated if and only if there is some contact between an A PC  and a CTL- 
p within the physical space model. Contact in this case means that within the 
physical space lattice the cells representing the CTL-p and the APC are adjacent

nodes or spleen) by way of two-dimensional stochastic cellular autom aton [6]

N

(1)

P ( X ) (2)

It should be emphasized at this point that equation (1) and equation (2) will
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- or are nearest neighbours. If equation (2) does result in the removal of the 
APC from the physical space, we use P ( X ) as the s t im u la t io n  rate ( S )  for the 
exponential growth during the clonal expansion phase ( S  =  P ) .  Therefore, the 
total number of activated CTL daughter clones which the ?th CTL-p gives rise 

t 0 > ( T c t l )  i s  S i v e n  b y :

T'ctl =  e°'°36r5 (3)
where the power of e depends on three parameters, r , the duration of the ex­
pansion phase, S ,  the stim ulation rate (dependent on the distance between the 
APC and CTL-p in shape space), and a constant factor 0.036. At the end of 
the clonal expansion phase, when r  192 (representing some four days of ac­
tual tim e) and where S  =  1, we see some 1000 clones have been produced. This 
is what we would expect in a healthy immune system  [9]. Clearly, the effect on 
Tctl w^en S decline is noticeable, for exam ple, for a case with weak stimulation, 
S  =  0.3, T 1c t l  «  8.

Our physical space model is implemented as a discrete two-dimensional array 
of C-language pointers to data structures. Each member of the array contains a 
pointer to i t ’s own structure (even if the structure is logically em pty). In turn, 
each structure contains a set of information which is summarized in Table 1. 
At each tim e step, we randomly select locations on the array to update. We 
ensure full coverage of the array by using a member of the structure to indicate 
that this array element has been updated. W hen 99% of the array has been 
visited, we reset the visited flag on each array member, and increment the clock 
counter by one, thus indicating we have moved on to tim e r + 1. Our shape space 
model is im plem ented as a one-dimensional array (of length 2). As both APC  
and CTL-p cells have a representation in shape space, this value is again carried 
by each of the structures in the physical space array. In Table 1, the location of 
a given APC or CTL-p in shape space is referred to as sscoord. We implement 
motion on the lattice merely by swapping pointer references (thus, no expensive 
in-memory copy activities are required). For example, assume an infected APC  
cell is located at position Lj, and at position L {+ 1 there is an unoccupied cell. 
We simply swap the pointers stored in Lj and L i+ \  with each other, and the 
move is complete. For further treatm ent of physical space models see [3]. For 
other models of shape space, see [12].

2.1 Model Param eters

Although the m odel presented here is capable of supporting m ost of the known 
entities of the immune system , we restrict our inital study of the immune state to 
antigen presentation cells (A PC ), cytotoxic lym phocyte precursor (CTL-p) cells, 
and activated cytotoxic lym phocyte (CTL) cells. We justify the exclusion of other 
entities (such as Th cells, B cells and cytokines) by the fact that it is through 
activation and differentiation of CTL-p cells that the immune repertoire is known 
to evolve when the immune system  is faced w ith an intra-cellular pathogenic 
challenge, such as the Human Immune Virus (HIV). W ithin our physical space 
model, we define L ps as the length of one side of the square lattice, D cti - P as
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T a b le  1 . D a ta  s tr u c tu r e  m a in ta in ed  a t ea ch  p h y s ic a l sp a ce  array m em b er

D a ta  ty p e P a ra m eter D e fin itio n
u n sig n ed  ch ar act C ell ty p e
u n sig n ed  ch ar s ta te C ell s ta te
u n sig n ed  ch ar sscoord[] L o c a tio n  o f  ce ll g e n o ty p e  in  sh a p e  sp a ce
u n s ig n ed  in t tick s T h e  age  o f  th is  cell
u n s ig n ed  in t m a x -t ic k s T h e  m a x im u m  a g e  o f  th is  ce ll
d o u b le p ro lif-ra te T h e  ra te  a t  w h ich  th is  ce ll p ro lifera tes  (0 ..1 )
u n sig n ed  in t la s t -u p d a te d T im e s te p  w h e n  ce ll w as la st v is ite d
u n s ig n ed  in t u p d a te d -c o u n t cell v is ite d  flag
u n sig n ed  in t id U n iq u e  ID  for th is  ce ll

the density of the CTL-p cells, D apc as the density of the A P C ’s. During each of 
the model simulation runs, we keep all parameters other than p  constant. The 
largest value of p  is known as pm ax , the derivation of which is shown in equation
(4).

We define p m ax as a measure of the m a x im u m  cross-reactivity of a given genotype 
in shape space. Setting p  =  pm ax  would be equivalent to having e v ery  CTL-p 
cross-react w ith every APC . Although we do not explore this configuration fur­
ther, it is worth noting that this configuration could represent a clinical condition  
known as auto-imm une disease (wherein the immune system  attacks both itself 
and invading pathogens w ithout discretion). Auto-immune disease is a relatively 
rare condition ([13]) and will be examined in further work. As we are initially  
interested in observing the behaviour of the m odel as p  —> pmax-, we express the 
ratio of p  to pm ax  as p , which takes values in the range A  =  {0 .5 ,0 .29 , 0.10}. A  
represents one possible set of values for p  in order of decreasing cross-reactivity. 
We could have chosen any set of values for p  that follow 0 <  p  <  1. From equa­
tion (4), the value for p m ax in °ur m odel is «  28. The model parameter initial 
values are summarized in Table 2.

3 S h a p e  S p ace

The shape space idea, as an underpinning of theoretical immunology, was intro­
duced by [7] in 1979, but has attracted some criticism, notably from [16]. It is 
instructional at this point to review the basis of this important formalism and 
to  address the comments of [16] . We will also justify our utilization of shape 
space while highlighting potential shortcomings.

In shape space, the antigenic determinant for a given antibody or antigen 
is an ^/-dim ensional vector consisting of values representing such parameters 
as geometric configuration (at the molecular level), electric charge and other

P m c
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T a b le  2 . T a b le  o f in it ia l  m o d e l p a ra m eters

P a r a m e te r  D e fin it io n In itia l V a lu e

D cti-p D e n s ity  o f  C T L -p recu rso rs 2 0 0 0

9 N u m b er  o f  g e n o ty p e  C T L  in  sh a p e  sp a ce 2 0 0 0

Dapc D e n s ity  o f  A P C 1 0 0

LpS L e n g th  o f  o n e  s id e  o f  p h y s ic a l sp a c e  sq u a re  la t t ic e  100
Lgs L e n g th  o f o n e  s id e  o f  sh a p e  sp a ce  sq u a re  la t t ic e 50
T N u m b e r  o f  t im e  s te p s  p er  s im u la tio n  run 300

pmax M a x . c r o ss -r e a c tiv ity  o f  sh a p e  sp a c e  g e n o ty p e pa 28
A R a n g e  o f  p {0 .5 , 0 .2 9 , 0 .1 }

complex chemical characteristics that are not postulated in [7] . According to 
this approach, not all elem ents of the iV-dimensional vector play an equal role 
in determining complementarity or match. Given an antibody vector Ab and 
an antigen vector Ag, if Ab = Ag then the two entities will bind absolutely. 
If we now assume that the A^-dimerisional vector represents a location in an 
A^-dimensional Euclidean space, then

||Ab -  Agj] = 0 (5)

means that Ab and Ag are c o in c id e n t  in the space (that is, they share the ex­
act same coordinates within the space), and this space is known as shape  space. 
Therefore, we can say that shape space is the space of all possible vectors each 
one representing a unique set of antigenic determinants (or shapes). One of the 
criticisms that [16] level at the above theory is that the function / ( Ab,Ag), 
which, according to [7], will determine the ‘distance’ (and hence, affinity) be­
tween Ab and Ag, must be highly irregular and discontinuous. This assertion is 
based on work by chemists which has shown that predicting affinity and bonding 
between two molecules is not simply a determ inistic issue of understanding the 
dynamics between the individual molecular constituents. However, [7] clearly 
comment towards the end of their paper that shape space does not n eed  to be 
uniform (that is, there does not have to be a uniform distribution of Ab vectors 
within Euclidean space). Therefore, /  does not need to be either continuous or 
regular. In fact, [7] offer a model for representing the probability of detecting  
antigens in a non-uniformly distributed shape space.

Further criticism of the shape space paradigm is the question of the value 
for N .  A lthough [16] insist the original value of 5 <  N  <  10 is too small (they  
suggest a value closer to N  =  20), they do not, in principle, question the the­
oretical foundation of representing antigenic determinants by a fixed, A^-sized 
set of parameters. The actual value for N  is clearly som ething that is system  
specific and may vary. In fact, [17] have shown how the presence of cytokine 
regulatory molecules crucially affects the dynamics of helper T  cell p o p u la t io n s .  

It is therefore plausible that the actual value and parameters of N  are not only 
dependent on the characteristics of Ab and Ag, but also of external and local­
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ized state information such as the density of cytokines. It seems reasonable to  
conclude that setting TV to  a fixed and relatively small number is sufficient to  
represent the parameters of antigenic determination.

Finally, to conclude this section, we address the specific utilization of the 
shape space paradigm w ithin the m odel presented in this paper. Firstly, we do 
not require or assume a continuous Ab distribution across our shape space. The 
probability that an A PC  will fall into a region for which equation (1) is not 
defined (and hence, not be under any CTL pressure) is given by

P ( X )  =  1 -  (6)
■L'ss

In our model we assume that shape space is populated by a uniform distribution  
of genotype CTL cells. It can be seen from equation (6) that p  is a critical 
parameter. Additionally, in a healthy immune system , equation (6) would always 
result in a value close to zero. Secondly, we extend the original shape space 
formalism by introducing a stim ulation rate which is inversely proportional to the 
distance as calculated using equation (1). This partially addresses the deficiencies 
in other shape space -based models, m ost notably that of [12]. Thirdly, with  
respect to the value for N ,  although we set N  =  2, this is by no means a hard 
parameter of our model. As N  represents the dim ensionality of the shape space, 
we should, in principal, set N  to  & value such that L ^ s —> oo (as the number 
of antigenic determ inants that might be presented to the immune system  is, 
essentially, infinite). For practical com putational purposes, such a space would 
require resources beyond current com puting boundaries available today. As the 
research presented here studies the affect of specific  pathogen detection and 
removal, our space needs only to accom odate antigenic variation for a specific 
strain, and thus N =  2 ,L^S = 2.5 x 103 is sufficient for our initial purposes.

4 R e s u l ts

Fig. 1 shows the state of three immune T C R  shape spaces at time r  =  300 
(where r  =  1 models 30 minutes of elapsed tim e), and Fig. 2 shows the den- 
stity of APC in the lym ph system  over tim e 0 <  r  <  300 for each of the three 
immune system  configurations. The only parameter altered across each of the 
three configurations is the ratio of p  , the values of which are drawn from A  (and 
are represented in the figures by the diamond, the circle and the square, respec­
tively). We notice, in Fig. 1, that the shape space has evolved into three quite 
different states. The first state can be classified as h ea lth y  in the sense that the 
clearance rate of APC from the lym ph system  is broadly in keeping w ith what 
is known to be the case clinically [9] (and represented here as the diamond in 
Fig. 2). We can see that the healthy shape space state can be characterized as 
a low affinity, low density configuration. This is in agreement w ith [8]. As the 
immune cross-reactivity declines (represented by the circle, Fig. 1 and 2) we see 
an apparently paradoxical condition in the shape space realization. That is, as
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promiscuity diminishes, it takes greater specificity (and hence, greater stim ula­
tion) in order to clear APC . In fact, we can see from Fig. 2 that a 90% clearance 
from the lymph system  takes some r  =  300 tim e steps. We conclude that the im­
mune system  configuration, with reduced cross-reactivity, is chronically unable 
to  clear all APC and is operating at a sub-optim al level. Finally, when we test 
the immune configuration at the lowest level of cross-reactivity (represented by 
the square) - we see a very strong and highly specific four receptor response in 
shape space. Having reduced promiscuity to its lowest level, the effect on APC  
clearance is conspicuous. From Fig. 2 we can see only a 10% APC removal from 
the lymph system  after some 6 days. It is clear that were this the immune system  
of a real person, it would be at the point of collapse, and hence could represent 
the onset of full-blown AIDS (wherein the patient dies by way of opportunistic 
infection).

F i g .  1 . Im m u n e rep er to ire  d e n s ity  a n d  d is tr ib u tio n  for 3 v a lu es  o f  p  d raw n  from  A , 
w ith  r  =  192. S h o w n  h ere  are th e  d e n s ity  lev e ls  for th e  t e n  m o st  d o m in a n t T C R  ty p e s  
in  sh a p e  sp ace . T h e  h e a lth y  s t a t e  o f  th e  s y s te m  (d ia m o n d ) is  a  low -affin ity , lo w  average  
d e n s ity  co n fig u ra tio n . A s  a ffin ity  in crea ses  a n d  p r o m isc u ity  d ec lin es , a  m ore sp ec ific  
an d  a c tiv e  rep erto ire  e v o lv e s . T h e  s ta te  rep resen ted  b y  th e  sq u are  is th e  le a s t  h ea lth y , 
an d  rep resen ts  a n  im m u n e  s y s te m  a t th e  p o in t  o f  fa ilu re .

5 D isc u ss io n

Our starting point for the experim ents presented here is to assume that the im­
mune repertoire has not been exposed to any prior pathogen. Hence, we do not 
model immunological memory or reinfection. Our objective has been to study  
how insight (into different IS evolutionary states) can be gained by integrating lo­
calized and generalized models of immune response. Informally, our theoretical
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F i g .  2 .  C lea ra n ce  ra te  o f  A P C ’s from  th e  ly m p h  n o d e  s y s te m  over a b o u t 6  d a y s  ( r  =  
3 0 0 ) for v a r io u s v a lu e s  o f  p  d ra w n  from  A . T h e  th r e e  d is t in c t  s ta te s  w h ich  h ave resu lted :  
h ea lth y , ch ro n ic  an d  fa ta l (d ia m o n d , c irc le  a n d  sq u are , r e sp e c tiv e ly ) . T h e se  s ta te s  sh ow  
th e  a ffect o f  d ecrea sin g  p o n  A P C  c lea ra n ce .

expectation is that by studying the evolution of shape space, we can demon­
strate how specific configurations of the repertoire occur. Following from this, 
we can also show one possible mechanism for the development of immunodomi- 
nance 1. W ith reference to  Fig. 1, we see that immunodominance becomes more 
pronounced as cross-reactivity declines. An immune system  w ith high levels of 
immunodominance gives rise to an inefficient detection and clearance regime. 
Therefore, when we exam ine the difference in infection outcom e (Fig. 2) we 
notice that a more strain-specific response results in poorer short-term disease 
detection and clearance. A lthough we have not modelled pathogenic m utation  
in this model, we can hypothesize that the repertoire configurations that have 
evolved might play a role in determining the dynamics of a virus mutation and 
immune clearance. We feel the model presented here is a sound basis for explor­
ing such issues in the future.

6 C o n c lu s io n

A model of the immune system  is presented which utilizes a new extension to 
the shape space formalism, and addresses - at least in part - some of the former 
criticisms. We argue for the value of a shape space formalism for modelling some 
aspects of the immune repertoire. We have presented initial results from the 
model that suggest that a low-affinity T cell receptor (TCR) space provides the

1 Im m u n o d o m in a n c e  is th e  p r o c e ss  b y  w h ich  a  sm a ll n u m b er  o f sp ec if ic  T C R ’s are  
r e p o n s ib le  for c lea r in g  an  a n tig e n  or v iru s
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m ost efficient APC removal. Our findings are in agreement w ith recent work 
presented by [8]. We have shown that, for all other model parameters being 
unchanged, reducing TCR promiscuity causes significantly different evolution of 
the shape space and correspondingly poorer APC removal. We hypothesize that 
p  (the cross-reactivity measure) is one of the most crucial general parameters 
w ithin the immune system . We have demonstrated, for one configuration of 
the model, results which are similar in signature to those which characterize 
the onset of AIDS. A major factor underlying the evolution of an individual’s 
immune system  (and its overall health) appears to be the role played by cross­
reactivity, p. For p < p crit (where p crit is crudely estim ated to be in the range 
0.29 <  p crit <  0.1), the immune system  is essentially undermined and faces 
almost imm ediate collapse. For more viable values of p  (0.5 <  p cru  <  0.29) the 
residual antigen cells are maintained at a limited levels in every case, with less 
than 100% effective clearance.
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Abstract

W e  present a hybrid stochastic cellular automaton compu­

tational model that allows us to study both localized and 

generalized aspects of the immune system. W e  introduce a 

new approach to model the dynamics of viral strain diver­

sity, detection and clearance. W e  see that as strain diversity 

decreases, the effectiveness of infected cell removal from 

the lymph system declines. W e  build on previous work to 

show how critical values for T  Cell Receptor affinity and 

cross-reactivity can also affect the course of a viral infec­

tion. The model presented here may offer some insight into 

the widely varying pathology of infectious agents across in­

dividuals.

KEY WORDS
Viral Strain Diversity, Cross-reactivity, Cellular Automata, 

Shape Space

1 Introduction

Many pathogens encountered by the immune system ex­

hibit some form of strain diversity. That is to say, once 

the pathogen has been taken up by an antigen presentation 

cell (APC), the M H C  class 11/peptide complex presented 

on the surface of the the A P C  may exhibit some form 

of structural variation across the genotype. These varia­

tions may emerge over a long time period, typically several 

years in the case of the influenza virus, contrasted to just 

a few days in the case of the Human Immune Virus (HIV)

[1]. Strain diversity within the influenza vims genotype is 

well understood, and world-wide strain variations are m o n ­

itored closely. However, there has been little attention paid 

to modelling the dynamics between viral strain diversity 

and T-Cell Receptor (TCR) cross-reactivity. Previously, 

w e  presented work on the dynamics of A P C  detection and 

clearance under various T C R  cross-reactive regimes ([2]). 

In this paper, we now extend our previous work to show 

how T C R  cross-reactivity and viral strain diversity can be 

modelled by way of an extension to the shape space for­

malism first introduced by [3]. Our model supports the 

findings of both [4] and [5] as well as providing further 

evidence against the theory of lock-and-key with respect

to viral and antigen detection. Our findings identify three 

critical ranges of viral strain diversity, representing healthy, 

chronic infected and fatal immune system states respec­

tively.

2 Model

The synthesis of two distinct approaches is the key to our 

model. Firstly, we model the physical space of the sec­

ondary immune organs (such as the lymph nodes or spleen) 

by way of two-dimensional stochastic cellular automaton

[10] with periodic boundary conditions. This physical 

space model is the location in which host invading intra­

cellular pathogens, which, having been engulfed by antigen 

presentation (APC) cells, are presented on the cell surface 

to naive recirculating cytotoxic T  lymphocyte (CTL) cells. 

Once the infected A P C  is detected, the process of clonal 

expansion [2], [11] ensues.

The second component to our model is an implemen­

tation and extension of the shape space formalism origi­

nally presented by [3], W e  utilize shape space to model 

the density and distribution of both T C R  and A P C  geno­

types. Shape space offers analytical insight into the critical 

nature of the measure of cross-reactivity, which we denote 

as p. In our model, shape space is a dynamic and evolving 
N -dimensional Euclidean space that contains one vector u 
for every immune system CTL-p genotype, and one vector 

v for every pathogen genotype. Around each v in shape 
space is a disc of influence of radius p. Any u falling inside 
this disc of influence is subject to some pressure. That is to 

say, the pathogen will be removed from the physical space 

system with some probability P{X), inversely proportional 
to the distance between v and u in shape space. If the dis­
tance d. between the two points exceeds the critical value 
p, then there is no C T L  pressure on the pathogen, and no 
affinity or binding takes place. The process is summarized 

in equation (1) and equation (2)

\

N
J 2 (V i-U i)2 (1)
¿= 1
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f 1 : d  =  0
: 0 > d  <  p (2)

I 0 : d  >  p

It should be emphasized at this point that equation (1) and 
equation (2) will be evaluated if and only if there is some 
contact between an APC and a CTL-p within the physi­
cal space model. Contact in this case means that within 
the physical space lattice the cells representing the CTL-p 
and the APC are adjacent - or are nearest neighbours. If 
equation (2) does result in the removal of the APC from the 
physical space, we use P ( X )  as the stim u la tio n  rate (5) for 
the exponential growth during the clonal expansion phase 
(S  =  P ). Therefore, the total number of activated CTL 
daughter clones which the ¿th CTL-p gives rise to, (T c t l ) 
is given by:

rpi _ tf0,036rS /o \
1 C T L  ~~ e  W

where the power of e depends on three parameters, r, the 
duration of the expansion phase, S .  the stimulation rate (de­
pendent on the distance between the APC and CTL-p in 
shape space), and a constant factor 0.036. At ihe end of the 
clonal expansion phase, when r  w 192 (representing some 
four days of actual time) and where S  =  1, we see some 
1000 clones have been produced. This is what we would 
expect in a healthy immune system 111]. Clearly, the effect 
on T'c t l  when S  declines is noticeable: for example, for a 
case with weak stimulation, 5  = 0.3, T q t l  k  8<

Our physical space model is implemented as a dis­
crete two-dimensional array of C-language pointers to data 
structures. Each member of the array contains a pointer to 
it’s own structure (even if the structure is logically empty). 
In turn, each structure contains a set of information which 
is summarized in Table 1. At each time step, we randomly 
select locations on the array to update. We ensure full cov­
erage of the array by using a member of the structure to 
indicate that this array element has been updated. When 
99% of the array has been visited, we reset the visited flag 
on each array member, and increment the clock counter by 
one, thus indicating we have moved on to time r  +  1. Our 
shape space model is implemented as a one-dimensional 
array (of length 2). As both APC and CTL-p cells have a 
representation in shape space, this value is again earned by 
each of the structures in the physical space array. In Table
1, the location of a given APC or CTL-p in shape space is 
referred to as sscoord. We implement motion on the lattice 
merely by swapping pointer references (thus, no expensive 
in-memory copy activities are required). For example, as­
sume an infected APC cell is located at position L i ,  and at 
position L {+i there is an unoccupied cell. We simply swap 
the poiniers stored in L i  and Li+1 with cach other, and the 
move is complete. For further treatment of physical space 
models see [2J, |6), |7] and 18] For other models of shape 
space, see [2] and [14].

Table 1. Data structure maintained at each physical space 
array member

Data type Parameter Definition
unsigned char act Cell type
unsigned char state Cell state
unsigned char sscoord[] Location of cell genotype 

in shape space
unsigned int ticks The age of this cell
unsigned int max-ticks The maximum age of this 

cell
double prolif-rate The rate at which this cell 

proliferates
unsigned int last-updated Time step when cell was 

last visited
unsigned int updated-count cell visited flag
unsigned int id Unique ID for this cell

2.1 Model Parameters

Although the model presented here is capable of supporting 
most of the known entities of the immune system, we re­
strict our inital study of the immune state to antigen presen­
tation cells (APC), cytotoxic lymphocyte precursor (CTL- 
p) cells, and activated cytotoxic lymphocyte (CTL) cells. 
We justify the exclusion of other entities (such as Th cells, 
B cells and cytokines) by the fact that it is through acti­
vation and differentiation of CTL-p cells that the immune 
repertoire is known to evolve when the immune system is 
faced with an intra-pathogen challenge, such as the Human 
Immune Virus (HIV). Within our physical space model, we 
define L ps as the length of one side of the square lattice, 
D ct i- p  as the density of the CTL-p cells, D apc as the den­
sity of the APC’s. During each of the model simulation 
runs, we keep all parameters other than p  constant. The 
largest value of p  is known as p m ax , the derivation of which 
is shown in equation (4).

We define p max as measure of the m axim um  cross­
reactivity of a given genotype in shape space. Setting 
p  =: pm ax would be equivalent to having every  CTL-p 
cross-react with every APC. Although we do not explore 
this configuration further, it is worth noting that this con­
figuration could represent one of two possible clinical con­
ditions -

1. Auto-immune disease - wherein the immune system 
attacks both itself and invading pathogens without dis­
cretion. Auto-immune disease is a relatively rare con­
dition ([15]) and will be examined in further work.

2. Negative selection - a condition under which any naive 
T-cells which express affinity to self-cells are deleted



Table 2. Table of initial model parameters

P a r a m e t e r D e f i n i t i o n I n i t i a l  V a l u e

&ctl~p D e n s i t y  o f  C T L - p 2000
e C T L  i n  s h a p e  s p a c e 2000
Dapc D e n s i t y  o f  A P C 100
LPs P h y s i c a l  s p a c e  l e n g t h  o f  o n e  s i d e 100
LSs S h a p e  s p a c e  l e n g t h  o f  o n e  s i d e 5 0

T N u m b e r  o f  t i m e  s t e p s  p e r  s i m u l a t i o n 3 0 0

Pmax M a x i m u m  c r o s s - r e a c t i v i t y «  2 8

Tl S e q u e n c e  o f  c r o s s - r e a c t i v i t y 2, 3 , . . . , 2 1 , 2 2

A R a n g e  o f  p n

M S t r a i n  D i v e r s i t y  D e n s i t y - D i s t r i b u t i o n 1 , 1 0 0 ; 2 , 5 0 ;  

4 , 2 5 ; 1 0 , 1 0 ;  

5 0 , 2 ;  1 0 0 , 1

from the repertoire prior to entering the blood recircu­
lation system

From equation (4), the value for p mnx in our model 
is ss 28. Table 2 summarizes additional model parameters. 
As we are initially interested in observing the behaviour of 
the model as p  -> p m „x , we express the ratio of p  to p max  
as p , which takes values from the set of A  =  ” . ,ra =
2,3,4...21,22. .4 represents one possible set ol values for 
p  in order of increasing cross-reactivity. We could have 
chosen any set of values for p  that follow 0 < p  <  1.

Strain diversity is represented in our shape space as 
follows. For each of the separate six models, we place 
into shape space the following per-m o d e l (comma sepa­
rated) densiiy-distributions: M i  =  1,100; M 2  =  2,50; 
M 3 =  4 ,25; M i  =  10,10; M b  =  50, 2; M e  =  100,1. 
In all models, the total number of infected APC’s initially 
iniroduced into the system is the same (100), and decreases 
monotonically with time, (as we do not model viral expan­
sion or reinlecLion), and il is the density-distribution rela­
tionship within shape space which is altered across models. 
In this way, we can exclude quantitative difference in APC 
density as a factor in the disease progression and outcome. 
We consider the area enclosed by shape space to lie the set 
of all possible strain types for a given viral genotype.

3  R e s u lts

'Die results presented here show model output for two dis­
tinct parameter sets, these are: (i) variation in APC density 
and distribution across shape space for M i  e  M ,  and (ii) 
variation in the measure of cross-reactivity in shape space 
with p  6 A .  In both Fig. 1 and Fig. 2 we show the effect 
of decreasing the distribution of APC antigenic determi­
nants in shape space. Studying this parameter yields insight 
into how the immune system responds to strain diversity 
(antigenic determinant diversity). For example, every year 
when the Influenza pathogen re-appears ¡1 periodically ex­
hibits antigenic variation when compared 10  previous strain

genotypes. It is this diversity which enables the pathogen 
to avoid immune detection with varying degrees of suc­
cess. In the simulations conducted here, we examine the 
effectiveness of increasing cross-reactivity when presented 
with increasingly strain-specific challenges. Fig. 1 shows 
the probability density function (PDF) for the six values 
of M  as shown in Table 2. What is immediately clear 
is that as the antigenic diversity narrows and becomes in­
creasingly more specific, the CTL probability denisty func­
tion changes from unimodal to right-side bimodal, and, si­
multaneously, the mean shifts to the left. Effectively, we 
see that decreasing antigenic diversity causes lower aver­
age immune response along with increasing variance. The 
consequence of this response profile becomes clear when 
Fig. 2 is considered. Here, we see the APC density re­
maining in the lymph system at r  =  300 (which represents 
«  6.25 days of elapsed time). Plot (a), (b), (c) and (d), 
representing APC distribution in shape space of 100, 50, 
25 and 10, respectively have broadly similar means (16.52, 
16.86, 17.38 and 18.71) and broadly similar minima and 
maxima. Thus, for plots (a) to (d), it is clear that the APC 
clearance rates are only so m ew h a t inhibited by narrowing 
antigenic diversity. However, when antigenic diversity de­
clines to the value of two1, as shown in plot (e), a clear 
point of instability is reached: the average amount of APC 
left in the lymph system jumps to 25.43, and in plot (f), to 
32.14. It is interesting to see how the exponential curve of 
the first four plots has been replaced by an irregular dis­
tribution which cannot easily be classified. The biological 
explanation may now be as follows: As antigenic diversity 
narrows, there are fewer recombination sites on the APC 
to which the TCR can bind. When the number of recom­
bination sites reaches one, we have the traditional lock- 
and-key method of pathogen recognition [11], However, 
our model suggests that if the immune system followed a 
strict lock-and-key pathogen recognition process, an ineffi­
cient APC clearance regime would appear. In fact, the re­
sults of the simulation presented here suggest that any APC 
which provided only one region for TCR binding, would 
present the immune system with a serious challenge. We 
can see from the curve of plot (f) that even for high levels 
of cross-reactivity (such as p  =  14), only 75% of the APC 
is cleared. Contrast this with plot (a), where over 97% of 
APC are cleared, we can see that in order for the immune 
system to safely remove pathogen using the lock-and-key 
method, a cross-reactivity level of p  «  21 would be re­
quired. Problematically, such a high value for p  would run 
the risk of inducing autoimmune disease, because the CTL- 
precursors would bind with such promiscuity that self-cells 
could be attacked. To further develop this point, we now 
divide the immune response into three categories: Healthy, 
Chronic Infected and Fatal - denoted as Sh , 5C and 6m , re­
spectively (where S represents and APC clearance regime). 
Broadly speaking we assume that a healthy immune system 
is one which removes at least 95% of pathogen infected

1 t h a t  i s ,  t h e r e  a r e  o n l y  t w o  d i s t i n c t  A P C  g e n o t y p e s  i n  s h a p e  s p a c e



Table 3. Table of model clearance rates (<5) for Mi..§

Model M 5h 5, 5m

M i [12,21] [3,11] [1,2]
M i [12,21] [3,11] [1,2]
M z [13,21] [3,12] [1,2]
M 4 [13,21] [3,12] U,2]
M s [15,21] [5,14] [1,4]
M e [16,21] [7,15] [L6]

APC. Likewise, a chronic infected response is one which 
removes at least 50% of infected APC cells. Finally, an 
immune response which cannot clear at least 50% of in­
fected APC is in the process of collapse, resulting in the 
death of the host. Table 3 shows the range of values for 
¿a, Sc and Sm , for each model M i  € M .  and relates di­
rectly to the plots shown in Fig. 2. Referring to Table 
3, as antigenic diversity narrows, a critical point occurs 
in model M-> wherein the healthy region <5;, is squeezed 
into Jive (and subsequently, four) points or high p. Thus, 
models M a  and M e  provide some evidence against the 
historically accepted lock-and-key nature of TCR - APC 
binding: under this approach, the immune system would 
need to maintain such high levels of p  that some form of 
autoimmune disease would be likely to develop. Finally, 
Fig. 3 shows the mean CTL and APC density values plotted 
against each of Hie models. Clearly, we see that (apart from 
the third data point), as antigenic diversity narrows, overall 
immune activity (CTL density) decreases. Similarly, in­
fected APC density will increase as CTL activity declines. 
Again, the first four data points, representing M i .a * show 
only slightly retarded activity levels. Once the antigenic 
diversity narrows to two (then one), CTL activity declines 
markedly. Again, APC density shows small increases for 
M i . a , but shows large increases for M s..« -

4 Discussion

Figure 1. Shape space CTL probability denisty function 
(PDF) of .Mi..6, plot (a) to (f) respectively. Two distinct 
PDF’s emerge: unimodal and bimodal. The unimodal dis­
tribution gives way to bimodal as M i  -> M e

Our starting point for the experiments presented here is to 
assume that the immune repertoire has not been exposed to 
any prior pathogen. Hence, we do not model immunologi­
cal memory or reinfection. Our objective has been to study 
how antigenic diversity and cross-reactivity together play 
a role in determining the course of viral infection. Addi­
tionally, the results of our simulation cast some doubt on 
the notion of lock-and-key viral recognition. Based on the 
results above we can explore possibilities for how and why 
the course of infection differs among people. Also, we are 
in a position to understand some of the underlying mecha­
nisms of autoimmune disease. Given an initial viral expo­
sure there are now four potential disease progression paths:

Figure 2. Lymph node APC density level (y  — a x i s ) for 
values of p  ( x  — a x i s ) drawn from A  for each value in 
M i . . 6, plot (a) to (f) respectively.

(i) The disease has some antigenic diversity, the immune 
system exhibits normal cross-reactivity: full clearance



Figure 3. Mean CTL and APC density respectively. The ef­
fect of narrowing antigenic diversity can be seen. CTL den­
sity declines rapidly once the threshold diversity level of 
two ( M b) is reached. Likewise the APC density increases 
as CTL pressure declines.

diversity - requires such high levels of cross-reactivity that 
this, in turn, may induce autoimmune disease or some form 
of clonal deletion to self-reactive T cell precursors. As au­
toimmune disease is rare in the clinical environment, we 
conclude that lock-and-key binding must in turn be rare.

We have assumed that the time signature for the emer­
gence of strain diversity has been instantaneous. That is to 
say, each of the models M i . . e ,  introduce iheir respective 
strain diversity levels at lime r  =  0. For the majority of 
viral pathogens encountered by the immune system, this 
is clearly an unrealistic starting point. However, we feel 
that ihe data presented from the above simulations is a u.se- 
fule step in showing that a clear relationship exists between 
strain diversity, cross-reactivity and infected cell clearance 
rates from the secondary immune organs. Future work will 
include modelling the emergence of strain diversity over a 
more realistic time scale, as well as modelling the process 
of Th 1 and Th2 differentiation and up and down regulation.

is achieved in the usual time frame of 3-5 days.

(ii) The disease is restricted in antigenic diversity, the im­
mune system exhibits normal cross-reactivity: poor 
clearance leads to a chronic infected state

(iii) The disease is restricted in antigen diversity, the im­
mune system exhibits high levels of cross-reactivity: 
full clearance is achieved with the risk of autoim­
mune disease occuring, if negative selection has not 
already deleted self-reactive CTL precursors from the 
cell pool.

(iv) The disease has some antigenic diversity, the immune 
system exhibits low cross-reactivity: poor clearance 
will result in severely chronic infection of the immune 
system, leading to fatality.

Given the relative rarity of autoimmune disease, we 
assume that excessively high levels of cross-reactivity are 
normally unlikely to occur. Therefore, (iii) above will be 
a rare disease outcome. However, the model presented 
here is rich enough to support all four potential disease 
outcomes listed above. For example, Fig. 2, plot (a) at 
10 < y3 < 15 illustrates path 1. above, while plot (e) at 
5 < p  < 14 illustrates a possible path for 2. above.

5 Conclusion and Future Work

We have presented initial results from the model that sug­
gest that a narrowing strain diversity will negatively affect 
the ability of the immune system to achieve healthy APC 
clearance, even under a highly cross-reactive regime. Con­
versely, we have shown how a narrowing antigenic diver­
sity in shape space must give rise to extremely high levels 
of cross-reactivity in order for APC clearance to be main­
tained at healthy levels. In turn, we have seen that lock-and- 
key binding - which is the most narrow form of antigenic
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Moreover, the structure and the spectral properties of the hydrogen molecule confined in a  
harmonic oscillator potential are studied [2]. The bond length and the vibronic transitions (the 
intensities and the number of lines) depend in a specific way on the strength of the confining 
potential. In particular, due to the confinement, the absorption and the emission vibronic bands 
are blue shifted.
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In a recent paper Patrykiejew and coworkers[l] proposed a two-dimensional model where 
water is described as a network forming fluid living on a triangular lattice. Fluid “particles” 
have three bonding arms which must lie on the lattice directions and can form bonds to other 
particles. A bond is weakened by the presence of a third particle on the same triangle, mimicking 
the perturbing effect that a water molecule may exert on an existing hydrogen bond. Thanks to 
its simplicity, this model can be relevant also as a starting point to study the thermodynamics of 
the solvation of nonpolar solutes in water.

We have studied the phase diagram of this model both with a Cluster Variation Method 
approach and with Monte Carlo simulations, correcting some relevant errors reported in the 
original paper. The results show an interesting phase diagram upon variation of the bond- 
weakening factor.
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We present a unique Monte Carlo based cellular automata model that allows us to study 
aspects of the immune system by combining two distinct formalisms - (i) Physical Space and (ii) 
Shape Space. The motivation for combining these two formalisms comes from the observation 
that both local change and global condition inform the immune response to a given stimulus. One 
common feature of the stimuli under investigation is that they effect an alteration in the immune
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repertoire density and distribution. The shape-space formalism supports classification of the 
immune repertoire density and distribution, as well as classification of T-cell receptor/antigen 
presentation cell affinity. The objective of this paper is to examine the sensitivity of the primary 
immune response (during clonal expansion) to cross-reactivity of T-cell receptors (p). The 
T-cell receptors and antigen presentation cells are located at specific points within a two- 
dimensional shape-space, and affinity is measured by the Euclidean distance between T-cell 
receptor and antigen presentation cell. In order to drive our shape-space, we utilize an enhanced 
physical-space model to represent one lymph node. Our enhancements include - (i) realistic 
dynamics within the lymph node compartment accounting for cells entering and leaving via 
the bloodstream, (ii) Monte Carlo time steps based on the fastest aging entity, thus providing a 
clinically-realistic time signature, and (iii) realistic cell density levels within the lymph node 
compartment. As a result of these enhancements our model closely exhibits known clinical 
patterns during immune system primary response.
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External fluctuations can have counterintuitive ordering effects on a system. An example of 
these ordering effects is the appearance of a nonequilibrium transition from a disordered phase 
to an ordered one by increasing the intensity of the external fluctuations. Nowadays two pos­
sible physical mechanisms responsible for noise-induced ordering phase transitions have been 
observed: a short time lin ea r  instability in the disordered phase sustained by the spatial coupling 
and the appearance of new stable states in a nonequilibrium effective potential. Our aim here is 
to present analytical and numerical evidence of a short time nonlinear instability mechanism re­
sponsible for the appearance of second and first-order nonequilibrium phase transitions induced 
by an increase of the intensity of the external fluctuations. This nonlinear instability mechanism 
has not yet been studied in the literature, although it was conjectured in Ref. [3],

We study two models defined by the following stochastic partial differential equations:

^  =  -</>3(l + <j)2) + D V 2(j> + <l>2ri (X, t ) +  £ (X, r ) , (1)

=  — (¡>[1 +  (p4) + D V 2ip +  tf>2r i(x ,t )  +  ^ ( x , t ) .  (2)

Both noises (£(*,r), internal and Tj(x,t) ,  external) are gaussian with zero mean and are 8 -  
correlated in time. %(x, t )  is also ¿-correlated in space, and T)(x, t ) has a space correlation 
function c(x  — xf).
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Glossary of Biological Terms

A

antibody

antigen

APC

apoptosis

A molecular secretion from a B cell which attaches to, and neu­
tralises, the specific class'of antigen which stimulated the D cell 
production of the antibody. As antibodies bear the same genetic 
receptors as the B cells which produced them they are used a« 
a shorthand for B cell. p. 9.

Genetically foreign cell or bacteria which the immune system 
treats as hostile, p. 10.

Antigen Presenting Cell. A cell, the function of which is to 
engulf foreign genetic material and to present genetic markers 
(or peptides) of the material on its surface to advertise potential 
infection, p. 10.

Programmed death of a lymphocyte cell. The cell switches off in 
response to some internal event (such as reaching a specific age), 
or external event, such as no further stimulation by infected 
antigen presenting cells, p. 10.

134



B

B-cell General term for a cell originating in the bone marrow, and part 
of the humoral response. B-cells secrete antibodies in response 
to stimulation by foreign genetic material, p. 9.

Cayley Tree An acyclical tree in which each non-leaf vertex has a constant 
number of edges, p. 17.

CD41 T A T-helper cell, the function of which is to up or down regulate
immune activity (such as cytotoxic lymphocyte cell production) 
by secreting stimulatory molecules called cytokines, p. 12.

clonotype A group of T cells of the same lineage all bearing the same
receptor. In genetic terms, equivalent to the phenotype, p. 11.

CTL Cytotoxic T Lymphocyte: A T-cell of the family CD8 which,
when stimulated, becomes an ‘armed effector’ cell capable of 
killing infected antigen presenting cells by binding to the APC 
and injecting poision, p. 10.

cytokine Small, soluable proteins, secreted by one cell, but which can alter
the properties of the cell itself or another cell. The commonest 
cytokine released by T cells is the interleukin (IL) class, which 
can surpress or enhance cytotoxic T cell efficacy, p. 12.

E

epitope General term for any part of a viral protein detectable by the 
immune system, p. 33.

I

idiotype The novel or idiosyncratic parts of an antibody are called id- 
iotopes. The set of idiotopes that characterises an antibody is
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called its idiotype. Idiotype is functionally equivalent to clono- 
type, p. 13.

lymph nodes Secondary immune organs located throughout the body, al­
though mainly in the chest and neck, into which lymphocytes 
drain from the blood supply in order to sense antigen presenting 
cells for signs of infection, p. 32.

MHC Major Histocompatible Complex. The set of human immune 
molecules which clasp foreign antigen peptide fragments to the 
surface of antigen-presenting cells, p. 10.

microscopic The local space of the secondary immune organs, typically 
the lymph nodes, p. 21.

pathogen General term for a virus or bacteria which the Immune system 
treats as hostile, p. 10.

peptide A chain of genetic material taken from a foreign antigen and 
displayed on the surface of the antigen presenting cell to notify 
lymphocytes of an immune challenge, p. 10.

precursor A cell which is not yet committed to a course of action and 
one which may, depending on external stimuls (such as recogni­
tion of an infected antigen presenting cell), become a cytotoxic 
lymphocyte, p. 10.

recirculation The process by which a lymphocyte travels the bloodstream, 
draining through some of the lymphatic compartments. Recir-
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dilation is a crucial process for the detection of infected antigen 
presenting cells, p. 9.

repertoire The set of all T-cell clonotypes, including activated, resting and 
naive, p. 11.

rewiring The process in which an edge between nodes xy  is removed and
added between nodes xk, p. 86.

robustness The degree of network function under node elimination, p. 85.

scalar field A scalar value is a single component that can assume one of a 
range of values, an example of which is age, p. 67.

TCR T Cell Receptor. A structure on the T cell surface with a
fixed and variable region, tlie function of which is to bind to 
MHC:peptide fragments presented on the surface of cells, p. 11.

thymus A primary immune organ responsible for the continuous produc­
tion and supply of T-cells (hence the T), p. 11.

vector field Vector fields have an n-component vector (usually 2 or 3 com­
ponents) at each point of the space sampled for visualisation, 
p. 68.

virion A complete virus particle with its DNA or RNA core and protein
coat as it exists outside the cell, p. 23.
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