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Abstract
Regulation of specific gene expression at the translation level mediated by eukaryotic 

initiation factor 4E (eIF4E) may play a pivotal role in both tumor formation and 

metastasis. Non-invasive MCF7 cells, and mildly-invasive DLKP cells were transfected 

with wild-type eIF4E, eIF4Emut (mutated at serine 209; serine has been replaced with 

alanine to prevent phosphorylation) and pcDNA (empty plasmid). Up-regulation of 

eIF4E protein was observed in eIF4E and eIF4E-mutant clones. Increased growth-rate 

was observed in MCF74E/4Emut and DLKP4E/4Emut compared to the pcDNA clone 

and parent cell lines. A marked increase in invasion was also observed in DLKP4E and 

4Emut clones compared to parent and DLKPpcDNA, but not in the transfected MCF7 

clones. MCF74E and MCF74Emut had a greater tendency to grow in suspension, and 

form colonies in soft agar than parental MCF7. To examine genes related to invasion in 

a breast cancer cell line, MCF7 cloneH3 (non-invasive) and MCF7H3erbB2 (invasive, 

erbB2 overexpressing) also were examined.

Whole genome expression microarray experiments and subsequent analysis resulted in 

gene lists comparing DLKP4E/4Emut to parental DLKP and related to invasion; another 

specific to MCF7H3erbB2 (compared to non-invasive MCF7, MCF7H3, MCF7pcDNA 

/4E/4Emut) and related to invasion. A combination of genes with and without 

previously reported connections to invasion were chosen from each list following 

application of pathway analysis/literature mining programs to the data. Targets based on 

analysis of DLKP4E/4Emut had no effect on the rate of invasion of either cell line when 

individually silenced using siRNA. However, siRNA silencing of EGR1, RPS6KA3, 

TFPI1 and TNFAIP8, all up-regulated in MCF7erbB2 compared to the parent, caused a 

decrease in invasion of both invasive DLKP4E and invasive SKBR3 (breast carcinoma) 

cell lines. THBS1, down-regulated in MCF7H3erbB2 compared to the parent, caused an 

increase in invasion of mildly-invasive DLKP parent, and non-invasive MCF7 when 

silenced by siRNA.

This study resulted in the identification of some of the genes involved in development 

of in vitro invasion, and extended the knowledge of known invasion-related genes. It 

also provided data on what alterations may occur in cancer cells at the mRNA level if 

eIF4E levels are altered.
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Section 1.0

Introduction



1.1 Cancer invasion and metastasis
Cancer is a multistep process and occurs as a result of the loss of control of cell 

division, leading to the initial tumour formation, which can then be followed by a 

metastatic spread. A distinguishing feature o f malignant cells is their ability to invade 

surrounding normal tissue, metastasize through the blood and lymphatic systems and re­

establish at distant secondary locations. None of the functions of metastasizing cells are 

unique to cancer cells. An example of physiological invasion is smooth muscle cell 

migration from the tunica media (which contains smooth muscle fibres, elastic and 

collagenous tissue) to the intima (endothelial cell layer) of blood vessels. Angiogenesis, 

nerve growth cone extension and homing, embryogenesis and trophoblast implantation 

are also examples. During embryonic development, motile cells are tightly regulated in 

order to ensure proper homing and reversion to a non-motile phenotype after migration 

into a destined location (Hay, 1995). In contrast, cancer cells have lost the ability to 

recognise specific targets. Their inappropriate growth signals are accompanied by 

mechanisms to avoid apoptosis and the potential to elicit angiogenesis for independent 

nutrient supply. Invasion is not simply due to growth pressure but involves additional 

genetic deregulation over and above those molecular events that cause uncontrolled 

proliferation. The difference between the normal process and the pathogenic nature of 

cancer invasion is therefore one of regulation.

1.1.1 Cancer cell motility: epithelial to mesenchymal transition (EMT)

One of the most critical steps in metastasis is invasion, which involves the active 

translocation of neoplastic cells across tissue boundaries and through host cellular and 

extracellular barriers (Liang et al., 2002). In order to translocate across tissue 

boundaries and through host extracellular matrix barriers, invasive cells must become 

motile. Tumour cell invasion is most frequently observed in epithelial tumours 

(carcinomas). The initial phase of tumour cell evasion from well-structured assemblies 

requires a phenotypic conversion which is referred to as epithelial to mesenchymal 

transition (EMT) (Gotzmann et al. 2004). EMT is an important process during 

development by which epithelial cells acquire mesenchymal, fibroblast-like properties 

and show reduced intercellular adhesion and increased motility. EMT is a feature of 

normal development; gastrulation, neural crest formation, and heart morphogenesis, all 

of which rely on the transition between epithelium and mesenchyme (Larue
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and Bellacosa, 2005). Invasion and metastasis are both critically dependent on the 

acquisition by the early cancer cell of EMT features (Kang and Massague, 2004; Thiery 

and Morgan, 2004). This form of movement is characterised by an elongated cell 

morphology with established cell polarity and is dependent on proteolysis to degrade 

the extracellular matrix (Sahai, 2005).

Table 1.1 Differences between epithelial and mesenchymal cells

Epithelial cells Multicellular mesenchymal cells

cohesive interactions among cells, 
facilitating the formation of 

continuous cell layers 
existence of three membrane 

domains: apical, lateral and basal 
presence of tight junctions between 

apical and lateral domains

apicobasal polarized distribution of 
the various organelles and 
cytoskeleton components

loose or no interactions among cells, 
so that no continuous cell layer is 

formed
no clear apical and lateral membranes

no apicobasal polarized distribution 
of organelles and cytoskeleton 

components

lack of mobility of individual 
epithelial cells with respect to their 

local environment.

motile cells that may even have 
invasive properties. During 

development, certain cells can switch 
from an epithelial to a mesenchymal 
status by means of a tightly regulated 
process defined as the EMT, which is 
associated with a number of cellular 
and molecular events. In some cases, 
EMT is reversible and cells undergo 

the reciprocal mesenchymal to 
epithelial transition (MET).

Adapted from (Larue and Bellacosa, 2005)

Several signaling pathways have been found important in EMT, these include tyrosine 

kinase signaling, the Ras pathway, integrin-linked kinase (ILK) and integrin signaling,
o

Wnt/ -catenin, Notch, Raclb and reactive oxygen species (ROS), and the 

phosphatidylinositol 3' kinase (PI3K)/AKT pathway (Figure 1.1) (Larue and Bellacosa, 

2005). Activation of the PI3K/AKT signaling cascade is a central feature o f EMT. AKT 

is frequently upregulated and activated in ovarian, breast and pancreatic tumors. AKT is 

involved in many basic cellular processes, including cell cycle progression, cell 

proliferation, cell survival, metabolism and EMT (Grille et al., 2003). The EMT
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induced by activated AKT involves: loss of cell-cell adhesion, morphological changes, 

loss of apico-basolateral cell polarization, induction of cell motility, decrease in cell- 

matrix adhesion, and changes in the production or distribution of specific proteins.

Figure 1.1: Signalling pathways involved in EMT
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Figure 1.1: Schematic o f the signal transduction pathways associated with epithelial-mesenchymal 
transition. End points o f EMT are boxed. RTK: receptor tyrosine kinase; ROS: reactive oxygen species 
(Larue and Bellacosa, 2005).
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1.1.2 Metastasis

The metastatic spread of solid tumours is responsible directly or indirectly for most 

cancer-related deaths. Metastasis is defined as the escape of tumour cells from their 

primary site and their re-establishment at distant secondary locations. It occurs as a 

result of a complex series of interactions between the cancer cell and its surroundings, 

all of which must be successfully completed to give rise to a metastatic tumour. 

Following the initial transforming event, neoplastic cells proliferate to form the primary 

tumour mass, from which cells can detach. There is increasing evidence that in 

epithelial malignancies, loss or down-regulation of expression of the structures 

responsible for the maintenance of tissue integrity correlates with an increasing 

tendency for metastatic spread. Such de-adhesion acts as a prelude to the cells invading 

the extracellular matrix (Ahmad et al., 1997).

It is important to note that metastasis can occur long after the apparent elimination of 

the primary tumour. With regard to breast cancer, metastases have been known to occur 

decades after the primary treatment (Karrison et al., 1999). Investigation of this 

phenomenon has resulted in a model of discontinuous growth and quiescence 

(Demicheli, 2001). The current model for metastatic growth indicates that cancer cells 

can exist in three separate states in a secondary site: solitary cells in quiescence; active 

pre-angiogenic micrometastases in which proliferation is balanced with apoptosis and 

no net increase in tumour size occurs; and vascularised metastases, either small and 

clinically undetectable, or large and detectable by current technology. It is thought that 

cells in all three states can exist in the same organ at the same time (Chambers et al., 

2002).

A recent review by Pantel and Brakenhoff (2004) suggests metastatic spread might 

follow two models; both complementary but following different specific routes. The 

first model is dependent on lymph node metastasis. It involves the dissemination of 

cancer cells during the early stages of tumour growth from the primary tumour to the 

lymphatic or vascular system. In this model, cancer cells that have been disseminated 

through the blood either die or remain dormant, whereas solid metastases form in the 

lymph nodes. Further metastases then occur from the lymph nodes to distant sites, and it 

is possible that this ability was gained during the selection of these cells in the lymph- 

node environment. The second model involves the development of solid metastases at 

distant sites as a result of dissemination through the blood. In this model cells do not 

passage through the lymphatic system (Pantel and Brakenhoff, 2004).
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1.1.3 The metastatic cascade

For successful metastasis, cells must penetrate the vessels (intravasation), travel through 

the blood stream or lymph system and then exit the vessels at the new site 

(extravasation), and proliferate. This series of steps are referred to as the metastatic 

cascade; depicted in Figure 1.2 and outlined in Table 1.1.

Table 1.2 The Metastatic Cascade

Initial transforming event
I

Growth of neoplastic cells
I

Neovascularisation/angiogenesis of the tumour
I

Detachment of neoplastic cells from primary tumour
4

Local invasion of extracellular matrix by tumour cells
I

Intravasation of tumour cells into lymphatics or vasculature
I

Survival of tumour cells in circulation and avoidance of immunological attack
I

Extravasation of tumour cells from vasculature into secondary organ tissue
4

Survival and proliferation within organ parenchyma

1.1.3.1 Local invasion

This refers to the penetration of the host tissue surrounding the neoplasm. Invasion is 

the active process of translocation of neoplastic cells across extracellular matrix 

barriers. It requires local proteolysis of the extracellular matrix, pseudopodial extension, 

and cell migration (Liotta, 1986). This usually takes place in the extracellular space, but 

some carcinomas are thought to be capable of intracellular invasion through the 

cytoplasm of striated muscle fibres, an example of emperipolesis. The extent of local 

invasion is thought to be mainly a result of growth, motility and tissue destruction, but 

differentiation may also play a role.
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1.1.3.2 Detachment from primary site

Only rarely can normal cells achieve growth away from their primary site. Apart from 

pregnancy the only common example is endometriosis (condition in which the mucous 

membrane (endometrium) that normally lines only the womb is present and functioning 

in the ovaries or elsewhere in the body). One of the first steps involves the breaking of 

cell-cell recognition. Breaking of homotypic recognition (same-cell type recognition) 

and changes in heterotypic recognition (eg. tumour -  stroma recognition) are 

characteristic of invasive and metastatic cancers (Mareel et al., 1992; Elenbaas and 

Weinberg 2001). A reduction in the expression of proteins such as E-cadherin is often 

seen in epithelial cancers and results in the ability of cancer cell to break apart. E- 

cadherin expression is lost early on in breast carcinogenesis. Cell-ECM interactions are 

also altered in cancer cells. This involves changes in the patterns of integrin expression. 

Integrins provide a major mechanism whereby cells recognise proteins of the 

extracellular matrix and basement membrane. Ligands of the integrins include collagen 

type I, collagen type IV, laminin and fibronectin. In general integrins involved in tissue 

organisation are decreased while those involved in migration are not. Some examples 

of changes in integrin expression include the upregulation of avP3 in melanoma cells, 

which has abroad range specificity. This means that cells expressing this integrin can 

migrate over a broad range of matrices. In contrast CI2P1 which recognises laminin and 

collagen is decreased in colon and breast cancers. Integrins (X3P1 and c^Pi (laminin 

receptors) are frequently upregulated in breast and endometrial cancers. An increase in 

the secretion of proteases also facilitates detachment of cells from the primary through 

the degradation of the ECM (McGary et al., 2002).

1.1.3.3 Intravasation

As the primary tumour grows it need to develop a blood supply that can support its 

metabolic needs. This process is known as angiogenesis. Intravasation is the process by 

which the cells can escape the primary site via the new blood vessels, and enter into the 

body’s circulatory system. Cancer cells attach to the stromal face of the blood vessel 

basement membrane, digest the membrane with proteases and migrate between the 

endothelial cells into the bloodstream (Wyckoff et al., 2000).
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1.1.3.4 Transport

Cancer cells commonly use three routes of transport. Firstly, body cavities such as the 

peritoneum facilitate the spread of cancers such as ovary or colon. Cancers invading 

out from the primary site detach from the surface and then are transported by the 

peritoneal fluid to other sites. A similar process occurs in the lungs, whereby lung 

cancers or other cancers invading can colonise the space between the pleural 

membranes surrounding the lungs. This generates a cancer-containing, growth- 

supporting fluid, which must be removed to maintain lung function. Secondly, blood 

vessels such as capillaries which consist of a layer of endothelial cells plus an external 

basement membrane of glycoproteins. They provide the least difficult barrier to entry 

and exit of cancer cells. Arteries provide a much more difficult barrier in the form of a 

smooth muscle layer, and therefore are rarely ever invaded. Thirdly, lymphatic vessels 

provide even less of a barrier than capillaries as they are not surrounded by a basement 

membrane. They drain into the subclavian veins and thence into the superior vena cava, 

hence reaching the blood stream (Evans, 1991).

Once the tumour cells have gained access to the blood system they may be swept away 

to a distant site which they can colonise. Within the bloodstream the tumour cells may 

interact with host components such as lymphocytes, monocytes and platelets, through 

heterotypic adhesion. Transport through blood is very hostile for cancer cells and so for 

protection against mechanical stress and immune attack they often form aggregates.

1.1.3.5 Lodgement at a distant site

The next step in the metastatic process involves the attachment of the cancer cell to the 

endothelial lining. Tumour cell attachment to the endothelial cell lining of the 

circulatory system is of utmost importance in the process of cancer spread. Most tumour 

cells appear to be arrested in the first capillary bed they encounter, but this does not 

guarantee growth of a secondary tumour. Tumour cells are seen to lodge in capillaries, 

arterioles, and occasionally venules, but rarely in arteries (shear may be too high). It is 

thought that the walls of arterioles may present effective barriers to extravasation, 

perhaps explaining the low degree of metastasis to tissue such as the skeletal muscle. 

During the process o f lodgement within a blood vessel it is thought that the tumour cell 

interacts with either the basement membrane or the endothelium. It is thought that there 

are four possible outcomes from these interactions. Firstly, the cells lodge and go on to 

form metastasis. This lodgement can occur either by mechanical means, where the cell
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literally gets “stuck” as it gets jammed in a vessel whose diameter is less than the cell or 

clump or cells, by specific adhesion in which the tumour cell “recognises” the wall of 

the blood vessel, due to the molecular content o f the surfaces involved, or lastly by 

selective adhesion. The second outcome is where cells lodge and become dormant. The 

cells then exist in a dormant state to become active at a later date. The third outcome is 

the cells lodge but do not survive and the fourth outcome involves the cells failing to 

lodge and thus pass through the first organ they meet. Cancer cells deposit based on 

circulation mechanics and chemokines in target tissue (Hiscox and Jiang, 1997).

1.1.3.6 Extravasation

Extravasation of tumor cells is a prerequisite step during hematogenous metastasis. It is 

thought to occur due to the retraction of endothelial cells, exposing the glycoproteins of 

the basement membrane. The tumour cell then attaches to the basement membrane and 

digests it with proteases and glycosidases, allowing the tumour cell to pass through. 

Different tumours express different integrins, which recognise different glycoproteins. 

Thus it follows that the basement membrane composition plays a large role in 

determining whether tumours are successful at extravasation. Extravasation may occur 

in a number of ways; the cells may divide and pile up within the lumen of the blood 

vessel and invade en masse by the destruction of the blood vessel; single cells may 

migrate between endothelial cells either destructively or non-destructively; single cells 

may leave by passing through the endothelial cells rather than between them (Heyder et 

al., 2006).

1.1.3.7 Growth

Proliferation of the cancer cells at their new site is initially confined to within 1mm of 

the vessel, until the tumour can form new blood vessels (angiogenesis) to supply 

essential nutrients and oxygen. Tumour growth is dependant on a number of factors 

including the nature of the environment it finds itself in and the nature o f the tumour 

itself. These factors include resistance to host defence mechanisms of humoral and 

cellular nature, and response to or requirement for specific growth factors (Evans, 

1991).
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1.1.3.8 Angiogenesis

Angiogenesis is the growth of blood vessels, and is essential for organ growth and 

repair. Solid tumours smaller than 1 to 2 cubic millimeters are not vascularised, and in 

order to spread they need to be supplied by blood vessels that bring oxygen and 

nutrients and remove metabolic wastes. Beyond the critical volume of 2 cubic 

millimetres, oxygen and nutrients have difficulty diffusing to the cells in the centre of 

the tumour, causing a state of cellular hypoxia that marks the onset of tumoral 

angiogenesis.

Angiogenesis and the development of metastases are intrinsically connected. Growth of 

metastases are influenced by inhibitors of angiogenesis which keep metastasis in a non­

proliferating quiescent (dormant) state. This dormant state is characterized by normal 

proliferation, increased apoptosis, and insufficient neovascularization. Several 

endogenous inhibitors of angiogenesis have been identified so far and some of them 

have already been successfully applied in experimental therapeutic trials (Kirsch et ah,

2004).

Figure 1.2 Diagrammatic representation of the metastatic cascade
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1.1.4 Inefficiency of metastasis

While successful metastasis will facilitate the generation of secondary tumours from 

primary cancers, few cells have the potential to become motile, and of those that do, less 

than 0.1% is detected in the bloodstream, the rest having been destroyed by a 

combination of mechanical stresses, proteolytic degradation and surveillance by the 

immune system (Weiss, 1990). A combination of in vivo video microscopy and 

quantitative cell-fate analysis has been used to monitor cell-fate over time. A 

combination of several such studies has led to the conclusion that the process of 

shedding of cancer cells into the bloodstream, and subsequent extravasation into a 

secondary organ is completed efficiently. However, only a small subset of cancer cells 

initiate growth in a secondary site, and of these only a small portion become 

vascularised, and an even smaller portion develop to the stage of further metastasis 

(Chambers et ah, 2002).

1.1.5 Molecular regulation of metastatic growth

Gene expression profiles of cancer cells vary greatly with organ microenvironment, and 

this in turn influences their behaviour and proliferation potential. For example, 

experimental evidence has shown that the same cancer cells grown in two different 

sites, expressed very different levels of proteolytic enzymes (Nakajima et ah, 1990). 

This is also seen in the different responses of different organs to chemotherapy (Fidler 

et al, 1994). Growth factor-receptor interactions, which are used extensively for 

intercellular communications, can initiate signalling pathways that lead to diverse 

cellular functions. Individual growth factors tend to occur as members of larger families 

of structurally and evolutionarily related proteins. There are several growth factor 

families including TGF-beta (transforming growth factor), BMP (bone morphogenic 

protein), neurotrophins (NGF, BDNF, and NT3) and fibroblast growth factor (FGF). 

Different combinations of such interactions lead to different metastasis relevant 

functions in different organs. These include actin polymerisation, formation of 

pseudopodia and invasion. The ability of cancer cells to grow in a specific site therefore 

depends on features that are inherent to the cancer cell, features inherent to the organ, 

and the active interplay between the two.

12



1.2 erb-b2 erythroblastic leukemia viral oncogene homolog 2 (erbB2)

1.2.1 Growth factor families and their receptors

Communication between individual cells in multicellular organisms is essential for their 

regulation and co-ordination of complex cellular processes such as growth, 

differentiation, migration and apoptosis. The signal transduction pathways mediating 

these processes are regulated in part by polypeptide growth factors that generate signals 

by activating cell surface receptors. The primary mediators of such physiological cell 

responses are receptor tyrosine kinases (RTKs). That is, in most cells, growth factors 

mediate cellular activity by means of receptors with intrinsic tyrosine kinase activity.

It is widely accepted that cancer cells contain genetic damage that leads to 

tumourigenesis through deregulation of key signalling pathways. Activation of growth 

factor receptors and their intrinsic tyrosine kinase activity initiates signalling cascade 

that involves multiple intracellular signalling pathways, such as the phosphatidylinositol 

3-kinase (PI3K) and MAPK pathways, which are responsible for the diverse target 

actions of these growth factors, which include increased cell division, cell size, protein 

synthesis, cell migration, and inhibition of apoptosis. While many of the signalling 

elements that are downstream from tyrosine kinase activation have been characterized, 

several o f the molecular events that occur before or concomitantly with kinase 

activation and whether these early events can influence the ultimate outcome of growth 

factor-stimulated signal transduction have not been determined. Malignant cells arise as 

a result of a stepwise progression of genetic events that include the unregulated 

expression of growth factors or components of their signalling pathways (Fang and 

Richardson, 2005; Toker and Yoeli-Lemer, 2006). In this way growth factors and their 

receptors have been shown to play a major role in cancer development.

RTKs can be divided into 20 subfamilies on the basis of their structural characteristics. 

All RTKs consist of a single transmembrane domain that separates the intracellular 

tyrosine kinase domain from the extracellular binding domain. The latter exhibit a 

variety of conserved elements such as immunoglobulin (Ig)-like or epidermal growth 

factor (EGF)-like domains, fibronectin type III repeats or cysteine-rich regions that are 

characteristic for each subfamily. The catalytic domain that displays the highest level of 

conservation includes the ATP-binding site that catalyses receptor autophosphorylation 

and tyrosine phosphorylation of RTK substrates. Ligand binding to the extracellular
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domain leads to conformational changes that induce and stabilise receptor dimerisation 

leading to increased kinase activity and autophosphorylation of tyrosine residues 

(Perona, 2006).

RTK families involved in cancer development include the epidermal growth factor 

receptor (EGFR/ErbB) family (Section 1.2.2), insulin growth factor receptor (IGFR) 

family, vascular endothelial growth factor receptor (VEGFR) family, fibroblast growth 

factor receptor (FGFR) family, hepatocyte growth factor receptor (HGFR) family and 

platelet-derived growth factor receptor (PDGFR) family.

The IGFR family consists of the insulin receptor (IR) and the insulin-like growth factor 

(IGF) receptor (IGF-IR). Both receptors consist o f two extracellular subunits, which are 

responsible for ligand binding and two membrane spanning subunits bearing the 

tyrosine kinase domain and autophosphorylation sites (Ullrich et al., 1986). Ligands for 

these receptors include insulin, IGF-I and IGF-II. While insulin is mostly a metabolic 

hormone, IGF-I and IGF-II are crucial for normal development and carcinogenesis. 

IGF-IR and its ligands have been found to play a major role in breast and prostate 

cancer (Stephen et al., 2001; Cardillo et al., 2003). In primary breast cancer, IGF-I and 

IGF-II are primarily expressed by the stromal fibroblasts surrounding the normal and 

malignant tissue, whereas IGF-IR is overexpressed in breast cancer with enhanced 

tyrosine kinase activity (Stephen et al., 2001).

VEGF is one of the main inducers of endothelial cell proliferation and permeability of 

blood vessels. The VEGFR family consists of two receptors VEGFR-1 and VEGFR-2, 

which are expressed on endothelial cells during embryonic development and are the key 

regulators of angiogenesis. VEGF is a multifunctional cytokine which potently 

stimulates angiogenesis in vivo. VEGF expression is elevated in pathological conditions 

including cancer, proliferative retinopathy, psoriasis and rheumatoid arthritis. 

Expansion of tumours beyond l-2mm requires de novo formation of vascular network 

to provide the tumour with oxygen and nutrients. The angiogenesis associated with 

human tumours is likely a central component in promoting tumour growth and 

metastatic potential. The regulation of VEGF expression during tumour progression 

may involve diverse mechanisms including activated oncogenes, mutant or deleted 

tumour suppressor genes, cytokine activation, hormonal modulators, and a particularly 

effective activator, hypoxia (Arii et al., 1998).

The human FGF family is composed of 22 members organized into 6 groups based on 

phylogenetic relationships, and is the largest family of growth factors. Signalling is
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mediated through membrane-spanning tyrosine kinase receptors encoded by four 

independent genes, some of which generate multiple products via alternative splicing or 

transcription initiation. Unlike other growth factors, FGFs act in concert with heparin or 

heparin sulphate proteoglycan (HSPG) to activate FGFRs and to induce the pleiotropic 

responses that lead to the variety of cellular responses induced by this large family of 

growth factors (Lin et al., 1999). High-affinity interaction between an FGF and its 

cognate receptor induces receptor dimerization and activation. Two classes of FGFRs 

have been discovered. The first class comprises the four high affinity FGFRs, whereas 

the second class is defined by low affinity FGF binding sites. Evidence suggests that 

the low affinity FGF binding sites represent heparin sulphate proteoglycan molecules 

(HSPG) located on the cell surface, which may support the fine tuning of cell responses 

to FGFs. Many FGFs display high-affinity interactions with multiple FGFRs, while 

some activate unique receptors or receptor isoforms. Deregulated FGFR signalling has 

been observed in breast, prostate, melanoma, thyroid and salivary gland tumours, 

bladder cancer and in multiple myeloma (Ezzat and Asa, 2005).

HGFR is encoded by the proto-oncogene met, and plays multiple roles in cancer, by 

acting as a motility and invasion stimulating factor, promoting metastasis and tumour 

growth. Furthermore, it acts as a powerful angiogenic factor (Jiang et al., 2005). It is a 

disulphide-linked heterodimer with glycosylated extracellular chains, which consists of 

the transmembrane domain and cytoplasmic tyrosine kinase domain. The ligands for 

HGFR are HGF and scattering factor (SF), which are expressed by mesenchymal- 

derived cells. Probably the most important biological effect of HGF on cancer cells is 

its ability to induce motility. Most cancer and normal cells respond to HGF, and 

stimulation of cancer cells with HGF will result in increased migration over a number of 

matrices. The motility signals mediated by the HGF receptor, cMET, are multifold and 

effect downstream key signalling pathways that contribute to the migratory events in 

cancer cells (Birchmeier et al., 2003).

1.2.2 ErbB Receptor Family of Tyrosine Kinase Receptors

The ErbB receptor family consists of type I growth factor receptors, and is made up of 

four members, erbB-1 (EGFR), erbB-2 (HER-2/neu), erbB-3 (HER-3) and erbB-4 

(HER-4). All ErbBs share an overall structure of two cysteine-rich regions in their 

extracellular ligand-binding domain, and a single membrane-spanning kinase domain 

flanked by a cytoplasmic carboxy-terminal tail with tyrosine autophosphorylation sites
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(Graus-Porta et al., 1997). With few exceptions (for example, haematopoietic cells), 

ErbB proteins are expressed in cells of mesodermal and ectodermal origins.

The receptors share 40-50% sequence identity in their extracellular domains, 60-80% 

identity in their kinase domains and 10-30% identity in their tails. Although the 

extracellular domain of erbB-3 is homologous to those of the other family members its 

intracellular domain has diverged significantly (Carraway III and Burden, 1995).

1.2.3 erbB2

erbB-2 has been mapped to chromosome 17q21. No ligand for erbB-2 has been found. 

Overexpression due to gene amplification has been found in 10-40% of breast cancers, 

although some carcinomas overexpress erbB-2 in the absence of gene amplification 

(Suo et al., 1998). Transcription of the erbB-2 gene generates two mRNAs, a 4.6 kb 

transcript encoding the full length 185 kDa transmembrane protein and a truncated 2.3 

kb transcript encoding only the extracellular domain of the erbB-2 protein. The erbB2 

gene plays an important role in human malignancies. It is amplified and/or 

overexpressed in approximately 30% of human breast carcinomas (Slamon et al., 1987, 

Slamon et al., 1989) and in many other types of human malignancies (Yu and Hung, 

2000). Studies of individuals with ErbB2-overexpressing tumours have shown that they 

have a significantly poor clinical outcome compared to patients whose tumours did not 

overexpress ErbB2 (Slamon et al., 1987, Slamon et al., 1989). High levels of erbB-2 

expression have been shown to correlate strongly with poor prognosis in breast cancer 

(Carey et al., 2006) and endometrial cancer (Morrison et al., 2006). Another study 

showed that a subset of pancreatic ductal adenocarcinomas is characterized by erbB2 

gene amplification, but in contrast to breast cancer, protein overexpression does not 

predict this specific gene deregulation mechanism (Tsiambas et al., 2006). Oncogenic 

activation of erbB-2 can occur by deletion of the extracellular domain or by 

overexpression as previously mentioned. In rats, but not humans, overexpression can 

occur through a point mutation in the transmembrane domain (Guy et al., 1992). Two 

of the major signalling pathways, Ras/Raf/MEK/ERK and PI3K/Akt are triggered by 

the erbB2/erbB3 heterodimer (Yarden and Sliwkowski, 2001). Such erbB-2 receptor 

activation leads to activation of early response genes such as c-myc and Elk, both of 

which have been associated with tumourogenesis. ErbB2 activation also leads to 

increased intracellular calcium and increased plasma membrane potential, rapidly
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inducing c-Fos and c-Jun (both oncogenes (Jariel-Encontre et al., 1997)), leading to a 

mitogenic response (Suo et al., 1998).

erbB-2 has intrinsic tyrosine kinase activity. As mentioned earlier, no ligands have been 

found capable of binding directly to erbB-2. However it can be activated by all the ebb 

ligands through heterodimerisation with other ErbB receptors (Hung and Lau, 1999).

1.2.4 ErbB Receptor Ligands

Under normal physiological conditions, activation of the ErbB receptors is controlled by 

spatial and temporal expression of their ligands, members of the EGF-related peptide 

growth factor family (Riese and Stem, 1998). There are a number of ErbB-specific 

ligands, each of which contains an EGF-like domain that confers binding specificity, 

allowing them to be divided into three groups. The first group includes EGF, 

amphiregulin (AR), and transforming growth factor-a (TGF-a), which bind specifically 

to ErbBl; the second group betacellulin (BTC), heparin-binding EGF (HB-EGF), and 

epiregulin (EPR), which exhibit dual specificity in that they bind ErbBl and ErbB4. The 

third group is composed of the neuregulins (NRG) and forms two subgroups based upon 

their capacity to bind ErbB3 and ErbB4 (NRG-1 and NRG-2) or only ErbB4 (NRG-3 

and NRG-4). Despite the abundance of ligands identified for these three ErbB receptors, 

no direct ligand for ErbB2 has been discovered (Figure 1.3). Common to all these 

growth factors is the EGF domain with six conserved cysteine residues 

characteristically spaced to form three intramolecular disulphide bridges (Prenzel et al., 

2001).

After binding to their receptors, EGF-related peptides induce receptor homodimerisation 

and heterodimerisation leading to activation of the intrinsic kinase domain and 

subsequent phosphorylation on specific tyrosine residues within the cytoplasmic tail. 

These phosphorylated residues serve as docking sites for a variety of signalling 

molecules, whose recruitment leads to the activation of intracellular pathways, including 

MAPK and PI-3K (Figure 1.4). Different signalling pathways are induced depending on 

the combination of ligand and homo- hetero-dimer (Yarden and Sliwkowski, 2001).
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Figure 1.3 Binding specificities of the epidermal growth factor ligands

EGF
TGF-a

AR

BTC
HB-EGFP

EPR
NRG-1
NRG-2

NRG-3
NRG-4

Figure 1.3: The ligands can be divided into categories depending upon binding specificity toward the 

ErbB receptors. ErbB2 has no direct ligand and needs a heterodimerisation partner to acquire signalling 

potential (indicated by phosphoresidues). ErbB3 homodimers do not signal, since the receptor has 

impaired kinase activity. (Holbro et ah, 2003)

Although none of these ligands bind directly to erbB-2, they all induce its tyrosine 

phosphorylation by triggering heterodimerisation and cross-phosphorylation. Earlier 

work demonstrated ErbB3 was devoid of intrinsic kinase activity, whereas ErbB2 

seemed to have no direct ligand (Guy et ah, 1994; Klapper et ah, 1999). Therefore, in 

isolation neither ErbB2 nor ErbB3 can support linear signalling. Recent publications 

describing the structure of the extracellular domains of ErbBl and ErbB3 suggest that 

the inability of ErbB2 to bind EGF-related peptides might result from differences in the 

regions contacting the ligands (Ogiso et ah, 2002; Cho et ah, 2002).
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Figure 1.4 Signalling combinations inducible by the ErbB receptor family 

members.
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Figure 1.4: ligand binding to a monomeric receptor tyrosine kinase activates the cytoplasmic catalytic 

function by promoting receptor dimerization and self-phosphorylation on tyrosine residues. The latter 

serve as docking sites for various ADAPTOR PROTEINS or enzymes, which simultaneously initiate 

many signalling cascades to produce a physiological outcome (Yarden and Sliwkowski, 2001)

ErbB2, however, has a central role in the family. ErbB receptors have been shown to 

compete for dimérisation with erbB-2, which is the preferred dimerization partner for 

the other ErbBs (Graus-Porta et al., 1997). ErbB3 in particular only becomes 

phosphorylated and functions as a signalling entity when dimerized with another ErbB 

receptor (Kim et al., 1998). ErbB-2 has been shown to enhance EGF-induced tyrosine 

phosphorylation of erbB-1 and NRG-induced tyrosine phosphorylation of erbB-3 and 

erbB-4. This is evident from NRG activation of erbB-3 and erbB-4 heterodimerisation 

with EGFR, which only occurs when there is no available erbB-2. It also potentiates and 

prolongs the signal transduction pathways elicited by EGF and NRG. erbB-2 also 

increases the affinity of both EGF and NRG for their receptors and enhances erbB-3 

phosphorylation and association with p85, a subunit of phosphatidylinositol-3-kinase.
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These results suggest that erbB-2 acts as a common receptor sub-unit for all the other 

ErbB receptors (Graus-Porta et al., 1997). Many cancers o f epithelial origin have an 

amplification of the ErbB2 gene, which pushes the equilibrium towards ErbB2 

homodimer and heterodimer formation (Yarden and Sliwkowski, 2001).

Figure 1.5 erbB2 receptor dimérisation

Receptor Dimérisation

Cell Membrane

Figure 1.5 diagrammatic representation o f the variety o f signals activated by the ErbB receptors 

depending on their dimérisation partners and the ligand occupying their extracellular domains.

After ligand/receptor binding, the next step involves binding of adaptor and enzymes 

phosphotyrosine proteins to the tail of each ErbB molecule (after dimeric complex 

formation). Different phosphotyrosine proteins bind depending on the combination of 

ligand and homo- hetero-dimer (Olayioye et al„ 1998). The Ras- and Shc-activated 

mitogen-activated protein kinase (MAPK) pathway is a target of all ErbB ligands, and 

p70S6K/p85S6K pathways are downstream of most active ErbB dimmers (Yarden and 

Sliwkowski, 2001). ErbB ligands also activate the PI3K-activated AKT pathway, with 

PI3K binding directly with ErbB3 and ErbB4, but indirectly with ErbBl and ErbB2 

(Soltoff and Cantley, 1996). These signalling cascades influence functional effect by 

regulating of specific transcription factors. These include the proto-oncogenes fos, jun 

and myc, immediate early response genes including Spl, Egrl and Ets family members 

(Yarden and Sliwkowski, 2001). Therefore erbB2 activation translates in the nucleus 

into distinct transcriptional programmes.

A number of phenotypic effects result from overexpression of the erbBs. At the nuclear 

level, the Ras-Raf-MEK-ERK pathway leads to upregulation of the cell cycle protein
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cyclin D l, permitting cycle progression from the G1 checkpoint to S-phase and 

consequently DNA synthesis and mitosis (Shaw and Cantley, 2006). When this pathway 

is deregulated by up-regulation of the erbBs, it leads to increased proliferation. ErbB 

overexpression also contributes to cell survival by inhibiting apoptosis. One of the main 

mechanisms by which tumour cells evade apoptosis is via activation of the PI3K 

pathway. ErbB family members can lead to activation of PI3-kinase both directly and 

indirectly through Ras (Yarden and Sliwkowski, 2001), endowing the cell with 

increased mitosis, cell survival, and influence over the regulation of actin functions and 

motility.

The ability of cancer cells to invade into surrounding tissue is probably the key property 

that distinguishes them from normal cells. ErbB receptors can induce many of the 

phenotypic traits associated with invasion. A recent study looking at squamous cell 

carcinoma of the head and neck, showed the effects of erbB family overexpression 

included loss of E-cadherin, acquisition of a motile phenotype and upregulation of a 

variety of proteolytic enzymes, as demonstrated by Rogers et ah, (2005).

1.2.5 The Role of erbB-2 in Human Cancers

Yu and Hung, (2000) examined the expression of erbb2 in 14 different cell lines 

including, lung, vulvar, ovary and colon. This study found significant correlation of 

erbB2 expression in tumour cells of epithelial origin. A more advanced study, using a 

panel of >100 patient-derived nude mouse tumour xenografts of different histological 

origin, was carried out to investigate the correlation between erbB2 gene amplification, 

mRNA and protein expression. Based on gene chip expression data, cervical, gastric 

and adenocarcinomas of the lung emerged as new potential indications for erbB2- 

directed cancer therapies (Kuesters et al, 2006).

Expression was analyzed in 81 human squamous cell carcinomas of the lung and 

correlated with clinical parameters of the patients (patient survival, presence of 

metastases and tumour stage) and with biological characteristics of the tumours (Volm 

et ah, 1992). Pfeiffer et al. (1996) examined 186 unselected and systemically untreated 

patients with non-small cell lung cancer (NSCLC) for erbB-2 and erbB-1 status. ErbB-1 

was found to be highly expressed in 55% of tumours while erbB-2 was highly expressed 

in 26% of tumours. The expression of erbB-1 was higher in squamous cell carcinoma, 

while erbB-2 was highest in adenocarcinomas. Overexpression of these receptors was 

found to have no correlation with prognosis. In contrast, Tsai et al. (1996) reported that
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the intrinsic chemosensitivity of NSCLC cells correlated well with the expression of 

erbB-2, and transfection of erbB2 cDNA into low erbB2 expressing NSCLC 

significantly enhanced chemoresistance to adriamycin, cisplatin, mitomycin C and VP- 

16 (Tsai et al, 1996). Kristiansen et a\. (2001) also found overexpression of erbB2 was 

also found to correlate with disease-stage and chromosomal in non-small cell lung 

cancer.

The majority of normal ovarian tissues express low levels of erbB2. Therefore only 

tumours that express greater levels o f erbB2 can be considered overexpressers. A noted 

consistency of expression between primary tumours and metastatic sites has been found. 

No change in expression is seen over time. ErbB2 is overexpressed in approximately 

30% of ovarian cancers. Some researchers have shown a positive correlation between 

overexpression and poor prognosis. On the other hand, other reports have shown no 

adverse prognostic significance for erbB2 overexpression. No correlation was found 

between erbB2 overexpression and clinicopathological factors such as age, stage, cell 

type, histological grade, residual tumour after primary cytoreduction or the likelihood of 

a negative re-exploration after chemotherapy. However, the uniformly poor prognosis 

for ovarian cancer may affect these results. Clear cell tumours have been found to have 

an increase in overexpression, with 68% showing overexpression, as opposed to 9% of 

other cells (Cirisano and Karlan, 1996). Overexpression of erbB2 has been found in 

27% of patients with metastatic disease, as opposed to 4% of patients with disease 

confined to the uterus. Overexpression correlated with established prognostic variables 

of grade, stage, depth of invasion, more aggressive disease and disease-related 

mortality. Heavy staining of cell membrane correlated with 56% 5-year survival, 

intermediate staining correlated with 83% 5-year survival and negative staining 

correlated with 95% 5-year survival (Cirisano and Karlan, 1996). A more recent study 

looking at gene amplification, mutation, and protein expression of erbB2 in ovarian 

carcinoma showed that both increased copy number and overexpression of EGFR were 

associated with high tumour grade, greater patient age, large residual tumour size, high 

proliferation index, aberrant p53, and poor patient outcome. Increased copy number of 

EGFR was also associated with increased copy number of erbB2 (Lassus et al., 2006). 

However, another study found that regarding cancer phenotype, there was no 

statistically significant association between erbB2 copy number changes, histologic and 

tumour stage of ovarian cancer (Dimova et al., 2006).
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Of 396 adenocarcinomas of the stomach, 10.1% overexpressed erbB-2. This 

overexpression broke down as 15.2% of well differentiated tumours and 3.0% of 

undifferentiated tumours, showing that erbB-2 overexpression is more prevalent in well 

differentiated gastric tumours. Gene amplification was detected in all the 

overexpressing tumours (Ishikawa et ah, 1997). Recent studies using microarray 

analysis to examine gene expression of 12,000 genes in oesophageal adenocarcinoma 

(EAC) specimens confirmed high levels of the erbB2 gene (Dahlberg et ah, 2004).

1.2.6 erbB-2 in Breast Cancer

Early reports showed erbB2 was amplified and/or overexpressed in approximately 30% 

of human breast carcinomas (Slamon et ah, 1987, Slamon et ah, 1989). In a study of 

166 primary breast cancers, 21.6% showed erbB-2 overexpression, while 27.1% and 85 

51.3% showed intermediate and low level expression respectively (Dittadi et al. 1996). 

The majority of studies have found the most useful prognostic factor in breast cancer is 

the number of positive auxiliary lymph nodes, indeed as the number of metastatic nodes 

increases, survival rates decrease and relapse rates increase. Breast cancer with 10 or 

more positive lymph nodes have a poor prognosis with about 30 per cent of patients 

alive at 5 years after primary surgery alone (Nemoto et al., 1980). A study of 163 

tumours from patients with different stages of breast cancer were analysed by Marx et 

al. (1990) in order to evaluate the distribution of erbB2. 33% of cases were found to be 

erbB2 positive. Only 5% of infiltrating lobular carcinomas (small cell carcinomas) 

showed positivity. Invasive ductal carcinomas show 33% positivity. Non-invasive and 

early invasive ductal carcinomas also showed positivity. ErbB2 protein expression was 

slightly more common in lymph-node positive (37%) than lymph-node negative cancer 

(30%). 50% of patients with three or more positive lymph-nodes were erbB2 positive. 

ErbB2 overexpression correlated negatively with steroid receptor status and positively 

witherbBl expression.

A study by Quenel et al. (1995) of 942 invasive ductal carcinomas found 24% with 

positive membrane staining for erbB2. They found a significant association between 

erbB2 and tumour grade. Grading was performed according to Scarff-Bloom- 

Richardson criteria, with 11.2% of Grade 1, 21.5% of Grade 2 and 35.2% of grade III 

expressing erbB2. Negative correlation with estrogen and progesterone receptor status 

was found. No association was found between erbB2 and tumour size, nodal status or
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patient age. ErbB2 positivity correlated with the least differentiated tumours, higher 

mitotic rate and with the most marked polymorphism. Multivariate analysis showed that 

erbB2 was an independent prognostic factor, associated with earlier relapse or metastasis 

in node-negative patients. Tsutsui et al. (2002) found a high level of concordance in 

EGFR, erbB2 and p53 expression in primary tumors and matching metastatic auxiliary 

nodes. These results were not consistent with a study from De la Haba-Rodriguez et al. 

(2004), who found a concordant expression of ER, PgR, p53, and erbB2 in primary 

tumors and metastatic lymph nodes in only about 40% of cases.

Breast carcinoma in situ (CIS) is considered to be the earliest form of breast cancer. 

Although 90% of patients with CIS are cured by surgery, the hypothesis that CIS lesions 

are precursors of invasive breast cancer is supported by the reports of a significant rate 

of local reoccurrence in patients who are not treated with mastectomy. Liu et al. (1992) 

assessed the amplification and overexpression of erbB2 in paraffin-embedded specimens 

from 27 in situ carcinomas of the breast and 122 stage II breast cancers. Gene 

amplification was detected in 48% of in situ carcinomas and in 21% of stage II lesions. 

ErbB2 protein levels corresponded with amplification levels. These results suggest that 

the amplification of erbB2 is an early event in human breast cancer.

In a study of 33 patients treated for advanced breast cancer, plasma erbB2 levels were 

determined (this refers to the extracellular domain shed from the cell surface). 30.3% of 

the metastatic breast cancer were found to be erbB2 positive. 20 of the patients received 

standard FEC regimen (5-fluorouracil, epirubicin and cyclophosphamide), 8 received a 

modified FEC regimen, 2 patients received CMF (5-fluorouracil, methotrexate and 

cyclophosphamide) and 3 patients received vinorelbine. No statistically significant 

difference was noted in response to chemotherapy between erbB2+ and erbB2- patients. 

In the 10 erbB-2+ patients, two increases and eight decreases were seen in plasma 

concentrations. Remarkably 5 of 23 erbB2- patients had an increase in plasma erbB2 

during treatment. One observation made was that plasma erbB2 positivity is associated 

with advanced breast cancer. Between 34.6-51% of patients with metastatic breast 

cancer and 33% of patients with locally recurrent breast cancer show plasma erbB2 

positivity, while no patients with locoregional non-inflammatory breast cancer showed 

positivity (Revillion et al., 1996).
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1.3 Eukaryotic translation initiation factor 4E (eIF4E)

1.3.1 Eukaryotic translation initiation

The decoding of an mRNA during translation proceeds in the 5’—► 3’ direction. The 

recruitment of the small ribosomal subunit to mRNA must therefore facilitate placement 

of the ribosome at the 5’end. Two principle pathways are available for attachment of the 

ribosome in eukaryotes. The first involves recruiting the small ribosomal subunit to a 

complex secondary structure element within the RNA, known as the internal ribosomal 

entry site (IRES) (Jackson, 2005).

The second is cap-dependent. All Eukaryotic mRNAs have a cap-structure at their 5'- 

end, the functions of which include slicing, polyadenylation, nuclear export, stability 

and recognition of mRNA for translation. The cap-structure consists of a 7- 

methylguanosine linked to the first nucleoside via a 5’-5’ triphosphate bridge added 

during the synthesis of the primary transcript. One or two methyl groups are usually 

present at specific locations. The cap structure is added to the 5’ end of the pre-mRNA 

during transcription. The second pathway relies on the cap structure to act as an 

anchoring point for the cap-binding protein complex. The Cap-site guides the ribosome 

onto the transcript via the cap-binding protein, eukaryotic translation initiation factor, 

eIF4E. From here the ribosome scans along the 5’ UTR in search of an in-frame AUG 

start codon (Svitkin et al., 1996).

Once bound to the cap, “scanning” for the AUG initiator codon is regulated by the 

degree of secondary structure adopted by a particular mRNAs 5’ UTR. A strongly 

competitive mRNA is typically characterised by a short, unstructured 5’UTR. For these 

mRNAs scanning proceeds easily from the cap through the short leader sequence to 

reveal the initiation codon. These mRNA represent the majority, and are well translated 

(e.g., GAPDH). Weaker mRNAs are characterised by long, G+C rich, highly structured 

5’UTR’s. The stability of the structure formed within the 5’UTR of these mRNAs 

impedes efficient scanning and cap recognition, rendering these RNAs extremely 

susceptible to translational regulation (van der Velden and Thomas, 1999). Weak 

mRNAs usually encode proteins that regulate growth and survival (e.g., ODC, VEGF, 

c-Myc, cyclin Dl).
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Initiation of Translation requires 4 specific steps:

1. The ribosome must dissociate into 40S and 60S subunits;

2. The pre-initiation complex is formed when eIF2 binds Met-tRNA with GTP 

(eIF2.Met-tRNA.GTP), which then binds 40S subunit to form 43S ribosomal 

subunit. tRNAs (transfer RNAs) carry the Amino Acids to the actively 

translating ribosome during protein synthesis. The Eukaryotic signal to begin 

translation is an AUG codon in a particular context, and as such, all proteins 

begin with a Methionine (encoded by AUG and recognised by t-Met) that is later 

cleaved (Figure 1.6);

3. The initiation complex binds to the mRNA 5’-UTR at the 7’-Methyl-Gppp Cap, 

recognised by eIF4E, and the eIF4F trimeric complex is formed (composed of 

the RNA helicase eIF-4A, the scaffold protein eIF4G, and the cap-binding 

protein eIF4E);

4. The 60S subunit then associates with the pre-initiation subunit to form the 80S 

initiation complex.

Figure 1.6: Formation of the pre-initiation complex

Diagrammatic representation 

o f protein interactions in the 

48 S pre-initiation-complex. 

eIF4F component interactions 

are illustrated. eIF4E is the 

only factor that specifically 

recognises the cap structure 

o f  mRNA, and so has a 

crucial role in recruitment of 

the 40S subunit via its 

interactions with eIF4G, and 

indirectly via eIF3, eEF4A 

and eIF4B (Pain, 1996).
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The eIF4F complex consists of three main sub-units, eIF4A, eIF4G and eIF4E. eIF4E, a 

small, 25 kDa phosphoprotein, is widely accepted as the rate-limiting factor in 

translation initiation. The synthesis of each protein ultimately depends on the relative 

abundance of its mRNA, and the capacity of this mRNA to interact with components of 

the translation initiation machinery. In this way an order of priority is established 

among mRNA in the initiation process, making translation of mRNAs a highly 

competitive and tightly regulated step in gene expression. The low abundance of eIF4E 

creates a competitive environment among ‘strongly’ and ‘weakly’ competitive mRNA 

species. mRNAs regarded as sensitive to available eIF4E levels usually feature long and 

structured 5' UTRs that interfere with efficient recruitment of the 40S subunits during 

initiation. Therefore, it is essential in order to allow efficient scanning of the ribosome, 

that these complex secondary structures be unwound. This function is performed by 

eIF4A, an RNA helicase which is a subunit of the eIF4F complex. Because one of the 

roles of the cap-binding complex is to recruit eIF4A to mRNA 5' ends, limitations in 

availability of eIF4E, and therefore the assembly of the cap complex, might also limit 

5'-UTR unwinding. It has recently been reported that the requirement for eIF4A 

correlates with the stability of secondary structures present in mRNA 5' UTRs (Svitkin 

etal., 2001).

After binding of eIF4F to the cap and unwinding of the secondary structure, the 43 S 

initiation complex binds to the 5’ end of the mRNA via interaction with the eIF4F 

complex to form the 48S initiation complex. The 48S complex then scans along the 5’ 

UTR in search of an in-context AUG start codon. Recognition involves the Ribosomal 

mRNA and tRNA and the rate of initiation is influenced by the context of the bases 

surrounding a particular mRNAs AUG. The 80S ribosomal complex is formed at the 

initiation codon, ready to commence translation of the coding sequence. This last step 

requires a prior release of the initiation factors bound to the 40S ribosomal sub-unit, 

mediated by eIF5. After release the eIF2, GDP is recycled by the guanine-nucleotide 

exchange factor eIF2B to eIF2.GTP. The event of initiation is cyclic, in that once 

initiation at the AUG codon occurs the initiation factors dissociate and are recycled for 

use in another round of initiation (Figure 1.7) (Jackson, 1998).
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Figure 1.7: Translation Initiation -  a ‘recycling’ event

Initiation is the primary target for the control of translation, with the binding of the 

ribosomal pre-initiation complex to the mRNA and the scanning process being 

controlled through a number of mechanisms including RNA-binding repressors, 

modulation of the Initiation Factors involved (usually by phosphorylation), and the 

effects of secondary structure adopted by a particular mRNAs 5’-UTR.

1.3.2 Structure of eIF4E

The eIF4E molecule is shaped like a cupped hand with dimensions 41 A (width) x 36 A 
(height) x 45 A (depth) and consists of one domain (Figure 1.8). Secondary structural 

elements include three long and one short helices and an 8-stranded, antiparallel sheet. 

The 8 strands are arranged in space making a curved, antiparallel sheet. The three long 

helices lie almost parallel to the strand direction and top the sheet. The narrow ligand- 

binding cleft (cap-binding slot) is generated by the concave surface of the sheet, the 

short helix, and the loop between strands SI and S2. It is closed at one end by the loop
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connecting strands S3 and S4, and open at the other (Marcotrigiano et al., 1997). The 7- 

methylguanosine cap lies in a hydrophobic pocket on the concave face, sandwiched 

between two of the eight tryptophan residues that are evolutionarily conserved. Trp 102 

and Glul03 also hydrogen bond to nitrogen and oxygen of the cap structure 

(Marcotrigiano et al., 1997; Matsuo et al., 1997).

Figure 1.8 eIF4E bound to a fragment of the cap

Global fold o f  eIF4E bound to a 

fragment o f  7 methylguanosine 

5’-triphosphate cap. Secondary 

structure elements are colour 

coded: yellow - b strands, pink 

- a helices, white - loops and 

turns. Amino acid belonging to 

the cap-binding site are shown 

as balls and sticks: blue - 

Lys206, A rg ll2 , Lysl62, 

A rgl57 purple -  absolutely 

conserved tryptophans 1 0 2 , 

166, 56, red — glutamic acid 

103 (Niedzwiecka et al., 2004).

1.3.3 Phosphorylation of eIF4E

Gene regulation at mRNA translation takes place within minutes and is considered to be 

due to changes in the activity, or other functions, of components of the translational 

machinery. Translation is activated in response to hormones, growth factors, and 

cytokines, as well as nutrients such as amino acids and sugars. Conversely, under 

stressful conditions such as oxidative or osmotic stress, DNA damage or nutrient 

withdrawal, the rate of translation is decreased. Regulation is primarily achieved 

through phosphorylation of the translation components, and seems to be exerted mainly 

at the stage of translation initiation (Scheper and Proud, 2002).

Phosphorylation of eIF4E takes place on Ser209 in a C-terminal motif that is conserved 

in eIF4E from all species except S. cerevisiae and plants. Murine eIF4E can functionally
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replace eIF4E from S. cerevisiae (Altmann et al., 1989), and their 3-D structures are 

very similar (Marcotrigiano et al., 1997; Matsuo et al., 1997; McKendrick et al., 1999). 

eIF4E phosphorylation is influenced by a variety of extracellular stimuli: treatment of 

cells in culture with serum, hormones, growth factors, cytokines, mitogens phorbol 

esters, and in some cell types insulin results in a net increase in eIF4E phosphorylation 

(Proud, 1992; Flynn and Proud, 1996b). Mitogen-activated protein kinases (MAPK)- 

interacting kinases 1 and 2 (Mnkl and Mnk2), are activated by ERK and p38 MAPK in 

response to mitogens, cytokines or cellular stress, modulate the activity o f eIF4E by 

phosphorylation at Ser209. A recent study has shown that Mnkl does not interact 

directly with eIF4E, but uses a docking site in eIF4G, a partner of eIF4E. Consequently, 

control o f eIF4E phosphorylation may not strictly depend on changes in Mnkl activity. 

The possibility that integrity of the eIF4E/eIF4G/Mnkl complex also impinges upon 

eIF4E phosphorylation is also possible (Pyronnet, 2000).

The phosphorylation state of eIF4E is, in general, correlated with the translation rate 

and growth status of the cell. An early report showed the pattern of eIF4E 

phosphorylation varied throughout the cell cycle, with the lowest levels in GO, 

increasing throughout G1 and S, but was reduced in M phase (Bonneau and 

Sonnenberg, 1987). eIF4E is also dephosphorylated during apoptosis (Bushell et al.,

2000). The correlation between eIF4E phosphorylation and the overall translation rate 

is, however, not observed in every situation. For example, an increase in eIF4E 

phosphorylation is observed in response to some types of cellular stress, including 

exposure to anisomycin, arsenite, tumour necrosis factor and interleukin even though 

translation rates actually decrease in these situations (Morley et al., 1997). Oxidant 

stress stimulates phosphorylation of eIF4E without an effect on global protein synthesis 

in smooth muscle cells (Rao, 2000). However, other types of cellular stress, including 

heat-shock, or infection with adenovirus or encephalomyocarditis virus are 

accompanied by a decrease in eIF4E phosphorylation (Raught et al., 1999).The effects 

of phosphorylation on eIF4E activity are not completely understood. eIF4E 

phosphorylation has been reported to increase its affinity for mRNA caps. However, a 

recent study has compared quantitatively the cap affinity for phosphorylated and 

unphosphorylated eIF4E by a fluorometric time-synchronized titration method and a 

1.5- to 4.5-fold reduction of the cap affinity for phosphorylated eIF4E was observed 

(Zuberek et al., 2003). More recently, it was found that both wild type and mutant 

(Ser209—>Ala) eIF4E interacted equally well with eIF4G, and both were capable of
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rescuing a lethal phenotype of eIF4E deletion in S. cerevisiae. Slepenkov et al.(2000) 

have recently proposed that phosphorylation of Ser-209, which is located at the entrance 

to the cap-binding slot, diminishes the rate of association by charge repulsion but has no 

effect on the rate of dissociation (Slepenkov et al., 2006).

More recent studies have demonstrated that phosphorylation of eIF4E is specific to 

translation of certain mRNAs. An increase in Etsl protein expression has been directly 

correlated with the phosphorylation of MNK1 and eIF4E in natural killer (NK) cells 

(Grund et al., 2005). This not only suggests Etsl is an eIF4E sensitive mRNA, but also 

that its translation is eIF4E phosphorylation dependent. Tumour necrosis factor (TNF)-a 

mRNA also requires phosphorylation of eIF4E at serine 209 for initiation of translation 

(Andersson and Sundler, 2006). These studies suggest eIF4E phosphorylation may be 

important in promoting translation of cancer-promoting proteins, however, another 

report saw no significant difference between nontransformed cells and carcinoma cell 

lines with regard to the phosphorylation status of eIF4E (Avdulov et al., 2004).

1.3.4 Regulation of eIF4E

1.3.4.1 Inhibitory proteins of eIF4E

Translation initiation is the rate-limiting step in translation and the common target of 

translational control. As already mentioned, the mRNA 5' cap is bound by eIF4F, a 

heterotrimeric protein complex that is the focal point for initiation. eIF4G is the 

backbone of this complex, and the eIF4E-eIF4G interface is an important target for 

translational control. Several proteins contain eIF4E-compatable binding motifs, and 

compete with eIF4E for binding (Mader et al., 1995). In this way the rate of 40S 

ribosomal subunit association with mRNA, and hence translation initiation, is 

controlled. Earlier studies suggested that eIF4E was rate-limiting for protein synthesis 

(Sonenberg, 1994), whereas this factor may, in fact, be relatively abundant in the cell 

(Rau et al., 1996) and probably present in considerable molar excess over eIF4G (von 

der Haar and McCarthy, 2002). However, the availability of eIF4E in a functional form 

can be strongly limited by its association with different eIF4E-binding proteins, the 

most well characterised being the 4E-BPs (Gingras et al., 1999).

The binding of heat-stable inhibitory proteins called 4EBPs (eIF4E-binding proteins - 

4EBP1, 4EBP2 and 4EBP3) to eIF4E is a well documented method of translation 

regulation. 4EBPs interact with eIF4E at the same site as eIF4G, acting as competitive
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inhibitors of eIF4F complex formation (Raught et al., 1999). Phosphorylation of 4EBPs 

on five residues in the region of interaction with eIF4E causes an “electrostatic 

repulsion”; 4EBPs fall off and 4E can interact with 4G. By far the best understood of the 

4EBPs is 4EBP1. Association of 4EBP1 with eIF4E is regulated by a range of stimuli: 

for example, insulin, which activates mRNA translation, induces the phosphorylation of 

4EBP1 and its release from eIF4E, allowing the protein to bind eIF4G to form initiation 

factor complexes (Raught et al., 1999).

More recently discovered eIF4E-binding proteins interact with the eIF4E on only 

specific mRNAs, and do so either because they also interact with certain RNA elements 

directly, or through affiliations with RNA binding proteins (Richter and Sonenberg,

2005). Modulation of poly (A) tail length is vital for the translation of mRNAs in early 

development. Cytoplasmic polyadenylation is controlled by CPEB, a protein that 

interacts with the cytoplasmic polyadenylation element (CPE). CPEB also binds 

Maskin, a protein that competes with eIF4E. Maskin disrupts eIF4E-eIF4G interactions 

and the CPEB-Maskin-eIF4E complex inhibits the translation of CPE-containing 

mRNAs specifically (Stebbins-Boaz et al., 1999).

In humans, two other proteins have been identified as binding partners of eIF4E and 

appear to act as negative regulators of eIF4E-dependent export of a subset of mRNAs. 

The promyelocytic leukemia protein (PML) is organized into nuclear bodies which 

mediate suppression of oncogenic transformation and of growth (Melnick and Licht, 

1999). The N-terminal RING motif is required for association of PML with nuclear 

bodies, and eIF4E is know to directly bind the PML RING. Moreover, this interaction 

modulates eIF4E activity by significantly reducing its affinity for the cap (Cohen et al.,

2001). The proline-rich homeodomain protein, PRH, has also been found to be an 

inhibitor of eIF4E-dependent cyclin D1 mRNA transport and growth in certain tissues. 

Interacting with eIF4E through a conserved binding site typically found in translational 

regulators, PRH inhibits eIF4E-dependent mRNA transport and subsequent 

transformation (Topisirovic et al., 2003).

1.3.4.2 Transcriptional regulation of eIF4E

The myc family of transcription factors are responsible for the control of genes directly 

involved in cell growth and proliferation. It is not surprising therefore that the 

deregulation of myc results in the abnormal growth of tumour tissue (Magrath, 1990). 

eIF4E is one of few myc-regulated genes which has been characterised. The promoter
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region of eIF4E contains two myc binding sites, both of which are required for 

expression of a heterologous reporter gene (Jones et al., 1996), and as a result, eIF4E 

expression is up-regulated in c-myc overexpressing genes (Rosenwald et al., 1993b). 

Wild-type p53 is a tumour suppressor that can act through several mechanisms, the 

main one being as a transcriptional factor activating or inactivating the transcription of 

its target genes (Levine, 1997). In contrast to eIF4E, p53 is important in preventing 

tumourigenesis, a fact which is highlighted by the occurrences of mutated p53 gene in 

more than 50% of human cancers. A recent study has shown that the expression of 

eIF4E is reciprocally regulated by p53 and c-myc, and loss of p53-mediated control 

over c-myc-dependent transactivation of eIF4E may represent a novel mechanism for 

eIF4E-mediated neoplastic transformation and cancer progression (Zhu et al., 2005). 

Heterogeneous Nuclear Ribonucleoprotein K (hnRNP K) was first identified as a 

component of hnRNP complexes and is involved in nucleo-cytoplasmic transport of 

mRNA as well as regulation of mRNA stability (Ostareck-Lederer et al., 2004). As 

already discussed, eIF4E is a c-myc target gene, and hnRNP is one of the most 

important transcriptional controls of the c-myc promoter (Michelotti et al., 1996). It has 

since been identified as a binding protein and positive regulator of eIF4E. Through 

regulation of eIF4E it has been found to directly contribute to neoplastic transformation 

(Lynch et al., 2005).

1.3.5 The role of eIF4E in cancer invasion

As already mentioned there are ‘strong’ and ‘weak’ mRNAs, and with higher eIF4E 

levels the translation of weak mRNAs is elevated. Cyclin D l, ODC and FGF-2 are 

examples of growth factors dependent on eIF4E translation (Rosenwald et al., 1993a; 

Shantz and Pegg, 1994; Kevil et al., 1995), all of which have a role in cellular 

growth/proliferation. Because many of these mRNAs code for oncoproteins, regulators 

of cell cycle, growth factors and their receptors (De Benedetti and Harris, 1999), with 

increased levels of eIF4E cell growth becomes more rapid, and cells may become 

neoplastic. Further increase of eIF4E can cause resistance to apoptosis (Polonovsky et 

al., 1996) and increased mitosis, leading to genetic instability and selection of 

aggressive survivors (De Benedetti and Harris, 1999). Healthy cells tightly regulate 

proteins that are necessary in specific cellular environments but which could be 

potentially oncogenic. With an over-abundance of eIF4E this regulation is lost. To form 

metastases, individual tumour cells must break from the primary tumour mass, degrade
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extracellular matrix, invade the surrounding normal tissue, enter the blood or lymphatic 

circulation, exit the circulation at a distal tissue and establish satellite colonies within 

this new tissue environment. This aberrant behaviour of cancer cells requires the 

cooperative function of numerous proteins -  those that facilitate angiogenesis (e.g., 

VEGF), cell survival (e.g., Bcl-2), invasion (e.g., MMPs), and autocrine growth 

stimulation (e.g., c-myc, cyclin Dl). Although expression of these proteins is regulated 

at many levels, translation of these key malignancy-related proteins is regulated 

primarily by the activity of eIF4E. Many of the gene products that drive metastasis are 

not altered by mutation, but by altered patterns of gene expression. It is the quantity not 

the quality of key genes that drive the metastatic program (Graff and Zimmer, 2003). 

Therefore, eIF-4E function contributes to metastatic progression by selectively 

upregulating the translation of key malignancy-related proteins that together conspire to 

drive the metastatic process.

After it was observed that overexpression of eIF-4E could result in oncogenic 

transformation and uncontrolled growth of mammalian cells, a screen of breast 

carcinomas was carried out. This work showed that eIF-4E was elevated 3- to 10-fold in 

virtually all the carcinomas analyzed, suggesting eIF-4E to be an essential component in 

the development of breast cancer (Kerekatte et a\., 1995). Since then, several studies 

have looked at eIF4E levels and effects in cancer. eIF4E gene amplification was 

associated with malignant progression in infiltrating ductal carcinoma of the breast 

(IDCA) and in head and neck squamous cell carcinoma (HNSCC) specimens (Sorrells 

et al., 1999). Recent work carried out to determine the effect of eIF4E overexpression in 

breast cancer specimens found increasing eIF4E correlated with higher VEGF levels 

and tumour microvessel density (MVD) counts. Patients whose tumours had high eIF4E 

overexpression had a worse clinical outcome, independent of nodal status. Thus, eIF4E 

overexpression in breast cancer appears to predict increased tumour vascularity and 

perhaps cancer dissemination by hematogenous means (Byrnes et al., 2006). 

eIF4E has also been found to play an important role on tumourigenesis, development, 

invasion and metastases of laryngeal squamous cell carcinoma (Tao et al., 2002), and 

gastric adenocarcinoma (Chen et al, 2004). In atypical adenomatous hyperplasia and 

adenocarcinoma of the human peripheral lung, dysregulation of translational control 

leading to a progressive increase of tumoral and stromal eIF4E is believed to be part of 

a positive feedback loop for malignant progression (Seki et al., 2002).
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1.3.6 Activation of eIF4E through the P13K/AKT signalling pathway

As a downstream effector of mammalian target of rapamycin (mTOR), eIF4E is 

regulated by the phosphatidylinositol-3 kinase (PI3K)/AKT signalling cascade, a major 

cell-survival pathway associated with malignant transformation and apoptotic resistance 

(Figure 1.9).

Figure 1.9 PI3K/AKT in cell survival and apoptosis resistance
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Survival signaling by eIF4E as regulated by this pathway is well documented, and 

correlates with occurrence of cancer (Wendel et al., 2004a). The PI3K/AKT signaling 

cascade is activated in response to growth factors or insulin and is thought to contribute 

to several cellular functions including glucose transport and glycogen synthesis, cell 

growth, transcriptional regulation and cell survival (Song et al., 2005). This pathway 

has also been found to be induced by oncogene amplification and mutation (e.g. Ras), 

mutations in PI3K, and AKT overexpression. It is not surprising therefore that 

deregulation of AKT is frequently associated with human diseases including cancer and 

diabetes (Nicholson and Anderson, 2002). AKT is activated by PI3K, which is activated 

by the tyrosine kinases and G-protein coupled receptors (Wymann et al., 2003). 

Following recruitment to these receptors, PI3K is activated and phosphorylates PI3K 

converts phosphatidylinositol-4, 5-bisphosphate (PIP2) to PIP3. PIP3 does not activate 

AKT directly, but recruits Akt/PKB to the plasma membrane (in its inactive state, AKT 

is located in the cytosol), alters its conformation and allows subsequent phosphorylation 

by the phosphoinositide-dependent kinase-1 (PDK1) (Andjelkovic et al., 1997). The
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tumour suppressor PTEN, negatively regulates PI3K/AKT but is frequently inactivated 

in many tumour types, leading to increased activation of AKT (Sansal and Sellers, 

2004). The mammalian target of rapamycin (mTOR) lies downstream of the TSC2- 

TSCl-Rheb complex within the PI3K pathway (Manning, and Cantley, 2003), and also 

receives nutrient input signals (Jaeschke et al., 2004). The TSC complex, a heterodimer 

consisting of unphosphorylated TSC2 (tuberin) and TSC1 (hamartin), acts as a GTPase- 

activating protein (GAP), inhibiting the small G-protein Rheb (Ras homolog enriched in 

brain). By phosphorylating TSC2, AKT disrupts the TSC complex, enabling Rheb to 

bind to ATP and convert itself from the inactive GDP state to the active GTP state 

(Zhang et al., 2003). GTP-bound Rheb, in turn, activates mTOR (Inoki et al., 2002). 

The 4E binding proteins, which regulate interaction between eIF4E and eIF4G, are 

directly phosphorylated by mTOR. mTOR-mediated signalling causes 4EBP1 to 

become highly phosphorylated and to dissociate from eIF-4E (Figure 1.10) (Lawrence 

and Abraham, 1997). eIF-4E then drives the translation of 5'cap mRNAs, including 

several oncogenic proteins such as FGF, c-Myc, VEGF and cyclin D l, as already 

mentioned.

Figure 1.10 Regulation of mTOR Growth factor receptor tyrosine 
kinases (RTKs) recruit PI3K to 
the membrane. PI3K converts 
phosphatidylinositol-4, 5-
bisphosphate (PIP2) to PIP3 and 
activates the serine/threonine 
kinase AKT. Termination o f the 
PIP3 signal occurs through the 
action o f PTEN. AKT controls a 
host o f  signalling molecules, 
including tuberin (TSC2). The 
mammalian target o f  rapamycin 
(mTOR) lies downstream o f the 
TSC2-TSCl-Rheb complex 
within the PI3K pathway, but also 
receives nutrient input signals. 
The ribosomal protein S6  kinase 
(RP-S6 ) and the eukaryotic 
initiation factor 4E (EIF-4E) 
binding protein 1 (4E-BP1) are 
mTOR effector molecules that 
function as regulators o f  ribosome 
biogenesis and protein translation. 
mTOR function is inhibited by 
rapamycin or its derivatives CCI- 
779 (Wyeth-Ayerst) and RAD001 
(Novartis).
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1.4 Gene Expression Microarrays
Each cell in the body contains a full set of chromosomes containing identical genes. At 

any given time only a fraction of these genes are expressed. It is this group of 

expressed genes that makes each cell type unique. Aberrant gene expression profiles 

are responsible for many diseases. The completion of the Human Genome project 

(HGP) in 2003 has led to a huge amount of information becoming available about 

almost every gene in the genome, and is necessary to understand more about the 

functions of these gene products. New advances in technology, for example, the 

development of full genome expression microarrays, have allowed researchers to study 

the expression of almost every gene simultaneously. It is important to note, however, 

that we may not yet have identified all genes correctly, from the sequence data, and 

certainly our knowledge of the range of splice variants is incomplete.

1.4.1 Introduction to microarray technology

Microarrays are artificially constructed grids of DNA such that each element of the grid 

contains a specific oligodeoxynucleotide probe. This enables researchers to 

simultaneously measure the expression of thousands of genes in a given sample. 

Microarray experiments rely on the ability of RNA to bind specifically to a 

corresponding sequence-complementary probe. DNA microarrays are classified based 

on the DNA molecule that is immobilised on the slide. There are two basic types: either 

“oligodeoxynucleotide” or “cDNA” arrays. Oligodeoxynucleotide arrays are typically 

made up of 25-80 mer oligodeoxynucleotides while cDNA arrays are printed with 500- 

5000 base pair PCR products.

Microarray technology can be used to detect specific gene changes in, for example, 

diseased tissue compared to normal healthy tissue, or the changing gene expression 

profiles of developing tissues at incremental time points. These types of experiments 

have the potential to explain not only why a disease occurs, but also how best to 

overcome it by enhancing our understanding of the mechanisms behind diseases, their 

development and progression. The steps of a microarray experiment are shown in 

Figure 1.11.
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An example of an affymetrix genechip experimental workflow is as follows:

1. Total RNA is isolated from the cells being studied

2. The RNA is enzymatically converted into a double stranded DNA copy known

as a complementary DNA (cDNA). This is done through reverse transcription

(RT) and second strand synthesis.

3. The cDNA is allowed to go through in vitro transcription (IVT) to RNA (now 

known as cRNA). This RNA is labelled with Biotin by incorporating a biotin- 

labelled ribonucleotide during the IVT reaction.

4. This labelled cRNA is then fragmented in to pieces anywhere from 30 to 200 

base pairs in length by metal-induced hydrolysis.

5. The fragmented, Biotin-labelled cRNA is then hybridized to the array for 16 

hours.

6. The array is then washed to remove any unhybridized cRNA and then stained 

with a fluorescent molecule streptavidin phycoerythrin (SAPE), which binds to 

Biotin.

7. Lastly, the entire array is scanned with a laser and the information is 

automatically transferred to a computer for analysis of what genes were 

expressed and at what approximate level.

Figure 1.11 Steps in a microarray experiment (www.affvmetrix.com)
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1.4.2 Microarray analysis

Microarray experiments generate vast amounts of data in a short period of time. For the 

results of a microarray experiment to be acceptable, the raw data from the experiment 

must be validated. Good experimental design is the first step. It is important that the 

proper controls and replicates are included in each experiment. Replicates are 

particularly important since the methods used to identify differentially expressed genes 

are predominantly statistical. Microarray data is normalised to measure real biological 

changes by minimising processing variation. This process standardises the data so that 

the gene expression levels are comparable.

Quality control checks must also be included at all stages of the experiment. These 

checks would usually include quality checks on the initially isolated RNA and 

processed sample at regular intervals, e.g. by using an Agilent Bioanalyzer. The 

Agilent Bioanalyzer analyses sample RNA in order to determine quality. Detailed 

information about the condition of RNA samples is displayed in the form of highly 

sensitive electropherograms. Post-experimental quality control checks include the chip 

controls shown in Table 1.3.

Table 1.3 Array quality control measures

QC measure Result

Background Measure of non-specific binding

375’ Ratio Indicates how well IVT reaction has proceeded, or if  RNA is

degraded

Hybridisation controls Checks spike controls added to each sample

Percentage present All samples should have comparable % genes present

Noise The electrical noise from scanner

Scale factor Measures the brightness of array- All chips in an experiment

should have scale factors within 3-fold of each other

The ideal format for reporting microarray data was reported by Brazma et al. (2001), 

and is called the “minimum information about a microarray experiment” (MIAME). 

MIAME has two general principles. The first is that there should be sufficient 

information recorded about each experiment to allow interpretation of the experiment, 

comparison to similar experiments and replication of the experiment. The second
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principle is that the data should be structured to allow automated data analysis and 

mining.

1.4.3 Affymetrix Gene Chips

The microarray experiments carried out in these studies employed the Affymetrix 

Genechip system, which is an oligodeoxynucleotide microarray. Affymetrix probes are 

designed using publicly available information (NCBI database). The probes are 

manufactured on the chip using photolithography, which is adapted from the computer 

chip industry. Each genechip contains approximately 1,000,000 features. Each probe is 

spotted as a pair, one being a perfect match (PM), the other with a mismatch at the 

centre (MM). Each gene or transcript is represented on the genechip by 11 probe pairs 

(PM+MM). This can be seen in Figure 1.12. As well as helping estimate and eliminate 

background, with 22 different probes in total, researchers can be sure that the 

microarray is detecting the correct piece of RNA. The amount of light emitted at 570nm 

from stained chip is proportional to the amount of labelled RNA bound to each probe. 

Therefore, after scanning, the initial computer file generated (.DAT) contains a 

numerical value for every probe on the array.

Figure 1.12 Perfect match and mismatch probe pairs on Affymetrix Gene Chips 

(www.affymetrix.com)
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1.4.4 Bioinformatics

Bioinformatics is the collection, organization and analysis of large amounts of 

biological data, using networks of computers and databases. Software packages are 

available to analyse microarray data e.g. Genespring and Spotfire. The data analysis 

software used for the analysis of the microarray experiments reported in this thesis was 

dChip, (Lin et al., 2004). This software is capable of probe-level and high-level 

analysis of Affymetrix gene expression arrays. High-level analysis in dChip includes 

comparing samples and hierarchical clustering in order to identify differentially 

expressed genes. Hierarchical clustering displays the relationships among genes or 

samples. These are represented by a tree where the length of the branches reflects the 

degree of similarity between the objects (Eisen et al., 1998). An example of a cluster 

can be seen in Figure 1.13. There are several other bioinformatics software available 

which facilitate pathway analysis of genes differentially regulated in the systems studied 

(Section 2.5.12-19).

Figure 1.13 Hierarchical cluster of microarray samples
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Figure 1.1.3: Hierarchical cluster displaying the relationships among samples. The length o f  the branches 

reflects the degree o f  similarity between samples.
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1.4.5 Microarrays and cancer

The initiation and progression of cancers is a complex process, involving an 

accumulation of genetic aberrations in the cell. Microarrays now provide researchers 

with the ability to examine whole genomes simultaneously, allowing a complete 

investigation of the effects of genetic aberrations in many diseases, including cancer. 

Microarray technology has been used intensively to better understand the development 

of resistance to chemotherapeutic agents. Whiteside et al. (2004) reported a novel 

method using time-course cDNA microarray analysis designed to evaluate which 

differentially expressed genes are directly involved in the development o f drug 

resistance. The study used two lung cancer cell lines; one which readily developed 

resistance to cisplatin and another which after treatment with cisplatin did not display 

stable resistance. They identified seven genes that are likely to be involved in cisplatin 

resistance; three of them are newly identified in terms of cisplatin resistance (Whiteside 

et al., 2004). Another in vitro study used human lung cancer cell lines with varying 

degrees of invasion ability and metastatic potential to determine invasion-related genes 

(Chen et al., 2001). Hundreds of genes were found significant to the invasive 

phenotype, several of which had already been associated invasion from previous work. 

This previous association with invasion validated the analysis and indicated that the 

more novel genes found may also play a role in invasion/metastasis.

DNA microarrays have also been used to examine RNA profiles of in vivo models, and 

have proven powerful tools in the determination of markers of clinical significance. 

Several studies have looked at genes identified as invasion/metastasis markers in in vivo 

and in vitro models using microarrays. The significance of chemokine receptor (CR) 

expression in patients with melanoma and colorectal cancer (CRC) liver metastases was 

examined using microarray analysis. Tissue samples from patients who underwent 

hepatic surgery for melanoma or CRC liver metastases were used to obtain RNA for 

microarray experiments, and CR was found to have prognostic significance for disease 

outcome (Kim et al., 2006). Conversely, markers significant to cancer have been 

determined using microarray data alone, and then further examined using in vitro and 

murine models. An example of this was the detection of aberrations of ubiquitin- 

conjugating enzyme E2C gene (UBE2C) in advanced colon cancer with liver metastases 

by DNA microarray and two-color FISH (Takahashi et al., 2006). Initially this study 

identified genes whose expression showed a significant change in primary colon cancers

42



relative to normal tissue, but could not discover any gene with significant change 

between the primary tumours and its liver métastasés. However, further analysis using 

FISH revealed that UBE2C expression was significantly changed by amplification at 

20ql3.1, suggesting genomic amplification as one mechanism of increased UBE2C 

expression.

Gene expression profiling has been extensively applied to the study of breast cancer. 

Recent work has also demonstrated how DNA microarrays can provide prognostic 

information in patients with newly diagnosed breast cancer, and may be useful in 

predicting response or resistance to treatment, especially to neoadjuvant chemotherapy 

(Brennan et al., 2005). Prognostic "signatures" (gene lists) have been established using 

microarray studies that are purported to be more accurate prognostic factors than well 

established clinical and pathological features (Nevins et al. 2003). In addition, cDNA 

and oligonucleotide microarrays have also been used to devise predictive "signatures" in 

the setting of neoadjuvant chemotherapy setting (Hannemann et al., 2005). Although 

the results are promising, further optimisation and standardisation of the technique and 

properly designed clinical trials are required before microarrays can reliably be used as 

tools for clinical decision making (Reis-Filho et al., 2006).
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1.5 siRNA
RNA silencing was discovered in plants more than 15 years ago during the course of 

transgenic experiments that eventually led to silencing of the introduced transgene and, 

in some cases, of homologous endogenous genes or resident transgenes (Matzke et al., 

1989; Linn et al., 1990; Napoli et al., 1990; Smith et al., 1990; van der Krol et al., 

1990). The growth of RNAi as a technique has exploded since its discovery to the 

present day. In the region of 15 RNAi papers were published in 1998 whereas over

1,000 were published in 2005. Many companies have changed their focus from 

antisense and ribozyme technologies to concentrate on post-transcriptional gene 

silencing using RNAi, which to date appears far more potent than antisense-based 

approaches (Wall and Shi 2003).

1.5.1 Mechanism of action

Long double-stranded RNAs (typically >200 nt) can be used to silence the expression of 

target genes in a variety of organisms, as already mentioned. Upon introduction, the 

long dsRNAs enter a cellular pathway that is commonly referred to as the RNA 

interference (RNAi) pathway. During the initiation stage, long dsRNA is cleaved into 

siRNA and miRNAs (Hamilton et al., 2002), mediated by type III RNase Dicer. RNase 

III family members are among the few nucleases that show specificity for dsRNAs 

(Nicholson, 1999) and are evolutionarily conserved in worms, flies, fungi, plants, and 

mammals (Agrawal et al., 2003). Complete digestion by RNase III enzyme results in 

dsRNA fragments of 12 to 15 bp, half the size of siRNAs (Yang et al., 2002), however 

examination of the crystal structure of the RNase III catalytic domain explains the 

generation of 23- to 28-mer diced siRNA products (Blaszczyk et al., 2001). In this 

model, Dicer folds on the dsRNA substrate to produce two active catalytic sites having 

homology with the consensus RNase III catalytic sequence, and two inactive internal 

sites. The diced products are the limit digests and are double the size of the normal 

fragments.

During the effector stage, the siRNAs assemble into endoribonuclease-containing 

complexes known as RNA-induced silencing complexes (RISCs), unwinding in the 

process (Hammond et al., 2000). Dicers are part o f the RISC complex, which includes 

several different proteins such as the Argonaute gene family members and an ATP- 

dependant RNA helicase activity that unwinds the two strands of RNA. Argonaute
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proteins contain two RNA-binding domains, one that binds the small RNA guide at its 

5' end, and one that binds the single stranded 3' end of the small RNA. The siRNA must 

be 5' phosphorylated to enter the RISC complex. The antisense strand is exposed by the 

helicase and only one strand of the siRNA guides the RISC to the homologous strand of 

the target mRNA. Functional RISCs contain only single stranded siRNA or miRNA 

(Martinez et al., 2002). The siRNA strands subsequently guide the RISC to 

complementary RNA molecules, where Watson and Crick base pairing takes place 

between the antisense strand of the siRNA and the sense strand of the target mRNA. 

This leads to endonuclease cleavage of the target RNA at the phosphodiester bond, 10-

11 nucleotides along from the 5' end of the siRNA (Novina and Sharp, 2004). Gene 

silencing by RISC is accomplished via homology-dependent mRNA degradation 

(Tuschl et al., 1999; Hamilton & Baulcombe, 1999), translational repression (Grishok et 

al., 2001) or transcriptional gene silencing (Pal-Bhadra et al., 2002) (Figure 1.14). 

Endonucleolytic cleavage is generally favoured by perfect base-pairing between the 

miRNA /siRNA and the mRNA, although some mismatches can be tolerated and still 

allow cleavage to occur (Mallory et al., 2004; Guo et al. 2005). Translation repression 

is seen mostly in miRNA, though evidence of siRNA acting like miRNA does exist 

(Doench et al., 2003). A short RNA with mismatches to a target sequence present in 

multiple copies in the 3’untranslated region (UTR) of an exogenously expressed gene 

can silence it by translational repression. A single base mismatch with the target is 

believed to protect the mRNA from degradation making this type of interference highly 

specific to the targeted gene (Saxena et al., 2003). Transcriptional gene silencing causes 

gene expression to be reduced by a blockade at the transcriptional level. Transcriptional 

silencing by siRNAs probably reflects genome defence mechanisms that target 

chromatin modifications to endogenous silent loci such as transposons and repeated 

sequences (Doench et al., 2003; Zilberman et al., 2003).
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Figure 1.14 siRNA mechanism of action
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1.5.2 siRNA/miRNA - what’s the difference?

RNAi regulation of endogenous genes in mammalian cells occurs via production of 

short double stranded RNA molecules termed microRNA or miRNA. miRNAs are a 

class of non-coding RNAs that function as endogenous triggers of the RNAi 

interference pathway (Hammond, 2006). Mature miRNAs are between 21-23 

nucleotides in length and are formed from larger transcripts, 60-80nt. These long 

precursors are produced by RNA polymerase II, spliced, polyadenylated and resemble 

mRNAs (though they may or may not have an open reading frame (ORF)). Firstly the 

larger transcripts fold to produce hairpin structures that are substrates for the RNase III 

enzymes, Drosha, located in the nucleus. This functional stem-loop structure can be 

located in an intron or an exon. Following this initial processing pre-miRNAs are 

escorted through the nuclear pore by exportin-5, a transport receptor (Kim, 2004). As
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with siRNA, the pre-miRNA is now processed by Dicer to form mature miRNA 

duplexes (Lippman and Martienssen, 2004).

siRNA refers to synthetic generation of RNA interference. siRNA are 21-22 nucleotides 

in a staggered duplex, with two unpaired nucleotides at either end and are perfectly 

complementary to their target sequence, causing silencing at mRNA level. miRNA on 

the other hand, possess a strand which is highly, but not perfectly complementary to one 

or more target mRNAs. The mRNA bound to the miRNA remains untranslated, 

resulting in reduced expression of the corresponding gene (Lai, 2005).

1.5.3 miRNA in cancer

Recent studies of miRNA expression implicate miRNAs in brain development 

(Krichevsky et al., 2003), chronic lymphocytic leukemia (Calin et al., 2004), colonic 

adenocarcinoma (Michael et al., 2003), Burkitt’s Lymphoma (Metzler et al., 2004), and 

viral infection (Pfeffer et al., 2004) suggesting possible links between miRNAs and 

viral disease, neurodevelopment, and cancer. miRNA has been shown to act as both 

tumour suppressors and oncogenes. More than 50% of miRNA genes have been found 

localised in cancer-associated genomic regions or in fragile sites (Calin et al., 2004). 

Expression profiling methods were developed to analyse 217 mammalian miRNAs from 

a panel of 200 human cancers. Results showed an overall reduction in expression of 

miRNAs in cancer compared to normal samples. This indicates that miRNAs act 

predominately as tumour suppressors (Li et al., 2005). However, a cluster of miRNAs, 

miR-17 ~ 92, is overexpressed is some lymphoma and solid tumours. Ectopic 

expression of these miRNAs in a mouse model of Burkitt’s lymphoma led to 

accelerated and disseminated disease (He et al., 2005).

1.5.4 RNAi in cancer research - experimental considerations in vivo and in vitro 

Mammalian tissue culture and animal models have long since been used to study the 

genetic basis of cancer. The principal methods used, in order to gain knowledge of this 

complex biological process, are overexpression, deletion or mutation of genes. Cell 

culture experiments are particularly difficult for obtaining loss-of-function events. A 

mixed population of cultured cells contains two or more sets of chromosomes, and in 

most cases inactivation of a single allele will not produce a phenotypic change. A 

number of methods have been used for this purpose including chemical mutagenesis, 

antisense and ribozymes (Williams and Flitoff, 1995; Deiss and Kimchi, 1991). These
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methods have proved time consuming and unpredictable. In the case of chemical 

mutagenesis, full-scale genetic screens may be required to detect multiple mutants in 

order to investigate a single phenotype. Loss-of-function events through expression of 

an antisense library are inefficient, as it is unlikely that a specific antisense or dominant- 

negative fragment could be generated for every gene in the genome. Animal models, 

though currently the best in vivo models of human disorders, are time consuming and 

expensive. They also rarely reflect the complexity of the disease in humans, with 

generation of simultaneous mutations beyond the reach of such systems.

With the ability to produce RNA interference for any transcript, RNAi would appear to 

be the solution to these problems. RNAi is a powerful tool for the generation of tissue 

culture or animal models with reduced expression of specific genes. However, before 

embarking on in vivo studies using RNAi many important factors need to be taken into 

consideration. These include site selection, compound design, controls, route of 

administration and use of a delivery system (Behlke, 2006). It is probable that many 

adverse effects will be observed in vivo using siRNA that may not have occurred in 

previous experiments using antisense and ribozymes. It is important to be aware of the 

life span of the chosen RNAi in in vitro and in vivo experiments. Extracellular 

degradation of siRNA peaks around 36 to 48hr after their introduction and begins to 

decrease after 96hr.The levels of silencing vary between species, cells and tissues due to 

differences in the efficiency with which the siRNAs are taken up by target cells. The 

duration of gene silencing varies greatly between cells with slow growing cells still 

showing the effects of siRNA after several weeks, but more rapidly dividing cells not 

seeing an effect for longer than 1 week (Ryther et al., 2005). Also, the targeting of 

proteins with a long half-life may not produce the desired phenotypic effect because 

silencing at the level of transcription will not affect pre-existing proteins. Therefore 

RNAi has the optimal effect in proteins with a more rapid turnover (Pai et a l, 2006).

1.5.5 Targeting individual genes in vitro and in vivo

1.5.5.1 Angiogenesis

Vascular endothelial growth factor (VEGF) has long since been recognized as a key 

factor in the development and formation of novel blood vessels, and many therapeutic 

strategies are specifically aimed at VEGF inhibition. It is not surprising therefore that 

RNAi silencing of VEGF is seen as an attractive opportunity to interfere with
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angiogenesis. siRNA was used to silence YEGF in RKO human colon cancer cells, 

resulting in a decrease in proliferation (Mulkeen et al., 2006). Cationized gelatin 

delivery of a plasmid DNA expressing VEGF siRNA was used to silence VEGF 

successfully in vitro and in vivo. In vitro it knocked down expression of three different 

VEGF isoforms in mouse squamous cell carcinoma NRS-1, and in vivo a mouse model 

showed a marked reduction in vascularity accompanied by the inhibition of a VEGF 

siRNA transfected tumour (Matsumoto et al., 2006).

1.5.5.2 Invasion

A characteristic feature o f malignant neoplasm is invasion and metastasis. Despite 

advances in the management of many solid tumours, metastasis continues to be the most 

significant cause in cancer mortality. Many recent studies have demonstrated that RNAi 

is a viable approach to inhibit tumour growth and invasion/metastasis. Overexpression 

of RhoA or RhoC in breast cancer indicates a poor prognosis. This is due to increased 

tumour cell proliferation, invasion and increased tumour-dependent angiogenesis. A 

recent study has used siRNA to silence both RhoA and B in MDA-MB-231 breast 

cancer cells, resulting in a decrease in proliferation and invasion. In a nude mouse 

model intratumoral injections of these siRNAs almost totally inhibited the growth and 

angiogenesis of xenografted MDA-MB-231 tumours (Pille et al., 2005). Another study 

focused on Urokinase plasminogen inhibitor (uPA) and its receptor (uPAR), both of 

which are essential for tumour cell invasion and metastasis. Silencing of inhibitor and 

receptor after siRNA transfection resulted in a decrease in invasion and angiogenic 

potential, and there was also an associated increase in apoptotic cells (Subramanian et 

al., 2006). S100A4 is a protein which has only recently been associated with the 

promotion of invasion. A plasmid construct expressing shRNA specific to S100A4 was 

used to significantly reduce anaplastic thyroid tumours in nude mice. The study also 

showed tumour cells were sensitized to chemotherapy as a result of S100A4 knock­

down (Shi et al., 2006).

1.5.5.3 Apoptosis

The kinase Mirk/DyrklB was proven to mediate cell survival in pancreatic ductal 

adenocarcinoma through siRNA silencing. Transfection of Panel pancreatic cells with 

Mirk/DyrklB siRNA was sufficient to cause the induction of apoptosis (Deng et al., 

2006). Raf-1, a cytosolic serine-threonine kinase, also plays an important role in
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apoptosis, along with tumour cell growth and proliferation. This gene has also been 

used as a siRNA target both in vitro and in vivo. In this study transfections were 

performed on a number of cell lines including HUVEC and MDA-MB-435 and results 

showed a 75% reduction in Raf-1 mRNA compared to control groups. In vivo studies 

showed a 60% decrease in tumour growth after injection with the siRNA (Leng et al., 

2005).

The above is a small example of some of the work that has been carried out using RNAi 

in cancer research. Thyroid carcinoma (Shi et al., 2006), bladder cancer (Nogawa et al., 

2005), brain cancer (Boado, 2005), ovarian cancer (Noske et al., 2006) and pancreatic 

cancer (Bhattacharyya, 2006) have all been the focus of similar studies carried out in the 

last twelve months.

1.5.6 Clinical use of RNAi

siRNA therapeutics are currently involved in a phase 1 trial of sima-027 as a therapy for 

age-related macular degeneration (AMD). Patients have been given intravitreal doses of 

siRNA and follow up of up to 84 days has shown a dose-dependent improvement of 

sight. Importantly, the drug is safe and well tolerated (Quinlan, 2005). The same 

company are also developing an antiviral RNAi against hepatitis C. The treatment has 

been successful in animal models and is being taken to phase 1 trials this year.

Another company, Alnylam, has developed an intranasal siRNA that is effective against 

respiratory syncitial virus in mice, and they are also working on siRNA-based treatment 

for emerging flu strains (Bitko et al., 2005). In March 2006, further research by 

Alnylam scientist demonstrated in primates, that a systemically delivered RNAi 

therapeutic can potently silence an endogenous disease-causing gene in a clinically 

relevant manner. Alnylam and collaborators showed silencing of the gene for 

apolipoprotein B (apoB), a protein involved in cholesterol metabolism, with clinically 

significant efficacy as demonstrated by reductions in levels o f cholesterol and low- 

density lipoproteins (LDL) (Zimmermann et al., 2006). In April 2006, Phase I clinical 

data was presented for ALN-RSV01. The drug was found to be safe and well tolerated 

when administered intra-nasally in two Phase I clinical studies. ALN-RSV01 is being 

evaluated for the treatment of respiratory syncytial virus (RSV) infection and is the first 

RNAi therapeutic in human clinical development for an infectious disease.
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1.5.7 Specificity in experimental RNA interference

At present, the most common problem in the use of RNAi is the issue of off-target 

effects. One study showed that changes occurred in over 1000 genes following the 

introduction of a siRNA whose target was not expressed in the cell model (Persengiev 

et ah, 2004). This study points out the uncertainty of presuming RNAi elimination of 

target mRNA based on phenotypic effect alone. It is interesting to note that off-target 

effects are not observed when complete dsRNAs are introduced instead of synthetic 

siRNA in primitive organisms. In C. elegans expression of dsRNAs of 500 base pairs or 

more typically results in very efficient gene silencing, irrespective of the sequence of 

the target mRNA (Fire et ah, 1998). One explanation for this could be that 

endogenously derived siRNA are generated from the cleavage of dsRNA by Dicer and 

RISC, which may have a proofreading mechanism that protects against the silencing of 

endogenous genes (Pai et ah, 2006).

Local mRNA target structure can also influence siRNA efficacy. Structural accessibility 

is a critical parameter, with some sequences inaccessible to RNAi therapy due to 

physical hindrance by RNA-binding proteins or by complex secondary structures. This 

problem can be overcome by the use of computational analysis to define the structural 

constraints of the target RNA that are important for the design of effective siRNA 

species (Overhoff et ah, 2005).

Artefacts may be formed by introduced siRNA forming complexes with specific 

proteins. Although this process has not been confirmed in RNAi, it has previously been 

observed with antisense oligonucleotides (Chavany et ah, 1995). It is also possible that 

siRNAs can act like miRNAs. miRNAs do not require perfect homology to their target 

in order to be effective, therefore it is possible that a single siRNA can affect multiple 

mRNAs, resulting in off target effect at a protein level. Studies have shown that as little 

as 7 to 11 consecutive homologous bases between the 5' end of either siRNA strand to 

an mRNA can cause a reproducible reduction in transcript levels (Scacheri et ah, 2004; 

Jackson et ah, 2003).

There is also the problem of an immune response. When long stretches of double­

stranded RNA are introduced into a cell they trigger an immune response to viral 

infection. The introduction of shorter 21-23 bp siRNAs seems to overcome this problem 

(Paddison et ah, 2002). However, there have been reports that high concentrations of 

synthetic or vector-based siRNA can trigger the interferon anti-viral response in 

sensitive cell lines (Bridge et ah, 2003; Sledz et ah, 2003). The absence of short over-
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hangs, produced by the natural processing of miRNA, as well as the unconventional 5' 

termini (e.g. triphosphate) might explain the recognition of siRNA (expressed or 

transfected) as a foreign body (Marques and Williams, 2005). Interferon triggers the 

degradation of mRNA by inducing 2-5' oligoadenylate synthase, which in turn activates 

RNase L (Stark et al., 1998). Interferon can also activate dsRNA-dependent protein 

kinase (PKR), which phosphorylates eIF2. Phosphorylation of the translation initiation 

factor eIF2 causes its inactivation and global inhibition of mRNA activation.

There is also the theory that high levels of exogenous siRNA can compete with and 

decrease the efficiency of miRNA, as both are recognized and processed by the same 

cellular factors (Gartel and Kandel, 2006).

It is clear that there are several artefacts that can arise from siRNA transfection, leading 

to a misleading result. The most common cause however, is due to siRNA delivery. 

Whether via transfection or viral transduction, siRNA delivery can result in temporary 

changes in the cell, and in more extreme cases cells may become resistant to conditions 

of delivery. Designing siRNAs with resistance to serum RNases without sacrificing 

biological activity is possible through chemical modification. siRNAs can be encased in 

cationic liposomes (Matsumoto et al., 2006), lipid complexes (Santel et al., 2006) and 

collagen complexes (Minakuchi et al., 2004). They can also be coupled with antibodies 

to cell surface receptor ligands for cell-specific delivery (Schiffelers et al., 2005).

These results emphasize the need for adequate controls in RNAi experiments. One of 

these is the inclusion of 'scrambled' siRNA, which is designed against a different target, 

or preferably lacks recognition to any target. However, the non-specific effects on gene 

expression are dependent upon siRNA concentration in a gene specific manner. 

Therefore it is possible that the non-specific effects of a given siRNA and a scrambled 

control differ because of varying transfection efficiencies or have different intercellular 

stabilities (Persengiev et al., 2004).

The most accurate control for these experiments is to set up repeats targeting the same 

mRNA using different siRNA sequences. Responses elicited by multiple non- 

homologous siRNAs can therefore be assumed to be due to target suppression. An even 

more stringent control would be to examine the effects of multiple non-homologous 

siRNAs in different cell lines or animal models.
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Aims of Thesis:

This thesis aimed to investigate how mRNA profiles changes in cancer cell lines 

following overexpression of eIF4E, eIF4Emut and erbB2, and to identify genes 

associated with in vitro invasion in lung and breast cell lines. This was to be approached 

as follows:

1. Generating cell lines over-expressing eIF4E and mutant eIF4E in mildly- 

invasive DLKP and non-invasive MCF7.

2. Characterising the resulting cell lines to determine: eIF4E expression, growth 

rate, chemotherapeutic drug resistance, and invasion status (adhesion and colony 

formation in soft agar was also examined in the case of MCF7 clones).

3. Microarray analysis of invasive eIF4E-overexpressing DLKP4E and 

DLKP4Emut; non-invasive eIF4E-overexpressing MCF74E, MCF74Emut and 

invasive MCF7H3erbB2.

4. Analysing the microarray results to determine eIF4E and erbB2 transfectant 

associated targets, which may contribute to the invasive phenotype.

5. siRNA silencing of chosen invasion targets to determine their functional 

significance in breast and lung cell lines.

6. Confirmation of siRNA silencing of specific targets at mRNA level using real­

time PCR and at protein level using western blot analysis.

7. Performing invasion assays of cell lines post-siRNA transfection to examine the 

effect on invasive/non-invasive phenotypes.
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Section 2.0

Materials and Methods



2.1 Preparation for cell culture

2.1.1 Water

Ultrapure water was used in the preparation of all media and lx  solutions. Pre­

treatment, involving activated carbon, pre-filtration and anti-scaling was first carried 

out. The water was then purified by a reverse osmosis system (Millipore Milli-RO 10 

Plus, Elgastat UHP). This system is designed to produce purified water from a suitable 

municipal water supply. The system utilises a semi-permeable reverse osmosis 

membrane to remove contaminants from the feed water. This results in water which is 

low in organic salts, organic matter, colloids and bacteria with a standard of 12-18 

MQ/cm resistance.

2.1.2 Glassware

Solutions pertaining to cell culture and maintenance were prepared and stored in sterile 

glass bottles. Bottles (and lids) and all other glassware used for any cell-related work 

were prepared as follows; all glassware and lids were soaked in a 2% (v/v) solution of 

RBS-25 (AGB Scientific) for at least 1 hour. This is a deproteinising agent which 

removes proteinaceous material from the bottles. Following scrubbing and several 

rinses in tap water, the bottles were washed twice by machine (Miele G7783 

washer/disinfecter) using Neodisher GK detergent and sterilised by autoclaving. Waste 

bottles containing spent medium from cells were autoclaved, rinsed in tap water and 

treated as above. Glassware used for large-scale cell production were treated specially, 

as outlined in Section 2.2.4.1.

2.1.3 Sterilisation

Water, glassware and all thermostable solutions were sterilised by autoclaving at 121 °C 

for 20 min under 15 p.s.i. pressure. Thermolabile solutions were filtered through a

0.22|J.m sterile filter (Millipore, millex-gv, SLGV-025BS). Low protein-binding filters 

were used for all protein-containing solutions. Acrodisc (Pall Gelman Laboratory, 

C4187) 0.8/0.2^m filters were used for non-serum/protein solutions.
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2.1.4 Media Preparation

The basal media used during routine cell culture were prepared according to the 

formulations shown in Table 2.1.1. lOx media were added to sterile ultrapure water, 

buffered with HEPES (Sigma, H-9136) and NaHC03 (BDH, 30151) and adjusted to a 

pH of 7.45 - 7.55 using sterile 1.5M NaOH and 1.5M HC1. The media were filtered 

through sterile 0.22 jim bell filters (Gelman, 121-58) and stored in 500ml sterile bottles 

at 4°C. Sterility checks were carried out on each 500ml bottle of medium as described 

in Section 2.2.8.

The basal media were stored at 4°C up to their expiry dates as specified on each 

individual lOx medium container. Prior to use, 100ml aliquots of basal media were 

supplemented with 2mM L-glutamine (Gibco, 25030-024) and 5% foetal calf serum 

(PAA laboratories, A15-042) and this was used as routine culture medium. This was 

stored for up to 2 weeks at 4°C.

Table 2.1.1 Preparation of basal media

DMEM (Dulbecco's 

Modified Eagle Medium) 

(mis)

(Sigma, D-5648)

Hams F12 (mis) 

(Sigma, N-6760)

1 OX Medium 500 Powder

Ultrapure H20  (UHP) 4300 4700

1M HEPES1 100 100

7.5% NaHCOa 45 45

1 The weight equivalent o f  1M N- (2-Hydroxyethyl) piperazine-N'- (2-ethanesulfonic acid) (HEPES) was 
dissolved in an 80% volume o f ultra-pure water and autoclaved. The pH was adjusted to 7.5 with 5M 
NaOH.



2.2 Routine management of cell lines

2.2.1 Safety Precautions

All routine cell culture work was carried out in a class II down-flow re-circulating 

laminar flow cabinet (Nuaire Biological Cabinet). Any work which involved toxic 

compounds was carried out in a cytoguard (Gelman). Strict aseptic techniques were 

adhered to at all times. Both laminar flow cabinets and cytoguards were swabbed with 

70% industrial methylated spirits (IMS) before and after use, as were all items used in 

the experiment. Each cell line was assigned specific media and waste bottles and only 

one cell line was worked with at a time in the cabinet which was allowed to clear for 

15min between different cell lines. The cabinet itself was cleaned each week with 

industrial detergents (Virkon, Antec. International; TEGO, T.H.Goldschmidt Ltd.), as 

were the incubators. A separate Laboratory coat was kept for aseptic work and gloves 

were worn at all times during cell work.

2.2.2 Cell Lines

The cell lines used during the course of this study, their sources and their basal media
♦ • 2requirements are listed in Table 2.2.1. Lines were maintained in 25cm flasks (Costar, 

3050), 75cm2 flasks (Costar, 3075) or 175cm2 flasks (NulgeNunc, 156502) at 37°C and 

fed every two to three days.
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Table 2.2.1 Cell Lines used in study

Cell Line Source Media Cell Type

DLKP NCTCC ATCC1 Poorly differentiated human 

Lung squamous carcinoma

DLKP4E NCTCC ATCC1 Clonal subpopulation of eIF4E 

cDNA transfected DLKP

DLKP4Emut NCTCC ATCC1 Clonal subpopulation of eIF4E 

mut cDNA transfected DLKP

DLKPpcDNA NCTCC ATCC1 Clonal subpopulation of 

pcDNA transfected DLKP

SKBR3 ATCC2 RPMI-16403 Human breast, erbB2 positive

RPMI2650 ATCC2 RPMI-16403 Human nasal septum squamous 

carcinoma

RPMI

Melphalin

NCTCC RPMI-16403 Melphalin resistant variant of 

RPMI 2650

MCF7 ATCC2 DMEM Human Breast adenocarcinoma

MCF74E NCTCC DMEM Clonal subpopulation of eIF4E 

cDNA transfected MCF7

MCF74Emut NCTCC DMEM Clonal subpopulation of eIF4E 

mut cDNA transfected MCF7

MCF7pcDNA NCTCC DMEM Clonal subpopulation of 

pcDNA transfected MCF7

MCF7H3 NCTCC DMEM Clonal subpopulation of MCF7

MCF7H3erb2 NCTCC DMEM Clonal subpopulation of 

MCF7H3 transfected with 

erbB2

ATCC1 = Basal media consists o f  a 1:1 mixture o f  DMEM and Hams F12.
ATCC2 = American Tissue Culture Collection.
NCTCC = National Cell and Tissue Culture Centre.
RPMI-16403 = Gibco,52400-025, supplemented with 10% FCS and 2mM L- Glutamine.
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2.2.3 Subculture of Adherent Lines

During routine subculturing or harvesting of adherent lines, cells were removed from 

flasks by enzymatic detachment.

Cell culture flasks were emptied of waste medium and rinsed with a pre-warmed (37°C) 

trypsin/EDTA (Trypsin Versene - TV) solution (0.25% trypsin (Gibco, 25090-028),

0 .0 1 . EDTA (Sigma, E-5134) solution in PBS (Oxoid, BR14a)). The purpose of this 

was to inhibit any naturally occurring trypsin inhibitor which would be present in 

residual serum. Fresh TV was then placed on the cells (4ml/25cm2 flask, 7ml/75cm2 

flask or 10ml/175 cm flask) and the flasks incubated at 37°C until the cells were seen 

to have detached (5-10 min). The flasks were struck once, roughly, to ensure total cell 

detachment. The trypsin was deactivated by addition of an equal volume of growth 

medium (i.e. containing 5% serum). The entire solution was transferred to a 20ml 

sterile universal tube (Greiner, 201151) and centrifuged at 1,200 rpm for 3 min. The 

resulting cell pellet was resuspended in pre-warmed (37°C) fresh growth medium, 

counted (Section 2.2.5) and used to re-seed a flask at the required cell density or to set 

up an assay.

2.2.4 Cell Counting

Cell counting and viability determinations were carried out using a trypan blue (Gibco, 

15250-012) dye exclusion technique.

1. An aliquot of trypan blue was added to a sample from a single cell suspension in

a ratio of 1:5.

2. After 3 min incubation at room temperature, a sample of this mixture was

applied to the chamber of a haemocytometer over which a glass coverslip had 

been placed.

3. Cells in the 16 squares of the four outer comer grids of the chamber were

counted microscopically. An average number per comer was calculated with the

dilution factor being taken into account and final cell numbers were multiplied 

by 104 to determine the number o f cells per ml. The volume occupied by sample 

in chamber is 0.1cm x 0.1cm x 0.01cm i.e. 0.0001cm3 (therefore cell number x 

104 is equivalent to cells per ml). Non-viable cells were those which stained 

blue while viable cells excluded the trypan blue dye and remained unstained.
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2.2.5 Cell Freezing

To allow long term storage of cell stocks, cells were frozen and cryo-preserved in liquid

nitrogen at temperatures below -180°C. Once frozen properly, such stocks should last

indefinitely.

1. Cells to be frozen were harvested in the log phase of growth (i.e. actively 

growing and approximately 50 - 70% confluent) and counted as described in 

Sections 2.2.5.

2. Pelleted cells were re-suspended in serum and an equal volume of a 

DMSO/serum (1:9, v/v) (Sigma, D-5879). This solution was slowly added 

dropwise to the cell suspension to give a final concentration of at least 5xl06 

cells/ml. This step was very important, as DMSO is toxic to cells. When added 

slowly, the cells had a period of time to adapt to the presence of the DMSO, 

otherwise cells may have lysed.

3. The suspension was aliquoted into cryovials (Greiner, 122 278) which were 

quickly placed in the vapour phase of liquid nitrogen containers (approximately 

-80°C). After 2.5 to 3.5 hours, the cryovials were lowered down into the liquid 

nitrogen where they were stored until required.

2.2.6 Cell Thawing

1. Immediately prior to the removal of a cryovial from the liquid nitrogen stores for 

thawing, a sterile universal tube containing growth medium was prepared for the 

rapid transfer and dilution of thawed cells to reduce their exposure time to the 

DMSO freezing solution which is toxic at room temperature.

2. The cryovial was removed and thawed quickly under hot running water.

3. When almost fully thawed, the DMSO-cell suspension was quickly transferred 

to the media-containing universal.

4. The suspension was centrifuged at 1,200 rpm. for 3 min, the DMSO-containing 

supernatant removed, and the pellet re-suspended in fresh growth medium.

5. A viability count was carried out (Section 2.2.5) to determine the efficacy of the 

freezing/thawing procedures.

6. Thawed cells were then placed into 25cm tissue culture flasks with 7mls of the 

appropriate type of medium and allowed to attach overnight.

7. After 24 hours, the cells were re-fed with fresh medium to remove any residual 

traces o f DMSO.
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2.2.7 Sterility Checks

Sterility checks were routinely carried out on all media, supplements and trypsin used 

for cell culture. Samples of basal media were inoculated either into TSB (Oxoid 

CM129) (incubated at 20-25°C) or thioglycollate broth (Oxoid, CM173) (and incubated 

at 30-35°C). Both sets were incubated at their specific temperature for up to 2 weeks 

checking for turbidity and sedimentation. TSB supports the growth of yeasts, moulds 

and aerobes, while thioglycollate supports the growth of anaerobes and aerobes. Growth 

media (i.e. supplemented with serum and L-glutamine) were sterility checked at least 2 

days prior to use by incubating samples at 37°C and checking as before.

2.2.8 Mycoplasma Analysis

Mycoplasma examinations were carried out routinely (at least every 3 months) on all 

cell lines used in this study.

2.2.8.1 Indirect Staining Procedure

In this procedure, Mycoplasma-negative NRK cells (a normal rat kidney fibroblast line) 

were used as indicator cells. These cells were incubated with supernatant from test cell 

lines and examined for Mycoplasma contamination. NRK cells were used for this 

procedure because cell integrity is well maintained during fixation. A fluorescent 

Hoechst stain was utilised which binds specifically to DNA and so will stain the nucleus 

of the cell in addition to any Mycoplasma DNA present. A Mycoplasma infection 

would thus be seen as small fluorescent bodies in the cytoplasm of the NRK cells and 

sometimes outside the cells.

1. NRK cells were seeded onto sterile coverslips in sterile Petri dishes (Greiner, 

633185) at a cell density of 2x103 cells per ml and allowed to attach overnight at 

37°C in a 5% CO2 humidified incubator.

2. 1ml of cell-free (cleared by centrifugation at 1,200 rpm for 3 min) supernatant 

from each test cell line was inoculated onto an NRK Petri dish and incubated as 

before until the cells reached 20 - 50% confluency (4 -5  days).

3. After this time, the waste medium was removed from the Petri dishes, the 

coverslips washed twice with sterile PBS, once with a cold PBS/Camoys (50/50) 

solution and fixed with 2ml of Camoys solution (acetic acid:methanol-l:3) for 

10 mins.
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4. The fixative was removed and after air drying, the coverslips were washed twice 

in deionised water and stained with 2 mis of Hoechst 33258 stain (BDH) 

(50ng/ml) for 10 mins.

From this point on, work proceeded in the dark to limit quenching of the fluorescent 

stain.

1. The coverslips were rinsed three times in PBS.

2. They were then mounted in 50% (v/v) glycerol in 0.05M citric acid and 0.1M 

disodium phosphate.

3. Examination was carried out using a fluorescent microscope with a UV filter. 

Prior to removing a sample for mycoplasma analysis, cells should be passaged a min. of

3 times after thawing to facilitate the detection of low level infection.

• Cells should be subcultured for 3 passages in antibiotic free medium (as antibiotics 

may mask the levels of infection).

• Cell lines routinely cultured in the presence of drugs should be sub-cultured at least 

once in drug free medium before analysis (some drugs such as adriamycin lead to 

background level of autofluorescence).

• Optimum conditions for harvesting supernatant for analysis occur when the culture 

is in log-phase near confluency and the medium has not been renewed in 2-3 days.

2.1.8.2 Direct Staining

The direct stain for Mycoplasma involved a culture method where test samples were 

inoculated onto an enriched Mycoplasma culture broth (Oxoid, CM403) - supplemented 

with 20% serum, 10% yeast extract (Oxoid L21, 15% w/v) and 10% stock solution 

(12.5g D-glucose, 2.5g L-arginine and 250mls sterile-filtered UHP). This medium 

optimised growth of any contaminants and incubated at 37°C for 48 hours. Sample of 

this broth were streaked onto plates of Mycoplasma agar base (Oxoid, CM401) which 

had also been supplemented as above and the plates were incubated for 3 weeks at 37°C 

in a CO2 environment. The plates were viewed microscopically at least every 7 days and 

the appearance of small, “fried egg” -shaped colonies would be indicative of a 

mycoplasma infection.
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2.3 Specialised techniques in cell culture

2.3.1 Miniaturised in vitro toxicity assays

2.3.1.1 In vitro toxicity assay experimental procedure

Due to the nature of the compounds tested in the assays, precautions were taken to limit 

the risks involved in their handling and disposal. All work involving toxic compounds 

was carried out in a Gelman “Cytoguard” laminar air flow cabinet (CG Series). All 

chemotherapeutic drugs used by this researcher were stored and disposed of as 

described in Table 2.3.1.

Table 2.3.1 Chemotherapeutic drugs used in study

Cytotoxic drug Supplier Inactivation Storage

Vinblastine David Bull 

Laboratories Ltd.

Autoclave Store at 4°C

Vincristine David Bull 

Laboratories Ltd.

Autoclave Store at 4°C

Adriamycin Farmitalia Hyperchlorite inactivation 

followed by autoclaving

Store at 4°C

VP16 Bristol-Meyers squib, Incineration Store at RT

(Etoposide) Pharm. Ltd.

Cisplatin David Bull 

Laboratories Ltd.

Incineration Store at RT

Taxol Bristol-Meyers squib, 

Pharm. Ltd.

Incineration Store at 4°C

1. Cells in the exponential phase of growth were harvested by trypsinisation as 

described in Section 2.2.3.

2. Cell suspensions containing lxlO4 cells/ml were prepared in cell culture medium. 

Volumes of 100 fxl of these cell suspensions were added in to 96 well plates (Costar, 

3599) using a multichannel pipette. The plates were divided so that each variable 

was set up with 8 repeats and 12 variables per plate. A control lane, one to which no 

drug would be added, was included on all plates. Plates were agitated gently in order
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to ensure even dispersion of cells over a given well. Cells were incubated overnight 

at 37°C in an atmosphere containing 5% CO2.

3. Cytotoxic drug dilutions were prepared at their final concentration in cell culture 

medium. The plates were emptied of media and 100 (0.1 volumes of the drug dilutions 

were added to each well using a multichannel pipette. Plates were mixed gently as 

above.

4. Cells were incubated for 6 days at 37°C and 5% CO2. At this point the control wells 

would have reached approximately 80% confluency.

5. Assessment of cell survival in the presence of drug was determined by acid 

phosphatase assay (Section 2.3.1.4). The concentration of drug which caused 50% 

cell kill (IC50 of the drug) was determined from a plot of the % survival (relative to 

the control cells) versus cytotoxic drug concentration.

2.3.1.2 Assessment of cell number - Acid Phosphatase assay

1. Following the incubation period of 6 days, media was removed from the plates.

2 Each well on the plate was washed with 100 fols PBS. This was removed and 100 

|ils of freshly prepared phosphatase substrate (lOmM p-nitrophenol phosphate 

(Sigma 104-0) in 0.1M sodium acetate (Sigma, S8625), 0.1% triton X-100 

(BDH, 30632), pH 5.5) was added to each well. The plates were wrapped in 

tinfoil and incubated in the dark at 37°C for 2 hours.

3 The enzymatic reaction was stopped by the addition of 50 fals of 1M NaOH to 

each well.

4 The plate was read in a dual beam plate reader at 405 nm with a reference 

wavelength of 620 nm.
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2.4 Analytical Techniques

2.4.1 Western Blot analysis

2.4.1.1 Sample preparation

Cells were grown in flasks until they reached 80-90% confluency. They were then 

trypsinised and centrifuged at 1,000 rpm. for 5 min. The pellet was washed in PBS and re­

pelleted twice. The tube was inverted and drained of supernatant. Further treatment of the 

cell pellet depended on the type of extract required; lysed or sonicated.

2.4.1.1.1 Lysis of cell pellet

lml of lysis buffer (PBS, 1% NP-40 (Sigma; N-3516), IX protease inhibitors and 

0.2mg/ml PMSF (Sigma, P7626)) was added to the pellet and left on ice for 20 min. A 

100X stock solution of protease inhibitors consisted of 400mM DTT (Sigma, D5545), 

lmg/ml aprotonin (Sigma, A1153), lmg/ml leupeptin (Sigma, L2884), lmg/ml soybean 

trypsin inhibitor (Sigma, T9003), lmg/ml pepstatin A (Sigma, P6425) and lmg/ml 

benzamidine (Sigma, B6506). If cell lysis had not occurred after 20 min the cells were 

subjected to sonication. Whole cell extracts were aliquoted and stored at -80°C.

2.4.1.1.2 Sonication of cell pellet

One protease inhibitor tablet from Complete™ Protease Inhibitor (Boehringer Mannheim, 

1 697 498) was added to 2 mis UHP. This was then diluted 1/25 and 200 jals of this 

diluted solution was added to the pellet. The mix was sonicated in a Labsonic U (Braun) 

2-3 times at a repeating duty cycle of 0.5 s, while checking under a microscope to make 

sure all the cells had been lysed. Before loading on to an SDS-PAGE gel, 2 fils of the 

sonicated sample was removed and diluted to 10 fils with UHP for protein quantification. 

Sonicated cell extracts were either used immediately in Western analysis or were stored at 

-80°C.

2.4.1.2 Quantification of Protein
Protein levels were determined using the Bio-Rad protein assay kit (Bio-Rad; 500-0006) 

with a series of bovine serum albumin (BSA) (Sigma, A9543) solutions as standards. A 

stock solution of 25 mg/ml BSA was used to make a standard curve. 10 jil samples were
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diluted into eppendorfs in a stepwise fashion from 0 - 2  mg/ml BSA. The Biorad reagent 

was first filtered through 3MM filter paper (Schleicher and Schuell, 311647) and then 

diluted 1/5 with UHP as it was supplied as a 5-fold concentrate. The diluted dye reagent 

(490 (¿Is) was added to each standard and sample eppendorf and the mixtures vortexed. 

The 500 |il samples were diluted out in 100 |J,1 aliquots onto a 96-well plate (Costar, 

3599). After a period of 5 min to lh, the OD570 was measured, against a reagent blank. 

From the plot of the OD570 of BSA standards versus their concentrations, the 

concentration of protein in the test samples was determined. From this, a relative volume 

for each protein sample was determined for loading onto the gels. Usually 10-20 f-ig 

protein per lane was loaded.

2.4.1.3 Gel electrophoresis

Proteins for Western blot analysis were separated by SDS-polyacylamide gel 

electrophoresis (SDS-PAGE). Resolving and stacking gels were prepared as outlined in 

Table 2.4.1 and poured into clean 10cm x 8cm gel cassettes which consisted of 1 glass 

and 1 aluminium plate, separated by 0.75cm plastic spacers. The plates were cleaned by 

first rinsing in RBS, followed by tap water and finally UHP. After drying, the plates 

were wiped down in one direction using tissue paper soaked in 70% Industrial 

Methylated Spirits (IMS). The spacers and comb used were also cleaned in this way. 

After these had dried, the resolving gel was poured first and allowed to set for 1 hour at 

room temperature. The stacking gel was then poured and a comb was placed into the 

stacking gel in order to create wells for sample loading. Once set, the gels could be used 

immediately or wrapped in aluminium foil and stored at 4°C for 24 hours.

IX running buffer (14.4g Glycine, 3.03g Tris and lg  SDS in 1L) was added to the 

running apparatus before samples were loaded. The samples were loaded onto the 

stacking gels, in equal amounts relative to the protein concentration of the sample. The 

loading buffer (Sigma, S-3401) was added directly at Vi volume to each of the test 

samples. The samples were loaded including 7|il of molecular weight colour protein 

markers (New England Biolabs, P7708S). The gels were run at 200V, 45mA for 

approximately 1.5 hours. When the bromophenol blue dye front was seen to have 

reached the end of the gels, electrophoresis was stopped.
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Table 2.4.1 Preparation of electrophoresis gels

Components Resolving gel 

(7.5%)

Resolving gel 

(12%)

Stacking gel

"4* I
Acrylamide stock 3.8 mis 5.25 mis 0.8 mis

Ultrapure water 8.0 mis 6.45 mis 3.6 mis

1.875M-Tris/HCl, pH 8.8 3.0 mis 3.0 mis -

1.25M-Tris/HCl, pH 6.8 - - 0.5 mis

10% SDS (Sigma, L-4509) 150 |ils 150 (4.1s 50 jj.1s

10% Ammonium persulphate 60 jils 60 fils 17 (ils

(Sigma, A-1433)

TEMED 10 fils 10 uls 6 (ils

(Sigma, T-8133)

2.4.1.4 Western blotting

Following electrophoresis, the acrylamide gels were equilibrated in transfer buffer 

(25mM Tris, 192mM glycine (Sigma, G-7126) pH 8.3-8.5 without adjusting) for 10 

min. Protein in gels were transferred onto PVDF membranes (Boehringer Mannheim, 

1722026) by semi-dry electroblotting. Eight sheets of Whatman 3mm filter paper 

(Whatman, 1001824) were soaked in transfer buffer and placed on the cathode plate of a 

semi-dry blotting apparatus (Biorad). Excess air was removed from between the filters 

by rolling a universal over the filter paper. A piece of PVDF membrane, cut to the same 

size of the gel, was prepared for transfer (soaked for 30 secs, in methanol, 2 mins. in 

UHP and finally 5 mins. in transfer buffer) and placed over the filter paper, making sure 

there were no air bubbles. The acrylamide gel was placed over the PVDF membrane 

and eight more sheets of presoaked filter paper were placed on top of the gel. Excess air 

was again removed by rolling the universal over the filter paper. The proteins were

1 Acrylamide stock solution consists o f 29.lg  acrylamide (Sigma, A8887) and 0.9g NN’-methylene bis- 

acrylamide (Sigma, 7256) dissolved in 60ml UHP water and made up to 100ml final volume. The solution 

was stored in the dark at 4°C for up to 1 month. All components were purchased from Sigma, SDS (L-4509), 

NHt-persulphate (A-1433) and TEMED, N,N,N,N’-tetramethylethylenediamine (T-8133).
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transferred from the gel to the nitrocellulose at a current o f 34mA at 15V for 24-25 

mins.

All incubation steps from now on, including the blocking step, were carried out on a 

revolving apparatus (Stovall, Bellydancer) to ensure even exposure of the blot to all 

reagents. The PVDF membranes were blocked for 2 hours at room temperature with 

fresh filtered 5% non-fat dried milk (Cadburys, Marvel skimmed milk) in Tris-buffered 

saline (TBS) with 0.5% Tween (Sigma, P-1379) pH 7.5. After blocking, the membranes 

were rinsed once in IX TBS and incubated with 5 to 10 mis primary antibody. The 

specific conditions for each antibody are outlined in table 2.4.2 below. Bound antibody 

was detected using enhanced chemiluminescence (ECL).

Table 2.4.2 List of primary antibodies used for western blot analysis

Antibody Dilution/

concentration

Supplier Catalogue

no.

elF 4E (M) 1 1/500 Transduction laboratories 610270

GAPDH (M) 1 1/ 10,000 Abeam ab 9482

HA tag (M)1 1/1000 Roche 1583816

a-tubulin (M) 1 1/1000 Sigma T 5168

THBS1 (M) 1 1/500 Abeam ab l823-250

TFPI (G)3 1/1000 Abeam ab 9881-100

EGR1 (R)3 1/100 Santa Cruz sc-110

RPS6KA3 (R)3 1/150 Abeam ab l8907-100

(M) 1 = Mouse anti-human IgG 

(R)2 = Rabbit anti-human IgG
•5

(G) = goat anti-human IgG
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Table 2.4.3 List of secondary antibodies used for western blot analysis

Antibody Dilution/

concentration

Supplier Catalogue

no.

Mouse 1/1000 Dako Cytomation P0260

Rabbit 1/1000 Dako Cytomation P0448

Goat 1/1000 Dako Cytomation E0466

2.4.1.5 Enhanced chemiluminescence detection

Protein bands were developed using the Enhanced Chemiluminescence Kit (ECL) 

(Amersham, RPN2109) according to the manufacturer’s instructions.

The blot was removed to a darkroom for all subsequent manipulations. A sheet of 

parafilm was flattened over a smooth surface, e.g. a glass plate, making sure all air 

bubbles were removed. The membrane was placed on the parafilm, and excess fluid 

removed. 1.5mls of ECL detection reagent 1 and 1.5mls of reagent 2 were mixed and 

covered over the membrane. Charges on the parafilm ensured the fluid stayed on the 

membrane. The reagent was removed after one minute and the membrane wrapped in 

cling film. The membrane was exposed to autoradiographic film (Boehringer 

Mannheim, 1666916) in an autoradiographic cassette for various times, depending on 

the signal (30s -  15 mins.). The autoradiographic film was then developed.

The exposed film was developed for 5min in developer (Kodak, LX24, diluted 1:6.5 in 

water). The film was briefly immersed in water and fixed (Kodak, FX-40, diluted 1:5 

in water), for 5min. The film was transferred to water for 5 min and then air-dried.

2.4.1 Immunocytochemistry

2.4.2.1 Fixation of cells

For fixation, medium was removed from 6-wells plates, cells were rinsed 3 times with 

PBS A and then incubated at -20°C for 7 minutes using ice-cold methanol. The 

methanol was then removed from the cells, which were allowed to dry at 37°C for a few 

minutes and then stored at -20°C until required.
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2.4.2.1 Immunocytochemical procedure

The avidin-biotin-peroxidase complex (ABC) immunoperoxidase technique combined 

with the diaminobenzidine (DAB) visualisation procedure was employed to indicate 

primary antibody binding. The ABC method involves application of a biotin-labelled 

secondary antibody, followed by the addition of avidin-biotin-peroxidase complex 

which results in a high staining intensity due to the formation of an avidin-biotin lattice 

which contains several peroxidase molecules. The peroxidase enzyme reacts with DAB 

solution to give an insoluble, brown-colour precipitate. Therefore, observation of a 

brown precipitate following this procedure is indicative of primary antibody reactivity. 

Cell preparations (6-well tissue culture plates) which had been previously fixed in 

methanol and frozen at -20°C were allowed to thaw and equilibrate at room temperature. 

A grease pen (DAKO, S2002) was used to encircle cells in tissue culture plates to retain 

the various solutions involved. The cells were equilibrated in Tris-buffered saline (TBS) 

(0.05M Tris/HCl, 0.15M NaCl, pH 7.6) for 5 minutes. The slides were then incubated 

for 20 minutes at room temperature (RT) with either normal rabbit (DAKO, X092) or 

goat (DAKO, X0907) serum diluted 1:5 in TBS to block non-specific binding, 

depending upon the host source of the primary antibody in question. This was then 

removed and 25-30p,l of optimally diluted primary antibody (Table 2.8.1) was placed on 

the cells. The slides and tissue-culture plates were placed on a tray containing 

moistened tissue paper and incubated at 37°C for 2 hours or 4°C overnight. The 

primary antibodies used in the study are listed in Table 2.8.1. The slides were then 

rinsed in TBS/ 0.1% Tween (Sigma, P-1379) for 5min x3 times, and then incubated for 

30 min with a suitable biotinylated secondary antibody (rabbit anti-mouse 

immunoglobulins (DAKO, E354); goat anti-rabbit (DAKO, E0432) diluted 1:300 in 

TBS. The slides were rinsed as before and incubated with strepABComplex/Horse 

Radish Peroxidase (HRP) (DAKO, K377) for 30 min at RT, after which they were 

rinsed again in TBS/ 0.1% Tween for 5min x3 times. The cells were then incubated 

with a DAB solution (DAKO, S3000) for 10-15 min. The plates were then rinsed off 

with UHP water and counterstained with 2% methyl green solution, and samples 

mounted using a commercial mounting solution (DAKO, S3023).
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2.4.3 RNA Analysis

2.4.3.1 Preparation for RNA Analysis
Due to the labile nature of RNA and the high abundance of RNase enzymes in the 

environment a number of precautionary steps were followed when analysing RNA 

throughout the course of these studies.

• All solutions (which could be autoclaved) that came into contact with RNA were all 

prepared from sterile ultra-pure water and treated with 0.1% diethyl pyrocarbonate 

(DEPC) (Sigma, D5758) before autoclaving (autoclaving inactivates DEPC), with 

the exception of Tris-containing solutions (DEPC reacts with amines and so is 

inactivated by Tris). The Tris-containing solutions were made with DEPC-treated 

ultra-pure water.

• Disposable gloves were worn at all times to protect both the operator and the 

experiment (hands are an abundant source of RNase enzymes). This prevented the 

introduction of RNases and foreign RNA/DNA into the reactions. Gloves were 

changed frequently.

2.4.3.2 RNA Isolation

Total RNA was extracted from cultured cell lines and plasmid-transfected cell lines. The 

size of the flasks varied, but the method remained the same.

A standard method of extracting RNA from cells was as follows: cells were seeded into 

175cm2 flasks (Nulge Nunc, 156502) at a density of approximately 2x106 per flask and 

allowed to attach and form colonies for 48-72 hours at 37°C. The cells were trypsinised 

and the pellet was washed once with PBS. The cells were pelleted and lysed using 1ml 

of TRI REAGENT™ (Sigma, T-9424). The following procedure is that outlined in the 

protocol for TRI REAGENT™. The samples were allowed to stand for 5 mins. at room 

temperature to allow complete dissociation of nucleoprotein complexes. 0.2 mis of 

chloroform was added per ml of TRI REAGENT™ used and the sample was shaken 

vigorously for 15 sec and allowed to stand for 15 min at room temperature. The sample 

was centrifuged at 13000rpm for 15 mins. at 4°C in a microfuge. This step separated 

the mixture into 3 phases with the RNA contained in the colourless upper aqueous layer. 

The DNA and protein fractions resulting from the total RNA isolation were retained in

71



case they were required at some future date. The aqueous layer was transferred to a new 

Eppendorf and 0.5 mis o f 100% isopropanol was added per ml of TRI REAGENT™ 

originally used. The sample was mixed and allowed to stand at room temperature for 

10-15 min before being centrifuged again at 13000rpm for 10 min at 4°C. The RNA 

formed a precipitate at the bottom of the tube. The supernatant was removed and the 

pellet was washed with 1ml of 75% ethanol per ml o f TRI REAGENT™ used and 

centrifuged at 4°C for 5 min at 13000rpm. The supernatant was removed and the pellet 

was allowed to air-dry for 10-15 mins. 20-30 |xls of DEPC water was added to the RNA 

to resuspend the pellet.

2.4.3.3 RNA Quantitation

RNA was quantified spectrophotometrically at 260nm using the following formula:

OD260nm x Dilution factor x 40 = (J.g/ml RNA 

An A 260/A280 ratio of 1.8-2 is indicative of pure RNA, although RNA with ratios from 1.7 

-2 .1  were routinely observed and used in subsequent experiments. Partially solubilised 

RNA has a ratio of <1.6 (Ausubel et al., 1991). The yield of RNA from most lines of 

cultured cells is 100-200(j.g/ 90mm plate (Sambrook et al., 1989). In these studies 200 p.g 

RNA per 175cm flask was retrieved. RNA samples were diluted to 500 ng/ (al and stored 

at-80°C.

2.4.3.4 Micropipette Accuracy Tests

Accuracy and precision tests were carried out routinely on all micropipettes used in all 

steps of the RT-PCR reactions. The accuracy and precision of the pipettes was determined 

by standard methods involving repeatedly pipetting specific volumes of water and 

weighing them on an analytical balance. The specifications for these tests were supplied 

by Gilson.
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2.4.3.5 Re vers e-Tran scrip tion Polymerase Chain Reaction (RT-PCR) analysis of

isolated RNA

2.4.3.5.1 Reverse Transcription of isolated RNA

Reverse transcriptase (RT) reactions were set up on benches using micropipettes, which 

were specifically allocated to this work.

To form the cDNA, the following reagents were mixed in a 0.5ml eppendorf 

(Eppendorf, 0030 121 023), heated to 72°C for 5 min and then chilled on ice.

2\i\ of a 5x buffer (lOOmM-Tris/HCl, pH 9.0, 50mM-KCl, 1% Triton X-100) (Sigma, P- 

2317)

1.2|il 25mM-MgCl2 (Sigma, M-8787)

1^1 oligo (dT) primers (1 (xg/jj.1) 

l^il RNasin (40U/^1) (Sigma, R-2520)

0.4(41 dNTPs (lOmM of each dNTP) (Sigma, DNTP-100)

2(il total RNA (500ng/(4l)

7.4|J.l DEPC water

To this, 4jj.1 water and l(J.l Moloney murine leukaemia virus-reverse transcriptase 

(MMLV-RT) (40,00011/(4.1) (Sigma, M-1302) were added. The solutions were mixed 

and the RT reaction was carried out by incubating the Eppendorfs at 37°C for 1 hour. 

The MMLV-RT enzyme was inactivated by heating to 95°C for 3 mins. The cDNA 

was stored at -20°C until required for use in PCR reactions as outlined in Section 

2.4.3.5.2.

2.4.3.5.2 Polymerase Chain Reaction (PCR) amplification of cDNA

The cDNA formed in the above reaction was used for subsequent analysis by PCR 

A standardised polymerase chain reaction (PCR) procedure was followed in this study. 

Standard Eppendorf tubes were used, as for the RT reactions. All reagents had been 

aliquoted and were stored at -20°C and all reactions were carried out in a laminar flow 

cabinet.
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A typical PCR reaction contained the following:

9|4.1 UHP

5(41 5x buffer (lOOmM-Tris/HCl, pH 9.0, 50mM-KCl, 1% Triton X-100)

2(J.l 25mM-MgCl2

1(4.1 each of first and second strand target primers2 (250ng/ml)

1 (J.1 each of first and second strand endogenous control primer (250ng/ml) (|3-actin)

10(J.l cDNA

Taqr/dNTP mixture ljxl dNTPs (lOmM each of dATP, dCTP, dGTP and dTTP)

0.5(41 of 5U/(4l Taq DNA polymerase enzyme (Sigma, D-4545) 

18.5(41 UHP

The samples were mixed by pipetting two or three times. A typical reaction would be:

95°C for 3 min - 

Taq/dNTP mixture added here 

30 cycles: 95°C for 30 sec.

And finally,

X3°C for 30 sec. 

72°C for 30 sec.

72°C for 7 min.

dénaturation

dénaturation

annealing

extension

extension

Following amplification, the PCR products were stored at 4°C for analysis by gel 

electrophoresis

2.4.3.5.3 Real Time-PCR

RNA was isolated (Section 2.4.3.2) cell and cDNA synthesised as per Section 2.4.3.5.1. 

The Taqman® Real time PCR analysis was preformed using the Applied BioSystems 

Assays on Demand PCR Kits, using primer probe pairs as outlined in table 2.4.3. 

Experiments were preformed in triplicate, following per manufacturer’s instructions.

2 All oligonucleotide primers used throughout the course o f  this thesis were made to order on an “Applied 
BioSystems 394 DNA/RNA Synthesiser” by Oswel DNA service, Lab 5005, Medical and Biological 
Services building, University o f  Southampton, Boldrewood, Bassett Cresent East, Southampton, SO 16 7PX.
3 Temperature dependent on primer type
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Table 2.4.4: Applied BioSystems Assays on Demand primer probe pairs

Primer Pair Supplier Catalogue No.

TFPI Applied Biosystems HS01041344 ml

THBS1 Applied Biosystems HS00962914 ml

EGR1 Applied Biosystems HS00152928_ml

RPS6KA3 Applied Biosystems HS00177936_ml

GAPDH Applied Biosystems 4326317E-0309005

P-actin Applied Biosystems 4326315E-0508007

eIF4E Applied Biosystems Hs00913390_ml

2.4.3.6 Electrophoresis of PCR products

A 2% agarose gel (Sigma, A-9539) was prepared in IX  TBE (10.8g Tris base, 5.5g 

Boric acid, 4 mis 0.5M EDTA, 996mls UHP) and melted in a microwave oven. After 

allowing to cool, 4 (ils of a lOmg/ml ethidium bromide solution was added per lOOmls 

of gel which was then poured into an electrophoresis apparatus (BioRad). Combs were 

placed in the gel to form wells and the gel was allowed to set.

4(il of 6X loading buffer loading buffer (50% glycerol, 1 mg/ml bromophenol blue, 

ImM EDTA) was added to 20|J.l PCR of each sample and this was run on the gel at 80- 

90mV for approximately 2 hours. When the dye front was seen to have migrated the 

required distance, the gel was removed from the apparatus and examined on a 

transilluminator and photographed.

2.4.3.7 Densitometric analysis

Densitometric analysis was carried out using the MS Windows 3.1 compatible 

Molecular Analyst software/PC image analysis software available for use on the 670 

Imaging Densitometer (Bio-Rad. CA) Version 1.3. Developed negatives o f gels were 

scanned using transmission light and the image transferred to the computer. The amount 

of light blocked by the DNA band is in direct proportion to the intensity of the DNA 

present. A standard area was set and scanned and a value was taken for the Optical 

Density (O.D.) o f each individual pixel on the screen. The average value of this O.D.
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(within a set area, usually cm ) is normalised for background of an identical set area. 

The normalised reading is taken as the densitometric value used in analysis. As a result, 

these O.D. readings were unitless.

2.4.4 Plasmid DNA manipulation

pcDNA-eIF4E and its mutant pcDNA-eIF4E-S209 were kind gifts from Dr. Robert 

Schneider, New York University, USA (Cuestaet al, 2000). The pcDNA-eIF4E vectors 

code for a fusion protein between eIF4E and hemagglutin (HA epitope tag); this protein 

appears functionally equivalent to eIF4E (Pyronnet et al, 1999; Cuesta et al, 2000).

2.4.4.1 Transformation of Bacteria
100(0.1 of competent JM109 bacterial cell suspension (Promega, L2001) was mixed with 

20ng DNA and placed on ice for 40min after which the mixture was heat-shocked at 

42°C for 90sec and then placed on ice for 3min. 1ml of LB broth ((10g Tryptone 

(Oxoid, L42), 5g Yeast Extract (Oxoid, L21) 5g NaCl (Merck, K1880814))/litre LB, 

autoclaved before use) was added to the competent cell suspension and incubated at 

37°C for 40min. 400|il of this suspension was spread on a selecting agar plate (LB agar 

containing appropriate antibiotic conc.) and incubated overnight at 37°C. Single 

colonies, which grew on these selecting plates, were further streaked onto another 

selecting plate and allowed to grow overnight at 37°C.

2.4.4.2 Large scale plasmid preparation

A single colony was picked from a freshly streaked selective plate and used to inoculate 

a starter culture of 2-5ml LB medium containing 50|xg/ml ampicillin. The culture was 

incubated at 37°C with vigorous shaking (~300rpm) for ~8hours.A 2ml sample of this 

suspension was added to 200mls of TB AMP (50|ig/ml) and left to grow for 12-16 

hours with vigorous shaking. The bacterial cells were harvested by centrifugation at 

6000x g for 15 min at 4°C. Plasmid DNA was then extracted using the QIAGEN ® 

Endofree Plasmid Purification Kit (Qiagen, 12362). DNA concentration was determined 

by measuring the OD260nm-
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2.4A.3 Restriction enzyme digestion of plasmid DNA

5 (ils of each isolated plasmid sample was run out on a 2% agarose gel to check for 

degradation. Restriction digestion was then carried out to confirm orientation of the 

insert. All digestions were carried out using the recipe as outlined in Table 2.4.3.

Table 2.4.3 Standard DNA digestion mix

Component Volume ((ils)

DNA sample 10

undiluted enzyme 1

10X Multi-core reaction buffer (Promega, R9991) 1.5

UHP 2.5

All 15 (4.1s were run out on a 1% agarose gel, together with 3 |4ls loading dye. From the 

banding patterns observed, the orientation of the insert was correctly discerned. From 

this information, samples were selected for large-scale plasmid preparation.

2.4.5 Transfection of mammalian cells with exogenous DNA

2.4.5.1 Optimisation of plasmid transfection protocol

Before full transfections involving the various DNA fragments into the different cell 

lines could proceed, transfection protocols were first optimised for each of the 

parameters involved. The DNA used was the pCHllO plasmid which codes for beta- 

galactosidase activity.

The target cell line was trypsinised in the usual fashion (Section 2.2.3) and set up in the 

container of interest (i.e. 24/6-well plate, 25-75 cm2 flask) at several different cell 

concentrations, which were arbitrarily chosen. Following incubation overnight at 37°C, 

the cells were transfected according to the transfection protocol for the transfectant 

used. Only the volumes of transfectant and conc. of DNA were altered to ascertain the 

most efficient combination. Cells were transfected either in the presence of serum 

overnight or for four hours in the absence of serum, both at 37°C. After transfection, the 

cells were washed 2X with PBS and fixed by the addition of fix solution (0.4mls 25% 

glutaraldehyde (Sigma, G-7526), lOmls 0.5M Sodium Phosphate buffer (pH 7.3), 

2.5mls 0.1 EGTA (pH 8.0)(Sigma, E-0396), O.lmls 1.0M MgCl2 (Sigma, M-8266),
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37mls UHP) for 10 mins. The cells were then washed for 10 mins. in wash solution 

(40mls 0.5M Phosphate buffer (pH 7.3), lOmls 1.0M MgCh (Sigma, M-8266), 20mg 

Sodium deoxycholate (Sigma, D-4297), 40p.ls Nonidet P-40 (Sigma 1-3021), 160mls 

UHP). Staining was carried out on the cells using 2.5mls of stain solution (lOmls rinse 

solution, 0.4mls X-gal (Sigma, B-4252) (25mg/ml in dimethylformamide), 16.5mg 

potassium ferricyanide (Sigma, P-8131), 16.5mg potassium ferrocyanide (Sigma, P- 

9387)) overnight at 37°C. After staining, the cells were washed with lOmls rinse 

solution and examined microscopically. Positive cells were those stained blue - the 

combination resulting in the most blue colonies was adjudged to be the most efficient 

association and was thereafter used for that cell line.

2.4.5.2 Transfection of DNA using FuGene® reagents

On the day prior to transfections, the cells to be transfected were plated from a single 

cell suspension (Section 2.2.3) and seeded into 25cm2 flasks at 3x105 cells per flask. On 

the day of the transfection, the plasmids to be transfected were prepared along with the 

FuGene transfection reagents according to the manufacturers protocols (Roche, 

11814443001 (1814443).

2.4.5.3 Estimation of transfection effect
For transient transfections 6 flasks were transfected and taken down in sets of two (for 

RNA and protein samples) at 24, 48 and 72 hours. To establish stable clones, single 

colonies of stably transfected cells were selected and isolated. Transfected cells were 

treated with Antibiotic G418 Disulfate salt (geneticin) (Sigma, G5018) 24 hours after 

transfection. G418 was added in increasing concentrations to transfected and 

untransfected cells until such a time that all o f the untransfected cells died. The plasmids 

used had a geneticin-resistant gene, therefore, only those cells containing the plasmid will 

survive treatment with geneticin. In complete media, when the cells grew readily in this 

concentration of selecting agent, the concentration was increased step-wise to a final 

concentration of 800fxg/ml. At this stage the cells were plated out in 96-well plates 

(Costar, 3596) at a clonal density of one cell/well. Clonal populations were propagated 

from these wells, as transfected cells were periodically challenged with geneticin to 

maintain stability of transfectants and prevent cross-contamination with non-transfected 

cells.
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2.4.5 Invasion assay

2.4.6.1 Preparation of invasion chambers

Invasion assays were carried out using BD BioCoat™ Growth Factor Reduced 

MATRIGEL™ Invasion Chambers (BD Biosciences, 354483). Inserts were rehydrated 

as specified by manufacturers protocol. Cell suspensions were prepared in culture media 

containing 5% FCS at a concentration of 1 X 106 cells /ml. 500jj,1 of Media containing 

the same concentration of FCS was added to the well of the BD Falcon™ TC 

Companion Plate. 100^1 of cell suspension was then added into the insert. The invasion 

assays were then incubated for 48 hours at 37°C, 5% CO2 atmosphere. For SKBR3 cell 

suspensions were prepared in culture media without serum, and 500ul of Media 

containing 10% FCS was added to the well of the BD Falcon™ TC Companion Plate. 

The invasion assays were then incubated for 72 hours at 37°C, 5% CO2 atmosphere.

4.4.6.2 Measurement of cell invasion

2.4.6.2.1 Removal of non-invading cells

After incubation, the non-invading cells were removed from the upper surface of the 

membrane. The inner side of the insert was wiped with a wet swab (PBS soaked not 

UHP) while the outer side of the insert was stained with 0.25% crystal violet for 10 

minutes and then rinsed in UHP and allowed to dry. Inserts were then viewed under the 

microscope.

2.4.6.2.2 Counting of invading cells

Cell counting was facilitated by photographing the membrane using an inverted 

microscope. The cells were observed at 200X magnification. Cells in the central fields 

of duplicate membranes were counted and an average count calculated from 10 counts 

per chamber. Data was expressed as the percentage invasion through the GFR 

Matrigel™ Matrix and membrane relative to the migration through the control 

membrane.
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2.4.6 Extracellular Matrix Adherence Assays

2.4.7.1 Reconstitution of ECM Proteins
Adhesion assays were performed using the method of Torimura et al. (1999). Collagen 

type IV (Sigma C-5533), fibronectin (Sigma F-2006) and laminin (Sigma L-2020) were 

reconstituted in PBS to a stack concentration of 500 Dg/ml. Stocks were aliquoted into 

sterile eppendorfs. Fibronectin and collagen stocks were stored at -20°C, while laminin 

stocks were stored at -80°C. Matrigel (Sigma E-1270) was aliquoted and stored at -20°C 

until use. Matrigel undergoes thermally activated polymerisation when brought to 20- 

40°C to form a reconstituted basement membrane.

2.4.7.2 Reconstitution of ECM Proteins
Collagen type IV (Sigma C-5533), fibronectin (Sigma F-2006) and laminin (Sigma L- 

2020) were reconstituted in PBS to a stack concentration of 5OO|0,g/ml. Stocks were 

aliquoted into sterile eppendorfs. Fibronectin and collagen stocks were stored at -20°C, 

while laminin stocks were stored at -80°C. Matrigel (Sigma E-1270) was aliquoted and 

stored at -20°C until use. Matrigel undergoes thermally activated polymerisation when 

brought to 20-40°C to form a reconstituted basement membrane.

2.4.7.3 Coating of Plates
Each of the ECM proteins, collagen, fibronectin and laminin, was diluted to 2 5 jig/ml 

while matrigel was diluted to lmg/ml with PBS. 250(0,1 aliquots were placed into wells 

of a 24-well plate. The plates were gently tapped to ensure that the base of each well 

was completely covered with solution. The plates were then incubated overnight at 

4°C. The ECM solutions were then removed from the wells and the wells rinsed twice 

with sterile PBS. 0.5ml of a sterile 0.1% BSA/PBS solution was dispensed into each 

well to reduce non-specific binding. The plates were incubated at 37°C for 20 minutes 

and then rinsed twice again with PBS.

2.4.7.4 Adhesion Assay
'y

Cells were set up in 75 cm flasks and then harvested and resuspended in appropriate 

serum-free medium. The cells were then plated at a concentration of 2.5 x 104 cells per 

well in triplicate and incubated at 37°C for 60 minutes. Control wells were those which
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had been coated but contained no cells. After 60 minutes, the medium was removed 

from the wells and rinsed gently with PBS. This was then removed and 200(0.1 of freshly 

prepared phosphatase substrate (lOmMp-nitrophenol phosphate (Sigma 104-0) in 0.1M 

sodium acetate (Sigma, S8625), 0.1% triton X-100 (BDH, 30632), pH 5.5) was added to 

each well. The plates were then incubated in the dark at 37°C for 2 hours. The 

enzymatic reaction was stopped by the addition of 100^1 of IN NaOH. lOOjxl aliquots 

were transferred to a 96-well plate and read in a dual beam plate reader at 405nm with a 

reference wavelength of 620nm.

2.4.8 Anoikis assay

Cells were subcultured as described in 2.2.3 and placed in 20ml of appropriate media at 

a concentration of 3 X 104 cells/ml. Cells were incubated in 50ml sterile test-tubes 

(Greiner bio-one, 210261) for 24 hours at 37°C and shaking. Cells were then counted as 

described in 2.2.5. The level of anoikis was assessed as the percentage cell death over 

24 hours.

2.4.9 Soft agar assay

The agar for these assays was prepared as follows:

1.548g of agar (Bacto Difco, 214040) were dissolved in 100ml of ultra pure water and 

autoclaved. This agar was then melted in a microwave oven immediately prior to use 

and incubated at 44°C.

Table 2.4.9.1: Agar Medium (AgM)

Components Volume

2X media* 50ml

Pen/Strep 1ml

Foetal calf serum 10ml

*see table 2.2.1

The thermo-labile component Serum was added last to the AgM. 50ml of Agar was then 

added to the AgM, mixed well and quickly dispensed onto 35mm sterile Petri dishes 

(Lux Scientific Corp., 5217). The plates were allowed to set at room temperature and
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the remaining AgM was returned to the water bath with the temperature reduced to 

41°C.

Cells being assayed were harvested and resuspended in medium without serum, 

ensuring that a single cell suspension was obtained. The cells were diluted to give a 

concentration of 2 x 104 cells per ml in a total of 5ml. 5ml of agar was then added to 

each suspension, mixed well and 1.5ml was dispensed onto each pre-set agar plate. This 

was done in triplicate, giving a final concentration of 1.5 x 104 cells per plate. The 

plates were placed on trays containing a small volume of water to prevent the agar from 

drying out and incubated at 37°C, 5% CO2 for 10 days.

After this time the colonies were counted using an inverted microscope at 40x. 10 areas 

were viewed per plate and the total number of colonies present was extrapolated from 

this. The percentage colony forming efficiency (CFE) was determined by expressing the 

number of colonies formed as a percentage of the number of cells plated.
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2.5 Affymetrix GeneChips®
The microarray gene expression experiments which were performed in this body of 

work were performed using Affymetrix® GeneChips® Whole genone (Affymetrix, 

900467). Affymetrix GeneChip probe microarrays are manufactured using technology 

that combines photolithography and combinatorial chemistry. Tens to hundreds to 

thousands of different oligonucleotide probes are synthesised and each of these 

oligonucleotides is located in a specific area on the microarray slide, called a probe cell. 

Each probe cell contains millions of copies of a given oligonucleotide and each feature 

size on the Affymetrix U133 plus 2.0 is 11 microns. The new U133 Plus 2 GeneChips 

are now comprised of the old Affymetrix U133A and U133B GeneChips on a single 

slide. The reduction in feature size to 11 microns has resulted in an increase in feature 

definition, with improved sharpness and signal uniformity.

The most important aspect in efficient probe design is the quality of the sequence 

information used. Probe selection and array design are two major factors in reliability, 

sensitivity, specificity and versatility of expression probe arrays. Probes selected for 

gene expression arrays by Affymetrix are generated from sequence and annotation data 

obtained from multiple databases such as GenBank, RefSeq and dbEST. Sequences 

from these databases are collected and clustered into groups of similar sequences. 

Using clusters provided by UniGene database as a starting point, sequences are further 

subdivided into subclusters representing distinct transcripts.

This categorisation process involves alignment to the human genome, which reveals 

splicing and polyadenylation variants. The alignment also extends the annotation 

information supplied by the databases pinpointing low quality sequences. These areas 

are usually trimmed for subsequent generation of high quality consensus sequences or 

alternatively Affymetrix employ quality ranking to select representative sequences, 

called exemplars, for probe design.

In general, Affymetrix use 11 to 16 probes which are 25 bases in length for each 

transcript. The probe selection method used by Affymetrix for their U133 GeneChips 

takes into account probe uniqueness and the hybridisation characteristics of the probes 

which allow probes to be selected based on probe behaviour. Affymetrix use a multiple 

linear regression (MLR) model in the probe design that was derived from 

thermodynamic model o f nucleic acid duplex formation. This model predicts probe 

binding affinity and linearity of signal changes in response to varying target
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concentrations. An advantage of this type of model-based probe selection system is that 

it provides a physical and mathematical foundation for systematic and large-scale probe 

selection. Also, an essential criterion of probe selection by Affymetrix for quantitative 

expression analysis is that hybridisation intensities of the selected probes must be 

linearly related to target concentrations.

A core element of Affymetrix microarray design is the Perfect/Mismatch probe strategy. 

For each probe that is designed to be perfectly complimentary to a given target 

sequence, a partner probe is also generated that is identical except for a single base 

mismatch in its center. These probe pairs, called the Perfect Match probe (PM) and the 

Mismatch probes (MM), allow the quantitation and subtraction of signals caused by 

non-specific cross-hybridisation. The differences in hybridisation signals between the 

partners, as well as their intensity ratios, serve as indicators of specific target 

abundance.

Table 2.5.1: Equipment required for Microarray experiment

ITEM Catalogue no. SUPPLIER

20X SSPE (CAMBREX) US51214 CAMBREX
Anti-Strep Biotinylated Ab (Goat) BA-0500 LABKEM
Wheaton 1L Sterile Bottles (Paul SHAW
Hennessy) 219980 SCIENTIFIC
Herring Sperm DNA D1816 MSC
10% Tween 20 28320 MSC
BSA 15561-020 BIOSCIENCES
R-Phycoerythro Streptavidin 
GeneChip Human Genome U133

S-866 BIOSCIENCES

Plus 2.0 Array 900470 AFFYMETRIX
Test3 Array 900341 AFFYMETRIX
One-Cycle Target Labelling Kit 900493 AFFYMETRIX
Two-Cycle Target Labelling Kit 900494 AFFYMETRIX
0.5M EDTA E7889 SIGMA
MES Free Acid Monohydrate M5287 SIGMA
MES Sodium Salt M3058 SIGMA
DMSO D5879 SIGMA
Goat IgG 15256 SIGMA
Sodium Hypochlorite 42,504-4 SIGMA
20X SSPE (SIGMA) 85637 SIGMA
5M NaCl 9759 AMBION
1.5ml Eppys 12400 AMBION
0.5ml Eppys 12300 AMBION
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Rnase Zap 9780 AMBION
RNA ladder 7152 AMBION
0.5M EDTA 9260G AMBION
Rnase-free UHP 9932 AMBION

1334 (or
5X Megascript T7 kit B1334-5) AMBION
Rneasy Mini Kit 74106 QIAGEN
QIA Shredder 79656 QIAGEN

0030-120-
Eppendorf Eppy 191 UNITECH
RNA 6000 Nano Labchip Kit 5065-4476 Carl Stuart Ltd.

2.5.1 Preparation of total RNA from cells using Rneasy Mini Prep Kit® 

(QIAGEN, 74104)

2 - 5 X 106 cells were harvested by centrifugation and washed with 1 X PBS to remove 

media. Cells were then lysed in 350^1 buffer RLT (as supplied with kit) and 

homogenised by spinning in Qiashredder for 2 min at room temperature. 350|xl o f 70% 

ethanol was added and the cell lysate was applied to the RNeasy column. The column 

was spun three times at 8000 x g, washed with buffer RW1 and RPE (as supplied with 

kit). Finally the column was spun for 1 min at maximum speed to dry the pellet. RNA 

was eluted from the column with a total of 80|xl of water. The concentration of RNA 

was calculated using the Nanodrop (see 2.5.2). Samples were read at ODa26o- 1 M-l of 1:5 

dilution of the RNA was then run on Agilent Bioanalyser (see 2.5.4).

2.5.2 Using the Nanodrop to measure nucleic acids

Before applying the RNA sample the pedestal was wiped down using a lint-free tissue 

dampened with UHP. 1 (J.1 of UHP was then loaded onto the lower measurement 

pedestal. The upper sample arm was then brought down so as to be in contact with the 

solution. “Nucleic acid” was selected on the Nanodrop software to read the samples. 

After the equipment was initialised the “blank” option was chosen, and after a straight 

line appeared on the screen the “measure” option was selected. All sample readings 

were automatically saved as tab delimited files which could be viewed using Microsoft 

excel. The upper and lower pedestals were cleaned with a clean dry wipe between 

samples. When finished, the pedestal was cleaned with a wipe dampened with UHP 

followed by drying with a dry wipe.
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2.5.3 RNA 6000 Nano Assay.

2.5.3.1 Preparing the Gel

550 |xl of RNA 6000 Nano gel matrix was added to a spin filter tube and centrifuged at 

1500 g for 10 minutes. The filtered gel was then aliquoted in 65 |il amounts.

2.5.3.2 Sample Preparation

During the 10 minute spin, 2|xl aliquots of the RNA samples and an RNA ladder were 

prepared in 0.5 fil RNAse free tubes, heated to 70 °C for 2 minutes and then cooled on

2.5.3.3 Preparing the Gel Dye Mix

The dye concentrate was allowed to equilibrate to room temperature for 30 minutes 

before vortexing for 10 seconds. 1 JJ.1 of dye was then added to 65 (0,1 o f the filtered gel 

matrix. The solution was well vortexed and then spun in a centrifuge for 10 minutes at 

13000 g.

2.5.3.4 Loading the Gel Dye Mix

A new chip was placed on the chip priming station and 9 fil of the gel dye mix was put 

in to the well marked with a bold G. The priming station was then closed and the 

plunger was pressed down until it was held in place by the clip. Exactly 30 seconds later 

the plunger was released. 9 (j,l of gel dye mix was put in to the remaining wells marked

2.5.3.5 Loading RNA 6000 Nano Marker

5 |a1 of RNA 6000 Nano Marker was put in to the well marked with the ladder and into 

all the 12 sample wells. Any unused wells had 6 (J.1 o f Nano Marker added.

2.5.3.6 Loading the sample and ladder

1 |ol o f sample was put in to each of the sample wells, and 1 |il of ladder was put in the 

well marked with the ladder. The chip was then placed in the special vortex adapter and 

vortexed at 2400 rpm for 1 minute. The chip was run on the Agilent Bioanalyzer within

5 minutes.
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2.5.4 Running the Agilent 2100 bioanalyser

The Agilent 2100 Bioanalyser is a microfluidics-based platform for the analysis of 

proteins, DNA and RNA. The miniature chips are made from glass and contain a 

network of interconnected channels and reservoirs. The RNA 6000 Nano LabChip kit 

enables analysis of samples containing as little as 5ng of total RNA. The channels are 

firstly filled with a gel matrix and the sample wells with buffer or sample, there are 12 

sample wells per chip. 1 (il of each sample is loaded into a sample well along with a 

fluorescent dye (marker). An RNA ladder is loaded into another sample well for size 

comparison. When all the samples are loaded, the chip is briefly vortexed and loaded 

onto the bioanalyser machine (Figure. 2.5.1) for picture of chip). The machine is fully 

automated and electrophoretically separates the samples by injecting the individual 

samples contained in the sample wells into a separation chamber (Figure 2.5.2).

Figure 2.5.1 The RNA 6000 Nano chip

Figure 2.5.1 The RNA 6000 Nano chip, a picture of the front of the RNA Nano chip (A) 

and a diagram of the microchannels in the chip (B), the sample moves through 

microchannels (1) and is injected into separation chamber (2) were components are 

electrophoretically separated (3) and detected by their fluorescence and translated into 

gel-like images and electropherograms. Both pictures available from 

http://www.atiilent.com/chem/labonachip..

The resulting data is presented as an electropherogram (Figure 2.5.2). The fluorescensce 

is measured on the Y-axis and the time in seconds is measured on the X-axis. The 

smaller fragments are detected first and are shown on the left-hand side of the 

electrophoreogram. Figure 2.5.2 (a) is an example of good quality cell RNA, the 18S
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and 28S ribosomal RNA peaks are quite sharp and the 28S is higher than the 18S peak. 

As RNA degrades, the 28S RNA peak decreases and smaller fragments are visible. An 

example of slightly degraded cell RNA is shown in Fig. 2.5.2 (b). The 28S peak is 

smaller than the 18S peak and an extra peak is visible at approximately 25 seconds. This 

peak represents the fragmented RNA.

Figure 2.5.2 Examples of electrophoreograms generated using the Agilent

(A) (B)

Figure 2.5.2: Examples o f electrophoreograms generated using the Agilent Bioanalyser, 

(a) intact DLKP cell RNA as evident by the sharp 18S and 28S ribosomal bands, (b) 

slightly degraded BT474 cell RNA as evident by the extra peak at approximately 20secs 

indicating the presence of smaller fragments of RNA.
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2.5.5 cDNA synthesis from Total RNA

After RNA isolation, quantification and purification using the Qiagen Rneasy® 

isolation method (Section 2.5.1), cDNA was synthesised using the GeneChip® One- 

Cycle cDNA Synthesis Kit from lOjig total RNA.

Table 2.5.5.1 cDNA reaction for total RNA (lOpg)

First strand synthesis: volumeiuD

RNA + Rnase free water 7

Diluted poly-A RNA controls 2

T7/T24 Primer (50pMol/jil) 2

70°C for 10 min.

Cooled to 42°C.

5 X 1st strand buffer. 4

0.1MDTT. 2

lOmM dNTP’s 1

42°C for 2 min.

Superscript II 2

42°C - 1 hr spin/ice

Second strand synthesis:

(< 90 min on ice)

water 91

5 X 2nd strand buffer 30

lOmM dNTP’s 3

E.coli DNA Ligase 1

RNaseH 1

E.coli DNA polymerase I 4

130|il of second strand master mix was added to each of the first strand

synthesis samples.

16°C for 2 hr (thermocycler)

2^1 T4 DNA polymerase added

16°C for 5 min.

10p,l 0.5M EDTA added to stop reaction

Spin/ice
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2.5.6 Sample cleanup module (SCM) cDNA cleanup

Sample cleanup was carried out using GeneChip Sample Cleanup module (Affymetrix, 

900371).600|ri of cDNA binding buffer was aliquoted in to a 1.5ml eppendorf. The 

cDNA was added and mixed thoroughly. 500|ol was then transferred to a cDNA cleanup 

spin column and spun for 1 min at 8000 x g. The flow through was discarded and the 

remaining 262jxl was added and spun for 1 min at 8000 x g. The column was transferred 

to a new 2ml tube and 750(0,1 of cDNA wash buffer was added. Again, the column was 

spun for 1 min at 8000 x g and the flow through was discarded. The membrane was 

dried by spinning for 5 min at the maximum speed. The column was placed in a new 

1.5ml eppendorf and 14)0,1 of cDNA elution buffer was added directly to the membrane. 

This was incubated for 1 min at room temperature and spun for 1 min at maximum 

speed to elute.

2.5.7 cRNA synthesis from cDNA IVT Amplification 

Table 2.5.7.1 cRNA synthesis from cDNA IVT Amplification

Add together in a 1.5ml eppendorf Volume (|ol)

■ Template cDNA(total RNA 8.1 to 15|og) 6

■ Water 14

■ 1 OX IVT labelling buffer 4

■ IVT labelling NTP mix 12

■ IVT labelling enzyme mix 4

■ 3 7°C overnight (16 hours)

2.5.8 cRNA Cleanup
Sample cleanup was carried out using GeneChip Sample Cleanup module (Affymetrix, 

900371). For cleanup, all steps were preformed at room temperature. The following 

were added to cRNA (from 2.5.7):

Water - 60|ol (sample was vortexed for 3 seconds)

IVT cRNA Binding Buffer - 350(ol (sample was vortexed for 3 seconds)

Ethanol - 250(ol (Sample was mixed by pipetting)
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The sample was then put into a cRNA cleanup spin column and spun for 15 min at 8000 

x g. The flow through was discarded and the column transferred to a new 2ml 

tube.500(j,l of cRNA wash buffer was added and the column spun for 15 min at 8000 x 

g. The flow through was discarded, 500 .̂1 of 80% Ethanol was added to column and it 

was spun for 15 min at 8000 x g. The column was spun for 5 min at maximum speed to 

dry membrane. The column was transferred to a 1.5ml collection tube, 11 ,̂1 water was 

added directly to membrane, and it was spun for 1 min at maximum speed. This step 

was then repeated before the sample was run on the Agilent Bioanalyser and 

concentration determined using the nanodrop (Read at A260, 1:100 dilution; in 

duplicate).

2.5.9 Hybridisation of cRNA to chip

Fragmentation reaction (15|xg cRNA in 1.5ml eppendorf) Volume (jal)

■ cRNA and water 24

■ 5X Fragmentation buffer 6

Incubate 35 min at 95°C

Hybridisation reaction 

(Added as a cocktail - 270|xl each)

• Herring sperm DNA 3

• Acetylated BSA 3

•  2X Hybridization buffer 150

• Water 114

Prewet chips

•  Added 250(j,l IX hybridisation buffer

• Rotated 15 min at 45°C, 60 rpm.

•  Removed buffer 

Hybridise chips

• Preheated hybridisation solution - 5 min at 95°C

•  45°C (for >5min)

• Rotated overnight (16hours) at 45°C, 60 rpm.
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2.5.10 Fluidics on chip

The fluidics station was primed and the hybridisation solution was removed from chips. 

The chips were then filled with 200jxl non-stringent buffer.

Table 2.5.10.1 Preparation of SAPE solution

SAPE solution (stains 1 & 3) volume (jil)

2X diluent 600

50mg/ml Acetyl BSA 48

1 mg/ml SAPE 12

Water 540

Total/chip 1200

Table 2.5.10.2 Preparation of Antibody solution

Ab solution (stain 2) volume (fil)

2X diluent 300

50mg/ml BSA 24

lOmg/ml normal goat IgG 6

0.5mg/ml biotin-a-streptavidin IgG 3.6

Water 266.4

The SAPE and Ab solutions were added to the fluidics station and the fluidics protocol 

was run on the selected chips (EukGEvs450 for U133 Plus 2.0 chips). The Affymetrix 

Genechip Operating Software (GCOS) managed the fluidics protocol. All relevant data 

from the fluidics was stored in the Report file (*.RPT) for each chip.

2.5.11 Chip Scanning

The chips were placed in the scanner and scanned. As for the fluidics, GCOS managed 

the scanning protocol. The scan generated an initial image file (*.DAT) that contained 

the values for each gene probe. As there were 11 probes for each gene (one probeset), 

these values were averaged out into another file that was generated automatically by
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GCOS (*.CEL). The user then asked GCOS to generate another file from the .CEL file 

which contained numerical values for each probeset (*.CHP). Finally, a quality control 

report file (*.RPT) was generated which was used to check the reliability/QC of each 

sample.

2.5.12 Microarray Data Normalisation

After the scans from individual chips were generated, the individual pixels were 

qualified. Following this data for each gene is quantified and whole data is normalised. 

The purpose of data normalisation is to minimise the effects of experimental and 

technical variation between microarray experiments so that meaningful biological 

comparisons can be drawn from the data sets and that real biological changes can be 

identified among multiple microarray experiments. Several approaches have been 

demonstrated to be effective and beneficial. However, most biologists use data scaling 

as the method of choice despite the presence of other alternatives. In order to compare 

gene expression results from experiments performed using microarrays, it is necessary 

to normalise the data obtained following scanning the microarray chips. There are two 

main ways in which this type of normalisation is performed, the first of which is ‘Per- 

chip’ normalisation. This type of normalisation helps to reduce minor differences in 

probe preparation and hybridisation conditions which may potentially result in high 

intensity of certain probe sets. These adjustments in probe intensity are made to set the 

average fluorescence intensity to some standard value, so that all the intensities on a 

given microarray chip go up or down to a similar degree. However, this type of 

normalisation should only be performed on microarrays using similar cell or tissue 

types. One drawback from this of normalisation is that some aspects of the microarray 

data may potentially be obscured, such as whether the RNA samples or the probe 

preparation steps were equivalent for each sample.

The second way in which most biologist normalise their data sets is by employing ‘per 

gene’ normalisation method. The main aim of microarray experiments is to identify 

genes whose expression changes in different conditions, be that tracking gene changes 

across a temporal experiment or when comparing gene expression between normal and 

diseased tissue. Therefore, it is necessary to normalise microarray data sets using ‘per 

gene’ normalisation. In ‘Per gene’ normalisation is necessary to find genes that have 

similar expression pattern across an experiment. Analysis of raw data from microarray
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experiments is useful for identifying genes that are expressed at the same level, for 

example, genes that are highly abundant in the samples.

The data from each of the chips in this experiment were scaled to 100. This means that 

the trimmed mean of each chip was scaled to 100 so that direct comparisons between 

chips could be made.

2.5.13 Detection call

Affymetrix have a system that analyses the raw data and assigns a “presence” or 

“absence” call to each gene on the array. This analysis generates a Detection /»-value 

which is evaluated against user-definable cut-offs to determine the Detection call. This 

call indicates whether a transcript is reliably detected (Present) or not detected (Absent). 

Additionally, a Signal value is calculated which assigns a relative measure of abundance 

to the transcript. Percent Present (%P) values depend on multiple factors including 

cell/tissue type, biological or environmental stimuli, probe array type, and overall 

quality of RNA. Replicate samples should have similar %P values.

Each probe pair in a probe set is considered as having a potential vote in determining 

whether the measured transcript is detected (Present) or not detected (Absent). The vote 

is described by a value called the Discrimination score [R]. The score is calculated for 

each probe pair and is compared to a predefined threshold Tau. Probe pairs with scores 

higher than Tau vote for the presence of the transcript. Probe pairs with scores lower 

than Tau vote for the absence of the transcript. The voting result is summarized as a p- 

value. The greater the number of discrimination scores calculated for a given probe set 

that are above Tau, the smaller the /»-value and the more likely the given transcript is 

truly Present in the sample. The /»-value associated with this test reflects the confidence 

of the Detection call.

The Discrimination score is a basic property of a probe pair that describes its ability to 

detect its intended target. It measures the target-specific intensity difference of the probe 

pair (PM-MM) relative to its overall hybridization intensity (PM+MM):

R = (PM - MM) / (PM + MM)

For example, if  the PM is much larger than the MM, the Discrimination score for that 

probe pair will be close to 1.0. If the Discrimination scores are close to 1.0 for the 

majority of the probe pairs, the calculated Detection /»-value will be lower (more 

significant). A lower /»-value is a reliable indicator that the result is valid and that the 

probability of error in the calculation is small. Conversely, if  the MM is larger than or
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equal to the PM, then the Discrimination score for that probe pair will be negative or 

zero

The next step toward the calculation of a Detection /»-value is the comparison of each 

Discrimination score to the user-definable threshold Tau. Tau is a small positive number 

that can be adjusted to increase or decrease sensitivity and/or specificity of the analysis 

(default value = 0.015). The One-Sided Wilcoxon’s Signed Rank test is the statistical 

method employed to generate the Detection /»-value. It assigns each probe pair a rank 

based on how far the probe pair Discrimination score is from Tau.

The user-modifiable Detection /»-value cut-offs, Alpha 1 (a l)  and Alpha 2 (a 2) provide 

boundaries for defining Present, Marginal, or Absent calls. At the default settings, 

determined for probe sets with 16-20 probe pairs (defaults a 1 = 0.04 and a  2 = 0.06), 

any /»-value that falls below a 1 is assigned a Present call, and above a  2 is assigned an 

Absent call. Marginal calls are given to probe sets that have /»-values between a 1 and a

2. The /»-value cut-offs can be adjusted to increase or decrease sensitivity and 

specificity.

2.5.14 dCHIP

DNA-Chip Analyzer (dChip) is a software package implementing model-based 

expression analysis of oligonucleotide arrays (Li and Wong, 2001) and several high- 

level analysis procedures. This model-based approach allowed probe-level analysis on 

multiple arrays. By pooling information across multiple arrays, it was possible to assess 

standard errors for the expression indexes. In this normalisation procedure an array with 

median overall intensity was chosen as the baseline array against which other arrays 

were normalised at probe level intensity. Subsequently a subset of PM probes, with 

small within-subset rank difference in the two arrays, served as the basis for fitting a 

normalisation curve. This approach also allowed automatic probe selection in the 

analysis stage to reduce errors due to cross-hybridizing probes and image 

contamination. High-level analysis in dChip included comparative analysis and 

hierarchical clustering. Gene filters employed for this analysis included a raw value 

difference of at least 100, and a fold change of at least 1.2. After these filters are in 

place and the relevant genes have been removed, a T-test is carried out to generate p- 

values for each probe. Only p-values of less than 0.05 were accepted.

This normalisation was downloaded from (http: //dchip. or g/) along with other data 

analysis modules.
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2.5.15 Microsoft access

This is a database-building package that was used in analysis to compare different gene 

lists. Access allowed comparison of like genes across multiple lists. It allowed 

comparison of genes and also relevant information such as probe sets, difference of 

mean and p-value.

2.5.16 Stanford University on-line gene list comparison tool.

This web page allowed comparison of two list of genes. It was useful because unlike 

Access it identified not only common genes, but genes present in one list but not in the 

other. It was located at: http://wonn-chip.slanford.edu/~iiml/Compare.html.

2.5.17 GenMAPP

GenMAPP is a free computer application designed to visualize gene expression and 

other genomic data on maps representing biological pathways and groupings of genes.

A MAPP is a GenMAPP-produced file format that showed biological relationships 

between genes or gene products. MAPPs could be used to group genes and view data by 

any organizing principle. Examples of the types of MAPPs represented in GenMAPP 

are metabolic pathways, signal transduction cascades, subcellular locations, or gene 

families. GenMAPP automatically linked each gene on a MAPP to data from gene 

expression experiments which had been imported.

Integrated with GenMAPP were programs to perform a global analysis of gene 

expression or genomic data in the context of hundreds of pathway MAPPs and 

thousands of Gene Ontology Terms. MAPPFinder created a global gene-expression 

profile across all areas of biology by integrating the annotations of the Gene Ontology 

(GO) Project with GenMAPP. The results were displayed in a searchable browser, 

allowing rapid identification of GO terms with over-represented numbers of gene- 

expression changes. Clicking on GO terms generated GenMAPP graphical files where 

gene relationships could be explored and annotated.

GenMAPP was downloaded from http://www.genmapp.org/inlroduction.asp

2.5.18 Pathway Assist ®

PathwayAssist is a product aimed at the visualisation and analysis of biological 

pathways, gene regulation networks and protein interaction maps. It comes with a
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comprehensive database that gives a snapshot of all information available in PubMed, 

with the focus on pathways and cell signalling networks.

This product was useful in assisting in the interpretation of Microarray results. It 

allowed visualisation of results in the context of pathways, gene regulation networks 

and protein interaction maps. This was done using curated and automatically created 

pathways. Graph drawing, layout optimisation, data filtering, pathway expansion and 

classification and prioritization of proteins were all possible. PathwayAssist worked by 

identifying relationships among genes, small molecules, cell objects and processes and 

built pathways based on these relationships (Figure 2.5.3; 2.5.4).

Figure 2.5.3: Pathway Assist® ‘nodes’

There are 8 different types of 

‘nodes’ and each is represented 

in a unique graphical form.

Each ‘node’ is clickable to view 

the annotation information.

This includes the molecule 

name, alias, description, HUGO 
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Figure 2.5.4: Pathway Assist® ‘controls’
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2.5.19 Probe Logarithmic Intensity ERror estimation (PLIER)

The PLIER algorithm (http://www.affvmetrix.com) is a new tool introduced by 

Affymetrix for the use in data analysis of their GeneChips and has replaced the need to 

normalise microarray data by using the ‘per chip’ and ‘per gene’ normalisation 

methods. This algorithm incorporates model-based expression analysis and non-linear 

normalisation techniques. PLIER accounts for differences in probes by means of a 

parameter termed “probe affinity”. Probe affinity is a measure of how likely a probe is 

to bind to a complimentary sequence, as all probes have different thermodynamic 

properties and binding efficiencies. Probe affinities determine the signal intensities 

produced at a specific target concentration for a given probe, and are calculated using 

experimental data across multiple arrays. By accounting for these observed differences, 

all the probes within a set can be easily compared. An example of how the PIER 

algorithm works is if  one probe is consistently twice as bright as other probes with in a 

set, PLIER appropriately scales the probe intensities. In the case of a probe set, this 

enables all set numbers to be compared and combined accurately.

PLIER also employs an error model that assumes error is proportional to the probe 

intensity rather that o f the target concentration. At high concentrations, error is 

approximately proportional to target concentration, since most of the intensity is due to 

target hybridisation signal. However, at the low end, error is approximately 

proportional to background hybridisation intensity, which is the largest component of 

the observed intensity. Due to this effect, it is inaccurate to treat errors as a proportion 

of target concentration in all circumstances. The PLIER error model smoothly 

transitions between the low end, where error is dependent upon background, and the 

high end, where error is dependent on signal.

The PLIER algorithm supports a multi-array approach that enables replicate sample 

analysis. PLIER ensures consistent probe behaviour across experiments to improve the 

quality of results in any one given experiment and helps to discount outliers. Benefits 

of this algorithm include an improved coefficient of variation of signals from probe sets 

while retaining accuracy. Also higher differential sensitivity for low expressors maybe 

achieved using PLIER.

2.5.20 Genomatix Software Suite

One company that is providing software that allows users to explore textual data as well 

as combine sequence analysis, and genome annotation in order to help researchers to
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discover new contexts from biological data; is Genomatix fwww. genomatix. d el. The 

analysis offered by Genomatix software is aimed to help researchers gain a better 

understanding of gene regulation at the molecular level. The Genomatix software suite 

is comprised of six main tools: ElDorado, Gene2Promoter, BiblioSphere, GEMS 

Launcher, Matlnspector and Promtoerlnspector. ElDorado is a gene orientated genome 

search engine which provides the user with information about functional genomic 

elements within a specific region of the genome. This piece of software compiles and 

integrates information from several sources and includes functional information, 

synonyms and information on gene function and regulatory pathway. In addition, 

information on mRNAs, their exon/intron structure and coding sequences, single 

nucleotide polymorphisms (SNPs) and potential promoter regions maybe retrieved 

using ElDorado.

Since co-regulation of gene transcription often originates from common promoter 

elements the identification and characterization of these elements provides a more in- 

depth analysis for expression of microarray clusters. Gene2Promoter allows users to 

automatically extract groups of promoters for genes that may of interest. This piece of 

Genomatix software provides access to promoter sequences of all genes annotated in 

available genomes. Results from Gene2Promoter are presented in a graphical format 

and common transcription factor binding sites are high lighted along the gene input 

sequence.

One powerful member o f the Genomatix Software Suite, which illustrates the emerging 

emphasis on the visual presentation of complex data, is BiblioSphere. BiblioSphere is a 

data-mining tool for extracting and studying gene relationships from literature databases 

and genome-wide promoter analysis. The data-mining strategy allows to find direct 

gene-gene co-citations and even yet unknown gene relations via interlinks. BiblioSphere 

data is displayed as 3D interactive view of gene relationships (Figure 2.5.5). Results can 

be classified by tissue, Gene Ontology and MeSH. Statistical rating by z-scores 

indicates over- and under-representation of genes in the referring biological categories.
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Figure 2.5.5 Screen shot of BiblioSphere

Although transcription is regulated by a variety o f DNA sequences, including enhancer 

and matrix attachment regions, promoters can be seen as the most important part of the 

sequence because any activator or repressor has to act on the promoter to influence 

transcriptional initiation of a particular gene. Promoters are DNA regions of several 

hundred base pairs that contain the transcription start site o f genes. The most important 

functional elements within promoters are binding sites for specific proteins called 

transcription factors. The control of gene transcription is a common method used in 

biological systems to regulate protein expression. Transcription regulation in eukaryotes 

depends on a series of complex signal transduction networks that control gene promoter 

activity (Figure 2.5.6). Genomatix have develop a software packages, GEMS Launcher 

with helps researchers to identify transcription factor binding sites in a given gene 

promoter. GEMS Launcher is divided up into several parts, the first of which is 

Matlnspector.

Figure 2.5.6 Transcription Factor Binding Sites in a Promoter sequence.
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Matlnspector is a tool that employs a library of matrix descriptions for transcription 

factor binding sites and locates these binding sites on a given promoter sequence. 

Graphical display of transcription factor binding sites common to a set of inputted 

promoters is obtained following Matlnspector analysis. FrameWoker software tool that 

allows users to extract a common framework of elements from a set of DNA sequences. 

These elements are usually transcription factor binding sites since this tool is designed 

for the comparative analysis of promoter sequences. FrameWorker generates the most 

complex models that are common to the input sequences. These are all elements that 

occur in the same order and in a certain distance range in all (or a subset of) the input 

sequences (Figure 2.5.7).

Figure 2.5.7 Screen shot of FrameWorker Results
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Once a model of transcription factor binding sites is generated using FrameWoker 

software, it is possible using Genomatix Modellnspector program to scan sequence 

databases for regulatory units that match the model which have been generated using 

Matlnspector. Modellnspector provides a library of experimentally verified promoter 

models against which transcription factor models maybe scanned.

It is with software packages provided by companies such as Genomatix, that scientists 

will have to reply on in order to help them make sense of the vast quantities of data that 

is being generated by DNA microarray experiments, not only carried out in their own 

laboratories, but also the great wealth of information that is available in public accesses 

databases. The type information retrieval, visualisation, standardisation and analysis 

offered by Genomatix, is and will receive a great deal of attention from countless other 

companies and bioinformatics will undoubtedly remain an extremely important and ever 

changing area of scientific research in the future.
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2.6 RNA interference (RNAi)
RNAi using small interfering RNAs (siRNAs) was carried out to silence specific genes. 

The siRNAs used were chemically synthesized and purchased from Ambion Inc. These 

siRNAs were 21-23 bp in length and were introduced to the cells via reverse 

transfection with the transfection agent siPORT™ NeoFX™  (Ambion Inc., 4511).

2.6.1 Transfection optimisation

2.6.1.1 96-well plate optimisation

In order to determine the optimal conditions for siRNA transfection in 96-well plates, 

an optimisation with a siRNA for kinesin (Ambion Inc., 16704) was carried out for each 

cell line. Cell suspensions were prepared at lxlO4, 2.5xl04 and 5xl04 cells per ml. 

Solutions of negative control and kinesin siRNAs at a final concentration of 30nM were 

prepared in optiMEM (Gibco™, 31985). NeoFX solutions at a range of concentrations 

were prepared in optiMEM in duplicate and incubated at room temperature for 10 

minutes. After incubation, either negative control or kinesin siRNA solution was added 

to each NeoFX concentration. These solutions were mixed well and incubated for a 

further 10 minutes at room temperature. Replicates of 10|J.l of the siRNA/neoFX 

solutions were added to a 96-well plate. The cell suspensions were added to each plate 

at a final cell concentration of lx l0 3, 2.5x103 and 5x103 cells per well. The plates were 

mixed gently and incubated at 37°C for 24 hours. After 24 hours, the transfection 

mixture was removed from the cells and the plates were fed with fresh medium. The 

plates were assayed for changes in proliferation at 72 hours using the acid phosphatase 

assay (Section 2.3.1.2). Optimal conditions for transfection were determined as the 

combination of conditions that gave the greatest reduction in cell number after kinesin 

siRNA transfection and the least cell kill in the presence of transfection reagent (Table 

2 .6 .1).

Table 2.6.1 Optimised conditions for siRNA transfection in 96-well plates
Cell line Seeding density per well Volume NeoFX per well ((J.1)
MCF7 and variants 7.5 x 103 0.6
DLKP and variants 2 x  103 0.25
SKBR3 and variants 2 x  103 0.25

2.6.1.2 6-well plate optimisation

To determine the optimal conditions for siRNA transfection in 6-well plates, an 

optimisation with a siRNA for GAPDH (Ambion Inc., 4605) was carried out for each
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cell line. Cell suspensions were prepared at 1.5xl05, 2.5x105 and 3.5xl05 cells per ml. 

Solutions of negative control and GAPDH siRNAs at a final concentration of 30nM 

were prepared in optiMEM (Gibco™, 31985). NeoFX and siRNA were prepared as 

described in section 2.6.1.1.1 OOjxl of the siRNA/neoFX solutions were added to each 

well of a 6-well plate. The cell suspensions were added to each plate at a final cell 

concentration of 3xl05, 5x10s and 7xl05 cells per well. The plates were mixed gently 

and incubated at 37°C for 24 hours. After 24 hours, the transfection mixture was 

removed from the cells and the plates were fed with fresh medium. After 72 hours cells 

were removed for protein extraction and western blot analysis carried out (see section 

2.4.1). Optimum conditions are shown in Table 2.6.2.

Table 2.6.2 Optimised conditions for siRNA transfection in 6-well plates
Cell line Seeding density per well Volume NeoFX per well (fj.1)
MCF7 and variants 7 x  105 6
DLKP and variants 3 x 105 2
SKBR3 and variants 3 x 105 2

2.6.2 Proliferation effects of siRNA transfection

Using the optimised conditions in Table 2.6.2, each of the siRNAs was tested to see 

changes in proliferation of the cells after transfection. Two separate siRNAs were used 

for each target gene (Table 2.6.3). All siRNAs were purchased from Ambion Inc. 

Solutions of siRNA at a final concentration of 30nM were prepared in optiMEM 

(Gibco™, 31985). NeoFX and siRNA solutions were prepared and added to plates as 

in Section 2.6.1.1. Again, the plates were assayed for changes in proliferation at 72 

hours using the acid phosphatase assay (Section 2.3.1.2).

2.6.3 Invasion effects of siRNA transfection

Transfections were carried out in 6-well plates using optimised conditions described in 

Section 2.6.1.2. After 72 hours cells were used in invasion assays (Section 2.4.6.2).

Table 2.6.3 List of siRNAs used
Target name Ambion IDs Target name Ambion IDs
Scrambled 4613 THBS1 138863, 138862
Kinesin 14851 HOXB4 114927, 114926
RS6KA3 554,555 HOXB6 114847,114846
EGR1 146223, 115234 HOXB7 107432, 14758
TFPI 121589, 121587 NRG 45295, 45201
TNFAIP 147518, 147517 MYO 131398, 131397
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Section 3.0

Results



3.1 Analysis of MCF7 stable transfections with eIF4E, eIF4Emut & 

pcDNA
The purpose of this set of experiments was to generate an invasive MCF7 cell line 

through over-expression of eIF4E. Several clones were generated from MCF7 

transfections with pcDNA containing HA-tagged eIF4E, HA-tagged eIF4Emut (a 

phosphorylation-deficient variant of eIF4E) and the empty pcDNA plasmid (see section

2.4.5.3). Western blots for the detection of HAtag were then carried out to determine 

which clones successfully translated the eIF4E and eIF4Emut plasmids. Cells found 

expressing HAtag were then examined for expression of eIF4E. Real-time PCR was 

also used to look at the level of expression of eIF4E at the RNA level. MCF74E6 and 

MCF74Emut6 were chosen for further analysis based on results from HAtag westerns 

which showed them to have a similar amount of HAtag expression, and therefore 

similar expression levels of eIF4E and 4Emut. These clones also showed a high level of 

overall eIF4E expression at both RNA and protein level. Further analysis showed these 

clones to have a higher growth rate compared to the parental cell line, and increased 

ability to grown in an anchorage-independent manner. Toxicity assays carried out 

showed no significant changes in drug resistance to taxol or 5FU. Finally, invasion 

assays showed no change in invasion of any of the clones. To further examine the effect 

of eIF4E overexpression, these clones were forwarded for microarray analysis.

3.1.1 Western blot analysis of HAtag expression in MCF7 transfected cells

MCF7 cells were transfected with HA-tagged pcDNA-eIF4E (eIF4E), its mutant 

HAtagged pcDNA-eIF4E-S209 (serine 209 has been replaced with alanine to prevent 

phosphorylation taking place) (eIF4Emut) and the empty pcDNA, as outlined in section 

2.4.5.3. The pcDNA-eIF4E vectors code for a fusion protein between eIF4E and 

hemagglutin (HA epitope tag); this protein appears functionally equivalent to eIF4E 

(Pyronnet et al., 1999; Cuesta et al, 2000).

The success of the transfection was determined using western blot to detect the presence 

of HAtag protein (see section 2.4.1). As can be seen from Figure 3.1.1, several clones 

proved HAtag positive. Results showed MCF7 4E 5, 6 and 7 to express the HAtag, as 

did MCF7 4Emut 3, 4, 5 and 6. In particular, MCF74E6 and MCF74Emut6 appeared to 

have similar quantities of HAtag protein upon visual inspection of the blot.
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Densitometric analysis however showed MCF74E6 to have a much higher level of 

HAtag expression. This may have been due to the high background present at the 4E 

clone bands. It was clear from the western blot and from densitometry that 

MCF74Emut6 and MCF74E6 had the most similar level of HAtag when comparing all 

of the 4Emut clones to all of the 4E clones (as 4Emut6 was the highest 4Emut-HAtag 

expressor, and 4E6 was the lowest 4E-HAtag expressor. As there was no perfect match 

for HAtag expression in any of the 4E and 4Emut clones, these two were picked as the 

most similar for further analysis. The detection of the HAtag protein in both eIF4E and 

eIF4Emut clones showed that the transfection was a success.

It was also evident from this western blot that the eIF4Emut clones expressed a lower 

level of HAtag protein than the eIF4E clones. Technically there is no reason why this 

would be the case. Most clones would be expected to have a different level of 

expression of the protein of interest. What was interesting about this result was that 

there seemed to be a particular pattern of expression which differed between 4Emut 

clones and 4E clones. It is possible that this was a random occurrence. The alternative 

explanation would be that phosphorylated eIF4E as opposed to phosphorylation 

deficient eIF4E played a role in its own translation. The phosphorylation state o f eIF4E 

is, in general, correlated with the translation rate of the cell. It is therefore possible that 

up-regulation of wild type eIF4E causes a positive feed back loop, resulting in further 

translation of eIF4E.
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Figure 3.1.1 Level of expression of HAtag protein in MCF7 parent, MCF74E & 

MCF7 eIF4Emut clones
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GAPDH

(B)

Figure 3.1.1: (A) Western blot showing level of expression o f HAtag protein in 

MCF74E and MCF74Emut clones; (B): Densitometric analysis of western blot results.
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3.1.2 Western blot analysis of eIF4E expression in MCF7 clones

The MCF74E and MCF74Emut clones were chosen for further analysis based on the 

level of HAtag they expressed (Figure 3.1.1). MCF74E 5, 6, and 7, along with 

MCF74Emut 3, 5 and 6, were used. The pcDNA clones 1 and 2 were also used as 

controls as neither were expected to have an increased level o f eIF4E protein. Western 

blot analysis was carried out using an eIF4E antibody, as described in see section 2.4.1. 

Increased expression of eIF4E was seen in all of the MCF74E and MCF74Emut clones, 

with most significant increases in the eIF4E clones (Figure 3.1.2). Densitometric 

analysis showed up to a 3.5 fold increase in eIF4E clones. pcDNA 2 showed an increase 

in expression (1.75 fold), whereas pcDNA 1 showed no significant change when 

compared with the parent. Up-regulation of eIF4E in the MCF7eIF4E and 

MCF7eIF4Emut clones correates with HAtag westerns, with higher levels of eIF4E 

being seen in MCF7eIF4E 5, 6, and 7 as compared to MCF7eIF4Emut 3, 5, and 6. This 

further confirmed the success of the MCF7 transfections.

3.1.3 Real-time PCR analysis of the level of eIF4E expressed in MCF7, MCF74E 

and MCF74Emut clones

To verify the levels of eIF4E in the MCF74E and MCF74Emut clones, qPCR was 

carried out using eIF4E primer-probe pairs (section 2.4.3.5.1, table 2.4.4). Results 

showed upregulation of eIF4E in all of the MCF74E and MCF74Emut clones compared 

to the parent (Figure 3.1.3). MCF74E6 and MCF74Emut6 showed a 70% and 30% 

increase, respectively.
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Figure 3.1.2 Level of expression of eIF4E protein in MCF7 parent, eIF4E & 

eIF4Emut clones
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Figure 3.1.2: (A) Western blot showing level of expression of eIF4E in MCF74E and 

MCF74Emut clones; (B): Densitometric analysis o f western blot results.
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Figure 3.1.3 Examination of the level of eIF4E expressed in MCF7, MCF74E, and 

MCF74Emut clones using real-time PCR

(A):

MCF7 MCF7 4E6 MCF7 4EMUT6

Figure 3.1.3: (A) level of expression of eIF4E in MCF7, MCF7F4E and MCF74Emut 

clones; (B): level of expression of eIF4E in MCF7 clones used for microarray analysis.
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3.1.4 Effect of eIF4E, eIF4Emut and pcDNA on the growth rate of MCF7

Up-regulation of eIF4E has previously been associated with increased growth rate 

(Flynn and Proud, 1996). Acid-phosphatase proliferation assays (see section 2.3.1.2) 

along with growth curves (section 2.4.10) were used to determine the growth rate of 

MCF7 parent, MCF74E6, MCF74Emut6 and MCF7pcDNAl.

3.1.4.1 Proliferation assay

Cells grown in 96 well plates were assayed for changes in proliferation at 72 hours 

using the acid phosphatase assay (section 2.3.1.2). Both MCF74E6 and MCF74Emut6 

grew 3-fold faster than parent MCF7, MCF7pcDNAl however, grew 10-fold more 

slowly than the parent (see figure 3.1.4). This result showed that over-expression of 

both eIF4E and eIF4Emut caused an increase in the rate o f growth of MCF7 cells.

3.1.4.2 Growth curve

A growth curve (section 2.4.10) showing the behaviour of cells over a 120hr period also 

demonstrated an increase in the growth of MCF74E6 and MCF74Emut6 compared to 

the parent. There was a 2-fold increase in the number of cells after 120hrs in both 

MCF74E6 and MCF74Emut6 compared to the parent. There was also a decrease in the 

number of MCF7pcDNAl cells compared to the parent.

Both assays confirmed that both eIF4E and eIF4Emut had a positive effect on the 

growth rate of MCF7 cells, they also showed similar trends in growth rate for both 96- 

well and 6-well plates, with MCF74E6 and MCF74Emut6 cells increasing, and 

MCF7pcDNAl decreasing compared to the parental cell line. This result agrees with 

previous studies which showed correlation between levels of eIF4E and proliferation 

(Flynn and Proud, 1996). This phenotypic effect of eIF4E transfection further confirms 

up-regulation of eIF4E in MCF74E6 and MCF74Emut6 cell lines.
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Figure 3.1.4: Growth rate of MCF74E, MCF74Emut, and MCF7pcDNA compared 

to MCF7 parent.______________________________________________

Figure 3.1.4.1:

oce.
O  150

MCF7 MCF74E6 MCF74Emut6 MCF7pcDNA1

Figure 3.1.4.2:

TIME (HOURS)

Figure 3.1.4.1: Rate of proliferation of MCF7 clones grown over a 72hr period; Figure 

3.1.4.2: Growth curve showing growth rate o f MCF7 clones over a 120hr period.
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3.1.6 Effect of elF4E transfection on the adhesion of MCF7 cells

Overexpression of eIF4E has been associated with increased invasion in cancer cell 

lines (Mamane et ah, 2004). To examine whether eIF4E also has an effect on cell 

adhesion, cell attachment to MATRIGEL was assessed, as was anchorage-dependence 

using soft agar assays.

3.1.6.1 Adhesion assays

The adhesive properties of the cells were examined by extracellular matrix adherence 

assays using MATRIGEL® (section 2.4.7). MCF7 parent, MCF74E 5 & 6, 

MCF74Emut 5 & 6 and MCF7pcDNA 1 & 2 were examined. MCF7 was taken as 

having 100% attachment, and results showed the MCF7pcDNA and MCF74Emut 

clones to be between 50 and 60% adherent, whereas the MCF74E clones did not attach 

after the 60 min incubation (Figure 3.1.6.1). This shows that eIF4E has a greater effect 

on adhesion than eIF4Emut or the pcDNA control. However, these assays were only 

performed once, and repeats are necessary.

3.1.6.2 Soft agar assay

The effect of eIF4E and eIF4Emut on the anchorage-dependence of MCF7 was 

examined using soft agar assays (Section 2.4.9). The percentage colony forming 

efficiency (CFE) over a 10-day period was determined by expressing the number of 

colonies formed as a percentage of the number of cells plated. Therefore, CFE was 

specific for each cell line, and did not refer to comparison with other cell lines. Results 

for MCF7 parent were then taken as baseline, and the CFE for all other MCF7 clones 

was compared to this. The highest increase was seen in eIF4E, with a 1.6 fold increase 

in CFE compared to the parent. (Figure 3.1.6.2). This considerable increase in CFE of 

MCF7eIF4E suggests eIF4E is involved in cell-adhesion mechanisms in these cells. 

Photographic evidence showed an increase in colony size of MCF74E6 and 

MCF74Emut6 and MCF7pcDNAl over a 20-day period (Figure 3.1.6.3). Therefore, 

although the CFE was greater for MCF74E6 and MCF74Emut6 than MCF7pcDNA and 

MCF7 parent, it would appear that colony size was influenced by transfection of the 

empty plasmid alone.
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Figure 3.1.6.1: Effect of eIF4E transfection on the adhesion of MCF7 cells

MCF7 parent MCF7pcDNA1 MCF7pcDNA2 MCF74Emut5 

CELL LINE

MCF74Emut6 MCF74E6

Figure 3.1.6.2: % Colony forming efficiency at 10 days

MCF7 4E 6 MCF74EMUT 6 MCF7 PCDNA 1

Figure 3.1.6.1: results of adhesion assay showing the % of MCF7, MCF74E, 

MCF74Emut and MCF7pcDNA that remained attached to MATRIGEL after a 60min 

incubation; Figure 3.1.6.2: % Colony forming efficiency at 10 days
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Figure 3.1.6.3: Photographs of colonies of MCF7, MCF74E, MCF74Emut and

MCF7pcDNA in soft agar_________________________________________________
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. *
■PM i» •
1 "fvY 'wZ%i

i V

MCF7pcDNA daylO MCF7pcDNA day 15 MCF7pcDNA day 20

r  '
«$> *

j K l
■ 0

MCF74E day 10 MCF74E day 15 MCF74E day 20

MCF74Emut day 10 MCF74Emut day 15 MCF74Emut day 20

Figure 3.1.6.3: Photographs of colonies grown in soft agar at 40X magnification over a 

20 day period.
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3.1.7 Effect of eIF4E, eIF4Emut and pcDNA on MCF7 cell invasion

MCF7 is a non-invasive cell line. Invasion assays were carried out to examine changes 

in invasion following transfection with eIF4E and eIF4Emut (section 2.4.5). MCF7 

parent, MCF74E 5, 6 & 7, MCF74Emut 3, 4, 5 & 6 and MCF7pcDNA 1 & 2 were used 

in this study, and none showed any increase in invasion. Results from MCF7 parent, 

MCF7eIF4E6, MCF7eIF4Emut6 and MCF7pcDNAl are shown (Figure 3.1.7). This 

result showed that eIF4E transfection into MCF7 had no effect on invasion.

3.1.8 Effect of eIF4E, eIF4Emut and pcDNA on drug resistance of MCF7

Over-expression of eIF4E has been associated with increased drug resistance in cancer 

cell lines. To further investigate the effect of over-expression of eIF4E in MCF7, 

toxicity assays were carried out (section 2.3.1) on MCF7, MCF7eIF4E and 

MCF7eIF4Emut cells using 5-Fluorouracil (5FU) and Taxol. 5-FU inhibits protein 

synthesis by preventing the release of eIF4E from 4EBP1 (binding protein 1), therefore 

preventing eIF4E participation in translation initiation. Taxol however, is a microtubule 

antagonist capable of inducing cell-cycle arrest with minimum effect on protein 

synthesis. These two drugs were chosen so that the effect of eIF4E on drug resistance 

could be examined using drugs with very different mechanisms of action.

3.1.8.1 Taxol toxicity assays using MCF7, MCF7eIF4E, MCF7eIF4Emut & 

MCF7pcDNA clones

A selection of clones expressing different levels of eIF4E/eIF4Emut were used for the 

toxicity assays. Results showed MCF7eIF4Emut clones 2 & 4 and MCF7eIF4E clones 3 

& 4 were more resistant to taxol than the parent (Figure 3.1.8.1). However, the pcDNA 

controls 2 & 3 also displayed greater resistance then the parent. The rest of the clones 

showed no change or a decrease in resistance compared to the parent. Therefore an 

increase in levels of eIF4E in MCF7 cells did not effect taxol drug resistance.

3.1.8.2 5FU toxicity assays using MCF7, MCF7eIF4E, MCF7eIF4Emut& 

MCF7pcDNA clones

Results for 5FU showed both eIF4E and eIF4Emut clones to be more sensitive than the 

parent, with the exception of MCF74E1, 2 and MCF74Emut4, which showed no change 

(taking into consideration error bars)) (Figure 3.1.8.2). This result suggests that an 

increase in eIF4E makes MCF7 more sensitive to 5FU.
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Figure 3.1.7: Invasion assays using MCF7, MCF74E, MCF74Emut and 

MCF7pcDNA clones

Figure 3.1.7:

(A) MCF7 parent (B) MCF7 4E 6

(C) MCF74Emut 6 (D) MCF7pcDNA 1

Figure 3.1.7: Invasion assays showing: (A) MCF7 parent, (B) MCF7eIF4E6, (C) 

MCF7eIF4Emut 6, (D) MCF7pcDNA 1

118



Figure 3.1.8.1 Taxol toxicity assays using MCF7, MCF7eIF4E, MCF7eIF4Emut &

MCF7pcDNA clones

Figure 3.1.8.1:

Table 3.1.8.1:

CELL LINE FOLD CHANGE CELL LINE FOLD CHANGE
MCF7 1.0000 MCF7 eIF4Emut3 0.2922
MCF7eIF4El 0.8499 MCF7 eIF4Emut4 1.8230
MCF7 eIF4E3 1.8640 MCF7 eIF4Emut5 0.5529
MCF7 eIF4E4 1.5946 MCF7 eIF4Emut6 0.6401
MCF7 eIF4E5 0.6603 MCF7 eIF4Emut7 0.5821
MCF7 eIF4E6 0.6609 MCF7PCDNA1 0.6771
MCF7 eIF4E7 1.0256 MCF7PCDNA2 1.3721
MCF7 eIF4Emutl 0.6018 MCF7PCDNA3 1.4345
MCF7 eIF4Emut2 1.4453 MCF7PCDNA4 0.9750

Figure 3.1.8.1: Average IC50 taxol values for MCF7, MCF74E and MCF74Emut 

clones, where n=3; Table 3.1.8.1: Fold change of IC50 taxol values in clones compared 

to parent MCF7.
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Figure 3.1.8.2 5FU toxicity assays using MCF7, MCF7eIF4E, MCF7eIF4Emut &

MCF7pcDNA clones

Figure 3.1.8.2:
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Table 3.1.8.2:

CELL LINE FOLD CHANGE CELL LINE FOLD CHANGE
MCF7 1 MCF7eIF4Emut2 0.1203
MCF7eIF4El 0.9305 MCF74EeIFmut3 0.0833
MCF7 eIF4E2 1.0277 MCF74EeIFmut4 0.7500
MCF7 eIF4E3 0.0833 MCF74EeIFmut5 0.3333
MCF7 eIF4E4 0.3472 MCF74EeIFmut6 0.1111
MCF7 eIF4E5 0.1527 MCF74EeIFmut7 0.15277
MCF7 eIF4E6 0.1388 MCF7PCDNA1 0.19444
MCF7 eIF4E7 0.1944 MCF7PCDNA2 0.1388
MCF7eIF4Emutl 0.1111 MCF7PCDNA3 0.1111

Figure 3.1.8.2: Average IC50 5FU values for MCF7, MCF74E and MCF74Emut clones, 

where n=3; Table 3.1.8.2: Fold change of IC50 5FU values in clones compared to 

parent MCF7.



3.1.9 Invasion assay analysis of MCF7H3erbB2

MCF7H3erbB2 is a clonal subpopulation of MCF7H3 transfected with erbB2. This cell 

line was previously developed at the NICB by Dr. Sharon Glynn, and was found to be 

highly invasive. Due to the lack of an invasive MCF74E or 4Emut clone, it was decided 

to include MCF7H3erbB2 in microarray analysis in order to determine invasion-specific 

genes in MCF7. Invasion assays (section 2.4.5) were repeated and results confirmed that 

MCF7H3erbB2 was invasive and MCF7H3 non-invasive (Figure 3.1.9).

Figure 3.1.9 Invasion assays using MCF7H3 and MCF7H3 erbB2

Figure 3.1.9:

(A)MCF7H3erbB2 (B)MCF7H3

Figure 3.1.9: Invasion assays showing (A) MCF7H3 erb2 and (B) MCF7H3.
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3.2 Analysis of DLKP stable transfections with eIF4E, eIF4Emut 

&pcDNA
The HAtagged-eIF4E and eIF4Emut were transfected into the poorly invasive DLKP 

parent to examine the effect on invasion. Several clones were generated from 

transfections with eIF4E, eIF4Emut and pcDNA into DLKP (see section 2.4.5.3). 

Western blots for the detection of HAtag protein were then carried out to determine 

which clones were successfully expressing the eIF4E and eIF4Emut plasmids. Cells 

found expressing HAtag were then examined for overall expression of eIF4E. Real-time 

PCR was also used to look at the level of expression of eIF4E at RNA level. 

DLKPeIF4E17 and DLKPeIF4Emut 8 were chosen for further analysis based on results 

from HAtag westerns which showed them to have a similar amount of HAtag 

expression, and therefore similar expression levels of eIF4E and eIF4Emut.These clones 

also showed a high level of overall eIF4E expression at both RNA and protein level. 

Further analysis showed these clones to have a higher growth rate than the parental cell 

line. Toxicity assays carried out showed no significant changes in drug resistance to 

taxol or adriamycin. Invasion assays showed significant increase in eIF4E and 

eIF4Emut clones compared to pcDNA clones and the parental DLKP. To further 

examine the effect of eIF4E over-expression these clones were then used in Microarray 

experiments.

3.2.1 Western blot analysis of HAtag expression

DLKP cells were transfected with pcDNA-eIF4E, mutant pcDNA-eIF4E-S209 and the 

empty pcDNA, as outlined in section 2.4.5. Because the eIF4E and eIF4Emut are 

HAtagged, western blot detection of HAtag protein was used to determine whether or 

not the transfections were successful. Results showed DLKPeIF4E 12, 14 and 17 to 

express the HAtag, as did DLKPeIF4Emut 2, 3, 6, 7, 8, 9 and 10 (Figure 3.2.1). 

DLKPeIF4E17 and DLKPeIF4E8 were found to have been successfully transfected and 

also have a similar level of HAtag. For this reason these cells were chosen for further 

analysis using microarrays.
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Figure 3.2.1a Level of expression of HAtag protein in DLKP parent & DLKP4E 

clones

(A):

10 12 14 17 DLKP positive positive

DLKP4E control control

HAtag
37.5Kd

GAPDH

(B):
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Figure 3.2.1a: (A) Western blot showing level o f expression of HAtag protein in 

DLKPEif4E clones; (B) Densitometric analysis o f western blot results
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Figure 3.2.1b Level of expression of HAtag protein in DLKP parent & 

DLKPeIF4Emut clones
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Figure 3.2.1b: (A) Western blot showing level of expression of HAtag protein in 

DLKP4Emut clones; (B) Densitometric analysis o f western blot results.
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3.2.2 Western blot analysis of eIF4E expression in DLKP, DLKP4E and 

DLKP4Emut clones.

Three of the DLKP4E and DLKP4Emut clones were chosen for further analysis based 

on the level of HAtag they expressed. DLKP4E 12, 14 & 17 along with DLKP4mut 8, 9 

& 10 were used to look at the effect o f eIF4E and eIF4Emut, on the level of protein 

expression eIF4E within the cells. When compared to the parent DLKP, no significant 

upregulation of eIF4E was observed (Figure 3.2.2). It is important to note that antibody 

used was specific to endogenous eIF4E and not HAtagged-eIF4E.

3.2.3 Real-time PCR analysis of the level of eIF4E expressed in DLKP, 

DLKPeIF4E17, DLKPeIF4Emut8 and DLKPpcDNAl

Real-time PCR was carried out to look at eIF4E at an RNA level (see section 2.4.3.5). 

Results showed upregulation of eIF4E in both DLKPeIF4E17 and DLKPeIF4Emut8 

compared to the parent (Figure 3.2.3). Therefore up-regulation of eIF4E was observed 

at an RNA level, but not at a protein level in DLKP transfected with eIF4E/4Emut.

125



Figure 3.2.2 Level of expression of eIF4E protein in DLKP, DLKP eIF4E & DLKP 

eIF4Emut clones

(A):

DLKP 12

—

17 14

DLKP4E

10

DLKP4Emut

eIF4E

GAPDH

(B):

/  /  /

Figure 3.2.2: (A) Western blot showing level of expression of eIF4E inDLKP4E and 

DLKP4Emut clones; (B) Densitometrie analysis of western blot results.
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Figure 3.2.3 Examination of the level of eIF4E expression in DLKP, 

DLKPeIF4E17, DLKPeIF4Emut8 and DLKPpcDNAl using real-time PCR

Figure 3.2.3:

3.5 -----

DLKP DLKPPCDNA1 DLKP4E17 DLKP4EMUT8

Figure 3.2.3: Level o f RNA expression of eIF4E in DLKP, DLKPeIF4E17, 

DLKPeIF4Emut8 and DLKPpcDNAl using real-time PCR.
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3.2.4 Examination of the growth rate of DLKP parent compared to DLKP4E, 

DLKP4Emut and DLKPpcDNA.

Increased eIF4E expression has been associated with increased growth rate. Acid- 

phosphatase proliferation assays (section 2.3.1.2) along with growth curves (section 

2.4.10) were carried out on the DLKP parent, DLKP4E, DLKP4Emut and 

DLKPpcDNA cell lines. The purpose of this experiment was to look at the growth rate 

of the parent compared to the eIF4E/eIF4Emut clones. DLKP4E17, DLKP4Emut8 and 

DLKPpcDNA 1 were used.

3.2.4.1 Proliferation assay

Both DLKP4E17 and DLKP4Emut8 were observed to grow >2-fold faster than parent 

DLKP in 96-well plates proliferation assays. DLKPpcDNA grew at an equal rate to the 

parent (Figure 3.2.4 (A)). This result showed that over-expression of both eIF4E and 

eIF4Emut caused increased proliferation of DLKP, and that the empty plasmid had no 

effect.

3.2.4.2 Growth curve

A growth curve showing the behaviour o f cells over a 120hr period also showed an 

increase in the growth of DLKP4E17 and DLKP4Emut8 compared to the parent. There 

was a 1.3-fold increase in the number of DLKP4Emut8 cells, and a 1.6-fold increase in 

the number of DLKP4E17 cells compared to DLKP after 120hrs. There was a 0.5-fold 

decrease in the number of DLKPpcDNA 1 cells compared to the parent that was not 

observed in the 96-well assay. Although a similar trend was not seen for pcDNA in both 

96-well and 6-well plates, it is significant that both eIF4E and eIF4Emut had a positive 

effect on the growth rate of DLKP(Figure 3.2.4 (B)).
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Figure 3.2.4: growth rate of DLKP4E, DLKP4Emut and DLKPpcDNA compared 

to parent DLKP.__________________________

(A):

T T

DLKP DLKP4E17 DLKP4Emut8 DLKPpcDNA 1

(B):

TIME (HOURS)

Figure 3.2.4: (A) Rate o f proliferation of DLKP clones grown over a 72hr period; (B) 

Growth curve showing the growth rate of DLKP clones over a 120hr period.
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3.2.5 Effect of eIF4E, eIF4Emut and pcDNA on DLKP cell invasion

Invasion assays were carried out to examine if  stable transfection of eIF4E into DLKP 

cells had affected the invasive phenotype of those cells. Invasion assays were carried 

out on DLKP, DLKP4E, DLKP4Emut and DLKPpcDNA cells using the technique 

outlined in section 2.4.5. Invasion assay inserts were both photographed and counted at 

200X. Overall, there were more DLKP4Emut invasive clones than DLKP4E clones. 

Both sets of clones were more invasive than parent or DLKPpcDNA. (Figure 3.2.5.1, 

3.2.5.2, 3.2.5.3). These results were confirmed with invasion assay cell counts (Figure

3.2.5.4). This result confirms eIF4E and eIF4Emut transfection had a significant effect 

on invasion in DLKP cells.
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Figure 3.2.5.1: Invasion assays using DLKP and DLKPpcDNA
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(A) DLKP (B) DLKPpcDNA 1

Figure 3.2.5.1: Invasion assay results for (A) DLKP parent and (B) DLKPpcDNA
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Figure 3.2.5.2 Invasion assays using DLKP4Emut clones

(A) DLKP4Emut2 (B) DLKP4Emut3
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(E) DLKP4Emut8

Figure 3.2.5.2: (A) DLKP4Emut2, (B) DLKP4Emut3 (C) DLKP4Emut6, (D) 

DLKP4Emut7 and (E) DLKP4Emut8.
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Figure 3.2.5.3 Invasion assays using DLKP4E clones
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Figure 3.2.5.3: Invasion assay results for cell lines (A) DLKP4E5, (B) DLKP4E7, (C) 

DLKP4E 10, (D) DLKP4E12 & (E) DLKP4E17.
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Figure 3.2.5.4: Invasion assay cell-counts for parent DLKP, eIF4E/eIF4Emut and

peDNA clones

Figure 3.2.5.4:

J?  >  > J*

Figure 3.2.5.4: Counts of invasive cells: Cell counting was facilitated by photographing 

the membrane using an inverted microscope. The cells were observed at 200X 

magnification.
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3.2.6 Effect of eIF4E and eIF4Emut on drug resistance

Toxicity assays were carried out (see section 2.3.1) on DLKP, DLKP4E and 

DLKP4Emut cells using Adriamycin and Taxol. The purpose of this was to assess the 

effect, if  any, of eIF4E and eIF4Emut on drug resistance. Taxol, as described in section 

3.1.9, does not affect protein synthesis. Adriamycin acts by intercalating with double 

stranded DNA, thus disrupting transcription and translation. This allowed assessment of 

the role of eIF4E drug resistance across a broader range of drug mechanisms. A 

selection of clones with different levels of HAtagged-eIF4E and invasion were chosen 

for this set of experiments (Figure 3.2.6.1 and 3.2.6.2).

3.2.6.1 Taxol toxicity assays using DLKP, DLKP4E & DLKP4Emut clones

Toxicity assays performed using Taxol showed DLKP4Emut 6, DLKP4E 7 and 10 to be 

more resistant to the drug than the parent (Figure 3.2.6.1), with fold changes from 1.2- 

to 1.6-fold greater that DLKP. The majority of the clones showed no change or a 

decrease in resistance to the drug. The results did not correlate with HAtag expression 

and were therefore inconclusive.

3.2.6.2 Adriamycin toxicity assay using DLKP, DLKP4E & DLKP4Emut clones

DLKP4Emut 7, 8, 9 and 10 showed an increase in resistance, as did DLKPF4E 14 and 

17. All of these clones were HAtag positive. However, eIF4Emut 6 also expressed 

HAtag protein and showed a decrease in resistance (Figure 3.2.6.2). These results 

showed that most clones that expressed HAtag also displayed an increase in drug 

resistance, which implies eIF4E plays a role in adriamycin drug resistance in DLKP.
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Figure 3.2.6.1 Taxol toxicity assays DLKP, DLKP4E & DLKP4Emut clones

Figure 3.2.6.1:

1 ------

0.9

Table 3.2.6.1:

CELL LINE FOLD CHANGE
DLKP 1
DLKP4E MUT1 0.5876
DLKP4E MUT3 0.95622
DLKP4E MUT6 1.28
DLKP4E MUT7 0.48
DLKP4E MUT8 0.71
DLKP4E MUT9 0.49
DLKP4E MUT10 0.66
DLKP4E5 0.82
DLKP4E7 1.66
DLKP4E10 1.2
DLKP4E14 0.57
DLKP4E17 0.918

Figure 3.2.6.1: Taxol IC50 values for DLKP, DLKP4E and DLKP4Emut clones; Table 

3.2.6.1: Fold change of resistance to Taxol.
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Figure 3.2.6.2 Adriamycin toxicity assay DLKP, DLKP4E & DLKP4Emut clones

Figure 3.2.6.2:
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Table 3.2.6.2:

CELL LINE FOLD CHANGE
DLKP 1
DLKP4E MUTI 3.95
DLKP4E MUT3 0.36
DLKP4E MUT6 0.94
DLKP4E MUT7 1.69
DLKP4E MUT8 2.18
DLKP4E MUT9 6.34
DLKP4E MUT10 3.22
DLKP4E5 1.55
DLKP4E7 1.06
DLKP4E10 1.83
DLKP4E14 3.16
DLKP4E17 1.74

Figure 3.2.6.2: Adriamycin IC50 values for DLKP, DLKP4E and DLKP4Emut clones; 

Table 3.2.6.2: Fold change of resistance to Adriamycin.
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3.3 Microarray analysis
Microarray gene expression experiments were carried out on 10 cell lines (Table 3.3.1). 

These were DLKP, DLKP4E17, DLKP4Emut8, DLKPpcDNAl, MCF7, MCF74E6, 

MCF74Emut6, MCF7pcDNAl, MCF7H3erbB2 and MCF7H3. The microarray gene 

expression experiments which were carried out in this body of work were performed using 

Affymetrix® GeneChip® Whole genome expression microarray (Section 2.5).

3.3.1 Invasion status of cell lines used for microarray analysis

All cell lines included in microarray analysis were chosen based on their invasion status, 

obtained from invasion assay results (Section 3.1.7, 3.1.8 & 3.1.9). The purpose of this 

analysis was to compare invasive and non-invasive cell lines in order to identify genes 

involved in invasion.

Table 3.3.1 Cell lines used in array analysis

C ell line In v a sio n  s ta tu s C ell typ e

DLKP M ildly invasive Poorly differentiated human Lung squamous carcinoma

DLKP4E Invasive Clonal subpopulation o f  eIF4E cD N A  transfected DLKP

DLKP4Emut Invasive Clonal subpopulation o f  eIF4Emut cD N A  transfected 
DLKP

DLKPpcDNA M ildly invasive Clonal subpopulation o f  pcD N A  transfected DLKP

MCF7 Non-invasive Human breast adenocarcinoma

MCF74E N on-invasive Clonal subpopulation o f  eIF4E cD N A  transfected MCF7

MCF74Emut Non-invasive Clonal subpopulation o f  eIF4Emut cD N A  transfected 
MCF7

M CF7pcDNA Non-invasive Clonal subpopulation o f  pcD N A  transfected MCF7

MCF7H3 Non-invasive Clonal subpopulation o f  MCF7

MCF7H3
erbB2

Invasive Clonal subpopulation o f  MCF7H3 transfected with erbB2 

Clonal subpopulation o f  MCF7H3 transfected with erbB2
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3.3.2 Microarray QC

The U133 Plus 2.0 Affymetrix gene chip contains the probesets for 54,675 gene transcripts. 

The percentage of genes called present relative to the number of genes present on the array 

is typically 40-60% for a given experiment, which can be translated to roughly 25-30,000 

gene transcript results for each experiment. To reduce the volume of results for further 

analysis, only probesets found present across all replicates are used. Three microarray chips 

were run for each cell line used in this experiment, and the resulting data compared based 

on their degree of similarity. That is, each set of gene transcripts ‘present’ on each chip 

were compared to each other set, to find similar genes. The strength of the linear 

relationship between samples was calculated in terms of a correlation coefficient. The 

closer this coefficient was to 1, the closer the linear relationship. If any one of the samples 

did not correlate and a list of genes was chosen from the comparison of all three, this would 

have increased the number of false negatives, and as a result a lot of important genes would 

have been overlooked. Removing the rogue sample however, would increase the number of 

false positives. It was vital that the ‘present’ call for each sample was accurate in order to 

ensure an exact comparison between samples. The accuracy with which the percentage of 

transcripts present was calculated was dependent on stringent physical QC.

3.3.2.1 Physical QC

The array image was monitored using the following control parameters as outlined by 

Affymetrix®, using Microarray Suite 5.0 (MAS5.0).

3.3.2.1.1 Visual inspection

After scanning the array chips were inspected for the presence of image artefacts. These 

include spots or regions on the chip with unusually high or low intensity, scratches or 

overall background. The boundaries of the probe area were easily identified by the 

hybridization of the B2 oligo, which is spiked into each hybridization cocktail. 

Hybridization of B2 was highlighted on the image by the following:

1. The ‘cross’ pattern of intensities on the centre of the chip

2. The checkerboard pattern at each comer
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An example of B2 illuminating the corner and 

edges of the array (affymetrix.com).

B2 Oligo served as a positive hybridization control and was used by the software to place a 

grid over the image. All of the chips used passed visual inspection.

3.3.2.1.2 Scaling factor

Each array has varying image intensity, and this intensity, or brightness, is measured by the 

‘scaling factor’. In order to make an accurate comparison of multiple sets of array data the 

intensities of the arrays were brought to the same level. This process was performed by 

GCOS® (GeneChip Operating Software) using a mathematical technique known as 

‘scaling’. Scaling worked by calculating the overall intensity of an array and averaging 

every probe set on the array (with the exception of the top and bottom 2% of the probe set 

intensities). The average intensity of the array was then multiplied by the scaling factor to 

ensure that all of the intensities on the given array went up or down to a similar degree. 

Scaling allowed normalisation of several experiments to one target intensity. It is 

recommended that the scaling factor for all of the arrays in a particular experiment should 

be within 3-fold of each other. All of the scaling factors in this set of arrays were between

0.8 and 1.5 (Table 3.3.2-3.3.4).

3.3.2.1.3 Noise

‘Noise’ measured the pixel-to-pixel variation of probe cells on the array. It was caused by 

small variations in the digital signal observed by the scanner as it sampled the array surface. 

As each scanner has a unique electrical noise associated with its operation, noise values 

among scanners vary. However, arrays that were scanned on the same scanner would be 

expected to have similar noise values. Noise values above 3 would normally be deemed 

excessive and indicate a poor scanning result. All of the noise values for this set of arrays 

were between 1.3 and 1.7 (Table 3.3.2-3.3.4).

140



3.3.2.1.4 Background

Affymetrix® have found that typical background values range from 20 to 100 and that 

arrays being compared should have similar background. Values above 100 would be 

deemed unacceptable. The background values ranged from 43 to 56 for this set of arrays, 

which is acceptable (Table 3.3.2-3.3.4).

3.3.2.1.5 %Present

The percentage of genes present determines the number of probe sets called present, 

relative to the total number of probe sets on the array. Replicate samples should have 

similar %present calls. Typical % call values for cell lines are 40-60%, lower values usually 

being attributed to poor quality of sample. Each set of samples used in this study had 

between 40-47 % present, and each set of replicates were within 3% of each other (Table 

3.3.2-3.3.4).

3.3.2.1.6 375’ Ratio GAPDH

In addition to the conventional probe sets designed to be within the most 3' 600 bp of a 

transcript, additional probe sets in the 5' region and middle portion of the transcript have 

also been selected for certain housekeeping genes, including GAPDH and P-actin. Signal 

intensity ratio of the 3' probe set over the 5' probe set is often referred to as the 375' ratio. 

This ratio gives an indication of the integrity of starting RNA, efficiency of first strand 

cDNA synthesis, and/or indicates whether the in vitro transcription (IVT) of cRNA step 

proceeded to completion. The signal of each probe set reflects the sequence of the probes 

and their hybridization properties. A 1:1 molar ratio of the 3' to 5' transcript regions will not 

necessarily give a signal ratio of 1. A ratio of 1 is considered ideal, and values above 3 

indicate incomplete transcripts are being generated, most likely due to poor quality starting 

RNA. The highest ratio recorded for this set of arrays was 1.3 (Table 3.3.2-3.3.4).

3.3.2.1.7 Bio’s Present

BioB, bioC and bioD represent genes in the biotin synthesis pathway of E. coli. Cre is the 

recombinase gene from PI bacteriophage. The GeneChip® Eukaryotic Hybridization 

Control Kit contains 20x Eukaryotic Hybridization Controls that are composed of a mixture
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of biotin-labeled cRNA transcripts of bioB, bioC, bioD, and ere, prepared in staggered 

concentrations (1.5 pM, 5 pM, 25 pM, and 100 pM final concentrations for bioB, bioC, 

bioD, and ere, respectively). The 20x Eukaryotic Hybridization Controls are spiked into the 

hybridization cocktail, independent of RNA sample preparation, and are thus used to 

evaluate sample hybridization efficiency on eukaryotic gene expression arrays. BioB is at 

the level of assay sensitivity (1:100,000 complexity ratio) and should be called “Present” at 

least 50% of the time. BioC, bioD, and ere should always be called “Present” with 

increasing signal values, reflecting their relative concentrations. All chips used in this study 

met this criteria (table 3.3.2-3.3.4).

The 20x Eukaryotic Hybridization Controls can be used to indirectly assess RNA sample 

quality among replicates. When global scaling is performed, the overall intensity for each 

array is determined and is compared to a Target Intensity value in order to calculate the 

appropriate scaling factor. The overall intensity for a degraded RNA sample, or a sample 

that has not been properly amplified and labeled, will have a lower overall intensity when 

compared to a normal replicate sample. Thus, when the two arrays are globally scaled to 

the same Target Intensity, the scaling factor for the “bad” sample will be much higher than 

the “good” sample. However, since the 20x Eukaryotic Hybridization Controls are added to 

each replicate sample equally (and are independent of RNA sample quality), the intensities 

of the bioB, bioC, bioD, and ere probe sets will be approximately equal. As a result, the 

signal values (adjusted by scaling factor) for these control probe sets on the “bad” array 

will be adjusted higher relative to the signal values for the control probe sets on the “good” 

array.
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Table 3.3.2: Physical QC of MCF7, MCF74E, MCF74Emut &MCF7pcDNA

S a m p l e
N a m e

■MCF7
1

M C F 7
2

\ I C F 7
3

M C F 7
4E1

M C F 7
4E2

ÍVICF7
4E3

M C F 7
4Emutl

M C F 7
4Emut2

M C F 7
4Emut3

M C F 7  
PcDN A 
1

¡VICF7
PcDN
A2

M C F 7  
PcDN A3

Visual
Inspection

YES YES YES YES YES YES YES YES YES YES YES YES

Scaling
Factor

1.018 0.865 0.994 0.93 0.931 1.144 1.211 0.847 1.091 1.233 1.531 1.235

Noise 1.67 1.61 1.78 1.47 1.65 1.47 1.49 1.75 1.66 1.54 1.45 1.45

Backround 48.85 47.34 52.86 44.21 48.33 45.28 44.11 51.76 48.65 48.03 43.92 44.94

%Present 43.8 45.6 42.7 46.3 43 43.3 42.9 44 42.9 42.2 41.6 42.8

375’ Ratio 
GAPDH

1.10 1 1.05 1.05 1.03 1.36 1.31 1.09 1.00 1.00 1.18 1.3 1.28

Bio’s Present YES YES YES YES YES YES YES YES YES YES YES YES
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Table 3.3.3: Physical QC of MCFH3 & MCF7H3erbB2

Sample Name MCF7H3 1 MCF7H3 2 MCF7H3 3 V1CF7H3 
erbB2 1

MCF7H3 
erbB2 2

MCF7H3 
crbB2 3

Visual Inspection YES YES YES YES YES YES

Scaling Factor 0.868 1.165 0.997 1.134 0.972 1.128

Noise 1.74 1.560 1.8 1.67 1.79 1.5

Backround 52 47.15 54.1 48.15 55.14 44.96

%Present 44.5 41.6 42.5 43.6 44.8 44.8

375’ Ratio GAPDH 1.03 1.06 1.06 1.14 1.12 1.10

Bio’s Present YES YES YES YES YES YES
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Table 3.3.4: Physical QC of DLKP, DLKP4E, DLKP4Emut & DLKPpcDNA

Sn m pic 
Name

DLKP
1

DLKP
2

DLKP 3 DLKP 
4 El

DLKP
4E2

DLKP
4E3

DLKP
4Eniutl

DLKP
4Emut2

DLKP 
4L ni il t3

DLKP
Pc DIN A 
1

DLKP 
Pc DIN A 
2

DLKP 
Pc DINA 
3

Visual
Inspection

YES YES YES YES YES YES YES YES YES YES YES YES

Scaling
Factor

0.883 0.872 0.966 0.961 0.851 1.204 0.924 1.14 0.99 1.29 0.813 0.972

Noise 1.63 1.73 1.46 1.53 1.63 1.46 1.61 1.58 1.69 1.43 1.72 1.57

Backround 48.58 54.35 44.35 47.88 49.67 45.13 49.03 48.5 51.6 44.29 52.52 47.9

%Present 43.9 44.7 44.5 44.8 43.5 44.1 44.3 42.9 44.3 43 46.5 43.9

375’ Ratio 
GAPDH

1.05 1.06 1.04 1.05 1.06 1.09 1.06 1.09 1.07 1.18 1.16 1.18

Bio’s
Present

YES YES YES YES YES YES YES YES YES YES YES YES
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3.3.2.2 Hierarchal clustering

Hierarchical clustering was used to represent the relationship between replicate samples 

and different sets of replicate samples (section 2.5.14). The tree represents relationships 

amongst genes in which, branch lengths represent degrees of similarities. This method 

was useful in its ability to represent varying degrees of similarity and distant 

relationships among groups of closely related genes. The computed tree was used to 

organize genes in the original data table, so that genes with similar expression patterns 

were adjacent. The general procedure for hierarchical clustering followed two steps,

1. The closest points (clusters) were found and merged

2. This process was continued until a single cluster was obtained (all the points). 

There were two prerequisites for this procedure:

3. The distance measured between two points

4. The distance measured between clusters.

All of the samples used in the experiment were run in triplicate, and therefore all three 

replicates of a particular sample were expected to cluster together, and all such clusters 

were expected to be significantly differently from each of the other clusters. This was 

not the case for three of the sets of samples (Figure 3.3.1a). DLKP2, DLKP4E2 and 

MCF74E2 did not behave as expected and did not cluster with their replicates. These 

samples were removed from further analysis (Figure 3.3.1b).

146



Figure 3.3.1a Hierarchal clustering of all samples used in microarray gene

expression experiments

Figure 3.3.1a:

IBelta DLKP44CF7 ln v« l.

Selected Gene Tree: Bella DLKP-MCF7 Invasion (Default Interpretation) (ad list) Colored by: Bella DLKP-MCF7 InvaHon (Default Interpretation)
Selected Condition Tree: Bella DLKP-MCF7 Invasion (All Samples) (All genes) Gene List all genes (54675)
Branch color parameter. Invasive

Figure 3.3.1a: Hierarchal clustering of all samples used in microarray gene expression 

experiments. The tree represents relationships amongst genes in which branch lengths 

represent degrees of similarities.
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Figure 3.3.1b Hierarchal clustering of samples from microarray gene expression

experiments used for further analysis

Figure 3.3.1b:

Selected Gene Tree: Bella QC Invasion Samples (All Samples) (ad list) Colored by: Bella QC Invasion Samples (Default Interpretation)
Selected Condition Tree: Bella QC Invasion Samples (All Samples) (sd list) Gene List: all genes (54676)
Branch color parameter: InvasKw

Figure 3.3.1b: Hierarchal clustering after removal of DLKP2, DLKP4E2 and 

MCF74E2.
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3.3.2.2.1 The correlation matrix

In probability theory and statistics, correlation, also called correlation coefficient, 

indicates the strength and direction of a linear relationship between two random 

variables. The best known is the Pearson product-moment correlation coefficient, which 

is obtained by dividing the covariance of the two variables by the product of their 

standard deviations. In assuming a linear relationship between variables, the correlation 

coefficient quantifies the strength of the linear relationship between those variables. In 

microarray experiments, the correlation coefficient measured the amount o f variation 

between groups of genes in replicate samples. The closer the correlation coefficient was 

to 1 the stronger the relationship. Values closer to 0 implied a poor linear relationship.

Table 3.3.5 (A) shows the correlation coefficients o f individual DLKP samples 

compared with each other. DLKP2 did not perform as it should and only had a 

correlation value of 0.67 when compared to the other replicates. The correlation matrix 

for DLKP4E also shows similar results, with DLKP4E2 having a correlation coefficient 

of 0.53 (Table 3.3.5 (B)). In the case of MCF74E, one of the samples (MCF74Ea) did 

not cluster initially and the sample was repeated (MCF74Eb). Neither of the two 

samples had good correlation values (Table 3.3.5 (C)). The maximum correlation 

coefficient in this group was only 0.63 which is very low, however it is doubtful that 

repeating the experiment a second time would have improved the correlation between 

samples. Due to the above results it was decided to continue with three sets of two 

rather than repeat the arrays for DLKP, DLKP4E and MCF74E. This was done in order 

to reduce the amount of false negative results, as explained in section 3.3.2.
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Table 3.3.5 Summary of correlation matrix results for DLKP, DLKP4E and 

MCF74E used in microarray analysis

A. DLKP correlation matrix

SAMPLE DLKP1 DLKP2 DLKP3

DLKP1 1 0.67352 0.828255

DLKP2 0.67352 1 0.672595

DLKP3 0.828255 0.672595 1

B. DLKP4E correlation matrix

SAMPLE DLKP4E1 DLKP4E2 DLKP4E3

DLKP4E1 1 0.535093 0.801237

DLKP4E2 0.535093 1 0.541529

DLKP4E3 0.801237 0.541529 1

C. MCF74E correlation matrix

SAMPLE MCF74E1 MCF74E2a MCF74E2b MCF74E3

MCF74E1 1 0.477467 0.557717 0.634662

MCF74E2a 0.477467 1 0.604347 0.469049

MCF74E2b 0.557717 0.604347 1 0.599217

MCF74E3 0.634662 0.469049 0.599217 1

Table 3.3.5: A=correlation values for each DLKP sample compared to each other DLKP 

sample; B= as with A, but using DLKP4E; C=as with A, but using MCF74E.
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3.3.3 Generation of gene lists

The aim of the microarray analysis was to generate gene lists that were specific to an 

invasive phenotype, in order to identify genetic markers for invasion. Before generating 

these gene lists it was important to examine the relationship between different cell lines 

as observed by hierarchal clustering (Figure 3.3.1). Firstly, the data can be divided into 

two distinct groups, one consisting of all the DLKP variants, and one of the MCF7 

variants. This result was as expected. As already mentioned, three samples (DLKP2, 

DLKP4E2 and MCF74E2) did not behave as expected, and this was obvious from the 

way they clustered compared to their replicate samples. As a result o f this analysis, 

these samples were removed from further study.

3.3.3.1 Initial gene list comparisons

The purpose of initial comparisons was to determine the number of genes changed 

between the baseline and experiment samples. Gene filters employed for this analysis 

included a raw value difference (between baseline and experiment) of at least 100, a 

fold change of at least 1.2. After these filters were in place and the relevant genes were 

removed, a Welch modified two-sample t-test was carried out to generate p-values for 

each probe. Only P-values of less than 0.05 were accepted. Gene list comparisons were 

made using dChip(section 2.5.14) and are summarised in Table 3.3.6.

Table 3.3.6: Initial gene lists comparisons

Cell line comparison Number of genes changed
DLKP versus DLKP4E 1415

DLKP versus DLKP4Emut 1138

DLKP versus DLKPpcDNA 1950

MCF7 versus MCF74E 864

MCF7 versus MCF74Emut 1828

MCF7 versus MCF7pcDNA 289

MCF7H3 versus MCF7H3 erbB2 3348

MCF7 versus MCF7H3 4106

Table 3.3.6: The above comparisons were made using dChip and Stanford’s gene 

comparison program (see section 2.5.16):
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3.3.3.2 Genes specific to invasion in MCF7 variants

Table 3.3.7 generation of genes specific to invasion and MCF7H3erbB2

Cross list comparisons Number of »cues changed

[MCF7H3 versus MCF7H3erbB2] NOT 

[MCF7 versus MCF7pcDNA] = [A]

1755

[A] NOT [MCF7 versus MCF74E] = [B] 1604

[B] NOT [MCF7 versus MCF74Emut] =

[C]

1313

[C] versus [MCF7 versus MCF7H3]= [D] 120

Table 3.3.7: The above comparisons were made using dChip and Stanford’s gene 

comparison program (see section 2.5.14-16):

3.3.3.2.1 Gene changes specific to eIF4E in MCF74E

Comparison of MCF7 (baseline) to MCF74E (experiment) resulted in a list of 864 

genes. That is, the expression of 864 genes was up- or down-regulated in MCF7 after 

exogenous expression of eIF4E.

3.3.3.2.2 Gene changes specific to eIF4Emut in MCF74Emut

When MCF7 was compared to MCF74Emut, again MCF7 was taken as the baseline and 

MCF74Emut as the experiment. The 1828 resulting gene changes referred to the 

number of genes expressed in MCF74Emut that were up- or down-regulated compared 

to those expressed in MCF7. The resulting list of differentially expressed genes are 

those specific to MCF7 after stable transfection of eIF4Emut.

3.3.3.2.3 Gene changes specific to pcDNA in MCF7pcDNA

Again MCF7 was taken as the baseline and in this case MCF74EpcDNA was the 

experiment. 2829 genes were found differentially expressed in MCF7pcDNA. This list 

of genes are those specific to MCF7 after stable transfection of the pcDNA empty
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plasmid. There were a surprising number of gene changes due to expression of an empty 

plasmid.

3.3.3.2.4 Gene changes specific to erbB2 in MCF7H3erbB2

In this comparison, MCF7H3 was taken as the baseline and MCF7H3erbB2 as the 

experiment. The resulting 3348 gene changes referred to the number o f genes expressed 

in MCF7H3erbB2 that were up- or down-regulated compared to those expressed in 

MCF7H3. The resulting list of differentially expressed genes are those specific to 

MCF7H3 after exogenous expression of erbB2.

3.3.3.2.5 Gene changes in MCF7H3 due to clonal variation

As further analysis of the MCF7H3erbB2 invasive phenotype was to involve 

comparison with non-invasive MCF7, it was necessary to examine the difference 

between MCF7 and MCF7H3. Taking the parental MCF7 as the baseline, and the clone 

MCF7H3 as the experiment, 4106 genes were found differentially expressed. This result 

demonstrates the large number of changes that are possible due to clonal variation 

alone, and offers an explanation to the high number o f gene changes in DLKP and 

MCF7 after transfection with and empty pcDNA plasmid.

3.3.3.3 Genes related to invasion and specific to MCF7H3erbB2

Analysis found 3348 genes were changed in MCF7H3erbB2 due to up-regulation of 

erbB2. As up-regulation of erbB2 had caused an increase in invasion in MCF7H3, these 

genes were also related to an invasive phenotype. Up-regulation of eIF4E, eIF4Emut 

and pcDNA in mixed-population MCF7 did not result in a change in invasion. 

Therefore, in order to reduce the number o f genes for further analysis, and narrow the 

search for invasion-related genes, gene changes in non-invasive MCF7 cell lines were 

removed from those in invasive MCF9H3erbB2. To generate a list of genes related to 

invasion and specific to MCF7H3erbB2 the following comparisons were made using 

dChip and Stanford’s gene comparison web page (http://wormchip.stanford.edu 

/~j iml/Compare.html)..
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3.3.3.2.1 Genes specific to invasive MCF7H3erbB2 not non-invasive MCF7pcDNA.

In the initial comparison of MCF7H3 to MCF7H3erbB2, 3348 genes changes specific to 

up-regulation of erbB2 were detected. In order to reduce the number of genes for 

analysis, gene changes detected in other non-invasive MCF7 cell lines were subtracted 

from this list. The first of these were gene changes due to MCF7pcDNA (2829 genes). 

The resulting list of 1755 genes referred to gene changes specific to MCF7H3erbB2 that 

were not common to gene changes specific to MCF7pcDNA (Figure 3.3.2). This 

comparison removed gene changes due to pcDNA transfection, but not invasion.

Figure 3.3.2: Genes specific to MCF7H3erbB2 not non-invasive MCF7pcDNA

MCF7H3 MCF7
vs.

MCF 7H3erbB2 MCF7pcDNA

1236
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3.3.3.3.2 Genes specific to MCF7H3erbB2, not MCF7pcDNA or MCF74E

dCHip analysis found 306 genes that were specific to MCF74E (Figure 3.3.5), but not 

invasion. This list was compared to the list of 1755 genes specific to MCF7H3erbB2 

from the previous comparison. The result was a list of 1604 genes specific to invasive 

MCF7H3erbB2 and not non-invasive MCF7pcDNA or MCF74E (Figure 3.3.3).

Figure 3.3.3: Genes specific to MCF7H3erbB2, not MCF7pcDNA or MCF74E

MCF7H3erbB2
not

MCF7
vs.

MCF7pcDNA MCF74E

713
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3.3.3.3.3 Genes specific to MCF7H3erbB2, not MCF7pcDNA, MCF74E or 

MCF74Emut

1828 genes were found differentially expressed in MCF74Emut compared to MCF7. As 

MCF74Emut was also a non-invasive cell line, these changes were also removed from 

the MCF7H3erbB2 specific list. When compared to the list of MCF7H3erbB2 specific 

genes from the previous comparison, 1313 genes were found specific to invasive 

MCF7H3erbB2 and not non-invasive MCF7pcDNA, MCF74E or MCF74Emut (Figure

3.3.4). Although transfection of MCF7 with eif4E, eif4Emut and pcDNA did not result 

in invasion, it is possible that genes involved in invasion were changed in these cell 

lines. However, these changes were not significant enough to cause invasion. That is, 

the full complement of genes changes required for invasion did not occur. Therefore by 

making this comparison some genes involved in invasion were removed from the final 

list, but the genes that made it through were more likely to be significant to invasion.

Figure 3.3.4: Genes specific to MCF7H3erbB2, not MCF7pcDNA, MCF74E or 

MCF74Emut

MCF7H3erbB2
not
MCF7pcDNA or 
MCF74E

MCF7

MCF74Emut

1537
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3.3.3.3.4 Gene changes specific to MCF7H3erbB2 and invasion but not due to 

clonal variation

The purpose of this analysis was to obtain a list of genes specific to invasion and caused 

by erbB2 up-regulation. This list would then be used to choose targets for siRNA 

knock-down. For this purpose, the list of genes needed to be further reduced. A 

comparison was also made between parent MCF7 (mixed population) and MCF7H3 

(clone). Although it was not necessary to subtract these changes from the MCF7H3 

versus MCF7H3erbB2 comparison, as this was a clone to clone transfection, it is likely 

that gene changes which occurred due to MCF7 to MCF7H3 clonal variation where not 

relevant to invasion, and so these genes were also subtracted from the list. This 

comparison resulted in 120 genes specific to erbB2 up-regulation and related to 

invasion (Figure 3.3.5).

Figure 3.3.5: Gene changes specific to MCF7H3erbB2 and invasion but not due to 

clonal variation

MCF7H3erbB2 not 
MCF7pcDNA or 
MCF74E or MCF74E mut

MCF7
vs.
MCF7H3

2913
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3.3.3.3.5 Final list of 120 genes specific to erbB2 and invasion

This list contained some overlap due to different probe sets targeting various gene 

transcripts of the same gene. Further examination found there were 108 different genes 

recognised on this list. Of these, 16 were poorly annotated. Analysis of the literature 

found 39 of these genes were related to invasion, or processes relevant to invasion. This 

is 36% of the total list, which demonstrated the accuracy of the microarray analysis, the 

purpose of which was to identify invasion-specific genes. Gene expression level, which 

would be an important consideration for further analysis, was also examined. Of the 108 

genes, only three had expression levels <100 in either baseline or control experiments. 

Summary of gene list comparison in Table 3.3.7.

3.3.3.4 Pathway Assist ® analysis of MCF7H3erbB2 invasion-specific genes

PathWay Assist® (section 2.5.18) was used to identify what genes, if  any, had direct 

interaction with each other. ‘Direct interaction’ identifies only direct biological 

interactions (controls) between selected biological objects (nodes), in this case the 108 

genes (see figure 2.5.18.1 for details of ‘nodes’ and ‘controls’). These interactions are 

based on information available in the literature to date, and can only take into 

consideration well-annotated genes. The result of this analysis was a 9-gene pathway 

(Figure 3.3.6, Table 3.3.5). The relationships between genes are demonstrated using 

‘controls’, which showed MAP3K1 was involved in the regulation of RPS6KA3, ESR1, 

TNFAIP8 and TANK. It also showed MAP3K1 was capable of binding TANK. 

RPS6KA3 was shown to be involved in regulation of ESR1, possible through binding. 

ESR1 was also found to effect RPS6KA3 expression. PTEN was found to regulate 

TNFAIP8. Pathway assist results show both positive and negative regulation, which 

implies both are indicated in the literature.EGRl positively regulated PTEN, and was 

itself bound by EGR3 and positively regulated by ESR1.

Further examination of the literature found two members o f this pathway, PTEN and 

EGR1, interacted with Thrombospondin 1 (THBS1) (Figure 3.3.7). This gene was not 

present on the final list but was on the original list of MCF7H3 versus MCF7H3erbB2, 

with a fold change of — 2.31. What was most interesting about this gene was it linked 

the 9-gene pathway to tissue factor pathway inhibitor (TFPI) (Figure 3.3.7), the gene 

with the greatest increase of expression (19.77 fold) on the final list of 108 genes. TFPI
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was chosen as a target for siRNA knock-down based on its large fold change, and 

THBS1 was chosen because of its association with TFPI.

3.3.3.5 MCF7H3erbB2 invasion specific genes chosen for further analysis

Five genes in all were chosen for siRNA knock-down based on specificity to 

MCF7H3erbB2 and invasion, association with tissue factor pathway inhibitor (as 

indicated by PathWayAssist®), and relevance to cancer/invasion in the literature. The 

other targets chosen were tumour necrosis factor alpha-induced protein 8 (TNFAIP8), 

early growth response 1(EGR1) and ribosomal protein S6 kniase, 90kDa, polypeptide 3 

(RPS6KA3). All 3 genes were contained within the 9-gene pathway identified by 

PathWay Assist (Table 3.3.8).
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Figure 3.3.6 Direct interaction between genes specific to MCF7H3erbB2 and

invasion.

Figure 3.3.6: Pathway 1: direct interaction between genes specific to MCF7H3erbB2 

and invasion. Blue = negative fold change; Red = positive fold change (Section 2.5.18)

160



Table 3.3.8: Genes specific to MCF7H3erbB2 and invasion (Pathway 1)

Name Description Fold change

TNFAIP8 tumor necrosis factor, alpha-induced protein 8 2.47

RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 2.36

EGR3 early growth response 3 2.29

EGR1 early growth response 1 2.23

MAP3K1 mitogen activated protein kinase kinase kinase 1 1.45

PTEN

phosphatase and tensin homolog (mutated in multiple 

advanced cancers 1) -1.28

ESR1 estrogen receptor 1 -1.32

TANK TRAF family member-associated Nf-kappa B activator -1.44

UBE3A

ubiquitin protein ligase E3A (human papilloma virus E6- 

associated protein, Angelman syndrome) -1.69
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Figure 3.3.7 Direct interaction between Thrombospondin and pathway 1 (genes

specific to MCF7H3erbB2 and invasion)

Figure 3.3.7: Pathway 2: Direct interaction between Pathway 1, THBS1 and TFPI. 

Blue = negative fold change; Red = positive fold change (Section 2.5.18)
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Table 3.3.9: Genes linking TFPI to Pathway 1 (Pathway 2)

Name Description Fold change

TFPI tissue factor pathway inhibitor 20.28

EGRI early growth response 1 2.99

MAPK3 mitogen activated protein kinase 3 1.31

PTEN phosphatase and tensin homolog -1.28

THBS1 thrombospondin 1 -2.31

Table 3.3.10 Genes used for siRNA specific to MCF7H3erbB2/invasion

Gene Description Fold Change

TFPI Tissue factor pathway inhibitor (lipoprotein- 

associated coagulation inhibitor)

19.77

TNFAIP8 tumor necrosis factor, alpha-induced protein 8 2.47

RPS6KA3 ribosomal protein S6 kinase, 90kDa, 

polypeptide 3

2.36

EGRI early growth response 1 2.23

THBS1 thrombospondin 1 -2.31

Table 3.3.9: Fold change of genes in pathway 2; Table 3.3.10: Final list of genes 

specific to MCF7H3erbB2 and invasion, chosen for further analysis using siRNA 

knock-down.
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3.3.3.6 Genes specific to invasion in DLKP variants

Table 3.3.11 generation of genes specific to invasion, DLKP4E and DLKP4Emut

Cross list comparisons Number of genes changed

[DLKP versus DLKP4E] AND 
[DLKP versus DLKP4Emut] = [E]

379

[E] NOT [DLKP versus DLKPpcDNA] = [D] 240

Table 3.3.11: The above comparisons were made using dChip and Stanford’s gene 

comparison program (Section 2.5.14-16).

3.3.3.6.1 Genes changes specific to eIF4E in DLKP4E

In the case of DLKP compared to DLKP4E, DLKP is taken as the baseline and 

DLKP4E as the experiment. The 1415 genes changed refer to the number of genes 

expressed in DLKP4E that are up- or down-regulated compared to those expressed in 

DLKP. The resulting list of differentially expressed genes are those specific to DLKP 

after stable transfection of eIF4E.

3.3.3.6.2 Gene changes specific to eIF4Emut in DLKP4Emut

When DLKP was compared to DLKP4Emut, again DLKP was taken as the baseline and 

DLKP4Emut as the experiment. The 1138 genes changed refer to the number of genes 

expressed in DLKP4Emut that are up- or down-regulated compared to those expressed 

in DLKP. The resulting list of differentially expressed genes are those specific to DLKP 

after stable transfection of eIF4Emut.

3.3.3.6.3 Gene changes specific to pcDNA in DLKPpcDNA

Taking DLKP as the baseline and DLKPpcDNA as the experiment, the number of genes 

differentially expressed in DLKPpcDNA was 1950. This result was surprising as stable 

expression of an empty plasmid was not expected to greatly affect the parental cell line. 

It is possible that these changes were due to clonal variation and not pcDNA expression.
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3.3.3.6.4 Genes changes common to both DLKP4E and DLKP4Emut

Both DLKP4E and DLKP4Emut were highly invasive, so it was probable that of the 

genes common to both, some would be involved in invasion. A comparison of genes 

differentially expressed in DLKP4E and DLKP4Emut compared to parent DLKP, found 

378 common genes.

3.3.3.6.5 Genes common to DLKP4E and DLKP4Emut, not DLKPpcDNA

Although there was an increase in invasion in DLKPpcDNA, it was not significant 

compared to DLKP4E and DLKP4Emut. It is also important to note that the parent 

DLKP was mildly invasive, and so it was likely that a DLKPpcDNA clone would also 

be mildly invasive. Therefore, to further reduce the list of genes for analysis, gene 

changes due to pcDNA were removed. The final list contained 240 (Figure 3.3.7). Gene 

lists are summarised in table 3.3.11.

3.3.3.6.6 Final list of 240 genes specific to eIF4E/eIF4Emut and invasion

Of the 240 genes on the final list, 31 were poorly annotated. An examination of 

expression levels showed 20 genes had an expression level below 100, but the 

expression level of these genes changed sufficiently across cell lines to assume they 

were either being ‘switched on’ or ‘switched o ff  by eIF4E or eIF4Emut up-regulation, 

and so they were considered for further analysis (Figure 3.3.8).

Figure 3.3.8: Final list of 240 genes specific to eIF4E/eIF4Emut and invasion in

DLKP vs 
DLKPpcDNA

DLKP vs 
DLKP4Emut DLKP vs 

DLKP4E
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3.3.3.7 Pathway Assist ® analysis of DLKP4E/DLKP4Emut invasion-specific genes

The final list of 240 genes was further studied using Pathway Assist ©. Analysis carried 

out to identify genes with direct interaction revealed two separate gene pathways 

(Figure 3.3.9 and 3.3.10). These pathways, as before, were based on information 

available in the literature.

The first pathway identified several genes which had previously been associated with 

cancer in the literature (Figure 3.3.9). This fact alone showed the analysis had been 

successful in identifying invasion-specific genes. From this pathway Neuregulin (NRG) 

was chosen, based on its significant fold change and direct interaction with 7 genes 

from the final list. Results from Pathway Assist © showed NRG directly interacted with 

GRB2, SLC2A3, RPS6KB1 and RPS6KA3, and through these genes may effect CREM 

and PDGFA. Evidence from the literature suggested some or all of these genes were 

important for invasion, and so it was thought that knock-down of NRG would have a 

significant effect.

The last gene chosen was Myopalladin. This did not appear in either pathway and was 

chosen based on fold change (+9.06), and the fact that although it is known to regulate 

actin organization, there is no evidence in the literature of its involvement in invasion.

Several HOXB genes showed significant changes in expression on the final list, with 

fold changes ranging from +6 to +98. Based on this observation, the fact that HOXB 

genes are transcription factors associated with cancer phenotypes, and the Pathway 

Assist ® generated pathway (Figure 3.3.10), three of the HOXB genes were chosen for 

further analysis.

3.3.3.8 DLKP4E/DLKP4Emut invasion specific genes chosen for further analysis

Five genes in all were chosen for siRNA knock-down based on specificity to DLKP4E, 

DLKP4Emut and invasion, and relevance to cancer/invasion in the literature. These 

targets were HOXB4, HOXB6, HOXB7, NRG and MYO (table 3.3.14)
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Figure 3.3.9 Direct interaction between genes specific to DLKP4E, DLKP4Emut

and invasion.

Figure 3.3.9: Pathway 3: direct interaction between genes specific to DLKP4E, 4Emut 

and invasion. Blue = negative fold change; Red = positive fold change (Section 2.5.18)
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Table 3.3.12 Genes specific to DLKP4E, DLKP4Emut and invasion (Pathway 3)

Name Description Fold change

NRG1 neuregulin 1 7.36

PDGFA platelet-derived growth factor alpha polypeptide 4.83

RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 1.67

RPS6KB1 ribosomal protein S6 kinase, 70kDa, polypeptide 1 1.53

GRB2 growth factor receptor bound protein 2 -1.34

CYP51A1 cytochrome P450, family 51, subfamily A, polypeptide 1 -1.36

SLC2A3

solute carrier family 2 (facilitated glucose transporter), 

member 3 -2.64

CREM cAMP responsive element modulator -1.89

Table 3.3.12: fold change of genes in pathway 3.
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Figure 3.3.10 Direct interaction between genes specific to DLKP4E, 4Emut and

invasion

Figure 3.3.10: Pathway 4:direct interaction between genes specific to DLKP4E, 4Emut 

and invasion. Blue = negative fold change; Red = positive fold change (Section 2.5.18)

Table 3.3.13 genes specific to DLKP4E,4Emut and invasion (Pathway 4)

IN a me Description Fold change

HOXB2 horneo box B2 98.39

HOXB5 horneo box B5 34.38

HOXB6 horneo box B6 33.69

HOXB4 horneo box B4 6.51

Table 3.3.13: Fold change of genes in pathway 4
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Table 3.3.14 Genes used for siRNA specific to DLKP4E/DLKP4Emut and invasion

Gene Description Fold change

HOXB6 homeo box B6 33.69

HOXB4 homeo box B4 6.51

HOXB7 homeo box B7 7.65

NRG1 neuregulin 1 7.36

MYO myopalladin 9.06

Table 3.3.14: Final list of genes chosen for further analysis using siRNA knock-down. 

Specific to DLKP4E/DLKP4Emut.
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3.3.4 Genomatix®

Microarray results reflect a multitude of simultaneous cellular processes although only 

subsets of expression changes are directly caused by the experimental conditions. 

Therefore, a major task for an in depth analysis is to identify genes whose expression 

changes due to the experimental setup and distinguish them from effects of biological 

diversity or general stress response of the cell. Genomatix is based on a combination of 

statistical, literature and promoter analysis and aims at establishing gene promoter 

networks on a molecular level.

Array analysis revealed mRNA with significantly changed expression levels but failed 

to assign these changes to biological events. Projecting microarray data onto 

information from literature using GenMAPP allowed association of genes with 

biological processes, but was restricted to current knowledge, and therefore may not 

have acknowledged genes that are directly pertinent for the experimental conditions. 

Pathway Assist took this process a step further by identifying direct interaction between 

genes with significantly changed expression levels, but again this analysis was restricted 

to previously published data. However, the strong connection between the five genes 

chosen, combined with statistical relevance (based on p-value) and relation to cancer 

invasion, implied that they may relate specifically to the experimental conditions. For 

this reason it was decided that further analysis using Genomatix® (see section 2.5.20) 

might reveal promoter networks specific to these genes and this experiment. Genomatix 

combines promoter and pathway analysis allowing for the integration of genes that may 

have been missed by individual methods.

3.3.4.1 Genomatix analysis of siRNA targets of MCF7H3erbB2

The five genes used in the analysis were: TFPI (Tissue factor pathway inhibitor 

(lipoprotein-associated coagulation inhibitor)), TNFAIP8 (tumour necrosis factor alpha- 

induced protein 8), RPS6KA3 (ribosomal protein S6 kinase, 90kDa, polypeptide 3), 

EGR1 (early growth response 1), THBS1 (thrombospondin 1). As EGR1 is a known 

transcription factor, it was removed from the analysis. The promoter sequences for all 

four genes were analysed using the ELDorado™/ Gene2romoter system (see section

2.5.20). ELDorado is a genome annotation database which is based on a condensation 

of publicly available data plus Genomatix proprietary annotation, including promoters, 

transcription factor binding sites, promoter modules, scaffold/matrix attachment regions 

(S/MARs), and single nucleotide polymorphisms (SNPs) as well as comparative
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genomics. Gene2Promoter is a multiple identifier interface to query ELDorado. This 

allowed retrieval and selection of the promoters for subsequent promoter analysis. 

Promoter analysis was carried out using FrameWorker (see section 2.5.20), a software 

tool which allows the extraction of common motifs of transcription factor binding sites 

from the given set of promoter sequences.

Of the four genes analysed there wasn't a transcription factor model that fit all 4. Two 

three-element models fit 3/4 genes (TNFAIP8, RPS6KA3, THBS1), with FW scores of

0.60 and 0.43. The FW (FrameWorker) scores showed the ratio of the number of 

sequences with matches to the number of model matches (overlapping and non­

overlapping, respectively). These scores allowed assessment of the quality of the model 

generated. The higher the scores, the more specific is the extracted model. A very low 

FW score (<0.5) would indicate a model that is likely to match very often in random 

DNA sequences. For example, if  a model matches 20 times in 10 training sequences, the 

FW-score is 10/20 = 0.5. A good model would be expected to match not more than once 

in each sequence (this would yield a FW score of 1.00). Therefore, the first model, with 

a FW score of 0.6 was more specific (Figure 3.3.11a). In this model, the 3 transcription 

factors were SP1F, ZF5F and EGRF. It was encouraging that EGRF appeared as EGR1 

had previously been chosen through PathWay Assist because of its association with the 

other four genes (Figure 3.3.6). This provides the first indication that the analytical 

approach used may have identified a biologically relevant transcription network.

The EGRF transcription factor occurs in 60.0 % of all vertebrate promoters, ZF5F in 

25% and SP1F is ubiquitous, so it was clear that individually none were highly specific 

across the genome. To assess the specificity of the combination of all 3 factors, all 

human promoters were scanned using Modellnspector, which is connected to 

Genomatix Promoter Database GPD, containing 50,109 promoters. Only 84 gene 

promoter regions in the whole genome contained the defined framework suggesting a 

high degree of specificity of this model.
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Figure 3.3.11 3-element Transcription Factor models fitting 3 of 4 selected genes

Figure 3.3.11a: (model 1)

nsooss
TNHUPB 

NT_(B4772 ' 
Homo sapient 

615 bp

Show model matches at portion
& 290 - 3S1 R7 3M-351

P6783M 
RPS6KA3 

KT_011757 
Homo sapiens 

602 bp

Show model matches at position
P32-71  P  32 - 71

P862SM 
THBS1 

NTJM0194 
Homo sapiens 

601 bp

I

I

»■ip I ion bp

Figure 3.3.11b: (model 2)
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Figure 3.3.11a: FW=0.6, 3-element Transcription Factor model fitting 3 of 4 selected 

genes (model 1); Figure 3.3.11b: FW= 0.43, 3-element Transcription Factor model 

fitting 3 of 4 selected genes
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3.3.4.2 BiblioSphere analysis

The list of 84 genes was brought into BiblioSphere for further analysis (see section

2.5.20). BiblioSphere is a data-mining solution for extracting and analyzing gene 

relationships from literature databases and genome-wide promoter analysis. 

BiblioSphere contains literature data mining strategies using more than 350,000 quality 

checked gene names and searches over 15 million abstracts. The genes were grouped 

into the various Gene Ontology (GO) catagories and, ignoring those with only one or 

two genes, the highest ranking category was Neovascularisation. Only 5.8 genes would 

be expected in this catagory, but there were 41 found, giving a Z score of 14.69.

The expression level of this group of 84 genes was then checked against the original list 

of differentially expressed genes from the array experiment (MCF7H3 (non-invasive) 

compared to MCF7H3erbB2 (invasive)), and it was found that 33 genes were on this list 

of 3349 genes. This is far more than would be expected randomly (3349 genes = ~6% of 

55,000 total but 33 genes = 40% of 84 genes) which provides another line of evidence 

that this promoter module may be active in this system. The list of 118 genes, from 

which the original five genes used for the Genomatix analysis were chosen (Section

3.3.3.3.5), was compared to the list of 84 genes with promoter regions specific to this 

model. The two lists had 3 genes in common. These 3 genes were thrombospondin 1, 

tumor necrosis factor alpha-induced protein 8 and ribosomal protein S6 kinase, 90kDa, 

polypeptide 3. These are the 3 genes present in the transcription factor model generated 

by Genomatix, as would be expected.

The second model generated by FrameWorker had a FW score of 0.43, contained the 

genes TNFAIP, RPS6KA3, THBS1, and the transcription factors SPI1, ZF5F and ZBPF 

(Figure 3.3.11b). Again, taken individually none of these transcription factors were 

highly specific, but combined in this particular Framework they are found in only 118 

genes in the entire genome, which indicates a high degree of specificity.

Model 1 and model 2 had 41 genes in common, 9 of which were on the list of 

MCF7H3erbB2 differentially expressed genes (compared to MCF7H3) (3348 genes 

Table 3.3.6), and 3 were on the list of 118 genes used to select siRNA targets. Though 

all of the above genes were found related to cancer, few direct links were found in the 

literature between erbB2 and this group of genes. Therefore, if  these transcription factor 

motifs are specific to erbB2 up-regulation, they may provide links to novel genes 

specific to erbB2 up-regulation.
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Table 3.3.15 Overview of element distribution in models 1 and 2:

Element 1 V$SP1F

Element 2 V$ZF5F

Element 3 V$EGRF V$ZBPF

Table 3.3.16: Genes common to model 1 and 2 also present in MCF7H3erbB2

Gene Fold change P value

ribosomal protein S6 kinase, 90kDa, polypeptide 3 2.72 0.004085

tumor necrosis factor, alpha-induced protein 8 2.52 0.018687

CD99 antigen 2.29 0.000499

transforming, acidic coiled-coil containing protein 1 2.24 0.003028

insulin receptor substrate 2 2.17 0.001826

hypothetical protein FLJ20701 1.74 0.028567

ubiquitin specific protease 32 1.41 0.00361

zinc finger, MYND domain containing 19 -1.29 0.029064

thrombospondin 1 -2.93 0.000328

Neither o f the models were found in the literature, but both models were found in rat 

and mouse. When scanned across the rat and mouse genomes, model 1 was specific for 

60 genes in mouse and 14 in rat, and model 2 for 53 genes in mouse and 19 in rat. A 

final comparison to identify the presence of orthologues in these gene lists would be 

very useful to further estimate the likely biological relevance of the models -  promoter 

modules that are conserved across species are likely to be functional, otherwise 

evolutionary mutations would have accumulated.
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3.3.5 Analysis of DLKP4E compared to MCF74E

Both DLKP and MCF7 were transfected with HA-tagged eIF4E and eIF4Emut, 

resulting in an increase in invasion in DLKP but no change in invasion of MCF7. It was 

clear from these experiments that phosphorylation of eIF4E did not influence the 

invasive phenotype. It was decided not to include genes differentially expressed as a 

result of eIF4Emut overexpression in this particular analysis, as it was assumed all gene 

changes necessary for invasion would be expressed in wild-type eIF4E overexpressing 

cells.

To examine why overexpression of wild type eIF4E caused DLKP to become more 

invasive but not MCF7, analysis of MCF74E and DLKP4E microarray results was 

carried out. Comparison analysis was carried out using dChip and the Stanford gene 

comparison site: http://worm-chip.Stanford.edu/~iiml/Compare.html (Section 2.5.14- 

16). DLKP4E specific genes were determined by comparing changes in DLKP to 

DLKP4E using dChip. This list was reduced by removing genes that had changed due to 

pcDNA using Stanford ‘gene comparison’. MCF74E specific genes were determined in 

the same way. Two different comparisons were made for this study (Table 3.3.17).

1. Genes present in both DLKP and MCF7 with different patterns of expression, 

prior to eIF4E transfection

2. Gene changes due to eIF4E overexpression in DLKP4E and not in MCF74E.

3. Genes common to DLKP4E and MCF7H3erbB2 but not MCF74E (with the 

same pattern of expression).

Table 3.3.17 Gene list: analysis of changes in DLKP4E compared to MCF74E
Cell line comparison Num ber o f genes changed

DLKP versus DLKP4E 1415

DLKP versus DLKPpcDNA 1950

MCF7 versus MCF74E 864

MCF7 versus MCF7pcDNA 2829

MCF7H3 versus MCF7H3 erbB2 3348

Cross list comparison Num ber o f genes changed

Differentially expressed in DLKP4E not MCF74E 863

DLKP4E & MCF7H3erbB2 common genes, not MCF74E 351

DLKP and MCF7 common genes with different levels o f  

expression i.e. +fold change in DLKP, -fold change in MCF7

239
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3.3.5.1 DLKP and MCF7 common genes with different levels of expression

Both cell lines used in this analysis are derived from different tissue types (DLKP=lung, 

MCF7=breast) and therefore differ greatly; particularly in regards to proliferation and 

morphology. These differences alone would result in two very different mRNA profiles. 

With particular relevance to this study, DLKP displayed mildly-invasive characteristics 

prior to eIF4E transfection. This meant DLKP may have been pre-disposed to an 

invasive phenotype, already having some of the genes and signalling pathways 

necessary for invasion ‘switched on’. To examine the difference in baseline expression 

of genes in both cell lines, MCF7 parental cell line was compared to DLKP parental cell 

line to determine what genes were expressed in both. This comparison resulted in 

thousands of genes, and so to narrow the search only genes with expression values< 50 

in MCF7 and fold change of >10 when compared to DLKP were used for further 

analysis. This resulted in a list of 239 genes which exhibited very low expression in 

MCF7 but were expressed at a high level in DLKP.

Pathway Assist® analysis found that several networks o f genes existing within this list 

were relevant to cancer progression. Of note are those involved in the regulation of 

inflammation, proliferation and survival (Figure 3.3.12-14).
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Figure 3.3.12 Genes common to DLKP and MCF7 with different levels of

expression - involved in inflammation

Figure 3.3.12: Representation of genes involved in regulation of inflamation in DLKP 

not MCF7. Detailed description of nodes and controls in Section 2.5.18.
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Table 3.3.18: Genes common to DLKP and MCF7 with different levels of

expression - involved in inflammation

Gene Description Regulation o f

Inflam ution

Relative fo ld change: 

D LKP  compared to 

MCF7

AGPS alkylglycerone phosphate

synthase

unknown + 137

AKAP12 A kinase (PRKA) anchor protein 

(gravin) 12

unknown + 747

CD36 CD36 antigen (collagen I 

receptor, thrombospondin 

receptor)

unknown + 29.03

CDH2 cadherin 2, type 1, N-cadherin 

(neuronal)

unknown + 177

DMD dystrophin (muscular dystrophy) unknown + 72

EMPI epithelial membrane protein 1 negative + 255

FLNC filamin C, gamma (actin binding 

protein 280)

unknown + 58.72

HGF hepatocyte growth factor 

(hepapoietin A; scatter factor)

unknown + 1089

MAP1B microtubule-associated protein 

IB

negative + 28

MAPK1 mitogen activated protein kinase 

12

negative + 16

PDE4B phosphodiesterase 4B, cAMP- 

specific (phosphodiesterase E4 

dunce homolog, Drosophila)

unknown + 168

PTX3 pentaxin-related gene, rapidly 

induced by IL-1 beta

unknown + 98

SLC40A

1

solute carrier family 40 (iron 

regulated transporter)memberl

unknown + 79

TCF4 transcription factor 4 unknown + 65
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Figure 3.3.13 Genes common to DLKP and MCF7 with different levels of

expression - involved in proliferation
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Figure 3.3.13: Representation of genes involved in regulation of proliferation in DLKP 

not MCF7. Detailed description of nodes and controls in Section 2.5.18.
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Table 3.3.19: Genes common to DLKP and MCF7 with different levels of

expression - involved in proliferation
G e n e D e s c r ip t io n R e g  l i  hi I ion o f  

prol i  feral  ion
l old c h a n g e

AGPS alkylglycerone phosphate synthase unknown + 137
AKAP12 A kinase (PRKA) anchor protein (gravin) 12 unknown + 747
AKT3 v-akt murine thymoma viral oncogene 

homolog 3 (protein kinase B, gamma)
unknown + 44

BMP5 bone morphogenetic protein 5 positive +  25
BTG3 BTG family, member 3 unknown + 1 2

CD36 CD36 antigen (collagen type I receptor, 
thrombospondin receptor)

unknown + 29

CDH2 cadherin 2, type 1, N-cadherin (neuronal) positive + 177
COL5A2 collagen, type V, alpha 2 unknown + 96
CREM cAMP responsive element modulator unknown + 15
DDAH1 dimethylarginine dimethylaminohydrolase 1 positive +  2 2

DLX2 distal-less homeo box 2 unknown + 55
DMD dystrophin (muscular dystrophy, Duchenne 

and Becker types)
unknown + 72

DUSP6 dual specificity phosphatase 6 unknown + 146
EDG1 endothelial differentiation, sphingolipid G- 

protein-coupled receptor, 1

negative + 1723

EMPI epithelial membrane protein 1 positive + 255
EMP3 epithelial membrane protein 3 unknown +76
FBN1 fibrillin 1 (Marfan syndrome) unknown +15
FBX02 F-box protein 2 negative +19
GRK5 G protein-coupled receptor kinase 5 negative + 13
GSTA4 glutathione S-transferase A4 unknown +24
HGF hepatocyte growth factor (scatter factor) positive + 1089
HOXA9 homeo box A9 negative + 503
HOXCIO homeo box CIO unknown + 32
IGFBP3 insulin-like growth factor binding protein 3 negative + 36
ITPR1 inositol 1,4,5-triphosphate receptor, type 1 unknown + 48
LPHN2 latrophilin 2 negative + 27
MAP1B microtubule-associated protein IB unknown + 35
MAP2 microtubule-associated protein 2 negative + 6 8

MAPK12 mitogen activated protein kinase 1 2 unknown + 16
MRAS muscle RAS oncogene homolog positive + 2 2

MTAP methylthioadenosine phosphoiylase negative + 114
PIWIL1 piwi-like 1 (Drosophila) unknown
PLD1 phospholipase D l, phophatidylcholine- 

specific
unknown + 42

PTX3 pentaxin-related gene, rapidly induced by IL-1 
beta

unknown + 98

RUNX3 runt-related transcription factor 3 unknown + 33
SLC16A1 solute carrier family 16 (monocarboxylic acid 

transporters), member 1

unknown + 28

SOX2 SRY (sex determining region Y)-box 2 negative + 36
SPRED1 sprouty-related, EVH1 domain containing 1 negative + 2 0

TCF4 transcription factor 4 unknown + 8 8

TFPI2 tissue factor pathway inhibitor 2 unknown + 41
TWIST 1 twist homolog 1 (acrocephalosyndactyly 3; 

Saethre-Chotzen syndrome) (Drosophila)
unknown + 422

UPP1 uridine phosphorylase 1 negative + 168
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Figure 3.3.14 Genes common to DLKP and MCF7 with different levels of

expression - involved in cell survival
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Figure 3.3.14: Representation of genes involved in regulation of cell survival in DLKP 

not MCF7. Detailed description of nodes and controls in Section 2.5.18.
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Table 3.3.20: Genes common to DLKP and MCF7 with different levels of

expression - involved in cell survival

Gene Description Regulation o f  cell 
survival

Fold change

HGF hepatocyte growth factor 
(hepapoietin A; scatter factor)

Positive + 1089

IGFBP3 insulin-like growth factor binding 
protein 3

Negative + 63

DMD dystrophin (muscular dystrophy, 
Duchenne and Becker types)

Unknown + 72

SLC16A1 solute carrier family 16 
(monocarboxylic acid transporters), 
member 1

Positive + 28

ITPR1 inositol 1,4,5-triphosphate receptor, 
type 1

Positive + 48

MRAS muscle RAS oncogene homolog Positive + 22
MAP2 microtubule-associated protein 2 Unknown + 68
CREM cAMP responsive element 

modulator
Unknown + 15

CD36 CD36 antigen (collagen type I 
receptor, thrombospondin receptor)

Unknown + 29

AKT3 v-akt murine thymoma viral 
oncogene homolog 3 (protein kinase 
B, gamma)

Unknown + 41

EDG1 endothelial differentiation, 
sphingolipid G-protein-coupled 
receptor, 1

Unknown + 1723

FKBP1B FK506 binding protein IB, 12.6 kDa Unknown + 18
DPYD dihydropyrimidine dehydrogenase Unknown + 18
CDH2 cadherin 2, type 1, N-cadherin 

(neuronal)
Positive + 177

PTX3 pentaxin-related gene, rapidly 
induced by IL-1 beta

Unknown + 98

RUNX3 runt-related transcription factor 3 Unknown + 33
TFPI2 tissue factor pathway inhibitor 2 Unknown + 41
HOXA9 homeo box A9 Unknown + 503
GSTA4 glutathione S-transferase A4 Unknown + 24
TWIST 1 twist homolog 1

(acrocephalosyndactyly 3; Saethre- 
Chotzen syndrome) (Drosophila)

Unknown + 422

ELYS ELYS transcription factor-like 
protein TMBS62

Unknown + 12

183



3.3.5.2 Gene changes due to eIF4E in DLKF4E and not in MCF74E

Gene changes in DLKP due to eIF4E and not pcDNA were compared to gene changes 

in MCF7 due to eIF4E and not pcDNA. A list of 863 genes changed specific to 

DLKP4E and not MCF74E. As eIF4E caused a change in invasion when transfected 

into DLKP but not MCF7, these gene changes were associated with an invasive 

phenotype in DLKP4E, and lack of same in MCF7. The list was further examined using 

PathwayAssist® (Section 2.5.18).

Pathway analysis found that the genes were predominantly involved in motility and 

proliferation. Of the 863 genes examined, 67 genes were involved in the regulation of 

molitity (Figure 3.3.15). 17 of these were known to be negative regulators of motility, 

and 16 positive regulators. 34 were associated with motility but their exact role 

unknown (Table 3.3.21). 34% of this set of genes had a fold change greater than 2; a 

significant change. That is approx. 8% of the group studied. This result provides 

evidence that the genes selected through PathwayAssist analysis play a significant role 

in motility, which is important in the invasion process. Therefore no significant change 

in these genes in the MCF74E cell line may be contributing to the cells lack of invasion. 

80 of the 836 genes were involved in proliferation (Figure 3.3.16). O f these 21 were 

known to be involved in negatively regulating proliferation, and 11 in positive 

regulation. 47 genes were associated with proliferation in the literature but their exact 

role was unknown (Table 3.3.22). Dysregulation o f proliferation is associated with 

development of neoplasia, and is also associated with the overexpression of eIF4E. 

Again, this result indicates that these genes, or lack of in the case of MCF7, may be 

important in the invasion process.
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Figure 3.3.15 Gene changes due to eIF4E in DLKP4E not MCF74E involved in

regulation of motility

Figure 3.3.15: Representation of genes involved in regulation of motility in DLKP4E

specific genes. Detailed description of nodes and controls in Section 2.5.18.

185



Table 3.3.21 Gene changes due to eIF4E in DLKP4E not MCF74E related to

regulation of motility

Cene
Regulation of 

motilità I'old change Cene
Regulation of 

motility
1 old

cliangc
ADM negative 2.27 AKAP12 unknown 3.58

ANXA1 negative 3.31 ARHGAP8 unknown 1.49
ANXA5 negative 2.47 C20orfl 1 unknown 1.22
CREB1 negative 1.72 CCNE1 unknown 5.54
DRG1 negative -1.26 CD24 unknown 1.37
FBLN1 negative 1.44 CDKN2A unknown 3.19
GNB5 negative 1.5 CRMP1 unknown 2.04
HEY1 negative -1.52 DPYSL2 unknown -1.43

HOXAIO negative -3.72 EFG1 unknown 2.4
IL1R1 negative -1.79 EGRI unknown 2.64
ITGB5 negative 1.46 F11R unknown -1.78

MY05A negative 1.66 GH1 unknown 1.22
NISCH negative 1.37 GNAS unknown 2.94
PAWR negative 1.81 ITGA6 unknown 21.63
PTEN negative -1.49 JUP unknown 1.57
TEMP4 negative -1.32 KRT10 unknown 1.75
TIPI negative 1.31 MAP4K4 unknown 2.27

TMSB10 negative 1.59 MY06 unknown -1.31
ARF1 positive -1.31 NCOA4 unknown 1.33
ARHE positive 3.11 NIFIE14 unknown 1.5
CAPG positive 1.66 OCLN unknown 1.62
CDH2 positive 2.52 OGT unknown 1.7
FGF10 positive 4.08 PAFAH1B1 unknown -2.77
HGF positive -1.6 PITX2 unknown 2.25
ILI 8 positive 5.42 PRKX unknown 1.73

LAMPI positive 1.24 PROSI unknown 1.42
LEP positive -1.69 RDX unknown -5.65

LTBP1 positive 2.71 R0B02 unknown 39.23
MCP positive -1.48 SCAPI unknown 1.62

PDGFA positive 4.14 SMAD5 unknown 2.06
RAB9A positive 1.69 SSH1 unknown 1.59
STAT5B positive 1.7 TM4SF6 unknown 1.54

TF positive -1.41 TRIO unknown 1.67
TUB A3 positive 1.43 TUB unknown 1.56

Table 3.3.21: Role in regulation of motility of DLKP4E specific genes.
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Figure 3.3.16 Gene changes due to eIF4E in DLKP4E not MCF74E involved in

regulation of proliferation
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Figure 3.3.16: Representation of genes involved in regulation of proliferation in 

DLKP4E specific genes. Detailed description of nodes and controls in Section 2.5.18.
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Table 3.3.22 Gene changes due to eIF4E in DLKP4E not MCF74E related to

regulation of proliferation

Cene
Regulation of 

motility Fold change Cene
Régulation of 

motililv
lokl

change
BIRC5 negative 1.26 COPS5 unknown 1.23
BOP1 negative 1.27 CREM unknown -1.97

C10orf9 negative -1.93 CUL2 unknown -1.43
CPE negative -2.04 DNAJA2 unknown 1.21

CTNNBIP1 negative 1.35 DNM1L unknown 1.3
CUL5 negative 1.31 E2F3 unknown 1.42
E2F7 negative 1.66 EGRI unknown 2.4

F0X03A negative 1.83 EPB41 unknown 2.07
GLMN negative 1.45 FANCL unknown 1.29
IHPK1 negative 2.31 HIPK2 unknown 1.87
LOXL2 negative 3.9 HIS1 unknown 1.72
MFGE8 negative 6.39 HNRPA3 unknown 1.28
MKL2 negative 1.65 HOXB8 unknown 20.76

RANBP2 negative 1.34 ISGF3G unknown 1.51
RSU1 negative -1.45 ISL1 unknown 4.4
SSA2 negative 1.49 KLF5 unknown 2.47

SYNP02 negative 1.7 LIGI unknown 1.68
TGFB1I1 negative 1.6 LIM unknown 1.47

TPM1 negative 1.57 MCM2 unknown 1.35
TUBB negative 6.01 MTS SI unknown 2.31
BIRC3 positive 1.26 MUT unknown 1.4
BMI1 positive -1.51 NEFH unknown -1.21

BMPR1A positive 1.5 NIPBL unknown 1.38
CLN2 positive 1.36 NKX3-1 unknown -4.27

CUL4A positive 1.41 NOLA1 unknown 1.3
GTF2IRD1 positive 1.72 NRIP1 unknown 2.19

HIG2 positive 1.89 PIN4 unknown 1.32
MLLT6 positive 1.76 PPIA unknown 1.27
MSX1 positive 6.26 PTMS unknown 1.38
PSIP1 positive 1.35 RGC32 unknown -4.96
RFP positive 1.46 RPS6KA3 unknown 1.8

AGRN unknown 1.56 SDC3 unknown 1.65
ANP32A unknown 1.34 SHMT1 unknown 1.38
ARNT2 unknown 1.61 SLC16A3 unknown -2.68
BTBD7 unknown 1.71 SMARCC1 unknown 1.83
BTG3 unknown 2.27 SMARCE1 unknown 1.4
CA11 unknown 1.48 SSX1 unknown -10.19
CBS unknown 1.36 TCF3 unknown 1.31

CIP29 unknown 1.29 TNFSF7 unknown 3.19
YME1L1 unknown -1.47

Table 3.3.22: Role in regulation of proliferation of DLKP4E specific genes.
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3.3.5.3 Genes common to DLKP4E and MCF7H3erbB2 but not MCF74E, with the 

same pattern of expression.

MCF7H3erbB2 is an erbB2-expressing invasive clone of MCF7, and many of the gene 

changes which occur in this cell line compared to parent MCF7H3 are related to its 

invasive phenotype. To further investigate gene changes that occur due to eIF4E in 

DLKP4E and are related to invasion, genes that were common to both MCF7H3erbB2 

and DLKP4E but not MCF74E were examined using Pathway Assist ®. This resulted in 

a list of genes that were differentially expressed with a phenotypical change from non- 

invasive to invasive in an MCF7 cell line, and also relevant to invasion as a result of 

eIF4E overexpression. Several pathways were generated which showed common targets 

for this list of genes. Of the 351 genes on the list 34 were involved in cell survival 

(Figure 3.3.17), 12 in invasion (Figure 3.3.18), 30 in motility (Figure 3.3.19) and 54 in 

apoptosis (Figure 3.3.20). Of most likely significance to this study were those involved 

in invasion and motility. The fact that these genes are significantly changed in two 

invasive cell lines, and not in non-invasive MCF74E, suggests they may play an 

important role in invasion in both DLKP and MCF7.

189



Figure 3.3.17 Gene changes involved in regulation of cell survival common to

MCF7H3erbB2 and DLKP4E not MCF74E
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Figure 3.3.17: Representation of genes involved in regulation of cell survival in

MCF7H3erbB2 and DLKP4E. Detailed description of nodes and controls in Section

2.5.18.
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Table 3.3.23 Regulation of cell survival by DLKP4E MCF7H3erbB2 not MCF74E

common genes

G e n u De s cr ip t io n R c m i l a l i on  o f 1 okl  cl an«'c 1 o ld chaiV’C
cell  su r \  ival DI .  KP M C I  71 ! 3 c r b B2

CIT citron (rho-interacting, 
serine/threonine kinase 2 1 )

negative + 1.32 + 1 .8 8

APP amyloid beta (A4) precursor protein 
(peptidase nexin-II, Alzheimer 

disease)

positive +  1 .2 2 +  1 .8

CDC25B cell division cycle 25B positive +1.27 +  1.46
EGR1 Early growth response positive +2.4 +3.76

ERBB2 v-erb-b2  erythroblastic leukemia 
viral oncogene homolog 2 , 
neuro/glioblastoma derived 

oncogene homolog

positive +1.34 +1.48

MCL1 myeloid cell leukemia sequence 1 

(BCL2-related)
positive +1.23 +1.27

NOTCH2 Notch homolog 2 (Drosophila) positive +1.24 +1.23
SLC16A1 solute carrier family 16, member 1 

(monocarboxylic acid transporter 1)
positive +1.27 + 1 .8

SLC7A5 solute carrier family 7 (cationic 
amino acid transporter, y+ system), 

member 5

positive +2.13 +1.45

ADM adrenomedullin unknown +2.27 +2.63
ANXA5 annexin A5 unknown +2.47 + 1 .6

BHLHB2 basic helix-loop-helix domain 
containing, class B, 2

unknown +1.33 +1.98

CAMLG calcium modulating ligand unknown +1.24 +1.47
CD24 CD24 antigen (small cell lung 

carcinoma cluster 4 antigen)
unknown +5.81 +1.42

CHES1 checkpoint suppressor 1 unknown +1.7 +2.67
CIRBP cold inducible RNA binding protein unknown +1.42 +1.34
EFNA1 ephrin-Al unknown +2.38 +2.04

FCGR2A Fc fragment o f IgG, low affinity 
Ha, receptor (CD32)

unknown -1.44 -1.85

HSPA14 heat shock 70kDa protein 14 unknown -1.28 -1.46
LMNA lamin A/C unknown + 1 .6 +1.67
MICB MHC class I polypeptide-related 

sequence B
unknown -1.64 -1.48

P4HA1 procollagen-proline, 2 -oxoglutarate 
4-dioxygenase (proline 4- 

hydroxylase), alpha polypeptide I

unknown -1.38 -1.69

PAK2 p21 (CDKNlA)-activated kinase 2 unknown - 1 .2 -1.44
PYCARD PYD and CARD domain containing unknown 90.95 -1.65
SH3KBP1 SH3-domain kinase binding protein 

1

unknown 1.72 2 .1

SLC25A6 solute carrier family 25 
(mitochondrial carrier; adenine 

nucleotide translocator), member 6

unknown 1.25 1.31

SSR1 signal sequence receptor, alpha 
(translocon-associated protein 

alpha)

unknown - 1 .2 1 -1.36

TFPI2 tissue factor pathway inhibitor 2 unknown - 10.96 -1.53
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Figure 3.3.18 Gene changes involved in regulation of invasion common to

MCF7H3erbB2 and DLKP4E not MCF74E

Figure 3.3.18: Representation of genes involved in regulation of invasion in

MCF7H3erbB2 and DLKP4E. Detailed description of nodes and controls in Section

2.5.18.
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Table 3.3.24 Regulation of invasion by DLKP4E MCF7H3erbB2 not MCF74E

common genes

(it1 111' Description Regulation of 

invasion

Fold

change

DLKl*

fold  change 

MCI 7erhl*2

RRM1

ribonucleotide reductase M l 

polypeptide negative 1.23 1.42

TFPI2

tissue factor pathway inhibitor 

2 negative -10.96 -1.53

TIMP2

TIMP metallopeptidase 

inhibitor 2 negative -1.27 -2.32
LMNA lamin A/C positive

1 .6 1.67
CD99 CD99 molecule positive 2.04 2.09

ERBB2

v-erb-b2  erythroblastic 

leukemia viral oncogene 

homolog 2 , neuro/glioblastoma 

derived oncogene homolog positive 1.34 1.48

CAPG

capping protein (actin 

filament), gelsolin-like unknown
1 .6 6 1 .6

CD24 CD24 molecule unknown 5.81 1.42
EFNA1 ephrin-Al unknown 2.38 2.04
FBLN1 fibulin 1 unknown 1.44 2.97

SLC7A5

solute carrier family 7 (cationic 

amino acid transporter, y+ 

system), member 5 unknown 2.13 1.45
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Figure 3.3.19 Gene changes involved in regulation of motility common to

MCF7H3erbB2 and DLKP4E not MCF74E
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Figure 3.3.19: Representation of genes involved in regulation of motility in

MCF7H3erbB2 and DLKP4E. Detailed description of nodes and controls in Section

2.5.18.
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Table 3.3.25 Regulation of motility by DLKP4E MCF7H3erbB2 not MCF74E

common genes

(iene 1 »cscrip I ion 1) ¡VI Gene Description D M

MICA

MHC class I 
polypeptide-related 

sequence A -1.69 -1.57
LAMA

5 laminin, alpha 5 1.39 1.47

EGRI early growth response 1 2.4 3.76
CDC25

B
cell division cycle 

25B 1.27 1.46

ERBB2

v-erb-b2  erythroblastic 
leukemia viral oncogene 

homolog 2 , 
neuro/glioblastoma 
derived oncogene 
homolog (avian) 1.34 1.48

AHNA
K

AHNAK
nucleoprotein
(desmoyokin) 1.65 1.81

RRM1
ribonucleotide reductase 

M l polypeptide 1.23 1.42 ITGB5 integrin, beta 5 1.46 1.44

ADM adrenomedullin 2.27 2.63 TFPI2
tissue factor 

pathway inhibitor 2 10.96 -1.53

CD24

CD24 antigen (small cell 
lung carcinoma cluster 4 

antigen) 5.81 1.42
TNFRS
F12A

tumor necrosis 
factor receptor 
superfamily, 
member 12A -1.37 -1.41

ANXA5 annexin A5 2.47 1.65 CAPG

capping protein 
(actin filament), 

gelsolin-like 1 .6 6 1 .6

PAK2
p21 (CDKN1A)- 
activated kinase 2 - 1 .2 -1.44 FSCN1

fascin homolog 1 , 
actin-bundling 

protein 
(Strongylocentrotu 

s purpuratus) 1.81 2.62

TIMP2
tissue inhibitor o f  

metalloproteinase 2 -1.27 -2.32 FBLN1 fibulin 1 1.44 2.97

CASK

calcium/calmodulin- 
dependent serine protein 
kinase (MAGUK family) 1.29 1.63

ITGB1
BP1

integrin beta 1 

binding protein 1 -1.24 -1.45

APP

amyloid beta (A4) 
precursor protein 
(protease nexin-II, 
Alzheimer disease) 1 .2 2 1 .8 LRP8

low density 
lipoprotein 

receptor-related 
protein 8 , 

apolipoprotein e 
receptor 1.26 1.48

DLC1 deleted in liver cancer 1 -1.54 -1.96 TFDP2

transcription factor 
Dp-2 (E2F 

dimerization 
partner 2 ) 1.92 2.37

ARF1
ADP-ribosylation factor 

1 -1.31 -1.32
TM4SF

6

transmembrane 4 
superfamily 
member 6 1.59 1.59

RAB9A
RAB9A, member RAS 

oncogene family 1.69 1.57
ARHG

AP8

Rho GTPase 
activatmg protein 8 2.58 1.45

EFNA1 ephrin-Al 2.38 2.04 CD99 CD99 antigen 2.04 2.09

D= DLKP4E fold change, M= MCF7H3erbB2 fold change.
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Figure 3.3.20 Gene changes involved in regulation of apoptosis common to

MCF7H3erbB2 and DLKP4E not MCF74E
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Figure 3.3.20: Representation of genes involved in regulation of apoptosis in

MCF7H3erbB2 and DLKP4E. Detailed description of nodes and controls in Section

2.5.18.
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Table 3.3.26 Regulation of apoptosis by DLKP4E MCF7H3erbB2 not MCF74E

common genes

G e n e R e g u l a t i o n  o f G e n e R e g u l a t i o n  o f

a p o p t o s i s a p o p t o s i s

Nodes Effect BTG3 unknown

ADM negative CCDC6 unknown

AMIG02 negative CCNG2 unknown

BHLHB2 negative CDKN2C unknown

COMMD1 negative CLN2 unknown

ERBB2 negative EGRI unknown

HES1 negative GRP58 unknown

HSPCB negative HIG2 unknown

MCL1 negative ID2 unknown

NOTCH2 negative PIGA unknown

RAI negative PIR unknown

ANXA5 positive PRDX4 unknown

APP positive PRKAR1A unknown

CD24 positive PRKR unknown

CD99 positive PSMC2 unknown

DKK1 positive PYCARD unknown

FHL2 positive SAT unknown

LMNA positive SH3KBP1 unknown

MICB positive SLC16A1 unknown

MUT positive STK17A unknown

PAK2 positive TBX3 unknown

PSMD12 positive TFRC unknown

RBBP7 positive TNFRSF12A unknown

RTN3 positive TPR unknown

SLC7A5 positive UBE1C unknown

SREBF1 positive YY1 unknown

TFDP2 positive BTG3 unknown
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Two groups of siRNA targets specific to invasion were chosen based on microarray 

analysis of MCF7H3erbB2 and DLKP4E/DLKP4Emut (Table 3.3.9 and 3.3.14). The 

levels of silencing vary between species, cells and tissues due to differences in the 

efficiency with which the siRNAs are taken up by target cells. This problem was 

overcome by optimising condition for siRNA transfection for each cell line in 96- and 

6-well plates using GAPDH and kinesin controls as positive controls, and scrambled 

siRNA as a siRNA control.

Two to three siRNAs were chosen for each of the 10 targets and transfected into cells 

(section 2.6). For each set of siRNA transfections carried out, a non-transfected (NT) 

cell line and a scrambled (SC) siRNA transfected control were used. Scrambled 

siRNA can be any sequence that does not have homology to any genomic sequence. 

The scrambled non-targeting siRNA used in this study is commercially produced, and 

promises limited sequence similarity to known genes. It has also been functionally 

proven to have minimal effects on cell proliferation and viability. For each set of 

experiments looking at the effect of siRNA, the cells transfected with target-specific 

siRNA were compared to cells transfected with scrambled siRNA. This took account 

of any effects due to the transfection reagents, and also any random effects of the 

scrambled siRNA.

Transfections were carried out in both 96- and 6-well plates (section 2.6). In order to 

determine the success o f transfection, Kinesin was used as a control in both (Figure

3.4.1 & 3.4.2), and GAPDH siRNA was used as an additional control in 6-well plates 

(Figure 3.4.3). Kinesin facilitates cellular mitosis, therefore silencing kinesin 

facilitates cell arrest. In the absence of kinesin dividing cells adopt a rounded 

morphology in advance of microtubule formation, and this is where the cells arrest. 

Hence the round morphology of cells transfected with kinesin siRNA. In proliferation 

assays, non-transfected control cells divide normally while the kinesin siRNA 

transfected cells do not. The difference in control cell number compared to kinesin 

siRNA-transfected cells is not a measure of transfection efficiency or related to any 

cell death. It is a measure of how many times the control cells divided beyond the 

stage at which Kinesin levels became limiting in the transfected cells and they 

stopped dividing. GAPDH siRNA used in this study has been validated as a GAPDH-

3.4 siRNA analysis of targets specific to invasion in MCF7H3erbB2

and DLKP4E
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specific control and has been functionally tested in several common cell lines. 

GAPDH silencing was seen as a measure of the accuracy of transfection conditions. 

Proliferation assays (Section 2.6.2) were carried out to assess if transfection of 

siRNAs had an effect on growth. Real-time PCR (Section 2.4.3.5.3) was used to look 

at efficiency of mRNA knock-down, and western blots (Section 2.4.1) were used to 

determine if  siRNA had an effect at a protein level. Finally invasion assays (section

2.4.5) were carried out to confirm whether or not these targets played an important 

role in invasion, as suggested by microarray analysis. 9 out of 10 of the chosen targets 

were up-regulated in invasive cells, and therefore knock-down of these targets was 

expected to reduce the level of invasion. THBS1 was the only target down-regulated 

in invasive cell lines and siRNA silencing was expected to increase invasion.

All ten targets were examined in both DLKP4E and SKBR3. SKBR3, also a human 

breast, erbB2 positive, invasive cell line, replaced MCF7H3erbB2 for siRNA analysis. 

This was due to the fact that MCF7H3erbB2 lost its ability to invade. It is important 

to note that invasion assays were carried out on the MCF7H3erbB2 samples used for 

microarrays, demonstrating the cells were invasive (section 3.3.1). The THBS1 target, 

which was predicted to increase invasion when knocked-down using siRNA, was 

transfected into non-invasive MCF7s and DLKPs.

3.4.1 Proliferation assays using Kinesin siRNA transfection in DLKP, DLKP4E, 

MCF7 and SKBR3

Proliferation assays were carried out on all cell lines in this study using Kinesin as a 

positive control. Cellular arrest in the presence of Kinesin siRNA was taken as 

confirmation of efficient transfection conditions. Reduced growth of Kinesin siRNA- 

transfected cells compared to scrambled was seen in all cell lines (Figure 3.4.1).

3.4.2 Change in cell morphology after Kinesin siRNA transfection

Kinesin was also used as a control in 6-well plate transfections. Every set of 

transfections carried out was accompanied by a Kinesin transfection as a positive 

control. A change in the morphology of the cells indicated that Kinesin had been 

knocked-down and therefore the Kinesin siRNA transfection was successful. This was 

taken as an indication of optimum transfection conditions, and successful transfection 

in this cell line (Figure 3.4.2).
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Figure 3.4.1 Proliferation assay results for DLKP, DLKP4E, MCF7 and SKBR3

transfected with kinesin siRNA

(A): (B):

occ(D

DLKP NT DLKP SC DLKP KIN DLKP4E NT DLKP4E SC DLKP4E KIN

(C): (D):

MCF7 NT MCF7 SC MCF7 KIN SKBR3 NT SKBR3SC SKBR3 KIN

Figure 3.4.1: (A) Growth rate of DLKP after Kinesin siRNA transfection; (B) Growth 

rate of DLKP4E after Kinesin siRNA transfection; (C) Growth rate o f MCF7 after 

Kinesin siRNA transfection; (D) Growth rate of SKBR3 after Kinesin siRNA 

transfection.
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Figure 3.4.2 Effect of kinesin siRNA on cell morphology

A.
DLKP
NT

C.
DLKP 
4E NT

E.
MCF7
NT

G. 
SKBR3 
NT

B.
DLKP
KIN

D.
DLKP
4E
KIN

F.
MCF7
KIN

H.
SKBR3
KIN

Figure 3.4.2: Photographs o f kinesin siRNA transfection cells. Round morphology o f cells indicates 

cell arrest. NT = non-transfected, KIN = Kinesin siRNA transfected. A=DLKPNT, B=DLKPKIN, C= 

DLKP4ENT, D=DLKP4EKIN, E=MCF7NT, F=MCF7KIN, G=SKBR3NT and H=SKBR3KIN.

l  % /t »
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3.4.3 siRNA silencing of GAPDH at mRNA level

Every set of 6-well plate transfections was also accompanied by transfection with 

GAPDH siRNA. This was examined at an mRNA level using real-time PCR. Knock­

down of GAPDH in all cell lines confirmed optimum transfection conditions (figure 

3.4.3). Results as described in term of relative quantification (RQ). This is the amount 

of target described in terms of ‘fold change’ compared to a comparator sample.
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Figure 3.4.3 Real-time PCR for GAPDH in DLKP, DLKP4E, MCF7 & SKBR3

(A): (B):

DLKP NT DLKP SC GAPDH DLKP4E SC DLKP4E NT GAPDH

(C): (D):

MCF7NT MCF7SC GAPDH SKBR3 NT SKBR3 NT GAPDH

Figure 3.4.3: (A) Relative quantification of GAPDH mRNA 48hrs after GAPDH siRNA 

transfection into DLKP; (B) Relative quantification of GAPDH mRNA 48hrs after 

GAPDH siRNA transfection into DLKP4E; (C) Relative quantification of GAPDH 

mRNA 48hrs after GAPDH siRNA transfection into MCF7; (D) Relative 

quantification of GAPDH mRNA 48hrs after GAPDH siRNA transfection into SKBR3.
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3.5 Tissue factor pathway inhibitor (TFPI)

TFPI was chosen as a target for siRNA based on MCF7H3erbB2 array data analysis that 

showed a +19.77 fold change in MCF7H3erbB2 (invasive) compared to MCF7H3 (non- 

invasive). No significant change was seen in DLKP4E, but there was a +10 fold change 

in DLKP4Emut compared to parent DLKP.

3.5.1 Proliferation assays

Proliferation assays carried out on DLKP4E and SKBR3 transfected with TFPI siRNA 

A and B showed minor changes in growth rate. Kinesin was used as a control, and the 

significant decrease in growth rate after knock-down of kinesin demonstrated the 

accuracy of the transfection conditions (see figure 3.5.1).

3.5.2 Real-time PCR

Real-time PCR carried out on TFPI siRNA A, B and C in both DLKP4E and SKBR3 

showed significant knock-down of TFPI mRNA after 24 and 48hrs compared to 

scrambled siRNA transfections. In DLKP4E, TFPI A decreased TFPI mRNA by 40% at 

24hrs, but recovered after 48hrs. TFPI B caused insignificant change at 24hrs but a 60% 

decrease in mRNA at 48hrs.TFPI C caused a 40% decrease at 24hrs, which increased to 

60% after 48hrs (Figure 3.5.2 and 3.5.3). In SKBR3 all 3 siRNAs worked well at 24hrs, 

with between 70 and 90% decrease in TFPI mRNA. The cells appeared to recover at 

48hrs and TFPI mRNA levels increased to only 20 to 30% less than the control (Figure

3.5.4 and 3.5.5).Therefore, transfection of all 3 TFPI siRNAs into DLKP4E and SKBR3 

caused silencing of TFPI at mRNA level, with overall much greater effect in SKBR3 

cells. In all cases siRNA A and B were treated separately to siRNA C. The reason for 

this being siRNA C transfections, to obtain RNA, were carried out separately at a later 

date.
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Figure 3.5.1 Proliferation assay for TFPI siRNA A & B in DLKP4E and SKBR3

(A):

(B):

160

1 ----X"
DLKP4E NT DLKP4E SC

------------------ r
KINESIN TFPI A TFPI B

SKBR3 NT SKBR3 SC KINESIN TFPI A TFPI B

Figure 3.5.1: (A) Growth rate DLKP4E NT, DLKP4E SC and DLKP4E transfected with 

Kinesin and TFPI A & B siRNA; (B) Growth rate SKBR3 NT, SKBR3 SC and SKBR3 

transfected with Kinesin and TFPI A & B siRNA;
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Figure 3.5.2 Real-time PCR for TFPI siRNA A, B & C in DLKP4E at 24hrs

(A):
1.2

DLKP4E NT DLKP4ESC TFPI A TFPI B

(B):

DLKP4E NTT DLKP4ESC DLKP4E TFPI C

Figure 3.5.2: (A) Relative quantification of TFPI in non-transfected (NT), scrambled 

(SC), and TFPI siRNA A & B transfected cells after 24hrs; (B) Relative quantification 

of TFPI in non-transfected (NT), scrambled (SC), and TFPI C transfected cells after 

24hrs.
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Figure 3.5.3 Real-time PCR for TFPI siRNA A, B & C in DLKP4E at 48hrs

(A):

(B):

DLKP4E NT DLKP4E SC TFPI C

Figure 3.5.3: (A)Relative quantification of TFPI in non-transfected (NT), scrambled 

(SC), and TFPI siRNA A & B transfected cells after 48hrs; (B) Relative quantification 

of TFPI in non-transfected (NT), scrambled (SC), and TFPI C transfected cells after 

48hrs.
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Figure 3.5.4 Real-time PCR for TFPI siRNA A, B & C in SKBR3 at 24hrs

(A):

SKBR3NT SKBR3SC TFPI A TFPI B

(B):

SKBR3 NT SKBR3SC TFPI C

Figure 3.5.4: (A) Relative quantification of TFPI in non-transfected (NT), scrambled 

(SC), and TFPI siRNA A & B transfected SKBR3 after 24hrs; (B) Relative 

quantification of TFPI in non-transfected (NT), scrambled (SC), and TFPI C transfected 

SKBR3 after 24hrs.
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Figure 3.5.5 Real-time PCR for TFPI siRNA A, B & C in SKBR3 at 48hrs

(A):

SKBR3NT SKBR3SC TFPI A TFPI B

(B):

SKBR3NT SKBR3SC TFPI C

Figure 3.5.5: (A) Relative quantification of TFPI in non-transfected (NT), scrambled 

(SC), and TFPI siRNA A & B transfected SKBR3 after 48hrs; (B) Relative 

quantification of TFPI in non-transfected (NT), scrambled (SC), and TFPI C transfected 

SKBR3 after 48hrs.
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3.5.3 Western blot

Western blots were carried out using protein 72hrs after transfection with all 3 TFPI 

siRNAs in both cell lines. Results showed no significant change in TFPI protein after 

transfection with any of the TFPI siRNAs in DLKP4E (see figure 3.5.6). TFPI was not 

detected in SKBR3, this may have been due to low levels of TFPI expression in this cell 

line.

3.5.4 Invasion assays

72hrs after transfection with TFPI siRNA, cells were assayed for invasion. DLKP4E 

results showed a reduction in the number of invading cells when transfected with all 3 

TFPI siRNAs. This can be seen in both the photographs of the invasion inserts (figure
ry __

3.5.7) and in the number of invading cells counted per pm (figure 3.5.8). SKBR3 

transfected with the 3 TFPI siRNAs showed dramatic decrease in invasion. Up to an 

80% reduction in invading cells was observed after TFPI siRNA A and B transfection 

into SKBR3. This considerable drop in invasion was obvious from photographs of 

invasion inserts (see figure 3.5.9) and was confirmed by counting invading cells (see 

figure 3.5.10). This result combined with those from real-time PCR would strongly 

suggest that siRNA silencing of TFPI in DLKP4E and SKBR3 decreases invasion.
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Figure 3.5.6 Western blot analysis of TFPI protein expression in DLKP4E

Figure 3.5.6: Western blot showing protein expression of TFPI in DLKP4E NT, 

DLKP4E SC, and DLKP4E transfected with TFPI siRNA A, B & C.
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Figure 3.5.7 Photographs of invasion assays for DLKP4E transfected with TFPI

siRNA

(A) DLKP4E NT (B) DLKP4E SC

(E) TFPI C

Figure 3.5.7: Photographs of invasion assay inserts at 10X magnification. A=DLKP4E 

NT, B=DLKP4E SC, C=DLKP4E transfected with TFPI siRNA A, D=DLKP4E 

transfected with TFPI siRNA B, E= DLKP4E transfected with TFPI siRNA C.
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Figure 3.5.8 cell counts of invasion assays for DLKP4E transfected with TFPI

siRNA

250

200

DLKP4E NT DLKP4E SC TFPI A TFPIB TFPI C

Figure 3.5.8: Number o f invading cells detected per \im 2 of invasion assay insert for 

DLKP4E NT, DLKP4ESC and DLKP4E transfected with TFPI siRNA A, B & C. 

n=3, *p-value<0.001
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Figure 3.5.9 Photographs of invasion assays for SKBR3 transfected with TFPI

siRNA

(A) SKBR3 NT 
* '• i

(B) SKBR3 SC
. *  * t  :* .*  • •  ^

. V* V.\ J k - '  *e;  -U- • - V
• .  •• • • .*  « c v  • . r • .  r . * »

(D) TFPI B

(E) TFPI C

Figure 3.5.9: Photographs of invasion assay inserts at 10X magnification. A= SKBR3 

NT, B=SKBR3 SC, C= SKBR3 transfected with TFPI siRNA A, D=SKBR3 transfected 

with TFPI siRNA B E= SKBR3 transfected with TFPI siRNA C.
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Figure 3.5.10 cell counts of invasion assays for SKBR3 transfected with TFPI

siRNA

SKBR3NT SKBR3SC TFPI A TFPI B TFPIC

Figure 3.5.10: Number o f invading cells detected per jim of invasion assay insert for 

SKBR3 NT, SKBR3SC and SKBR3 transfected with TFPI siRNA A, B & C. 

n=3, *p-value<0.001
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3.5.5 Summary of results for TFPI siRNA transfection in DLKP4E and SKBR3

Results from proliferation assays showed that the optimum conditions for transfection 

were used, as a reduction in growth of cells transfected with kinesin siRNA was 

observed in both cell lines. This also showed that transfection of TFPI siRNA did not 

have a major effect on proliferation of DLKP4E or SKBR3 cells. After transfection with 

three separate TFPI siRNAs in two separate cell lines, a decrease in TFPI mRNA was 

observed, which indicated the siRNAs were successful in knocking-down TFPI at an 

mRNA level. Real-time PCR results showing GAPDH silencing under the same 

conditions also proved transfection conditions were accurate (Table 3.4.3). Although 

western blots were unable to show TFPI knock-down at a protein level for either cell 

line, knock-down of TFPI at an mRNA level, accompanied by a significant decrease in 

invasion of two different cell lines, strongly suggests siRNA knock-down of TFPI led to 

a reduction in invasion (Table 3.5.1). The implication of these results is that TFPI plays 

a key role in invasion in both DLKP4E and SKBR3.
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Table 3.5.1 Summary of results of TFPI siRNA transfection into DLKP4E and SKBR3

Real-time PCR -

RNA knock-down
Western blot -  

protein knock-down

Invasion assay -  

decrease in invasion

Cell Line siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C

DLKP4E + + + ----- ------ ----- + + +

SKBR3 + + + ----- ----- ----- + + +

Table 3.5.1: Summary of results of TFPI siRNA A, B and C transfections into DLKP4E and SKBR3
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3.6 Early growth response 1 (EGR1)

EGR1 was chosen as a siRNA target after analysis of MCF7H3erbB2 microarray data 

showed a +2.99 fold increase in invasive MCF7erbB2 compared to non-invasive 

MCF7H3. An increase of +1.35 fold was also observed in invasive DLKP4E and, +1.2 

fold in invasive DLKP4Emut compared to parent DLKP.

3.6.1 Proliferation assays

Proliferation assays carried out on DLKP4E transfected with EGR1 siRNA A and B 

showed little change in growth rate, whereas SKBR3 did show an increase in growth of 

30-40% compared to the scrambled control. There was no significant change compared 

to the non-transfected control, and kinesin controls showed the transfection was 

successful (Figure 3.6.1).

3.6.2 Real-time PCR

Real-time PCR detected no EGR1 mRNA knock-down following EGR1 siRNA A or B 

transfection at 24 or 48hrs in DLKP4E. However, EGR1 siRNA C caused a 45% 

decrease in EGR1 at 24hrs and a 35% decrease at 48hrs (Figure 3.6.2 and 3.6.3). EGR1 

in SKBR3 was knocked-down by 20%, 70% and 50% by EGR1 siRNA A, B and C, 

respectively, at 24hrs. At 48hrs, siRNA A and B had began to recovered, with EGR1 

mRNA levels increasing. EGR1 siRNA C however, continued to increase silencing of 

mRNA and at 48hrs, levels were 80% less than the scrambled control (Figure 3.6.4 and

3.6.5). It is interesting to note that EGR1 siRNA C worked similarly in both cell lines, 

with an increased effect at 48hrs. Overall, EGR1 siRNA C was effective in silencing 

EGR1 mRNA in both cell lines, but EGR1 siRNA A and B only had an effect in 

SKBR3. Results for EGR1 siRNA C are shown separately because this RNA sample 

was from a separate transfection.

218



Figure 3.6.1 Proliferation assay for EGRI siRNA A & B in DLKP4E and SKBR3

(A):

120

DLKP4E NT DLKP4E SC KINESIN EGRI A EGR1 B

(B):

SKBR3 NT SKBR3 SC KINESIN EGRI A EGR1 B

Figure 3.6.1: (A) Growth rate of DLKP4E NT, DLKP4E SC, and DLKP4E transfected 

with EGR1 siRNA A & B; (B) Growth rate of SKBR3 NT, SKBR3 SC, and SKBR3 

transfected with EGR1 siRNA A & B.
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Figure 3.6.2 Real-time PCR for EGR1 siRNA A, B & C in DLKP4E at 24hrs

(A):

DLKP4E NTT DLKP4E SC EGR1 A EGR1 B

(B):

DLKP4E H Y  DLKP4E SC EGR1 C

Figure 3.6.2: (A) Relative quantification of EGR1 in non-transfected (NT), scrambled 

(SC) and EGR1 siRNA A & B transfected DLKP4Es after 24 hrs; (B) Relative 

quantification of EGR1 in non-transfected (NT), scrambled (SC) and EGR1 siRNA C 

transfected DLKP4Es after 24 hrs.
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Figure 3.6.3 Real-time PCR for EGR1 siRNA A, B & C in DLKP4E at 48hrs

(A):

DLKP4E NT DLKP4E SC EGR1A EGR1 B

(B):

DLKP4E NT DLKP4E SC EGR1 C

Figure 3.6.3: (A) Relative quantification of EGR1 in non-transfected (NT), scrambled 

(SC) and EGR1 siRNA A & B transfected DLKP4Es after 24 hrs; (B) Relative 

quantification of EGR1 in non-transfected (NT), scrambled (SC) and EGR1 siRNA C 

transfected DLKP4Es after 24 hrs.
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Figure 3.6.4 Real-time PCR for EGR1 siRNA A, B & C in SKBR3 at 24hrs

(A):

SKBR3 NT SKBR3 SC EGR1 A EGR1 B

(B):

SKBR3 NT SKBR3 SC EGR1 C

Figure 3.6.4: (A) Relative quantification of EGR1 in non-transfected (NT), scrambled 

(SC) and EGR1 siRNA A & B transfected SKBR3s after 24 hrs; (B) Relative 

quantification of EGR1 in non-transfected (NT), scrambled (SC) and EGR1 siRNA C 

transfected SKBR3s after 24 hrs.
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Figure 3.6.5 Real-time PCR for EGR1 siRNA A, B & C in SKBR3 at 48hrs

(A):

SKBR3 NT SKBR3 SC EGR1 A EGR1 B

(B):

SKBR3NT SKBR3SC EGR1 C

Figure 3.6.5: (A)Relative quantification of EGR1 in non-transfected (NT), scrambled 

(SC) and EGR1 siRNA A & B transfected SKBR3s after 24 hrs; (B) Relative 

quantification of EGR1 in non-transfected (NT), scrambled (SC) and EGR1 siRNA C 

transfected SKBR3s after 24 hrs.
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3.6.3 Western blot

Western blots were carried out using an EGR1 specific antibody to detect if EGR1 

siRNA transfection had had an effect at protein level (section 2.4.1).Results showed that 

there was a decrease in EGR1 at a protein level in both cell lines (Figure 3.6.6 and

3.6.7).

DLKP4E transfected with all 3 EGR1 siRNAs showed considerable protein knock­

down compared to the non-transfected and scrambled controls. This result implies that 

despite lack of evidence at an mRNA level, EGR1 siRNA did function in ‘knocking- 

down’ EGR1 in DLKP4E (Figure 3.6.6).

In SKBR3 a reduction in EGR1 protein was seen as a result of EGR1 siRNA B and C 

(Figure 3.6.7). In the case of siRNA C the band is barely detectable, indicating very 

efficient silencing. Knock-down is not seen in EGR1 siRNA A, although this was 

observed at mRNA level (Figure 3.6.4 and 3.6.5). With two out of three EGR1 siRNAs 

showing knock-down of protein in both cell lines, it can be presumed that EGR1 

siRNAs worked efficiently.

3.6.4 Invasion assays

Results from invasion assays showed a significant reduction in the number of invading 

cells after transfection with EGR1 siRNAs. Both photographic evidence and cell counts 

show that the number of invading cells was halved after EGR1 siRNA transfection in 

DLKP4E (Figure 3.6.8 and 3.6.9). Similar results are also true of SKBR3 (Figure 3.6.10 

and 3.6.11). The most efficient EGR1 siRNA in this case appears to be C, which was 

also the only siRNA to produce mRNA knock-down in both cell lines.
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Figure 3.6.6 Western Blot analysis of EGR1 protein expression in DLKP4E

GAPDH

H u
C/3
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Figure 3.6.6: Western blot showing protein expression of EGR1 in DLDKP4E NT, 

DLKP4E transfected with scrambled control, and DLKP4E transfected with EGR1 

siRNA A, B & C.
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Figure 3.6.7 Western Blot analysis of EGR1 protein expression in SKBR3
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Figure 3.6.7: Western blot showing protein expression of EGR1 in SKBR3 NT, SKBR3 

transfected with scrambled control, and SKBR3 transfected with EGR1 siRNA A, B &

C.
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Figure 3.6.8 Photographs of invasion assays for DLKP4E transfected with EGR1

siRNA

(A) DLKP4E NT (B) DLKP4E SC

(C) EGRI A (D) EGRI B

(E) EGRI C

Figure 3.6.8: Photographs of invasion assay inserts at 10X magnification. A=DLKP4E 

NT, B=DLKP4E SC, C=DLKP4E transfected with EGRI siRNA A, D=DLKP4E 

transfected with EGRI siRNA B E=DLKP4E transfected with EGRI siRNA C.
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Figure 3.6.9 Cell counts of invasion assays for DLKP4E transfected with EGR1

siRNA

250

200

DLKP4E NT DLKP4ESC EGR1A EGR1B EGR1C

o
Figure 3.6.9: Number of invading cells detected per |xm of invasion assay insert for 

DLKP4E NT, DLKP4E SC and DLKP4E transfected with EGR1 siRNA A, B & C. 

n=3, *p-value<0.001.
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Figure 3.6.10 Photographs of invasion assays for SKBR3 transfected with EGR1

siRNA

(A) SKBR3 NT (B) SKBR3 SC

(C) EGRI A (D) EGRI B

i  • • •S -  * «•. A
« •

(E) EGRI C

Figure 3.6.10: Photographs of invasion assay inserts at 10X magnification. A= SKBR3 

NT, B=SKBR3 SC, C=SKBR3 transfected with EGRI siRNA A, D=SKBR3 

transfected with EGRI siRNA B E=SKBR3 transfected with EGRI siRNA C.
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Figure 3.6.11 Cell counts of invasion assays for SKBR3 transfected with EGR1 siRNA

120

100

SKBR3NT SKBR3SC EGR1A EGR1B EGR1C

Figure 3.6.11: Number of invading cells detected per jxm of invasion assay insert for

SKBR3 NT, SKBR3 SC and SKBR3 transfected with EGR1 siRNA A, B & C.

n=3, *p-value<0.001.
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3.6.5 Summary of results for EGR1 siRNA transfection into DLKP4E

Proliferation assay results showed a successful transfection with little effect on 

DLKP4Es, and some increase in proliferation of SKBR3. Both mRNA and protein 

knock-down was observed for SKBR3, and although mRNA knock-down was not 

observed in DLKP4E, the decrease in EGR1 protein expression after siRNA 

transfection shows that the EGR1 siRNA was successful in reducing EGR1 in both cell 

lines. This is strengthened by the fact that invasion assay results showed a significant 

decrease in invading cells after EGR1 siRNA transfection in both cell lines. These 

results show that EGR1 siRNA was successful in silencing EGR1 mRNA and protein, 

and as a result reduced invasion (Table 3.6.1).
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Table 3.6.1 Summary of results of EGR1 siRNA transfection into DLKP4E and SKBR3

Real-time PCR -  

RNA knock-down
Western blot -  

protein knock-down

Invasion assay -  

decrease in invasion

Cell Line siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C

DLKP4E
----- ----- + + + + + + +

SKBR3
+ + + ----- + + + + +

Table 3.6.1: Summary of results of EGR1 siRNA A, B and C transfections into DLKP4E and SKBR3
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3.7 Ribosomal protein S6 kinase, 90kDa, polypeptide 3 (RPS6KA3)

Analysis of microarray data found that RPS6KA3 was increased in both of the invasive 

cell lines, MCF7H3erbB2 and DLKP4E, compared to their non-invasive parent cell 

lines. A fold change increase of +2.36 was seen in MCF7H3erbB2, and +1.2 in 

DLKP4E. The array analysis suggested that an increase in RPS6KA3 contributed to an 

increase in invasion, therefore silencing this gene should reduce invasion. Because of 

this analysis it was decided to use RPS6KA3 as an siRNA target in the above cell lines 

to further assess its role in invasion. Only two siRNAs were used for all experiments, as 

both had been validated by the supplier.

3.7.1 Proliferation assays

Proliferation assays carried out on DLKP4E transfected with RPS6KA3 siRNA A and B 

appeared to have no effect on growth rate. SKBR3 again showed an increase in the rate 

of proliferation with siRNA-transfected cells growing up to 45% more than the 

scrambled control (Figure 3.7.1). A 50- to 60% reduction in proliferation of kinesin 

transfected cells confirmed a successful transfection (Figure 3.7.1).

3.7.2 Real-time PCR

Results showed no significant RPS6KA3 mRNA knock-down in the presence of 

RPS6KA3 siRNA A or B at 24 or 48hrs in DLKP4E. A 25% decrease in RPS6KA3 at 

24hrs was the largest observed decrease (Figure 3.7.2). Real-time PCR was also used to 

detect GAPDH knock-down in these cells under the same conditions (figure 3.4.3), and 

therefore it is unlikely that this result was due to an unsuccessful transfection. The same 

siRNAs were used to transfect SKBR3 cells, and RPS6KA3 siRNA A also had no effect 

in this cell line at 24 or 48hrs. RPS6KA3 siRNA B however, did cause a 50% reduction 

in RPS6KA3 mRNA at 48hrs (Figure 3.7.3).
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Figure 3.7.1 Proliferation assay for RPS6KA3 siRNA A & B in DLKP4E and

SKBR3

(A):

DLKP4E NT DLKP4E SC KINESIN RPS6KA3 A RPS6KA3 B

(B):

SKBR3 NT SKBR3SC KINESIN RS6KA3 A RS6KA3 B

Figure 3.7.1: (A)Growth rate of DLKP4E NT, DLKP4E SC and DLKP4E transfected

with RPS6KA3 siRNA A and B. (B) Growth rate of SKBR3 NT, SKBR3 SC and

SKBR3 transfected with RPS6KA3 siRNA A and B.
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Figure 3.7.2 Real-time PCR for RPS6KA3 siRNA A & B in DLKP4E at 24hrs & 48hrs

(A):

1.8

DLKP4E NT DLKP4ESC RPS6KA3 A RPS6KA3B

(B):

1,8

DLKP4E NT DLKP4E SC RPS6KA3 A RPS6KA3 B

Figure 3.7.2: (A) Relative quantification of RPS6KA3 in non-transfected, scrambled, 

and RPS6KA3 siRNA A & B transfected DLKP4Es at 24hrs; (B) Relative 

quantification of RPS6KA3 in non-transfected, scrambled, and RPS6KA3 siRNA A & 

B transfected DLKP4Es at 48hrs.
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Figure 3.7.3 Real-time PCR for RPS6KA3 siRNA A & B in SKBR3 at 24hrs &

48hrs

(A):

SKB R3 NT S K B R 3 S C  R PS6K A 3 A R PS6K A 3 B

(B):

18

16

z

SK B R 3 NT S K B R 3 S C  R PS6K A 3 A R PS 6K A 3 B

Figure 3.7.3: (A) Relative quantification of RPS6KA3 in non-transfected, scrambled, 

and RPS6KA3 siRNA A & B transfected SKBR3s at 24hrs; (B) Relative quantification 

of RPS6KA3 in non-transfected, scrambled, and RPS6KA3 siRNA A & B transfected 

SKBR3s at 48hrs.
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3.7.3 Western blot

Western blots analysis (Section 2.4.1) was carried out using an RPS6KA3 specific 

antibody to detect if  RPS6KA3 siRNA transfection had had an effect on RPS6KA3 

protein levels. DLKP4E and SKBR3 transfected with RPS6KA3 siRNA A and B 

showed protein knock-down compared to the non-transfected and scrambled controls 

(Figure 3.7.4). Therefore, RPS6KA3 siRNA did succeed in knocking-down RPS6KA3 

at a protein level, despite lack of evidence of RPS6KA3 mRNA knock-down.

3.7.4 Invasion assays

Results from invasion assays showed a considerable reduction in the number of 

invading cells after transfection with both RPS6KA3 siRNAs A and B. Both 

photographic evidence and cell counts show that the number of invading cells was 

reduced by at least 50% after RPS6KA3 siRNA transfection (Figure 3.7.5 and 3.7.6). 

SKBR3 also had a dramatic reduction in invading cells after RPS6KA3 siRNA 

transfection, again with greater than 50% fewer invading cells (Figure 3.7.8 and 3.7.9). 

These results show that transfection of RPS6KA3 siRNA caused a decrease in invasion 

in both cell lines.
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Figure 3.7.4 Western blot analysis of RPS6KA3 protein expression in DLKP4E
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Figure 3.7.4: (A) Western blot showing protein expression of RPS6KA3 in DLKP4E 

NT, DLKP4E SC, and DLKP4E transfected with RPS6KA3 siRNA A & B; (B) 

Western blot showing protein expression of RPS6KA3 in SKBR3 NT, SKBR3 SC, and 

SKBR3 transfected with RPS6KA3 siRNA A & B.
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Figure 3.7.5 Photographs of invasion assays for DLKP4E transfected with

RPS6KA3 siRNA

(A) DLKP4E NT (B) DLKP4E SC

(C) RPS6KA3 A

Figure 3.7.5: Photographs of invasion assay inserts at 10X magnification. A=DLKP4E 

NT, B=DLKP4E SC, C=DLKP4E transfected with RPS6KA3 siRNA A, D=DLKP4E 

transfected with RPS6KA3 siRNA B.
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Figure 3.7.6 Cell counts of invasion assays for DLKP4E transfected with RPS6KA3

siRNA

250

200

DLKP4E NT DLKP4ESC RPS6KA3A RPS6KA3B

Figure 3.7.6: Number of invading cells detected per \im 2 of invasion assay insert for

DLKP4E NT, DLKP4E SC and DLKP4E transfected with RPS6KA3 siRNA A & B.

n=3, *p-value<0.001.
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Figure 3.7.7 Photographs of invasion assays for SKBR3 transfected with RPS6KA3

siRNA

(A) SKBR3 NT (B) SKBR3 SC

(C) RPS6KA3 A (D) RPS6KA3 B

Figure 3.7.7: Photographs of invasion assay inserts at 10X magnification. A=SKBR3 

NT, B=SKBR3 SC, C=SKBR3 transfected with RPS6KA3 siRNA A, D=SKBR3 

transfected with RPS6KA3 siRNA B.
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Figure 3.7.8 Cell counts of invasion assays for SKBR3 transfected with RPS6KA3

siRNA

120

100

SKBR3NT SKBR3SC RPS6KA3 A RPS6KA3B

Figure 3.7.8: Number of invading cells detected per nm2 of invasion assay insert for

SKBR3 NT, SKBR3 SC and SKBR3 transfected with RPS6KA3 siRNA A & B.

n=3, *p-value<0.001.
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3.7.5 Summary of results for RPS6KA3 siRNA transfection into DLKP4E

Proliferation assay results showed a successful transfection in both cell lines, with 

insignificant changes in growth of DLKP4E but 30- 40% increased growth in SKBR3. 

Real-time PCR was used to detect if  the siRNA transfection was successful in silencing 

its target mRNA. mRNA knock-down was not observed at mRNA level for DLKP4E, 

but western blot showed protein knock-down after siRNA transfection. This confirmed 

RPS6KA3 siRNA was successful in reducing RPS6KA3 at a protein level within 

DLKP4E cells. In SKBR3, RPS6KA3 siRNA B reduced levels of RPS6KA3 mRNA 

after 48hrs, and western blot showed protein knock-down after transfection of both 

siRNAs. Invasion assay results reinforced this by showing a significant decrease in 

invading cells after RPS6KA3 siRNA transfection in both cell lines (Table 3.7.1). Proof 

of knock-down of RPS6KA3 at a protein level, combined with a decrease in invasion 

after siRNA transfection, validates array analysis which implicated a role for RPS6KA3 

in the invasion process.
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Table 3.7.1 Summary of results of RPS6KA3 siRNA transfection into DLKP4E and SKBR3

Real-time PCR -  

mRNA knock-down

Western blot -  

protein knock-down

Invasion assay -  

decrease in invasion

Cell Line siRNA A siRNA B siRNA A siRNA B siRNA A siRNA B

DLKP4E
----- ----- + + + +

SKBR3
----- + + + + +

Table 3.7.1: Summary of results of RPS6KA3 siRNA A, B and C transfections into DLKP4E and SKBR3

244



3.8 Tumour necrosis factor, alpha induced protein 8 (TNFAIP8)

TNFAIP8 was one of the siRNA targets chosen after array analysis of invasive 

MCF7H3erbB2. Comparison of non-invasive parent MCF7H3 to invasive 

MCF7H3erbB2 found there to be a +2.47 fold increase in TNFAIP8. No change in 

expression was seen in DLKP4E or DLKP4Emut. Unlike the other siRNA targets, 

TNFAIP8 was examined only using proliferation and invasion assays, as an antibody 

was not commercially available due to the novelity o f the target. Real-time PCR was 

attempted but was unsuccessful. The Taqman® Real time PCR analysis was preformed 

using the Applied Bio Systems Assays on Demand PCR Kits, using primer probe pairs as 

outlined in Table 2.4.3. The TNFAIP8 primers provided were suitable to detect the same 

region of TNFAIP8 as detected by Affymetrics probes, and so it is unclear why this 

procedure did not work.

3.8.1 Proliferation assays

Proliferation assays showed little change in growth rate after TNFAIP8 siRNA 

transfection into DLKP4E (Figure 3.8.1). TNFAIP8 siRNA transfection into SKBR3 

resulted in a 40% increase in growth.

3.8.2 Invasion assays

Both the photographs of the invasion inserts and the cell counts show a considerable 

decline in the number of invading cells in DLKP4E (Figure 3.8.2 and 3.8.3). DLKP4E 

cells transfected with TNFAIP8 siRNA A and B were 60%, and C 50% less invasive 

than DLKP4E transfected with a scrambled control. Results for SKBR3 siRNA A and B 

were less impressive, with cell counts showing a 20% to 30% reduction in invasive 

cells. TNFAIP8 C, with a 65% drop in the number of invading cells, was the most 

considerable change in SKBR3 cells (Figure 3.8.4 and 3.8.5).
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Figure 3.8.1 Proliferation assay for TNFAIP8 siRNA A & B in DLKP4E and

SKBR3
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Figure 3.8.1: (A) Growth rate of DLKP4E NT, DLKP4E SC and DLKP4E transfected

with TNFAIP8 siRNA A and B. (B) Growth rate of SKBR3 NT, SKBR3 SC and

SKBR3 transfected with TNFAIP8 siRNA A and B.

SKBR3 NT SKBR3SC KINESIN TNFAIP8 A TNFAIP8 B

DLKP4E NT DLKP4E SC DLKP4E KIN TNFAIP8 A TNFAIP8 B
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Figure 3.8.2 Photographs of invasion assays for DLKP4E transfected with

TNFAIP8 siRNA

(E) TNFAIP8 C

(A) DLKP4E NT (B) DLKP4E SC

(C) TNFAIP A (D) TNFAIP8 B

Figure 3.8.2: Photographs of invasion assay inserts at 10X magnification. A=DLKP4E

NT, B=DLKP4E SC, C=DLKP4E transfected with TNFAIP8 siRNA A, D=DLKP4E

transfected with TNFAIP8 siRNA B and E=DLKP4E transfected with TNFAIP8 siRNA
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Figure 3.8.3 Cell counts of invasion assays for DLKP4E transfected with TNFAIP

siRNA

Figure 3.8.3: Number of invading cells detected per ^m2 of invasion assay insert for

DLKP4E NT, DLKP4E SC and DLKP4E transfected with TNFAIP siRNA A, B & C.

n=3, *p-value<0.001.
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Figure 3.8.4 Photographs of invasion assays for SKBR3 transfected with TNFAIP8

siRNA

(C) TNFAIP A (D) TNFAIP8 B

*

f : K

* * «

(E) TNFAIP 8 C

(A) SKBR3 NT (B) SKBR3 SC

Figure 3.8.4: Photographs of invasion assay inserts at 10X magnification. A=SKBR3

NT, B=SKBR3 SC, C=SKBR3 transfected with TNFAIP8 siRNA A, D=SKBR3

transfected with TNFAIP8 siRNA B and E= SKBR3 transfected with TNFAIP8 siRNA
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Figure 3.8.5 Cell counts of invasion assays for SKBR3 transfected with TNFAIP8

siRNA

120

100

SKBR3NT SKBR3SC THFAIP8A TNFAIP8 B THFAIP8C

Figure 3.8.5: Number of invading cells detected per jxm2 of invasion assay insert for

SKBR3 NT, SKBR3 SC and SKBR3 transfected with TNFAIP8 siRNA A, B & C.

N=3, *p-value<0.001.
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3.8.3 Summary of results

Array analysis linked up-regulation of TNFAIP8 to invasion, and therefore it proposed 

that siRNA silencing of this gene would cause a decrease in invasion. Although there 

was no evidence at either mRNA or protein levels that TNFAIP8 siRNA was working 

in silencing TNFAIP8, transfection with three different TNFAIP8 siRNAs into 

DLKP4E resulted in a marked decrease in invasion, and one of the siRNAs also caused 

a decrease in invasion in SKBR3 (Table 3.8.1). This result demonstrated that 

transfection of DLKP4E and SKBR3 with TNFAIP8 siRNA reduces invasion, and 

strongly suggests that the siRNAs are functioning in silencing TNFAIP8.
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Table 3.8.1 Summary of results of TNFAIP8 siRNA transfection into DLKP4E and SKBR3

Real-time PCR -  

mRNA knock-down

Western blot -  

protein knock-down

Invasion assay -  

decrease in invasion

Cell Line siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C

DLKP4E
-----* -----* -----* -----* -----* -----* + + +

SKBR3
-----* -----* -----* -----* -----* -----* ------ ----- +

Table 3.8.1: Summary of results of TNFAIP8 siRNA A, B and C transfections into DLKP4E and SKBR3

* Real-time PCR primer-probe set did not detect TNFAIP8 and no antibody was available for the TNFAIP8 protein.
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3.9 Thrombospondin (THBS1)

THBS1 was chosen as a siRNA target based on microarray analysis of MCF7H3erbB2, 

an invasive breast cancer cell line. Unlike the other targets chosen from this analysis, 

THBS1 expression was down-regulated in an invasive cell line (-2.3 fold). Therefore a 

reduction of THBS1 in a non-invasive cell line would be expected to cause invasion. 

For this reason MCF7 (non-invasive) and DLKP (mildly invasive) were selected for 

transfection with THBS1 siRNAs. DLKP4E and SKBR3, which had been used with all 

other siRNA targets from this analysis, were also included.

3.9.1 Proliferation assays

Results of proliferation assays from MCF7, DLKP and DLKP4E showed very minor 

changes in growth when transfected with the THBS1 siRNAs. SKBR3 showed a more 

marked increase in proliferation, with THBS1 siRNA-transfected cells growing up to 

35% more than the scrambled control (Figure 3.9.1 and 3.9.2).
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Figure 3.9.1 Proliferation assay for THBS1 siRNA A & B in DLKP and MCF7

(A):

120

DLKP NT DLKP SC KINESIN THBS1 A THBS1 B

(B):

120

MCF7 NT MCF7 SC KINESIN THBS1 A THBS1 B

Figure 3.9.1: (A) Growth rate of DLKP NT, DLKP SC and DLKP transfected with

THBS1 siRNA A and B. (B) Growth rate of MCF7 NT, MCF7 SC and MCF7

transfected with THBS1 siRNA A and B.

254



Figure 3.9.2 Proliferation assay for THBS1 siRNA A & B in DLKP4E and SKBR3

(A):

120

DLKP4E NT DLKP4E SC DLKP4E KIN THBS1 A THBS1 B

(B):

SKBR3 NT SKBR3SC KINESIN THBS A THBS B

Figure 3.9.2: (A) Growth rate of DLKP4E NT, DLKP4E SC and DLKP4E transfected

with THBS1 siRNA A and B. (B) Growth rate of SKBR3 NT, SKBR3 SC and SKBR3

transfected with THBS1 siRNA A and B.
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Figure 3.9.3 Real-time PCR for THBS1 siRNA A, B & C in DLKP at 24hrs &

48hrs

(A):

02

DLKP NT DLKP SC THBS1A THBS1B THBS1C

(B):

DLKP NT DLKP SC THBS1A THBS1B THBS1C

Figure 3.9.3: (A) Relative quantification of THBS1 in non-transfected, scrambled, and 

THBS1 siRNA A, B & C transfected DLKPs at 24hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA A, B & C transfected DLKPs 

at 48hrs.
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3.9.2 Real-time PCR

Real-time PCR was carried out on all four cells lines transfected with all three THBS1 

siRNAs to determine if THBS1 mRNA had been successfully silenced. THBS1 mRNA 

levels were considerably reduced in DLKP after 24 and 48hrs, with all three siRNA 

transfections showing a drop in THBS1 of between 70% and 80% (Figure 3.9.3). A 

more moderate response was observed in MCF7 and DLKP4E. In MCF7 THBS1 levels 

only decreased by 20% to 40% at 24hrs and began to recover after 48hrs (Figure 3.9.4). 

DLKP4E showed a greater decrease after 48hrs, with siRNA B and C causing a 40% to 

50% reduction in THBS1 mRNA (Figure 3.9.5 and 3.9.6).Result for THBS1 siRNA A 

and B were displayed separately to siRNA C as transfections were carried out on two 

separate occasions. SKBR3 gave similar results to DLKP, with both THBS1 siRNA A 

and B causing an 80% to 85% decline in THBS1 mRNA after 24hrs.Unlike DLKP 

however, THBS1 mRNA levels recovered in SKBR3 48hrs after transfection (Figure 

3.9.7 and 3.9.8). Taken as a whole these results showed transfection of 2 out of 3 

THBS1 siRNAs caused knock-down of THBS1 at a mRNA level in four different cell 

lines.
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Figure 3.9.4 Real-time PCR for THBS1 siRNA A, B & C in MCF7 at 24hrs &

48hrs

(A):

MCF7NT MCF7SC THBS1 A THBS1 B THBS1 C

(B):

MCF7 NT MCF7 SC THBS1 A TUBS! B THBS1 C

Figure 3.9.4: (A) Relative quantification of THBS1 in non-transfected, scrambled, and 

THBS1 siRNA A, B & C transfected MCF7s at 24hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA A, B & C transfected MCF7s 

at 48hrs.

258



Figure 3.9.5 Real-time PCR for THBS1 siRNA A, B & C in DLKP4E at 24hrs

(A):

DLKP4E NT DLKP4E SC THBS1 A THBS1 B

(B):

1.6

z  14

DLKP4E NT DLKP4E SC THBS C

Figure 3.9.5: (A) Relative quantification of THBS 1 in non-transfected, scrambled, and 

THBS1 siRNA A & B transfected DLKP4Es at 24hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA C transfected DLKP4Es at 

24hrs.
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Figure 3.9.6 Real-time PCR for THBS1 siRNA A, B & C in DLKP4E at 48hrs

(A):

DLKP4E NT DLKP4E SC THBS1 A THBS1 B

(B):

DLKP4E NT DLKP4E SC THBS1 C

Figure 3.9.6: (A) Relative quantification of THBS1 in non-transfected, scrambled, and 

THBS1 siRNA A & B transfected DLKP4Es at 48hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA C transfected DLKP4Es at 

48hrs.
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Figure 3.9.7 Real-time PCR for THBS1 siRNA A, B & C in SKBR3 at 24hrs

(A):

SKBR3 NT SKBR3 SC THBS1 A THBS1 B

(B):

SKBR3NT SKBR3SC THBS1 C

Figure 3.9.7: (A) Relative quantification of THBS1 in non-transfected, scrambled, and 

THBS1 siRNA A & B transfected SKBR3s at 24hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA C transfected SKBR3s at 

24hrs.
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Figure 3.9.8 Real-time PCR for THBS1 siRNA A, B & C in SKBR3 at 48hrs

(A):

SKBR3NT SKBR3SC THBS1 A THBS1 B

(B):

SKBR3 NT SKBR3SC THBS1 C

Figure 3.9.8: (A) Relative quantification of THBS1 in non-transfected, scrambled, and 

THBS1 siRNA A & B transfected SKBR3s at 48hrs; (B) Relative quantification of 

THBS1 in non-transfected, scrambled, and THBS1 siRNA C transfected SKBR3s at 

48hrs.
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3.9.3 Western blot

Western blots were carried out on protein isolated from all four cell lines after siRNA 

transfection. However, MCF7 was the only cell line that had sufficient levels of THBS1 

protein for detection by western blot. The results showed that THBS1 protein was 

reduced after transfection with all three o f the THBS1 siRNAs. THBS1 siRNA A and C 

had the most marked effect, with no detectable band, THBS1 siRNA B, though still 

visible, is clearly reduced compared to the non-transfected and scrambled controls 

(Figure 3.9.9). This result proves that the siRNAs used were capable of knock-down of 

THBS1 at a protein level.
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Figure 3.9.9 Western blot analysis of THBS1 protein expression in MCF7

Figure 3.9.9: Western blot showing protein expression of THBS1 in MCF7 NT, MCF7 

SC, and MCF7 transfected with THBS1 siRNA A, B & C.
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3.9.4 Invasion assays

To establish whether THBS1 silencing seen in mRNA and protein led to a change in the 

invasion status of the cells, invasion assays were carried out. The most dramatic results 

were seen in DLKP and MCF7. DLKP, a mildly invasive cell line, showed a 3.5 to 4- 

fold increase in the number of invading cells when transfected with all three siRNAs 

(Figure 3.9.10 and 3.9.11). MCF7, a completely non-invasive cell line, became invasive 

after transfection with THBS1 siRNA (Figure 3.9.12 and 3.9.13). DLKP4E, already a 

highly invasive cell line, showed a negligible change of 0.1 fold. Combined with the 

statistical data for these results, this change is insignificant (Figure 3.9.14 and 3.9.15). 

SKBR3 also showed an increase in invading cells. Though not obvious from 

photographic evidence of the invasion inserts, cell counts revealed that a 1.3 to 1.7 fold 

increase was seen in THBS1 siRNA transfected cells (Figure 3.9.16 and 3.9.17). These 

results show that transfection of THBS1 siRNA produces dramatic increases in invasion 

across SKBR3 and DLKP, and again, validate results of microarray analysis which 

suggested reduction of THBS1 should increase invasion.
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Figure 3.9.10 Photographs of invasion assays for DLKP transfected with THBS1

siRNA

(E)THBSl C

(C)THBSl A

(A) DLKP NT

Figure 3.9.10: Photographs of invasion assay inserts at 10X magnification. A=DLKP

NT, B=DLKP SC, C=DLKP transfected with THBS1 siRNA A, D=DLKP transfected

with THBS1 siRNA B E=DLKP transfected with THBS1 siRNA C.
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Figure 3.9.11 cell counts of invasion assays for DLKP transfected with THBS1

siRNA
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Figure 3.9.11: Number of invading cells detected per |im2 (at 20X magnification) of 

invasion assay insert for DLKP NT, DLKP SC and DLKP transfected with THBS1 

siRNA A, B & C. 

n=3, *p-value<.001.

DLKP NT DLKP SC THBS1A THBS1B THBS1C
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Figure 3.9.12 Photographs of invasion assays for MCF7 transfected with THBS1

siRNA
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Figure 3.9.12: Photographs of invasion assay inserts at 10X magnification. A=MCF7

NT, B=MCF7 SC, C=MCF7 transfected with THBS1 siRNA A, D=MCF7 transfected

with THBS1 siRNA B E=MCF7 transfected with THBS1 siRNA C.
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Figure 3.9.13 cell counts of invasion assays for MCF7 transfected with THBS1

siRNA

Figure 3.9.13: Number of invading cells detected per jxm2 of invasion assay insert for

MCF7 NT, MCF7 SC and MCF7 transfected with THBS1 siRNA A, B & C.

n=3, *p-value<.001.
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Figure 3.9.14 Photographs of invasion assays for DLKP4E transfected with THBS1

siRNA

(A) DLKP4E NT (B) DLKP4E SC

(C)THBSl A (D)THBSl B

(E)THBSl C

Figure 3.9.14: Photographs of invasion assay inserts at 10X magnification. A= DLKP4E

NT, B=DLKP4E SC, C=DLKP4E transfected with THBS1 siRNA A, D=DLKP4E

transfected with THBS1 siRNA B E= DLKP4E transfected with THBS1 siRNA C.
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Figure 3.9.15 cell counts of invasion assays for DLKP4E transfected with THBS1

siRNA

Figure 3.9.15: Number of invading cells detected per |xm2 of invasion assay insert for

DLKP4E NT, DLKP4E SC and DLKP4E transfected with THBS1 siRNA A, B & C.

n=3, * *p-value<0.01 * * *p-value<0.05.
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Figure 3.9.16 Photographs of invasion assays for SKBR3 transfected with THBS1

siRNA

(E) THBS1 C

Figure 3.9.16: Photographs of invasion assay inserts at 10X magnification. A= SKBR3

NT, B=SKBR3 SC, C= SKBR3 transfected with THBS1 siRNA A, D=SKBR3

transfected with THBS1 siRNA B E= SKBR3 transfected with THBS1 siRNA C.

(A) SKBR3 NT (B) SKBR3 SC

(C)TH BSIA  (D )TH BSIB
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Figure 3.9.17 cell counts of invasion assays for SKBR3 transfected with THBS1

siRNA

Figure 3.9.17: Number of invading cells detected per |im2 of invasion assay insert for

SKBR3 NT, SKBR3 SC and SKBR3 transfected with THBS1 siRNA A, B & C.

n=3, *p-value<0.001, **p-value<0.01, ***p-value<0.05, ****p-value>0.05
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3.9.5 Summary of results for THBS1 in DLKP, DLKP4E, MCF7 and SKBR3

Proliferation assays carried out on all cell lines showed that predominately THBS1 

siRNA transfection caused little change in growth rate, with the exception of SKBR3. 

Real-time PCR revealed efficient knock-down of THBS1 mRNA with all three siRNAs 

in DLKP and SKBR3, and two of the three siRNAs in DLKP4E and MCF7. Although 

THBS1 protein expression was too low for detection by western blot in DLKP, 

DLKP4E and SKBR3, detection and decreased expression was observed in MCF7. 

Western blot results showed a marked decrease in THBS1 protein in MCF7 cells post- 

siRNA transfection. THBS1 siRNA A and C both performed best, and this can be seen 

at both mRNA and protein level, with real-time mirroring western blot results. Invasion 

assay results were conspicious, with an increase in invasion being inversely 

proportional to the original level of invasion of the cell lines. Non-invasive MCF7 

became invasive, poorly invasive DLKP became highly invasive, and invasive SKBR3 

also showed an increase in invading cells. However, DLKP4E, the most highly invasive 

cell line in the study did not change (Table 3.5.1). Microarray results revealed that 

expression levels of THBS1 were reduced in an invasive cell line. Results from this 

study support this idea, with siRNA silencing of THBS1 having a lesser effect on cell 

lines as they increased in invasion. Microarray analysis would suggest that the higher 

the level of invasion the lower the level of THBS1. The lower the level of THBS1 the 

lesser the effect of THBS1 siRNA.
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Table 3.9.1 Summary of results of THBS1 siRNA transfection into DLKP, MCF7, DLKP4E and SKBR3

Real-time PCR -  

mRNA knock-down
Western blot -  

protein knock-down

Invasion assay -  

increase in invasion

Cell Line siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C siRNA A siRNA B siRNA C

DLKP + + + ----- ------ ------ + + +

MCF7 + + + + + + + + +

DLKP4E + + + ------ ----- ------ + + +

SKBR3 + + + ------ ----- ------ + + +

Table 3.9.1: Summary of results of THBS1 siRNA A, B and C transfections into DLKP, MCF7, DLKP4E and SKBR3.
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3.10 Genes specific to DLKP4E, DLKP4Emut and invasion

Five genes were chosen as siRNA targets based on analysis of DLKP4E and 

DLKP4Emut microarray data (see section 3.3.4). All five genes displayed increased 

expression in invasive DLKP4E and DLKP4Emut. siRNA analysis was chosen to 

silence these genes in order to observe the effect on invasion. As with the genes chosen 

based on MCF7H3erbB2 data (Section 3.4 to 3.9), all siRNAs were transfected into 

both SKBR3 and DLKP4E, and two siRNAs were used for each target.

3.10.1 Proliferation assays

Proliferation assays were carried out on both DLKP4E and SKBR3 transfected with all 

10 siRNAs to determine the effect on growth rate. Results for DLKP4E showed only 

minor changes in growth after transfection (Figure 3.10.1.1). The growth rate of SKBR3 

increased between 20% and 30% for most transfected cells (Figure 3.10.1.2).

3.10.2 Invasion assays

Invasion assays revealed that none of the siRNA transfections caused any of the 

expected reduction in invasion of DLKP4E (Figure 3.10.2). Cell counts were not 

performed because the extent of the invading cells on most inserts made it impossible to 

get an accurate count. Initially, the photograph of the SKBR3 invasion inserts indicated 

some decrease in invasion (Figure 3.10.3). However, cell counts revealed no change in 

the number of invading cells (Figure 3.10.4) and when repeated, results for this cell line 

were inconsistent. These results showed that transfection of SKBR3 and DLK4E with 

this set of siRNAs did not result in reduced invasion.

3.10.3 Summary of results

A reduction in Kinesin proliferation and also real-time PCR showing GAPDH knock­

down in these cells (Figure 3.4.3) would imply that optimum transfection conditions 

were used. Therefore invasion assay results suggest that these targets didn’t play a 

significant role in invasion in SKBR3 or DLKP4E. Because of this further analysis was 

not performed on these targets.
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Figure 3.10.1 Proliferation assay for THBS1 siRNA A & B in DLKP and MCF7
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Figure 3.10.1: (A) Growth rate of DLKP4E NT, DLKP4E SC and DLKP4E transfected

with DLKP4E/DLKP4E target siRNAs; (B) Growth rate of SKBR3 NT, SKBR3 SC and

SKBR3 transfected with DLKP4E/DLKP4E target siRNAs.
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Figure 3.10.2 Photographs of invasion assays for DLKP4E transfected with siRNA

to target genes specific to DLKP4E, DLKP4Emut and invasion

(A) DLKP4E NT (B) DLKP4E SC

(C) HOXB4 A (D) HOXB4 B (E) HOXB6 A (F) HOXB6 B

(G) HOXB7 A (H) HOXB7 B (I) MYO A (J) MYO B

(K) NRG A (L)NRGB

Figure 3.10.2: Photographs of invasion assay inserts at 10X magnification. A=DLKP4E 

NT, B=DLKP4E SC, DLKP4E transfected with siRNA targeted to (C) HOXB4 A, (D) 

HOXB4 B, (E) HOXB6 A, (F) HOXB6, (G) HOXB7 A, (H) HOXB7 B, (I) MYO A, (J) 

MYO B, (K) NRG A, (L) NRG B.
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Figure 3.10.3 Photographs of invasion assays for SKBR3 transfected with siRNA to

target genes specific to DLKP4E, DLKP4Emut and invasion
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Figure 3.10.3: Photographs of invasion assay inserts at 10X magnification. A=SKBR3 

NT, B=SKBR3 SC, SKBR3 transfected with siRNA targeted to (C) HOXB4 A, (D) 

HOXB4 B, (E) HOXB6 A, (F) HOXB6, (G) HOXB7 A, (H) HOXB7 B, (I) MYO A, (J) 

MYO B, (K) NRG A, (L) NRG B.
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Figure 3.10.4 Cell counts of invasion assays for SKBR3 transfected with siRNA to

target genes specific to DLKP4E, DLKP4Emut and invasion

Figure 3.10.4: Number of invading cells detected per |xm2 of invasion assay insert for

SKBR3 NT, SKBR3 SC and SKBR3 transfected with siRNA HOXB4 A, HOXB4 B,

HOXB6 A, HOXB6, HOXB7 A, HOXB7 B, MYO A, MYO B, NRG A, NRG B.
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Section 4.0

Discussion



4.1 Discussion -  Overview
The purpose of this thesis was to identify genes which exhibited altered expression as a 

result of eIF4E or eIF4Emut overexpression in human lung cell lines. More specifically, 

the effect of eIF4E/eIF4Emut and erbB2 on the invasive phenotype of lung and breast 

cancer cell lines was investigated using the following approaches:

■ Generation and characterisation of DLKP and MCF7 cell lines transfected with 

wild-type eIF4E and mutant eIF4E.

■ Microarray analysis of invasive DLKP4E/4Emut, invasive MCF7H3erbB2 and 

non-invasive MCF74E/4Emut.

■ siRNA expression silencing of genes potentially involved in invasion, chosen 

based on microarray analysis.

■ Investigation of genes up-regulated at transcription level as a result of eIF4E and 

phosphorylation deficient eIF4Emut.

Several studies have related overexpression of eIF4E to disease progression in the lung 

(De Beneditti and Graff, 2004). A study of lung adenocarcinomas demonstrated that 

eIF4E expression was 3.4-7.4-fold higher than in normal lung and that its expression 

progressively increased in the following order: atypical adenomatous hyperplasia 

(lowest expression), bronchioloalveolar carcinoma, bronchioloalveolar pattern and 

minor invasion, and marked invasion (highest expression) (Seki et al., 2002). Many of 

the known oncogenes and tumor suppressor genes enhance malignant transformation 

only after they are altered by mutation. However, many o f the gene products that drive 

progression of the primary tumor to metastasis (e.g., MMPs, VEGF) are not altered by 

mutation but are inappropriately expressed (Sager et al., 1997). Therefore, the formation 

of metastasis may involve more quantitative than qualitative alterations in the 

expression of key invasion/metastasis-associated genes, and translation of these proteins 

is primarily regulated by eIF4E (Graff and Zimmer, 2003).
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DLKP is a poorly differentiated, human lung squamous cell carcinoma cell line (Law et 

al., 1992) which has previously been used as a model to investigate the role of eIF4E in 

early lung development and carcinogenesis here at the National Institute for Cellular 

Biotechnology (NICB). Walsh et al. (2003) looked at the role of eIF4E in regulating the 

translation efficiency of differentiation-related mRNAs during early development. They 

found that increased levels of differentiation correlated with increased phosphorylation 

of eIF4E. Continuing on from this study, the effects of up-regulation of eIF4E and its 

phosphorylation-deficient mutant, eIF4Emut, on DLKP cells were examined (Power, 

PhD thesis, NICB, 2005). This study found through proteomic analysis, that 

phosphorylation of eIF4E was important for the translation of specific proteins. It also 

suggests that overexpression of both eIF4E and eIF4Emut increased the level of 

invasion of DLKP, and that phosphorylation of eIF4E did not influence invasion. The 

present study was designed to confirm the results in a large range of DLKP transfected 

clones, and to investigate if  eIF4E overexpression would have the same effect in a 

different cell model. MCF7, a non-invasive, epithelial-like, breast adenocarcinoma cell 

line was chosen for this purpose. Several studies have demonstrated the overexpression 

of eIF4E in breast cancer (Li et al., 1998a; McClusky et al., 2005; Byrnes et al., 2006). 

The most recent of which showed overexpression of eIF4E had poor clinical outcome in 

stage I to III breast cancer, where outcome endpoints were cancer recurrence and 

cancer-related death (Byrnes et al., 2006). The same study showed correlation between 

eIF4E overexpression and increasing levels of vascular endothelial growth factor 

(VEGF), which plays an important role in angiogenesis and invasion in breast cancer 

(Skobe et al., 2001).

Several eIF4E/eIF4Emut-overexpressing stable clones were established, and none of 

them were found to have any increase in invasion (this was determined by level of cell 

invasion through Matrigel). In order to elucidate why overexpression of eIF4E did not 

result in a change in invasive phenotype of MCF7, and to enable identification of breast 

cancer cell specific invasion markers, it was necessary to make a comparison with an 

invasive MCF7 cell line. MCF7H3erbB2 was chosen for this purpose. This cell line is a 

clonal subpopulation of MCF7H3 (MCF-7 H3 is a clonal population isolated from 

MCF7 by Dr. Finbar O’Sullivan (NICB)) transfected with erbB2 and was established at 

the NICB by Dr. Sharon Glynn. This cell line proved highly invasive after stable 

expression of erbB2.
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The epidermal growth factor (EGF) family of tyrosine kinase receptors (ErbBl, -2, -3 

and -4) and their ligands are involved in cell differentiation, proliferation, migration, and 

carcinogenesis. Overexpression of erbB2 in vitro and in animal studies has been shown 

to play a role in oncogenic transformation and tumourigenesis (Slamon et al., 1989; 

Colomer et al., 2001). However, it has proven difficult to link a given erbB receptor to a 

specific biological process since most cells express multiple erbB members that 

heterodimerize, leading to receptor cross-activation. In erbB2 homodimerisation results 

in ubiquitin tagging and rapid digestion by the cell, whereas heterodimerization results 

in a lower rate of digestion and a higher rate of receptor recirculation. Overexpression 

of erbB2 on the cell surface appears to lead to constitutive activation of erbB2 

homodimers without the need for ligand binding, resulting in unregulated cell growth 

and oncogenic transformation (Rowinsky, 2003). ErbB2 serves as a critical component 

that couples erbB receptor tyrosine kinases to the migration/invasion machinery of 

carcinoma cells. Stimulation of cells with EGF-related peptides resulted in increased 

invasion of the extracellular matrix, whereas cells devoid of functional ErbB2 receptors 

showed no change in invasion. ErbB2 facilitates cell invasion through extracellular 

regulated kinase (ERK) activation and coupling of the adaptor proteins, pl30CAS and 

c-Crkll, which regulate the actin-myosin cytoskeleton of migratory cells (Spencer et al., 

2000).

eIF4E translation of complex mRNAs, in particular oncogenes, has previously been 

associated with cancer progression, and is also involved in the translation of erbB2 

protein (Yoon et al., 2006). erbB2 can also control the amount of eIF4E available for 

translation by activating the Akt/mTOR signalling cascade. In this way, eIF4E and 

erbB2 are involved in a positive feed-back loop (Figure 4.1). Both eIF4E and erbB2 

have individually been associated with invasion and metastasis, and this thesis attempts 

to look at their relationship with each other, and the influence of this relation on an 

invasive phenotype in vitro. This thesis further strengthens this relationship by showing 

genes differentially expressed in an invasive erbB2-overexpressing cell line also effect 

the invasive phenotype of an eIF4E-overexpressing cell line. Many of these genes 

function as part of the Akt or ERK signalling pathways, both of which can be activated 

by erbB2.
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Figure 4.1 erbB2/eIF4E positive feedback-loop
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Figure 4.1: Relationship of eIF4E with erbB2. erbB2 regulates eIF4E through the Akt 

signalling pathway, eIF4E in turn up-regulates erbB2 at a translational level. Both are 

involved in the ERK and Akt signalling pathways, the deregulation of which has been 

associated with invasion.
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4.2 Phenotypic effects of overexpression of eIF4E

4.2.1 The effect of eIF4E on proliferation of MCF7 and DLKP cells

MCF74E and MCF74Emut cells showed a marked increase (100%) in proliferation 

compared to the parent and pcDNA-transfected MCF7 (Section 3.1.5). Growth rate of 

DLKP4E and DLKP4Emut was increased by 66% and 25% respectively (Section 3.2.5). 

An earlier report showed the pattern of eIF4E phosphorylation varied throughout the 

cell cycle, with the lowest levels in GO, increasing throughout G1 and S, but was 

reduced in M phase (Bonneau and Sonnenberg, 1987). eIF4E is believed to play a 

significant role in proliferation, the disruption of which often leads to oncogenic 

transformation (Flynn and Proud, 1996a). eIF4E is phosphorylated in many systems in 

response to extracellular stimuli, but biochemical evidence to date has been equivocal as 

to the biological significance of this modification. The 4Emut clone used in this work 

has been transfected with eIF4E where serine 209 has been replaced by alanine to 

prevent phosphorylation. Therefore, results showed that phosphorylation of eIF4E did 

not affect the rate of proliferation in MCF7, but did in DLKP cells. Originally it was 

believed that phosphorylation of eIF4E at Ser-209 occurs as part of the eIF4F complex 

(Tuazon et al., 1990), greatly enhancing and stabilising its association with the cap 

structure (Minich et al., 1994; Joshi et al., 1995), and increased levels of eIF4E 

phosphorylation and its association with eIF4G have been directly correlated with the 

enhancement of translation which follows mitogenic stimulation of mammalian cells 

(Morley, 1997; Gingras et al., 1999; Raught et al., 2000). More recent studies 

demonstrated phosphorylation was not required for protein synthesis in vitro and in vivo 

(McKendrick et al., 2001). It was found that both wild type and mutant (Ser209—»•Ala) 

eIF4E interacted equally well with eIF4G, and both were capable of rescuing a lethal 

phenotype of eIF4E deletion in S. cerevisiae. Slepenkov et al. (2006) have recently 

proposed that phosphorylation of Ser-209, which is located at the entrance to the cap- 

binding slot, diminishes the rate of association by charge repulsion but has no effect on 

the rate of dissociation (Slepenkov et al., 2006). Another recent report saw no 

significant difference between nontransformed cells and carcinoma cell lines with 

regard to the phosphorylation status of eIF4E (Avdulov et al., 2004). However, a study 

carried out using Drosophila melanogaster provided evidence that eIF4E 

phosphorylation is biologically significant and is essential for normal growth and
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development in vivo (Lachance et ah, 2002). Results obtained from MCF74E and 

MCF74Emut suggest that phosphorylation of eIF4E was not essential for growth, 

whereas DLKP results show an increase in proliferation of DLKP4E compared to 

DLKP4Emut. Our results are in line with a model, consistent with this recent literature, 

in which eIF4E phosphorylation is not essential for translation initiation as stimulation 

of proliferation, but in which phosphorylation does play a role in the 

efficiency/magnitude of eIF4E targeted effect depending on the precise cellular 

background. It may be possible that in some situations, eIF4E binding to the cap is ‘rate 

limiting’.

4.2.2 Effect of eIF4E on anchorage-dependence of MCF7 cells

After MCF74E and 4Emut cells were observed growing both in suspension and attached 

in the same flask, further studies were carried out to examine the level of anchorage- 

independent growth in these cell lines. The parental MCF7 cells have previously been 

observed to form numerous large colonies after 2 to 4 weeks of growth in soft agar, 

indicating that like most transformed cells they do not have an essential requirement for 

a matrix-derived survival/growth signal (Fiucci et ah, 2002; Finlay et ah, 1993). The 

colony forming efficiency (CFE) calculated over a 10-day growth period showed an 

increase in all lines examined (MCF74E, MCF74Emut and MCF7pcDNA) compared to 

the parent (Section 3.1.6.2). The largest increase was seen in MCF74E, with a 1.6 fold 

increase in CFE compared to MCF7. The CFE of MCF74Emut increased by 1.3 fold, 

but this increase was also achieved by MCF7pcDNA. This may have been a background 

effect of geneticin selection, which has been known to confer resistance to apoptosis. 

However, the difference in CFE between MCF7eIF4E and MCF7eIF4Emut clones also 

suggests that an inability of eIF4E to phosphorylate in these cells had an effect on 

anchorage-independent growth. Adhesion assays carried out on the same cells also 

showed eIF4E had a greater effect on adhesion of MCF7 than eIF4Emut or pcDNA. 

While MCF74Emut and MCF7pcDNA were 50-60% adherent after 60mins, MCF74E 

showed 0% attachment after the same time period (Section 3.1.6.1). Previous studies 

have provided evidence that overexpression of eIF4E in human mammary epithelial 

cells enabled clonal expansion and anchorage-independent growth (Avdulov et al.,

2004). Increased CFE of MCF74E showed that sustained increase of eIF4E expression 

caused an increase in anchorage-independent growth and colony forming efficiency, an 

in vitro event which is frequently associated with malignant transformation.
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4.2.3 Effect of eIF4E on drug resistance of MCF7 and DLKP ceils

Many chemotherapeutic agents induce apoptosis, and so disruption of apoptosis can 

promote drug resistance. The complex network of proliferation and survival genes that 

control apoptosis is frequently disrupted during tumour evolution. eIF4E is described as 

a potent oncogene in vivo, with lymphomas expressing eIF4E highly resistant to drug 

therapy, producing phenotypes consistent with anti-apoptotic genes (Wendel and Lowe

2004). eIF4E is capable of rescuing cells from Myc-dependent apoptosis by inhibiting 

the release of mitochondrial cytochrome c gene. Experiments achieving gain and loss of 

function demonstrate that eIF4E-mediated rescue is governed by pre-translational and 

translational activation of the anti-apoptotic bcl-xl, as well as by additional 

intermediates acting directly on, or upstream of, the mitochondria (Li et al., 2003). The 

same group demonstrated in a later study that exogenous expression of eIF4E rescued 

cells from ER stress-induced apoptosis by mediating the blockade of calcium release 

from the ER to the cytosol and by preventing activation of caspase-12. This study 

provided evidence that the integration of critical organelle-mediated checkpoints for 

apoptosis could be controlled by the cap-dependent translation apparatus, eIF4F (Li et 

al., 2004). In the present study, DLKP4E and DLKP4Emut were examined using taxol 

and adriamycin, and MCF74E and MCF74Emut with taxol and 5FU. Due to time 

constraints, the effects of adriamycin on MCF74E and MCF74Emut were not 

investigated, nor were 5FU effects examined in DLKP4E or DLKP4Emut.

4.2.3.1 Taxol resistance in DLKP4E/4Emut and MCF74E/4Emut clones.

Taxol is a microtubule antagonist capable of inducing cell-cycle arrest with minimum 

effect on protein synthesis. It works by binding to microtubules and inhibits their 

depolymerization into tubulin, therefore blocking the ability to break down the mitotic 

spindle during mitosis. With the spindle still in place cell division is not possible (Pratt 

et al., 1984). Taxol has been shown to proceed independently of cell protective effects 

of PI3K and AKT (Mitsuuchi et al., 2000).

The majority of MCF74E and MCF74Emut clones showed no change or a slight 

decrease in resistance compared to the parent, as did DLKP4E and DLKP4Emut. 

Therefore an increase in levels of eIF4E in MCF7 cells did not affect taxol drug 

resistance. This result is supported by a study by Greenberg and Zimmer, which 

established that initial chemotherapeutic treatment triggers a stress-related response,
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which can lead to an increase in the expression of survival proteins. They found that 

taxol induced the phosphorylation of 4E-BP1 in the breast cancer cell line, MDA MB 

231, which reduced its association with eIF-4E. It could therefore be assumed that taxol 

increases the functional level of eIF-4E by promoting the phosphorylation and release 

of 4E-BP1 (Greenberg and Zimmer, 2005). It is unlikely therefore that up-regulation of 

eIF4E would have any effect on resistance to taxol.

4.2.3.3 5FU resistance in MCF74E and MCF74Emut

eIF4E has been shown to play key roles in cell cycle control and is an important marker 

for determining chemosensitivity (Wendel and Lowe, 2004; Hartmann et al., 2005). To 

further investigate the effect of over-expression of eIF4E in MCF7, toxicity assays were 

carried out on MCF7, MCF7eIF4E and MCF7eIF4Emut cells using 5-Fluorouracil 

(5FU) and Taxol. Fluorouracil is one of the most commonly used drugs to treat cancer. 

It is used in the treatment of many types of cancer including, breast, head and neck, 

colorectal, stomach, colon and some skin cancers. 5FU is part of a group of 

chemotherapy drugs known as the anti-metabolites, which work by interfering with the 

production of nucleic acids. It has previously been demonstrated that constitutive AKT 

levels are the lowest in cell lines that are the most resistant to 5-FU (Saxena et al.,

2005). AKT activation regulates mRNA translation via control of phosphorylation of 

4E-BP1 and its dissociation from the mRNA cap binding protein elF4E (Cohen et al.,

2005). Therefore, 5-FU inhibits protein synthesis by reducing AKT signalling; 

preventing the phosphorylation of 4EBP1 and the release of eIF4E, therefore preventing 

eIF4E participation in translation initiation. eIF4E was found sufficient to replace AKT 

or p53 loss in myc-driven tumours, showing translation regulation can compensate for 

the AKT survival signal (Wendel and Lowe, 2004).

Based on this information, elevating levels of eIF4E within a cell might have been 

expected to cause resistance to 5FU. However, results here show the opposite, with 

MCF74E and 4Emut clones more sensitive to 5FU than the parent cell line (section 

3.1.10). Our result suggests that the effect of eIF4E on pathways relevant to 5FU 

resistance are more complex then previously described in the literature. And so far 

remain to be fully elucidated.
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4.23.4 Adriamycin resistance in DLKP4E and DLKP4Emut cells

Adriamycin is an anthracycline antibiotic isolated from Streptomyces. It is an 

intercalating drug that works via nonconvalent DNA-binding, thus disrupting 

transcription and translation and producing a cytotoxic, mutagenic and carcinogenic 

effect. However, lymphomas expressing eIF4E were shown to be highly resistant to 

adriamycin therapy relative to controls (Wendel et al., 2004).

Results presented here show that stable expression of eIF4E and eIF4Emut in DLKP 

cells cause a fold increase in resistance to adriamycin. Gene expression profiles of 

adriamycin-resistant cells showed up-regulation of several genes that have been 

associated with eIF4E (Song et al., 2006). These included p21 (Lazaris-Karatzas and 

Sonenberg, 1992), tumor necrosis factor superfamily member 7 (TNFSF7) (Wang et al.,

2006), programmed cell death 4 (PDCD4) (Kang et al., 2002), proliferating cell nuclear 

antigen (PCNA) (Jin et al., 2006), MMP-2 and TSP-2 (Van Trappen et al., 2002). eIF4E 

has also been found to influence adriamycin drug resistance through overexpression of 

TLK1B, a nuclear serine/threonine kinase that is potentially involved in the regulation 

of chromatin assembly and is capable of repairing double strand breaks. TLK1B mRNA 

contains a 5'UTR 1088-nt long with two upstream AUG codons, which was found to be 

very inhibitory for translation. This inhibition of translation could be relieved by 

overexpressing eIF4E. TLK1B overexpression protects cells from the genotoxic effects 

of ionizing radiation (IR) or adriamycin, which is a radiomimetic drug. Therefore it is 

clear form the literature that there are many ways in which overexpression of eIF4E 

could influence adriamycin drug resistance. The specific mechanism involved in 

adriamycin resistance in DLKP4E and DLKP4Emut is unknown, but it is clear from the 

results that overexpression o f eIF4E is involved.

4.2.4 Effect of eIF4E on the invasive status of MCF7 and DLKP cells

To form metastases, individual tumour cells must break from the primary tumour mass, 

degrade extracellular matrix, invade the surrounding normal tissue, enter the blood or 

lymphatic circulation, exit the circulation at a distal tissue and establish satellite 

colonies within this new tissue environment. This aberrant behaviour of cancer cells 

requires the cooperative function of numerous proteins; those that facilitate 

angiogenesis (e.g. VEGF), cell survival (e.g. Bcl-2), invasion (e.g. MMPs), and 

autocrine growth stimulation (e.g. c-myc, cyclin Dl). Although expression of these 

proteins is regulated at many levels, translation of these key malignancy-related proteins
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is regulated primarily by the activity of eIF4E (Graff and Zimmer, 2003). This is 

because the above mRNA contains long, G-C-rich 5’UTRs which are capable of 

forming stable secondary structures and upstream AUGs, and therefore are dependent 

on the presence of eIF4E for efficient translation. Many of the gene products that drive 

metastasis are not altered by mutation, but by altered patterns of gene expression. 

Therefore it is the quantity not the quality of key genes that drive the metastatic 

program (Graff and Zimmer, 2003). Not surprisingly, eIF4E is elevated in most solid 

tumours, contributing to metastatic progression by selectively upregulating the 

translation of key malignancy-related proteins that together conspire to drive the 

metastatic process.

It has long since been established that eIF4E plays a critical role in breast cancer 

(Kerekatte et al., 1995; Byrnes et al., 2006). A marked increased in eIF4E in 

vascularized malignant ductiles of invasive breast carcinomas has been reported 

(Nathan et al., 1997), and recent studies have shown direct correlation between invasion 

and eIF4E in breast cancer cells (Yoon et al., 2006). However, stable expression of the 

eIF4E and eIF4Emut plasmids alone was not sufficient to cause a change of the invasive 

phenotype of non-invasive MCF7 (Section 3.1.8). DLKP on the other hand, changed 

considerably after eIF4E transfection (Section 2.3.6). At a 200X magnification the 

average number of invading cells was 20/per field in DLKP parent, whereas for 

DLKP4E and DLKP4Emut clones the average count ranged from 40 to 160 cells per 

field. This result concurs with previous studies, which have associated eIF4E with 

increased invasiveness and metastasis of the lung (Graff et al., 1995; Seki et al., 2002). 

Why then did eIF4E produce a different effect in MCF7 and DLKP? Microarray 

analysis of eIF4E and eIF4Emut clones compared to the parent MCF7 and DLKP 

showed lists of genes differentially expressed when clones were compared to parents. 

Looking at the eIF4E clones alone, of those changes specific to DLKP4E, almost 900 

genes appeared that were not differentially expressed in MCF74E. Likewise, over 200 

genes differentially expressed in MCF74E did not change significantly in DLKP4E. 

Without any further analysis it is clear from this observation alone that eIF4E 

overexpression has a very different effect on DLKP and MCF7. Combined with the 

different phenotypic effects of eIF4E in both cell lines, these gene lists point to an 

invasion mechanism specific to eIF4E in DLKP cells.
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4.3 Microarray analysis of DLKP-& MCF7-4E/4Emut stable clones, 

and MCF7H3 -erbB2
Microarray analysis was used to further examine the impact of eIF4E on transcription in 

both DLKP and MCF7 cell lines. In particular, one aim of this analysis was to identify 

genes involved in the invasion process in both DLKP and MCF7. As eIF4E was unable 

to induce invasion in MCF7, it was important to include an invasive MCF7 cell line. 

MCF7H3erbB2 was chosen for this purpose. Genes differentially expressed in relation 

to eIF4E up-regulation were identified by comparing MCF7 parent to MCF74E and 

MCF74Emut. Genes related to invasion and MCF7 were identified by a MCF7H3 / 

MCF7H3erbB2 comparison. Further analysis of the MCF7H3erbB2 and 

MCF7/4E/4Emut gene lists resulted in the identification of invasion-associated gene 

lists.

Genes differentially expressed in DLKP4E and DLKP4Emut compared to the DLKP 

parent were related to eIF4E overexpression and invasion, since both DLKP4E and 

DLKP4Emut are invasive. The end result was two lists o f genes, associated with 

invasion in DLKP and MCF7. In addition, these genes were analysed using software 

that demonstrated their relationship to each other or a known pathway, based on 

existing literature.

There are several examples in the literature of microarray analysis as a tool for 

identifying invasion-associated genes, either by analyzing large numbers of clinical 

samples or by comparing metastatic and non-metastatic cells in experimental systems. 

Combination of these studies has resulted in a panel of genes whose expression is linked 

to the spread of cancer. Some of these studies provided evidence that model cell lines of 

varying invasiveness and confirmed in vivo metastatic properties, evaluated by the 

cDNA microarray method, constitutes a powerful system to identify invasion- or 

metastasis-associated genes (Chen et al., 2001; Bai et al., 2006). Resulting data 

demonstrated the diversity of genes involved in the underlying cellular process of 

cancer invasion/metastasis, with genes related to cell adhesion, motility, angiogenesis 

and signal transduction identified as potential participants in the invasion process. 

Correlation of gene expression patterns in primary tumours with clinical outcome has 

led to the identification of some genes with cell motility functions whose expression 

correlates in some way with metastasis (Van’t Veer et al., 2002; Ramaswamy and 

Perou, 2003; Wang et al., 2002). It is encouraging that deregulation of many of the
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genes identified in these microarray studies have been demonstrated by traditional, low- 

throughput immuno-histochemical methods.

4.3.1 Normalisation and Quality control of microarray experiments

Data collected from microarray experiments are random snapshots with errors, noisy 

and often incomplete. Variability caused by several factors in the fields o f experimental 

design, experimental setup, image analysis and data analysis, disguises actual 

differences in signal intensities and highlights the necessity for quality control. In order 

to compare gene expression results from experiments performed using multiple chips, it 

was necessary to normalise the data obtained following scanning. The purpose of data 

normalisation was to minimise the effects of experimental and technical variation 

between microarray experiments so that meaningful biological comparisons could be 

drawn from the data sets and that real biological changes could be identified. After 

normalisation all data from microarray chips went through several QC steps, and once 

satisfactory the data was examined using hierarchical clustering,

Unsupervised hierarchical clustering grouped samples together based on similar 

expression levels o f the genes analysed by the microarrays, and therefore was used to 

represent the relationship between replicate samples and different sets o f replicate 

samples. Each cell line used in the study was run in triplicate, and it would be expected 

that biological triplicates should cluster together, and all such clusters be significantly 

differently from each of the other clusters. First, it is interesting to note that all of the 

DLKP cell lines, parent and clones, clustered together, as did the MCF7 cell lines. This 

proved that these particular cell lines retain a similar pattern of expression despite 

transfection and clonal variation, which would have been expected. Most importantly, 

this QC step proved crucial in the analysis as it identified three cell lines with biological 

replicates that did not cluster. DLKP2, DLKP4E2 and MCF74E2 did not behave as 

expected and did not cluster with their replicates. The percentage of genes present 

relative to the number of genes present on the array is typically 40-60%, which relates 

to approximately 25-30,000 gene transcripts. Three microarray chips were run for each 

cell line used in this experiment, and the resulting data compared based on their degree 

of similarity. That is, each set of gene transcripts ‘present’ on each chip were compared 

to each other set, to find similar genes. A correlation coefficient, generated by dChip for 

each sample, measured the amount of variation between groups of genes in replicate 

samples. The closer this coefficient was to 1, the stronger the linear relationship. If any
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one of the samples did not correlate and a list of genes was chosen from the comparison 

of all three, this would have increased the number of false negatives, and as a result a lot 

of important genes may be overlooked. On the other hand, removing the rogue sample 

would increase the number of false positives. It was vital that the ‘present’ call for each 

sample was accurate in order to ensure an exact comparison between samples. The 

accuracy with which the percentage of transcripts present was calculated was dependent 

on stringent physical QC. Because results showed a poor linear relationship for these 

samples within their biological triplicate, it was decided to continue with three sets of 

two rather than repeat the arrays for DLKP, DLKP4E and MCF74E.

This was a surprising result as great lengths had been taken to ensure that all biological 

replicates were treated in the same way prior to RNA extraction and microarray 

processing. Due to the sensitivity of microarray analysis all cell culture conditions 

including media, incubation and cell number were the kept the same for all samples. 

Despite this, it is clear that some event occurred that brought about ‘drift’ in gene 

expression within certain cells, significant enough to produce a different microarray 

profile. DLKP is a mixed population of cells, and over a number of passages a different 

sub-population could have inadvertently been selected. The reason as to why MCF74E 

and DLKP4E did not cluster is more difficult to explain, as both were clonal 

populations.

4.3.2 Selection of differentially expressed MCF7H3erbB2 genes for further analysis

The first step in analysis of microarray data was to identify differentially expressed 

genes. These are genes whose expression levels were significantly different between 

two cell lines. In all initial gene list comparisons, samples were assigned to two groups, 

e.g. DLKP1, 2 &3 =group A and DLKP4E1, 2 & 3=group B. P-value and fold change 

are the most common parameters utilised to generate gene lists from microarray 

experiments. The most important factor for consideration is the p-value. Before 

considering the significance o f this value, one must first consider that all statistical 

hypothesis tests are based on the concept of comparing a test statistic to a pre­

hypothesised value, or null-hypothesis. The null hypothesis is an assumption made 

about the data before the comparison. In the present study, the null-hypothesis was the 

assumption that the average level of expression in of a particular gene in group A was 

the same as the average level of expression in group B. Expression level in relation to 

microarray results is the level of intensity of a particular probe. This in turn is related to
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the amount of that probe which bound to the target gene, and therefore the level of 

expression of that gene. This intensity is given a numerical value, calculated by a dChip 

algorithm and represents the level of expression of the gene. In order to establish if  the 

mean expression level in A was significantly different to B, the observed t-statistic for 

each gene was calculated (using dChip). The t-statistic measured the distance between 

samples in units of standard deviation. The p-value measured the probability of 

observing a value of the test statistic (t-statistic) at least as extreme as that observed i f  

the null-hypothesis was true. Therefore the lower the p-value, the greater the likelihood 

that the null-hypothesis is NOT true, and that the samples are significantly different. 

The limitation of p-value is if  expression levels for a gene are very high or very low, the 

amount of background noise is increased, and this affects the accuracy of statistical 

analysis.

Fold change was also considered when filtering genes. The shortcoming of this 

parameter is that there is a bias towards genes that are expressed at very low levels in 

the parent samples, and “turned on” in the experimental samples. For example, when 

looking at genes with differential expression across DLKP4E and DLKP4Emut 

compared to DLKP, the genes hypothetical protein FLJ14503 and RPS6KA3 have 

similar fold-change of 1.67 and 1.69, respectively. However, for hypothetical protein 

FLJ14503 the average intensity difference is 181.17, but for RPS6KA3 it is 534.91. The 

result for hypothetical protein FLJ14503 is still significant, but less so than RPS6KA3. 

For this reason, it was important to consider difference of mean (of normalised 

expression levels) when filtering genes. Genes that were differentially expressed were 

uncovered using parameters of p-value of <0.05, fold change of 1.2, and normalised 

expression level > 100.

The end result of the gene list comparison was two gene lists, one comprised of 240 

genes differentially expressed in both DLKP4E and DLKP4Emut compared to DLKP 

parent. The other was MCF7H3erbB2 specific genes, differentially expressed compared 

to parent MCF7H3, and not expressed in non-invasive MCF7 cell lines (MCF7pcDNA, 

MCF74E and MCF74Emut). This list consisted of 120 genes. It is important to note that 

in order to filter down possible targets for further analysis to a controllable quantity, 

many other potentially interesting genes were discarded.
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4.3.3 Genes related to invasion and specific to MCF7H3erbB2

The final list of 120 genes specific to MCF7H3erbB2 and invasion contained some 

overlap due to different probe sets targeting various gene transcripts. Further 

examination found there were 108 different genes on this list. Literature searches found 

39 of these genes were related to invasion, or processes relevant to invasion. This was 

36% of the total list, which supported the relevance to invasion of our microarray and 

follow-up bioinformatics analysis, the purpose of which was to identify invasion- 

specific genes. It was also a strong indication that many other genes on the list may be 

related to the invasion process, although this is not currently reflected in the literature. It 

seemed plausible that a pathway that existed within a group of genes already chosen 

based on their association with an invasive phenotype, was most likely an invasion­

relevant pathway. This information could, in turn, lead to the discovery of novel genes 

and/or pathways associated with invasion/metastasis. Pathway Assist® was then used to 

identify what genes, if any, had direct biological interaction with each other, or 

previously annotated pathways. Pathway Assist® generated this list based on 

relationships between genes previously demonstrated in the literature. Pathway Assist® 

is equipped with a comprehensive database that gives a snapshot of all information 

available in PubMed, with the focus on pathways and cell signalling networks. Of the 

108 genes specific to MCF7H3erbB2 and related to invasion, 9 were found to have 

direct biological interaction with each other (Table 3.3.12). Further literature searches 

related this pathway to thrombospondin (THBS1). Although THBS1 was not present on 

the final gene list, it provided a link between the MCF7H3erbB2 9-gene pathway and 

tissue factor pathway inhibitor (TFPI). TFPI was significant because of its considerable 

fold change (+19.77). Pathway Assist © showed that THBS1 was not only associated 

with TFPI, but also with early growth response 1 (EGR1) and phosphatase and tensin 

homolog (PTEN), both of which were on MCF7H3erbB2 the 9-gene pathway.

The relationships between genes as determined by Pathway Assist©, was demonstrated 

using ‘controls’. These showed MAP3K1 was involved in the regulation of RPS6KA3 

(Shelton et al., 2003), ESR1 (Lee and Bai, 2002) TNFAIP8 (Aggarwal et al, 2006) and 

TANK (de Martin e t  a l, 2000). It also showed MAP3K1 was capable of binding TANK 

(Pisegna et a l, 2004). RPS6KA3 was shown to be involved in regulation of ESR1, and 

ESR1 in turn was found to effect RPS6KA3 expression (Clarke e t  al., 2001). PTEN was 

found to regulate TNFAIP8 (Panner et al., 2005). Results indicated both positive and 

negative regulation, probably a reflection of the opposing functions of the TNF family
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(Idriss and Naismith, 2000). EGR1 positively regulated PTEN (Baron et al., 2006), and 

was itself bound by EGR3 (O'Donovan et al., 1999) and positively regulated by ESR1 

(Pratt et al., 1998). Further examination of the literature found two members of this 

pathway, PTEN and EGR1, interacted with thrombospondin 1 (THBS1) (Wen et al., 

2001; Shingu and Bomstein, 1994). This gene was not present on the final list of 108 

genes, but was on the original list of MCF7H3 versus MCF7H3erbB2, with a fold 

change of -  2.31. What was most interesting about this gene was it linked the 

MCF7H3erbB2 9-gene TFPI, the gene with the greatest increase of expression (19.77 

fold) on the final list of genes. TFPI was chosen as a target for siRNA silencing based 

on its large fold change, and THBS1 was chosen because of its association with TFPI. 

THBS1 was the only target chose which was down-regulated in association with an 

invasive phenotype.

4.3.4 Limitations of Pathway Assist® analysis

Pathway Assist® was useful in assisting in the interpretation of Microarray analysis as 

it allowed visualisation of results in the context of pathways and networks, gene 

regulation networks and protein interaction maps. However, many of the ‘direct 

interaction’ as indicated by Pathway Assist® were based on two of the chosen genes 

appearing in the same publication, which did not always mean they were capable of 

biological interaction. ‘Direct interactions’ did not always refer to the two genes from 

the pathway, but with a gene or family of genes which was associated with the chosen 

gene. Therefore it was important that all literature referenced by Pathway Assist® was 

checked before proceeding with a target based on this characterisation. Despite this, this 

software did give an indication of the interaction between genes, which in most cases 

could be associated as indicated, if not directly, then through signalling-pathways 

associated with ‘directly interacting’ genes.

4.3.5 MCF7H3erbB2 invasion specific genes chosen for further analysis

Five genes in all were chosen for siRNA silencing based on specificity to 

MCF7H3erbB2 and invasion, association with tissue factor pathway inhibitor (as 

indicated by PathWayAssist®), and relevance to cancer/invasion in the literature (Table 

4.1). Fold change represents the fold difference between expression in the parent 

MCF7H3, and MCF7H3erbB2.
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Table 4.1 Genes specific to MCF7H3erbB2 and related to invasion chosen for 

further analysis

Cone Dosciiplmn hold
Change

Mean
Kxpression
Difference

TFPI Tissue factor pathway inhibitor (lipoprotein-associated 
coagulation inhibitor)

+19.77 406

TNFAIP8 tumor necrosis factor, alpha-induced protein 8 +2.47 299

RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 +2.36 299

EGRI early growth response 1 +2.23 950

THBS1 thrombospondin 1 -2.31 -322

4.3.5.1 Tissue factor pathway inhibitor (TFPI)

Tissue factor pathway inhibitor (TFPI) is an endogenous anticoagulant protein of the 

serine protease family TFPI comprises of three Kunitz type domains flanked by peptide 

segments; an N-terminal acidic region followed by the first Kunitz domain (Kl), a 

linker region, a second Kunitz domain (K2), a second linker region, the third Kunitz 

domain (K3), and the C-terminal basic region. The K l domain inhibits factor Vila 

complexed to tissue factor (TF) while the K2 domain inhibits factor Xa. TFPI binds and 

inactivates Factor Xa (FXa) in an inhibitory complex (FXa-TFPI), which then binds 

and inactivates tissue factor (TF) and Factor Vila (FVIIa) (Rapaport and Rao, 1995). No 

direct protease inhibiting functions have been demonstrated for the K3 domain. 

Importantly, the Xa-TFPI complex is a much more potent inhibitor of the VIIa-TF than 

TFPI by itself (Bajaj et al, 2001). The third Kunitz domain and the C-terminal basic 

region of the molecule have heparin-binding sites (Kato, 2002). TFPI is the only 

protease inhibitor known to down regulate TF procoagulent activity at physiologically 

significant rates. Once bound to TFPI, the TF/VIIa complex is much less likely to 

dissociate back to TF and Vila. Within the cell the TFPI-TF-VIIa complex dissociates 

after 12hours. TF and TFPI are recycled but 75% of the Vila is degraded. Once bound 

to TFPI, the TF-VIa complex is much less likely to dissociate back to TF and Vila 

(Broze, 1995).

TFPI is mainly produced by microvascular endothelial cells and pooled in the 

endothelium (50-80%), plasma (10-15%) and platelets (<2.5%) (Werling et al., 1993; 

Novotony et al., 1989; Sandset, 1996). The free TFPI fraction in plasma, although 

constituting only 10-20% of total plasma TFPI, carries most of the TFPI anticoagulant
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activity (Lindahl et al., 1991). Cancer cells may express TF and FX activator, which 

produce FXa, an activator of coagulation; this may explain why most cancer patients 

exhibit signs of hypercoagulation (Iversen and Abildgaard, 1998). TF is thought to 

initiate the extrinsic pathway of coagulation, with collagen playing the same role in the 

intrinsic pathway (Price et al., 2004). Therefore TFPI inhibition of TF shifts coagulation 

from the extrinsic to the intrinsic pathway. The precise mechanism responsible for the 

elevation of TFPI is unknown, however down-regulation of extravascular TF initiated 

coagulation by TFPI is thought to involve the release o f TFPI from activated platelets, 

or the transfer of endothelial associated TFPI to the extravascular space (Mast et al., 

2000). Present in plasma, TFPI exists both as a full-length molecule and as a variably 

carboxy-terminal truncated forms, and is also circulated in complex with plasma 

lipoproteins (Lwaleed and Bass, 2006). Optimal inhibition of extrinsic coagulation is 

obtained by the full-length molecule, while the truncated form can bind other surface 

receptors such as very low-density lipoprotein (VLDL) receptor (Hamik et al., 1999). 

Independent of its fVIIa/TF inhibitory activity, TFPI also displays antiproliferative 

activity which results from association with the very low-density lipoprotein (VLDL) 

receptor (Todd et al, 2001).

High plasma levels of TFPI have been reported in cancer patients with solid tumours, 

whereas those with leukaemia and related blood malignancies have normal levels of 

TFPI (Lindahl et al., 1989, 1992; Iversen et al., 1998). However, the theory that high 

TFPI levels in cancer were a consequence of activated coagulation was disproved by 

Inversen (1998) who demonstrated there was no correlation between the two. It was 

concluded that TFPI was related to the biology of the disease rather than the degree of 

coagulation (Inversen et al., 1998). Microarray results showed a 19.77 fold increase of 

TFPI in invasive MCF7H3erbB2 compared to non-invasive parent MCF7H3. With 

mean expression values increasing from 21 to 428, this implies that after erbB2 

overexpression, TFPI was essentially ‘switched on’. This agrees with previous work 

that shows elevated levels of TFPI have been found in breast cancer, (Erman et al.,

2004). It has also been found that TFPI levels correlate with cancer progression 

(Lindahl and Sandset, 1992; Lindahl et al., 1993). This evidence combined with results 

from the microarray analysis of MCF7H3erbB2 strongly link TFPI to the invasion 

process. Despite this no function effect of TFPI has been published in relation to 

invasion.
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4.3.5.2 Early growth response 1 (EGR1)

Early growth response 1 (EGR1), is an 80- to 82-kd protein consisting of 533 amino 

acids. EGR1 is inducibly expressed in many different cell types; among the vascular 

cells known to express EGR1 are endothelial cells, smooth muscle cells, fibroblasts, and 

leukocytes (Silverman and Collins, 1999). It acts as a transcriptional regulator that 

activates genes involved in differentiation and mitogenesis. The EGR1 gene is a 

transcription factor that acts as both a tumour suppressor and a tumor promoter. 

Analysis of certain human tumour cells and tissues has indicated that EGR1 exhibits 

prominent tumour suppressor function. Many human tumor cell lines have been shown 

to express little or no EGR1 in contrast to their normal counterparts, and furthermore, 

EGR1 is decreased or undetectable in small cell lung tumors, and human gliomas 

(Krones-Herzig et al., 2005). Re-expression of EGR1 in these human tumor cells 

inhibited transformation. Paradoxically, EGR1 is oncogenic in prostate cancer (Eid et 

al., 1998), where up-regulation of EGR1 is associated with down-regulation of PTEN 

and p53. It has been suggested that these defects in the suppressor network allow for the 

unopposed induction of transforming growth factor pi (TGFpi) and fibronectin, which 

favor transformation and survival of prostate tumor epithelial cells, explaining the role 

of EGR1 in prostate cancer (Baron et al., 2006).

Because of its role in proliferation, up-regulation of other oncogenes may induce 

transcription of EGR1, and thereby elevate the expression of genes involved in growth, 

proliferation, apoptosis and angiogenesis. Mutant p53 has been found to induce EGR1, 

enhancing transformation and resistance to apoptosis (Weisz et al., 2004). Several 

groups have demonstrated how mutant p53 can facilitate the transcription of 

transformation-related genes, and various p53mutants have been found overexpressed in 

human tumours (Hussain and Harris, 1998). Weisz et al., (2004) showed mutant p53, 

through EGR1, could facilitate the up-regulation of VEGF expression. Bcl2 (Huang et 

al., 1997), fibronectin (Liu et al., 2000) and nuclear factor kB (NFkB) (Cogswell et al., 

1997), all o f which are associated with differentiation and cell survival, and VEGF and 

tissue factor, both of which are involved in angiogenesis, are regulated by EGR1. In 

head and neck squamous call carcinoma hepatocyte growth factor/scatter factor (HGF), 

which has been found to play a significant role in invasion/metastasis (Vande Woude el 

al., 1997), induces expression of EGR1 through the MEK and AKT signaling pathways. 

This up-regulation of EGR1 in turn results in transcriptional activation of platelet- 

derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). This
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may explain how HGF contributes to the mediation of angiogenesis (Worden et al., 

2005).

EGRI has been found differentially expressed in breast cancer in some reports (Bertucci 

et al., 2002; Bièche et al., 2004), and undetected in breast tumours in others (Krones- 

Herzig et al., 2005). However, there is evidence that EGRI levels are influenced by the 

estrogen receptor (ER) status of a cell, and a recent report has shown EGRI is deleted in 

an ER negative human breast carcinoma (Ronski et al., 2005). Other studies have 

shown that in ER positive cells induce expression of EGRI through activation of Raf-1 

kinase (Pratt et al., 1998). Microarray results for MCF7H3erbB2 showed a down 

regulation of ER and up-regulation of EGRI, which suggested ER did not play a part in 

EGRI up-regulation in this system. However, further examination of microarray results 

showed expression levels of ER were still high, even in MCF7H3erbB2, with average 

expression values being 1370, as opposed to MCF7H3 values of 1850. These results 

support the idea that EGRI is induced by ER expression, and support work done by 

Ronski et al., (2005).

Array results showed expression of EGRI in MCF7H3 to be 700, increasing to 1700 in 

MCF7H3erbB2. This increase in expression could have been due in part to erbB2- 

overexpression. There is evidence that activation of the ras/MAP kinase pathway is 

important in erbB2 signal transduction, and an increases in MAP kinase activity of 

erbB2-overexpressing human breast cancer cells is associated with enhanced 

transcription of the EGRI (Reese and Slamon, 1997). The complex mechanism 

controlling regulation of EGRI between non-transformed and chronically transformed 

cells is not yet understood, and EGRI seems to be equally involved in regulation of 

tumour-suppressors (Huang et al., 1997; Baron et al., 2006) and mechanisms involved 

in tumour progression (Fudge et al., 1994; Toretsky and Helman, 1996). EGRI was 

found differentially expressed in MCF7H3erbB2, and the level of expression increased 

2.23 fold compared to MCF7H3. EGRI was also identified by pathway assist as having 

direct interaction (based on information available in the literature) with eight other 

genes differentially expressed in MCF7H3erbB2. Combined with evidence in the 

literature that suggest a role for EGRI in invasion, these results provide a strong 

argument in favour of EGRI as a pro-invasion gene in MCF7H3erbB2.
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4.3.5.3 p90 Ribosomal S6 Kinase, polypeptide 3 (RPS6KA3)

p90 ribosomal S6 kinase polypeptide 3 (RSK2)(RPS6KA3)(p90”*) is one of the four 

p 9 0 r sk  f a m j i y  g e n e s  (RSK1 to RSK4), it maps to Xp22 and encodes a 90 kDa ribosomal 

S6 serine/threonine kinase (Guimiot et al., 2004). The RSK genes are a subfamily of 

mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) (are 

downstream effectors of mitogen-activated protein kinase (MAPK) (Zhao et al., 1996) 

that contain two distinct kinase catalytic domains in a single polypeptide chain. The four 

mammalian isozymes of ribosomal S6 kinase, which are encoded by separate genes are 

phosphorylated and activated in vivo by extracellular signal-regulated kinase (ERK) 

(Smith et al., 1999) and 3-phosphoinositide-dependent protein kinase 1 (PDK1) (Jensen 

et al., 1999). Recent work looking at adult human tissue using northern blots showed 

RPS6KA3 was expressed in several tissues, with strongest expression in skeletal 

muscle, cerebellum, the occipital lobe and the frontal lobe (Zeniou et al., 2002).Of the 

four RSK isoforms identified, evidence suggests that RPS6KA3 may play the most 

important role in gene regulation. Previous studies have shown that RPS6KA3 can 

regulate gene expression by effecting chromatin remodelling through phosphorylation 

of histone H3 (Sassone-Corsi et al., 1999). Although the mechanism of RPS6KA3 

activation has been the subject of many studies, little progress has been made in 

understanding its biological function.

Protein phosphorylation, catalysed by protein kinases, is a ubiquitous, intracellular post- 

translational modification found in eukaryotes and prokaryotes. The state of protein 

phosphorylation is controlled by the relative activity of two families of enzymes with 

opposing actions. These are the protein kinases and the protein phosphatases. Reversible 

protein phosphorylation is involved in the regulation of diverse biological processes 

such as proliferation, apoptosis, differentiation and metabolism (Cohen, 2002). 

Eukaryotic protein kinases can be categorised into two categories based on their target 

amino acids: protein tyrosine kinases and protein serine/threonine kinases. Modification 

of serine and threoinine residues is much more prevalent compared with tyrosine 

phosphorylation (Hanks and Hunter, 1995).

RPS6KA3 was found to be up-regulated (2.36 fold) not only in the final list for 

MCF7H3erbB2-invasion specific genes but also in the final list for DLKP4E-invasion 

specific genes (1.67 fold change), and therefore stood out as a potential marker for 

invasion. Though RSK family mechanism of action has been the subject of many 

studies, few have examined their biological function. Using a specific inhibitor for the
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RSK family, it was discovered that they played an important role in proliferation, and 

gene-silencing of RPS6KA3 (RSK2) using RNAi resulted in a 57% decrease in 

proliferation of MCF7 cells (Smith et al., 2005). A similar study carried out using a 

prostate cancer cell line confirmed these results (Clarke et al., 2005). Both reports also 

observed a 50% increase in RSK family members in breast and prostate cancer tissue 

compared to normal tissue, which would suggest dysregulation in cancer cells. 

Although no direct association is documented between RPS6KA3 and invasion, many 

of its substrates have been identified as key players in tumour progression, these 

include; Estrogen receptor a, cyclic AMP response element-binding protein (CREB), c- 

Fos and nuclear factor-Kfl (Smith et al., 2005). Therefore the role of RPS6KA3 in 

phosphorylation and subsequent activation of many factors involved in the invasion 

process would suggest an important role in tumour progression and invasion. Combined 

with the results obtained from the present study, this makes RPS6KA3 a good candidate 

for further analysis.

4.3.S.4 Tumour necrosis factor, alpha-induced protein 8 (TNFAIP8)

TNFAIP8 was up-regulated by 2.47 fold in invasive MCF7H3erbB2 compared to non- 

invasive MCF7H3. TNFAIP8 was originally discovered by a comparison looking at 

differentially displayed transcripts in human primary and matched metastatic head and 

neck squamous cell carcinoma cell lines. In this work TNFAIP8 was identified as 

having association with an invasive phenotype (Patel et al., 1997). The examination of 

clinical samples showed higher expression levels of TNFAIP8 protein in certain human 

tumour tissues as compared to the matched normal adjacent tissues (Kumar et al.,

2004).Both studies concur with results of the present work, which found TNFAIP8 

differentially expressed in an invasive MCF7H3erbB2 compared to the non-invasive 

parent MCF7H3.

The isolation and characterization of TNFAIP8 has only occurred recently (Kumar et 

al., 2000). This study found TNFAIP8 was detectable in most human normal tissues, 

with relatively higher levels in spleen, lymph node, thymus, thyroid, bone marrow, and 

placenta and lower levels in spinal cord, ovary, lung, adrenal glands, heart, brain, testis, 

and skeletal muscle. TNFAIP8 mRNA was expressed in all cancer cell lines tested, with 

relatively higher levels in chronic myelogenous leukemia cells, lymphoblastic leukemia 

cells, A549 lung carcinoma cells and lower levels in SW480 colorectal adenocarcinoma 

cells. Other studies to date have shown up-regulation of TNFAIP8 in MDA-MB 435
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cancer cells caused an increased growth rate and an increase in cell migration in 

collagen I, and in athymic mice, TNFAIP8 transfectants showed significantly enhanced 

tumor growth as compared to control transfectants (Zhang et al., 2006).

A more recent study has demonstrated that expression of TNFAIP8 cDNA in MDA-MB 

435 human breast cancer cells was associated with enhanced invasion in vitro and 

increased frequency of pulmonary colonization of tumor cells in athymic mice (Zhang 

et al., 2006). These results show TNFAIP8 as a novel invasion marker, and confirm the 

accuracy of the microarray analysis used in the present work to identify invasion- 

associated genes in MCF7H3erbB2. This study combined with results from the present 

work was sufficient evidence to choose TNFAIP8 for further analysis with regards to its 

role in invasion.

4.3.5.5 Thrombospondin (THBS1)

THBS1 was different to all of the other genes chosen for further analysis as it was found 

down-regulated (-2.31 fold) in the invasive MCF7H3erbB2 compared to the non- 

invasive MCF7H3, which suggested it played a role in the inhibition of invasion. 

Although it was not present in the 9-gene pathway constructed by pathway assist 

analysis, further literature searches found it to be transcriptionally regulated by EGR1 

and also play a role in the binding of TFPI to tissue factor (TF). It was decided to 

further investigate these possible anti-invasion properties by using THBS1 as a target 

for siRNA. Overexpression of THBS1 has been associated with migration in many 

cancer tissues. Experimental evidence has indicated that THBS1 can be both adhesive 

and anti-adhesive, can foster and retard metastasis, stimulate and inhibit angiogenesis 

and increase and reduce proteolytic activity and fibrinolysis.

THBS1 is an adhesive, extracellular matrix glycoprotein that mediates cell-to-cell and 

cell-to-matrix interactions through binding of fibronectin, fibrinogen, laminin, type V 

collagen and integrins ay/Pi. Transforming growth factor (3 (TGFP) and platelet-derived 

growth factor (PDGF) have also been found to bind to THBS-1. Evidence to date would 

suggest THBS-1 functions in directing formation of multi-protein complexes that 

modulate cellular phenotype (Esemuede et al., 2004) There are five family members, 

each representing a separate gene product, which have been found to exist in most 

vertebrates. Specific patterns of expression have been found for each of the five proteins 

in embryonic and adult tissues, with most tissues expressing at least one family 

member. Expression of most THBS gene products were observed in heart, cartilage and
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brain tissue (Lawler, 2000). The THBSs appear to function at the cell surface to bring 

together membrane proteins and cytokines that regulate extracellular matrix structure 

and cellular phenotype. The membrane proteins found to participate in these complexes 

include integrins, the integrin-associated protein (also known as CD47 or LAP), CD36 

and proteoglycans (Lawler, 2000).

Thrombospondin-1 (THBS1) is a large (450 kDa) glycoprotein that is released into the 

extracellular matrix by several cell types (cultured endothelial cells, fibroblasts and 

monocytes have all been found to synthesize and secrete THBS1). THBS1 expression is 

increased in response to growth factors, heat shock and hypoxia, and is downregulated 

in response to IL-ip and TNFa. Due to the presence of a SRE in the THBS1 promoter, 

it is synthesised by most cells in culture (Adams, 1997). It is released by platelets at the 

end of the coagulation process during the formation of a hemostatic plug, hence the 

name ‘thrombospondin’ was proposed, to indicate that the protein was released in 

response to thrombin (Lawler et al., 1977). During thrombus formation, fibrinogen at 

the wound site binds to platelet membrane glycoproteins (GPIIb and GPIIIa). THBS1 

creates crosslinks between multiple fibrinogen- GPIIb/GPIIIa complexes leading to 

stabilization and formation of platelet macroaggregates (Bonnefoy et al., 2001). 

THBSl’s role in this process is important during the initial stages of hemostasis, and is 

relevant to the formation of an irreversible platelet plug.

Because each cell expresses a different repertoire of receptors, the composition of the 

complexes and the cellular responses vary among different cell types. The stimulation 

or inhibition of migration of vascular smooth muscle cells or endothelial cells, 

respectively, is an example of THBS-1 diversity (Lawler, 2000). Experimental evidence 

has indicated that THBS1 can be both adhesive and anti-adhesive, can foster and retard 

metastasis, stimulate and inhibit angiogenesis and increase and reduce proteolytic 

activity and fibrinolysis (Bomstein, 1995). Interaction of THBS1 with structural 

proteins such as collagens, proteoglycans, fibronectin and lamins, could cause THBS1 

to present to the cell surface, and modulate interaction of those proteins with their own 

receptors. These actions would have a diverse effect on proliferation, adhesion and 

migration depending on cellular and extracellular matrix content, explaining how 

differential expression of different cell surface receptors can dictate the response of a 

particular cell type to THBS1.
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THBS1 displays distinct biological activities in different cell types, which is attributed 

to its multiple functional domains that engage corresponding receptors on the surface of 

targeted cells (Figure 4.2).

Figure 4.2: THBS1 Structure

Domain: Amino-terminal
Function: Heparin binding, attachment, migration,
disruption of focal contacts, proliferation, endocytosis of 
THBS1, platelet aggression
Receptors: Syndecans, HSPG,a3f51 integrin and sulfatide

Domain: Type 1 repeats
Function: Protein binding, heparin binding,
cell attachment, TGFß-activation, inhibition of
proliferation, role in angiogenesis, role in
apoptosis
Receptors: CD36, HSPG, sulfatide, 60kDa 
protein and ßl integrin

Domain: Carboxy terminal 
Function: Cell attachment, 
migration platelet aggression 
Receptors: IAP

Figure 4.2: Schematic representation of the structure and function o f  Thrombospondin-1. THBS1 

contains an amino-terminal domain, type 2 and type 3 repeat sequence and a carboxy-terminal domain

The specificity of THBS1 activity is dictated by the receptors expressed by the cells 

surrounding the protein, rather than its inherent activity. Because of this fact THBS1 has 

been found to have many different contradictory functions in relation to tumour 

progression. THBS1 has been located at the border between tumour and stroma in 

primary tumours, and from here can contribute to tumour progression or deterioration 

depending on the THBS1 receptor repertoire of the tumour (Bastian et al., 2005). The 

events that take place during tumor progression enable the tumor to interact with its 

stromal environment in ways that enhance its ability to proliferate in the primary site 

and, in highly malignant tumors, to metastasize to distant sites in the body (Brown et
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al., 1999). However, contrary to microarray results, many previous studies have 

identified THBS1 as a promoter of invasion (Qian, 2001; Boire et al., 2005). Because 

each cell expresses a different repertoire o f receptors, the composition of the complexes 

and the cellular responses vary among different cell types. Experimental evidence has 

indicated that THBS1 can be both adhesive and anti-adhesive, can foster and retard 

metastasis, stimulate and inhibit angiogenesis and increase and reduce proteolytic 

activity and fibrinolysis (Bomstein, 1995). Conformation of calcium (Ca+) binding 

repeats in THBS1, and therefore affinity for binding integrins and proteases, can be 

influenced by calcium concentration (Sun et al., 1992). Therefore it is possible that the 

ionic state of the cell could regulate THBS1 function. Interaction of THBS1 with 

structural proteins such as collagens, proteoglycans, fibronectin and lamins, may cause 

THBS1 to present to the cell surface, and modulate interaction of those proteins with 

their own receptors. These actions would have a diverse effect on proliferation, 

adhesion and migration, depending on cellular and extracellular matrix content, 

explaining how differential expression of different cell surface receptors can dictate the 

response of a particular cell type to THBS1.
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4.3.6 Selection of differentially expressed DLKP4E and DLKP4Emut genes for 

further analysis

Both DLKP4E and DLKP4Emut were highly invasive, so it was probable that of the 

genes common to both, some would be involved in invasion. 379 genes changes were 

common to 4E, 4Emut. Although there was an increase in invasion in DLKPpcDNA, it 

was minor compared to invasion in DLKP4E and DLKP4Emut, and could have been a 

non-specific effect of selection with geneticin. It is also important to note that the parent 

DLKP was mildly invasive, and so it was likely that a DLKPpcDNA clone would also 

be mildly invasive. To further reduce the list of genes for analysis, gene changes due to 

DLKPpcDNA were removed. The final list contained 240 genes.

4.3.6.1 Genes related to invasion and specific to DLKP4E and DLKP4Emut

The final list of 240 genes was further studied using Pathway Assist ®. Analysis carried 

out to identify genes with direct interaction revealed two separate gene pathways. These 

pathways, as before, were based on information available in PubMed. The first pathway 

identified several genes which had previously been associated with cancer invasion and 

metastasis (Table 3.3.13), for example Neuregulin (NRG) (Stove and Bracke, 2004), 

platelet-derived growth factor alpha polypeptide (PDGFA) (Jechlinger et al., 2002), 

ribosomal protein S6 kinase, 70kDa, polypeptide 1 (RPS6KB1) (Harrington et al.,

2005), growth factor receptor bound protein 2 (GRB2)(Sugiyama et al., 2001), solute 

carrier family 2 (facilitated glucose transporter), member 3 (SLC2A3) (Higginset et al., 

2003) and cAMP responsive element modulator (CREM) (Taki et al., 2002). This fact 

alone showed the analysis had been successful in identifying invasion-specific genes. 

RPS6KA3 also appeared on the list o f MCF7H3erbB2-specific genes, which 

strengthens the association of this gene with an invasive phenotype. From this pathway 

Neuregulin (NRG) was chosen, based on its significant fold change and direct 

interaction with 5 other genes from the final list. Results from Pathway Assist® showed 

NRG directly interacted with GRB2 (Lim et al., 2000), SLC2A3 (Ghosh et al., 2005), 

RPS6KB1 (Canto et al., 2004) and RPS6KA3 (Rahmatullah et al., 1998), and through 

these genes may effect CREM (de Groot et al., 1994) and PDGFA (Matuoka et al., 

1993). As previous work had associated some or all of these genes with cancer and 

invasion, it was thought that knock-down of NRG would have a significant effect.
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A second pathway identified interaction between four of the homeo box genes 

(HOXB2, 5, 6, & 4). Several HOXB genes showed significant changes in expression on 

the final list, with fold changes ranging from +6 to +98. Based on this observation, the 

fact that HOXB genes are transcription factors associated with cancer phenotypes 

(Flagiello et al., 1996; Lopez et al., 2006), and the Pathway Assist® results, three of the 

HOXB genes (homeo box B6 (HOXB6), homeo box B4 (HOXB4) homeo box B7 

(HOXB7)) were chosen for further analysis.

The last gene chosen was Myopalladin. This did not appear in either pathway and was 

chosen based on fold change (+9.06), and the fact that although it is known to regulate 

actin organization (Bang et al., 2001), there is no evidence in the literature of its 

involvement in invasion.

4.3.6.2 DLKP4E and DLKP4Emut invasion-related genes chosen for further 

analysis

Five genes in all were chosen for siRNA knock-down based on specificity to DLKP4E, 

DLKP4Emut and invasion, and relevance to cancer/invasion in the literature. These 

targets were HOXB4, HOXB6, HOXB7, NRG and MYO.

Table 4.2 Genes specific to DLKP4E/DLKP4Emut and related to invasion chosen 

for further analysis

Cene Description Fold Change Mean Kxpression Différence

HOXB6 homeo box B6 +33.69 756

HOXB4 homeo box B4 +6.51 199

HOXB7 homeo box B7 +7.65 412

NRG1 neuregulin 1 +7.36 596

MYO myopalladin +9.06 599

4.3.6.2.1 HOX gene family in cancer

Alterations in the expression of transcription factors is believed to constitute another 

step in carcinogenesis. HOX genes are a family of transcription factors that contain a 

highly conserved sequence of 183bp that encodes a 61 amino acid homeodomain, which 

binds to specific DNA sequences in target genes, regulating their expression (Gehring et 

al., 1994). The Homeobox-containing gene family primarily play a crucial role during 

development. Several indications suggest their involvement in the control of cell growth
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and, when dysregulated, in oncogenesis. For example, deregulation of homeobox gene 

expression has been invoked as the molecular basis of a number o f leukemias (Cillo et 

al., 1999). Several HOX genes are differentially expressed in many neoplasias, such as 

primary and metastatic colorectal cancer, and neoplastic human kidney, and several 

reports show a relationship between HOX gene expression and specific human tumors 

(Cillo et al., 1999). So when so many HOXB genes appeared on the final list of genes 

for analysis, they seemed an obvious choice for further examination. It was thought 

because this family o f genes were so closely related, down or up-regulation of one may 

have a knock-on effect on the others.

4.3.6.2.2 HOXB4

HOXB4 was also found differentially expressed in array analysis, with a fold change of

6.5 in DLKP4E compared to the parent DLKP. An examination of the expression levels 

for HOXB4 showed that the gene had been ‘switched on’ after DLKP transfection with 

eIF4E, and that the gene was exclusive to DLKP4E and DLKP4Emut. Expression levels 

rose from 13 in the parent to 235 in DLKP4E. HOXB4 gene expression has previously 

been found in cervical tumor tissues, suggesting a role in cervical cancer (Lopez et al.,

2006). The expression pattern of HOXB4 gene products were examined 

immunocytochemically in 11 human breast carcinoma tissues. In all observed breast 

cancer cases, HOXB4 was present in over 90% of the neoplastically transformed cells 

(Bodey et al., 2000a). HOXB4 has also been implied in the development of leukemia, 

and when expressed at high levels, HOXB4 concomitantly perturbs differentiation and 

thus likely predisposes the manipulated cells for leukemogenesis (Will et al., 2006). Up- 

regulation of HOXB4 has also been observed in lung (Bodey et al., 2000b) and 

osteocarcinoma (Bodey et al., 2000c).Though HOXB4 expression has been observed in 

a variety of tumour types, it has not been directly related to invasion, and therefore was 

chosen as a potential novel marker for further analysis.

4.3.6.2.3 HOXB6

Animal studies indicate that the HOXB genes play an essential role in lung 

development. Microarray analysis of HOX genes in human lung tissue found HOX 

genes were expressed in normal human adult lung and among them HOXA5 was the 

most abundant, followed by HOXB2 and HOXB6 (Golpon et al., 2001). Microarray 

results from the present study showed that in DLKP4E, which is a lung cancer cell line,
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H0XB2, 5 and 6 were the most highly differentially expressed of all HOXB genes (with 

fold changes of +98, +34 and +33 respectively).The expression of these genes in a lung 

cell line would not be unexpected, however, what was unusual was they appeared to be 

‘switched on’ in the eIF4E over-expressing cell line compared to the parent. HOXB6 

for example had an expression value of 20 in DLKP and 780 in DLKP4E. This would 

suggest that the upregulation of eIF4E, which also led to a considerable increase in 

invasion, caused up regulation of the HOXB6 gene. Of these three genes, HOXB6 was 

chosen. Overexpression of HOXB6 has previously been associated with colon cancer 

(Vider et al., 1997), and leukemia cell lines (Ohnishi et al., 1998).Dispite the 

association of HOXB6 with cancer in the literature, it had not been directly assocated 

with invasion, and so was chosen as a possible novel marker of invasion in DLKP4E 

cells.

4.3.6.2.4 HOXB7

Microarray analysis showed HOXB7 to be differentially expressed in DLKP4E, and 

have a fold change of +7.65 compared to DLKP parent. This gene was also ‘switched 

on’ after eIF4E overexpression, with expression levels o f 60 in the parent increasing to 

470 in the DLKP4E clone. Previous work had identified HOXB7 as a possible 

oncogene. In vivo and in vitro transformation assays have been used to demonstrate that 

the overexpression of homeobox genes is the basis of transformation and tumourgenesis 

(Maulbecker and Grass,1993). This study identified HOXB7 as part of a new family of 

nuclear protooncogenes. Misexpression of HOXB7 in primary colon cancer as well as 

in metastatic liver lesions originated from colorectal tumors, also implicates a role for 

HOXB7 in the evolution and invasion of colon cancer (Cillo et al., 1999). HOXB7 has 

also been directly linked to the invasive phenotype of cells. A recent study showed a 

reduction of invasion following HOXB7 antisense introduction into ovarian cancer cells 

(Yamashita et al., 2006). Another study found that the expression level of HOXB7 was 

lower in lymph node metastasis-positive breast cancer tissues than metastasis-negative 

cancer tissues (Makiyama et al., 2005). These findings concured with microarray results 

that showed HOXB7 expression to be of significance to the DLKP4E/DLKP4Emut 

invasive phenotype. This added strength HOXB7 as a target for further analysis.

311



4.3.6.2.5 NRG

NRG was found to have an expression level +8.6 fold greater in DLKP4E than in 

DLKP. The NRG1 proteins play essential roles in the nervous system, heart, and breast. 

There is also evidence for involvement of NRG signalling in the development and 

function of several other organ systems, and in human disease, including the 

pathogenesis of schizophrenia and breast cancer (Falls, 2003). Human epidermal growth 

factor (EGF) receptor (HER) family of receptor tyrosine kinases has long since been 

implicated in cancer. Overexpression or mutation of these receptors is most often the 

trigger for tumour progression, but the aberrant autocrine or paracrine activation of 

HERs by EGF-like ligands is also thought to play an important role in the process. 

Neuregulins are a family of EGF-like ligands that bind to HER3 or HER4, preferably 

forming heterodimers with the orphan receptor HER2 (erbB2). Mesenchymal 

neuregulin typically serves as a pro-survival and pro-differentiation signal for adjacent 

epithelia. Disruption of the balance between proliferation and differentiation, because of 

autocrine production by the epithelial cells, increased sensitivity to paracrine signals or 

disruption of the spatial organization, may lead to constitutive receptor activation, in the 

absence of receptor overexpression (Stove and Bracke, 2004). The association of NRG 

with the human epidermal growth factor receptor (HER) family is well documented, as 

is the association of the HER family with invasion/metastasis. It was encouraging to see 

a gene so obviously linked with an invasive phenotype appear on the final list of genes. 

This gene was chosen not only based on its significance in the array analysis, but also 

because it was already so closely related to the HER family and invasion it was 

expected to have some effect if downregulated. Pathway analysis of the final list of 

DLKP4E and DLKP4Emut specific genes produced a pathway of directly related genes 

which included NRG. It was hoped that disrupting expression of NRG would have a 

knock-on effect on the other genes in the pathway, and therefore amplify the anti- 

invasive effect.

4.3.6.2.6 MYO

MYO expression levels increased +9.06 fold in DLKP4E compared to the parent 

DLKP. MYO is a member of a recently discovered family of proteins that function as 

scaffolds regulating actin organization (Bang et al., 2001). The dynamic remodeling of 

the actin cytoskeleton plays a critical role in cellular morphogenesis and cell motility, 

and it is not surprising therefore that these cytoskeletal filaments are the targets of a
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growing number o f anti-cancer drugs. Actin-associated scaffolds are key to this process, 

as they recruit cohorts o f actin-binding proteins and associated signaling complexes to 

subcellular sites where remodeling is required (Otey et al., 2005). Microtubules and 

actin filaments play important roles in mitosis, cell signaling, and motility. Despite the 

obvious potential for MYO in the invasion process, no evidence is available in the 

literature to connect the two. Therefore MYO was chosen for further analysis based on 

its significant fold change in an invasive cell line and the fact that it could prove a novel 

marker for invasion.
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4.4 RNA Interference -  further analysis of genes chosen from 

microarray analysis
In order to further examine the genes chosen from microarray analysis, it was decided to 

use RNA interference to silence these genes and look at the resulting effect on invasion. 

RNA interference has been used in several other studies to examine the effect of 

individual genes on the invasion process (Subramanian et ah, 2006; Rodrigues et ah, 

2005) Two groups of siRNA targets specific to invasion were chosen based on 

microarray analysis of MCF7H3erbB2 and DLKP4E/DLKP4Emut, as discussed in the 

previous section. In total, 10 targets were chosen, 5 specific to invasion in 

MCF7H3erbB2 (TFPI, TNFAIP8, THBS1, RPS6KA3 and EGR1), and 5 specific to 

invasion in DLKP4E (HOXB4, HOXB6, HOXB7, MYO and NRG). Of the ten targets 

chosen, 9 were found to be up-regulated in invasive cells. It was therefore logical to 

presume that a reduction in expression of these genes would result in a reduction in 

invasion. To this end, all 9 targets were examined in the invasive cell lines DLKP4E 

and SKBR3. SKBR3, also a human breast, erbB2 positive, invasive cell line, replaced 

MCF7H3erbB2 for siRNA analysis, due to the fact that MCF7H3erbB2 lost its ability to 

invade. It is important to note that invasion assays were carried out using 

MCF7H3erbB2 prior to microarrays, showing the cells were invasive (Section 3.3.1). 

The THBS1 target, which was predicted to increase invasion when silenced using 

siRNA, was transfected into non-invasive MCF7s and DLKPs.

4.4.1 Kinesin and GAPDH siRNA transfection in DLKP, DLKP4E, MCF7 and 

SKBR3

Proliferation and all 6-well optimisation assays were carried out using kinesin as a 

positive control (Figure 3.4.1; 3.4.2). Kinesin facilitates cellular mitosis, therefore 

silencing kinesin causes cellular arrest. Kapitein et al. (2005) concluded that members 

of the kinesin-5 family were likely to function in mitosis, pushing apart interpolar 

microtubules as well as recruiting microtubules into bundles that are subsequently 

polarized by relative sliding. Dividing cells adopt a rounded morphology in advance of 

microtubule formation, and in the absence of kinesin 11 the cells arrest, leading to a 

round morphology. Examination of cell morphology after transfection in both 96- and 

6-well plates indicated as to whether the transfection had been a success. A change in 

the morphology of the cells indicated that kinesin had been silenced and therefore the
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kinesin siRNA transfection was successful. This was taken as an indication of optimum 

transfection conditions, and successful transfection in this cell line. In the proliferation 

assays, the control cells divided normally while the kinesin siRNA transfected cells did 

not. The difference in control cell number versus kinesin siRNA transfected cells was 

not a measure of transfection efficiency or related to any cell death, but rather a measure 

of how many times the control cells divided beyond the stage at which the kinesin levels 

became limiting in the transfected cells. Cellular arrest in the presence of Kinesin 

siRNA was taken as confirmation of efficient transfection conditions. Reduced growth 

of kinesin siRNA transfected cells compared to scrambled was seen in all cell lines. 

GAPDH, often used as an endogenous control, has been found to be an ‘easy target’ for 

siRNA, with efficient silencing observed in many different systems 

(www.Ambion.com). Every set of 6-well plate transfections was also accompanied by 

transfection with GAPDH siRNA. This was examined at an mRNA level using real­

time PCR. Knock-down of GAPDH in all cell lines confirmed optimal transfection 

conditions.

4.4.2 Genes related to invasion and specific to MCF7H3erbB2

4.4.2.1 Effect of TFPI1 siRNA on DLKP4E and SKBR3

TFPI was chosen as a target for siRNA based on MCF7H3erbB2 array data analysis that 

showed a +19.77 fold change in MCF7H3erbB2 (invasive) compared to MCF7H3 (non- 

invasive). No significant change was seen in DLKP4E, but there was a +10 fold change 

in DLKP4Emut compared to parent DLKP. Sefter et al. (2002) carried out microarray 

experiments to identify invasion markers by comparing non-invasive to invasive human 

uveal melanoma cells. Their results also found TFPI up-regulated in an invasive cell 

line, though no further analysis was carried out (Sefter et al., 2002).

4.4.2.1.1 Effect of TFPI siRNA on proliferation

Proliferation assays carried out on DLKP4E and SKBR3 transfected with TFPI siRNA 

A and B showed minor changes in growth rate, demonstrating transfection did not have 

a major effect on proliferation of DLKP4E or SKBR3 cells (Section 3.5.1). Previous 

work by Sato et al. (1997) showed that TFPI inhibited smooth muscle cell (SMC) 

migration that is induced by the factor VIIa-TF complex (Sato et al., 1997), and 

Kamikubo et al. (1997) demonstrated that the growth of cultured human neonatal aortic
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SMCs was inhibited by TFPI (Kamikubo et al., 1997). TFPI has also been found to 

inhibited proliferation and induced apoptosis of cultured human umbilical vein 

endothelial cells (HUVECs) (Hamuro et al., 1998). A more recent study also 

demonstrated TFPI deficiency enhances neointimal proliferation and formation in a 

murine model of vascular remodelling (Singh et al., 2003). It has previously shown that 

TFPI is also a potent inhibitor of endothelial proliferation in vitro and of primary and 

metastatic tumor growth in vivo (Hembrough et al., 2001). The Tissue factor dependent 

extrinisic pathway of blood coagulation is known to support tumour progression 

through promotion of cellular proliferation (Rak et al., 2006), and the anti-proliferative 

effect of TFPI was thought to be associated with its TF inhibitory role. However, 

antiproliferative activity in TFPI has been localized to a short, very low density 

lipoprotein (VLDL) receptor-binding sequence found in its carboxyl terminus. This 

activity is independent of the hemostatic activity of TFPI and represents a previously 

unrecognized nonhemostatic mechanism whereby TFPI can regulate tumor growth and 

angiogenesis (Hembrough et al., 2004). This previous work suggests a model where a 

reduction of TFPI results in an increase in proliferation. This did not happen in 

DLKP4E or SKBR3 cells. However, it is evident from results that siRNA silencing did 

not reflect a decrease in TFPI protein. This was most likely due to the rapid turnover of 

TFPI (Valentin et al., 1991), and may explain why TFPI siRNA transfection did not 

have a marked effect on proliferation. TFPI exists in plasma both as a full-length 

molecule and as a variably carboxy-terminal truncated forms. Both forms take can 

influence cellular proliferation. Optimal inhibition of extrinsic coagulation is obtained 

by the full-length molecule, while the truncated form can bind other surface receptors 

such as very low-density lipoprotein (VLDL) receptor, and still cause an anti­

proliferative effect (Hamik et al., 1999). As TFPI was already expressed at relatively 

low levels (evident from western blot and qPCR), it is possible that silencing of TFPI 

mRNA was sufficient to effect proliferation.

4.4.2.1.2 Effect of TFPI siRNA on mRNA and protein levels

As mentioned above, TFPI silencing was seen at mRNA level using real-time PCR in 

both cell lines, using three different TFPI siRNAs (Section 3.5.2). However, 

fluctuations were observed between the non-transfected and scrambled-siRNA 

transfected controls. This was not expected, as the scrambled control should have 

minimal affect on TFPI mRNA. It is possible that because TFPI was expressed at a low
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level in both cell lines (this is evident from microarray results for DLKP4E and real­

time PCR results for SKBR3 showed the cycle threshold for TFPI to be 25 to 29, 

indicating it was lowly expressed) background noise had a greater effect. In qPCR, the 

detection threshold is the level of detection or the point at which a reaction reaches a 

fluorescent intensity above background noise. The cycle at which the sample reaches 

this level is called the Cycle Threshold, Ct. If the intensity o f the signal is low to begin 

with due to a poorly expressed gene, background noise will have a greater effect on data 

analysis. It is also possible that differences in expression between the non-transfected 

and scrambled controls was due to residual effects of the transfection reagent, in this 

case NeoFX (Section 2.6.1.2).

Western blot analysis of cells transfected with TFPI siRNA showed no change in TFPI 

at a protein level in DLKP4E, and was not sensitive enough to detect TFPI in SKBR3 

(likely due to low level of expression already discussed) (Section 3.5.3). Previous 

studies have demonstrated that the targeting of proteins with a long half-life may not 

produce the desired phenotypic effect because silencing at the level o f transcription will 

not affect pre-existing proteins (Pai et al., 2006). For this reason, it was important to be 

aware of the life span of the chosen RNAi in in vitro experiments. Extracellular 

degradation of siRNA peaks around 36 to 48hrs after their introduction and begins to 

decrease after 96hrs. However, TFPI has a short half-life (60-120mins) (Valentin et al., 

1991), and RNAi has the optimal effect in proteins with a more rapid turnover (Pai et 

al., 2006). It is possible that the siRNA effect at an mRNA level was not reflected at a 

protein level because turnover of TFPI was so rapid new protein masked the effect of 

siRNA. It is also possible that the newly synthesized protein may not yet have 

undergone some essential post-translation modification, and therefore may not yet be 

functional. Alternative mRNA splicing of TFPI generates two forms, TFPIa and TFPip. 

A portion of expressed TFPI remains associated with the cell surface through both 

direct (TFPip) and indirect (TFPIa) glycosylphosphatidyl-inositol (GPT)-mediated 

anchorage (Chang et al., 1999). Based on protein mass, TFPip (28 kDa) is considerably 

smaller than TFPIa (36 kDa), but both migrate with the same apparent molecular mass 

(46 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). 

Recent studies have demonstrated this is due to a difference in post-translational 

modifications, with both TFPIa and P containing differing levels of glycosylation (Piro 

and Broze, 2005). TFPI P uses an alternative exon in the 3’ coding region compared to 

TFPI a, resulting in a protein (isoform p precursor) with a shorter and distinct C-
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terminus compared to isoform a  precursor. TFPIA, B and C siRNAs used in the present 

study target Exons 6, 7, and 8 respectively, and therefore would be effective for both 

splice variants. It is therefore uncertain which variants were silenced. The antibody used 

in western blot analysis could not distinguish between either, nor could the real-time 

PCR primers. This fact might explain why mRNA silencing is observed but not protein 

silencing. To date the role of TFPIa and P in invasion have not been studied. 

Information available tells us cell stimulation with a variety of pro-inflammatory agents 

does not affect surface-TFPI content or TFPIa and P mRNA levels; TFPIa is the most 

abundant form of surface TFPI; although TFPip represents only ~20% of total surface- 

TFPI, it accounts for most of the anti-TF-FVIIa activity, suggesting a potential 

alternative role for cell-surface TFPIa (Piro and Broze, 2005).

4.4.2.1.3 Effect of TFPI siRNA on invasion

Although no change in protein was observed, a phenotypical change was seen after 

siRNA transfection. Invasion assays carried out 72hrs after siRNA transfection showed 

a marked decrease in the number of invading cells (Section 3.5.4). The duration of gene 

silencing varies greatly between cells with slow growing cells still showing the effects 

of siRNA after several weeks, but more rapidly dividing cells not seeing an effect for 

longer than 1 week (Ryther et al., 2005). This was important to consider when choosing 

time points for RNA, protein, and also invasion analysis. All assays were carried out 

within 6 days of the initial transfection to ensure the siRNA was still having effect. 

Besides mRNA and protein analysis to detect a change in TFPI post-siRNA 

transfection, several other steps were taken to ensure that the results obtained were due 

to siRNA silencing of TFPI and not because of off target effects. siRNA delivery 

through transfection can result in temporary changes in the cell, and in some cases cells 

may become resistant to conditions of delivery. siPORT™ NeoFX™, a lipid-based 

agent was used to minimize serum RNase digestion of siRNA and to maximize delivery 

of siRNA to the cells.

Because of the several artifacts that can arise from siRNA transfection, leading to a 

misleading result, it was vital to include proper controls. As already mentioned, 

GAPDH and kinesin controls were included for all transfections. A 'scrambled' siRNA, 

which was designed so as to lack recognition to any target, was also included in every 

experiment. Previous studies have pointed out the uncertainty of presuming RNAi 

elimination of target mRNA based on phenotypic effect alone, and emphasises the
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necessity for a ‘scrambled’ control, as well as examining siRNA effecs at both an RNA 

and protein level (Persengiev et al., 2004). In the present study real-time PCR and 

western blot analysis were used to confirm RNA/protein silencing, and ‘scrambled’ 

siRNA controls were used in all experiments. Invasion assay results showed that the 

scrambled control had little effect on DLKP4E and SKBR3 compared to TFPI siRNA, 

and this validated that reduced invasion was as a result o f TFPI silencing.

The most accurate control for any set of siRNA experiments is to set up repeats 

targeting the same mRNA using different siRNA sequences. Responses elicited by 

multiple non-homologous siRNAs are more likely to be due to specific target 

suppression. Three non-homologous TFPI siRNAs were used in this set of experiments, 

each targeted to a different TFPI exon (Figure 4.3).

Figure 4.3: Exon targets of TFPI siRNA A, B & C.

TFPIA
Targeted Exon(s): NM_006287: Exon 6

*.866287 A; A A; A A^ A A
(1431 bps)

TFPIB
Targeted Exon(s): NM_006287: Exon 7

NH.886287 A A; A A A
(1431 bps)

TFPIC
Targeted Exon(s): NM_006287: Exon 8

NH.886287 ; A A A; A A A
(1431 bps)

www.Ambion.com

An even more stringent control would be to examine the effects of multiple non- 

homologous siRNAs in different cell lines or animal models. Here a lung (DLKP4E) 

and breast (SKBR3) cancer cell line were transfected using the same TFPI siRNA and 

both produced similar results; TFPI siRNA silencing reduced the level of invasion. 

Therefore, it is most likely that the reduction in invasion observed in both SKBR3 and 

DLKP4E was due to siRNA silencing of TFPI. This result not only validates the
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microarray analysis but provides the first evidence of a functional effect of TFPI in 

relation to invasion.

4.4.2.1.4 Role of TFPI in invasion

TFPI production by endothelial cells may be stimulated by cytokines secreted by the 

cancer cells, possibly as a means of inhibiting coagulation by the host. Increased 

concentration of free and total TFPI in cancer may also contribute to increased (factor 

Xa) FXa-TFPI complex. Coagulation factor Xa is crucial for the conversion of 

prothrombin to thrombin, in both the extrinsic and intrinsic pathways of coagulation. 

FXa-TFPI complex has been described as slowing activation of coagulation (Iversen et 

ah, 2002), and thus slowing tumour progression. In contrast, other studies have 

demonstrated up-regulation of TF during angiogenesis results in a more pro-coagulant 

vascular surface, and although expression of TFPI triggers anti-coagulant mechanisms, 

the result is a balance in the coagulation process, maintaining an exclusive vascular bed 

within the tumour and allowing sustained growth (Gruel et ah, 2005).

Microarray results showed a +19.77 fold increase of TFPI in invasive MCF7H3erbB2 

compared to non-invasive parent MCF7H3. This was in concurrence with previous 

work, which showed elevated levels of TFPI have been found in breast cancer, and 

patients whose tumours were completely removed showed significant decline in the 

level of total, free and lipid-bound TFPI (Erman et ah, 2004). It has also been found that 

TFPI levels correlate with cancer progression (Lindahl and Sandset, 1992; Lindahl et 

ah, 1993). Despite this, little work has been done to further investigate the precise role 

of TFPI in cancer invasion. Fisher et ah (1999) suggested a specifc role for TFPI in 

invasion in primary bladder carcinoma cells, observing that TFPI could serve as an 

adhesive ligand for cancer cells to extracellular matrices (ECM). This study showed that 

heparin enhanced cancer cell adherence to TFPI present in the ECM, a process which 

was dependent upon TF/VIIa/TFPI interactions. More importantly, it found that the TF- 

Vlla complex localizes to the invasive edge, in proximity to tumor-infiltrating vessels 

that stain intensely TFPI, demonstrating TFPI played a functional role in promoting cell 

migration. In culture, binding of Vila to TF-expressing tumor cells was sufficient to 

allow cell adhesion, migration, and intracellular signaling on immobilized TFPI-1. This 

study provided evidence for a novel mechanism of protease-supported migration via 

protease-dependent bridging of TF's extracellular domain to TFPI (Fischer et ah, 1999).
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TFPI may also influence invasion by dictating whether coagulation proceeds through 

the intrinsic or extrinsic pathway. The end product of the extrinsic pathway of 

coagulation, as triggered by TF, is thrombin. Two components of invasion (i) 

proteolysis of extracellular matrix and (ii) cellular movement through it are promoted by 

thrombin (the serine proteinase derived from the ubiquitous plasma protein 

prothrombin) Thrombin has been observed to promote the invasion of MDA-MB231 

breast tumour cells (a highly aggressive/invasive cell line) but not MDA-MB436 and 

MCF-7 cells, less aggressive/invasive cell lines (Henrikson et al., 1999). As TFPI 

inhibits Xa and therefore thrombin production, it is difficult to explain how up- 

regulation of TFPI can in fact increase invasion. It is important to note in the context of 

the present study, that although the TFPI-TF-VIIa-Xa complex inhibits thrombin 

formation through the extrinsic pathway, factor X, which is necessary for the activation 

of prothrombin to thrombin, can be activated independently through the intrinsic 

pathway (Lwaleed and Bass, 2006). Therefore TFPI switches the coagulation cascade 

from the extrinsic to the intrinsic, which may reduce, but does not prevent thrombin 

production. The serine protease thrombin, independently of its participation in 

hemostasis and thrombosis, has been involved in tissue repair and remodeling, 

embryogenesis, angiogenesis, and development and progression of atherosclerosis. 

Many of these functions appear to be mediated by specific thrombin receptors, 

particularly the protease-activated receptor-1 (PARI) (Archiniegas et al., 2004). Recent 

studies have highlighted the role played by PARI in both negative and positive invasion 

pathways. In in vitro studies carried out using the collagen type I substratum, PAR-1 

and the pertussis toxin (PTx)-sensitive Gao/i subunits were shown to exert a dominant 

invasion suppressor role toward several proinvasive pathways controlled by oncogenes 

and tumor-secreted growth factors (Faivre et al., 2001). Conversely, neutralization of 

Gao/i signaling by pertussis toxin (PTx)-sensitive Gao/i subunits led to the pro-invasive 

activity of thrombin and PAR-1 through the Gal2/13/RhoA cascade, myosin light chain 

(MLC) phosphorylation, and activation of the actomyosin system (Kureishi et al., 1997; 

Nguyen et al., 2005). The pro-invasive potential of PAR-1 in collagen type I was also 

revealed by inhibition of RhoA GTPase by RhoD (Nguyen et al., 2005). In this case, 

PAR-1 is connected with the Gaq/phospholipase C/?-Ca2+/calmodulin-MLC kinase 

(CaM-MLCK) cascades that bypass RhoA blockade (Nguyen et al., 2005). This study 

defined a new function for the small GTPases RhoA and RhoD acting as a molecular 

switchs controlling the negative and positive invasive pathways triggered by PAR-1 in
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the presence of a collagen type 1 substratum (the intrinsic pathway is stimulated by the 

exposure of collagen to a vessel surface. PAR-1 had previously been found to induce 

invasion of Matrigel by breast cancer cells through requirement of avfi5 integrins 

(Even-Ram et al., 2001), suggesting that the PAR-1 invasive potential is controlled by 

the matricellular context (Nguyen et al., 2005). The avfi5 integrins have been shown to 

play an important role in cell-collagen attachment (Hoffman et al., 2005). Evidence 

suggests that the activated of PAR-1 by thrombin, and subsequent involvement in 

positive invasion pathways, is influenced by the level of collagen. This in turn 

implicates the intrinsic coagulation pathway in the producion of thrombin certain cancer 

cells.

It is also of note that activation the intrinsic pathway has been associated with patients 

with advanced disease or receiving chemotherapy. Patients with advanced colon and 

pancreatic cancer have increased levels of plasma TFPI with progression of the 

malignancy, while the concentration of the other coagulation inhibitors (antithrombin 

and activated protein C) decrease (Lindahl et al., 1992). High concentration of TFPI has 

also been associated with apoptotic or antiproliferative effects on smooth muscle and 

endothelial cells (Mikhailenko et al 1995; Hamuro et al, 1998). This may be due to the 

fact that although the extrinsic pathway is the quickest route to thrombin, it requires a 

consistent level of TF, whereas the intrinsic pathway can be triggered by relatively 

small quantities of thrombin, and is sustainable due to a positive feedback loop 

(Louvain-Quintard et al., 2005). This might explain why in the case of MCF7H3erbB2, 

SKBR3 and DLKP4E, up-regulation of TFPI is being observed, supporting the idea that 

the intrinsic over the extrinsic is being chosen in support of an invasive phenotype. 

Functional effects of TFPI knock-down in relation to invasion have not yet been 

examined. Here TFPI was identified as a possible invasion-related gene based on 

microarray analysis, and further investigation confirmed through siRNA silencing that 

TFPI did in fact play an important role in invasion in both DLKP4E and SKBR3.
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Figure 4.4: The Role of TFPI in invasion
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Figure 4.4: Overview of the many roles of TFPI related to invasion



EGR1 was chosen as a siRNA target after analysis of MCF7H3erbB2 microarray data 

showed a +2.99 fold increase in invasive MCF7erbB2 compared to non-invasive 

MCF7H3. An increase of +1.35 fold was also observed in invasive DLKP4E and, +1.2 

fold in invasive DLKP4Emut compared to parent DLKP. This contradicts previous 

work in lung, brain and breast tissue where EGR1 was associated with tumour 

suppression (Calogera et al., 2001; Huang et al., 1997). However, EGR1 has been found 

to promote survival of prostate cancer cells (Abdulkadir et al., 2001), and is associated 

with proangiogenic activity in head and neck squamous carcinoma (Worden et al.,

2005).

4.4.2.2.1 Effect of EGR1 siRNA on proliferation

EGR1 plays a significant role in cell growth and proliferation, which can be seen from 

the correlation between mitogen activation and EGR1 biosynthesis (Goetze et al.,

1999). It would therefore be expected that over-expression of EGR1 may lead to cancer 

progression. Despite its obvious role in proliferation, EGR1 is predominately described 

as having a negative effect on tumour cell growth. Up-regulation of EGR1 is reported to 

result in apparently contradictory activities. These include differentiation (Nguyen et 

al., 1995), mitogenesis (Kaufmann and Thiel, 2001), tumour suppression (Huang et al., 

1995), apoptosis (Virolle et al., 2001), and protection from apoptosis (Virolle et al.,

2003). Likewise, EGR1 has been found to be equally involved in regulation of tumour- 

suppressors (Huang et al., 1998; Baron et al., 2006) and mechanisms involved in 

tumour progression (Fudge et al., 1994; Toretsky and Helman, 1996). As a result, 

EGR1 expression in many different cancer cell lines is varied, and seems to be 

dependent on tissue type.

Proliferation assays carried out on DLKP4E transfected with EGR1 siRNA A and B 

showed little change in growth rate. As EGR1 was up-regulated in invasive DLKP4E, 

its down-regulation would be expected to have a negative effect on proliferation. This 

was not the case, with only 5-10% reduction in proliferation observed compared to 

scrambled siRNA transfected controls. EGR1 influences proliferation through 

regulation of several genes. Mitogen-activated protein kinase (MAPK) cascades are 

involved in the transduction of signals from mitogens and cellular stresses into 

appropriate cellular responses and are required for many functions including cell

4A.2.2 Effect of EGR1 siRNA on DLKP4E and SKBR3
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proliferation (Chang and Karin, 2001). Mitogen-activated transcription of a number of 

immediate-early genes, such as EGR1, is dependent on the activation of MAPK 

cascades. However, the MAPKs activate several factors that are important for 

proliferation, and silencing of EGR1 alone may not be adequate to influence the rate of 

proliferation in DLKP4E.

SKBR3 showed an increase in growth of 30-40% compared to the scrambled control 

(Section 3.6.1). There was no considerable change compared to the non-transfected 

control, and kinesin controls showed the transfection was successful. These results 

implied that either EGR1 siRNA transfection had a positive effect on proliferation of 

SKBR3 cells, or scrambled siRNA control had a negative effect on SKBR3. EGR1 has 

been associated with both enhanced (Virolle et al., 2003), and reduced (Ferraro et al.,

2005) rates of proliferation, depending on the cell line, and therefore it is possible that 

EGR1 siRNA would have a different effect in SKBR3 than in DLKP4E. It is also 

possible that the scrambled siRNA control had a negative effect on proliferation in 

SKBR3, as the cells transfected with target siRNA had a similar rate of proliferation as 

the non-transfected SKBR3 control. As this effect was also observed in SKBR3 using 

other target siRNAs, it is most likely the case.

4.4.2.2.2 Effect of EGR1 siRNA on mRNA and protein levels

Real-time PCR results showed that all three EGR1 siRNAs were effective in silencing 

EGR1 mRNA in SKBR3 at 24hrs (-50% reduction), and EGR1 siRNA C was effective 

in DLKP4E (Section 3.6.2). Other studies looking at EGR1 silencing by siRNA, used an 

appropriate EGR1-specific sequence inserted into the pSUPER plasmid (direct synthesis 

of siRNA in mammalian cells). The results of this study showed a single EGR1 siRNA 

was effective in reducing mRNA levels by 40-50% after 48hrs (Weisz et al., 2004), 

which support the results presented in this work. Real-time PCR results for DLKP4E 

and SKBR3 showed fluctuations in EGR1 expression were observed between the non- 

transfected and scrambled-siRNA transfected controls at mRNA level. This was not 

expected, as the scrambled control was a nontargeting siRNAs designed to have limited 

sequence similarity to known genes, and therefore minimal affect on EGR1 mRNA. It is 

unlikely that this is due to qPCR background noise, as although expression levels for 

SKBR3 had not been determined by microarray results showed the cycle threshold 

value to be 20, which implies a sufficient level of expression for accurate qPCR 

analysis. This result may be due to non-specific effects of siRNA on gene expression.
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These effects are dependent upon siRNA concentration in a gene specific manner. 

Therefore it is possible that the non-specific effects of a given siRNA and a scrambled 

control differ because of varying transfection efficiencies or have different intercellular 

stabilities. One study showed that changes occurred in over 1000 genes following the 

introduction of a siRNA whose target was not expressed in the cell model (Persengiev 

et ah, 2004). Although care was taken to avoid this type of effect by using < 50nm 

siRNA, it is possible that non-specific effects of scrambled control caused fluctuation in 

mRNA results for EGR1.

Western blots showed a decrease in EGR1 at protein level in both cell lines (Section 

3.6.3). DLKP4E transfected with all 3 non-homologous siRNAs showed marked 

reduction in protein levels compared to the non-transfected and scrambled controls. This 

result implies that despite the apparent lack of silencing at an mRNA level, EGR1 

siRNA A and B did function in silencing EGR1 in DLKP4E. In SKBR3 a reduction in 

EGR1 protein was seen as a result of EGR1 siRNA B and C, with the barely detectable 

siRNA C band indicating very efficient silencing. The fact that EGR1 siRNA A and B 

did not have an effect on DLKP4E at mRNA level, but did at protein level might 

suggest these siRNAs were functioning like miRNA. siRNA are 21-22 nucleotides in a 

staggered duplex, with two unpaired nucleotides at either end and are perfectly 

complementary to their target sequence. On the other hand, miRNA possess a strand 

which is highly, but not perfectly complementary to one or more target mRNAs. This 

causes the assembly of an mRNA-protein complex on the target mRNA, preventing 

translation.

4.4.2.2.3 Effect of EGR1 siRNA on invasion

The invasion assay results following EGR1 silencing were impressive, with all three 

siRNAs causing a considerable drop in the number of invading cells. EGR1 siRNA C 

produced the greatest effect, and was the only siRNA that showed knock-down at 

mRNA and protein level for both cell lines, proving it the most efficient of the three 

(Section 3.6.4).

It has been suggested thatEG Rl is plays a role in tumour supression:

1. Through inducing synthesis of p53, a known tumour suppressor, by directly 

activating the p53 promoter (Weisz et ah, 2004).
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2. By binding to the transcription factor c-Jun and augmenting its pro-apoptotic activity 

(Whitmarsh et al., 1995).

3. Through transactivation of PTEN, also a tumour suppressor (Ferraro et al., 2005).

Equally, EGR1 has also been implicated in cancer progression:

1. Mutant P53 can induce induction of EGR1 leading to enhanced transformed 

properties and resistance to apoptosis (Weisz et al., 2004).

2. It is activated through signaling in a number of pathways which have been associated 

with cancer progression e.g. JNK, ERK, AKT. As a result it regulates the expression of 

many genes involved in survival (BCL2, Fibronectin, NFkB) and angiogenesis (VEGF 

and TF) (Worden et al., 2005).

3. It is suggested in the present study that up-regulation of EGR1 does not necessarily 

mean up-regulation of PTEN, and therefore EGR1 doesn't always play a role in tumour 

supression.

Recent studies indicate that EGR1 is a direct regulator o f multiple tumour supressors 

including TGF01 (Adamson et al., 2003), PTEN (Ferraro et al., 2005) and p53 (Weisz 

et al., 2004). The downstream pathways of these factors display multiple nodes of 

interaction with each other, suggesting the existence of a functional network of 

suppressor factors. This mechanism, once activated, would support maintenance of 

normal growth and resistance to transformed variants. It is interesting to note that 

although EGR1 has been identified as a transactivator of PTEN, results from the present 

microarray study show a decrease in PTEN, while EGR1 is up-regulated. This suggests 

EGR1 does not enhance the tumour suppressor activities through PTEN in 

MCF7H3erbB2. PTEN functions as a tumour suppressor by antagonizing the 

P13K/AKT signaling cascade. The P13K/AKT pathway plays a vital role in cell growth 

and survival. This pathway is targeted by genomic aberrations including mutation, 

amplification and rearrangement, all of which, including down-regulation of PTEN, 

which is observed in the present study (-1.28 fold change) can lead to uncontrolled 

growth and survival. This in turn leads to competitive growth advantage, metastatic 

competence and drug resistance (Hennessy et al., 2005). This model has also been 

observed in prostate cancer where EGR1 is oncogenic. In this case up-regulation of 

EGR1 is associated with down-regulation of PTEN and p53 in prostate cancer tissue 

(Eid et al., 1998). EGR1 deficiency was also found to significantly delayed the
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progression from prostatic intra-epithelial neoplasia to invasive carcinoma in EGR1 'A 

mice (Abdulkadir et al., 2001). It has been suggested that these defects in the 

suppressor network allow for the unopposed induction of transforming growth factor 

Pi (TGFpi) and fibronectin, which favor transformation and survival of prostate tumor 

epithelial cells, explaining the role of EGR1 in prostate cancer (Baron et al., 2005). 

Interestingly, fibronectin is also found up-regulated in MCF7H3erbB2 compared to 

parent, which suggests a common mechanism of invasion in prostate and breast cancer 

cells.

The P13K/AKT signalling cascade also regulates IkB kinase, causing degradation of 

IkB, an inhibitor of NFkB (Kane et al., 1999). Nuclear translocation and activation of 

NFkB leads to the transcription of NFkB-dependent genes including Bcl-xl, caspase 

inhibitors and c-Myb, all of which have an antiapoptotic effect on the cell (Barkett and 

Gilmaore, 1999). EGR1 is known to regulate NFkB, and upregulation of EGR1 in 

MCF7H3erbB2 as a result of unregulated activation of the P13K/AKT pathway may 

result in up-regulation of NFkB, preventing apoptosis and facilitate the invasive 

phenotype of the cells.

The fact that EGR1 itself is upregulated by several growth factors and oncogenes 

supports the idea that it functions as a growth-promoting protein in cancer cells. It is 

also clear that EGR1 is involved in many key signaling pathways in the invasion 

process (JNK, ERK, AKT). The present study has demonstrated how siRNA knock­

down of EGR1 alone in breast and lung cancer cell lines was sufficient to reduce 

invasion. Evidence from the literature would suggest that up-regulation of EGR1 is a 

downstream effect of defective MAPK pathway signaling. Although its exact role in the 

invasion process is unclear, it is still a probable marker of invasion in certain types of 

cancer. The present study suggests EGR1 may be a promising target for future anti­

invasion interventions.

Several contradictory reports have been published on the role of EGR1 in invasion. A 

recent study showed invasion inhibition by COX inhibitors is mediated by EGR1. 

Overexpression of EGR1 was found to weakened the cellular invasion of A549 lung 

cancer cells, and suppression of EGR1 expression by siRNA enhanced the invasion of 

A549 cells compared with control RNA-transfected cells. These results indicated that 

the inhibition of tumor cell invasion by COX inhibitors was mediated by the increased 

expression of EGR1 (Moon et al., 2005). However, in agreement with the present study, 

Weisz et al. (2004) showed that siRNA knock-down of EGR1 resulted in a decrease in
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colony forming efficiency of H I299 (also a human lung cancer cell line) a phenotypic 

effect often associated with invasion (Weisz et al., 2004).

All possible precautions to ensure efficient and accurate EGRI silencing were carried 

out (as outlined for TFPI), including use of appropriate controls, multiple non- 

homologous EGRI siRNAs, carrying out siRNA transfection in two different cell lines, 

and detection of EGRI silencing at RNA and protein level. Therefore, we can say with 

confidence that a reduction in invasion of DLKP4E and SKBR3 was due to silencing of 

EGRI, and accordingly that EGRI plays a significant role in the invasion process of 

both cell lines, confirming the accuracy of genes chosen by microarray analysis.
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Analysis of microarray data found that RPS6KA3 was increased in both of the invasive 

cell lines, MCF7H3erbB2 and DLKP4E, compared to their non-invasive parent cell 

lines. A fold change of +2.36 was seen in MCF7H3erbB2, and +1.2 in DLKP4E. As this 

analysis suggested an increase in RPS6KA3 contributed to an increase in invasion. 

Because of this analysis it was decided to use RPS6KA3 as a siRNA target to further 

assess its role in invasion in the above cell lines. Unlike the other targets, only two 

siRNAs were used for all experiments, as both had been validated by the supplier (that 

is, they were functionally tested and guaranteed to work).

4.4.2.3.1 Effect of RPS6KA3 siRNA on proliferation

The involvement of RPS6KA3 levels in breast was recently examined and it was found 

that mean levels of RPS6KA3 were statistically higher than normal tissue, being 

overexpressed in -50% of human breast cancer tissue samples (Smith et ah, 2005). The 

same study showed an inhibitor of RPS6KA3 caused inhibition of proliferation in 

MCF7 cells, producing a cell-cycle block in G1 phase. RNA interference of RPS6KA3 

showed same. Work carried out with prostate cancer tissues produced similar results, 

with -50%  of samples overexpressing RPS6KA3, and inhibition of proliferation after 

inhibition of RPS6KA3 (Clarke et ah, 2005). Identification of RPS6KA3 as a gene up- 

regulated in invasive DLKP4E and MCF7H3erbB2 would support a proliferation- 

enhancing role for RPS6KA3, and concur with the above studies. However, 

proliferation assays carried out on DLKP4E transfected with RPS6KA3 siRNA A and B 

had no substantial effect on growth rate. It is clear from previous studies that inhibition 

of RPS6KA3 alone is sufficient to have a negative effect on proliferation, and it is 

therefore unclear why no such effect was seen here.

SKBR3 again showed an increase in the rate of proliferation with siRNA transfected 

cells growing up to 45% more than the scrambled control (Section 3.7.1). As RPS6KA3 

has been found up-regulated in DLKP4E and MCF7H3erbB2, both invasive cell lines, 

its down-regulation would not be expected to have a positive effect on proliferation. 

Although expression levels for SKBR3 had not been determined by microarray, real­

time PCR results suggest the level of expression was sufficiently high as to not be 

greatly effected by background noise. This was also observed with EGR1, and it seems 

likely that the scrambled siRNA control had a negative effect on proliferation of

4.4.2.3 Effect of RPS6KA3 siRNA on DLKP4E and SKBR3
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SKBR3 cells, as the cells transfected with target siRNA had a similar rate of 

proliferation as the non-transfected control. Therefore it is likely that this is a SKBR3- 

specific effect.

4.4.2.3.2 Effect of RPS6KA3 siRNA on mRNA and protein levels

Results showed no considerable RPS6KA3 mRNA reduction in the presence of 

RPS6KA3 siRNA A or B at 24 or 48hrs in DLKP4E. A 25% decrease in RPS6KA3 at 

24hrs was the largest observed decrease (Section 3.7.2). The same siRNAs were used to 

transfect SKBR3 cells, and RPS6KA3 siRNA A also had no effect in this cell line at 24 

or 48hrs. RPS6KA3 siRNA B however, did cause a 50% reduction in RPS6KA3 mRNA 

at 48hrs. Real-time PCR detected GAPDH knock-down in these cells under the same 

conditions (Figure 3.4.3), and therefore it is unlikely that this result was due to an 

unsuccessful transfection. Western blot showed a considerable decrease in protein in 

DLKP4E and SKBR3. Cells transfected with both siRNAs showed protein silencing 

compared to the non-transfected and scrambled controls. This result implies that despite 

lack of silencing at an mRNA level, RPS6KA3 siRNA did function in ‘knocking-down’ 

RPS6KA3 in both cell lines. The fact that EGR1 siRNA A and B did not have an effect 

on at mRNA level, but did at protein level may suggest these siRNAs were functioning 

like miRNA. This would not affect the level of mRNA transcription but prevent 

translation of RPS6KA3 protein. It is also possible that the mRNA was being regulated 

so rapidly silencing was not detected 24hrs after transfection. There is also the 

possibility that the RPS6KA3 primer used was not specific, and picked up another 

transcript. This would cause a decrease in the observed mRNA silencing at mRNA 

level. Other studies looking at the effects o f RPS6KA3 have shown protein silencing, 

but did not address silencing at mRNA level (Woo et al., 2004; Aggarwal et al., 2006).

4.4.2.3.3 Effect of RPS6KA3 siRNA on invasion

Results of invasion assays showed transfection of RPS6KA3 siRNA caused a decrease 

in invasion in both cell lines. A considerable reduction in the number of invading cells 

was observed after transfection with both RPS6KA3 siRNAs A and B in both cell lines. 

Both photographic evidence and cell counts showed that the number of invading cells 

was reduced by at least 50% (Section 3.7.4). Proof of knock-down of RPS6KA3 at a 

protein level, combined with a decrease in invasion after siRNA transfection, validated
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array analysis and confirmed RPS6KA3 is important in the invasive mechanism of 

SKBR3 and DLKP4E.

Particularly relevant to the present study is the connection between RPS6KA3 and 

phosphoinositide dependent protein-kinase-1 (PDK1). RPS6KA3 is phosphorylated and 

activated in vivo by ERK and 3-phosphoinositide-dependent protein kinase 1 (PDK1)

(Jensen et al., 1999). The isolated N-terminal kinase o f RSK2 is phosphorylated at
r)r)1Ser by PDK1, a constitutively active kinase, leading to 100-fold stimulation of kinase 

activity. Previous studies have demonstrated that active PDK1 may account for basal 

RPS6KA3 activity in cells, whereas stimulation of RPS6KA3 by growth factors requires 

the collaborative regulation by ERK and PDK1 (Jensen et al., 1999).PDK1 was first 

identified as a protein-Ser/Thr kinase that linked PI3K to Akt activation in response to 

growth factor receptor stimulation. Recent reports have demonstrated that PDK1 

confers a marked growth advantage, promotes invasion and can activate matrix 

metalloproteinases (Xie et al., 2006). Ser386 in the hydrophobic motif of RPS6KA3 is a 

recognised docking site for PDK1 (Frodin et al., 2000). At the same time, the N- 

terminal o f RPS6KA3 is phosphorylated at Ser227 by PDK1. Therefore a mechanism 

exists whereby both PDK1 and RPS6KA3 activate each other. Interestingly, microarray 

results for MCF7H3erbB2 showed a -1.72 fold change in PDK1, but a +2.36 change in 

RPS6KA3. This may indicate that ERK plays a more significant role in RPS6KA3 

regulation. However it is not possible to relate regulation through phosphorylation to 

levels of mRNA (microarray results). How ERK and PDK1 contribute to activation of 

RPS6KA3, and therefore invasion in MCF7H3erbB2, is therefore uncertain.

However, results from the present study have demonstrated that siRNA silencing of 

RPS6KA3 alone had a considerable effect on invasion in SKBR3 and DLKP4E. 

Although RPS6KA3 has not been directly associated with invasion, it is evident from 

the literature that it plays a significant role in several signalling pathways that are often 

disrupted in cancer, such as MAPK/ERK (Smith et al., 1999). Comparison studies of 

the docking site of RPS6KA3 and the carboxyl-terminal tails of other MAPK-activated 

kinases revealed similar docking sites within each of these MAPK-targeted kinases. 

Also, the number and placement of lysine and arginine residues within the conserved 

region correlated with specificity for activation by ERK and p38 MAPKs in vivo (Smith 

et al., 1999). MAPK plays a major role in inducing proteolytic enzymes that degrade the 

basemant membrane, enhancing cell migration, initiating several pro-survival genes and 

maintaining growth. The MAPK pathways can be divided into ERK (extracellular

332



regulated kinase), JNK (c-Jun N-terminal kinase) and p38 iso forms. Activated MAPK 

pathways have been detected in many tumours including breast, lung, colon and kidney, 

implicating it in in tumour progression and metastasis (Reddy et al., 2003). RPS6KA3 

is activated via the ERK pathway following mitogen stimulation by phosphorylation on 

four sites: Ser227 in the activation loop of the N-terminal kinase domain (NTK), Ser369 

in the linker, Ser386 in the hydrophobic motif and Thr577 in the C-terminal kinase 

(CTK) domain (Doehn et al., 2004). ERK dissociates when the NTK domain 

phosphorylates Ser736 next to the ERK docking site.

It is clear from the above that RPS6KA3 has a broad range of substrates and actions, 

and is likely to participate in many cellular processes. RPS6KA3 acts as a vital regulator 

of key transcription factors involved in early gene response, such as c-Fos, Elk-1 and 

CREB which are known for their role in tumour progression (Sassone et al., 1999; 

Aksan Kumaz, 2004; Xing et al., 1996). Immediate early genes (IEGs) are activated 

transiently and rapidly in response to a wide variety of cellular stimuli. They represent a 

standing response mechanism that is activated at the transcription level in the first round 

of response to stimuli, before any new proteins are synthesized. Thus IEGs are distinct 

from "late response" genes, which can only be activated later following the synthesis of 

early response gene products. Thus IEGs have been called the "gateway to the genomic 

response". It is well established that several specific early response genes are activated 

in response to exogenous agents that induce intracellular stress including several 

therapeutic modalities such as chemotherapeutic agents, heat, and ionizing radiation 

(IR). In this regard, these gene products may function in coupled short-term changes in 

cellular phenotype by modulating the expression of specific target genes involved in 

cellular defences to the damaging effects of IR (Wang et al., 2005a; Gius et al., 1999). 

RPS6KA3 therefore holds a powerful position in determining cellular response. 

RPS6KA3 may also contribute to increased invasion through promotion of ani-apopotic 

proteins. Defective apoptosis can facilitate metastasis by allowing cells to ignore 

restraining signals from neighboring cells, survive detachment from the extracellular 

matrix, and persist in hostile environments. The development and maintenance of 

healthy tissues is dependent on a balance between cell survival and cell death 

(apoptosis). Disruption of this balance and prevention of apoptotsis contributes to 

uncontrolled growth and clonal expansion of cancer cells. The Bcl-2 family member 

Bad is a pro-apoptotic protein, and phosphorylation of Bad by cytokines and growth 

factors promotes cell survival in many cell types. The Bcl-2 family of related proteins
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contains protein-protein interaction domains that facilitate homo- and 

heterodimerization. Bc1-Xl, an anti-apoptotic member, forms a hetrodimer with Bad, 

which is pro-apoptotic (Reed, 1998). Phosphorylation of Bad results in its release from 

Bcl-xl, increasing levels of Bcl-xl in the cell and causing a decrease in apoptosis. She et 

al., illustrated that UVB-induced phosphorylation of Bad at serine 112 was mediated 

through MAP kinase signaling pathways in which RPS6KA3 served as direct mediator 

(She et al., 2002). More recent reports have confirmed this and show that RPS6KA3 

mediated phosphorylation of Bad is activated by the Ras signaling pathway (Gu et al.,

2004).

Though RSK family mechanism of action has been the subject of many studies, few 

have examined their biological function. Results here demonstrate a functional effect of 

RPS6KA3 in invasion of both DLKP4E and SKBR3. Although its exact role in the 

invasion process is unclear, RPS6KA3 documented overexpression in breast and 

prostate cancer tissue, along with its obvious association with so many other invasion 

markers strongly implicates RPS6KA3 in the invasion process. This knowledge 

combined with the functional effects observed after RPS6KA3 siRNA silencing in 

DLKP4E and SKBR3, makes RPS6KA3 a probable marker of invasion, and a 

promising target for future anti-invasion interventions.
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4.4.2A Effect of TNFAIP8 siRNA on DLKP4E and SKBR3

Comparison of parent MCF7H3 to MCF7H3erbB2 found a +2.47 fold increase in levels 

of TNFAIP8 expression in MCF7H3erbB2 compared to the parent cell line. No change 

in expression was seen in DLKP4E or DLKP4Emut. Unlike the other siRNA targets, 

TNFAIP8 was examined only using proliferation and invasion assays. Due to the 

novelty of the target, no antibody was commercially available, and qPCR primers failed 

to detect the target. In previous work rabbit polyclonal antiserum was custom generated 

against a TNFAIP 8-specific peptide for western blot analysis (Kumar et al., 2004; 

Zhang et al., 2006). This was not possible in the present study due to time constraints.

4.4.2.4.1 Effect of TNFAIP8 siRNA on proliferation
Proliferation assays results were similar to previous targets. Again, little change in 

growth rate was observed in DLKP4E after TNFAIP8 siRNA transfection, but SKBR3 

showed a 40% increase in growth. As already explained, this was most likely due to 

scrambled siRNA having a negative effect on growth, which based on this and previous 

results appears to be specific to SKBR3 (Section 3.8.1). Overexpression of TNFAIP8 in 

cancer cells has been associated with enhanced survival (You et al., 2001). Kumar et 

al., (2000) found that TNFAIP8 overexpression was a negative mediator of apoptosis 

though its death effector domian. Apoptosis signaling is regulated and executed by 

specialized proteins that often carry protein/protein interaction domains. One of these 

domains is the death effector domain (DED), found in components of the death- 

inducing signaling complex (DISC), which also contains death receptors, adaptor 

proteins, caspase-8 and caspase-10. The DED protein family comprises both 

proapoptotic- and antiapoptotic-DED-containing proteins, and not surprisingly, these 

proteins play a pivotal role in the regulation of apoptosis (Barnhart et al., 2003). 

Accumulating evidence now suggests that DED-containing proteins have additional 

roles in controlling pathways of cellular activation and proliferation. In this regard the 

DED family may be important to cellular homeostasis by co-regulating proliferation and 

apoptosis in parallel (Tibbetts et al., 2003). By decreasing the level of apoptosis 

TNFAIP8 enhances survival, and may also enhance the rate of proliferation. Apoptosis 

and proliferation of arthritis synovial fibroblasts (RASFs) was significantly decreased 

after treatment with siRNA for TNFAIP 8 as compared with controls treated with siRNA 

for luciferase or untreated control RASFs (Zhang et al., 2004). MDA-MB 435 human 

cancer cells transfected with the TNFAIP 8 cDNA also exhibited increased growth rate
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compared to control vector transfectants (Kumar et al., 2004). Based on published data, 

TNFAIP8 siRNA transfection of DLKP4E and SKBR3 would be expected to decrease 

proliferation. An increase in proliferation of SKBR3 may have been due to an effect of 

the scrambled control (as already discussed), and no decrease in proliferation was 

observed in DLKP4E. It is possible that TNFAIP8 extends the life of DLKP4E cells 

without increasing the rate of proliferation, which would explain why TNFAIP8 siRNA 

transfection had little effect on the outcome of proliferation assays.

4.4.2.4.2 Effect of TNFAIP8 siRNA on invasion

A considerable decline in the number of invading cells was observed in DLKP4E after 

siRNA silencing of TNFAIP8. Cells transfected with TNFAIP8 siRNA were 50-60% 

less invasive than DLKP4E transfected with a scrambled control. Results for SKBR3 

are less impressive, with siRNA A and B having no significant effect. The siRNA C 

however, caused the greatest effect with a 65% drop in invasion (Section 3.8.2). 

However, there was no evidence of TNFAIP8 reduction at an mRNA or protein level in 

either cell line. Considering the fact that there was no measured silencing of TNFAIP8 

it may be suggested that the functional effects observed were due to non-specific 

transfection-selected effects. This is unlikely however as the same stringent controls and 

policies outlined for TFPI were adhered to in this case. These include the use of three 

different siRNA oligos against the same target, all of which caused a decrease in 

invasion when transfected into DLKP4E. The same cells had also been transfected with 

kinesin and GAPDH as controls, and both controls proved a successful transfection 

(kinesin visually through changes in the morphology of the cells, and GAPDH showed 

mRNA knock-down under the same transfection conditions). This strongly suggests that 

the siRNAs are functioning in silencing TNFAIP8. An earlier study looking at 

differentially displayed transcripts in human primary and matched metastatic head and 

neck squamous cell carcinoma cell lines, identified TNFAIP8 as having association 

with a invasive phenotype (Patel et al., 1997). Results of the present study concur, 

finding TNFAIP8 differentially expressed in an invasive MCF7H3erbB2 compared to 

the non-invasive parent MCF7H3.The most recent study published demonstrated that 

expression of TNFAIP8 cDNA in MDA-MB 435 human breast cancer cells was 

associated with enhanced invasion in vitro and increased frequency of pulmonary 

colonization of tumour cells in athymic mice. They also showed that treatment of 

athymic mice with TNFAIP8 antisense oligo led to decreased incidence of pulmonary
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metastasis and inhibition of TNFAIP8 in vivo. Inhibition of endogenous TNFAIP8 

correlated with decreased expression of VEGF receptor-2 in tumour cells and human 

lung microvascular endothelial cells and loss of endothelial cell viability. Inhibition was 

also was associated with decreased expression MMP-1 and MMP-9, both well 

documented as invasion-associated genes (Zhang et al., 2006). These results show 

TNFAIP8 as a novel invasion marker, and confirm the accuracy of the microarray 

analysis used in the present work to identify invasion-associated genes in 

MCF7H3erbB2.

The TNFAIP8 open reading frame contains a sequence in the amino terminus that 

shows a significant homology to death effector domain II of cell death regulatory 

protein, Fas-associated death domain-like interleukin-lb-converting enzyme-inhibitory 

protein (FLIP). Unlike FLIP, the TNFAIP8 open reading frame contains only one death 

effector domain and lacks the carboxyl-terminal caspase-like homology domain, raising 

the possibility that TNFAIP8 may be a novel member of the FLIP family (Kumar et al.,

2000). FLIP family proteins are involved in the intrinsic apoptotic pathway. Both 

intrinsic and extrinsic apoptotic pathways exists, the extrinsic modulates mitochondrial 

function, and the intrinsic regulates the activation of caspases responsible for activation 

and execution of the apoptotic cascade (Harada and Grant, 2003). FLIP resembles 

Caspase-8 in structure but lacks protease activity. It interacts with both fas-associated 

death domain (FADD) and Caspase-8 to inhibits the apoptotic signal of death receptors 

and, at the same time, can activate other signalling pathways such as that leading to NF- 

kappa B activation (Schneider and Tschopp, 2000). TNFAIP8 mRNA expression is 

induced by NFkB and TNFa in human cancer cells, vascular endothelial cells and 

primary rheumatoid arthritis synovial fibroblasts (Zhang et al., 2005). NFkB comprises 

a family of transcription factors involved in the regulation of a wide variety of 

biological responses. NF-kB plays a well-known function in the regulation of immune 

responses and inflammation, and is believed to play a major role in oncogenesis. NF-kB 

regulates the expression of genes involved in proliferation, migration and apoptosis 

which are important in the progression of cancer. Overexpression of NF-kB has been 

detected in many human malignancies (Dolcet et al., 2005), and although most well 

know for its role in regulating anti-apoptotic molecules, inhibition of NF-kB has 

recently been found to contribute to a reduction of the in vitro invasion of colo 205 cells 

(human colon cancer) (Su et al., 2006). Transcriptional regulation of TNFAIP8 by NF-
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kB may therefore be an important factor in the mechanism by which invasion is 

increased in DLKP4E and SKBR3.

TNFa, which induces TNFAIP8, is a cytokine involved in mediating the inflammatory 

process in tumours. Tumour promotion can come about as a result of persistant and 

unresolved inflammation, and therefore TNFa is a vital component in the initial 

promotion of tumour growth (Szlosarek et al., 2006). Evidence for a role of TNF-a in 

human cancer has been provided by several clinical studies. To date, TNF-a expression 

has been confirmed in the tumour micro-environment in the following malignancies: 

breast, ovarian, colorectal, prostate, bladder, oesophageal, renal cell cancer, melanoma, 

and lymphomas and leukaemias (Szlosarek and Balkwill, 2003). Exogenous expression 

of TNFAIP8 causes suppression of TNF-mediated apoptosis, and is thought to work by 

specifically inhibiting TNF-induced caspases-8 (You et al., 2001). Through inhibition 

of apoptosis, TNFAIP8 contributes to the invasion process by allowing cells to survive 

detachment and persist in hostile environments.

More specific studies looking at the role of TNFAIP8 in invasion showed MDA-MB- 

231 cells stably transfected with TNFAIP8 cDNA displayed an increase in cell 

migration in collagen I as compared to control transfectants, and the same study 

provided evidence TNFAIP8 overexpression significantly enhanced tumor growth as 

compared to control transfectants in athymic mice (Kumar et al., 2004). In May 2006, 

Zhang et al. published data confirming the role played by TNFAIP8 in experimental 

metastasis (Zhang et al., 2006). Through stable transfection of TNFAIP8 in MDA-MB- 

435 cells, they showed TNFAIP8 overexpressing cells demonstrated a significant 

increase in invasion compared to control transfectants. In the present study, TNFAIP8 

was not found differentially expressed in DLKP4E compared to parent, yet siRNA 

silencing caused a marked decrease in invasion, which implied TNFAIP8 was involved 

in invasion of lung cancer cells. This concurs with results found by Zhang et al. (2006), 

who found mice inoculated with TNFAIP8 showed visible lung metastasis. The same 

study also used siRNA strategies to inhibit endogenous TNFAIP8 in MDA-MB 435 

cells. This inhibition of TNFAIP8 expression was associated with inhibition of MMP-1 

and MMP-9 and no change in MMP-2 and VEGF expression. TNFAIP8 siRNA-treated 

tumour cells also showed inhibition of TNFAIP8, lower molecular weight MMP-1 and 

MMP-9, 47%; MMP-1. This study supports the present work and helps to validate 

microarray analysis. Therefore, it is safe to say that TNFAIP8 has a role in cellular
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invasion, and taken together, the present studies demonstrate TNFAIP8 as a novel 

oncogenic factor in cancer cells.
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4A.2.5 Effect of THBS1 siRNA on DLKP4E and SKBR3

Unlike the other targets chosen from this analysis, THBS1 was down-regulated in an 

invasive cell line (MCF7H3erbB2) by -2.3 fold. Therefore a reduction of THBS1 in a 

non-invasive cell line was expected to induce an invasive phenotype. For this reason 

MCF7 (non-invasive) and DLKP (mildly invasive) were selected for transfection with 

THBS1 siRNAs. DLKP4E and SKBR3, which had been used with all other siRNA 

targets from this analysis, were also included.

4.4.2.5.1 Effect of THBS1 on proliferation

Results of proliferation assays from MCF7, DLKP and DLKP4E showed very minor 

changes in growth when transfected with the THBS1 siRNAs, indicating that THBS1 

did not play an important role in proliferation in any of these cell lines (Section 3.9.1). 

THBS1 has been found to both increase (Straume and Akslen, 2003) and decrease (Ren 

et al., 2006) the rate of proliferation of cells. Microarray results indicate that in this 

model, THBS1 is associated with a decrease in invasion, and therefore reducing THBS1 

should lead to an increase in invasion. As the experimental design was based on finding 

genes relevant to invasion, there was no guarantee that a proliferation effect would also 

be observed. THBS1 siRNA may not have had an effect on proliferation of DLKP4E 

due to the fact that it is a highly invasive cell line, therefore expressing low levels of 

endogenous THBS1. As with the majority of siRNAs used, SKBR3 showed a more 

marked increase in proliferation. This may have been due to siRNA silencing, but this 

would contradict results found in DLKP4E, as SKBR3 is also an invasive cell line. It is 

most likely due to the effect of the scrambled siRNA on SKBR3 than due to THBS1 

effects on proliferation, as the same results were observed for the majority of siRNAs 

transfected into SKBR3. The varied phenotypic responses which are experienced as a 

result of THBS1 expression in different cell lines can be contributed to the specific 

receptor repertoire of the cells. It is therefore possible that THBS1 both enhances and 

inhibits proliferation depending on the cell type and its pattern of gene expression.

4.4.2.5.2 Effect of THBS1 on mRNA and protein

Real time PCR was carried out on all four cells lines transfected with all three THBS1 

siRNAs to determine if  THBS1 mRNA had been successfully silenced. Taken as a 

whole the results showed transfection of 2 out of 3 THBS1 siRNAs caused knock-down 

of THBS1 at an mRNA level in four different cell lines (Section 3.9.2). Western blots
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were use to examine THBS1 protein levels 72hrs post-siRNA transfection in all cell 

lines. MCF7 was the only cell line that had sufficient levels of THBS1 protein for 

detection by western blot, which fits with the THBS1 anti-invasion model, as MCF7 is 

the only non-invasive of the cell lines studied. The results showed that THBS1 protein 

was reduced after transfection with all three of the THBS1 siRNAs (Section 3.9.3). Also 

noteworthy that the pattern of silencing which was similar to that observed at mRNA 

level. Result confirmed that the TBS1 siRNAs used were capable o f knock-down of 

THBS1 at mRNA and protein level.

4.4.2.5.3 Effect of THBS1 on invasion

As predicted from array analysis, reduction of THBS1 caused an increase in invasion 

(Section 3.9.4). The most dramatic results were seen in DLKP and MCF7. DLKP, a 

mildly invasive cell line, showed a 3.5 to 4-fold increase in the number of invading cells 

when transfected with all three siRNA oligos. MCF7, a completely non-invasive cell 

line, became invasive after transfection with THBS1 siRNA. Cell counts revealed that a

1.3 to 1.7 fold increase was seen in SKBR3 THBS1 siRNA transfected cells. DLKP4E, 

already a highly invasive cell line, showed a negligible change. These results show that 

transfection of THBS1 siRNA produces dramatic increases in invasion across SKBR3 

and DLKP, with the increase in invasive capacity being inversely proportional to the 

original level of invasion, and subsequently THBS1 of the cell lines. A recent study 

showed THBS1 played an important role in the regulation of MMP activity, and by 

doing so acted as an inhibitor of migration, invasion and angiogenesis. What is most 

interesting about this study is that is showed mammary tumours progress more rapidly 

in mice that lack THBS1 and express erbB2. Furthermore, they demonstrated that 

overexpression of THBS1 suppressed tumour growth (Rodriguez-Manzaneque et al.,

2001). This result agrees with those of the present study, and strengthens the argument 

in favour of THBS1 as an inhibitor of invasion.
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Figure 4.5: THBS1 function
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Figure 4.5: Cell-surface-associated thrombospondins provide information that directs changes to the 
extracellular matrix and interior o f  the cell. This schematic illustrates how the flow o f information 
provides the direction for extracellular and intracellular responses during tissue genesis and remodelling. 
Proteins that are involved in some aspects o f  the responses are listed. The specific subset o f  molecules 
that are involved will depend on the cell type and the experimental conditions (Lawler, 2000).

4.4.2.5.4 Pro-invasive role of THBS1

Many studies have supported the idea of THBS1 contributing to increases in tumour cell 

motility and invasion. Yabkowitz et al., (1993) showed that THBS1 increased migration 

of a highly invasive squamous cancer cell line, and antibodies against THBS1 reduced 

invasion (Yabkowitz et al., 1993). Increased invasion in vitro was also seen in breast 

and squamous cancer cells after exposure to THBS1 (Wang et al., 1996). The same 

work also demonstrated growth inhibition of malignant breast cancer in mice when 

injected with a THBS1 antibody.
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As already mentioned THBS1 acts as an adhesion factor (Taraboletti et al., 1990) and is 

also involved in migration in many cancer tissues (Li et al., 2001b). In the presence of 

THBS1 tumour cells and platelets are more likely to attach to epithelial cells and cross 

capillary and lymphatic endothelia. This is aided by the conversion of plasminogen to 

plasmin facilitated by THBS1. It has also been suggested that THBS1 activation of 

growth factors such as TGFP may play a role in plasmin production through an 

amplification loop. TGFP is a latent growth factor stored in the tumour-associated 

stroma and activated by plasmin. This activation causes an up-regulation of uPA and 

uPRA, and therefore plasmin generation (Keski-Oja et al., 1991). Plasmin is very 

efficient at generating active MMP-3 from exogenously added pro-MMP-3. The 

activated MMP-3 becomes a potent activator of the 92-kDa pro-MMP-9, yielding an 82- 

kDa species that is enzymatically active in solution and represents up to 50-75% 

conversion of the zymogen. It has been demonstrated that the activated MMP-9 

enhanced the invasive phenotype of cultured cells as their ability to both degrade 

extracellular matrix and transverse basement membrane was significantly increased 

following zymogen activation (Ramos-DeSimone et al., 1999). THBS-1 has been 

found localized in tumor stroma surrounding pancreatic tumour cells expressing MMP- 

9, and stromally-derived THBS-1 up-regulates the production of MMP-9 by pancreatic 

adenocarcinoma. These data are also consistent with the conclusion that THBS-1-rich 

stroma is involved in regulating matrix remodeling in tumour invasion (Qian, 2001).

The thrombin-induced increase in THBS1 mRNA was proved to be due to direct 

thrombin receptor, plasminogen activator receptor (PARI) stimulation (Olson et al., 

1999). A more recent study provided further evidence for the role of THBS1 in invasion 

through protease-activated receptor-1 (PARI) (Boire et al., 2005). Boire et al. (2005) 

found that expression of PARI was both required and sufficient to promote growth and 

invasion of breast carcinoma cells in a xenograft mouse model. MMP1 acted as a 

protease agonist of PARI, cleaving the receptor at the proper site to generate PAR1- 

dependent Ca (2+) signals and migration. MMP1 activity was derived from fibroblasts 

and was absent from the breast cancer cells. These results demonstrated that MMP1 in 

the stromal-tumor microenvironment could alter the behavior of cancer cells through 

PARI to promote cell migration and invasion. A similar study showed THBS1 caused 

an increase in tumour cell invasion through the Urokinase PAR (uPAR) (Albo and 

Tuszynski, 2004). Taken together, these studies support a central role for THBS1 in the 

regulation of the plasminogen/plasmin system and tumour cell invasion.
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4.4.2.5.5 Anti-invasion role of THBS1

In contrast with the above studies, much work has supported THBS1 as an inhibitor of 

invasion. There are several studies which found THBS1 overexpression decreased 

tumor growth for certain cell lines when they were implanted into nude mice. It was 

reported that highly invasive breast, melanoma, and bronchial cancer cells secreted 

lower THBS1 than their less invasive counterparts (Zabrenetzky et al., 1994).A 

decrease in the metastatic potential of these highly malignant tumors after THBS1 

overexpression strongly pointed towards an invasion inhibitory role for THBS1. 

Similarly, metastatic hemangioma and cutaneous squamous cancer cells made to 

overexpress THBS1 also lost their metastatic potential (Sheibani and Frazier, 1995; 

Streit et al., 1999). In addition THBS1 secretion by a fibrosarcoma cell line prevented 

the progression of metastatic melanoma in mice (Volpert et al., 1998). Similarly, after 

resection of a THBS1 secreting malignant sarcoma there was widespread metastasis, 

which may have been due to the loss of THBS1 inhibition on metastatic tumor growth 

(Crawford et al. 1998).

Another study demonstrating the anti-invasive effects of THBS1 showed tumor burden 

and vasculature were significantly increased in THBS1-deficient animals, in contrast to 

THBS1 overexpressors which displayed delayed tumour growth or lacked tumour 

development. The absence of THBS1 resulted in increased association of vascular 

endothelial growth factor (VEGF) with its receptor VEGFR2 and higher levels of active 

matrix metalloproteinase-9 (MMP9), a molecule known to facilitate both angiogenesis 

and tumor invasion (Rodriguez-Manzaneque et al., 2001). This study also found that 

exogenous THBS1 added to microvascular endothelial cultures lead to accumulation 

and stabilization of proMMP9. This had been demonstrated previously, and what made 

this study interesting was they found this increase occurs with a parallel reduction in 

MMP9 activation/processing. THBS1 has been seen to bind MMP2 and MMP9 in vitro 

(Bien and Simons, 2000). The authors also demonstrated that presence of THBS1 

blocks gelatinolytic activity of these enzymes and speculated that the effect of THBS1 

might be mediated via block of proMMP2 and proMMP9 processing. Together these 

findings are consistent with a role o f THBS1 in MMP regulation, and are in agreement 

with the reported effects of TSP1 as an inhibitor of invasion in the present study.

Also of note are expression levels of PTEN in the present microarray study. PTEN 

decreases phosphorylation of AKT by dephosphorylating 3-phosphorylated inositol 

phospholipids, and by repressing AKT signalling prevents transcription of downstream
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tumour-associated genes. Upregulation of PTEN expression in glioma cell lines was 

seen to decrease levels of phosphorylated Akt, transactivation of p53 and increase levels 

of THBS1 gene expression (Su et ah, 2003). This is in agreement with microarray 

results from the present study. Results showed when PTEN expression was 

downregulated, so too was THBS1 expression in the invasive MCF7H3erbB2 (relative 

to the non-invasive parent cell line). Both studies suggest a role for THBS1 in tumour 

suppression.

The work presented here suggests THBS1 to have anti-invasive properties in DLKP and 

MCF7. Gene silencing of THBS1 alone was enough to change the phenotype of MCF7 

cells from non-invasive to invasive, and cause a marked increase in invasion of DLKP. 

Research studies to date provide experimental evidence indicating that THBS1 can be 

both adhesive and anti-adhesive, can foster and retard metastasis, stimulate and inhibit 

angiogenesis and increase and reduce proteolytic activity and fibrinolysis. THBS1 

exerts its function by binding to various matrix proteins and cell-surface receptors, and 

by interaction with these receptors functions in directing formation of multi-protein 

complexes that modulate cellular phenotype. As a result, diverse intracellular pathways 

are activated relevant to embryonic development, tissue differentiation, inflammations, 

wound healing, and coagulation (Figure 4.5). Previous studies have shown THBS1 

displays distinct biological activities in different cell types, which is attributed to its 

multiple functional domains that engage corresponding receptors on the surface of 

targeted cells. It is clear that THBS1 is capable of initiating a variety of intracellular 

signals, not only through binding of receptors but also its ability to activate latent 

transforming growth factor beta (TGFP) and inhibit several proteases. The varied 

phenotypic responses which are experienced as a result of THBS1 expression can be 

contributed to the combined effect of TGFP activation and the specific receptor 

repertoire of the cells. It is therefore possible that THBS1 has both invasive and non- 

invasive functions depending on the cell type and its pattern of gene expression.

As with all of the siRNAs used in this study, stringent controls were adhered to. This 

included the use of three non-homologous siRNAs (Figure 4.6), each of which was 

transfected into four different cell lines. Consequently, the present study provides strong 

evidence for THBS1 as anti-invasive in a variety of breast and lung cell lines.
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Figure 4.6 Exon targets of THBS1 siRNA A, B & C.

Targeted Exon(s): NM_003246: Exon 22

MLW32« A A A A A A A A, A AAA AAA A  A A A'A.
(5828 bps)

THBS1A

Targeted Exon(s): NM_003246: Exon 3

ML6B3246 iA A» ,V V Y Y V V V V V V V V V V V 'V V V N̂ ^^™
(9828 bps)

THBS1B
Targeted Exon(s): NM_003246: Exon 22 - THBS1C (diagram not available)
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4.4.3 Genes related to invasion and specific to DLKP4E/DLKP4Emut

Five genes were chosen as siRNA targets based on analysis of DLKP4E and DLKP4Emut 

microarray data (Section 3.3.4.3). All five genes displayed increased expression in invasive 

DLKP4E and DLKP4Emut, and evidence in the literature suggested, in most cases that they 

may play a role in invasion. siRNA analysis was chosen to silence these genes in order to 

observe the effect on invasion. As all genes were over-expressed in invasive cell lines, 

silencing of these genes was expected to reduce invasion. As with all targets, siRNA was 

transfected into DLKP4E and SKBR3. Results for proliferation assays were similar to those 

for MCF7H3erbB2 targets, with little change in DLKP4E and an increase in growth of 

SKBR3 (thought to be due to scrambled siRNA having an effect on proliferation of 

SKBR3).

Invasion assays revealed that none of the siRNA transfections resulted in any change in 

invasion of DLKP4E (Figure 3.10.2). Cell counts were not performed on DLKP4E because 

the extent of the invading cells on most inserts made accurate counting impossible. 

Initially, the photograph of the SKBR3 invasion inserts indicated some decrease in invasion 

(Figure 3.10.3). However, cell counts revealed no change in the number of invading cells 

(Figure 3.10.4), and when repeated results for this cell line were inconsistent. These results 

showed that transfection of SKBR3 and DLK4E with this set of siRNAs did not result in 

reduced invasion.

A kinesin-silencing reduction in proliferation, and also real-time PCR showing GAPDH 

knock-down in these cells (Figure 3.4.3), demonstrated that optimal transfection conditions 

were used. Therefore invasion assay results suggest that these targets alone didn’t play a 

significant role in invasion in SKBR3 or DLKP4E. Because of this further analysis was not 

performed.

4.4.4 Why MCF7H3erbB2 targets were successful and DLKP4E were not

It is unclear why target genes from the MCF7H3erbB2 list proved to be involved in 

invasion as indicated by microarray analysis, but those from the DLKP4E/4Emut list did 

not. One explanation could be that siRNA silencing of the DLKP4E/4Emut targets did not 

take place. As only proliferation and invasion functional effects were examined, there is no 

evidence of siRNA silencing at either mRNA or protein level. However, considering that
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stringent measures were employed to ensure accurate transfection (as with TFPI), it is 

possible that targets were silenced but had no functional effect.

Bioinformatics analysis performed to obtain both final gene lists was very similar. The 

main difference between lists was that targets chosen for MCF7H3erbB2 were all inter­

related, and as such may have been part of an important network involved in the invasion 

process. Therefore it is possible that silencing one gene from this pathway may have had a 

knock-on effect on the other genes, amplifying the anti-invasive effect. Targets chosen for 

DLKP4E were not all inter-related. A pathway was identified by Pathway Assist®, but only 

one gene from this pathway (NRG) was chosen. It was hoped that this gene would have a 

knock-on effect on the other genes in the pathway, and if they were involved in invasion 

this would lead to a greater effect of NRG siRNA silencing. However, NRG had no effect 

on the level of invasion post-siRNA transfection. It is possible that NRG was not a key 

component of this pathway, and that some or all of the other members should be examined 

using siRNA. Three members of the HOXB gene family were examined. Because five 

HOXB members appeared in the final list, all of which were highly up-regulated (fold 

changes for HOXB2, 4, 5, 6 &7, ranged from 5.83 to 98.39), it was thought likely that they 

were involved in invasion. However, individual HOXB siRNA transfection was not suffice 

to reduce the level of invasion.

The success of targets chosen based on MCF7H3erbB2 analysis may have been due to 

more stringent elimination of non-invasion related genes. Targets chosen from DLKP4E 

and DLKP4Emut were based on differentially expressed genes in both cell lines compared 

to parent and vector-transfected cells. In the case of MCF7H3erbB2, genes differentially 

expressed in MCF7H3erbB2 compared to parent were further reduced by removing any 

gene changes which were common to non-invasive MCF7 cell lines (MCF74E, 

MCF74Emut, MCF7pcDNA, and also clonal variation between MCF7 and MCF7H3). In 

the MCF7H3erbB2 system, the major difference being examined is invasion. MCF7H3 is 

completely non-invasive, and overexpression of erbB2 changes this phenotype to invasive. 

This is not the case in DLKP, where the parental cell line is mildly invasive. Therefore the 

MCF7H3erbB2 model is more suitable for the selection of invasion-specific targets. It is 

important to remember that the final list of DLKP4E /DLKP4Emut genes were chosen 

based on specificity to an invasive phenotype and eIF4E overexpression. eIF4E is the
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limiting translation initiation factor in most cells. Thus, eIF4E activity plays a principal role 

in determining global translation rates. Consistent with this role, eIF4E is required for cell 

cycle progression, cell proliferation and differentiation. Overexpression of eIF4E leads to 

anti-apoptotic activity and transformation of cells. It is therefore possible that the HOXB 

genes, NRG and MYO are upregulated as a consequence of eIF4E over-expression, but do 

not play a role in invasion. It is possible that they do play a part in the invasion process, but 

are only effective in concert with other genes. In some cases, such as the HOXB genes, 

silencing of one family member may result in another member with similar function taking 

its place. For this reason, further analysis using joint transfection of multiple siRNAs, for 

instance some of those genes found to be related through pathway assist analysis, may help 

to answer this question.

It is also significant that three of the five targets from the MCF7H3erbB2 list (EGR1, 

RPS6KA3 and TFPI) were also differentially expressed in DLKP4E or DLKP4Emut. Two 

were filtered out of the DLKP4E/4Emut list because they were either differentially 

expressed in DLKPpcDNA (e.g. EGR1, which was down-regulated in pcDNA) or not 

common to all lists (TFPI1, not differentially expressed in DLKP4E, but DLKP4Emut and 

MCF7H3erbB2). RPS6KA3 was the only target chosen which proved common to both 

lists.
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4.4.5 Effect of eIF4E on the invasive status of MCF7 and DLKP cells

To form metastases, individual tumour cells must break from the primary tumour mass, 

degrade extracellular matrix, invade the surrounding normal tissue, enter the blood or 

lymphatic circulation, exit the circulation at a distal tissue and establish satellite colonies 

within this new tissue environment. This aberrant behaviour of cancer cells requires the 

cooperative function of numerous proteins -  those that facilitate angiogenesis (e.g. VEGF), 

cell survival (e.g. Bcl-2), invasion (e.g. MMPs), and autocrine growth stimulation (e.g. c- 

myc, cyclin Dl). Although expression of these proteins is regulated at many levels, 

translation of these key malignancy-related proteins is regulated primarily by the activity of 

eIF-4E. This is because the above mRNA contain long, G-C-rich 5’UTRs which are 

capable of forming stable secondary structures and upstream AUGs, and therefore are 

dependent on the presence of eIF4E for efficient translation. Many of the gene products that 

drive metastasis are not altered by mutation, but by altered patterns of gene expression. 

Therefore it is the quantity not the nature of key genes that drives the metastatic program 

(Graff and Zimmer, 2003). Not surprisingly, eIF4E is elevated in most solid tumours, 

contributing to metastatic progression by selectively upregulating the translation of key 

malignancy-related proteins that together conspire to drive the metastatic process. The 

present study did not look in detail at differential expression of mRNA as a result of eIF4E 

overexpression, but rather related these changes specifically to invasion. It does however 

provide valuable data relating eIF4E phosphorylation-dependent and independent 

translation to mRNA profiles for future work.

It has long since been established that eIF4E plays a critical role in breast cancer (Kerekatte 

et al., 1995; Byrnes et al., 2006). A marked increased in eIF4E in vascularized malignant 

ductiles of invasive breast carcinomas has been reported (Nathan et al., 1997), and recent 

studies have shown direct correlation between invasion and eIF4E in breast cancer cells 

(Yoon et al., 2006). However, stable expression of the eIF4E and eIF4Emut plasmids alone 

was not sufficient to cause an increase in invasion in MCF7 (Section 3.1.8). DLKP on the 

other hand, changed considerably after eIF4E transfection (Section 2.3.6). At a 200X 

magnification the average number of invading cells was 20 in DLKP parent, whereas for 

DLKP4E and DLKP4Emut clones the average count ranged from 40 to 160. This result
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concurs with previous studies, which have associated eIF4E with increased invasiveness 

and metastasis of the lung (Graff et al., 1995; Seki et al., 2002).

Why then did eIF4E produce a different effect in MCF7 and DLKP? Microarray analysis of 

eIF4E and eIF4Emut clones compared to the parent MCF7 and DLKP showed lists of 

genes differentially expressed when clones were compared to parents. Looking at the eIF4E 

clones alone, of those changes specific to DLKP4E, almost 900 genes appeared that were 

not differentially expressed in MCF74E. Likewise, over 200 genes differentially expressed 

in MCF74E did not change significantly in DLKP4E. Without any further analysis it is 

clear from this observation that eIF4E overexpression has a very different effect on DLKP 

and MCF7. To further investigate this phenomenon, Pathway Assist® was used to examine 

if there was a pattern in the type of genes changes due to eIF4E/eIF4Emut in both cell lines. 

This was investigated using the following approaches:

4. Genes present in both DLKP and MCF7 with different patterns of expression

5. Gene changes due to eIF4E overexpression in DLKP4E and not in MCF74E

6. Genes common to DLKP4E and MCF7H3erbB2 but not MCF74E (with the same 

pattern of expression).

The first factor taken into consideration was the invasion status of parental DLKP and 

MCF7 cell lines. As DLKP displayed mildly-invasive characteristics prior to eIF4E 

transfection, it may have been pre-disposed to an invasive phenotype, already having some 

of the genes necessary for invasion ‘switched on’. Stable transfection of eIF4E cDNA may 

then have resulted in the expression or up-regulation of some key genes which pushed the 

phenotype to highly-invasive. Gene expression in MCF7 was compared to that in DLKP to 

identify genes with significantly different patterns of expression. Only genes with an 

expression level < 50 in MCF7 and a fold change of > 10 when compared to DLKP were 

used for further analysis. Genes from this list were found to be important in cell survival, 

proliferation and inflammation, all of which have previously been associated with cancer 

progression. So, DLKP was initially a more aggressive in vitro cell line, which may explain 

why it had a marked increase in invasion upon eIF4E overexpression as opposed to MCF7
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cells. This analysis highlights the impact of different initial mRNA profiles on the 

phenotypical outcome of overexpression of a single gene.

The next logical step in analysis was to look at changes post-eIF4E overexpression in both 

cell lines. Genes changes in DLKP4E compared to MCF74E were predominantly involved 

in motility and proliferation, which would agree with the phenotypical changes seen in 

DLKP4E compared to MCF74E. No significant change in these genes in the MCF74E cell 

line may be contributing to the cells lack of invasion.

MCF7H3erbB2 is an invasive clone of MCF7, and many of the gene changes which occur 

in this cell line compared to parent MCF7H3 are related to its invasive phenotype. One 

important gene recognised by Pathway Assist® as being common to DLKP4E and 

MCF7H3erbB2 was erbB2. However, in MCF74E there was no change in the level of 

expression of erbB2. This further strengthens the case for erbB2 as a vital promoter of 

invasion, and suggests that in DLKP overexpression of eIF4E leads to erbB2 expression at 

mRNA level, but does not in MCF7.

To further investigate gene changes that occur due to eIF4E in DLKP4E and are related to 

invasion, genes that were common to both MCF7H3erbB2 and DLKP4E but not MCF74E 

were examined using Pathway Assist ®. This created a list of genes with a phenotypical 

change from non-invasive to invasive in an MCF7 cell line, and also relevant to invasion as 

a result of eIF4E overexpression. Several pathways were generated which showed common 

targets for this list of genes. Of the 351 genes on the list 34 were involved in cell survival, 

12 in invasion, 30 in motility and 54 in apoptosis. Of most significance to this study were 

those involved in invasion and motility. The fact that these genes are significantly changed 

in two invasive cell lines, and not in non-invasive MCF74E, strongly suggest they play an 

important role in invasion in both DLKP and MCF7. This pre-existing relationship with an 

invasive phenotype validates the list of MCF7H3erbB2 and DLKP4E common genes as 

being related to invasion. Many other genes on this list, especially those poorly annotated 

or with yet unknown association to invasion, will prove valuable for further analysis of 

invasion in MCF7 and DLKP.

352



All five target genes which performed successfully (that is increased or decreased invasion 

as predicted by microarray analysis) were all chosen from the list of genes differentially 

expressed in MCF7H3erbB2. It is therefore likely that these genes, as well as being related 

to an invasive phenotype, also have some connection with erbB2. Previous studies have 

shown overexpression of erbB2 in vivo (Meteoglu et al., 2005) and in vitro (Dittmar et al., 

2002) results in cellular transformation, and more specifically invasion (Zhan et al., 2006). 

Work carried out in the NICB also showed that stable expression of erbB2 cDNA in a 

breast cell line resulted in invasion. The resulting clone, MCF7H3erbB2 was used in the 

present study.

erbB2 is a member of the epidermal growth factor receptor (EGRF) family of receptor 

tyrosine kinases, the normal function of which is to mediate cell-cell interactions in 

organogenesis and adulthood through binding to their ligands (Burden and Yarden, 1997). 

In epithelium, the basolateral location of erbBs allows them to mediate cell-cell interactions 

through signaling between the mesenchymal and epithelium (Borg et al., 2000). Ligands 

binding the erbBs are divided into two categories; EGF-like ligands and neuregulins. These 

ligands influence which receptor subtype or subtypes dimerization and oligomerisation 

occurs with and promotes self-phosphorylation on tyrosine residues (Navolanic et al.,

2002). The result of ligand-receptor binding is the initiation of several signaling cascades, 

producing a specific physiological outcome. Cellular transformation mediated by erbB2 is 

as a result of the inappropriate expression of signaling pathways that promote cell 

proliferation and survival. Both homodimers and heterodimers containing erbB2 are 

effective in activating Ras/Raf/ERK and phosphoinositide 3'-kinase (PI3K) pathways (Zhan 

et al., 2006). MAPK pathways induce proteolytic enzymes that degrade the extracellular 

matrix (ECM), enhance migration, initiate pro-survival genes and maintain growth 

(Kaladhar et al., 2003). PI3K is a lipid kinase that catalyzes the synthesis of the membrane 

phospholipid PtdIns-3,4,5-P3 from PtdIns-4,5-P2, effectively recruiting Akt to the plasma 

membrane by direct interaction of PtdIns-3,4,5-P3 with the Akt pleckstrin homology 

domain. In normal and cancer cells, Akt regulates both growth and survival mechanisms 

and does so by phosphorylating a large number of substrates (Toker and Yoeli-Lemer,

2006).

4.4.6 The relationship between MCF7H3erbB2 target genes and erbB2

353



Figure 4.7 demonstrates the diversity of signalling pathways initiating from erbB2.
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The AKT/mammalian target of rampamycin (mTOR)/4EBPl pathway is a central regulator 

of protein synthesis. Phosphorylation of 4EBP1 leads to the release of eIF4E, which can 

then bind with eIF4E and initiate translation. erbB2 has been shown to trigger the 

AKT/mTOR/4EBPl signaling cascade, and therefore influence the level of eIF4E available 

for translation initiation (Zhou et al., 2004). In addition to initiating the AKT signalling 

pathway, erbB2 can also cause initiation of the Ras/Raf/MEK/ERK signalling cascade, 

which is associated with the invasive phenotype through up-regulation of several 

transcription factors. Although much attention has been given to the role of Akt activation 

in the regulation of protein synthesis, recent evidence suggest signalling through the MAP 

kinases also converge on eIF4E, making this another means of mediating translational 

control (Kelleher et al., 2004). Ras-ERK signalling leads to the phosphorylation of eIF4E at 

serine 209 (Wang et al., 1998a), which has been directly associated with translation of 

mRNAs with complex 5’UTRs (Andersson and Sundler, 2006; Grand et al., 2005; 

Pyronnet et al., 2000). eIF4E translation of complex mRNAs in particular has previously 

been associated with cancer progression, and is also involved in the translation of erbB2 

(Yoon et al., 2006). In this way erbB2 and eIF4E are involved in a positive feedback loop, 

and therefore cells over-expressing erbB2 or eIF4E may contain similar mechanisms and/or 

novel markers for invasion, which would explain why targets chosen from an erbB2 

overexpressing cell line were also relevant in an eIF4E overexpressing cell line.

Both erbB2 and eIF4E have been associated with metastasis in vivo (Marx et al., 1990; 

Byrnes et al., 2006). However, the fact that erbB2 overexpression caused invasion in a 

MCF7 cell line, where overexpression of eIF4E was unable to, coupled with the fact that 

erbB2 targets for invasion were more successful than those for eIF4E, suggest that erbB2 

plays a more significant role in invasion than eIF4E in vitro. This is probably due to the 

activation of different signalling pathways, which lead not only to activation of eIF4E and 

increased translation of eIF4E sensitive mRNAs, but also to other factors important to the 

invasion process.

4.4.6.1 Relationship of target genes to eIF4E
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4.4.6.2 RPS6KA3 and erbB2

RPS6KA3 is a mitogen-activated protein kinase-activated protein kinase (MAPKAPKs), 

and a downstream effector of the mitogen-activated protein kinases (MAPK) family of 

kinases (Zhao et al., 1996). Activation of the Ras/Raf/MEK/ERK signalling cascade by 

erbB2 results in the direct stimulation of RPS6KA3 (Murphy et al., 2002). RPS6KA3 acts 

as a vital regulator of key transcription factors involved in early gene response, such as c- 

Fos, Elk-1 and CREB which know for their role in tumour progression (Sassone et al., 

1999; Aksan Kumaz, 2004; Xing et al., 1996).

4.4.6.3 RPS6KA3 and EGR1

Immediate early response gene activation upon mitogenic activation occurs through the 

serum response element (SRE). The enhanced transcription of genes through transcriptional 

regulatory elements such as the SRE makes the characterization of the upstream pathways a 

powerful means to engineer cellular responses. Mitogen signaling activates the MAPKs 

through increased binding of the ternary complex factor (TCF), such as Elk-1 to the SRE in 

the DNA promoter region, activating transcription. In response to serum stimulation, Elk-1 

is phosphorylated at multiple sites, and can be phosphorylated by all three of the MAPK 

families (Sharrocks, 2000). This activation through phosphorylation is a crucial step in 

SRE-driven transcription, and phor-EIk-1 is thought to recruit a variety of proteins to the 

promoter through protein-protein interactions. The MEK/ERK/RPS6KA3 cascade, through 

phosphorylation of the ternary complex factor Elk-1, leads to the expression of EGR1 

(Anderson et al., 2004).

4.4.6.4 EGR1 and erbB2

We know that erbB2 stimulates the MEK/ERK/RPS6KA3 cascade, which leads to 

expression of EGR1 (Anderson et al., 2004). Recent reports have demonstrated that ERG1 

is also capable of regulating transcription of erbB2. Promoter deletion assays and site- 

directed mutageneses identified a binding site for the transcription of EGR1 in erbB2 

promoter as a putative curcumin response element in regulating the promoter activity of the 

gene in colon cancer cells (Chen et al., 2006). Therefore, EGR1 and erbB2 are involved in 

a positive feed-back loop, and one of the knock-on effects of down regulation of EGR1
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may also be inhibition of erbB2.This may also contribute to the anti invasive effect 

observed in DLKP4E and SKBR3 after siRNA silencing of EGR1.

4.4.6.5 EGR1 and THBS1
Extracellular stimuli regulate an array of cellular events such as growth, differentiation and 

death by altering the gene expression profile. These include induction of dormant genes and 

repression of active genes. In response, immediate early genes (EEGs) are induced and 

trigger transcriptional cascades, which ultimately lead to the different biological 

phenotypes. THBS1 is transcriptionally regulated by EGR1, and rapidly induced by serum, 

PDGF, and basic fibroblast growth factor. Both EGR1 and THBS1 are immediate early 

response genes, and have both been found dependent on the Ras/RafTMEK/ERK pathway 

(Inuzuka et al., 1999), which is activated by erbB2. As a transcriptional regulator of 

THBS1, up-regulation of EGR1 may be expected to result in up-regulation of THBS1. This 

was not observed in MCF&H3erbB2. Other studies have shown a similar relationship 

between the two based on a global microarray analysis, with THBS1 reversing the changes 

in immediate-early gene expression induced by TCR-mediated T cell activation. One set of 

genes, including EGR1, which were induced after TCR stimulation, were down-regulated 

by THBS1 treatment (Li et al., 2001). This concurs with results showing an increase in 

EGR1 and decrease in THBS1 contributed to invasion in MCF7H3erbB2 cells. It also 

suggests that up-regulation of erbB2 results in up-regulation of ERG 1, possibly by inducing 

the MEK/ERK signalling pathway. It also implies negative regulation of THBS1 involving 

EGR1 and most likely several other factors, the precise mechanism of which remains to be 

fully explained.

4.4.6.6 THBS1 and TFPI
TFPI binds specifically to thrombospondin-1 (THBS1), and TFPI bound to immobilized 

THBS1 remains an active proteinase inhibitor. THBS1 secreted by platelets plays an 

important role in recruiting and localizing TFPI to surfaces within the extravascular matrix. 

In solution phase assays measuring TFPI inhibition of factor TF-VIIa catalytic activity, the 

rate of factor Xa generation was decreased 55% in the presence of THBS-1 compared with 

TFPI alone. Once localized, TFPI-THBS1 can efficiently down-regulate the procoagulant 

activity of tissue factor (TF), therefore showing thrombospondin enhances the coagulation-
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inhibition ability of TFPI when bound (Mast et al., 2000). The down-regulation of THBS1 

and sequential up-regulation of TFPI observed in MCF7H3erbB2 suggests that TFPI is 

inhibiting TF with maximum efficiency, and therefore may serve another purpose within 

the cells. Based on the reduction in invasion detected post-TFPI silencing, it is possible this 

novel function of TFPI is important in the invasion process.

4.4.6.7 TNFAIP8 and erbB2

TNFAIP8 may be a novel member of the FLIP family (Kumar et al., 2000). FLIP family 

proteins are involved in the intrinsic apoptotic pathway, regulating the activation of 

caspases responsible for activation and execution of the apoptotic cascade (Harada and 

Grant, 2003). TNFAIP8 causes suppression of TNF-mediated apoptosis by specifically 

inhibiting TNF-induced caspases-8 (You et al., 2001).

A recent study found that erbB2 is a substrate for caspase-8 and that TNF-a stimulation 

leads to an early caspase-8-dependent erbB2 cleavage in MCF7 A/Z breast adenocarcinoma 

cells defective for NFkB activation. They showed that the antiapoptotic transcription factor 

NFkB counteracts this cleavage through induction of the caspase-8 inhibitor c-FLIP (Benoit 

et al., 2004). It is possible that TNFAIP8 performs a similar role in MCF7H3erbB2, as its 

anti-apoptotic action is also through caspase-8 inhibition.

Also, ERK phosphorylation (which can be attributed to erbB2 expression) is linked to 

VEGFR2 expression in breast cancer (Svensson et al., 2005). VEGFR2 expression has in 

turn been related to TNFAIP8 expression (Zhang et al., 2006). Therefore up-regulation of 

VEGFR2 in response to overexpression of erbB2 could somehow be involved in TNFAIP8 

expression, the exact mechanism of which has not been elucidated.
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Table 4.3: Summary of results in relation to literature

Gene Function Role in the cell Previous 

association with 

invasion

RPS6KA3 MAPK- 

activated 

protein kinase

Regulator of key transcription factors 

involved in early gene response, such as c- 

Fos, Elk-1 and CREB which know for their 

role in tumour progression

No functional effect 

previously observed 

from reduction of 

RPS6KA3 alone.

EGR1 Transcription

factor

p53, through EGR1, could facilitate the up- 

regulation o f VEGF expression. Bcl2, 

fibronectin and NFkB, all of which are 

associated with differentiation and cell 

survival, and VEGF and TF, both of which 

are involved in angiogenesis, are regulated by 

EGR1.

Shown to have both 

pro- and ani-invsive 

effect depending on cell 

line. Pro-invasive in 

prostate, as in breast in 

present study.

TFPI Protease

inhibitor

Endogenous anticoagulant protein of the 

serine protease family, TFPI inhibition o f TF 

shifts coagulation from the extrinsic to the 

intrinsic pathway.

Has been detected in 

advanced tumours, but 

no functional effect 

previously observed 

from reduction of 

TFPI alone.

THBS1 Immediate 

early response 

gene,

extracellular

matrix

glycoprotein

Mediates cell-to-cell and cell-to-matrix 

interactions through binding of fibronectin, 

fibrinogen, laminin, type V collagen, 

integrins av/Pi, TGFp, and PDGF. Enhances 

the coagulation-inhibition ability o f TFPI 

when bound.

Both pro- and anti- 

invasive effect 

observed previously. 

Present study shows 

anti-invasive effect 

across breast and lung 

cell lines

TNFAIP8 novel member 

of the FLIP 

family

TNFAIP8 causes suppression of TNF- 

mediated apoptosis by specifically inhibiting 

TNF-induced caspases-8.

Prevoiusly shown to be 

pro-invasive, as in 

present study.
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4.4.6.8 Summary

It is clear from the present study that erbB2 plays a very important role in promoting an 

invasive phenotype in both MCF7 and DLKP cell lines. This is most likely as a result of the 

diversity of signalling pathways initiating from erbB2. Key target genes involved in 

invasion and activated through erbB2 signalling were examined in this study. The possible 

role of each of these genes is depicted in Figure 4.8, which demonstrates the diversity of 

genes effected by erbB2 signalling.
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Figure 4.8: The signalling relationship between MCF7H3erbB2 target genes, eIF4E and erbB2
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4.5 Effect of up-regulation of eIF4E on mRNA profiles
Previous studies have shown that an excess of eIF4E does not affect global translation 

rates, but instead leads to an increase in translation of mRNAs with complex 5’UTRs 

(eIF4E ‘sensitive’ mRNAs). Many of these mRNAs code for oncoproteins, regulators of 

cell cycle, growth factors and their receptors (De Benedetti et al., 1994). Therefore 

prolonged overexpression of eIF4E can lead to oncogenic transformation. In the present 

study, overexpression of eIF4E resulted in phenotypic changes in vitro, including 

increased invasion in DLKP4E/4Emut and increased colony forming efficiency in 

MCF74E/4Emut. These in vitro events are frequently associated with malignant 

transformation, and are in agreement with current models for eIF4E overexpression. 

However, as a translation factor, eIF4E may not have been expected to have such a 

profound effect on mRNA profiles as observed in the present study. Microarray data 

showed a considerable number of differentially expressed genes in stable 

eIF4E/eIF4Emut transfected DLKP and MCF7 clones, compared to the parent cell lines.

4.5.1 elF4E translation of transcription factors

This result may be partially explained by an increase in the translation of eIF4E 

‘sensitive’ mRNAs, many of which include transcription factors. In this way eIF4E can 

have a considerable effect on transcriptional regulation, which may lead to significant 

changes in mRNA profiles. An example of this is Etsl. The Etsl proto-oncoprotein is a 

member of the Ets family of transcription factors that share a unique DNA binding 

domain, the Ets domain (Dittmer, 2003). Ets transcription factors regulate the 

expression of genes that are involved in various biological processes including 

proliferation, differentiation, development, transformation and apoptosis (Seth and 

Watson, 2005). An increase in Etsl protein expression has been directly correlated with 

the phosphorylation of MNK1 and eIF4E in natural killer (NK) cells (Grand et al., 

2005). This not only suggests Etsl is an eIF4E sensitive mRNA, but also that its 

translation is eIF4E phosphorylation dependent. An examination of genes directly 

regulated by Etsl in DLKP4E and DLKP4Emut was carried out using Pathway Assist 

®. Results showed different groups of Etsl-regulated genes depending on the cell lines 

and whether cells had been transfected with wild type eIF4E or phosphorylation 

deficient eIF4Emut. Etsl was not differentially expressed in any of the cell lines, but 

genes regulated by Etsl were.

362



Figure 4.9: ETS1 regulation in DLKP4E

Gene Description Fold
Change

NR2F1 nuclear receptor subfamily 2, 
group F, member 1

+2.72

ANXA5 annexin A5 +2.47

MMP3 MMP3 matrix metallopeptidase 3 
(stromelysin 1, progelatinase)

+2.15

CDH2 cadherin 2, type 1, N-cadherin 
(neuronal)

+2.52

PDGFA platelet-derived growth factor 
alpha polvpeptide

+4.83

EGR1 Early growth response 1 +2.4

Figure 4.10: ETS1 regulation in MCF74E

Gene Description Fold
Change

TFRC transferrin receptor (p90, CD71) +2.24

NR2F2 nuclear receptor subfamily 2, 
group F. member 2

-2.04

RUNX1 runt-related transcription factor 
1 (acute myeloid leukemia 1 ; 

amll oncogene)

+1.5

ETS2 v-ets erythroblastosis virus E26 
oncogene homolog 2 (avian)

+1.62

ERF Ets2 repressor factor -1.34

CITED2 Cbp/p300-interacting 
transactivator, with Glu/Asp- 

rich caiboxy-terminal domain. 2

-1.74

It appeared that genes regulated by Etsl were predominantly amplified in cells 

transfected with eIF4E (Figure 4.9; 4.10), compared to those with eIF4Emut (Figure 

4.11; 4.12). This suggests up-regulation of Etsl at a protein level, which would not be 

detected by microarray analysis. Up-regulation of Etsl protein in the presence of 

phosphorylated eIF4E concurs with previous models (Grund et al., 2005). However, 

Etsl regulated genes were also differentially expressed in eIF4E phosphorylation 

deficient eIF4Emut clones. This implies that either eIF4E translation of Etsl is not 

phosphorylation-dependent, or that the Etsl regulated genes expressed in MCF74Emut
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and DLKP4Emut are actually being regulated by an alternative transcription factor, 

which is not eIF4E phosphorylation dependent. It is also interesting that a different set 

of Etsl regulated genes were differentially expressed in eIF4E and eIF4Emut clones in 

both cells lines.

Figure 4.11: ETS1 regulation in DLKP4Emut

Gene Description Fold
Change

MMP3 matrix mctallopcptidasc 3 
(stromelysin 1. progelatinase)

+10.15

CDKN1A endothelin 1 + 2.33

ANGPT1 cyclin-dependent kinase 
inhibitor 1A (p21, Cipl)

-2.02

HMOX1 angiopoietin 1 -2.25

EDN1 heme oxygenase (decycling) -4.89

Figure 4.12: ETS1 regulation in MCF74Emut

Gene Description Fold
Change

BCL2AF1 BCL2-associated transcription 
factor 1

-1.21

RUNX2 runt-related transcription factor 
2

+3.08

Tumour necrosis factor (TNF)-a mRNA also requires phosphorylation of eIF4E at 

serine 209 for initiation of translation (Andersson and Sundler, 2006). TNF-a can in 

turn induce activation of nuclear factor kappa B (NFkB). The introduction of IkappaB, 

the repressor of NFkB, has also been found to lead to suppression of eIF4E (Topisirovic 

et al., 2003). NFkB comprises a group of dimeric transcription factors consisting of 

various members of the NFkB/ Rel family (Verma et al., 1995). NF-kB proteins are
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involved in the transcriptional activation of a huge number of inflammatory-related 

genes in response to a number of cytokines, including TNF-a (Pahl, 1998; Baud and 

Karin, 2001). An examination of genes directly regulated by NFkBl in DLKP4E and 

DLKP4Emut was carried out using Pathway Assist ®. Again NFkBl, as with Etsl was 

not differentially expressed at mRNA level in any of the cell lines but differential 

expression of NFkB-regulated genes would suggest it was being expressed at protein 

level, possibly due to overexpression of eIF4E. My results showed NFkBl-regulated 

genes were differentially expressed after eIF4E and eIF4Emut overexpression in DLKP. 

Again as with Etsl, different groups of genes were expressed at mRNA level depending 

on whether cells had been transfected with wild type eIF4E (Figure 4.13; 4.14) or 

phosphorylation deficient eIF4Emut (Figure 4.15). This contradicts work carried out by 

Andersson and Sundler (2006), and suggests Phosphorylation of eIF4E is not necessary 

for TNF-a translation, and subsequent activation of NFkB. It is also possible however, 

that the NFkB regulated genes detected in DLKP4Emut can also be regulated through 

other transcription factors. No genes known to be regulated by NFkB were detected in 

MCF74Emut. The fact that NFkB genes were differentially expressed at mRNA level in 

a different cell line means this is likely due to genotypic differences between MCF7 and 

DLKP rather than eIF4E phosphorylation dependency.

Figure 4.13: NFkBl regulation in DLKP4E

Gene Description Fold
Change

PTEN phosphatase and tensin homolog 
(mutated in multiple advanced 

cancers 1)

-1.42

NRG1 Neuregulin +8.36

EGR1 Early growth response 1 +2.4

PDGFA platelet-derived growth factor 
alpha polypeptide

+4.83

ICAM1 intercellular adhesion molecule 1 
(CD54), human rhinovinis receptor

-7.39

IL18 interleukin 18 (interferon-gamma- 
inducing factor)

+5.42
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Figure 4.14: NFkBl regulation in MCF74E

!s!_ 

NFKB1

• H3PA4

Gene Description Fold
Change

HMGB1 high-mobility group box 1 -1.31

BRCA2 breast cancer 2, early onset -1.65

HSPA4 heat shock 70kDa protein 4 +1.32

RHOA ras homolog gene family, member 
A

+1.35

Figure 4.15: NFkBl regulation in DLKP4Emut

Gene Description Fold
Change

PTEN phosphatase and tensin homolog 
(mutated in multiple advanced 
cancers 1)

-2.0

NRG1 Neuregulin +5.32

ICAM1 intercellular adhesion molecule 1 
(CD54), human rhinovirus receptor

-5.37

IL1 interleukin 1 -1.22

Much work is needed to fully assess the role of eIF4E-translation dependent 

transcription factors. However, the examination of only two such transcription factors in 

DLKP4E/4Emut and MCF74E/4Emut showed the potential effect of eIF4E 

overexpression on mRNA levels.

Another way in which eIF4E can bring about changes at mRNA level is by increasing 

translation of factors such as cytokines, and growth factors, which activate different 

signaling cascades. As already mentioned, TNF is an eIF4E ‘sensitive’ mRNA. TNF is
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also involved in the activation of the p38-MAPK and JNK signaling pathways, both of 

which lead to the activation of a variety of transcription factors, which may also be 

reflected in the genes differentially expressed as a result of eIF4E overexpression 

(Figure 4.16) (Wajant et al., 2003).

Figure 4.16: TNF activation of p38-MAPK and JNK
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4.5.2 mRNA Stability

Steady state mRNA levels are determined by the balance between the rate of 

transcription and the rate of mRNA decay (Raghavan and Bohjanen, 2004). Most 

microarray experiments only look at steady state levels and do not examine the relative 

effects of transcription and mRNA decay. The assumption that changes in gene 

expression, as measured by microarray experiments, are directly correlated with 

changes in the rate of new gene synthesis form the basis of attempts to connect 

coordinated changes in gene expression with shared transcription regulatory elements. 

However, it is important to consider mRNA stability regulation. It has been proposed 

that regulation of mRNA stability in response to external stimuli contributes 

significantly to observed changes in gene expression as measured by high throughput 

systems (Cheadle et al., 2005).

Nonsense mediated mRNA decay (NMD) is a conserved process which leads to the 

detection of premature termination codons within an mRNA molecule. This nonsense 

mRNA is subsequently targeted for decay thus preventing this nonsense mRNA from 

being continually translated and consequently producing potentially deleterious 

truncated polypeptides. The decay of this nonsense mRNA occurs at a more rapid rate 

than if  the mRNA were to decay through the default decay pathway. This increased 

decay rate allows the cell to rapidly remove these mRNAs from the pool of translatable 

mRNAs.In mammalian cells NMD does not detectably target eIF4E-bound mRNA 

(Ishigaki et al., 2001). This suggests that increases in the activity of eIF4E may lead to 

mRNA stabilization under certain conditions.

The role of eIF4E outside the process o f translation also effects mRNA levels. 

Regulation of nucleocytoplasmic transport, cytoplasmic localisation of mRNA and 

splicing can all play a role in mRNA stability. eIF4E is known to play a role in 

nucleocytoplasmic mRNA transport (Lejbkowicz et al., 1992) and splicing (Dostie et 

al., 2000), and Cohen et al., (2001) found that an eIF4E mutant, with negligible cap- 

binding activity, could still act as an oncogene by increasing the export of growth 

regulatory mRNAs. Therefore, it is possible that eIF4E could influence the levels of 

mRNA detected by microarray analysis through its roles in nucleoplasmic transport and 

mRNA stability.
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Summary & Conclusions

Effect of overexpression of eIF4E in MCF7 and DLKP

Stable transfection of DLKP with eIF4E and eIF4Emut cDNA resulted in a set of 

highly invasive clones, demonstrating that in DLKP, eIF4E plays a significant role in 

the invasion process, and also that phosphorylation of eIF4E does not affect the role 

of eIF4E in invasion in this cell line. Transfection of MCF7 with the same set of 

eIF4E, eIF4Emut and pcDNA had no effect on the level of invasion, thus showing 

that overexpression of eIF4E alone is not sufficient to induce an invasive phenotype 

in this cell line. However, up-regulation of eIF4E did cause a marked increase in 

growth rate, loss of adhesion and an increase in the ability to form colonies in soft 

agar in the MCF74E clones, all important in vitro correlates of cancer. It is worth 

noting that both anchorage-independent growth and colony forming ability were 

affected more by the wild-type eIF4E, suggesting a role for phosphorylation of eIF4E 

in these processes.

eIF4E control of mRNA levels

Microarray analysis of MCF74E/4Emut and DLKP4E/4Emut showed a considerable 

change in mRNA profiles between parental and eIF4E/eIF4Emut clonal populations. 

While overexpression of a translation factor might not at first glance have been 

expected to have such a profound effect on mRNA profiles. This could possibly be 

explained by the increased eIF4E-dependent translation of transcription factors, or the 

role of eIF4E in mRNA stability. Microarray results provide valuable data for further 

analysis of the role of eIF4E in regulation of mRNA levels, specifically and globally.

Why eIF4E caused an increase in invasion of DLKP4E but not MCF74E

Further analysis of MCF74E compared to DLKP4E using microarray data, suggest 

that a significant number of genes involved in motility (e.g. R ail, PDGFA, HGF) and 

proliferation (e.g. BIRC3, RFP, GTF2IRD1) were differentially expressed in 

DLKP4E compared to DLKP, but not MCF74E compared to MCF7. It is possible that 

this set of genes plays a key role in the invasion processes, and their absence in 

MCF74E may have been sufficient to prevent invasion. In addition, there were genes 

differentially expressed (compared to parent cell lines) and common to DLKP4E and
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MCF7erbB2 which did not appear to change in MCF74E compared to parent MCF7. 

These genes were involved in the regulation of many key processes including cell 

survival, invasion, motility and apoptosis. In particular, 12 genes (A2M, RRM1, 

TFPI2, TIMP2, LMNA, CD99, ERBB2, CAPG, CD24, EFNA1, FBLN1 and 

SLC7A5) which from the literature are known to be involved in invasion, could at 

least partially answer the question as to why MCF7 did not become invasive.

The fact that erbB2 overexpression caused invasion in an MCF7 cell line, where 

overexpression of eIF4E was unable to, confirms that erbB2 plays a significant role in 

invasion. This may be due to the fact that in addition to initiating the AKT signalling 

pathway, erbB2 can also cause initiation of the Ras/Raf/MEK/ERK signalling 

cascade, which is associated with the invasive phenotype, through up-regulation of 

several key transcription factors.

Another important factor is the invasion status of the parental DLKP and MCF7 cell 

lines. As DLKP displayed mildly-invasive characteristics prior to eIF4E transfection, 

it may have been pre-disposed to an invasive phenotype, already having some of the 

genes necessary for invasion ‘switched on’. It may have required only the up 

regulation of some key genes to push the phenotype to highly-invasive. The 12 genes 

common to MCF7H3erbB2 and DLP4E/4Emut may be part of a group of genes 

essential for invasion. More interesting will be the study of novel and unannotated 

genes which are common to both lists. A list o f -300 gene that were differentially 

expressed, related to an invasive phenotype, and with the same pattern of expression 

in both MCF7H3erbB2 and DLKP4E was generated. This list contained both well and 

poorly annotated genes. Several o f the previously annotated genes can be related to 

invasion, cell survival, motility and apoptosis. The possibility that some of the 

unnanotated genes are also relevant to cancer invasion awaits further investigation.

Markers for invasion in breast and lung

A combination of the development of stable invasive and non-invasive clones, 

microarray analysis of same, and siRNA silencing has led to the identification of five 

genes which have significant roles in the invasion process of both lung (DLKP) and 

breast (SKBR3) cells. These genes are early growth response 1(EGR1), tissue factor 

pathway inhibitor (TFPI1), thrombospondin (THBS1), tumour necrosis factor alpha- 

induced protein A (TNFAIP8) and ribosomal protein S6 kinase-90kDa-polypeptide 3
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(RPS6KA3). EGR1, TFPI1, TNFAIP8 and RPS6KA3, were all upregulated in 

invasive MCF7H3erbB2.

They cause significant reduction in invasion when silenced in DLKP4E and SKBR3. 

Silencing of THBS1, the only one of the targets to have been down regulated in 

MCF7H3erbB2, caused invasion of non-invasive MCF7 and an increase in invasion 

of mildly invasive DLKP. These genes represent a combination of those previously 

reported to have an involvement in invasion (EGR1, TNFAIP8, THBS1), and those 

whose functional role is yet to be fully elucidated (RPS6KA3 and TFPI1).

EGR1 (early growth response 1)

The transcription factor EGR1 is overexpressed in many tumours and regulates the 

expression of several genes implicated in tumor progression. Although EGR1 

deficiency has been shown to impair the transition of tumour cells to invasion in 

mouse models, it can have a repressive or activating role depending on the tumour 

type. This study shows EGR1 to be directly related to invasion of both a breast and a 

lung cell line. Further study of genes regulated by EGR1 in these cell systems will 

establish a clearer picture of EGR1 influence on invasion.

TFPI1 (tissue factor pathway inhibitor 1)

The nature of TFPI1 increase in patients with cancer is not fully understood; increased 

synthesis by tumour cells or by host cells could be involved. Tumour-associated 

macrophages and various cancer cells have been shown to express TFPI1, whereas 

small lung cell carcinoma, renal cell carcinoma and malignant melanoma did not. Up- 

regulation of TFPI1 has not previously been directly linked to an increase in invasion, 

but results represented in this thesis clearly show an increase in TFPI1 in an invasive 

cell line, and reduction of this TFPI1 leading to a decline in invasion.

THBS1 (thrombospondin)

THBS1 is an adhesive, extracellular matrix glycoprotein that mediates cell-to-cell and 

cell-to-matrix interactions, and the majority of work to date shows that overexpression 

of THBS1 is involved in migration in many cancer tissues. Tumour cells and platelets 

expressing THBS1 are more likely to attach to epithelial cells and cross capillary and 

lymphatic endothelia. In contrast to previous studies, this thesis suggests THBS1 to 

have anti-invasive properties in DLKP and MCF7. Gene silencing of THBS1 alone
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was enough to change the phenotype of MCF7 cells from non-invasive to invasive, 

and cause a marked increase in invasion of DLKP. THBS1 exerts its function by 

binding to various matrix proteins and cell-surface receptors, and by interaction with 

these receptors functions in directing formation of multi-protein complexes that 

modulate cellular phenotype. As a result, diverse intracellular pathways are activated 

relevant to embryonic development, tissue differentiation, inflammations, wound 

healing, and coagulation. Evidence to date suggests that THBS1 displays distinct 

biological activities in different cell types, which is attributed to its multiple 

functional domains that engage corresponding receptors on the surface of targeted 

cells. It is therefore possible that THBS1 has both pro- and anti-invasive functions.

RPS6KA3 (ribosomal protein S6 kinase, 90kDa, polypeptide 3)

The RSK genes are a subfamily of mitogen-activated protein kinase-activated protein 

kinases (MAPKAPKs). Little evidence exists to show whether or not RPS6KA3 plays 

an important role in cancer, although it is capable of activation of the Ras-dependent 

mitogen-activated protein kinase (MAPK) cascade, and is also a target of ERK, both 

of which are well-characterised instigators of invasion. RPS6KA3 was found to be 

up-regulated in both invasive cell lines DLKP4E and MCF7H3erbB2, and subsequent 

siRNA gene-silencing resulted in considerable loss of invasion. This evidence 

presents RPS6KA3 as a pro-invasive gene in DLKP4E and SKBR3. Analysis of data 

from microarray experiments on clinical samples also found RPS6KA3 to be 

statistically relevant.

TNFAIP8 (tumour necrosis factor, alpha-induced protein 8)

TNFAIP8 is a recently discovered antiapoptotic molecule induced by the activation of 

the transcription factor NF-kappaB. It has been implicated in metastasis and a recent 

study has linked it with enhanced invasion of breast cancer cells in vitro, along with 

increased frequency of pulmonary colonization of tumor cells in athymic mice. The 

results of this thesis agrees with this work, demonstrating up-regulation of TNFAIP8 

in an invasive cell line. Transfection of an invasive lung cell line with three separate 

THBS1 siRNA’s resulted in reduced invasion, which also point to TNFAIP8 having 

an important functional role in invasion.
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Future Work

Role of eIF4E in chemotherapeutic drug sensitivity/resistance

Toxicity assays were caried out to look at the effect of eIF4E and eIF4Emut 

overexpression on drug resistance in DLKP and MCF7. Although other studies have 

found eIF4E increases drug resistance, results of the present study were inconclusive 

and must be repeated. To obtain the maximum data it would be best to look at the 

MCF74E/4Emut and DLKP4E/4Emut clones used in array analysis. If a pattern of 

resistance to a particular drug was found, this could then be related back to microarray 

results for further elucidation of the mechanism involved.

Role of successful target genes in invasion

TFPI, RPS6KA3, EGR1 and TNFAIP8 were all found up-regulated in 

MCF7H3erbB2, and subsequent silencing of these genes using siRNA was sufficient 

to reduce the level of invasion in breast and lung cell lines. These genes can be further 

analysed by transfection of their cDNA into non-invasive cell lines. It would be 

interesting to see if  these genes, most of which are end- or by-products of erbB2 

induced signalling, were capable of inducing invasion. It would also be interesting to 

see if  any one of these targets were capable of inducing invasion in MCF7, the 

invasion status of which was greatly influenced by erbB2 signalling.

Further analysis of DLKP4E/DLKP4Emut common genes related to invasion

Apart from RPS6KA3, which was also common to the MCF7H3erbB2 list, silencing 

of none of the chosen DLKP targets had an effect on invasion in DLKP4E or SKBR3. 

It is possible that individual silencing of any one of these genes was not enough to 

reduce invasion, and therefore the next step would be combined silencing of two or 

more simultaneously. It is possible, for example, that silencing one of the HOXB 

genes only results in another HOXB family member taking over its role.

MCF7H3erbB2 unannotated genes

As all five of the targets chosen from the list of genes differentially expressed in 

MCF7H3 erbB2 were shown to be relevant to the invasion process, it is likely that 

other genes obtained from the same analysis would also. There were many genes on
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the list which were unannotated or poorly annotated prior connection to invasion. 

These genes may prove important novel markers for invasion. It would be possible to 

design siRNA against such genes using sequences from Affymetrix probe sets. If 

silencing resulted in a decrease in invasion then it would also be possible to clone 

mammalian cells transfected with the novel gene cDNA. Overexperessing novel 

genes would allow further determination o f functional effects such as drug resistance.

Why DLKP4E was invasive and MCF74E was not

Further analysis of microarray data, in an attempt to determine why eIF4E 

overexpression had resulted in increased invasion in DLKP but not MCF7, found 

several genes that were common to invasive MCF7H3erbB2 and DLKP4E. Several of 

the gene on this list were found in the current literature to be associated with an 

invasive phenotype. This validates the analysis, the purpose of which was to find 

genes important to invasion in MCF7 and DLKP. It is likely therefore that other genes 

on the list are important to invasion, but have not yet been identified as such. It would 

be interesting to look at other genes on this list, both well and poorly-annotated, to 

determine their role in the invasion process.

The effect of eIF4E phosphorylation on mRNA profiles

Both wild type eIF4E and an eIF4E phosphorylation deficient mutant were 

overexpressed in DLKP and MCF7, and the resultant clones examined using 

microarray analysis. The result was a valuable data set relating mRNA profiles to 

eIF4E phosphorylation. There is currently much debate about the function of eIF4E 

phosphorylation at both mRNA and protein level. This data will permit examination 

of the regulation of expression of transcription factors, and patterns of gene 

expression as a result of this regulation in response to eIF4E phosphorylation.
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