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A bstract

Rossby-Haurwitz waves are large sinuous oscillations in the atmosphere and oceans.
These planetary waves owe their existence to the rotation and shape of the earth. They
are an important wave type for large-scale meteorological processes as they are dominant
in determining the patterns of weather in the middle latitudes.

This thesis concerns the interactions of these Rossby-Haurwitz waves within the
framework of the vorticity equation for nondivergent planetary flow at second order. Of
particular interest is the potential for generating zonal flow, i.e., large-scale atmospheric
flow that occurs in an east-west direction. Examining interactions at first order we distin-
guish between nonresonant interactions and resonant interactions. Resonant interactions
are interactions where two Rossby-Haurwitz waves can create a third Rossby-Haurwitz
wave, which over time becomes as strong as the two primary waves. The necessary condi-
tions for resonant interactions to occur are derived. It is also shown that zonal flow waves
cannot be produced at this order.

Examining second order interactions it is shown that zonal flow can now be generated
by a mechanism that disappears in the ;3—plane limit. This is the central result of the
thesis. Zonal flow can be generated through the exchange of energy within a triad, and
this occurs at second order. The amplitudes of the zonal flow terms are not affected until
the second order equation. Detailed numerical results are presented underpinning the

theoretical results.
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C hapter 1

Introduction

1.1 The aim ofthe thesis

This thesis progresses beyond first order interactions to examine second order interactions
of Rossby-Haurwitz waves. In particular we want to investigate whether large-scale inter-
acting planetary waves can force zonal flow through a resonant interaction energy transfer
mechanism. In this introduction we will discuss the work that will be done in the thesis,
from the aims of the thesis through to its conclusions. Previous work done on the area is

also discussed in this introduction.
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1.2 Rossby-Haurwitz waves and zonal flow

Rossby waves are large sinuous oscillations governing the dynamics of particle flow in the
atmosphere and oceans. The existence of these waves in the oceans was first theorised by
Carl-Gustav Rossby in a paper in 1939. Since then they have been the subject of many
investigations, by many different people.

The solutions of the equations governing the dynamics of the oceans and the at-
mospheres, in simplified form, are Rossby waves. They are the prime example of the
winding large-scale motion of the mid-latitude troposphere. They are transverse waves,
waves in which the motion of the medium is perpendicular to the motion of the wave, in
the horizontal direction. They travel mainly from east to west, following the parallels of
latitude.

These waves can readily be seen in the large-scale meanders of the mid-latitude jet
stream that are responsible for prevailing seasonal and day-to-day weather patterns. It is
more difficult, though, to spot these waves in the oceans. This is because there is a large
scale difference in their horizontal and vertical scales. Their horizontal scale is usually
of the order of hundreds of kilometres while the amplitude of the oscillation at the sea
surface is just a few centimetres. Therefore it is only in recent times with the advent of
the use of radar altimeters that these waves have been observed in the oceans [1].

Rossby waves have a considerable affect on large-scale ocean circulation. This in
turn means that they have a large influence on weather and climate in middle latitudes.

They play an important part in the process by which signals are transmitted from one
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side of the ocean basin to the other. The interactions of these waves are important for
determining the distribution of energy in the atmosphere and ocean. They also affect
the western boundary currents like the Gulf stream. They can intensify such currents and
push them off their usual course. They interact with general circulation in the atmosphere
and can therefore delay the effect of climate events.

It is the interactions of these waves which we investigate in this thesis. We examine
the interactions of two of these waves and then three of these waves at both first and
second order. In the course of this investigation we will encounter a phenomenon called
zonal flow. This is a wind pattern where the winds are parallel or nearly parallel to the
lines of latitudes. This generally west to east flow of the wind is called zonal flow. This
type of flow tends to establish a pattern with small temperature contrasts from north to
south. This zonal flow and its associated small temperature contrasts contribute to mild
weather patterns. As part of this thesis we will examine the interactions of Rossby waves
and zonal flow.

Rossby waves also occur in completely different circumstances. As previously men-
tioned they transport energy and angular momentum and this could be a factor in the
kind of banded zonal jets seen on Jupiter, as well as on Earth [25]. Rossby waves have
also been discovered in the instabilities of magnetically confined plasmas. Recently, the
occurrence of drift waves in plasmas, which are dynamically equivalent to Rossby waves
were examined [21].

It is for all the aforementioned reasons that Rossby waves are a very important

phenomenon. It is felt, therefore, that it is important to gain a better understanding of
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both the first and second order interactions of these planetary waves. In this thesis we
examine the first and second order interactions of these waves and in the course of this

analysis we find the occurrence of zonal flow as a result of these interactions.

1.3 Previous work in the area

The aim of this thesis is to obtain more insight into the question of Rossby-Haurwitz wave
interactions. Examining the vorticity equation for nondivergent planetary flow, we show
that Rossby-Haurwitz waves are linear solutions of this equation. These waves are also
referred to as spherical planetary waves.

Many people have previously worked in the area of examining the interaction of
Rossby waves. Carl Gustav Rossby first observed these waves in 1939 and since then
Haurwitz [5], Lynch [11] and Pedlosky [16] among many others have continued to examine
this interesting phenomenon. The simplest context in which to study the interactions
of Rossby waves is in a shallow layer of incompressible fluid on the rotating earth. The
geometry of this study is greatly helped by ignoring the effects of sphericity, except for
allowing for the change of the vertical component of the earth’s rotation with respect to
latitude. This method is called the /3-plane approximation, and is the preferred method
for the majority of work previously done in the area.

Since these waves occur on the spherical Earth we are interested in examining Rossby-
Haurwitz waves taking the spherical nature of the Earth into account. It has been shown

on the plane that if two specific waves interact with each other then resonance will occur.
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This means that the forced wave may build up after a sufficient number of oscillations
to be comparable in magnitude with the primary waves. At this stage the perturbation
would break down and hence this forced wave would be required to be a leading order
wave.

We wish to replicate these results on the sphere. To do this the accepted Cartesian
equations are converted into their spherical counterparts and we apply our analysis to
this equation instead. We find that quite a few differences occur when this is done. Like
Kartashova [9] and Reznik [20], we find that the resonance conditions on the sphere differ
quite substantially from those found using the /3-plane approximation. The conditions
found include both inequalities and equations on the wavenumbers n and m.

In 1969 Newell [14] proposed a mechanism whereby zonal flows could be generated
through the resonant interaction of Rossby waves. He derived equations describing the
long-time behaviour of a resonantly interacting triad, and found that zonal flow was gen-
erated at second order. Newell determined that a quartet mechanism was required for
zonal flow to be excited through resonance.

In 1977 Loesch [10] similarly investigated the generation of zonal flows through finite
amplitude, discrete Rossby waves. Loesch’s analysis found that interacting Rossby waves
are capable of generating zonal flow on the required time scale. Analogous to Newell,
Loesch also discovered that a quartet of waves is required with which to generate zonal
flow. We will show in the course of this thesis that a triad solution is solely required to
produce zonal flow when we take full account of the sphericity of the Earth.

More recently there has been a lot of renewed interest in Rossby-Haurwitz waves in
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general, and specifically in zonal flow. It has been shown that zonal flows in a shallow
rotating atmosphere can be excited by finite amplitude Rossby waves [15]. The driving
mechanism of this instability is due to the Reynolds stresses. This results in a transfer
of spectral energy from short scale Rossby waves to long scale zonal flows in the Earth’s
atmosphere. Similarly, it has been shown that zonal flows in a nonuniform rotating fluid
can be excited by finite amplitude Rossby waves [22], This was also shown by examining
Reynolds stresses of short scale Rossby waves.

In this thesis we examine Newell’s mechanism and discuss a method of creating zonal
flow which is different from those in [15] and [22]. We put forward the hypothesis and
subsequently prove that zonal flow ?an be created through the energy exchange mechanism
of a resonantly interacting triad. This method requires one less wave then those suggested

by Newell and Loesch.

1.4 OQutline of thesis

In Chapter 2 we begin our discussion by deriving the vorticity equation for nondivergent
planetary flow. The solutions to this equation are our Rossby-Haurwitz waves. To derive
this equation we derive the mass conservation equation and the equation for momentum in
Cartesian coordinates. These equations are then converted into their spherical coordinate
equivalents. We nondimensionalise the variables in these equations and examine the orders
of the resulting terms. Prom this analysis we can determine the vorticity equation for

nondivergent planetary flow.
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In Chapter 3 we begin our study of the solutions to this equation. The similarities
between our equation and the Laplace equation suggest that we should consider Legendre
functions as our wave solution. In fact, this is the case and we find a single wave solution.
We are interested in the interactions of these Rossby-Haurwitz waves. Therefore we ex-
amine a dyad solution, which is a two wave solution. We are unable to produce resonant
interactions through studying a Rossby-Haurwitz wave dyad solution. We conclude in
this chapter that to produce meaningful interactions we require a triad solution. We also
conclude in this chapter that it is impossible to produce zonal flow at either first or second
order if we commence our studies with a dyad solution.

In Chapter 4 we examine both first and second order resonant interactions in full. We
establish the conditions required for triad solutions to exist and we examine the possibility
of zonal flow being generated due to these triad interactions. We find that, although zonal
flow cannot be created at first order, we can create zonal flow at second order when
we consider resonant triad interactions. We have discovered the excitation of zonal flow
directly from resonant triad interactions.

Finally in Chapter 5 we apply the theory to several examples. Firstly we determine
which waves can form triad solutions. Using some ofthese particular triads we examine the
coupling coefficients for each wave coupling. Inspecting these numbers we can determine
which zonal flow terms can be produced, and from this we can establish the conditions on
the amplitudes of these zonal flow terms.

Finally, in summary, this thesis is a full and comprehensive study of first and second

order Rossby-Haurwitz wave interactions. We study the implications of dyad solutions
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and the necessity for triad solutions when examining resonant interactions. We establish
the required conditions on the wavenumbers for such triad solutions to exist. We find that
zonal flow cannot be created through an energy transfer mechanism unless we commence
our calculation with a triad solution. Finally we determine that, if we study a triad

solution, we can produce zonal flow at second order.
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Derivation of equation

The vorticity equation for nondivergent planetary How is used to study Rossby wave
solutions in the oceans and the atmosphere. This equation is derived from the conservation
law of mass and Newton’s equation, which describes the non-conservation of momentum
due to the presence of forces. In this chapter we state the equations in Cartesian coordi-
nates and then convert them into spherical coordinates.

We reduce the equations in spherical coordinates from three dimensions to the two-
dimensional equations which are widely used in oceanography and meteorology. From
the equation for the conservation of mass an expression for a stream function ip can be
determined. Reducing the two momentum equations down to one equation by calculating

the third component of the curl and nondimensionalising the variables we obtain the main
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equation which we are examining. This equation is the vorticity equation for nondivergent

planetary flow, the solutions of which will be shown to be Rossby-Haurwitz waves.

2.1 Basic equations

2.1.1 Conservation of mass

We will derive the equation for the conservation of mass using a planar coordinate system
which is based at the center of the Earth, and is in rotation with the Earth. This law

considers the rate of change of mass in a volume V,

i (2.1.1)

where p is the mass density. In this case, where particles are neither created or destroyed,
the only way that mass in a given volume V can change is through particles moving across
the boundary dV of V. To derive lhe formula for the flux we consider a small part of the
boundary of size A «« and a volume of size AxnAo. Here Axn is the average distance the
fluid particles travel perpendicular to the boundary during a time interval of length At.
The particles in this volume are those which will leave V during time At, and p * A a is
approximately the mass lost (or gained) per unit time.

Summing over all boundary areas and taking the limit for finer and finer partitions

we obtain

And 2-1-2
JavPar"® @12

for the outward flux, where n is the unit outward normal. Combining (2.1.1) and (2.1.2)

10
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and using the divergence theorem yields the integral formula for the conservation of mass

= -Jv <av(pIM) N

Assuming the t derivative can be taken inside the integral we obtain
d?x —0

Furthermore, we assume that this equation holds true for all volumes V and that the

integrand is continuous. Under these assumptions we obtain

tW 'D .o
2.1.2 Momentum equation

We also need to examine the conservation of momentum. We shall consider the momentum
in a volume V,

/ pud
Jv

The momentum in V changes due «0 momentum flowing out of a system and forces acting

on the system, i.e.
Uid3x = —f UiU-nd(T+ | fid?x
c;t J[y P Jdv P ( Jv

The first integral in this expression describes the momentum being carried across the

boundary of the volume under consideration. The second integral describes the effect of

11
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the force per unit volume, denoted by /. Using both the divergence theorem and our

smoothness assumption this becomes

d u .
/ jt(pui)+J}(_:,i’\drfoUiUo) dx__l_.vf'd X

For this formula to hold for all V and continuous integrands we require

3
qndm* jJzzijd’)‘(j(P uiud) = fi

which, using the mass conservation equation, leads to
d 1-
&y wmvyo= 77 (2.1.3)

The forces in this equation which need to be considered are the Coriolis force, gravity
and the pressure gradient force. The first of these forces to be considered is the Coriolis
force. The Coriolis force is an apparent force on moving objects in a noninertial coordinate
system. In meteorology the Coriolis force per unit mass arises solely from the Earth’s

rotation, with angular velocity d, and at latitude <is given by

/ \

0
fCoriolis —2p(u Xii) —2pU X Ucoscj)
sin 44
The second force exerted on the system is gravity. From Newton’s law of attraction

of mass the gravitational force is given by

GpM

X (2.1.4)
(x2+ y2+22)3/2

fgravity —

where G is the gravitational constant and M represents the mass of the Earth.

12
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Sz B A

SX

Figure 2.1: The pressure gradient force

The final force which affects the system is the pressure gradient force. If a force
at a point po is considered on the wall A in Figure (2.1), we know from a Taylor series

expansion that

We know that force equals pressure multiplied by the area over which the force is exerted.

Therefore,

and similarly the force exerted on wall B is

Therefore the net force in the x direction is

dp
Fx = Fa+ Fb = —— SxSySz

and hence

(2.1.5)

13
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Applying similar arguments to the y and : components we see

dp dp

N \ (2.1.6)

Including these forces in our equations we see that the equation of non-conservation of

momentum which we shall study is
d -,
L+(<@V)U' -(i52 +@+/\2)3/2 F--pVp+2u xu

2.1.3 Conversion to spherical coordinates

From the previous section we sec that the equations for mass and momentum which we

want to study are

"+ V.(pu) = 2.17)
and
L seu— 0 . s 2.18)
dt . (xd Axy?2 +22)33 X~ Vi) + 2Uux” L

We want to examine these equations on the sphere. Therefore it is necessary to convert
the above equations into their spherical equivalents. The coordinate system which shall be
used is (A <p.r), where Arepresents the longitude (—n < A< n), represents the latitude

(—rl2 < &< +t/>) and r is the radial distance, i.e.

\

/x\ /r cos Acos

Xy r sin Acos ¢
\ 73 rsine

14
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Using this coordinate system we see that

( : oo
dx cosAcos &  mf —AcosAsing  (p
d . - A . . d
o sinAcosip A —sinAsine (2.1.9)
d H /\ ~ d
W ~ siIn 0 fcosp J <t
and

ho ( _sinA —cos Asin g cosAcos\<l> / u\

cosA —sinAsinp  sin Acos ( (2.1.10)
\WJ 0 cos 4> sind> | \V\U

where u is the velocity in the Adirection, v represents the velocity in the ¢ direction and
w is the velocity in the r direction.
Using these identities we convert equations (2.1.7) and (2.1.8) into their spherical

coordinate equivalents. Firstly examining the momentum equation, (2.1.8), we get

\ fCV fg 0 \ \ \
(u u SX Cu Cy .
d
dt_ VAR v ddy— -2 X i cos(p
d S
KW.J \ Vdzj o\ wy \WJ fisin i
[\
dx
GM
+ dp (2.1.11)
(x2+ y2+ 22)32 dy
dp
VoI w

Substituting (2.1.9) and (2.1.10) into this equation and multiplying the whole equation by
\
—sin A cos A 0

—cos Asin @ —sSinAsinc  COS (p

AN cos Acos ¢ sin Acos (p sin <j

15
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we see that the equations describing the momentum in spherical coordinates are

du L1 , dutan: 1 du . Adu,
+ - ~l— - uv + -0w-r—v— -w ------—- 2\lvsm<b
at r COS() aX r r r o<p or
+ 2£lw COS = -===-=----= (2 .1 .12)
pr COS (p CM
dv 1 _dvtan(_2 11y dv
— 4- + u + ~vwA—v-wr 4
ot r COS@ dA v r r o<p or
-+ sin0 = 777 (2113)
pr o<p
dw 1 © 1 dw 12 1 dw dw
— g* - Df+ -V— + W=r-—-2il0CGS 9
at r r cos g aA r r d<p or
+<TM=_|§£ (2.0 4)
rl por

Similarly we need to convert the equation of mass conservation into its polar coordi-

nates equivalent. Using the identity,

equation (2.1.7) becomes

To convert this equation into

(2.1.10). From these identities

du

Vepu) =pVeu+u-Vp

spherical coordinates we again use equations (2.1.9) and

we see that

dv dw

V' '"e fe+si + &

The next term from the equation

r COS $>d<p

which needs to beconverted into sphericalcoordinates

16
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d d d
U-’szu—p+V—p +wt
0X dy dz
1 dp 1 dp dp

Therefore we see that the equation of mass conservation which we wish to study is

ldp 1. dp l,,dp ~dp\ 1 od o, 2
pdt_+b\F_EE)_§_ Vix + rvai + w-2) + ~ {rw)
1_4 1 35 o n -
T os ;1|;)dj).(f-+ r cos <pdtp €S- (5'1&5)

2.2 Reduction of equations to main equation

We now want to reduce our three-dimensional equations to the two-dimensional equations
which are widely used in oceanography and meteorology. A mathematically rigorous
justification of this reduction is a very difficult problem and beyond the scope of this thesis.
Recent work has been done on this subject including that by Temam and Ziane [24], who
have given such a justification for the reduction of the three-dimensional Navier-Stokes
equations in the case of incompressible flow in a shell of vanishing thickness. Although
the atmosphere is a compressible fluid, we shall consider here a model where p is constant.
We also set

r=a+r', with -<1

where a corresponds to the radius of the Earth and r' is the distance from the surface of

the Earth to the phenomenon in question.

17
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Under these conditions the two-dimensional equations under examination are

du H L AU%U\ fan & + 1 2 4> = : dp 2.2.1

ot TR TR WY A 2V T Tt pax @2

dv 1 dv, tané 9 1 dv , 1 dp

— He i W V= +2 fy = = — 2.2.2

dt acoscpu o\ a y aVO(p Qusm(f) pa ocp ( )
N+ NM(»coSE) = O (2.2.3)

when the tildes aredropped.Examining the third equation we note that this equation

can be satisfied byintroducing astream functionip such that

. 1dip
= —- 224
i 2 dp ( )
1 dib .
= - 2.2.5
v acos <de ( )

To reduce the equations down to a single equation, and also to reduce the number
of variables in the equation by one, we examine the first two equations by calculating the

third component of the curl. To do this we calculate

g 2.2.1) - *2(2.2.1) —————— SD

which, using the expressions (2.2.4) and (2.2.5), works down to be

d gLC 1 d2|p_t dlp £o\ 2.2@/9

dt Yeos2adxz "EE T ) T4 %ax
1 f dip d dp d A/ 1 d2p dip d2ip\
N a2cos 9\ dX dep depdX) \ cos2@dX2 dep  dcp2)

We nondimensionalise the variables in this equation to ensure that we can compare
the terms in the equation without worrying about the dimensions of each term. The

variables which we will introduce for this nondimensionalisation are



Chapter 2, Section 2 Derivation of equation

These new variables cause our equation to become

at' \ COS2 N dx2 in/ D<i2 ) ax
L2 fdip* d  dip' d \/ 1 d2ip dip'  d2ip"\
a2cos(p \ d\ dep d(p dx) \COS2™N dx2 d(p ~ dtp2)

We want to examine wave solutions with small amplitudes. Therefore we are assum-

ing that i,/ is small. We indicate this by letting

ip' = aip”

where ip" is order 1 If we substitute this into our equation and drop the resulting primes

we have derived the vorticity equation for nondivergent planetary flow, i.e.

1 d2tp d 2ip ,9ip\  oodi/'
dt NCOS2 <pdx2 + d<p2tan d(p) + dX
S | dipd | dip a \ / 1 d2ipd2ip oor)
( \ COS (pd<p dXCOS<pdX d<p) \COSz pdx2 + d<p2 tan d<p)
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Wave solutions of equation

In this chapter we begin our study of Rossby-Haurwitz wave solutions. The purpose
of this section is to study the nature of the nonlinear interactions of these waves when
6 is small. Expanding our stream function, ip, about the small parameter § we can
find solutions to the vorticity equation for nondivergent planetary flow. Firstly we arc
interested in examining single wave solutions to this equation. For single wave solutions
to occur the necessary condition on the velocity of the wave is derived. Using this as our
base we then examine the interactions between these waves.

To examine the interactions of these waves we consider a dyad solution i.e. a two
wave solution. When examining a dyad solution we encounter nonlinear combinations of

Legendre functions. Using well known properties of the Legendre functions, and also less

20



Chapter 3, SectionJ Wave solutions of equation

well known properties which we will derive, we can rewrite these combinations of Legendre
functions as sums of single Legendre functions. Using the spectral method we explain how
the interactions between waves of a nonresonant Rossby-Haurwitz wave dyad solution
only lead to small corrections. The aim of this thesis is to study first and second order
resonant interactions of Rossby-Haurwitz waves in general. We find that we must consider
a resonantly interacting dyad solution which in turn results in us having to consider a triad
solution. The consequences of studying a triad solution are discussed in the next chapter.

In this chapter we will also find that if the calculations are commenced with a non-
resonant dyad solution it is not possible to produce zonal flow through interactions at

either 0(6) or 0(62).

3.1 Asymptotic expansion of the equation

We wish to examine wave solutions of the vorticity equation for nondivergent planetary

flow which was derived in the previous chapter

d (1 d2ip d2ip

dt \cos: QA d4>2 an dcj)) DA
/ 10609 1 dip d \i 1 d2ip Q1
\ €OS < dcj)d X COS4>dx d(j>) \ €0 <>ox2 84>2 an  d(f>)

Looking at the terms involved in this equation it can be seen that the equation is nonlinear.
The Jacobian term describes this nonlinearity, which results in nonlinear coupling of the
waves and energy transfer between the waves. It is important to notice that this nonlinear
term is of a lower order than the other linear terms in the equation.

Due to the complicated nature and structure of the equation and the fact that it
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is nonlinear it would be extremely difficult to try to solve this equation as it is written.
Instead we will expand the equation about the small parameter, 6, and examine solutions
by looking at the different orders of the equation. Since 6 1 it is reasonable to expand

ip about 6,

ip(X,(/),1,S) = Vo(A,0,i) + + S2ip2{X,(f),1) + ... (3.1.2)

Applying this expansion to our equation generates a sequence of linear problems for ipn.

The leading order equation, the highest order equation, which we are studying is

*VV . +2%$£-0 (3.1.3)
where
2 1 d2 d2 d_
cos2EdX2  dg)2 ag)
and the 0(6) equation is
I + 2*1n] 14
WV TP \coses df) dX cos<pdXd(j))  n (3 14),

It is these equations, along withthe corresponding one for 0(62) which we shall study to
determine the form of the wave solutions of the equation, and hence we will determine

when, if ever, zonal flow can be generated.

3.2 The Legendre differential equation

To solve the full equation (3.1.1), we will firstly examine the leading order equation (3.1.3).

The solution to the leading order equation will give an approximate solution for the stream
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function i, i.e. This approximate solution can be improved upon by solving the O(S)
equation which results in ipi. This term is the first correction term to the solution. From
here we can continue to find correction terms to the solution by solving the lower order
equations, and from this we determine the full solution of the equation.

Firstly we wish to find a Rossby-Haurwitz wave solution for the leading order equation
(3.1.3). Examining the Laplacian part of the solution we recognize similarities between this
term and the Legendre differential equation. This leads us to consider spherical harmonics
as our wave solution.

The Legendre differential equation is

@~x2 ~2xt + (n(n+~ y=0 pP'21*
This equation has exactly two linearly independent solutions on (—1,1), [2]. If we examine

this equation we can see that it has two regular singular points, x = +1. Therefore the

solution to this equation takes the form [3]

y1(x) = (x- Dri am(x - I)m (3.2.2)
m—o ©

y2(x) = yi(x) In(a;- )+ @&- Dn ~ bm(x- I)m (3.2.3)
m=0

We can see that the second of these solutions has a logarithmic singularity at the regular
singular point. This solution diverges at the boundaries and hence we will not consider it.
As a result of this our solutions will take the form of equation (3.2.2).

The solutions to this equation are the associate Legendre functions. If we redefine the

variables of this equation by setting y = P™(sin 0) and x = sin () the Legendre differential
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equation becomes
N P T(sin0)- tan<”P ™ (sin0)
+ An(n + 1) - Pnind-= o (3.2.4)

It is clear from examining this equation that there are very strong similarities between

this equation and the Laplacian term in the equation we arc studying,

; (3.2.5)
COS2 pdX2 dtp2 d<p

If we can find an eigenfunction of the Laplacian of the form ipo = etkxF(<p) then

el(kx~al)F((j)) is a solution of the leading order equation if

where p is the eigenvalue. Therefore we will examine the Laplacian equation in spherical
coordinates and examine the solution of this equation. There are many books available
on this subject including one by Pinchover and Rubinstein [17].

The Laplace equation in spherical coordinates is

1 od i 2<9u\ v /o d ( 9u\ 1 d:u\ _
r2dr \ dr) r2 \COS<pd(p\ d(f>) "™C0S: pdx2)
where
O<r<a — , —I< A<r

Letting u(r, X.(p) = R(r)Y (X, (p) the equation separates and reduces to
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where jj, is a constant. e have to impose the conditions

Y{-it, ® =Y (ir,a and YA-—n, B = vx{tt, B

on v and we note that it is also bounded everywhere on the unit sphere.

If we now examine the first equation and apply a second separation of variables

Y(A,0) = A(A)#(0)

we obtain
RA L xp = 0 (32.8)
cos Oh/c\;; \(COS<pdc~pr)) + \(//i COS: (>—v) <& = 0 (3.2.9)
Examining equation (3.2.8) we see that A must be a solution of the form
A= ameimx + bme~imX
where v = m2. From the periodic conditions
A(—r) = A@r) and AN—1) = A\(D)
we obtain m <€Z. Therefore the equation under consideration is
(3.2.10)

COSo -7 - (COS ]+ (Meos23~m*)@ =0
dep \ dep)

3.3 Solutions to Legendre differential equation

We want to find solutions to equation (3.2.10). To do this we firstly set 4= P™(sin0).

Doing this the equation which we are studying becomes
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If we set
L™ = COSir2 (pP™ (3.3.2)
the equation becomes
,/2tm T'VQ_ 1
; — 333
o - cos2F 1 T+ Q"+iy), =0 (333)

This is the equation which we shall be studying. Firstly we will prove some general

properties of the equation.
3.3.1 General properties of equation
To examine properties of L-. we shall define the following, [ ]

Hm = —(m —s)tan™ (3.3.4)

=-(m- i)tan., - — (3.3.5)
Using these identities and equation (3.3.3) we can see that
(3.3.6)

and similarly

Is = 0%+ J- ("»+52)¢n 33.7)

Ifwe nowset ro=m + 1 in (3.3.6) we get

C +1=0*+j-<m+\?)¢',r1
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If we multiply equation (3.3.7) by //m+, we obtain

L™ =4 -+, (||+}' (m+ |)2)LTM

Examining this equation we can see that //mH+ L™ is also a solution to the equation and

hence

K » = i K (3-3.8)

Similarly if we replace m with ?n— in equation (3.3.7) and multiply equation (3.3.6) by

H + we will find that

L%~l =H +LZ (3.3.9)

An expression for /i can now be found using the definitions just shown. We require
the solutions to the equation under consideration to be square integrable. This means
that we require

d<S=I

J a

By examining this requirement we are able to determine an expression for ;i

f*(Ln+1)2 d¥ = " (H~+tLm)2 A4,
Ja Ja
= f o»>
Ja
= (MtI-(m+i)2) fbXn)2 ds
Ja

by integration by parts, if we assume that the surface terms vanish. Similarly it can be
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shown that

rb
[ ‘(l'« 2)2 d#-(».+ J - (m+|)2) /' (L"|+1)2 d*
7a -la

= (i+3- M+ DD (i~ M+ 1) rowmy dy

We can continue this argument for higher and higher m. Since m is an increasing

function, at some point, say n 4-1 we would arrive at the contradiction

r (|+ 2 dN< o
Ja

unless

Li+x - 0

H~+xK = o
If we now apply equation (3.3.7) to this expression we can see that
«T+E+i« = & 1 -(nN+i)2«
$/i=Tn+ 1) (3.3.10)

Using the expression for /i just found, the equation under examination is

112 K 777, X

-d # -1 FL"+FWH+D)+, 0, = o 3311>
3.3.2 Solution to Legendre differential equation

To find our Rossby-Haurwitz wave- solutions we must find solutions to equation (3.3.1).

To give an indication what these solutions are we firstly examine equation (3.3.11). We
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notice that
L" = cosn+5 ()
is a solution to this equation.

We require that these solutions are square integrable, which means that this solution

must be normalised

/-
[ L fd<f>=1 = [ COSzn+1 (Fa(f)

[/ cos2"()cos 4E

~2

. » ?

sin () cosZ’ () 2
-8

4- |  2ncoS:.1-1 0sin. Ok>
-5

cos2n+1 *'d*

&TTT cos2'“*“ w

N 2N— AK? n_ 3
------- L cos2 :o do

2ti+ 1N — o)
2n.2n —/ ... 2

T %on+ 12n—1...31
From these results we can see that for L™ to be normalised we require that

/1.3...2n —1.2n+ I\* Nn+i
\ 224. . mr,-..nJ T x (3'3-12)

Using this solution to the equation and the general properties (3.3.8) and (3.3.9) we

find that

~
Y%
>
e
I

[ [ {H~+1LZ)2 do

2 2
2
Pz
=(h—m)h+m+1)/ L™
J-i
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=L «i=[(nN-m)(n+m + 1)]"50>-+1 L™ (3.3.13)
It can similarly be shown that
L™-1= [n+ m)(n- m+ I)]- *ii+ L™ (3.3.149)

From these derivations it is now possible to find an expression for all terms L™ where

n>m.

3.4 Single wave solution to leading order equation

Using the above identities we shall find a single wave solution to the leading order equa-
tion which is called a Rossby-Haurwitz wave after C. G. Rossby and B. Haurwitz who
found thesesolutions. The similar: ,ies between the Legendre differential equation and our
equation leads us toconsider Legendre functions as our solution ij>, i.e. we study spherical

harmonics as our wave solution [5], [13]
Vo= (/) + ¢ e—m*"NINGn), (3.4.1)

where



Chapter_3, Section 4 Wave solutions of equation

Here represents the associated Legendre polynomial of the first kind. The
parameter m represents the zonal wavenumber, i.e. the number of zeroes of the solution
along the longitude, while n — m represents the number of zeroes along the latitude.
They are called the longitudinal and latitudinal wavenumbers respectively. The total
wavenumber is represented by n.

We will use the representation (3.4.2) to derive certain inequalities which are crucial
in the context of this thesis. This derivation follows [] and [23] and is outlined in the
appendices. We point out that there is a much better known representation of the solution

to the Legendre equation (see, e.g. [17]), which is

pm”~ 1+ /(en+ (N —m) 2 f dn+m 2
n 2nn! Yy 2(n + m)\ n dp,n+m ~

where
/i = sins

To solve the leading order equation the Laplacian term is examined, which produces

+c<-
Using the Legendre differential equation (3.2.4) this reduces down to
VVO0 = ~n(n + 1)AeimX- aVp™ (ii) - n(n + 1)Ae-AmX-~AP ™ (fi)
When this is filled into the leading order equation we find that
"Ae<mX-APA(jIL) + (i<mfn + 1)+ 2im) = o
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This leads to the necessary condition on the velocity, without which the solution we are

studying is not a Rossby-Haurwitz wave

a= h(:n % ) \(/3'4'3)

It should be noted that tj = ipo is actually a solution to the full equation (3.1.1), since
the quadratic term on the right hand side of (3.1.1) vanishes for ipo given in (3.4.1). Since
the leading order equation (3.1.3) is linear we notice also that any linear superposition of

Rossby-Haurwitz waves is also a solution of (3.1.3).

3.5 Examining a dyad solution

3.5.1 0(5) equation

With the condition derived for a single wave solution to occur the next step is to study a
dyad solution. We want to firstly discuss nonresonant dyad solutions, whose interaction
only leads to small corrections.

The dyad solution which we are going to examine is a superposition of two solutions

+ A 2ei(M2A" TP A 2(/i) + A2e-"m2X~a P A (n) (3.5.1)

which satisfy the leading order equation (3.1.3) if and only if

—mi — Wi
ni(ni +1)7 02 n2(n2+ 1)

To study the interaction of Rossby-Haurwitz waves we have to consider the nonlinear part

of the equation (3.1.1). The Jacobian part of the equation represents this nonlinearity,
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which is of 0(5). Therefore, by examining the expansion of #about $it is clear that the

0(<5) equation is

EvVi+2”7™ = Jipo, VVO) (3.5.2)

where

~ djld\~ d~idX

Fi'om the previous calculations it is known that

V20 = - ni(m +

-Nn(N: +1)A2s m~A -~ P A~ +CC

Using this we can compute the Jacobian term of the equation

J(#,V.0Q =
ilnin2[ A XA2S m'+m~ - A (m2pm2
/ dP mi dPmd\ i
SATAIS™ LmEALar k™ (M2Pn22-~ ~ + MiP™1-4ji~)} + (3-5.3)

where

InTi] = nt(li + 1) — 75 (I1j + 1)

The main aim of this thesis is to examine first and second order resonant interactions.
In particular we want to investigate whether or not zonal flow can be created through
Rossby-Haurwitz wave interactions. Zonal flow waves are waves which have no north-

south component, they flow in the east-west direction only. In the previous chapter it was
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derived that the velocity in the north-south direction, v, to leading order, is given by

1 dip
a COSd>d\

Therefore for this term to be zero we require ip to be independent of A The only place
that the variable A occurs in this expression is in the exponential term. Therefore for
zonal flow to occur we require m to be equal to zero.

Zonal flow terms are thus of the form eKP°. This type of term is a Rossby-Haurwitz

wave if and only if it satisfies the leading order equation (3.1.3)

=>an(n + l)ektP° = 0

This equation is always true if m = 0 since in this case a has to equal zero. Therefore we
see that zonal flow terms will always take the form of, and satisfy the conditions required
for, Rossby-Haurwitz waves.

If any of the terms on the right hand side of the o(5) equation, i.e. equation (3.5.3),
satisfy all these criteria then we will have produced zonal flow. So using all this infor-
mation, the solution for ipi, calculated through studying the right hand side of the o(s)
equation, must be examined to determine if zonal flow could possibly occur. With the
right hand side of the equation as it currently stands it is very difficult to tell if either of
the terms present take the form of zonal flow. To overcome this problem we shall use the
spectral method to rewrite the awkward expressions in terms of single Legendre functions.

We rewrite (3.5.3) in terms of Legendre functions by using the following expansion
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k] [19
00 n
*(ALM)=£ E ITOW .7«) (3.5.4)
where
CW =" y 1t (3.5.5)
and = sin&

As a result of applying this spectral method to our equation, which isoutlined in the
appendices, each term on the right hand side of (3.5.2) can bewrittenas a finite sum of

Legendre polynomials. For example, if

/ dP mi dPm2\
= eifmi+m2)x (im 2P Z 2—~ ~ ~ (3'5,6)

then

fN  ss

Firstly examining the exponential part of this expression we know that

Therefore for a nonzero solution to this equation we require m = mi + m.. This reduces

our expression down to

rl / dP mi dp™ 2\
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This expression will be nonzero within a particular range of n. To determine this
range we notice that an explicit formula for the interaction coefficients was derived in
] and [23]. Through examining this explicit formula the ranges of applicable n for the
interaction coefficients become obvious. We see that this derivation results in the following

conditions

ni+n.+n isodd (3.5.7)

\n\ —7121< 71 < ni + 702 (358)

The proof detailing how these conditions arise can be found in Appendix B.

If we define this interaction coefficient as follows

Bn/zZn = f Pnj+mk (i™mkP™k - imjP?/ dp (3.5.9)

we can see that using the spectral method

jpm i dPm2 ni+n2

n=\ni—2\

Therefore we can write the combinations of Legendre functions determined from the o (s)
calculations as sums of individual Legendre functions. Using this method our o(6) equa-

tion (3.5.2) now becomes

A '\i 711--712
~VVI+ = ZAn2{" 1" 2ei[(mi+m2)A- (fl+r2)i] £ PA1+m2BZ Thn
n=\ni—2\
nl+12
+(-1)m2A 1A 2e A mi- m2~  ai- a2” Pn 1~m2B™1h2n 2} + C.C. (3.5.10)
n=|ni—jt: |

The only way in which either of these terms can represent zonal flow is if mi =

ormi = —m2- These are the only two possibilities that will produce zero for the A part
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of the exponential term and hence potential zonal flow. If we examine the case where

mi = —m. our equation becomes

r r 1

AV 2i'l+ 2~ =1n,n 2{AlA2e-,In+n)* £ PXiS*
n=\ni—n2\
n1+02
+(-1 Pn2m2Bn™InM2} + ccH (3.5.11)
n~\m—7121

For either of these expressions to represent a Rossby-Haurwitz wave and at the same
time to correspond to zonal flow we would require the wave to satisfy the Rossby-Haurwitz
wave condition, (3.4.3), along with the condition that the m termis zero in the exponential.
If mi = —m: it is only the first expression which can correspond to zonal flow. Examining

this term it is clear that the Rossby-Haurwitz wave condition reduces to

(i + @w)n(n + 1)e-<("i+«)*pO = o

i.e.
—mi 2 M2
°X °2 ni(n\ +1) n2(n2+ 1)
2 M2 2M:2

nini+ 1) na(n2+1)

— 0
Noni=n
But if ni = n. we have a problem because the inin2 term in (3.5.11) is zero and hence we
do not get zonal flow.
We get the same result when we examine the case for mi = m2. Therefore we can
see that it is not possible to produce zonal flow at o (6) when ipo is a dyad solution where

the two waves do not interact resonantly.
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3.5.2 The Vi solution

The next possibility to consider is whether zonal flow can be generated at 0(82). The

0{62) equation is
VoM + 2 M= (3-5.12)

We notice that to solve this equation we must firstly determine an expression for Ve To
do this we use the expression derived for the mixed Legendre function terms obtained
through applying the spectral method to the equation.

Assuming that none of these Rossby-Haurwitz waves solve the leading order equation
(this case will be discussed in the next chapter) we can determine ip\ by solving equation

(3.5.10). If we consider a solution Tor % to be of the form

N jge»((mitm2)A-(<Tito-2)t]pmi+m2

then B must satisfy

|-V 27+ 2 A~

at oa

dax +a2n(n + i)Beitm+m2™ - (<72 p /N H+m2

+ 2%(mi + m2)Seil(mi+m A" & I+HT)EHP - 14 m 2
nj+?iz
3 A el KniHmM2)A (<2l y A pmi+mjgmiA
n=|ni-n2

n=\nirizt (V) e2)n(n + 1) + 2i(m\ + m2)
Similarly if we let

ipi = Cei™mi~1JI2M~"(ri~<t2® P mi~m2
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we will find that

m+na a j !/ _ Rim-m2
I 2nin2”nmm

i(cr\ - a2)n(n + 1) + 2i(rn\ - m?2)
n=|m —na|

Combining these two expressions we can see that ip\ is given by

nH2
= X) MM BANMNC NV A{(Mitm)AREZR)Ilpr «m2
n=|ri—3-1
m+n:

n=|ni-n2|

+ Cc. (3.5.13)

where

,m .jm k _ “ Mj-nfc

n7li*  n(n + D(<Tj + C®) + 2(mj + m*)

Since we now know both woand ~ we can examine the o (6 2) equation (3.5.12) and answer

the question of whether or not zonal flow can be created at this order.
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3.6 o0(s2) equation for a dyad solution

With ipo and ipi determined, the o (s 2) equation is considered. Computing (3.5.12) we get

ANV 202+ 2 N = >0, V2\A) + V 2"0)

n|+n2/ , .
y 2 2)X-(2 DV
)} tni WASA95 i im)2 H(2mim2)X-(2ai+a2)]

7E nl-712]

jpmi+m2

------- i(roi + m2)Pr+m “FRY

)

AN2(—1)m2S mi_m 2 e*K2mi-m A -(2ffi —ad)t] x

/ dpmi m2 dPmi\

+A1A1A2B A x ;zy [mr -ni] X
/ nNp mx+m2 dPmi\

(~ iTniP~A '~ 0 =--m-m-

M i H I X I O L] Ll LA (UL EE 3
jipm i jpmi—fr-
(iirm - m2)P™'-m> + irmp™

ni +«2

1 12nm im 2Lm|ra2 i[(m |+2m2 (ffi+ 2(r2|]Y
' / ylnn2 nin2n n”

n=\ni—u2,
rfpmi+m2 dP m2\
(im2p ™ — i(mitm2)p"Hman f-)

A2A2(-1)™2 C " n.ei[miX <] x
jpm i—m2 dPm2'

-A1A2A2B N 2b ™ e i x- A

Mi+a - n dP @2
(|m2PTM + i(ma+ m2)PM B "mz,

_‘ I’zﬁf 1\m25n,_23‘26nr|nrulzrp]2 i[(mi-2m2)A-(iTi-2fF2t] Y
/ fipmi-m2 dPm2\'1
(ira2P™ +AmMi~m)p”™ TTr)}+c<
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Examining these terms we see that to produce zonal flow at this order we require

one or more of the following to happen

e oMl %22 —o

°* M2 =o
e m\ + 27«2 =
e mi=0

Any of these conditions will result in the A part of the exponential term being zero. For
zonal flow to occur in the first part of the 0(<52) equation it would be required that

2mi = —m.. The term affected by this requirement is

(3.6.1)

The Aterm in this expression is zero under this condition and therefore this represents
zonal flow. We now need to determine if this zonal flow constitutes a resonant Rossby-
Haurwitz wave. For this term to take the form of a Rossby-Haurwitz wave, the wave will

have to solve the leading order equation (3.1.3). Letting

Ipo = e*[(2wii+ m2)A—(2<ri+<T2)t]pO

we see that it solves the leading order equation if and only if

(2<ﬁ +<2)n(n + 1)+ 2(2mi + m2)= 0
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Since 2mi + m2 — 0 and n/ O, for the equation to hold true we require

Ani(ni + Dy n2(nz + 1)
—4mi 4mi

This equation is true if and only if ni = n2- But we encounter a problem with the
requirement that n\ — n2. If this is true then the term in (3.6.1) will equal zero.
Therefore in the only case for this example where resonant zonal flow is possible, the
coefficients are required to be zero. Therefore this expression cannot produce resonant
zonal flow.

We will get similar results when the cases 2m\ = m2 andmi = +2m 2 are examined.
For each of these cases it would be required that n\ = n2 and this results in the corre-
sponding b™m™kn expression equalling zero. For the other cases, m,\ = 0 and m: = 0O, it
can also be shown that the coefficients in front of these expressions will also equal zero.
Therefore it can be concluded thEi it is impossible to produce zonal flow at o(5) or at

0(52) if we allow ~o to be a nonresonantly interacting dyad solution.

3.7 Considering resonant interactions

Upon discovering that zonal flow cannot be created when we commence our calculations
with a nonresonantly interacting dyad solution the next possibility to consider is starting
out with two resonantly interacting Rossby-Haurwitz waves. Starting out with the super-

position (3.5.1), which this time consists of two resonantly interacting waves, we examine
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the o(s) equation

O % il e

7i=|ni-n2]|

+(_)m: AiA: BMNin ™ aeikni- m)A (i T)P™.”m +c.c.J (3.7.1)

n=|ni—A2|
It is important now to examine if any of the terms on the right hand side solve (3.1.3). If,
for example, the first term (for some n) solves the leading order equation then this would

result in the solution tpi of (3.7.1) containing the term

Any other term on the right hand side of (3.7.1) leads to a term in ipi which is a constant

times

E£jiTnim2f)mim2ei[{mi+m2)\—{(Ti+0-2)t]pmi+m2 ~3 93 N

The term (3.7.2) grows linearly in time and indicates resonance. This means that
two waves combine to force a third wave to be formed which, over time, becomes as
strong as the original two waves. This type of interaction is called a resonant interaction
and is of great interest to us. Nonresonant interactions (3.7.3) will merely create small
background noise, but for resonant interactions we get a strong time dependent solution
for our correction term of the form (3.7.2).

We insisted that the expansion (3.1.2) is valid for times of o (1/6), in the sense that
the o(5) term in (3.1.2) is much smaller than the leading order term, for time + of order

1/6. This means that we cannot tolerate terms of the form (3.7.2) inipi. If any such term
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was produced it would have to be included in the leading order solution, ipo, to ensure
that the approximation remains valid for all times ¢ of order 1/6. As a result all potential
resonant terms must be checked and a corresponding condition will be derived.

Taking each term on the right hand side of equation (3.7.1) in turn, we must check

to see if it satisfies the leading order equation. The equation under consideration is

¢ C b A2k 1P tan</>A) 428 =0 (3.7.4)
dt\ CoSz 4 d\2 d(j)2d<p J dx

To determine which termscould cause problems we need to examine the two possible

terms

i[(mi +ni2)A- &-172)] pmi +m2 (3.7.5)

and
ei[(mi—mz)A—(a—i—oz)t]pmi—mz (3 7 .s)
The first example considered is (3.7.5). Studying this term it is clear that when this
solution is filled into the leading order equation (3.7.4) it is satisfied if and only if

<!+ <2)n(n + 1) + 2i(mi + m2))ei[(Ni+MA-(<KTL<72tlp ml+m2 = Q
We find that this equation can be true if and only if
"(ﬁi + a z)n(n + 1)+ 2i(m\ + m2) =0

Using the expressions determined for <n and & from the leading order equation this

reduces down to

mi m. mi + m:
ni(ni+|) nz(n2+1) n(n+1)
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So we find that if this condition is satisfied then we have resonance. This would mean
that the expansion will not remain valid under the time scale we are considering. To get
around this problem we must include this third wave into our leading order solution to
ensure that the approximation remains valid. We do this by letting the corresponding n
be called »: and set mi + m: = ms.

Examining the second possibility (3.7.6) it can be found that none of the terms in
this expression will cause the aforementioned problem. Therefore none of these terms
will cause problems with resonance. Without loss of generality we have assumed that the
Rossby-Haurwitz wave is one of the terms in the first sum; if it is not, we simply replace
m2 by —m 2 in (3.5.1).

The result of this analysis is that we must include this Rossby-Haurwitz wave into

the leading order solution. Therefore we study a solution of the form

o =Aie<(miA TitI™ (n)+ A 1

+ A2ei{m2\-a2t)pm2~  + A2e-i(m2X-a2typ m2”"

(3.7.7)

where

—2Ms

and

(3.7.8)
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Triad solutions and Zonal flow

The aim of this thesis is to study first and second order resonant interactions of
Rossby-Haurwitz waves in general. In particular, we want to investigate in detail whether
large-scale interacting planetary waves with finite amplitudes can force zonal flow through
a resonant interaction energy transfer mechanism. It has been proved in the previous
chapter that it is not possible to produce zonal flow at either o (s) or o (s 2) if we consider
a nonresonantly interacting Rossby-Haurwitz wave dyad solution.

It has also been shown that resonant interactions between Rossby-Haurwitz waves
lead to a triad configuration. The longitudinal wavenumber and frequency of the third
Rossby-Haurwitz wave equal the sums of the longitudinal wavenumbers and frequencies

of the other two Rossby-Haurwitz waves. Also the interaction of this Rossby-Haurwitz
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wave with each of the original two Rossby-Haurwitz waves generates the other. These
three waves transfer energy between themselves and do not produce any further waves at
first order. We are interested in studying this triad configuration to determine if any new
waves can in fact be produced at higher order.

We wish to try to generate zonal flow through these Rossby-Haurwitz wave triad
interactions. In this chapter we examine the excitation of a zonal flow through a direct
triad resonance mechanism. As was previously stated a triad configuration seemingly
does not produce new waves at o(s). We examine this theory and then we also examine

whether zonal flow can be produced at o (s 2).

41 Time Dependence of Amplitudes

The triad solution we are considering which was determined in Chapter 3 will, of course,
interact to produce, once again, the unwanted terms similar to (3.7.2) in ip\. To avoid
this problem it is assumed that the amplitudes A\, A2 and As are slowly varying in time,
such that their time derivatives are of order 5. We implement this idea by introducing a
slow time +\ = st into our calculations. As a bookkeeping device the time derivative shall

be rewritten as

dt *dt oti

Using these new slowly time dependent amplitudes, our main equation, (3.1.1) becomes

+27 =5JW,VV) - (4.1.1)
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Once again we shall expand 7about 6

ip(\, ©t,5) = o(A<&t) + stpi (At + ...

We see that our leading order equation remains unchanged

I v2>+21r =0 (4X2)

but the 0(5) equation becomes

1 A 4272 = JV50Vet0) - AV 2o (4.1.3)

From the previous chapter we have

o= Ai(n)e<roA ,, )i"»(M) + A(rOoeni"u™ ~ A 1N
+A: (n)eimA 7. tP™(/) +
* A (ri)ermA e s+ (m(a.1.4)
where
mi + M = ms

and the following conditions on the velocities

—2nii —2M2 , —2m~
ol = — T, ®=_ —r_and <3 =
ni(ni + 1)’ 7i2?i2 + 1) n3(n3 +1)

To examine interactions of these Rossby-Haurwitz waves we must study the o(6) equation.

Through substituting (4.1.4) into this equation, (4.1.3), we see that we must examine the
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following
d (1 d2\H |, d2WA , 0N
dt, \COS2 (p dx™2  d(p2 dep) dx
3 3 ij+nk
E E £ P?2‘+m* B A
j—1k=j+1 n=|nj—th]|
nj+nk
+ (-1) MM i Afeit(n> M)A (er_ffid)] £ Pnj~mkBninkn k]
n=\n,j-nk\
+]T njinj + + C.C. (4.15)
j=

If any term on the right hand side of this equation satisfies the leading order equation
(4.1.2) then a problem with resonance will be encountered as before. Therefore we must
examine these equations to determine whether or not this problem occurs.

Examining the first term
gy +mt)A-(a] +<rk )p ™ j +mk
we see that this term solves the leading order equation if and only if
i(<ji + (Tk)n@ji + 1) + 2i(rrij + ra*) = 0

Using the conditions derived from the leading order equation, the left hand side of this

equation reduces to

(anTn2~4'"1) —n kzlr-ﬂé\.;rﬂjj nn+ + J+m =0
Examining this term we can see that it will equal zero if and only ifj = land k = 2

i.e. this will represent the third part of the triad, the (ms,7:13) Rossby-Haurwitz wave. So
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taking these values into account the problematic term is

Ilni 712_3\1A (c:«[(mi+m2)A—(tri+ff2)t] rp rTS’ +m2n Wl
There are no other cases for this example for which this term will cause resonance.

Next examining the other possibility we study

ei[(mj-mKk)X-(<Tj-<rk)t]prnj-mk

This term solves the leading order equation if and only if

i(cri —ok)n(n + )+ 2i(mj —m«k) =0

Using the conditions derived from the leading order equation the left hand side of this

equation reduces to

(mj {ng?+-1) Homrpon(e 1) 3 +2(mj ~ mkl =°
Examining this term we see that there are two cases for which this term can equal zero.

The first case is if j =2 and k = 3. This represents the conjugate of the first Rossby-

Haurwitz wave of our leading order solution when n = n\ to give the wave ie.,

(- 1) MBZ2N3A2I 3ei[(m2- NBA- (2-" P - M~ I

The other possibility for this case which causes problems is j = 1 and k = 3, which

corresponds to the conjugate of the second Rossby-Haurwitz wave when n = n2, (m2,n2),

7711-7713

J,./3i[A71-7713)A-(o-1-1T3)i] P751—TO3 0
' 7L Wninsn

Li1wJd .. A, .
Vo Tx) T t7ii7iz-A11-i1%e
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Examining the t\ derivative terms we also see that we have expressions akin to
each term in the leading order solution which will also cause problems with resonance.
Therefore, combining all this, we note that the following terms will prove to be problematic

if they are left in the equation

(-1) mB8Inin34 ii 3e-ikmni- M)A (il - UPF - m3(-1)5

m(nl+1

° na/\ +I/\e/\/\_/\PTM 2

nstna+ I"e~A-"pms

These terms will cause problems with resonance if they are left in the equations as
they are. The complex conjugates of all these terms also need to be included to ensure
that we have encompassed all terms of this format.

In order to avoid this problem we can equate all these problematic terms and cancel
them from the right hand side of the 0(5) equation (4.1.5). Remembering that mi + m2 =

ms we get

+i)ner-AN)p,7 =0

SiniB3(-NraH-Dn8" i FiMRAMP N T CI3+Mn2+IrerA-AP ™ 2=
inin2™ 1A2ei“A-.31))pm3S = +n3(n3+ 1) ei(mM3A<3)pm3 = Q
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along with their complex conjugates. Tidying this up a little we see that we get

T BN L Y Y oy (5 i416)
dr\ ni(ni + 1) 2 3
N2 = (-DhrChrn3mindpmbm3 A
dn n2(n2+ 1)
dAS Inim"dU3 j M.
= n3(n3+ 1) MM (41'8)
Next we examine the terms from the amplitude equations to see if they can

be written in a nicer form. Firstly examining s™~~m3 we see that

rl f dP mi dP~m3\

/ dP mi "
[ MP™2 (im3P™3-jE£- + imil™ m

| / (jipm1l dPn
[ 1P™3 [im2P ~ - irmPA” -y

= - (-D)ym2(-Hmsewiis

Applying similar calculations tos™+~m™3 we can see that toensure that we do not en-
counter problems with these resonantterms we insist that the amplitudes mustsatisfy the

following differential equations

dA'i

AT B g wga a3 (4.1.9)
dri ni(ni + 1)

dA2 AT13711 (4 1 10)
dri Mg + 1) o
dA'i Nini

an n3m3+ € 372 (4.1.11)

If a change of variable is applied to these equations it should be noticed that they represent
the three-wave equations which model the nonlinear dynamics of the amplitudes of three

waves in fluids or plasmas. There are well known conservation quantities connected to the
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three-wave equations which will also apply to our equations above.Examples of studies

on these conservation properties are in [7] and [11].

4.2 Checking for occurrenceof zonal flow at o(5) and o(52)

The conditions on the amplitudes must now be taken into account when examining the
0(5) equation and hence the ip\ solution. Applying these conditions we see that the our

ipl solution is now

3 3 ttj+n*
=32 ( X A +" )%~ {0i +ak)i]P n JHYF
J=lk=j+\  ngn—d
nenjk
nj+nit
+ X Af=B ™ iw kbnfnknk~ - F@)A {; )
n=\nj~nk\
+ c.C. (4.2.1)
where
m, i =2,k=3
n3. i =1k=2
njk = < njk=< n2, j=1A= 3

rij 4'n\c +1, OtherWise
rtj + rik + 1 ,0therwise

All that the conditions n  rijk and n ~ fijk do is to take out the resonant term.
We must check all these terms now to see if any of them will correspond to zonal flow.
As explained before, zonal flow terms are Aindependent wave solutions. Examining these

terms we see that the Apart of the exponential term will be zero if and only if rrij — ink
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or m-j = —rrik. Firstly examining the case for m.j = —m k the expression for ipx reduces to

3 nj+nk

3
*=EE( E
R 1
rij+nk
+ (-1)™ X A3AKB -~ i; rkl>n™nmke N -2mx- N Y P ~2wF)
n=|«,—nfg
n-~hjk

+ C.C. (4.2.2)
Only the first of these two terms can represent zonal flow. For this zonal flow term to be

of the form of a Rossby-Haurwitz wave it must satisfy the condition
+0MOn(n+ 1) =0

But like in the previous chapter we see that this is true if and only if rij = nk. Ifthis holds
true then b~™uzk is zero. Similar results are determined for the case where m-j = rnk.
Therefore we see once again that it is not possible to produce zonal flow at o(s) even
when we start with a resonantly interacting triad solution.

The next logical step to take is to check for the occurrence of zonal flow at o (5 2).

The 0(<52) equation is

-V V, (4.2.3)
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When we substitute in our expressions for ipo and ipi, the o (62) equation is

9 VI2/ ,0"2 NN
My 'h +*W = -a7lv +1
3 3 3 ( nj+nfc
+ EEE e (nj(ni + 1) —(n + 1)) x
t=Il j=I fIgH vn=|n,—]|
njtrijk
(ATAJAKjJU m+mi+m®» - | 1,*+ffj <
/ , dP IP.mj \
(i{mi+mk)P~ n m imiF’S"r Ir_anr_ms

—AiA mAkei“m,~rnj~mh~~~"<r~aj~ <k

IPmi Jpmy+Hm*
G s imipme—"P™
+ aft
rij+nic
+ £ (n/(n/4-1)-n(n + 1)) x
TI=INTL, |
n~njk

(-1 YnkBn%~nkbnfinknk *"AITAjAKS mi+m”~ m~ X-~ +/~ - »
/ dPm’ dP mi~mk\
(i(mj - mk) K * "y W —)
—3JIHj i [(m'-mi+mfc)A- (€ -er™<*)i]

/ TP 71 Jpmj-mfc )
( * > S +imP2 i<l )Y (4.2.4)

We want to examine all these terms to see if zonal flow can be produced. If we take,
for example, j = 1, k = 2 and / = 3 then the second term will correspond to zonal flow.

This term is

&, Hc*
X (n3(n3+ X) - n(n + 1)) Ai A2i43e- *ni +m—rB)Ai H2-<r3)]

T1=1«~<*|
n /1 ljk

/ ’ r/P m3 I7Pmi+t«2 _ »
X (j(m, + m2)PAM+7« -J 1- +
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Examining this term we see that the Aterm is in fact zero and hence it represents zonal
flow. To see if it represents a Rossby-Haurwitz wave it must satisfy the Rossby-Haurwitz

wave condition, i.e.

mi. m. Mms
711711 + 1) 7i2(ﬁ2+ |) n3(n3+ |)

This condition was one of the conditions of our triad solution. The a terms in the above

expression equate to

+ _ 2mi 27712 + 2m3
etz s = T N TREAEF ] T n3(n3+ 1)

=0

Therefore we can conclude from these workings that nonresonantly interacting Rossby-
Haurwitz waves are incapable of generating zonal flow for either the o(6) equation or the
0(62) equation. By examining resonantly interacting Rossby-Haurwitz waves we have
shown that it is possible to generate zonal flow. Zonal flow first occurs at the o(62)
equation and it is only possible to generate such waves when a triad interaction is consid-
ered. Thus the preceding calculations illustrate the capacity of Rossby-Haurwitz waves to

generate zonal flow through the reronant mechanism for a triad solution.

4.3 Zonal flow

The consequences of the previous section will now be discussed in detail. We proved that
resonant zonal flow terms are generated which will cause the asymptotic expansion of ip

to become invalid for certain time, when we consider a resonantly interacting Rossby-
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Haurwitz wave triad solution up to o (52). As a result of this we include these particular
zonal flow terms in our leading order solution to ensure that this doesn’t happen.

One should note, however, that at this stage this does not rule out the possibility that
the zonal flow terms are o (s). According to our asymptotic scheme, at each order, certain
equations are imposed on the amplitudes to avoid resonances. Solving these equations
at each order updates the amplitudes, which are given as expressions in s. It could well
turn out that the equations we will later impose on the zonal flow amplitudes lead to
amplitudes of o(s).

In the previous section we saw that we can produce one example of resonant zonal
flow when examining the o (6 2) equation for the triad solution. Therefore at this order we
have produced zonal flow terms which are also Rossby-Haurwitz wave solutions. Similar
terms can also be produced for the other parts of the o (s2) equation which will similarly
correspond to nonzero resonant zonal flow. Therefore these terms will cause resonance
and are problematic. To overcome this problem these terms are included in the leading

order solution from the outset. Therefore we study

N
(4.3.2)
where
—2rrij
3 nj{nj + 1)’
rrij = 0, Aj=Aj, j=45--N
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Using this new solution for tpo We once again have to make sure that resonant Rossby-
Haurwitz waves do not occur on the right hand side of the o(5) equation. To ensure that

this does not happen we must enforce the following conditions on the amplitudes

dAl= 2, 3 a + 2 A, Ale
(iTi ni(ni +1) N oni(ni + 1)

GAD Uk Bpn o TA0RUZE RR
(itx Mz (ri: + l') n2(n2+ 1)

dAs$ - I712*11“711712713 A A i O\ ~ AkTIB2»TIZnknr A A

*r=nsN+D 12 h «3<"3+i) 3 °

dd“i’—= 0 for k= 4,5 wm N 4.3.2)
r

We see that the amplitudes of the zonal flow terms do not gain or lose energy at this time
scale. At this order the zonal flow actually acts as a catalyst, helping the other waves
to exchange energy between them. The next order of the equation must be studied to
establish conditions on variations for the zonal flow amplitudes.

Before continuing to study the next order equation we should notice that the zonal
flow terms at this order only affect the phase of the amplitudes, Ai, i = 1,2, 3. If we take
the derivative of the modulus squared of Ai, i = 1,2, 3, in each case we will see that the
terms containing the zonal flow amplitudes will reduce to zero. The other terms will be
nonzero after applying the same calculation to them. Therefore we can infer that the first
part of the amplitude conditions affect the wave itself while the zonal flow terms affect
the phase only.

Examining these equations we notice that it is possible, in theory, to solve these

equations. Solving these equations we can determine expressions for Ai. The result of this
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is that Ai will be dependent on 5, t and N constants of integration, i.e. the amplitudes
are functions of the form A(s, t, ci, G,... cjv). At the o(82) equation the problem with
resonance will once again crop up. To overcome this problem of resonance we now make
the integration constants t+ dependent. These terms will be slowly time dependent and

hence will first appear in the o (6 2) equation. This will cause terms of the form

dAj dc\ dAj dew
dci dt N dcjy dt

to appear in the o (82) equation. We symbolically write

dAj dAj dc\ dAj dchj
dr2 dci dt qCn ¢f

It is important to note that in our asymptotic scheme +\ and +2 are not independent
variables. We will explain later that treating «\ and «2 as independent variables leads to
inconsistent equations.
To study the next order of the equation an expression is required for ij\. Taking into
account the above conditions, it can be deduced that
3 n rij+nk

i=1 k=j+1 n=\nj-nk\
n~rijk
rij+nk
H ' i - 1- i - - - ™ j_
i /\’| \mk ST A. 7. fj rr]al.ier kuurHleikTr{]k C|[(rnj mk)}>-(cTj-(Tk)t] p mji m k\ ‘

n=\rij-nk\

+ cc. (4.3.3)
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where
«3, i= 1k =2
njk iij, i =1,23andk = 4,5, eee 7V
rij + nk + 1, otherwise
and

m, j=2k=3

Ifc=3

]
~
—
1

njk =
i = 1,23and A= 45, eee iV

i+ ilk + 1, otherwise

When we examine the o (62) equation for these values of ip0o and ip\ we find that
resonating terms will be produced which will cause problems with the approximation. We
overcome these resonance problems by making the ci slowly time dependent variables.
Using this andthe symbolicnotation in terms of partial rzderivatives, the next set of
amplitude equations are given below.Note that this isa systemof n ordinarydifferential

equations for Ci,... ,Ow.
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dA . 1 - - k3
0t2 ni(ni + I iy
( ) N={ri3—«i|
n:£ri2
«l+n 3 . .. A
/ nmira3\2imim3 "
r 2.7, nn3K~nininl WIl«on j
N=|«3-«i|
nj+nj nitna
- a,a2a” y . + E » B W tfe)
n=|712—7! | 71=[712-ni|
<<*%x<3
iv til+713
le=4 ti=17ii—7131
7134712
1 \ | p>mim2 M0 150
' VY ¥ {V) 771271 71371jfcTi «371%71
n=Il«2-«i|
«5N«
«2+n3
f 1\7«i f__1\7n3 rj7«ior> &k 2—m 3L f«2—7«3\
i Iy ‘«feh V T iJ«i7ifen-1Jn2«3n winsn  J
«=]«2-713]|
«5|«|1
N WV «l+e*
-y ,y .iaAa*ac  E (4.3.4)
fc=4 /=4 n = |« i—fcl
nn.
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9A2 - ) B |+n] ] )
o n2m2+ 1) AthAlQn:“\](Z_nilW iCSiu’'CK
n"“na

m+Ti2

E Inni PG 2 ARimA 13

P +S VWAAAB
->m 3j3( E U (iS)IC5+ E W ~ sr)2.;?%
n=|ri2—A3 n— I’*127E?13|
72-7113
fc=4 Nn=|ri2—3|
nni
»HH3
oYy ey 7 v M8 RIEERSEARES BRRin
711113711
Tji7i2
ni+712
_ / omi7i2nmio i/njo \
/ N 1771 w-"m712 AN 713n*)l «3«fenl
n=\n2-ni\
n“ns
vV N T12+Tic
- E E 4n-4*%4 E (4-35)
fo=4 i=4 n=|7i2—i*
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N | . "Ge3&
la = U M 1)h x" E "» W S ) I«
n=|«3—«l|
«1+713 o
tnnivizninan \2\'/vn<1i'«_ «33
«=]«3~«i|
ifila
«2+713 «24+7*%3
+/i2l 2A-,( e w jcco’'css- E W < s u)e>ir)
«=|«2—A3I 71511259
il
LY m +7i2
SA2AIYI2A5tN A e Min T man™ nsnit T
fc4 n=|«i—«2l
«™N«3
712+713 - - - -
Ay pmay i TRMGmS O3 R O
«—|«2-«3|
nitrii
T11+«3 _ _ _
1| / , /‘(((1/\. I\m2f__I'\rli3 oimlgh% nrn.ﬁz(&g']ﬁ%@ql\y
«:l«i—(G|
»lyi«2
v N «B3+71*
~ 57 57 4AMAKAI ]««/"7|3«/«"«3«*«"«3«*«] (4.3.6)
fc=4 (=4 «=] «3—*|
n/713
on ' nk{nk 4 1)
+713 . . .
(_ 'ﬂ% o/ /_N\m3/_i\mi omiO nm2-m3rmj-ms3
| /-, Inniv -U vV A/ h'«i«*n—l.]«z13< W« 2« 3(
«—|«2~3|
B4
«+<«3

I I™MI\m3(iyri2r>m20  omi-ms Liniz=ms3
inn2\ *) VvV~ 4/ LUriznitnL)n\nzn  n¥i3N
«:E«3|
&t

«l+ «2

+ j; /n@33MYWMh7nC«"n) k=4,..N (4.3.7)
n=|«i-«2|
TINTI3
At this stage we point out that treating T] and as independent variables, as is
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done in other asymptotic schemes, simplifies the equations, of course, but is inconsistent
here. Such an approach turns the equations (4.3.2) into partial differential equations.
In the equations (4.3.4) to (4.3.7), the derivative is now also a partial derivative, not
just a shorthand notation. Differentiating the last equation in (4.3.2) with respect to
t2 and (4.3.7) with respect to t\, however, leads to a different result and therefore to a
contradiction.

Assuming that the zonal flow amplitudes are of 0(6), allows us to remove the corre-
sponding terms from the right hand side in (4.3.2). These terms will reappear in equations
(4.3.4) to (4.3.6), while the terms with the zonal flow amplitudes can be removed. Cross-
differentiation shows that the two systems of partial differential equations for A\, A2 and
A3 are inconsistent. In our asymptotic scheme, the integration constants from the previ-
ous order are made time-dependent at the next order, and a set of ordinary differential
equations are imposed on them. This does not lead to any inconsistency.

To examine the equations (4.3.4) to (4.3.7) further we will take the first example

n_ = iA\AIA<iOL + iAiAsAsTl
Oor2

N N N
+i 53 2A2A3Akjk + *5Z N2 AkAtfKi
fc=4 k=4 1=4

where a, i3 7 and 5 are the constants given in equation (4.3.4). The imaginary part of

these constants has been taken out explicitly.
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Taking the derivative of the modulus we see that

«I'ii 12 , , , aa,
~d~”™-Aaw +Ald»
N
= Ai (—iaAiA2A2 —IPALIA3A3 —i~~/ykA2Aj,Ak
k=14
N N
—is z  &KkiIMAKA{)
k=4 z=4
AT Jv Jv
+ Ai (iaAxA2A2 + IPAIA3A3+ i53 7TkANAMAK + i E E  SkiAiAKAI)
k=4 fc=4 i=4
N
= —53 7ic (AiIA2A3AA—
k=4

From this equation we can see that the zonal flow terms can in fact affect the ampli-
tude of the wave, and not just its phase. Similar results will be found for the other two
amplitude equations, A2 and A3. The final thing to check is how the zonal flow amplitudes

are affected by these equations. Examining the last equation, (4.3.7) we rewrite it as

n = iKk (A1A2A3 ~ A1A2A7) k=4,..,N (4.3.8)

Taking the derivative of the modulus squared we obtain

-= 2inkAk (AiA2A3 —A1A2A3)

Since this term is, in general, nonzero we can see that the amplitudes of the zonal flow
terms are indeed affected at the 0(82) equation. These amplitudes are affected in a
meaningful way as the wave itself is altered, not just the phase of the wave.

In this chapter we have shown that zonal flow is created at 0(62) if we commence

our calculations with a resonant triad solution. This zonal flow only affects the phase of
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the amplitudes at 0(8). At 0(S2) though it affects both the phase and the amplitudes of

the waves.
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Numerical Calculations

In this chapter we will now apply all the previous theory to some examples. By
doing this we will illustrate the mechanism of this work. Firstly we will go through all the
necessary conditions that a triad solution must satisfy. Applying all these conditions to
a small set of numbers we determine the first thirteen triads. We shall examine some of
these triad examples to further our understanding of the complicated method explained
in the previous chapters.

Using these triad solutions we firstly examine the numbers involved for our )\ so-
lution. To do this we must determine the range of non zero solutions applicable for
Bjijnkn and bh-nIn for each wave under consideration. From this we can examine the

0(iS2) equation and determine how many zonal flow terms, if any, are created. Due to
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the aforementioned problem with resonance, all these terms must form part of the leading
order solution. Using this leading order solution the required amplitude conditions are

computed for these numbers.

5.1 Triad s

To examine thedescribed method numerically we firstlyneed to determine which waves
can actually form a triad. From examining the complicated listof conditions which need
to be satisfied it becomes clear that it is only a few particular waves which satisfy these

requirements. The list of conditions which a triad would have to satisfy are

<1+ <72 = <73
mi + m2 = m3
mi<rg VvV 4= 1,2,3,..-
[ - ri2l<n3 <rii +n2
Ni + «2 + «3 odd

«1# 72N U3

as we have seen in Chapter 3 and Appendix B. Clearly not all waves can participate in
resonant interactions.

Applying all the required conditions necessary for the occurrence ofa Rossby-Haurwitz
wave triad, the first thirteen triads for the lowest wavenumbers are given in Table 5.1. In

order to show the workings of this theory an example is explicitly studied to generate nu-
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(7m, ni)
(1,6)
(1, 6
2 6)
2 6
@7
@ 14)
G 6)
39
G, 14)
4 12)
©, 14)
© 18

O, 19

(m2,n2)
@,

(11, 20)

3

4

(11, 20)

(17, 20)

®,
@®,
@
(G
@

@

G,

14)

. 8)

14)

14)
20)
20)
14)
20)
20)

20)

(7r3,n3)
@9
(12, 15)
G 7
6.9
(13, 14)
(19, 19)
© 9
(11, 14)
4 15
(CANK)
@6 15
(13, 19)

(12, 15)

Table 5.1: The first 13 triads

Numerical Calculations

merieal results. We shall study the first triad, namely, (1,6), (2,14) and (3,9). Therefore

for the rest of this section we have

(mt.ni) = (1,6), (m2,n2) = (2,14)

and

(mz,n3) = (3,9)

Examining the first part of this triad we can see that when m = I,n

6 the wave

in question is e*A+2T"P@L. The plot of the real part of this wave is given in Figure (5.1).
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Figure 5.1: Rossby-Haurwitz wave el™ +2ii)pa (sin®)) and the corresponding contour plot

Similarly we see that the other two waves M —2,n = 14 and m = 3,n = 9 produce
the waves e”2A+iosi)p « and el(sA+ ist)p”™ respectively. The plot of the real parts of these
waves are given in Figures (5.2) and (5.3)

If we consider all three of these waves together the triad which we are examining is

Q= Aie® ~ P§ + A2el(A+T5a0)P &
+ i43ei(3A+" P B+ c.c. (5.1.1)
The plot of the real part of this triad is shown in Figure (5.4)
From these contour plots it can be seen that the zonal wavenumber is given by m,

and N —mM is the wavenumber in the north-south direction. Therefore we can see that n

represents the total wavenumber.
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Figure 5.2: Rossby-Haurwitz wave ei(2A+iosi)p is (sin<?) and the corresponding contour plot

Figure 5.3: Rossby-Haurwitz wave e*3A+is (s in 0) and the corresponding contour plot
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15

Figure 5.4: Rossby-Haurwitz wave triad solution, equation (5.1.1) and the corresponding

contour plot

5.2 The generation of Zonal flow term s

5.2.1  0(5) interactions

Using this triad solution (5.1.1) we firstly examine the 0(5) interactions. Examining this
equation we will be able to derive the ipi solution. The 0(5) equation is stated in Chapter
4, equation (4.1.3). We examine this 0(5) equation for two reasons. Firstly, we want to
see if any zonal flow terms are generated. For zonal flow to be generated the m part of

the exponential term must be zero. The M parts of this expression equates to

mt+ 7712 mi+ 7713, m2+m3

From the numbers which we are using all the mi are unique and hence none of these
expressions can equate to zonal flow. Therefore zonal flow cannot be generated at 0(5) of

this equation even when we start out our calculations using a triad solution.
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Secondly we must examine this equation to determine if any resonant terms are
present. If any terms on the right hand side of this equation solve the leading order
equation then we have a problem. We find that there are indeed terms which cause
resonance at this order. To counteract this problem we apply amplitude conditions on
these offending terms. These conditions were derived in Chapter 4, equations (4.1.9),
(4.1.10) and (4.1.11). Filling in the values for m* and n* which we are considering we

obtain

N = 58.5582/2/3
QT
_-= 4.6846671".3
alTi
A = 38.258*AiA2
G

Implementing these conditions the resonance problem can now be solved. We have
shown that we cannot generate zonal flow at this order and as a result we next examine

the 0(52) equation.

5.2.2 Deriving the ipi solution

Taking the amplitude conditions into account in our 0(5) equation we try to determine
the 'J/I solution. It has been shown that the solution for 'ipi reduces to equation (4.2.1).
Examining the terms in this expression it is clear that we need to determine values for

and 6M™«e By running programs in mathematica we get the following tables
of values. Table 5.2 has the values for BT™MTM* gnd , Table 5.3 contains values for

Bnyn2n 2 anc® intjn2>Table 5.4 represents B™?2  and Table 5.5 contains values
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for B "™ and Table 5.6 represents and and finally Table 5.7

represents B™a~-™* and s ™nIn 3-

nmimz2 n.inil
n niiizn Hiinan
11 17.2301z -60*

13 12.4548* -27.3913*

15 8.29596* -16.8*

17 4.96375* -11.6667«

19 2.34338* -8.68966*

Table 5.2: Coupling constants anc* C
Dmi-1712 -7712
n w1125 g aivavig

9 3.49628* -36.75*

11 8.84906* -29.1089*
13  15.2673* -23.3333*
15 21.6655* -18.9677*
17 26.1733i -15.6383*

19 24.7929* -13.0667*

Table 5.3: Coupling constants B™* n= anc”V ijn:

If we look at these tables of values we can see that is only nonzero for n

between 9 and 19, with n odd. Similarly we can see that B™'A™3 and B~ ~m 3 are on%y
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n -ATUTIBTL R
4 5.85239* 8.4*
6 -8.42563* 15*
8 -11.9572* -210%
10 -13.2368* -10.5*

12 -12.9962* -4.88372*

14 -10.4018* -3*
Table 5.4: Coupling constants and
f>mi—713 1,7711-7713
n J71171371 71171371

4 -8.84799* -13.2632*

-9.22981* -15*

o

-6.00544* -18.2609*

=)

10 1.35831* -25.2*%

12 11.9378* -46.6667*

Table 5.5: Coupling constants and bMx ™3

nonzero for N even with N between 4 and 14 and N between s and 22 respectively. It is
clear that bn-n"n is not as restricted as the values for Bn/n*n but we restrict our tables to
these same ranges of values because these ranges for n are the intervals about which we
will apply the summations.

Bn™nnn is the coupling coefficient which causes resonance for n = 9. Examining the
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n &R T2Tzn
6 -5.88655* -18.75*
8 26.6356* -31.3433*
10 12.4948* -210%
12 -4.82547* 35.5932*
14 -18.6664* 15*

16 -28.0914* 9.01288*
18 -32.9823* 6.21302*
20 -32.8872* 4.61538*
22 -25.9314*  3.59589*

Table 5.6: Coupling constants B™n'% and b'n”n

tables of numbers for this coefficient we can see that for N = 11 the corresponding b
result is the largest by some margin. This indicates that this term is near resonance, i.e.
for this term, the resonance condition is approximately equal to zero. Similarly, is
resonant for n = 14. Once again for this term we can see that the term forn = 12
the nearest integer under investigation is also the largest, also suggesting near resonance.
Lastly is resonant for 1 = ¢ and, once again, we see that for the nearest integer
to this, n = s, the corresponding term in b™£~™3 ~ the largest by some margin.

It is through using the numbers above we have determined the wIl solution. Using

this solution we can now consider the 0 (62) equation and investigate if nonzero zonal flow
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s
n %,n un2n3i

8 14.5228* -84*
10 0.162338* -37.0588*
12 -15.9295* -22.1053*
14 -27.7451* -15*
16  -29.5888* -10.9565*
18 -17.2662* -8.4*
20 9.12981* -6.66667*
22 37.8582*  -5.43103*

Table 5.7: Coupling constants B ™h3™3 and & aiim3

is produced.

5.2.3 0(S2) interactions

W ith the coupling constants for ipi for the triad solution determined we must examine
the 0(52) equation to see whether zonal flow terms can be created at this order. We now
substitute the expression found for -01 into the 0(52) equation and determine which terms,
if any, cause resonance. If any of these terms that cause resonance are zonal flow terms
then we have created zonal flow at this order. The O(SZ) equation is given in Chapter 4,
equation (4.2.4).

Looking at this we can see that when mX= 1, = 2 and ms3 = 3 we do indeed get

some zero Aterms in the exponential term. Therefore we have the possibility of zonal flow
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being generated. We must ensure that the coefficients in front of these potential zonal
flow terms are not zero. Once that is ensured then we have generated zonal flow.
If 1 =3, ] —1and k = 2 then the second exponential term has a zero exponential

part. This term is

ni+n.2
53 (n3(n3+ 1) - n(n+
n=|ni—12l
i3
. r]Pm3 jpmi+m2x
x (i(mi+ m2)P r+m2 + imzPZ> nlj -

Applying the spectral method to this expression we see that this equates to

713+n
2 AIA2AP!I(N(N + 1) - n3(n3+

N=\ri3—A\
njins

where the bounds for n are \ni —n2\ < n < rii + N2 from the summation in equation
(4.2.4). Examining these bounds and the interaction coefficients connected to this term
we can see that there is zonal flow generated for n = 3 —>27 where h is odd.

The next possibility for which zonal flow can be generated is if | = 1,j =2and k =3
For this example the third exponential term from equation (4.2.4) is zero. Therefore this
term potentially generates zonal flow. Taking out that term and applying the spectral

method we get

m-+1

53 +1)-nn+m-ir*"Z"br"nsTB" AnT!
n=\ni—A\

il

where the bounds for n are \n2—n.j| <n <n2+ from equation (4.2.4). Once again we

see that this means that nonzero zonal flow is generated for n = 3 -» 27 where n is odd.
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The last possibility to be considered is when | = 2, j = 1 and K = 3. For this
example the third exponential term from equation (4.2.4) is again zero and after applying

the spectral method to this term it becomes

T2H1

£ AtAiAsFfMm +1)- n(n+1))(-1)
n=|>?j—ﬁl

N7k

where the bounds for n are \n\ —n3| < n < n\ + n3 from equation (4.2.4). Once again,
nonzero zonal flow is generated for n = 3 —27 where N is odd.

We will also get equivalent results for the complex conjugates ofthese three equations.
Therefore we see that we have produced many zonal flow terms at the 0(52) calculations.
It can readily be shown that these terms are in fact resonant Rossby-Haurwitz waves and
hence they should be included in the ¥® solution from the outset. This will ensure that

the solution will remain valid for all time under consideration.

5.3 Leading order solution w ith zonal flow

As a result of examining a triad solution of the vorticity equation for nondivergent plane-

tary flow up to 0 (62) the leading order solution which we should consider is

16
Vo=53 Vo

3=1
where
i = +A i ( r (m),
—2rnj

A~ nj(nj + D)7
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mj=0, Aj=Aj, j=45 ume 16

14 =3, «5 =5, «6=17, ... /lie = 27

Using this as our leading order solution the 0(6) equation is now slightly different. In
the equation given by (4.1.5) the sum over K now must go up to 16 and similarly the second
sum which incorporates the t\ derivatives must have an upper limit of 16. As a result of
this we need to produce tables for further Bn/n™n expressions. These new expressions are
required for examining the if)i solution. These numbers are provided in Tables 5.8, 5.10
and 5.12 for B%$kn, £™ 2 n and B™$kn respectively. The numbers produced for
b™kn an” "ninkn are given in Tables 5.9, 5.11 and 5.13 respectively.

W ith these changes to the 0(6) equation the t\ amplitude equations will also be
different. This is due to the fact that more terms will be generated which will cause

resonance. The analytic solution for these new amplitude equations is given in Chapter 4,
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10

11

12

13

14

15

16

3.46018*

7.26387*

11.1079*

14.3495*

16.009*

14.1332*

10

5.64521*

10.3182*

14.5375*

17.7719*

19.0478*

16.3086*

12

7.8108*

13.3193*

17.897*

21.1284*

22.0426*

18.4696*

14

9.96593*

16.292*

21.2179*

24.4479*

25.012*

20.6221*

16

12.1147*

19.2472*

24.5152*

27.7443*

27.9654*

22.7692*

18

14.2592*

22.1911*

27.7968*

31.0254*

30.908*

249127~

Table 5.8: Coupling constant B™"kn
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20

16.4008*

25.1271*

31.0675*

34.2958*

33.8432*

27.0535*

22

18.5403*

28.0573*

34.3303*

37.5584*

36.7728*

29.1924*
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o

10

11

12

13

14

15

16

21%

8.4*

-9.8i

-33.6*

-63*

-98*

-138.6*

-184.8*

-236.6*

-294*

-357*

-425.6*

-499.8*

10

9.26471*

3.70588*

-4.32353*

-14.8235*

-27.7941*

-43.2353*

-61.1471*

-81.5294*

-104.382*

-129.706*

-157.5*

-187.765*

-220.5*

12

5.52632*

2.21053*

-2.57895*

-8.84211*

-16.5789*

-25.7895*

-36.4737*

-48.6316*

-62.2632*

-77.3684*

-03.9474~

-112%

-131.526*

14

3.75*

1.5*

-1.75*%

-11.25*

-17.5*%

-24.75*

-33*

-42.25*

-52.5*%

-63.75*

-76*

-89.25*

16

2.73913*

1.09565*

-1.27826*

-4.38261*

-8.21739*

-12.7826*

-18.0783*

-24.1043*

-30.8609*

-38.3478*

-46.5652*

-55.513*

-65.1913*

18

0.84*

-0.98*

-3.36*

-6.3*

-90.8*

-13.86*

-18.48*

-23.66*

-29.4*

-35.7*

-42.56*

-49.98*

Table 5.9: Coupling constant piTikn
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20

1.66667*

0.666667*

-0.777778*

-2.66667*

5%

-71.77778*

=11

-14.6667*

-18.7778*

-23.3333*

-28.3333*

-33.7778*

-39.6667*

22

1.35776*

0.543103*

-0.633621*

-2.17241*

-4.07328*

-6.33621*

-8.96121*

-11.9483*

-15.2974*

-19.0086*

-23.0819*

-27.5172*

-32.3147*
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Table 5.10: Coupling constant B™2kn
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10

11

12

13

14

15

16

-54.7105*

-49.7368*

-42.5526*

-33.1579*

-21.5526*

-7.73684*

8.28947*

26.5263*

46.9737*

69.6316*

94.5*

121.579*

150.868*

-61.875*

-56.25*

-48.125*

-37.5*

-24.375*

-8.75*%

9.375*

30*

53.125*

78.75*

106.875*

137.5*

170.625*

-75.3261*

-68.4783*

-58.587*

-45.6522*

-29.6739*

-10.6522*

11.413*

36.5217*

64.6739*

95.8696*

130.109*

167.391*

207.717*

10

-103.95*

-94.5*

-80.85*

-63*

-40.95*

-14.7*

15.75*

50.4*

89.25*

132.3*

179.55*

231*

286.65*

Table 5.11: Coupling constant

Numerical Calculations

12

-192.5*

-175*

-149.722*

-116.667*

-75.8333*

-27.2222*

29.1667*

93.3333*

165.278*

245*

332.5*

427.778*

530.833*
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10

11

12

13

14

15

16

11

9.68024*

15.9894*

15.6375*

6.97454*

-7.92121*

-22.422*

-26.0408*

-8.30671*

28.6664*

13

15.0291*

20.H493*

15.8943*

3.19092*

-14.0255*

-27.9296*

-28.1223*

-5.85785*

33.4367*

15

20.0394*

23.4323*

15.6298*

-0.611462*

-19.6557*

-32.8054*

-29.8404~

-3.47309*

38.0873*

17

24.8466*

26.4245*

15.0951*

-4.36602*

-24.9489*

-37.2756*

-31.3437*

-1.14539*

42.6545*

Table 5.12: Coupling constant BJa&h

Numerical Calculations

19

29.5218*

29.17*

14.4062*

-8.05991~

-29.9979*

-41.4713*

-32.7115*

1.13458*

47.1613*
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10

11

12

13

14

15

16

11

27.8571*

21.4286»

12.1429»

-15»

-32.8571»

-53.5714»

-77.1429»

-103.571»

-132.857»

-165»

-200>»

-237.857»

Table 5.13: Coupling constant

13

12.7174»

9.78261»

5.54348»

-6.84783»

-15»

-24.4565»

-35.2174*

-47.2826»

-60.6522»

-75.3261»

-91.3043»

-108.587»

15

7.8»

3.4»

-4.2»

-9.2»

-15»

-21.6»

-29»

-37.2»

-46.2»

-56»

-66.6»

86

17

5.41667»

4.16667»

2.36111»

-2.91667»

-6.38889»

-10.4167»

-15*

-20.1389»

-25.8333»

-32.0833*

-38.8889»

-46.25»

o

n3raj.ii
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19

4.03448»

3.10345»

1.75862»

-2.17241»

-4.75862»

-7.75862*

-11.1724»

-15»

-19.2414»

-23.8966»

-28.9655»

-34.4483*
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equations (4.3.2). These changes cause our first set of amplitude equations to become

i]A'
- J:’ = 58.5582*"21"3 + iAy (- 5.83115A, - 4.29985"5 + 7.194034c

+29.4452A7 + 51.1306A8)

’EIT\ = 4.68466*/1i"43- a 2(15.401U4 + 25.9221A5+ 32.3569A6
+31.82897.7 + 23.3353.48 + 8.47426v49 - 8.04488Alo
-18.3342i4u - 12.0286712 + 21.679Ai3 + 89.4804AM
+183.628"N15 + 252.359yli6)

i o 38.258*M2 - 1A 3(18.3121/4, + 18.953645 + 7.9126L46

+14,8045"8 +47.6088™N9 + 36.0399Ai0 - 113.833.Aii)

Examining the 0(62) equation with our new ipo and i solutions we see that the r2
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amplitude equations are

BT-Z = -19976.5iAIA2A2+ 1071.72*AiA3A3+ A2A3i(20303A4 + 51835AS

+ 113671A6 + 189242A7 + 213132A8+ lleGsAog - 148447Ai0- 196615An

+ 122340712 + 181811Ai3 + 468326Ai4+ 739663Ai5+ 40635Ai6)

+ Ai*(lIB2A | + 3752A4As5 + 3626Ag + 2609A4A6 - 650A5A6

- 11885Ae - 386lA4A7 - 2203lAs5A7 - 51289A6A7- 39310Af

- 26589A4A 8- 56911A5A 8- 54560A6A 8+ 5492A7A 8 + 60256A"

- 38145A4A9 - 87431As5A9 - 84680A6A9+ 25669A7TA9+ 252976A8A9

+ 249185AQg - 47116 AsA10 - 100164A6A i0- 95384A7A 0+ 16849A8AI0

+ 237934AgAi0 + 235255A7?0- 61501A6Ah - 124460A7Anh - 115516A8An

+ 15814A9An + 263517AioAn + 258100A7?! - 79271A7Ai2- 155023A8Ai2

- 140744A9Ai2 + 16808A10Ai2 + 303524AUA 12 + 294062A?2 - 100023A8Ai3

- 190765A9A 13- 170121AioAi3+ 18753Au Ai3+ 352638A12A 13

+ 338217A?3- 123622A9%Au - 231320AiCA 14 - 203316An A i4

+ 21307Ai2Ai4+ 409073Ai3A i4 + 388881A7?4 - 150012Ai0AiS

- 27653lIAn Ai5- 24018IAi2Ai5+ 24329Ai3Ai5+ 472062Au Ai5

+ 445320A?S- 179167An Ai6- 326320Ai2Ai6- 280641Ai3Ai6

+ 27751A14A 16 + 541222Ai5A 6+ 507164A7?6)

Similar expressions were also determined for A2 and A3. In these expressions none of the
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coefficients were zero.
Lastly we examined the numbers involved for the AK derivatives. These derivatives
will tell us how the zonal flow terms react and interact. The conditions on the zonal flow

amplitudes take the form

A = * ~ i =
o AK{AXA*M ~ AiA M |, k=4,5,..., 16 (5.3.1)

where Aft, k= 4,5,..., 16 are given in Table 5.14.

From all these calculations we can clearly see which waves will interact and which
waves cannot do so. It can also be seenthat only certain zonal flow terms can be generated
starting out with this triad example and that within these zonal flow terms some will

interact more strongly.

5.4 Examining a second example

We will take another example to show that these results are not unique for the first
example. Taking the third triad from the table of the list of triads, Table 5.1, we now

examine (2,6), (3,8) and (5,7). Therefore for the rest of this chapter we shall assume that

{mi,rii) = (2,6), (m2,n2)= (3,8) and (ms,n3)= (5,7)

Examining the first part of this triad we can see that when m = 2,n = s the wave
in question is el’2X+" P& . The plot of the real part of this wave is given in Figure (5.5).
We also see that the other two waves M = 3,n = ¢ and M = 5,n = 7 produce the waves

ei(3A+-g*)Ps and e2sA+23£)ps reSpectively. The plot of the real part of these waves are
given in Figures (5.6) and (5.7)
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Table 5.14: The

10

14

15

16

Aft

7249.72*

14514.5*

20640.9*

24040.2*

23165.6*

15626.6*

8386.19*

-618.13*

1009.79*

-1009.82*

-2570.45*

-3481.92*

-3315.51*

Numerical Calculations

derivative values for the zonal flow amplitudes
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Figure 5.5: Rossby-Haurwitz wave e-(2A+ 21 ()P 2(sin (f) and the corresponding contour plot

Figure 5.6: Rossby-Haurwitz wave eiza+12*P | (sin €§ and the corresponding contour plot

a1
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Figure 5.7: Rossby-Haurwitz wave e”5A+28J) (sin <) and the corresponding contour plot

Considering these three waves together the triad which we are examining is

ip= Aiel@X+£~PQ + A2elBA+™ P 8

+ A3eiGX+™Vp?+ c.c. (5.4.1)

The plot of the real part of this triad is shown in Figure (5.8)

5.5 The generation of Zonal flow term s

5.5.1 0(5) interactions

Once again we examine the 0(5) interactions using the triad solution (5.4.1). Since all the
nrii terms are unique in our example none of the terms generated can produce zonal flow

at this order. Again we find resonant terms present. To get rid of these terms we insist
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Figure 5.8: Rossby-Haurwitz wave triad solution, equation (5.4.1) and the corresponding

contour plot

that

VN — F/AD/\
oTl 0.846313*™\2N3
— . = 0.431972*173
ar\
N = 1.19013MiA2
arl

W ith the resonant problem now solved and since we cannot generate zonal flow at this

order we next examine the 0(5'2) equation.

5.5.2 Deriving the ®i solution

The ipi solution is now determined, taking into account the amplitude conditions just
I WA

derived. To do this we need to determine values for Bnkn and bn?l-l%l. By running

programs in matliematica we get the following tables of values. Table 5.15 has the values

for and Table 5.16 contains values for and Table 5.17
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represents and Table 5.18 contains values for and Table

5.19 represents and and Table 5.20 represents and b™-3n3m

T Wi W
5 11.8004%  6.46154*
9 -116121» 494118
11 -255430% -2.21053*
13 -254484% -1.33333*

Table 5.15: Coupling constants and

n o lomiom2 umign)
5 -6.10832* -12.7273*
7 -12.762* -11.25*
9 -13.7224* -9.76744*
-3.11169* -8.4*

13 17.4001* -1.2*

Table 5.16: Coupling constants 2Z3™2™2 and b™ In2r{12

It is from these numbers that we can now determine the ipi solution. Using this

solution we can now consider the 0 (62) equation and investigate if nonzero zonal flow is

produced.
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no TR MR
8  -8.73962* -2.45*
10 -15.048* -0.868538*
12 -17.6126* -0.487562*
Table 5.17: Coupling constants and
n Djiﬂ‘ilij S umps
4  952663* -3.23077*
6 11.5972* -5.6*
10 -17.6525* 4.42105*
12 8.73274* 2%*
Table 5.18: Coupling constants and b™~™ 3
n VER
8 17.1202* 5.6*
10 -6.11945*  1.24907*
12 -18.3689* 0.643678*
14 -21.4695* 0.410256*

Table 5.19: Coupling constants B™2  and b™™[

5.5.3 0(S2) interactions

Numerical Calculations

Next we must investigate whether zonal flow can be generated at this order using these

numbers. We now substitute the expression found for ip\ into the 0(S2) equation and

9%
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n PR e
2 3.253961 4.66667»
4 -13.287: 7.63636a
8  16.0704» -5.6»
10 896317» -2.47059»
12 -21.6333» -1.47368»
14 7.67055» -1»

Table 5.20: Coupling constants B ™na™3 and b™£”n3

determine which terms, if any, cause resonance. If any of the terms that cause resonance
are zonal How terms then we have created zonal How at this order. We will see that for
this example we can produce resonant zonal How for n = 3 —» 19. Therefore we must now
reexamine our previous leading order solution and include these zonal flow terms in it.
With these changes made to the leading order solution the amplitude equations will also

be changed.

5.6 Leading order solution with zonal flow

As a result of the calculations with this second example the leading order solution which

we will consider is
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where
iPl = +Aj(r1)e-ir x-F)Pn/ ("),
—2mj
U = n.inj + iy
mj =0 Aj=Aj, j =45 unn12

nd =3 «5 =5 ne=17 ..., n2= 19

Numerical Calculations

Using this as our leading order solution the 0(8) equation is now slightly different

and we need to produce tables for further Brn/nfn expressions. These new expressions are

required to examine the Wl solution. These numbers are provided in Tables 5.21, 5.23

and 5.25 for B™f n,

Ki2nkn and ~ =nfon are given in Tables 5.22, 5.24 and 5.26 respectively.

Once again

we find that, when applying these changes to the0(5)equation the

and 5™ ® n respectively. The numbers produced for b™$kn,

ti

amplitude equations will be altered due to the generation of more resonatingterms.Due

to these changes the first set of amplitude equations are now

dAt
—- = 0.846313M2"3 -"i(10.2045"4 +5.5898"5 -4.67612>16

csti

+5.88905”7 + 63.913378)

Adl’\ = 0.4319727"3 - ("2(16.73974 + 13.7912~5 + 2.24964"6
+4.22128”7 + 32.2665A8 + 39.1953"9 - 87.6338.4i0)
Aari = 1.190132,4i"2 - (8.38064"4 - 10.3854"s - 23.5688"7

+30.1748"8 - 9.65395.A9)
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Table 5.21: Coupling constant B\n«n
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n
k 2 4 8 10 12 14
4 -8.75* -14.3182* 10.5* 4.63235» 2.763167 1.875»
5 -3.5* -5.72727* 4.2» 1.85294* 1.10526* 0.75»

6 4.08333* 6.68182* -4.9* -2.16176* -1.28947*  -0.875»
7 14» 22.9091» -16.8»  -7.41176» -4.42105» -3*

8 26.25» 42.9545» -31.5»  -13.8971» -8.28947»  -5.625*
9 40.8333? 66.8182» -49» -21.61767? -12.8947» -8.75»
10 57,75» 94.5» -69.3»  -30.5735» -18.2368» -12.375*
11 77« 126» -92.4»  -40.7647» -24.3158» -16.5»

12 98.5833* 161.318» -118.3» -52.1912* -31.1316» -21.125*

Table 5.22: Coupling constant pmfen
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10

4 6

0 8.85402*

10.179*  9.66525*

-2.75265i 0

-14.3836* -13.6191*

8.25674*  -14.1513*

0 13.8082*
0 0
0 0
0 0

10

9.49108*

14.4842*

11.5014*

0

-15.1383*

-23.274*

-11.2906*

23.4454*

0

Numerical Calculations

12

0

14.5744*

17.5655*

10.3152-i

-4.83894*

-20.8429*

-26.3563*

-9.72156*

27.9322*

Table 5.23: Coupling constant B{42,,
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k 4 6 10 12

4 -13.846d  -24* 18.9474*  8.57143*

5 -9.69231* -16.8 13.2632* 6*

6 -3.69231* -64* 505263* 2.28571*

7 415385  7.2* -568421* -2.57143*

8  13.8462* 24> -18.9474* -8.57143*

9  25.3846* 44 -34.7368* -15.7143*

10 38.7692* 672 -53.0526* -24*

1 54* 93.6* -73.8947* -33.4286*

12 710769/ 1232 -97.2632* -44*

Table 5.24: Coupling constant

n.2rikn
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Table 5.25: Coupling constant 73771
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10

11

12

-9.47692*

-5.6»

7.32308i

16.3692»

27.1385*

39.6308»

53.8462»

69.7846»

7.24706»

4.28235»

-5.6»

-12.5176»

-20.7529»

-30.3059»

-41.1765»

-53.3647»

11

3.24211»

1.91579»

-2.50526»

-5.6»

-9.28421»

-13.5579»

-18.4211*

-23.8737»

Table 5.26: Coupling constant

103

13

1.95556»

1.15556«

-1.51111»

-3.37778»

-5.6»

-8.17778»

-11.1111>»

-14.4»

n 3n kn

Numerical Calculations
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Using these new mio and tpi solutions we then find the r2 amplitude equations from
the 0(S2) equation. We determine expressions for these derivatives. They are once again
similar in structure to those derived in the first example and we find once again that the
coefficients are nonzero.

Finally using all these previous calculations we can determine the numbers for the
amplitude conditions for the zonal flow terms. The conditions on the zonal flow amplitudes

will take the form

%ﬂ = AK(AIA2A3-A 1A M k=4,5,...,12 (5.6.1)

where AN, k = 4,5,..., 12 are given in Table 5.27.

k A*

4 368.67*
5 407.9i
6 13221*
7 -126.19*
8 -6547*
9 -30.7*
10 292
1 0

12 0

Table 5.27: The r2 derivative values for the zonal flow amplitudes
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Conclusions

In this chapter we will discuss the main findings of this thesis. In the first chapter
we derived the vorticity equation for nondivergent planetary flow, the solutions of which
are shown to be Rossby-Haurwitz waves. In the derivation of this equation we clearly
stated all the assumptions we made. This makes it possible to decide if, and under what
conditions, the particular phenomenon under consideration can occur.

Using our assumptions we determined the vorticity equation for nondivergent plane-
tary flow. We found that one class of solutions to this equation are the Legendre polyno-
mials. We are interested in studying the interaction of Rossby-Haurwitz waves, so firstly
we study dyad interactions. Taking a dyad solution as our leading order solution, where

the two waves under consideration do not produce a third wave that grows in time, we
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find that these two waves cannot produce zonal flow at either O(<5) or 0(S2). This is
because any terms produced in the interactions of the two waves that have the possibility
of generating zonal flow, will have a zero coupling coefficient.

We next consider the case where two waves interact resonantly. We find that if two
waves interact with each other resonantly then one of the waves that should form part of
the correction term will actually grow in time. After a certain time it will grow to be as
large, and eventually larger, then the leading order terms. This would be a big problem.
To overcome this problem this term must form part of the leading order solution and hence
we conclude that we must commence our calculations with a triad solution. As a result
of this analysis we determine that to consider a resonantly interacting solution we must
consider a triad solution. The conditions on the wavemimbers, which Rossby-Haurwitz
waves must satisfy to form part of a triad solution, were also determined.

Next we examined the repercussions of starting our calculations using a triad solution.
We found that at 0(5) the problematic, resonance causing terms are still present. In order
to avoid this problem we determined conditions on the amplitudes of the Rossby-Haurwitz
waves, without which the asymptotic solution will not be valid. W ith these conditions
applied to the equations we see that zonal flow cannot be created at 0(5). We find that
we cannot generate zonal flow at 0(5) if we commence our calculations with either a dyad
or triad solution. This leads us to examine the 0(52) interactions.

When we examined the 0(52) interactions we found that we can in fact generate
zonal flow. We have proved that examining a triad solution up to 0(62) will produce zonal

flow. In the previous cases where the generation of zonal flow was examined through this
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resonance interaction mechanism it was found, by both Loesch [10] and Newell [14], that
a quartet of Rossby waves was required to produce zonal flow. Therefore, significantly, in
the spherical case one less wave is required to produce this phenomenon.

To preserve the expansion of ibwe must include these zonal flow terms in the leading
order solution. As a result we find that if we were to examine the vorticity equation for
nondivergent planetary flow up to 0(52) we must examine at least a quartet (including
zonal flow terms) of Rossby-Haurwitz waves. Using our new leading order solution we
derive different amplitude equations required at 0(5). It was found that zonal flow terms
form part of the amplitude equations. We see that the amplitudes of the zonal flow terms
themselves are not affected at this order, and that they do not gain or lose energy at
this order. Instead we find that they act as catalysts, helping the other waves to exchange
energy between them. At this orde; the zonal flow terms affect the phase of the amplitudes
of the Rossby-Haurwitz wave triad solution.

W ith these amplitude conditions taken into account the tpi solution is determined.
Using this ipi solution the 0(5'2) interactions are examined. Again we find that we need
to determine conditions on the amplitudes of the waves to ensure that resonance does not
occur. We discovered that the amplitudes of the zonal flows themselves are affected at this
order. We see that both the phase and the amplitudes of the waves of the triad solution
are affected by zonal flow, and that the amplitude of the zonal flow terms themselves are
altered. Therefore the generation and subsequent interactions of the zonal flow terms are
significant.

As previously mentioned, Loesch examined the capability of simple discrete Rossbhy
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waves to generate zonal flows through nonlinear resonant interaction [10]. Loesch con-
cludes that it is felt that the resonant interaction mechanism may be one of the important
mechanisms in strengthening and maintaining the mid-latitude jet against frictional dis-
sipation. He also suggests that by altering the structure of the mean flow, the interaction
mechanism affects the stability properties of the atmosphere, thereby influencing cycloge-
nesis and shorter term climate changes. As a result it is deemed that the generation of
zonal flow is important. We have found a different mechanism to generate zonal flow and
we have proved that one less wave is required to generate it, compared to the plane case.
In the last chapter we examined the above analysis numerically. We determined
the first few Rossby-Haurwitz triad solutions. The list of potential triad solutions shows
that very few waves can satisfy the conditions imposed on the wavenumbers. Taking
two different examples we showed both the resonant and nonresonant waves which were
generated. Using these waves we were able to determine which zonal flow waves were
consequently created. Unfortunately in the numerics there is no obvious pattern of the
formation of dominant terms but it clear that zonal flow can be created and that these
zonal flow waves do significantly affect the amplitude conditions on the triad solution.
This thesis is a comprehensive study of second order interactions of Rossby-Haurwitz
waves. We established the necessary conditions on the wavenumbers N and m for resonant
interactions to occur. Using a triad solution, we determined that we can create zonal flow
purely through an energy exchange mechanism. Hence, on the sphere, a triad solution
is solely required to generate zonal flow in comparison to the plane case where a quartet

solution is required.
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Properties of Legendre functions

In this appendix we derive some of the Legendre function properties which are used
over the course of the thesis. Following mainly Infeld [8], we derive a number of lesser
known facts about Legendre functions. These results, and in particular those in Appendix
B, are of crucial importance for the main part of this thesis. That is why we discuss them
in detail, rather than just referring to the literature.

In Chapter 3 we defined a function L!£. We want to find an association between this

function and the Legendre differential equation. This association is defined to be
cos“ 5 <™= = a™pP™ (A.0.)

In this appendix we shall look at some properties of these three functions and derive some

of the frequently used identities.
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A Id e ntities for P™

We shall firstly look at some properties of P™. We will define P as the unnormalised
Legendre function. The expression P is defined as the fully normalised solution.

To determine this set of solutions we examine equation (3.2.10). If we set
z = logtan (A.11)

and fill this into the aforementioned equation we obtain

cPP? + n{n + 1) _m2pm =0 (A L2)
dzz cosh z

Applying calculations similar to those which where done for L"* we notice that

~n + 1) tanhz 4- Nn + 1) tanhz — pPM = [(n+1)2—m2]P™ (A.13)
~ntanhz — tanhz + P™M = [n2- m2] P™ (A.19

If we multiply equation (A.1.4) by
d
ntanhz + —
dz

and set n = n —1in equation (A.1.3) we will find that

P™ x= tanhz + pT™ (A.1.5)

Similarly it can be shown that

PIT-l = ((« + 1) - ¢) Pz (A.1.6)
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We wish to ensure that P satisfies the same conditions as L. Therefore we require P

to be square integrable. Tins means that we want
/W d, = (A.1.7)
Examining this requirement we will find that

Ja [Pn)2# =J ((ntanhz- P™ AJ dn

=J Pw1 Natanhz + tanh2 — P”Li d/i

(n2- m2) 1 (PALI)2 dj,
Ja
Therefore we can see that to ensure that these functions are square integrable we require
P™ —[(n—m)(n + m)]~* tanhz —  P’Lj (A.1.8)

Using the definition for z in equation (A.1.1) it can be shown that

¢ = co< (AX9>
tanh« = sine/) (A.1.10)

Filling these into equation (A.1.8) we have
P™=1[(n —m)(n+m)]_Sin<f>—c o s P "L i (A.111)

If we also multiply equation (A.1.8) across by

ntanhz + E
dz

and apply the same substitutions we will find that
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If we could find a solution to this equation (A.1.2), then using both this solution and
the equations above will ensure that we will be able to determine any function P for any

given n and m. It can be shown that
P™ = cosh-m z

is in fact a solution to the equation. We must now force similar conditions to P as those

which were applied to L. This means that we require

[e]e]

(P%)2dz
®

r , 2m sinhzcosh- 2m+12 00 2m-2 1 2m+2

/ cosh“2m2 dz
7-00 2m -1 -00 2m -1 J

1
+

1

1

1

i

i

i

1

i

i
(]
o
(%2
-0
N
o
N

2m - 1

= r msh~ ~ ziz
2m —12m —3J @

2 2.4...2m —4.2m —2
1 3.5...2m —3.2m —1/

Applying this to our solution we find that a solution to the equation is

/135 ..2m-3.2m-n *
m "22.4...2m-42m -2

Using both this single solution when N and m are equal and the definition above, all valid

solutions for P™ can be determined.

A .2 Id e ntities for P™

In this section we shall examine the properties of P™. Prom Chapter 3 we know that

m = cos5 <Am (A2.1)
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It was also derived in this chapter that

Ln =tn +m + N(« - W)]~* + 5)tan ¢+ £71+1 (A.2.2)

So applying equation (A.2.1) to this equation we see that

cos5 = [(n+m 41)(n - m)]-S (Wi + 5) tan $+ COS2 4>P™+1
= [(M1+m+1)(n- m)]-5 (\~(m +I)CO’S\Z(FF)’ m+1 + Ccosi & 3
SP™ = [71+m + I)(n —m)]_2 ™-(m + 1) tan<E + P"I+1 (A.2.3)
Similarly it can be shown that
P™ ~ [M+m)(n- m*“ D]”5(- (m~ 1) tan™ — pm™~1 (A.2.9)
It can also be shown that
o

It follows from this definition that Pf’ is square integrable, i.e.

r [psf dM=i
i-8

Using the definition for P" and the definitions for P ”'- 1and P7i+1we can now determine

an expression for P for any given n and rn.
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A .3 Id e ntities for L,rrP

Finally in this appendix we shall examine some of the properties of L™. It is assumed

that the functions L™ are orthogonal. To show this we must show that

2 0 n/n'
/ (A.3.1)

2 | nonzero n=nl

This can be proved in the following way

/' L™M™ d4o= |\ H~ H- L™-1d¢
) 2

= f* LAH+H-L"dcP
3-\

=p (M(N"+1+1-m- DN2L"ALA"r1d4
.

Similarly we see that

r LZL%A<p= r H-H+L"-'L rlAt
) 7

= s+ 1) +i- (m- i)2) dcl)
J~i

These two equations must be equal. We see that the integrals are equal if and only if

n=n". 1f n " nlthen the integral itself must be zero. Hence we have proved equation
(A.3.1).

In the previous section it is assumed that P™ is the fully normalised form of P™,
Therefore if we assume that a™ is the correction to the normalisation of PT™ then we have
the identity

cos-1 HL ™= pP™ = gTMpT™ (A3.2)
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If we can determine an expression for a™ then we will be able to derive expressions for

Tin
nil’
Using the relationship between L™ and Pffl equation (A.1.12) and equation (A.3.2)
we find that
—~— cos- A = [{n- m)(n + m)]~2 fnsmcj)+ cos ~ 4™
an- : Y aY/ an

\(n —m)(n + m)1~2 (.
<; \Y/

+ é)s'in@cos_lz g)+ cos> (/)E \) Ln
2
Rearranging this equation we see that
Tip, a’?r_nla[(n —m)(n+ m)] 2 ~A(n+ |)sin0+ coscp-Aj L™ (A.3.3)
|

If we next examine equation (A.1.11) and apply similar calculations to it we will find

that
am , 1/ i/ \
Ln+i = [(n +1)(n+m+ 1) 2 ~(n+ %)sin</>- cos0— J L™ (A.3.4)
If we use these two expressions we can write in terms of L™ by two different

methods. Firstly we see that

rym+1 1/ d\
= AxL[(n-m)(n +m+ 2)]2 ~n + |)sin</>- cos$—1J] L™+ (A.3.5)

_ am+l [W—rn)(n+ m + 2)(n —m)(n + m + 1)] 2

A(n + s) sine/) —cos (m+ s)tan0 — L™ (A.35)

If we now apply this formula the other way around we will find that
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If these two equation are worked out and simplified down it can be shown that

nm-+l
Ln+i = a£§:[(n +m+2)(n+m+1)p
n

x (_sin  _(m+1>1L.. ( +j)cos K
an“r:l [n+rm+2)(n+m+1)] 2

X sin —(jn+?)Q™ —(n +5)cos L™ (A.3.8)

We can see therefore that a is independent of m. Setting n = m in equation (3.3.13) we

Lntl = 2n4-2)“2 (n43)tan$—  L"+H (A.3.9)
If we multiply this equation across by
(-<,+5>W+"n)
and apply the identity (3.3.7) we determine
N-(n4-5)tan 4-— ML\ = 2n +2)2L"+1

If we next set m + 1 =n in equation (A.3.5) we see that

=inH @2n+1)"5 N2+ i)sin<E-cos</>" L™ (A.3.10)
Using the identities for L™ and and comparing these equations we see that
anti _ _ /2n43\ 2
a, \2n 41/
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It is from this expression that we can nowdetermine expression for L”+1 and £€™ i,

g’(n + é¥srT1$ w'Lcos<f>E \1 (W= R gn - min m)[2n'-)F h i e (A-311)
™Mn+5)sin - cos L™ =
_ Mn-m+D(n+m+D2n+ )N (A 3.12)

If we now add equations (A.3.11) and (A.3.12) together we find that

MoKEy ~ " @n+D2?2+3 /
((h-m)En+m)V rm
_\N@7A+D@n- 1)/ i1 (A'3'13)

Multiplying equation (3.3.14) across by cos ¢&gives

wliich, when examined in relation to equation (A,3.13) gives

-rm /[(n+m+ D(n+m+ 2)\* +1

U*s*L" ~ ¢ 2n + (2» + 3) ) E£"+>
- ( lji~=*1 (A.3.14)
V (2n-)(2n +1) J n_I V

We can also determine an expression for cos OL™ in terms of L™2\ and L™+ =To do

this we examine equation (3.3.13) and set m = m - 1 Multiplying the resulting expression
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by cos 4>we obtain

[M-m + [)(n +m)]5 cos&L™ = (-(m - J)sSne/>- cos

= Nns4- sin (>—cos &~ L™-1 —(n + m) sin<L™~1
((@n + 1)(n 4-m 4 2)(fi +?n)'\ * rm_1.,rm-
o 2n+-3)—) L"+1 ~ (n+m
|
—>cos M = /Y404 m —Idhiyn |
@na-1)(2n —1) -
f{n-m +2){n-m +1)Y rm-i ,a,,Ci
“( @n+3)2n+1) ) £"+ (A'3'16)

Lastly to derive an expression for cos* €we will again use

L™ =[(n4m4&D(n- m)2 ™~(m4 - tangps -k +1

Multiplying this equation across by cos* £gives

cos* I/A™ = cos* (jiSf(n+m + 1)(n - m)]~2 ™~-(m 4-5) tan<€ 4 L™+1

[(N4-m 4 1)(n —m)]“ 5 (m4- NsinNcos*1 $+ cosl L™+1

= [(n4rm4&N(n —m)]-2 (m4\ - ) >4 oos* <Lt +1 (A.3.16)

These expressions will be used in the derivation of the conditions o1t n and m which are

necessary when examining triad interactions.
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A p p e ndix B

Derivation of conditions on n

In this appendix we shall examine the following integral

1 / dPmi dPm2\
/_pz,+m - im>K"' -fir) (B-0-i)

Following [8] and [23], we derive the necessary conditions on the wavenumbers n and m
without which the integral above would be zero. In deriving these conditions we will also
obtain an alternative expression for the above equation which will make the numerical
calculations in Chapter 5 a little easier to manage.

Examining this integral we know that /i = sin pand mi +rri2 = rn3 so applying these

to the expression we are examining we get

8 / j pm) dPni2\
/\ [imiPZ2-fi- - Sy -] A (B.0.2)
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It can be seen immediately from this expression that

e R R

We next want to derive a redundancy formula for this equation which shall be used in the

proof.

B .| Redundancy Form ula

It, is claimed that [18]

Amimenms /17 p/R3-m2mi  /_i\mi p-mim3H in i

"(t) 712713 =V X) Y «3712711 — VN J-'71in37i2

We can show that this redundancy formula holds through integration by parts. Firstly to

prove that

{B.1.2)

we want to show that

f / dP B dP ~ni2\
/wPZl(imZD ~AAL +im3PnB- A - ) # (B-L3)

Noting that mi 4-m2 = m3 we see that the expression that we are examining is

We now apply integration by parts to the first term in this expression.
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Letting

/ dPm3 (,Pm~\
u= PZ?P?3> =

and

N\
dv = d—'ﬁg{)o-}kh = vy =p™

results in the term under consideration becoming

AP |

1
pm 2pw-3 joo_ p"li pm 2 ptri.3 2

m ns oL I ni m J*=-=

From our definition of Legendre functions we know that
p,r(zD=0

Therefore the expression which we are examining is

§ Ip»i3 dipmi . Apm 3 W Pm?2
/ _p™ipm?2 ita _ p7ru prrts »2 j PVliprn2 »3 i pmipms »a Ji ri

ni vo Jninr 3dp "N n NN

as required.

Similarly it can be shown that

nrenm-tmj _ /
/ Jdn\ri2n3 © <~ W ¢ U732

To prove this identity we must show that

? / dP~mi dPma\
/ W S# )+
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Once again setting mi + m2 = m3s this reduces to examining

/? A p - 3HR2 L pprpnT8PMi 4 prrpnTdPmS)j 4 oo

This expression is the same as before and hence is also zero. Therefore we have derived

the desired result (B.1.1).

B .2 Reform ulation ofthe equation

We are interested in deriving a more manageable formula for equation (B.0.2), i.e.

If we replace L 1in equation (3.3.13) with an expression for P we have

cos2 >Pv+1 = [(n+ m+ [)(n —m)] 2 (m + ") tan &—— " cos2 OPnra-f_1
</Pm 1
.aqg = —[(n+m+ 1)(n —m)j2 Pw+1 —m tan fiP™

Filling this into (B.0.2) we see that

/i i dPmi dPm2\

/A Im2P™2P w3 [((ni+ mi+ )(m - m:)]*Pm~i+1 - mitan OP™1)
f

-emiP AP w3 (- [(n2+ m2+ I)(n2- m2)]J*Pm™2+1 - m2tan<€P™2) d/>

/-f

1
[(nz2+ m2+ 1)(n2- m2)y12 /  *miP{ 1P *3P~ 2+1 d<s

-[(ni+ mi+ 1) (ni-mijyj2 f* im2P™;P™3P i1 <E

We know from our definition of P™ that
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From MacRobert [12] we know that

=@n+1)1£(2q+ (B-2'2)
P 4

whereqg=n—1m—3,...1 or O
Using tiie.se identities we can find an expression for -Pr/i+1

pm+1l = m - i(2n + 1)\ * 2a y " ((g+ m)l(2g + 1)\ 5

((n-
\Y (n+m +1)! ) | (?-~M) 7

Applying all this to our expression we see that the equation which we want to examine is

i opz’ «

[ (2 —m2)I2n2 + N 2?2/ Q5+ 1))FE+ m2INA
Wi] Vv (n2+m 2)! / # \ (¢ —m2)! J

Xj f2 K 7pn7pr co*Pd<P

_.n2 f @i ~mi)!@ni + » ~Nep+ D(p + mi)!n
(i + mi)! I p o\ (p-W i)l /

where

¢c=n2—1n2—-3,....m2-I-1 or m2

p=nj—I,m —3,... mi+1 or mi

We shall examine one of the integrals above and determine conditions on n and m

in the process, i.e. we will examine

[ 2 P™MIP ?2P%? cos4>d0 (B.2.3)
f
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B.3 Manipulation of equation

We wish to find an alternative formulation for equation (B.2.3). Wc do this with the help
of the identities proved in Appendix A. Using these properties we will be able to rewrite
the expression as a sum of factors and as a result, it will be easier to study this expression
and determine conditions on this integral [4], [8].

Using the fact that

the equation under consideration, equation (B.2.3) can be rewritten as
(B.3.2)

Using equation (A.2.3) this becomes

= [(M3+ m3+ I)(n3- m3)] I * p£?+l (~{™3 + Dtantf>- — ~ L™ L1 &b
Noting that m\ + m2 = m3 this becomes

[{n34-m34-1)(n3- m3)] *

d<p

= [(«3 4-nm 3 + 1)(«3 - m 3)] a
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By substituting equation (3.3.13) derived in Chapter 3 into this expression this equation

becomes
f [ PM3L™IL™ dg>= [(n3+ m3+ |)(n3- ma)]"™*
2

Xf] PZA+ [+ "» +1)(2 - ¢, r+C)

+ [(ni +mi + )(ni =LM1+1L"2) <0 (B.3.3)
We can now repeat these calculations. We notice that we can write P33+l as
PnBHl = [("3-m3 - I)(nj, + m3+ 2)]-* *-(m34-2)tan0+ ~  PRI3+2

Using this we can repeat the above calculations. This method can be applied %3 —?n3

times which reduces the equation to

f2pm3rm2p u, f  (n3+ m3)l(g- m2M- mi)! vy

7|1 "™ 9 n 9 -m 3)!1(2n3)1(9+ m2)!(nl+mi)ly
n*r/3/ 3_m\ /(@+n3+m2- m3 -;)I(ni + -H)I\' 5
“~ v i )\Mgq-ns- m2+m3 +i)\(ni -mi - i)\)
X [ 2 pn3Lm2+3-m3-tLml+ " (B.3.4)
o'-f

We know that the superscript of the Legendre function must be less than or equal to

the subscript. Therefore we require
m\ 4-i < ni
and

m24-n3—m3— <(
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If we take §1— O this condition corresponds to requiring

m2+ n3- m3<q
W3 —mi < q
"3—9<ml5
If we start wit!) 1— 713 —m3 we will arrive at the same condition. Therefore from this
equation we can deduce that we require
«3 <m+q (B.3.5)

We know that q=n2—1,n2—3,... m2+ 1 or m2. Therefore the condition derived is
n3 <ni+71i2 (B.3.6)

To further reduce equation (B.3.4) we shall examine

i3 rm 2+ 013 —*»3*i

pr
713

Using equations (3.3.2) and (3.3.12) derived in Chapter 3, and equation (A.3.15) in Ap-

pendix A we can rewrite this expression as

pn$jrn2+nz-ni3-i _ (13 .2n3. 1\ ..., o875B»+«3-. 3..
N ® 1 2i2>4«. 273 |/ A

—ci c0s”3-1 0 cos fiL’3“1"1-1
= Clcos”3-1 B(C2ZE£37mi-i-1 +ca™irk'1)
= dcos'13'24>(c2L” 2mi_i 2+ c3L"3 Wl i2+c A ™ -'-2)
where czare constants. If we repeat this calculation n3 times and use the identity
con = (LIirTEm
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the equation reduces to

=¢83S?+ 2 + eee+ «

Filling this expansion into our equation we can see that

E £
2 PY% L?*+n3-m3-Lu"+idh=d [ 2

2

For equation (B.0.1) to be nonzero, we require that one of the abovo integrals is nonzero.

From Appendix A we know that L™ are orthogonal functions. Therefore to ensure that

this expression is nonzero we require
g+ n3—n =n\
where n is an even number. We also require that one of the following expressions are true

g+ n3 = n\

/ q-1-n3—2 = ni

Tidying up these two expression we see that for the integral under consideration to be

nonzero we require

Ni+9+n3 iseven (B.3.7)
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Comparing gand n2we can see that this condition reducesdown to thesum of the n’s

being odd. Asa resultthe conditions required for the integral tobenonzero are
M\ 472+ n3 isodd (B.3.8)
n2- iii <n3<ni +n2 (B.3.9)

With these set of conditions on the wavenumbers determined we return to the main

equation to continue the derivation.

J\ PEL™+H*-m*iL™"+idd= (128242 2"31) 2 1 [cos"3<L"2+n3-m3-iL"N1H &
m2 % --V- fo 2
n

=v/2cos'3(Fg dPp

where a 4-/? = 723. Applying equation (A.3.16) to this integral we get

/ *
2 cos"3<f>LglNd(p = [+ a + (=< - a)]-*

“f
X \J N-(a + | - n3)tan<+ cos"3 <BlgHlL"taf
=~[(a+a+1)[q- A]**
* />20 S - N N—~E—5H) <>+ ¢n, d@
= -Ha+a+Dh{q - -

X /rI cosB GLHl [(m + /3)(m -B + 1) p1 df> (B.3.10)
J~I1

If we apply this calculation g— a times we will find that

n pLl«ll # = :(_ir?2)f..(ni+mni.+ 9—n3)l(g+ <N \*
] 1 V(ni-9 +n3)!(m-/2)1(?-2)!(29)";

x J 2 cos"3 (L "-qdb
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Substituting the known expression for LJ into this equation it becomes

(ni + \i+g~ n3)l(g+a)! "2
(ni-g +n3)!(ni - GO\G- D@D\

Il f )5/ *“s™0«T* (B3L)

To examine this integral we now re-examine equation (3.3.3). Multiplying this equa-

tion across by cos* >and examining the first term gives
L pai , 051 45 | %O“éi 0
p 1A —1) cos*-2 C_DL”“C(I)—J/_f 2005* (PLMdp
oos* 2(GDER— )L™ —[n(n + 1) + j] cos* 4>L™ ah
Prom this equation we can see that
f 2 cos*-2 4>L"d 4= + / 2 d<$ (B.3.12)

If we now examine

\] coslcpay) = \] cos*0[(n+m+ND(n—m)] 2 (m+|)tan0 + —A (6 7o

[(h+m+ D —m)] 2/ MH
M

[+ m+ [)(n —m)] 5 /"t —{m —I+ ") sin“cos* 1<p™1d0
"y

[(m+ m+E=Dn —m)(n{m+ 2)(n —n—1)] 2 (m—Z+ |)

/ ) (m —I+ |) cos*-2 @+ —m —|) cos* i L™+2 p
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Applying equation (B.3.12) to this we get

= 1j-md. (m-01 + h\ f{n+m + 2)(n-m-1)
7 fCSO " Z+m+lyV (n+m+1)(n-m)

x [/ cos* 4>L™r2 dg> (B.3.13)
If we now apply this g~n|+ni times to equation (B.3.11) we find that

[* cos9+n3+rcbLAdS = (-1)1r g1 2n3)!! A

V(n3+ g-ni)!'t(9 + ni + n3)!ly

/ (2m)H(rti - n3+g- D!(ni +n3- gq—1)IN\1
\' (m+ n3- g)!(ni-n3+ g)!i(2ni - HII /
I

2 cosn3+9+i do (B.3.14)
-f

where n!! = n(n —2)(n —4)...20r 1 Ol = (- =1

Noting that

fi°*™+ + 4 N = (i i o A )2/_QCOS‘>+"+TM+1
/1.3 ...2ni+1\2 ((ni+g+n3)(ni+g+n3—2)...2.2
\ 2.24...2ni / (m+g+n3+1)(ni+g+n3—1)...31

gives a final expression for equation (B.3.14). Using this we can now see that

/_*¢c o s - = (-1 )" « ((2,+ 1)2ni+ *

X (2n3)!"(m + g -n 3- U (B.3.15)
(n83+ - ni)!l(ni+ g+ n3+ NI(ni+ n3— g)!!

Filling this into the main equation which we were examining (B.3.4),we find that

[> pmi pm, pm3 .d, = (ni+g—n3—I! [~2m + I)(2g + N(2n3+ 1)] *
J * ni q ns (n3+ g- ni)!(ni + g+ n3+ D)!(ni +n3- g)!!

/ (w3 + m3)I(rti - mQ!(g - m2)I(n3- m3)I\ 5
Vv (ni +mi)!'(g + m2)! /

x"y?3(-1)91 ni+mi+l(nl+ mi+ t)i(g+n3- mi- t)! ~ g~

n in3—m3—2)(g—n3+mi+ *)Kni _ mi —*)!
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Finally to bring this all together we have

nvV W

irn ( _ m2)42n2 1V*  ((2g+ 1)Ef+ wig)!\ 5
~ WM\ (n24-m2! [ yv  (fF—we) /

@+ ni - n3- HU[2ni + 1)(29 + D(2w3+ D)]*
(m + n3- g)l(ni Hg+ n34- )!(g + n3- nj)!!

/ (n34-ma)!(ni - mi)l(<?- mMm2)I(n3- m3)\ 5
\ 2(ni+mi)!l(g+ m2)! /

xny A3 (-1)7 WV 't3+mi+t(n1-{-mi +t)!(g + n3- mi - j)!
A J?3—m3 —i)\{q - n34-m\ 4- )I(7ij —m\ —i)!
((ni - 2ni)l2ni + D\* ~ (@p+ D(p + mQ!~=

m 2 Vv (n i+ m i)? 1 LAY Cp -m i)l )

(n24-p- 7i3- DU [2p 4 D(2na 4-1)(2n3 + 1)]*

(n34-p- 72)!(p4-n24-734-1)!1(n24-73 - p)l!
[ 3+ m3)l(p- mi)l(n2- m2!(rt3- 7M3)!N 2

X V 2(p4-mi)!(n24-m2)! )

X"y ?23(-1)" "a "Atw>>+*(n2 + m2+ i)I(p4-W3- m2- t}H g 17
M?i3- m3 —i)l(p ~7434-m2 + {)I(N2 — 2«2 — ¢)!

where

g =722~1,n2- 3,..., ?n2 4-1 or m2

p=rii—Il,ni—3,. midéa4-1 or m\
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