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Abstract

Recombinant antibodies represent a more sensitive and specific detection tool for 

immunoanalysis. The research carried out for this thesis describes the production of 

genetically-derived single chain antibody fragments to detect illicit drugs.

A variety of novel recombinant antibody fragments against morphine-3-glucuronide, a 

metabolite of heroin has been produced. A monomeric, dimeric and enzyme-labelled 

scFv were characterised with respect to their binding abilities and cross reactivities. 

Monomeric scFv was successfully applied to a competitive ELISA format for the 

detection of morphine residues in saliva. The assay was used to positively identify 

morphine residues in the saliva of drug addicts attending a rehabilitation clinic. An 

inhibition assay to detect morphine in saliva was also developed using the BIAcore 

3000 instrument, a surface plasmon resonance-based biosensor for detection of 

biomolecular interactions in ‘real-time’. A novel sol particle lateral flow 

immunoassay was generated using monomeric and dimeric scFvs for the detection of 

M3G.

Recombinant antibody fragments against tetrahydrocannabinol were isolated from a 

naive human library by a process known as biopanning. Phage-displayed antibodies 

have been fully characterised with respect to their binding capabilities and were 

successfully applied to an immunoassay for the detection of marijuana residues in 

saliva.

vi
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1.1 Immunity and the Immune System

The immune system is the body’s natural line of defence that works efficiently to 

protect against the invasion of foreign bodies. It is comprised of two defence systems, 

the innate and acquired immune systems. The two systems work simultaneously in 

order to maintain an individual’s health and well-being.

1.1.1 Innate immunity

Innate immunity describes the body’s natural ability to prevent and destroy infectious 

agents. Innate immunity fights pathogens using defences that are quickly mobilised 

and triggered by receptors that recognise a broad spectrum of pathogens. It is a non­

specific but immediate response to foreign bodies, the efficiency of which is not 

enhanced through repeated exposure to the same foreign object. The system works on 

two levels, primary defence is brought about through physical and biochemical 

barriers to prevent entry of foreign particles. The secondary response involves a non­

specific elimination of invading microbes.

Primary barriers to infection include the skin, which acts as an impermeable barrier to 

microbial invasion (Partidos et al., 2003), and mucous membranes, which coat inner 

cavities of the body that are open to the exterior. These ‘sticky’ membranes prevent 

adherence of microbes to endothelial cells. Trapped foreign particles can then be 

expelled from the body through mechanical processes, such as coughing and sneezing. 

Bodily secretions also play an important role in preventing infection. The low pH of 

sebaceous secretions, for example, maintains the acidic environment of the skin, 

while, the presence of lysozyme, a hydrolytic enzyme, provides anti-microbial 

protection (Roitt et al., 1994).

The secondary line of defence involves non-specific elimination of organisms that 

have penetrated the body’s outer barriers. The innate immune system has specialised 

killer cells that destroy invading micro-organisms by a process known as 

phagocytosis. This process of engulfing and ingesting foreign bodies is carried out by 

two categories of specialised cells, microphages and macrophages. Microphages or

2



polymorphonuclear neutrophils are a short-lived cell that circulates in the blood, 

except when recruited to a site of acute inflammation. They are the first on the scene 

to fight infection and provide the major defence against pyogenic bacteria. 

Macrophages are long-lived phagocytes, derived from bone marrow promonocytes 

that are present in connective tissue, lungs, spleen and lymph nodes. They primarily 

defend against organisms capable of living within the host cell, for example 

intracellular pathogens, which display surface markers on the cell’s exterior. The 

Complement system is a triggered enzyme cascade of serum proteins that may be 

activated by the innate immune response. It facilitates phagocytosis by making 

microbes more recognisable to the immune system, attracting phagocytic cells to a 

microbe and stimulating the ingestion process. Extracellular killer cells, such as 

eosinophils, are also involved in innate immunity. They contain destructive enzymes, 

such as proteinases and peroxidases, and are responsible for attacking larger invaders 

that cannot be physically phagocytosed. Natural killer cells have the ability to 

recognise cell-surface changes, like viral infection. They bind to the infected cells 

and destroy them by apoptosis. Inflammation causes increased vascular permeability 

and facilitates chemotaxis o f phagocytes, making it integral to the innate immune 

response.

1.1.2 Acquired immunity

Acquired immunity is a specific immune defence that adapts itself to previously 

unseen molecules, producing specific memory cells to prevent against further 

infection. It can be further divided into the humoral and cellular immune systems. 

The humoral immune system utilises antibody producing-B lymphocytes to combat 

infection of bodily fluids. The cellular immune system fights intracellular pathogens 

using cytotoxic T-cells (Tc) and helper T-cells (Th), derived from activated T- 

lymphocytes in the thymus (Reinhardt and Jenkins, 2003)

1.1.2.1 Cell mediated immune response

Cell mediated immunity (Figure 1.1) has evolved to deal with infection that cannot be 

reached through humoral antibodies, like intracellular pathogens, such as viruses. T-
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cells originating in the thymus circulate permanently between the blood and lymphatic 

systems. There are three types of T cell involved in cell mediated immunity: helper 

T-cells (Th cells), derived from CD+4 T-cells, killer T-cells, also known as cytotoxic 

T-cells (Tc cells), derived from CD+8 T-cells and memory T-cells. T-cells surface 

receptors require the antigen to be ‘presented’ at the cell surface by an antigen 

presenting cell (APC), such as macrophages or dendritic cells. Proteins of the Major 

Histocompatability Complex (MHC) perform this antigen presentation process 

(Reinhardt and Jenkins, 2003).

Cytotoxic T-cells (Tc cells) recognise an antigen in association with a class I Major 

Histocompatability Complex molecule (MHC I), which is made by all nucleated cells 

in the body. If an infected cell is recognised by a Tc cell, they signal the cell to 

become apoptotic and commit suicide, thus killing that cell along with any 

intracellular pathogens. Each Tc cell contains granules containing perforin and a set 

of serine proteases, called granzymes. The Tc cell, releases the contents of these 

granules after attaching to the target cell. Perforin enlarges the pores in the membrane 

of the target cell, facilitating the entry granzymes and the induction of apoptosis 

(Benjamini et ah, 2000). Tc cells may also release cytokines like y-interferon, to 

reduce the spread of viruses to adjacent cells (Roitt et ah, 1994).

Helper T-cells recognise antigens presented on a cell surface in association with a 

MHC class II molecule, produced only by APCs. Helper T-cells are divided into two 

primary types, Thi or Th2 cells, depending on the type of cytokines they produce. THi 

cells recognise antigens presented on the surface of macrophages and serve to 

enhance cell-mediated immunity through the release of cytokines such as interleukin-

2 (IL 2), y interferon and tumour necrosis factor beta (TNT P). Collectively these 

cytokines stimulate the production of Tc cells, natural killer cells and activate 

macrophages and neutrophils. Tm  cells recognise antigens presented on B- 

lymphocytes and synthesise cytokines such as interleukins 4, 5, 10 and 13, that 

stimulate antibody production, enable antibody class switching and activate 

eosinophils. Memory cells are cells derived from CD+4 T-cells that persist following 

antigenic exposure. They are long-lived antigen-specific memory cells that will 

mature and replicate, upon re-exposure to the same antigen-MHC complex.
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Figure 1.1: Diagrammatic overview o f cell mediated immunity. Tc cells recognise a 

foreign antigen in association with an antigen-MHC class I  complex. These cytotoxic 

cells signal the infected cell to become apoptotic and commit suicide. Th cells 

recognise an antigen in association with a MHC class II complex, displayed on the 

outside o f  an antigen presenting cell. Th cells are subdivided into types I and 2, 

depending on the type o f cytokines they secrete. These cytokines function in the 

stimulation o f other cells involved in the immune response.
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1.1.2.2 The humoral immune response

The humoral immune response is mediated by B-lymphocytes, which originate in the 

bone marrow. The cells of this system respond differently depending on the type of 

antigen that is encountered. Thymus-independent antigens comprise large bacterial 

proteins and antigens that contain repetitive epitopes. In response to this type of 

antigen, each B-lymphocyte displays a membrane bound immunoglobulin, with a 

single specificity, on its surface, which acts as an antigen receptor. The ‘best fit’ 

antibody receptor will develop into an antibody-forming plasma cell that secretes an 

antibody, identical to the receptor. In this manner it is the antigen that effectively 

selects the correct antibody for the immune response. This form of humoral response 

is independent of T-cell activation and produces predominantly poor affinity-IgM 

type antibodies, that do not give rise to memory cells (Roitt et al., 1994). The 

majority of antigens contain single discrete epitopes that cannot be crosslinked 

directly by the B-cell receptor. These antigens are described as thymus-dependant 

antigens and require T-cells and B-cells to cooperate together to generate an immune 

response, a process known as T-cell mediated humoral response (Figure 1.2). Both B- 

cells and T-cells must be activated and respond to epitopes of the antigen that are 

physically linked (Benjamini et al., 2000). The TH cell secretes cytokines that 

stimulate the B-cell to proliferate and differentiate into an antibody-producing cell. 

Firstly, the antigen that binds the B-cell receptor is internalised by the B-cell. The B- 

cell then acts as an antigen-presenting cell, displaying the antigen on its surface, as 

part of an antigen-MHC class II complex. It is now available for recognition by a TH 

cell. A number of adhesion pairs strengthen the interaction, upregulate the 

proliferation of B-cells and promote antibody class-switching. The type of cytokine 

secreted by the TH cell determines the class of immunoglobulin produced. If 

interleukin 4 is secreted, B-cells switch to IgE production, whereas if  y interferon is 

secreted by the Th cell B-cells switch to IgG production (Benjamini et al., 2000).
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Figure 1.2: Schematic representation o f  the main features o f  the T-cell mediated 

humoral immune response. The foreign antigen is internalised and displayed on the 

surface o f an antigen presenting cell, in association with aM HC class II complex. B- 

cells recognise and bind antigen in solution with antibodies displayed on their 

surface. Th2 cells secrete cytokines, such as IL 2, 4 and 5, that simulate B-cell 

proliferation. This residts in B-cell differentiation into plasma and memory B-cells. 

Plasma cells have the ability to produce large quantities o f soluble antibody and 

memory cells. These are long-lived antigen-specific B-cells that will mature and 

replicate. They will persist within the body and elicit a stronger immune response, 

upon re-exposure to the same antigen.
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1.1.3 The anatomy o f the immune response

Maturation, differentiation and proliferation of lymphocytes take place in the organs 

of the lymphoid system. This system can be sub-divided into primary and secondary 

lymphoid organs. Primary lymphoid organs are those in which B and T-cells mature 

into antigen-recognising effector cells. In humans, this takes place in the bone 

marrow and the thymus. Both B-lymphocytes and T-lymphocytes are produced from 

stem cells in the bone marrow. B-lymphocytes mature in the bone marrow, while T- 

lymphocytes migrate to the thymus for maturation. These cells migrate from the 

primary lymphoid organs, through the bloodstream, to the secondary or peripheral 

lymphoid tissues, where antigen differentiation and proliferation takes place 

(Benjamini et a l, 2000). Peripheral lymphoid organs comprise o f highly organised 

areas of lymphatic tissue. Such areas include the spleen and lymph nodes in addition 

to scattered accumulations of tissues, such as mucosal-associated lymphoid tissue 

(MALT). It is in these areas that mature lymphocytes interact with antigen and 

differentiate to synthesise specific antibodies. Foreign antigens are carried to the 

secondary lymphoid organs via draining lymphatics, where they are exposed on the 

surface of these specialised cells. Both T- and B-lymphocytes circulate rapidly 

around the secondary lymphatic organs. This increases the probability that an 

antigen-specific lymphocyte will encounter the target antigen. Upon interaction, the 

lymphocytes become activated and the acquired immune response, with antigen 

specificity is triggered.



1.2 Antibody Structure

An antibody or immunoglobulin is a serum soluble glycoprotein produced by B- 

lymphocytes in response to an invading foreign antigen. An antibody molecule is 

composed of four polypeptide chains, consisting of two identical heavy (H) and two 

identical light (L) chains, held together by interchain disulphide bonds, and stabilised 

by non-covalent interactions. The N terminal domains of both heavy and light chains 

are highly variable between antibodies, while the remaining domains are relatively 

constant, although they differ between isotypes (Male et a l,  1996). There are five 

distinct classes (isotypes) of antibody, IgA  IgM, IgD, IgE and IgG, differentiated by 

structural variations in their heavy chain (Zaleski et ah, 1983). Immunoglobulin light 

chains are designated as either kappa (k ) or lambda (X) class and are folded into two 

globular domains. There are five classes of heavy chain, gamma (y), mu (p), alpha 

(a), delta (5) and epsilon (£). Heavy chains are comprised of either four or five 

domains, with IgM and IgE containing five domains, while IgG, IgA and IgD contain 

four heavy chain domains.

IgM is the first class of antibody to be produced in the primary response to antigen. 

This class of antibody is a pentamer of the basic four-chain polypeptide chain. It has 

low affinity but due to its valency of 5, it possesses high avidity for multivalent 

antigens. IgM antibodies are found on the surface of mature B-lymphocytes and act 

as an antigen-specific receptor. They are also efficient agglutinating antibodies and 

are involved in Complement activation. IgA is secreted selectively across 

seromucousal surfaces, appearing in saliva, tears, nasal fluid, sweat, gastrointestinal 

and genitourinary tracts. IgA defends exposed external surfaces of the body against 

attack (Roitt et ah, 1994). IgE triggers inflammatory responses, recruiting plasma 

factors and effector cells, protecting sites susceptible to trauma and pathogen entry. 

IgD is primarily a cell surface receptor on the surface of blood lymphocytes. Its 

expression varies during B cell differentiation. IgG is the most abundant type of 

antibody produced by the immune system, representing 70-80% of total IgG produced 

(Roitt et al., 1994 and Male et al., 1996) and 15% of total protein (Benjamini et ah, 

2000). IgG is the most persistent of all antibody classes, with a half-life of 

approximately 23 days (Benjamini et al., 2000). It is the most versatile type of
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antibody, capable of toxin neutralisation, Complement activation and opsonisation. 

The structure of an antibody is generally represented by the immunoglobulin G (IgG) 

molecule as shown in Figure 1.3, although the exact structure varies depending on the 

isotype,

An IgG molecule consists of two gamma (y) heavy chains and two light chains, either 

kappa (k) or lambda (1). Heavy chains have a molecular weight of approximately 50 

kDa and consist of one variable region and three constant domains. It is these 

constant regions that determine the antibody isotype. Light chains consist of one 

variable and one constant domain and have a molecular weight of approximately 25 

kDa. Therefore, a whole IgG molecule has an apparent molecular weight of 

approximately 150,000 Da.

Constant regions are essential in biological effector functions, whereas, the specificity 

of an antibody is encoded in the variable heavy (V h) and variable light (V L) chain 

regions. Within these variable domains are three regions of approximately 110 amino 

acid residues that display a high variability in amino acid sequence between antibody 

molecules. These ‘hypervariable’ regions are also referred to as complementarity 

determining regions (CDRs), subdivided into CDR1, CDR2 and CDR3 in heavy and 

light chains. These hypervariable regions are brought together by the folding of the 

variable domain into loops at the tip of the molecule. This forms the three- 

dimensional antigen-binding site, which is located at the end of each antibody arm. 

Antigen binding is also facilitated by the flexibility of the hinge region, an area 

composed primarily of prolines and cysteines found between heavy chain constant 

domains. This allows the angle between each ‘arm’ to alter from 60-180°, enabling 

the two binding sites to work independently from one another. Framework regions 

also confer antigenic specificity to the molecule, acting as a scaffold to hold the 

hypervariable loops in the correct position for antigen binding (Faber et al., 1998)

Other areas of functional importance include the C h i, Ch2 and Ch3 regions. The Chi 

region is involved in binding the complement C4b fragment, while each Ch2 domain 

contains carbohydrate binding sites, the nature and number o f which varies between 

isotypes (two in the case of human IgGi). The Ch3 domain possesses the effector
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functions o f the immunoglobulin molecule that allow it to interact with the rest of the 

immune system (Stockinger and Lemmel, 1978)

Antigen-binding
site CDRs

Interchain disulphide 

bonds

C113
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Carbohydrate
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disulphide bonds
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Figure 1.3: Diagrammatic representation o f an immunoglobulin G (IgG) molecule. 

The IgG molecule is composed o f two identical light chains and two identical hecn>y 

chains. The light chains are composed o f a variable (Vr) and constant ( C l )  domain. 

The heavy chain consists o f  one variable ( V h )  and three constant ( C h i ,  C m  and C m )  

domains with a hinge region connecting the C h i  and C h 2 regions. The heavy and light 

chains are connected via disulphide bonds; disidphide bonds are also present in the 

constant and variable regions. The CDRs at the amino terminal o f the variable 

domains confer antigenic specificity and contain considerable amino acid sequence 

variation.
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1.3 Genetic Basis for Antibody Diversity

It is estimated that there is a diversity of B and T-cells with an antigenic specificity 

ranging from 1015 to 1018 in any given individual (Benjamini et al., 2000). If every 

single one of the millions of antibodies produced by an individual were encoded by an 

individual and unique gene for each of its heavy and light chains, then the immune 

response would require millions of genes to encode for it alone.

Dreyer and Bennett (1965) first proposed the hypothesis of genetic recombination in 

antibody formation. This explains how this diversity is achieved, without utilising an 

enormous number of germ line genes. Clusters of genes on three chromosomes 

encode the three types of antibody chains, k , X and heavy chains. Kappa chain genes 

are located on chromosome 2, lambda chain genes are clustered on chromosome 22 

and heavy chain genes are found clustered as a gene family on chromosome 14.

Light chain genes are assembled from three distinct gene segments, the V (variable) 

segment, a J (joining) segment and a C (constant) segment. In a B-cell, hundreds of V 

gene segments lie clustered in a region on the same chromosome but up to a million 

base pairs away from the C segment (Watson et al., 1992). In other cells, however, 

this V gene is not found in the vicinity of the gene segment. It is the variable regions, 

encoded by V and J gene segments, that encodes for the diversity of the antibody light 

chain. Any V gene can be joined to any J segment located upstream of the C gene 

segment. The region of the V-J join forms the third hypervariable loop (Male et al., 

1996). This leads to the loss of the intervening stretches of DNA, including introns 

and exons. Since any V gene can recombine with any J region, the number of 

possible combinations is greatly increased.

Three distinct gene segments encode heavy chain genes. In addition to V and J gene 

segments, variable heavy chain genes are also encoded by a D or ‘diversity’ segment. 

The D and J regions code for the third hypervariable loop of the heavy chain. The 

production of the heavy chain therefore requires two recombination steps, firstly the 

Dr segment is joined to the Jh segment and then the Vh segment is joined to the DJh 

segment (Figure 1.4). This gives rise to the Vh domain. The human heavy chain is
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encoded by 50 VH genes, 20 DH genes and 6 JH genes, making the total number of 

possible gene permutations enormous.

During the recombination process of heavy and light chain genes, the various V, D 

and J regions are brought into contact with each other through a looping out process, 

mediated by a lymphoid-specific recombinase enzyme complex (Roth and Craig, 

1998). The complex is a product of two recombinase-activating genes RAG 1 and 

RAG 2. The RAG proteins recognise short sequences in the coding regions called 

recombination recognition sequences (RSS), consisting of a conserved heptamer and 

nonomer, separated by non-conserved spacer sequence of either 12 or 23 nucleotides 

(Schlissel, 2003). These proteins break the double stranded DNA between each RSS 

and it’s corresponding coding sequence, yielding two coding ends and two signal 

ends. The coding ends are covalently closed DNA hairpins and signal ends are blunt 

and 5' phosphorylated. These are joined by proteins involved in the nonhomologous 

DNA end joining pathway (Lieber et al., 2004). The joints formed between coding 

ends are imprecise and contain short deletions, palindromic duplications or non- 

templated nucleotide additions (Schlissel, 2003). The addition of such nucleotides in 

the N region is referred to as insertional diversity and is mediated by the enzyme 

terminal deoxynucleotidyltransferase (TdT) (Benjamini et a l, 2000). The imprecision 

in joining V and J or V, D and J segments gives rise to further diversity in antibody 

variable regions. This is termed junctional diversity.

Somatic hypermutation introduces further diversity into the antibody sequence. This 

occurs at a rate of 10'5 to 10‘3 per base, per generation, over the lifespan of the B-cell. 

This frequency is a million times higher than in other cells (Li et al., 2004). The 

mutations are predominantly point mutations in the V(D)J unit of antibody V genes 

occurring in mutation hotspots, defined by specific sequence motifs. Somatic 

hypermutation results in the production of antibodies with increased affinities for the 

target antigen (Benjamini et al., 2000).

Following stimulation o f a B-cell by recognition of a specific antigen and stimulation 

by Tn-secreted cytokines, a further genetic rearrangement of antibody genes gives rise 

to antibody class or isotype switching (Figure 1.5). This process allows the 

expression of an antigen-specific binding site with a different C region gene,
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facilitating antibody mediation of different effector functions. Each Ch region 

contains [i, 8, e, y and a genes, separated by repeating GC pentameric sequences 

called switch (S) regions, (except 5, which contains no S region). Class switch 

recombination involves C|i being replaced by Cy, Cs or Ca segments to generate IgG, 

IgE and IgA antibodies respectively (Li et al., 2004). Following antigen and cytokine 

stimulation, the V(D)J segment linked to C^ rearranges its DNA to the S region in 

front of the desired C gene. In the process, the intervening C region DNA is excised. 

Therefore, a cell, which has undergone class switching, loses its ability to revert back 

to producing the original class of antibody. This mechanism of class switching is 

unique to antibody heavy chains and allows an antibody with a single antigenic 

specificity to associate with a variety of different effector functions (Benjamini et al., 

2000).
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Figure 1.4: Schematic representation illustrating the process o f V(D)J recombination 

in the synthesis o f an antibody’s heavy chain. Heavy chain genes consist o f variable 

(V), diversity (D), joining (J) and constant (C) gene segments. The first step in 

recombination involves bringing D and J  regions in contact and the intervening DNA 

is excised through a looping out process, facilitated by the enzyme recombinase. The 

second recombination step involves the V and D J regions being brought into contact. 

This coding mechanism determines the antibody’s specificity. The constant regions 

determine the isotype or class o f antibody produced.
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1.4 Antibody Production

1.4.1 Antigens and immunogens

An antigen is defined as a molecule that contains distinct sites or epitopes that are 

recognised by the immune system, leading to the generation of an immune response. 

In order for a molecule to elicit an immune response it must possess certain 

characteristics that make it immunogenic. The immune system must be able to 

discriminate the molecule as ‘non-self, i.e. it must be of foreign origin. The molecule 

must be large enough to be seen by the immune system in order to stimulate antibody 

production. Large molecules, such as proteins, are capable of eliciting a good 

immune response. However, smaller molecules of less than 5 to 10,000 M.W. are 

poorly immunogenic (Clementi et al., 1991). This type of antigen is termed a hapten, 

and can be defined as a low-molecular weight molecule that contains an antigenic 

determinant, but which is not itself antigenic unless complexed with an antigenic 

carrier.

The process of coupling a hapten to a large protein is referred to as conjugation. 

Various carrier proteins such as bovine serum albumin (BSA), ovalbumin (OVA), 

keyhole limpet haemocyanin (KLH) and thyroglubulin (THY), have been successfully 

used for this purpose. Synthetic and natural polymers have also been employed 

(Stapleton et al., 2004). The point of conjugation will be decided by the functional 

groups available on the hapten and carrier. The orientation of the hapten for 

presentation to the immune system will also have to be considered. It is generally 

accepted that exposed sites away from the carrier act as antigenic epitopes to the 

immune system. Various procedures for conjugating haptens to carrier proteins have 

been documented including standard amine coupling via EDC/NHS chemistry, 

ethylenediamine linkage, diazonium coupling and active ester couplings (Hermanson, 

1996).

Structurally analogous compounds have also been successfully employed in 

generating antibodies. Salamone et al. (1998) generated antibodies with a broad
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specificity to cannabinoid metabolites using a derivatised benzpyran stmcture linked 

to bovine thyroglobulin (BTG) to elicit an immune response. The structure was 

designed to direct the immune response to the conserved epitopes of cannabinoid 

metabolites present in urine. In this thesis, EDC/NHS carbodiimide coupling was 

employed to conjugate M3G to a range of carrier proteins. EDC activates the 

carboxyl groups on M3G, forming a reactive carboxyl intermediate that is susceptible 

to attack from amine groups present on the protein carrier. NHS stabilises the reactive 

intermediate, preventing re-hydrolysis. One of the advantages of EDC/NHS-mediated 

coupling is that the molecules are coupled by cross-linking. This method eliminates 

the production of any antibodies with a specifity for a linker, as it does not introduce a 

linking region between hapten and carrier.

1.4.2 Adjuvants

Adjuvants are stimulators of the immune system and are generally employed during 

immunisation to enhance the immune response. Adjuvants function in protecting the 

antigen by emulsifying it in oil, slowing its release and prolonging its exposure to the 

immune system. Adjuvants also contain non-specific immune system stimulators, 

which generate an response, attracting macrophages and other cells to the site of 

immunisation. The most commonly used adjuvants are Freund’s complete and 

incomplete adjuvants, FCA and FICA, respectively. FCA, is used for the initial 

immunisation and contains heat-killed Mycobacterium tuberculosis as an immune 

response stimulator. FICA is a less toxic and is used for subsequent immunisations 

(‘boosts’), as it does not contain mycobacteria, rendering it a less severe adjuvant for 

immunisation purposes. Other adjuvants include hunter’s TiterMax, liposomes, the 

RIBI adjuvant system and Bordetellapertusis (Stapleton et a l, 2004).

1.4.3 Polyclonal antibodies

Immunisation of an animal with a multivalent antigen will elicit the immune response 

to produce antibodies against this foreign molecule. If injections are repeated over a 

period of weeks, the animal will produce antibodies specific to this target. Following
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immunisation, the blood of the host animal will contain a heterogeneous mixture of 

antibodies, each recognising different epitopes of the immunogen with different 

specificities and affinities. These antibodies are referred to as polyclonal due to their 

heterogeneous nature. Relatively large animals such as donkeys, rabbits, goats and 

sheep have been used for the generation of polyclonal antibodies. Using this 

approach antibodies have been successfully generated against a wide variety of targets 

(Fitzpatrick, 2001; Daly, 2001; Dillon, 2001; Fanning, 2002; Fitzpatrick, 2002; 

Leonard, 2003 and Dunne, 2004). Polyclonal antibodies however, may be considered 

to have a limited supply due to batch-to-batch inconsistencies, even between 

antibodies produced in hosts of the same species. The heterogenicity of the antibody 

population may also lead to high levels of cross-reactivity with structurally related 

molecules. Due to ethical considerations, the use of animals for antibody generation 

is also a concern.

1.4.4Monoclonal antibodies

The generation of monoclonal antibodies employing hybridoma technology was first 

reported by Kohler and Milstein (1975). This allowed the production of an immortal 

cell line, secreting a homogeneous antibody population, with a single defined 

specificity and affinity for the target antigen. The process involves the 

immortalisation of a single B-cell through fusion with an immortal myeloma cell.

For the production of a monoclonal antibody, the immune response of an animal host 

is first primed with the immunogen of interest. The immune response is monitored 

until the desired titre of specific antibody is achieved. The spleen is removed and 

antibody-producing spleenocytes are harvested. Spleenocytes are the end product of 

B-cell differentiation and secrete antibodies with a defined specificity, however these 

cells will die under standard cell culture conditions. Myeloma cells are tumorigenic 

B-lymphocytes that can survive extended periods in culture. Commonly used 

myeloma cell lines include X63-Ag8.653 and Sp2/0-Agl4, which are derived from 

MOPC-21 cells. These cell lines have lost the ability to produce antibody (Stapleton 

et al., 2004). The myeloma cells are fused to antibody-producing spleenocytes with
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the aid of polyethylene glycol (PEG). PEG promotes membrane bridging and 

facilitates cell fusion and the transfer of nuclei. The resultant fusion product is termed 

a hybridoma or hybrid-mytloma. By-products of the fusion process include unfused 

spleenocytes and myeloma cells; spleenocytes fused with spleenocytes and myeloma- 

myeloma cell fusions.

Antibody-secreting hybridomas are selected using HAT (hypoxanthine, aminopterin 

and thymidine)-supplemented media (Figure 1.6). The presence of aminopterin 

blocks a cell’s ability to synthesise the DNA building blocks of purines and 

pyrimidines, through the main de novo synthesis pathway. Mammalian cells, like 

spleenocytes, are capable of DNA synthesis via the salvage pathway. Using the 

enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT), and in the 

presence of hypoxanthine and thymidine, these cells can synthesise the necessary 

DNA building blocks via the salvage pathway of nucleic acid synthesis. Myeloma 

cells deficient in this enzyme are used in the fusion, rendering them incapable of DNA 

synthesis via this salvage pathway. The aminopterin present in the HAT media blocks 

DNA synthesis via the usual, de novo pathway. This leads to the death of any unfused 

myeloma cells. Successfully fused hybridomas will inherit the HGPRT enzyme from 

the spleenocyte and the trait of immortality from the myeloma cell. This results in an 

immortal antibody secreting cell line.

Hybridomas secreting the antibody of interest are isolated to monoclonality by a 

process known as cloning out by limiting dilution. Cloning out of hybridomas is a 

critical step in the process of monoclonal antibody production. Non-secreting 

hybridomas will have a growth advantage over antibody secretors and need to be 

eliminated as early as possible. The heterogeneous hybridoma cells are seeded at low 

densities (typically 1 or <1 cell/ml) in 96 well plates. The supernatants from each 

well are tested for antibody activity. Positive wells are divided and sub-divided a 

number of times to ensure monoclonality of the cell-line. A flow diagram illustrating 

the process of monoclonal antibody production, from immunisation to cloning out, is 

shown in Figure 1.7.

Alternatively, monoclonal antibodies may be produced by in vitro immunisation 

(Borrebaeck, 1983). Naive spleen cells are exposed to the antigen for 5-9 days before
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fusion, as described above. Antibodies produced using in vitro immunisation are as a 

result of a primary response and are generally lower affinity IgM-type antibodies. 

However, as this system does not require a lengthy immunisation period, the time 

scale of antibody production is reduced, along with the quantity of immunogen 

required. Bonwick et al. (1996) successfully generated antibodies to flucofluron and 

sulcofuron, using this method. However, the lack of papers in the literature suggests 

that there has been very little success in the development of assays using antibodies 

produced by in vitro technology.

Hypoxau thine

Ribonucleotides

i C N ,  1
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Ribonucleotides

Figure 1.6: De novo synthesis o f DNA is blocked by aminopterin present in HAT- 

supplemented media. Cells that possess the enzymes hypoxanthine guanine 

phosphoribosyl transferase (HGPRT) and thymidine kinase (TK), convert to the 

salvage pathway fo r  synthesis o f nucleic acids. These cells utilise the hypoxanthine 

and thymidine present in the HAT media to synthesis DNA and will therefore survive. 

However, cells lacking this enzyme will die o ff in the presence HAT because they are 

unable to produce the building blocks fo r  nucleic acid synthesis.
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1.4.5 Antibody Fragments

A whole antibody molecule can be broken into several fragments using chemical, 

enzymatic or genetic means. Research conducted by Rodney Porter (1959) 

demonstrated that proteolytic treatment of the IgG molecule with the enzyme papain 

resulted in the formation of three fragments. Papain cleaves the amino terminal side 

of the disulphide bridge connecting the two heavy chains of the antibody, resulting in 

the production of two univalent antigen binding Fragments (Fab) and one crystalline 

Fragment (Fc), all of roughly equal size. Nisonoff et al. (1960) later demonstrated that 

an enzyme called pepsin, cleaved the carboxyl side of the antibody’s disulphide bond. 

This results in the formation of one bivalent antibody fragment or F(ab' ) 2  and one Fc 

portion. Together these discoveries led to a new branch of antibody production. 

Following peptidic digestion of two antibodies, each with specificity for a different 

antigen, half the digestion product of one antibody can be mixed with an equal 

amount of the other antibody to form a bispecific antibody, possessing dual specificity 

for each of the two antigens (Nolan and O’Kennedy, 1990).

Over the last 15 years, advances in genetics and molecular biology have facilitated the 

growth of a different field of antibody production. Recombinant antibody technology 

has revolutionised the field o f antibody engineering, allowing the production of 

monoclonal antibodies derived from a variety o f species including humans (Griffiths 

et al., 1994), mice (Dillon8 et al., 2003), rabbits (Li et al., 2000), chickens (Andris- 

Widhopf et al., 2000), sharks (Dooley et a l, 2003), camels (Ghahroudi et al., 1997) 

and sheep (Charlton et al., 2000). Various antibody fragments, including the Fab, Fv 

and scFv, can also be produced using recombinant DNA engineering (Figure 1.8). 

The Fv fragment is the smallest fragment that contains the complete antigen-binding 

site, consisting of one Vl and one Vh domain. The Fv fragment may be unstable for 

use in therapeutics or immunoanalysis because it lacks the inter-chain disulphide 

bond, which is present in the Fab fragment (Glockshuber et al., 1990). Protein 

engineering may be used to stabilise the Fv fragment. The introduction of a 

disulphide bond, synthetic peptide linker or both, have been employed to stabilise the 

fragment, generating a disulphide stabilised Fv (dsFv), single chain Fv fragment 

(scFv) or stabilised antibody (StAb), respectively (Brinkmann el al., 1993; Freund et
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al, 1993 and Dooley et al., 1998). Other fragments include the Fd fragment, 

consisting of one VHand one C hi domain, and a fragment CDR, the smallest antibody 

fragment capable of binding to an antigen.

scFv
% %

CDR
Fd

Fv
%% Fab

F(ab')2

Fc

Whole IgG

Figure 1.8: Diagramatic illustration o f antibody and antibody fragments which can 

be produced by genetic, chemical or enzymatic means. The antibody may be broken 

up into either Fab (single antigen-binding Fragment) or F(ab ) 2  (two antigen-binding 

Fragments) and Fc (crystalline Fragments) regions. Fab Fragments may be further 

broken up into Fv (variable Fragment), scFv (variable Fragment, stabilised with a 

synthetic linker) and CDR regions, which are the smallest fragment capable o f 

antigen binding.
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1.5 Recombinant Antibody Production

1.5.1 Principle o f phage display

The principle of phage display was first used to express cloned peptides displayed on 

the surface of bacteriophage (Smith, 1985). Antibody variable domains, from a 

murine anti-lysozyme antibody, were then expressed as fragments, displayed on the 

surface of phage by McCafferty et al. (1990). The success of phage display 

technology in the area of antibody engineering is largely due to the physical coupling 

of genotype to phenotype. The protein displayed on the virus surface is physically 

linked to the genetic material encoding it, which remains packaged inside the virion 

coat. This facilitates selection and amplification of desired protein functions, while 

simultaneously selecting the genetic sequence encoding it.

Bacteriophage or phage, are viruses that infect gram-negative bacteria. The F f family 

of filamentous phage (strains M l 3, fd and fl) are routinely used in phage display. 

These non-lytic filamentous phage consist of a single stranded genome enclosed in a 

protein coat, covered with thousands of copies of pVIII. At one end of the virion 

there are surface proteins p ill (3 to 5 copies) and pVI (5 copies), involved in host cell 

binding and the termination of the assembly. All of these proteins have been 

employed for phage display, although pVI has only rarely been used. Other phage 

proteins that are not employed in phage display include pVII and pXI (Rodi and 

Makowski, 1999 and Azzazy and Highsmith, 2002). Foreign DNA can be inserted 

into the phage genome attached either to gene III, VI, or VIII.

Ff bacteriophage infect male or donor E. coli that harbour the Fr episome (e.g. XL-1 

Blue or TGI), using the F' pilus as a surface receptor. The F' plasmid is a large (94.5 

kb) plasmid that is maintained at low copy number within the host cell. It has genes 

that are needed for its replication and for its ability to transfer DNA to a recipient. 

Cells carrying the F' plasmid produce a filamentous structure known as F' pili. These 

structures are involved in conjugative transfer of DNA between cells. This involves 

DNA transfer from a donor (F+) to a recipient (F-) cell by direct physical contact
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between the cells. Cells lacking the F' plasmid are known as female or acceptor cells, 

while cells harbouring the plasmid are known as male or donor cells.

Bacteriophage infection of a bacterial cell is mediated mainly the pill protein. This 

phage coat protein consists of 2 aminoterminal domains (N1 and N2) and one 

carboxyterminal domain. The N1 and N2 domains interact together to form a bi-lobal 

structure that protrudes from the tip of the phage particle. Infection of the bacterial 

cell is initiated by the binding of the N2 domain to the tip of the bacterial F' pilus. 

This triggers the F' pilus to retract into the bacterial cell membrane, allowing the N1 

domain to bind the carboxyterminal of the bacterial membrane protein Tol A, which is 

the coreceptor required for infection (Reichmann and Flollinger, 1997). The Tol A 

protein forms part of the Tol QRA complex, which is partially responsible for the 

stabilisation of the bacterial outer membrane. Tol A consists of three domains, an N 

terminal domain (D l) that anchors it to the cytoplasm, a central domain (D2), which 

spans the periplasmic space and a carboxyterminal domain (D3), which is associated 

with the outer membrane (Lubkowski et al., 1999). It is the carboxyterminal domain 

(D3) of the Tol A protein that interacts with the N1 domain of the phage pill protein. 

This is thought to cause the Tol A protein to adapt a more compact conformation, 

bringing the outer and inner membranes into closer proximity. At this stage the pill 

N2 domain is also thought to interact with the D3 domain of Tol A, leading to the 

insertion of the pill protein into the inner membrane and the subsequent release of the 

phage DNA into the bacterial cytoplasm (Karlsson et al., 2003). It is by this 

mechanism that the phage genome is translocated into the host cell, where it 

undergoes replication utilising both phage and host proteins. The phage single 

stranded DNA is converted to replicative form DNA. The transcription of phage genes 

begins and amplification proceeds by rolling circular replication. The phage proteins 

are packaged into a fully functioning virion particle, expressing the scFv as a fusion 

protein on the surface. Phage particles are released from the cell when the entire 

molecule has been encapsulated in pVIII and the minor coat proteins have been 

attached to the ends of the virion particle.

F' conjugative plasmids are a natural host for replication of this phage family. 

Initially, complete phage vectors or bacteriophage, which carried all the genetic
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information required for the phage life cycle, were used as the display vector. Now 

small plasmid vectors or phagemids, which contain the appropriate packaging signal 

and cloning sites, have become a more popular type of vector for display (DalyA et 

al., 2001). Phagemids have high transformation efficiencies, making them ideal for 

generating large antibody repertoires. When using phage to display antibody 

fragments, phagemids usually consist of the DNA encoding an scFv fused to the gene 

encoding a phage coat protein (gin  or gVIII protein). Other vector features include an 

antibiotic resistance marker, an origin o f replication, a promoter and a tag to aid in 

purification. Helper phage such as M13K07 of VCS-M13 are also required to supply 

all necessary structural proteins for correct packaging of the phage particle. The lacZ 

promoter is the most common promoter used to control expression. Expression may 

be suppressed by the addition of the catabolic repressor, glucose, or induced by 

addition of isopropyl-(3-D-galactopyranoside (IPTG). Upon induction, the scFv-coat 

fusion protein is incorporated into new phage particles that are assembled in the 

bacterium. Ths scFv is then displayed on the phage surface, while the genetic 

information encoding the scFv remains within the phage particle (Figure 1.9).

pvm major coat pV„  a||(j

Pro,ei" pIX coat
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............................................. i i t

t
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I

scFv Phagemid vector
pIU minor coat protein

Figure 1.9: Schematic illustration o f  a filamentous phage displaying an scFv fused to 

the p i l l  minor coat protein. The genes encoding the scFv are present in a phagemid 

vector that remains inside the phage coat. The phage coat is made up approx. 3000 

copies ofpVHIencapsulating the extended single stranded DNA o f the phage.
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1.5.2 Construction o f  a phage display library

To construct an scFv library, a source of variable antibody genes is required. This can 

be derived from B-lymphocytes, extracted from the spleen, peripheral blood or bone 

marrow or from a hybridoma cell line-secreting antibodies o f interest. The mRNA 

encoding antibody genes is extracted and reverse transcribed to yield cDNA. There 

are sufficiently conserved sequences within the J segments and at the 5' end of V 

genes to allow the design of degenerate forward and back primers, respectively 

(Hoogenboom et al, 1992). Variable heavy and light chain genes are amplified 

separately using a multiplex PCR involving this ‘universal’ primer set, designed to be 

specific for the species from which the antibody is derived. The products are then 

assembled into one fragment using a linking PCR reaction. A commonly used 

reaction is a splice by overlap extension (SOE) PCR, using outer flanking primers that 

have sequence homology to the 3' end of Vh and the 5' end of Vl- These primers 

introduce a linking region, like the (Gly4 Ser)4  linker commonly used in scFvs. The 

primers also code for specific restriction sites at their 5' end, to facilitate cloning of 

the fragment into a phage expression vector (Krebber et a l, 1997). Following 

restriction of the scFv fragment and Phagemid vector, the two are ligated together and 

transformed into donor (male) E. coli cells harbouring the F' pillus (e.g. XL-1 Blue or 

TGI). Library size is limited by transformation efficiency (up to size of about lx l O8). 

To ensure that the diversity of the repertoire is maintained, this transformation step is 

crucial and is normally carried out by electroporation. The transformed bacterial cells 

are then grown to exponential phase and infected with a helper phage (VCSMI3 or 

M13K07), which will replicate inside the cells and emerge as antibody displaying 

phage particles. An overview of the construction of a phage display library is detailed 

in Figure 1.10.
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Figure 1.10: Schematic overview detailing the steps involved in the generation o f an 

antibody phage display library. Following isolation o f mRNA, heavy and light chain 

antibody genes are amplified by PCR. Both fragments are spliced together and the 

DNA insert is ligated into a phagemid vector. This is transformed into E. coli. which 

following infection by helper phage, will express antibody fragments on the surface o f  

phage particles.
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1.6 Natural Antibody Repertoires

1.6.1 Naïve libraries

The primary immune response comprises a vast array of IgM antibodies against a 

large variety of antigens. The diversity encoded by this primary immune response can 

be harnessed to generate a ‘single pot’ antigen-unbiased antibody repertoire. Naïve 

libraries are created using V-genes amplified from either total RNA or IgM RNA of 

non-immunised donors. Peripheral blood lymphocytes, bone marrow, spleen cells, 

and tonsils B-cells have all been used as sources of V-genes for library generation. 

Antibodies against a range of different antigens can be selected including, self, non- 

immunogenic and toxic antigens.

The major advantage of a ‘single pot’ repertoire is that once generated, it can be used 

as a ‘universal’ source of antibodies. It may also serve as a source of human 

antibodies for therapeutic purposes. Antibodies from a naïve library have not 

undergone affinity maturation by the immune system and can, therefore, suffer from 

poor binding kinetics. This may be overcome by creating larger repertoires. The 

larger the library size, the larger the number of clones and diversity encoded will be. 

This increases the probability o f isolating a high affinity antibody to any given target. 

A library of 107 clones created by Marks et al. (1991), yielded antibodies with 

affinities in the range of 10'6-10"7M, while a larger repertoire comprising of 1.4 x 1010 

yielded antibodies with KD<10 nM (Vaughan et al., 1996).
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1.6.2 Immunised libraries

Antibody libraries may be generated using antibody genes isolated from the B-cells of 

an immunised host or immune donors. Immunisation primes the immune system so 

that IgG genes will be enriched for antigen-specific antibodies that will be affinity 

matured within the host’s immune system. Immunised libraries have been created 

from a variety o f species including mice (Dillon8 et al., 2003), rabbits (Li et al., 

2000), chickens (Andris-Widhopf et a l, 2000), sharks (Dooley el al., 2003), camels 

(Ghahroudi et al., 1997) and sheep (Charlton et a l, 2000). The process of 

immunising a host animal requires a lengthy time period and ethical concerns exist 

over the use of animals. The immune system bias of antibody V-genes towards target 

antigen mean that only a relatively small library is generated and each repertoire can 

only be used to select for antibodies against that specific antigen. One such example 

of a pre-immunised murine library created against M3G is described by Dillon8 et al. 

(2003), which employed an optimised phage display system (Krebber et al., 1997), for 

cloning of antibody V-genes.

1.6.2.1 The Krebber system o f  phage display

Krebber et al. (1997), have engineered an optimised phage display system for the 

generation of single chain antibody Fragments (scFv’s) from hybridomas or spleen 

cells. The system was optimised for robustness, vector stability, tight control of scFv- 

Agene III expression, primer usage for PCR amplification of variable genes, scFv 

assembly strategy and subsequent directional cloning using a rare single cutting 

restriction enzyme. A compatible vector series to aid purification, detection, 

multimerisation and modification is also described. The Krebber system has been 

employed for the generation of specific scFv’s with high affinity for the major 

metabolites of heroin (Dillon8 et al., 2003).

The primers detailed by Krebber et al. (1997), encompass all possible variations of 

murine heavy and light chain genes collected in the Kabat database (Kabat et al,

1991), combined with an extended primer set described by Kettleborough et al.
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(1993). These primers encode a shortened version of the FLAG sequence (DYKD), 

which may be used as a handle for detection/purification (Prickett et al., 1989). 

Heavy and light chain genes are amplified separately and annealed in the orientation 

VL-(Gly4 Ser)4-VH, using a splice by overlap extension PCR. Sfi 1 recognises the 

sequence GGCCNNNNNGGCC, where N can be any nucleotide. This recognition 

site is introduced by the heavy chain forward and scback primers and is very rare in 

antibody sequences.

The pAK vector series can be used for phage display or for the expression of the 

soluble antibody in a variety of formats (Figure 1.11). Each vector consists of a 

chloramphenicol resistance gene and a tetracycline resistance ‘stuffer’ gene, which 

will be replaced by the genes encoding the variable heavy and light genes of the 

antibody. The tetracycline resistance cassette is flanked on either end with an Sfi 1 

restriction site for cloning. All vectors contain a Pel B  leader sequence; a lac 

promoter/operator to allow repression of translation by the addition of glucose; a lac 

repressor gene to ensure independent lac promoter repression; and a strong upstream 

terminator (Xh p ) ,  which in combination with the lac promoter eliminates background 

expression prior to induction with IPTG.

The phagemid vectors pAK 100 and 200 have been engineered to contain a truncated 

version of gill phage coat protein (250-406) in order to avoid immunity to 

superinfection. This ensures complete product repression prior to helper phage 

infection. The pAK 100 vector also encodes a c-myc tag for detection and an amber 

codon that facilitates switching between expression of phage-bound and soluble scFv, 

simply by changing the expression host. When phage are grown in a SupE, suppressor 

strain of E. coli, the amber codon is read as glutamine and the antibody fusion protein 

is displayed on the phage. In non-suppressor strains, the amber stop is read as a stop 

codon and soluble protein is secreted into the culture media (Hoogenboom et al.,

1992). The pAK 200 vector does not contain this amber codon. As suppression is 

never complete, this will result in a higher proportion of antibody-phage fusions but 

the scFv gene will need to be re-cloned into another vector prior to soluble expression.

The pAK 300 vector is the most basic plasmid for soluble antibody expression. It 

encodes a C-terminal hexahistidine tag for purification using Immobilised Metal
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Affinity Chromatography (IMAC) (Janknecht el a l,  1991; Lindner et a l 1997 and 

Muller et a l, 1998) or for detection using an anti-his tag antibody. The pAK 400 

vector contains a much stronger Shine Dalgarno sequence (SDx7gio) for increased 

expression and a hexahistidine tag. The pAK 500 vector contains a single chain 

double helix (scdHLX) for dimerisation. This consists o f a C-terminal flexible hinge 

isolated from murine IgG3 and a helix 1-turn-helix 2, followed by a pentahistidine 

tag. The resultant homodimerised minibody shown in Figure 1.12 is reported to have 

increased antigen affinity (Pack et a l, 1993). The pAK 600 vector encodes the 

bacterial alkaline phosphatase gene to enable direct detection and facilitate 

dimerisation by scFv-AP fusions (Pack et al., 1993 and Muller et a l,  1998). This 

results in the production of a dimeric, bifunctional scFv, as shown in Figure 1.12.
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Figure 1.11: The pAK compatible vector series for phage display and soluble 

expression. All vectors contain a tetracycline ‘stuffer ’ gene and a chloramphenicol 

antibiotic resistance gene, in addition to a lacl repressor gene (LacI). a strong 

upstream terminator (fop), the lac promoter/operator (Lac p/o) and a pelB leader 

sequence (pelB). modified to contain an Sfi I  site and a downstream terminator (tipp). 

The pAK 100 and 200 phagemid vectors encode a truncated version of the g ill  phage 

coat protein (gill). pAK 100 also contains a c-myc tag (myc) and an amber codon (*). 

Soluble expression vectors, pAK 300 and 400 encode a 6 His tag for purification and 

detection. In addition, pAK 400 also encodes a strong Shine Dalgarno sequence 

(SDt7Sio) for increased expression levels. pAK 500 encodes a 5 His tag and a helix 

for dimérisation and pAK 600 encodes the bacterial alkaline phosphatase gene for 

direct detection and dimérisation. (Adaptedfrom Krebber et a i , 1997.)
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Figure 1.12: Schematic diagram of the monomeric, dimeric and alkaline 

phosphatase-labelled scFvs produced using pAK 400, 500 and 600 expression 

vectors, respectively. The monomeric scFv consists o f a variable heavy and light 

chain domain connected via a glycine-serine linker; the dimeric scFv comprises two 

scFv fragments connected via a single chain double helix (scdHLX) and the 

bijunctional scFv consists o f two alkaline phosphatase-labelled scFvs dimerised 

through enzyme fusions of the alkaline phosphatase (AP).



1.7 Synthetic Antibody Libraries

Synthetic antibody libraries are constructed in vitro through the assembly of V-gene 

segments and D/J regions. Antibody repertoires can be subclassed as fully or semi­

synthetic, where the library randomisation is created in a single framework. Synthetic 

libraries are constructed from V-genes that have not been rearranged by the immune 

system. Using the natural germline V-genes as a scaffold, the CDR regions (usually 

CDR3 loops, as these correspond to the regions o f highest natural diversity) are 

partially randomised to mimic ‘natural diversity’. The CDR regions may undergo 

partial or complete randomisation using oligonucleotide-directed mutagenesis or 

PCR-based methods. Synthetic libraries can be specifically designed towards end use, 

for example the geometry o f the binding site can be designed to match the shape of 

the antigen group, protein or hapten. Longer CDRH3 lengths yield higher affinity 

hapten binders, as a general rule, whereas a flat planar binding-pocket is better for 

binding large antigens (Strachan et al., 2002). The in vitro nature of assembly allows 

the contents, degree of variability and overall diversity of the antibody repertoire to be 

controlled. One disadvantage of synthetic libraries is the possibility that the repertoire 

may be dominated by antibody domains that fold incorrectly or prove toxic to the 

expression host. Molecular cloning techniques may also introduce a high number of 

stop codons, or lead to truncated antibody sequences, if not tightly regulated.

In this study, the library used for the generation of scFv antibodies to THC is derived 

from the largest synthetic library constructed to date consisting of 6.5 x 1010 Fab- 

displayed on the surface of phage (Griffiths et al., 1994). The library was constructed 

using a repertoire of >108 heavy chains and 8 x 105 light chains, both containing 

randomised CDR regions. To maximise library size, bacteria containing a ‘donor’ 

heavy chain repertoire, encoded on a plasmid, were infected with an ‘acceptor’ light 

chain repertoire encoded by phage. This combinatorial infection facilitates in vivo 

recombination within the bacterium through Cre catalysed recombination at loxP sites. 

This library has been used successfully for the isolation of antibody fragments against 

a variety of antigens such as foreign antigens and human antigens with affinities in the 

region o f 4-217 nM (Griffiths et al., 1994). ScFvs have also been isolated against 

small haptens like environmental contaminants including microcystin-LR, a
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hepatotoxin produced by cyanobacteria, (McElhiney et ah, 2000, and Strachan el ah,

2002) and the herbicide, 2,4-dichlorophenoxyacetic acid (Brichta el ah, 2003);

1.8 Selection Procedures for Isolation of Phage-displaying Specific Antibodies

The design of an appropriate selection strategy is a pre-requiste for the isolation of 

scFvs with the desired binding kinetics and specificity for the target antigen. The 

process involves enriching the library for clones with specific binding capabilities for 

the antigen of interest, while depleting the repertoire of non-specific aberrant phage- 

displayed clones.

Traditionally, ‘biopanning ’ on surface-immobilised antigen is a very popular method 

of selection (Figure 1.13). Specific phage retained on an antigen coated solid surface, 

e.g. an immunotube (Krebber et al., 1997) or immunoaffmity column (Hoogenboom 

and Winter, 1992). Non-specific phage are removed through stringent washing. 

Specific phage are eluted using acidic elution, with compounds like glycine-HCl 

(Dillon13 et al., 2003); by alkaline elution, with compounds like triethylamine (de 

Bruin et ah, 1999); by passive bacterial elution (Wind et ah, 1997) or by competition 

with excess antigen (Charlton et ah, 2001), or a structurally similar antigen (Strachan 

et ah, 2002). The eluted phage can then be amplified in bacteria and subjected to 

further rounds of enrichment.

While this method may prove simple, fast and effective, it suffers from some 

drawbacks. Firstly, phage may be selected against an antigen in a conformationally- 

altered immobilised state and may be incapable of binding free antigen in solution. 

Secondly purified antigen is required for the selection process to be specific. It must 

also be taken into account that large quantities of antigen may be required for 

immobilisation over a number of selection rounds. Thirdly, unless elution conditions 

are carefully chosen, a bias may be created towards the selection of low affinity 

binders. It may be difficult to discriminate between clones with similar affinities. 

This is particularly important for non-specific stripping elutions like acid/base. 

Including an initial subtractive panning step may be used to increase specificity for
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the target antigen. This involves a preliminary round of panning against blocking 

solution and/or protein carrier to eliminate any phage that bind to these proteins, prior 

to exposure to antigen-coated surface. A subtractive procedure, in association with 

flow cytometry cell sorting, was used by de Kruif et al. (1995), to isolate scFvs 

specific for subsets of blood leukocytes. Phage were incubated with a heterogeneous 

population of blood cells. Phage bound to each subset of cells were sorted by flow 

cytometry and eluted. In this manner heterogeneous phage were absorbed by non­

selected cells, enriching the population for those specific to target subset of cells.

Commercially available streptavidin-coated magnetic beads can be used to select for 

binders in solution. A biotinylated derivatised antigen is mixed with a heterogeneous 

phage population and incubated for the desired period of time. Immunomagnetic 

separation can then be used to isolate specific binders. Vaughan et ah (1996) used 

solution capture on soluble biotinylated antigen to isolate high affinity antibodies to 

doxorubicin (Kd= 5.8 nM) and fluorescein (KD=0.3 nM) from a naive human library. 

Alternatively if biotin disulphide is used to link antigen to biotin, the phage-antigen 

complex can be eluted with dithiothreitol (DTT), which disrupts the disulphide bond 

between antigen and biotin (Harrison et ah, 1996). Osbourn et ah (1998) describe a 

novel pathfinder selection strategy that involves enzyme-catalysed reporter deposition 

for the biotinylation of phage in close proximity to the target antigen. Phage can then 

be retrieved on streptavidin-coated magnetic beads for amplification and further 

enrichment.

Antibody libraries can also be engineered to include a specific protease cleavage site 

between the antibody heavy chain and the g ill phage protein. Ward et al. (1996) 

describe enzymatic cleavage to elute human antibodies against tetanus toxoid and 

keyhole limpet haemocyanin. This strategy does not rely on disrupting the 

antibody:antigen interaction. Therefore, cleavage is independent of the antibody’s 

affinity allowing recovery of high affinity binders. Malmborg et ah (1996) utilised 

BIAcore to isolate Fab antibodies against hen egg lysozyme and phenyloxazolone on 

the basis of their dissociation rate constants. Phage were injected over an antigen- 

coated sensor chip surface and elutions o f dissociating phage, collected at different 

time points, were used to select for antibodies with the slowest dissociation rate.
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Figure 1.13: Schematic illustration o f a typical selection process for the enrichment 

of antigen-specific phage clones. The phage repertoire is incubated with the antigen 

of interest coated on a solid support. Phage that display antigen-specific antibodies 

will bind, while non-specific phage are removed by washing. Positive binders are 

eluted and reinfected into bacteria for further rounds of selection and enrichment. 

Individual clones are analysed by monoclonal phage ELISA.
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1.9 Soluble Expression

Bacterial expression systems are a popular method for the production of all functional 

antibody fragments (Fv, Fab, F(ab')2, and scFv) because unlike whole antibodies, 

which require post-translational modifications, antibody fragments can be 

successfully produced as fully functional antigen binding molecules. E. coli is the 

strain o f choice, due to its ease of manipulation, rapidity of growth and economical 

efficiency.

Following selection of antigen-specific phage antibodies, the same antibody can be 

produced in a soluble form directly from the same phagemid if it contains an amber 

stop codon and a leader sequence. The amber stop codon is located on the phagemid 

between the scFv gene and the gill, encoding the pill phage coat protein. An amber 

stop is read by SupE strains as a glutamine and therefore, transcription continues 

leading to the expression of an antibody-phage fusion protein. In non-supressor 

strains (HB2151 and JM83), this amber codon is read as a stop codon, bringing 

transcription to a halt and resulting in the secretion of soluble antibody. This process 

mimics the switch of B-cells between expression of surface bound and secreted 

antibody (Hoogenboom et al., 1992). Non-suppressor strains of E. coli are routinely 

used to express large quantities of soluble antibody by eliminating glucose from the 

growth media and induction o f expression with IPTG. Suppressor strains of E. coli 

(XL-1 Blue or TGI) may be forced to express small quantities of soluble antibody if 

in the absence of glucose and by induction with IPTG (Harrison et al., 1996).

A leader sequence directs the expressed scFv to the periplasmic space of E. coli, 

thereby mimicking the eukaryotic secretory pathway. This signal sequence is cleaved 

during transportation through the cytoplasmic membrane and the secreted antibody is 

correctly folded with a homogenous N terminus. A pelB sequence is commonly used 

for this purpose (Krebber et al., 1997 and Lemeulle et al., 1998). A proportion of 

periplasmic scFv may leak out into the culture medium. Although the molecular cause 

is unknown, it seems to be dependant on the primary sequence of the antibody 

(Kipriyanov et al., 1997). One disadvantage associated with periplasmic expression is 

the formation of insoluble antibody aggregates after transport to the periplasm
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resulting in incorrect antibody folding. Kipriyanov et al. (1997) have demonstrated 

that the ratio of soluble versus insoluble scFv was dependant on the strength of the 

promoter and that the aggregation of the scFv in the periplasm could be reduced 

through the addition of sucrose just prior to induction. Inducer concentration, as well 

as incubation conditions can also be used to alter the level of secreted scFv. This is 

achieved by up-regulation of the LacZ promoter with the addition of increased 

concentrations of IPTG, resulting in a greater expression of soluble scFv into the 

medium. Reduction of the incubation temperature decreased antibody secretion into 

the medium, but had no effect on the yield of soluble scFv in the periplasm. ScFvs 

can also be produced without a leader sequence, as cytoplasmic inclusion bodies (Cho 

et al., 2000). However, problems may arise during the delicate re-folding step, due to 

the incorrect formation of intermolecular disulphide bridges.

For production of scFvs on a large scale, the gene is often recloned into a specifically 

designed expression vector such as pIMS 1 47  (Strachan et al., 1999  and Hayhurst et 

a l, 2 0 0 3 )  or pAK 4 0 0  (Krebber et al., 1 997). The pIMS 147 vector encodes 

enhanced expression cassettes such as the skp periplasmic chaperone (Bothmann and 

Pluckthun, 1 9 9 8 ), to aid in protein solubility and decrease toxicity, the human C k 

domain for detection and the hexahistidine tag for purification. The pAK-compatible 

vector series encode enhanced expression, dimerisation or direct detection, via an 

enzyme label, as discussed in Section 1 .6 .2 .1 .

Antibody fragments have also been successfully expressed in eukaiyotic systems. 

Such systems have the capability for post-translational modifications, like antibody 

glycosylation, as performed by a mammalian cell in vivo. Yeast expression systems 

offer the advantage that protein folding pathways and codon usage are closely related 

to that of mammalian cells, therefore, eliminating host environment biases and 

toxicity that may be associated with prokaryotic systems. The expression system is 

useful for the generation of therapeutic antibody products as expressed proteins are 

free from toxic cell wall pyrogens, associated with E. coli expression systems, and 

potentially oncogenic or viral nucleic acids as with mammalian expression systems. 

Yeasts such as Schizosaccharomycespombe (Davis et al., \99\), Trichoderma reesei 

(Eldin et al., 1997), Pichia pastoris (Freyre et a l, 2000) and Saccharomyces 

cerevisiae (Shusta et al., 1998j have been used to successfully express antibody
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fragments. Antibody fragments have been successfully expressed in mammalian 

cells, such as Chinese Hamster ovary (CHO) cells (Dorai et a l, 1994), COS cells (Jost 

et al., 1994 and Ridder et al., 1995) and myeloma cells (Williams et al., 2003). 

Myeloma cells do not require a serum media for growth, making them amenable to 

continuous and batch production systems, as well as simplifying the purification 

procedure. Antibody fragments can be recloned into expression vectors encoding 

antibody constant domains, facilitating antibody ‘humanisation’ and introducing 

effector functions encoded by the Fc portion (Mahler et a i, 1997; Persic et al., 1997) 

and facilitating class switching (Boel et al., 2000). Bacillovirus/insect cell expression 

systems yield soluble antibodies that are devoid of any human pathogens or toxic 

compounds (Brocks et al., 1997 and Lemeulle et al., 1998). Plant expression systems 

allow for bulk production of antibody fragments, without the requirement for 

fermentors or sterile culture conditions. ScFv’s have been functionally expressed in 

different plant subcellular compartments including cytoplasm, apoplasts, endoplasmic 

reticulum, and in the seeds of transgenic plants. Various plants have been used to 

express recombinant proteins including tobacco (Nicotiana tabaccum and N. 

benthaniana) cereals (barley, rice, maize and wheat), legumes (peas, soyabean and 

alfalfa), and fruit and root crops (potato, tomato) (Stôger et al., 2005). A humanized 

antibody against herpes simplex virus has been expressed in the soyabean plant 

(Zeitlin et al., 1998). ScFvs against carcinoembryonic antigen has been expressed in 

peas (Perrin et a i, 2000), wheat (Stôger et al., 2000) and rice (Torres et al, 1998). 

Barley, potato and tobacco have been used to express a diagnostic antibody for the 

detection of anti-HIV-1 antibodies in human blood (Schunmann et a l, 2002). The 

scFv was directed against glycophorin and fused to an epitope of the HIV virus. The 

fusion protein could be used as a replacement for the SimpliRed™ HIV diagnostic 

agent. The tobacco plant using Agrobacterium-mediated transformation has also been 

widely reported for soluble expression of antibody fragments (Strachan et al., 1998 

and Hendy etal., 1999).
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1.10 Purification of scFv antibodies

Several different approaches have been taken to purify scFvs. The first type of 

purification method is derived from strategies used to purify whole antibodies. The 

principles are based on the intrinsic properties o f the antibody like antigen-binding, 

isoelectric point, hydrophobicity, antibody class and fragment size. These methods 

include antigen-affinity chromatography (Lawrence et al., 1998 and Brennan et ah, 

2003), ion exchange chromatography (Kretzschmar et ah, 1996 and Williams et ah,

2003), hydrophobic charge introduction chromatography (Williams et ah, 2003), 

protein L, A and LA chromatography (Isaksen and Fitzgerald, 2001 and Williams et 

ah, 2003), and size exclusion chromatography (Kretzschmar et ah, 1996 and Laroche- 

Traineau et ah, 2000), which is normally used in tandem with other purification 

techniques.

The second group of purification methods are based on tags, which are genetically 

introduced into the scFv gene or plasmid to provide a handle for purification. These 

methods have proven more popular due to their universal applicability to different 

antibodies and recombinant proteins. Tag strategies that have been employed for 

antibody purification include human constant light chain tagging (Longstaff et ah, 

1998 and Strachan et ah, 1998), chitin binding domain antibody fusions (Blank et al., 

2002), tagging with a four-amino acid flag tag (Weis et ah, 1992; Knappik and 

Plückthun, 1994 and Einhauer13 and Jungbauer, 2001), c-myc tagging (Laroche- 

Traineau et ah, 2000), tagging with a nine amino acid streptavidin tag (Dübel et ah, 

1995 and Skerra and Schmidt, 1999), antibody tagging by in vivo biotinylation (Tully, 

E., personal communication) and histidine tagging, as used in immobilised metal 

affinity chromatography (IMAC) (Harper et ah, 1997; Kerschbaumer et a l,  1997; 

Lindner et ah, 1997; Müller et ah, 1998).

IMAC was first described for the separation of serum proteins, by Porath et al. (1975). 

Since then, IMAC has established itself as a universal purification strategy for many 

recombinant proteins and antibody fragments. It boasts many advantages over the 

more traditional chromatographic techniques including higher ligand stability, higher 

protein loading, milder elution conditions, lower cost and complete recovery of ligand
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following regeneration (Arnold, 1991). IMAC involves the insertion of the genes 

encoding the short histidine (His) peptide tag (containing 4-6 histidine residues) into 

the scFv sequence (Muller et a l,  1998). Insertion at the N or C terminus ensures that 

the antigen-binding site is not affected (Casey et al., 1995), although C terminal His 

tags are often preferred for recombinant antibodies (Muller et a l, 1998).

The IMAC column consists of transition metals such as Ni , CoiT, Zn and Cu , 

chelated by, iminodiacetic acid (IDA) nitrotriacetic acid (NTA), or tris 

(carboxymethyl) ethylenediamine (TED) (Arnold, 1991). Histidine containing 

proteins bind to the metal-chelate support via their non-protonated imidazole 

nitrogens. A high ionic strength buffer is employed to reduce non-specific 

electrostatic interactions. Specifically bound protein may be eluted using EDTA, to 

chelate metal ions; low pH, which confers a positive charge on the His residues so 

they are incapable of binding metal ions; or by addition of imidazole or metal ions, 

which compete with His for metal binding. The advantage of the latter system being 

that it does not denature the protein (Janknecht et a l, 1991). A gradient of increasing 

imidazole concentration is often employed to improve the purity of eluted protein.

1.11 Affinity Maturation of scFvs

The sequential rounds of mutation and affinity selection that occur within B-cells of 

the immune system have been mimicked in the area recombinant antibody technology 

using a process referred to as affinity maturation. Antibody affinity can be improved 

in vitro using a variety of techniques including site-directed mutagensis, CDR 

shuffling, chain shuffling or error prone PCR. The effects of the introduction of the 

individual mutations are analysed by a process of selection and screening. Mutations 

can also be introduced in vivo using E. coli mutator cells.
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1.11.1 Site-directed mutagenesis

Site directed mutagenesis involves substitutions of the amino acids in one or more of 

the CDR regions and subsequent selection, to isolate higher affinity binders. SchierB 

et al. (1996) sequentially introduced random substitutions into the CDR3 area of 

heavy and light chains using oligonucleotide-directed mutagenesis. Light chain 

randomisation resulted in a 16-fold increase in antibody affinity. The highest affinity 

antibody was then used as a starting point to assess the effect of heavy chain 

randomisation. The overall effect of heavy and light chain mutagenesis led to a 1200- 

fold increase in antibody affinity, with an ultra low KD in the picomolar range. Dong 

et al., (2003) employed oligonucleotide mutagenesis of CDR HI and 2, and CDR L3 

to increase the affinity of an scFv recognising mouse neural cell adhesion molecule 

LI by a factor of 60. They went on to dimerise the mutated scFv, which increased the 

affinity by a further factor of 5.5.

Lewis et al. (1995) reported a 9-fold increase in affinity for a highly evolved scFv 

against HIVgp-120, which had previously undergone both in vivo and in vitro affinity 

maturation. A three-step process of optimised residue substitution was employed for 

mutagenesis. This involved identifying residues that were non-critical for binding by 

sequential alanine substitution, followed by off-rate determination. Alanine is the 

chosen amino acid as it minimises disruption to the tertiary structure of the antibody. 

When substitutions result in a significant loss of activity, the residue is considered as 

operationally critical and is believed to be solvent exposed, possibly in contact with 

ligand. These residues are considered ‘near-optimised’ already and are by-passed for 

mutagenesis. Instead, positions that have a less direct effect on binding, perhaps those 

that are involved in access to the antigen-binding site, are targeted for mutagenesis.

A similar method, termed ‘parsimonious mutagenesis’, was used by SchierA et aI 

(1996) to increase the affinity o f an scFv against the glycoprotein tumour antigen c- 

erbB-2, into the nanomolar range. In this method, amino acids involved in antigen 

binding are identified from the CDR regions using mutagenic oligonucleotides. These 

oligos are specifically designed to minimise coding sequence redundancy and limit
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the number of amino acid residues, which do not retain parental structural features, 

thereby minimising the probability of non-viable structures.

1.11.2 Antibody CDR and chain shuffling

Chain shuffling mutagenesis involves the recloning of the antibody gene for one chain 

(e.g. V h), with a repertoire of genes for the other chain (e.g. V l)  (Marks et al., 1992). 

This results in a mutant library with a V h chain specific for the target and random V l 

chains. At this stage the library is screened for specific binders and the one with the 

highest affinity is subjected to another round of chain shuffling. This time the new V l 

chain is recombined with a repertoire of V h chains. Depending on the source of V h 

(specific to antigen or naive), the CDR H3 may be kept constant to retain specificity. 

Park et al. (2000) improved the affinity o f an scFv isolated from a naive library 

against PreSl of Hepatitis B by heavy chain shuffling with heavy chain genes derived 

from two healthy individuals. The mutated scFv exhibited a 6.5-fold increase in 

affinity. Another form of chain shuffling involves the shuffling of individual CDR 

regions. In order to conserve the specificity of the parental antibody, the CDRH3 is 

kept constant. Ellmark et al. (2002) shuffled an scFv against CD-40 using genes 

derived from a human antibody library. They maintained the CDR HI and 3 regions 

constant, while chain shuffling the other CDR regions. The mutated library contained 

scFvs with an 8-37-fold improvement in affinity.

1.11.3 Error prone PCR

Error prone PCR is a mutagenesis approach that randomly introduces mutations 

throughout the antibody-encoding gene, effectively resulting in gene scrambling. 

DNA polymerases that lack proof-reading capabilities are often used when cloning 

antibody genes from hybridomas or an existing antibody fragment. This results in 

random insertions, deletions and substitutions in the nucleotide sequence. Many of 

these changes will be detrimental to the antibody; however, increased diversity and 

affinity can result. The level o f affinity introduced compares favourably with that 

observed during the in vivo secondary immune response, which is typically in the

46



region of 1-3 orders of magnitude higher in affinity (Lewis et al., 1995). Zhang et al. 

(2004) used a commercially available random mutagenesis kit (Stratagene, employing 

Mutazyme® polymerase) to affinity mature a HIV-1 neutralising scFv. Using 

sequential antigen panning on a number o f HIV-related glycoproteins, it was possible 

to broaden the specificity and increase the neutralisation properties over those of the 

parental Fab.

1.11.4 In Vivo mutation using mutator Cells

In vivo affinity maturation can be carried out through the propagation of an antibody- 

encoding display vector in E. coli mutator cells. These conditional mutants produce 

single base substitutions, preferentially and predominantly, at a rate of 105 the rate of 

normal cells. The rate of mutation and ratio of transversions to transitions can be 

controlled using culture conditions (Coia et al., 1997). One disadvantage with this 

system is that mutations in vector sequences, unassociated with antibody genes 

sequences, are possible. Mutations in areas such as antibiotic resistance genes, origins 

of replication and promoters, controlling expression, will be detrimental to the vector 

and will result in the loss of potentially good binders. Also, mutations to the gene to 

be affinity matured may also result in loss of expression of that gene e.g. stop codons 

limiting expression. The advantage of in vivo mutation systems is that phage are 

derived directly from mutated parent molecules without intervention, such as 

recloning and strains (F1 mutD5-FIT) harbouring the F' pillus are available 

commercially, for direct phage infection. High titres of rescued phage can be 

achieved that are not possible with in vitro methods. These methods involve ligation 

and transformation of the mutated sequence and, therefore, the size of the mutated 

library will be limited by the transformation efficiency E. coli. Irving et al. (1996) 

used mutator cells to increase the affinity o f an scFv isolated from a naive library. 

The majority of mutations increased affinity 3-fold. However, a mutation introduced 

in CDR3 resulted in a 103 gain in affinity, but with associated antibody aggregation. 

CoiaA et al. (2001) used F' mutD5-FIT cells to enhance the poor expression levels of a 

hybridoma-derived scFv against hepatitis by a factor of 10
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1.12 In Vitro display and affinity maturation using ribosome display

Despite the progress represented by phage display in the field of scFv technology, it is 

a cell-dependant system, and, therefore, suffers from the limitations associated with in 

vivo systems. Namely, the library size is limited by the efficiency of the initial 

transformation step and selection disadvantages of host environments against 

particular scFv’s may be encountered (Schaffitzel et al., 1999). Ribosomal display is 

an entirely ‘cell free’ system, where transcription, translation and selection are all 

carried out in vitro. In addition to the selection and enrichment of functional binders 

(Hanes and Pliickthun, 1997), ribosomal display also facilitates protein evolution and 

affinity maturation during the selection process when low fidelity DNA polymerases 

(e.g. Taq) are employed (Hanes et al., 1998 and Hanes et al., 2000).

Ribosome display, as detailed in Figure 1.14, involves the in vitro transcription of the 

scFv fragment of interest, followed by in vitro translation, whereby the mRNA is 

retained on the ribosome by the absence on a stop codon (Hanes and Pliickthun, 1997 

and He et al., 1999). The ribosome stalls, forming a tertiary mRNA-Ribosome-scFv 

complex, which is stabilised by low temperature (4 C) and the magnesium ion content 

of the buffer (Schaffitzel et al., 1999). The complex connects genotype (mRNA) to 

phenotype (protein) and therefore can be used directly for screening. This may be 

performed on tagged ligand immobilised on a surface (Hanes et al., 1998) or in 

solution for its binding properties (CoiaB et a l, 2001). Specific binders may be eluted 

with excess competing antigen (Hanes and Pliickthun, 1997 and Schaffitzel et al., 

1999) or by using ethylenediaminetetracetic acid (EDTA) to dissociate mRNA- 

ribosome complex. The RNA can be used directly for further selection cycles, or 

alternatively the genetic information may be recovered in the form of cDNA, using 

RT-PCR, while the mRNA remains complexed to the ribosome (Hanes et al., 1998). 

Transcription and translation may be performed as two separate reactions (Hanes and 

Pliickthun, 1997; Hanes et al., 1998 and Hanes et al., 2000) or as a coupled procedure 

(He et al., 1999). However, the dependence of T7 RNA polymerase on P- 

mercaptoethanol for stability may prevent disulphide bond formation of scFv’s 

(Hanes and Pliickthun, 1997 and Schaffitzel et al, 1999). The use of prokaryotic
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(Hanes and Pluckthun, 1997) and eukaryotic (He et a l,  1999) translation systems has 

also been described.

The fundamental principle o f ribosomal display requires the introduction of specific 

alterations in the initial mRNA sequence before each cycle. A T7 promoter is 

required at the 5' untranslated end of the sequence, to ensure efficient transcription by 

T7 RNA polymerase. A Shine-Delgarno sequence is introduced to facilitate ribosome 

binding and initiation of translation. A stem loop structure is also added, to prevent 

the RNA complex from being degradated by RNAse E. At the 3' end, the stop codon 

needs to be eliminated, in order to stall the ribosome on the mRNA. This facilitates 

the formation of tertiary complex. A second stem loop structure must also be added 

to protect mRNA from degradation by 3' to 5' endonucleases. A spacer region is also 

necessary to allow sufficient spatial separation of the polypeptide from the ribosome 

in order to facilitate correct protein folding for binding (Hanes and Plückthun, 1997 

and Schaffitzel et al., 1999). The presence of protein disulphide isomerase and 

molecular chaperones catalyses the formation and isomérisation of disulphide bonds 

on the ribosome complex (Ryabova et a l, 1997)

Using this technology, Hanes et al. (2000) have selected an scFv fragment of an 

antibody with picomolar affinity from a library of synthetic genes, representing a 40- 

fold maturation in affinity through point mutations introduced during PCR. However, 

if ribosome display is to be used solely as a screening tool, polymerases with 

proofreading capabilities may be employed. Diversification can be further improved 

by combining the technology of ribosome display with in vitro mutagenesis 

techniques such as DNA-shuffling. Jermutus et a l (2001) have used off-rate selection 

to assess affinity maturation with DNA shuffling at the end of each cycle to improve 

the affinity of an scFv 30-fold. Yau et a l  (2003) successfully used ribosome display 

to isolate single domain, variable heavy chain fragments specific for the pesticide, 

picloram, from a naïve llama library.
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Figure 1.14: Schematic illustration outlining the principle o f ribosome display 

technology. (1) The DNA encoding the antibody library is amplified by PCR and 

transcribed in vitro to mRNA where a T7 promoter, ribosome-binding site and stem- 

loops are introduced. (2) The mRNA is then translated in vitro with factors that 

enhance the stability o f the mRNA-ribosome-protein complex. (3) Antigen-specific 

complexes are selected on immobilised antigen. Non-specific complexes are removed 

by washing. (4) Affinity selected complexes are eluted using (4a) free antigen or (4b) 

EDTA. (5) The mRNA is isolated from the complex and (6) reverse transcribed into 

cDNA. The DNA is amplified by PCR and used in the next round of selection /  

enrichment (adaptedfrom Hanes andPluckthun, 1997).
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1.13 Immunoassays

Immunoassays are a commonly used bioanalytical technique for the detection of illicit 

drugs. The fundamental principle of immunoassay technology relies on the specific 

recognition of the target compound by an antibody. A qualitative or quantitative 

measurement of analyte is then generated as a consequence of this antibody-antigen 

interaction. The signal is generated through labelling of either antibody or antigen. 

Commonly employed labels include enzymes, radioisotopes, fluorophores or 

chemiluminescent compounds. Immunoassays can be further divided into two 

categories, homogeneous or heterogeneous. Homogeneous assays are carried out in 

solution and do not involve the separation of reactants, whereas the more commonly 

used heterogeneous assay involves the immobilisation of one of the reagents and 

removal o f unreacted reagents prior to measurement. Heterogeneous immunoassays 

are most commonly used for hapten detection (Dankwardt, 2000).

1.13.1 Enzyme-Linked Immunosorbent Assay

Enzyme-Linked Immunosorbent Assay (ELISA) is the most commonly used 

technique for measuring hapten-antibody interactions. It avoids the necessity of 

having to work with radioactive material and high levels o f sensitivity can be 

achieved. The long term stability of the coloured end-product of the reaction make 

ELISA superior to fluorimetry or luminometry, even though these methods may 

achieve lower detection limits (Dankwardt, 2000). Simple and cheap photometers are 

also available with extremely rapid and sensitive measurement capabilities.

This type of immunoassay format involves the immobilisation of either the antigen or 

antibody onto a solid support matrix, for example 96-well plastic plates. Haptens 

cannot be directly immobilised onto a solid support. For this reason haptens are either 

linked via chemical means to a derivatised matrix or coupled to a protein molecule for 

adsorption. Proteins bind primarily to the surface of the wells of y-irradiated plastic 

supports via hydrophobic interactions. An enzyme label is attached to a tracer 

molecule (either antigen or antibody) for the detection of bound antigen-antibody
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complex. The most commonly used enzymes in ELISAs are horseradish peroxidase, 

(3-galactosidase and alkaline phosphatase (Dankwardt, 2000).

Several different heterogeneous assay formats have been described, including 

competitive and non-competitive formats. Non-competitive immunoassays are 

normally used to determine the concentration of antibody in a sample (antibody titre). 

They can also be employed for the quantification of higher molecular weight analytes 

with multiple epitopes e.g. sandwich ELISA for determination of bacterial cells 

(Dunne, 2004). A competitive immunoassay involves creating competition for 

antibody binding through the introduction of free analyte into the sample for analysis. 

The signal measured is therefore inversely proportional to the concentration of analyte 

in the sample mixture.

Figure 1.15 illustrates the principles involved in an indirect non-competitive ELISA. 

A 96-well microtitre plate is coated with the antigen of interest, in this case a protein- 

hapten conjugate. Following a suitable incubation period (i.e. 1 hour at 37°C), the 

plate is washed and any unreacted sites are ‘blocked’ using a protein solution, which 

has a high protein concentration, such as BSA or a non-fat milk powder such as 

Marvel™. This eliminates any non-specific antibody binding. Following incubation 

and washing, varying dilutions of antibody are added to the plate and incubated for 

the desired period. Any unbound antibody is washed away and bound antibody is 

detected using a secondary enzyme-labelled antibody. This antibody may be specific 

for the particular species of antibody or for a tag encoded in the antibody sequence. 

The plate is then washed and a chromogenic enzyme substrate is added. The intensity 

of the colour developed is measured at the optimum wavelength in a 

spectrophotometer. The colour produced is directly proportional to the concentration 

of the specific antibody present (Tijssen, 1985).

Figure 1.16 illustrates a competitive ELISA format. This assay is carried out as for the 

indirect non-competitive ELISA except that varying concentrations of free antigen are 

added to the plate alongside the antibody. Free antigen in solution will compete with 

immobilised antigen for antibody binding. The colour produced with this assay format 

will be inversely proportional to the concentration of free antigen added. This yields a
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sigmoidal dose-response curve, when signal is plotted against the logarithm of analyte 

concentration. This assay format can therefore be used for the quantitative detection 

of an antigen with reference to a standard dose-response curve (Tijssen, 1985).

(I) Conjugate immobilisation
specific binding by blocking

1

(5) Addition of chromogenic 

substrate and (6) 

development of colour

(4) Detection with 2° enzyme- 

labelled antibody

(3) Addition of varying 

dilutions of specific antibody

Figure 1.15: Diagram o f a typical non-competitive indirect ELISA mainly usedfor the 

determination of antibody titre. (1) The wells o f an immunoplate are coated with a 

protein-hapten conjugate. (2) Wells are blocked with a suitable blocking solution like 

2% (w/v) marvel™. (3) Dilutions o f specific antibody are added to each well (4) 

Bound antibodies are detected using an enzyme-labelled secondary antibody. (5) A 

chromogenic substrate is added and the colour that develops is directly proportional 

to the amount of antibody present.
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(1) Conjugate immobilisation
(2) Elimination of non­

specific binding by blocking
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(4) Detection with 2° enzyme- 

labelled antibody
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Figure 1.16: Diagram of a typical competitive indirect ELISA that may be used for 

the determination illicit drugs (1) The wells o f an immunoplate are coated with a 

protein-hapten conjugate. (2) Wells are blocked with a suitable blocking solution like 

2% (w/v) man>el™. (3) Free and immobilised antigen compete for binding to the 

specific antibody. (4) Conjugate captured antibodies are detected using an enzyme- 

labelled secondary antibody. (5) A chromogenic substrate is added and the colour 

that develops is inversely proportional to the amount o f free antigen.
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1.13.2 Lateral Flow Immunoassay

A lateral flow immunoassay (LFIA) combines the specificity of immuno-recognition 

with the separation of chromatography. The development and combination of specific 

antibodies, colloidal particles (carbon, silica, gold, latex etc.) as labels and lateral flow 

membrane devices have facilitated the development of robust, user friendly, portable 

LFIA devices, suitable for semi-quantitative analyte detection (O’Keeffe et al., 2003). 

This technology offers reduced analysis time and does not require any elaborate 

instrumentation.

The principle of LFIA is outlined in Figure 1.17. In order to visualise the reaction, a 

labelled tracer is prepared by direct or indirect conjugation of colloidal particles with 

a specific antibody or antigen. The sample containing, the target analyte, is added to 

the membrane, along with this labelled-tracer molecule. Interactions between the 

target analyte and labelled-tracer occur as the sample flows along the nitrocellulose. 

In this manner the membrane serves to separate bound and unbound moieties. Bound 

tracer is focused to the capture area, an area that has been impregnated with a specific 

capture ligand that interacts with, and binds to the tracer molecule. This results in the 

generation of a visible narrow analyte test band, formed by a concentration of colloid- 

tracer in this area. A control line is always included in an LFIA directly above the test 

line to validate the assay. This ensures that the sample has indeed passed over the 

analyte capture area and that components are functioning correctly. Upon performing 

a LFIA, this control line must be visible otherwise any result is invalid. The control 

line signal is usually generated using an analyte specific for the labelled tracer used in 

the generation of the test line. This ensures that the component has indeed been 

included in the assay and that the sample has passed over the analyte capture zone.

LFIAs have been successfully developed for a variety of applications including the 

detection of human chorionic gonadotropin in urine (van Amerongen et al., 1994), 

aflatoxins in peanuts, maize and milk (Niessen et al., 1998 and Sibanda et al., 1999), 

ricin (Shyu et al., 2002) cannabinoids, cocaine and opiates in urine (Wenning et al, 

1998), sulphamethazine in swine urine (O’Keeffe et al., 2003), the steroid hormone 

cortisol (Leung et al., 2003), Salmonella typhimurium (Paek et al., 2000), Salmonella
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enteritis in raw eggs (Seo et ah, 2003), human heart type fatty acid binding protein 

(Chan et al., 2003), Mycobacterium bovis in badgers (Greenwald et a l, 2003), 

antibodies to HIV 1 and 2 in serum (Soroka et al., 2003) and verotoxin producing E. 

coli in food (Aldus et al., 2003).
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Figure 1.17: Schematic representation of a lateral flow immunoassay device and the 

possible results. The presence of the control (C) line indicates that the test is valid. 

The appearance o f a  line below this (T) indicates an analyte positive result, whereas 

the absence of a test line is indicative of a negative result.
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1.13.3 BIAcore

BIAcore is an optical-based biosensor that measures specific biomolecular 

interactions in ‘real-time’. The principles o f BIAcore will be discussed in relation to 

its use as an immunosensor, although it can be used to monitor interactions between 

any receptor/ligand pair. BIAcore uses the phenomenon of surface plasmon 

resonance (SPR) to monitor binding interactions in ‘real-time’. Immunoassays for a 

range of haptens have been successfully developed using BIAcore technology, 

including drugs, such as M3G (DillonA et al, 2003), amphetamine, morphine and 

tetrahydrocannabinol (Fanning, 2002), warfarin (Fitzpatrick, 2001), fungal 

contaminants (Daly et al., 2000) and microbial pathogens (Leonard et al., 2004). The 

BIAcore system offers ‘real-time’ monitoring of interactions, without the use of labels 

for detection. The BIAcore system is a completely integrated analytical system 

consisting of an optical transducer, a biointerface, a LED detector and integrated 

microfluidics cartridge (Figure 1.18). The re-usable biointerface consists of a gold- 

coated sensor chip derivatised with a carboxymethylated dextran layer. The 

integrated microfluidics system offers automation and exact sample handling and with 

small sample consumption.

Figure 1.18: Schematic representation o f the BIAcore system consisting o f optical 

transducer, gold-dextran biointerface, an integrated microfluidics cartridge and data 

acquisition system.
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Surface Plasmon Resonance (SPR) is an optical phenomenon that occurs under 

conditions of Total Internal Reflection (TIR). When a plane-polarised beam of light, 

at an angle greater than the critical angle, is incident on a medium of higher to lower 

refractive index, all of the light will undergo total internal reflection and propagate 

back into the medium of higher refractive index. Although the reflected beam does 

not lose any net energy across the interface, the beam leaks an electrical field 

intensity, called an evanescent wave, into the medium of lower refractive index. This 

decays exponentially from the surface over a distance of one wavelength. SPR occurs 

when the interface is coated with a metal layer (e.g. gold in the case of BIAcore). 

Under these conditions, the evanescent wave penetrates the metal, exciting the free 

electrons. This causes them to resonate as a collective wave of plasmons, parallel to 

the interface. This resonance absorbs energy from the incident light, causing a dip in 

the intensity of reflected light at a specific angle. The angle at which this occurs is 

known as the SPR angle. As the evanescent wave penetrates a short distance into the 

medium of lower refractive index, the SPR angle is sensitive to refractive index 

changes at the sensor chip surface. A linear correlation exists between resonance 

angle shift and surface protein concentration allowing ‘real-tine’ detection of mass 

changes without the need for labelling (Hutchinson, 1995). The response or 

resonance signal (RU) is displayed to the user as a function of time in the form of a 

sensorgram. The sensorgram provides quantitative information about the binding 

interaction in ‘real-time’, including binding specificity, affinity and kinetics (Quinn 

and O’Kennedy, 2001), in addition to the determination of analyte concentration 

(DillonA el al., 2003).

The BIAcore system employs a wedge-shaped beam of monochromatic, plane- 

polarised light to cause TIR at the sensor chip surface. The angle of minimum 

reflectance is measured using a two-dimensional detector array. In this system the 

medium of higher refractive index comprises a glass prism and the medium of lower 

refractive index constitutes the dextran coating of the chip and the surrounding sample 

buffer (ca 300 nm). SPR acts as a mass detector, irrespective of the type of protein or 

the type of interaction, as all proteins contribute to similar refractive indices 

(Hutchinson, 1995). An important feature of this system is that the area of low 

refractive index (i.e. sample) is only penetrated by the evanescent wave and not by the 

light itself This facilitates the analysis of coloured, opaque or turbid samples (Quinn
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el al., 1997). A resonance response of 1000 RU corresponds to a shift in SPR angle 

of 0.1°, which in turn correlates to a change of approximately 1 ng/mm2 in surface 

protein concentration.

Figure 1.19 illustrates a diagrammatic representation of a competitive BIAcore assay 

involving immobilised antigen, antibody and free antigen in solution. In this assay, the 

antigen is immobilised on the sensor chip surface using the appropriate coupling 

chemistry e.g. carbodiimide coupling using EDC/NHS. The antibody and free analyte 

are then passed over the chip surface. This will result in a shift in SPR angle, which is 

expressed as a function of time and represented as a sensorgram. The resonance 

signal (RU) is proportional to the mass change at the surface and is, therefore, 

inversely proportional to the amount of analyte present in the sample. An alternative 

assay configuration may also be employed. This would involve immobilising the 

antibody at the sensor chip surface and monitoring the binding response of free 

antigen in solution. In this case, the binding response would be directly proportional 

to the concentration of free antigen in solution.

The sensor chip surface consists of a thin gold film deposited on a glass support. The 

gold is derivatised with a surface layer covalently attached to a surface matrix for 

ligand immobilisation. The CM5 sensor chip is the most commonly used sensor chip. 

The surface matrix consists of a carboxymethylated dextran hydrogel, which forms a 

flexible, hydrophilic environment for biomolecular interactions. The carboxyl groups 

facilitate ligand immobilisation and the open structure of the matrix facilitates protein 

adsorption. Dextran is stable in commonly used buffers and can withstand pH, salt 

and solvent extremes for short periods of time. An extensive range of other sensor 

chips are also available for specialised applications. These include a streptavidin 

derivatised chip, to capture biotinylated molecules, a NTA metal+2 chelating chip, 

which can be used to reversibly bind His-tagged biomolecules and sensor chip HP A, 

which enables the attachment of lipid monolayers for membrane biochemistry and the 

study of membrane-associated receptors. All chips are removable and 

interchangeable. It is possible to switch from detection of one analyte to another very 

easily, without extensive cleaning and equilibration of the system.
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Figure 1.19: Diagrammatic representation o f competitive BlAcore immunoassay 

employing surface plasmon resonance. The sensor surface is immobilised with protein 

conjugate (  A  ) using EDC NHS chemistry. Under conditions o f total internal 

reflection an evanescent wave propagates into the medium o f lower refractive index, 

resulting in a dip in the intensity o f the reflected light at a particular angle known as 

the SPR angle (I). When antibody> is injected over the surface, the change in mass at 

the chip surface resulting from the binding interaction causes the SPR angle to shift 

(II). Changes in SPR angle are displayed as resonance units and expressed as a 

function o f time in the form  o f a sensorgram, allowing binding interactions to be 

measured in ‘real-time
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1.14 Commercial Immunoassay Tests for Drugs of Abuse in saliva

There are numerous commercial tests available for the detection of illicit drugs in 

urine and saliva. However, as different metabolites are present in each matrix at very 

different concentrations, these tests are only applicable to the matrix for which they 

were designed. The Roadside Testing Assessment (ROSITA) project, commissioned 

by the EU, was the first major study carried out to evaluate the performance of oral 

fluid tests. The aim of the study was to identify roadside testing equipment and make 

an internal comparative assessment of existing equipment or prototypes. The validity 

of results, equipment reliability, practicality and costs were also evaluated. Results of 

this study are available from www.rosita.org.

A market inventory carried out in 1999, revealed 19 different on-site tests for saliva 

analysis, representing 33 brand names and distributors. Of these 19 devices, 3 were 

designed for saliva analysis (Gronholm and Lillsunde, 2001). These include 

ORALscreen™ (Avitar Technologies Inc., USA), Rapiscan®, (Cozart Biosciences 

Ltd., UK) and Drugwipe® (Securetec GmbH, Germany), which is suitable for both 

saliva and sweat analysis.

ORALscreen™ is a lateral flow immunoassay-based test for the detection of opiates, 

cocaine, d-methamphetamine and cannabis. It combines an inventive saliva sampling 

system with a ‘pipette on5 sampling membrane and read device. The test takes 10 

mins to perform, yielding two lines for a positive result (25 ng/ml cut-off for 

morphine) and just a control line for a negative result. The test exhibits 100 % cross 

reactivity with structurally related opiates (M3G, hydromorphone, hydrocodone, 

codeine and 6 -MAM). Barrett el al. (2001) compared saliva analysis of drivers in the 

US, performed with ORALscreen™, to urine immunoanalysis and confirmation by 

GC/MS. The results showed very good correlation between results obtained for saliva 

and urine over a 2.5 to 3 day period for cocaine and opiates, and a 2-day period for 

THC.

Drugwipe® (Securetec GmbH) does not require the collection of a saliva sample and 

is also applicable to sweat. The test is a colorimetric-based lateral flow immunoassay.
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Separate strips are available for opiates, cocaine and amphetamines, although no 

multi-panel test is available. The test is easy to apply, by wiping it over the tongue 

Earlier versions of this test, included in the initial ROSITA report, did not include a 

built in control line and the interpretation of a positive result (i.e. a pink red product) 

was vague. The device has extremely high cut-off levels (300 ng/ml for opiates and 

amphetamines) and also shows high cross reactivity with structurally similar 

molecules (e.g. opiates: codeine 1 0 0 %, morphine, 1 0 0 %, dihydrocodeine 1 0 0 %, 

ethylmorphine 100%, heroin 6 6 %, hydrocone 6 6 %, M3G 6 6 %, thebaine 6 6 % and 

hydromorphone 40%). The test has recently been updated to include a Dmgread® 

(Securetec) hand photometer, that provides an electronic read out after two minutes. 

This newer version Drugwipe® was employed by Samyn et al. (2002), to detect drugs 

of abuse in drivers in Belguim. Drugwipe® results were compared to GC/MS 

analysis of saliva collected by spitting or using a Salivette® (Sarstedt). The accuracy 

of this system was 67% for opiates, 63% for cocaine and 79% for amphetamines. 

Cannabis samples were not compared due to the probability of sample contamination 

through hand to mouth contact with the Salivette® collection device.

The Rapiscan® device consists of three components, a saliva collection swab, a 

disposable ‘pipette-on’ cartridge, which houses the immunoassay, and an instrument, 

which gives a digital read-out of results. The device tests for amphetamines, 

cannabis, cocaine, opiates and benzodiazepines. The ROSITA evaluation found the 

Rapiscan® system to be the most objective system applicable for roadside testing. 

The digital read out system, yielded definitive quantitative results, however the 

instrument added considerable expense to the system (€3000) and required user 

expertise. Gronholm and Lillsunde (2001) evaluated both Rapiscan® and Drugwipe® 

devices and found Rapiscan® to be the most accurate compared to GC/MS analysis. 

Accuracies between 83% (opiates) and 99% (cannabis) were reported. Bennet et al. 

(2003) used Rapiscan® to compare oral fluid analysis to urinalysis, using a light 

photometric Enzyme Multiplied Immunoassay (EMIT) device, in a drug treatment 

setting. Sensitivity o f the Rapiscan® device was found to be similar to urinalysis for 

opiates but with a higher specificity.

62



1.15 Summary of research

The main aim of this research project was the production of novel genetically-derived 

scFv antibody fragments to be employed in rapid immunoassays for the detection of 

illicit drugs of abuse in saliva.

Chapter 3 describes the production, purification and characterisation of a monomeric, 

a dimeric and an alkaline phosphatase-labelled scFv against M3G. The scFvs were 

applied to the development of competitive ELISAs and the cross reactivities of each 

antibody with structurally similar molecules were determined.

Chapter 4 describes application of monomeric scFv to morphine detection in saliva. 

The affinity constants of each scFv were determined and monomeric scFv was 

determined to have the best potential for saliva analysis. This antibody was used in a 

competitive immunoassay and an inhibition BIAcore assay for morphine detection in 

‘spiked’ saliva samples. The competitive immunoassay was employed in a pilot study 

on the use of saliva for opiate analysis in a Drug Treatment setting. A rapid sol 

particle lateral flow immunoassay was also developed for the detection of M3G, using 

monomeric and dimeric scFvs.

Chapter 5 describes the production and characterisation scFv antibodies against 

tetrahydrocannabinol. Phage-displayed antibodies were isolated from a semi­

synthetic human library. The antibodies were applied to the analysis of 

tetrahydrocannabinol in saliva by competitive phage ELISA.
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Chapter 2: Materials and Methods
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2.1 General Formulations

2.1.1 Reagents

All reagents were of analytical grade and purchased from Sigma-Aldrich Chemical 

Co. (Poole, Dorset, England), unless otherwise specified.

Reagents Supplier

Bicinchoninic Acid Assay Kit Pierce Biotechnology Inc., Rockford, IL

Coomassie Protein Assay Kit 61105, USA.

Streptavidin Magna-Bind Beads

Blue Ranger pre-stained molecular

weight markers

EZ-link NHS-LC-Biotin

T ryptone Oxoid, Basingstoke, Hampshire, RG24

Agar Technical 8 PW, England.

Yeast Extract

PBS tablets

Acetic acid Riedel de-Haen AG, Wunstorfer, Strasse

Hydrochloric acid 40, D-30926, Hannover, Germany (now

Sigma-Aldrich, UK).

Amphetamine-BSA Fitzgerald Industries International Inc.,

THC-BSA Concord, MA 01742-3049, USA.

THC-BTG
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Reagents Supplier

Chelating Sepharose Fast Flow Amersham Pharmacia Biotech, Filial

Peroxidase-labelled anti-M13 antibody Sverige, Björkgatan 30, SE-751 25, 

Uppsala, Sweden.

Wizard Plus mini-prep kit Promega Corp., 2800 Wood Hollow Rd.,

Reverse Transcription Kit Madison, WI 53711-5399, USA.

Eppendorf Perfectprep Gel clean up kit Unitech, 11155 Knott Ave., Suite F, 

Cypress, CA 90630, USA.

Trizol Gibco BRL, Renfew Rd., Paisley,

T4 DNA Ligase 

M l3 K07 Helper Phage

PA49RF, Scotland.

PCR Optimiser Kit Invitrogen, 9704-CH-Groningen, 

Netherlands.

Restriction Enzymes (Sfi 1, Nco 1, Not 1) New England Biolabs, Hitchin, Herts., 

SG4 0TY, England.

Amphetamine-HCl Lennox Chemicals, Naas Rd., Dublin 12

VCSM13 Helper Phage Stratagene, 11011 N. Torry Pines Rd., La 

Jolla, CA 92037, USA.

PCR primers MWG Biotech Ltd., Milton Keyes, 

MK12 5RD, UK.

Colloidal Carbon ATO BV, Postbus 17, NL-6700, AA, 

Wageningen, The Netherlands.
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2.1.2 Equipment

Equipment Supplier

BIAcore 3000™ Pharmacia Biosensor AB, Rapsgatan 7 

SE-754 50, Uppsala, Sweden.

Heraeus Christ Labofuge 6000 Heraeus Instruments Inc., 111-a Corporate

Biofuge A Microfuge Boulevard, South Plainfield, New Jersey, 

USA.

Titertek Multiscan Plate Reader Medical Supply Company, Damastown,

Titertek Twin Reader Plus 

SB 2 Blood Tube Rotator

Mulhuddart, Dublin 15.

3015 pH Meter Jenway Ltd., Dunmow, Essex, UK.

UV 160A Spectrometer Shimadzu Corp., Kyoto, Japan.

Atto dual minislab system AE-6450

Atto AE-6100

Atto mini trans blot cell

Atto, Bunyho-Kui, Tokyo 113, Japan.

Orbital Incubator Gallenkamp, Monarch Way, Belton Park, 

Loughborough, Leicestershire, LE11 5XG, 

UK.

RM6  Lauda Waterbath AGB Scientific Ltd., Dublin Industrial

T-Gradient BIOMETRA-PCR 

Millipore Filtration Apparatus

Estate, Glasnevin, Dublin 9.
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Equipment Supplier

UVP ImageStore 7500 gel documentation 

system

Eppendorf centrifuge 581 OR 

CAMAG Linomat 5 

Stuart Platform Shaker STR6

2.1.3 Consumables

Consumable

BIAcore sensor chips

General plastic consumables 

eg: eppendorfs, pipette tips etc.

Maxi sorb 96 well plates 

Maxisorb Immunotube 

Nunc Bio-Assay dish

Ultra Violet Products, Upland, CA, USA.

Unitech, 11155 Knott Ave., Suite F, 

Cypress, CA 90630, USA.

CAMAG, Wilmington, US 28401, USA. 

Lennox Chemicals, Naas Rd., Dublin 12.

Supplier

Pharmacia Biosensor AB, Rapsgatan 7 

SE-754 50, Uppsala, Sweden.

Starstedt, Drinagh, Co. Wexford.

Nunc, Kamstrup DK, Roskilde, Denmark
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Consumable Supplier

Prototype saliva collection device

Purabind A-FP Nitrocellulose

Trinity Biotech, Southern Cross Business 

Park, Bray, Co. Wicklow.

Whatman International Ltd., 20/20 

Maidstone, Kent, ME 16 OLS, UK

2.1.4 Antibodies

2.1.4.1 Morphine 3-glucuronide (M3G) scFv library

A pre-immunised antibody variable domain phage display library was obtained from 

Dr. Paul Dillon, Dublin City University (Dillon, 2001 and Dillon1* et al., 2003).

2.1.4.2 Amphetamine monoclonal antibody

A monoclonal antibody, clone 4EP18E, directed against amphetamine, was obtained 

from Dr. Loma Fanning, Dublin City University (Fanning, 2002).

2.1.4.3 Naive human antibody libraries

A natural naive human scFv library was supplied by Cambridge Antibody 

Technology, The Milstein Building, Granta Park, Cambridge, CB1 6 GH, UK.

The Griffin. 1 library was kindly donated to the University o f Aberdeen by MRC 

Geneservice, Medical Research Council, Hill Rd, Cambridge, CB2 2QH, UK.
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2.1.5 General buffer formulations

2.1.5.1 Phosphate Buffered Saline (PBS)

Phosphate Buffered Saline containing 0.15 M NaCl, 2.5 mM potassium chloride, 10 

mM disodium hydrogen phosphate and 18 mM sodium dihydrogen phosphate, pH 7.4, 

was prepared in distilled water. This buffer shall be referred to throughout as PBS.

2.1.5.2 Phosphate Bufferd Saline/Tween (PBST)

PBS, containing 0.05% (v/v) Tween 20 surfactant. This buffer shall be referred to

throughout as PBST.

2.1.5.3 Man>eFM Phosphate Buffered Saline (MPBS)

PBS, containing non-fat milk powder (Marvel™). This was made to the required % 

(w/v) milk powder and shall be referred throughout as MPBS

2.1.5.4 Tris Buffered Saline (TBS)

Tris Buffered Saline (TBS) containing 0.05 M Tris, 0.15 M NaCl, pH 7.4, was 

prepared in distilled water.

2.1.5.5 Hepes Buffered Saline (HBS)

Hepes Buffered Saline (HBS) containing 10 mM Hepes, 150 mM NaCl, 3.4 mM 

EDTA and 0.05% (v/v) Tween 20 was prepared in ultra pure water and the pH 

adjusted to pH 7.4 with NaOH. This was filtered (pore size 0.22 urn) and degassed 

using filtration apparatus (Millipore sintered glass filtration unit) immediately before
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2.1.5.6 Tris-Acetate-EDTA buffer (TAF,)

All agarose gels were run in 1 X TAE Buffer, containing 0.04 M Tris Acetate, pH 8.3, 

0.01 M EDTA in ultra pure water.

2.1.5.7 Citric phosphate buffer

Citric Phosphate Buffer, containing 0.05 M sodium dihydrogen phosphate and 0.05 M 

citrate acid monohydrate, was prepared in ultra pure water and the pH adjusted to pH

5 with 5 N NaOH. Immediately before use 2 |il of 30% (v/v) hydrogen peroxide was 

added per 10 ml of buffer. A 10 ml volume of buffer was used to dissolve 1 TMB 

tablet (3,3',5,5'-Tetramethylbenzidine hydrocloride) for use as a substrate in ELISA.

2.1.5.8 Tris-Sucrose fractionation buffer

Tris-sucrose fractionation buffer was prepared by dissolving 200 mM Tris-HCl, pH 

7.5, 20% (w/v) sucrose and 1 mM EDTA in ultra pure water. Immediately before use 

5% (w/v) lysozyme was added. The solution kept on ice thereafter.

2.1.5.9 20% (w/v) Sodium azide stock solution

Due to the toxicity of sodium azide, extreme care was taken to minimise inhalation or 

ingestion during handling. A face mask was worn when weighing out powder and 

gloves were used while handling any solutions of azide. A 20% (w/v) stock solution 

of sodium azide was prepared by dissolving 2  g of sodium azide in 1 0  ml of distilled 

water.
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2.1.5.10 30% (w/v) Acrylamide stock solution

As acrylamide is a potent neurotoxin, a breathing apparatus was worn when in contact 

with powder and gloves were worn at all times during handling. A 30% (w/v) 

acrylamide stock solution was prepared by dissolving 29.2 g of acrylamide and 0.8 g 

of bis-acrylamide together in 100 mis of water. This stock solution was stored in the 

dark at 4°C.

2.1.5.11 2 mg/ml Ethidium bromide stock

Ethidium bromide is a DNA intercalating agent that causes frameshift mutations. It 

was therefore always handled with gloves. Extreme care was taken not to 

contaminate other laboratory areas, fixtures or equipment. All contaminated solid 

waste was incinerated prior to disposal. All liquid waste was decontaminated by 

activated charcoal filtration prior to disposal. One ethidium bromide tablet was 

dissolved in 10 mis o f molecular grade water to yield a 20 mg/ml stock. This was 

further diluted 1 in 1 0  in molecular grade water to reduce the toxicity of the working 

stock.

72



2.1.6 Culture media formulations

Culture Media Formulation

2 x Tryptone and Yeast Extract (2 x TY) Tryptone 16 gfh

Medium Yeast Extract 1 0  g/L

NaCl 5 g/1

Non-Expression Medium (NE) Tryptone 16 g/L

Yeast Extract 10 g/L

NaCl 5 g/L

Glucose 1 % (w/v)

Chloramphenicol 25 (ig/ml

Low Expression Medium (LE) Tryptone 16 g/L

Yeast Extract 10 g/L

NaCl 5 g/L

Glucose 1% (w/v)

Chloramphenicol 25 |ug/ml

IPTG 5 mM

Super Optimal Catabolites (SOC) Medium Tryptone 20 g/L

Yeast Extract 5 g/L

NaCl 0.5 g/L

KC1 2.5 mM

MgCl2 20 mM

Glucose 20 mM

pH 7.0
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Culture Media Formulation

Terrific Broth (TB) Tryptone 12g/L

Yeast Extract 24 g/L

Glycerol 4 ml/L

KH2PO4 17 mM

K2HPO4 72 mM

Luria-Bertani (LB) broth Tryptone lOg/L

Yeast Extract 5 g/L

NaCl 10 g/L

Tryptone Yeast Extract (T'YE) broth Tryptone 8  g/L

Yeast Extract 5 g/L

NaCl 5 g/L

Luria-Bertani (LB) agar Tryptone I Og/L

Yeast Extract 5 g/L

NaCl lOg/L

Agar 15 g/L

2 x T Y a g a r  Tryptone 16 g/L

Yeast Extract lOg/L

NaCl 5 g/L

Agar 15 g/L

TYE agar Tryptone 8  g/L

Yeast Extract 5 g/L

NaCl 5 g/L

Agar 15 g/L
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2.1.7 Bacterial strains used

Bacterial Strain Genotype

E. coli XL-1 Blue Stratagene recAl, endAl, gyrA96, thi-1, hsdR17 

(rK,mK ), supE44, relAl, X, lac, [F' 

proAB, lacFZAM15, TnlO(Tef)].

E. coli HB2151 Donated by

University of 

Aberdeen

K12 A (lac-pro), ara, nalr, thi/F', proAB, 

laqlq, lacZA-MJ5

E. coli JM83 Donated by Prep 

Lab, DCU

Á', ara A (pro-lac,) rpsL, thi, 4*80 

dlacZAMlS k~,

E. coli TGI Stratagene K12A (lac-pro), supE, thi, hsdA5/F\ 

[traD36, proAB, lacT1, lacZAMI 5J

2.1.7.1 Maintenance o f bacterial stocks

A working stock of bacteria was streaked on LB agar plates containing the appropriate 

antibiotic. A glycerol stock was prepared by growing an overnight culture from a 

single bacterial colony. This was stored in 15% (v/v) glycerol and 1% (w/v) glucose 

at -  80°C.

2.1.7.2 Amplification o f Helper Phage

A single colony of XL-1 Blue was used to inoculate 500 ml 2 x TY, 30 |ig/ml 

tetracycline. This was incubated at 37°C with shaking at 250 rpm until 

O.D • 600nm 0.5—0.6. Helper W6rc dxldcci 3.t 3. multiciplicity of infection of 10.1
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(phage to cells). The culture was incubated at 37°C stationary for 30 mins, followed 

by 30 rains with shaking at 150 rpm. The culture was centrifuged at 4,000 rpm for 20 

mins. The cell pellet was resuspended in 500 ml of 2 x TY, 30 jug/ml tetracycline, 50 

Hg/ml kanamycin and incubated at 26°C overnight, with shaking at 200 rpm. The 

culture was spun at 6,000 rpm and the supernatant filtered through a 0.45 micrometre 

filter to remove any cell debris. The phage supernatant was titred as per section 2.5.3 

and stored at 4°C short term or peg precipitated (section 2.5.2) and stored at -80°C.
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2.2 Hapten-Protein Conjugate production

2.2.1 Production o f drug-protein conjugates

2.2.1.1 Conjugation o f morphine-3-glucuronide to protein

Morphine-3-glucuronide (M3G) was coupled to either BSA (bovine serum albumin) 

or OVA (ovalbumin) using standard carbodiimide coupling chemistry. Briefly, a 50 

mg/ml solution of M3G was dissolved in 1 ml of a 20 mM HC1 solution and made up 

to a volume of 5 ml with 0.2 M borate buffer, pH 9.0. NHS (N-hydroxysuccinimide) 

and EDC (N-ethyl-N-(dimethyl-aminopropyl) carbodiimide hydrochloride) were 

added to yield final concentrations of 0.1 M and 0.4 M, respectively. The solution 

was incubated at room temperature for 10 mins without agitation. Carrier protein 

(OVA or BSA), at a molar ratio of 1:100 to M3G, was prepared in 0.2 M borate 

buffer, pH 9.0, and added dropwise to the activated solution with stirring. The 

solution was incubated at room temperature under gentle rotation for 2 hours and 

dialysed against 100 volumes of PBS overnight at 4°C.

2.2.1.2 Conjugate concentration determination by Bicinchoninic Acid Assay (BCA)

BCA reagent was prepared by adding 1 part reagent B (4% (w/v) cupric sulphate) to 

50 parts reagent A (containing sodium carbonate, sodium bicarbonate, bicinchoninic 

acid and sodium tartate in 0.01 M sodium hydroxide). A 10 (il aliquot of conjugate 

dilution or protein standard was added to microtitre wells. The prepared BCA reagent 

was then added to the protein containing wells, at a volume of 200 pi per well. The 

plate was incubated in the dark, at room temperature for 30 mins. Absorbance was 

read at 562nm on a titertek twinreader plus.
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2.2.1.3.Production o f biotinylated-amphetamine

Due to the small molecular weight of amphetamine it proved difficult to separate from 

biotinylated amphetamine through normal means e.g. dialysis. For this reason it was 

decided to use a 10-fold excess of amphetamine in the biotinylation reaction. The 

biotinylated-amphetamine could then be pre-immobilised onto streptavidin-coated 

beads and free amphetamine washed away before use. In this manner it was possible 

to ensure all amphetamine used in the selection was biotin-conjugated. In order to 

give a 10-fold molar excess o f amphetamine, 4 mg of amphetamine was reacted with 

1 mg of EZ-Link NHS-biotin in dimethylformamide at room temperature for 2 hours, 

with stirring. The conjugate was then stored at 4°C prior to use.

2.2.1.4 Commercial conjugates

Amphetamine-bovine serum albumin (AMP-BSA) was obtained from Fitzgerald 

Industries International, MA, USA. The amphetamine was conjugated through the 

methylenedioxy group situated at the para-position o f the phenyl ring.

Tetrahydrocannabinol-bovine thryoglobulin (THC-BTG) and Tetrahydrocannabinol- 

bovine serum albumin (THC-BSA) were obtained from Fitzgerald Industries 

International, MA, USA. THC-BTG was conjugated through the delta-9 position and 

THC-BSA was linked via the carboxy carbon at the delta-9 position.
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2.3 Immunisation for Recombinant Antibody Production

2.3.1 Licensing for drug and animal use

The Department of Health and Children licensed the possession and use of heroin and 

its metabolites, morphine-3-glucuronide and morphine for analytical purposes. 

Licenses were also required for the possession of amphetamine and 

tetrahydrocannabinol. With the exception of amphetamine (Lennox), all o f these 

drugs were obtained from Sigma-Aldrich (UK) and required a license for importation 

into the Republic of Ireland. All drugs were stored in a locked refrigerator in a 

controlled laboratory environment.

The Department of Health and Children also licensed all processes involving the use 

of live animals. Extreme care was taken to minimise stress to the animals involved. 

Experiments were carried out in accordance with the European Directive 86/609/EEC.

2.3.2 Immunisation schedule fo r  the production of a recombinant library 

Day 1:

6 week old Balb/c female mice were immunised by sub-cutaneous injection with an 

emulsion (250 fil) consisting of a 1 mg/ml solution of hapten-protein conjugate 

(THC BSA) mixed 1:1 with Freund’s Complete Adjuvant.

Day 21:

Mice were re-immunised intraperitoneally with an emulsion (250 jil) consisting of a 1 

mg/ml solution of hapten-protein conjugate mixed 1:1 with Freund’s Incomplete 

Adjuvant.

Day 28:

A blood sample was collected (by the minimally invasive tail bleed method) and the 

antibody titre determined against the respective antigen.

Day 56:

Mice were boosted intraperitoneally with Freund’s Incomplete Adjuvant.
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Animals were re-immunised at fortnightly intervals until an antibody titre in excess of 

1 in 100,000 was obtained. One week after the last immunisation, the animal was 

sacrificed and the spleen removed.

2.3.2.1 Preparation o f serum fo r  estimation o f antibody titre

For titre estimation the blood collected was allowed to clot at 4°C overnight. It was 

then centrifuged at 13,000 rpm for 15 minutes and the supernatant removed for 

antibody titre determination by direct ELISA.

2.3.2.2 Direct ELISA fo r  antibody titre

A 10 |ig/ml solution of THC-BSA was coated onto microtitre plates, at a volume of 

100 p,l per well and incubated overnight at 4°C. Plates were washed three times with 

PBST and three times with PBS. The plates were then blocked with 4% (w/v) MPBS 

for 1 hour at 37°C. Serial dilutions of serum in PBS, containing 1% (w/v) BSA, were 

added to the wells and allowed to bind at 37°C for 1 hour. This was followed by the 

addition of a 1 in 5000 dilution in PBS of HRP-labelled goat anti-mouse antibody and 

the plate was incubated for 1 hour at 37°C. Plates were again washed and 

chromogenic substrate (0.4 mg/ml o-phenylenediamine (o-PD), in 0.05 M phosphate 

citrate buffer, pH 5.0, and 0.4 mg/ml of urea hydrogen peroxidase) was added at a 

volume of 100 p.I/well and incubated for 30 minutes at 37°C. Absorbance was read at 

450nm on a Titertek twinreader plus.
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2.4 Production of a Recombinant Antibody Library

2.4.1 RNA extraction

Total RNA, the genetic material encoding the antibodies of interest, was removed 

from the spleen of an immunised mouse or from a hybridoma cell line secreting a 

monoclonal antibody raised against the target antigen, using Trizol reagent. RNA was 

extracted from an anti-amphetamine secreting clone, 4EP18E, (Fanning, 2002) and 

used for cDNA synthesis. For the generation of an immunised recombinant antibody 

library, the spleen from a mouse immunised with THC-BSA was removed 

aseptically, weighed and homogenised in 1 ml o f Trizol reagent per 50-100 mg tissue. 

The homogenate was centrifuged 14,000 rpm for 10 minutes at 4°C to remove 

insoluble material such as extracellular membranes, polysaccharides and high 

molecular weight DNA. The supernatant was removed and left at room temperature 

for 5 minutes before being supplemented with 0.2 ml of chloroform per ml o f Trizol 

reagent used. Samples were shaken vigorously for 15 seconds and stored at room 

temperature for 15 minutes. The mixture was centrifuged at 14,000 rpm for 15 

minutes at 4°C. Following centrifugation, three layers were observed, a lower red 

phenol/chloroform phase, a protein interphase and a colourless upper aqueous phase. 

The upper aqueous layer, containing RNA, was transferred to a clean tube and 

supplemented with 0.5 ml o f isopropanol per ml Trizol reagent. The sample was 

incubated at room temperature for 10 minutes and centrifuged at 14,000 rpm for 8 

minutes at 4°C. The supernatant was removed and the pellet washed with 1ml of 

75% (v/v) ethanol. The RNA was then centrifuged at 10,000 rpm for 5 minutes at 

4°C, the ethanol decanted and the pellet air-dried at room temperature for 5 minutes. 

The pellet was re-dissolved in 250 ĵ l o f ‘nuclease-free’ water.
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2.4.2 Complementary DNA synthesis

Complementary DNA (cDNA) was synthesised by reverse transcription using a 

Promega reverse transcription system plus random primers. Random primers were 

used in preference to oligo dT’s to compensate for any mRNA strands that may have 

been sheared of their poly A tails during the extraction process.

Component Stock Concentration Volume used

MgCl2 25 mM 4 1̂

10 X reverse transcription buffer 10 X 2\x\

dNTPs 10 mM 2 |il

RNasin® ribonuclease inhibitor 40 U/|il 0.5 (¿1

Random Primers 0.5 |ig/nl 0.4 (il

AMVRT 25 U/m-1 0.6 [i\

Approximately 7-10 pig of extracted RNA was added to the reaction mix and 

‘nuclease-free’ water was used to bring the final volume up to 20 (il. The mixture 

was incubated at room temperature for 10 minutes to allow annealing of primers. The 

reaction was then incubated at 42°C for 1 hour and DNA analysed by agarose gel 

electrophoresis.

2.4.3 Agarose gel electrophoresis

DNA was analysed by electrophoresis on an agarose gel. Briefly, agarose was 

dissolved to the appropriate concentration (typically 0.7 -  1.2% (w/v)) in 1 X TAE 

buffer and boiled until the solution was clear. When cool, 0.5 (J.g/ml of ethidium 

bromide was added to the gel. This intercalating dye allowed the migration of DNA 

through the gel to be visualised. The gel was then cast on a horizontal gel apparatus 

(Atto AE 6100) and electrophoresed in 1 X TAE at 70V. Gels were visualised on a 

UV transluminator and photographed using a UV image analyser.
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2.4.4 Amplification o f antibody heavy and light chain genes

The primers listed below were obtained from MWG Biotech Ltd. and were used for 

assembling the mouse scFv fragment in the orientation VL-(Gly4 Ser)4-VH, which is 

compatible with the pAK vector system as described by Krebber et al. (1997). The 

sequences are given using the standard 1UPAC nomenclature of mixed bases where: 

R=A or G; Y=C or T; M=A or C; K= G or T; S=C or G; W=A or T; H=A or C or T; 

B=C or G or T; V=A or C or G; D=A or G or T. Primers, at a working concentration 

of 10 nM, were mixed according to the degree of degeneration. This gave a working 

stock of Lb and Lf, for variable light chain gene (Vl) amplification, and, Hb and Hf, 

for heavy chain amplification. For all non-degenerate primers (d=l), 1 |il was 

included in the mix; for d=2-4, 2 fj.1 was included; for d=6-9, 3 pi was included and 

for d=12—16, 4 fj.1 was included. For amplification of heavy and light chain genes 

derived from the anti-amphetamine monoclonal, the LfA, primer was omitted as the 

hybridoma clone secretes a kappa light chain. It has been shown that monoclonal 

antibodies o f the kappa isotype may transcribe a non-functional lambda chain that 

competes with the kappa V l gene for in-frame scFv antibody assembly (Krebber et 

al, 1997).

83



2.4.4.1 Primers for amplification of variable heavy and light chain genes

Variable light chain back primers Degeneracy

LbI 5 ' gccatggcggactacaaaGAY AT C C AGCT GACTC AGCC3 ' 2

Lb2 5'gccatggcggactacaaaGAYATTGTTCTCWCCCAGTC3' 4

Lb3 5'gccatggcggactacaaaGAYATTGTGMTMACTCAGTC3' 8

LB4 5 'gccatggcggactacaaaGAY ATT GT GYTR AC AC AGT C 3 ' 8

Lb5 5 ' gccatggcggactacaaaGAY ATTGTRATG ACMC AGTC3 ' 8

Lb6 5 'gccatggcggactacaaaGAY ATTMAGATRAMCC AGTC3 ' 16

Lb 7 5 'gccatggcggactacaaaGAY ATTC AG AT G AYDC AGTC3 ' 12

Lb8 5 'gccatggcggactacaaaGAYAT YC AGAT GAC AC AGAC3 ' 4

Lb9 5'gccatggcggactacaaaGAYATTGTTCTCAWCCAGTC3' 4

Lb 10 5 'gccatggcggactacaaaGAYATTGWGCTS ACCC AATC3 ' 8

Lb 11 5'gccatggcggactacaaaGAY ATTSTRATG ACCC ARTC3' 16

LB12 5'gccatggcggactacaaaGAYRTTKTGATGACCCARAC3' 16

LB13 5 ' gccatggcggactacaaaGAY ATT GT GAT GACB C AGKC 3 ' 12

LB14 5 'gccatggcggactacaaaGAY ATT GT GAT AAC YC AGG A3 ' 4

Lb 15 5'gccatggcggactacaaaGAY ATTGTGATGACCCAGWT3' 4

Lb16 5'gccatggcggactacaaaGAYATTGTGATGACACAACC3' 2

Le17 5'gccatggcggactacaaaGAYATTTTGCTGACTCAGTC3' 2

LbX 5 ' gccatggcggactacaaaGATGCTGTT GT GAC TC AGGAAT C3 ' 1

Variable light chain primers forward Degeneracy

LF1 5'ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTKATTTCCAGCTTGG3' 1

Lf4 5'ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTTATTTCCAACTTTG3' 1

Lf5 5'ggagccgccgccgcc(agaaccaccaccacc)2ACGTTTCAGCTCCAGCTTGG3' 1

LfX 5'ggagccgccgccgcc(agaaccaccaccacc)2ACCTAGGACAGTCAGTTTGG3' 1
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Variable heavy chain back primers Degeneracy

Hb1 5 'ggcggcggcggctccggtggtggtggatccG  AKGTRM AGCTTC AGG AGTC3 ' 8

H B2 5'ggcggcggcggctccggtggtggtggatccGAGG TBCAGCTBCAG CAGTC3' 9

Hb3 5'ggcggcggcggctccggtggtggtggatccCAGG TG CAGCTG AAG SARTC3' 4

H b4 5'ggcggcggcggctccggtggtggtggatccGAGG TCCARCTGCAACARTC3' 4

H b5 5'ggcggcggcggctccggtggtggtggatccCAGG TYCAG CTBCAG CARTC3' 12

Hb6 5'ggcggcggcggctccggtggtggtggatccCAGGTYCARCTGCAGCARTC3' 4

H b7 5'ggcggcggcggctccggtggtggtggatccCAGG TCCACGTGAAG CARTC3' 1

H B8 5 ' ggcggcggcggctccggtggt ggtggatccGAGGT G AA S STGGT GG ARTC3 ' 4

H b9 5 'ggcggcggcggctccggt ggtggtggatccG A V  GTGAW  GS TGGT GG AGTC3 ' 12

H b IO 5'ggcggcggcggctccggtggtggtggatccGAGGTGCAGSTGGTGGARTC3' 4

H b II 5'ggcggcggcggctccggtggtggtggatccGAKGTGCAM CTGGTGGARTC3' 4

Hb 12 5'ggcggcggcggctccggtggtggtggatccGAGG TG AAGCTG ATG G ARTC3' 2

H b13 5'ggcggcggcggctccggtggtggtggatccGAGGTGCARCTTGTTGARTC3' 2

H b14 5'ggcggcggcggctccggtggtggtggatccGARGTRAAGCTTCTCGARTC3' 4

H b 15 5'ggcggcggcggctccggtggtggtggatccGAAG TG AARSTTG AG GARTC3' 4

Hb16 5'ggcggcggcggctccggtggtggtggatccCAGG TTACTCTRAAASARTC3' 8

Hb17 5'ggcggcggcggctccggtggtggtggatccCAGG TCCAACTVCAG CARCC3' 6

Hb18 5'ggcggcggcggctccggtggtggtggatccGATG TG AACTTGG AASARTC3' 1

Hb19 5'ggcggcggcggctccggtggtggtggatccGAGG TG AAGG TCATCGARTC3' 1

Variable heavy chain forward primers Degeneracy

Hf 1 5 'ggaattcggcccccgaggcCGAGGA AACGGT GACC GTGGT3 ' 1

Hf2 5'ggaattcggcccccgaggcCGAGGAGACTGTGAGAGTGGT3' 1

Hf3 5 'ggaattcggcccccgaggcCGC AG AGAC AGTGACC AGAGT3 ' 1

Hf4 5 'ggaattcggcccccgaggcCGAGGAGACGGTGACTGAGGT3 ' 1
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2.4.4.2 PCR amplification o f variable heavy and light chain genes

Component

dNTPs

5 X reverse PCR buffer

Stock Concentration Volume used

Forward primer mix 

Reverse primer mix 

Taq polymerase

0.1 mM

0.1 mM

10 mM

5 U/pl

5 X

2 pi 

10 M-l 

1 pi 

1 pi

2 pi

A 2 pi volume of cDNA was added to each reaction and ‘nuclease-free’ water was 

used to bring the final volume up to 50 pi. For amplification of light chain genes the 

final buffer composition ( I X )  was optimised to contain 60 mM Tris-HCl, 15 mM 

ammonium sulphate and 2.5 mM MgCl2, pF[ 8.5. A buffer composition of 60 mM 

Tris-HCl, 15 mM ammonium sulphate and 2.5 mM MgCl2 , pH 9.0, supplemented 

with 2.5% (v/v) DMSO, was found to be optimal for the amplification of heavy chain 

genes.

2.4.4.3 PCR conditions fo r  amplification o f antibody light and heavy chain genes

94°C x 5 min ‘Hot Start’ * * Addition of T aq polymerase

94°C x 1 min 

63°C x 30 sec 

58°C x 50 sec

72°C x 1 min Repeat X 7 cycles

94°C x 1 min 

63°C x 30 sec

72°C x 1 min Repeat X 24 cycles

72°C x 10 min

All ramping rates were at 4°C / sec
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2.4.4.4 Purification ofPCR reaction products

Purification ofPCR reaction products was performed using an Eppendorf Perfectprep 

Gel clean-up kit. The PCR products were separated by agarose gel electrophoresis. 

The appropriate bands were excised using a clean scalpel, transferred to a clean 

collection tube and weighed. Binding buffer was added to a volume of three times the 

weight of the agarose slice. The samples were inverted three times and incubated at 

55°C for approx. 10 minutes, until the agarose had melted. Isopropanol was added at 

a volume equal to the weight of the agarose slice. The mixture was poured into a spin 

column and centrifuged for 2 minutes at 14,000 rpm. The flow through was discarded 

and the spin column washed with 750 pi of wash buffer. The column was centrifuged 

at 14,000 rpm for 1 min and the flow through discarded. The column was centrifuged 

as before to remove any residual wash buffer. The spin column was transferred to a 

clean tube, 30 pi of ‘nuclease-free’ water was added and the column centrifuged at

14,000 rpm for 1 minute to elute DNA. Purified PCR products were stored at -  20°C 

until required.

2.4.5 Splice by Overlap Extension PCR

Variable heavy and light chains were annealed and amplified using a Splice by 

Overlap Extension (SOE) to produce an 800 bp fragment.

2.4.5.1 SOE PCR primers 

SOE Primers

Single chain forward (scfor) '5 ttactcgcggcccagccggccggccatggcggactaccccg 3'

Single chain back (scback) '5 ggaattcggcccccgag 3
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2.4.5.2 SOE PCR components for amplification of joined antibody light and hea\>y 

chain genes

Component Stock Concentration Volume used

dNTPs

5 X reverse PCR buffer

10 mM 2 pi 

10 pi 

1 pi 

1 p i 

2  pi

5 X

scfor

scback

1 nM

1 nM

Taq polymerase 5 U/pl

Approximately 10 ng of amplified V h  and V l  genes were used in the SOE PCR 

reaction and ‘nuclease-free’ water was used to bring the final reaction volume up to 

50 pi. The final concentration of the buffer present in the reaction was optimised to 

contain 60 mM Tris-HCl, 15 mM ammonium sulphate and 1.5 mM MgCh, pH 9.

2.4.5.3 SOE PCR conditions for amplification of joined antibody light and heavy 

chain gem s

92°C X 1 min 

45°C X 50 min

72°C X 1 min Repeat X 5 cycles -  Addition of scfor and

scback primers and Taq polymerase

92°C x 1 min

6 8 °C x 30 sec

72°C x 1 min Repeat X 25 cycles

All ramping rates were at 4°C / sec.
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2.4.6 Recombinant antibody library construction

2.4.6.1 Isolation o f pAK 100 vector

A single colony of E. coli XLl-Blue (Stratagene, La Jolla, CA, USA) containing the 

pAK 100 vector (all pAK vectors were kindly donated by Prof. A. Plückthun 

(Universität Zürich, Switzerland)) was grown overnight in 10 ml of LB media, 

supplemented with 30 pg/ml tetracycline, at 37°C with vigorous shaking. The 

plasmid was isolated and purified using a Wizard Plus Miniprep kit, according to 

manufacturer’s instructions. Briefly, the culture was centrifuged at 4,000 rpm for 10 

minutes, the supernatant discarded and the pellet resuspended in 250 |ul of cell 

resuspension solution (50 mM Tris-HCl, pH 7.5, 10 mM EDTA, 100 pg/ml RNase 

A). The cell contents are released by the addition of 250 pi of cell lysis solution (0.2 

M NaOH, 1% (w/v) SDS) and the mixture inverted four times. Once the lysate began 

to clear, 10 pi of alkaline protease was added to the mixture. The tube was inverted 

four times and incubated at room temperature for 5 minutes. The pH and salt 

concentration of the lysate was adjusted using 350 pi of neutralisation solution (1.32 

M potassium acetate, pH 4.8), the sample was inverted four times and centrifuged at

14,000 rpm for 10 minutes. The supernatant was transferred to a spin column and re- 

centrifuged at 14,000 rpm for 1 minute. The flow through was discarded and the 

column was washed with 750 pi of column wash solution (80 mM potassium acetate,

8.3 mM Tris-HCl, pH 7.5, 40 pM EDTA 55% (v/v) ethanol). The column was 

centrifuged at 14,000 rpm for 1 minute and the flow through discarded. The column 

was washed as before with 250 pi of wash solution, transferred to a clean tube and 

100 pi of ‘nuclease-free’ water was added. The plasmid was eluted from the column 

by centrifugation at 14,000 rpm for 1 minute and stored at -  2 0  °C.
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2.4.6.2 Sfi I Digest o f scFv insert andpAK ZOO vector

The SOE product and the phage display vector pAK 100 were digested using Sß 1 in 

New England Biolabs, Buffer 2 (1 0  mM Tris-Cl, 50 mM NaCl, 10 mM MgCl2 and 1 

mMDTT).

SOE Fragment Digestion

NEB Buffer 2 13 pi

100 X BSA solution (10 mg/ml) 1.3 pi

S f i l  2  pi

‘Nuclease-free’ water 73.7 pi

SOE Product 40 pi

pAK 100 Plasmid Digestion

NEB Buffer 2 5 pi

100 X BSA solution (10 mg/m!) 0.5 pi

Sfi /  I pi

‘Nuclease-free’ water 34 pi

Plasmid (50-100 ng) 10 pi

The restriction was incubated at 50°C overnight. The scFv fragment and vector minus 

‘stuffer’ gene were purified and quantified by agarose gel electrophoresis prior to 

ligation.
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2.4.6.3 Ligation of scFv gene into pAK 100

Purified digests of SOE product (20 ng) and pAK 100 vector were ligated at a ratio of 

1.5:1 using T4 DNA ligase at 16°C overnight.

2.4.6.4 Production of electrocompetent E. coli XL 1 Blues with high transformation 

efficiency

For initial library construction, electroporation was the chosen method for 

transformation to yield the highest transformation efficiency. For all other cloning 

and sub-cloning procedures heat shock competent cells were used as described in 

Sections 2.4.6 . 6  and 2.4.6.7. A 5 ml aliquot of 2 x TY, 30 |J,g/ml tetracycline, was 

inoculated with a single XL-1 Blue colony and incubated at 37°C overnight with 

shaking at 200 rpm. The overnight culture was used to inoculate a 500 ml volume of 

2 x TY broth and this was incubated at 37°C with shaking until OD6oo= 0.6. The cells 

were left on ice for 1 0  minutes and kept cold and sterile from this point. Cells were 

centrifuged at 4,000 rpm at 4°C for 20 mins. The supernatant was decanted and the 

pellet washed with 500 mis o f ice-cold sterile water. The water was decanted from 

the tube and the pellet resuspended in 50 ml ice-cold sterile water. The mixture was 

incubated on ice for 10 mins and the cells pelleted by centrifugation at 4,000 rpm at 

4°C for 20 mins. The pellet was resuspended in 50 mis of ice-cold 10% (v/v) DMSO 

and incubated on ice for 10 mins. Cells were pelleted as before, resuspended in 25 ml 

10% (v/v) DMSO and incubated on ice for 10 mins. Cells were re-centrifuged and 

resuspended in 2.5 ml 10% (v/v) DMSO. Cells were aliquoted into 100 pi volumes, 

flash frozen in liquid nitrogen and stored at -  80°C until required.

2.4.6.5 Transformation ofE. coli XL -  1 Blues with pAK 100 vector

The ligation mixture was desalted by ethanol precipitation prior to electroporation. 

Briefly, one-tenth the volume of 3 M sodium acetate, pH 5.2, and 3 volumes of 

ethanol were added to the ligation mixture and incubated at -  20°C for 2 hours. The
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DNA was pelleted by centrifugation at 14,000 rpm, 4°C for 20 mins. The pellet was 

washed in 1 ml 70% (v/v) ethanol and centrifuged at 14,000 rpm, 4°C for 10 mins. 

The pellet was air-dried and resuspended in 5 jol of ‘nuclease-free’ water. The 

competent cells were thawed on ice and 1 0 0  pi was dispensed into a polypropylene 

tube. A 1 |il volume of the ligation reaction was added to the cells and the mixture 

immediately transferred to a pre-chilled 2 mm electroporation cuvette. The cells were 

pulsed at 2500V, which gave a time constant of > 5.2 msec. Immediately after 

electroporation, 900 |il of SOC media was added to the cells and the culture incubated 

at 37°C for one hour with gentle shaking. Cells were plated out on NE agar plates and 

incubated at 37°C overnight. Transformants were also titred, using 2 x TY as a 

diluent, on NE plates. Plates were scraped using 2 x TY and library stocks containing 

15% (v/v) glycerol were prepared. Library stocks were flash frozen in liquid nitrogen 

and stored at -  80°C.

2.4.6.6 Production of competent E. coli: Transformation and storage of bacterial cells 

in the same solution (TSS)

Heat shock competent E. coli (XL-1 Blue or JM83) were prepared as described by 

Chung etal. (1989). Briefly, 5 ml of LB media, containing appropriate antibiotic, was 

inoculated with a single bacterial colony and grown overnight at 37°C. A 1 ml 

volume of this overnight culture was used to seed 100 ml of LB media and this was 

incubated at 37°C, 220 rpm until O.D.6oonm = 0.5. Cells were pelleted by 

centrifugation in pre-chilled tubes at 4,000 rpm for 20 mins and resuspended in 10% 

(v/v) of their original volume in ice-cold transformation and storage solution (TSS, 

which consists of LB broth with 10% (w/v) PEG 3350, 5% (v/v) dimethylsulphoxide 

and 50 mM MgCh). Cells were aliquoted into 250 (0,1 volumes, flash frozen in liquid 

nitrogen and stored at -  80°C, until required.
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2.4.6.7 Transformation of TSS competent E. coli

E  coli cells (XL-1 Blue or JM83) were defrosted on ice and 100 pi added to 5 pi of 

ice cold plasmid DNA. This was incubated on ice for 20 mins. Cells were heat 

shocked at 42°C for 90 seconds exactly before being placed back on ice for 2 mins. 

After this time 200 pi of LB broth was added to the transformed cells and the mixture 

was incubated at 37°C, with shaking at 200 rpm for 1 hour. The transformation was 

spread on TYE agar plates, containing 1% (w/v) glucose and appropriate antibiotic, 

and incubated at 37°C overnight.
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2.5 Selection and Characterisation o f Specific scFv Antibodies from an 

Immunised M urine Library

2.5.1 Rescue o f  scFv-displaying phage

A 50 ml volume of NE media was inoculated with 109 cells from the glycerol library 

stock. The culture was then incubated at 37°C, with shaking at 225-250 rpm until 

O .D.6oonm = 0.4-0. 6  was reached. The culture was infected with 1011 cfu VCSM13 

helper phage and 25 pi 1 M IPTG solution was added. The culture was incubated for 

30 minutes at 37°C without agitation. The culture was then diluted in 100 mis of LE 

media in a 2 L baffle flask. The culture was shaken at 200 rpm for 2 hours at 26°C 

for phage production, after which time 30 pg/ml kanamycin was added. Phage 

production was allowed to proceed at 26°C, with vigorous aeration overnight.

2.5.2 Concentration o f phage by PEG/NaCl precipitation

The library (150 ml) was transferred to a sterile sorvall tube and centrifuged at 10,000 

rpm, 4°C for 1 0  minutes. One-fifth the volume (30 mis) of PEG/NaCl (20% (w/v) 

polyethylene glycol 10,000, 0.25 M NaCl prepared in ultra pure water) was added to 

the supernatant, mixed and incubated on ice for at least 1 hour. The mixture was 

centrifuged at 10,000 rpm, for 30 minutes at 4°C. The supernatant was discarded and 

the pellet resuspended in 40 mis ultra pure water plus 8  mis PEG/NaCl. This was 

incubated on ice for 20 minutes and centrifuged at 10,000 rpm, for 20 minutes at 4°C. 

The supernatant was removed and the pellet was re-centrifuged at 7,000 rpm, for 10 

minutes at 4°C. Any remaining supernatant was removed and the pellet was 

resuspended in 2 ml sterile filtered PBS. Phage were stored at 4°C (short-term) /

- 80°C (long- term) in 15% (v/v) glycerol.
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2.5.3 Phage titre

A 4 ml aliquot of 2 x TY, 30 pg/ml tetracycline was inoculated with a single colony 

of XL-1 blue and incubated overnight at 37°C with shaking at 225-250 rpm. This 

culture was used to seed 5 ml of 2 x TY, 30 pg/ml tetracycline at a 1% (v/v) cell 

density. The culture was incubated at 37°C with shaking at 225-250 rpm until 

O.D.6oonm = 0.4-0.6. Serial dilutions of phage were prepared in the bacterial culture 

(10'l-10'n ). The dilutions were allowed to sit at 37°C for 30 minutes without 

agitation and 100 pi of each dilution was spread on NE agar plates. All plates were 

incubated overnight at 37°C.

2.5.4 Selection o f antigen binders by panning

2.5.4.1 Selection o f antigen binders using acidic elution

An immunotube was coated with 4 ml of the antigen of interest, at a concentration of 

1 to 10 pg/ml, overnight at 4°C. The immunotube was washed three times with PBS 

and blocked with a 4% (w/v) skimmed milk powder solution, in PBS, for 2 hours at 

room temperature. The tube was washed three times with PBST and three times with 

PBS. A 1 ml volume of the precipitated phage was pre-blocked in 3 ml of 4% (w/v) 

MPBS. This was added to the blocked immunotube and allowed to bind for two 

hours at room temperature under gentle agitation. The tube was washed as before and 

bound phage were eluted by the addition of 800 pi of 0.1 M glycine/HCl, pH 2.2, for 

ten minutes. The solution was immediately neutralised with 48 pi 2 M Tris-HCl, pH 

8 .6 . The phage were then titred and used to re-infect XL-1 Blue cells to generate 

library stocks for subsequent rounds of panning.
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2.5.4.2 Selection o f antigen binders using bacterial elution

Phage were subject to selection as per Section 2.5.4.1 except bound phage were eluted 

using 4 ml of exponentially growing XL-1 Blue (O.D. 6oonm= 0.5) and incubated for 

30 mins at 37°C. Any remaining phage were eluted using 1 ml 100 mM 

triethylamine, pH 12, under gentle rotation, for ten minutes. The solution was 

immediately neutralised with 0.5 ml 1 M Tris, pH 7.4. The phage were then re­

infected and titred as before.

2.5.5 Re-infection o f  E. coli XL-1 Blue cells with eluted phage

A 5 ml volume of 2 x TY, 30 pg/ml tetracycline was inoculated with a single colony 

of XL-1 Blue and grown overnight with shaking (200-250 rpm) at 37°C. This was 

used to inoculate 5 ml o f 2 x TY, 30 pg/ml tetracycline at 1% (v/v) cell density. The 

culture was grown with shaking at 37°C until O.D. 6oonm = 0.4-0.6 . Cells were then 

incubated at 37°C without agitation for 1 0  minutes. A 700 pi aliquot of phage 

rescued from the panning step was added to the culture and allowed to stand at 37°C 

for 30 minutes without agitation. The culture was then centrifuged at 4,000 rpm for 2 

minutes and resuspended in 600 pi of 2 x TY. This was plated out on three NE agar 

plates and incubated overnight at 37°C. The following day infected cells were scraped 

from the solid media using 2 x TY, concentrated by centrifugation at 4,000 rpm for 2 

minutes and resuspended in 2 ml 2 x TY, 15% (v/v) glycerol. Stocks were aliquoted 

into 500 pi volumes, flash frozen and stored at -  80°C

2.5.6 Master plate construction

A 96 well sterile culture plate was filled with 200 |.U per well of 2 x TY, 1% (w/v) 

glucose, 25 pg/ml chloramphenicol and 30 pg/ml tetracycline. Each well was 

inoculated with a single colony from the phage titre plates, leaving one or two wells 

blank as non-inoculated controls. The plate was incubated at 37°C with shaking at 

150 rpm overnight. This was known as the master plate and frozen at - 20°C with
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15% (v/v) glycerol. Another plate was prepared with 180 pi /well 2 x TY containing 

1% (w/v) glucose, 25 pg/ml chloramphenicol. This plate was inoculated with 20 pi 

from each corresponding well on the master plate and incubated at 37°C with shaking 

at 150 rpm for approx 5 hours. After 5 hours, 25 pi 2 x TY, 1% (w/v) glucose, 25 

pg/ml chloramphenicol, 9.5 mM IPTG and 5 x 109 VCS M13 helper phage/ml was 

added to each well. The culture was left to stand for 30 minutes at 37°C followed by 

shaking at 26°C, 150 rpm for 2 hours. The plate was centrifuged at 4,000 rpm for 10 

minutes. The supernatant was removed by inversion and the pellets resuspended in 

200 pi of 2 x TY, 1% (w/v) glucose, 25 pg/ml chloramphenicol, 1 mM IPTG and 30 

pg/ml kanamycin. The plate was incubated overnight at 26°C, shaking at 150 rpm. 

The plate was centrifuged at 4,000 rpm for 10 minutes and 75 pi of the supernatant 

used for analysis in phage ELISA.

2.5.7 Phage ELISA

A microtitre plate was coated with 100 pi of between 1 and 10 pg/ml of appropriate 

conjugate and incubated overnight at 4°C. The plate was washed three times with 

PBST and three times with PBS. The plate was then blocked with 150 pi 4% (w/v) 

milk marvel™ in PBS for 1 hour at 37°C. A 75 pi aliquot of supernatant from the 

working phage plate and 25 pi of 4% (w/v) MPBS was added to the corresponding 

well in each ELISA plate, mixed gently and incubated for 2 hours at 37°C. The plates 

were washed as before and 1 0 0  pi of anti-fd bacteriophage antibody at a 1 in 1 0 0 0  

dilution, in 1% (w/v) MPBS, was added to each well. This was incubated for 1 hour 

at 37°C. The plate was washed as before and 100 pi of peroxidase-labelled anti-rabbit 

antibody [at a 1 in 5000 dilution in 1% (w/v) MPBS] was added and incubated for 1 

hour at 37°C. The plate was washed and 100 pi of r>-phenylenediamine (o-PD) 

substrate was added and incubated for 30 minutes at 37°C. The substrate reaction was 

stopped by addition of 25 pi of 2 M H2 SO4 per well and absorbance read at 492nm. 

These steps are repeated until positive clones were identified.
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2.5.8 Preparation o f positive clones for ELISA

A 5 ml volume of NE media was inoculated with a single colony of any positive 

clones identified from the master plate and this was incubated at 37°C with 250 rpm 

shaking overnight. This was used to inoculate 5 ml of NE media at a 1% (v/v) cell 

density. The culture was allowed to grow at 37°C with shaking (250 rpm) until 

O.D.550imi had reached 0.5 A.U.. Cells were infected with 5 x 109 VCS M13 helper 

phage and 0.5 mM IPTG were added and the culture was incubated at 26°C (150 rpm) 

for two hours. After this time, kanamycin was added to a final concentration of 30 

pg/ml, and phage production was allowed to continue overnight. The culture was 

centrifuged at 4,000 rpm for 10 minutes and the supernatant removed for analysis by 

competitive phage ELISA. This was performed as per Section 2.5.7 except 50 pi of 

free analyte standard was mixed with 50 pi of phage before addition to the blocked 

wells of the immunoplate.

2.5.9 Production o f  soluble scFv

2.5.9.1 Isolation ofscFv gene

Once positive clones were identified, the pAK 100 plasmid was isolated using a 

Wizard Miniprep kit as per Section 2.4.6.1. The scFv gene insert was isolated by Sfi 1 

restriction as per Section 2.4.6.2 and ligated into a previously restricted expression 

vector using T4 DNA ligase, at a vector to insert molar ratio of 1.5:1. Expression 

plasmids used included: pAK 400, for large-scale soluble scFv expression; pAK 500, 

for soluble dimeric scFv expression and pAK 600 for expression of soluble dimeric 

alkaline phosphatase-labelled scFv. Plasmids were transformed into a non-suppressor 

E. coli strain (e.g. JM83) (prepared using TSS method, as per section 2.4.6.6). 

Chloramphenicol resistance was used to select for recombinant bacteria.
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2.5.9.2 Soluble expression o f scFv Fragments

For periplasmic expression of scFv antibody fragments; 500 ml o f 2 x TY media, 

supplemented with 25 (ig/ml chloramphenicol and 1% (w/v) glucose, was inoculated 

with an overnight culture of E. coli JM83, harbouring the expression plasmid pAK 

400, 500 or 600 (containing the scFv insert), at a 1% (v/v) cell density. This was 

incubated with vigorous aeration at 37°C. Expression was induced with 1 mM 

isopropylthiogalactopyranoside (IPTG) when O.D.6oonm reached 0.5-0.6. Expression 

was allowed to continue for 4 hours at 26°C with vigorous aeration (6 hours for pAK 

500 and 600 expression). The cells were collected by centrifugation and resuspended 

in 5% (v/v) of the initial culture volume TES (200 mM Tris-HCl, pH 8, 0.5 M 

sucrose, 0.5 mM EDTA). The mixture was incubated for 1 hour on ice and 

centrifuged at 4,000 g for 20 minutes to remove cell debris. The supernatant was 

dialysed against 50 volumes PBS, 0.02% (w/v) sodium azide, overnight at 4°C.

2.5.10 Purification o f  soluble scFv

Monomeric scFv could be purified by immunoaffinity chromatography using M3G- 

BSA-Sepharose Affinity Column.

2.5.10.1 Preparation o f  imm unoaffinity matrix

Cyanogen bromide-activated sepharose (1.2g) was swollen with 200 ml of 1 mM HC1 

for 20 minutes and sucked dry under vacuum (Millipore sintered glass filtration unit 

with 0.22 |nm pore size filter). Hapten-carrier conjugate was dissolved to 

concentration of 5 mg/ml in coupling buffer (0.1 M NaHCC>3 , 0.5 M NaCl, pH 8.3) 

and added dropwise to the gel with stirring. This was incubated overnight with 

stirring, washed with coupling buffer and incubated with 10 mis of 1 M ethanolamine, 

pH 8, for 2 hours under gentle rotation to block any unreacted sites. The gel was 

washed six times alternating between 0.1 M acetate buffer, 0.5 M NaCl, pH 4, and
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coupling buffer (20 mis each). The gel was then washed with PBS, 0.02% (w/v) azide 

and stored in this solution at 4°C.

2.5.10.2 Purification using M3G-BSA-Sepharose affinity column

The affinity column was equilibrated with PBS and 2 column volumes of pAK 400 

soluble periplasmic extract were loaded onto the gel. Contaminants were removed by 

washing with 4 column volumes of PBST and 4 column volumes of PBS. Bound 

antibody fragments were eluted using 0.1 M glycine/HCl, pH 2.2. Fractions were 

immediately neutralised with 200 pi 2 M Tris, pH 8.6, pooled and dialysed against 50 

volumes PBS, overnight at 4°C.

2.5.11 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE) was 

performed under reducing conditions according to Laemmli (1970) to assess antibody 

purity. This technique enables protein separation on the basis o f size. This is 

achieved through two factors: free radical polymerisation of acrylamide, and a 

reducing environment created by SDS. The polymerised acrylamide gives rise to the 

cross-linked gel of defined pore-size, while SDS disrupts secondary, tertiary and 

quartenary protein structure, wrapping the protein in a uniform negative charge. This 

masks the native charge of the protein, resulting in a constant charge/mass ratio and 

uniform shape, allowing electrophoretic mobility to be influenced almost entirely by 

size. Ammonium persulphate is the used to initiate free radial formation. N,N,N',N'- 

tetramethylethylenediamine (TEMED) is included as a catalyst to speed up the 

reaction. The free radicals formed, react with acrylamide to form long acrylamide 

polymer chains, which are viscous but do not form gels. N, N ’-methylene-bis- 

acrylamide causes cross-linking of the polymers, producing a large network of 

acrylamide chains. The pore size of the gel depends on amount of acrylamide and 

degree of crosslinking. The compositions of gels, electrophoresis buffer and sample 

buffer are shown in Table 2.1. Samples and protein markers were prepared in sample
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loading buffer (4:1, sample:buffer) and boiled for 5 minutes. Samples were run at 50 

mA per gel on an Atto AE-6450 minigel gel until samples had reached the base of the 

stacking gel, and then at 20 mA per gel until the dye had reached the base of the 

resolving gel. Coomassie blue was used to stain the gel or the gel was used for 

western blotting.

Table: 2.1 Composition of stacking gel, resolving gel, electrophoresis buffer and 

sample loading buffer for SDS-PAGE.

Composition

Stacking gel 5% (w/v) acrylamide 

0.13% (w/v) bis-acrylamide 

125 mM Tris-HCl (pH 6.8)

0.1% (w/v) SDS

0.15% (w/v) ammonium persulphate 

0.25% (v/v) TEMED

Resolving gel 10% (w/v) acrylamide 

0.27% (w/v) bis-acrylamide 

375 mM Tris-HCl(pH 6.8)

0.1% (w/v) SDS

0.08% (w/v) ammonium persulphate 

0.08% (v/v) TEMED

Electrophoresis buffer 25 mM Tris-HCl(pH 8.8) 

192 mM glycine

0.1% (w/v) SDS

Sample loading buffer 60 mM Tris-HCl(pH 6.8)

25% (v/v) glycerol

2% (w/v) SDS

14.4 mM 2-mercaptoethanol

0.1% (w/v) bromophenol blue
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2.5.11.1 Coomassie blue staining for SDS-PAGE gel

Coomassie blue staining solution (0.2% (w/v) Coomassie blue R250 in 30:10:60 

(v/v/v) methanol:acetic acid:water) was prepared. Gels were stained for 30 minutes 

and destained overnight at 4°C (in destaining solution: 10:7:53 (v/v/v)

methanol: acetic acid:water).

2.5.11.2 Western blotting of scFv antibodies

Alternatively, proteins were transferred to a nitrocellulose membrane by 

electrophoresis using a Biorad wet blotter at 70V for 1 hour. The membrane was 

blocked using 4% (w/v) non-fat milk powder in Tris Buffered Saline (TBS) (50 mM 

Tris, 150 mM NaCl, pH 7.4) overnight at 4°C, washed five times with TBST and five 

times with TBS. Bound antibody was detected using monoclonal anti-flag M l 

antibody (at a 1 in 1000 antibody dilution) in TBS, with 1% (w/v) non-fat milk 

powder and 1 mM CaCl2 . The nitrocellulose was then probed with an alkaline 

phosphatase-labelled anti-mouse IgG antibody (1 in 2000 dilution) in TBS, containing 

1% (w/v) non-fat milk powder. Antibody bands were visualised using 5-bromo-4- 

chloro-3-indolyphosphate/nitro blue tetrazolium chloride (BCIP/NBT) substrate. 

The reaction was allowed to proceed until bands could be clearly visualised and the 

reaction was then stopped by the addition of 2 mM EDTA.
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2.5.12 ELISA analysis o f  scFvs

2.5.12.1 Immunoblot analysis

A nitrocellulose membrane was sprayed with 10 pi of M3G-OVA conjugate using the 

Linomat 5 and allowed to dry. The membrane was cut into strips and each strip was 

blocked with 4% (w/v) non - fat milk powder in PBS. Following blocking each strip 

was washed three times with PBS. Decreasing concentrations of M3G were added to 

each nitrocellulose strip with 10 pi of alkaline phosphatase-labelled scFv in 1% (w/v) 

MPBS. This was incubated for 2 hours at room temperature. The membrane was 

washed as before and bound phosphatase activity was visualised using BCIP/NBT 

chromogenic substrate.

2.5.12.2 Standard Enzyme-Linked Immunosorbent Assay (ELISA)

Nunc maxisorb Microtitre plates were coated with 100 pi of appropriate concentration 

of antigen conjugate diluted in PBS at 4°C overnight. Plates were blocked with 150 

pl/well 4% (w/v) MPBS for 1 hour at 37°C. Wash steps were carried out 3 times with 

PBST and three times with PBS. All antibody dilutions were made in sterile filtered 

PBS, 1% (w/v) non-fat milk powder at a volume of 100 pl/well and incubations were 

performed at 37°C for 1 hour. Decreasing concentrations o f antibody were added to 

each well, followed by 100 pi per well of monoclonal anti-flag M l antibody, at a 1 in 

400 dilution. This was detected using 100 pi per well of peroxidase labelled anti­

mouse IgG antibody, at a 1 in 2000 dilution. Bound antibody was detected using o-  

phenylenediamine (o-PD). Absorbances were read after 30 minutes at 450nm.
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2.5.12.3 Indirect ELISA for determination of optimal antibody dilution and optimal 

coating concentration o f protein conjugates

Ranges of drug protein conjugates were coated onto microtitre plates and incubated 

overnight at 4°C. Plates were washed three times with PBST and three times with 

PBS. The plates were then blocked with 150 pi of 4% (w/v) MPBS solution for 1 

hour at 37°C. Wash steps were carried out 3 times with PBST and three times with 

PBS. All antibody dilutions were made in sterile filtered PBS, 1% (w/v) MPBS at a 

volume of 100 pi/well and incubations were performed at 37°C for 1 hour. Serial 

dilutions of scFv were added to the wells o f each conjugate concentration, followed 

by monoclonal anti-flag M l antibody, peroxidase-labelled anti-mouse IgG antibody 

and detected using o-PD. Absorbances were read after 30 minutes at 450nm.

2.5.12.4 Competitive studies

These were performed in the same manner as for standard ELISA except decreasing 

concentrations of free analyte (50 pi) were incubated with a constant concentration of 

scFv (50 pi) on the microtitre plate. In the case of saliva analysis, the sample was 

subjected to a freeze-thaw cycle and then a brief 30 second centrifugation step to 

remove any endothelial cells or foodstuffs. For competitive studies, the volume of 

sample analyte and antibody had to be reduced to 25 pi each, due to the small 

volumes of saliva samples obtained. Saliva samples were collected as described in 

Figure 2.1.
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A: Saliva collection device. The absorbent 

pad is removed and placed in the 

individual’s mouth for a few minutes until 

it becomes saturated

B: The pad is placed into the plastic 

‘syringe-like’ component of the device

C: The ‘plunger-like’ component is

screwed into the ‘syringe-like’ component 

to squeeze the saliva from the pad. The 

saliva is collected in a suitable container

D: The sample is labelled with a number 

and initials of the individual

Figure 2.1: Collection o f saliva samples. Saliva samples were collected using a 

prototype saliva collection device from  Trinity Biotech. The absorbent pad was 

removed and placed in the individual’s  mouth fo r  a period o f  a few minutes, until it 

became saturated. The pad  was removed and place into the plastic 'syringe-like ’ 

component. The ‘plunger-like ’ component was then screwed into this container. The 

pressure applied effectively squeezes the saliva from the pad, and this can be 

collected in a suitable container.
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2.5.12.5 Direct detection o f pAK 600 alkaline phosphatase-labelled antibody

Microtitre plates were coated with 100 yi 1 o f appropriate hapten-conjugate and 

blocked as for standard ELISA. Alkaline phosphatase-labelled scFv was incubated 

with serial dilutions of free drug for 1 hour at 37°C prior to addition to the microtitre 

plate. Bound antibody was detected using para-nitrophenyl phosphate (pNPP) 

substrate and absorbance at 405nm read after 45 minutes at 37°C.

2.5.12.6 Cross reactivity studies

Cross reactivities of monomeric, dimeric and enzyme-labelled scFvs to morphine, 

methadone, heroin, codeine, norcodeine, dihydrocodeine and 6-monoacetylmorphine 

were analysed in ELISA. The assays were carried out as for the competitive ELISAs 

(Sections 2.5.12.4 and 2.5.12.5) with standards of cross reactant in place of M3G.

2.5.12.7 Affinity analysis in EUSA-Friguet method

Affinity analysis was carried out by ELISA according to the method developed by 

Friguet et al. (1985). Firstly, a microtitre plate was coated with 1 jig/ml M3G-OVA 

and blocked at 4°C, overnight. A series o f nominal antibodies concentrations was 

added to the plate and used to construct a standard curve of nominal antibody 

concentration versus absorbance @ 450nm. Prior to performing the assay, a series of 

antibody-antigen mixtures were incubated in eppendorfs and allowed to reach 

equilibrium overnight. Each of these solutions contained a constant, nominal dilution 

of antibody, referred to as ‘1’, but each had a different concentration of antigen. 

Absorbance readings at 450nm of the antibody:antigen mixtures were related to 

nominal antibody concentration values by reference to the standard curve generated. 

The fraction of total antibody bound by the antigen (V) was calculated for each of the 

antibody:antigen mixtures. The dissociation constant for each antibody was 

determined by the slope of the plot of 1/V versus 1/[A],

106



2.5.13 Sequence analysis o f  genes encoding specific scFvs

In order to generate high quality DNA for sequencing, each clone was transformed 

into XL-1 Blue cells. A single colony of each clone was grown overnight in LB 

media. The expression vector, containing scFv gene of interest, was isolated by 

miniprep, as described in Section 2.4.6.1. Plasmid DNA from the Griffin. 1 Library 

was sent to the Institute of Medical Sciences, University of Aberdeen for sequencing. 

All other clones were sequenced by MWG-Biotech. Raw DNA sequences in each 

direction were analysed using CHROMAS sequence analyser software. The DNA 

sequences were exported and analysed using a variety of web-based bioinformatics 

tools listed below.

Table 2.2: Source of web-based bioinformatics tools used for sequence analysis of 

antibody fragments.

Tool Source

Chromas www.technelvsium.com.au/chroraas.html

Translate Tool www.biolundberami.se/edLi/translaLhtml

BLAST www.expasv.org

ClustalW www.ch.embnet.org/softward/ClustalW.html

Geneodoc www.psc.edu.biomed/gendoc

Swiss M odel http://swissmodel.expasv.om

DS Viewer Pro www.accelrvs.com/dsludio/ds viewer/

Kabat Rules www://acrmwww .biochem.ucl.ac.uk/abs
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2.6 Biopanning o f a Naive Human Antibody Library against Amphetamine and 

Tetrahydrocannabinol

The Griffin. 1 library was accessed in the University of Aberdeen. The library was 

kindly donated by Greg Winter’s Laboratory, Centre for Protein Engineering, Medical 

Research Council, Cambridge. The Library was produced from synthetic human V- 

gene segments, with a diversity of 1.2 x 109 clones. The library utilises the phagemid 

vector pHEN 2, encoding scFv genes flanked by Nco 1 and Not 1 restriction sites.

2.6.1 Rescue o f  scFv displaying phage

For initial library rescue 50 ml of 2 x TY, containing 100 pg/ml ampicillin, 1% (w/v) 

glucose, was inoculated with 1 x 1010 clones (200 pi of library stock) and grown at 

37°C with shaking at 250 rpm until O.D. 6oonm = 0.4. The culture was then infected 

with 6 x 1011 cfu/ml o f M13K07 helper phage. This yields a ratio of helper 

phage:bacteria of 20:1 (O.D. 6oonm = 1 is equivalent to approx. 1 x 108 cfu/ml 

bacteria). Infection was allowed to proceed at 37°C for 30 mins without agitation. 

The infected culture was centrifuged at 4,000 rpm for 10 mins and the pellet 

resuspended in 30 ml 2 x TY, 100 ug/ml ampicillin and 30 pg/ml kanamycin. This 

was diluted in 470 ml of pre-warmed 2 x TY, 100 pg/ml ampicillin and 30 pg/ml 

kanamycin in a 2 L baffled flask. Phage production was allowed to continue while 

shaking at 250 rpm, at 30°C, overnight.

2.6.2 Concentration o f  Phage by PEG/NaCl precipitation

The overnight culture was spun at 8,000 rpm, for 30 mins at 4°C. One fifth the 

volume of PEG/NaCl (20% PEG 6000, 2.5 M NaCl) was added to the supernatant and 

incubated on ice for at least an hour. The mixture was centrifuged at 8,000 rpm, for 

30 mins at 4°C. The pellet was resuspended in 40 ml sterile water and 8 ml 

PEG/NaCl and incubated on ice for 20 mins. The mixture was centrifuged at 6,000

108



rpm, for 30 mins at 4°C. The supernatant was removed by aspiration and the pellet 

re-centrifuged briefly to remove any traces of PEG/NaCl. The pellet was resuspended 

in 5 ml o f sterile PBS and stored at 4°C short-term or in 15% (v/v) glycerol at -80°C 

long-term.

2.6.3 Selection o f specific scFv-displaying phage by biopanning

2.6.3.1 Selection on an antigen-coated immunotube

An immunotube was coated at 4°C overnight with appropriate concentrations of the 

antigen of interest (for initial rounds of panning a concentration of 10 pg/ml was used; 

this was decreased to 5 pg/ml and to 1 pg/ml in subsequent rounds). The 

immunotube was washed three times with PBS and blocked with 5 ml 4% (w/v) 

MBPS for two hours at 37°C. The immunotube was washed as before and 1 ml of 

PEG precipitated phage (approx IQ12 to 1013 cfu/ml) was added to the immunotube in

4 ml o f 2% (w/v) MPBS. Phage were allowed to bind for 90 mins at room 

temperature under gentle rotation and for a further 60 mins while stationary at room 

temperature. The immunotube was washed 10 times with PBST and 10 times with 

PBS (For second and subsequent rounds washing stringency was increased to 20 

times with PBST and 20 times with PBS). Bound phage were eluted using 700 pi of 

100 mM Triethylamine, pH 12, and rotated end-over-end continuously for 10 mins. 

Eluted phage were then added to 500 pi of 1 M Tris, pH 7.4, for quick neutralisation. 

A 9.25 ml volume of exponentially growing TGI (O.D. 6oomn= 0.4-0.6) was added to 

750 pi o f eluted phage and the remainder o f the eluted phage were stored at 4°C. 

Another 200 pi o f 1 M Tris, pH 7.4, was added to the immunotube to neutralise any 

remaining phage. Any remaining phage were eluted by the addition of 4 ml of 

exponentially growing TGI to the immunotube and both cultures were incubated in a 

37°C waterbath for 30 mins without agitation. Both cultures were pooled and 100 pi 

was used to make five 100-fold serial dilutions. These were plated on TYE plates, 

containing 100 pg/ml ampicillin and 1% (w/v) glucose. The remaining infected TGI 

culture was centrifuged at 4,000 rpm for 10 mins and resuspended in 1 ml o f 2 x TY.
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This 1 ml culture was plated on a large Nunc Bio-Assay Dish of TYE plates, 

containing 100 Mg/ml ampicillin and 1% (w/v) glucose.

2.6.3.2 Free antigen elution of specific phage

Selection was performed as per Section 2.6.3.1 except that bound phage were eluted 

using 4 ml of free antigen for 1 hour at room temperature prior to the addition of 

triethylamine. The concentration of free antigen used was decreased from 100 pM to

1 nM during rounds of selection. Both elutions were reinfected separately.

2.6.3.3 Selection on streptavidin-coated magnetic beads

A 1 ml aliquot of streptavidin-coated magnetic beads was washed three times with 

PBS. The beads were then incubated with 2 pg of biotinylated amphetamine for 30 

mins at room temperature. Captured amphetamine was separated from unbiotinylated 

amphetamine by three washes with PBS followed by magnetic separation and 150 pi 

of PEG-precipitated phage were added to the beads in 1 ml of PBS. Phage were 

allowed to bind at room temperature with gentle agitation for 90 mins. The beads 

were then washed 10 times with PBST and 10 times with PBS. Bound phage were 

eluted by a 10 min incubation with 200 pi of 100 mM triethylamine. Eluted phage 

were isolated via magnetic separation from the beads. Phage were immediately added 

to 100 pi of 1 M Tris, pH 7.4, for neutralisation and used to infect exponentially 

growing TGI cells as for immunotube biopanning.

2.6.4 Further rounds o f  selection

Reinfected cells from the previous round of selection were scraped from the Bioassay 

dish (Nunc) using 6 ml of 2 x TY, 15% (v/v) glycerol to loosen cells with a spreader. 

Stocks were aliquoted into 500 pi volumes and stored at -80°C. A 100 pi aliquot of
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this glycerol stock was used to inoculate 100 ml of 2 x TY, containing 100 (ig/ml 

ampicillin and 1% (w/v) glucose. This was grown at 37°C with shaking at 250 rpm 

until O.D. 6oonm =0.4. A 10 ml volume of this culture was removed and infected with 

6 x 1011 cfii/ml of M13K07 helper phage. Infection was allowed to proceed at 37°C 

for 30 mins without agitation. The infected culture was centrifuged at 4,000 rpm for 

10 mins and the pellet resuspended in 50 ml 2 x TY, 100 fog/ml ampicillin and 30 

ug/ml kanamycin. Phage production was allowed to continue overnight at 30°C, with 

shaking at 250 rpm overnight. A 40 ml volume of overnight culture used for PEG 

precipitation. The culture was centrifuged at 6,000 rpm, 4°C for 30 mins and one fifth 

the volume, i.e. 8 ml of PEG/NaCl, was added to the supernatant. This was incubated 

on ice for at least 1 hour. The mixture was centrifuged at 6,000 rpm, for 30 mins at 

4°C. The supernatant was removed by aspiration and the pellet briefly re-centrifuged 

to remove any remaining traces of PEG/NaCl. The pellet was resuspended in 2 ml of 

sterile PBS. A 1 ml volume of this PEG precipitated phage was used for the next 

round of selection. The biopanning selection process was repeated at least three times 

until positive scFvs were identified.

2.6.5 Preparation o f monoclonal phage fo r  analysis by phage ELISA

A 96 well sterile culture plate was filled with 200 (0.1 of 2 x TY, 1 % (w/v) glucose and 

100 |ig/ml ampicillin. Each well was inoculated with a single colony from the phage 

titre plates, leaving one or two wells as non-inoculated controls. The plate was 

incubated at 37°C with shaking at 150 rpm overnight. This was known as the master 

plate and was frozen at - 80°C with 15% (v/v) glycerol. Another plate was prepared 

with 200 (j.1 /well 2 x TY containing 1% (w/v) glucose and 100 (og/ml ampicillin. A 

small volume (1-2 jil) from each well on the master plate was transferred to the 

corresponding well on the second plate and incubated at 37°C with shaking at 150 

rpm for approx 2.5 hours until O.D.6oomn= 0.5. After this time 25 (il of 2 x TY, 100 

(ig/ml ampicillin, 1% (w/v) glucose and 109 cfu/ml M13K07 was added to each well. 

The culture was left to stand for 30 minutes at 37°C followed by shaking at 37°C, 150 

rpm for 1 hour. The plate was centrifuged at 2,500 rpm for 10 minutes. The 

supernatant was removed by inversion and the pellets resuspended in 200 ¡j.1 of 2 x
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TY, 1% (w/v) glucose, 100 (ig/ml ampicillin and 30 ng/ml kanamycin. The plate was 

incubated overnight at 30°C while shaking at 150 rpm. The plate was centrifuged at 

2,500 rpm for 10 minutes and 50 (il of the supernatant used for analysis in phage 

ELISA.

2.6.6 Screening ofphage by monoclonal phage ELISA

A microtitre plate was coated with 100 (il of between 1 and 10 (ig/inl of appropriate 

conjugate and incubated overnight at 4°C. The plate was washed three times with 

PBST and three times with PBS. The plate was then blocked with 150 |xl of 4% (w/v) 

MPBS for 1 hour at 37°C. Supernatant from the monoclonal phage plate (50 |_il) and 

50 (il of 2% (w/v) MPBS was added to the corresponding well in each ELISA plate 

and incubated for 1 hour at room temperature. The plates were washed as before and 

100 (il of peroxidase-labelled anti-M13 bacteriophage antibody at a 1 in 1000 

dilution, in 1% (w/v) MPBS, was added to each well. This was incubated for 1 hour 

at room temperature. The plates were washed and 100 (j.1 of 3,3',5,5'- 

Tetramethylbenzidine dihydrochloride (TMB) substrate diluted to 1 mg/ml in 0.05 M 

citric phosphate buffer, pH 5, was added. The reaction was allowed to proceed for 5 

to 10 mins until a blue colour developed. The reaction was stopped by addition of 50 

(j.1 of 1 M H2SO4 per well. Absorbance read at 450nm, with reference subtraction at 

620nm, i.e. 450-620nm.

2.6.7 Production o f soluble antibody Fragments

Monoclonal phage (20 jj.1) were used to infect 180 j_il o f exponentially growing 

HB2151 and incubated at 37°C for 30 mins without agitation. Infected cells were then 

streaked onto TYE plates, containing 100 ng/ml ampicillin and 1% (w/v) glucose. A 

single colony was used to inoculate 5 ml o f 2 x TY containing 100 |Jg/ml ampicillin 

and 1% (w/v) glucose. The culture was grown at 37°C, with shaking at 250 rpm, until 

O.D.6oonm= 0.9. The infected cells were centrifuged at 4,000 rpm for 10 mins and the
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pellet resuspended in 5 ml 2 x TY, 100 (ig/ml ampicillin and 1 mM IPTG. Antibody 

production was allowed to proceed at 30°C overnight. The cells were pelleted by 

centrifugation, resuspended in 500 pil of fractionation buffer and incubated on ice for 

15 mins. 5 (il of 1 M MgCl2 was added and the culture incubated on ice for a further 

15 mins. Bacterial debris was removed by centrifugation at 13,000 rpm for 5 mins 

and the supernatant used directly in ELISA.

2.6.8 ELISA on small scale soluble scFv from  pHEN 2 vector

Plates were coated and blocked as per Section 2.5.12.2. Bound antibody was detected 

using a 1 in 1000 dilution of peroxidase-labelled anti-c-myc monoclonal antibody and 

developed using TMB. The reaction was stopped using 1 M H2 SO4 . Absorbance was 

read at 450-620nm.

2.6.9 Cloning intopIMS 147for expression as single chain antibody (scAb)

The pIMS 147 vector is an enhanced expression vector, encoding the constant region 

of the human kappa antibody, produced by The Molecular and Cell Biology Group, 

University of Aberdeen, UK. The scFv gene of interest was extracted from the pHEN

2 vector using Nco 1 and Not 1 restriction sites flanking the region. The pHEN 2 

vector was isolated from HB 2151 cells using a Wizard Plus Miniprep kit as per 

Section 2.4.6.1. Approximately 2 fig of plasmid DNA was restricted using 20 Units 

oîNot I and 10 units of Nco 1 in 1 x NEB buffer 3, diluted in ‘nuclease-free’ water, at 

37°C for 5 hours. The pIMS 147 vector was isolated from XL-1 Blue cells and 

restricted in the same manner. The scFv gene was ligated with digested pIMS 147 at 

a 1.5:1 vector to insert ratio as per Section 2 4.6.3. The ligated plasmid was then 

transformed into heat shock competent XL-1 Blue cells as per Section 2.4.6.7, using 

ampicillin resistance to select for transformants.
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2.6.10 Large scale expression in pIMS 147

A single colony of XL-1 Blue harbouring pIMS 147 and scFv insert, was used to 

inoculate 5 ml of TBgat (TB, containing, 1% (w/v) glucose, 100 Mg/ml ampicillin and 

30 fig/ml tetracycline). This was used to seed 12 x 50 ml of T B g a t at a 1% (v/v) cell 

density. The cultures were incubated all day at 37°C with shaking at 250 rpm and 

then centrifuged at 4,000 rpm for 20 mins. The pellets were resuspended in 50 ml 

fresh TBgat and incubated overnight at 25°C and 250 rpm. The following day, the 

cultures were centrifuged at 4,000 rpm for 20 mins, resuspended in TB containing 100 

(ig/ml ampicillin and allowed to recover for 1 hour at 25°C with shaking at 250 rpm. 

After this time, each culture was induced with 1 mM IPTG and incubated for 4 hours 

at 25°C and 250 rpm. The cultures were centrifuged at 4,000 rpm for 30 mins and the 

pellets subjected to osmotic shock with fractionation buffer to release the periplasm of 

cells. This involved incubating the cell pellet with 10% (v/v) the original culture 

volume of fractionation buffer on ice for 15 mins with gentle shaking, at 100 rpm. 

After this time 1 M MgCl2, to a final concentration of 0.05% (v/v) of original culture 

volume, was added and the mixture incubated on ice for a further 15 mins. The lysate 

was then centrifuged at 4,000 rpm for 20 mins to remove bacterial debris. The 

supernatant was sterile filtered through a 0.45 micrometre filter prior to purification.

2.6.11 Purification by IMAC

2.6.11.1 Preparation o f resin

A 250 |il aliquot of chelating sepharose fast-flow was used for every 100 ml o f culture 

volume used. The resin had a binding capacity o f 5 mg of 6-His protein/ml of slurry. 

The gel was sedimented by centrifugation, washed using 5 gel volumes of distilled 

water and incubated in a Biorad minicolumn with end-over-end rotation for 10 mins. 

The water was drained from the gel, 5 gel volumes of 1 M NiSC>4 was added to the 

column and incubated for 1 hour at room temperature with end-over-end rotation. 

The column was drained and washed three times with 5 gel volumes of PBS. The
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column was now ready for use or suitable for storage at 4°C in 5 ml of PBS for 1 

month.

2.6.11.2 Binding of 6-His tagged scAb

ScAb released from bacterial periplasm was added to the resin and incubated 

overnight at 4°C with end-over-end rotation. The flow through was collected on ice 

and put back through the column a total of three times. The column was washed with

5 gel volumes of 10 mM imidazole, followed by 5 gel volumes of 25 mM imidazole. 

The scAb-containing fraction was eluted using 250 mM imidazole and collected in 

500 p.1 aliquots on ice. A total of 20 aliquots were collected and analysed by ELISA 

as per Section 2.6.13.1. Antibody containing aliquots were pooled and dialysed 

against 100 volumes of PBS at 4°C overnight. Once dialysed, the scAb could be 

stored at -20°C. The purity of the scAb was monitored by SDS-PAGE 

electrophoresis as described in Section 2.5.11.

2.6.12 Quantification o f scAb expression

2.6.12.1 Quantification of scAb expression by capture ELISA

An immunoplate was coated with 1 |J.g/ml anti-human kappa light chain antibody 

overnight at 4°C. The plate was blocked with 4% (w/v) MPBS for 1 hour at 37°C. 

The plate was washed three times with PBS. A total of twelve doubling dilutions of 

human kappa IgG, ranging in concentrations from 1,250 to 0 ng/ml, were prepared 

and 100 pil of each antibody dilution was added in duplicate to the individual wells of 

the plate. Twelve doubling dilutions o f scAb were also prepared and added in 

duplicate to the immunoplate. The plate was incubated for 1 hour at 37°C and then 

washed three times with PBST and three times with PBS. Bound antibody was 

detected using 100 p,l of a 1 in 1000 dilution of peroxidase-labelled anti-human kappa 

light chain antibody was added to each well and incubated at 37°C for 1 hour. The
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plate was washed as before and developed using 100 |! 1/well of TMB substrate in 0.05 

M citric phosphate buffer, pH 5. The reaction was allowed to proceed to 10 minutes 

until a blue colour developed and was then stopped using 50 |j.l/well 1 M H2 SO4 . 

Absorbance was read at 450-620nm. A standard curve of human IgG of known 

concentrations was plotted against absorbance observed. This could then be corrected 

for differences in molecular weight between whole IgG (150 kDa) and scAb (40 kDa).

2.6.12.2 Quantification o f scAb expression by SDS-PAGE Electrophoresis

Purified scAb was quantified by including a sample of previously purified, 

characterised and quantified scAb on the gel. Electrophoresis was carried out as 

described in Section 2.5.11. The protein band observed for the scAb could then be 

compared with that of the scAb of known concentration.

2.6.12.3 Bradford assay quantification o f total protein

Varying dilutions of protein/antibody standards were prepared, ranging in 

concentration from 100 to 1000 fig/ml and 5 (il of each dilution was added to each 

well o f a microtitre plate. The protein in each well was detected by the addition of 

250 fo.1 of Coomassie reagent (containing, Coomassie G-250 dye, methanol, 

phosphoric acid and stabilising agents in water) to each well. The plate was incubated 

at room temperature for 10 mins and absorbance read at 595nm.

2.6.12.4 Determination of antibody aggregation by Native Polyacrylamide Gel 

Electrophoresis (PAGE)

To access the degree of antibody aggregation, a purified scAb fraction was run on a 

native polyacrylamide gel. The composition of the gel used wras as described in Table

2.1 with SDS and mercaptoethanol omitted from all formulations. This maintained 

the integrity of the protein in its native form, allowing any protein aggregation to be 

visualised.
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2.6.13 ELISA analysis o f  scAbs

2.6.13.1 Direct E U  SA

Plates were coated and blocked as per Section 2.5.12.2. Bound antibody was detected 

using a 1 in 1000 dilution of peroxidase-labelled anti-human kappa light chain 

antibody. The plate was washed and developed using 100 pl/well of TMB substrate 

in 0.05 M citric phosphate buffer, pH 5. The reaction was allowed to proceed to 10 

minutes until a blue colour developed and was then stopped using 50 plAvell 1 M 

H2SO4. Absorbance was read at 450-620nm.

2.6.13.2 Competitive ELISA

Plates were coated and blocked as per Section 2.5.12.2. Free analyte standards were 

prepared and 50 pi of each concentration was added to each well along with 50 pi of 

scAb. The plate was incubated for 1 hour at 37°C. Bound antibody was detected 

using peroxidase-labelled anti-human kappa light chain antibody at a 1 in 1000 

dilution. This plate was developed using TMB, and stopped using 1 M H2SO4. 

Absorbance was read at 450-620nm.
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2.7 BIAcore Analysis of scFvs

Analysis was performed using a Biacore 3000® optical-based biosensor. All data 

analysis was performed using BIAevaluation 3.0 (BIAcore AB, St Albans, 

Hertfordshire, England). Research grade CM5 sensor chips were employed and 

Hepes Buffered Saline (FIBS) (10 mM Hepes, 150 mM NaCl, 3.4 mM EDTA and 

0.025% (v/v) Tween 20) was used as running buffer. This was filtered (pore size 0.22 

micrometre) and degassed using filtration apparatus (Millipore sintered glass filtration 

unit) immediately before use. All samples were syringe-filtered (0.45 micrometre 

pore size) to remove any particulate matter.

2.7.1 Preconcentration studies

In order to optimise immobilisation of the hapten-carrier to the sensor chip surface, a 

pre-concentration step was carried out to identify the optimal pH conditions. At pH 

values above pH 3, the carboxymethylated surface of the CM5 sensor chip is 

negatively charged. The desired pH conditions for electrostatic immobilisation will 

result in the ligand possessing a net positive charge. This is achieved by using a 

buffer with a pH below the pi of the ligand to be immobilised. Preconcentration 

studies involved preparing solutions of 100 ug/ml hapten-protein conjugate in 10 mM 

sodium acetate solution at a range of varying pHs. Sodium acetate buffer was chosen 

due to its low ionic strength so as to maximise ionic interactions. The samples were 

then passed over an underivatised chip surface in random order. The surface response 

was normalised to zero following each injection. The amount of electrostatic 

interaction monitored by measuring the binding response at each pH. The pH, which 

gave the highest degree of electrostatic interaction, i.e. highest, binding, was chosen 

for to perform immobilisations.
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2.7.2 Immobilisation o f hapten-carrier on sensor surface

Immobilisation of conjugate was carried out according to standard amine coupling. 

Briefly, the carboxymethylated dextran surface was activated by mixing equal 

volumes of 0.1 M NHS (N-hydroxysuccinimide) and 0.4 M EDC (N-ethyl-N- 

(dimethyl-aminopropyl) carbodiimide hydrochloride) and injecting the mixture over 

the sensor chip surface for 7 minutes at a flow rate of 5 ^.l/min. A 100 (.ig/ml solution 

of M3G -  OVA prepared in 10 mM acetate buffer, pH 4.9, was injected over the 

activated surface, at a flow rate of 5 |il per minute, for 40 minutes. Unreacted sites 

were capped by an injection of 1 M ethanolamine, pH 8.5, for 7 minutes. The surface 

was regenerated five times with 10 mM NaOH prior to use.

2.7.3 Regeneration studies

To assess the stability of the immobilised drug-protein conjugate surfaces, a known 

concentration of antibody was passed over the chip surface, and the surface 

regenerated by passing over various concentrations of NaOH and HC1 ranging from 1- 

100 mM or 1 M ethanolamine, pH 13.6. This cycle of binding and regeneration was 

usually completed for greater than 50 cycles, and the binding signal measured to 

assess the stability and suitability of the immobilised surface for assay purposes. A 

regeneration solution of 10 mM NaOH proved optimal for removal of monomeric and 

dimeric scFvs.

2.7.4 Non-specific binding studies

Purified scFv antibody solutions, at the optimal assay dilution, were passed over a 

‘capped’ dextran surface and a surface with the protein of interest immobilised on the 

dextran matrix to rule out any non-specific binding of the antibody to these surfaces.
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2.7.5 BIAcore inhibition immunoassay

Standards of free analyte were prepared at varying concentration ranges. All further 

additions of reagents and incubation steps were automated. Each sample was 

incubated with an equal volume of antibody, allowed to equilibrate for a specific time 

interval (2 hours at room temperature), and then passed over the sensor surface. A 20 

(il aliquot of each sample was injected over the surface, at a flow rate of 5 |il per 

minute for 4 minutes, in random order. The surface was regenerated with a 1-minute 

pulse of 10 mM NaOH prior to further injections. A calibration curve was constructed 

by plotting the change in response (RU) for each standard against the log of 

concentration, and sample concentrations were determined from this curve. The intra­

day variability of the assay was investigated by running a set o f standards across the 

linear range, three times in one day, and determining the coefficient of variation (C. V.) 

between the response units measured for each analyte concentration. The inter-day 

variability of the assay was assessed by running standards across the linear range on 

three different days. This proves sufficient reproducibility for an automated analysis 

system (Wong e ta l, 1997).

2.7.6 Equilibrium dissociation constant determination by solution affinity analysis 

using BIAcore

Approximately 8,000 RU of M3G-OVA conjugate was immobilised on the sensor chip 

surface as described in Section 2.7.2. Serial dilutions of purified scFv of known 

concentration were passed over the surface in random order. A calibration curve of 

mass bound in response units versus scFv concentration (M) was constructed. A known 

concentration of scFv, within the linear range of the calibration curve, was incubated 

with varying concentrations of analyte and allowed to reach equilibrium for 2 hours at 

37°C. Each mixture was injected over the surface, in random order, at a flow rate of 5 

(il/min for 2 mins and the binding response monitored. This response value was used to 

calculate the concentration of free scFv, present in each of the equilibrium mixtures, 

from the calibration curve. Analyte concentration (M) was plotted against free scFv 

concentration (M) and a solution phase affinity interaction model was fitted using
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BlAevaluation 3.1 software. This was used to calculate equilibrium dissociation 

constant.

2.8 Lateral Flow Immunoassay (LFIA) Development

Table 2.3: Composition of Buffers used in Lateral Flow Development

Buffer Composition

Colloidal carbon Suspension 1% colloidal carbon (w/v) in 

demineralised water

100 mM Borate buffer 100 mM boric Acid adjusted to pH 8.5 

with 100 mM borax solution.

Carbon conjugate washing solution 5 mM borate buffer, pH 8.5, 1% (w/v) 

BSA, 0.02% (w/v) NaN:!.

Carbon conjugate storage solution 100 mM borate buffer, pH 8.5, 1% (w/v) 

BSA, 0.02% (w/v) NaN3.

LFIA Running Buffer 100 mM borate buffer, pH 8.5, 1% (w/v) 

BSA, 0.05% (v/v) Tween 20, 0.02% (v/v) 

Trition-X-100, 0.02% (w/v) NaN3.
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2.8.1 Physical adsorption o f protein onto colloidal carbon particles

Buffers used in the development of the LFIA were prepared according to Table 2.3. 

A 1% (w/v) carbon stock suspension was diluted 5 times in 5 mM borate buffer, pH

8.5 to give a working concentration of 0.2% (w/v). This was sonicated for 30 secs 

and the pH adjusted to approximately 1 pH unit above the pi of the protein so it has a 

slight negative charge. Approximately 300-400 pg of protein was added to the 1 ml 

suspension and this was gently stirred at 4°C overnight. The suspension was 

centrifuged at 14,000 rpm for 15 mins at 4°C and washed with 1.5 ml of conjugate 

wash solution. This was repeated four times. After washing, the pellet was 

resuspended in 1 ml of conjugate storage solution and stored in a glass vial at 4°C in 

the dark.

2.8.2 Spraying o f nitrocellulose strips

A piece of nitrocellulose was cut to 10 cm wide and 4.5 cm long. This generated 10 

lateral flow strips. A 70 mm line was sprayed with 10 pi of capture antibody at 450 

nl/secs using the Linomat 5 instrument. The control line was sprayed 3 cm from the 

bottom of the strip and the test line sprayed 0.3 cm beneath this (i.e. 2.7 cm from the 

bottom of the strip). Strips were dried at 37°C overnight and cut into 10 strips 7 mm 

wide. This was equivalent to 1 pi o f capture antibody per strip. Dried strips were 

stored in a sealed laminated foiled pouch containing a 0.25 g sachet of silica minipax 

at room temperature

2.8.3 Running o f LFIA strips

Nitrocellulose strips were stuck to the perspex bridge using double-sided sticky tape 

as in Figure 2.2. A small piece of Whatman 3 mm chromatography paper was stuck 

to the top of the strip to facilitate sample migration and allow adsorption of excess test 

solution. A piece of parafilm was laid under the perspex bridge for sample 

application. The sample was prepared in 100 pi of running buffer containing the
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desired amount of antibody/carbon conjugate and free analyte was added beneath 

LFIA strip and allowed to migrate up the strip for 10-15 mins. At this stage a signal 

line should be observed at the top of the strip. The strip was then washed with 100 (j.1 

of running buffer to remove any carbon aggregates.

Filter Paper

Nitrocellulose

Strip

-  Sam p le

Double-sided

sticky tape

Control line 
Test Ime —

Perspex Bridge

Parafi Im

Figure 2.2: Schematic showing set-up o f a  lateral flow  immunoassay system (LFIA). 

Prepared nitrocellulose strips were stuck to the bridge using double-sided sticky tape. 

The perspex bridge was placed on a sheet o f  parafilm containing samples o f  interest. 

Samples were allowed to run along the nitrocellulose strips fo r  approx. 15 mins, until 

the control line signal was generated.
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Chapter 3: The Production of Genetically- 

Derived scFvs against Morphine-3-Glucuronide
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3.1 Introduction

3.1.1 Introduction to heroin and the opiates

Opiates are a class of drugs that are structurally similar to morphine and are derived 

from opium extracted from the seed pod the opium poppy (Papavar somniferum) 

(Braitwaite et al., 1995). Opiates are used clinically for their analgesic properties in 

the treatment of severe pain but opiate abuse arises from their psychotropic properties. 

They have a highly addictive nature due to their high physical and psychological 

dependence. Opiates are similar in structure to endorphins, the body’s natural 

painkillers. Endorphins work by binding to opiate receptors in the brain, 

presynaptically inhibiting the release of ‘substance P ’. This is a neurotransmitter 

responsible for the perception of pain. By blocking its release, endorphins play a role 

as a natural analgesic. The structural similarity between opiates and endorphins mean 

that they will both compete for binding to the opiate receptors. Opiate abuse leads to 

a reduction in the levels of endorphin production in the body. This causes opiate 

tolerance and leads to the extreme symptoms observed following opiate withdrawal. 

These symptoms are a major factor in dependency on this class of drug and will 

persist until the body can restore normal endorphin production.

3.1.1.1 Morphine

Morphine gets its name from Morpheus, the Greek god of sleep. It was the first of the 

opiates to be extracted from the opium plant in a pure form, by Sertürner in 1806 

(Simini, 1995). Although it has been in clinical use as a powerful analgesic for over a 

century, it remains a medication of choice for the treatment of severe pain (Gilson et 

al, 2004). It is also commonly administered to terminally ill patients to alleviate 

suffering.
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3.1.1.2 Heroin

Heroin or ‘smack’ is probably the best known of the opiates due to its highly addictive 

nature and prevalence of abuse worldwide. It is estimated to have caused economic 

losses of $21.9 billion in the USA alone in 1996 (Mark el al., 2001). Heroin is a 

chemically synthesised, diacetyl derivative of morphine. It is produced by the ‘Lime 

Method,’ which involves the one-step acetylation of morphine in a large excess of 

acetic anhydride (Dams et al., 2001). It is typically sold as a white or brownish 

powder or as the black sticky substance known on the streets as "black tar heroin." 

Heroin bought on the street is diluted or ‘cut’ with other substances, such as sugar, 

chalk or starch. Local anaesthetics, like procaine for example, may be added to 

relieve the local pain of IV administration (Janhunen and Cole, 1999, Dams et al., 

2001). Quinine may also be added to imitate the bitter taste of heroin, in an attempt to 

increase the apparent strength of the preparation. The purity of heroin on the streets 

has increased with improving refinement technologies. Its addictive nature is 

associated with its high lipophilicity, allowing it to pass more rapidly across the 

blood/brain barrier than morphine. This gives heroin its euphoric properties, making 

it one of the most commonly abused drugs worldwide.

3.1.1.3 Codeine

Codeine is a less potent and ‘non-controlled’ opiate, small quantities o f which are 

found in combination analgesic preparations, such as with paracetamol and in cough 

remedies for its anti-tussive properties (e.g. Benylin). Codeine may also be found in 

poppy -seeds, which are used to flavour speciality breads and crackers. Codeine is 

metabolised to morphine and nor-codeine, with morphine being the most predominant 

metabolite detectable in urine after a two-day period (Braitwaite et al., 1995).

3.1.1.4 Dihydrocodeine

Dihydrocodeine is another opiate found in combination analgesics like Calpol, for 

example. It is less potent than morphine but more potent than codeine (Braithwaite et 

al., 1995). Unlike codeine however, it is not metabolised to morphine.
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3.1.1.5 The opioids

The opioids are a class of compound that display opiate-like pharmacological activity 

but are structurally unrelated to morphine (Braithwaite et al., 1995). Methadone is a 

good example of a commonly used opioid, as it exhibits narcotic-analgesic effects, 

while being structurally unrelated to morphine. Methadone is used as a substitution 

withdrawal therapy for heroin addiction as it is can be taken orally and is absorbed 

more slowly than heroin. The affects are, therefore, longer lasting helping to break 

the cycle of addiction.

3.1.2 Heroin administration and metabolism

Heroin may be taken orally, intravenously, intranasally (‘snorted’) or by heating the 

powder and inhaling the vapours (‘chasing the dragon’). With increases in the level 

of purity of illicit heroin available, many users have switched from intravenous to 

intranasal administration (Cone, 1998). Heroin for oral, intranasal or ‘chasing the 

dragon’ administration is generally the base product formed through the ‘Lime 

method’. Heroin for intravenous administration, needs to be converted to a 

hydrochloride salt powder by acidification in the presence of acetone (Dams et al,

2001).

The metabolism of heroin is outlined in Figure 3.1.1. It is rapidly metabolised to 6 - 

monacetylmorphine (6-MAM), the metabolite responsible for the characteristic 

euphoric and ‘rush’ feelings (Beike etal., 1999). 6-MAM is the only metabolite that is 

specific to heroin use. This is subsequently hydrolysed to morphine by enzymes in 

the liver. Morphine is a short-lived species, undergoing glucuronidation, mainly at the 

3-phenolic position, to morphine-3-glucuronide (M3G). Glucuronidation also occurs 

at the 6-alcoholic position, to a lesser extent, producing morphine-6-glucuronide 

(M6G). Urinary recoveries of M3 G and M6G account for 55% and 10% of the 

administered does, respectively (Zheng et a l,  1998). Other minor metabolites include 

morphine-3-diglucuronide, nor-morphine and nor-morphine-3-ethereal sulphate 

(Braitwaite et a l,  1995). Morphine, morphine-3-glucuronide and morphine-6-
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glucuronide are all metabolites observed following heroin and/or morphine 

administration.

Figure 3.1.1: Metabolism of heroin to morphim-3-glucuronide.
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3.1.3 Sample analysis fo r  heroin abuse

3.1.3.1 Matrices for detection

Heroin abuse has been detected in a variety of biological matrices including, urine, 

plasma, hair, sweat and saliva (Cone et ah, 1996; Kidwell et al., 1998; Moeller et a!., 

1998; Beike et al., 1999; Nakahara, 1999 and Spiehler, 2000). The choice of matrix 

will determine which metabolite will be targeted in the analysis to detect heroin use. 

Heroin itself is rarely found in any bodily fluid (Braithwaite et al, 1995), except 

perhaps for an extremely brief period following administration (Cone, 1998). 6-

Monoacetylmorphine is the only heroin-specific metabolite that can definitively 

determine illicit heroin use, but it has a very short window of detection (Cone et a l, 

1996). Morphine-3-glucuronide is the metabolite of choice for detection in urine and 

plasma, due to its high concentrations and long persistence. Morphine is also detected 

in plasma and urine but for shorter periods of time. Heroin, 6-MAM and morphine 

have all been isolated from saliva, following heroin use. Concentrations were 

generally found to be lower than those in urine and the window of detection for 6- 

MAM and heroin was found to be extremely short (Kidwell et a l,  1998).

Plasma is the obvious method of choice in a forensic setting. In reality, the procedure 

for sample collection is invasive, requiring the involvement of a healthcare 

professional, who may be exposed to a potential health risk from syringes. Sample 

extraction from plasma is also extensive. Urine is routinely used for drug analysis in 

a clinical setting. Sample volumes are typically large and metabolites can be detected 

for a prolonged period of time. This is useful if substance misuse is the aim of the 

analysis, however, the result bears no correlation to behavioural impairment due to 

substance use. Urinalysis, suffers from some major drawbacks. Sample collection 

proves invasive, making it unsuitable for ‘on-site’ monitoring without private 

facilities. Sample collection is required to be supervised by an official in authority, to 

eliminate any possibility of sample adulteration. This in itself is an invasion of 

privacy. Sweat is also gaining increased recognition as an alternative matrix for 

detection of illicit drug residues. Recent draft guidelines by the Substance Abuse and 

Mental Health Services Administration (SAMHSA), in the USA, include the
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requirement for testing for heroin use in alternative matrices such as saliva and sweat 

(Presley et a l, 2003). Saliva collection is non-invasive and can be easily supervised. 

It can be easily collected from subjects in any type of field setting, from the 

workplace to on the roadside. Sample volume is adequate to yield a number o f 

aliquots for multiple analyses. Sample extraction is minimal and drug metabolite 

concentrations give a good indication of recent drug use and/or impairment (Kidwell 

et al., 1998). This makes saliva monitoring, particularly suited to drug testing for law 

enforcement purposes. Bennet et al. (2003), reported oral fluid analysis to be as 

accurate as urinanalysis for the detection of opiates. Saliva, as a matrix for drug 

detection, will be discussed in more detail in Chapter 4. Sweat wipes have been 

successfully used for opiate detection in drivers in Belguim. The accuracy of the 

wipes was only 70% when compared with plasma analysis by GC-MS (Samyn et al.,

2002). Sweat analysis for drugs of abuse, as reviewed by Kidwell et al. (1998), was 

found to lack a correlation to intoxication and suffer from the limited sample volumes 

obtained. Hair sample analysis has also been used to determine heroin abuse. Hair 

analysis, however, is mainly carried out for forensic toxicology to monitor long-term 

patterns of drug use (Uhl, 1997; Nakahara, 1999 and Spiehler, 2000).

3.1.3.2 Methods o f detection

Opiate detection can be divided into two groups, the first, which comprises traditional 

analytical detection methods such as thin layer chromatography (TLC), high 

performance liquid chromatography (HPLC), gas chromatography (GC) and mass 

spectrometry (MS), and the second, which involves immunoanalysis. 

Immunoanalysis is routinely used to carry out initial screening of samples for possible 

opiate presence and positive results are then confirmed and quantified using analytical 

detection systems. Analytical detection is sensitive and specific for opiate detection 

in biological samples and multiple analytes can be determined simultaneously. The 

complex nature of biological samples, however, requires them to undergo an initial 

sample clean-up step through either solid phase extraction (Gerostamoulos and 

Drummer, 1995) or immunoaffinity extraction (Beike et a l, 1999).
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Zheng et a l, (1998) used HPLC-MS-MS to analyse the pharmacokinetic of morphine 

and metabolites in Sprague Dawley rats. The assay required a plasma sample volume 

of 100 p.1 and had limits of detection of 3.8 ng/ml for morphine and 5.5 ng/ml for 

morphine-3-glucuronide. Naidong et. al. (1999) could simultaneously detect 

morphine, M3G and M6G in human plasma using LC-MS-MS. The range of 

detection was from 0.5-50 ng/ml for morphine, 10-1,000 ng/ml for M3G and 1 to 100 

ng/ml for M6G, with excellent relative recoveries. A novel amperometric opiate 

assay for heroin and morphine detection, is reported by Holt et al. (1995). The 

method utilises two enzymes specific for heroin and morphine. Acetylmorphine 

carboxyesterase, hydrolyses heroin to morphine, and morphine dehydrogenase, 

oxidises the C-6 of morphine, releasing NADPH, which can then be detected 

amperometrically. The assay requires 100 jil of sample and can be carried out in a 

couple of minutes. Detection limits of 6.8 ng/ml for morphine and 28 ng/ml for 

heroin could be achieved. The same enzymes were subsequently employed in a more 

sensitive assay for heroin and its metabolites (Holt et al, 1996). The assay was based 

on bioluminescence and was sensitive to 89 ng/ml heroin and 2 ng/ml morphine.

Immunoanalysis is performed as a preliminary screening technique as it is rapid and 

easy to perform, does not require costly equipment for analysis and does not involve 

complex sample extraction procedures, prior to analysis. A variety of sensitive 

immunoassays have been developed for detection of opiate residues. An early 

immunoassay for morphine in serum developed by Spector (1971) proved extremely 

sensitive. The radioimmunoassay was capable of detecting between 50 and 100 pg 

morphine, in a final assay mixture of 0.5 ml. Steiner and Spratt (1978), report a 

sensitivity o f 500 ng of morphine per litre of serum using a polyclonal anti-morphine 

antibody in a radioimmunoassay. Although radioimmunoassays offer increased levels 

of sensitivity, the use of radioactive isotopes as tracer labels is undesirable, due to 

safety concerns. A rapid immunochromatographic test for the presence of opiates in 

urine was developed by Wenning et al. (1998). The threshold opiate level was set at 

200 ng/ml. The rapid test had a sensitivity of 99%, when compared with enzyme 

multiplied immunoassay technique or EMIT assays. Polyclonal antibodies were 

employed in a biosensor-based assay using BIAcore to detect M3G in urine, with a 

detection limit of 762 pg/ml. ELISA analysis, however, proved more sensitive, with a
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detection limit of 30 pg/ml for M3G in urine (DillonA et ah, 2003). Another ELISA 

assay using a polyclonal for the detection of morphine in saliva had a limit of 

detection of 24.4 ng/ml (Fanning, 2002). Recombinant antibodies have more recently 

been employed for the detection of M3G in urine using ELISA and BIAcore 

technologies (Dillon0 et ah, 2003). BIAcore analysis offered a detection limit of 3 

ng/ml. Moghaddam et ah (2003), utilised phage display, antibody chain shuffling and 

selective biopanning to generate an scFvs that specifically detects 6-MAM, with no 

cross reactivity to morphine. The antibodies were capable of detecting 50 to 100 

ng/ml 6-MAM. Although this is above the sensitivity of 10 ng/ml, required for most 

drug screens, the antibody’s specificity for 6-MAM makes it an ideal analytical tool 

for a rapid, sensitive and specific immunoassay that could be definitive for abuse of 

heroin.

3.1.4 Chapter outline

This chapter focuses on the production and characterisation of three genetically- 

derived scFv antibody fragments directed against morphine-3-glucuronide (M3G). A 

monomeric, dimeric and alkaline-phosphatase conjugated scFv were produced. 

Expression conditions were optimised for each antibody and monomeric and dimeric 

antibodies were purified to a high degree of purity. The scFvs were used to develop 

three competitive ELISA assays for the detection of M3G. The specificity of each 

antibody was also characterised.
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3.2 Results

A recombinant antibody clone, clone number G12, directed against morphine-3- 

glucuronide was donated by, Dr. Paul Dillon, DCU (Dillon, 2001: Dillon0 et al,

2003). The recombinant antibody was isolated from a pre-immunised murine library 

produced using the Krebber system of phage display (Krebber et a l, 1997). Briefly, 

Balb/C mice were immunised with an M3G-BSA conjugate. When sufficient titres 

were obtained the splenomic RNA was isolated and reverse transcribed into cDNA. 

The murine heavy and light chain genes were then amplified by multiplex PCR and 

annealed together using a splice by overlap extension PCR (SOE-PCR). The 800 base 

pair SOE-PCR product was then ligated into the phage display vector, pAKlOO, and 

transformed into supercompetent XL-1 Blue E. coli, yielding a library of 5 x 103 

clones. The resulting phage display library was subjected to two rounds of 

biopanning and a large proportion of scFvs were isolated that showed recognition of 

the conjugate. Clone G12 was chosen as the most sensitive scFv for M3G detection 

and was chosen for subsequent soluble expression with the pAK 400 vector.

3.2.1 Genetic analysis o f  scFv genes encoding clone G12

In order to generate high quality DNA for sequencing, plasmid DNA was 

transformed into XL-1 Blue cells. A single colony of clone G12 was grown overnight 

in LB media. The pAK 100 phage display vector, containing the scFv gene of interest, 

was isolated by miniprep, as described in Section 2.4.6.1. Plasmid DNA was sent to 

MWG Biotech (Germany), for sequencing. Comfort reads were performed in both 

directions using the primers scfor ('5 ttactcgcggcccagccggccggccatggcggactaccccg 3') 

and scback ('5 ggaattcggcccccgag 3'). The DNA sequences were exported and 

translated using the DNA to protein translation package on the Bio.lundberg sequence 

analysis server. The antibody complementarity determining regions (CDR’s) were 

identified using the Kabat rules and the amino acid sequence was exported to 

Genedoc for manipulation (Figure 3.2.1). Antibodies were modelled using Swiss- 

Model, a fully automated protein structure homology-modelling server (Schwede et 

a l, 2003). The server operates by comparing the given amino acid sequence to all
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experimentally solved 3D protein structures held at the Protein Data Bank (PDB). 

This identifies a solved protein structure with the greatest sequence similarity to the 

target sequence. The degree of identity between sequences is calculated and a 

theoretical model for the target sequence extrapolated. Modelling results were 

exported to Swiss-PDB Viewer and DS Viewer Pro for visualisation (Figure 3 .2.2 and 

Figure 3.2.3). CDR regions are highlighted as blue or red, depending on whether they 

are of heavy or light chain origin, with the linker region shown in yellow.

Figure 3.2.2, shows a ribbon illustration o f clone G12 modelled using DS Viewer Pro 

software. Heavy chain CDRs are shown in red and light chain CDRs are shown in 

blue. The linker region is shown in yellow. Figure 3.2.3, is a schematic 

representation of clone G12 generated using Swiss-PDB Viewer software. In this 

model, the arrows pointing in the direction of the C-terminus represent beta sheets and 

coils are represented by a tubular structure. Each variable domain consists of nine 

beta sheets connected via a synthetic Gly4 Ser linker, which is clearly visible as a 

yellow tube. Panel A illustrates a front view of the antibody and Panel B illustrates an 

enlarged view of the antigen-binding site. The deep antigen-binding pocket, 

characteristic o f ‘anti-hapten’ antibodies, is clearly visible.
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Figure 3.2.1: Amino acid sequence analysis o f clone G12, capable o f specifically 

detecting illicit heroin residues. Light chain CDR regions are shown in blue font and 

heavy chain CDRs are shown in red font. The (Gly4Ser) 4  linker region is shown in 

yellow.
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CDR L2

Figure 3.2.2: Ribbon illustration o f anti-MSG clone G12 scFv antibody. The

antibody structure was modelled using DS ViewerPro modelling software. Heavy 

chain CDRs are shown in red and light chain CDRs are shown in blue. The linker 

region is shown in yellow.
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Panel A

Figure 3.2.3: Schematic homology model o f scFv antibody derived from clone GJ2. 

Panel A illustrates a front view o f the antibody, looking into the antigen-binding 

pocket and panel B represents an enlarged view, looking into the antigen-binding 

pocket. Beta sheets are shown as arrows and coils are represented as tubes. Heavy 

chain CDRs are shown in red and light chain CDRs are shown in blue. The linker 

region is shown in yellow.
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3.2.2 Subcloning o f scFv gene intopAK, 500 and 600

The pAK 500 vector encodes a double helix for dimerisation and the pAK 600 vector 

encodes the bacterial alkaline phosphatase gene. The pAK 400 vector, harbouring the 

scFv gene of interest, was isolated from XL-1 Blues, as detailed in Section 2.4.6.1. 

The 800-base pair insert, encoding the variable heavy and light chain regions, 

connected via a (gly4 ser)4, was isolated from the expression plasmid, using the Sfi 1 

restriction sites, flanking the region. This was ligated into previously digested 

plasmids, pAK 500 (4,094 base pairs) and pAK 600 (5,269 base pairs). Figure 3.2.4 

demonstrates restriction analysis of each plasmid. Lane 2 shows undigested pAK 400 

plasmid, the higher band representing the supercoiled form of plasmid DNA and the 

lower band representing the open circular form of plasmid DNA. Lane 3 illustrates an 

Sfi 1 digestion of the pAK 400 plasmid with the 800 bp scFv gene removed. Lane 4 

contains undigested pAK 500 plasmid (6,195 bp), which is only visible in its open 

circular form. Although an undigested plasmid never migrates exactly according to 

its size, opencircular DNA will migrate more slowly than supercolied DNA in an 

agarose gel. Lane 5 illustrates an Sfi 1 digestion of the pAK 500 plasmid, the 4,094 

bp band corresponding to the restricted vector and the 2,101 bp band corresponding to 

the tetracycline ‘stuffer’ gene. Lane 6 contains undigested pAK 600 plasmid (7,370 

bp). The plasmid DNA is only visible in its supercolied form, which migrates at a 

faster rate through the gel. Lane 7 illustrates an Sfi 1 digestion of the pAK 600 

plasmid, the 5,269 bp band corresponding to the restricted vector and the 2,101 bp 

band corresponding to the tetracycline ‘stuffer’ gene. The ‘stuffer genes’ was 

removed from both pAK 500 and 600 vectors and were replaced by the 800 base pair 

insert, encoding the scFv from pAK 400. Each ligated plasmid was transformed into 

competent E. coli JM83 cells, as described in Section 2.4.6.7, and recombinant 

bacteria were selected using chloramphenicol resistance to identify transformants.
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Figure 3.2.4: Restriction enzyme digest on pAK 400, 500 and 600 using Sfil. Lane I: 

1 Kb Plus DNA ladder (Gibco-BRIJ; Lane 2: Unrestricted pAK 400 plasmid DNA, 

containing scFv gene; Lane 3: Sfil restricted pAK 400 with 800 bp scFv insert 

removed; Lane 4: Unrestricted pAK 500 plasmid DNA; Lane 5: Sfil restricted pAK  

500 with 2101 bp tetracycline insert removed; Lane 6: Unrestricted pAK 600 plasmid 

DNA; Lane 7: Sfil restricted pAK 600 with 2101 base pair tetracycline insert 

removed; Lane 8:1  Kb Plus DNA ladder.

3.2.3 Soluble expression o f monomeric, dimeric and dimeric alkaline phosphatase- 

labelled scFvs

Single colonies of pAK 400, 500 and 600 transformants were grown in 2 x TY until 

cells reached the exponential phase of growth i.e. O.D.eoonm = 0.5. At this stage 

antibody expression was induced with IPTG. Expression was allowed to proceed for 

4 hours for monomeric antibodies. However, induction time needed to be increased to 

8 hours for successful expression of larger dimeric antibodies (data not shown). The 

antibody was secreted into the periplasm without any significant cell lysis, as only 

trace amounts were isolated from the culture supernatant (as demonstrated in Figure

3.2.5 and 3.2.6). For this reason, the antibody was isolated from the periplasmic 

space of bacteria using osmotic shock for all subsequent expressions. Once the



location of expressed antibodies had been identified, the inducer concentration was 

optimised. For expression of monomeric scFv, an IPTG concentration of 0.1 mM 

proved to yield the highest expression levels (Figure 3.2.7). The strength of inducer 

had to be increased for expression of larger, more complex proteins. Dimeric 

antibodies, expressed with the pAK 500 vector required 0.5 mM IPTG for optimal 

expression levels and dimeric alkaline phosphatase-labelled scFv, produced with the 

pAK 600 expression vector, required 1 mM IPTG for optimal expression (Figures

3.2.8 and 3.2.9).

The bifunctional nature of scFv produced using pAK 600 vector was analysed by 

immunoblot analysis (Figure 3.2.10). 125 jjg/ml of M3G-OVA conjugate was

sprayed onto nitrocellulose and allowed to dry. The membrane was cut into strips and 

each strip was blocked with 4% (w/v) MPBS. A 10 (j.1 volume of crude periplasmic 

lysate was added to each strip in 1 ml of 1% (w/v) MPBS, containing increasing 

concentrations of free M3G. Bound antibody was detected using BCIP/NBT 

chromogenic substrate. This demonstrates the bifunctional nature of the scFv-AP 

fusion protein. The antibody can be seen to specifically bind to M3G, while retaining 

alkaline phosphatase enzymatic activity

1/Antibody Dilution

Figure 3.2.5: ELISA analysis o f culture supernatant and bacterial periplasm, 

following soluble expression o f  the monomeric scFv. Monomeric scFv was found to be 

located in the periplasm o f bacterial cells.
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1/A ntibody Dilution

Figure 3.2.6: ELISA analysis o f culture supernatant and bacterial periplasm, 

following soluble expression o f the dimeric and dimeric enzyme-labelled scFvs. Both 

scFv’s were found to be expressed into the periplasm o f bacterial cells

1/Antibody Dilution

Figure 3.2.7: Optimisation o f IPTG concentration fo r  monomeric scFv, expressed 

with pAK 400 vector. Results show ELISA analysis o f antibody present in the 

periplasmic lysate fraction following induction with I mM and 0.1 mM IPTG. The 

optimal inducer concentration was found to be 0.1 mM.
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Figure 3.2.8: ELISA analysis o f the periplasmic lysate fraction for antibody activity, 

following induction with 1, 0.5, 0.1 and 0.05 mM IPTG. The optimal inducer 

concentration was found to be 0.05 mM IPTG, followed by an 8 hour induction period 

at 26°C.

Figure 3.2.9: Optimisation of inducer concentration for expression of alkaline 

phosphatase-labelled dimeric scFv. ELISA analysis was carried out to determine 

antibody titre in the periplasmic lysate fraction following induction with 1 and 0.1 

mM IPTG. The optimal inducer concentration was found to be 1 mM IPTG.

142



Figure 3.2.10: Immunoblot analysis demonstrating the bifunctional nature of

alkaline phosphatase-labelled dimeric scFv produced using pAK 600 expression 

vector. The antibody is capable o f specifically binding M3G, while retaining alkaline 

phosphatase enzymatic activity. Blot 1 was sprayed with PBS and incubated with 

enzyme-labelled dimeric scFv and developed using BCIP/NBT. This illustrates that 

the antibody does not bind non-specifically to the membrane. Blot 2 shows 

monomeric scFv, incubated on a strip sprayed with 125 pg/ml M3G-OVA and 

developed with BCIP/NBT. This illustrates that monomeric scFv is not bifunctional. 

Blot 3-6 were sprayed with 125 pg/ml M3G-OVA and each one incubated with 10 pi 

of bifunctional scFv in 1% (w/v) MPBS, and standard concentrations of M3G. A 

concentration o f 100 pg/ml M3G was incubated with blot 3. This was decreased to a 

concentration o f 10 pg/ml in blot 4, 1 pg/ml in blot 5 and 0 pg/ml in blot 6. The signal 

intensity increases as the concentration ofM3G decreases. In blot 3 and 4, no signal 

is seen. A faint band can be seen in blot 5, incubated with 1 pg/ml M3G and an 

intense signal can be seen in the absence o f M3G in blot 6. This illustrates that the 

antibody is in fact bifunctional and is capable o f specifically detecting M3G, while 

retaining the enzymatic activity o f alkaline phosphatase. As the strips were incubated 

with unpurified antibody, the blot also illustrates that the antibody can be specifically 

detected directly from crude E. coli cell lysate.
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3.2.4 Purification o f monomeric dimeric and bifunctional scFvs

Initial attempts to purify monomeric scFv by IMAC, via the hexahistidine tail, proved 

unsuccessful. Problems were also encountered with this method of purification for 

scFvs produced in a similar manner by DillonB et al. (2003). It was thought this was 

either due to low expression yields, in relation to expression levels of other E. coli 

proteins or through denaturation of the histidine tag. For this reason it was decided to 

employ antigen-affinity chromatography to purify the antibody. This involved the 

immobilisation of an M3G-BSA conjugate to a sepharose column. The periplasmic 

fraction of bacterial cells was applied to the column and contaminating proteins 

removed through several washes with PBST and PBS. The antibody was then 

released from the column using an acidic shock. The specificity of the antibody for 

its target was therefore exploited to achieve a high degree of purity, as demonstrated 

by SDS PAGE (Figure 3.2.11). The only drawback from this method was the dilution 

factor of the sample during the purification process. Western blot analysis (Figure 

3.2.12) revealed a single band at 32 kDa for purified and unpurified monomeric scFv. 

This demonstrates that both secondary and tertiary antibodies are capable of 

specifically detecting the antibody, even when present in the crude bacterial lysate 

preparation.

The dimeric scFv produced had a significantly higher avidity for the antigen of 

interest, and therefore, could not be eluted from the affinity resin with an acidic shock. 

Increasing the stringency of the elution conditions was found to severely affect the 

antibody’s activity. For this reason, the pentahistidine tag on the secreted antibody 

was employed as a handle for purification on a Ni-NTA resin. The dimer showed 

increased affinity for the resin compared to the monomeric scFv, due to the presence 

of two histidine tags on each scFv (data not shown). Although this offered a simple 

clean-up step of the lysate fraction, the purified antibody fraction still contained a 

large proportion of impurities. Western blot analysis of the dimeric scFv yielded 

three bands, one at 32 kDa, representing monomeric scFv, a predominant band at 36 

kDa, representing the reduced monomeric fusion protein incorporating the scFv 

attached to the helix and a faint band at and 77 kDa representing the dimeric version 

of the scFv. This demonstrates the stability o f the aliphatic helix as a dimerisation
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domain, as a small proportion still remains intact, even under the denaturing 

conditions of SDS-PAGE From this analysis, it was concluded that the secondary 

antibody to the flag tag, was capable of specifically detecting the scFv as no 

background was observed from contaminating E. coli proteins (Figure 3.2.12). The 

antibody could be used in this form for ELISA analysis as no interference from 

contaminating proteins was observed.

Several attempts were made to purify pAK 600 lysate on an anti-flag M l agarose 

resin. However, the affinity of the resin for the flag tag of the scFv proved too weak 

to bind the antibody sufficiently. There are several possibilities for this. Firstly, the 

flag tag may have been inefficiently processed or cleaved during lysis of the 

periplasm. Secondly, the antibody recognition site may be inaccessible for binding 

due to steric hindrance by the enzyme. However, this is not the case as the anti-flag 

M l antibody was capable of binding the scFv fusion protein in an ELISA situation 

(data not shown). Using the flag protein as a standard it was observed that there were 

variations in the binding capabilities of the resin supplied and, therefore, it was not 

possible to further optimise it for purification. From immunoblot analysis, as shown 

in Figure 3.2.10, it was demonstrated that the antibody could be specifically detected 

from crude E. coli lysate, as a band is only observed following detection of the M3G- 

OVA conjugate. E. coli lysate from cells lacking the pAK 600 vector gave no 

detectable colour change when mixed with pNPP substrate. This proved that the E. 

coli lysate itself contained no contaminating proteins that possessed alkaline 

phosphatase activity (data not shown). For this reason the antibody could be used in 

this form in subsequent ELISA analysis. Western blot analysis of the bifunctional 

scFv (Figure 3.2.12) yielded 3 bands, at sizes of 85 kDa, 34 kDa and 32 kDa. The 

band at 85 kDa represents the reduced, monomeric form, of the alkaline phosphatase- 

scFv fusion protein and the band at 32 kDa, represents monomeric scFv. The band at 

34 kDa represents a minor degradation product.

In order to increase expression levels o f these antibodies various expression protocols 

were investigated. The fed-batch method of expression, described for use in the 

Griffin. 1 Library (Section 2.6.10), proved the most effective, with dramatically 

increased expression levels. This method of expression prevented any degradation of 

proteins through cell lysis as only viable cells were harvested. The use of Terrific
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Broth media was also chosen over 2 x TY, as it has been reported to improve the yield 

of plasmid-bearing E. coli by extending the period of time the cells remain in log- 

phase growth. The high concentrations of tryptone and yeast extract provide the 

necessary nutrients and cofactors for cell growth, while the increased concentration of 

yeast extract facilitates elevated cell yields. Glycerol acts as a source of carbon and 

energy, which unlike glucose, is not fermented to acetic acid. Potassium phosphate 

salts provide potassium for cellular systems and act as a buffer, preventing cell death 

due to a decrease in pH. IMAC chromatography was subsequently employed to 

purify monomeric and dimeric antibodies. Chelating fast flow sepharose coupled to 

iminodiacetic acid by a stable ether linkage, via a seven-atom spacer was employed 

for this purpose. This was charged with nickel ions for successful capture of histidine 

tags. Both monomeric (hexahistidine) and dimeric (pentahistidine) scFvs could be 

eluted in a pure form and free from contaminating proteins using 250 mM imidazole 

(Figure 3.2.13). The success of this purification was attributed to the spacer arm 

separating the Ni-IDA complex from the resin, which facilitated binding of the 

histidine tag located at the carboxy terminus of the antibody. Using the one-step 

expression protocol, described earlier, expression levels o f scFv were below levels of 

quantification. Using the fed-batch method of expression however, high levels of 

pure scFvs could be produced in our laboratory (Table 3.2.1). The successful use of 

IMAC chromatography for scFv purification, also served as a useful means of 

increasing the concentration of scFvs in a single-step. Western Blot analysis (Figure 

3.2.14), demonstrates that the intensity of scFv bands, following purification, is more 

than 10 times greater than that of unpurified antibodies.
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Figure 3.2.11: SDS-PAGE analysis o f purified monomeric scFv. Lane 1: Molecular 

weight markers, Lane 2: Periplasmic lysate; Lane 3: Flow through; Lane 4: Wash 1; 

Lane 5: Wash 2; Lane 6: Eluted purified monomeric scFv; Lane 7: Blank; Lane 8: 

Molecular weight markers.
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Figure 3.2.12: Western blot analysis on the monomeric, dimeric and bifunctional 

scFvs. The membrane containing the transferred scFvs was probed using the anti-flag 

monoclonal M l antibody followed by cm alkaline phosphatase-labelled anti-mouse 

antibody and visualised with BCIP/NBT substrate. Lane 1; Molecular weight 

markers; Lane 2: Unpurified monomeric scFv; Lane 3; Purified monomeric scFv; 

Lane 4: Unpurified dimeric scFv; Lane 5: Purified dimeric scFv; Lane 6: 

B ¿functional scFv.
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Figure 3.2.13: SDS PAGE analysis o f monomeric, dimeric and bifunctional scFvs 

expressed using the fed-batch method and purified by IMAC chromatography. 

Lane 1: Purified dimeric scFv; Lane 2: Purified monomeric scFv; Lane 3: Unpurified 

bifunctional scFv; Ixine 4: Unpurified dimeric scFv; Lane 5: Unpurified monomeric 

scFv; Lane 6: Molecular weight markers

110,000 

82,700

47,000

31,800

Figure 3.2.14: Western Blot analysis o f monomeric, dimeric and bifunctional scFvs 

expressed using the fed-batch method and purified by IMAC chromatography. Ixtne 

1: Molecular weight markers; Lafie 2: Negative control; Lane 3: Purified dimeric 

scFv (1 in 5 dilution); Lane 4: Purified monomeric scFv (I in 5 dilution); iMne 5: 

Purified dimeric scFv (neat); Lane 6: Purified monomeric scFv (neat); Lane 7: 

Unpurified bifunctional scFv (neat); Lane 8: Unpurified dimeric scFv (neat); Lane 9: 

Unpurified monomeric scFv (neat); Lane 10: Molecular weight markers.
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Table 3.2.1: Approximate expression levels achieved for monomeric and dimeric 

scFvs produced using the fed-batch method o f expression and purified by IMAC 

chromatography. The concentration o f scFvs was determined by BCA assay, using a 

quantified human scFv to as a standard for protein quantification

Antibody Initial Culture 

Volume (mis)

Concentration

(jig/ml)

Total Purified 

Volume (ml)

T otal 

Expression 

(mg/L)

Monomeric 200 309.17 6.25 9.28

scFv

Dimeric scFv 200 65.83 4 1.48
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3.2.5 The development o f  a competitive immunoassay for the detection o f M3G 

using genetically-derived scFv antibodies

Following the optimisation of expression and purification of genetically-derived 

scFvs, their use in a competitive immunoassay format for the detection of M3G was 

investigated. In order to maximise assay sensitivity, the optimal coating concentration 

of conjugate and working dilution of antibody had to be established, by means of a 

checkerboard ELISA.

3.2.5.1 Indirect checkerboard ELISA for determination of optimal assay parameters

The optimal concentration of coating conjugate and antibody working dilution were 

determined by indirect checkerboard ELISA. Varying coating concentrations of 

M3G-OVA coating conjugate and scFv working dilutions were optimised for each 

antibody. For maximum assay sensitivity to be attained, the minimum conjugate 

coating concentration, that exhibits a steep binding curve, containing an extended 

linear portion must be chosen. A dilution of antibody that yields 50 to 70% of 

maximal absorbance, located in the steepest part of the linear portion of the curve, 

should chosen for subsequent analysis. Checkerboard analysis of monomeric scFv, 

involved coating with M3G-OVA conjugate concentrations from, 100 pg/ml to 1.56 

pg/ml. These were analysed against antibody dilutions, ranging from 1 in 5 to 1,280. 

Bound antibody was detected using anti-flag M l monoclonal antibody, followed by 

peroxidase-labelled anti-mouse antibody, and visualised using o-PD substrate. A 

coating concentration of 3.125 pg/ml M3G-OVA and a 1 in 60 scFv dilution were 

chosen as optimal (Figure 3.2.15). For dimeric scFv, M3G-OVA coating 

concentrations from 50 to 0.79 ug/ml were analysed against antibody dilutions from 1 

in 10 to 1 in 640, with a coating concentration of 6.25 (J,g/ml and an antibody dilution 

of 1 in 150, chosen as optimal (Figure 3.2.16). The indirect checkerboard of the 

bifunctional alkaline phosphatase-labelled scFv required no secondary antibody as 

bound antibody was detected directly using the enzyme tag, at the carboxy terminus
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of the antibody. A coating concentration of 3.125 (ig/ml, with an scFv dilution of 1 in 

20 were chosen as optimal for use in competitive ELISA (Figure 3.2.17).
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Figure 3.2.15: Checkerboard ELISA o f monomeric scFv expressed with the pAK 400 

vector. An ELISA plate was coated with varying concentrations of M3G-OVA 

conjugate and varying dilutions of antibody were analysed. A conjugate coating 

concentration of 3.125 /jg/ml was chosen as optimal, with an scFv dilution of 1/60. 

Bound scFv vras detected using M l anti-flag, followed by peroxidase-labelled anti­

mouse antibody and colour visualised using the chromogenic substrate, o-PD.
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Figure 3.2.16: Checkerboard o f dimeric scFv expressed with the pAK 500 vector. A 

conjugate coating concentration o f 6.25 fig/ml was chosen as optimal, with an scFv 

dilution o f 1/150. Bound scFv was detected using M l anti-flag, followed by 

peroxidase-labelled anti-mouse, and colour visualised using the chromogenic 

substrate o-PD.
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Figure 3.2.17: Checkerboard o f  bifunctinal scFv expressed with the pAK 600 vector. 

A conjugate coating concentration o f 3.125 fjg/ml was chosen as optimal, with an 

scFv dilution o f  1/20. Bound scFv was detectedp-NPP chromogenic substrate.
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3.2.5.2 Development o f a competitive ELISA assay fo r  M3G using genetically-derived

scFvs

Immunoassays exhibit a sigmoidal-shaped dose response curve, when response is 

plotted against the logarithm of analyte concentration. The curve consists of a 

relatively linear region around the point of 50% inhibition (IC50); enclosed by two 

‘flat’ asymptotic regions. The mean response is therefore a non-linear function of 

analyte concentration. Fitting a ‘typical’ linear standard curve to the data set will 

generate an overall bias in the dataset, particularly at the extremities. The ‘reference 

standard’ for fitting the mean concentration-response for immunoassay is a four- 

parameter logistic function (Findlay et ah, 2000). This model accurately reflects the 

relationship between measured response and logarithm of analyte concentration. Four 

parameter equations were fitted to immunoassay data sets using BIAevaluation 3.1 

software, using the model described by the following equation:

R  — R hi " Rhi - Rlo

1 + C one
A,

Where: R Expected Response

R h i Response at infinite analyte concentration

R l o Response at zero analyte concentration

Cone Analyte concentration

A i Fitting Constant 1, concentration at ICso

a 2 Fitting Constant 2, slope parameter that is typically

equal to 1

Calibration curves calculated using BIAevaluation software allow the degree of 

precision to be determined using the model generated to ‘back-calculate’ responses at 

each analyte concentration. A residual plot is also generated, which allows the user to 

analyse how close the model fits the dataset.
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In order to determine intra-day assay variation, varying M3G concentrations were 

assayed five times on one day and the mean absorbance at each concentration was 

plotted against the log of analyte concentration. Intra-day studies for monomeric scFv 

yielded a calibration curve ranging from 763 to 195,000 pg/ml (Figure 3.2.18). The 

dimeric scFv and bifunctional scFvs yielded calibration curves ranging from to 763 

781,250 pg/ml (Figures 3.2.19 and 3.2.20). The mean, standard deviations, 

coefficients of variation and percentage recoveries were calculated from the 

calibration curve for each antibody (Table 3.2.2 to 3.2.4).

The inter-day assay variation was calculated by performing five replicates of each 

sample over five separate days, giving an indication of the robustness of the assay. A 

calibration curve was constructed by dividing the mean absorbance response obtained 

at each M3G concentration (A) by the absorbance response in the presence of zero 

analyte (A0). Normalised absorbance values (A/A0) were plotted against log of M3G 

concentration to generate a calibration curve. Detection limits were set at the 

concentration of analyte that inhibited 10% of antibody binding (Hennion and 

Barcelo, 1998). Inter-day studies showed the monomeric scFv had detection limit of

2 ng/ml, with coefficients of variation (C.V.’s) obtained ranged from 3.23 to 9.8% 

obtained for the calibration curve (Figure 3.2.21 and Table 3.2.5). The dimeric scFv 

was less sensitive, with a detection limit of 9 ng/ml, with C.V.’s ranging from 2.67 to 

9 6% for the dataset (Figure 3.2.22 and Table 3.2.6). The bifunctional scFv had a 5 

ng/ml limit of detection (Figure 3.2.23). The mean, standard deviations, coefficients 

o f variation and percentage recoveries were calculated from the calibration curves for 

each antibody (Table 3.2.5 to 3.2.7).
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Figure 3.2.18: Intra-Jay ELISA assay using pAK 400 monomeric scFv to detect free 

M3G in PBS. M3G-OVA was coated at 3.125 /.ig/ml and a I in 60 scFv dilution was 

used. Bound antibody was detected using M l monoclonal anti-flag, followed by 

peroxidase-labelled anti-mouse antibody and visualized using o-PD. Absorbance was 

read at 450nm and related to M3G concentration using 4-parameter logistic model 

ranging from 763 pg/ml to 195,000 pg/ml.
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Table 3.2.2: Intra-day assay coefficients o f variation fo r  the detection o f free M3G 

using the monomeric scFv. Five sets o f nine standards were assayed over one day and 

the C. V. ’s were calculated as the standard deviation (S.D.) expressed as a percentage 

o f the mean values fo r  each standard. Percentage recovery was calculated from the 

four-parameter model produced using BIAevaluation 3.1 software.

Concentration

(pg/ml)

Absorbance @ 

450nm ± S.D.

% C.V. Back calculated 

concentration 

(pg/ml)

% Recovery

195,312.50 0.076 ±0.005 6.62% 192,927.00 98.78

97,656.25 0.095 ± 0.008 8.48% 86,358.68 88.43

48,828.13 0.115 ±0.008 7.27% 46,464.42 95.16

24,414.06 0.159± 0.015 9.71% 23,730.72 97.20

12,207.03 0.223 ± 0.005 2.43% 12,659.68 103.71

6,103.52 0.308 ±0.012 4.04% 66,43.33 108.84

3,051.76 0.409 ±0.020 4.81% 2,897.35 94.94

1,525.88 0.458 ±0.016 3.51% 1,576.75 103.30

762.94 0.481 ±0.036 7.50% 1,025.86 134.50
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Figure 3.2.19: Intra-day ELISA assay using pAK 500 dimeric scFv to detect free 

M3G in PBS. M3G-OVA was coated at 6.25 ¡jg/ml and a 1 in 150 scFv dilution was 

used. Bound antibody was detected using M l monoclonal anti-flag, followed by 

peroxidase-labelled anti-mouse antibody and visualized using o-PD. Absorbance was 

read at 450nm and related to M3G concentration using a 4-parameter logistic model 

that ranged from 763 pg/ml to 781,250pg/ml.
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Table 3.2.3: Intra-day assay coefficients o f variation fo r  the detection o f free M3G 

using the dimeric scFv. Five sets o f  eleven standards were assayed over five different 

days and the C. V ’s were calculated as the standard deviation (S.D.) expressed as a 

percentage o f the mean values fo r  each standard. Percentage recovery was 

calculatedfrom the four-parameter model produced using BIAevaluation software.

Concentration

(pg/ml)

Absorbance @ 

450nm ± S.D.

% C.V. Back calculated 

concentration 

(pg/ml)

% Recovery

781,250 0.138 ± 0  .006 4.50% 856,468.9 109.63

390,625 0.230 ± 0.004 1.54% 371,514.3 95.11

195,312.50 0.345 ±0.030 8.58% 191,879 98.24

97,656.25 0.503 ± 0.032 6.28% 93,806.06 96.06

48,828.13 0.620 ±0.034 5.49% 55,876.56 114.44

24,414.06 0.777 ±0.013 1.64% 23,416.27 95.91

12,207.03 0.868 ±0.021 2.47% 9,933.61 81.38

6,103.52 0.908 ± 0.020 2.24% 4,858.06 79.59

3,051.76 0.915 ±0.018 1.95% 4,001.51 131.12

1,525.88 0.930 ±0.019 2.08% 2,120.70 138.98

762.94 0.938 ±0.041 4.38% 1,284.12 168.31
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Figure 3.2.20: Intra-day ELISA assay using pAK 600 enzyme-labelled dimeric scFv 

to detect free M3G in PBS. M3G-OVA was coated at 3.125 /jg/ml and a  1 in 20 scFv 

dilution was used. Bound antibody was detected p-NPP substrate and absorbance 

read at 405nm. Mean response was related to M3G concentration using a 4- 

parameter logistic model that ranged from 763 pg/ml to 781,250pg/ml.
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Table 3.2.4: Intra-day assay coefficients o f variation fo r  the detection o f free M3G 

using the bifunctional scFv, expressed with pAK 600 vector. Five sets o f eleven 

standards were assayed over five different days and the C. V. 's were calculated as the 

standard deviation (S.D.) expressed as a percentage o f the mean values for each 

standard. Percentage recovery was calculated from the four-parameter model 

produced using BIAevaluation software.

Concentration

(pg/ml)

Absorbance @ 

405nm ± S.D.

% c.v. Back calculated 

concentration 

(pg/ml)

% Recovery

781,250 0.104 ±0.005 4.81% 627,892 80.37

390,625 0.124 + 0.003 2.44% 380,855 97.50

195,312.50 0.156 ±0.008 5.17% 188,197 96.36

97,656.25 0.194 ±0.003 1.38% 102,371 104.83

48,828.13 0.257 ±0.005 2.14% 484,34 99.19

24,414.06 0.317 ±0.014 4.36% 24,863 101.84

12,207.03 0.376 ±0.015 3.97% 11,758 96.32

6,103.52 0.409 ±0.010 2.46% 6,502 106.53

3,051.76 0.437 ±0.009 1.98% 3,094 101.38

1,525.88 0.452 ±0.012 2.59% 1,537 100.72

762.94 0.460 ±0.010 2.16% 838 109.82
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Figure 3.2.21: Inter-day ELISA assay using pAK 400 monomeric scFv to detect free 

M3G in PBS. M3G-OVA was coated at 3.125 pg/ml and a 1 in 60 scFv dilution was 

used. Bound antibody was detected using M l monoclonal anti-flag, followed by 

peroxidase-labelled anti-mouse antibody and visualized using o-PD. Absorbance was 

read at 450nm and related to M3G concentration using a 4-parameter logistic model 

that ranged from 763 pg/ml to 19,5000 pg/m l I'he least detectable M3G 

concentration that led to 10% inhibition o f antibody binding was shown to be 2 ng/ml.
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Table 3.2.5: Inter-day assay coefficients o f  variation fo r  the detection o f free M3G 

using the monomeric scFv. Five sets o f  nine standards were assayed over five 

different days and the C. V 's  were calculated as the standard deviation (S.D.) 

expressed as a percentage o f the mean values fo r  each standard. Percentage 

recovery was calculated from the four-parameter model produced using 

BIAevaluation software.

Concentration

(pg/ml)

A/AO ± S.D. % c.v. Back calculated 

concentration 

(pg/ml)

% Recovery

195,312.50 0.173 ±0.017 3.23% 166,075.65 85.03

97,656.25 0.205 ±0.016 9.80% 102,085.29 104.54

48,828.13 0.259 ±0.019 7.91% 48,388.43 99.10

24,414.06 0.357 ±0.028 7.26% 24,165.61 98.98

12,207.03 0.498 ± 0.043 7.72% 12,709.79 104.12

6,103.52 0.680 ± 0.046 8.62% 6,256.66 102.51

3,051.76 0.843 ±0.037 6.71% 2,953.38 96.77

1,525.88 0.937 ±0.025 4.35% 1,494.34 97.94

762.94 0.982 ±0.031 2.66% 811.57 106.37
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Figure 3.2.22: Inter-day ELISA assay using pAK 500 dimeric scFv to detect free M3G 

in PBS. M3G-OVA was coated at 6.25 jug/ml and a 1 in 150 scFv dilution was used. 

Bound antibody was detected using M l monoclonal anti-flag, followed by peroxidase- 

labelled anti-mouse antibody and visualized using o-PD. Absorbance was read at 

450nm and related to M3G concentration using a 4-parameter logistic model that 

ranged from 763 pg/ml to 781,250 pg/ml. The least detectable M3G concentration 

that led to 10% inhibition o f antibody binding was shown to be 9 ng/ml.
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Table 3.2.6: Inter-day assay coefficients o f variation for the detection o f free M3 G 

using the dimeric scFv. Five sets o f eleven standards were assayed over five different 

days and the C. V ’s were calculated as the standard deviation (S.D.) expressed as a 

percentage o f  the mean values fo r  each standard. Percentage recovery was 

calculated from the four-parameter model produced using BIAevaluation software.

Concentration

(pg/ml)

A/AO ± S.D. % C.V. Back calculated 

concentration 

(pg/ml)

% Recovery

781,250 0.158 ± 0.010 6.51% 799,747.22 102.37

390,625 0.255 ±0.017 6.59% 372,184.29 95.28

195,312.50 0.367 ±0.032 8.63% 200,524.64 102.67

97,656.25 0.518 ±0.050 9.60% 99,812.59 102.21

48,828.13 0.672 ± 0.057 8.42% 48,590.63 99.51

24,414.06 0.803 ± 0.043 5.36% 22,398.04 91.74

12,207.03 0.874 ±0.071 8.16% 11,880.70 97.33

6,103.52 0.914 ±0.064 6.98% 6,999.53 114.68

3,051.76 0.928 ± 0.033 3.53% 5,354.82 175.47

1,525.88 0.962 ± 0.026 2.67% 1,835.36 120.28

762.94 0.995 ± 0.044 4.43% <762.94 <100

164



M3G C on centration  (ng/m l)

0 .0 1 5

0.01

5 e -3

tU
*  -5 e -3  

- 0.01

- 0 .0 1 5 ----------------------------------- 1----------------  —— — •-)-------------------------  i ■ .................. i
100 1000 10000 100000 1e6

M3G C oncentration  (ng/m l)

Figure 3.2.23: Interday ELISA assay usingpAK 600 enzyme-labelled dimeric scFv to 

detect free M3G in PBS. M3G-OVA was coated at 3.125 /.ig/ml and a I in 20 seFv 

dilution was used. Bound antibody was detected using p-NPP substrate and 

absorbance read at 405nm. The least detectable M3G concentration that led to 10% 

inhibition o f antibody binding was shown to be 5 ng/ml.
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Table 3.2.7: Inter-day assay coefficients o f variation for the detection o f free M3G 

using the dimeric enzyme-labelled scFv. Five sets o f eleven standards were assayed 

over five different days and the C. V 's  were calculated as the standard deviation 

(S.D.) expressed as a percentage o f the mean values fo r  each standard. Percentage 

recovery was calculated from the four-parameter model produced using 

BIAevaluation software.

Concentration

(pg/ml)

A/AO ±  S.D. % c.v. Back calculated 

concentration 

(pg/ml)

% Recovery

781,250 0.220 ±0.010 4.77% 679,013 86.91

390,625 0.261 ±0.004 1.38% 400,339 102.49

195,312.50 0.326 ±0.005 1.49% 198,824 101.80

97,656.25 0.422 ±0.018 4.15% 98,780 101.15

48,828.13 0.546 ±0.031 5.67% 50,446 103.31

24,414.06 0.683 ±0.015 2.13% 24,884 101.92

12,207.03 0.799 ± 0.021 2.68% 12,570 102.97

6,103.52 0.894 ± 0.039 4.31% 5,627 92.19

3,051.76 0.926 ±0.015 1.66% 3,636 119.14

1,525.88 0.971 ±0.012 1.20% 1,287 84.34

762.94 0.980 ±0.011 1.09% 857 112.23
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3.2.5.3 Cross reactivity studies

Cross reactivity measures the comparative reactivity of an antibody to its target 

analyte and structurally related compounds. One method to determine an antibody’s 

cross reactivity is to measure the concentration of each compound required to displace 

the same amount of antibody. This is routinely performed at the point of 50% 

inhibition, i.e. the concentration of analyte required to give a normalised absorbance 

(A/AO) of 0.5. This is referred to as the IC 50 value and a ratio of these values 

calculated for each compound is routinely used to calculate the percentage cross 

reactivity. This method is not always sufficient to estimate the specificity of an 

antibody because the displacement of curves of cross reactants are not always parallel 

to the standard curve over the entire working range. It is, therefore, recommended to 

measure cross reactivities at different concentrations over the entire working range 

(Hennion and Barcelo, 1998). The least detectable dose (LDD) and IC 50 values were 

determined for each structurally-related compound as 90% A/AO and 50% A/AO, 

respectively. The percentage cross reactivities were then estimated at the LDD (CR 90) 

and at the IC 50 (C R 50) by expressing 100-fold the ratio of the M 3G  and of the cross­

reactants.

Table 3.2.8 shows the characterised specificity of the monomeric scFv with the 

structurally related compounds. Cross reactivity is particularly visible for codeine, 

which exhibits a LDD value of 6  ng/ml, close to that of M3G, whereas the IC50 values 

for M3G and codeine are 13 and 55 ng/ml, respectively. As a general trend, cross 

reactivity is higher at low concentrations o f analyte, than in the middle of the assay 

curve. The calculation of the percentage cross reactivity at different concentrations 

gives a more accurate estimation of possible interference in the assay. The dimeric 

scFv offered greater specificity to M3G, in comparison with the monomeric scFv, 

with the percentage cross reactivity against the various analytes remaining below 6% 

at the CR90 and 13% at the CR50 (Table 3.2.9). The dimerisation of the antibody, 

therefore, led to an increase in the specificity o f the antibody. The bifunctional scFv 

displayed high levels of cross-reactivity towards other ‘opiate-like’ compounds. 

Heroin and codeine have lower LDD’s than M3G, yielding over 154 and 333% cross
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reactivity at CR9 0 . Cross reactivity is not as great in the IC50 area of the curve, with 

CR50’s o f 48 and 75% for heroin and codeine, respectively. Cross reactivity towards 

6-MAM, however, is greater in this part of the curve, increasing from 15 to 75% 

between CR90 and CR50 values (Table 3.2.10). The decrease in specificity between 

dimeric antibody produced with pAK 500 and the enzyme-labelled dimeric antibody 

produced with pAK 600 has also been reported for an aflatoxin scFv (Dunne, 2004).

Table 3.2.8: Specificity and cross reactivity o f the monomeric scFv against various 

opiate and ‘opiate-like' compounds. The cross reactivity is expressed as the least 

detectable dose (LDD), which was estimated at 90% A/A0, and at the dose required 

fo r 50% absorbance inhibition, IC50■ CR90 and CR50 were then expressed as 100-fold 

the ratio o f the cross reactant to M3G.

Compound L.D.D. 90 (ng/ml) ICso (ng/ml) CR90 CR50

M3 G 2 13 100% 100%

Morphine 22 100 9% 13%

6-MAM 9 80 22% 16%

Heroin 8 80 25% 16%

Methadone >10,000 >10,000 <0.1% <0.1%

Codeine 6 55 33% 24%

Norcodeine >10,000 >10,000 <0.1% <0.1%

Dihydrocodeine 10 100 20% 13%
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Table 3.2.9: Specificity and cross reactivity o f  the dimeric scFv against various 

opiate and ‘opiate-like ’ compounds. The cross reactivity is expressed as the least 

detectable dose (LDD), which was estimated at 90% A/AO, and at the dose required 

fo r  50% absorbance inhibition, IC50. CR90 and CR50 were then expressed as 100-fold 

the ratio o f the cross reactant to M3G.

Compound L.D.D. 90 (ng/ml) ICso (ng/ml) CR 90 CR50

M3 G 8 1 2 0 1 0 0 % 1 0 0 %

Morphine 130 1700 6 % 7%

6 -MAM 180 1 2 0 0 4% 1 1 %

Heroin 275 1500 3% 9%

Methadone > 1 0 0 0 0 > 1 0 0 0 0 <0 .1 % < 1 %

Codeine 150 1 0 0 0 5% 13%

Norcodeine > 1 0 0 0 0 > 1 0 0 0 0 <0 .1 % < 1%

Dihydrocodeine 275 2250 3% 6 %
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Table 3.2.10: Specificity and cross reactivity o f  the bifunctional scFv against various 

opiate and ‘opiate-like’ compounds. The cross reactivity is expressed as the least 

detectable dose (LDD), which was estimated at 90% A/AO, and at the dose required 

fo r  50% absorbance inhibition, IC50. CR90 and CR50 were then expressed as 100-fold 

the ratio o f the cross reactant to M3G.

Compound L.D.D. 90 (ng/ml) IC50 (ng/ml) CR90 CRso

M3 G 2 60 100% 100%

Morphine 2.5 125 80% 48%

6-MAM 13 80 15.4% 75%

Heroin 1.3 125 154% 48%

Methadone 1,500 >10,000 <0.1% <0.6%

Codeine 0.6 80 333% 75%

Norcodeine 1,500 >10,000 <0.1% <0.6%

Dihydrocodeine 12.5 475 16% 12.6%
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3.3 Discussion

This chapter describes the production of genetically-derived scFvs against morphine- 

3-glucuronide. Sequence analysis of the scFv allowed the amino acid sequence to be 

deduced. From this the complementary determining regions (CDRs) of the antibody 

were identified using the Kabat rules (Kabat et al., 1991). The antibody 3-dimensional 

structure was modelled using Swiss model and DS Viewer Pro software (Figure 3.2.2 

and 3.2.3) and was consistent with that expected of an anti-hapten antibody.

Soluble monomeric scFv was produced using the expression vector pAK. 400, 

exploiting the strong Shine Dalgarno sequence for increased levels of protein 

expression. Fed-batch expression, followed by induction with 0.1 mM IPTG, proved 

the most efficient method, as levels as high as 9.3 mg/ml o f pure scFv could be 

produced on a laboratory scale. The antibody could be purified by either of two 

affinity resins. The first involved using an affinity column, which employed M3G 

BSA immobilised on a sepharose resin. This exploits the antibody’s specificity for its 

target and yielded a very pure antibody upon elution with pH shock (Figure 3.2.11). 

The only drawback from this method was that the sample became diluted during the 

purification process, as the antibody did not dissociate rapidly following the pH 

decrease. Immobilised metal affinity chelate chromatography (IMAC) could also be 

used to purify the antibody via the hexahistidine tail located at the carboxy terminus 

of the antibody (Figure 3.2.13). Either method could be employed for simple, rapid 

and economical antibody purification. Western blot analysis of the antibody revealed 

a single band at approximately 32 kDa that corresponded to the molecular weight of a 

monomeric scFv (Figure 3.2.12 and 3.2.14).

Soluble dimeric scFv was produced using the pAK 500, expression vector. This 

vector encodes a double helix for dimerisation of the antibody fragment. The 

concentration of IPTG and induction lengths had to be increased to 0.5 mM and 8 

hours to achieve optimal expression of antibody. The dimeric scFv displayed higher 

avidity for its target than the antibody in its monomeric state. For this reason 

purification via an antigen-affinity column was not possible, as conditions required to 

elute the antibody from the resin were too harsh to retain functionality of the antibody.
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The antibody is expressed with a pentahistidine tag and this was utilised to purify the 

antibody by IMAC chromatography (Figure 3.2.13). Western blot analysis confirmed 

the dimeric nature of the scFv, with a band at 35 kDa, representing the reduced 

monomeric fusion protein comprising the scFv and the aliphatic helix. A faint band at 

70 kDa, representing the unreduced dimeric scFv is also visible. This molecular 

weight is in agreement with the published literature. Rheinnecker et al. (1996) used 

the same helix to dimerise an scFv with a theoretical molecular weight of 31,400 Da 

and reported a molecular weight of 60,000 Da for the dimeric version. A similar helix 

employed by Kerschbaumer et al. (1997), generated a fusion protein with a molecular 

weight of 70 kDa. Pack et al. (1993) also reported a similar molecular weight for their 

scdHLX antibody, with only an insignificant amount of monomeric scFv being 

produced.

In an attempt to simplify and reduce assay time required for ELISA and western blot 

analysis, an alkaline phosphatase-labelled scFv was produced using the pAK 600, 

expression vector. In effect, this has the potential to eliminate the need for one or 

even two detection antibodies and the washing steps involved. This system has the 

ability to increase functional affinity of the antibody along with substantially 

decreasing assay time. This enzyme-labelled dimeric scFv required a 1 mM IPTG 

concentration and an induction time of 8 hours for optimum expression. The 

bifunctional nature of the antibody was confirmed by immunoblot analysis. This 

demonstrated that the antibody retained the ability of the parental antibody to bind 

M3G, while also possessing the enzymatic activity of alkaline phosphatase (Figure

3 .2.10). Purification of this antibody could not be achieved by conventional antigen- 

affmity chromatography due to the extreme conditions required to elute the antibody, 

which may denature the enzyme label. The antibody did display a flag tag, which has 

been extensively characterised for protein purification (Einhauer0 and Jungbauer, 

2001). This purification strategy was investigated for the purification of the scFv- 

alkaline phosphatase fusion protein. However, sufficient binding to the anti-flag resin 

could not be achieved to separate the antibody from impurities in the lysate. Upon 

further investigation, it was observed that the column had less than 20% of the 

specified binding activity for pure flag protein. EinhauerA and Jungbauer (2001) have 

carried out kinetic analysis on the binding of the anti-flag antibody in the presence 

and absence of calcium and have revealed no difference on association and
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dissociation rates was observed. As this technology relies on calcium dependence for 

efficient purification, this may explain the lack of affinity of the resin for the

antibody, even with the presence of two flag tags per antibody. However,

immunoblot analysis illustrated that the antibody could be specifically detected, even 

directly from crude lysate (Figure 3.2.10). This compares to similar findings by

Lindner et al. (1997), who have reported that the E. coli lysate acts in conjunction

with standard blocking agents to prevent non-specific binding. This eliminates the 

need for further purification of the protein. SDS-PAGE and western blot analysis of 

the scFv shows the molecular weight of the monomeric reduced form of the antibody 

was approximately 84 kDa. This corresponds to the reports in the literature of similar 

dimeric alkaline phosphatase-labelled antibodies with a molecular weight of 150 kDa, 

as determined by size exclusion chromatography (Suziki et al., 1997).

There are a number of parameters that must first be optimised, for the successful 

development of competitive ELISAs. The concentration of coating conjugate must be 

low enough so as not to generate antibody bias towards solid phase but high enough 

so that there is a linear relationship between antibody concentration and absorbance. 

The dilution of antibody must also be optimised to maximise sensitivity. M3G-OVA 

coating concentrations of 3.125 (Jg/ml for monomeric and bifunctional antibodies and 

6.25 ug/ml for the dimeric scFv were chosen as optimal. Monomeric antibody was 

diluted 1 in 60, dimeric scFv was diluted 1 in 150 and bifunctional scFv was diluted 1 

in 20, as these concentrations corresponded to the point on the curve where the change 

in absorbance was greatest, with respect to change in antibody concentration.

Using these optimised parameters, competitive ELISAs were developed using each of 

the antibodies. Calibration curves were produced using a four-parameter model and 

from these curves least detectable doses of M3G were calculated as the concentration 

of M3G that exhibited a 10% inhibition of antibody binding or A/A0 of 0.9. 

Monomeric scFv displayed a calibration curve from 763 to 195,000 pg/ml with a 

Least Detectable Dose (LDD) of 2 ng/ml. Dimeric scFv had the ability to bind more 

M3G, with a calibration curve spanning from 763 to 781,250 pg/ml. The LDD was 

not as low, however, at 9 ng/ml. The assay developed with the bifunctional scFv had 

the advantage of needing considerably less assay time (< 2 hours) and reagents. The
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antibody had a calibration curve from 763 to 781,250 pg/ml and a LDD of 5 ng/ml. 

This made the antibody particularly suited to rapid analysis. The robustness of each 

assay was analysed by calculating the variability of results on a number of separate 

days. Intra and Inter-assay coefficients of variation (C.V.’s) were below 10 % for 

each antibody, proving that each assay was not only sensitive but also reproducible. 

Percentage recoveries calculated from each model were all within 20% of actual 

concentration analysed for samples above the LDD level for each antibody. This 

demonstrates excellent sensitivity and reproducibility that can be achieved through the 

use of scFv antibodies in ELISA analysis.

An attempt to employ the dimeric scFv in a sandwich ELISA format as devised by 

Kerschbaumer et al. (1997), using immobilised dimeric antibody as a capture agent 

and an enzyme labelled scFv fusion protein for detection, was unsuccessful. 

However, this can be explained by the fact that as M3G is a small molecule and the 

epitope, once bound by one antibody, is inaccessible to the other antibody. Sensitive 

assays may be developed using this system for molecules that display multiple 

epitopes on their surface e.g. bacteria/viruses.

The extent to which each antibody cross reacted with structurally related compounds 

was also investigated. Cross reactivity was measured at different concentrations of 

analyte over the working range, as recommended by Hennion and Barcelo (1998). 

This reflects cross reactivity more accurately than a comparison between slopes of 

displacement curves as cross reactivity is generally greater in the area of around 10 % 

displacement. The least detectable doses (LDD) and IC50 values were determined for 

each structurally-related compound at 90% A/A0 and 50% A/A0, respectively. The 

percentage cross reactivity were then estimated at the LDD (CR90) and at the IC50 

(CR50) by expressing 100-fold the ratio of the M3G and of the cross-reactants. The 

possibility of interferences can, therefore, be weighted with respect to the region of 

the curve where analysis is being carried out.

None of the three antibodies exhibited cross reactivity to norcodeine or methadone 

within the range tested (up to 10 (Jg/ml). This made the antibody suitable for 

detecting heroin residues in subjects who were receiving methadone replacement
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therapy for heroin withdrawal. The highest degree of cross reactivity for the 

monomeric scFv was against codeine, followed by heroin, 6-MAM, dihydrocodeine 

and morphine. Although any cross reactivity with codeine is undesirable, due to its 

presence in over the counter medications, it was not found to significantly interfere in 

real sample analysis, as described in Chapter 4. Analysis o f saliva samples following 

medication with the most common over the counter codeine remedies revealed an 

approximate 10 ng/ml over-estimation o f morphine levels. This level of interference 

is not large enough to generate a false positive result in real sample analysis, as 

described in Chapter 4, as the cut-off level is set at 12 ng/ml. The dimeric scFv 

displayed increased specificity, with the highest interference observed for codeine at 

50% inhibition (13%). The bifunctional scFv proved to be the least specific, 

preferentially recognising low concentrations of codeine over M3G. Morphine was 

also shown to cross react significantly. Structural differences between these cross 

reacting compounds occur only at the 3- and 6- positions (Figure 3.3.1). The antibody 

library was initially generated against a morphine-3-glucuronide conjugate, 

conjugated to the protein, BSA, through the glucuronide group at the 3-position. This 

part of the molecule was, therefore, ‘hidden’ from the immune response. The 

antibody recognises an epitope on the opposite side o f the molecule, leading to the 

recognition of compounds, structurally identical to M3G in this region, by the 

antibody. Codeine differs from M3G only at the 3- position, the glucuronide moiety 

being substituted with a CH30  group. Heroin, being the diacetyl derivative of 

morphine, possess two acetyl groups, at the 3- position, replacing the glucuronide 

group and at the 6- position, in place of an OH group. 6-MAM is the first metabolite 

observed following heroin intake and occurs through deacetylation of the molecule at 

the 3- position. Dihydrocodeine, which is found in combination analgesics, is also 

only distinguishable through the 3- position. Morphine, an opiate commonly 

administered for the control of pain, is also a major but short-lived metabolite of 

heroin. This is only distinguishable from M3G at the 3- position of the molecule, the 

glucuronide group being substituted by an -OH. For this reason the antibody would 

be expected to show a degree of cross reactivity.
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Figure 3.3.1: Structure o f codeines bearing a high degree o f structural similarity to 

M3G

The assays developed with all three scFvs achieved sensitivity comparable with other 

methods for the detection of M3G, reported in the literature. Elaborate analytical- 

based systems using HPLC, GC and MS can achieve high levels of sensitivity but 

such techniques require large capital investment and operation by skilled personal. 

Meng et al. (2000) developed a sensitive HPLC-based method for the detection of 

M3G in plasma. The assay showed excellent limits of quantification (0.45 ng/ml) 

with 82% recovery. The method involved a two-step solid phase extraction involving 

a hydrophobic column, followed by ionic exchange extraction. Samples were then 

analysed by reverse-phase HPLC, in combination with electrochemical and 

fluorometric detection systems. Schánzle et al. (1999) developed a method for M3G 

detection in body fluids using HPLC-MS. Limits of quantification for M3G were 5.4 

pmol/ml (2.5 ng/ml) in serum and 50 pmol/ml (23 ng/ml) in urine, with an excellent 

percentage bias. Musshoff et al. (2004) reported a limit of quantification of 5 ng/ml 

M3G in urine with an LC-ESI-MS-MS based assay. The assay however, was subject 

to poor recoveries, with M3G recovery of only 45%, reported at 62.5 ng/ml. 

Whittington and Kharasch (2003) reported a HPLC-ESI-MS detection method for
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M3G in plasma. The assay had a limit of quantification of 5 ng/ml, with a 90% 

recovery at 25 ng/ml. These methods all require a labour intensive sample extraction 

step. Beike et al. (1999) used polyclonal anti-M3G antibodies for this purpose and 

employed an immunoaffinity column for sample extraction of M3G from blood. 

Samples were analysed by HPLC and the assay had a limit of quantification of 10 

ng/g of blood but suffered from a poor mean percentage recovery of 76%.

Immunoassay-based detection systems offer an appealing alternative to analytical 

systems, as they are rapid, economical and relatively simple to perform, without the 

requirement for elaborate, expensive equipment. DillonA et al. (2003) developed an 

ELISA assay for M3G detection in urine. The assay achieved higher sensitivity than 

the ELISAs reported here, however the polyclonal antibodies employed, exhibited a 

lower degree of specificity for M3G. The antibodies were not capable of 

discriminating between codeine and M3G (92% and 97% for each antibody). This 

could possibly affect the integrity o f the results, as codeine is found in many over the 

counter remedies and could therefore lead to a high percentage of ‘false’ positives. 

DillonB et al. (2003) developed a biosensor-based assay to detect M3G. The assay 

had a detection limit of 3 ng/ml, with the scFv-based assay proving more specific for 

M3G than it’s equivalent with polyclonal antibodies.

This chapter focused on the development of immunoassays using several forms of 

genetically-derived antibodies for the detection of M3G. Recombinant antibody 

technology offers an unlimited source of antibodies with defined affinities and 

specificities. Three forms of recombinant antibody were used in this chapter, each 

boasting its own advantages. Monomeric scFv was the simplest form of recombinant 

antibody expression. Through dimerisation of this antibody, specificity could be 

greatly increased. The production of a bifunctional scFv led to overall simplification 

of assay for M3G. Although this form of the antibody had exhibited higher cross 

reactivity with structurally related compounds, its advantage lay in the speed at which 

analysis could be performed. This antibody was particularly suited to ‘on-site’, 

screening analysis, as reagents needed were minimal and analysis time was rapid. 

Once a positive result was obtained, it could be confirmed using the more specific 

dimeric antibody or by a chosen analytical system. These antibodies offer a real 

alternative to large scale routine analysis by analytical means.
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Chapter 4: Applications of Genetically-Derived 

scFv antibpdy fragments
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4.1 Introduction

4.1.1 Determination o f  affinity constant

There are various techniques used to determine the affinity constant of an antibody. 

These include equilibrium dialysis for haptens and dialysable antigen, 

immunoprécipitation, fluorescence-based measurements and ELISA-based methods. 

Two techniques for measuring affinities were used in this study. The first was an 

ELISA-based method described by Friguet et. al. (1985) and the second involved a 

biosensor-based method, which measures solution phase affinity using ‘real-time’ 

biomolecular interaction BIAcore technology.

4.1.1.1 Antibody affinity

The affinity o f an antibody gives a quantitative indication of the strength of the 

interaction between an antibody and its specific antigen (Djavadi-Ohaniance et al., 

1996). It is an important property that will determine the potential applicability of an 

antibody in various assay formats. The affinity of an antibody KA is

K a

[Ab] + [Ag] < -------- >  [AbAg] Equation 4.1
Kd

Where

[Ab] = Free Antibody Concentration

[Ag] = Free Antigen Concentration

[AbAg] = Antibody:Antigen Complex Concentration

Ka = Association Rate Constant

Kd = Dissociation Rate Constant

The equilibrium association constant K a (K a= 1 /K d), of an antibody for its target 

antigen, is defined by the Law of Mass Action as:

Ka = [Ab] = l Equation 4.2

[AbAg] Kd



Where KA and KD are equilibrium association and dissociation constants respectively.

4.1.1.2 Affinity constant determination by ELISA

The method described by Friguet el al. (1985) involves measuring the amount of free 

antibody present following equilibration with various concentrations of free antigen. 

This involves mixing a fixed concentration o f antibody with varying concentrations of 

antigen and allowing equilibrium to be attained while in solution. The amount of free 

antibody is measured using an indirect ELISA to capture any unbound, or unsaturated 

antibody.

Antibody + Antigen -̂ —y Complex

with the concentration of antibody sites, antigen sites and complex at equilibrium are 

given as [Ab], [Ag] and [AbAg], respectively. This is related to the total antibody and 

antigen sites, [Ab]totai and [Ag]totai, by the following equation

[Ab] + [Ag] <-► [AbAg]

[Ab]

[Ag]

[Abjtotai -  [AbAg] and 

[Ag]totai -  [AbAg] Equation 4.3

Kd, the equilibrium dissociation constant is defined by:

Kd [ Ag] [ Ab]/[ Ab Ag] Equation 4.4

If [Ag]totai is varied while [Ab]toiai is kept constant then:

Kd [Ag] ([Abjtotai [AbAg]) 

[AbAg] Equation 4.5
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This can be rearranged to give:

[AbAg] = [Ag]

[Ab]totoi ([Ag] + Kd) Equation 4.6

Giving rise to the Klotz equation:

[A b jto tu i =  K p

[AbAg] [Ag] +1 Equation 4.7

As [Ag]totai is kept »  [Ab]toui, throughout the assay, [Ag] can be approximated to

[A g jto ta i-

The Klotz equation can therefore be rewritten as:

[Ab] total “  Kp

[A bA g] [Ag](oi„i +  I Equation 4.8

The fraction of bound antibody, [AbAg]/ [Ab]totai, is referred to as V, and this can be 

related to absorbance using the expression:

V =  A o - A i  =  [A bA g]

Ao [Ab]u>ta! Equation 4.9

Where A0 = Absorbance measured for total antibody concentration

A) = Absorbance measured in the presence of each antigen concentration

The Klotz equation becomes:

Kd

[Ag]toial +  1 Equation 4.10



A plot of 1/V versus 1 /[Ag] will therefore yield a straight line graph, with a y- 

intercept of 1. The slope of the linear regression describes the overall equilibrium 

dissociation constant for the antibody:antigen interaction (KD)

4.1.1.3 Prerequisites o f the Friguet assay

For the correct determination of KD, there are several criteria that must be fulfilled 

(Djavadi-Ohaniance et al., 1996).

• Firstly as KD is a temperature-dependant property, this factor must be kept 

constant throughout the analysis.

• Free antibody, that remains uncomplexed by antigen, is quantified by means of 

an indirect ELISA. A titration of antibody concentration versus absorbance will 

yield a linear curve that reaches a plateau at higher antibody concentrations. 

The concentration of antibody to be used in the analysis must be in the linear 

region of this curve, where concentration is directly proportional to absorbance.

• Within this linear region, the fraction of antibody retained by the solid phase 

must be less than 10% of the total antibody concentration. This is to ensure that 

there is minimal disruption o f the equilibrium of the antibody.antigen mixtures 

in the solution phase. The disruption of solution phase equilibrium through 

coating with too much antigen, or prolonged incubation times, may lead to a 

gross underestimation of the antibody’s true affinity (Holland and Steward, 

1991)

182



4.1.2 Solution phase affinity determination by BIAcore

BIAcore technology was employed to determined equilibrium dissociation constants 

of monomeric and dimeric scFvs. This allowed a comparison to be made between 

ELISA and BIAcore methods of affinity determination. Solution phase affinity 

determination is based on the same principle as that described by Friguet etal. (1985), 

where the free concentration of one o f the interactants is measured at equilibrium. 

The continual buffer flow and short contact time with the chip surface, in comparison 

to contact time in solid phase ELISA analysis, offers a decreased possibility of 

solution phase disruption, and, therefore, decreases the possibility of underestimating 

the affinity constant (Fitzpatrick, 2001). As BIAcore does not require any labelling or 

secondary reagents, the analysis is not restricted by any of the limiting factors 

imposed by these reagents.

Firstly, a standard curve of response observed for varying molar concentrations of 

antibody is constructed. A constant concentration of antibody, from within this range, 

is then mixed with varying concentrations of antigen and allowed to reach 

equilibrium. The mixtures are then passed over an antigen-coated sensor chip. The 

binding response observed is used to calculate the concentration o f free antibody from 

the standard calibration curve. The concentration of free antibody is plotted against 

the concentration of antigen in each of the mixtures. A solution affinity fit, described 

below, is applied to the dataset using BIAevaluation software.

Bfree =  B -  A - K[) + (A + B + Kd) 2- A B

Equation 4.11

Where Bfree is the concentration of free anti-M3G scFv 

A is the total concentration of analyte 

B is the total anti-M3G scFv concentration 

Ko is the equilibrium dissociation constant
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This describes a monovalent binding interaction between antibody and antigen. In 

theory, a bivalent molecule will deviate from this model, as the quantification assay 

will detect both free and monovalently bound antibody. Piehler et al, (1997), 

introduced a ‘correction’ factor into the model, that describes the distribution of 

antigen between the two binding sites of a bivalent antibody. The model assumes that 

free and monovalently bound antibody will give a similar response at the chip surface. 

The concentration of fully complexed antibody depends on the concentration of 

complex and the concentration of antibody binding sites i.e. two per antibody.

Therefore:

Bfree = B AB2

2 2B Equation 4.12

Giving rise to the expression:

2

Bfree B
B + A + KD - (A + B + Kd)2 -  A

2 i 2 \ 4 J
Equation 4.13

The symbols have the same meaning as in equation 4.11. This may be particularly 

important when analysing small haptens such as morphine and M3G. The model may 

sometimes be inappropriate for a bivalent antibody (Quinn and O’Kennedy, 2001). 

Whether or not the phenomenon of ‘half-liganded’ antibody interacting with the 

surface will depend on factors, such as flow rates, steric hindrance and the drug 

epitope density (Fitzpatrick, 2001). The uncontrolled manner of conjugation of the 

M3G molecule to OVA makes it impossible to predict the ratio of drug epitopes to 

protein. However flow rates can be increased to a maximal level that will still allow 

antibody interaction. This ‘sweep’ of buffer across the surface will decrease the 

probability of interactions between ‘half liganded’ antibody and sensor surface, while 

still facilitating monovalent antibody binding.
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Equilibrium dissociation constants of monomeric, dimeric and bifunctional scFvs will 

be calculated using the Friguet method. This will be compared to the BIAcore 

solution phase method of equilibrium constant determination. The Kd values 

calculated will be used to determine the scFv that is best suited to analysis of 

morphine in saliva.
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4.1.3 Studies on saliva as an alternative detection matrix for opiate use

Saliva is an ideal matrix to use for the detection of drug residues. Sample collection is 

non-invasive, can be easily supervised and is amenable to ‘on-site’ monitoring. 

Sample volume is adequate to yield a number of aliquots for multiple analyses. 

Salivary detection of drug residues is more indicative of recent drug use and/or 

impairment, as drug metabolites do not persist for long periods. For this reason, it 

was decided to employ scFv antibody fragments for the detection of morphine, the 

main metabolite of heroin found in saliva.

Analytical advances in the use of alternative biological matrices, such as saliva, have 

not been appropriately addressed in the laws of the majority of countries (Cone, 

2001). Recent draft guidelines by the Substance Abuse and Mental Health Services 

Administration (SAMHSA), in the USA, include the requirement to test for heroin use 

in alternative matrices such as saliva and sweat (Presley et al., 2003). The Criminal 

Justice Act (1990), here in Ireland allows Gardai to take pubic hair, saliva, blood, 

urine and swabs in criminal cases. Many countries are investigating oral fluid 

analysis as an alternative to urine analysis to measure the level of impairment in the 

workplace and on the roadside.

A study by Tonnes et al., (2004), conducted in Germany using the Drager DrugTest® 

System, found that oral fluid correlated above 95% with serum levels for opiates. 

Persons found positive for opiate use in oral fluid were all deemed to be suffering 

from impairment of driving symptoms, as determined by a list of impairment 

symptoms given to Police officers. Bennet et al., (2003) conducted a study of opiate 

use in a British Treatment Centre and found a correlation of 91% between oral fluid 

and urine analysis. Barrett et al., (2001), found saliva analysis to correlate extremely 

well with urine analysis. Positive results showed 100% agreement, with negative 

results agreeing by 99%.
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4.1.4 Cut-off concentrations fo r drugs o f abuse in saliva

Currently, there are no cut-off levels established for levels of drug metabolites in 

saliva in Ireland. Most commercial-based tests work to the guidelines proposed by 

the Substance Abuse and Mental Health Service Administration (SAMSHA) for drug 

testing in oral fluid (Samyn e ta l., 2002). These guidelines have recently been revised 

to include oral fluid as a detection matrix for federal workplace drug testing. The 

proposed revisions to mandatory guidelines for federal workplace drug testing 

programs (April 2004), list cut-off concentrations of drugs o f abuse for screening and 

confirmatory tests as detailed in Table 4.1.1 and 4.1.2 (Federal Register, 2004).

For a laboratory to be certified to carry out analysis of oral fluid, the guidelines state 

that certain criteria must be met with regard to analysis of 3 performance test samples. 

The criteria for accreditation by Dept, of Health and Human Services (USA) are listed 

below.

(1) Have no false positive results

(2) Correctly identify and confirm at least 90% of the total drug challenges on the 3 

sets of performance test samples

(3) Correctly determine the quantitative values for at least 80% of the total drug 

challenges to be within ± 20 percent or ± 2 standard deviations of the calculated 

reference group mean

(4) Have no quantitative value on a drug concentration that differs by more than 50% 

from the calculated reference group mean

(5) For an individual drug, correctly detect and quantify at least 50 % of the total drug 

challenges

(6) Must not obtain any quantitative value on a validity test sample that differs by 

more than ± 50% from the calculated reference group means

(7) For qualitative validity test samples, must correctly report at least 80% of the 

challenges for each qualitative validity test sample over the 3 sets of performance test 

samples

(8) Must not report any sample as adulterated with a compound that is not present in 

the sample

(Adapted from the Federal Register, 2004).
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Table 4.1.1: Initial Test Cut-off Concentrations of Drugs of Abuse in Saliva

Drug (ng/ml of Saliva)

THC and metabolites 4

Opiate metabolites other than 6-MAM 40

Opiate metabolite 6-MAM 4

Amphetamines 51

Cocaine metabolites 20

MDMA 50

Table 4.1.2: Confirmatory Test Cut-off Concentrations o f  Drugs o f Abuse in Saliva

Drug (ng/ml of Saliva)

THC Parent drug 2

Cocaine (or benzoylecgonine) 8

Opiates:

Morphine 40

Codeine 40

6-Acetylmorphine 4

Phencyclidine 10

Amphetamines:

Amphetamine 50

Methamphetamines (must also contain amphetamine): 50

MDMA 50

MDA 50

MDEA 50

188



4.1.5 Composition and biochemistry o f saliva as a matrix fo r  analytical detection of  

illicit drug residues

Saliva is a dilute aqueous fluid (99%), containing electrolytes and small amounts of 

protein. The protein content of saliva is less than 1% that of plasma (Samyn et ah, 

1999). There is also a certain amount of cell debris from epithelial cells of the mouth 

and food residues present in saliva (Hold et ah, 1995). Salivary glands are fed by 

blood flow therefore any drug circulating in plasma must pass through the capillary 

wall, the basal membrane and the membrane of epithelial cells before entering saliva 

(Samyn et ah, 1999). This will determine the rate at which any drug enters saliva. 

Drugs may be transported into saliva by passive diffusion, active processes across a 

concentration gradient or by filtration through pores in the membrane. Low molecular 

weight substances such as electrolytes, some IgA and some drugs such as Lithium are 

actively excreted into saliva. Low molecular weight, polar molecules, such as ethanol 

and glycerol, enter the plasma by filtration (Kidwell et ah, 1998). Most drugs appear 

to enter saliva by passive diffusion across a concentration gradient. The concentration 

of free drug present in saliva is, therefore, dependant on the different chemical and 

physiological properties of the drug and saliva. Saliva has little protein binding 

capacity and for this reason, parental drugs are predominantly present as they are 

more lipophilic than their hydrophilic metabolites (Samyn el ah, 1999). Once 

transported to saliva they must have some degree of water solubility, however, to 

prevent them from diffusing back into the plasma. This generally occurs through an 

equilibrium ionisation process, determined by drug concentrations and salivary pH. 

The ratio of saliva to plasma concentrations of a drug is derived from the Henderson- 

Hasselbalch equation and the equation for mass-balance (Kidwell et ah, 1998):

pH = pKa + log [A']
[HA] Equation 4.14

[A] = [A ] + [HA] Equation 4.15

Where [HA] is the concentration of non-ionised drug, [A ] is the concentration of 

ionised drug and [A] is the total concentration of ionised and non-ionised drug.
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The total amount of drug in either form present in a biological matrix is therefore 

described by:

[A] = 1 + io(pH pKa)

[HA] Equation 4.16

The ratio of drug in saliva: plasma (S/P) can then be described by:

S = [ Asaljya] [HAptasma] = 1 + 1OQ”  saliva'^)

P [Apiasma][HAsaii%-a] 1 + 10 (pHpiaSim'pka) Equation 4.17

As only unbound drug can cross through cellular membranes, drugs bound to plasma 

and saliva proteins must be taken into account:

For an Acidic Drug:

S  =  1 +  1 Q ^n saliva' pKa) X Freeplasma

P 1 + 10 (pHpiasma ‘pKa) x Freesaiiva Equation 4.18

For a Basic Drug:
S = 1 + jQ(pka-pHsaliva) x Freeplasma

P 1 + 10 Miasma'pKa) x Freesaiiva Equation 4.19

The fraction of free drug in saliva is generally accepted to be 1, because the amount of 

protein in saliva is negligible, with respect to that of plasma (Kidwell et a l, 1998).

4.1.6 Salivary pH  and opiate detection

The normal pH of blood is 7.4, while that of saliva is generally between 5.6 and 7, 

which can increase to pH 8, with stimulation (Kidwell et a l, 1998). This means that 

the pH of saliva will affect the degree of ionisation and, therefore, the S/P ratio, 

especially for drugs with a pKa close to that of salivary pH. Opiates are weakly basic
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drugs and will have a S/P ratio of greater than 1. Small changes in the pH of saliva 

will affect the S/P ratio, the ratio decreasing, with increasing pH. The pH of saliva is 

determined by secretions o f the major salivary glands (parotid, submandibular and 

sublingual) and to a lesser extent by labial, buccal and palatal glands (Hold ei ah, 

1995). This makes the pH of saliva difficult to adulterate for test purposes, offering a 

major advantage over urinary analysis. Widely available products like ‘urine luck’, 

which contains pyridinium chlorochromate (PCC), may be used to adversely affect 

standard opiate recoveries from urine (Wu et al., 1999). The collection procedure of 

saliva samples can also be closely monitored, without the need to invade personal 

privacy, making external tampering more difficult. This makes saliva an ideal 

detection matrix.
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4.2 Results

4.2.1 Determination o f the affinity constant o f monomeric, dimeric and bifunctional

scFvs by ELISA

The conditions under which there was minimal disruption o f  the solution-phase 

equilibrium o f each antibody were first investigated. An indirect E L IS A  was carried 

out at various concentrations o f  antigen coatings, from 5 to 0.25 (ig/ml M 3G -O VA . 

Serial dilutions o f  each antibody, that exhibited a concentration-response relationship 

in the linear portion o f  the curve, were applied to E L IS A  plates coated with various 

concentrations o f  antigen and incubated for 10 , 15  and 30 mins, respectively, at room 

temperature. After incubation, the liquid from the wells was transferred to a second 

set o f  w ells coated with an identical concentration o f  antigen. Both sets o f  w ells were 

developed simultaneously. The constant concentration o f  antibody used for affinity 

analysis was chosen from the linear portion o f  this plot. Within the linear region o f 

each curve, the fraction o f  antibody retained by the coated antigen was calculated 

from the ratio o f  the slopes for each set o f  wells, (S 1-S 2/S 1), where Si is the slope 

obtained for the first set o f  coated wells and S 2 is the slope obtained for the second set 

o f  coated wells. I f  the amount o f  antibody retained on the first set o f wells was 

greater than 10% , the assay was repeated using either a decreased antigen coating or 

decreased incubation time, until the ratio o f  slopes differed by less than 10%

An indirect E L IS A  was carried out to construct a standard curve that could then be 

used to quantify the nominal concentration o f  free antibody that remains unsaturated 

at each antigen concentration. The standard curve o f  nominal concentration o f 

monomeric scFv versus absorbance is shown in Figure 4 .2 .1. This involved coating 

the plate with 0.25 Mg/ml M 3G -O V A . Nominal concentrations o f  antibody were then 

incubated for 10  minutes at room temperature before bound antibody was detected 

with secondary antibody. Figure 4.2.2 shows that under these conditions the 

displacement o f  monomeric scFv from solution phase equilibrium was 7.8%. The 

nominal concentration o f  antibody that remained bound in the antibody:antigen 

complex (V) at each concentration o f  antigen was then calculated from the standard 

curve (Figure 4 .2 .1) . The calculated nominal concentrations o f  free and bound
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monomeric scFv at each concentration of M3G and morphine are shown in Tables

4.2.1 and 4.2.2. A Klotz plot of 1/V versus l/[Ag] was then prepared (Figure 4.2.3 

and 4 .2 .4). This yielded a linear curve with a y-intercept of 1. The slope of this graph 

defines the equilibrium dissociation constant (KD) of the interaction between 

monomeric scFv and each target antigen. The equilibrium dissociation constant 

describing the interaction between monomeric scFv and M3G was determined to be 

3.125 x 10'9 M (Figure 4.2.3). The interaction between monomeric scFv and 

morphine was determined to have an equilibrium dissociation constant of 1.73 x 10'8 

M (Figure 4.2.4).

Affintiy studies were also carried out on the dimeric scFv. Plates were coated with 

0.5 fig/ml M3G-OVA and the antibody was incubated on the plate for 10 minutes at 

room temperature. Absorbance values at each nominal concentration of antibody 

were used to construct a standard curve (Figure 4.2.5). Under these conditions there 

was negligible disruption of the solution phase equilibrium (Figure 4.2.6). The 

calculated nominal concentrations of free and bound antibody at each concentration of 

M3G and morphine are shown in Table 4.2.3 and 4.2.5. From these values Klotz 

plots were constructed to describe each interaction. Dimeric scFv was determined to 

have a Kd of 2.4 x 10'8 M for M3G and 2.08 x 10 K M for morphine (Figure 4.2.7 and 

Figure 4.2.9). Completely unsaturated or monovalently bound antibody will be 

detected in the final indirect ELISA, as this antibody is bivalent in nature. This is not 

factored into the Klotz plot, leading to a possible overestimation of actual Kd 

(Fitzpatrick, 2001). Stevens, (1987), introduced a correction factor based on the 

binomial distribution theory to provide a ‘corrected’ concentration of complexed 

antibody for KD calculation. To take account of the bivalency of the scFv, (1 /V)1/2 is 

plotted against l/[Ag], to determine the ‘corrected’ equilibrium dissociation constant. 

‘Corrected’ concentrations o f free dimeric antibody are shown in Tables 4.2.4 and 

4.2.6. This correction factor yielded a Kd of 5.62 x 10'9 M for M3G, representing a 

four-fold increase in affinity and a Kd corrected to 7.5 x 10'9 M, for morphine 

(Figures 4.2.8 and 4.2.10).

Friguet analysis on the bifunctional scFv was carried out using the standard curve in 

Figure 4.2.11 to calculate the nominal concentration of free antibody (Friguet et al.,
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1985). As the antibody possessed an enzyme label, this binding interaction was 

monitored directly, without the use of a secondary antibody. Figure 4.2.12 proves that 

less than 5% of this antibody was displaced from solution phase equilibrium when the 

optimised coating concentration and antibody incubation period were employed (1 

Hg/ml M3G-OVA and a 15 minute incubation at room temperature). Nominal 

concentrations of free antibody at each antigen concentration were calculated from the 

standard curve. These values are shown in Tables 4.2.7 and 4.2.9. Klotz plots of 

bound antibody (1/V) versus concentration of antigen revealed an equilibrium 

dissociation constant of 3.63 x 10'8 M for M3G (Figure 4.2.13) and 3.61 x 10'8 M for 

morphine (Figure 4.2.15). When the bivalency of the antibody is taken into account 

and the ‘corrected’ concentration of free antibody calculated (Tables 4.2.8 and 

4.2.10), the Kd for these interactions were ‘corrected’ to 1.09 x 10'8 M (Figure 4.2.14) 

for M3G and 1.24 x 10‘8 M for morphine (Figure 4.2.16). A summary of the 

equilibrium dissociation constants determined for each antibody using ELISA analysis 

is shown in Table 4.2.12.
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y = 1.203X + 0.180

0  0 .2  0 .4  0 .6  0 .8  1 1.2

Nominal Antibody Concentration

Figure 4.2.1: Standard curve o f nominal antibody concentration o f monomeric scFv 

versus absorbance @ 450nm. Results shown are the average o f triplicate 

measurements ± standard deviation. The highest concentration o f antibody that lay 

within the linear region o f the curve was assigned a nominal antibody concentration 

o f  7  Serial dilutions up to a 1 in 128 dilution were prepared, corresponding to 1, 

0.5, 0.25, 0.125, 0.0615, 0.0313, 0.0156, 0.0078 and 0, respectively. The antibody 

dilutions were added to a plate coated with 0.25 ¡jg/ml M3G-OVA fo r 10 mins at 

room temperature. The incubation period was predetermined to ensure that minimal 

disruption o f the solution phase equilibrium, between antibody:antigen interaction, 

took place. Bound antibody was detected with a peroxidase-labelled anti-histidine 

antibody, followed by o-PD substrate. The linear plot was used to determine the 

bound fa c tio n  ° f  antibody present at equilibrium in the antigen mixtures.
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N om inal A ntibody C oncentration

Figure 4.2.2: Determination o f the percentage displacement o f monomeric scFv from  

solution phase equilibrium. Nominal antibody concentrations from  the linear range 

were applied to an ELISA plate coated with 0.25 jug/ml M3G-OVA fo r 10 mins at 

room temperature. After this time the liquid in the wells was transferred to a second 

set o f  identical coated wells, fo r  the same incubation period. The absorbance for  

each set o f  wells was monitored at 450nm. The fraction o f antibody retained on the 

coated-antigen in the first plate is deduced from the ratio (Slope 1- Slope2 /  Slope 1). 

In this case the amount o f  antibody retained on the coated suface represents 7.8% o f  

the total amount o f antibody incubated in the plate.
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Table 4.2.1: Calculation o f free antibody concentration. The nominal concentrations 

o f antibody were calculated with reference to the standard cun>e. Bound antibody 

was calculated to yield the values fo r  1/V. A plot o f l/[Ag] versus 1/V was linear. The

equilibrium dissociation constant (KD)  is defined by the slope o f this graph.

[M3G] mol/L 1/[M3G] L/mol A/AO Nominal Antibody 

Concentration

1/V

0 oo 1 0.845 00

6.25E-07 1.60E+06 0.090 0.082 0.998
3.13E-07 3.20E+06 0.097 0.088 1.005
1.56E-07 6.40E+06 0.119 0.108 1.028
7.81E-08 1.28E+07 0.131 0.119 1.041
3.90E-08 2.56E+07 0.130 0.102 1.150
1.95E-08 5.13E+07 0.166 0.129 1.199
9.75E-09 1.03E+08 0.236 0.184 1.310
4.88E-09 2.05E+08 0.381 0.297 1.614
2.44E-09 4.10E+08 0.566 0.442 2.306

O.OE+OO 1 .0 E + 0 8  2 .0 E + 0 8  3 .0 E + 0 8  4 .0 E + 0 8  5 .0 E + 0 8
1/[M 3G]

Figure 4.2.3: Determination o f the equilibrium dissociation constant fo r the

interaction between monomeric scFv and M3G by the method described by Friguet el 

al. (1985). A constant concentration o f  antibody, within the linear range, was 

incubated with various concentrations o f M3G and incubated overnight to reach 

equilibrium. The mixtures were added to an antigen-coated plate fo r  10 mins and the 

concentration o f  unbound antibody was determined using the standard curve 

constructed in Figure 4.2.1. The equilibrium dissociation constant fo r  the interaction 

between monomeric scFv and M iG  was determined to be 3.12 x 10'9 M.
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Table 4.2.2: Calculation o f free antibody concentration. The nominal concentrations 

o f antibody were calculated with reference to the standard curve. Bound antibody 

was calculated to yield the values fo r  1/V. A plot o f l/[Ag] versus 1/V was linear. The

equilibrium dissociation constant (KD) is defined by the slope o f this graph.

[Morphine]

mol/L

l/[Morphine]

L/mol

A/AO Nominal Antibody 

Concentration

1/V

0 CO 1 0.755 00

1.00E-05 1.00E+05 0.087 0.069 1.095
5.00E-06 2.00E+05 0.094 0.075 1.104
2.50E-06 4.00E+05 0.104 0.083 1.116
1.25E-06 8.00E+05 0.120 0.095 1.136
6.25E-07 1.60E+06 0.147 0.117 1.172
3.13E-07 3.20E+06 0.140 0.100 1.163
1.56E-07 6.40E+06 0.183 0.131 1.225
7.81E-08 1.28E+07 0.267 0.191 1.365
3.91E-08 2.56E+07 0.377 0.270 1.606
1.95E-08 5.12E+07 0.495 0.354 1.979

1/[M orphine]

Figure 4.2.4: Determination o f  equilibrium dissociation constant for the interaction 

between monomeric scFv and morphine by the method described by Friguet et al. 

(1985). A constant concentration o f  antibody, within the linear range, was incubated 

with various concentrations morphine and allowed to reach equilibrium overnight. 

The mixtures were added to an antigen-coated plate fo r  10 mins and the 

concentration o f unbound antibody was determined using the standard curve 

constructed in Figure 4.2.1. The equilibrium dissociation constant for the interaction 

between monomeric scFv and morphine was determined to be 1.73 x  10 8M.
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N om inal Antibody C oncentration

Figure 4.2.5: Standard curve o f nominal antibody concentration o f dimeric scFv 

versus absorbance @ 450nm. Results shown are the average o f triplicate 

measurements ± standard deviation. The highest concentration o f antibody that lay 

within the linear region o f  the curve was assigned a nominal antibody concentration 

o f  7  Serial dilutions up to 1 in 32 were prepared, corresponding to 1, 0.5, 0.25, 

0.125, 0.0615 0.0313, and 0, respectively. Each antibody dilution was added to an 

antigen-coated plate (0.5 ng/ml M3G-OVA) forlO mins at room temperature. The 

incubation period was predetermined to ensure that minimal disruption o f the 

solution phase equilibrium o f  the antibody:antigen interaction took place. Bound 

antibody was detected with a peroxidase-labelled anti-histidine antibody, followed by 

o-PD substrate. The linear plot was used to determine the bound fraction o f antibody 

present at equilibrium in the antigen mixtures.
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N om inal A ntibody C oncentration

Figure 4.2.6: Determination o f the percentage displacement o f dimeric scFv from  

solution phase equilibrium. Nominal antibody concentrations from the linear range 

were applied to an ELISA plate coated with 0.5 fjg/ml M3G-OVA fo r  10 mins at room 

temperature. After this time the liquid in the wells was transferred to a second set o f  

identical coated wells fo r  the same incubation period. The absorbance fo r  each set o f 

wells was monitored at 450nm. In this case the amount o f antibody retained on the 

coated antigen is negligible as the slope o f the second dataset is higher than that 

observed fo r  the first.

200



Table 4.2.3: Calculation o f nominalfree antibody concentration.

[M3G] mol/L 1/[M3G] L/mol A/AO Nominal Antibody 1/V

Concentration

0 00 1 0.657 oo

1.25E-06 8.00E+05 0.108 0.088 0.907
6.25E-07 1.60E+06 0.122 0.099 0.918
3.13E-07 3.20E+06 0.138 0.112 0.932
1.56E-07 6.40E+06 0.123 0.062 1.599
7.81E-08 1.28E+07 0.147 0.074 1.662
3.90E-08 2.56E+07 0.230 0.116 1.930
1.95E-08 5.13E+07 0.476 0.239 3.668
9.75E-09 1.03E+08 0.771 0.387 4.368
4.88E-09 2.05E+08 0.838 0.420 6.168
2.44E-09 4.10E+08 0.909 0.456 10.95

12 
11 
10 

9

8 
7

S' 6
5  

4  

3 

2 
1 
0

O.OE+OO 5 .0 E + 0 7  1 .0 E + 0 8  1 .5 E + 0 8  2 .0 E + 0 8  2 .5 E + 0 8  3  0 E + 0 8  3 .5 E + 0 8  4 .0 E + 0 8  4 .5 E + 0 8

1/[M3G]

Figure 4.2.7: Determination o f the equilibrium dissociation constant fo r  the

interaction between dimeric scFv and MSG by the method described by Friguet et al. 

(1985). A constant concentration o f antibody, within the linear range, was incubated 

with various concentrations o f  antigen until equilibrium was reached. The mixtures 

were added to an antigen-coated plate fo r  10 mins and the concentration o f unbound 

antibody was determined using the standard curve constructed in Figure 4.2.5. The 

equilibrium dissociation constant fo r  the interaction between dimeric scFv and M3G 

was determined to be 2.4 x  JO'8 M.
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Table 4.2.4: ‘Corrected' concentrations o f free antibody according to Stevens (1987).

[M3G] mol/L 1/[M3G] L/mol Nominal

Antibody

Concentration

1/V 1/Vm

0 oo 0.657 oo oo

1.25E-06 8.00E+05 0.088 0.907 0.952
6.25E-07 1.60E+06 0.099 0.918 0.958
3.13E-07 3.20E+06 0.112 0.932 0.965
1.56E-07 6.40E+06 0.062 1.599 1.265
7.81E-08 1.28E+07 0.074 1.662 1.289
3.90E-08 2.56E +07 0.116 1.930 1.389
1.95E-08 5.13E+07 0.239 3.668 1.915
9.75E-09 1.03E+08 0.387 4.368 2.090
4.88E-09 2.05E+08 0.420 6.168 2.483
2.44E-09 4.10E+08 0.4556 10.95 3.309

1/[M3G]

Figure 4.2.8: Friguet assay to determine the equilibrium dissociation constant o f  

dimeric scFv fo r  M3G using ‘corrected’ antibody concentrations described by Stevens 

(1987) to account fo r  the bivalent nature o f the molecule. The corrected value o f  KD 

was calculated to be 5.62 x I0 9 M, which represents over a four-fold increase in 

affinity
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Table 4.2.5: Calculation o f nominal free antibody concentration.

[Morphine]

mol/L

l/[Morphine]

L/mol

A/AO Nominal Antibody 

Concentration

1/V

0 oo 1 0.821 00

1.00E-05 1.00E+05 0.081 0.078 1.088
5.00E-06 2.00E+05 0.107 0.104 1.120
2.50E-06 4.00E+05 0.116 0.113 1.131
1.25E-06 8.00E+05 0.117 0.114 1.133
6.25E-07 1.60E+06 0.112 0.075 1.126
3.13E-07 3.20E+06 0.132 0.088 1.151
1.56E-07 6.40E+06 0.151 0.101 1.178
7.81E-08 1.28E+07 0.199 0.133 1.249
3.91E-08 2.56E+07 0.354 0.237 1.549
1.95E-08 5.12E+07 0.609 0.408 2.556
9.77E-09 1.02E+08 0.675 0.452 3.074

1/[M orphine]

Figure 4.2.9: Determination o f the equilibrium dissociation constant fo r  the

interaction between dimeric scFv and morphine by the method described by Friguet et 

al. (1985). A constant concentration o f antibody within the linear range was 

incubated with various concentrations o f morphine and incubated until equilibrium 

was reached. The mixtures were added to an cmtigen-coated plate fo r  10 mins and 

the concentration o f  unbound antibody was determined using the standard curve 

constructed in Figure 4.2.5. The equilibrium dissociation constant fo r  the interaction 

between dimeric scFv and morphine was determined to be 2.08 x 10'8 M.
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Table 4.2.6: ‘Corrected ’ concentration of free antibody according to Stevens (1987)

[Morphine]

mol/L

1/[Morphine] 

L/mol

Nominal

Antibody

Concentration

1/V 1/V1'2

0 00 0.821 00 00
1.00E-05 1.00E+05 0.078 1.088 1.042
5.00E-06 2.00E+05 0.104 1.120 1.058
2.50E-06 4.00E+05 0.113 1.131 1.063
1.25E-06 8.00E+05 0.114 1.133 1.064
6.25E-07 1.60E+06 0.075 1.126 1.061
3.13E-07 3.20E+06 0.088 1.151 1.073
1.56E-07 6.40E+06 0.101 1.178 1.085
7.81E-08 1.28E+07 0.133 1.249 1.117
3.91E-08 2.56E+07 0.237 1.549 1.245
1.95E-08 5.12E+07 0.408 2.556 1.599
9.77E-09 1.02E+08 0.452 3.074 1.753

1/[M orphine]

Figure 4.2.10: Friguet assay to determine to determine the equilibrium dissociation 

constant o f dimeric scFv fo r  morphine using ‘corrected’ antibody concentrations 

described by Stevens (1987) to account fo r  the bivalent nature o f  the molecule. The 

corrected value o f KD was calculated to be 7.5 x 10~9 M, which represents over a two­

fo ld  increase in affinity.
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N om in a l A n tib od y  C o n cen tra tio n

Figure 4.2.11: Standard curve o f nominal antibody concentration o f dimeric enzyme- 

labelled scFv versus absorbance @ 405nm. Results shown are the average o f 

triplicate measurements ± standard deviation. The highest concentration o f antibody 

that lay within the linear region o f the curve was assigned a nominal antibody 

concentration o f ‘1 Serial dilutions up to 1 in 16 were prepared, corresponding to 

1, 0.5, 0.25, 0.125, 0.0615, and 0, respectively. Each antibody dilution was added to 

an antigen-coated plate (1 /Lig/ml M3G-OVA) fo r l5  mins at room temperature. The 

incubation period was predetermined to ensure that minimal disruption o f the 

solution phase equilibrium took place. The linear plot was used to determine the 

bound fraction o f antibody present at equilibrium in the antigen mixtures.
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N o m in a l A n tib o d y  c o n c e n tr a t io n

Figure 4.2.12: Determination o f the percentage displacement o f the bifunctional 

scFv from  solution phase equilibrium. Nominal antibody concentrations from the 

linear range were applied to an ELISA plate coated with 1 fj,g/ml M3G-OVA fo r  15 

mins at room temperature. After this time the liquid in the wells was transferred to a 

second set o f  identical coated wells fo r  the same incubation time. The absorbance for  

each set o f wells was monitored at 405nm. The fraction o f antibody retained on the 

coated antigen in the first plate is deduced from the ratio (Slope 1 - Slope2 /Slope 1). 

In this case the amount o f antibody retained on the coated antigen represents 4.8% o f 

the total amount o f antibody incubated in the plate.
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Table 4.2.7: Determination of nominal free antibody concentration

[M3G] mol/L 1/[M3G] L/mol A/AO Nominal

Antibody

Concentration

1/V

0 oo 1 1.183 oo
1.00E-06 1.00E+06 0.138 0.085 1.077
5.00E-07 2.00E+06 0.148 0.097 1.089
2.50E-07 4.00E+06 0.157 0.109 1.101
1.25E-07 8.00E+06 0.184 0.143 1.138
6.25E-08 1.60E+07 0.283 0.269 1.295
3.13E-08 3.20E+07 0.522 0.574 1.941
1.56E-08 6.40E+07 0.749 0.863 3.699
7.81E-09 1.28E+08 0.829 0.966 5.441

1/[M3G]

Figure 4.2.13: Determination o f the equilibrium dissociation constant fo r  the

interaction between bifunctional scFv and M3G by the method described by Friguet et 

al. (1985). A constant concentration o f antibody, within the linear range, was 

incubated with various concentrations o f  M3G and incubated until equilibrium was 

reached. The mixtures were added to an antigen-coated plate fo r  15 mins and the 

concentration o f unbound antibody was determined using the standard curve 

constructed in Figure 4.2.11. The equilibrium dissociation constant fo r  the 

interaction between bifunctional scFv and M3G was determined to be 3.63 x  I f f8 M.
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Table 4.2.8: 'Corrected' antibody concentration according to Stevens (1987).

[M3G] mol/L 1/[M3G] L/mol Nominal Antibody 

Concentration

1/V (1/V)“

0 00 1.183 oo 00

1.00E-06 1.00E+06 0.085 1.077 1.038
5.00E-07 2.00E+06 0.097 1.089 1.044
2.50E-07 4.00E+06 0.109 1.101 1.049
1.25E-07 8.00E+06 0.143 1.138 1.067
6.25E-08 1.60E+07 0.269 1.295 1.138
3.13E-08 3.20E+07 0.574 1.941 1.393
1.56E-08 6.40E+07 0.863 3.699 1.923
7.81E-09 1.28E+08 0.966 5.441 2.333

1/IM3G]

Figure 4.2.14: Friguet assay to determine to determine the equilibrium dissociation 

constant o f  bifunctional scFv fo r  M3G using ‘corrected’ antibody concentrations 

described by Stevens (1987) to account fo r  the bivalent nature o f the molecule. The 

corrected value o f KD was calculated to be 1.09 x  10'8 M, which represents over a 

three-fold increase in affinity.
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Table 4.2.9: Determination of free antibody Concentration.

[Morphine]
mol/L

l/[Morphine]

L/mol

A7A0 Nominal

Antibody
Concentration

1/V

0 00 1 1.245 00
1.00E-06 1.00E+06 0.201693 0.178 1.167
5.00E-07 2.00E+06 0.230842 0.216 1.211
2.50E-07 4.00E+06 0.261401 0.257 1.261
1.25E-07 8.00E+06 0.328632 0.347 1.387
6.25E-08 1.60E+07 0.433004 0.487 1.642
3.13E-08 3.20E+07 0.603197 0.714 2.347
1.56E-08 6.40E+07 0.726845 0.880 3.409

1/[M orphine]

Figure 4.2.15: Determination o f the equilibrium dissociation constant for the

interaction between bifunctional scFv and morphine by the method described by 

Friguet et al. (1985). A constant concentration o f antibody within the linear range 

was incubated with various concentrations o f  morphine and incubated until 

equilibrium was reached. The mixtures were added to an antigen-coated plate fo r  15 

mins and the concentration o f  unbound antibody was determined using the standard 

curve constructed in Figure 4.2.11. The equilibrium dissociation constant fo r  the 

interaction between bifunctional scFv and morphine was determined to be 3.61 x 10 8 

M.

209



Table 4.2.10: ‘Corrected’ concentrations o f  free antibody according to Stevens

(1987)

[Morphine]
mol/L

l/[Morphine]

L/mol

Nominal

Antibody
Concentration

1/V (1/V)m

0 00 1.245 00 00

1.00E-06 1.00E+06 0.178 1.167 1.080

5.00E-07 2.00E+06 0.216 1.211 1.100

2.50E-07 4.00E+06 0.257 1.261 1.123

1.25E-07 8.00E+06 0.347 1.387 1.178

6.25E-08 1.60E+07 0.487 1.642 1.282

3.13E-08 3.20E+07 0.714 2.347 1.532

1.56E-08 6.40E+07 0.880 3.409 1.846

1/[Morphine]

Figure 4.2.16: Friguet assay to determine to determine the equilibrium dissociation 

constant o f bifunctional scFv fo r  morphine using ‘corrected’ antibody concentrations 

described by Stevens (1987) to account fo r  the bivalent nature o f the molecule. The 

corrected value o f  Kd was calculated to be 1.24 x I f f8 M, which represents a three­

fo ld  increase in affinity.
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4.2.2 Solution phase affinity determination by BIAcore analysis

The first requirement for measuring affinity constants using BIAcore technology is 

that the antibody is specific for the M3G moiety o f the coated sensor chip surface. 

Purified scFv was injected over a ‘capped’ dextran surface, an OVA-coated surface 

and a M3G-OVA-coated surface. The antibody was shown to be specific for the M3G 

moiety of the sensor chip surface (Figure 4.2.17).

Immobilisation of the M3G-OVA chip was carried out as described in Section 2.7.2. 

A dextran-coated sensor chip was activated with EDC/NHS and approximately 8,000 

response units of M3G-OVA was immobilised on the chip surface. Known molar 

concentrations of anti-M3G scFvs were serially diluted and passed over an M3G- 

OVA-coated sensor chip at a flow rate of 5 ul/min to construct a standard curve of 

antibody concentration versus response units observed. The surface was regenerated 

between injections with a 1-minute pulse of 10 mM NaOH. A standard curve of 

antibody concentration versus response units observed was prepared to quantify free, 

uncomplexed antibody. A known concentration of antibody was then mixed with 

varying concentrations of antigen and allowed to reach equilibrium at 37°C for 2 

hours. Each mixture was analysed for uncomplexed antibody by passing 10 ^1 of the 

equilibrated sample over an M3G-OVA coated surface. The concentration of free 

antibody was quantified from the standard calibration curve. The concentration of 

free antibody was plotted against the concentration of antigen. A solution affinity fit, 

described in equation 4.11, was applied to the dataset using BIAevaluation software.

Response units observed at each concentration of monomeric and dimeric scFv were 

used to construct two standard curves (Figures 4.2.18 and 4.2.21). Free 

concentrations of each antibody were calculated from the respective graphs. The 

solution affinity fit for monomeric scFv yielded a Kd value of 1.79 x 10~8 M ± 1.85 x 

10'9 M for its interaction with M3G (Figure 4.2.19), and 1.01 x 10"7 M ± 1.07 x 10'8 

M for its interaction with morphine (Figure 4.2.20).

Dimeric scFv, although bivalent in nature, was also fitted with a monovalent model, 

as the dataset could not be defined using the ‘corrected’ bivalent model described by
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Piehler et al., (1997). It has previously been observed that bivalent molecules do not 

necessarily behave in a bivalent manner, under the conditions used for analysis 

(Quinn and O’Kennedy, 2001). It can only be assumed that the binding of the dimeric 

antibody lies somewhere between a monovalent and bivalent interaction. This has an 

effect on the fitting of the solution affinity model. A comparison of Figures 4.2.22 

and 4.2.23 show that the effect of this monovalent model is more pronounced for the 

interaction with M3G, as it yields a poor global fit. Dimeric scFv was shown to have 

an equilibrium dissociation constant of 1.09 x 10'8 M ± 2.97 x 10'9 M for M3G 

(Figure 4.2.22) and 1.12 x 10'7 M ± 2.98 x 10'8 M for morphine (Figure 4.2.23). A 

summary of the equilibrium dissociation constants determined using solution phase 

BIAcore analysis is shown in Table 4.2.12.

As discussed in Chapter 3, the bifunctional scFv could not be successfully purified. 

This meant that the actual concentration of scFv could not be determined. An 

accurate determination of antibody concentration is a pre-requisite for solution phase 

analysis using BIAcore. For this reason no analysis was carried out on the 

bifunctional scFv.
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Figure 4.2.17: Overlay plot demonstrating binding o f lMAC-purified monomeric scFv 

to immobilised M3G - OVA, OVA and a 'capped' dextran surface. This resulted in 

negligible binding to the control OVA (- ) and dextran surfaces ( ). However, 200 

response units were observed to hind to the immobilised M3G-0VA ( — ) surface. 

This indicates that the scFv is specific to the M3G portion o f the conjugate.
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Figure 4.2.18: Standard Curve showing response o f monomeric scFv versus 

concentration, performed on BIAcore. Serial dilutions o f known concentrations o f  

antibody were passed over an M3G-OVA-coated surface fo r  2 mins at a flow rate o f 5 

jul per minute. A standard curve o f  response units observed versus antibody 

concentration was constructed to calculate the concentration o f  free antibody present 

in each o f the equilibrium mixtures. Results shown are the average o f triplicate 

measurements ± standard deviation.

y = 3E+09X + 20.3 
R; = 0.996
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Figure 4.2.19: Determination o f overall solution equilibrium affinity constant 

between monomeric scFv and M3G on an M3G-OVA -coated surface. The results 

show M3G concentration (M) plotted against the calculated values o f free antibody 

concentration (M). A 1:1 interaction model was used to describe the interaction and 

fitted to the data set using BJAevalution software. The equilibrium dissociation 

constant ± standard error was derived to be 1.79 x  10s M  ± 1.85 x 1Q'J M.
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Figure 4.2.20: Determination o f overall solution equilibrium affinity constant 

between monomeric scFv and morphine on an M SG-0 VA -coated surface. The results 

show morphine concentration (M) plotted against the calculated values o f free 

antibody concentration (M). A 1:1 interaction model was used to describe the 

interaction and fitted to the data set using BlAevalution software. The equilibrium 

dissociation constant ± standard error was derived to be 1.01 x 10' M  ± 1.07 x 10 '

.01 X
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Figure 4.2.21: Standard Curve illustrating response observed at various 

concentrations o f dimeric scFv, performed on BIAcore. Serial dilutions o f known 

concentrations o f  antibody were passed over an M3G-OVA-coated surface for 2 mins 

at a flow rate o f 5 p i per minute. A standard curve o f  response units observed versus 

antibody concentration was constructed to calculate the concentration o f free 

antibody present at equilibrium. Results shown are the average o f  triplicate 

measurements t standard deviation.
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Figure 4.2.22: Determination o f overall solution equilibrium affinity constant 

between dimeric scFv andM 3G  on an M3G-OVA coated surface. The results show 

M3G concentration (M) plotted against the calculated values o f free antibody 

concentration (M). A 1:1 interaction model was used to describe the interaction and 

fitted  to the data set using BIAevalution software. The equilibrium dissociation 

constant ± standard error was derived to be 1.09 x 10'H M  + 2.97 x  10'9 M. The global 

f i t  provided by the model yielded a poor fit. This is due to the bivalency o f the 

antibody. It can only be assumed that the binding interaction lies somewhere between 

that o f a monovalent and bivalent interaction.
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Figure 4.2.23: Determination o f overall solution equilibrium affinity constant 

between dimeric scFv and morphine on an M 3G-0 VA -coated surface. The results 

show morphine concentration (M) plotted against the calculated values o f free 

antibody concentration (M). A 1:1 interaction model was used to describe the

interaction and fitted  to the data set using BIAevalution software. The equilibrium
/ 8dissociation constant ± standard error way derived to be 1.12 x 10' M  ± 2.98 x 1(T

219



Table 4.2.11: Equilibrium dissociation constants, KD, as determined by the method o f 

Friguet et al., (1985) for the interaction between monomeric, dimeric and bifunctional 

scFv, and target antigens, M3G and morphine.

Kd for M3G Corrected Kd 

for M3 G

Kd for 

Morphine

Corrected Kd 

for Morphine

Monomeric scFv 

Dimeric scFv 

Bifuctional scFv

3.12 x 10'9 M 

2.40 x 10"8 M 

3 .63 x 10"8 M

Not Applicable 

5.62 x 10"9 M 

1.09 x 10'9 M

1.73 x 10'8 M 

2.08 x 10'8 M 

3.61 x 10'8M

Not Applicable 

7.50 10'9M 

1.24 x 10"8 M

Table 4.2.12: Equilibrium dissociation constants, KD, as determined by solution 

phase analysis on BlAcore, describing the interaction between monomeric and 

dimeric, and target antigens, M3G and morphine.

Kd for M3G Kd for Morphine

Monomeric scFv 

Dimeric scFv

1.79 x lO '8M ±  1.85 x10 '9M 

1.09 x  10'8M ±  2.97 x  10'9M

1.01 x 10‘7M ± 1.07 x 10'8M 

1.12 x  10'7M ±  2.98 x  10'8M

220



4.2.3 Development o f an ELISA-baseil assay fo r morphine in saliva

The cross reactivity potential and high affinity of monomeric scFv for morphine was 

exploited in a case study carried out to determine the feasibility of using morphine 

levels present in saliva to indicate recent heroin use. As the level of saliva production 

is depleted in drug users, it was decided to minimise the sample volume required for 

analysis (Fanning, 2002). This was chosen as an alternative to sample dilution as this 

introduces further errors into the analysis. Concerns existed that salivary morphine 

concentrations could be extremely low (Cone et al., 1993). Therefore, sample 

dilution would decrease the probability of successful identification of drug use.

In order to assess any possible matrix effects of saliva, a competitive ELISA assay 

was first carried out in PBS. The assay was carried out in exactly the same manner as 

described in Chapter 3, using morphine as the standard free analyte. The minimum 

sample volume required for analysis was determined to be 25 pi, as saliva was to be 

the final detection matrix. The assay was repeated over 5 separate days and the 

relationship between normalised absorbance at 450nm (A/AO) and free morphine 

concentration is plotted in Figure 4.2.24. The mean absorbance values, standard 

deviations, coefficients of variation and percentage recoveries for the assay are shown 

in Table 4.2.13. This proves that a robust competitive ELISA for free morphine could 

be developed in an end sample volume of as little as 25 p i

An indirect checkerboard was performed to determine the optimal conjugate coating 

and antibody dilution for use in saliva. Optimised parameters included coating with 

3.125 (ig/ml of M3G-OVA conjugate and a 1 in 60 dilution of scFv. A competitive 

ELISA was carried out, as previously described in Chapter 3, with the exception of 

using 25 fil of ‘spiked saliva sample’, assayed with 25 p.1 of scFv. A calibration 

curve was constructed by dividing the mean absorbance response obtained at each 

morphine concentration (A) by the absorbance response in the presence of zero 

analyte (AO). Normalised absorbance values (A/AO) were plotted against log of 

morphine concentration to generate a calibration curve. The relationship between 

normalised absorbance at 450nm (A/AO) and concentration of free morphine in saliva 

samples is shown in Figure 4.2.25. The values shown represent an inter-day assay,
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where five replicates of each sample were performed on five separate days. The mean 

absorbance values, standard deviations, coefficients of variation and percentage 

recoveries for the assay are shown in Table 4.2.14. This gives an indication of the 

robustness of the assay, as saliva samples from different donors were used on each 

occasion. The range of detection for the assay was from 6 to 1,563 ng/ml in saliva, 

with a least detectable dose or LDD of 12 ng/ml. The percentage recovery within this 

range was between -  8% and + 13%. The least detectable dose or LDD was 

determined to be the concentration of morphine that inhibited 10% of antibody 

binding (Hennion and Barcelo, 1998). This was chosen over the limit of 75% to 

125% percentage recovery, set by Findlay et al. (2000), as it was thought that upper 

and lower limits of quantification would be more accurate if they did not fall within 

the asymptotic regions of the curve.

222



M orphine C oncentration  (ng/m l)

0.02 

0 .0 1 5  

0.01 

5 e -3  

§ 0 -g
$  -5 e -3  q:

- 0.01

-0 .0 1 5

- 0.02
1 10 100

M orphine C oncentration  (ng/m l)

1000 10000

Figure 4.2.24: Inter-day ELISA assay using pAK 400 monomeric scFv to detect free 

morphine in PBS. M3G-OVA was coated at 3.125 ¡jg/ml and a 25 ¡A o f a 1 in 60 

dilution o f scFv was used to assay 25 fjl o f morphine standards in PBS. Bound 

antibody was detected using M l monoclonal anti-flag antibody, followed by a 

peroxidase-labelled anti-mouse antibody and visualized using o-PD. Absorbance was 

read at 450nm and related to morphine concentration using a 4-parameter logistic 

model that ranged from 6.1 ng/ml to 1,562.5 ng/ml. The least detectable morphine 

concentration that led to 10% inhibition o f antibody binding was shown to be 20 

ng/ml.
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Table 4.2.13: Inter-day assay coefficients o f variation fo r  the detection o f free 

morphine using the monomeric scFv. Five sets o f  nine standards were assayed over 

five different days and the C. V ’s were calculated as the standard deviation (S.D.) 

expressed as a percentage o f  the mean values fo r  each standard. Percentage 

recovery was calculated from the four-parameter model produced using 

BIAevaluation software.

Concentration

(ng/ml)

A/AO ± SD % CV Back calculated 

concentration (ng/ml)

% Recovery

1,562.50 0.138 ±0.007 5.08% 1,428.78 91.44%

781.25 0.171 ±0.012 5.70% 859.76 110.05%

390.63 0.259 ±0.025 5.52% 413.59 105.88%

195.31 0.431 ±0.041 9.61% 183.48 93.94%

97.66 0.583 ±0.053 9.17% 104.82 107.34%

48.83 0.769 ± 0.074 9.53% 49.74 101.88%

24.41 0.886 ±0.049 9.45% 24.07 101.17%

12.21 0.958 ±0.055 7.04% 11.37 93.14%

6.10 0.967 ± 0.049 5.07% 8.46 138.61%
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Figure 4.2.25: Inter-day ELISA assay using pAK 400 monomeric scFv to detect free

morphine in saliva. M3G-OVA was coated at 3.125 /ig/ml and a 25 fil o f a 1 in 60

dilution o f  scFv was used to assay 25 fjl o f saliva ‘spiked’ with morphine. Bound

antibody was detected using M l monoclonal anti-flag antibody, followed by a

peroxidase-labelled anti-mouse antibody and visualized using o-PD. Absorbance was

read at 450nm cmd related to morphine concentration using a 4-parameter logistic

model that ranged from 6.1 ng/ml to 1,562.5 ng/ml. The least detectable morphine

concentration that led to 10% inhibition o f antibody binding was shown to be 12

ng/ml.
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Table 4.2.14: Inter-day assay coefficients o f variation fo r  the detection o f free 

morphine in saliva using the monomeric scFv. Five sets o f nine standards were 

assayed over five different days and the C. V 's  were calculated as the standard 

deviation (S.D.) expressed as a percentage o f the mean values for each standard. 

Percentage recovery was calculated from  the four-parameter model produced using 

BIAevaluation software.

Morphine

Concentration

(ng/ml)

A/AO ± S.D. % CV Back calculated 

concentration (ng/ml)

% Recovery

1,562.50 0.130 ± 0.012 8.93% 1,443.94 92.43%

781.25 0.156 ±0.014 9.19% 882.42 112.95%

390.63 0.235 ±0.021 9.00% 392.36 100.44%

195.31 0.345 ±0.018 5.08% 203.37 104.13%

97.66 0.529 ±0.030 5.71% 92.84 95.07%

48.83 0.674 ± 0.027 4.05% 50.95 104.34%

24.41 0.812 ±0.011 1.39% 24.60 100.76%

12.21 0.896 ± 0.037 4.18% 12.08 98.96%

6.10 0.939 ±0.016 1.72% 5.96 97.65%
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4.2,4 Analysis o f  saliva samples from drug users

A pilot study was carried out to determine the feasibility of using morphine levels in 

present in saliva to indicate recent heroin use. The study involved testing a prototype 

saliva collection device obtained from Trinity Biotech to collect saliva samples from 

patients attending the Trinity Court Drug Treatment Centre, Pearse St, Dublin 2. The 

device consisted of a ‘cotton wool-like’ material that was used to absorb the sample 

and a plastic plunger that was used to extract the liquid. Clients that participated in 

the study were all thought to have a high probability of recent drug use. This was 

identified by staff at the Centre through past experience of the patients’ behaviour and 

routine urine analysis. Patients were invited to talk about their experiences with 

screening for drug use, methods of sample collection and biological matrices used for 

analysis. All patients expressed a strong dislike of giving urine samples. Many 

experienced difficulty with being asked to urinate on demand and felt that sample 

collection posed an invasion of privacy. All patients interviewed expressed a more 

favourable attitude to giving a saliva sample for monitoring.

Participation in the study was voluntary for all patients and written consent was 

obtained prior to any sample collection (Appendix 1A). All patients, with the 

exception of patient 6, were on methadone replacement therapy, consisting of 

differing methadone dosages. Patients were asked for a brief history of their recent 

drug use throughout the last week. This was carried out in the absence of Clinic 

personnel to encourage patients to fully disclose any recent drug use. This 

confidentiality was found to be important. Patients were unwilling to divulge this 

type of information in the presence of a nurse as it could affect their dosage of 

methadone given in the rehabilitation program, if they were known to have relapsed. 

Patients with a higher risk of relapse were put on a low dose program, while patients 

who had been ‘clean’ from drugs for a longer period were on a higher dose of 

methadone. Patients ‘self-confessed’ recent drug use is outlined in Table 4.2.15.

All analysis was covered by a confidentiality agreement, where samples were referred 

to using a system of a number and initial for sample labelling. Patients were asked to 

chew on the ‘cotton-wool-like material’ for a couple of minutes. Once the material
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was saturated, it was inserted into the plunger device and extracted. All patients, with 

the exception of patient 8, were willing to use the prototype collection device. Patient 

8 was put off by the texture of the ‘cotton wool-like material’ and instead opted to 

provide a spit sample. This however, proved unsuitable for analysis. Volumes of 

saliva provided by patients varied from 1.8 mis for patient 1 to 25 |il for patient 6. It 

was clearly evident that the ability to provide larger sample volumes was diminished 

through increased drug abuse. Laboratory analysis was carried out in DCU, as 

described in Section 2.5.12.4, with each sample being tested in triplicate. Results 

shown in Table 4.2.16 illustrate that appreciable concentrations of morphine were 

present in the saliva of all patients tested.
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Table 4.2.15: Summary o f interviews with patients tested regarding their recent drug 

use history

Patient

Number

Program Recent Drug Use Medications

1 (A-D) Rehab-High dose 

methadone

Heroin: within 5 days

Benzodiazepines

Cannabis: smoked with 24 hours

Methadone

2 (S-C) Low dose Heroin: within 15-20 mins Methadone

methadone Diazepam: (lOmgs x 20) prior to 

visit

Dalmane: (30 mgs x 10) prior to 

visit

Zimovane

(Benzodiazepine)

3 (F-W) Low dose 

methadone

Heroin: within 24 hours 

Benzodiazepines: within 24 

hours

Methadone

4 (JMK) Low dose Heroin: within 24-48 hours Methadone

methadone Cannabis: within 24 hours Valium

5 (JOD) Low dose Heroin: within 24 hours Methadone

methadone Cannabis: within 24 hours Valium

6 (R-H) New client; 

no program

Heroin, within hours 

DF118’s (dihydrocodeine): 

within minutes

7 (AOR) Low dose 

methadone

Heroin: within 48hours Methadone

8 (A-D) Low dose Heroin: within 24 hours Methadone

methadone Cannabis . smoked with 24 hours Stillnox

Valium

Benzodiazepines
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Table 4.2.16: Levels o f  morphine detected in saliva samples obtained from client 

attending a drug rehabilitation programme in Trinity Court Drug Treatment Centre.

Sample Assayed A/AO Back Calculated M orphine 

Concentration (ng/ml)

% C.V.

Patient 1 Neat 0.732 38.89 20.18%

Patient 2 Neat 0.253 340.70 0.70%

Patient 3 1 in 20 0.201 10,102.88 3.10%

Patient 4 Neat 0.826 22.72 43.56%

Patient 5 I in 10 0.693 466.29 2.06%

Patient 6 1 in 50 0.167 36,982.25 8.64%

Patient 7 ! in 10 0.647 571.36 2.88%
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4.2.5 Development o f  a BlAcore-based assay using monomeric scFv fo r  Morphine 

in saliva

4.2.5.1 Preconcentration studies

In order to optimise immobilisation of hapten-carrier to the sensor chip surface, a pre­

concentration step is necessary to identify the optimal pH conditions for 

immobilisation. At pH values above 3, the carboxymethylated surface of the CM5 

sensor chip is negatively charged. For efficient immobilisation, the pH of the ligand 

should possess a net positive charge in order to maximise electrostatic interactions. 

This is achieved by using a buffer with a pH below the pi of the ligand to be 

immobilised.

Preconcentration studies involved preparing solutions o f 100 (ig/ml hapten-protein 

conjugate in 10 mM sodium acetate solution at a range of varying pHs. Sodium 

acetate buffer was chosen due to its low ionic strength so as to maximise ionic 

interactions. These solutions were then passed over an underivatised chip surface and 

the amount of electrostatic interaction monitored. The pH, which gave the highest 

degree of electrostatic interaction, i.e. highest binding, was chosen to perform 

immobilisations. The optimal pH for immobilisation was determined to be pH 4.9, as 

shown in Figure 4.2.26.

4.2.5.2 Immobilisation ofM3G-OVA

The immobilisation of M3G-OVA was carried out as described in Section 2.7.2. A 

solution of EDC/NHS was passed over the sensor chip surface to activate the carboxyl 

groups of the dextran layer. M3G-OVA, at a concentration of 100 jig/ml in 10 mM 

sodium acetate, pH 4.9 was then passed over the activated surface in random order for 

40 mins, at a flow rate of 2 (j,l per minute. The activated NHS esters on the chip 

surface react with the amine groups on the M3G conjugate, producing an 

immobilisation profile as shown in Figure 4.2.27. NHS esters were then deactivated
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using a solution of 1 M ethanolamine, pH 8.5, to block any unreacted sites. This 

process is known as ‘capping’.

4.2.5.3 Regeneration conditions

Regeneration of the sensor chip surface is essential if  it is to be used repeatedly in an 

assay format. All bound analyte must be removed without damaging the coating on 

the sensor chip surface. Regeneration conditions must be optimised to achieve the 

maximum number of regeneration cycles from one surface. This is done to calculate 

the reproducibility of the surface but also to minimise the number of chips used for an 

assay and therefore the expense involved. For this reason, the least stringent 

regeneration solution that is sufficiently strong enough to remove all bound analyte is 

chosen to maximise the life of the sensor chip, while ensuring reproducibility.

20 |j,l of a 1 in 400 dilution of monomeric scFv, diluted in HBS, was injected over the 

chip surface; this was followed by a 1-minute pulse with 10 mM NaOH. This 

regeneration solution proved adequate to remove all bound scFv from the surface. 

The surface could be regenerated up to 50 times without any significant loss in 

antibody binding activity (Figure 4.2.28).
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Figure 4.2.26: Preconcentration o f  M3G-OVA conjugate onto the surface o f a CM-5 

dextran chip. Solutions o f  ¡00 /jg/ml o f M3G-OVA in JO mM acetate buffer at a 

range o f pH from 3.9 to 5.0 were passed over the same unactivated chip surface at 2 

m I'm in fo r  2 min. The optimal pH  fo r immobilisation was determined to he pH 4.9.

233



0 * .........................
0  4 0 0  8 0 0  12 0 0  1 6 0 0  2 0 0 0  2 4 0 0  2 8 0 0  3 2 0 0  3 6 0 0  4 0 0 0

Tim e (se c s )

Figure 4.2.27: Immobilisation o f 100 /.ig/ml M3G-OVA in 10 mM sodium acetate 

buffer, pH  4.9. The dextran surface is activated with EDC/NHS. 100 pg/ml ofM3G- 

OVA in 10 mM sodium acetate, pH  4.9, is passed over the activated surface, fo r  40 

mins, at a flow rate o f  2 fjl per minute. The surface is theft capped using 1 M  

ethanolamine, p H  8.5, to block any unreacted sites. Approximately 6,500 response 

units o f  conjugate binding were recorded.
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Figure 4.2.28: Typical regeneration profile fo r  approximately 50 cycles o f  a 4-minute 

binding pulse o f purified monomeric scFv to the surface o f a chip immobilised with 

M3G- OVA. A 1 in 400 dilution o f antibody was used and the surface regenerated 

with a 1-minute pulse o f  10 mM  NaOH. The ligand binding capacity was found to be 

variable fo r  the first five regenerations, fo r  this reason, the surface was regenerated 

five times before use in an assay.
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4.2.5.4 Determination o f the range o f detection o f morphine in HBS buffer using a 

BIAcore inhibition assay format

In order to investigate any possible matrix effects of saliva on an optical biosensor, 

such as BIAcore, a preliminary assay was carried out to determine the detection range 

o f the monomeric scFv for morphine in HBS buffer. Varying concentrations of 

morphine ranging from 1562,500 pg/ml to 763 pg/ml were prepared in HBS. Each 

concentration of morphine was incubated with an equal volume of the monomeric 

scFv diluted to 1/200 (to ensure a final dilution of 1/400) and allowed to equilibrate 

for 30 min at 37°C. 20 (j.1 of equilibrated samples was injected over the sensor chip 

surface, at a flow rate of 5 fil per minute, in random order. Each sample was analysed 

in triplicate, with a 1-minute injection pulse of 10 mM NaOH to regenerate the 

surface between each injection.

The inhibition assay format employed proved to be more sensitive than ELISA for the 

detection of morphine with an assay range of 382 to 781,250 pg/ml achieved in HBS. 

This represents a 20-fold increase in assay sensitivity. The assay was repeated using 3 

replicates o f each standard over one day for intra-day variability studies and using 

three replicates of each standard over three days for inter-day variability studies 

(Figure 4.2.29). CV’s for both assays were below the required margins of 10 %. 

Average response units ± standard deviation, % C.V.’s and % recoveries for the inter­

day assay, as shown in Table 4.2.17.
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Figure 4.2.29: Inter-day assay curve fo r  inhibition assay fo r  free morphine in PBS 

solution using monomeric scFv antibody. Three replicates o f  each standard were 

analysed on three separate days. C V ’s were all below 10%. M3G-OVA was 

immobilised on the sensor chip surface. The range o f detection was found to be from

381.5 to 781,250 pg/ml. The binding response at each free morphine concentration 

(11) was divided by the antibody response in the absence o f  free morphine (R0)  to give 

a normalised binding response. The least detectable morphine concentration that led 

to 10% inhibition o f antibody binding was shown to be 1.2 ng/ml.
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Table 4.2.17: Inter-day assay coefficients o f variation fo r  the detection o f free 

morphine in HBS using the monomeric scFv in an inhibition assay format on BIAcore. 

Three sets o f twelve standards were assayed over three different days and the C. V  ’5  

were calculated as the standard deviation (S.D.) expressed as a percentage o f the 

mean values fo r  each standard. Percentage recovery was calculated from the four- 

parameter model produced using BIAevaluation software.

Concentration

Morphine

(pg/ml)

R/RO ± S.D. % C.V. Back Calculated 

morphine 

Concentration (pg/ml)

% Recovery

781,250.0 0.109 ±0.004 3.82% 852,023.3 109.1%

390,625.0 0.136 ± 0.013 9.37% 401,021.3 102.7%

195,312.5 0.173 ±0.008 4.50% 203,827.4 104.4%

97,656.3 0.245 ±0.017 6.84% 94,194.3 96.5%

48,828.1 0.327 ± 0.026 8.09% 51,143.3 104.7%

24,414.1 0.462 ± 0.022 4.86% 23,169.1 96.0%

12,207.0 0.578 ± 0.023 4.04% 12,612.1 103.3%

6,103.5 0.699 ±0.055 7.93% 6,618.2 108.4%

3,051.8 0.806 ±0.037 4.62% 3,225.0 105.7%

1,525.9 0.904 ± 0.009 0.96% 1,202.8 80.0%

762.9 0.942 ± 0.028 2.99% 662.2 86.8%

381.5 0.947 ±0.031 3.24% 601.2 157.6%
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4.2.5.5 Development o f an inhibition assay fo r  morphine in saliva using BIAcore 

analysis

Saliva, as a biological sample can be heterogeneous in nature. Its viscosity, colour 

and texture will vary between different individuals. These parameters will also vary 

for the saliva of any one individual, depending on recent intake of food and fluids. 

For this reason, it is not an ideal matrix for use in an assay that is based on optical 

recognition by refractive index change.

When a drug-negative saliva sample, containing no antibody, was injected over the 

sensor chip surface, a positive binding response was observed. It had already been 

proven that the antibody was specific for the drug moiety of the chip surface (Figure 

4.2.17) and, therefore, it was determined that the saliva sample matrix was responsible 

for the background binding. Initially it was tried to counteract this background by 

passing the saliva sample simultaneously over OVA and M3G-OVA coated surfaces. 

The background interaction of the saliva sample with the OVA surface could then be 

reference subtracted from the specific antibody interaction with the M3G-OVA- 

coated surface. This however proved unsuccessful as the saliva matrix behaved 

differently in the presence of an antibody binding interaction. Binding reponses to the 

OVA surface were larger than that at the M3G surface. Such problems with using 

saliva on BIAcore have previously been described by Fanning (2002). Dilution of the 

sample in buffer was proven insufficient to eliminate the problem due to the variation 

in the composition of saliva samples.

In order to circumvent some of the ‘stickiness’ associated with the matrix, sample 

volume was decreased from that used in the model buffer system. 12 îl of sample 

was passed over the surface, which meant that surface contact time for saliva samples 

was decreased from 4 mins in the buffer system to 2.4 mins. This decreased the level 

of background binding response to approximately 50 units for a negative sample.

Varying concentrations of morphine were prepared in saliva from 312,5000 pg/ml to 

1,524 pg/ml. Each concentration of morphine was incubated with an equal volume of
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the monomeric scFv diluted to 1/200 (to ensure a final dilution of 1/400) and allowed 

to equilibrate for 30 min at 37°C. 12 jj,1 of equilibrated samples was injected over the 

sensor chip surface, at a flow rate of 5 ^1 per minute, in random order. Each sample 

was analysed in triplicate, with a 1-minute injection pulse of 10 mM NaOH, proving 

sufficient to regenerate the surface between each injection.

The detection range of the assay (1562,500 pg/ml to 762 pg/ml) was slightly less 

sensitive than that in a model buffer system. However, the assay was still more 

sensitive than ELISA-based assay. The assay was repeated using 3 replicates of each 

standard over one day for intra-day variability studies and using three replicates of 

each standard over three days for inter-day variability studies (Figure 4.2.30). 

Coefficients of variation were below 14% for the assay, with all but the lowest 

standard yielding a % recovery within ± 25% of the actual concentration. Table 

4.2.18 illustrates average response units ± standard deviation, % C.V.’s and % 

recoveries for the inter-day assay.
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M orphine C oncentration  (pg/m l)

M orphine C oncentration (pg/m l)

Figure 4.2.30: Inter-day assay curve fo r  an inhibition assay fo r  free morphine in 

saliva solution using monomeric scFv antibody. Three replicates o f each standard 

were analysed on three separate days. CV's were all below 14%. M3G-OVA was 

immobilised on the sensor chip surface. The range o f detection was found to be from  

783 pg/ml to 1,563 ng/ml. The binding response at each free morphine concentration 

(R) was divided by the antibody response in the absence o f  free morphine (Ro) to give 

a normalised binding response. The least detectable morphine concentration that led 

to 10% inhibition o f antibody binding was shown to be 2.5 ng/ml.
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Table 4.2.18: Inter-day assay coefficients o f variation fo r  the detection o f free 

morphine in saliva using the monomeric scFv in an inhibition assay format on 

BIAcore. Three sets o f twelve standards were assayed over three different days and 

the C. V. ’s were calcidated as the standard deviation (S.D.) expressed as a percentage 

o f the mean values fo r  each standard. Percentage recovery was calculated from the 

four-parameter model produced using BIAevaluation software.

Concentration

Morphine

(pg/ml)

R/RO ± S.D. % C.V. Back Calculated 

morphine Concentration 

(pg/ml)

% Recovery

1562,500.00 0.212 ± 0.011 5.15% 1261,703.0 80.8%

781,250.00 0.218 ±0.025 11.33% 683,834.1 87.5%

390,625.00 0.249 ±0.012 4.83% 423,512.4 108.4%

195,312.50 0.317 ±0.036 11.42% 160,930.5 82.4%

97,656.25 0.345 ±0.044 12.72% 122,427.5 125.4%

48,828.13 0.439 ± 0.043 9.79% 55,308.3 113.3%

24,414.06 0.585 ±0.028 4.83% 22,177.5 90.8%

12,207.03 0.675 ± 0.092 13.65% 14,453.3 118.4%

6,103.52 0.815 ±0.107 13.07% 6,241.3 97.8%

3,051.76 0.882 ± 0.082 9.27% 3,528.6 115.6%

1,525.88 0.940 ±0.012 1.33% 1,724.6 113.0%

762.94 0.995 ± 0.094 9.41% 1,118.6 146.6%

242



4.2.6 Development o f a Lateral Flow Immunoassay (LFIA) fo r M3G using 

monomeric and dimeric scFv

This section describes the development o f an indirect competitive lateral flow 

immunoassay (LFIA) for the detection of M3G. Initial attempts to develop a direct 

assay were found to suffer from poor sensitivity. Daly8 et al., (2001), reported that an 

indirect assay format proved more sensitive in an LFIA for the detection of aflatoxin. 

It was therefore decided to employ an indirect assay format using monomeric and 

dimeric scFvs to detect morphine. The assay format is outlined in Figure 4.2.31. A 

colloidal carbon M3G-OVA conjugate was prepared by physically absorping the 

colloidal carbon to the protein moiety of the conjugate, as described in Section 2.8.1.

A monoclonal M l anti-flag antibody was sprayed onto a nitrocellulose membrane as 

the test line, 3mm below the control line, which consisted of an anti-horse antibody 

sprayed onto the nitrocellulose. A droplet of running buffer containing free M3G, 

M3G-OVA-carbon-conjugate, the anti-M3G scFv and a carbon-conjugated horse 

antibody was mixed and allowed to flow along the nitrocellulose. The free M3G and 

the M3G-OVA-carbon conjugate compete for binding to the anti-M3G scFv, as the 

sample droplet travels along the membrane. The intensity o f the generated signal 

increases, as the concentration of free M3G in the sample droplet deceases, because 

the numbers of antibodies available for binding the M3G-OVA-carbon conjugate 

increases.
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Figure 4.2.31: Schematic representation o f an indirect competitive LFIA for the 

detection o f  M3G. Capture antibodies (anti-horse antibody, control line and anti-flag 

antibody, test line) were sprayed onto the nitrocellulose strip, 3 mm apart. A sample 

droplet consisting o f  free M3G, M3G-OVA-carbon conjugate, the cmti-M3G scFv and 

carbon-conjugated horse antibody in running buffer was prepared. Free M3G and 

carbon-conjugated M3G-OVA compete fo r  binding to the anti-M3G scFv as the 

sample runs along the strip. The signal is generated due to binding o f the dark carbon 

colloid. The signal generated will decrease as the concentration o f free M3G in the 

sample increases.
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4.2.6.1 Optimisation of flow rate for spraying nitrocellulose strips

The rate at which the antibody was sprayed onto the nitrocellulose membrane was 

initially optimised. Various flow rates, ranging from 100 -  500 nl/sec, were tested, by 

spraying 10 |j,l of a 500 M-g/ml solution of anti-horse antibody onto the nitrocellulose 

membrane, using the Linomat 5 sample application device. Signals were developed 

using 1 jil of carbon-conjugated horse antibody in 100 ul of running buffer, which 

was allowed run up the nitrocellulose strip. A flow-rate of 400 nl/sec was chosen as 

optimal for use in subsequent assays, as it produced a definite line, with minimal 

dispersion, in as short a time as possible (Figure 4.2.32).

Figure 4.2.32: Optimisation o f flow rate fo r  spraying capture antibodies onto 

nitrocellulose strips. Flow rates o f 100, 200, 300, 400 and 500 nl/sec, were 

investigated fo r  spraying o f capture antibody. 400 nl/sec was chosen as optimal for 

assay generation as it gave a clear and definite signal, in as short a time as possible.

4.2.6.2 Choice o f antibody fo r  the development o f control line

The inclusion of a control line is necessary in any valid lateral flow immunoassay to 

confirm that the sample has travelled past the test line capture antibody, validating 

any positive or negative signal generated. The choice of antibody for control line 

generation is critical as any interference with, or cross-reactivity to, any components 

in the sample will lead to false positive or negative results.
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A preferred control line would detect that all analytes had been included in the 

sample. The use of an anti-0VA or anti-M3G antibody would validate the presence 

of the labelled M3G-OVA tracer and the fact that the sample had indeed passed above 

the test line capture zone. As neither of these antibodies was available, a compromise 

was made and a number of other antibody pairs were investigated for the generation 

of the control line signal. One such example was a carbon-labelled rabbit antibody 

paired with an anti-rabbit capture antibody. The carbon-labelled rabbit antibody 

interacted non-specifically with the BSA solution used in the preservation of the 

monoclonal anti-flag antibody. This meant that the carbon-labelled control antibodies 

bound to the test line, generating a false negative signal.

To investigate any possible non-specific interactions of the horse/anti-horse antibody 

pairing, various combinations of analytes were sprayed onto the nitrocellulose. Non­

specific interactions were visualised using combinations of carbon-labelled M3G- 

OVA, horse and anti-horse antibodies. The pairing of a carbon-labelled horse 

antibody and goat anti-horse capture antibody was found not to cause interference 

with any of the other components of the assay system (Figure 4.2.33). Lane 1 

demonstrates that the anti-horse antibody does not bind either M3G-OVA or scFv. 

Lanes 2 and 3 prove that it binds to the carbon-labelled horse antibody in the presence 

of both monomeric and dimeric scFvs. Lane 4 demonstrates that the horse antibody 

does not bind monomeric scFv. Lane 5 indicates that the horse antibody does not 

interfere with test capture line. Lane 6 illustrates that the horse antibody does not 

bind to the M3G-OVA conjugate. Lane 7 shows that the carbon-labelled horse 

antibody specifically binds to the anti-horse antibody in the presenece of anti-flag 

antibody. Lane 8 demonstrates that carbon-labelled M3G-OVA does not bind to 

either anti-horse or anti-flag antibodies non-specifically. Lane 9 illustrates that 

carbon-labelled M3G-OVA does not bind to anti-horse, horse or anti-flag antibodies, 

non-specifically. Lane 10 proves that carbon-labelled M3G-OVA binds specifically 

to monomeric scFv, which in turn is captured by the anti-flag antibody. Therefore, 

this pair was chosen for further assay development.
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1 Sprayed 250 pg/ml anti-horse antibody
Added 1 fil carbon-labelled M3G-OVA + monomeric scFv

2 Sprayed 250 |ig/ml Anti-horse antibody
Added 1 pi carbon-labelled horse antibody+ monomeric scFv

3 Sprayed 250 fig/ml anti-horse antibody
Added 1 pi carbon-labelled horse antibody + dimeric scFv

4 Sprayed 500 pg/ml horse antibody
Added 1 pi carbon-labelled monomeric scFv

5 Sprayed 750 pg/ml anti-flag
Added 1 pi carbon-labelled horse antibody

6 Sprayed 500 pg/ml M3G-OVA
Added 1 (J.1 carbon-labelled horse antibody

7 Sprayed 500 pg/ml anti-horse antibody 
750 pg/ml anti-flag antibody

Added 1 pi carbon-labelled horse antibody
8 Sprayed 500 pg/ml anti-horse antibody 

750 pg/ml anti-flag antibody
Added 1 pi carbon-labelled M3G-OVA

9 Sprayed 500 pg/ml anti-horse antibody 
750 [ig/ml anti-flag antibody

Added 1 pi carbon-labelled horse antibody + 1 pi carbon-labelled M3G- 
OVA

10 Sprayed 500 (j,g/ml anti-horse antibody 
750 pg/ml anti-flag antibody

Added 1 pi carbon-labelled horse antibody + 10 pi monomeric scFv + 1 

pi carbon-labelled M3G-OVA

Figure 4.2.33: Investigation o f possible interferences o f control line antibodies with 

other assay components.
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4.2.6.3 Optimisation of capture antibody concentration for generation of control line

The concentration o f the goat anti-horse antibody capture antibody for generation of 

the control line was optimised. Various concentrations o f the goat anti-horse antibody, 

ranging from 0-750 ng/ml, were sprayed onto nitrocellulose. Signals were generated 

using 100(0.1 o f running buffer containing the carbon-conjugated horse antibody 

(Figure 4.2.34). A concentration of 500 [Xg/ml of the goat anti-horse antibody was 

determined to be the optimal concentration for spraying o f nitrocellulose strips. This 

gave a clear and definite signal for the control line, without unnecessary waste of 

reagents.

Figure 4.2.34: Optimisation o f capture antibody concentration fo r  generation o f  

control line. Strips were sprayed with 750, 500, 259, 125, 62.5 and 0 pg/ml anti­

horse antibody. The signal was generated using 1 ¡A o f  carbon-labelled horse 

antibody. A concentration o f 500 fjg/ml o f  anti-horse antibody was determined to be 

optimal fo r  generation o f  the test line.
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4.2.6.4 Optimisation o f test line for use in an indirect LFIA forM3G

Initially, the concentration of the capture antibody for use in the test line was 

optimised. This was sprayed onto nitrocellulose, 3 mm below the control line of anti­

horse antibody, at 500 (.ig/ml. Varying concentrations of monoclonal anti-flag 

antibody, ranging from 0-1,000 (ig/ml, were analysed to determine the optimal 

concentration for test line. The test line signal was generated using a sample droplet 

containing the anti-M3G scFv and the M3G-OVA-carbon conjugate and the control 

line signal was generated using a carbon-conjugated horse antibody. It was found that 

750 (ig/ml of the anti-flag antibody sprayed onto the nitrocellulose was optimal for 

the development of the test line (Figure 4.2.35).

The concentration of monomeric anti-M3G scFv to be used in the test line generation 

was then optimised. Nitrocellulose was sprayed with 500 ng/ml anti-horse antibody 

(control line) and 750 (ig/ml anti-flag monoclonal antibody (test line). The sample 

was prepared by mixing 1 \xl of carbon-labelled horse antibody, 1 |jl of carbon- 

labelled M3G-OVA and varying amounts of monomeric scFv, ranging from 10 to 0 

\i\. Figure 4.2.36 demonstrates that 10 |il of monomeric anti-M3G scFv was the 

lowest amount of antibody, sufficient to generate an acceptable signal in the test line.

The concentration of carbon-labelled M3G-OVA conjugate to be used in the 

generation of test line was also optimised. Nitrocellulose strips were sprayed as 

before, with optimised concentrations of capture antibodies for control and test lines. 

The sample added included 1 |al of carbon-labelled horse antibody; 10 |ul of anti-M3G 

monomeric scFv and varying dilutions of carbon-labelled M3G-OVA conjugate, 

ranging from neat to 1 in 16 dilution of the 350 (ig/ml stock. A 1 in 8 dilution proved 

optimal for generation of the test line, as demonstrated in Figure 4.2.37.
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Figure 4.2.35: Optimisation of capture antibody for generation of test line. Varying 

concentrations o f monoclonal M l anti-flag antibody, from 0 to 1,000 /jg/ml were 

sprayed onto nitrocellulose, 3 mm below the control line. The signal was developed 

using carbon-labelled horse antibody (control line) and 10 p i anti-M3G scFv with 1 

pi o f carbon-labelled M3G-0VA (test line). A concentration o f 750 pg/ml o f anti-flag 

antibody was determined to be sufficient as concentration o f capture antibody for test 

line generation.

Figure 4.2.36: Optimisation o f the concentration o f monomeric anti-M3G scFv to be 

used in LFIA test line. Control and test lines were sprayed as before. The test line 

was run using varying amounts o f anti-M3G scFv, from 0 to 10 pi. 10 p i o f the scFv 

was determined to be the minimum amount o f antibody required to generate an 

acceptable test signal.
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Figure 4.2.37: Optimisation of carbon conjugate dilution to be used in test line 

signal generation. Control and test lines were sprayed as before. The test line was 

developed using monomeric anti-M3G and carbon-labelled M3G-0VA, at varying 

dilutions, from neat to a 1 in 16 dilution. A 1 in 8 dilution of the carbon conjugate 

was determined to be optimal, giving the lowest background signal and was chosen 

for use in further assay development.

4.2.6.5 Development o f an indirect LFIA for the detection of M3G using monomeric 

scFv

Following optimisation of the various parameters required for the control and test 

lines, an indirect competitive LFIA for the detection of M3G was developed using the 

anti-M3G monomeric scFv. Nitrocellulose strips were sprayed with 750 [¿g/ml of the 

monoclonal anti-flag antibody (test line), 3 mm below the control line, which 

consisted of 500 (ig/ml of the goat anti-horse antibody. Standards of free M3G, 

ranging in concentration from 20 ng/ml to 1.25 ng/ml, were prepared in running 

buffer. 50 (j.1 o f each standard was then mixed with an equal volume of running buffer 

containing the 10 |j.l of anti-M3G monomeric scFv, 1 pi of a 1 in 8 dilution of the 

M3G-OVA-carbon conjugate and 1 |il of carbon-conjugated horse antibody. The 

samples were mixed and allowed travel along the nitrocellulose membrane, for
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approximately 15 mins. After this time a clear black control line should be visible. 

This ensures that the sample has passed above the test line and has been captured by 

the control capture antibody. Any test result, which does not yield a clear control line, 

indicates that the result is not valid. The nitrocellulose was then washed with 100 |il 

of running buffer. The wash step was included to generate clearer images for the 

purposes of scanning images to be included in this thesis. The visualisation of two 

lines indicates a negative result, while the presence of the line control line, in the 

absence of a test line signal is indicative of a positive specimen. The limit of 

detection of the assay was found to be 20 ng/ml (Fig. 4.2.38).

4.2.6.6 Development o f an indirect LFIA for the detection of MSG using an anti-M3G 

dimeric scFv

An indirect LFIA was also developed using the dimeric anti-M3G scFv. Conditions 

were optimised as in Section 4.2.6.4. The amount of dimeric scFv required for the 

generation of the test line was determined to be 1 |j,l. Drug standards were prepared 

containing 20, 10, 5, 2.5, 1.25 and 0 ng/ml of M3G in running buffer. The control 

line was generated using the same concentrations of anti-horse and carbon-labelled 

horse antibodies used for monomeric scFv (Section 4.2.6.3). 50 (j,l of each standard

was then mixed with an equal volume of running buffer containing the 1 |ul of anti- 

M3G dimeric scFv, 1 pil o f a 1 in 8 dilution of the M3G-OVA-carbon conjugate and 1 

|il of carbon-conjugated horse antibody. The samples were mixed and allowed travel 

along the nitrocellulose membrane, for approximately 15 mins. The nitrocellulose 

was then washed with 100 |il of running buffer. The limit of detection of the assay 

was found to be 20 ng/ml, as below this concentration a line was generated for the test 

line, indicating a negative result (Fig. 4.2.39).
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Control Line 

Test Line

Figure 4.2.38: Competitive LFIA for the detection o f M3G, using an anti-M3G 

monomeric scFv. The numbers above the strips represent the final concentration of in 

each the sample (ng/ml). The assay had a limit o f detection of 10 ng/ml. A control 

line, consisting o f carbon-labelled horse antibody, captured with an anti-horse 

antibody is included to validate the assay and ensure that assay had run to 

completion.

Control Line 

Test Line

Figure 4.2.39: Competitive LFIA for the detection of M3G, using an anti-M3G 

dimeric scFv. The numbers above the strips represent the final concentration of in 

each the sample (ng/ml). The assay had a limit o f detection of 10 ng/ml. A control 

line, is included to validate the assay
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4.3 Discussion

This chapter follows on from Chapter 3, which describes the production and initial 

characterisation of genetically-derived scFv antibody fragments. The aim of this 

chapter was to carry out a case study on the feasibility of using genetically-derived 

scFv antibody fragments to monitor heroin use by detecting morphine in saliva 

Initially the affinities of all three antibodies were measured to analyse which scFv was 

best suited to analysis of morphine in saliva. This was determined using both ELISA 

and biosensor-based methods of affinity determination. Monomeric scFv was 

determined to have the best potential for morphine analysis and was therefore applied 

to both ELISA and BIAcore-based assays for the detection of morphine in saliva. An 

indirect lateral flow immunoassay was also developed for the detection of M3G using 

monomeric and dimeric scFvs.

Affinity studies were carried out by two methods. The first method was an ELISA- 

based method involving equilibrium analysis o f antibody:antigen mixtures, described 

by Friguet et al. (1985). This involves quantifying free, unbound, antibody present at 

each antigen concentration by means of an indirect ELISA. The Friguet method has 

many limitations. It is not suitable for either very low or very high affinity antibodies. 

Low affinity antibodies, or those with high KD values, are not suited to this form of 

analysis as too much displacement from the solution phase equilibrium occurs during 

the indirect ELISA. High affinity antibodies, or those with very small KD values 

(<1C)'10 M) are also not suitable to be analysed in this manner as the Kd value will be 

limited by the sensitivity of chromogenic substrate and affinity of secondary 

antibodies (Neri et a l, 1996). The second analysis involved using BIAcore to 

monitor ‘real-time’ biomolecular interactions and determine solution phase 

equilibrium dissociation constants of monomeric and dimeric scFvs. Large to small 

Kd values have successfully been determined using BIAcore. Nieba et a l, (1996) 

successfully measured KD values as large as 10'4 M using a BIAcore competition on- 

rate determination assay. Quinn and O’Kennedy, (2001), have successfully measured 

Kd values as small as 6 x 10'10 M using solution phase equilibrium analysis.
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Friguet analysis of monomeric scFv reveals an affinity constant of 3 nM for M3G and 

17 nM for morphine. Both curves are a good fit with an R2 > 0.99. Dimérisation of 

the scFv was shown to decrease the affinity of the monovalent interaction between 

antibody and M3G. The effect was less significant with morphine. When this was 

corrected for the bivalency of the antibody, similar affinities for M3 G were observed 

to that of monomeric scFv. No increase in affinity through co-operative binding of 

the two antigen-binding sites was observed, as previously reported for diabodies 

produced with a shortened linker (Hollinger et a i, 1993). A slight increase in affinity 

for morphine, from 20 to 7.5 nM, was observed. This model assumes a bivalent 

interaction. However, from analysis of curve fitting for corrected and uncorrected 

values, neither curve was an ideal fit. In reality the ‘correct’ model for a bivalent 

antibody binding lies somewhere between the mono- and bivalent models shown. The 

bifunctional scFv was also shown to exhibit dissociation constant in the region of 10 

nM for both targets. This illustrates that the dimérisation of the scFv had little effect 

on the antibody’s overall affinity for targets. The production of other derivatives of 

the antibody had its advantages, however, as illustrated in chapter 3. Dimérisation of 

the molecule facilitated larger detection ranges and direct immobilisation of antibody 

through surface absorption (Kerschbaumer et al., 1997), while the inclusion of an 

enzyme-label decreased both assay time and complexity significantly.

Affinity constant determination by solution phase equilibrium analysis using BIAcore 

technology was also carried out. Equilibrium dissociation constants were determined 

for both monomeric and dimeric scFvs to M3 G and morphine. Bifunctional scFv, 

produced with the pAK 600 vector, was not analysed as it could not be successfully 

purified and hence its concentration could not be determined. Solution phase analysis 

of monomeric scFv revealed significantly lower association constants than those 

determined by ELISA. The reason for this is thought lie in the initial determination of 

antibody concentration, which was performed by measuring nominal (total) protein 

rather than active antibody concentration. A more accurate method, like 

quantification by flag tag would be more suitable for use in this form of analysis. 

Determining the active concentration of antibody would also take into account any 

antibody that had become denatured during storage. If  active concentration of 

antibody is actually lower than the experimentally determined nominal concentration, 

the reagent is defined as being ‘not completely immunoreactive’, and apparent
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affinities measured will be lower than the ‘real’ affinity (Neri et a l, 1996). Even 

though the antibody was deemed to be extremely pure by SDS PAGE analysis (Figure 

3.2.13), small impurities may be present, leading to an overestimation of 

concentration. As BIAcore works by detecting mass changes at the sensor surface, 

the molar concentration for such a small molecule needs to be large to generate a 

measurable response, thereby multiplying any over estimation of antibody 

concentration accordingly. For this reason the ELISA-based affinity determinations, 

described by Friguet et a l, (1985), were deemed to be more definitive for the 

estimation of affinity constants. The model for the affinity constant determination of 

the dimeric scFv for M3G did not fit the dataset particularly well. It has previously 

been observed that solution phase analysis using immobilised conjugate 

underestimates true affinity by preventing bivalent binding. Fitzpatrick, (2001), 

showed that by using a directly immobilised chip was rather than a conjugate-coated 

chip for analysis, the observed affinity constant was one order of magnitude greater. 

With a directly immobilised antigen, steric hindrance and lower epitope densities 

inhibit antibody rebinding. Non-specific amine immobilisation of antigen-conjugate 

may result in a heterogenous population of conjugate on the sensor chip surface 

leading to a potential source of error and an underestimation of ‘true’ affinity (Kortt et 

al, 1997).

Cross reactivity studies (Chapter 3) and affinity analysis revealed that monomeric 

scFv had the best potential for application to a saliva-based assay for morphine. This 

form of the scFv exhibited a low equilibrium dissociation constant and sensitive least 

detectable dose (LDD) for morphine, while displaying limited cross-reactivity to other 

opiates. The assay was first carried out in the ‘ideal’ buffer’ system of PBS, as this 

would determine any interferences through matrix effects caused by the saliva sample. 

The assay also had to be optimised to require as small a sample volume as possible, as 

previous analysis has shown that drug users have a diminished capacity to provide 

large volumes of saliva for analysis (Fanning, 2002). Sample volumes as small as 25 

ul could be successfully used to detect morphine in this model buffer system. The 

assay displayed a range o f detection o f 6.1 to 1,563 ng/ml and a LDD of 20 ng/ml 

(Figure 4.2.24). The assay was then applied to the detection of morphine in ‘spiked 

saliva’ samples. The samples were donated from 10 individuals who were opiate-
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free and subjected to a simple ‘freeze-thaw’ and centrifugation step, prior to analysis. 

The assay proved to be sensitive and robust for morphine detection, with no negative 

interferences observed for such a crude biological matrix. The assay exhibited a 

range of detection of 6.1 to 1,563 ng/ml with an LDD of 12 ng/ml. All % C.V.’s were 

below 10 % and percentage recoveries were between 92% and 113%.

The competitive ELISA developed for the detection of morphine in saliva was applied 

to ‘real-saliva’ samples donated by patients attending Trinity Court Drug Treatment 

Centre. This was a pilot study carried out to determine the feasibility of using 

recombinant antibodies for use in morphine analysis in saliva samples using 

immunoassay technology. 25 |il o f each sample was analysed in triplicate. Initial 

analysis of samples 3,5,6,  and 7 revealed the presence of very high concentrations of 

morphine. For this reason, analysis of these samples was repeated using dilutions of 

saliva from a 1 in 10 to a 1 in 50 dilution. Samples were determined to contain 

between 22 and 37,000 ng/ml of morphine in patient saliva, following recent heroin 

use. This correlated very well to levels detected using a more ‘conventional’, 

polyclonal antibody immunoassay format, which detected levels from 99 to 39,500 

ng/ml of morphine in the same sample set (Fanning, 2002). Patient 6 exhibited the 

highest levels of morphine in saliva (36,982 ng/ml). This patient had recently both 

taken heroin and DF118’s, a dihydrocodeine-based painkiller that binds to opiate 

receptors in the brain, mimicking the effects of heroin. It was the first time that this 

patient had attended the treatment centre and he/she was not receiving any methadone 

replacement therapy. Patient 3 also displayed a high level of morphine in saliva, this 

patient had also used heroin within 24 hours. Patients 7,5 and 2 showed decreasing 

morphine levels in their saliva, all of these patients had used heroin in the past 24-48 

hours. Patients 1 and 4 showed the lowest levels of morphine, patient 1 was receiving 

a high dose of methadone replacement therapy and was deemed to be of low risk of 

relapse. This patient had used heroin sometime within a 5-day window. All results 

obtained, with the exception of patient 2, correlate very will with how recently heroin 

was used. Patient 2 admitted to taking heroin within 15 to 20 minutes of the 

interview. This was the most recent sample obtained following heroin use. Although 

this patient did not exhibit the highest levels of morphine, it is clear that high levels of 

morphine (342 ng/ml) could still be detected, even after such a short period of time. It
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must also be taken into account that the dose of heroin taken will determine the 

concentration of morphine detected in saliva, the higher the dose of heroin taken, the 

higher the concentration of morphine that will be detected. The route of 

administration will also affect the pharmacokinetics of the drugs. Patients were very 

vague and confused in their accounts of the timeframe in which they had last used 

heroin. The questionnaire was used to give a general indication of previous drug use. 

There is a strong possibility o f inaccuracies in patients’ accounts as to how recently 

each drug was used. Unless a controlled study was carried out in which the heroin 

was administrated to patients at intervals between the collection of saliva samples, no 

exact timeline of drug use can be extrapolated. This study, however, proves that 

heroin use can be detected within minutes and for a period of days by monitoring 

morphine levels in saliva.

A BIAcore inhibition assay was also developed for the detection of morphine in 

saliva. Tn the past several difficulties have been encountered during the development 

of BIAcore assays using saliva as a detection matrix. Problems have been 

encountered due to the ‘stickiness’ of the sample, which varied between individuals, 

making the assay irreproducible (Fanning, 2002). An inhibition assay for morphine 

was successfully developed in HBS buffer, with a range of detection from 781,250 to 

381 pg/ml, and a LDD of 1,200 pg/ml. This was used as a calibration model to 

examine matrix effects of saliva and investigate how best to eliminate these 

interferences.

The heterogeneous nature of saliva samples and complexity o f the biological matrix 

was seen to contribute to a substantial amount of non-specific binding to the sensor 

chip surface. A number of strategies were investigated to minimise the overall effect 

of this on the assay. The effect of ionic strength and length of dextran layer has been 

previously investigated and found not to eliminate non-specific binding responses 

(Fanning, 2002). Reference subtraction of sample binding to an OVA surface proved 

to significantly decrease the sensitivity of the assay. Binding responses of the sample 

to the OVA surface proved to be greater than to the conjugate immobilised surface, 

particularly in the absence of antibody. The specificity of the antibody binding 

response was therefore shown to decrease the overall non-specific interaction of 

sample and surface. For this reason it was decided to minimise the contact time
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between the sample and the surface and to increase the flow rate of the assay, in an 

attempt to minimise these interferences. Flow rate for the assay was increased from 2 

(il to 5 (il and surface contact time was reduced from 4 minutes to 2 minutes 20 

seconds. This decreased any non-specific interaction with the chip surface to below 

50 response units for a negative control. Using these conditions an inhibition assay 

was successfully developed for morphine in ‘spiked saliva’ samples. The assay had a 

detection range of 1,562,500 to 763 pg/ml, with a LDD of 2.5 ng/ml. All % C.V.s 

were below 14% and percentage recoveries were within ± 25%, above the LDD level. 

This represented only a slight decrease in sensitivity from the inhibition assay 

developed in a ‘model’ buffer system and a 20-fold increase in the detection range 

sensitivity over ELISA analysis. These statistics fulfill the SAMHSA criteria for 

accreditation, which state that the quantitative value for at least 80% of samples must 

be within ± 20 percent of the calculated reference group mean. These detection 

ranges for morphine are also well below the 40 ng/ml morphine cut-off concentrations 

proposed in SAMSHA guideline for oral fluid analysis.

The detection limits achieved compare favourably with previously published 

immunoassay techniques. Beike et al. (1999), have reported an immunoaffinity- 

based extraction method for the detection of morphine in blood with a detection limit 

of 3 ng/ml and a quantitation limit o f 10 ng/ml for morphine. A radioimmunoassay 

developed by Steiner and Spratt (1978), exhibits a sensitivity of 500 ng/L of serum for 

morphine and a similar technique reported by Spector (1971), exhibits a detection 

limit between 50 and 100 pg of morphine in serum. Usagawa et al. (1993), have 

reported an immunoassay using a monoclonal antibody directed against morphine 

capable of detecting concentrations as low as 100 pg/ml. Speckl et al. (1999), have 

employed GC -  MS to monitor the presence of opiates in the saliva and urine of 

subjects participating in a drug withdrawal programme. The detection limits for 

opiates in saliva were found to be 10 ng/ml. This assay developed for morphine in 

saliva, using recombinant assay techniques, compares favourably with these detection 

limits, with minimal sample preparation, requiring only a simple freeze - thaw step, 

followed by centrifugation.
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The development of a lateral flow immunoassay (LFIA) for M3G was also 

investigated using both monomeric and dimeric scFvs. Initial attempts to develop a 

direct assay suffered from low levels of sensitivity. DalyB el a l, (2001), reported 

similar findings, with an indirect LFIA proving more sensitive for detection of 

aflatoxins. It was therefore decided to use a monoclonal anti-flag antibody to capture 

the scFv on the LFIA strip. The scFv antibody, free M3G and carbon-labelled M3G- 

OVA were mixed and applied to the strip. For the successful development of a LFIA, 

a control line must be incorporated into the assay. This validates the correct running 

of the assay and ensures the sample has reached the capture line before a valid result 

is obtained. For a commercial lateral flow device, a preferred control line would 

detect that all analytes had been included in the sample. This is would be required 

internal control measure to ensure that all analytes were included in the device sample 

pad. The use of an anti-OVA or anti-M3G antibody in this assay would validate the 

presence of the labelled M3G-OVA tracer and that the sample had indeed passed 

above the test line capture zone. As neither of these antibodies was available, a 

compromise was made and a number of other antibody pairs were investigated for the 

generation of the control line signal. Preliminary optimisation involved testing a 

number of antibodies to find a suitable antibody pair for use in the generation of an 

acceptable control line signal, without interfering in the signal o f the test line. Many 

commercially bought antibodies showed cross reactivity with the BSA in the 

preservative solution of the monoclonal anti-flag antibody. Other ‘in-house’ rabbit 

antibodies tested bound non-specifically to the OVA moiety of the M3G conjugate. A 

goat anti-horse and horse antibody pair proved the most specific for generation of the 

control line signal. The assay was proven to be sensitive and specific for the detection 

of M3G, with a detection limit o f 20 ng/ml with each scFv, both monomeric and 

dimeric. The assay could be carried out in approximately 15 minutes and was shown 

to be reproducible over four different days. The assay was only slightly less sensitive 

than ELISA analysis (LDD = 5 ng/ml) and could be carried out in a fraction of the 

time.

This chapter focussed on the applications o f genetically-derived scFv antibody 

fragments in various assay formats. Equilibrium dissociation constants of 

monomeric, dimeric and bifunctional antibodies for M3G and morphine were assessed 

to investigate which scFv would be most suited to analysis of morphine in saliva.
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Monomeric scFv was determined to be the applicable for this type of analysis. A 

competitive ELISA assay was successfully developed to detect morphine in saliva. 

This was applied to monitoring recent heroin use in patients attending a drug 

rehabilitation clinic. The scFv could successfully detect both high and low 

concentrations of morphine in the saliva o f these patients following heroin use. An 

inhibition BIAcore assay was also developed to detect morphine in saliva. The 

sensitivity o f the assay was improved 20-fold from that of ELISA analysis. 

Percentage recoveries were all within ± 25% within the range of quantification, 

despite the complexity of the biological matrix on a system as sensitive as BIAcore. 

An indirect lateral flow immunoassay for the detection of M3G was successfully 

developed. The assay was capable o f detecting 20 ng/ml M3G in an analysis time of 

15 mins. This chapter focused on the wide variety of applications possible with 

recombinant antibodies. Saliva was found to be a suitable matrix for monitoring drug 

use and the application of recombinant antibodies to ‘real-life’ analysis was proven to 

be possible. The success of immunology-based tests for drugs of abuse is reliant on 

the quality of the antibodies used. The results illustrated in this chapter demonstrate 

that recombinant antibody technology offers an excellent source of such designer 

antibodies, with defined affinities and specificities.
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Chapter 5: Isolation of Recombinant scFv 

Antibodies against Tetrahydrocannabinol
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5.1 Introduction

5.1.1 History o f  cannabis

ch3

OH

h 3c

H3C

Figure 5.1.1: Structure o f delta-9-tetrahydrocannabinol, the pharmacologically 

active constituent o f cannabis.

Delta-9-tetrahydrocannabinol (Figure 5.1.1) is the pharmacologically active 

component of cannabis (also known as marijuana, pot, hashish and grass). Cannabis 

is the mood-altering product produced as a resin by the hemp plant Cannabis sativa, 

subspecies, indica. The highest concentration of psychoactive substance is present in 

the flowering buds of the female plant, followed by the leaves (Adams and Martin, 

1996). Small amounts are found in the stem and root, while no traces are present in 

the seeds. Cultivation conditions of cannabis plants vary greatly and determine the 

cannabinoid content of the plant. Over the last decade, advances in indoor cultivation 

(hydroponics) and breeding have increased cannabinoid content of plants over 10-fold 

(Ashton, 2001). Marijuana refers to two types of plant preparation, ganja and hashish. 

Ganja is obtained from the drying the leaves and plant tops, while hashish is prepared 

from the resin o f the plant and contains a higher cannabinoid content.

Cannabis use leads to a wide range of behavioural affects. The initial ‘high’ gives a 

sense of relaxed euphoria. Reaction times are decreased and senses become 

enhanced; there is a stimulation of appetite and an altered perception of time and 

space. This impairment of motor skills makes cannabis a major concern in driving
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while under the influence of drugs (‘drug driving’). Albery el al. (2000), found that 

cannabis was second only to alcohol in its prevalence for abuse in a group of out-of­

treatment drug users while driving.

The use of cannabis, for medicine, food, and fibres, dates back to Neolithic periods. 

In the Western world cannabis was widely used in medicinal circles in the nineteenth 

century, with Queen Victoria being a famous recipient of the medication. It was with 

the invention of the syringe that medical use of cannabis decreased, as other drugs 

such as, aspirin and morphine, became popular because they could be administered 

intra-venously. Following the second international meeting on drugs, cannabis was 

outlawed in the UK in 1928 with the implementation of the 1925 Dangerous Drugs 

act. The US also outlawed the drug in 1937. Recreational use of cannabis continued, 

however, through the arrival o f immigrants from the Caribbean in the 50’s and 

became associated with many famous musicians. The 1960’s saw a dramatic increase 

in popularity of the drug, with the onset of the ‘flower-power years’. Cannabis 

remains one of the most frequently abused drugs in the USA today, although its 

popularity is decreasing.

5.1.2 Administration o f  cannabis

Cannabis is most commonly administered by smoking or ingestion. I. V. 

administration is difficult as the substance lacks a nitrogen molecule, rendering it 

insoluble. Smoking is the most common form of cannabis administration. The drug 

is commonly smoked alone or mixed with tobacco leaves for increased potency. A 

typical ‘joint’ contains 0.5 to 1 g of plant matter (Adams and Martin, 1996). A dosage 

between 2 and 22 mg is required to produce pharmacological effects in humans 

(Martin, 1986). About 50% of the THC in a joint of herbal cannabis is inhaled in 

mainstream smoke (Ashton, 2001). The onset of behavioural effects become apparent 

within minutes of administration and dissipate rapidly, usually within an hour. 

Cannabis may also be chewed or eaten. The onset of symptoms is slower when 

administered orally (0.5-2 hours), with a bioavailability of 25-30% less than when 

smoked.
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5.1.3 Metabolism o f cannabis

Following inhalation, delta-9-THC levels in the blood rapidly increase. THC is 

metabolized to 11-hydroxy-THC (11-OH-THC) by the lungs and liver. This can 

readily cross the blood brain barrier, making it a more potent metabolite. It is then 

converted to 1 l-nor-delta-9-THC-9-carboxylic acid (THCCOOH), an inactive 

metabolite, by the liver. This is the most predominant form of THC detected in the 

blood and urine of cannabis users and remains elevated for an extended period of time 

(Adams and Martin, 1996; Cone, 1998). Following oral administration, THC is 

metabolised in a similar manner. However, THC levels rise more gradually over a 

period of 4-6 hours. THCCOOH is also found in higher concentrations in the blood.

The time dependence of delta-9-THC levels mirrors the behavioural effects of 

cannabis and hence, it is the ideal metabolite to target in an assay system designed to 

detect drug impairment. Plasma levels of the metabolite rise and fall with the 

symptoms of drug use. THCCOOH, however, may remain in the urine for up to three 

days (Adams and Martin, 1996). Urinary analysis of this metabolite is only indicative 

of past drug use and not of physical impairment.

5.1.4 Difficulties associated with THC analysis

THC immunoanalysis has proved problematic in the past (Cook et al., 1976). A 

prerequisite for any immunoassay is the production of sensitive and specific 

antibodies against the target antigen. Antiserum raised against THC has proved to 

lack the desired specificity and be of low concentration (Cook et al., 1976). The 

lipophilic nature of the molecule leads to problems when an aqueous media is chosen 

for analysis. THC proves insoluble at high concentrations and also adsorbs to glass 

and plastic surfaces. These authors demonstrated the loss of 41% of tritiated THC, 

dissolved in aqueous solution, due to adsorption of the drug to the surface of a glass 

container. The preparation of THC samples in organic solvent or in a strong basic 

solution is reported to alleviate the problem (Joern, 1987). This approach is 

appropriate for chromatographic analysis. However, in the case of immunoassays,
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these solutions could seriously affect the activity of the detection antibody, rendering 

the approach unsuitable. Cannabis was also reported to lose potency and lack stability 

following storage (Fairbairn et a l, 1976). These authors demonstrated that exposure 

to light had a deleterious effect on cannabinoids. Exposure to air was also found to 

adversely affect cannabinoid concentrations to a lesser extent. Romberg and Past 

(1994,) also reported an average of a 25% decrease in the THCCOOH concentrations 

detected in urine by GC-MS, following storage at -20°C for an average of 2.3 

months. Anomalies have been reported in THC levels detected depending on the 

choice of container used for sample storage. Christophersen (1986), observed no 

significant decrease in THC levels found in blood, following storage in glass 

containers at -20°C. Aliquots of the same samples stored in plastic containers were 

seen to lose 60 to 100% of their THC content. Repeated freeze-thawing of saliva 

samples, stored in plastic containers was also shown to lead to significant losses of 

THC (Fanning, 2002). High-density polyethylene containers have been shown to be 

suitable for urine storage, prior to analysis for THCCOOH, where the use of glass for 

high-density sampling is inconvenient (Giardino, 1996).

5.1.5 THC analysis

Cannabis metabolites have been successfully detected in the blood (Moeller et al., 

1998), urine (Wenning et a l, 1998), saliva (Fanning, 2002), sweat (Kidwell et al., 

1998) and hair (Spiehler, 2000). Gas-chromatography coupled to mass spectrometry 

is the ‘gold-standard’ for THC identification and quantification by analytical 

laboratories within the European Union (Badia et a l, 1998). Chromatographic 

analysis of biological samples requires extensive sample preparation. For this reason, 

a preliminary screening assay is usually carried out. Screening analysis is primarily 

carried out using one of the commercially available rapid immunoassay kits (detailed 

in Chapter 1) that are capable o f detecting multiple drug residues. Once THC has 

been positively identified in the sample, quantification may sometimes be carried out 

by GC-MS. Chromatographic methods for the detection of cannabis metabolites in 

biological matrices have been reviewed in the literature by Simpson et a l (1997) and 

more recently by Drummer (1999).
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Research into immunoassay-based assays for the detection of cannabinoids has 

decreased in recent years, presumably due to the difficulties associated with THC 

analysis discussed earlier. In fact Moeller et al. (1998), who reviewed drug 

determination in blood, state that there were no reports of direct immunological 

detection methods for cannabinoids in blood detailed in the literature. Contrary to this 

claim, reference to radioimmunoassays for cannabinoid metabolites has been found in 

earlier literature. Gross et al. (1974) describe a radioimmune technique for the 

detection of delta-9-THC in blood, using a polyclonal THC antiserum with a detection 

limit of 25 ng/ml for THC. They later applied this to a radioimmunoassay, which was 

used to detect delta-9-THC and THCCOOH in blood and ll-nor-9-carboxy-delta-9- 

THC in urine (Gross and Soares, 1976). They found plasma levels of delta-9-THC 

peaked shortly after cannabis administration and dissipated within 2 hours. 

THCCOOH levels, however, persisted in both matrices and were therefore not 

indicative o f recent drug use. Teale et al. (1974), also describe a radioimmunoassay 

for THC in blood and urine. They produced a polyclonal antisera raised against THC 

in sheep and used this along with a competing tritiated THC tracer to analyse THC 

levels. THC levels in animals and volunteers were monitored and plasma levels of 

delta-9-THC were found to correlate well with subjective effects experienced by 

volunteers. The assay was capable of detecting THC following smoking a single 

‘joint’, impregnated with 5 mg of pure THC, in less than 1 ml o f blood. Sensitivity of 

the assay was further improved to detect 7.5 ng/ml THC in plasma (Teale et al., 

1975).

Cook et al. (1976) detail how they tried to address some of the difficulties associated 

with THC assay development. Using optimized buffer composition, along with an 

improved THC conjugate for antisera generation, they developed a radioimmunoassay 

with a standard curve from 5-100 ng of delta-9-THC in spiked plasma samples. 

Enzyme-based immunoassays have also proved successful for detecting THC. A 

competitive ELISA assay with a range of detection from 96-25,000 ng/ml for THC in 

spiked saliva samples was also capable of detecting recent cannabis use in volunteers 

attending a drug treatment centre (Fanning, 2002). A biosensor assay was also 

developed using BIAcore, an optical-based biosensor, which exhibited enhanced 

sensitivity for THC, with a detection limit of 12.2 ng/ml in a buffer matrix.
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5.1.6 Aims

The aim of this chapter was to generate recombinant antibody fragments specific to 

THC. The main advantage of recombinant antibody technology over traditional 

monoclonal and polyclonal antibody techniques is the possibility of altering the 

antibody’s affinity, specificity and physical characteristics with relative simplicity. 

This may eliminate the lack of specificity associated with polyclonal anti-THC 

antibodies previously developed (Cook et a i, 1976). Recombinant antibodies are 

expressed in bacteria, and this facilitates the elimination of problems associated with 

low serum titres. The developed antibody will be applied to an ELISA assay format 

for THC detection. Immunoassays are proven to be a rapid, sensitive and specific 

method of analysis (Fitzpatrick et al., 2000), particularly suited to rapid analysis of 

biological matrices for THC residues.

A variety of strategies for antibody generation were employed, however the 

generation of an antibody specific to THC proved problematic. The biopanning of a 

semi-synthetic naive human library led to the isolation of an scFv specific for THC. 

The antibody was expressed in high levels in a scAb format and purified by IMAC. 

It was later found that the antibodies were spontaneously aggregating, leading to a 

loss in assay sensitivity. However, the phage-displayed scFv antibodies proved an 

ideal reagent for THC detection by competitive phage ELISA.
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5.2 Results:

5.2.1 Production of a recombinant antibody library against tetrahydrocannabinol

The Krebber system of phage display (Krebber et a l,  1997) was used to produce 

single chain antibodies to tetrahydrocannabinol. This system of phage display has 

been optimised for robustness, vector stability, control of scFv-A gene m expression, 

primer usage, scFv assembly and directional cloning. In order to create an extensive 

panel of antibodies, with the highest affinity to THC possible, it was decided to 

develop an immunised rather than naive library. The immune system of a mouse was 

primed by sub-cutaneous immunisation with a THC-BSA conjugate, over a 12-week 

period.

5.2.1.1 Antibody titre o f mouse usedfor recombinant antibody library

Mice were immunised according to the schedule outlined in Section 2.3.2. Tail bleeds 

were performed 7 days post-immunisation, the blood collected and the serum 

recovered. A direct ELISA was carried out as per Section 2.3.2.2 to determine the 

titre of antibodies raised against the antigen. The serum, which was raised against 

THC-BSA, was screened against THC-BTG to eliminate binding of antibodies raised 

against the carrier protein. Serum samples were also pre-incubated with 1% (w/v) 

BSA to prevent any non-specific interactions. As can be seen from Figure 5.2.1, the 

serum titred out at approximately a 1 in 100,000 dilution.
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Figure 5.2.1: Titre o f serum from mouse immunised with THC BSA as described in 

Section 2.3.2.2. The serum was titred against THC BTG with 1% (w/v) BSA in the 

diluent, to remove any antibodies raised against the carrier protein. Bound 

antibodies were detected using a peroxidase-labelled rabbit anti-mouse secondary 

antibody, followed by o-PD substrate. A sufficient antibody titre (1/100,000) was 

obtained to ensure that a high proportion of the antibodies produced was directed 

against THC. The spleen was used to extract RNA for the generation of a recombinant 

antibody library against THC.

270



5.2.1.2 Reverse transcription o f RNA

The spleen was removed and the RNA extracted as per Section 2.4.1. Reverse 

transcription of extracted murine RNA to cDNA was carried out using random 

primers as described in Section 2.4.2 using a reverse transcription kit (Promega). The 

cDNA generated in Figure 5.2.2 was used as a template for the amplification of 

variable heavy ( V h )  and variable light ( V l )  genes.

5 .2 .1.3 Amplification of variable heavy and light chain antibody genes

Variable heavy ( V h )  and light chain (Vi.) antibody genes were amplified using the list 

of primers detailed in Section 2.4.4.1. This primer set described by Krebber et al. 

(1997), incorporates all mouse V h ,  V i  and V K genes and assembles the fragments in 

the VL-(Gly4 Ser)4-Vii orientation. A primer mix was prepared according to the 

degeneracy (D) of each primer, 1 ¡j.1 for all non-degenerate primers, 2 (il for D=2-4, 3 

|il for D=6-9 and 4 |il for D=T2-16. The term ‘back (B)’ is used to describe primers 

that amplify toward the 3' direction and the term ‘forward (F)’ describes amplification 

in the 5' direction. For amplification of variable light chain genes (VL), 1 |il of Lf and

1 (il o f Lb mix was added to the PCR reaction. PCR conditions for V l were optimised 

to include an annealing temperature of 55°C and a final buffer concentration of 60 

mM Tris-HCl, 15 mM ammonium sulphate, 2.5 mM MgCl2, pH of 8.5. For 

amplification of Vh genes, a HF and HB primer mix was prepared. 1 (il of each was 

added to the reaction. The optimised PCR conditions included an annealing 

temperature of 55°C and a final buffer composition of 60 mM Tris-HCl, 15 mM 

ammonium sulphate, 2.5 mM MgCl2 , pH 9.0, supplemented with 2.5 % (v/v) DMSO. 

Both PCR products were separated by electrophoresis on a 1% (w/v) agarose gel. 

Figure 5.2.3 demonstrates that the expected bands of 375-402 bp for V l and 386-440 

bp for Vh were observed. Both PCR products were purified from the gel using a 

Perfectprep gel purification kit. Purified products were then quantified prior to 

annealing PCR.
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5.2.1.4 Linking of heavy and light chain genes by splice by overlap extension (SOE) 
PCR

V h and V l genes were annealed together using a splice by overlap extension (SOE) 

PCR reaction. Once buffer composition (60 mM Tris-Cl and 15 mM ammonium 

sulphate, with a magnesium concentration of 1.5 mM MgCl2, pH 9.0) was optimised 

for the reaction, a titration of VH (approx 30 ng/|j,l) and VL (approx 40 ng/jj.1) 

concentrations was performed. This ensured that Vh and Vl genes were present in 

approximately equal concentrations. Figure 5.2.4, shows that a ratio of 0.5 |il Vh and 

0.5 |il V l proved optimal for a specific band at 800 bp to be observed.

5.2.1.5 Digestion of pAK 100 vector and scFv insert with Sfi 1

The pAK 100 plasmid was isolated from XL-1 Blue cells using a Promega miniprep 

kit. This was digested with Sfi 1 as described in Section 2.4.6.2. The restricted 

plasmid was separated on a 1% (w/v) agarose gel by electrophoresis and the 4,425 bp 

fragment purified from the gel (Figure 5.2.6). The SOE PCR product was restricted 

with Sfi 1, directly from the PCR reaction, as described in Section 2.4.6.2. The 

digested product was run on a 0.7% (w/v) gel (Figure 5.2.5) and purified using a 

Perfect prep gel purification kit. Both purified products were quantified using a 

quantification marker and ligated at a vector to insert ratio of 1.5:1, using T4 DNA 

ligase overnight at 16°C.

5.2.1.6 Electroporation of E. coli XL-1 Blues cells with cloned library

High efficiency electro-competent XL-1 Blue cells were prepared, as described in 

Section 2.4.6.4. 1 pi of ligation reaction was used to transform 50 (ml of cells. This 

produced a recombinant antibody library of approximately 3 x 104 cells.
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Figure 5.2.2 Reverse Transcription of RNA to generate cDNA. Lane 1: Gibco 1 kb 
plus DNA ladder. Lane 2: Extracted RNA. Lane 2-13 cDNA reverse transcribed from 
RNA isolated from a mouse immunised with THC-BSA.

500 bp 
400 bp 
300 bp 
200 bp

Figure 5.2.3: Amplified variable heavy (V h )  and light chain (Vi) genes. Lane 1: 1 kb 
DNA ladder. Lane 2: amplified heavy chain DNA with the expected band of386-440 
bp. Lane 3: amplified light chain DNA with expected band at approx. 375-402 bp.
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Figure 5.2.4: 1% (w/vj agarose gel showing a concentration titration of VH and Vl 
for SOE PCR. The final MgCh concentration in the reaction was optimised to yield a 
level of 1.5 mMMgCh, pH 9.0. Varying concentrations of Vh and Vl were included 
in the reaction mix, as shown in Table 5.2.1. 0.5 fjl of both Vh and Vl proved optimal 
for the production of a specific 800 bp band.

Table: 5.2.1: Table illustrating the volumes of Vh (approx 30 ng/pl) and VL (approx 
40 ng//d) used in concentration titration for SOE PCR, shown in Figure 5.2.4.

Lane No Vh |xl V, Hi

2 0.6 0.45

3 0. 6 0.35

4 0.5 0.3

5 0.5 0.4

6 0.5 0.5
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Figure 5.2.5: Lane 1: Gibco 1 kb plus DNA ladder. Lane 2 + 3: Sfi 1digested SOE 
product. Lane 4: Purified SOE product of approx. 800 bp.
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2,000 bp 
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Figure 5.2.6: Lane 1: Gibco 1 kb plus DNA ladder. Lane 2: Purified Sfi 1 digested 
pAK 100. Lane 3: unrestricted pAKlOO, harbouring 2,000 bp tetracycline insert, 
yielding a vector size of6,425 bp. iMne 4: Sfi 1 restricted pAK 100 (4,425 bp) minus 
tetracycline insert.



5.2.2 Isolation o f scFv antibodies to THCfrom a murine library

In order to enrich the constructed library for antibodies specific to THC, a series of 

selections on coated-immunotubes were performed. This process is known as 

biopanning. Phage displaying scFv’s were rescued from the library at 26°C overnight 

as described in Section 2.5.1. The lowering of temperature was employed to increase 

functional antibody production and aid folding. Phage were concentrated 100-fold 

using a PEG precipitation. Phage were re-suspended in sterile PBS and pre-blocked 

in 4% (w/v) MPBS. Phage were then added to a blocked immunotube containing the 

antigen of interest, in the form of THC-protein conjugate, immobilised on the tube 

surface. ScFv-displaying phage were added to the immunotube and incubated with 

end-over-end rotation for 2 hours. Non-specific binders were removed using a series 

of stringent wash steps with PBST and PBS. Bound antibodies were eluted using an 

acidic shock with 0.1 M glycine, pH 2.2. Phage were removed from the immunotube 

and neutralised with 2 M Tris, pH 7.4. The phage were then enriched by reinfection 

into E. coli cells, amplified overnight, concentrated by PEG precipitation and 

subjected to further rounds of selection.

Phage underwent a total of four selection rounds. In rounds 2 and 4, a subtractive 

selection approach was employed. This involved pre-incubating phage in an 

immunotube coated with BSA and MPBS, prior to exposure to target antigen, thereby 

eliminating any antibodies specific to the carrier protein, BSA. 95 clones from each 

round of panning were analysed for specific antigen binding, no antibodies specific 

for THC were isolated (Table 5.2.2 ). At this stage it was decided to try alternative 

panning strategies. One such strategy involved passive elution using male E. coli 

cells, followed by an alkaline shock. Bacterial elution should, in theory, isolate lower 

affinity binders, with any remaining higher affinity binders being eluted using 100 

mM triethylamine, pH 12 (Wind et al., 1997). Elution time was increased to 15 mins 

as de Bruin et al., (1999) had shown that more stringent elution conditions lead to the 

isolation of scFvs that could not be isolated using a 10 min acidic shock. Phage 

output titres from two rounds of selection can be seen in Table 5.2.3. Phage were 

analysed by polyclonal phage ELISA to monitor overall enrichment of phage 

population. The binding profile of the phage population showed a general enrichment
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in specificity for the THC-BTG conjugate, as can be seen in Figure 5.2.7. Phage were 

then analysed in a monoclonal ELISA format. However, no scFvs specific to THC 

were identified.

Table 5.2.2: Results of panning of an immunised murine library against 
Tetrahydrocannabinol. Phage were eluted using 100 mM glycine, pH 2.2, and 
neutralised with 2 M Tris-HCl, pH 7.4. Eluted phage were then re-infected into XL-1 
Blues to calculate the phage titre.

Pan No Selection Conditions Phage input 
titre cfu/ml

Phage output 
titre cfu/ml

No of 
positives

1 10 |J,g/ml THC-BSA 2 x  1010 1.2 x 105 0/95

2 10 |J.g/ml BSA subtractive 
pan followed by 10 (ig/ml 

THC-BSA

4 x  1010 1.0 x 103 0/95

3 10 [ig/ml THC-BTG 8.6 x 1010 1 x 105 0/95

4 10 ng/ml BSA subtractive 
pan followed byl (ig/ml 

THC-BSA

1 x 1010 1.4 x 105 0/95

Table 5.2.3: Results from two rounds of panning of <an immunised murine library
against tetrahydrocannabinol using bacterial/alkali elution methodI 
were re-infected into XL-1 Blue cells to calculate phage titre.

Eluted phage

Pan No Conditions Phage Input 
titre cfu/ml

Bacterial 
elution 
Phage 

output titre 
cfu/ml

Alkali elution 
phage output 
titre cfu/ml

No of 
positives

1 10 |J.g/ml 4.4 x 107 
THC-BTG

6.0 x 102 5.4 x 102 0/95

2 10 |Jg/ml 5 x 105 
THC-BTG

4.7 x 103 1.8 x 103 0/95
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Figure 5.2.7: Results of polyclonal phage ELISA following bacterial and alkaline 
elutions. Plates were coated with THC-BTG and blocked with 4% (w/v) MPBS. 10 f.d 
of polyclonal phage from each round of panning were added to each well in 100 pi 
4% (w/v) MPBS. Phage were detected using cmti-fd Bacteriophage antibody, 
followed by a peroxidase-labelled anti-rabbit antibody.
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5.2.3 Selection of scFvs from a natural naïve human library

It was decided to pan a naive human library with a diversity of 1.4 x 1010 clones 

(Vaughan et a l, 1996), donated by Cambridge Antibody Technology. This library 

represented two major advantages over the immune library produced. Immune 

libraries suffer from one major drawback, the response of the immune system to 

difficult antigens, such as THC, can be very unpredictable and uncontrolled. The 

naive human library also represented a large increase in repertoire diversity. The 

panning strategy employed with this library involved eluting scFvs by free antigen 

elution. Bound phage were incubated with increasing concentrations of free THC for 

a period of 30 mins for each concentration. Each batch of phage was re-infected into 

E. coli for and enriched by phage rescue followed by PEG precipitation. The phage 

output titres from each round of panning are shown in Table 5.2.4. Although several 

scFvs specific for the conjugate THC-BSA were isolated (Figure 5.2.8), these showed 

no binding inhibition when presented with free THC, indicating that they were 

specific for the hapten-protein conjugate rather than the free drug itself (Figure 5.2.9).
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Table 5.2.4: Phage titre results of panning of a naive human library donated by 
Cambridge Antibody Technology. In order to isolate high affinity binder, phage- 
displaying antibodies were selected using elution with increasing concentrations of 
free antigen. In round 3 a concentration of 100 pg/ml THC was used to elute 
antibodies to free THC. In round four, a step-wise elution strategy was employed. 
This involved incubating bound phage with an initial THC concentration of 1 ¡jg/ml 
for 30 mins. This was increased to 10, 50 and 100 /Jg/ml, each for 30 mins. 
Antibodies with the highest affinity should elute at lower THC concentrations. Phage 
eluted at each concentration, were then re-infected into TGI cells, and enriched prior 
to further rounds of selection.

Round 1 Round 2 Round 3 Round 4

Input titre

(cfu/ml) 1 x 1013 8 x 104 6 x  106 3 x 106

1 (.tg/ml 3.5 x 104

Compétitive ^ T H C

Output titre 

(cfii/ml)

Alkali output

N/A N/A 6 x 102

10 |-ig/ml 
THC

2.6 x 104

50 (ig/nil 
THC

1.3 x 104

100 ng/inl 2.4 x 104
titre (cfu/ml) 3 x  101 4 x  103 1 x 102 6 x  102 THC



L

Figure 5.2.8: Monoclonal phage ELISA following four rounds of biopanning. Phage 
were screened against THC.-BSA conjugate. All clones gave a background 
absorbance of < 0.2 a.u. against the carrier protein BSA.
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Figure 5.2.9: Competitive phage ELISA using positive phage clones isolated in 
monoclonal phage ELISA. No inhibition was seen when phage-displayed scFvs were 
presented with free THC. This indicated that all clones were speci fic for the protein- 
hapten conjugate rather than free THC.
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5.2.4 Selection o f scFvs against Tetrahydrocannabinol from the Griffin. 1 semi­

synthetic naïve human library

The Griffin. 1 library was donated to the University o f Aberdeen, by the MRC Centre 

for Protein Engineering, Cambridge. The Griffin. 1 library is a scFv phagemid library 

made from semi-synthetic V-gene segments, with a diversity of 1.2 x 109 clones 

(Griffiths et al., 1994). The library is derived from genuine human germline 

sequences, in which CDR L3 loops have been partially randomised to mimic natural 

diversity. This represents a more ‘natural’ source of antibody than a naive library, 

derived from IgM, which may suffer from somatic mutations (Hoogenboom, 1997). 1 

x 1012 phage were used for the first round of biopanning. The phage input titres and 

panning conditions are detailed in Table 5.2.5. The initial two rounds of selection 

were against decreasing concentrations of THC-BTG, as no other conjugate was 

available at this time. In Table 5.2.5, it can be seen that after an initial decrease in 

phage numbers, the library was enriched for THC-BTG binders. The third round of 

panning involved elution by free antigen. Phage titres were seen to decrease at this 

stage as phage specific for the conjugated-form of THC were removed. In the fourth 

round of selection, the coating conjugate was changed to THC-BSA, to further ensure 

that all BTG binders were removed. Elution was by means of a decreased 

concentration of free THC. In the fifth round of panning, the concentration of THC 

elution concentration was 1 nM in order to isolate higher affinity THC binders.

All phage were re-infected into TGI cells and analysed in a monoclonal format. A 

total of 92 clones from pans 2-4 were analysed by monoclonal phage ELISA, as 

illustrated in Figure 5.2.10. A further 95 clones from pan 5 were also analysed 

(Figure 5.2.11). A high degree of enrichment for positive binders can be seen 

between earlier selection rounds and the fifth round, as shown in Table 5.2.6. All 

phage clones that gave a positive binding response to both THC-BSA and THC-BTG 

conjugates were re-analysed using a competitive phage ELISA. Figure 5.2.12 

illustrates the competition observed between two of these phage-displayed antibodies 

and free THC in solution. Upon sequencing of 7 positive binders, it could be seen 

that the same antibody sequences were being amplified and enriched so that they were 

present in higher numbers (Figures 5.12.13 to 5.2.15). For example, clone 3D8,
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isolated in round 3 of panning was also isolated in rounds 4 and 5, as clones 4A5, 5C5 

and 5G4. This demonstrates the efficiency of the panning process, increasing the 

proportion of specific binders to non-specific binders in the general phage population.
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Table 5.2.5: Phage titre results following five rounds of biopanning of Griffin. 1 
Library against THC. 1 x 1013 phage were usedfor initial selection and bound phage 
eluted using lml of 100 mM triethylamine, pH 12. Competitive elution using 
decreasing free antigen concentration was employed in rounds 3-5.

Round of Panning Conditions Phage Output Titre 
(cfu/ml)

1 50 \ig ml THC-BTG 3.8 x 103

2 10 fig ml THC-BTG 3 x 10s

3 10 (jg ml THC-BTG 1 
THC elution

6 x  104

4 1 |ig ml THC-BSA 100 
nM THC elution

1 x 103

5 1 pg ml THC-COOH-B S A
1 nM THC elution

8.8 x 103

Table 5.2.6: Table showing the enrichment of library with positive antibodies to THC 
during each rounds of selection. All clones were analysed by monoclonal phage 
ELISA. Results can be seen in Figure 5.2.10 and 5.2.11.

Round of Panning No. of clones 

screened

No. of positive 

clones

% Positives

2 36 3 8.3

3 35 9 25.7

4 24 6 25

5 92 51 55.4
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Figure 5.2.10: Monoclonal phage ELISA results illustrating absorbance seen from a 
96-well ELISA plate, containing phage from pan 2-4. Rows A and B represent clones 
from fourth round, rows C, D and E represent clones from round 3 and rows F, G and 
H, contains clones isolated from round 2. Results from panel A show binding to plate 
coated with 10 fig/ml THC-BTG and panel B, shows binding to a 10 fig/ml THC-BSA- 
coated plate.
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/ H

Figure 5.2.11: Monoclonal phage ELISA results illustrating absorbance seen from a 

96-well ELISA plate, containing phage from pan 5. Results from panel A show 

binding to plate coated with 10 fug/ml THC-BTG and panel B, show binding to a 10 

Hg/ml THC-BSA-coatedplate.
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Figure 5.2.12: Competitive phage ELISA showing two different clones isolated 

against THC. Plates were coated with 1 ng/ml ofTHC-BTG or BSA conjugate. 50 pi 

o f phage were added to each well containing 50 p i offree THC in 2% (w/v) MPBS. 

Absorbance was read at 450-620nm and normalised by dividing the absorbance at 

each THC concentration by absorbance with no THC (AO).
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5.2.4.1 Genetic analysis of scFv genes encoding antibodies capable of THC detection

A total of seven scFv clones, that showed the highest level of inhibition in ELISA 

when presented with free THC, were sent for sequencing. In order to generate high 

quality DNA for sequencing, plasmid DNA from each clone was transformed into 

XL-1 Blue cells. A single colony of each clone was grown overnight in LB media. 

The pHEN 2 vector, containing scFv gene of interest, was isolated by miniprep, as 

described in Section 2.4.61. Plasmid DNA was sent to the Institute of Medical 

Sciences, University of Aberdeen for sequencing, using the primers AH1 reverse (5 -  

AAATACCTATTGCCTACGGC-3') and gene III forward (5'- 

GAATTTTCTGTATGAGG-3'). Raw DNA sequences in each direction were 

analysed using CHROMAS sequence analyser software. The DNA sequences were 

exported and translated using the DNA to protein translation package on the 

Bio.lundberg sequence analysis server. Amino acid residues were exported to 

ClustalW for alignment and to Genedoc for manipulation. This identified 

homologous residues in the sequence alignments. The Kabat identification scheme 

was used to identify antibody complementarity determining regions (CDR’s), which 

are highlighted as blue or red, depending on whether they are of heavy or light chain 

origin.

5.2.4.2 Alignment o f sequences o f seven scFv genes that showed specificity fo r  free 

THC

Of the seven clones sequenced, only three were found be genetically different. This 

illustrated how the bio-panning process enriched the percentage of positive binders, as 

each sequence identified in early rounds of panning was present in later rounds. It 

should be noted, however, that clone 5F12 was not isolated until the fifth round of 

biopanning. Figure 5.2.13 demonstrates that clone 2G6, isolated in the second round 

of panning, was isolated again as clone 5B3 in the fifth round. The enrichment 

becomes more apparent, however, in Figure 5.2.14, where clone 3D8, isolated in the 

third round of panning was isolated as clone 4A5 in the fourth round, and as clones 

5C5 and 5G4 in the fifth round. Figure 5.2.15, illustrates the variations in the amino 

acid sequences of all three non-identical clones, 2G6, 4A5 and 5F12. All amino acids
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that are conserved between the three sequences are highlighted in black, while 

residues conserved in two out of three clones are shown in grey. Complementarity 

Determining Regions (CDRs) were identified using the Kabat rules and highlighted 

accordingly. Heavy chain CDR regions are written in red, while light chain CDR 

regions are written in blue. The 13 amino acids encoding the linker region are written 

in yellow. All antibodies were found to be of the k 1 light chain subgroup but varied 

in their heavy chains. Both clones 4A5 and 5F12 were found to be human subgroup 

III heavy chains, while clone 2G6 was found to be derived from the human subgroup 

n  heavy chain. All three clones show a significant degree of variation in framework 

and CDR regions. The composition and length of the third CDR of antibody heavy 

chains is thought to play an important role in the formation of the hapten-binding 

pocket, which confers specificity to the molecule (Strachan et al., 2002). CDR H3 

lengths were seen to vary from 10 amino acids in clone 4A5 to 9 in clone 5F12 and 8 

in clone 2G6. Recent evidence suggests that anti-hapten antibodies bind in a pocket 

positioned between heavy and light chain variable domains, whereas anti-protein 

antibodies have a more flat or planar binding site (Johnson and Wu, 1998: Strachan et 

al., 2002). The formation of this binding pocket is thought to be influenced by CDR 

H3 length, as longer CDR H3’s (9-10 amino acids) have been observed in more 

sensitive anti-hapten scFvs.
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Figure 5.2.13: Alignment o f phage-displayed scFv clones 2G6 and 5B3 isolatedfrom 

Griffin. 1 Library against THC. Both clones show 100% homology as highlighted in 

black. Heavy chain CDR regions are written in red and light chain CDR regions in 

blue. The linker region sequence is written in yellow.
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Figure 5.2.14: Alignment o f  phage-displayed scFv clones 3D8, 4A5, 5C5 and 5G4 

isolated from Griffin. 1 Library against THC. All clones show 100% homology as 

highlighted in black. Heavy chain CDR regions are written in red and light chain 

CDR regions in blue. The linker region sequence is written in yellow.
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5.2.4.3 Homology mode Hi tig o f scFv sequences using Swiss-Model and DS Viewer 

Pro

Antibodies were modelled using Swiss-Model, a fully automated protein structure 

homology-modelling server (Schwede et al., 2003). Swiss-Model is a server for 

automated comparative modelling of three-dimensional (3D) protein structures. 

Comparative modelling can reliably generate a 3D model of a protein target from its 

amino acid sequence. The server operates by comparing the given amino acid 

sequence to all experimentally solved 3D protein structures held at the Protein Data 

Bank (PDB). This identifies a solved protein structure with the greatest sequence 

similarity to the target sequence. The degree of identity between sequences is 

calculated and a theoretical model for the target sequence extrapolated. Modelling 

results were exported to Swiss-PDB Viewer and DS Viewer Pro for visualisation.

Figure 5.2.16 shows a ribbon illustration of scFv antibody (clone 2G6) modelled 

using DS Viewer Pro software. Heavy chain CDRs are shown in red and light chain 

CDRs are shown in blue. The linker region is shown in yellow. Figure 5.2.17 shows 

two schematic illustrations of scFv antibody (clone 2G6) generated using Swiss-PDB 

Viewer software. In this model arrows pointing in the direction of the C-terminus 

represent beta sheets and coils are represented by a tubular structure. Each variable 

domain consists of nine beta sheets connected via a synthetic Gly4 Ser linker, which is 

clearly visible as a yellow tube. The 6 hypervariable loops that comprise the 

antibody’s CDR regions give rise to a deep antigen binding cavity, associated with 

hapten-binding. A long CDR LI loop and an accessible CDR H3 loop are also 

associated with ‘haptogenic’ binding.
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Figure 5.2.16: Ribbon illustration o f  anti-THC scFv antibody (clone 2G6). The 

antibody structure was modelled using DS ViewerPro modelling software. Heavy 

chain CDRs are shown in red and light chain CDRs are shown in blue. The linker 

region is shown in yellow.
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F igu re  5 .2 .17 : Schematic homology> model o f anti-THC scFv (clone 2G6). Panel A 

illustrates a front view o f the antibody, looking into the antigen-binding pocket and 

panel B represents a top view, looking down into the antigen-binding pocket. Beta 

sheets are shown as arrows and coils are represented as tubes. Heavy chain C.DRs 

are shown in red and light chain CDRs are shown in blue. The linker region is shown 

in yellow.
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5.2.5 Expression o f soluble scFv as a scAb in the pIMS 147 expression vector

In order to produce soluble antibody in a single chain format (scAb), the scFv insert 

was recloned into an enhanced expression vector, pIMS 147, produced by the 

Molecular and Cell Biology Group, University of Aberdeen. The pIMS 147 vector 

expresses scFv’s in a scAb format, by encoding the human kappa light chain constant 

gene, at the C-terminus of the scFv gene, resulting in the expression of a single chain 

antibody.

The pHEN 2 vector, containing the scFv insert, was isolated by minipreping the 

plasmid DNA. The scFv insert was then isolated from the vector using the Nco 1 and 

Not 1 restriction sites flanking the region. An agarose gel showing doubly digested 

pHEN and pIMS 147 vectors is shown in Figure 5.2.18. The scFv inserts were gel- 

purified as described in Section 2.4.4.4, quantified, and ligated into pIMS 147. The 

plasmid was then transformed into heat-shock competent XL-1 Blues for scAb 

expression. Antibody clones were grown in TB media, as described in Section 2.6.10, 

and expression was induced using 1 mM IPTG. Cells were pelleted and subjected to 

an osmotic shock to lyse the bacterial periplasm. The soluble fraction was harvested 

and used directly for purification. All scAbs were purified via Ni+2-charged 

immobilised metal affinity chelate chromatography (IMAC), which utilises the 

hexahistidine tail of the antibody as a tag for purification. The presence of scAb was 

detected via the human kappa light chain constant domain (Ck), encoded in the vector. 

The purity of all scAbs was monitored by SDS-PAGE. A corresponding gel was also 

transferred to nitrocellulose and probed with a peroxidase-labelled anti-human kappa 

light chain antibody (Figure 5.2.19).

The concentration of scAb was determined via capture ELISA as described by 

McGregor et al. (1994). A standard curve of human lgG of known concentrations 

was plotted against absorbance observed. This could then be corrected for differences 

in molecular weight between whole IgG (150kDa) and scAb (40kDa). Figure 5.2.20 

shows that whole IgG gives the expected sigmoidal curve, the linear portion of which 

can be used for concentration determination. All scAbs, however, exhibit a flatter 

shaped capture ELISA curve, with no linear portion. This suggests that the antibody
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fragments are aggregating to form multimers. In an attempt to dissociate antibodies 

into monomeric fragments for quantification, the capture ELISA was repeated, 

incorporating a low concentration of free drug. The presence of free antigen should 

prevent any aggregation occurring in the region of the antigen-binding site, as area 

should preferentially bind antigen. 10 fjg/ml of THC was added to each antibody 

dilution and incubated for 1 hour to reach equilibrium. This was shown to improve 

antibody aggregation but was still not sufficient to separate antibodies so that a linear 

region of the sigmoidal curve could be observed, as can be seen in Figure 5.2.20. 

From SDS-PAGE analysis, it can be seen that the antibodies were sufficiently pure to 

quantify by total protein concentration, although this may slightly over estimate the 

expression levels of the antibody. A Bradford assay was performed using a 

Coomassie protein determination kit. The concentrations of each antibody are shown 

in Table 5.2.7. The results show that clone 2G6 proved to be the best-expressed 

antibody. However, clone 5F12 was the most concentrated. It was, therefore, unusual 

that clone 4A5 appeared to form a visible insoluble precipitate upon storage in PBS.
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1,230 bp 
1,033 bp

653 bp 715 bp

scFv gene

Figure 5.2.18: Nco 1. Not I digest o f selectedpHEN 2 clones. Lane 1: Roche DNA 

ladder. Ixrne 2-11: pHEN 2 clones containing scFv inserts, digested using Nco 1 and 

Not 1 restriction enzymes, resulting in cut vector o f  approx 3,900 bp and scFv gene o f 

approx 715 bp. Lanes 12-14: pIMS 147 vector digested with Nco 1 and Not 1 

restriction, resulting in cut vecor o f  approx 5,270 bp and scFv gene o f  approx 715 bp. 

The scFv genes from pHEN 2 clones were purified and ligated into the p/M S 147 

vector digested with Nco 1 and Not 1.
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Figure 5.2.19: Purification o f anti-THC scAb clones 2G6, 4A5, 5F12 by IMAC. 

Panel A shows SDS-PAGE analysis, while panel B shows Western blot analysis o f 

purified scAbs. Antibodies were detected in Western blotting using a peroxidase- 

labelled anti-human kappa constant light chain domain antibody and visualised using 

TMB substrate. Lane 1: Molecidar weight markers, Lane 2: Standard human IgG at 

520 f-ig/ml, Lane 3: Positive control scAb (clone CSBD9 against microcystin) at 300 

fjg/ml, Lane 4: Purified scAb clone 5F12 at a 1 in JO dilution, Lane 5: Purified scAb 

clone 5FJ2 at a J in 5 dilution, Lane 6: Purified scAb clone 5FJ2 Neat, Ixtne 7: 

Purified scAb clone 4A5 neat, Lane 8:Purified scAb clone 2G6, J in 5 dilution, Lxine 

9: Purified scAb clone 2G6, I  in 2 dilution, Lane JO: Purified scAb clone 2G6, neat, 

Lane II:  Prestained molecular weight markers.
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Panel A

Sta n d a rd  H um an IgG co n cen tra tio n  (ng/m l)

Panel B

S tan d ard  H um an IgG ng/m l

Figure 5.2.20: The concentration o f antibody was determined via capture ELISA as 

described by McGregor et al. (1994). The human Ck tag was used to estimate scAb 

concentration. A standard curve o f  human IgG o f known concentrations was plotted 

against absorbance observed. Doubling dilutions o f  each scAb from 1 in 10 to 1,280 

were plotted also against absorbance on the same scale. Curves should exhibit a 

sigmoidal curve, with parallel slopes. ScAb concentration could be calculated from  

the slope o f  standard curve and could then be corrected fo r  differences in molecular 

weight between whole IgG (150 kDa) and scAb (40 kDa). Panel A show the results 

from a capture ELISA performed in PBS and panel B shows capture ELISA results 

when performed in PBS, containing 10 ng/ml THC. The scAbs all appeared to form  

aggregate multimers away from the antigen-binding site as no linear portion o f the 

sigmoidal curve was observed.
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Table 5.2.7: Results o f Bradford assay to determine total protein expression levels for  

each antibody clone. Varying dilutions o f  each purified antibody was compared 

against a known concentration o f  fully characterised scAb, clone CSBD9. Proteins 

were quantified using Coomassie reagent and absorbance read @ 562nm.

Clone Concentration of 

purified scAb

Original 

Culture 

Volume (ml)

Volume 

Purified scAb 

obtained

Total expression 

level per litre of 

culture

2G6 A ll  ng/ml 600 25ml 19.9 mg

4A5 280 600 4 ml 3.7 mg

5F12 1.4 mg/ml 600 5ml 12.0 mg
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5.2.6 ELISA analysis o f  anti-THCscFvs

For the development of a competitive ELISA assay for the detection of THC, the 

optimal conjugate coating concentration o f THC-BTG and optimal antibody dilutions 

were determined by indirect checkerboard ELISA for each antibody clone. Figure 

5.2.21 show results obtained for clone 2G6. A conjugate coating concentration of 

1.25 ng/ml THC-BTG along with a 1 in 1,000 (11.35 nM) scAb was chosen as 

optimal. This scAb dilution gave an absorbance of approximately 0.5, which is 

considered to be in the most sensitive, linear region of the curve. Figure 5.2.22 shows 

checkerboard analysis of clone 4A5. A conjugate coating concentration of 2.5 |!g/ml 

and a scAb dilution of 1 in 100 (66.7 nM) were chosen as optimal. Figure 5.2.23 

illustrates determination of optimal conditions for clone 5F12. These were chosen as

2.5 |ig/ml THC-BTG coating and a 1 in 500 (68.58 nM) scAb dilution. The results 

highlighted the highly avid nature of clone 2G6 as this antibody could be used at the 

highest dilution factor, although this was not the most concentrated antibody.

Due to the hydrophobicity of THC, it was decided to optimise competitive ELISA 

conditions with varying percentages of ethanol. A competitive ELISA was performed 

using each scAb against varying concentrations of THC, prepared in increasing 

concentrations of ethanol. Results shown in Figures 5.2.24 to 5.2.26, illustrate ELISA 

analysis with each clone using THC, prepared in final ethanol percentages of 0% (v/v) 

to 4% (v/v). This involved making THC standards in ethanol concentrations of 8% 

(v/v) to 0% (v/v) and mixing them with scAb. The use o f higher ethanol 

concentrations was also investigated, however the organic solvent was found to 

severely affect antibody activity. The percentage ethanol for use in competitive 

ELISA was determined to be 2% (v/v) for clone 2G6, 4% (v/v) for clone 4A5 and 

0.5% (v/v) for clone 5F12. These parameters were employed in a competitive ELISA 

format to detect free THC. The optimised assay can be seen in Figure 5.2.27. Clone 

2G6 exhibited the smoothest curve with the lowest limit o f detection. All scAbs 

however, proved to be very problematic. The assay suffered from a lack of 

reproducibility with all soluble antibodies, in which detection limits varied by up to a 

factor of 10 in free THC concentrations detected, when repeated in an interday format. 

The standard smooth sigmoidal curve theoretically observed in competition ELISA
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proved difficult to obtain. Instead, the standard curve was not robust, with points 

appearing to zig-zag up and down. This phenomenon was not observed when the 

antibodies were employed in a phage ELISA format. One possible explanation for 

this was that genetic mutations had occurred in the scFv genes during subcloning into 

pIMS 147. To eliminate this possibility all scFv genes were re-sequenced in pIMS 

147 using the primers AH1 reverse and Human C k  forward. All sequences confirmed 

that no mutations had occurred in the genetic sequence of antibodies. It was also 

decided to express antibodies in a soluble format directly from the original phagemid 

vector, pHEN 2. In this format, antibodies are expressed as scFvs, with a c-myc tag 

and without the human C k  tail. An individual colony was grown overnight and used 

to express antibody simultaneously in phage and soluble formats. This would 

eliminate any aggregation or steric hindrance caused by the C k  detection tag. 

Antibodies produced in this manner are also expressed at dramatically lower 

concentrations than with the pTMS 147 vector, therefore, eliminating any problems 

that are concentration dependent, such as antibody precipitation. Even at such low 

concentrations and without the large human C k  tag, scAbs still failed to behave in the 

‘model’ fashion when presented with free THC (data not shown). Unfortunately at 

this stage, the lab supply of free THC became exhausted and the suppliers withdrew 

the drug from the European market. For this reason, no further ELISA analysis could 

be carried out on these clones.
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1/A ntibody dilution

Figure 5.2.21: Indirect checkerboard ELISA on scAb clone 2G6, for the 

determination o f  optimal conjugate coating concentration o f THC-BTG, and optimal 

dilution o f scAb fo r  use in competition ELISA. THC-BTG was coated at 0, 0.3125, 

0.625, 1.25 and 2.5 pg/ml and doubling dilutions o f  scAb from 1 in 10 to 1 in 10,000 

were carried out.
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Figure 5.2.22: Indirect checkerboard ELISA on scAb clone 4A5, fo r  the 

determination o f  optimal conjugate coating concentration o f  THC-BTG, and optimal 

dilution o f scAb fo r  use in competition ELISA. THC-BTG was coated at 0, 0.625, 1.25 

and 2.5 pg/ml and doubling dilutions o f  scAb from 1 in 10 to 1 in 2,500 were carried 

out.
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Figure 5.2.23: Indirect checkerboard ELISA on scAb clone 5F12, for the 

determination o f optimal conjugate coating concentration o f THC-BTG, and optimal 

dilution o f scAbfor use in competition ELISA. THC-BTG was coated at 0, 0.625, 1.25 

and 2.5 pg/ml and doubling dilutions o f scAb from I  in 10 to I in 2,500 were carried

THC concentration (ng/ml)

Figure 5.2.24: Optimisation o f ethanol concentration o f THC standard fo r  use in 

competitive ELISA with scab clone 2G6. A final concentration o f 2% (v/v) ethanol 

was chosen as optimal as this gave the smoothest curve without affecting antibody 

activity.
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Figure 5.2.25: Optimisation o f ethanol concentration o f THC standard fo r  use in 

competitive ELISA with scAb clone 4A5. A final concentration o f 4% (v/v) ethanol 

was chosen as optimal as this gave the smoothest curve without affecting antibody 

activity.
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Figure 5.2.26: Optimisation o f ethanol concentration o f THC standard fo r  use in 

competitive ELISA with scAb clone 5FJ2. A final concentration o f  0.5% (v/v) ethanol 

was chosen as optimal as this gave the smoothest curve without a ffecting antibody 

activity.
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THC concentration (ng/ml)

Figure 5.2.27: Optimised competitive ELISA analysis using each scAb to detect free 

THC. THC concentrations from  0.1 to 200,000 ng/ml were analysed using optimised 

ELISA parameters detailed above. Assay curves deviated from the smooth sigmoidal 

curve expectedfrom competitive cmtibody-antigen interactions. Clone 2G6, however, 

was deemed to be the most sensitive antibody.
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5.2.7 Determination o f antibody aggregation by native gel electrophoresis

Native gel electrophoresis was carried out in order to access whether scAbs were 

spontaneously forming multimeric aggregates in solution. The occurrence of such 

multimers may explain the irreproducibility of ELISA results and a dramatic decrease 

in sensitivity between phage and soluble antibody formats. Native gel electrophoresis 

allows antibodies to be analysed in their native state as all denaturing agents such as 

SDS and mercaptoethanol are omitted from gel solutions. The omission of SDS from 

buffers, however, means that protein charge will also influence the rate of migration 

through the gel. For this reason a direct comparison between proteins and molecular 

weight markers cannot be made. The gel will however give a valuable insight into the 

native structure of the anti-THC scAbs when compared to a well-characterised 

positive control, clone CSBD9. All anti-THC antibodies appear to exist in a 

multimeric state, as can be seen in Figure 5.2.28. The molecular weights of the 

antibodies are more comparable to whole human IgG (150 kDa) than that of scAb (40 

kDa).
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Figure 5.2.28: Native gel electrophoresis on purified anti-THC scAbs to determine 

the degree o f  aggregation. Lane I: Positive control scAb (clone CSBD9 against 

microcystin 40 kDa) at 300 /.jg/ml; Lane 2: Purified scAb clone 2G6, Neat; Lane 3: 

Purified scAb clone 2G6, 1 in 5 dilution; Lane 4: Purified scAb clone 4A5, Neat; Lane 

5: Purified scAb clone 5F12, Neat; Lxine 6: Purified scAb clone 5F12, 1 in 5 dilution; 

Lane 7; Purified scAb clone 5F12 at a 1 in 10 dilution; Lane 8: Standard human IgG 

(150 kDa) at 520 /ig/ml.
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5.2.8 Re-evaluation o f phage-displayed scFvs fo r  the detection ofTH C in saliva

Several attempts were made to alleviate the aggregation problem of soluble antibodies 

by changing assay parameters, such as buffer pH. The problem appeared to be an 

intrinsic characteristic of the antibodies’ protein sequence. It was decided to re­

evaluate the use of phage-displayed scFvs as an analytical tool for the detection of 

THC in saliva. Clone 2G6, proved the most sensitive scFv in earlier analysis and was 

therefore chosen as a model for THC analysis in saliva. A pre-requisite for the 

development of a sensitive immunoassay is the preliminary optimisation of conjugate 

coating concentration and dilution of antibody, as previously discussed. This was 

carried out by means of a checkerboard ELISA (Figure 5.2.29). Concentrations of 

THC-BTG of 5, 2, 1 and 0 [J.g/ml were used to coat an ELISA plate. Dilutions of 

phage-displaying antibody from 1 in 8 to 1 in 2,560, diluted in 2% (w/v) MPBS, were 

added to the plate. Bound phage were detected using a peroxidase-labelled anti-M13 

bacteriophage antibody and absorbance monitored at 450nm. Optimum conditions for 

the competitive ELISA were chosen to include a conjugate coating of 2 ug/ml THC- 

BTG, with an antibody dilution of 1 in 100. As earlier determined, an ethanol 

concentration of 2% (v/v), proved optimal for ELISA analysis ofTHC.

Using these parameters, a model ELISA assay was developed using clone 2G6 to 

detect THC in PBS. Figure 5.2.30, illustrates an intra-day assay (n=3) for THC, 

capable of detecting approximately 122 ng/ml THC in PBS. With one exception, all 

coefficients of variation lay between the acceptable limits of 20%. Figure 5.2.31, 

illustrates an inter-day assay carried out using phage-displayed clone 2G6 to detect 

THC in spiked-saliva samples. Saliva was obtained from THC negative donors and 

used to prepare varying dilutions o f THC. The only sample preparation involved a 

brief (30 secs) centrifugation step, prior to analysis. The phage-displayed antibody 

was dilution in 2% (w/v) MPBS, containing 2% (v/v) ethanol. The assay proved that 

phage-displayed scFvs could be successfully used to detect THC in saliva. The assay 

had an increased limit o f detection o f approximately 500 ng/ml for quantitative 

analysis and 3.9 |.ig/ml for qualitative analysis, when compared to PBS. However, the 

assay demonstrated that phage-displayed antibodies could be successfully employed 

in analysis o f ‘real’ biological samples, without extensive sample pre-treatment.
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Figure 5.2.29: Checkerboard ELISA to determine the optimal conjugate coating 

concentration o f  THC-BTG and optimaI dilution o f phage scFv fo r  competitive 

ELISA. 2 tig/ml THC-BTG, with a I in 100 dilution o f  antibody-displayed phage were 

chosen as optimal
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62,500 0.181 ± 0 .018 9.96%
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7,812.5 0.278 ± 0.079 28.45%
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122.07 0.681 ±0.011 1.62%

Figure 5.2.30: Intra-day assay using scFv, clone 2G6, displayed on the surface o f  

phage, to detect THC in PBS. The results show an average o f three sample replicates, 

carried out over one day.
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TH C C on centration  (ng/m l)

THC concentration 

(ng/ml)

Calculated mean A/AO ± S.D. Coefficient of 

variation (%)

125,000 0.148 + 0.042 27.96%

62,500 0.261+0.010 3.89%

31,250 0.351+0.03 8.40%

15,625 0.470 + 0.052 11.05%

7,812.5 0.718 + 0.006 0.77%

3,906.25 0.782 ± 0.084 10.68%

1,953.13 0.782 + 0.115 14.76%

976.56 0.891+0.010 1.12%

488.28 0.921 +0.033 3.61%

244.14 0.891 +0.113 12.70%

122.07 0.971 +0.070 7.18%

Figure 5.2.31: Inter-day assay for THC in spiked saliva samples, using scFv antibody 

derived from clone 2G6, expressed on the surface o f  phage. The inter-day assay, 

involved carrying out three sample replicates, over three separate days.
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5.3 Discussion

This chapter describes the production of genetically-derived scFvs against 

tetrahydrocannabinol. For this purpose a pre-immunised murine library was 

generated. A mouse was immunised with THC-BSA over a period of 12 weeks. 

Once a sufficient antibody titre (1 in 100,000) was obtained, the spleen was removed 

and RNA extracted. Variable heavy and light chain antibody genes were amplified by 

PCR, employing a mix of primers in a multiplex PCR. The primers detailed by 

Krebber et al. (1997), encompass all possible variations of murine heavy and light 

chain genes collected in the Kabat database (Kabat et a l, 1991), combined with an 

extended primer set described by Kettleborough et a l  (1993). Heavy and light chain 

genes were annealed in the orientation VL-(Gly4 Ser)4-VH, using a splice by overlap 

extension PCR. Sfi 1 recognises the sequence GGCCNNNNNGGCC, where N can be 

any nucleotide. This recognition is introduced by the Vh for and scback primers and 

is very rare in antibody sequences. The phagemid vector pAK 100 has also been 

engineered to contain two Sfi 1 sites, one complimentary to the light chain N 

nucleotides and one complimentary to the heavy chain N nucleotides. This allows 

directional cloning of the scFv gene in the correct orientation. The Sfi 1 enzyme 

always cuts two sites at once, eliminating any intermediate digestion products, and 

generating two different palindromic ends with 3 bp overhangs, eliminating the 

possibility o f self-ligation. The SOE product was digested with Sfi 1 and ligated into 

the phagemid vector pAK 100.

This was transformed into XL-1 blue cells for phage production. Various methods of 

competent cell production and transformation were investigated, however, 

transformation efficiency proved poor, yielding a library of 3 x 104 cells. 

Commercially available supercompetant cells were also used but failed to produce a 

larger repertoire. It was hoped that the initial RNA would be highly specific to THC, 

eliminating the requirement for a large repertoire as the library was generated from 

pre-immunised spleen cells. Phage were rescued and enriched for positive binders by 

biopanning. Phage from each round were analysed by monoclonal phage ELISA. 

However, no positive binders were isolated, following four rounds of panning. At this 

stage it was decided to try alternative panning strategies. One such strategy involved
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passive elution using male E. coli cells, followed by an alkaline shock as described by 

Wind et al, (1997). Although a general enrichment was seen in phage towards THC- 

BTG in a polyclonal ELISA format, no positive monoclonal binders specific to THC 

were identified. Two reasons were identified as possibilities as to why the library 

failed to generate specific antibodies. The first possibility involved the type DNA 

polymerase used, as Taq polymerase does not have any proof reading ability. The 

quality o f the primer set employed was also questionable. Primers synthesised by 

MWG were supplied at very low concentrations, which can be an indication of 

random single-base deletions. These would be amplified in the final scFv product, 

decreasing the functionality of the library.

At this stage, a natural human scFv repertoire was investigated as an alternative to the 

murine library created to circumvent some of the problems associated with the quality 

of molecular reagents available. This library described by Vaughan et a l, (1996) had 

a diversity of 1.2 x 1010 clones. The library was subjected to alternative biopanning 

strategy; rounds 2-4 were performed as before, alternating between BSA and BTG 

forms of conjugate. This should eliminate any binders to the carrier protein. In the 

fifth round of panning, phage recognising free THC were eluted using solutions with 

an increasing THC concentration. Higher affinity binders to the free antigen should 

be isolated with lower THC concentrations. After the fifth round, phage were 

analysed in a monoclonal format. Several positive binders were isolated and these 

were analysed in a competitive ELISA format, however, no recognition of free 

antigen was seen. A naive human library represents a very uncontrolled diversity, 

limited in diversity by the IgM repertoire, which is frequently somatically mutated, 

the unknown history of B cell donors and the bias due to unequal expression of V- 

gene families (Hoogenboom, 1997).

The Griffin. 1 Library is a semi-synthetic naive human antibody library, constructed 

by recloning synthetic heavy and light chain variable regions from the lox library 

vector into the phagemid pHEN 2 vector (Griffiths et a l, 1994). The library was 

constructed in vitro using naturally occurring V genes as building blocks, with CDR 3 

loops that have been partially randomised to mimic natural diversity generated 

through V-J gene recombination that occurs in vivo. The library represents a 

controlled and defined set of V-genes, representing antibodies, which may be
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considered more natural than those, derived from natural IgM repertoires 

(Hoogenboom, 1997). The Griffin. 1 library has been used successfully to isolate a 

variety of scFvs against haptens (Griffiths et ah, 1994; Strachan et ah, 2002; Brichta 

et ah, 2003). The library was subjected to five rounds of biopanning and monoclonal 

phage were analysed by monoclonal phage ELISA. Panning was performed by 

alternating between THC conjugates in the preliminary rounds, followed by free 

antigen elution, in latter rounds, to remove any interface binders. The phage 

population was enriched for specific THC binders as seen in Table 5.2.6. However, 

upon sequencing of positive binders, it could be seen that the same antibody 

sequences were being amplified and enriched by the panning strategy. This meant 

that multiple copies of each clone was present in the latter rounds of panning and, 

therefore, a higher percentage of phage population showed a positive binding 

interaction with both of the THC conjugates.

Sequence analysis of 7 positive THC revealed that 3 clones varied in protein 

sequence, especially in the critical CDR H3 region. Figures 5.2.16 and 5.2.17

illustrate homology modelling of clone 2G6, where the typical ‘open conformation’ 

structure observed in anti-hapten antibodies can be seen. A deep antigen-binding 

cavity, in which the hapten embeds itself, is clearly visible. This is formed by long 

CDR LI and H3 loops, forming an antigen-binding pocket, increasing the antibody’s 

surface area for antigen interaction. Three clones, 2G6, 4A5 and 5F12 were subcloned 

into the vector pIMS 147 for enhanced soluble expression as single chain Antibodies 

(scAb). The vector encodes the skp periplasmic chaperone gene, the human kappa 

constant light chain domain (C k) and a hexahistidine tag The skp chaperone has been 

found to increase total and functional yield of antibody and alleviate protein 

aggregation in the bacterial periplasm (Strachan et ah, 1999, Hayhurst et ah, 2003). 

The human C k  tail acts as an ideal antibody detection agent and the hexahistidine tag 

facilitates rapid purification via immobilised metal affinity chelate chromatography 

(IMAC). Single chain antibodies were expressed in E. coli XL-1 Blue cells under the 

control of the lac promoter. Soluble antibody was extracted from the periplasm of 

bacterial cells and purified by IMAC. Purity was accessed by SDS-PAGE analysis 

(Figure 5.2.19). Clone 2G6 appeared to behave anomalously when analysed by SDS- 

PAGE, yielding a protein band at a slightly lower apparent molecular weight than 

expected. This may be due to the very basic nature of the scAb (pl=8.99). Hames
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(1990) has reported irregular migration of proteins in SDS-PAGE as a function of 

their inherent charge, which due to size or shape and conformation of the polypeptide, 

can contribute to overall charge. Antibody concentration could not be determined 

directly by capture ELISA (see Section 5.2.6) due to aggregation therefore, total 

protein concentration was used as an indication of antibody expression. Clone 2G6 

was shown to be the best expressed of the three antibodies yielding nearly 19 mg of 

antibody per litre of culture. This also proved to be the most avid scAb, being used at 

a concentration of 11.35 nM in a competitive ELISA format. Clone 4A5 and 5F12 

were both employed at higher concentrations, 66.7 nM and 68.58 nM, respectively. 

All scAbs were applied to a competitive ELISA format but results proved 

irreproducible.

Immunoassays developed for THC to date have been hindered by the highly lipophilic 

nature of THC. Immunoassays, by design, are carried out in aqueous media. In such 

a system, THC will adhere preferentially to glass or plastic in preference to dissolving 

in aqueous solution. Initially, an optimisation step was carried out to determine the 

ideal concentration of ethanol to be used in the preparation of standards. Competition 

ELISAs were carried out using these parameters and initially the limits of detection 

achieved were favourable. Upon reproducibility analysis however, it was noted that 

the assay lacked robustness. Ethanol concentrations were further increased until 

antibody activity was affected, but this failed to improve assay robustness. The scFv 

genes were re-sequenced to ensure that no mutations had been introduced during 

subcloning of the into the pIMS vector. Interference from the human Ck tail (15 

kDa), as reported by Hayhurst et al. (2003), was eliminated as a source of interference 

in the assay, by expressing the antibodies in a soluble format directly from the pHEN 

2 vector. This vector encodes a detection label in the form of a c-terminal myc 

peptide, adjacent to a hexhistidine tag for purification. An individual clone of each 

antibody was used simultaneously to produce soluble and phage-displayed scFvs. 

Soluble antibody fragments produced in this manner were at significant lower 

concentrations than when expressed as scAb, with the aid of the skp chaperone. This 

eliminated any concentration dependant factors as the cause of irreproducibility. 

Antibodies expressed as a gene m fusion protein on the surface of phage behaved in a 

manner consistent with a ‘model’ competitive ELISA displaying a reproducible 

sigmoidal shaped curve. Antibodies expressed as soluble fragments (scFv), however,
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failed to exhibit any reproducible recognition of free drug. Hayhurst et a l, (2003), 

observed a decrease in sensitivity in phage antibodies when expressed in scAb format. 

They reasoned that the amplification in signal by the phage gVIII protein gave rise to 

a 100-fold increase in sensitivity. This may explain the decrease in assay sensitivity 

but fails to justify the irreproducibility associated with this assay for THC. As the 

problem persisted when antibodies were expressed in an scFv format, it suggested that 

antibodies were aggregating when expressed without the gene VIII protein. The 

formation of antibody aggregates was analysed by native polyacrylamide gel 

electrophoresis. Although a direct molecular weight determination cannot be made 

from this gel, it was apparent from that the scAbs were all forming aggregates, 

yielding a multimer, with molecular weight similar to that of a whole antibody. This 

increase in valency could significantly affect specificity of the scAbs In the format of 

a competitive assay format, the amount of antibody detected is proportional to the 

amount scAb molecules remaining immobilised to THC-BTG surface. In contrast, 

dimeric scAbs contain two antigen binding sites, one available for binding to free 

antigen, while the other remains capable o f binding THC-BTG conjugate. A dimeric 

scAb will therefore only be displaced by higher concentrations of competing antigen. 

This theory would explain the decrease in sensitivity observed between phage and 

soluble antibodies. A similar increase in scFv avidity for immobilised antigen has 

been seen between monmeric and dimeric scFvs (Brennan et a l, 2003). It appears 

that aggregation, in this case is spontaneous and varied in nature, giving rise to a 

heterogeneous mixture of multimers that displace at different rates in ELISA. This 

would explain the difficulty in achieving reproducible sensitivities. It was unclear 

why all antibodies, irrespective of protein sequence, spontaneously aggregated to 

form these multimers. Perhaps the nature of the primary protein sequence of scFvs 

required to bind such a lipophilic target molecule as THC, render them unsuitable for 

expression in a soluble format, without fusion to the gene VIII phage coat protein. To 

my knowledge this phenomenon has not previously been observed with the Griffin. 1 

library.

The possibility of using phage-displayed scFvs in a competitive ELISA for THC was 

re-evaluated. Assay conditions were optimised by means of an indirect checkerboard 

ELISA. A coating concentration of 2 ng/ml THC-BTG, with a 1 in 100 dilution of
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phage was found to be optimal (Figure 5.2.29). A competitive immunoassay was 

carried out to detect THC in PBS. Figure 5.2.30, illustrates that the phage-displayed 

scFv can be used to specifically detect THC in PBS. All but one coefficient of 

variation was between the required 20% range for successful assay development. The 

phage-scFv was capable of detecting almost 100 ng/ml free THC. The possibility of 

applying this assay format to saliva sample analysis was also investigated. Saliva 

samples were obtained from THC negative donors. Samples were subjected to a brief 

centrifugation step, prior to analysis. Standards of varying THC concentration were 

prepared in saliva. Dilutions of phage were prepared in 2% (w/v) MPBS, % 2 (v/v) 

ethanol. The analysis was carried out on three separate days to calculate inter-day 

assay variability. Figure 5.2.31 illustrates that phage antibodies can be successfully 

applied to sample analysis in biological matrices, such as saliva. The phage could 

specifically detect THC, without suffering any significant effects from the complex, 

diverse nature of the sample matrix. The assay could quantitatively detect THC above 

a concentration of approximately 500 ng/ml in saliva. For qualitative analysis, a 

higher limit of detection than the LDD was chosen due to the high variability in the 

curve. The linear region of the curve from 3.9 jig/ml to 62.5 f.tg/ml proved suitable for 

qualitative. Within this region the coefficients of variation remain below 12%. 

Although %CV’s below 10% are preferable, the acceptable levels for an optimised 

immunoassay should remain below 20% (Findlay et ah, 2000). This limit of detection 

is slightly higher than that reported with standard polyclonal antibodies for THC 

detection in saliva samples (Fanning, 2002). The relative change in absorbance 

observed per unit change in concentration is much greater for the phage assay, making 

it more sensitive over the dynamic range, i.e. slope of curve or AA/AO per A [THC], 

Coefficients of variations for THC analysis are normally high, due to the amount of 

variability, associated analyte itself. In fact the C.V.’s reported here are below those 

reported for CAP FUDT (College of American Pathologists Forensic Urine Drug 

Testing) proficiency test surveys 1990-1991, which ranged from 14.2-37.1% (Joern, 

1992). One specimen from the survey had a target value of 100 ng/ml, verified by 

quality control, but the average value determined by participants was found to be only 

21 ng/ml. The successful development of an assay for THC using phage-displayed 

scFvs offers real potential in the search for a sensitive and specific antibody for THC 

analysis.
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In summary, single chain antibodies directed against THC proved very difficult to 

generate. Initially, the natural immune response to foreign bodies was exploited to 

produce high affinity antibodies to THC. A recombinant antibody library was 

produced using RNA isolated from the spleen of a mouse immunised with THC-BSA. 

This however, failed to yield any antibodies specific to THC, either due to the 

unpredictability of the immune system when presented with obscure haptens or the 

quality of molecular biology reagents available. The natural diversity of a naive 

human library created by Vaughan et al., (1996) was also harnessed in pursuit of 

antibodies specific to THC. This led to the generation of antibodies specific for 

conjugated THC however, no antibodies specific to the free form of the molecule 

were identified. In a final effort to isolate recombinant antibody fragments to this 

problematic target antigen, the Griffin. 1 library was subjected to 5 rounds of 

biopanning with various THC conjugates. The library was substantially enriched for 

antibodies to specific to free THC. Sequence analysis revealed that three clones 

isolated were genetically different. Antibodies were subcloned for expression in a 

scAb format. Protein expression yields proved high and the antibodies were 

successfully purified by IMAC. Upon assay development however, it was found that 

antibodies were spontaneously forming a heterogeneous population of multimers. 

The increase in avidity for immobilised conjugate led to a dramatic decrease in 

sensitivity for THC in solution. A variety of strategies were employed to alleviate the 

problem. However, antibodies continued to behave as aggregates and in a 

heterogeneous manner. It was concluded that a phage ELISA assay format proved the 

most suitable for THC detection. The ease of phage production and large 

amplification in reporter signal also make phage-displayed antibodies an ideal tool for 

analysis. Phage-displayed scFvs were used to develop a competitive immunoassay 

for THC. The antibodies could also be successfully applied to ‘real-sample’ analysis, 

in a biological matrix, such as saliva. To my knowledge, this is the first anti-THC 

single chain antibody, reported in the literature.
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6.1 Overall Conclusions

The research discussed in this thesis describes the production of novel genetically- 

derived antibody fragments and their application in the detection of illicit drug 

residues in saliva.

Chapter 3 focused on the production and characterisation of three genetically derived 

scFv antibody fragments specific to M3G. The gene encoding a M3G-specific scFv 

was isolated and ligated into two expression vectors for the production of dimeric and 

alkaline phosphatase-labelled scFv. Optimal expression conditions for each of the 

scFvs were determined. Various purification strategies were investigated for each 

antibody. EMAC was found to be the most successful for large scale purification of 

monomeric and dimeric scFvs The alkaline phosphatase-labelled scFv could not be 

successfully purified due to the poor quality o f a commercially available anti-flag- 

sepharose resin. For applications where a high degree of purity is critical, affinity 

chromatography was found to be a superior alternative to IMAC for the purification of 

monomeric scFv. The three scFvs were applied to the development of competitive 

ELIS As for the detection of M3G. The optimised competitive ELISAs were extremely 

sensitive with the dimeric and alkaline phosphatase-labelled scFvs offering increased 

assay detection ranges. The monomeric and dimeric scFvs displayed minimal cross 

reactivity towards structurally related opiates. Although the alkaline phosphatase- 

labelled scFv offered decreased analysis time, it exhibited a high level of cross 

reactivity with 6-MAM, heroin and morphine.

Chapter 4 describes some possible applications of the recombinant scFvs produced. 

Affinity measurements of each antibody were determined using two different 

techniques, the classic ELISA-based method, described by Friguet etal. (1985), and a 

solution-phase determination using BIAcore. The equilibrium dissociation constants 

determined by the classic ELISA method were found to better reflect ‘true’ affinity, as 

the BIAcore system relied on active protein being equal to total protein concentration 

and global fitting parameters of the BIAevaluation models represented a completely 

monovalent binding interaction. The monomeric scFv was determined to have the 

best potential for analysis of morphine in saliva samples. A competitive
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immunoassay for morphine, the main metabolite of heroin found in saliva, was 

successfully developed. The ‘spiked’ saliva samples were used as a reference 

calibration curve for the detection of morphine in the saliva of drug users. The 

monomeric scFv was then applied to the development of a BIAcore inhibition 

immunoassay for the detection of morphine in saliva. The inhibition assay offered 

improved sensitivity over the corresponding ELISA. A rapid colloidal carbon-based 

lateral flow immunoassay was also developed for the detection of M3G using 

monomeric and dimeric scFvs. This assay format proved to be extremely useful, with 

favourable detection limits, achieved in an assay time of a period of minutes. 

Detection limits for each assay were well below the 40 ng/ml cut-off level 

recommended by SAMHSA.

The production of good quality antibodies to the cannabis metabolite, 

tetrahydrocannabinol, has always proved problematic. Several different recombinant 

libraries were investigated for this purpose. A pre-immunised murine library was 

generated and two commercial libraries were panned in an effort to isolate antibody 

fragments specific to this analyte. Several phage-displayed antibody specific to THC 

was isolated from the Griffin. 1 semi-synthetic human library. The gene encoding 

each of the antibodies was re-cloned into an enhanced expression vector for the 

production of soluble antibodies. Antibodies were purified by IMAC. However, 

upon further characterisation it was discovered that each of them was spontaneously 

forming a heterogeneous aggregate population. For this reason ELISA analysis 

suffered from irreproducibility. No solution to this problem could be found although 

several strategies were investigated. It appeared to be an intrinsic feature of the 

antibody sequences themselves. The application of phage-displayed antibodies to 

saliva sample analysis was then investigated. A competitive ELISA was developed 

using the most sensitive anti-THC scFv, expressed as a phage fusion protein. The 

assay range had a cut-off level of 250 ng/ml for quantitative analysis, which compares 

favourably with cut-off concentrations for commercial assay devices.

Several attempts were made to produce recombinant antibodies against amphetamine. 

The genes encoding an amphetamine specific-hybridoma were isolated and used to 

create a recombinant antibody library by the Krebber system of phage display 

(Krebber el al., 1997). After several rounds of panning, no specific antibodies were
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identified. The Griffin. 1 library was also biopanned in an attempt to isolate anti­

amphetamine antibodies. An amphetamine-BSA conjugate and biotinylated 

amphetamine, bound to streptavidin beads, were used alternatively for each round of 

panning. A high proportion of antibodies isolated simultaneously recognised 

amphetamine in conjugated and biotinylated forms. However, upon further analysis, 

none of the antibodies could recognise free amphetamine in solution. The small size 

of the amphetamine molecule (M.W. 135 Da) and simple molecular structure pushed 

the limitations of phage display beyond the scope of murine and human antibody 

libraries.

In summary, this work demonstrates the potential of recombinant antibodies for the 

detection of illicit drug residues. It highlights some of the main methods of 

recombinant antibody generation and derivatisation. This research also shows the 

applicability of recombinant antibody fragments to established immunoassay-based 

technologies.

Future work could entail the application of the recombinant antibody-based LFIA for 

the detection of morphine in saliva. This would facilitate ‘on-site’ monitoring for 

drugs of abuse in ‘real sample’ situations, within a matter of minutes. Affinity 

maturation strategies, like site-directed mutagenesis, for example, could be employed 

in an effort to express scFvs in a soluble form against THC. These antibodies could 

then be used in saliva sample analysis for illicit drug residues, either by ELISA, 

BIAcore or LFIA. Sheep antibody libraries have proved efficient for the production 

of recombinant antibodies to lower molecular weight haptens (Charlton et. al., 2001). 

This technology could be investigated for the production of scFvs specific for 

amphetamine. The production of recombinant antibodies to cocaine would facilitate 

the development of an immunoassay system capable of detecting the major drugs of 

abuse. The utilisation of these antibodies in a multi-analyte detecting lateral flow 

immunoassay would allow sensitive, specific, rapid and simultaneous detection of all 

the major drug classes.
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Appendix 1A

Study on the analysis of saliva for drugs of abuse 

Subject Information Sheet and Informed Consent Form 

Collection of saliva

You are asked to take part in a study that will test your saliva for drugs of abuse. At 

your routine clinic visit, when you give a urine sample, you will also be asked to give 

a saliva sample. To collect the saliva you will chew on a piece of material like cotton 

wool given to you by a nurse. These are special saliva collecting devices and there 

are no known risks associated with using them. After a couple of minutes of chewing 

when the material has adsorbed the saliva, it will be place in a container and the saliva 

taken for testing

Confidentiality

Labelling the saliva sample with your initials and a number ensures your 

confidentiality. Your name will not appear on the container. The results will be 

compared to those of your urine test. Your name will not appear on any associated 

paperwork or publications.

AGREEMENT TO CONSENT

The research project has been fully explained to me. I have had the opportunity to ask 

questions concerning any and all aspects o f the project and any procedures involved. 

I am aware that my decision not to take participate or to withdraw will not restrict my 

access to health care services normally available to me. Confidentiality of record 

concerning my involvement in this project will be maintained in an appropriate 

manner. When required the records of this research will be reviewed by the sponsors 

of the research.

I, the undersigned, hereby consent to participate as a subject in the above described 

project conducted at the National Drug Treatment Centre. I have received a copy of

I



this consent form for my records. I  understand that i f  I have any questions concerning 

this research, I  can contact the doctor at the clinic.

After reading the entire consent form, i f  you have no further questions about giving 

consent, please sign where indicated.

Client’s name (Block capitals)

Client’s signature Date (to be dated by the patient)

Investigator name (Block capitals)

Investigators signature Date (to be dated by the investigator)

If applicable:

Signature of Parent or Guardian

Date
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Appendix IB

Glossary of terms and definitions commonly employed in Bioanalytical 

validation procedures

The terms listed below were referred to for validation purposes of certain procedures 

carried out in this thesis. The criteria under which they are defined defined under 

have been reviewed elsewhere (Hennion and Barcelo 1998; Dankwardt, 2000 and 

Findlay e ta l ., 2000).

Accuracy

Describes the aggreement between a measured test result and its theoretical true value. 

Calibration curve

The dose response relationship between analyte concentration of samples and the 

binding response observed. The typical dose response is a sigmoidal curve.

Coefficient o f  Variation (% CV)

A quantitative measurement of precision expressed relative to the mean result. 

Coefficients of variation should be between 10 and 20% for an optimised assay 

(Dankwardt, 2000).

% CV = [Standard deviation/mean] x 100 

Cross Reactivity

The degree to which an antibody recognises structurally similar compounds.

rcso
The concentration of analyte that causes 50% binding inhibition.

IC90

The concentration of analyte that causes 10% binding inhibition.
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Least Detectable Dose (LDD)

The smallest concentration of analyte that produces a signal, which can be 

significantly distinguished from zero for a given sample matrix with a degree of 

confidence. Usually a dose that inhibits 10% of total antibody binding is selected, or 

90% AJAO (Hennion and Barcelo, 1998 and Dankwardt, 2000).

Mean

The average of replicates measurements (i.e. ni+n2+n^+......... nx/x), where n is value

recorded for one particular measurement and x is the total numer of measurements 

made

Matrix Effects

The degree to which compounds present in a sample can interfere in the assay 

Nominal Concentration

A stated or theoretical concentration that may or may not differ from the true 

concentration

Normalised Absorbance Values

Absorbance recorded at a particular antigen concentration (A) divided by absorbance 

observed in the absence of antigen (A0).

Normalised Absorbance (A/A0) = Absorbance measured at analyte concentration^

Absorbance measured in the absence of analyte

Normalised Response Units

Response Units observed at a particular analyte concentration divided by response 

units observed in the absence of analyte.

Normalised Response (R/R0) = Response at analyte concentrationx

Response in the presence of zero analyte

Precision

A quantitative measure used to define the extent to which replicate analyses of a 

sample agree with each other.

IV



Recovery

A quantitative measure of the closeness of an observed result to its theoretical value, 

expressed as a percentage of the theoretical concentration.

% Recovery = (Observed/Nominal) x 100

Repeatability

Precision of repeated measurements within the same analytical run. Repeatability is 

also termed intra-assay precision

Reproducibility

Precision of repeated measurements made in different assay runs. This can also be 

termed inter-assay precision.

Robustness

The precision is assay measurements carried out under different conditions by 

different operators.
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