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A b s t r a c t

In recent years, the widespread use o f the WWW has brought information 

retrieval systems into the homes o f  many millions people. Today, we have access to 

many billions o f  documents (web pages) and have (free-of-charge) access to 

powerful, fast and highly efficient search facilities over these documents provided by 

search engines such as Google. The "first generation" o f web search engines 

addressed the engineering problems o f web spidering and efficient searching for large 

numbers o f both users and documents, but they did not innovate much in the 

approaches taken to searching.

Recently, however, linkage analysis has been incorporated into search 

engine ranking strategies. Anecdotally, linkage analysis appears to have improved 

retrieval effectiveness o f  web search, yet there is little scientific evidence in support 

o f  the claims for better quality retrieval, which is surprising. Participants in the three 

most recent TREC conferences (1999, 2000 and 2001) have been invited to perform 

benchmarking o f information retrieval systems on web data and have had the option 

o f  using linkage information as part o f their retrieval strategies. The general 

consensus from the experiments o f these participants is that linkage information has 

not yet been successfully incorporated into conventional retrieval strategies.

In this thesis, we present our research into the field o f  linkage-based 

retrieval o f web documents. We illustrate that (moderate) improvements in retrieval 

performance is possible if the undedying test collection contains a higher link density 

than the test collections used in the three most recent TREC conferences. We 

examine the linkage structure o f live data from the WWW and coupled with our 

findings from crawling sections o f the WWW we present a list o f  five requirements 

for a test collection which is to faithfully support experiments into linkage-based 

retrieval o f  documents from the WWW. We also present some o f our own, new, 

vanants on linkage-based web retrieval and evaluate their performance in comparison 

to the approaches o f others.
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C h a p t e r  1

IN T R O D U C IN G  IN FO R M A TIO N  RETRIEVAL

T h i s  c h a p te r  m i l  d e f in e  th e  c o n t e x t  w i th in  w h ic h  w e  a re  w o r k in g  b y  b r ie f ly  d e sc r ib in g  In fo r m a t io n  

R e t r i e v a l  a n d  to  a  le s s e r  e x t e n t  D a t a B a s e  M a n a g e m e n t  S y s te m s .  W e  th e n  d is c u s s  c o m m o n  te r m  

w e ig h tin g  s tr a te g ie s  be fo re  w e  d esc r ib e  th e  a r c h ite c tu re  o f  a  s im p le  in fo r m a t io n  r e tr ie v a l  s y s te m . W e  

d is t in g u is h  b e tw een  th e  tw o  b r o a d  ty p e s  o f  r e tr ie v a l  s y s te m  f o u n d  o n  th e  W W W  a n d  f i n a l l y ,  w e  

descr ib e  th e  o b je c tive  o f  th e  resea rch  u n d e r ta k e n  a n d  p r e s e n te d  i n  th i s  th e s is .

1.1 In t r o d u c t io n  t o  In f o r m a t io n  Retrieval

Information Retrieval (IR) has been receiving increasing levels o f  attention since the end o f 

the Second World War. In the immediate aftermath o f the war, the US government began to pump 

huge amounts o f money into research and development with a corresponding increase in the volume 

o f scientific literature being produced [Garfield, 01]. The need to have search and retrieval facilities 

provided over this literature, along with a growing dissatisfaction with the then current manual 

processes and the hope that automation might hold the answers led to the development of a new field 

o f research, which we now call Information Retrieval.

In principle, the problem o f  information storage and retrieval is simple [van Rijsbergen, 79]. 

I f  a person has an information need that can be fulfilled from reading each document in a given set o f 

documents, retaining documents containing relevant material and discarding all others, this is called 

manual information retrieval. Manual information retrieval is clearly impractical in the majority o f  

cases. In a library scenario, an individual may be seeking information contained between die covers of 

only a handful o f  books contained within a vast library. A person has neither the time nor the

inclination to read a whole document collection to fulfill an information requirement. Therefore, it

follows that the advent o f  computer technology from the mid-40s onwards posed possibilities for 

automatic information retrieval as opposed to manual information retrieval. Over half a century 

onwards, we are still grappling with the problems o f effective information retrieval, although issues o f 

scale have been all but solved for reasonable (in the billions) sized document collections.

- 1 -



1.2 Wh a t  is  In f o r m a t io n  Re t r ie v a l?

Information Retrieval is the name given to a process that stores, retrieves and provides 

maintenance functions over some body o f information. Information in this context can be composed 

o f text, images, audio, video and other multimedia objects. As mentioned, IR may be either manual or 

automatic, with automatic IR being central to this dissertation.

Although it seems a common-sense notion, it is important to distinguish between data 

retrieval and information retrieval. Data retrieval is concerned with looking for an exact match 

between queries and documents while information retrieval mostly seeks a partial match and then 

from this partial match, a small (manageable) number o f the best documents are selected (best match) 

[van Rijsbergen, 79]. Data retrieval is best exemplified by a user’s interaction with a DBMS. Here 

there is no ambiguity in the query, which will generally be expressed using some artificial query 

language such as SQL, and each query will only generate one possible (complete and exact-matching) 

set o f results based on the underlying data. Ranking o f this set o f  results is not possible (unless 

defined using ‘sort by’ or ‘order by’ commands within the query) as all results are equally valid. For 

example, the following query to a DBMS:

SELECT author FROM books WHERE title = 'Information Retrieval'

can only have one possible answer, which is a listing o f all the authors who have written books called 

‘Information Retrieval’. We will briefly discuss DBMSs later in this chapter.

Information retrieval, on the other hand, is best exemplified by a user’s search engine 

query. Table 1.1 shows ten randomly chosen queries, extracted from a query log comprised o f queries 

that were submitted to the Excite1 Search Engine [EXCITE, 02] in 1999.

horoscope W ho is Jimi Hendrix

seven kingdoms hints Beard

United States Post Office Electrical engineering

time zone map us gift wrap wrapping paper

Personals Shampoo making

Table 1.1 : Information Retrieval example queries.

1 Excite has since ceased to provide search facilities over it’s own index. Rather it is now a metasearch engine.



Automatic information retrieval removes the human from the relevance ranking process, 

leaving the human only to compose a query and examine the results automatically produced by the 

retrieval system.

A further distinction can be made with respect to information retrieval, which, although it 

does not apply to this thesis directly, is still important to make. This distinction is between 

information retrieval and document retrieval. In the strictest sense, information retrieval could refer to 

the retrieval of minimal information (such as Question Answering systems), which satisfies a user’s 

query. In most information retrieval systems, however, the unit o f retrieval is the document (in a 

ranked list) and not some smaller unit o f information, resulting in the need for a user to scan a 

document in order to locate the required information. Techniques such as highlighting query terms in 

the result document to aid the user in locating the relevant information are commonplace, but the 

underlying unit o f retrieval is still the document. I t is our belief that a true IR system will attempt to 

provide the user with precisely the information (answers) that the user is requesting. A good example 

o f  such a system is the IO N A U T Question Answering system [IONAUT, 02] which attempts to 

answer a user’s query with specific content, extracted automatically from a collection o f web 

documents. An example o f IO N A UT is shown in Figure 1.1. The query presented to the systems was 

“ W h o  w e re  th e  m e m b e r s  o f  th e  g r o u p  Q u e e n T  and the top ranked (four) names returned completely 

answered the query by identifying the four members of the rock group.

 ̂ . # jj a . a  -i .4 j  a  .
M k  su o  H vm t s u e d ,  r« v o * n  Kuw-/ Ha.I t 'A  VJcrvfO'U--

lpi//—w»«.'<HVK»t com:<M00/cgi-bin/aqua-SO/brow»e?id"JBOLS6&list"PERSON&entHv—55 Link» ht<rl

! w  vV*h » fc S M rA M *  0 * * 9 «  Info « (jhU p • ^---- -- ---------------— -----——---------- ;-- ---- —...—...—_____ ____
Re skills fo r query. Who were Oil- members of ¿he group Queen?

¡Who ware Ihe members of Ihe gmup Queen"?

alt music y  l.ist oFKnown Newsgroups Progressive band discussions nor is it for Progressive Metal discussions ( there 
are other newsgroups foi' those topics) “Ken Bibb alt music psychedelic Music appropriate to the psychedelic 
state ) 11 Includes discussions o f  classic 1 psychedelia ( early Floyd , 13 th Floor Elevators , Velvet Underground . the 
Dead . etc ) as well as more modem music ( Butthole Surfers , Legendary Pink Dots , Ozncs , etc ) Hopefully not 
too much Floyd /  Dead chat as they have their own "loups I " Tom Rjtchford alt music queeu The music of 
Queen and its lrteuibeis)"  This gioup is for discussion of the band Queen and the related solo piojects by uieinbers 
Freddie Mercury , jii M ay, Roger Taylor and John Deacon '  Shen alt music ramones An Aniencan punk 
gi ouii , founded in Uie 1970 s , yet slill active today They were featuied in the movie " Rock ' n 1 Roll High School11 
and their best known songs include " Sheena Is a Punk Rocker,"  * Blitzkrieg Bop ,"  and " Pet Sematary '  alt 
music Rocker , St quot

____________‘ *' _________________________

Figure 1.1 : IONAUT, a question answering system



It is clearly visible that IO N A U T has extracted the required information from documents 

and presented just this information to the user, thus removing the requirement for the user to follow 

up on a query with a short phase o f document browsing to locate the desired information. Based on 

this observation, the Figure 1.2 outlines a simple breakdown o f retrieval techniques.

Figure 1.2 : A basic breakdown o f retrieval techniques

It would be possible to include Question Answering systems as a third form of Search and 

Retrieval in Figure 1.2 as it is a large field if research in its own right, however this was not the option 

we have taken in describing Information Retrieval.

The term information retrieval (or IR  as it will often be written) as used in this dissertation 

will primarily refer to the retrieval o f unstructured data (in the form o f relevant documents) o f a 

textual nature. O f course, IR may refer to the retrieval o f  other forms o f information such as image, 

video or audio, but these are not the focus o f  this dissertation. The textual data that we refer to is 

comprised o f units, which are commonly referred to as documents. These documents will be grouped 

together into a collection, or a corpus o f documents, which is referred to as a dataset. This collection 

may be static, as is the case with snapshot datasets such as those used by TREC, or dynamic as would 

be the case with a current collection o f news articles or the WWW in general.

Before the 90s, IR  systems were used to provide retrieval services over mostly static 

datasets and most o f  the experiment supporting datasets were small scale and static in nature. Since 

the emergence o f the Internet and particularly the WWW, people are demanding retrieval facilities 

over huge numbers o f WWW documents. IR systems that provide these services on the WWW are 

known as search engines and the largest is currently Google [GOOGLE, 02], which indexes in the 

region o f  2 billion (web page) documents. Due to the nature o f the WWW, these documents are in a 

constant state o f change and there are new documents being added constantly.



1.3 Co m p o n e n t s  of  IR  System s

Figure 1.3 illustrates, in a very simplistic manner, the overall construction o f a typical IR 

system. As can be seen, the system consists o f  three components: input, processor and output.

PI Under System Control 

Figure 1.3 : Structure o f a typicaL IR System, based on [van Rijsbergen, 79]

Looking at the inputs into an IR system, the primary task is to convert each input (both 

queries and documents) into an internal representation for a computer to use. The vast majority of IR 

systems will only store a representation o f their inputs, as opposed to the full documents and queries. 

This is a one-way process, in that it is not possible to convert the internal representation of a 

document back into the original document. This internal representation o f  each document will (in 

m ost cases) take the form o f  a document vector2 o f significant words. The method o f selecting and 

(perhaps) weighting these significant words will be discussed later in this chapter. A second phase o f 

input could allow a user to modify the articulation o f  the information need in light of previous output 

o f  the system. This process is called ‘(relevance) feedback’ and may be done both automatically 

(without the user even knowing that the feedback process is taking place) and manually.

The next com ponent o f a typical IR  system is the processor. The processor is concerned 

with generating the memory and data structures in such a way as to achieve speedy, efficient and 

effective results in response to a user’s query input. The processor will accept the internal 

representation o f the query and calculate the documents that best match the user’s information need 

as articulated by the query (input).

Finally we examine the output component, which is primarily composed of a set o f 

documents which are returned (from the processor) in fulfillment o f a user’s information requirement.

2 Document Vector : a basic description of a document vector is that it consists o f a list o f  unique words extracted from a 
document that are considered to be significant and useful for the IR process.



This output may consist o f  a set o f  unranked document identifiers or the identifiers may be ranked in 

decreasing order o f relevance.

We are now in a position to outline the steps an IR system must carry out in order to 

operate effectively.

1.3.1 S T E P S  I N  P E R F O R M I N G  I N F O R M A T I O N  R E T R IE V A L

We can identify four distinct steps that a typical IR system m ust follow in order to be able 

to fulfill its task [Agosti, 00]. These are:

1.3.1.1 D o c u m e n t  Ga t h e r in g

This is the process o f  gathering the documents that are to form the core content of the IR 

system. I f  working with a fixed and readily available set o f documents, then this is simply a process o f 

knowing the location o f each file on disk and gathering them before converting them into a 

searchable internal representation (d o c u m e n t  i n d e x i n g ,  but it may be necessary to actively seek out 

content for the indexing stage, as is the case with search engines. In this stage also, some parsing o f 

unnecessary content may take place. For example:

• Unnecessary mark-up o f  the text may be removed.

• Many frequently occurring words that are o f no benefit to the automatic retrieval process 

may be removed. These words are called stopwords and we will discuss stopwords in greater 

detail later in this chapter.

• Terms within documents may be truncated to term stems (stemming).

1.3.1.2 D o c u m e n t  In d e x in g

The documents gathered in the document gathering phase are converted into a fast 

searchable internal representation This will usually be implemented using some programming 

language dependent data structures which provide fast searching facilities such as arraylists, vectors, 

sets, multi-sets, maps or multi-maps.

1.3.1.3 Se a r c h in g

This process involves accepting a query, processing it, finding possibly relevant documents, 

calculating a the degree o f similarity between each document and the query for each possibly relevant 

document, sorting the set o f  relevant documents and returning these to the user in groups (usually) of



10. All this has to be done as efficiently and quickly as possible. For example, the IR system that 

operates as the Google search engine accepts and processes (as o f July 02) [GOOGLE, 02]:

• 150 million queries per day,

• 6.25 million per hour.

• 105,000 per minute.

• 1,700 per second.

1.3.1.4 D o c u m e n t  M a n a g e m e n t

In the previous three steps we have gathered documents, indexed them and are now 

allowing users to search their content. However, in many scenarios such as web searching, the 

documents that have been indexed will be unstable and constantly changing. Consequently, we must 

validate that:

• The documents that comprise the internal representation o f the document 

collection are as up-to-date as possible.

• The documents included in the internal representation are actually still in existence. 

This will involve re-gathering documents, at periodic intervals, or even completely

rebuilding the internal representation o f the document collection, which necessitates returning back to 

the document gathering phase and starting again.

1.4 A p p r o a c h e s  t o  A u t o m a t i c  IR
In order for an automatic IR  system to operate effectively, documents must be stored in 

some efficient internal representation within a computer system. In general, the internal 

representation o f  documents will differ from the original form o f  the documents, although in the early 

days o f IR  this was not the case. The reason for the different internal representation is that it would 

be too inefficient and slow to expect a retrieval system to engage in a process o f full-text-scanning o f 

all the documents in its index each time a query is processed.

Consequently, we will pre-process each document, often removing formatting and 

unnecessary terms that do not aid the indexing and retrieval process. However, the question arises,



how do we know what terms are unnecessary?. The solution lies in the work o f Luhn, upon which 

much o f the work on automatic text analysis has been based. Luhn [Luhn, 58] states that “It is 

proposed that the frequency o f  word occurrence in an article furnished a useful measurement of word 

significance” . His assumption is that we can use term frequency information to extract words (and 

sentences) to represent a document. His addition o f  an upper bound and lower bound on the 

frequency o f acceptable terms allows us to extract only the significant terms from a document to be 

included in an index. L etting /be  the frequency o f occurrence o f terms in a document and rb e  their 

rank order (the order o f their frequency o f occurrence) and plotting this on the graph in Figure 1.4 we 

get the following hyperbolic curve.

Upper Lower
cutoff cutoff

Figure 1.4 : Hyperbolic curve relating term occurrence frequency with rank order

This curve demonstrates Z ip f s Law [Zipf, 32], [Miller, 96], which states that:

frequ en cy(f)  x rank(r)  =  constant ( l . l )

Based on Luhn’s findings we can make two observations, that:

• Terms below the lower bound are considered too rare to be o f benefit to the 

retrieval process.

• Terms above the upper bound are considered to occur too frequently to be of 

benefit.



This second observation leads to the process o f  stopword3 removal, which, when 

converting a document from it’s input format into the internal representation required by the 

processor, automatically removes high frequency words from the document and thus these words are 

never represented in the document vector. Table 1.2 shows a portion o f  such a stopword list, and 

demonstrates the kinds o f words that are involved. The advantages o f this approach are twofold; 

firstly the non-significant words are removed and will thus not interfere with retrieval, and secondly, 

since stopwords are the m ost frequently occurring words, the computer memory requirement for the 

internal representation for each document will be reduced by 30-50 percent for conventional texts.

a across against alone
about after all along
above again almost also

Table 1.2 : Example o f  high-frequency stopwords.

Therefore examining the occurrence frequency characteristics o f terms in text allows us to state that:

• The m ost frequent words are function words.

• The least frequent words are obscure.

• The mid-range frequency words are the content-bearing ones.

Therefore we should index text by the words with mid-range frequencies throughout the 

entire document collection (dataset).

Some additional processing may be done on the document terms prior to indexing, such as 

suffix removal (stemming). It should be noted that the process through which a document is 

converted into its internal representation is also applied to each query that is executed using the 

retrieval system. This is necessary in order to achieve proper matches between the internal 

representations o f the queries and the documents.

3 Stopwords : high frequency words which occur so often that they are o f no benefit to the retrieval process.



The method that we employ to index the internal document representations can be seen as 

consisting o f a number o f alternative approaches. Broadly these can be divided into the Classical 

models, the Structured models and die Browsing models, Figure 1.5 illustrates a taxonomy o f IR 

models, with the highlighted models being o f interest to us.

1.5 In d e x  T e r m  W e ig h t in g  t e c h n iq u e s

Figure 1.5 : A  taxonomy o f  IR models [Baeza-Yates & Ribeiro-Neto, 99]

It is notable that the user task is divided into being either one o f retrieval or browsing. This 

is especially the case on the WWW where a user often uses a retrieval system as a means o f identifying 

relevant documents and then begins a browsing task to locate the required information. In effect, 

both tasks are being used interchangeably and in harmony with each other on the WWW.

In this dissertation, we are interested in the classical models o f IR, which are the Boolean, 

Vector Space and Probabilistic models. In the boolean model documents are represented as sets of 

index terms and thus the model can be said to be set-theoretic. In the vector space model documents 

and queries are represented as vectors in a ¿-dimensional space {t being die number o f  unique indexed 

terms in the collection) and thus the model can be described as being algebraic in nature. Finally, in 

the probabilistic model the framework for the modeling o f both documents and queries is based on 

probability theory and thus is described as being probabilistic in nature.

Recall that each document is processed resulting in a transformation from its original form 

into some internal representation for use by the retrieval engine. The structure o f this internal 

representation will differ somewhat depending on the requirements o f the model of IR that the 

system implements. We will now discuss die three classical models o f  IR.



1.5.1 T h e  B o o l e a n  M o d e l  o f  IR

The Boolean model is a simple retrieval model based on set theory and Boolean algebra and 

involves the query being formulated as a Boolean combination o f terms. This allows for the use o f  the 

classical Boolean operators AND, N O T  and OR. For example a query could be formulated thus : 

“java A N D  programming N O T  coffee” . In this case the documents that satisfy the query will contain 

the word java and programming, while any document that contains the word coffee will not be 

retrieved. From a developers perspective one could visualise the approach by separating the query 

terms into n atomic units, executing searches based on each individual unit and returning n sets of 

documents as one result set. At this point, the Boolean operator constraints within the query could be 

applied to produce the final set o f relevant documents. For example, in Figure 1.6, the result for a 

query (A and  B ) an d  n o t  C is shown:

Figure 1.6 : The Boolean model o f  IR

One big disadvantage o f the Boolean model is that its retrieval strategy is based on binary 

decision-making, that is, a document is either relevant or not relevant and this does not adequately 

support ranked output, leading to retrieval performance degradation. Thus, the Boolean model has 

many o f the characteristics o f  a data retrieval model as opposed to an IR model. In addition the 

Boolean model does not make use o f term weights, each term is given a binary weighting within a 

document (present or absent) [Cooper, 88]. Term  weighting allows an importance value to be applied 

to each term within a document reflecting its importance within that document (and within the 

collection as a whole) which can bring with it a substantial improvement in retrieval performance.

1.5.2 T h e  V e c t o r  Spa c e  M o d e l

The vector model4 [Salton et al., 75], which was first introduced by Salton in the late 60s, 

assigns non-binary weighting to each term in both queries and documents. These non-binary term

4 Vector m od el: often referred to as the Vector Space model.



weights are ultimately used to calculate the degree o f similarity between a user’s query and the 

documents indexed by the processor, thus producing ranked output o f results. The goal o f  ranked 

output is that the most-relevant documents will be ranked highest and hopefully satisfy a user’s 

information requirement without necessitating a user browsing through a large set o f relevant 

documents in an attempt to find relevant content.

In the vector space model, a document 4  and a query q are represented as t-dimensional 

vectors (t being the number o f terms in the index and the consequent dimensionality of the vector 

space) as shown in Figure 1.7. The degree o f similarity o f  the document dj with regard to the query q 

is calculated as the correlation (cosine o f the angle 0) between the two vectors. It should be obvious 

that dj is more relevant to q than d, due to the relative size o f  the angles between the vectors.

d,
f

So, instead o f attempting to predict if a document is relevant or not, the vector space model 

simply ranks the documents according to their degree o f  similarity to the query. Time constraints in a 

real-world implementation may not support this for large document collections so it is probable that a 

subset o f  possibly relevant documents would be chosen to rank and this subset could consist o f the 

documents that contain at least one of, or possibly all of, the query terms.

We have not yet specified how index terms are weighted, but there are many approaches 

that can be successfully applied. The most common approach views the retrieval problem as one o f 

clustering (relevant and not relevant) and integrates two factors into die weighting process; the t f  

factor and the ^factor.

The t f  (term frequency) factor used to measure the raw frequency o f a term inside a 

document, is simply a count o f  the number o f occurrences o f that term in the document and provides 

one measure o f  how well that term describes the document’s contents.



The d f  (document frequency) factor is used to calculate how rarely a term occurs across a 

document collection and it is the inverse o f the ^ fa c to r  (called idj) that is used in the calculation. The 

motivation for incorporating an id j measure is that terms that occur in many documents will not be 

very useful for distinguishing between relevant and non-relevant documents and it is beneficial for 

retrieval performance to take account of this evidence in the ranking process.

Perhaps the best known example (of many) o f  a term weighting scheme based on the 

vector model is called tf-idf and is calculated using the following formula where:

wy represents the weight assigned to a term Tj in a document Dt.
tfy — frequency o f term Tj in document D t

N — number o f documents in collection.

dfj =  number o f documents where term Tj occurs at least once.

w ij = tfij • %
r N ^  

d f)
(1.2)

However, this approach is rather simplistic and does not take into account the length o f the 

document. I f  we compare the t f  scores o f terms in long and in short documents, they will differ and 

rank longer documents above shorter documents, due to higher t f  values in the longer documents. 

Therefore, the Rvalues should be normalized with respect to the length o f  the documents. There are 

many ways o f doing this from simply using 1 +ln(tf) as in formula (1.3) below, or normalizing ¿/'based 

on the max t f  'm the document (1.4), or more complex techniques such as Singhal’s pivoted document 

length normalization [Singhal et al., 96],

df)\  ■' 1 J
(1.3)

w . =
{  tf, ■ logMmax, I) J kJ (1.4)



Despite its simplicity, the vector space model improves retrieval performance over Boolean IR by 

providing ranked output, sorted by the degree o f similarity o f document to query, which is difficult to 

improve on without some form o f relevance feedback or query expansion such as Rocchio’s approach 

which we will describe later in this chapter. Versions o f  the vector space model are used in the 

majority o f Search Engines on the WWW today, as the tf-idf is well suited to retrieval o f WWW 

documents although recent problems of keyword spamming have highlighted some shortcomings.

1.5.3 T h e  P r o b a b il ist ic  M o d e l

The Probabilistic modeljRobertson & Sparck Jones, 76], [Robertson, 77], introduced in the 

70’s, attempts to capture the problem o f  content retrieval within a probabilistic framework. Given a 

query q, the probabilistic model assigns to each document d; a measure o f its similarity to the query 

based on the ratio P(dj relevant to q) /  P (dj not relevant to q) which computes the odds (probability) o f 

document dj being relevant to q. Many formulae can be used to implement the probabilistic model, but 

one o f the m ost commonly used formulae is known as BM255 [Walker et al., 97] and it uses different 

formulae to index both documents and queries.

To index documents:

W(ij) assigned to a term in a document is given b y :

( \ - b )  + b
avdl

(1.5)

With tfg indicating the within-document frequency o f  term j  in document i  and b, k i  are 

parameters. K  represents the ratio between the length o f document i  measured by li (sum o f tQ  and 

the collection mean, denoted by avdl.

To index a query:

W(ij) assigned to a query term is given b y :

w = V* . l n \ ( N - d f j / d f ]  (1.6)

5 In BM25, BM stands for Best Match.



where tfqi indicates search term frequency, dfj indicates collection-wide term frequency, N  is the 

number o f  documents in die collection and k j  is another parameter. Best result parameters have been 

determined by experimentation for different collection sizes and statistical distributions.

1.6 O t h e r  I s s u e s  i n  I n f o r m a t i o n  R e t r i e v a l

There are a large number o f  other issues in IR that we have not looked at, but two o f the 

m ost important are the concepts o f relevance feedback and query expansion.

1.6.1 R e l e v a n c e  F e e d b a c k

Relevance feedback is the concept o f  feeding back into a system, some relevance 

judgments from previous results that the system can tiien use to reformulate the search in an attempt 

to improve retrieval performance. These relevance judgments will typically have been made by the 

user who will have received the top ten ranked documents in response to a search. The user is 

encouraged to identify to the system which documents are relevant to the infonnation need so that 

these documents may be used in the process o f relevance feedback.

In its simplest form, relevance feedback can be used to re-compute the weights o f  query 

terms based on their frequencies o f  occurrence in relevant documents. In more complex forms, we 

can select the m ost representative terms from the documents that the user has identified as being 

relevant and add them to the query to produce a new query and using the new query run the search 

again and produce new documents for the user, and so on until the user is happy. A form o f tf-idf is 

often used to weight the query terms.

Typically, during a search, a user may find no more than a handful o f relevant documents at 

all, so using this scant information on say, 3 or 5 or 10 known relevant documents could be termed 

statistically unreliable, but implementations show it does improve effectiveness overall. Relevance 

feedback is tied in closely with the concept of query expansion.



1.6.2 Q u e r y  E x p a n s io n

Query expansion is the name given to the process o f expanding a query to incorporate 

more terms, either manually or automatically. As a search proceeds, users’ information needs shift or 

are refined or evolve, depending on the task, but they do change. Allowing the user to expand a query 

during a search session helps reflect this. As relevant documents are discovered, these can be used as a 

source o f new query terms to add to the original query with the overall goal o f  improving retrieval 

performance.

Probably the most famous method o f automatic query expansion was developed by J.J. 

Rocchio Jnr, back in the mid 60s [Rocchio, 65]. It is simply known as Rocchio and it works like this:

1. Process a user’s query in the normal manner and return the top twenty documents.

2. Convert the original query into a weighted query.

3. Add the top twenty weighted terms from the top twenty documents (calculated using a

formula similar to that below) including their weights to the query giving us a new

expanded, weighted query.

The weights for the document terms are calculated using a formula similar to [Singhal

et al, 98], where 0.2, 0.8 are parameters and dl, adlmi&t to the docum ent length and average document 

length (in bytes) respectively:

This new query is passed back to the retrieval processor and the new results passed back to 

the user in the normal manner as the result-set o f ranked documents o f  the search.

f -

adl



1.7 T h e  A r c h it e c t u r e  o f  a  s im p l e  In f o r m a t i o n  R e t r ie v a l  Sy s t e m

An issue that remains to be discussed in this chapter is the nature o f this internal 

representation into which documents and queries are converted in order to produce a ranked list of 

relevant documents. Figure 1.8 outlines a basic overview o f  the architecture o f a simple IR system, 

which operates using an inverted index structure.

In v e r te d  In d e x

Scwrcc
documenta

1, O ocum tm is
Gathered
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2 , Internal 
Representation
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i n d e x e r
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1
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Rein king Proce:

4, Q u irv  t ---1---------------------------------j ù, i y i t t r r  Q ih w  w -------------------------------------- 1

... r
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Query Handler ^
L..1........................................  « ¡u n to t i I jf lr  o f

Ranking Function (e.g. ITIDF)

Relevant Documents

Figure 1.8 : The architecture o f  a basic IR System

1.7.1 T h e  P r o c e s s

Generally we can divide the IR process into two distinct phases with phase 1 being the 

building o f the index and this must be carried out before the second phase, processing the query is 

supported. Steps 1-3 in Figure 1.8 comprise phase 1. Step 1 in the process is to input the document 

collection over which retrieval should operate into the Preprocessor (one document at a time). The 

Preprocessor may remove stopwords and stem the text to produce the internal representation o f each 

docum ent (step 2). This internal representation is (minimally) going to consist o f a sorted list of 

unique terms and an indication o f the document i f  value for each term. Step 3 involves the Indexer 

taking the internal document representation and adding it into an inverted index, which is the internal 

representation o f the whole document collection that supports fast search and retrieval. The structure 

o f  a typical inverted index is described presently.



Once all the documents have been added into the inverted index the system is ready to 

accept queries (phase 2). A Query Handler is the process that the user o f a search engine will interact 

with. It is responsible for accepting queries and returning ranked formatted output to the user. Step 4 

illustrates the system accepting a query and in step 5 the query is passed to the Preprocessor and is 

processed in the same way as a document which produces the system query which in step 6 is passed 

from the Query Handler to the Ranking Function. The ranking function (step 7) calculates the 

similarity o f  documents to the query (using the chosen ranking algorithm such as tf-idf or BM25) 

before the ranked list o f documents is passed back to the Query Handler in step 8. The Query 

Handler then formats the ranked output (perhaps wrapping it in HTML) and passes it back to the 

user (step 9) thus completing the process.

1.7.2 T h e  I n v e r t e d  i n d e x

Inverted index structures are central to m ost IR systems and track which documents 

contain which index terms. An inverted index will have to map terms to documents and may store a 

weighting for each term in each document. In mapping terms to documents, a critical shortcut is 

provided which avoids searching the entire document database in response to a query. Instead o f 

viewing the document as a pointer to a list o f terms comprising the document, the inverted index 

views terms as the atomic unit which act as pointers to documents that contain the terms as in figure 

1.9. A  term may have associated pointers to a large number o f documents if it’s Rvalue is high and 

obviously a document from the collection will be the target o f  many document pointers.



term  list docum ent
(d ic tionary) pointers

a a r d v a r k  
ab acu s  
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a b a s e  
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a b a t e  

a b a t t o i  r  
abbey  
abbot 

a b b r e v ia te

zym urgy 
zymogen

Figure 1.9 : Illustrating inversion as used in an inverted index

There are three components o f an inverted index structure:

• The Docum ent List, which is a listing o f all the documents in the index, each 

having being given a unique identifier.

• The Term  List or Dictionary, which is a sorted list o f  all the unique terms in the 

document collection. This list is sorted to support fast searching over its contents.

• The Term-Docum ent Matrix, which allows for the encoding o f what terms are 

contained in what documents. If  the system is based around Boolean IR then no 

weight is stored at the term document intersection, however in all other 

approaches the term weight is stored and this is a number representing the 

importance o f die term to the document and to the document collection as a 

whole. I f  the retrieval system is based upon a tf-idf ranking scheme, the inverted 

index will store a numerical representation o f the weighting o f each term in each 

document, implemented as a term-document matrix, but this poses one difficulty 

in that the matrix quickly becomes too large to be held in the memory o f a 

computer. A close examination o f this matrix shows it to be sparse in nature, 

meaning that there are a relatively small number o f  non-zero values in the matrix 

compared to the number o f zero values. In order to avoid both the storage and 

processing o f zero elements, a variety o f sparse matrix formats have been 

developed, such as Compressed Row Storage and Compressed Column Storage 

[Berry & Browne, 99], which require three arrays as opposed to a matrix to store a 

term-document matrix. This reduces the storage requirements from m x  n array 

locations to 2nn^ + m + 7 array locations.
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While the inverted index is a common method for internal representation o f a document 

collection, there do exist alternatives such as signature files. Signature files are based on dividing input 

text into logical blocks o f fixed length and for each block, generating a signature by hashing words in 

the block and using Boolean logic to combine the hashed words together [Faloutsos & 

Christodoulakis, 87]. For retrieval, a signature is generated for the query and a sequential search is 

performed through signature file looking for signatures that subsume or exactly match the query 

signature. Comparison o f inverted indices and signature files [Zobel et al., 98] has shown 

unequivocally that for typical indexing applications, signature file techniques do not perform well 

when compared to inverted indices. Signature files are larger, more expensive to build and update, 

require pre-indexing analysis o f  the collection and are slower during retrieval than inverted files.

1.8 Se a r c h i n g  t h e  W e b .

Web search is without doubt the point o f contact that most people have with IR systems. 

The manual discovery o f information on the WWW is next to impossible due to the volume of 

documents in existence, currently in the (single figure) billions (just counting static documents). 

Although the hyperlink structure o f  the WWW supports browsing for information, research has 

shown that, on average, there are 19 degrees o f separation between web pages [Albert et al., 99]. In 

addition, no t all pages are accessible by following hyperlinks from any one given starting point and in 

any case, reading all web pages would require many lifetimes, thus making it next to impossible to find 

information by judiciously following links. Therefore, some content-based retrieval system is required 

to aid a user finding information on the WWW, and such services have been available since the early 

nineties.

The World Wide Web Worm (WWWW) [McBryan, 94] was one o f the initial crawler-based 

search engines (the common name given to an IR system used to index and provide retrieval facilities 

over WWW documents) developed. Many more search engines have followed the early ones, some of 

which such as Lycos [LYCOS, 02] are still in existence today.

I f  we view the problem o f searching for information on the WWW as analogous to 

searching for information between the covers o f  a large book we can identify the two types of



retrieval systems present on the WWW. Within a book (mostly non-fictional) the available search aids 

are the Table o f Contents and the Index. An individual requiring a retrieval system on the WWW can 

choose one o f two types o f  search aids, Web Directories or Search Engines. Each retrieval system can 

be broadly classified as belonging to either o f  these two types, although the dividing line between both 

types has all but disappeared in some cases.

1.8.1 W e b  D ir e c t o r ie s

Web Directories are comprised o f a structured hierarchy o f pages, each o f which contains 

many links to other web pages based on die content o f  diese pages. These (usually) have been 

painstakingly handcrafted by humans, which make diem very expensive to maintain and grow in-line 

widi die ever-expanding WWW. However, diey do act as excellent starting points for a user to browse 

die web. I f  one views die web as a book tiien die web directory is like die table o f  contents, widi a 

high-level overview o f die contents o f  die WWW. I f  you are just browsing a non-fictional book, using 

die table o f contents is a great way to quickly locate a desired section. It will get you near to what you 

are looking for, but you will have to do some additional reading to find die exact information 

required. Similarly, a web directory acts as a starting point for additional exploration, and any website 

within would be a good candidate to act as a starting point. This process o f exploring die web is 

usually referred to as browsing for information.

Bread
Focus

N a rro w
Focus

II

Figure 1.10 : The Hierarchical Structure o f  a Web Directory

The web directory will be laid out in a hierarchical fashion with numerous levels of menus 

tiiat can be viewed as a tree structure. The farther down die directory tree one travels, die more



focused the information becomes. For example, in the Yahoo web directory, documents6 regarding 

the history o f  Formula 1 m otor racing are in this directory path:

Home > Recreation > Sports > Auto Racing > Formula One > History

Web directories, in the majority o f cases, offer a text search facility over the directory. One 

can search all the pages contained in the directory (from H O M E  in Figure 1.10), or one can search a 

subset o f the directory tree from any point downwards. For example, a search could be executed on 

all documents related to ‘Formula 1’. This is very useful as one can search within a set of high quality 

pages, all o f  which are focused on particular clearly defined topics. The two best examples o f web 

directories are Yahoo [YAHOO, 02] and the Open Directory [OPENDIRECTORY, 02] project (as 

shown in Figure 1.11).
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Figure 1.11 : The OpenDirectory Web Directory

.¿Ì

In  general, hierarchical approaches to search are considered to be the among the best 

guidance tools to minimize the risk o f user disorientation [Botafogo et al., 92] when navigating a 

hypertext. The major problem with the directory approach is that, as mentioned, it requires huge 

levels o f human intervention and consequently is limited in terms o f size. There are, however, 

methods o f automatically clustering documents into groups based on their content, probabilistic

6 There are only two o f  these documents found, which perhaps indicates the problem o f  lack-of-coverage when relying on 

manually generated directories.



methods [Goldszmidt & Sahami, 98], clustering based on short segments o f text [Zamir & Etzioni, 

98] and WebCluster [Mechkour et al., 98] and also their linkage [Chakrabarti et al., 98], however this is 

not something that we have focused on in the research presented in this thesis.

1.8.2 Se a r c h  E n g i n e s

The other broad type of retrieval system used on the WWW is the ‘search engine’. Search 

engine is a generic term, which is used to describe the different types o f  complex software tools that 

together comprise a content-based IR system on the WWW. I f  we employ the book metaphor again, 

a search engine is similar to the index at the back o f  a book, which lists all the important words, and 

the pages upon which those words appear (a book constructed using modern publishing software can 

have these lists generated automatically). I f  one is looking for information from a web search engine 

we enter relevant terms and the search engine, generally using one o f the term-weighting approaches 

mentioned earlier, will generate a ranked list o f pages that contain these terms and (hopefully) will 

satisfy the information need.
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Figure 1.12 : The Google implementation o f  the Open Directory

However, this broad separation between the two search services is not actually the case in 

reality anymore. The majority, if not all, large web directories also provide a text search facility over



their directories while search engines are starting to provide access to directory listings also. Many o f 

these are supplied from a source such as the open directory project [OPENDIRECTORY, 02]. I f  we 

examine Figure 1.12 we will see that Google’s web directory service is just a version of die Open 

Directory web directory as shown in Figure 1.11. However, the point is important that there are two 

distinct search sendees, each o f which poses it’s own problems, regardless o f how they may be 

combined in reality on die WWW. For this dissertation, we are primarily interested in search engines 

and will rarely refer to search directories. Examples o f search engines in common use on die WWW 

o f today are Google [GOOGLE, 02], AltaVista [ALTAVISTA 02] and AllTheWeb [ALLTHEWEB, 

02], The query screen o f Google search engine is shown in Figure 1.13.
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1.9 D a t a b a se  Ma n a g e m e n t  Sy s t e m s  (D B M S s)

There are two major categories o f systems available to process information data: IR 

systems and Database Management Systems. We have already mentioned tiiat data retrieval is 

concerned witii looking for an exact match while IR mostiy seeks a partial match for a request for 

information and this has been outlined in die previous sections. As mentioned previously, data 

retrieval is best exemplified by a user’s interaction witii a DBMS, so let us briedy examine die nature 

o f  DBMSs, not just witii respect to data retrieval, but also because they do play a important role in 

supporting the experiments into web structure tiiat underlie diis dissertation.



DBMS’s provide storage and retrieval services over structured data. Structured data is well 

defined and is typically represented by tables in the relational model [Codd, 70]. When querying data a 

language such as SQL is used to generate a query like the example SQL query on page 2. A DBMS 

table consists o f  zero or more rows, each o f which consists o f one or more columns, each o f which 

can hold exactly one piece o f data o f a specific type, such as an integer, float or character array. Figure 

1.14 shows a table from a database used in this research to store information about links between web 

documents.

id* | «auree Itaiqet IsourceHost I tarortHosl Itype I totalling IdocExisH IdorLinkCcmnt 1
0 httpi//www,theage http;//ads,Fairfax www.theage.com.auads.fairfax.com.au F 6 y 0
1 http://www,theage http ://www. theaç www.theage.com.auwww.theage.com.au 5 6 y 1
2 http://www.theage http://www,theaç www.theage.com.auwww.theage.com.au S 6 y 2
3 http://www,theage http://www.theaç www.theage.com.auwww.theage.com.au 5 6 y 3
4 http://www.the.3ge http://melbourne. www.theage.com.au melbourne.dtysearch.o F 6 y 4
5 http://www,theage:http://ads.fairfax www.theage.com.auads.fairfax.com.au F 6 y 5
6 http://www,azaleat http://www,biblelf www.azaleadty.orgwww.biblelessons.com F I  y 0

Figure 1.14 : Table showing 5 rows o f  linkage data.

Each row in this table consists o f  nine columns each o f which stores information on some 

aspect o f  a web link. These columns are called “idx”, “source”, “target”, “sourceHost”, “targetHost”, 

“type”, “totalLinks”, “docExists” and “docLinkCount” and are considered to be accurate descriptions 

o f the data stores therein. Such a database that stores linkage information would allow access to this 

data by means o f a structured query language such as SQL where the query to extract the urls o f  all 

the documents that link into a url such as www.apple.com would be:

SELECT sourceURL
FROM links_table
WHERE targetURL = 'http://www.apple.com'

In  effect the query is precise and unambiguous with only one correct answer (from today’s WWW) 

which happens to be o f size 87,700 URLs7.

7 The source o f  this figure 87,700 is a Google query “link:www.apple.com” which returns the URLs that link into the query 
URL. The query was sent in July 2002.

http://www.apple.com
http://www.apple.com'


1.10 O b je c t iv e s  o f  t h e  Re se a r c h  b e in g  U n d e r t a k e n

Today, users on the WWW demand high quality responses to their information 

requirements and demand this information promptly. This dissertation is centered on developing and 

evaluating improved methods for ranking documents on the WWW by exploiting the latent human 

judgments encoded in the hyperlink structure o f the web.

Anecdotally the WWW IR research community believe that linkage-based retrieval o f web 

documents is preferable over conventional content-only retrieval and that search engines such as 

Google that are known to incorporate linkage-based retrieval are believed to gain an increase in 

retrieval performance as a result. However, the research community, using accepted evaluation 

processes (TREQ have been unable to actually confirm or quantity the benefits o f  linkage-based 

retrieval. In this thesis, we present some o f our own techniques for both generating linkage (or 

qualitative) weights for web documents and for combining linkage evidence with content evidence to 

produce one final ranking for documents in response to a user’s information need. Finally, we 

examine the nature o f  the currently accepted evaluation process and identify where improvements 

should be made to support faithful evaluation o f  linkage-based retrieval techniques.

1.11 Su m m a r y

A t this stage, the reader should have a clear understanding o f what information retrieval 

(IR) is what the context is in which we are operating. As we have seen, data retrieval is concerned with 

finding an exact match between data and queries and is typified by a DBMS while information 

retrieval is more concerned with best match type retrieval where exact matches are rare occurrences. 

We have identified the four steps in performing information retrieval, namely:

• Docum ent Gathering

• D ocum ent Indexing

• Searching

• Docum ent Management



In addition ro this, we have discussed various ten n  weighting strategies based on the 

Boolean, Vector and Probabilistic models o f  li t  along with conventional IR concepts such as 

relevance feedback and query expansion. Based 011 these term  weighting strategies we have described 

the architecture o f  a basic retrieval system focusing on aspects such as the inverted index. Finally we 

categorized W W W  based inform ation retrieval systems into either o f  rhe following two categories:

•  W eb Directories such as Yahoo o r the O pen Directory, which arc mostly human constructed 

retrieval systems.

•  Search Engines, such as G oogle o r Teom a [fE O M A , 02] w hich are automatic tools for 

providing conten t retrieval facilities for W W W  data and whose architecture would be loosely 

based on  the architecture o f  a basic retrieval system that we have discussed in this chapter.

Finally, we briefly discussed DM BS and their role in providing date retrieval before 

discussing the objectives o f  this thesis which are to develop new linkage-based retrieval techniques 

and identify w here im provem ents should be made to the currently accepted evaluation methodology 

in order to support faithful evaluation o f  linkage-based retrieval techniques.



C h a p t e r  2

IN C O R PO R A TIN G  L IN K A G E  ANALYSIS IN T O  W EB SEARCH

In this chapter, we examine the nature of searching the WWW, identifying the inherent difficulties 
and benefits thereof before m  develop the architecture of a sample W W W  search engine. We then 
examine the topic of linkage Analysis (one of the potential benefits of W W W  IR  over conventional 
IRJ and discuss common techniques such as citation ranking H W ,  PageRank and Kleinberg’s 
algorithm. Finally, we examine the architecture of a search engine that incorporates a linkage 
analysis compo7ient and discuss the requirements for a connectivity server to serve accurate and timely 
linkage information.

2.1 In f o r m a t io n  R e t r ie v a l  o n  t h e  W e b

In the previous chapter, we have discussed IR as it applies to conventional document 

collections and illustrated the architecture o f a simple IR system as well as introducing search engines. 

The first generation o f full-text web search engines such as Lycos [LYCOS, 02] and WebCrawler 

(WEBCRAWLER, 02], have contributed to the huge popularity o f the www. They were based on 

directly computing the similarity between a query and the text appearing in a web page and were, 

effectively, a direct application o f  the standard document retrieval techniques outlined in the previous 

chapter such as tf-idf or BM25. These web search engines process and index web documents that 

differ from other text in that they are encoded using HTM L (HyperText Markup Language [W3C, 

02], [Powell, 98]).

2.1.1 H y p e r T e x t  M a r k u p  La n g u a g e

Hypertext refers to an approach to information management that supports the utilisation of 

links within information to point to other pieces o f information where this pointing or linking is 

based on content or meaning. These pieces o f  information are referred to as nodes and these nodes 

may be documents, groups o f documents or sections within a document. Hypertext systems support 

non-sequential browsing o f information as opposed to traditional text, such as a book, which 

supports linear reading. The browsing facility o f a hypertext system is provided by hypedinks or 

(simply) links which allow a user to jump from node to node, node to nodes or within nodes,
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normally by means o f a point and click interface. The history o f hypertext stretches back to Vannevar 

Bush’s seminal article [Bush, 45] in which he describes an extensible hypertext system called 

M EM EX, which, although never implemented is regarded as the origin o f hypertext.

HTML, the standard for content encoding on the WWW is most people’s only interaction 

with hypertext systems, although strictly speaking HTM L can only be regarded as an implementation 

o f  a subset of hypertext principles. The majority o f text-searchable WWW documents (web pages) are 

written in HTML, although many other formats o f text-containing documents are becoming prevalent 

on today’s web. Some o f these include:

• XML documents

• PD F & PostScript documents

• O ther document formats such as Word, PowerPoint & StarOffice documents,

HTM L is nothing more than a text based markup language that consists o f conventional 

content-bearing text augmented with tags and attributes that support the non-linear browsing of 

information. Tags are enclosed in angle brackets and will contain zero or more attributes. Many tags 

have an associated closing tag, prefixed with a forward slash (/), that results in all text between the 

opening and closing tags being affected. For example, this piece o f HTML:

<FONT FACE="Verdana" color="Blue">Information Retrieval</FONT>

contains the tag “FO N T” which indicates that the text ‘Information Retrieval’ should appear in the 

font specified by the attributes, i.e., in the font face ‘Verdana’ and in the colour ‘blue’. HTM L allows 

us to describe the layout o f  a document, incorporate non-textual elements such as images, audio and 

video and also provides the facility to link into other documents, or subsections o f documents. 

However, HTM L only attempts to describe the layout o f the data on screen as opposed to describing 

the actual content o f the documents themselves. The hypertext viewing application, which provides 

browsing facilities over HTM L, is commonly referred to as a Web Browser, see Figure 2.1.
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when it has often seemed from the way 
they locate relative seat/visual/control 
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Figure 2.1 : Microsoft Internet Explorer as an example o f  a Web Browse

2.1.2 T h e  C h a l l e n g e s  o f  WWW S e a r c h

Automatic indexing and retrieval o f  a large number o f HTM L documents, as would be 

necessary for a search engine, poses a number o f challenges (some o f which are outlined in Modern 

Information Retrieval [Baeza-Yates & Ribeiro-Neto, 99]):

• Unstructured D ocum ents — HTM L is a very unstructured method o f creating documents. 

It must be remembered that HTM L has been developed as a technique for describing how a 

document should appear on the screen as opposed to describing die content of a document. 

In addition, any HTM L document may be incorrect or invalid. This is due to the fact that 

HTM L is an easy to understand mark-up language and many individuals choose to craft 

HTM L documents using a text editor, which often results in the individual producing invalid 

HTML, instead o f  using one o f the more accurate HTM L editor tools such as M crosoft 

FrontPage [FRONTPAGE] or HTM L LIotDog from Sausage Software [HOTDOG] which 

will produce syntactically correct HTML. Web browsers themselves do not enforce the 

accurate encoding o f HTM L text and go to great lengths to parse and display erroneous 

HTML. Consequently, any system that deals with web information retrieval must be robust 

with well developed error handling abilities.

http://re1


• H eterogeneous D ocum ents — The WWW contains for the most part HTM L documents, 

but these exist alongside:

■ Images: .gif, .jpg .bmp and .png are the m ost widely found images.

■ Audio Files: .mp3, .wmp, .acc, .wav, .midi and .rm/.rmj.

* Video & Animation Files: .mpg, .avi, .qt and .gif.

* Non-HTM L Documents: text files, Word Docs, PowerPoint files, PD F and 

PostScript files.

A standard search engine will only be able to index HTM L files and text files. Some o f the 

larger search engines offer search facilities over PD F documents as well as many standard 

office format documents. We will show later in this chapter, when discussing Hyperlink 

Vector Voting, how it is possible to apply standard text IR approaches to provide some 

limited search facility over the all types o f documents mentioned above, without having to 

examine their contents, by using a form o f linkage analysis.

• Remote D ocum ents — Unlike pre-web document collections which may exist in one 

location or on one server, a web search engine must locate documents for its index. These 

documents are spread over almost 190 million remote servers [NetSizer, 02] and locating 

these documents requires die development o f a crawler in addition to a retrieval engine. A 

web crawler, or robot, or spider, is a software application that must traverse the web by 

following the hyperlink structure o f  the web, gathering documents for inclusion in the 

retrieval engine’s index as it travels. These remote servers may not be operational when the 

crawler visits, files may be missing or invalid, the HTML may be badly written making it 

difficult to parse links and in addition to all that, the robot’s exclusion standard (see Chapter 

5) should be adhered to. We will discuss these problems in detail in Chapter 5 when we 

discuss the architecture o f  a web crawler that we developed to support the research presented 

in this thesis.

• Volume of D ocum ents — The WWW is growing on a daily basis and the latest estimates 

would put the web at well over 6 billion documents [SEARCHDAY291, 02], In Figure 2.2 

we can see the num ber o f  pages indexed (but not necessarily downloaded) by five o f the 

major search engines, data coming from Search Engine Watch [Sullivan, 01], Google, 

AllTheWeb as well as Pandia Search World [PANDIA, 02]. It is worth noting that Google’s
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score is somewhat inaccurate because it is overestimated, which we will explain later in this 

chapter.
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However big the web is and however we feel that this ever-increasing data size is impossible to 

deal with, it only amounts to about 25-30 terabytes [SEARCHDAY11, 01]. CERN’s newest 

particle accelerator, the Large H adron Collider, is expected to generate 100 petabytes (100,000 

terabytes) o f data in just a single experiment. This size o f dataset (between 3-4,000 times the 

size o f  the web) is wholly beyond the capabilities o f even the best-designed search engines in 

existence today. In order to solve this problem a team o f  researchers from Johns Hopkins 

University, Microsoft Corp., the California Institute o f Technology, Fermilab and CERN are 

working together to build a massively distributed database that will be accessible via the web. 

The technological groundwork for future generations o f  large-scale web search engines is 

already being researched.

Invisible D ocum ents - Although hyperlinks abound on the web, many pages are not linked 

to each other via intermediary documents at all. A  crawler may not know o f the existence o f 

many tens o f millions o f  documents because it can only find pages from a given starting set 

by traversing the hyperlink structure o f  the WWW. This unreachable section is 8.24% o f an 

Altavista crawl o f  over 200 million pages in size and contains 1.5 billion links [Broder et al.,

00]. Scaling up to a (probably underestimated) 6 Billion document WWW this would suggest
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Figure 2.2 : Number o f  Searchable Pages for five large search engines



over 450 million undiscovered pages. Unless web pages are submitted to the crawler from 

sites within these sections, they will remain inaccessible and invisible to the vast majority o f 

web users. In addition, there are a huge number o f  pages that are dynamically generated from 

databases and thus not available to be indexed by most o f the current generation o f search 

engines.

Dynam ic Docum ents — Many web documents are not static and are constantly changing 

and this change must be updated in the search engine’s inverted index, yet most pre-web IR 

systems were designed for static content. In order to keep its index up-to-date a search 

engine must constantly verify that all documents in its index have not changed and if 

documents have changed, they must be downloaded and die index updated. In addition new 

documents must be found and downloaded and documents tiiat no longer exist must be 

removed from die index. However difficult this task is, die ‘freshness’ (degree to which die 

index reflects die web today) o f  a search engine’s index is always open to scrutiny. Google’s 

document caching facility (see Figure 2.3) helps to overcome diis problem by maintaining a 

cached version o f die document it downloaded, so if die document no longer exists, a 

snapshot exists o f  die document when it was downloaded which can be presented to die 

user.

Muppets Home Paae
... General Moppet Information. Some ... Muppets on the Web - 
Other Online sites with Mupper related sluff. Here ...
D rsvt'is iio;:: Bill Sherman's muppet site including links to episode guides, lyric archives, sound archives, character,..

Muppet Songs
Muppet Songs The muppet lyrics page has moved to http://horne.nc.rr.com /rnuppetsongs/.
June 20, 2000
r - . . .. m . . . .

Figure 2.3 : The G oogle Cache Facility (highlighted)

U seless content — Many o f die web documents in existence can be considered to contain 

useless information, while only a (useful) fraction is focused on useful and structured 

information. The important (including many company sites, literature, technical information) 

co-exist side by side witii die ephemeral such as yesterday’s lunch menu. In addition, many 

pages contain duplicate information, for example on a mirror web site. It is estimated that 30

.¿..Esufejrniiui. 
oduA W B S /M uppais/inuppets htittl - Cached

http://horne.nc.rr.com/rnuppetsongs/


% o f the web is duplicated content [Huang, 00]. This content must either be removed at 

indexing-time, or parsed out o f  the results at query-time.

Languages — We know that there are documents on the web written in over 100 languages 

as o f  January 2000 [Huang, 00]. Many minority languages such as Welsh or Breton have less 

than 10 million words o f web text [Grefenstette & Nioche, 00]. The Irish language has less 

than 50 million words on the web. In addition, many o f these languages are not based on 

Latin character sets and this may pose additional problems for a retrieval engine.

Users — It is particularly ironic that the customer o f each search engine should be one o f the 

biggest problems facing web IR. The user poses the following main problems for a search 

engine:

■ Poorly articulated queries — M ost users produce queries which are too short to 

adequately represent their information need [Silverstein et al., 98].

■ Unwillingness to browse - Only 15% o f users look beyond the first screen (10 

results) and 78% o f users never modify their queries in light o f results returned 

[Silverstein et al., 98].

* Impatience for a prom pt response — has lead certain search engines to only search 

subsets o f  their indexes, or use canned responses to popular queries. This is because 

people generally require very fast response times in order to maintain the illusion o f 

the search process being an interactive one.

Search Engine Positioning (spam m ing) — It is a fact o f life for search engine developers 

that their search engines will be the subject o f spamming attacks whereby individuals aim to 

improve the positioning o f a (for the m ost part, commercial) website within search engine 

result pages. The basic idea is that since only 15% o f users look beyond the first screen o f 

results the website has to appear at or very close to the top o f  the ranked list in order to be 

visited by users. The optimization process often takes the form o f careful keyword selection 

for web pages, but may also extend to artificially constructing the link structure around 

websites so as to aid the optimisation process. Many companies offer these facilities 

[WebPromotion, 02] [SearchEngineSerious, 02] with one company 

[HighSearchEngineRanking, 02] even stating that they “have seen some clients achieve a



650% increase in traffic” as a result o f  employing their services. An example, the following 

tips for circumventing the spam-preventing properties o f  linkage analysis algorithms 

(algorithms that operate based on the linkage structure o f the WWW, which we shall discuss 

later in this chapter) are taken from Search Day [SEARCHDAY73, 01]:

1. “Signing guestbooks that are related to the theme o f the website I am promoting. Then 

submitting the page” .

2. “Also in Google in the search use + "keyword" + "add url" this will find all pages with 

your keyword plus the add url link so you can add your page to their links” .

Notwithstanding o f all these problems, a web IR system must accept many thousands of 

queries per second and return results to a user within a second or so. However the WWW does

provide some additional sources o f information besides the document text, which can be o f benefit to

the retrieval operation.

2.1.3 T h e  B e n e f i t s  o f  w o r k in g  w i t h  W e b  D a t a

WWW IR as opposed to conventional IR can draw on a number o f additional sources of 

information to aid the retrieval process. Firstly, although the WWW is unstructured, chaotic even, a 

certain amount o f  information can be mined from the documents themselves. HTM L tags impose a 

limited structure on web pages by distinguishing between different segments o f a HTM L document. 

It is possible to exploit this limited structure in the document retrieval process. By examining the 

HTM L mark-up o f  a document it is easy to tell whether a term appears in the title, headings, is just 

bold for emphasis or is no t marked-up for emphasis at all. Intuitively we believe that any text encoded 

with some o f  the ‘important’ tags is more valuable to the search process as these tags are more 

important than others. Consequently, it is often the case that text marked up as being one o f  the 

following types is integrated into the search process as text to be weighted more heavily than 

conventional text:

• B o ld -< b >  ... < /b >  or <strong> ... < /strong>

• Italic - < i>  ... < /i>  or <em > ... < /em >

• Headline Text - <hx> ... < /h x >

• Tide - <title> ... < /title>



• Meta Descriptions - <m eta... >

• Text surrounding links <a hre£> ... < /a >  within a page.

It is even possible to evaluate text at the beginning o f  a document as being more important than text 

lower down a document’s content. It is generally accepted that search results can be improved by 

considering this latent information. Certain document metrics may also provide a source o f useful 

information. For example:

• A document with a shorter URL (a lower number o f sub-directories) could be considered 

more useful if the user is specifically looking for a homepage or website. This theory was 

successfully evaluated as part o f the latest TREC [Voorhees, 01] conference [TREC, 02],

• A  user often considers a document with more images, or the inclusion o f various media 

content, to be more useful than one with less media content, or containing text only. 

[Amento et al., 00].

• A popularity score for each web document can be generated based on the number o f users 

who view documents returned in the results o f  search engines. This is known as behaviour 

based ranking. The more users view a certain document, the higher the score o f that 

document’s ‘clickthrough-rate’ (normalized by the position o f the document in the ranked 

list).

Finally, the massive presence o f hyperlinks on the web provides another source of useful 

information for information retrieval, which is the primary focus o f this dissertation and which we 

shall discuss in far greater detail later.

2.1.4 Ar c h it e c t u r e  o f  a  Basic  W e b  Se a r c h  E n g in e

I f  we modify the IR system architecture outlined in Chapter 1 to reflect the additional 

information that we can mine from the structure o f web documents we will get a more complex web 

retrieval system (shown in Figure 2.4), which must work with vastly larger datasets, into many 

hundreds o f  millions or even billions o f documents. Note the inclusion o f  a web crawler (1) which 

gathers documents from the WWW and requires a URL queue (2) to store a list o f  documents to be 

fetched by the web crawler.
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Figure 2.4 : Architecture o f  a basic web search engine

The approach to document representation that we have chosen to take in this example (and 

outline in Figure 2.5) is to have two logical documents for each single web document (3) (see Figure 

2.5) with each logical document being ranked separately and the results combined (4) before final 

presentation to the user. In this way we combine evidence from two sources, although the number of 

sources may increase as required.

Figure 2.5 : Logical HTML documents

The two logical documents (1 & 2) from Figure 2.5 are based on the conventional text of 

the document n as well as the text within high scored tags within n. Letting n_high be the text 

associated with the high scored tags we have a search system which implements a simple ranking 

formula based on calculating the similarity Sim between a query q and a document n or n_high. Note 

that the normal text and mark-up text are weighted identically:

Sc'n = Sim( q,n) + Sim( q,n_ high )  (2. l)



Until recently, an approach such as this which took only the content o f  the document into 

account was the standard for most web search engines and the structure o f the web had not played a 

part in the search engine process. Recently, however, that has all changed with the advent o f  a new set 

o f  techniques called Linkage Analysis.

2.2 Lin k a g e  An a l y sis  as  a n  a u g m e n t a t io n  t o  W e b  Se a r c h

A source o f  evidence that may aid the retrieval operation o f WWW search engines is 

encoded in hyperlinks and this evidence can be extracted and used to aid retrieval performance. 

Hyperlinks have a massive presence on the WWW and our experiments show that the number o f 

hyperlinks is up to 19 times the number o f static documents (we will discuss these experiments in 

detail later). Exploitation o f hypedinks as an aid to web search is known as Linkage Analysis or 

Connectivity Analysis.

The goal o f Linkage Analysis is to exploit latent human judgment on the web in the form of 

hyperlinks between documents in order to improve retrieval performance. In fact, as the WWW 

grows and it becomes increasingly difficult for standard IR approaches to operate effectively, the 

number o f hypertext links, the building blocks o f  Linkage Analysis, are constantly increasing in 

number. This did not go un-noticed and even in the early days o f web search hypedinks were seen as 

a source o f useful information. As early as 1993 a ‘resource location tool8’ called WWWW — the 

WWW W orm [McBryan, 94] was in operation as one o f the first search engines on the Web. 

Interestingly the document text was not used in die retrieval process, rather the following was used to 

describe the content o f  a document:

• The tide o f  the Document.

• Any reference hypertext (anchor text) from links within the document.

• The text within URL string o f  the document.

As o f April 1994, the WWWW was receiving about 1,500 accesses per day and had an index 

o f  over 110,000 pages. The search engine was based on the UNIX egrep9 program and generated an

8 Resource Location Tool was an early name given to the systems that we now know as search engines.

9 egrep is a U N IX  program that supports searching source files for lines that match a regular expression



egrep search string based on the user’s query. The WWWW is an example o f an early search engine. 

These were soon replaced by larger, more powerful, search engines with architectures not unlike that 

in Figure 2.4. These search engines gained widespread popularity and use, yet they employed 

previously developed IR techniques and for the most part ignored die benefits that could be gained by 

examining the hyperlink structure o f the web.

These first large-scale search engines that followed the WWWW did not innovate much in 

the approaches taken to searching. However, to be fair, they were not simply re-workings of 

previously developed systems. The standard IR techniques discussed in the precious chapter were 

developed for small document collections which were no larger than a few gigabytes. However the 

web was another matter entirely and consequentiy these first large-scale search engines have addressed 

the engineering problems o f large-scale web spidering and efficient searching for large numbers of 

both users and documents. Now search engines such as Google [GOOGLE, 02], AltaVista 

[ALTAVISTA, 02] and Teoma [TEOMA, 02] have overcome these issues o f scale and incorporate 

Linkage Analysis as an additional and integral part o f  their retrieval operation. Anecdotally this 

appears to have improved retrieval performance yet there has been little scientific evidence in support 

o f the claims for better quality retrieval. As part o f the three most recent TREC [TREC, 02] 

conferences, held in November 1999, 2000 and 2001 participants have been able to perform 

benchmarking o f IR systems on web data and have had the option o f using linkage information as 

part o f their retrieval strategies [Hawking & Craswell, 01], all o f which were found to be unsuccessful 

for regular search tasks10. We will discuss this in greater detail in later chapters.

Search engines, like any other IR system that incorporates term weighting, will score a web 

page in response to a query using some term weighting formula and will rank web pages according to 

these scores. Unlike conventional collections o f  independent documents, an additional source of 

latent information on the web is how documents are linked together and a search engine that exploits 

this linkage information combines information mined from the documents themselves, as well as 

information from the linkage structure o f  the web as a whole, into a final ranking formula. In most 

cases this linkage information is represented as a ‘Connectivity’ or a ‘Linkage’ score for each 

document which can be integrated into the weighting formula at query time.

10 One task in TREC 2001, the homepage finding task did find that utilizing linkage information in locating a homepage 
response to a query improve retrieval performance over content-only experiments, however the top ranked experimental 
system from among all participants was based on simply utilising the length o f the URL string as an indicator o f  whether a 
document was a homepage or not.



2.2.1 H y p e r l in k s  (D if f e r e n t ia t in g  t h e  WWW f r o m  a  Co n v e n t io n a l  D o c u m e n t  

Co l l e c t io n )

A hyperlink (or link) on the WWW connects anchors on two (in most cases different) 

documents, the target (destination) document and the source document that contains the link, as in 

Figure 2.6. In HTM L links are untyped and are one-way, i.e. one cannot follow a link backwards 

without using a ‘go back’ or ‘history’ facility in a WWW browser.
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Figure 2.6 : A  one-way hyperlink on the WWW connecting source to target

These links will convey some semantic meaning to the user regarding the content o f  the 

linked document by means o f the human generated anchor text. This anchor text exists to provide a 

point from which the link has its origin and secondly to provide some indication o f what the target 

document is about, as can be seen in any o f the links (lighter coloured text) in Figure 2.7.

My research area is Web Search Engines, and (more precisely) how Linkage Analysis may be used to improve retrieval performance.

I have recently (4th February 2002) spoken at an ':,= : y.v- , : to the ; in the
vP= r  The presentation was on J r a n d  the problems encountered by many in the research
community when evaluating their algorithms and ideas,

Figure 2.7 : Links in HTML

Most hyperlinks in HTM L are created using HTM L similar to this;

<a href="URL">ANCHOR TEXT</a>

where URL is a Uniform Resource Locator or web address. However, in some cases links may be 

represented by images or imagemaps as opposed to anchor text descriptions.

Source
D o cu m e n t
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2.2.1.1 U R L s

URL is an abbreviation o f Uniform Resource Locator. It is an Internet address which 

tells a user or a web browser where to locate specific data (file, application program, etc.). It can be 

thought o f as a networked extension o f the standard filename concept: for example, not only can it 

point to a file in a directory, but that file and that directory can exist on any machine on the web.

A URL is comprised o f  three distinct parts;

• A protocol - an identifier o f  the protocol (transport technique) used to fetch the file.

• A server - the name o f  the machine upon which the file exists.

• An identifier - a string that is converted by a web server into an identifier o f the data being

requested. Usually this takes the form o f a directory path and a filename.

By combining these sections together, we get the unique path or address o f each file on the WWW. 

For example, in the following URL:

h t t p ://www.Ireland.com/dublin/entertainment/cinema/index.htm

The protocol is ‘http’, the server is ‘www.ireland.com’, the path is ‘dublin/entertainment/cinema’ and 

the file to be retrieved on this computer, in this directory, using this protocol is ‘index.htm’. A URL 

may lack a file identifier, in which a default filename such as ‘index.html’ is assumed (at the root o f  the 

web server, or it may lack a directory path or filename element.

URLs are the m ethod used to access documents in the web. The target o f  a link will be a 

URL so in the following example HTML:

<a href="w w w .ireland.com/index.html">Ireland Portal Page</a>

the target URL is ‘www.ireland.com/index.html’ and the anchor text description provided by the 

author o f  the page is “Ireland Portal Page” . Therefore, a link now exists between the web page 

containing the hypertext link and the referenced web page ‘www.ireland.com/index.html’.

2.2.2 E s s e n t ia l  T e r m in o l o g y

Some terms which will be used throughout this thesis will now be defined. A hypertext-link 

associated with a document d  will be referred to as an in-link o f  d  if it starts in a different document

http://www.Ireland.com/dublin/entertainment/cinema/index.htm
http://www.ireland.com/index.html%22%3eIreland
http://www.ireland.com/index.html%e2%80%99
http://www.ireland.com/index.html%e2%80%99


and points to document d. For an example see link 8 in Figure 2.8, which is an in-link o f document F, 

originating from document G. If, however, the link starts in d  and points to a different document then 

this link will be referred to as an out-link (see link 6, 4 or 10 as examples o f  out-links from document 

F). From graph theory, we know that the degree o f a node is the number o f directed edges incident to 

that node [COMAP, 96] so since each document may have multiple in-links and out-links we refer to 

the number o f  in4inks into document d as the in-degree o f  d (the in-degree o f F is 3). In a similar 

manner the number o f out-links emanating from d is referred to as the out-degree o f d (the out- 

degree o f F is 3). Many links never cross document boundaries at all, these links originate in one 

section o f a document and point to another section o f the same document (link 2). These links are 

referred to as self-links [Agosti, 00] and carry no form o f  inter-document judgment and will only 

serve to facilitate a user browsing a long document.

Figure 2.8 : Docum ent Linkage

An author writing a WWW document will create semantically different types o f hyperlinks 

between documents, even though HTM L supports only one syntactic type o f textual hyperlink (as 

described previously). Generally speaking, on the WWW we can separate links (both in-links and out- 

links) into either o f two broad types based on their intended function when being created:

• On-site links connect documents within a particular domain. They exist to aid the user in 

navigating within a domain, or web site. On-site links can be further subdivided into upward, 

downward or crosswise links [Spertus, 97]. Upward links point to documents that contain a 

generalisation o f  the information in the source document. Downward links point at 

documents that are a specialisation o f  the topic explored in the source document, while 

crosswise links act as a link to different information on a different subtopic o f the topic



explored in the parent document. In this way each web site can be constructed as a loose’ 

hierarchy in a way not unlike the web directory mentioned in Chapter 1. As one descends the 

hierarchy the information contained within each page gets more specific. An example o f an 

on-site link from Figure 2.8 is link 12, from document I to K, as the link never crosses a web

site boundary.

• Off-site (content, or outward) links on the other hand link documents in different domains 

(often across web site boundaries). They often link a source document to a target document 

that contains similar and, in the author's opinion, useful information. The reason why the 

author o f a particular document will create the off-site link is because he/she is likely to have 

gained some usefulness or benefit from the content o f the target document. After all, the 

creation o f a content or off-site link implicitly imposes a cognitive load on the author, so the 

link will not be created without good reason. An example o f an off-site link from Figure 2.8 

is link 9 from J to F. Note that it originates in site D  and points at a document in site C.

Finally, given that a document d may have many documents that link into it, we will often 

have to refer to this set o f  documents so we shall refer to this set as the in-set (the in-set o f  F 

contains documents B, G and J) and therefore the out-set (D, E  and I) is referring to the set of 

documents that d points at. The size o f  the in-set is equal to the in-degree o f that document, similarly 

for out-set and out-degree. To complete matters, we will need to be able to distinguish between on

site and off-site documents within the in-set or the out-set. Consequently we will refer to the on-site 

in-set o f document F (in Figure 2.8 this contains G and not B or J) and the size o f this off-site in-set 

is the on-site indegree o f document F. In a similar manner we will refer to the off-site in-set of 

document F (this contains B and J and not G) and the size o f this off-site in-set is the off-site 

indegree of document F. Similar logic is also applied to the on-site out-sets (for F this is a set 

containing E) and the off-site out-sets (D and I for document F).



2.2.3 E x t r a c t in g  M e a n in g  fr o m  L in k s  t o  a id  Lin k a g e  An a ly sis

Recall from Chapter 1 that in the immediate aftermath o f the Second World War, the US 

government began to pump huge amounts o f money into research thus causing a huge increase the 

volume o f scientific literature being produced. The need to provide quality IR facilities to this 

literature lead to the development of ‘citation indexing’ [Garfield, 01] which attempts to provide 

qualitative ranking of journals.

2.2.3.1 Im p a c t  Fa c t o r s

Central to citation indexing is the ‘impact factor’ measurement. The impact factor of a 

journal [Garfield, 64], [Garfield 94] is based on two essential elements:

• the number o f citations in the current year to any articles published in the journal over the 

previous two years.

« the number o f sustentative articles published by die journal during these two years.

Lettingy be a journal and IFj be the Impact Factor o f journal j ,  we have:

. H C itationsin  last y e a r  ( number o f  articles in last 2 yea rs) *

1 If Published A rtic lesf last l y e a r s )

This “impact factor” was originally applied to medical journals as a simple method of 

comparing journals to each other regardless o f their size. Garfield tells us that “die uncritical citation 

o f  disputed data by a writer, whether it be deliberate or not, is a serious matter” [Garfield, 64] and it is 

this that forms the cornerstone o f  citation indexing and approaches to linkage analysis.

Applying the concept o f  impact factors to the WWW gives us the ‘web impact factor’ 

which is based on the sum o f the number o f  in-links or self-links into a page divided by the number 

o f pages found on the referencing site or domain [Ingwersen, 98].

For the purpose o f  linkage analysis we are interested primarily in the number o f (and later 

on, the quality of) citations that a web page receives. I f  a web page receives a lot o f citations (in-links) 

dien we can broadly conclude (ignoring document content) that this page may be a better page than 

one that receives significantiy less citations. In addition to citation analysis, the Cluster Hypothesis 

[van Rijsbergen, 79] states that “closely associated documents tend to be relevant to the same 

requests” . The process o f  an author constructing hyperlinks to other documents on the web indicated



a semantic relationship between the documents and therefore the utilisation o f  web links may provide 

valuable aids in the search process. Research carried out at IBM [Chakrabarti et al., 99] suggests that 

“Citations signify deliberate judgement by the page author. Although some fractions of citations are 

noisy, most citations are to semantically related material. Thus the relevance o f a page is a reasonable 

indicator o f the relevance o f  its neighbours, although the reliability o f this rule falls off rapidly with 

increasing radius on average” .

We are now in a position to state that the number o f citations that that page has received 

from other web page authors (the page’s in-degree) is an important measure and that data mined from 

these links could aid retrieval performance o f search engines.

2.3.3.2 N o t  A ll  L in k s  a r e  c r e a t e d  E q u a l

When extracting information for linkage analysis from hyperlinks on the Web, two core 

properties o f  hyperlinks [Bharat & Henzinger, 98] can be assumed:

•  A  link  betw een tw o docum ents on the w eb  carries the im plication o f related content,

otherwise the link would probably not have been created. There are scenarios in which this 

does not apply, examples being automatically generated links, or the links at the automatically 

included by free website hosting organizations such as Geocities [GEOCITIES, 02]. We will 

return to this problem later in this chapter when discussing the work of John Kleinberg.

• I f  different peop le authored the docum ents11, then the first author found the secon d  

docu m en t valuable. We view all documents within a domain (connected via on-site links) as 

having being written/developed by die one author and thus represent the ideas of a single 

individual or organization, so any one author can’t be allowed to influence the linkage score 

o f documents within h is/her domain. O f course, domains such as Geocities pose problems 

as Geocities contains many different authors’ web sites within the one domain. In our 

experiments (outiined in the following chapters) we always treated “w w w .d cu .ie ” as a 

separate domain to “ l i b r a r y . d c u . i e ”, even though both were within the one 

organization.

11 I f  the documents reside on different domains (are linked to via off-site links) then they are considered to be authored by 
different authors



Given that we emphasise off-site links, on-site links play a lesser role in linkage analysis and 

should no t be viewed as a qualitative user judgment because it will not aid retrieval performance to 

allow individuals to directly influence the importance o f their own web pages (vote for themselves). In 

this way one can help to prevent the problem o f linkage-spamming, or search engine persuasion, 

whereby an author can artificially improve the ranking o f  a web page in search engine results by 

manipulating the document to rank highly in search engine result sets. This is, however, an ever- 

increasing problem for search engine designers.

2.3 Ba sic  Co n n e c t iv it y  An a l y sis  T e c h n iq u e s

Linkage-based ranking schemes can be seen to belong to one o f  two distinct classes, from 

[Henzinger, 01]:

• Query-independent schemes, which assign a linkage score to a page independent o f 

a given query. A score is assigned to a document once and used for all subsequent 

queries.

• Query-dependent schemes, which assign a linkage score to a page in the context of 

a given query. Additional hypedink analysis is required for each query, but the 

benefit o f  this is that the hyperlink analysis can be tailored specifically to the query.

All linkage analysis techniques fall into one o f these categories, with the former being the most 

common.

As previously mentioned we generally assume that the more popular a document is, the 

more in-links (higher citation count) o f that document on the WWW. Therefore, given a set o f query

relevant documents (perhaps returned from a Boolean IR system) one could rank them based on the 

number o f  off-site in-links into each document, which would be considered a query-independent 

scheme because the linkage score is no t calculated at query-time nor is it dependent on the query. Let 

n be some web page and S„ be the set o f off-site pages that link into document n. We can represent 

this as follows (assuming one link per page):



(2,3)

In this case, the LSc„ score (linkage score) is based purely on the in-degree o f document n. 

However this approach is very simplistic because the degree o f overlap o f  the documents w.r.t. the 

query is disregarded, so the benefits if  incorporating a (non-Boolean) term weighting scheme would 

be lost. For example if the relevant set o f documents included documents ranging from the highly 

scored to documents of low scored then disregarding the relevance weightings could lead to lowly 

scored documents (if better linked) being ranked higher than the highly scored documents, or the 

highly scored documents never being seen by the user at all. Since this is obviously not the ideal 

situation, it would be far more useful to incorporate both scores into the ranking process thus gaining 

the benefits that both have to offer. Taking this approach, we utilise the document-query similarity 

score o f each document and modify that to take into account a linkage score for that document. Once 

again, we let n be some web page, q be a query and S„ be the set o f pages that link into document n 

and assuming some normalization of the two scores by a:and 5:

Sc'n = (axSim ( q ,n ))+  (^ x ^ l)  (2.4)

This may seem like a very simple idea, but we know from experiments [Amento et al., 00] 

carried out at AT&T Research labs that implementing a linkage analysis component based on in

degree ranking has been found to be equally as good as other more advanced techniques (which shall 

be discussed in this and following chapters).

The main drawback o f this approach (or similar) is that there is no attempt made to 

distinguish between the quality o f a page pointed to (cited) by low quality pages and a page pointed to 

by the same number o f high quality pages. So this idea needs to be expanded upon to incorporate a 

qualitative score for each link into a document and from a document. This qualitative score associated 

with a link would be based on the document from which the link originates. Consequently if a 

document has a link into it from Yahoo or the Open Directory web directory (as discussed in Chapter

1) then this document could be considered more useful that a similarly scored document (with an 

equal number o f in-links) whose in-links come from web sites that could be considered to be less 

prestigious. It is this very fact that underlines most o f the more advanced linkage analysis techniques 

that are found in this and later chapters.
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Additionally, one can assume that a page with a large number o f off-site out-links will act as 

an index page (as in the index o f a book) and be a source o f links to content that the author o f the 

index (source) page found relevant and useful. Similarly, a page with a large number o f cross-domain 

in-links could be seen as a popular page precisely because many people have found it useful, and 

consequently linked to it. One could take this a step further and say that a document on a topic such 

as Formula 1 M otor Racing which has in-links from a number o f other documents relating to a similar 

topic, would be more useful to a user looking for information on Formula 1 than a document which 

may have a number o f in-links from more diverse sources. We will now look at what techniques have 

been developed to incorporate linkage evidence (mined from the hyperlink structure o f the WWW) to 

aid the retrieval process.

2.4 B u il d in g  o n  t h e  B asics o f  L in k a g e  An a l y sis

Many more advanced techniques for exploiting the latent linkage information on the WWW 

exist, beyond that o f simply counting the number o f  citations. We will now examine some o f these.

2.4.1 Co -C it a t io n  An a l y sis

Authors, in general, cite works that fall within their subject area and since the creation o f 

links requires a cognitive load, authors will not create links unnecessarily. This is often true on the 

WWW as well. A  co-citation link exists between two articles if they are both cited by at least one other 

work. The strength o f  the co-citation link increases in relation to the number o f articles that cite both 

[Garfield_2, 01].

Citing Papers

In Figure 2.9 we can see that both documents ^4 and B are cited by documents C, D  and E  

so we can assume that documents A  and B are related. I f  we can identify in a content-only search



session that d o c u m e n t^  is relevant, then we may also assume that document B is also relevant or at 

least increase the ranking o f document B by some fraction o f s4’s weight.

2.4.2 B ib l io g r a p h ic  Co u p l in g

Closely related to the idea o f co-citation analysis is bibliographic coupling where two or 

more articles are bibliographically coupled (related) if  they contain citations to one (or more) other 

articles in common. Once again, the strength o f the bibliographic coupling link increases as the 

number o f  common references increases [Kessler, 63].

Cited Papers

So in Figure 2.10 we can see that documents ^4 and B can be considered bibliographically 

coupled because they both cite a number o f  the same documents C, D  and E . Once again, if we can 

identify in a content-only search session that document ̂ 4 is relevant, then we may also assume that 

document B is relevant.

2.4.3 H y p e r l in k  V e c t o r  V o t in g

Hyperlink Vector Voting [Li, 98] is a query-independent and powerful approach to Linkage 

Analysis that has many uses extending beyond that o f simply augmenting a ranking formula within a 

search engine. H W  allows for each link into a document to represent a vote for that document and 

to provide an associated description o f that document’s content. Thus a search service based on H W  

uses the link anchor text from each citation as an indication o f the semantic content o f the target 

document and thus the number o f  citations (indirectly) affects the ranking o f  a document. This 

anchor text description can be the sole representation o f a document’s content, or be combined with 

the actual document content. The more links that a document has pointing at it, the broader is the 

resultant description o f the content o f  that document and the more likely it is to be returned relevant 

in response to a query.
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Figure 2.11 : Hyperlink Vector Voting illustrated

In effect, each in-link into a document can be thought o f  both as a vote for that document 

and as a source o f information about the content o f  that document, with the documents content 

being described by others rather than by the author. In Figure 2.11, the content o f document C  would 

include, “ fo rm u la  1”, “m o to rsp o rt” and “FI News”.

Letting Sn be the set o f documents that cite document n (the in-set o f ri), we generate Desc„ 

a textual description o f the content o f  n based on the H W  method. Both Desc„ and the user query q 

are represented as t-dimensional vectors12, we could use this score for a simple query-document 

similarity calculation:

Sc'n = Sim( q, Descn )  (2.5)

2.4.3.1 E v a l u a t in g  H W

An experimental H W -b ased  Web search Engine called Rankdex [RANKDEX, 02] was 

developed to evaluate H W . The total number o f web pages indexed was 5.3 million documents. 

Since the document content is represented by the anchor text description o f the in-links, the total 

inverted index size turns out to be 1/5  o f the normally expected inverted index size for a similar sized 

dataset. The evaluation o f Rankdex’s performance [Li, 98] was based on sending 10 ‘popular’ queries 

to what is referred to as an ‘editors search engine’13 and comparing how many o f the top 10 results

12 recall that /  is the total number o f  index terms in the system.

13 A n ‘Editor’s Search Engine* is a manually constructed web directory providing search facilities over its high-quality index.



from Rankdex and a number of other search services were included in the high-quality manually 

generated results. The results are shown in Figure 2.12.
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Figure 2.12 : H W  Evaluation

It can be seen that H W  m ost closely simulates a human editors efforts for all but one 

query, for which it is equal with Excite, and therefore was capable o f  meeting a user’s information 

need better than the existing search engines could at the time. However subsequent experiments 

undertaken by researchers as part o f  the most recent TREC14 conference (we will discuss TREC in 

detail in the next Chapter) have shown that H W  is o f benefit in finding homepages o f  organizations 

and less so as an indexing technique. In addition, we can not know that the pages indexed by Rankdex 

and the ‘editors search engine’ are indexed at all by the other search engines that have been used in 

the experiment and the entire evaluation is done using a set o f  ten queries is so small as to make the 

results inconclusive.

2.4.3.2 E x p a n d in g  o n  H W

We can expand on H W " as it is described above by examining exactly what text is used for 

the anchor text descriptions. I f  one just takes an anchor text (text between the <a> and the < /a>  

HTM L tags) then this may not provide adequate information as to the content o f  the destination 

document. It is the case, however, that in many cases no anchor text is associated with a link at all, or 

the anchor text is simply the word “here” or “link” . Based on data from one o f our crawls15 o f the

14 TREC — Text REtrieval Conference, an annual IR conference which takes place each November in Gaithersburg, MD.

15 Exploratory crawl o f  126,997 web documents containing a total o f  8,968,479 outLinks to 3,334,965 individual web 
documents which was carried out in January 2002.



WWW (specifically a subset o f 2 million links from that crawl) we estimate that almost 13% o f links 

contain no anchor text description and an additional 1 % are useless terms16 for describing the 

content o f a target document. Therefore 14% of links do not have anchor text descriptions that we 

consider to be beneficial to H W , so we need to expand on H W  to gain any benefit from these 14% 

o f links.

The approach taken is to extract text from the web page that surrounds the anchor text as a 

broader descriptor, both before and after. Care must be taken because, if too much text is extracted to 

form the anchor text description, we run the risk o f  including superfluous terms, which may not be 

appropriate and thus compromise the quality o f retrieval. Research from IBM Research Labs 

[Chakrabarti et al, 98] suggests that a window o f 50 bytes either side o f die anchor text is optimal at 

describing the contents o f  the target document.

In an operational implementation o f  H W  we expect that the document content would be 

combined with the H W  document description, so if  we let Desc„ be the textual description of 

document n (generated using H W ) and q be the user query (both represented as ¿-dimensional 

vectors), with oc and S  being constants used for tuning, we get the following formula to combine both 

sources o f evidence at query time:

Sc'n = a *  Sim( q,n) + 5 * Sim( q, Descn)  (2.6)

2.4.3.3 A d d i t i o n a l  B e n e f i t s  o f  H W

Using a technique based on H W  (or a derivative such as that described above), it would be 

possible to provide search services over documents that a search engine has on its queue, but has not 

yet downloaded. Recall from Figure 2.2 that the Google search engine (as o f July 2002) indexes 2,073 

million documents, yet it has not downloaded and parsed all o f these documents. It has only 

downloaded about 1,500 million documents and the other almost 600 million documents are 

represented by anchor text descriptions generated from documents that contain links into these 

documents. In Figure 2.13 we can see the true figures for Google. These non-downloaded documents 

can easily be identified by the lack o f a ‘cached’ link after each document in Google’s result pages.

1(3 The ‘useless terms’ w e speak about are : “more, links, link, view details, click here, here and about”
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Figure 2.13 : Estimating the true size o f  the Google index

In addition, this process o f associating the text o f the source o f a hyperlink does serve a 

purpose when one links to a non-HTML object such as image, video or audio data, all o f which are 

not be searchable by conventional textual means. For example, if  an image on the WWW has a 

number o f in-links from various sources, the text associated with the source o f the in-links can be 

used to generate content identifiers for the image [Harmandas et al., 97], and in so doing, providing a 

basis for the application o f  general IR principles on a textual description o f the image. This textual 

description generated from the anchor text descriptions associated with links into an image, or even 

the text surrounding an image on a page is used as a basis for subsequent retrieval.

A less obvious benefit of using anchor text from in-links as a way to describe an object is 

derived from the fact that a third party describing a web page may use synonyms or different terms in 

describing the content o f  a document which could help to avoid the problem of ‘aircraft’ not being 

the same as ‘airliner’ and resulting in relevant documents being overlooked in the retrieval process. In 

addition there is the possibility o f using the anchor text descriptions to identify synonyms, which can 

help in die building o f  thesauri or knowledge bases.

2.4.4 PAGERANK

The m ost visible linkage analysis technique in use on today’s web is the PageRank [Page et 

al., 98] algorithm (as implemented in the Google search engine [Brin and Page, 98], [GOOGLE, 02]). 

This is another query-independent algorithm (post-indexing-time and pre-query-time) that generates a 

linkage score for each document in Google’s index. Google themselves describe the algorithm as 

generating “an indicator o f  an individual page's value” and that, in a manner similar to Li’s H W , it 

“interprets a link from page A to page B as a vote, by page A, for page B” [Li, 98].
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PageRank is an iterative algorithm, which generates a linkage score for each document in 

the inverted index. This score represents some weighting o f that page, w.r.t. the pages that link into it. 

The algorithm can be described in terms o f a random user’s behavior while browsing the web. The 

user keeps clicking on successive links at random. However, problems can occur such as the user 

getting caught in page loops (where a page links to only one other page which itself contains just one 

link back to the referencing page). Rather than looping forever, the algorithm simulates a user getting 

“bored” and jumps to a new web page chosen at random using the E  vector.

A  simplified version o f the PageRank algorithm, which ignores some o f the issues that arise 

when viewing the WWW in graph theoretic terms, is discussed here. This algorithm iteratively 

calculates the PageRank o f each document. Prior to calculation, each document is assigned an initial 

PageRank value as follows. Letting PR, be the PageRank o f  document n, 8 be a constant (usually 1) 

and IV be the number o f documents in the index:

for all n in N, PRn = ~  (2.7)

Once all documents have been assigned an initial 1’ageRank, the iterative process begins and 

requires continual iterations17 until an acceptable convergence level is reached. Given an in-set S  for a 

particular document d, the PageRank o f d is the sum o f the PageRanks o f every document in S  divided

by the out-degree o f each document in .V.

(5

/

Figure 2.14 : A  sample web graph to illustrate PageRank

17 Based on experiments carried out by the author while developing a PageRank style algorithm (during an internship at 
AT&T Research Labs, NJ) the number o f  iterations is about 10 for 10 million documents. The PageRank authors put this 
figure at about 52 iterations for 322 million documents Page et al., 98], It can be seen that the number if  iterations 
required depends in a large way on the size o f  the dataset among other factors.

J ®



In Figure 2.14 the PageRank P R p  o f  docum ent F is  equal to P R »  divided the out-degree o f  

B  sum m ed w ith PRo divided by the out-degree o f  D -

(2.8)

We can view a simple version o f  the PageRank algorithm , which generates a PageRank PR, 

for a docum ent from  currently existing P R  scores as follows. Let n  be som e w eb page and S n  be the 

in-set associated with //, let o u k k s n c , .  be the size o f  the out-set o f  a docum ent m  and let c  be a value 

that is used for normalisation during the iterative process:

for all n in N  P R '= c - Y  — — *'■---------  (2.9)
i t ,  outdegreem

T h e algorithm to iteratively calculate PageRank scores fo ra  set o f  docum ents can be w ritten thus, 

letting N  be the size o f  the docum ent set, and P R ’be a vector o f  tem porary PageRank values:

PR* <- —N
loop: 

for n = 1,2,...TV:
PR

PR’,, = c • Y  -----^ -----
, ^ n ould egreem

end

PR» <- PR\
while ( not converged )

T he algorithm will iterate until an acceptable level o f  convergence o f  PageRank values has 

occurred. Based on the linear algebra theory o f  eigenvectors we know that convergence will eventually 

occur as the num ber o f  iterations increased w ithout bound.

O ne o f  the m ajor benefits o f  a technique such as PageRank is the fact that all processing is 

implemented prior to query-tim e, generating a linkage score for each docum ent which is included as 

part o f  the ranking fonnula at query-time. This means that no delay is required at query time which



make this type o f approach much more applicable to use on the WWW. Additional details of 

PageRank can be found in Chapter 4, when we discuss the algorithm in more detail.

2.4.5 Kl e in b e r g ’s A l g o r it h m

From  the previous section describing PageRank we know that a PageRank score is 

calculated for each document in the inverted index prior to the search engine ever processing a single 

a query and therefore it is a query-independent algorithm. An alternative approach would be to 

calculate a linkage score for each document after the query has been processed which would be a 

query dependent score. Such is Kleinberg’s algorithm, which is actually quite similar to PageRank.

Kleinberg’s algorithm [Kleinberg, 98] is also an iterative algorithm and in its original form is 

based purely on the linkage o f the documents on the web. However, it does have some major 

differences:

• It is executed at query time (query dependent), and not at indexing time.

• It computes two scores per document (hub and authority) as opposed to a single score.

• It is processed on a small subset o f highly scored (assumed relevant) documents generated by 

a content-only phase o f the process, not on all documents as was the case with PageRank.

The fundamental idea behind the algorithm is that each web page is viewed as being o f  two

types18:

H U B  Page: a hub page is a page that contains a number o f links to pages containing information 

about some topic, e.g. a resource page containing links to documents on a topic such as ‘Formula 1 

m otor racing’. Each page has an associated hub score representing its quality as a source of links to 

content.

AU TH O RITY Page: an authority page is one that contains quality information about some topic, 

an ‘authoritive’ page. Consequently, many pages will link to this page, thus giving us a means o f

18 Each page is both a hub and an authority, the strength o f  each type being based on that type’s score.



identifying it. Each page also has an associated authority score representing its perceived quality by 

other people. Figure 2.15 shows an example o f  pages with high hub scores and high authority scores.

Figure 2.15 : Illustrating Hub and Authority pages

Documents with high authority scores are expected to contain relevant consent, whereas 

documents with high hub scores are expected to contain links to relevant content. When examining 

the graph structure o f the web, a recognised hub page links to many authority pages and a recognised 

authority page is linked to by many hub pages. Therefore, a document that links to many good 

authorities is a good hub and a document that is linked to by many good hubs is a good authority. A 

better hub is one that links to documents with higher authority and a better authority is a document 

that is linked to by many better hubs resulting in a mutually re-enforcing relationship. A document is 

no t seen exclusively as a hub or an authority, rather each docum ent will always have both scores and 

consequently be ranked in both lists. Although one would expect that a document with a high 

authority score would have a low hub score and vice-versa, this is not always the case.

The documents with the highest hub scores could be used to suggest documents to aid 

farther browsing while the documents with highest authority scores are documents that best satisfy 

the information need represented by the query.

2.4.5.1 T h e  Se a r c h  P r o c e s s

The basic process o f  the algorithm to compute these scores is as follows; a user queries a 

search engine and which returns the top N (say 200) documents, referred to as the base-set. In 

Kleinberg’s case the search engine was AltaVista. These documents represent a set o f  highly-scored 

documents, which are considered to be relevant to the query. The base-set is expanded along the off-



site in-links to and off-site out-links from  these 200 docum ents (referred to as die neighbourhood) to 

produce an ‘expanded-set’ o f  docum ents (usually about 2,000). Each docum ent in the expanded-set N  

begins w ith an identical hub and authority scores (usually 1.0) and the scores are updated according to 

the following formulae over a num ber o f  iterations. After each iteration the scores are normalised. 

T he I operation updates the 1 lub Scores and the O  operation updates the Authority scores. Assuming 

S* is the in-set o f  « an d  that T„ is the out-set o f  n. the I operation is:

for all n in N , Authn = ^  Hub,,, (2.10)

The O  operation em ploying the same assumptions as the 1 operation is defined thus:

for a!I n inN, Hubn =  ^  A uthQ (2.11)
oe r„

T he authority and hub vectors will eventually converge, at w hich point the iterations can 

stop [Kleinberg, 98]. T he convergence properties o f  the algorithm  are based on standard results o f  

linear algebra which states that the hub and authority weights will eventually converge as the num ber 

o f  iterations increases w ithout bounds. Kleinberg found that that after about 20 iterations an 

acceptable convergence point is reached. The docum ents are then ranked into two groupings by hub 

(links to content) and authority (content) scores. Usually the top 10 docum ents from  each vector are 

chosen to be presented to the user, the top 10 hubs as starting points for further browsing and the 

top 10 authorities as the best web sites to fulfill a users inform ation need. T he full algorithm is as 

follows:



Hubi <— 1 
Auth¡ <— 1 
loop : 

for n = 1,2,...k : 
Auth'n = 'Y_¡Hubm fo ra lln in N

m<=S„

Hub’n = '̂ _¡Autho forali n inN
n<=T„

Normalise Auth'n, obtaining Anthn 
Normalise Hub'n, obtaining Hubn 

end 
while (  not converged )

Example results for the query “search engine” are shown in Table 2.1 as the top 

documents returned by Kleinberg’s algorithm and the results o f  the same query sent to the AltaVista 

search engine, in September 1999.

T o p  5 A u t h o r it ie s T o p  5 Alta V ist a  Results

Y ahoo Beaucoup Search Engine List

Excite Register with S.E. W eb Site Page

Magellan M am m a M eta Search (about)

Lycos M am m a M eta Search [mamma]

AltaVista Search Engine Links

Table 2.1 : Comparing Kleinberg to AltaVista

Kleinberg’s algorithm has been implemented as the HITS (Hyperlink Induced Topic 

Search) System at IBM [Chakrabarti et al., 98]. Intuitively we can see that the Kleinberg Algorithm 

produces better results in this case and intuitively we can see that the algorithm is very appealing and 

should yield high levels o f retrieval effectiveness. However, proving this the case has been fruidess in 

experiments reported to date for all TREC participants in the Web Track19 over the last three years. 

In the next chapter we will look into this problem in greater detail.

19 TREC Web Track —Web IR evaluation experiments organised by NIST, further details o f  this are presented in Chapter 3
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However intuitively this algorithm seems to work in the above example, it does not work 

well in all cases and a number o f suggested improvements to this algorithm have been put forward by 

Bharat and Henzinger [Bharat & Henzinger, 98].

2.4.5.2 I m p r o v e m e n t s  t o  Kl e in b e r g ’s Al g o r it h m

Three major weaknesses have been identified with Kleinberg’s Algorithm [Bharat & 

Henzinger, 98], recall the two assumed properties o f web hyperlinks from page 46. These problems 

can be described under the following three headings:

M u t u a l l y  R e - i n f o r c i n g  R e l a t i o n s h i p s  B e t w e e n  H o s t s

Sometimes a set o f  documents on one host point to a single document on a second host, 

serving to increase the authority score o f the document on the second host and the hub scores o f  the 

documents on the first host. Since we assume that all documents on one host were authored by a 

single entity then this gives undue weight to the opinions o f  one person. Ideally, one would like all 

documents on a single host to have the same influence on the document they are connected to as a 

single document would. To achieve this, one gives fractional weights to links [Bharat & Henzinger, 

98] in such cases (in so doing we view documents in terms o f their hosts). I f  there are n links from 

documents on one site to a single document on a second site we give each edge an weight o f 1 /n  . 

Likewise for hub weight, a similar fractional technique is applied. This results in viewing links on the 

web-site level as opposed to the document level. In Chapter 4 we discuss how we applied this solution 

to PageRank instead o f  HITS while developing an alternative version o f PageRank.

A u t o m a t i c a l l y  G e n e r a t e d  L i n k s

In the case o f automatically generated links, the second assumption regarding the 

properties o f  web pages will not apply in many cases, as these documents were not created by an 

individual representing a value judgment for a document. This is solved by combining content and 

linkage analysis [Bharat & Henzinger, 98], so that we can determine the relevance o f a document to 

the query topic and either eliminate irrelevant documents or regulate their influence. For example the 

hub score o f  a document is usually dependent on the sum o f  the authority scores o f the documents it 

links to, but the transfer o f these scores is now regulated by the similarity o f  each document to the 

original query, or an expanded version o f  same.



N o n - r e l e v a n t  n o d e s

This is perhaps the biggest flaw with many linkage analysis algorithms. In Kleinberg’s 

approach it is often found that many o f the documents comprising the neighbourhood graph would 

not be highly scored documents (with respect to the query topic). While the initial base-set would 

have continued many highly scored documents, the expanded set may contain a much lower density 

o f highly scored documents. This can cause a problem known as ‘topic drift’ whereby the most highly 

ranked hubs and authorities tend not to be about the original query topic. Quite often ‘topic drift’ 

leads to the highly ranked documents being about a broader topic than the query. For example, a 

query on ‘java socket exception’ may produce the top ranked results all concerning java or computer 

programming in general. Once again this problem is solved by combining content and linkage analysis 

and regulating the influence o f each document depending on its relevance to the query topic.

Initially query-document relevance was only considered in generating the base-set. However 

the document relevance (content) scores and linkage analysis are used when calculating the Hub and 

Authority scores and this changes the formulae that are used to calculate both scores by regulating the 

influence o f  each document based on its relevance to the query topic. Letting W„ -  the query- 

document similarity score o f  documentn the new formulae to calculate hubs and authorities are shown 

below.

The I operation:

for all n in N, Authn = 'Z Hub. * W.  (Z12)
me£„

And the O operation:

for all n in N, Hubn = Y .A uth ,*W 0 (2.13)
0£T„

It should be noted that the query text is often no t o f sufficient quality to adequately 

represent the topic o f the query. Consequently, the documents o f  the start set are used by Henzinger 

and Bharat to define a broader query to match documents against in a modified form o f automatic 

query expansion, as discussed in chapter 1. More precisely the top 1,000 words o f each document are 

used to generate a large expanded query, which is used to calculate the W m and W 0 values.
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Figure 2.16 : Comparing basic Kleinberg with Bharat & Henzingers5 improvements

Figure 2.16 shows the improvements gained by Bharat & Henzinger over the baseline result 

o f  Kleinberg’s algorithm. Only the results for the top authority documents are shown here. Precision 

is plotted at both 5 and 10 document levels o f  recall for each o f the three approaches. It can be seen 

that at both recall levels that even solving just the first problem mentioned above increases quality 

(precision20) noticeably (by 26% at 10 documents). Solving the other two problems leaves us with an 

additional increase o f 12% at recall o f  10. Therefore, we can see that incorporating content analysis 

into Kleinberg’s algorithm produced beneficial results.

A final point about the similarities between PageRank and Kleinberg’s algorithm is that 

Kleinberg requires similar memory requirements (during calculation) to those o f PageRank, even 

though it produces two scores for each document. Recall that PageRank requires the storage o f the 

old PageRanks from the previous iteration until the current iteration has completely concluded.

2.5 A r c h i t e c t u r e  o f  a  b a s ic  L in k a g e  A n a ly s is  b a s e d  WWW s e a r c h  s y s te m

Augmenting the architecture o f  the search engine presented in Figure 2.4 to incorporate a 

linkage analysis com ponent adds greatly to the overall complexity o f the system. A new component

20 We will discuss qualities measures for evaluating IR techniques in the next chapter.
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called a Connectivity Server is required to serve up timely linkage information, such as the off-site in

set, or on-site out-set o f a document.

2.5.1 Co n n e c t iv it y  Se r v e r

Any software that implements any form o f linkage analysis over web pages must work in 

conjunction with a ‘connectivity server’. A connectivity server [Bharat et al., 98] is a software 

application that provides fast access to the neighbourhood o f any referenced URL, although a 

conventional DBMS may suffice if speed is not o f  vital importance. The DBMS approach is how we 

developed m ost connectivity servers that were required for our experiments.

Figure 2.17 : Representing the Structure o f the Web

Figure 2.17 shows the neighborhood graph o f a base URL. It is quite possible that a

document in the in-set may also exist in the out-set, as would be caused by a base URL page linking to

another URL, which in turn links back to the base URL. Within documents on the same server, this is

quite common. The primary requirements o f a connectivity server can be defined as follows:

• To return the in-set or out-set o f  a document in response to a query.

• To return the in-degree or out-degree o f  a document in response to a query.

• To provide all responses in a timely manner.

• Possibly to return the in-link anchor text o f a document.

In a manner similar to a conventional web search facility, the connectivity server must 

allow for updates to be made to its index, which must not affect the workings o f the server. AltaVista 

used batch updates nightly to their prototype connectivity server. This was mainly due to the



composition o f the underlying data storage system upon which the connectivity server was 

constructed. Recall that speed is a priority in a realistic WWW setting, with many thousands o f queries 

being handled per second. In addition, a connectivity server may also be expected to respond to a 

query with a data structure containing documents and their associated anchor texts were this required.

A connectivity server views the WWW as being represented as a directed graph with a 

finite, non-empty set o f  nodes representing the documents and directed edges representing the links 

between any two documents in the graph. Before the connectivity server can represent a graph (G) of 

the WWW, we need a method o f representing it. The adjacency matrix o f  the graph is a suitable 

method o f doing this. In the adjacency matrix A (G )  for G, the entry in row i and column j  is 1 if the 

nodes i  and j  are joined by an edge and 0 otherwise. See Figure 2.18 (left hand side) for an example 

o f an adjacency matrix. O f course, an adjacency matrix for the entire WWW at a given point in time 

would be enormous, sparse and very difficult to model. Hence, some form o f  compression must be 

used, for example, CCS [Duff et al., 89] or CRS could be used in a manner similar to the compression 

o f  the term-document matrix discussed in Chapter 1. Assuming the adjacency matrix A (G ) can 

represent the out-links o f  the set o f  documents, the in-links into these documents can be represented 

by A T(G) which is the transpose o f the matrix A (G ), so we do not have to keep separate matrices.

1 , 2 , 3 , 4 , . n
■ ■■1 i , 2 , 3 , 4 n

1 - 1 1 0 . 0 1 .1 4 0 . 0
2 0 - 1 0 , 1 2 0 - . 2 . 1
3 1 1 - 1 _L 3 . 3 . 2 - . . .5
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Figure 2.18 : Binary (left) and Weighted (right) Adjacency Matrices

By simply replacing the binary values in the graph with range values a weighted graph can 

be easily generated in which each edge has an associated weight depending on its relative importance, 

and /o r the importance o f the node from which it originates or points at. Figure 2.18 (right side) 

shows an example o f a weighted adjacency matrix, which is independent o f  the binary matrix.



2.5.2 Lin k a g e  A n a ly sis  Se a r c h  Sy st e m  Ar c h it e c t u r e

Based on what we have learned thus far regarding IR and linkage analysis we are now in a 

position to describe one possible architecture o f a basic linkage-based search and retrieval system. 

Building on the architecture o f  the previous model) we can see that some additions have to be made 

to the system (shown in Figure 2.19) to reflect:

• The requirement for a connectivity server to serve up accurate and timely linkage data (1).

• The additional source o f content for indexing, which is the anchor text o f the in-links and a 

window at either side around the in-links into the document (2).

• A link analyser tool to generate a linkage score for each document such as PageRank, which 

is utilised by the system at query time (3).

Figure 2.19 : O utlining the architecture o f a search engine incorporating Linkage 
Analysis

The linkage score is integrated into the weighting formula to carry a certain influence on the 

overall score o f the document. The influence o f  this score would be regulated (in most cases) by a 

constant, as would also be the standard text score21 and the anchor-text score. These constants would 

be represented by best guess values as is the case with AT&T’s TREC experiments [Singhal & 

Kaszkiel, 00] where the value chosen for the regulation constant associated with text score(s) was 1.0

21 The mark-up text document description has been removed from the architecture to avoid unnecessary complexity.



and the anchor-text regulation constant was set at 0.25. N o direct linkage score was used in the AT&T 

experiments.

Letting SimDesc(d),q be the similarity o f the in-link anchor texts to the query, Simj,q be standard 

query document similarity for the document content and PRj be some PageRank style linkage score 

for a document and tx, 5, A be constants to regulate influence o f different components, we can 

generate a final weighting for a document d, from Figure 2.19 (4), based on:

Wtd = (a x Sim (d.q) ) + (d x Sim(Descd, q j)  t ( l x  PRd ) (2-14)

In this way we can incorporate linkage analysis into a web search engine using linear 

combination in which the constants would require tuning, unless an alternative technique is chosen, 

such as the hub synthesis model [Achlioptas et al., 01].

2.6 Ch a p t e r  Su m m a r y

In  this chapter, we have identified the challenges o f searching the WWW, but also 

identified the benefits that can be gained when working with web data before describing the 

architecture o f a simple WWW Search Engine. One possible benefit that we can extract from working 

with web documents is the ability to incorporate linkage analysis into the retrieval process. Linkage 

analysis is the name given to a technique that mines latent human judgments from the very link 

structure o f  the WWW. We have outlined the essential terminology for the rest o f the thesis and the 

assumptions necessary for incorporating linkage analysis into the retrieval process.

When discussing linkage analysis, we have identified the main techniques that can be 

implemented, from basic citation ranking or H W  to the more advanced algorithmic processes such 

as PageRank or Kleinberg’s algorithm.

Citation ranking is based on the work o f Eugene Garfield in producing the ‘impact factor’ 

measure for journals and is based on the idea that the more people link into a document, the more 

that document can be considered a useful document. H W  utilises anchor text descriptions o f in-links



into a document to provide a textual description o f  the content o f  the document for subsequent 

conventional indexing and retrieval.

PageRank is a query-independent linkage analysis technique that assigns a single numerical 

score to each document, which is combined at query time with a content-only score to produce a final 

docum ent ranking. Kleinberg’s algorithm, on the other hand is a query dependent algorithm that 

Operates on a small set o f  highly scored documents and produces two scores for each document. 

These two scores are Called hub and authority scores with hub scores reflecting a document’s 

usefulness as a source o f  links to possible relevant content and authority scores representing the 

usefulness o f tee document itself with regard to a particular topic. Two final document rankings may 

be produced, by ordering documents in decreasing order o f  hub and authority scores.

Finally, we have described the architecture o f  a WWW search engine that incorporates a 

linkage analysis component.



C h a p t e r  3

EX PERIM EN TS IN  LIN K A G E BASED IN FO R M A TIO N  RETRIEVAL

We open this chapter with a discussion of the concept of relevance before we describe the common 
approaches to measuring retrieval performance of a conventional information retrieval system. The 
principles of performance which provided guidelines for our linkage-based experiments are outlined 
before we discuss the TREC  series of conferences a?td our experiments for the web track of both the 
TREC-8 and TREC-9 conferences. Our linkage-based experiments and the findings from these 
experiments are discussed. The findings of these experiments were not positive as we failed to improve 
retrieval performance by incorporating linkage analysis into the retrieval process, as indeed was the 
case with all other TREC  participants.

3.1 E v a l u a t in g  IR  Sy s t e m s

In order to determine the quality o f an Information Retrieval system an evaluation o f  the 

system is usually carried out. Naive measurements o f a system’s performance can be done in terms of 

time and space. The shorter the response time taken from when a user submits a query to when the 

same user receives ranked output, the better the system is considered to be. In addition, lower 

memory requirements are seen as beneficial because larger numbers o f  documents can be processed 

without increasing memory requirements. Additional measurements [Cleverdon at al., 66] include the 

following:

• Coverage: the extent to which a document collection contains relevant material.

• Presentation : the form o f presentation o f  the output o f  the search process.

• Effort: the load on the user in obtaining answers to an information requirement.

However, these measures do not actually provide an indication o f  the effectiveness o f the 

retrieval system in satisfying a users information requirement. I t is assumed that the more effective a 

system, the more it will satisfy a user. To gain an indication o f  a retrieval system’s effectiveness we 

employ the Precision and Recall metrics and introduce the concept o f relevance.

-  6 8 -



3.1.1 R e l e v a n c e

A document that satisfies a user’s information requirement is said to be relevant to that 

information requirement. The notion o f relevance should no t be confused with highly scored 

documents (those ranked highly by an automatic retrieval system), rather relevance is based on human 

judgements o f  the utility o f  a document in satisfying an information requirement and a document can 

not be assumed relevant simply because automatic retrieval system has allocated it a high score.

Keith Van Rijsbergen [van Rijsbergen, 79] states that “relevance is a subjective notion” and 

that “different users may differ about the relevance or non-relevance o f  particular documents to given 

questions” . Yet in the field o f information retrieval, relevance judgements made by human subject 

experts in a particular area are acceptable as a basis for retrieval performance evaluation and do not 

invalidate experiments based on document collections (incorporating a set o f queries and 

corresponding relevance judgements for these queries). Thus human judgements form the basis o f 

qualitative ranking o f Information Retrieval systems.

It is also a general assumption [van Rijsbergen, 79] in the field o f information retrieval that 

should a retrieval strategy or algorithm fare well (rank the m ost relevant documents highly) under a 

large number o f experimental trials then it is also likely to perform well in an operational situation, a 

situation in which relevance is not known in advance, such as searching the web. The assumption 

being made is that these experimental trials should be based on executing representative queries on a 

document collection, which is also representative o f the nature o f  documents in an operational 

scenario. Consequently, should a retrieval strategy or algorithm produce unfavorable results under 

experimental trails on representative documents then the validity o f  the retrieval strategy or algorithm 

can be questioned. However, if the queries or the document collection are not representative o f real 

world queries to documents, then the validity of the experiment results could be called into question.

The TREC series o f conferences, which we shall discuss at length in this chapter, supports 

the evaluation o f retrieval strategies by providing participants with data (upon which experiments into 

retrieval strategy performance are executed), queries and assistance in evaluating the retrieval 

effectiveness o f participants experimental retrieval strategies.



3.1.2 M ea su r in g  Retrieval  p e r f o r m a n c e

Consider a user’s information request I executed on a test collection o f documents to be 

referred to as T. In order to accurately evaluate the performance o f  a retrieval system we need to 

know what documents are relevant (we will return to this problem later) and we refer to this set as the 

set R o f  relevant documents. Let | A  | be the number o f  documents that a particular retrieval strategy 

has ranked in response to the information request I and | R | be the number o f documents actually 

relevant to the information request /. In addition let | RR| (Relevant Retrieved) indicate the number 

o f  documents in the intersection o f  sets R and A . This signifies the number o f relevant documents 

retrieved, see Figure 3.1.

F igure  3.1 : Illustra ting  P recision  and Recall

The measurements o f precision and recall are based on these sets o f  documents.

Precision : is the fraction o f  retrieved documents that are relevant, i.e. the proportion of 

the set A that is relevant for a particular query and precision is represented by the following formula:

Pr ecision = (3. l)
\A\

Relevant Documents 
in the Answer Set

Text Collection

Relevant
Documents

Answer

Recall : is the fraction o f  relevant documents that have been retrieved, i.e. the proportion 

o f  the set R that has been retrieved for a particular query and recall is represented by the following 

formula:



Recall = H  (3.2)
\R\ V 1

One assumption underlying Precision and Recall is that all documents in the answer set A have been 

judged (by a human judge, as opposed to being simply highly scored by an automatic retrieval system) 

to be either relevant or not-relevant prior to the calculation o f the Precision and Recall values. For a 

large test collection, this is clearly not practical and we will see later how this is handled by TREC.

Due to the fact that a user usually doesn’t see all scored documents resulting from a given 

query (a ranked list o f the top N documents is normally presented instead) proper evaluation o f 

retrieval performance includes measuring precision at fixed levels o f recall and (often) plotting this on 

a precision versus recall curve. This precision versus recall curve (as shown in Figure 3.2) is usually 

based on 11 standard recall levels, which are 0% through to 100% at 10% intervals. The precision 

figure for each o f the 11 points o f  recall is based on an interpolation procedure whereby the 

interpolated precision at the n-th standard level o f  recall is the maximum known precision at any recall 

level between the n-th and the (n+1)th level (iteratively). So the precision value at 10% recall is based 

on the maximum precision value between the 10% recall level and the 20% level and so on. An 

example precision versus recall curve for four o f our experimental retrieval strategies (TREC-9 

experiments) is shown in Figure 3.2.

0 6
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Figure 3.2 : Precision versus recall graph for our TREC-9 experiments

Given the fact that a user often only views the top 10 ranked documents resulting from a 

search then averaging the precision figure at 10 documents would be a useful measure o f  retrieval 

performance, i.e. how many documents ranked in the top 10 results are actually relevant. This is often



carried ou t at certain cu t-off values such as 5, 10, 15, 20, 30, 50, 100, etc. and is plotted on a graph 

referred to  as a precision ranking graph. A  precision ranking graph will display the precision values for 

an experim ent a t fixed points (as above) in the answer set. F or example, at po in t 10 on a precision 

ranking graph one can see the (non-interpolated) average precision o f  the top 10 ranked documents. 

A  precision value o f  1.0 w ould indicate that all top 10 ranked docum ents are considered relevant to 

the query topic. I t is this measure that we will employ m ost often in evaluating the results o f  our 

experiments.

Usually retrieval algorithms are evaluated over a fixed num ber o f  queries and the average 

precision figures at each recall level is used. Therefore, if  fifty queries are used as part o f  an evaluation 

process, the average precision at each recall level is based simply on  sum m ing the precision values at 

each level and dividing by the num ber o f  queries executed (in this case fifty).

O ne final measure that we will need to understand is referred to as generality 

(vanRijsbergen, 79). The generality o f  a docum ent collection is a measure o f  the density o f  relevant 

docum ents w ithin the collection and is represented by the following formula, where N  is the num ber 

o f  docum ents in the collection.

Generality =  Lj- (3.3)

W e will use the generality measure in this thesis to com pare different docum ent collections to one 

another to examine their support for various ranking algorithms and strategies.

3.1.3 T est  Co l l e c t io n s

T he field o f  text inform ation retrieval has a long tradition o f  using test collections as part 

o f  the evaluation process [Harman, 92]. T est collections, in general, consist o f  three components:

• a set of documents (a dataset), w hich should be representative o f  the docum ents which would 

be encountered in an operational situation. Yet, in certain circumstances this is no t even sufficient, a 

case in po in t being experiments in linkage analysis techniques, which will require the linkage structure 

betw een docum ents w ith the test collection also to be representative o f  the link structure between 

docum ents on  the WWW.



• a set of queries, w hich should be representative o f  the types o f  queries which would be 

encountered in an operational situation. In  a W W W  search evaluation scenario, one obvious source o f 

queries w ould be from  search engine query logs, w hich are logs o f  user queries that search engines 

produce and periodically make publicly available.

• a set of relevance judgements for use in evaluating the perform ance o f  an inform ation retrieval 

system. Relevance judgements consist o f  a listing o f  all relevant docum ents (as exhaustive as possible) 

identified from  the test collection set o f  docum ents, for a particular query. There will be a set o f  

relevance judgements for each query. These, relevance judgements will have been generated by subject 

m atter experts.

O ne o f  the m ajor benefits o f  having relevance judgements available is that it is very easy at 

any time to run additional experiments and evaluate retrieval performance. Relevance judgements in 

early test collections were complete, that is, a relevance judgem ent was m ade for every docum ent in 

the collection for every topic. O nce the test collections began to grow in size one immediate problem  

encountered was how  to obtain a com plete and accurate set o f  relevance judgements for the queries. 

F rom  [Grefenstette, 97] we can infer that it will take over 13,000 hours to judge the 1.69 million 

docum ent dataset used recently in the TR EC  (see below) conference for just one query. This is clearly 

unrealistic as it would require 74 man-years to generate com pete relevance judgements for all fifty 

queries for one years T R E C  experiments. O ne popular solution is the pooling technique where, for 

each query, a num ber o f  alternative ranking algorithms each subm it a set o f  ranked documents. These 

docum ents are added to a pool o f  ‘candidate’ docum ents for future judging by a hum an assessor 

(subject m atter expert and in som e cases, the topic author) thus dramatically reducing the num ber o f  

docum ents that require judgements.

O f  course, it is possible that a num ber o f  relevant docum ents from  the collection will no t be 

contained in the pool and therefore these docum ents will no t be judged, and by default will be 

considered to be irrelevant and we refer to these relevance judgements as non-com plete relevance 

judgements. H ow ever the benefits o f  having relevance judgements at all far outweigh the problems 

with using non-com plete relevance judgements on test collections.

O ne o f  die earliest test collections (from  the 60s) was the Cranfield collection [Cleverdon at 

al., 66], w hich consisted o f  1,400 docum ents (requiring 1.6MB o f  disk space) and included 255 queries 

and com plete relevance judgements, w hich were not too difficult to produce given that the docum ent 

collection only contained 1,400 docum ents. Following on from  the Cranfield collection came other



notable collections such as the CACM collection [Fox, 1983] and the N P L  collection [Sparck Jones & 

W ebster, 79]. B ut these early datasets were small and as noted by Sparck Jones in 1981, there was 

“little or no consolidation between research groups in the field o f  IR ” [Harman, 92]. There was a need 

for larger test collections to evaluate the then existing m ethodologies on realistic sized datasets. This 

challenge has been m et by the TR EC  series o f  conferences, with the latest test collections consisting 

entirely o f  w eb data, and being used to test experiments into W W W  inform ation retrieval.

3.1.4 E va luating  Linkage Analysis

T he usual ou tpu t o f  a linkage-based retrieval algorithm is a ranked list o f  docum ents, which 

is similar to the ou tpu t o f  a conventional IR  system. T he evaluation o f  such an algorithm normally 

follows the same procedure as conventional IR  evaluation, in that we measure retrieval performance 

using the standard measures o f  precision and recall. H owever, since linkage analysis is based on 

exploiting the link structure o f  a docum ent collection, simple precision and recall measures may no t 

be adequate to evaluate linkage based retrieval strategies. The fact that a docum ent may be scored 

lowly, bu t act as a source o f  links to highly scored docum ents, would m ean that it would no t score 

well using standard precision and recall measures. The effect o f  this would be that documents that 

would be highly scored as ‘hub ’ docum ents (which would be useful as starting points to explore a 

topic) using Kleinberg’s algorithm may (content depending) no t be seen as relevant using current 

m ethodologies. I t  is ou r belief that the current measures do no t adequately support retrieval 

perform ance evaluation o f  linkage based retrieval strategies and that new  measures need to be 

developed w hich are m ore suited to evaluating the neighbourhood o f  a docum ent as well as the 

docum ent itself. H ow ever, this is beyond the scope o f  this thesis, where we have worked within 

conventional IR  evaluation m ethodologies, b u t we will make allowances.

Should linkage-based retrieval (linkage analysis) be found to aid retrieval perform ance, then 

we believe that certain criteria m ust be m et by the linkage analysis algorithm which we refer to as the 

‘principles o f  perform ance’ o f  a linkage analysis algorithm.

3.1.4.1 P r in c ipl e s  o f  Per fo r m a n c e  o f  a  Lin k a g e  A nalysis Al g o r ith m

O u r experiments in the field since 1998 have lead us to develop a num ber o f  requirements 

that any operational linkage analysis com ponent, being developed for a Search Engine, should meet. 

W e refer to these as the “Principles o f  Perform ance” for a linkage analysis com ponent and any linkage 

analysis com ponent:



1. Must provide a useful <& accurate connectivity score. This score m ust accurately reflect a docum ent’s 

influence on the dataset being indexed and should aid retrieval perform ance.

2. Must not adversely affect the query-time performance of the retrieval system. T hat is, an approach such as 

Kleinberg’s algorithm would have a query-time perform ance hit i f  implemented at query-time 

as a result post-processor. This was n o t an option  in our experiments and unless H ubs and 

Authorities calculations could be integrated into a system w ithour causing any notable delay 

in query processing we would avoid such a technique.

3. M ust be scaleable to realistic si^ed datasets. I f  one designs such a com ponent for use w ith Web data 

then limiting the capabilities o f  the system should be avoided at all costs. This is influenced 

by a num ber o f  items; addressable &  available memory, processor speeds and network 

throughput. M em ory limitations o f  storing the arrays o f  PageRanks in RAM  would have 

limited any single PC  based algorithm  to below 250 million docum ents assuming 2GB o f 

available RAVI. Early versions o f  PageRank [Brin & Page, 98] used to write the old 

PageRanks o f  each docum ent to disk and only store the current PageRanks o f  documents in 

RAM, thus instantly doubling the capacity o f  a single com puter, with no query-time 

perform ance hit.

4. M ust be robust in the face o f W W W  linkage irregularities and links o f varying importance. Link 

irregularities such as such as link circularity22 m ust be handled competently. They m ust no t 

result in undue scores being applied to non-deserving docum ents. All links are no t created 

equal and this is som ething that should be addressed also. Bharat &  H enzinger [Bharat & 

H enzinger, 98] regulate the influence o f  a link by the source node’s similarity to an 

automatically expanded query, as we have seen in Chapter 2.

22 Linkage circularity refers to particular structure of links between web pages that form loops and can cause problems for 
linkage-based retrieval algorithms.



T R E C  (Text REtrieval Conference) is an annual conference (since 1992), funded by D A RPA 23 

and organized by N IST 24, w hich draws participants from  all over the world each year to take part in 

benchm arking exercises for inform ation retrieval related tasks. Its aim is to provide a framework 

w ithin w hich diverse research groups from  around the world can run experiments on  identical data 

using queries provided by the T R E C  organizers, and then com e together to share their results and 

findings. Each participant writes a p ap er/rep o rt on their experiments and (usually) makes their 

algorithms publicly available so that the field as a w hole can benefit.

As we have seen, the text retrieval com m unity has a long tradition extending from  the Cranfield 

collection, o f  using test collections for running retrieval experiments and T R E C  is certainly no 

exception. Recall that test collections consist o f  a set o f  docum ents, a set o f  queries and a set o f  

relevance judgements for the queries based on docum ents within the test collection. TR EC  provides 

participants with:

•  a set o f  docum ents w hich in recent years (to support experiments into ad-hoc and web 

retrieval) has been one o f  a 250,000 docum ent collection, a 1.69 million docum ent collection 

(both for the small w eb task) or an 18.5 million docum ent collection (for the large web task, 

in w hich we did n o t participate). A n example docum ent from  TREC-9 is show n below:

3.2 T R E C , t h e  T e x t  r e t r i e v a l  C o n f e r e n c e

<DOC>
<DOCNO>WTX 0 01-B02-100</DOCNO>
<DOCOLDNO>IAO01-000000-B028-33</DOCOLDNO>
<DOCHDR>http://www.cdnemb-washdc.org: 8 0/relat2-e.html 
206.116.210.186 19970101014531 text/html 974 
HTTP/1.0 200 OK
Date: Wed, 01 Jan 1997 01:40:31 GMT 
Server: Apache/l.1.1 
Content-type: text/html 
Content-length: 804
Last-modified: Thu, 25 Jul 1996 02:12:19 GMT 
</DOCHDR>

<html>
<head><title>Canada-U.S Trade Flows</title>
<!— This document was created on May 1, 1995 by Paul A.
Canniff, Canniff and Company on behalf of the Canadian 
Embassy, Washington, DC— >

23 DARPA - Defense Advanced Research Projects Agency.
24 NIST — National Institute for Standards and Technology.

http://www.cdnemb-washdc.org


</head>
<body><h2>Canada is the United States' Best Export 
Market.</h2>
<p>In 1993 Canada bought &#36;128.1 billion worth of 
American merchandise and non-merchandise, 60 percent more 
than Japan bought and twice as much as the United Kingdom 
bought. In fact, the U.S. exported more to the province of 
Ontario than it did to Japan. Canada accounted for 17 
percent of U.S. exports to the entire world.
<p><center> <h3>U.S. Merchandise and Non-Merchandise 
Exports<br> To Leading Trading Partners, 1993, in billions 
of US$</h3> <p><img src="graph2.gif"> </center>
</body>
</html>
</DOC> ___________________

a set o f  queries (called topics in TREC), each o f  w hich consists o f  an identifier (number), a 

title w hich for TREC-9 was a real-life W W W  query (spelling irregularities included) which 

had  been subm itted to a search engine and extracted from  the query log, a description o f  the 

topic requirements and a narrative section w hich helps to rem ove any ambiguities. An 

example o f  a T R E C  topic is show n below. A  distinction is m ade in T R E C  between manual 

and autom atic query generation m ethods, w ith manual representing any hum an involvement 

in the query generation process. O u r runs w ere primarily based on manually generated 

queries.

<num> Number: 451
<title> What is a Bengals cat?
<desc> Description:
Provide information on the Bengal cat breed,

<narr> Narrative :
Item should include any information on the Bengal cat breed, 
including description, origin, characteristics, breeding 
program, names of breeders and catteries carrying bengals. 
References which discuss bengal clubs only are not relevant. 
Discussions of bengal tigers are not relevant.

a set o f  relevance judgements w hich are m ade available after the participants have run 

experiments on  the docum ent collection. The T R E C  relevance judgements are usually binary



relevance judgements (a docum ent is either relevant o r it is not). Like many others, we feel 

that binary relevance judgements may n o t be the best approach for web docum ents. Apart 

from  the fact that relevance is inherently subjective, w eb docum ents, although no t 

themselves providing solutions to an inform ation need, may link into highly relevant 

docum ents. T he use o f  binary relevance judgem ents in this case cannot capture this subtlety 

though we accept that TR EC  does have budget and logistic limitations.

T R E C  organisers em ploy a pooling technique w hen generating their relevance judgements, 

where, for each topic, all participating groups subm it their top 1,000 m ost highly scored documents 

(or less if  1,000 are n o t ranked) for each algorithm  that they are evaluating. N o t all submissions will be 

accepted for inclusion into the pool. Resources will only allow for a num ber o f  sets o f  ranked 

docum ents (called runs) to be pooled and these are know n as official runs, w ith un-pooled runs being 

classified as unofficial. The top 100 docum ents from  each official run are added to the pool o f  

‘candidate’ relevant docum ents. These docum ents are judged by an assessor (the topic author) using a 

binary relevance judgem ent scale (not relevant or relevant), o r in the case o f  the W eb Track o f  TREC- 

9, a three way relevance judgem ent scale (not relevant, relevant and highly relevant) and the relevant 

docum ents from  these judgements are used as the list o f  relevant docum ents in evaluating the quality 

o f  the results obtained by different runs. For the official results o f  the W eb track o f  TREC-9, both  

relevant and very-relevant docum ents were com bined together to allow for binary relevance 

judgements. I t is expected that the three way judgements will be used in the future to develop other 

evaluation schemes fo r web retrieval, i.e. n o t just evaluation measures based on precision and recall.. 

In  addition for TREC-9 the single best docum ent for each topic was chosen by the assessor from  the 

pool for each query that should be ranked first in any runs. This w ould allow for evaluation o f  single 

docum ent retrieval strategies, an example o f  w hich w ould be G oogle’s “I’m  Feeling Lucky” search 

feature [G O O G L E , 02], w hich takes the searcher directly to the first web page Google returned for 

your query.

3.2.1 T h e  Goals o f  TREC

T R E C  exists to  support and foster research into inform ation retrieval related issues. The 

overriding spirit o f  T R E C  is sharing o f  knowledge, the knowledge gained from  the experiments in the 

hope o f  further advancing the field o f  inform ation retrieval. The declared goals [Voorhees &  H arm an, 

01] o f  T R E C  are:



•  T o  encourage inform ation retrieval research based on large-scale collections.

•  T o  increase com m unication between industry, academia and governm ent by creating an open 

fom m  for the exchange o f research ideas.

•  T o  speed the transfer o f  knowledge from  research labs into commercial products by 

dem onstrating substantial im provem ents in retrieval m ethodologies on real world problems.

•  T o  increase the availability o f  appropriate evaluation techniques for use by industry and 

academia, including the developm ent o f  new evaluation techniques m ore appropriate to 

current systems.

•  A nd from  [Voorhees_2, 01], to create a series o f  test collections covering different aspects o f  

inform ation retrieval.

T R E C  supports experiments on a num ber o f  different inform ation retrieval problems. 

These problem s are represented in a num ber o f  separate ‘tracks’. The tracks represented in TR EC  

2001 (the m ost recent) are:

•  Filtering Track - for each docum ent in a docum ent stream, decide w hether to retrieve it in 

response to a standing query.

•  Cross-Language Track — ad-hoc search task for docum ents written in one language and 

queries in another.

•  Interactive Track — task to accomplish search in an interactive environm ent using publicly 

accessible tools and the web.

•  Q uestion A nsw ering Track - task to encourage research into systems that return answers, 

rather than ranked lists o f  docum ents, which is a strict sense is real inform ation retrieval as 

opposed to docum ent retrieval.

• Video Track — task to  prom ote content-based retrieval from  digital video data.

•  W eb Track — task to  investigate inform ation retrieval using w eb documents.

There have been a num ber o f  o ther tracks tun  during the lifetime o f  TR EC , the m ost notable o f  

which was the ad-hoc track, w hich in TREC-9 was replaced by the W eb track. The ad-hoc track was



based on using conventional text docum ents, and in later years web docum ents, to evaluate non- 

W W W  specific search tasks.

3.3 T h e  TREC We b  T rack  (1999)

T he W eb Track was first run in TREC-8 in 1999 [Voorhees & H arm an, 99], W ithin this track, 

there were two sub-tracks, the small web task and the large web task. We will only discuss our 

experiments w ith respect to the small web task. There w ere a num ber o f  reasons why the TR EC  

organisers decided to run a W eb Track (small in  particular) in T R E C  8. F rom  [Hawking et al., 99] we 

know  that the T R E C  organisers and participants were interested in evaluating whether:

•  the best m ethods in the TR EC  Ad H oc  task also w ork best on the W T2g collection (see 

later) o f  w eb data.

• link inform ation in web data can be used to obtain m ore effective search rankings than can 

be obtained using page content alone.

Consequently, the T R E C  W eb track was introduced at the TR EC -8 conference to foster research into 

retrieval o f  web data as w eb-based retrieval techniques had heretofore no t been examined at TREC. It 

was feared that the techniques im plem ented by the Search Engines on the W eb were far m ore 

advanced that w hat T R E C  had to offer. In  total, seventeen participating groups subm itted a total o f  

44 runs, 24 o f  which w ere content-only and 20 runs utilised linkage data.

O ver the course o f  the W eb track (until 2002) there have been two test collections 

employed by the TR EC  organisers (WT2g and a larger W TlOg). B oth test collections have been 

extracted from  a 100GB VLC25 collection which itself was extracted from  a 300GB subset o f  an 

In ternet Archive crawl m ade in 1997. The VLC test collection was used as the dataset for TR EC -8’s 

and TR EC -9’s large w eb task, w hich we did no t participate in. There have been no studies o f  the 

degree o f  overlap betw een W TlO g and W T2g so the overlap show n in Figure 3.3 is purely illustrative.

25 VLC stands for Very Large Collection as the total disk space requirement for this dataset was 100GB.



Figure 3.3 : T R EC  W T 2 g & W T lQ g  Test Collections

3.3.1 T h e  WT2g T est  Co l l e c t io n

T he Small Task o f  TR EC -8 employed a text collection that consisted o f  247,491 docum ents, 

requiring 2G B  o f  disk space, w hich was called the W T2g26 collection. F rom  [Hawking et al., 99] we 

know that the W T2g collection was generated w ith the following four goals in mind:

•  T o  have a  collection o f  com parable size to the T R E C  A d-H oc collection (the usual text IR  

collection) w hich had  been used in previous years.

•  T o  have a  collection w hich is likely to  contain a reasonable quantity o f  docum ents relevant to 

TR EC -8 ad-hoc topics.

•  T o  include naturally defined sub-collections.

•  T o  have a collection containing an interesting quantity o f  closed hyperlinks (having bo th  the

source and target o f  the link, within the dataset.

A long w ith the W T 2g collection a set o f  topics (num bered 401 -  450) were distributed and

after the official runs o f  participants w ere subm itted, a set o f  relevance judgements was generated (by

2« WT2g refers to the fact that the collection was for the Web Track (WT) and was a size of 2GB.
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N IST  assessors) and m ade available. In  addition to the provision o f  the docum ents, the TR EC  

organisers (after an aborted attem pt to provide online connectivity data because o f  access latency 

issues) distributed connectivity data for the collection. The success o r otherwise o f  any experiments 

into linkage analysis is dependent on the density o f  the links w ithin the dataset and the 

representativeness o f  these links. A  brief examination o f  the construction methodology employed by 

the w eb track organisers w hen constructing W T2g illustrates som e possible problems with the dataset. 

Recall that the dataset was extracted from  the 100GB VLC collection, which was itself extracted from  

the 300GB In ternet Archive27 [IN T E R N E T  A R C H IV E, 02] crawl. This means that all the links 

w ithin the W T2g dataset could only have originated from  within the 100GB collection, w hich limits 

the num ber o f  links available. A dd to that the fact that only links am ong the 247,491 documents 

themselves could be included limits the available links further. In  Figure 3.4, the links would be any 

links betw een docum ents in sites 1,2 and 3 as well as any links (a, b and c) between docum ents on 

these websites to  the exclusion o f  the links represented by the dashed lines.

U pon examination, it was found that the num ber o f  off-site links within W T2g is 2797 out 

o f  1,166,702 or 0.24% [Hawking et al., 99], which we found to be insufficient to support linkage-

27 The Internet Archive is a website dedicated to crawling and making publicly available snapshots of the web for historical 
purposes.
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based web retrieval [Gurrin &  Smeaton, 99]. O ur findings concurred w ith the findings o f  all other 

participating groups.

3.3.2 E x pe r im e n t  Overview

TR EC -8 gave us our first opportunity to experim ent w ith applying linkage analysis 

algorithms to real-world web data [Gurrin &  Smeaton, 99]. There were a num ber o f  well known 

algorithms such as PageRank and Kleinberg which we could have evaluated, bu t we felt that it would 

be m ore beneficial for us to engage in our ow n basic research into the area, and to evaluate some 

simple algorithms all based around citation ranking.

O u r experiments were based on  reranking a set o f  highly scored docum ents by applying one 

o f  a  num ber o f  linkage analysis algorithms, so in effect a two-phase process was involved. The first 

phase (1) was to generate the set o f  highly scored docum ents and the second phase (2) was to rerank 

these docum ents based on their linkage structure. See Figure 3.5 for an illustration o f  the phases 

involved.

TREC topics (401-450)

Figure 3.5 : TREC-8 Experiment Phases

3.3.2.1 Sy st em  Ar c h it e c t u r e

T he system architecture we employed for our experiments can be divided into three logical sections:

•  A  conventional search engine (the content search engine show n in Figure 3.5) to process 

queries and return ranked sets o f  highly scored docum ents. T o  generate the ranked sets o f  

highly scored docum ents for this experiment, we used an off-the-shelf search engine as 

opposed to developing our own.



A  Connectivity Server to store and retrieve linkage inform ation for each docum ent in the 

collection.

Software (the query processor in Figure 3.6) to process the ranked output o f  the conventional 

search engine by applying a num ber o f  linkage analysis algorithms w ith the aim  o f improving 

retrieval perform ance.

Figure 3.6 illustrates the architecture o f  our TR EC -8 experimental software that we developed in 

order to execute the experiments that we now  describe.

Connectivity Server Content Search Engine

Java Connectivity -  
Wrapper

Linkage '  
Algorithms

Topics
401-450

▼ ▼

Result Wrapper

Experiment 
Engine

Query Processor

Discovery
InterfaceServer

Results

Dcu99c01

Figure 3.6 : Architecture of our TREC-8 Experimental System

In  o rder to allow testing o f  the retrieval perform ance o f  our algorithms we extracted and 

stored a small am ount o f  inform ation from  each docum ent, which was used as part o f  an interface to 

ou r system, to provide a description o f  each docum ent. The inform ation we extracted consisted of:

•  D ocum ent ID

•  D ocum ent Title

•  D ocum ent T ext (256 bytes o f  text from  the start o f  the docum ent, to the nearest word)

In  this way we could provide content-only results for each query, w hich were reranked in the second 

phase o f  the experiments using some linkage analysis algorithms.



O nce we were able to get content-only results for a query, we then needed access to 

connectivity inform ation for each docum ent. We utilised M icrosoft SQL server 6.5 [SQL SERVER] 

for this task. O n  average we found that the server could handle about 100 queries per second, which 

although slow, proved adequate. W e found that increasing the specification o f  the hardware from  

100M Hz processors to 550M Hz and the software to version 7 resulted in a tenfold im provem ent in 

the speed o f  processing queries to the Connectivity Server. These im provem ents were implemented 

for subsequent experiments after TREC-8. The structure o f  the connectivity servers that we used 

during our T R E C  experiments were based o n  our findings as we were developing the software and 

the connectivity server that we use is based on storing the following data about each link:

•  Type (off-site or on-site)

• URLs (source and target)

• W eb Site Identifiers (associated w ith source and target URLs)

T o im prove server perform ance we generated non-clustered indexes on bo th  the source 

and target URL rows. All software was im plem ented in JAVA under W indows N T. For situations that 

require m uch interaction w ith a connectivity server (e.g. multi-iteration techniques such as Pagerank 

o r SiteRank) we usually used a software connectivity server that w e developed which stored 

connectivity inform ation in RAM  using JA V A  structures like ArrayLists and Vectors to provide fast 

retrieval perform ance.

3.3.2.2. Co n t e n t  Ex p e r im e n t s

As w e have m entioned, each search firstly consisted o f  a content analysis stage perform ed on 

the test collection. This immediately posed problem s in that we had no t yet developed our own search 

engine and therefore we had to use off-the-shelf software and we choose AltaVista Discovery28. 

D iscovery usually indexes W ord, Excel, e-mail and other com m on file types, but also is capable o f  

indexing H T M L  files stored locally on disk. Consequently it suited our needs for a basic search engine 

that was capable o f  accepting queries and returning sets o f  highly scored docum ents for additional 

processing.

28 AltaVista Discovery was a desktop content-only search and retrieval application provided by AltaVista and was made freely 
downloadable from their web site. It was developed to provide search and retrieval facilities over email messages and PC 
application files on a desktop PC, laptop or shared file servers.



T he queries (in a batch process) are passed to die Discovery Server (an application we 

developed to  provide an interface between D iscovery and our software, running on a com puter that is 

running Discovery), which in turn, sends them  in a H T T P  request to Discovery, retrieves Discovery’s 

result, strips any unnecessary H TM L data and passes the content-only results back to our 

experimental software w hich is then utilised in the linkage experiments described below. However, 

using D iscovery did pose a num ber o f  problems:

•  D iscovery w ould only list the top 200 docum ents in response to a query. W e found no way 

around this limitation and consequently our results only ever contained a maxim um  o f  200 

docum ents, even w hen m ore were could have been relevant. Recall that T R E C  accepts the 

top 1000 docum ents in response to a query.

•  D iscovery did no t provide scores for each ranked docum ent, so the scores had to be 

simulated using the following formula. This score provided us w ith a content-only score for 

each docum ent based on  each docum ent’s rank within the 200-docum ent result set. 

A ssum ing N  is the total num ber o f  docum ents in the result-set and R, is the ranked position 

o f  docum ent, the formula to generate the score Sc„ for each docum ent in the ‘relevant-set’ is 

as follows:

Sc-=T n  f°r(R'-*> (3-4>

It was this that we sent to T R E C  as the results o f  our content only runs.

O u r preliminary conten t experiments were based on using the title o f  the query alone, and 

upon subm ission o f  our results and the release by T R E C  o f  the relevance judgements we 

experim ented w ith manually generated queries. W e found that manually generated queries (generated 

by a hum an after examining the T R E C  topics) resulted in higher precision values so the following 

experim ents are based on manual queries. Figure 3.7 shows the com parison between manual and 

autom atic queries. I t  is clearly show n that manual queries produce better results than automatic 

queries w here it m atters, in the top ranked docum ents so for future T R E C  experiments (the following 

year) we used manually generated queries.



-♦—Manual 
-S— Automatic

s 10 15 20 30 100 200 500 1000

Documents

Figure 3.7 : Comparison between automatically and manually generated queries

3.3.2.3 L in k a g e  E x p e r im e n t s

F rom  the content-only experim ent described above, we are provided w ith a baseline set o f  

docum ents, the 'Result-Set', w hich can be expected to consist o f  highly scored docum ents, many o f 

w hich will be relevant to the query. W e developed seven re-ranking schemes based on linkage metrics 

to re-rank this set o f  retrieved docum ents based on the indegree and outdegree o f  the pages. Each re

ranking schem e generates a final score for each docum ent (Sc1„.. Consequently, were a num ber 

o f  (or all) ranked docum ents returned by D iscovery to have identical linkage metrics then the ranked 

list o f  docum ents returned by Discovery would dictate final docum ent ranking.

Recall that in linkage analysis we generally assume that the m ore popular a docum ent is, the 

m ore in-links that docum ent will have from  the WW W . Let n be some web page and S„ be the set o f  

pages that link into docum ent n we can represent this as follows:

Sc\=\S„\ (3.5)

In  this case Sc’„ is based purely on  the indegree o f  docum ents We ran experiments using this 

simple form ula for evaluation (called link.1). W e also evaluated (as St?„) the notion  o f  limiting the 

indegree value to be influenced by a m axim um  o f  50 in-links (called Unk2). This we felt would avoid 

any possible situation w here docum ents w ith an excessively high indegree could hijack the ranking 

process. N ote that we did n o t distinguish betw een link types in these two experiments and that the
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content-score from  phase 1 was only used to  distinguish between docum ents w ith similar linkage 

scores.

Recall that we view links as being one o f  three types, self links, off-site links and on-site 

links, and that we normally ignore self-links and on-site links as they are no t considered to be 

judgem ent bearing. As an experiment, we w anted to evaluate w hat effect on-site and off-site link types 

will have on the ranking so we developed another two metrics (called link3 and link4 respectively) 

based on ranking by just off-site links and just on-site links. Letting T„ be the off-site in-set o f  n and 

U„ be the on-site in-set o f  n, we have the following formulae which calculate two new scores (ScJ„ and 

Sc4„) for each docum ent:

Sc2n =\T„\ (3.6) S c \= \U n\ (3.7)

I t  is notable that a system that implements only one iteration o f  the basic Klemberg’s 

algorithm (authority list) is similar to a system that ranks pages based purely on off-site indegree.

T hus far the metrics were simple and were based on noth ing  m ore than basic citation 

coun ting  b u t we thought that examining the potential o f  a docum ent to act as a source o f  links to 

further inform ation (a hub docum ent) may also aid the re-ranking process. Recall the first o f  two 

assum ptions necessary for linkage analysis, that a link between two docum ents on  the web carries the 

implication o f  related content, thus a docum ent w ith a higher outdegree should contain links to more 

relevant content than a docum ent w ith a smaller outdegree. Accordingly we developed another metric 

that utilised the outdegree (both off-site and on-site) o f  a docum ent in addition to the indegree as part 

o f  the ranking process. Given that the outdegree o f  a docum ent does n o t carry with it any indication 

o f  the authoritiveness o f  a docum ent we decided to limit the outdegree to a m axim um  o f  20. This was 

in order to avoid some large hub type docum ents swamping the results. In  addition we felt that the 

indegree w ould be a far m ore useful measure so we weighted the indegree score to be four times29 

m ore influential than the outdegree score, giving the following formula where a'was 1.0 and 8 was set 

to 0.25 w ith Sin„ and Sout„ being the set o f  in-links and out-links from  docum ent n respectively, which 

gave us our 5 th score for each docum ent (Sc5„):

Sc5„ = (a x |)-I-( x l-Scw/J ) (3.8)

29 T he figure was chosen as a best param eter value that was attained by examining the results o f  a num ber o f  sample queries 
p rior to  running the actual experiments. M ost o f  our param eter values were generated in this manner.



O u r param eter figures (for all TR EC -8 and TREC-9 experiments) were selected by observing 

the results attained by a num ber o f  queries (not T R E C  supplied queries) and tuning the parameters 

accordingly. W e will refer to this experim ent as linkS. Thus far, all our experiments had been based on 

simply reranking the set o f  highly scored docum ents returned from  the content-only experiment and 

we had totally ignored the content scores w hich had been given to the docum ents save when two 

docum ents had the same linkage scores so we evaluated the usefulness o f  incorporating these scores 

into the linkage-based ranking algorithm in a m ore concrete manner. Building on the previous 

experim ent, we expanded it to incorporate the content score generated from  Discovery (5V5,). Letting 

DiscSc„ be the score applied to each docum ent in the content experim ent using the formula described 

earlier and a, 8 and A be constants for regulation o f  influence:

Sc6n =  {a x \Sinnty+(s x | 5 ' o « i n | ) +  ( i  x DiscScn) ( 3 . 9 )

W e varied the score o f  tx from  2.0 and 4.0, bu t our test results illustrated that 4.0 was best, 

similarity 8 was set to  2.0 and A was set to 1.0. This experim ent immediately flagged the problem  o f 

how  precisely do we com bine the linkage scores and the content score. In  this experiment, we applied 

best guess param eters, w hich cannot be sufficient in all cases. A n alternative approach was needed and 

one was proposed by A T & T ’s experiments in T R E C  for die subsequent year, which we shall examine, 

along w ith our ow n approach, later in this thesis.

H ow ever, simply using this form ula did n o t com plete our experiment. As we discussed 

earlier, it is intuitive that we view off-site links as being judgem ent bearing while on-site links are 

mainly used for internal website navigation purposes and do no t carry any w eight o f  hum an 

judgement. Desirable as the approach to only include off-site links may seem, we found that the lack 

o f  off-site links w ithin the W T2g dataset prohibited us from  fully im plem enting this approach. To 

overcom e tiiis problem  we decided to allow on-site links to exert some influence on the final score o f  

each docum ent, our assum ption being that a docum ent with a higher on-site in-degree will be a more 

im portant page w ithin a website. In  reality, w ere we to take this approach with live web data, we 

would only serve to increase the ranking o f  docum ents from  large, well inter-connected (within their 

domain), w eb sites. Consequendy we weighted off-site in-links at four times (best guess) the weight o f 

on-site in-links and once again limited the total link score for each docum ent. This replaced our 

subgraph with a weighted subgraph w ith a select few edges (off-site) having a weight o f  four times 

that o f  the rest. The following formula was used to calculate the in-link score (Sin„) o f  a docum ent n,



replacing the simple | Sin„ | scoring o f  the previous formula, letting T„ represent the off-site indegree 

o f  n and U„ represent the on-site indegree o f  n w ith a:and 8 being constants used for tuning:

S«„ = (ax |7 ;|)+ (<S  x |i /„ |)  (3.10)

T he results o f  this algorithm  were subm itted as one o f  our official runs to T R E C  and will 

be referred to  as link6.

T he seventh and final algorithm (link7) we evaluated as part o f  ou r TREC-8 experiments 

was an attem pt to overcom e the lack o f  off-site links in the dataset. O ur approach was to utilise the 

linkage inform ation for each docum ent from  the W W W , as opposed to using the linkage provided 

with the dataset. Recall the m ethod used to  generate W T2g would restrict the num ber o f  off-site links 

that could be included in the dataset. The problem s o f  using live W W W  connectivity data on W T2g 

became apparent immediately:

•  many o f  the docum ents w ere no longer in existence as the docum ents from  w hich the dataset had 

been generated had been gathered by the In ternet Archive in early 1997.

•  many may no t have been indexed by the linkage source we were querying.

•  a num ber would have had their con ten t modified since they had originally been gathered by a 

w eb crawler and thus the current W W W  connectivity inform ation w ould be considered invalid.

In  o rder to  get around this problem  we ranked each docum ent based on the roo t URL o f  the domain, 

as opposed to  the actual URL o f  the docum ent itself, our belief being that ranking docum ents on the 

basis o f  the quality o f  their websites may produce som e interesting results. This dom ain roo t URL was 

then used to  query the AltaVista search engine using the "link:URL" query that returns the num ber o f  

and actual in-links into the docum ent in question. W e then ranked by the popularity o f  this page 

(usually index.html) w ithin each domain as opposed to the actual docum ent from  WT2g. Letting Sm 

be the set o f  docum ents that link into the ro o t o f  the dom ain m, and n be a m em ber o f  the domain m:

& I „ = | S „ , |  ( 3 . 1 1 )

This com pleted our experiments into linkage-based retrieval o f  W W W  docum ents for 

TREC-8.



3.3.2.4 Results

W e entered three o f  our experimental approaches as official runs into T R E C  in August 

1999, two o f  w hich were linkage-based (links and link6) and the third our content-only run based on 

the results o f  AltaVista Discovery. Two o f  our runs w ere added to the pool for relevance judgement 

purposes (content-only & Enk6). As w ith o ther participants, none o f  ou r experiments found any 

im provem ent in precision w hen incorporating linkage-based retrieval algorithms in the ranking 

process in the overwhelm ing majority o f  cases, w ith any fractional im provem ents com ing at lower 

levels o f  recall.

Figure 3.8 below  shows the precision at a range o f  docum ent cu t-off values returned from  

running the manually generated queries on WT2g. T he labels (link l.. ,link7) for the experiments 

correspond directly to  die seven algorithms just oudined and also correspond to the seven docum ent 

scores ([Sc’„... Si?„).

Documents

Figure 3.8 : Results o f  our experimental runs on  the W T2g collection



T he lack o f  off-site links within W T2g is clearly illustrated by our results. In Figure 3.8 we 

can clearly see that Hnk3 (off-site indegree, equation 3.6) results are essentially equivalent to the 

conten t only results given that the sparsity o f  off-site links was such that the original ranking o f  

D iscovery was rarely changed. Given that in this experiment, the content-only result was only 

employed to  decide on  the final ranking for docum ents w hen indegree scores were equal, this shows 

that the off-site indegree ranking had no  effect (good or bad) on retrieval perform ance. O n  examining 

the density o f  off-site links in W TlOg, we found that only a tiny percentage o f  docum ents would 

possibly be affected by incorporating these into a ranking form ula and as such, the result is no t 

surprising. So although this experim ent was the ‘m ost successful’ o f  all linkage experiments we are 

unable to make any conclusions as to the benefit or otherwise o f  this experiment.

As expected, we found that re-ranking by on-site indegree (Jink4, equation 3.7) is no t 

effective as this would only serve to rank highest docum ents from  w ithin large, well inter-connected 

domains. D ue to the lack o f  off-site links within W T2g, we found that the scores for link l, Hnk2 

(equation 3.5) and  Iink4 are alm ost identical even though Unk1 and Unk2 do n o t distinguish between 

link types, unlike link4, w hich ranks by on-site links only. W e did expect that ranking by on-site links 

would no t serve to im prove precision and thus these results came as no surprise. All decrease 

precision o f  the top 10 ranked docum ents (the normal search engine result set size) from  .3082 to (at 

best) .2204.

The results from  Hnk7 (equation 3.11) which used live W W W  linkage data were noteworthy 

due to the fact that this was the only approach that increased precision over content-only results, but 

only from  30 to 1000 docum ents, w hich is no t w hat is required for web search. Both !ink5 and Unk6 

also produced disappointing results, even lower than taking by on-site indegree alone, so it seems 

likely that the integration o f  an out-degree score did no t aid the retrieval process and surprisingly the 

inclusion o f  the content-only results into the equation for ink.6  (equation 3.9) resulted in a decrease in 

overall perform ance over link5 (equation 3.8). A lthough it m ust be noted  that the out-degree o f  a page 

would have proportionally m ore inclusive over ranking in link6 than in Iink5.

In  all, our results were disappointing, in that we were unable to come to any concrete 

conclusions on the merits o f  incorporating any o f  our linkage algorithms into a web retrieval system. 

Initial observations could suggest that our algorithms failed to improve retrieval perform ance due to 

the nature o f  the algorithms, none o f  which im plem ented an iterative approach such as PageRank or



Kleinberg. H ow ever as discussed below, other participating groups ran alternative algorithms, 

including iterative algorithms such as PageRank or Kleinberg, also w ithout im proving effectiveness.

3.3.2.5 D iscussion

In  the TREC-8 w eb track, participating groups took part and those that utilised the link 

inform ation im plem ented a variety o f  approaches including Kleinberg's and PageRank m entioned 

earlier. To the surprise o f  m any participants, no  participating group (save one with insignificant 

im provem ents) managed to im prove precision by incorporating linkage inform ation into the retrieval 

process over that obtained by their own conventional content-only searching. Hawking [Hawking 01] 

states that “N one o f  the participants in the TREC-8 Small W eb Task, using a two gigabyte corpus 

(WT2g), managed to dem onstrate any benefit whatever from  using hyperlink m ethods in that 

particular retrieval task” .

Aside from  groups im plem enting Kleinberg and Pagerank, a num ber o f  groups evaluated 

alternative algorithms, w hich had either com e from  the field o f  citation indexing or were entirely new. 

M aking use o f  sibling pages was the approach taken by R M IT /C S IR O  [Fuller et al., 99]. This was 

based on the propagation o f  content-only scores from  docum ents that link into relevant documents. 

Seoul National University [Shin et al., 99] im plem ented a similar technique called Score Propagation, 

neither w ith any positive effect on retrieval perform ance. T he technique o f  spreading activation was 

evaluated by two groups, where the relevance o f  a docum ent D  to the query is com puted in a 

preliminary step and these values are propagated to all linked docum ents from  D  through a certain 

num ber o f  cycles using a propagation (limiting) factor y. The docum ents are then sorted according 

to their new score (called the activation). B oth the Université de Neuchatêl [Savoy & Picard, 99] and 

IR IT /S IG  [Boughanem et al., 99] implemented this technique. T he form er using only one cycle, and 

considering only the top 50 docum ents, found that all experiments resulted in a decrease in retrieval 

effectiveness. This finding was repeated by IR IT /S IG  w ho recorded a decrease in average precision 

w hen using this technique, although they did only execute this process on the top 12 docum ents in 

one run, the second content-link run being executed on the top 40 docum ents. Both participating 

groups found no im provem ent in precision from  im plem enting techniques based on spreading 

activation.

A n examination o f  the results over all the participating groups shows that the differences 

betw een the content-only runs and the linkage-based runs are mostly very small and in the vast



majority o f  cases negative [Hawking et al., 99]. Any case w here a large difference was found, they were 

all found to be negative.

The overriding belief am ong participants was that the W T2g collection did no t support true 

investigation into the experiments that had been evaluated. T he reasons pu t forward [Hawking et al., 

99] as to why this could be the case were:

•  The num ber o f  off-site links may have been too small, w ith only 0.24 % o f  closed (having 

bo th  source and target within WT2g) off-site links being contained in the dataset. We believe 

this to be the m ost compelling reason for the failure o f  any linkage-based approach to 

produce any significant im provem ents over a standard content-only run in TREC-8. We 

ourselves have show n that ranking by on-site indegree does n o t have any beneficial effect and 

these experiments hold validity as each docum ent (on average) contained 4.7 on-site in-links 

and thus the presence o f  links w e felt was sufficient to  provide an indication o f the benefits 

o r otherwise o f  ranking by on-site indegree.

•  The queries used w ere n o t suitable to linkage analysis type experiments. This may have a part 

to play in the disappointing results and we speak about this at greater length w hen discussing 

the TREC-9 results.

•  The relevance judgements used were no t optimal for evaluating linkage analysis experiments. 

T he use o f  binary relevance judgements on  single w eb pages in TREC-8 prohibited the 

positive evaluation o f  w eb pages, which although n o t directly relevant themselves, may 

contain links to highly relevant pages. As we have m entioned earlier, we would recom m end a 

m ore appropriate perform ance evaluation m ethodology than simple precision and recall 

based on binary relevance judgements as was the case with TR EC -8 (and TREC-9). Perhaps 

a five-point scale for relevance judgments (1. n o t relevant, 2. links to relevant, 3. relevant, 4. 

relevant &  links to relevant, 5. highly relevant) would be one (of many) option(s) that would 

have been m ore beneficial. A n alternative option could allow us to rank a docum ent on the 

basis o f  its support for continued browsing based on out-links.

The shortcom ings o f  W T2g eventually led to the creation o f  a new collection, the W TlOg 

collection which was used in TREC-9 and in the tenth T R E C  conference know n as TREC-2001. The 

prevailing hope am ong participants was that the shortcom ings o f  W T2g would be rectified in the 

W TlOg dataset.



3.4 T h e  TREC 9 W eb  T rack (2000)

The ninth TREC conference was held in November, 2000. Seventy groups [Vorhees &

1 larman, 00] from 17 different countries participated. TREC 9 was the second year of running the 

web track, although this time, WT2g had been replaced by a 1,691,071-document (10 GB) collection 

called WTlOg. The goals of TREC-9 Web track were twofold:

• To experiment with standard IR techniques to see how effective they are on real-world web 

data.

• To see if linkage analysis was a useful aid to web search on the new dataset.

3.4.1 T iie  WTIOg D a t a s e t

Like its predecessor, WTlOg was a subset of the 100GB VLC2 dataset used in the large web 

task, which we recall was itself a subset of the 300 GB Internet Archive crawl. WTlOg was extracted 

from the VLC2 in such a way that maximised the number of cross-site links that are contained in a 

subset of the 100GB VLC2 dataset. When preparing a suitable dataset for TREC-9 the reasons for 

the failure of the TREC-8 experiments on WT2g were considered. The organizers also wished to 

facilitate high levels of participation and in order to do so the dataset was tailored to suit 

requirements:

• A corpus size of 10GB was chosen which represented 1.69 million documents. At the time 

this could have fitted on a large inexpensive (< $250) IDE hard drive, thus keeping the cost 

of participation low for many of the groups. Figure 3.9 illustrates the comparative sized of 

the TREC collections used as part of the Web track.
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Figure 3.9 : Com parative sizes o f  the T R E C  collections

•  N on-English data and binary data was n o t included in this corpus, although W eb logs were 

and these comprised over 600 o f  the documents.

Since the W TlO g collection (like WT2g) was extracted from  the 100GB VLC2 collection 

(18.5 million web docum ents), this m eans that all the links w ithin the W TlO g collection could only 

have originated from  w ithin die 100GB collection (as die larger 300GB superset was no t used in the 

construction o f  WTlOg) w hich limits the num ber o f  links available. A dd to that the fact that only links 

betw een the 1,692,096 docum ents could be included in the test collection, limits die available links 

even furtiier, which means that very careful selection o f  the docum ents that comprise the dataset was 

needed to maximise the density o f  off-site links within the test collection. Figure 3.9 illustrates the 

nature o f  the links that could be extracted from  VLC2.

/  300 GB In te rne t 
Archive Crawl

Figure 3.10 : C onstruction o f  the W TlOg Collection



T he links that comprise the W TlO g collection would be all the links between documents 

w ithin websites 1 to 5, including on-site links (not labelled) and off-site links (labelled a to f  in Figure 

3.10). For those taking part in T R E C  experim ents, any other links were n o t available, unless a group 

had  access to the VLC2 collection (the super set o f  documents) and this m ethod o f  increasing the 

num ber o f  available links was no t available to m ost o f  T R E C ’s participating groups.

In  addition, a num ber o f  o ther constraints [Bailey et al., 01] were placed on the selection 

procedure for docum ents, such as the fact that docum ents m ust be selected from  servers to maintain 

an average o f  the num ber o f  docum ents chosen from  each server and that servers were chosen that 

contained docum ents w ith homepages. Table 3.1 illustrates W TlO g properties.

Quantity Value
D ocum ents 1,692,096

Servers 11,680
Average docum ents per server 144

Off-site links (within WTlOg) 171,740

Servers w ith off-site in-links 9988

Servers w ith off-site out-links 8999

D ocum ents w ith out-links 1,295,841

D ocum ents w ith in-links 1,532,012

Servers w ithout a hom epage 0

Table 3.1: Properties o f  the W TlOg test collection

3.4.2 TREC-9 E X P E R IM E N T O V ERV IEW

O u r experiments for TREC-9 were a continuation o f  our experiments for TREC-8, yet this 

time w e had m ore experience o f  w orking w ith link data and w ere in a position to develop m ore 

advanced algorithms. O ur experiments were, once again, based on  our ow n algorithms [Gurrin & 

Sm eaton, 00], Each algorithm  im plem ented a different aspect o f  linkage analysis (citation ranking, 

spreading activation and co-citation analysis) and we hoped that the new  W TlOg collection would 

provide the foundation for the successful evaluation o f  our algorithms. In  addition, we also hoped 

that the results w ould illustrate to us w hich techniques would have offered the best prospects for 

im proving retrieval perform ance so tha t we could have concentrated our research on those 

techniques.



As was the case with many o f  the participants, ou r experiments were based on reranking a 

set o f  highly scored docum ents by applying one o f  a num ber o f  linkage analysis algorithms, so once 

again, a two phase process was involved. T he first phase was to generate the set o f  highly scored 

docum ents and the second phase was to rerank these docum ents based on their linkage structure.

3.4.2.1 Sy st em  A r c h it e c t u r e

In  a fashion similar to our TR EC -8 experiments, we used an ‘o ff  the she lf search engine to 

generate content-only results for each query. Based on our experiences w ith AltaVista Discovery and 

specifically a problem  we found w ith the limited num ber o f  high-scored docum ents retrieved and the 

less than impressive indexing speed, we felt it best to use a different application, so for TREC-9 we 

used M icrosoft Index Server [IN D E X  SERVER] for this purpose. For subsequent experiments 

(outlined in C hapter 4) we developed our ow n search tools. This utilisation o f  Index Server did 

require the conversion o f  the W TlOg collection into an artificial website, to allow Index Server’s 

crawler to  traverse all web pages from  a given roo t page. D uring  our experiments, one workstation 

was dedicated to Index Server and providing content results.

T he linkage data was stored in a M icrosoft SQL Server 7 [SQL SERVER] database (an 

upgrade from  6.5) running on  another PH I w orkstation, which suited our requirements for a 

Connectivity Server. This allowed us to support over 1,000 queries per second. W e used a third PIII 

w orkstation to process the queries, and calculate the linkage scores for each docum ent and generate 

the results. All necessary code was w ritten in JA V A  (version 1.2) for W indows N T  4. We networked 

the com puters together using a dedicated 100M bit/s switch. A n overview o f  the software set-up used 

is show n below:
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Figure 3.11 : O ur TREC-9 System Architecture

O u r TREC-9 experiments were devised so that we could evaluate specifically non-iterative 

approaches to  linkage analysis. W e subm itted four runs for evaluation purposes, one content only run, 

as provided by Index Server and three linkage-based runs. This content run was executed before any 

o f  the linkage-based runs were executed as the basic ou tpu t o f  Index Server was used as input into the 

three linkage runs.

3.4.2.2 Co n t e n t  E x p e r im e n t

Recall that ou r TREC-8 experiments required a two-phase process, and TREC-9 was no 

different to this w ith a first stage generating content-only results followed by a second reranking 

phase. The content-only stage involved sending the query to Index Server and extracting the results. 

The queries w e sent w ere manually generated from  the T R E C  topics. In  order to do this we got a 

small num ber o f  postgraduate research students to generate the queries from  the title, description and 

narrative o f  the topic.

O nce the queries had been generated and sent to Index Server the top 2,000 result 

docum ents30 were retrieved using the V ector Space query m odel (Index Server supported retrieval 

using a num ber o f  query models). These 2,000 docum ents were ranked by Index Server according to 

their degree o f  similarity to the query, bu t they were n o t scored, so, once again, we had to  generate

30 In  a num ber o f  cases, less than 2,000 documents that num ber were scored by Index Server so a smaller result set was 
retrived.



our ow n scores. A ssum ing N  is the total num ber o f  docum ents in the result-set and R is the rank o f  

that docum ent in the result-set the formula to  generate the score Scn for each docum ent (same as 

TREC-8) is as follows:

fo r (R '-»>  (3' 12)

W e refer to this ranked set o f  docum ents as the ‘relevant-set’. The top  1,000 results (where 

available) were extracted for each query and subm itted as our single content-only run.

A fter the publication o f  die relevance judgem ents we ran two experiments; one to evaluate if 

using autom atic (tide only) queries would negatively affect retrieval perform ance and a second to 

evaluate our m ethod  o f  generating the result-set.

O ur evaluation o f  our query generation m ethod required executing a content-only run using 

autom atic queries and com paring these results to  the manual queries that form ed the basis o f  our 

result set. T o  our surprise, we discovered that had we im plem ented an autom atic run using just the 

titles only that we would actually have marginally improved precision as show n in Figure 3.12.
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Figure 3.12 : Com paring m anual and automatic queries.

O bviously this did n o t affect the overall findings o f  the experiments which are discussed 

below. The second experim ent that we ran after the results were published was to  evaluate i f  (simply) 

choosing the top ranked 1,000 docum ents was m ore useful than the approach taken by Kleinberg to
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build his base-set. I f  we look at Kleinberg’s algorithm, a content-only set o f  docum ents o f  size 200 is 

generated and this is expanded to include near-neighbour docum ents, for the reason o f  increasing link 

density in the expanded set, albeit at the expense o f  ‘topic drift’ problems. H ow ever, this root-set 

expansion phase o f  Kleinberg’s seems to lead to topic-drift problem s [Bharat & Henzinger, 98], where 

the docum ents that are ranked highest are often generalisations o f  the topic represented by the query. 

Consequently, we ran an experiment to identify if simply selecting the top 1,000 docum ents (content- 

only result) resulted in m ore relevant docum ents being found than w ould im plem enting the root-set 

expansion phase o f  Kleinberg’s technique. We found this to be the case. Kleinberg’s approach 

resulted in an average loss o f  5.68 relevant docum ents per query. See Figure 3.13 for the total recall 

figures over all queries based on the set generation process im plem ented, where ‘base 200’ is the top 

200 docum ents from  the content experim ent, ‘base 1000’ is the top 1,000 docum ents and ‘expanded- 

set’ is based on Kleinberg’s technique.
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Figure 3,13 : Com paring D ifferent Approaches to Relevant-Set Generation

H ow ever, this im provem ent in recall does have its drawbacks. Expanding the root-set along 

the links does produce an expanded-set that contains a high num ber o f  interconnected docum ents but 

selecting the top 1000 (or 2000) docum ents produces a set o f  docum ents having a m uch sparser set o f  

interconnections. Experimental ranking techniques such as Spreading Activation are based on the 

no tion  that the result-set will firstly contain relevant docum ents, and secondly that these relevant 

docum ents will be linked together. I t may be the case that using the expanded-set is better for linkage 

analysis because it will have a denser set o f  links between the docum ents. H ow ever, based on  the 

results o f  o ther participants w ho implemented Kleinberg’s algorithm this was n o t shown to be the
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case and none o f  the participants w ho im plem ented Kleinberg’s algorithm were able to produce any 

increase in retrieval perform ance.

3.4.2.3 L i n k a g e  E x p e r i m e n t s

O ur three linkage experiments (generating three scores Sc1„ ... Sc3,, for each document) were 

all executed a t query time, unlike PageRank, bu t similar to Kleinberg, and were based on re-ranking 

the relevant-set o f  docum ents w hich were generated during the content stage outlined above, but only 

requiring one iteration. W hen we employ a query-time technique, such as Kleinberg’s algorithm, we 

m ust be careful that the algorithm  does n o t require so m uch processing as to make it prohibitively 

slow to use in the real-world (the second principle o f  performance). PageRank, on  the o ther hand, 

requires a similar iterative process (on a vastly larger set o f  docum ents), bu t this is only done once per 

index update as opposed  to once per query. The algorithms we developed for TREC-9, although 

processed a t query-time, do n o t have an iterative process involved, which supports adherence to  our 

principles o f  perform ance.

Citation Ranking

O u r first linkage based experim ent (icuOOla) was a m odification to basic citation ranking. 

There are two basic m ethods o f  com bining content analysis w ith linkage analysis [Bharat et al., 98], 

bo th  assum ing that w e can determ ine the relevance o f  a docum ent to the query topic. We can:

•  Elim inate non-relevant docum ents from  the linkage graph, or

•  Regulate the influence o f  a docum ent based on  its relevance to the query topic.

In  this experim ent, we employed a form  o f  citation ranking to rank docum ents (based on 

off-site indegree). H ow ever, following the first o f  the basic m ethods o f  com bining content analysis 

w ith linkage analysis (eliminating non-relevant docum ents), the indegree o f  a docum ent was now  a 

‘qualified’ indegree31, in w hich we were only interested in the content-scored docum ents that linked 

into the docum ent in question. I f  we implemented pure citation ranking we were allowing documents 

that are n o t scored to  influence the ranking process, bu t in this way, only docum ents that are scored 

(in the content-only phase) can have influence over another docum ent’s ranking. In  Figure 3.14 the

31 Qualified indegree m eans that the in  degree o f a document was n o t the docum ent1 s true indegree, rather an indegree based 
o n  the num ber o f  relevant documents that link into the docum ent in question
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qualified indegree o f  docum ent A  is based on  w hich docum ents were scored (have a score above 0.0 

in Figure 3.14) w hich are docum ents C and D , thus giving a qualified indegree o f  2 for docum ent A.

0 . 3

Figure 3.14 : Illustrating a qualified indegree fo r a docum ent

In  order to normalize for wide variations in docum ent indegrees, we applied a logarithmic 

function to the qualified off-site indegree (+1) and this value was then multiplied by the original 

content score o f  the docum ent, so that we did no t loose the original content-only score o f  a 

docum ent. This score is added to the original content-only score o f  the docum ent to produce a new 

score for the docum ent.

This use o f  a logarithmic function is similar to one o f  the techniques o f  normalizing t f  

scores for variations in  docum ent length that was outlined in Chapter 1. W e generated Sc1„ as the new 

score for docum ent n and ranked the docum ents by this score. Letting M  be the set o f  scored 

docum ents from  the off-site in-set o f  docum ent n and let Sc„ be the content-only score for docum ent 

n generated in the previous phase we have:

Sc1,, = Sc„ + {Scn x Log(\M\ + 1)) (3.13)

This was calculated for the top  30 docum ents. D uring developm ent o f  the software for the 

official runs, w e had experim ented with a variety o f  cut-offs for the top-ranked docum ents and kept 

the value o f  30 as we found that all values we tested seem ed to affect ranking perform ance for the 

worse, bu t setting the cu t-o ff to 30 helped limit the effect o f  the problem , although we did aim to 

keep this cu t-o ff po in t as high as possible. This was subm itted to T R E C  as an experimental run for 

evaluation.



Spreading Activation

O ur second linkage-based algorithm  (dcuOOlc) employed the second o f  the basic approaches 

to  com bining content and linkage analysis (regulating a docum ent’s influence based on its content- 

only score) and is based on the concept o f  spreading activation. Spreading activation refers to a 

technique that propagates numerical values (or activation levels) am ong the connected nodes o f  a 

graph. In  the context o f  our experiments it facilitates a docum ent transferring its score across its out- 

links.

F or each docum ent in the result-set we identify w hat docum ents that comprise the off-site 

in-set for the docum ent are actually part o f  the result-set. Each o f  the docum ents we have identified 

from  the off-site in-set (of docum ent A in Figure 3.15) should then have an associated content-only 

score (such as docum ents B and C). I t  is the content-only score that is divided equally am ong a 

docum ent’s out-links (similar to PageRank), thus applying a weighting to each link. In  Figure 3.15 the 

content-only score o f  docum ent B is spread evenly am ong its two out-links and a score o f  0.1 is 

passed to docum ent A  (dashed line). In  a similar m anner, the conten t only score o f  docum ent C is 

spread am ong four out-links and a score o f  0.125 is passed onto  D ocum ent C.

o.o
Figure 3,15 ; Illustrating our Spreading A ctivation technique

This query-time process enables us to provide a final ranking for docum ents. So in effect, if  

a  docum ent has in-links from  a num ber o f  relevant docum ents then its score is increased by an 

am ount proportional to:

•  its ow n relevance score

•  the relevance score o f  the in-link docum ent

•  the num ber o f  out-links originating from  the in-link docum ent

-104-



Recall that all docum ents have received a score in the content only phase which is Sc„. The

This was calculated for the top 250 docum ents in the result-set. O nce again, this figure can 

be changed as seen fit, bu t 250 was our best param eter cu t-o ff po in t as found w hen running sample 

queries prior to running the actual experiments. D ocum ents w ere ranked in decreasing order o f  S<?„.

Co-citation &  Spreading Activation

O ur final experimental technique in TREC-9 (dcuOOlb) was based on  co-citation analysis, but 

incorporated spreading activation and was once again calculated for a best param eter valued subset o f 

the top docum ents in the result-set. This algorithm views in-link associated docum ents as hub type 

docum ents. Recall that K leinberg [Kleinberg, 98] describes docum ents in terms o f  hub docum ents 

and  authority docum ents w ith hub docum ents acting as a source o f  links into similar docum ents while 

authority docum ents are seen as sources o f  authority on a topic and are gathered together into 

cohesive communities by groups o f  hub docum ents. O ur theory is based on the belief that a good 

docum ent is pointed at by good hub docum ents. But w hat makes good hub docum ents? The 

docum ents that a hub docum ent link into influence the quality o f  a hub  docum ent, therefore if  a hub 

docum ent links into m any good  docum ents, then this hub is better than  one that links into a smaller 

num ber o f  good docum ents o r  any num ber o f  lower quality docum ents.

O u r m ethod o f  generating a hub score for a docum ent is based on spreading activation. In 

Figure 3.16 we can see that the score o f  hub docum ent A  is influenced by docum ents B, C, D  and E  

so our im plem entation o f  spreading activation will result in the scores (or part o f  the scores) being 

transferred from  these docum ents (as the dashed lines show) bu t no score is transferred from  D  

w ho’s score is 0.0 (hence no dashed line).

form ula for calculating each docum ent score is shown below. Let A  be the scored set o f  docum ents 

from  phase 1 and S„ be the off-site in-set o f  docum ent n therefore we calculate St?n-
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Figure 3.16 : H ow  spreading activation influences a H u b  docum ent

Therefore, for any given docum ent, we calculate hub scores (as in Figure 3.16) for each 

docum ent in its in-set, regardless o f  w hether the docum ent is in the result set o r not. Why this rule? 

W e w anted to account for the fact that a hub docum ent, though n o t ranked in the content-analysis 

phase may act as a source o f  links to scored docum ents.

Figure 3.17 : Illustrating the possible influence o f  non-ranked hub documents

In  Figure 3.17 docum ent A  has docum ents B, C and D  in its in-set, bu t docum ent C is no t 

ranked. Exam ining the out-set o f  C, four ranked docum ents (including A) are present and employing 

co-citation means that the influence o f  these docum ents (E, F  and G) will affect the score o f  A  (and 

similar for E , F and G) so we do no t w ant to ignore this inform ation in our ranking formula. 

H ow ever, in a situation w here the hub  docum ent is scored, then we w anted to include this fact in the 

ranking form ula as well. Therefore, if  a hub docum ent is included in the relevant-set, its content-score 

(multiplied by a  dam pening factor a 'o f  value 0.45 w hich we selected as a best param eter value based 

on  observing the results o f  sample queries prior to  running the experiments), generates a score (along 

w ith the spreading activation score) for the hub docum ent. Let A  be the scored set o f  documents 

from  phase 1, 8 be a constan t (also a best param eter value o f  0.35) to limit the score being transferred 

from  the target docum ent o f  the link to the hub docum ent, oc be a constant to limit the score being 

transferred from  the hub  docum ent to Sc3„ during calculation o f  the hub docum ent score (HSc„), S„



represent the in-set of document n and 0 „  represent the out-set of document m, giving tlie following 

formula:

f
HScm = (Sc„,xa)+ '£jScpx S  for(p  g  A) (3.15)

J

or, alternatively, if the hub document is not scored this fonnula is used:

HScm = Y j Scp x 0 f ° r(P G A ) (3- 16)
P*°m

The consequence of this is that the hub document now has a score which reflects its own 

relevance as well as that of its out-link associated documents. Finally, this hub score is divided by the

total number of out-links from it (+ 1), as was the case with the spreading activation experiment. This 

score is added to the Sc3,  score of the document being re-nuiked. The current values for a' and S were 

bcst-parameter values that we arrived while running the experiments. As mentioned previously, our 

best-parameter values were chosen by executing a number of (non-topic) queries on the dataset and 

examining the results.

Finally, the Sc>„ is generated from the original score Sc„ and all hub scores HSc„ from 

equation 3.15 or 3.16:

The final Sc** score is then used to rank the documents and the top 1,000 documents were 

submitted to TREC as one of our official runs.



3.4.2.4 RESULTS

O f  the four approaches we subm itted, the content-only run attained highest (or equal 

highest) precision across virtually all standard rank positions.

0.35 
0.3

c0.25

I  02
20.15
Cl

0.1
0.05

u
5 10 15 20 30 100 200 500 1000

— •—  Content-only 0.312 0.278 0.244 0.216 0.18 0 1076 0.0686 0.033 0.0207

— ®—  Citation Analysis 0.288 0 274 0.24 0.213 0.18 0.1076 0.0686 0,033 0.0207

— Co-ci tation Analysis 0228 0.244 0.224 0,207 0.1767 0.1076 0.0686 0.033 0.0207

X Spreading Activation 0.252 0.258 0.232 0.212 0.176 0.1074 0.0685 0.033 0.0207
Documents

Figure 3.18 : Precision results o f  ourT R E C -9  Experim ents

As can be seen from  Figure 3.18, a t all standard positions in a result set, the content-only 

experim ent perform ed better o r equal to than any o f  the linkage techniques outlined in the previous 

section. G iven our use o f  best-param eter cu t-off points in the experiments, equal values at points 500 

and 1,000 are to be expected. O nce again, we found these results to  be disappointing. N one o f  our 

algorithms seemed to be able to im prove retrieval perform ance. The precision versus recall graph o f  

all four experiments is show n in Figure 3.19.



Figure 3.19 : Precision vs. recall graph for all four runs

Exam ining the results on a query-by-query basis, for all queries the content-experim ent 

perform ed equally as well, o r better than, all linkage based approaches. W e believe that any situations 

in w hich the content-experim ent was found to  perform  equally as well as the linkage approaches this 

was due to the sparseness o f  the linkage data. A  lack o f  off-site links w ithin a collection will leave 

minimal opportunity  to rerank the docum ents.

F o r details o f  our average precision results for each o f  the four runs as well as the best, 

m edian and w orst overall see Figure 3.20 below. As we can see, the four runs have produced very 

similar average precision figures across all the topics. This we feel is as a result o f  the sparsity o f  

connectivity data available and our best-param eter constants that limited the num ber o f  docum ents 

reranked by the linkage algorithms. O ne solitary topic (topic 484) had its precision increased by 

applying the citation ranking algorithm  and the spreading activation algorithm, bu t this is one single 

topic over the whole collection o f  topics and  as such, we cannot draw any positive conclusions from 

this one result.
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Figure 3.20 : Average precision per topic over all experiments

O u r experiments have illustrated tha t applying our linkage analysis algorithms (all o f  which 

were non-iterative) failed to have any positive influence on  retrieval perform ance. O n the contrary, 

applying our algorithms will negatively affect retrieval performance. The cu t-off parameters that we 

applied to our experiments serve to limit the (negative) im pact o f  our algorithms. W e were no t alone 

in these findings. All o ther participants found that their experiments (both non-iterative and iterative) 

produced similar results. Consequently, it is clear that the nature o f  our experiments (non-iterative) 

was n o t the deciding factor in the success or otherwise o f  our experiments.

3.4.2.5. D i s c u s s i o n

N o group managed to increase precision on the TREC-9 W eb track w hen using linkage 

inform ation versus their own content-only runs and these results replicate the findings o f  the TREC-8 

W eb track. O nce again, this came as a surprise to m any o f  the participating groups as it was felt that 

the use o f  linkage analysis on  the W W W  does have tangible benefits and the W TlOg test collection 

cleaned up  some o f the problem s w ith the earlier WT2g.

A  num ber o f  participating groups experimented with various linkage algorithms for the 

W eb track o f  TREC-9. A T & T  subm itted runs [Singhal & Kaszkiel, 00] in bo th  small and large web 

tasks using a new retrieval system called Tivra, which we will discuss in the next chapter. Overall, 

findings o f  AT& Ts experiments (including an experim ent that uses anchor texts in one experiment, 

m uch like H W )  indicate that linkage analysis (as outlined above) does no t help the retrieval 

effectiveness. H ow ever, it is stated that they would “not make this claim with certainty in the general 

W eb environm ent, rather just w ith the W eb track experiments on WTTOg” Their best approach was 

an algorithm  based on Rocchio query expansion [Singhal & Kaszkiel, 00], which this author 

program m ed while researching the A T& T research facility at NJ. The o ther participating group that
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utilised the anchor text associated w ith in-links was Justsystem Corporation. Their experiments 

centered on the theory o f  “aboutness” [Fujita, 00] as a representation o f  inform ation objects 

(documents in this case). They also observe that no reliable im provem ent was observed w hen using 

anchor texts, bu t additional experiments were planned.

Tw o participating groups im plem ented experiments similar to our experiments in the 

previous year’s T R E C  based on indegree & outdegree weighting. John  H opkins University [McNamee 

et al., 00] subm itted two runs based on incorporating linkage data, which re-ranked a set o f  highly, 

scored docum ents based on a form ula incorporating the indegree o f  the docum ent. A similar 

technique came from  Queens College [Kwok et al., 00] also w ith disappointing results.

As expected, a num ber o f  groups im plem ented Kleinberg’s algorithm  and PageRank but 

none w ith any success. Finally, using techniques similar to ours described above, T N O -T P D  & 

University o f  Tw ente’s [Kraaij & W esterveld, 00] implemented algorithms based on indegree, 

outdegree, co-citation and bibliographic coupling techniques, w ith obvious findings. Spreading 

Activation & Probabilistic A ugm entation Systems from  the Université de Neuchatêl [Savoy & 

Rasolofo, 00] were subm itted again w ithout success.

T here w ere a num ber o f  reasons pu t forward both  in the draft papers and at the TREC 

conference as to  w hy the use o f  linkage analysis techniques decreased average precision, or in many 

cases, m ade no difference at all. In  TR EC -8 the linkage data did n o t contain the required density o f  

off-site links to support linkage analysis experim ents, so provision for this was made in the 

developm ent o f  the W TlO g dataset, w hich was generated to maximise the num ber o f  this link type. 

Therefore, w hy did no group manage to successfully incorporate linkage analysis techniques into their 

experiments? Are there no t tried and tested techniques on the w eb as a whole which show that 

linkage analysis is o f  benefit to web search, or are we putting too m uch emphasis on linkage analysis 

as a panacea for many o f  the problem s o f  searching die web? W hat is different between an 

im plem entation o f  Kleinberg’s algorithm  [Kleinberg, 98], o r H enzinger & Bharat’s ‘improvements 

[Bharat & H enzinger, 98] to Kleinberg’s algorithm  or even G oogle’s Pagerank algorithm [Page et al., 

98] on the W eb as opposed to on the W ITOg dataset?

T he obvious explanation lies in the dataset itself. Ultimately the W TlOg dataset, like its 

predecessor, is a subset o f  a 100GB collection used for the Large W eb Task, w hich (as mentioned) is 

itself a subset o f  a larger 300 GB subset o f  an In ternet Archive crawl com pleted in early 1997. All
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links in W TlO g would com e from  the 100GB collection and any links to docum ents external to that 

100GB collection would no t have been included in the dataset. This limits us to a small subset o f  the 

indexable web, and we do not, therefore, have access to the links outside o f  this small subset o f  the 

Web. In  addition, we do n o t have any inform ation as to how  the W eb has changed since 1997. H ow  

sparse would a connectivity graph o f  the w eb be in 1997 w hen com pared to the W eb o f  today? Are 

m ore links being created on web pages today or less? Can we see a trend emerging as the web 

matures? All these questions remained unanswered after TREC-9.

A nother explanation pu t forward for po o r retrieval perform ance w hen linkage 

inform ation was used was that TR EC  topics are n o t suitable for using linkage inform ation due to die 

fact that they are too specific. A  lo t o f  this specificity is due to the synthetic nature o f  the topics. 

A lthough the TREC-9 W eb track topics are extracted from  query logs, the narrative associated with 

each topic often imposes a strict limitation on the scope o f  the query. A t first glance however, this 

explanation may be seen as just an excuse for poor perform ance, due primarily, to the fact that the 

topic titles (upon which a lo t o f  the queries were based) were chosen from  an Excite query log. After 

all, these queries were actual W eb queries and therefore were the W eb track experiments to hold any 

authority in the real-world they m ust be able to w ork w ith actual web queries.

O n the other hand, Kleinberg [Kleinberg, 98] does state tha t his algorithm works best on 

queries o f  a broad nature, examples being “Search Engines, W eb Browsers” b u t that for narrow 

queries, such as “java m alform edU RLException reason” the algorithm  does tend to generalise the 

topic and in this query the user may get back listings o f  java tutorials and resources. The specificity, 

w hich results from  the presence o f  T R E C  topic narratives, will cause problem s in such cases. Altavista 

researchers [Bharat &  Henzinger, 98] have show n that incorporating content analysis into Kleinberg’s 

algorithm  does help to solve this problem  o f  topic-drift. N o t one participating group took this 

approach.

In  looking at our ow n experiments and doing some failure analysis, we felt that the dataset 

m ust accept m uch o f  the responsibility. O u r first experiments on the dataset had suggested that 

im plem enting techniques such as Kleinberg’s algorithm  o r PageRank would n o t be successful, and 

other groups experiments have proven this po in t to be correct.
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Another possible cause of our poor results would be rhe feet that TREC-9 topics contain on 

average only 47.4 relevant documents (as found using rhe pooling technique mentioned earlier) and to 

our experiments the number of these documents would have been quite important. In addition, with 

so few relevant documents in the dataset, the chance of many links existing between these documents 

is rather small. We did separate links into off-site and in-site links, which did aid us in only utilising 

links which may be of benefit, but there were too few of these.

In conclusion, we believed that efforts needed to be made to increase the density of off-site 

(in particular) links within a TREC dataset before any faithful experiments into linkage-based IR could 

be evaluated. There were three options open to us:

1. Wait until TREC realised the problem and using their (vastly superior when compared to our 

own) resources developed a new dataset that more accurately re-created the link structure of 

the WWW, and in so doing increased the density of off-site links.

2. Examine WTlOg to see if it was possible to distill a more densely linked dataset out of the 

existing WTlOg.

3. Generate our own test collection, which would reflect the linkage structure of the WWW, 

however resource issues made this the least likely option.

We chose to take the second option, which we will outline, in the following chapter.



3.5 Ch a p t e r  Su m m a r y

In  this chapter, we have discussed the concept o f  Relevance as it applies to information 

retrieval before describing how  to measure the perform ance o f  an inform ation retrieval system. The 

term  ‘relevant’ is used to describe a docum ent that satisfies a users inform ation need. Relevance, 

however, is inherently hum anly subjective and cannot merely be assigned by an autom atic retrieval 

process.

In  order to determ ine the quality o f  an inform ation retrieval system, an evaluation is usually 

carried out. The prim ary measures o f  retrieval perform ance are Precision (fraction o f  retrieved 

docum ents that are relevant) and Recall (fraction o f  relevant docum ents that have been retrieved) 

w hich are often used in conjunction with test collections. Test collections comprise documents, 

queries and relevance judgem ents and are used in large-scale retrieval experiments. Generating a test 

collection is an extremely resource hungry activity and it requires organisations such as NIST, who 

have the resources, to co-ordinate large-scale retrieval experiments using test collections as is the case 

with the annual T R E C  series o f  conferences. The goal o f  the T R E C  series o f  conferences is to foster 

research into inform ation retrieval and encourage participants to take part in retrieval benchmarking 

experiments in a spirit o f  openness and knowledge sharing.

In  this chapter, we also discussed ou r T R E C  experiments for bo th  the TREC-8 and 

TREC-9 w eb tracks. The aim  o f  these tracks were to provide a fram ework within w hich participating 

research groups could com e together and evaluate their retrieval techniques, including linkage-based 

techniques on  a test collection o f  over 1.5 million web docum ents. O ur TREC-8 experiments into 

linkage analysis (using a test collection provided by TR EC  called WT2g) were based around citation 

ranking and were unsuccessful at im proving retrieval perform ance. This finding was m irrored by the 

other participants a t TR EC -8, which was a surprise to m any as anecdotally it was felt that linkage 

analysis im proved retrieval perform ance over conventional content-only retrieval. For the TREC-9 

conference, we developed m ore advanced algorithms based on  citation ranking, spreading activation 

and co-citation analysis incorporating spreading activation. The test collection provided by TR EC  was 

a m uch larger test collection called W TlOg, w hich we have briefly examined. O ur findings were that 

linkage-based retrieval was o f  no benefit to retrieval perform ance and these findings (once again) were 

shared by o ther participating groups. H owever, our belief was that the test collection was no t capable 

o f  faithfully supporting linkage-based retrieval experiments. T he next chapter shows the results o f 

running our experiments on  a revised version o f  the TREC-9 test collection.
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C h a p t e r  4

A D IT IO N A L  E X P E R IM E N T S  IN  L IN K A G E -B A S E D  R E T R IE V A L  B E Y O N D  T R E C

In this chapter we discuss our experiments into 'Linkage based Retrieval beyond those carried outfor 
the TREC  Web Track of TREC-8 and TREC-9 as described in the previous chapter. Firstly, 
however, we will discuss SiteRank which is a version o f PageRank that we developed fo r  
A T & T  and is presented here as part o f this research. Following on from SiteRank, we will 
identify some issues with the W T10g collection that cause problems fo r  linkage-based 
retrieval experiments and proceed to extract from W T10g a densely linked subset in order to 
try to remedy these problems. Using this densely linked subset we run some experiments and 
show that moderate improvements in retrieval performance are possible using our densely 
linked subset and standard T R E C  evaluation procedures and measurements.

4.1 Sit e Ra n k  -  A  n e w  l in k a g e  An a l y sis  a l g o r it h m

D uring  the course o f  this research, the opportunity arose to w ork on  a project at AT&T 

Research Labs [AT&T, 02], N J32 to develop a linkage-based retrieval algorithm for a search engine 

called Tivra, w hich was under developm ent a t the time. H ere we will discuss details o f  die algorithm 

that we developed.

4.1.1 T iv ra , t h e  AT&T S e a r c h  E n g in e

Tivra [Singhal &  Kaszkiel, 00] was designed to be a large-scale w eb search engine, which 

was developed to  run o n  conventional desktop workstations running Linux (similar to how  Google 

operates), due to their being relatively inexpensive. Tivra was based on  the SMART33 retrieval system 

[Salton &  McGill, 83] developed a t Cornell in the 60s and used by many research groups ever since (in 

some variation) as a basis for retrieval experiments. Tivra had been benchm arked at indexing 15 

gigabytes o f  web data per hour on a 700M Hz Pentium  P C  w ith 1 gigabyte o f  RAM.

32 AT& T Research Labs, Florham  Park, New Jersey.

33 Allegedly SMART is short fo r Salton's Magical Automatic Retriever o f  Text.
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• The docum ent text (global)

•  The docum ent tide

•  A nchor text o f  off-site in-links

•  A nchor text o f  on-site in-links

• Various proxim ity based scores (with extra credit applied for locality o f  query terms within 

the docum ent body).

Tivra’s ranking formula (excluding the linkage analysis com ponent) views each docum ent as a num ber 

o f  separate indexable com ponents, each o f  w hich acts as a source o f  evidence, the influence o f  each 

source being regulated by best guess parameters.

The Tivra system could compute several scores for each document. These scores could be

based on:

Ranked L is t o f  R esults

Figure 4.1 : Illustrating Tivra’s use o f  num erous docum ent representations

Figure 4.1 illustrates the different docum ent representations used by Tivra w hen ranking 

docum ents. The linkage algorithm  presented as part o f  this research was developed to a general 

A T& T specification for a query-independent website-centric algorithm, similar to PageRank, which 

w ould be included as one o f  the ‘other m easures’ in Figure 4.1. O u r original contribution, w hich is 

presented in this dissertation, was in taking this specification (for a PageRank style algorithm which 

operated on the average as opposed to the com bined influence o f  docum ents from  their respective 

websites) and developing the algorithm based on  this specification as well as the associated software 

to  operate efficiently over (at least) a 100 m illion-docum ent collection and which could easily be 

integrated into Tivra’s ranking algorithm. Letting n be a docum ent, the formula that Tivra used to 

provide content-only results for the A T& T experiments for T R E C  9 was similar to (the ‘other 

m easures’ are no t included) equation 4.1:
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Scn = (l. 0 x GlobalWt n) + (l. 0 x offSite Wtn) + (0.2 5 x onSite Wtn) + (l. 0 x title Wtn) (4. l)

H ow ever, the only linkage analysis com ponent used for their TREC-9 experiments was 

based on H W ,  in that anchor texts were used to indicate the conten t o f  a target document. The new 

com ponent that was developed w hich shall be referred to as SiteRank, was no t included in their 

TREC-9 experiments and unfortunately, we never integrated the algorithm into Tivra and any user 

experim ent data we gathered was no t processed prior to my departure. We will provide details o f  our 

ow n evaluation o f  a SiteRank algorithm later in this chapter.

4.1.2 T h e  Sit e Ra n k  A lg o r ith m

As m entioned above, the SiteRank34 algorithm  was to be incorporated into a revised 

reranking form ula for Tivra. Keeping in m ind the ^Principles o f  Perform ance’ that we discussed eadier 

the algorithm was a query independent algorithm w hich was based on  PageRank, whereby a single 

score could be read from  a vector o f  SiteRank values (one for each docum ent) w hen the system was 

calculating final docum ent ranking. W e made a num ber o f  modifications to PageRank to produce 

SiteRank, which we will now  describe in detail.

T he SiteRank algorithm  assigns a score (a rank) to a docum ent based on the average rank o f  

all docum ents grouped by websites that connect into it. D eveloping the algorithm to take a web site 

centric view o f  the W W W  as opposed to an individual w eb docum ent view, as is the case with 

PageRank, helps us to defeat the efforts o f  individuals w ho wish to artificially increase the rank o f  

docum ents by exploiting certain loopholes in the PageRank algorithm.

4.1.2.1 A n  In -d e p t h  E x a m in a t io n  of  PageRa n k

Recall from  Chapter 2 that the PageRank algoritiim is a query-time, iterative algorithm that 

generates a single linkage score for each docum ent, regardless o f  the conten t o f  the docum ent. The 

simple version o f  PageRank (as described in Chapter 2) which generates a PageRank score Pr’„ for a 

docum ent a t each iteration is based on the following formula. Let n be some web page and S„ be the 

in-set associated with n, let out-degreem be the size o f  the out-set o f  a docum ent m  and let <rbe a value 

that is used for norm alisation during the iterative process:

34 SiteRank was so called because o f  the value it places on  web sites in the rank calculation process
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H ow ever im plem enting PageRank based on this form ula does leave the algorithm open to 

tw o problem s, namely dangling links and rank sinks. These problem s have been identified by Brin and 

Page [Page et al., 98] and solutions have been incorporated into PageRank.

Dangling links are links that po in t to a page which itself contains no out-links. In  a real- 

w orld im plem entation o f  PageRank, there are a large num ber o f  such links, many o f  which are links 

that po in t at docum ents w hich the system knows about (and has anchor text descriptions for) bu t has 

n o t dow nloaded yet. R em em ber that a sizeable fraction o f  G oogle’s declared index has no t actually 

been downloaded by the algorithm, although assum ing a weighted crawler im plem enting some form 

o f  link based crawling strategy [Cho et al., 98] which Larry Page35 has researched while developing 

G oogle, the docum ents w ith highest linkage score will be downloaded first which would reduce the 

negative effect o f  dangling links. In Figure 4.2 an example o f  a dangling link would be the link from  

docum ent A  to docum ent E  because docum ent E  has no out-links (dashed lines are illustrative and 

are n o t actual links) so we do n o t know  how  or w here the rank o f  E  should be distributed.

Figure 4.2 : illustrating the problem  o f  Dangling Links

J5 Larry Page : the founding C E O  o f  Google and now President o f  Products, form edy a Ph.D. candidate at Stanford with 
Sergey Brin w ho is now  President o f  Technology at Google. Both Brin and Page developed Google while at Stanford.



I f  the PageRank from  docum ent E  (Figure 4.2) is no t redistributed at each iteration then it 

is lost from  the process. H ow ever it is n o t clear how  this PageRank should be distributed as there are 

no  out-links to indicate target docum ents. D ue to the fact that dangling links have no effect on other 

pages they are rem oved from  the calculation and after the iterative process is completed they are 

added back in. The reason for their removal in an iterative process is that each iteration may produce 

m ore dangling links w hich themselves require removal. A fter the primary PageRank calculation 

process is com plete the dangling links are added back in and iteration is rerun for as many times as it 

was required to rem ove the dangling links. O f  course, the process o f  rem oving links from  the 

connectivity graph has the effect o f  influencing the PageRanks calculated, bu t this effect is considered 

too small to cause concern [Page et al., 98].

Rank Sink

Rank Sinks occur because two or m ore pages that have out-links to each other, bu t to no 

o ther pages, gain an artificially high rank. A ssum ing we have at least one in-link into this set o f  pages 

from  a page outside o f  this set, then at each iteration the rank enters these pages and never exits so 

these pages constantly accumulate rank at each iteration (never distributing it back into the main body 

o f  the linkage graph) and therefore artificially g^in a higher rank than should be the case. This can be 

seen in the particular link structure o f  docum ents F and G  in Figure 4.3 w here a fraction o f  the rank 

from  A  is distributed to docum ent F, w hich a t the next iteration passes entirely to docum ent G. O ne 

iteration later, docum ent G  passes the rank back to docum ent F, w hich has been receiving additional 

rank from  docum ent A  at each iteration. So we can see that rank w hich enters the rank sink never 

actually escapes and is constantly being augm ented by rank from  docum ent A.

Figure 4.3 : Illustrating the problem  o f  Rank Sinks
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T he issue o f  rank sinks may occur with any num ber o f  docum ents involved. O ur example 

in Figure 4.3 only shows the problem  for a small rank sink o f  two docum ents. Obviously, as the 

num ber o f  docum ents in the rank sink tends towards the required num ber o f  iterations then the effect 

o f  the problem  becomes less noticeable because the rank will n o t be redistributed as often to 

docum ent that comprise the rank sink.

T he problem  o f  rank sinks was overcom e by the introduction o f  a virtual rank source, 

w hich gathers rank from  all pages, including rank which w ould otherwise be lost in a rank sink, and 

using a vector E  over all web pages in the index this gathered rank can be redistributed (in some way) 

back to all web pages in the collection. T he intuition behind this is that a web surfer will traverse the 

w eb by following links, bu t at some point will becom e bored  and jum p to another (random  page) 

w hich is modelled by the E  vector w hich has an entry for each docum ent and is used as an indicator 

o f  how  to distribute any redundant rank back into the system. Each docum ent’s entry in the E  vector 

represents the proportion  o f  rank given to that docum ent. In  standard PageRank the E  vector is 

uniform  over all web pages w ith | | E  | | =  0.15.

T he facility exists within the PageRank algorithm (as well as w ithin SiteRank) to utilize the 

E  vector to regulate the influence o f  particular docum ents. For example, if  a user is interested in a 

particular topic such as ‘m o to r sport’ then the E  vector could allow for results to be tailored towards 

that user’s tastes applying positive values for pages that are highly scored for the ‘m otor racing’ topic. 

This works by regulating w hat docum ents receive rank from  the E  vector at the end o f  each iteration. 

In  this example, pages that are about ‘m o to r sport’ would receive m ost o f  the PageRank at the 

expense o f  all o ther pages. Consequently, these pages have a m uch higher influence on the final 

PageRanks o f  each docum ent. In  this way, PageRanks can be tailored to particular users or user 

groups. In  the example pu t forward by Brin & Page the result o f  selecting just one page in the E  

vector, that o f  the com puter scientist Jo h n  M cCarthy is that all the top results are related directly to 

Jo h n  M cCarthy. His hom epage got the highest ranking, followed by docum ents linked to from  his 

page.

W e have seen that the E  vector is a very powerful tool for focusing the user’s search on 

different sections o f  the web. I t is entirely feasible to identify topics on the web using a content-based 

clustering algorithm  and m aintain separate lists o f  PageRanks for each o f  identified topic. A  user 

could identify topics w hich are o f  interest to h im /h e r and have results o f  any search tailored to 

h is /h e r  interests. It is even possible (although wholly unreasonable) to generate separate PageRanks



for each individual user based on their ‘favourites’ or ‘bookm arks’ and tailor the results o f  a search 

accordingly. This could provide for personalised search engines, how ever unlikely this is to occur in 

reality due to the storage requirements o f  a vector o f  PageRanks for each user.

4.1.2.2 T h e  Fu ll  Alg o r ith m

By incorporating the idea o f  the E  vector to solve the problem  o f  rank sinks, we’re now  in a 

position to state the full PageRank formula. Letting E„ be som e vector over the Web pages that

corresponds to a source o f  rank, ¡ris a constant w hich is maximised (normally 0.85) and | | Pr' \ = 1

a docum ent at each iteration. Let n be some w eb page and S„ be the in-set associated with n, let out- 

degree.n be the size o f  the out-set o f  a docum ent m  and let c be a constant that is used for 

norm alisation during the iterative process w ith E  be the E  V ector we have:

These PageRank values are calculated over a num ber o f  iterations until an acceptable level 

o f  convergence is reached. We are told that it takes up to 52 iterations until an acceptable convergence

PageRank to the indexing process so we are no t in a position to  provide definite answers as to its 

effectiveness using standard measures such as precision and recall.

4.1.2.3 Re m a in in g  Pr o blem s  w it h  Pa g eRa n k

T he PageRank algorithm  works in a similar m anner to Kleinberg’s algorithm, meaning that 

over a num ber o f  iterations, docum ent ranks are distributed across links to target documents. 

A lthough Kleinberg calculated two scores for each docum ent and operates at query-time on a 

considerably smaller collection o f  docum ents we can draw these parallels. Recall from  the previous 

chapter the three problem s that H enzinger & Bharat identified w ith Kleinberg’s algorithm:

(sum o f  all PageRanks =  1), we have the following formula w hich is used to calculate the PageRank o f

p o in t is reached for a 24 m illion-docum ent collection [Brin & Page, 98]. H ow ever the rate o f  

convergence is influenced heavily by the size o f  the ‘E ’ vector.

U nfortunately Brin and Page never published a full-scale evaluation o f  the benefit o f

•  Mutually re-enforcing relationships between hosts, w hich is solved by regulating the influence 

o f  docum ents from  w ithin one host.



•  Automatically generated links, w hich is solved by content analysis.

•  N on-relevant nodes, w hich is also solved by conten t analysis.

T he latter two problem s are solved by a search system w hich implements PageRank 

because the conten t score o f  a docum ent is com bined at query-time (using some unknow n process) 

w ith the PageRank score and in this way integrates content-analysis into the ranking algorithm. 

H ow ever the first problem  is n o t solved by PageRank. I t  is feasible for an individual w ho understands 

how  the PageRank algorithm  works to exploit this problem  in order to influence the ranking process 

and the problem  is com pounded by the E  vector. Recall that the E  vector acts as a source o f  rank 

over all docum ents and that a t any iteration a fraction (0.15) o f  the collection-wide PageRank score is 

passed back to all docum ents using the E  vector. Therefore, any unscrupulous individual could create 

a large num ber o f  pages all o f  w hich link into one target page that the individual is trying to rank 

highly in a result-set. I t  does n o t m atter how  m any w eb sites the individual used to carry out this 

operation, all that is im portant is that a large num ber o f  pages all target one page. In  Figure 4.4 below, 

docum ent A  is the target o f  the spam m ing process and num erous docum ents from  three websites all 

link to it.

Figure 4.4 : Illustrating an unsuccessful PageRank spamming technique

H owever, this is a naive approach to spam m ing PageRank and will fail to have the desired effect. 

PageRank will have identified docum ent A  as a target o f  dangling links and will have removed it from  

the algorithmic process until after convergence has been reached. Simply linking from  A  to any other 

docum ent on the web still improves matters for the spammer, bu t we are n o t allowing A  to keep the 

rank it already has. Linking from  A  to docum ents B -K  will no t w ork either as this becomes a Rank- 

Sink, so a rather m ore clever approach is needed in order to spam  PageRank, as show n in Figure 4.5.
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Figure 4.5 : Illustrating a successful Google spam ming technique.

4.1.2.4 T O  SUCCESSFULLY SPAM A PAGERANK ALGORITHM

Using Figure 4.5 as a w orked example, we can see that the way to  successfully spam a 

PageRank algorithm  is to  have docum ent A  containing a link back into the main body o f  the web so 

that it is n o t rem oved in a dangling link removal procedure. The way we have chosen to illustrate this 

is that a link exists from  docum ent A  to another docum ent L w hich will link back into each o f  

docum ents B -K  and although no t essential (but this is a better idea because we assume that this 

loophole will have been noticed) a link back into the m ain body o f  the web, to  any other page. In this 

way all o f  A ’s rank (except that that goes to the E  vector) is transferred to L  w hich transfers its rank 

divided evenly across all its link w ith the vast majority going back into docum ents B -K  which then 

will give their higher rank back into A  once again. Therefore, at each iteration B -K  will constantly 

increase in rank and pass m ost o f  this accum ulated rank onto A  (which through L passes it back to B- 

K).

So w here does the E  vector fit into this? Well, the rank that is passed back to each 

docum ent from  the E  vector, at each iteration, is based on the following formula, assuming uniform  

values for each docum ent in the E  vector. Letting N  be the size o f  the collection, d be any docum ent 

w ithin that collection N  and | \E \  | be the no rm  o f  the vector E  (which is usually 0.15):

R, = K + (4-4)
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So, regardless o f  the sparsity o f  links into docum ents B -K  they will always receive rank from  the E  

vector anyway and since the spam m ing process is very unlikely to be done manually it is a trivial task 

to develop software to automatically generate a large num ber o f  docum ents all o f  which link into a 

certain target docum ent.

In  2000 a process that became know n as the ‘Liv Tyler nude’ spam m ing o f  Google 

[Sullivan, 02] occurred, w here a large num ber o f  pages36 (concerning various actresses) were 

generated, all containing num erous links to the main page o f  the N ude Celebrity W orld News website. 

W e assume that die reason was to boost the PageRank o f  the N ude Celebrity W orld News website. 

G oogle deny that the algorithm had m uch o f  an effect on its ranking and we are n o t in a position to 

validate this as the last public inform ation on the PageRank algorithm was released in 1998 and the 

algorithm  has likely undergone many modifications since then.

4.1.3 Ou r  Sit e Ra n k  Alg o r ith m  D esc r ipt io n

T he SiteRank algorithm was developed to be scalable to docum ent collections up to (at 

least) 100 million docum ents, although we never applied any limits on docum ent num bers in the 

design and program m ing phases o f  developm ent. Recall the two problem s that exist with the naive 

approach to PageRank outlined in the previous chapter. D angling links po in t to docum ents that have 

no out-links therefore they would accumulate rank and never distribute any o f  it, thus acting as a rank 

leak from  the w hole graph.

W e employed an alternative approach to the one taken in PageRank to solving these 

problem s w hen developing SiteRank. O ur technique does no t involve the graph-pruning phase o f 

PageRank, and also solves the second problem  o f  Rank-Sinks, but only if  im plem ented as part o f  the 

SiteRank algorithm  and no t just PageRank. PageRank views a static probability o f  a user becoming- 

bored and jum ping to a random  page, whereas our approach assumes that a user is m ore likely to get 

bored on a page w ith a small num ber o f  links than a page w ith a large num ber o f  links. H ow  we do 

this is as follows. Before any iterations were m ade, the algorithm added one new artificial node into 

the graph, w hich we referred to as the E  docum ent. This E  docum ent was connected to all other 

docum ents (nodes) via an in-link and an out-link and was given a pre-iteration value o f  0.0.

2,6 8,004 pages in total, four for each o f  2,001 celebrities, spread evenly over four web sites
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Figure 4.6 : Illustrating the E  docum ent

In this way a rank-sink will always have a leak’ into the E document from all associated 

documents and a document at the end of a dangling link will always pass its full page-rank from the 

previous iteration directly into the E document. Associated with the E document is the E vector, a 

vector over all web pages that re-distributes the rank of the E document back to all web pages at the 

end of each iteration. Similar to die PageRank algorithm, it would be possible to provide for 

personalised SiteRanks by having non-uniform values in the E vector. Due to the fact that all 

documents have a link back to the E document, | \E \ | (die norm of vector E) will nor be 0.15, but 

will have a value based on the following formula, assuming | | PR | | — 1.0 and D  is the set of 

documents in the system:

During each iteration, the rank that would otherwise be lost from dangling links and rank 

sinks is gadiered by the E document is re-integrated into the system after each iteration, so that no

\n<iD /

(4.5)

rank is lost. In our work with die SiteRank algorithm, the E vector has values that are uniform over all 

web pages as shown in Figure 4.7.



Figure 4.7 : O ur use o f  the E -vector to distribute rank from  the E  docum ent

4.1.3.1 In c o r p o r a t i n g  W ebsites i n t o  t h e  p r o c e s s
W e have previously (in Chapter 2) m entioned the problem  o f  search engine positioning or 

optim isation w hereby companies provide services w hich aim to improve the positioning o f  a (mostly 

commercial) website w ithin search engine result pages. This process may take the form  o f  artificially 

constructing a synthetic link structure around websites in order to influence the PageRank scores o f  

docum ents form  a particular websites, o f  w hich we have just show n an example. O u r w ork at A T& T 

in developing the SiteRank algorithm w ould help to overcom e this problem  by taking a web site 

centric view o f  the PageRank calculation process.

Thus far, we have explained our process for generating a rank for each docum ent which is 

based on the PageRank algorithm, bu t w hat really differentiates SiteRank from  PageRank is this web 

site centric view w hich aids the avoidance o f  the problem s o f  (commercial) manipulation o f  ranked 

results. Recall from  [Bharat &  H enzinger, 98] that we view all docum ents w ithin a dom ain as having 

being w ritten/developed by the one au thor and representing the ideas o f  a single individual or 

organisation. SiteRank limits the influence any one au thor may have on any docum ent, regardless o f  

the num ber o f  docum ents from  any one website that link into that particular docum ent. For example, 

if a docum ent has three in-links, each o f  w hich are from  one website, then the SiteRank o f  the target 

docum ent is based on the average37 SiteRank o f  these three docum ents that point into it.

37 Average rank : we had considered using the max rank, but felt that the average rank would m ore accurately reflect the 
quality o f  the website that the documents originate from.



Figure 4.8 : Illustrating SiteRank fo r a single docum ent

In  Figure 4.8, the rank o f  docum ent A  would be based on the rank o f  all pages in the range 

o f  B-K. Recall from  the basic PageRank algorithm  that docum ent B w ould transfer one third o f  its 

rank to  D ocum ent A  (because o f  the three links ou t o f  B), along with fractional rank from  all other 

docum ents that link into A. However, we view all docum ents on one host having the one author 

w hich was identified in the previous chapter as the problem  o f  ‘Mutually Re- inforcing Relationships 

Between H osts’ w hich serves to increase the rank o f  the docum ent on  the second host and in so 

doing gives undue weight to the opinions o f  one person. Ideally, we would like all docum ents on a 

single host have the same influence as a single docum ent would from  another host. To achieve this 

w e give fractional weights to edges in such cases, therefore the rank w hich is transferred from  all the 

docum ents on  site 1 (B, C and D) to docum ent A  is divided by the num ber o f  docum ents on  site 1 

that actually link into docum ent A 38, giving the following form ula to calculate the rank transferred to 

docum ent A. Assum ing S is the set o f  docum ents on  a particular site that link into docum ent A:

(« )
nsS P |

W e have applied this technique to our SiteRank algorithm.

38 N ote  we distinguish between the num ber o f  documents on site 1 and the num ber o f  documents that link into document A 
from  site 1.
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Figure 4.9 : Illustrating SiteRank fo r one docum ent incorporating the E  document

I f  we integrate the E  docum ent again into the process, all docum ents m ust pass a fraction 

o f  their rank to the E  docum ent at each iteration. Letting R j be the current rank o f  docum ent d and 

outdegreed be the outdegree o f  d, no t including the link to the E  docum ent, we have:

|l£|| = ||£|| + -------^ -------  (4.7)
outdegree d +1

In  this way, the SiteRank o f  a docum ent is based on  the rank o f  the pages that link into it, 

yet we base our calculation on  web sites as opposed to individual w eb pages. This has the intuitive 

result o f  ranking by the num ber and quality o f  websites tha t link into a docum ent as opposed to 

simply the num ber o f  docum ents that are the source o f  links. Therefore it would be m ore expensive 

for a w ould be spam m er to defeat this algorithm  as the num ber and quality o f  websites play an 

im portant role in the SiteRank calculation process.

T he algorithm  to calculate SiteRank scores for each docum ent n from  a set o f  docum ents N  

is show n below. N ote  we are assum ing that bo th  lost SiteRank (rank lost from  the system due to 

averaging the influence o f  docum ents from  any one website) and E  docum ent SiteRank are gathered 

by one com ponent and bo th  redistributed using the E  vector. Let AT be the set o f  docum ents, JR« be 

the current SiteRank for each docum ent, ^ R ’, be the new  SiteRank scores being calculated at this 

iteration, v, h and I be sets o f  webpages and LosiSr be the com ponent that gathers all lost rank from  

the system:
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SR  < - — fo r a ll n in N
N

loop :

fo r n — l,2 .-...N  :

Let v he the inset o f n

Let h donate a ll site s within v

fo r 7 = 1.2.....|/7|

Let I donate a ll pages w ithin both h and v
SR,

H R  (=
y  -

outdegree , + I

L o s lS r ±

end

SR  j  <- SR  j  + ^  H R m fo r a ll in in  h
meh

end

SR  \ < - SR  + (L o s lS r x E ) fo r a ll n in N

SR  „ < - SR  fo r a ll n in  N

while ( not converged )

Had we gathered die E  document rank and die rank lost from die system due to our 

solution of the ‘Mutually Reinforcing Relationships between Hosts’ problem separately it would not 

have affected the overall rank being allocated to each document. In our original AT&T 

implementation of the algorithm we did indeed gather both separately and passed back the rank 

separately.

4.1.4 D ev e l o p m e n t  D etails

Language <& Machinery

The computer we used to run our experimental SiteRank algorithm at AT&T was a UNIX 

based machine with 2GB RAM available to us for the calculations. We used single precision floating 

point numbers to store SiteRank values. Based on the 2GB upper memory limit, there was a limit of 

256 million documents for which we can calculate a PagpRank score (given that two PageRanks must 

be stored for each document during the iterative process). On a 10 million document collection, the 

total processing time to reach acceptable convergence (roughly 10 iterations) was about 8 minutes 

when we had all connectivity information available in RAM. In order to solve die memory problem of
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keeping two PageRank scores for each docum ent in RAM, Brin and Page use a two-pass process 

w here one o f  the arrays o f  PageRank values are w ritten to disk and n o t held in RAM.

O w ing to die fact that the results o f  the experiments were never examined, we are no t in a 

position to evaluate the retrieval perform ance o f  SiteRank, bu t we did have the option o f  evaluating 

the algorithm on  the W TlOg dataset. H ow ever, our previous experiences o f  using W TlOg did no t 

inspire confidence and we felt that evaluating a SiteRank algorithm on W TlOg would have been a 

fruitless exercise. Ratiier, we turned our attention to examining W TlO g in an effort to identify if any 

subset o f  its 1.69 million docum ents could be used to evaluate our algorithms.

T he following table shows the top 15 docum ents from  a SiteRank calculation process, 

ranked in decreasing order o f  SiteRank. These results appear to be intuitive in that these web pages 

could be considered to be the m ost popular on the WWW. A listing o f  the top 100 scored documents 

is included in appendix B.

R a n k S i t e R a n k U RL

0 28.075829 http//www. netscape .com/
l 17.856512 http//www. microsoft.com/
2 16.047762 http//www. yahoo.com/
3 14.709599 http//home. netscape.com/
4 13.441017 http//www. microsoft.com/ie/
5 10.052464 http//www. adobe.com/
6 8.126648 http//home. netscape.com/comprod/mirror/index. html
7 7.921433 h ttp //www.adobe.com/products/acrobat/readstep. html/
8 7.804879 h ttp //www.excite, com/
9 6.879511 http//www. lycos.com/
10 6.708895 http//www. real.com/
11 6.688189 h ttp //www.diqits.com/
12 6.140473 http//worldwidemart. com/scripts/
13 5.627914 http//www. freeservers.com/
14 5.052332 http //www.stpt.com/

Table 4.1 : T he SiteRank score o f  the top 15 documents.

http://www.adobe.com/products/acrobat/readstep
http://www.excite
http://www.diqits.com/
http://www.stpt.com/


4.2 E x a m in in g  WTlOg a g a in

Following from  our experiences o f  working on the developm ent o f  SiteRank using a 10 

m illion-docum ent dataset and our experiences w ith the T R E C  dataset w hen running our TREC 

experim ents, we were in a position to identify two fundamental problem s that seemed to be holding 

back successfully incorporating linkage-based retrieval techniques into web search experiments and 

the consequent evaluation using tried and trusted TR EC  evaluation procedures. These problems are:

•  The lack o f  a suitable interlinked dataset to support the experiments. I t  seems to us (as well 

as o ther TR EC  participants) that W TlO g was n o t capable o f  supporting this role.

• H o w  to com bine evidence from  linkage and content sources to produce a final ranking for a 

docum ent? The obvious approach is to regulate the influence o f  both  sources by 

incorporating som e best guess or tuned param eters, b u t we introduce an alternative 

technique based on a two-phase retrieval process, which we outline and evaluate later.

T he rest o f  this chapter will be dedicated to describing our experiments using a subset o f  W TlOg 

called W T_C onnected, w hich increases the proportion  o f  docum ents that have a non-zero off-site 

indegree.

4.2.1 W T _ C o n n e c te d :  A D e n s e l y  L in k e d  S u b s e t  o f  WTlOg

O w ing to the lack o f  off-site links within the W TlOg dataset we felt it necessary to examine 

the dataset for clues as to how  to proceed with our experiments. The W TlOg corpus contained 

171,740 off-site links, bu t if  w e examine the link structure o f  W TlO g in detail, it becomes obvious that 

only 31,227 (or less than 2% of) docum ents actually are the target o f  at least one off-site in-link. 

Consequently, how  could we reasonably expect any linkage analysis technique to improve retrieval 

perform ance given that such a small proportion  o f  docum ents could have their rankings influenced by 

off-site in-links. As we have seen from  chapter 3, none o f  the (experimental and anecdotally trusted) 

linkage analysis algorithms executed upon  W TlOg have resulted in any im provem ent in retrieval 

perform ance for any participating group.

O u r experience and intuition suggested that it would be beneficial to isolate a densely linked 

subset from  w ithin W TlO g and carry ou t experiments on this densely linked subset as previous
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findings have illustrated cleady that carrying ou t experiments on the whole dataset was fruitless. 

Figure 4.10 shows the source o f  W T_Connected.

Figure 4.10 : Illustrating the source o f  W T_C onnected

T he primary advantage o f  using a subset o f  W TlOg was that we still had the TR EC  relevance 

judgements available. This allowed us to evaluate our experim ents using the prepared relevance 

judgements and by evaluating a content-only experim ent we then could com pare all o f  our linkage 

experim ents against the benchm ark content-only experiment. An alternative approach would have 

been to develop a web crawler (which in itself is no t a trivial task) and gather a set o f  web docum ents 

(both time and resource consuming), b u t the generation o f  a set o f  topics and relevance judgements 

for these topics would have been beyond the resources at our disposal.

W hen generating this densely linked subset o f  W TlO g we had  two requirements for the new 

collection, these being:

1. T o  maximise the num ber o f  off-site links in the dataset.

2. T o  maximise the size o f  the new dataset itself.

G enerating a dataset to satisfy these tw o rules was no t difficult, we simply generated the dataset by 

following a four step procedure as described below.

1. W e identified all the docum ents that have a non-zero off-site indegree. This produced a set

o f  31,227 docum ents and a total o f  171,740 off-site links were examined in this step.

2. Based on these 31,227 docum ents we identified all docum ents from  which these off-site links

originated. There produced another 94,309 docum ents for the dataset w hich were necessary 

as w ithout these docum ents the 171,740 off-site links w ould no longer exist within the 

dataset.



3. All docum ents identified in steps 1 and  2 were com bined to  produce a set o f  120,494 unique 

docum ents.

4. Finally, all links between these docum ents were extracted from  our Connectivity Server and 

used to  support our experiments.

Figure 4.11 illustrates the links that identified the docum ents that com prise W T_Connected. They 

were the docum ents from  W TlO g that were either the source o r the target o f  an off-site link (i.e. any 

docum ent linked by links

Figure 4.11 : Illustrating the documents that comprise W T_C onnected

D oubtless there are m ore com plex and  sophisticated techniques that we could use based on, 

for example, graph traversal algorithms, that would provide us w ith a strongly connected com ponent 

as opposed to a well linked subset, b u t we were n o t attem pting to  convert W TlO g into the ideal 

dataset, rather we were interested in p ro o f  o f  concept that linkage im provem ents can be found using a 

dataset w ith a  m ore dense off-site link structure, one that represents the W W W  m ore accurately than 

W TlOg.

A fter w e generated the densely linked subset o f  W TlOg, w e processed the TR EC  relevance 

judgem ents, w hich provided relevance inform ation over the whole W TlO g collection and filtered out 

new  relevance judgements based on the densely linked subset o f  W TlO g only. This would allow us to



generate precision and recall values using TR EC EV A L39 that are m ore representative o f  true retrieval 

perform ance w hen evaluating experimental algorithms on the new dataset, which we will refer to as 

W T_Connected.

4.2.2 Co m parin g  W T„Co n n e c t e d  w it h  W TIO g

T he strongly connected dataset is com prised o f  each docum ent w ith a non-zero off-site 

indegree and the docum ents that are the source o f  the links into the first set o f  documents. The 

com position o f  W T_Connected (W T_Conn in this and all subsequent tables) com pared w ith WTIOg 

is summarised in the following table.

WTIOG W T _ C o n n

N um ber o f  D ocum ents 1,692,096 120,494

N um ber o f  off-site links 171,740 171,740

Average off-site indegree 0.10 1.43

%  o f  docs w ith non-zero off-site indegree 1.8% 25.9%

num ber o f  unique servers represented 11,680 11,611

Average num ber o f  docs per server 144 10

Generality 0.0015% 0.0021%

N um ber o f  Queries 50 36

Average num ber o f  relevant docum ents per query 52 7

M axim um  num ber o f  relevant docum ents per query 519 26

M inim um  num ber o f  relevant docum ents per query 1 1

Table 4.2 : Comparing WTIOg and WT_Connected

As can be seen from  Table 4.2, W T_C onnected contains a far higher density o f  off-site links, 

an average o f  1.43 per docum ent while keeping the generality o f  the dataset for all queries very similar 

to WTIOg. As expected the num ber o f  servers represented was alm ost identical in W T^Connected as 

it was in WTIOg, this is because o f  the inclusion o f  all off-site links and bo th  the source and target o f  

each link. The one drawback o f  this is that the average num ber o f  docum ents on each server is only

39 TRECEVAL is a program (provided by NIST) that evaluates TREC results using standard evaluation procedures such as 
Precision and Recall. TRECEVAL operates using relevance judgement listings provided by TREC, or in our case modified 
judgements filtered from the NIST provided relevance judgements over WTIOg for our query set.



10 as opposed to 144 w ith WTIOg, this is 6.9% o f  the num ber from  WTIOg. This is unavoidable as 

w e only have 7.1% o f  the W TIOg dataset represented in W T_Connected, bu t it means that we are 

taking the core pages, hom e pages and top  pages from  almost all o f  the 11,680 web servers in the 

W TIOg collection. In  addition, fourteen o f  the fifty TREC-9 queries had no  relevant docum ents in 

W T_C onnected and therefore our num ber o f  queries was reduced to 36.

O nce we had generated this dataset we turned our attention to the problem  o f  how  best to 

com bine evidence from  both  content and linkage sources w hen generating a final docum ent ranking. 

This was the second fundamental issue that needed to be addressed before we ran our experiments.

4.3 R e g u l a t in g  t h e  in f l u e n c e  o f  L in k a g e  An a l y sis

Regardless o f  the algorithm used to generate a linkage score for a docum ent, the m ethod o f 

com bining linkage scores w ith the content-only scores to produce the optim al ranking formula is a 

key problem  that m ust be solved. This issue o f  how  best to com bine evidence from  content sources 

and linkage sources has been overlooked by m uch o f  the research com m unity w ho have been more 

focused on  developing new and im proved versions o f  algorithms such as Kleinberg’s algorithm or 

Page Rank.

W ere a dataset such as W T_C onnected to be able to faithfully support linkage experiments, 

problem s com bining content and linkage weights would lead to less than optimal retrieval 

perform ance or worse still could lead to  negative evaluation o f  algorithms that otherwise could 

provide positive results. Recall that a num ber o f  different scores may need to  be com bined together to 

produce a final ranked output. For example a linkage analysis experim ent may have to combine 

together scores from  at least three sources:

•  C ontent-only score

• A nchor text description score

• Numerical linkage score (e.g. PageRank).

A  naive approach (and com m on starting point) to solving this problem  is to use some best 

guess param eter to generate a form ula such as the following where Sim(Descj,q) is the similarity score 

o f  the in-link anchor texts to the query, Sim(d,q) is standard query docum ent similarity score for the 

docum ent conten t and PRj is som e PageRank style linkage score for a docum ent and a, 8, X are



constants used to  regulate the influence o f  different com ponents, we can generate a final weighting 

for a docum ent d based on:

Win = a  x Simdq + 8  x SimDesCj q + A x (4.8)

The param eters (constants) a; 5, X may be based on best guess figures or have been

generated as a result o f  a param eter tuning process in w hich the optimal param eter values are found 

through a process o f  experimentation. We integrated an alternative technique to choosing and tuning 

param eters w hen deciding on values for the constants a; S, X into our experiments on W T_Connected 

and integrated a com parison between best-guess parameters and our alternative technique into our 

experiments.

4.3.1 T h e  Q u e ry  h o l d s  t h e  Key t o  r e g u l a t i n g  t h e  I n f l u e n c e  o f  L in k a g e  A na ly sis

M uch w ork in the field o f  linkage analysis is evaluated using queries that could be 

considered broad in nature, which would suggest linkage analysis works best for broad queries. I t  is 

this idea that is exploited in our alternative technique to regulate the influence o f  linkage analysis.

Kleinberg [Kleinberg, 98] states that there are two types o f  queries, broad and narrow. Narrow

queries, he states, are representative o f  the scarcity problem in that there are very few pages that contain 

the required inform ation, and it is difficult to  determ ine the identity o f  these pages. M uch o f the 

classical w ork in inform ation retrieval (such as the ranking techniques outlined in the first chapter) has 

focused on this type o f  problem .

T he other types o f  queries are broad-topic queries, where many (tens or hundreds of) 

thousands o f  pages could be considered relevant. The scarcity problem  is no t an issue here, rather the 

abundance problem, where die num ber o f  pages that could reasonably be returned as relevant is far too 

large for a hum an to digest. Queries like this are best suited to the popularity or audioritative ranking 

o f  linkage analysis. I f  we examine the queries used in die evaluation o f  Kleinberg’s algorithm by both 

Kleinberg [Kleinberg, 98] and H enzinger &  Bharat [Bharat & Henzinger, 98] and even the 

experim ents undertaken at AT& T into linkage based web search [Amento et al., 00] we notice tiiat all 

o f  die queries could be considered to be broad in nature. We will return to the problem  o f  how  to 

automatically classify queries as being broad, narrow  or neither later in this chapter.

4.3.1.1 T h e  E x is t in g  T e c h n iq u e s  w h ic h  m in e  i n f o r m a t i o n  f ro m  Q u e r ie s

In  addition to using best-guess or experimentally tuned parameters, one recent attem pt to 

com bine linkage and conten t evidence has been to use the lengtii (in words) o f  the query to indicate
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the broadness o f  the topic represented by the query. T he TREC-9 participation o f  A T& T [Singhal & 

Kaszkiel, 00] subm itted one experimental m n executed on  W TlOg w here the contribution o f  the 

anchor text description o f  a docum ent was reduced as a query string go t longer, the idea being that 

short queries result in the abundance problem  and consequently benefit from  incorporating linkage 

analysis into the ranking formula, whereas long queries avoid abundance issues and thus gain reduced 

or even negative benefit from  allowing linkage analysis to influence final docum ent ranking. 

Unfortunately, as we have seen in the previous chapter, W TlOg did no t faithfully support the 

evaluation o f  the benefit (if any) to be gained by incorporating this technique.

A t TREC-2001, a group from  University o f  Twente & T N O -T P D  [Westerveld et al., 01] 

im plem ented a similar approach to A T& T based on the length o f  the query. They normalised the 

docum ent score by die query length (signified by a) w ith the resultant effect o f  the linkage score as in 

the formula:

Scd =(a- ( Simdq) ) + ( ( ! - a ) ■(linkage scored j)  (4 .9 )

This technique seems intuitive and promising, bu t if we assume that broad queries are better suited to 

linkage based retrieval, then an alternative technique based on the num ber o f  docum ents considered 

relevant for a particular query could be beneficial. This we refer to as the scarcity-abundance 

technique for regulating linkage influence and we will now  discuss it.

4.3.2 T h e  S c a rc i ty -A b u n d a n c e  T e c h n iq u e  f o r  R e g u la t in g  L in k a g e  I n f l u e n c e

T he scarcity-abundance technique for regulating linkage influence exploits the size o f  the 

result-set for a query returned from  a content-only experim ent to identify how  broad a query is and to 

regulate the influence o f  linkage analysis accordingly. I t  is intuitive that a query w ith broad focus will 

result in a proportionally larger result-set (causing the abundance problem) than a query with narrow 

focus. Therefore, if  a query is identified as being broad in nature, then the influence o f  linkage analysis 

will be increased w ith die influence o f  content scores being reduced accordingly in an effort to 

present the user w ith die m ost qualitative pages from  the relevant-set ranked highest. However, we 

m ust examine the concepts o f  A bundance and Scarcity as they apply to Inform ation Retrieval systems 

before we describe the scarcity/abundance technique.

Abundance

Recall that the abundance problem  refers to a situation in w hich the user o f  an IR  system is 

presented witii too  many docum ents in response to an inform ation need and hence the result set is



too large for a hum an to  digest in a reasonable am ount o f  time. I f  we assume that perfect 

occurs only w hen all docum ents in the dataset are returned as being relevant to a query, then it 

follows that standard IR  techniques will have difficulties in ranking the docum ents. A  real-world 

example would be a situation where one m ust automatically choose the ‘best’ docum ents on  the Web. 

O ne would instantly turn to some citation counting, PageRank, or Kleinberg type technique to 

identify the m ost qualitative pages. Consequently we would be very reliant on Linkage Analysis to 

choose the best docum ents to rank highly. T o  this end any query that generates perfect abundance 

should apply linkage analysis techniques as the ranking technique and the influence o f  content-based 

score should be reduced to zero. The influence o f  linkage scores should be reduced progressively as 

the result-set size decreases and the abundance problem  becom es less o f  an issue for the user.

Scarcity

Recall that the scarcity problem  is one in w hich very few pages contain the required

inform ation, and m uch w ork has been done in the field to determine the identity o f  these pages. The

problem  o f  nearperfect scarcity is one in w hich a single docum ent (or a small, humanly manageable

num ber o f  docum ents) can be highly weighted in response to a user’s inform ation need40.

Consequently the use o f  linkage analysis techniques is o f  zero benefit to this result-set. So, at any

poin t in between, perfect abundance and near-perfect scarcity bo th  linkage and content scores will

need to exert som e influence to produce an optimal ranking formula.

A Query with 
Narrow focus

n I ( 0 .2 3 ,  0 .7 7 )
Near-perfect L * u pprfprt

Scarcity [ I ' ' ' I I I H  • I Abundance
( 0 .8 6 ,  0 .1 4 )

A Query with 
Broad focus

Figure 4.12 : Illustrating the sliding scale o f linkage and content influence in the 
scarcity/abundance technique

O u r experimental technique, which we call the scarcity-abundance technique incorporates a 

sliding scale upon which the optimal rate o f  influence o f  linkage analysis can be identified. I f  the 

scarcity value for a query is identified as being or then the abundance value for the same query m ust be 

/ - x. In  Figure 4.12, we see two queries plotted; if we take the narrow  focus query, which has a scarcity

40 We avoid die issue o f perfect-scarcity as were this to occur, zero relevant documents would be found and diis being the 
case, no IR technique can operate.



score o f  0.86, the associated abundance score (/ - 0.86) is 0.14. W e directly map from  the scarcity 

value into a value for the param eter that influences the content-only score and a similar direct 

m apping exists from  abundance to the linkage influencing param eter and we are only assuming two 

sources o f  inform ation, conten t and linkage, though the technique may be expanded to incorporate 

o ther sources o f  evidence. This would require the m apping o f  each query onto a point in an n 

dimensional ‘query space’, w here n is the num ber o f  sources o f  evidence available.

4.3.2.1 How CAN W E ID E N T IF Y  A BROAD Q U ERY ?

In  order to validate our belief that a broad topic query is one that results in a large set o f  

relevant docum ents we carried ou t a web-based user study in w hich each user was asked to categorise 

50 web-1 og queries into one o f  five categories (Very Broad; Broad; Standard; Narrow; Very Narrow). 

In  total 25 users took part in the evaluations resulting in a total o f  1,250 individual query evaluations. 

W e random ly selected only 250 queries to be evaluated and since broadness/narrow ness values for a 

query are inherently subjective we ensured that 5 different users would evaluate each query. To 

further com bat bias in the experiments the queries were presented to the users in random  order. 

Figure 4.13 is a screenshot o f  the judgem ent interface for one user.

If you are not familajr with any meanings of the queries then please do go to I 
or similar to disambiguate any term. It is very important that 

you aro fam iliar with each query before you submit your judgem ents.

:......!............................. . —•.........................  .....— ..............- ..........

ID QUERY
CH

g
1

$

v 1

? !
,y; j5
•V !
*  1

1 1 books on tape o f the month club r r - r r r

2 : where do i find a romantic Christmas gift r # r r c ;

3 1 games r r r r r :

4  What are some o f the Schools Bill Gates attended r r
- C

(• r
ì

5 www.santa.com r r
r

r c
6 riasa pictures o f the Apollo space shuttle r r r c-

*
r

1 7 cats/k itten k ittens tabby c c r. r a c
1 8 real time commodity future quotes r * r r -

Figure 4.13 : The Query Judgement Interface
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O u r users were all degree o r post-graduate students from  our com puter science departm ent 

w ho w ould have m uch experience in using search engines. T he evaluation criteria we asked the users 

to  evaluate the docum ents was into one o f  the following five categories:

• Very Broad — if  the query is o f  a very broad nature then a very large num ber o f  relevant 

pages are likely to be found in response to a query and w ithin this group o f  relevant pages 

there will be a num ber o f  possible sub-topics.

• Broad - I f  a query is o f  a broad nature then a lo t o f  relevant pages are likely to be returned. 

These pages may span multiple sub-topics, b u t the query would be m ore focused than the 

Very Broad query.

• Standard — A  standard query is neither broad  n o r narrow. I t is a typical web query, which 

will return a m any pages o f  highly scored docum ents from  a search engine.

• Narrow - T he query is m ore focused that any o f  the three above. A  manageable set o f  

docum ents is returned and these docum ents will only cover one main topic w ith possibly a 

very small num ber o f  sub-topics included.

• Very Narrow - This query type is extremely focused and unambiguous. The topic o f  the 

query is n o t in question and will n o t cause problem s to a text retrieval system. Y ou could 

imagine that a small num ber o f  relevant docum ents will be returned.

T o ensure that the experiments were as accurate as possible, we did no t choose the queries 

in a purely random  m anner from  a web log, rather we identified the proportion o f  query terms that 

w ere 1, 2, 3 and m ore than  3 terms long from  an AltaVista query log [Silverstein et al., 98], as in 

Figure 4.14 and random ly chose terms to  m atch these length distributions. Users were n o t allowed to 

use a search engine w hen  taking part in the evaluation, how ever on-line dictionaries could be used to 

help disambiguate term s w ith which they were no t familiar.



18.9%

□  1 Term

O  2 Terms

□  3 Terms

□  3+ Terms

32.7%

Figure 4.14 : Proportion of 1, 2, 3 and greater than 3 term queries from an AltaVista 
Query Log.

O nce we had identified the percentage o f  each query length that was required, web-log 

queries were chosen at random  from  an Excite [EXCITE, 02] query log which was released in 1999 

(although offensive queries were removed) to fit the distribution o f  terms illustrated in Figure 4.14.

U pon com pletion o f  the user evaluations, our five po in t scale was reduced to a three point 

scale, the very broad /  broad queries, and the very narrow  /  narrow  queries being com bined into just 

broad and narrow  leaving a (broad, standard and narrow) range o f  values. W e found that users had 

problem s in distinguishing betw een broad and very broad queries and similarly at the other end o f  the 

scale. Applying probability values to each o f  the 250 queries allowed us to identify queries that were 

m ore likely to  be broad o r  narrow. For example, if  all five users identified a particular query as being 

broad in focus then it has a 1.0 probability o f  being broad. H ow ever had one o f  the users evaluated 

the query as being narrow  then  the probability o f  the query being broad w ould be 0.8 and the 

probability o f  the query being narrow  would be 0.2. W e only examined queries that were 100% broad 

or 100% narrow. This resulted in us having a set o f  40 broad queries and a set o f  10 narrow  queries 

available for use.

W e random ly selected 10 o f  the broad queries and  sent then to the Google search engine 

examining the num ber o f  scored docum ents returned for each query and we found that the average 

broad query (as identified by our users) produced a result-set o f  11,633,750 docum ents or 0.0058% o f 

then entire G oogle index. Applying the same procedure to the narrow  queries we found that the 

average result-set was only 7,202 or 0.0000036%. This validated our belief that a narrow query is one 

that produces a small result set while a broad query is one that produces a larger result set.
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4.3.2.2 u t i l i s i n g  B r o a d  a n d  N a r r o w  Q u e r ie s

Based on this inform ation we were in a position to apply a basic categorisation to each 

query based on  the size o f  the result set generated41 in a content-only phase. By com paring fraction o f  

the total size o f  the dataset (n / N ) w here n is the size o f  the result set and N  is the size o f  the entire 

dataset, to our findings from  Google as to the proportion o f  docum ents returned in a broad query 

and a narrow  query, w e were in a position to regulate linkage weight on  a sliding scale with broad 

queries getting m axim um  linkage influence (a param eter value o f  50%  for linkage and this resulted in 

50% for content) and narrow  queries getting m inim um  linkage influence (100% content). The 

form ula we used to calculate the linkage influence (linklnj) is show n below. Letting S  be the result set, 

N  be the size o f  the docum ent collection, narrow be the fraction o f  the Google index returned for an 

average narrow  query, broad be the fraction o f  the Google index returned for a broad query and a-be a 

constant used for norm alisation o f  the differences in docum ent frequency values between the Google 

index and our collection we have:

linklnf =

' a
1V

Xff -narrow

broad  -  narrow
(4,10)

A t any point in betw een a query may be m apped onto  the sliding scale based on the n / N  

figure and the corresponding weights applied to  the content and linkage scores, as shown in Figure 

4.15.

A Query with 
Narrow focus

Near-perfect t  
Scarcity ^

A Query wi th 
Broad focus

Perfect
Abundance

CO.5, 0,5)

- Q u e n  es

Figure 4.15 : Plotting a query onto the sliding scale

41 Due to differences in the term distribution between Google’s index and our WTlOg sub collection we found that a 
normalization factor had to be included in the calculation procedure.



This technique is only our first attem pt at dynamically regulating the influence o f  linkage 

analysis and m ore research w ould be needed to  identify an optimal form ula to calculate linkage and 

conten t influence. The parameters in the technique (‘m inim um  linkage influence’ and ‘maximum 

linkage influence’) should be tuned on each dataset used.

W hen incorporated into our linkage experiments, the retrieval process then consisted o f  

two distinct phases:

1. A  query was processed and a set o f  relevant docum ents was generated, which, in a classical 

retrieval system w ould be the ranked result returned to the user, however we used this result 

as the input into phase 2 o f  the process.

2. Based on the size o f  the ranked set o f  docum ents from  the previous phase, the linkage 

w eight and conten t w eight were regulated using the scarcity-abundance technique described 

above and the docum ents ranked by using an optimal rate o f  linkage and content influence 

and returned to the user.

4.4 O u r  E x p e r im e n t s  o n  W T_C o n n e c t e d

W e ran many o f  the experiments that have been discussed in the previous chapters on the 

new  dataset. The experiments can be divided into four distinct categories:

•  C ontent Experim ent

•  Citation Ranking Experim ents

•  Spreading Activation Experim ents

•  SiteRank and PageRank Experiments.

A ppendix C includes averaged results for all ten experiments that we carried ou t as well as detailed 

results from  four o f  the experiments. All result ou tput has been generated by TRECEVAL.

4.4.1 C o n t e n t  E x p e r im e n t

For the conten t experim ent we felt that continued use o f  M icrosoft Index Server or 

AltaVista Discovery w ould ham per our attem pts to evaluate our algorithms given that neither o f  the



two applications supported returning the relevance score o f  a docum ent. Consequently we developed 

our own search engine for use in these experiments.

4.4.1.1 Se a r c h  E n g i n e  D e s c r ip t io n

The Search Engine was written in G N U  C + + , m aking use o f  the Standard Template 

Library (STL42 Qosuttis, 99]) w here feasible. The chosen platform  for our Search Engine was LIN U X  

(RedHat 7.1). The architecture o f  the search engine is outlined in Figure 4.16. We also refer the reader 

to Figure 1.8 for a m ore detailed overview o f  how  the Indexer and ‘Search Server’ function.

Figure 4.16 . The Outline Architecture o f our Search Engine

T he Search Engine can be divided into three m ter-functioning com ponents as described thus:

1. The Indexer, a software program  that converts a collection o f  docum ents into an inverted 

index (as described in Chapter 1) and writes this inverted index ou t to disk for future use by 

the ‘Search Server’. This inverted index is independent o f  any ranking algorithm (such as tf- 

id f o r BM25) as only the t f  values o f  any term  are included in the inverted index. The reason 

for this is that we wished to be able to interchange ranking algorithms as required 

independently o f  the indexing process. Any num ber o f  inverted indexes may exist on disk at 

any one time.

42 The STL is a library of advanced templates and functions whose purpose is to provide tried and tested implementations of 
common algorithms and data structures, for example, vectors, stacks, queues & maps.



2. The ‘Search Server’, also a software program , provides content-based retrieval facilities using 

a disk based inverted index (one o f  possibly many) that has been previously constructed by 

the Indexer and these retrieval facilities are based on one o f  the following three algorithms:

• tf-id f - basic tf-id f ranking using the basic tf-idf form ula on page 13 o f  this thesis.

• tf-id f w ith docum ent length norm alisation — incorporating docum ent length

norm alisation based on taking the log o f  the f  value o f  a term  within a docum ent as in 

the length normalised formula (a) on page 13.

• BM25 — this was BM25 ranking (as in the formula on page 14) based on the following

param eter values which were set according to the best perform ance achieved on the

W T2g collection from  TREC-8 [Savoy et. al., 00] whereby advl =  900, b = 0.75, ki =  1.2 

and ki =  1000.

As previously m entioned the ‘Search Server’ operates using a disk based inverted index that is 

independent o f  any ranking algorithm. This allows us to choose both  our disk index 

(processed dataset) and ranking algorithm w hen starting the server and these can be changed 

w ithout having to rebuild the inverted index w hich allowed us to change ranking algorithms 

quickly and efficiently, allowing us to immediately see the effect on retrieval perform ance o f  

altering the ranking algorithm. O ne limitation o f  the ‘Search Server’ was that it did no t 

support Boolean queries (e.g. cat A N D  dog N O T  horse), how ever we did add global 

Boolean support into the ‘Search Server’ whereby we could choose how  to process queries 

w hen starting the server so that all query terms are A N D ed  or Ored, depending on our 

requirements. O n  start-up o f  the server, it reads (into RAM) the required sections o f  the 

inverted index from  disk and (depending on the algorithm  chosen) calculates term  weights 

for each term  in the (compressed using CRS) docum ent-term  matrix. This is done prior to 

accepting and processing any queries, w hich are processed in a sequential fashion, returning a 

sorted set o f  docum ents identifiers for each query.

3. T he ‘W W W  Interface’ was a developed in P H P  and operated in conjunction with the Apache 

H T T P  Server [APACHE]. This interface com ponent accepts queries, interacts with the 

search server to generate a sorted result-set o f  scored docum ent identifiers and then queries a 

second server (the ‘Result W rapper’) to form at the results in the m anner expected from  a 

W W W  search engine. A n example o f  the response from  our search engine is shown in Figure 

5.6.
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T he search engine just described produced the results o f  our content experiment as well as 

the scored set o f  docum ents used by our linkage algorithms for our linkage experiments. The top

1,000 ranked docum ents from  the content experim ent produced our content-only results.

4.4.1.2 D e t a il s  o f  t h e  C o n t e n t -o n l y  E x p e r im e n t

F or the purpose o f  our content-only runs we utilised the BM25 ranking algorithm with O R  

query handling in operation. In  order to choose optimal queries for our experiments we indexed all 

70,070 docum ents (59,720 unique docum ents) identified in the T R E C  relevance judgements for 

W TlO g (TREC 9 queries) and evaluated three separate query generation techniques on this small set 

o f  docum ents, one autom atic and two manual (weighted) query generation techniques and we 

produced the following results as show n in Figure 4.17. We w anted our queries to produce content- 

only runs w ith high retrieval perform ance as limiting the retrieval perform ance o f  the content-only 

run would give wider (and unfair) scope for the linkage algorithms to improve retrieval performance 

over the content-only results.

Figure 4.17 : Precision v.s, Recall curve for three alternative query generation 
methods.

T he results o f  this short experim ent illustrated that ou r manual (weighted43) queries 

outperform ed both  non-w eighted manual queries and title only queries, therefore we ran all our 

subsequent content-expenm ents on  W T_C onnected using the very same manual (weighted) queries.

43 Weighted queries refers to the fact that each query term can be weighted w.r.t. its importance to the query topic. This 
weighting was accomplished by increasing the term frequency o f certain terms within the query.

-146-



The top  1,000 ranked docum ents for each query from  our search engine produced the results o f  our 

content-only experim ent for subsequent evaluation. The ranked set o f  docum ents from  the content 

experim ents along w ith their relevance weights gave us a result w ith w hich we can employ as a 

benchm ark against which to com pare the retrieval perform ance o f  our linkage-based algorithms, 

w hich we discuss in the following section. The top 2,000 ranked docum ents along with their relevance 

weights were saved for later processing by our linkage-based experiments.

4.4.2 L in k a g e  E x p e r im e n t s

W e evaluated nine different algorithms for our linkage experiments. In  a m anner similar to 

the technique we employed for TREC-9, each experim ent was based on  reranking a set o f  2,000 

docum ents produced in the content-only phase utilising hyperlink inform ation between docum ents in 

W T_Connected. O ur experiments were based on  citation ranking, spreading activation, PageRank and 

SiteRank and we also evaluated the benefit o f  integrating the scarcity/abundance technique for 

dynamically regulating the influence o f  linkage analysis by com paring the results to best param eter 

m ethods based on values used in the A T& T experiments for TREC-9

4.4.2.1 C it a t io n  R a n k in g  E x p e r im e n t s

In  all we evaluated four citation ranking techniques on the WT__connected dataset. The first was basic 

indegree ranking.

Indegree Ranking

This experim ent (like all the following linkage-based experiments) was based on simply 

extracting the top 2,000 docum ents from  the content-only experiments and reranking them  based on 

the off-site indegree o f  each docum ent. Let n be some web page and Sn be the set o f  off-site pages 

that link into docum ent n we rerank by Sc’„:

& '„ = J S 4  (4 .1 1 )

The results o f  this experim ent will be referred to as ‘indegree V . Recall that for all the linkage 

experim ents, although the docum ent ranking was based on a score generated by combining both 

conten t and linkage evidence, the final score allocated to a docum ent in the ranked output was based
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on the linkage evidence and content evidence was only used to rank docum ents with equivalent 

linkage scores.

Indegree Log Weighted Ranking

In  this experim ent, the log o f  the off-site indegree o f  a docum ent was used to increase the 

conten t only score by a  value proportional to the content only score. Let Sc „ be the content-only 

score o f  a docum ent and indegree„ be the off-site indegree o f  n we rerank by Sc’„:

Sc'n = Scn + Scn x Log(indegreen + l) (4.12)

In  the results, this experim ent will be referred to as ‘indegree 2 \

Best Guess Pammeter Ranking using Normalised InDegree Scores

Before com bining content and linkage scores for this experim ent and all subsequent ones 

we norm alised the linkage scores so that they would be in an equivalent range to the content-only 

scores. O nce this was done w e allocated scores based on  the norm alised indegree o f  the docum ent

added to the original content-only score o f  the docum ent producing a new score Sc’„ for the

docum ent. Let norm refer to a normalised score, indegreen be the off-site indegree o f  n and or be a 

constant (value o f  0.25) used to regulate the influence o f  linkage evidence (based on  values used by 

A T& T in TREC-9 [Singhal &  Kaszkiel, 00]), w e have the following formula.

Sc'n = Scn + {norm{indegreen)x a  ) (4-13)

In  die results, this experim ent will be referred to as indegree_3.

Indegree Ranking using Normalised InDegree Scores incorporating the Scarcity Abundance technique

O nce again we norm alised the linkage scores so that they w ould be equivalent to the 

content-only scores. This experim ent incorporated the scarcity-abundance technique for regulating 

linkage influence described above to dynamically regulate the influence o f  bo th  the normalised 

indegree score as well as the conten t score. Letting linklnf be the dynamically generated regulator o f  

the linkage influence generated using the Scarcity-Abundance technique discussed earlier and indegree„ 

be the off-site indegree o f  n, we have the following formula.



S c 'n = (Scn x  i1 -  IMIrif)) + (norm{indegreen )x!.inklnf) (4-14)

In the results, this experim ent will be referred to as indegree_4 and this allowed us to directly compare 

the benefit o f  the scarcity -  abundance technique to best guess parameters.

4A.2.2  S p r e a d i n g  A c t i v a t i o n  E x p e r i m e n t

Recall from  the previous chapter that spreading activation refers to a technique that 

propagates numerical values (or activation levels) am ong the connected nodes o f  a graph. In the 

context o f  this experim ent it facilitates a docum ent transferring its content-only score across its out- 

links. The process we have im plem ented for these experiments is thus; for each docum ent in the 

result-set we identify w hat docum ents com prise the in-set for the docum ent and propagate their 

scores along all out-links equally, w ith a fraction o f  the score being propagated to the current 

docum ent. I f  one o f  the inset docum ents is n o t part o f  the result-set then its score is 0.0 and will no t 

have any positive effect on the overall docum ent ranking. The form ula for calculating each docum ent 

score is show n below. Let S  be the relevant set o f  docum ents and S„ be the in-set o f  n, therefore:

This experim ent we shall refer to in our evaluation as SpreaiAct. Finally, we carried ou t our own 

evaluation o f  a SiteRank algorithm along w ith an im plem entation o f  PageRank.

4.4.2.3 Si t e R a n k  a n d  Pa g e R a n k  E x p e r im e n t s

In  this set o f  experiments we evaluated bo th  SiteRank and PageRank twice, once w ith best

influence o f  the SiteRank and PageRank scores and subsequently using the scarcity/abundance 

technique. The SiteRank algorithm  was as described earlier in this chapter and the Page rank algorithm 

was described bo th  in this chapter and Chapter 2. W e ran the iterative process to calculate both 

PageRank scores and SiteRank Scores over twenty iterations (enough to ensure convergence) to 

produce the SiteRank and PageRank scores for all 120,494 docum ents

guess param eter values (once again based on  values used by A T& T in TREC-9) to regulate die

B oth SiteRank and PageRank scores were calculated in the one processing run and the 

source code was developed in JA V A  and executed on a Pentium  III Z eon  processor running 

W indows N T 4 w ith 512MB o f  installed RAM. Connectivity data was served by a M icrosoft SQL



Server 7 database, w hich was installed on the same com puter that ran the calculation process. The 

total process required 55MB o f  RAM and the twenty iterations required 65 minutes o f  CPU time.

In  our best-guess param eter experim ents, the form ula used to calculate the final score for a 

docum ent is based on  the following formula fo r SiteRank and a similar form ula for PageRank.

Sc'n = Sc n+{SRnxO.25) (4 .1 6 )

The results o f  the best-guess param eter experiments for bo th  SiteRank and PageRank will 

be referred to as SiteRank_param and PageRank_param. W hen incorporating the scarcity/abundance 

technique the formulae used to calculate the final score for a docum ent is as follows and once again a 

similar form ula for PageRank.

Sc'n = [Scn x (l -  linklnf)) +  [SRn x linklnf) ( 4 .17)

The results o f  the experiments for bo th  SiteRank and PageRank (incorporating the 

scarcity/abundance technique) and these will be referred to as SiteRank_quety and PageRmk_query 

respectively.

4.4.3 R e s u l t s  o f  t h e  E x p e r im e n ts

As m entioned previously our linkage experiments were based on reranking content-only 

results and this g^ve us the ability to com pare the linkage results w ith the content-only results. As can 

be seen from  Figure 4.18 and Table 4.3 seven o f  our experiments produced very similar results. O n 

closer inspection we see that some o f  the linkage experiments actually achieved small improvements 

in precision (shown as bold  in Table 4.3) over the content-only runs w hen examined at 5 and in some 

cases 10 and larger docum ent retrieval points. This is encouraging because up  until we ran these 

experiments, T R E C  participants were unable to illustrate any im provem ent in retrieval performance 

w hen using W TlO g data, and  although W T_C onnected is no t the same dataset as W TlOg, we were 

using a subset o f  bo th  the dataset and the relevance judgements so we were following the TREC 

procedure for evaluation o f  IR  systems, which now  can be show n to produce results w hich at least are 

n o t all negative.
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Figure 4.18 : Precision at standard levels o f documents

Below we illustrate the data from  Figure 4.18 in tabular form  w ith im provements in 

precision over the content-only experim ent highlighted using bold text.

CONTENT-
ONLY

INDEGREE
1

INDEGREE
2

INDEGREE
3

INDEGREE
4

SPREADACT SITERANK,
PARAM

PAGERANK
PARAM

SITERANK_
QUERY

PAGERANK.
QUERY

0 . 2 3 8 9 0 . 0 0 .0 9 4 4 0 . 2 4 4 4 0 . 2 5 0 . 0 5 0 . 2 5 5 6 0 . 2 4 4 4 0 . 2 5 5 6 0 . 2 4 4 4
0 . 1 8 3 3 0 .  0056 0 .0 6 9 4 0 . 1 0 3 3 0 . 1S 61 0 . 0 6 3 9 0 . 1 7 7 8 0 . 1 8 3 3 0 . 1 8 0 6 0 . 1 8 0 6

15 0 . 1 6 1 1 0 . 0 0 7 4 0 . 0 5 3 7 0 . 1 5 3 0 . 1 6 3 0 . 0 7 2 2 0 . 1 5 3 7 0 . 1 6 3 0 .1 5 7 4 0 . 1 5 9 3
0 . 1 5 0 . 0 0 8 3 0 .0 5 2 B 0 . 1 4  72 0 . 1 4 8 6 0 . 0 7 5

tH<r>o

0 . 1 4 8 6 0 . 1 4 1 7 0 . 1 4 0 6
0 . 1 1 6 7 0 . 0 0 9 3 0 . 0 5 3 7 0 . 1 1 4 8 0 . 114B 0 . 0 7 8 7 0 . 1 1 2 0 . 1 1 3 0 . 1 1 3 9 0 . 1 1 3 9

100 0 . 0 4 4 4 0 . 0 0 7 2 0 . 0 3 3 1 0 . 0 4 4 4 0 . 0 4 4 2

«3OOO

0 . 0 4 4 7 0 .0 4 4 4 0. 045

oo

0 . 0 2 4 6 0 . 0 0 6 1 0 . 0 2 2 2 0 . 0 2 4 7 0 . 0 2 4 9 CMoo 0 . 0 2 5 0 . 0 2 4 6 0 . 0 2 4 9 0 . 0 2 4 6
0 . 0 1 1 4 0 . 0 0 8 5 0 . 0 1 0 9 0 . 0 1 1 4 0 . 0 1 1 4

oo

0 . 0 1 1 3 0 . 0 1 1 4 0 . 0 1 1 3 0 .0 1 1 4
0 . 0 0 6 1 0 . 0 0 6 1 0 . 0 0 6 1 0 . 0 0 6 1 0 .  0061 0 . 0 0 6 1 0 . 0 0 6 1 0 . 0 0 6 1 0 .0 0 6 1 0 . 0 0 6 1

Table 4.3 : Precision values for the Experiments on WT_Connected

B oth m ethods o f  com bining linkage inform ation w ith the conten t inform ation for both 

SiteRank and PageRank algorithms illustrate im provem ents in precision at 5 docum ents o f  almost 7%, 

b u t an overall decline in precision is shown at 10 docum ents in all bu t the PageRank experiment, 

which has precision values equal to the content-only experiment. The best experim ent overall would 

be die SiteRank_query experim ent w hich attains joint-highest precision at 5 docum ents and second 

highest a t 10 docum ents. T he best indegree based experim ent is the ‘indegree 4' experim ent (equation 

4.14) w hich ranks based on the normalised off-site indegree o f  a docum ent com bined with the 

content-only score using the scarcity-abundance technique. This experim ent outperform s the content- 

only experim ent a t all levels up  to and including 15 docum ents.
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A  num ber o f  experiments produced quite disappointing results, bu t this is n o t entirely 

unexpected. The ‘indegree f  experim ent (equation 4.11) allows all 2,000 docum ents to be ranked based 

on  no evidence o ther than off-site indegree alone. In  our previous TREC-9 experiments we would 

have limited the num ber o f  docum ents that were reranked by such a technique to a small num ber o f  

top ranked docum ents and in this way we helped keep the precision values o f  the experim ent higher, 

bu t in these experiments no such limitation was incorporated. The same caveat applies to the other 

low scoring experiments ‘inDegree 2 ’ (equation 4.12) and spreadAct (equation 4.15).

I f  we examine the com parison between using best guess param eters (‘inDegree 3 \  equation 

4.13) and the scarcity-abundance technique (cinDegree 4 \  equation 4.14) w hen ranking based on 

norm alised off-site indegree scores we see that the scarcity-abundance technique outperform s the 

best-guess param eters (shown in bold in Table 4.4) a t 5 and 10 docum ents, and is at least equal to the 

best-guess param eter values a t all levels until 30 docum ents. H ow ever, the perform ance im provem ent 

is only just over 2% , w hich is n o t large enough to prove the benefit o f  the scarcity-abundance 

technique.

C O N T E N T -O N L Y I N D E G R E E  3 I N D E G R E E  4
0 . 2 3 0 9 0 . 2 4 4 4 0 . 2 5

10 0 . 1 8 3 3 0 . 1 0 3 3 0 .1 B 6 1
15 0 . 1 6 1 1 0 . 1 6 3 0 . 1 6 3
2d 0 . 1 5 0 . 1 4 7 2 0 . 1 4 8 6
30 0 . 1 1 6 7 0 . 1 1 4 0 0 . 1 1 4 8
100

oo

0 . 0 4 4 4 0 . 0 4 4 2
2 00 0 . 0 2 9 6 0 . 0 2 4 7 0 . 0 2 4 9
5 00 0 .0 1 1 1 0 .0 1 1 4 0 . 0 1 1 4
1000 0 . 0 0 6 1 0 . 0 0 6 1 0 . 0 0 6 1

Table 4.4 : Comparing Precision values for the best guess and scarcity-abundance 
technique

T he Precision results from  Table 4.4 are plotted in Figure 4.19.
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Figure 4.19 : Comparing best-guess parameter and scarcity/abundance technique of 
c o m b i n i n g  scores

So how  did SiteRank com pare to PageRank? A t docum ent retrieval po in t 5, SiteRank outperform ed 

PageRank bu t the results w ere mixed at 10 docum ents and  beyond as can be seen from  Figure 4.20. It 

is encouraging to see that bo th  SiteRank and PageRank marginally outperform ed the content-only 

experim ent at 5 docum ents. H ad  the dataset contained a larger density o f  relevant docum ents then 

perhaps our results could have been m ore positive.

CONTENT-ONLY SITERAN KJPARAM 1TERAN KLQUERY PAGERANIC QUERY
0 . 2 3 8 9 0 . 2 5 5 6 0 . 2 4 4 4 0 . 2 5 5 6 0 .2 4  44
0 . 1 0 3 3 0 . 1 7 7 0 0 . 1 8 3 3 0 . 1 8 0 6 0 .1 B 0 6
0 . 1 6 1 1 0 . 1 5 3 7 0 . 1 6 3 0 .1 5 7 4 0 . 1 5 9 3

20 0 . 1 5 0 . 1 4 3 1 0 . 1 4 8 6 0 . 1 4 1 7 0 .1 4  86
30 0 . 1 1 6 7 0 . 1 1 2 0 . 1 1 3 0 . 1 1 3 9 0 . 1 1 3 9

Ü. 09 44 0 . 0 4 4 7 0 . 0 4 4 4 0 . 0 4 5 0 .0 4 4 4
200 U. 0 2 4 6 0 . 0 2 5 0 . 0 2 4 6 0 . 0 2 4 9 0 . 0 2 4 6
500 0 .  0114 0 . 0 1 1 3 0 . 0 1 1 4 0 . 0 1 1 3 0 .0 1 1 4
1000 0 . 0 0 6 1 0 . 0 0 6 1 Û .0 0 6 I 0 . 0 0 6 1 0 . 0 0 6 1

Table 4.5 : Comparing Precision values for the PageRank and SiteRank experiments

T he Precision results from  Table 4.5 are plotted in Figure 4.20.
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Figure 4.20 : Examining the results attained by SiteRank and PageRank

I f  we com pare the average precision figures for all these experimental runs as shown in 

Figure 4.17, SiteRank outperform s PageRank for b o th  best guess experiments and the scarcity- 

abundance technique. H ow ever, the average precision o f  the content-only experim ent is marginally 

higher than the SiteRank and PageRank experiments. T he only o ther experiments w ith notable 

average precision values are ‘indegree 3’ (equation 4.13) and ‘indegree "/’(equation 4.14) which are similar, 

although a little lower than the SiteRank scores.

Figure 4.21 : Average Precision o f all experiments on WT_Connected

Finally, the precision v.s. recall curve for the experiments is show n in Figure 4.22. Based on the results 

illustrated in the previous pages there are no surprising findings.
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Figure 4.22 : Precision -  Recall curve of all experiments on WT_Connected.

4.5 Co n c l u s io n s  t o  b e  d r a w n  f r o m  t h e s e  E x p e r im e n t s

In  this chapter we have show n that marginal im provem ents in retrieval perform ance can be 

obtained w hen the dataset used has a higher link density and therefore is better capable o f  supporting 

experiments into linkage analysis and w hen linkage inform ation is used in a version o f  PageRank. 

Recall from  the previous chapter that our findings for TREC-9 illustrate that similar experiments on 

W TlOg yielded no  im provem ent in retrieval perform ance, rather a dis-im provem ent, and this finding 

was shared by all o ther participating groups. While the results are far from  ideal, it does seem as if 

increasing the density o f  off-site links within a dataset beyond that contained within W TlOg will better 

support experim ents into linkage based IR. Recall tha t 25.9% o f  docum ents in W T_Connected 

contain a non-zero  off-site indegree and com pare this to only 1.8% o f  docum ents in the original 

W TlOg dataset.

-155-



Therefore, we conclude that the lack o f  a representative dataset is the major factor holding 

back successful evaluation o f  linkage analysis algorithms. H ow ever, we do no t know  for definite how  

representative W T_C onnected (or W TlO g for that matter) is o f  the W W W  as a whole. The obvious 

way to com pare W T_C onnected to the W W W  was to develop a web crawler and do some explorative 

crawls o f  the WWW. I f  W T_C onnected is found to be underestim ating the link density o f  the W W W  

then we could hope for m ore notable im provem ents in retrieval perform ance using a new dataset o f 

real-world W W W  data. T he next chapter will describe some o f  the crawls o f  web data that we made 

to examine the structure o f  W W W  docum ents.

4.6  Su m m ary

In  this chapter, we described the SiteRank linkage-based retrieval algorithm which was 

based on PageRank, bu t propagated rank between web pages by taking a website-centric view o f  the 

process. Given that SiteRank is based on PageRank, we provided an in-depth examination o f

PageRank algorithm and identified two notable problems w ith PageRank as it was described in

Chapter 2. These problem s are:

•  Dangling Links, w hich are links that point to a page that contain no out-links, hence it is no t 

know n where the rank o f  the page with no  links should be distributed.

•  Rank Sinks, w hich are loops in the linkage structure o f  web pages, creating w hat can be

described as a ‘black hole’ into w hich rank can enter, bu t never exit.

The conventional PageRank algorithm solves these two issues, but it is still possible to 

artificially increase the rank o f  a web page by creating a clever synthetic linkage structure surrounding 

the page. The SiteRank algorithm  that we describe in detail avoids this problem  by limiting the 

influence o f  w eb pages from  any one site, thus making it m ore difficult and expensive to artificially 

increase a web page’s rank in this manner.

H ow ever, the problem  o f  how  to evaluate linkage-based algorithms remains. We have seen 

in Chapter 3 that the T R E C  web track has n o t yet dem onstrated any im provem ent in retrieval 

perform ance using standard evaluation techniques o f  linkage-based retrieval, so we extracted a densely 

linked subset from  W TlO g called W T_Connected. W T_C onnected maximised the density o f  off-site

-156-



links, as much as we could given that W TlOg was our source. A num ber o f  experiments based on our 

previous T R E C  experiments (for bo th  TR EC -8 and T R E C  9) and SiteRank and PageRank were 

executed on this new dataset. In addition, we evaluated a new  m ethod o f  com bining linkage and 

con ten t evidence together to p roduce a final ranking. Prior to this the m ost widely used m ethod was 

to incorporate best guess param eters into the process, o r  some o th e r technique based on the num ber 

o f  terms in the query. O u r technique was based on the size o f  the result-set o f  highly scored 

docum ents.

O u r findings show  that it is possible to gain m oderate improvem ents in retrieval 

perform ance when running experim ents using standard T R E C  evaluation procedures and 

m easurem ents on W l'_C onnected  as opposed to WTlOg. The question that remains is how 

representative was W T_Connected o f  the true linkage structure o f  live W W W  data, this was the issue 

we tackled in the following chapter.



C h a p t e r  5

U T IL IS IN G  W EB  CRAW LERS T O  E X P L O R E  T H E  L IN K A G E  STR U C TU R E O F  LIV E
W EB  D A T A

We begin this chapter with a discussion of web crawlers and some of the issues involved in managing 
a web crawler that gathers live W W W  data. W «. then discuss three separate crawls of W W W  data 
that we made. Two of the crawls were conventional crawls, each of which implemented a different 
queuing algorithm and the third crawl was an Irish language specific crawl. We were hoping to come 
to some firm conclusions as to the mature of the linkage structure of the W W W  and i f  it is possible 
to crawl a dataset which would support faithful experiments into linkage-based retrieval of web 
documents.

5.1 An  In t r o d u c t io n  t o  W e b  Cra w lers

In  the previous chapters, w e highlighted the limited linkage structure o f  the W TlOg 

experimental test collection and the consequent failure o f  any participating group in any o f  the 

conventional TR EC  experiments to enhance retrieval perform ance by incorporating linkage analysis. 

Surprised by this we extracted a densely linked subset called WT__Connected. O ur results from  

W T_C onnected, presented in Chapter 4, seemed prom ising bu t we are no t sure if  W T_Connected 

accurately reflects the linkage structure o f  the actual W W W , and w hether a dataset similar in structure 

could be generated by sending ou t a web crawler to gather docum ents. T o  examine if  this was the case 

w e built a w eb crawler44, generated three datasets o f  W W W  docum ents, each using a different 

crawling strategy, and com pared these to  W T_C onnected and to WTlOg.

W e have briefly introduced w eb crawlers in Chapter 2 and we know  that a web crawler is a 

software tool that gathers w eb pages from  the W W W , usually for the purpose o f  examining the nature 

of, o r providing content-retrieval facilities over, web pages. H ere we will describe the architecture o f  

ou r w eb crawler that w e have developed to support our experiments into W W W  structure.

44 Web Crawlers may also be known as robots, bots, spiders or gatherers. In this dissertation they will be referred to as web 
crawlers.
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5.1.1 A  Ba s ic  Cr a w l in g  A l g o r it h m

T he basic algorithm  executed by any web crawler begins w ith a list o f  seed URLs as its 

input o r starting po in t and repeatedly executes the following steps:

1. Rem ove a URL from  the URL queue using some predefined technique and download the 

corresponding docum ent, adding the URL o f  the downloaded docum ent to a list o f  

previously seen URLs.

2. Any links contained in the downloaded docum ent are extracted, the associated URL 

translated from  a relative URL into an absolute URL (if necessary) and added to the list o f  

URLs to dow nload (the queue), provided it is no t on  a list o f  visited URLs or is no t already 

on  the queue. I f  required, some additional processing may take place for each docum ent, 

w hich would involve processing the downloaded docum ent in o ther ways. For example the 

docum ent may have its textual conten t prepared (stemmed and stopwords removed) for 

subsequent indexing and retrieval. I f  the linkage data is being stored as the web crawler 

traverses the w eb (which is the case w ith our crawls), all links from  the downloaded 

docum ent w hen extracted will be stored as source and target docum ent ID  pairs, at the very 

least, for future reference.

3. G oto  step 1 until the required num ber o f  docum ents have been downloaded or until the 

queue is empty.

Any w eb crawler m ust have a num ber o f  docum ents on the queue prior to beginning the crawling 

process. These URLs are referred to as seed URLs. These URLs may be a handcrafted list o f  URLs, 

chosen for a particular reason, such as having a high off-site outdegree o r they may be based on URLs 

discovered during a previous crawl. In  our experiments, all our seed URLs were handcrafted based on 

their out-link structure, their popularity, or in one case their language.



5.1.2 W e b  C r a w l e r  A r c h it e c t u r e

A n overview architecture diagram o f  our w eb crawler is show n in Figure 5.1.

Figure 5.1 : Overview architecture o f  our Web Crawler

This web crawler required a num ber o f  functional com ponents:

•  a com ponent called a ‘URL Q ueue’ for storing the list o f  URLs to download (1);

•  a com ponent called the ‘Fetch Tool’ for dow nloading docum ents using a transfer 

protocol (2);

•  a com ponent for extracting links from  H T M L  docum ents (3). This com ponent, the 

‘D ocum ent Parser’, extracts o ther required inform ation from  each downloaded 

docum ent and passes the link inform ation to a connectivity server, it also adds any 

found URLs to the queue (if they have no t been added once before), identifies new 

hosts (websites) to  the ‘Site M anager’ and it also writes ou t the docum ent (in a 

num ber o f  different representations) to disk for subsequent indexing (had we 

deem ed such indexing necessary);

•  a com ponent called ‘Visited URLs’ for determ ining i f  a URL has already been 

encountered (4); and
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•  a com ponent for determ ining w hether a URL should be crawled or no t based on the 

robots exclusion protocol (5) called the ‘Site M anager’.

All these com ponents are integrated to function together seamlessly by a ‘M anager’ 

com ponent that passes messages and data between all other com ponents. O ur crawler was single

threaded, was written in JA V A  and could process over 10,000 URLs per day, although w hen robots 

exclusion (described below) support was operational, this figure dropped to below 5,000 per day. The 

primary reason for this was relatively slow dow nload rates coupled with the fact that the crawler was 

single threaded and consequently had to stop crawling H T M L  docum ents while it was examining 

websites for robots exclusion data. I t was for this reason that we limited the sizes o f  our two large 

crawls to the sizes that we discuss in this chapter.

5.1.3 R o b o t s  E x c l u s io n  P r o t o c o l

T he robots exclusion protocol [ROBOTS, 02] is a standard that allows website 

adm inistrators to indicate to visiting crawlers which parts o f  their site should no t be visited by the 

crawler. All ‘good’ crawlers will adhere to  die standard as it is o f  benefit to both  the crawler mangers 

and the website administrators in that neither will w ant certain sections o f  websites (such as user 

access logs) to be crawled and secondly, it is a m atter o f  good netiquette45. A  W ebsite administrator 

may even specify different limitations for different web crawlers, and crawlers that have caused 

problem s in the past may even be requested n o t to access to the site at all.

T he im plem entation o f  the standard simply relies on storing all relevant data in a text file 

called robots.tx t a t the roo t directory o f  a website. However, adhering to the robots exclusion 

standard makes a crawler less efficient because (in our case) every new site found requires seeking out 

a robots.txt file, parsing it and adding the relevant sections to a list o f  n o t to be crawled URL roots. 

C onform ing to, and abiding by, the netiquette protocol o f  robots exclusion is no t m andatory (or 

enforceable) and relies upon  the good citizenship o f a web crawler’s author. However, obeying the 

robots exclusion standard is for the com m on good o f net citizens and is som ething diat all the major 

search engine developers will abide by.

45 Netiquette - "Netiquette" is network etiquette and refers to both common courtesy online and the informal "rules of the 
road" o f cyberspace.
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5.1.4 T h e  U R L  Q u e u e

O ne o f  the other essential features o f  a web crawler is the URL queue, w hich stores a list o f 

all URLs that the crawler knows about b u t has n o t yet downloaded. The URL queue is a data 

structure that regulates the order in w hich the w eb crawler downloads docum ents. All URLs parsed 

from  downloaded docum ents are enqueued (pushed onto the queue), unless they have already been 

visited o r are already on the queue, and they can be dequeued (removed from  the queue) in any order. 

This order is determ ined by the queuing algorithm. The queuing algorithm  is extremely im portant as it 

will determ ine the behavior o f  the web crawler, i.e. if  it crawls mostly w ithin websites or jumps across 

website boundaries w henever possible.

A  basic queuing algorithm w ould w ork m uch like a F IF O  queue in that the URLs are 

dequeued in the order they were enqueued. H ow ever, it is considered unacceptable (netiquette) to 

have multiple H T T P  requests seeking to dow nload w eb pages being sent in a sequential fashion to the 

same H T T P  (web) server due to the potential this causes for w eb server load problems. This is m ost 

likely to  occur w hen using a F IF O  queue. Consequently, benefits can be gained from  incorporating 

some form  o f  random ness o r logic rules, w hich influence the how  URLs are dequeued.

A  m ore advanced queuing algorithm  w ould be a weighted queuing algorithm (sometimes 

referred to as a priority queue), in w hich weights are assigned to each URL and the top weighted URL 

is dequeued as required. The weights assigned to a URL may be based on any num ber o f  factors such 

as the num ber o f  hyperlinks pointing at the URL or even a PageRank value for a URL, or perhaps 

based on  the linkage weight o f  the docum ents from  which the URL has been parsed using a spreading 

activation technique.

In  ou r web crawler, we varied the queuing algorithm between crawls depending on how  we 

w ished the crawler to behave. For example, a w eb crawler which was to crawl the W W W  in sequential 

fashion w ithout any regard for which docum ents to download next would use a F IF O  (or an ageing) 

queue. H ow ever, were the crawler to be required to gather docum ents from  as many hosts as possible, 

a weighted queue would be required w hich would allocate a high weight to  a URL on  the queue if  the 

link to that URL crossed website boundaries and allocate an even higher weight if  the target URL was 

from  a h o st never before seen by the w eb crawler.



5.1.4.1 O u r  C r a w l e r ’s U R L  Q u e u e

Table 5.1 shows an extract from  one o f  our URL queues. As we can see our queue consists 

o f  m uch m ore than simply a list o f  URLs.

URL ID URL WEIGHT STATUS CITATIONS

752 h t t p : / / w w w . t h e d a i l y . c o m / a l i s t . h tm l 3 Q 1 1

753 h t t p : / / i n f o s e e k . g o .c o m /T o p ic /N e w s 26 Q 1

754 h t t p  : / / w w w .tv g u id e . com 49 D 22

755 h t t p  : / / w w w .g i s t . com 31 D 4

756 h t t p : / / w w w . f i l m l a n d . c o m / b o x o f f i c e 27 Q 1

757 h t t p  : / / www. e o n l i n e . com 40 D 13

758 h t t p  : / / www. im d b . com 118 D 91

759 h t t p : / / w w w . f i l m .c o m 43 D 16

760 h t t p : / /w w w .b r o a d c a s t . com 47 D 20

761 h t t p : / / w w w . r a d i o - l o c a t o r . c o m 31 D 4

Table 5.1 : Ten documents from a URL Queue associated with one o f our crawls.

E ach URL has the following inform ation associated w ith it:

• T he actual URL plus a unique identifier for the URL, which becom es the docum ent ID  once 

the docum ent has been downloaded.

•  A  weight that regulates the order in w hich the URLs are dequeued. As documents are

dow nloaded the weights o f  these docum ents may be increased, for example, if  another link

was found to one o f  the URLs on the queue or the weight may be decreased if  there are 

problem s dow nloading the docum ent.

• A  status flag, w hich identifies w hether the URL is still on  the queue (‘Q ’), dequeued and

dow nloaded (‘D ’) or rem oved from  the queue due to error ( E ’).

• A  citation count, w hich counts the num ber o f  citations into each docum ent. N ote that the 

num ber o f  citations is n o t the same as the w eight value. T he weight is based on additional 

factors rather than just pure citation counting.

http://www.thedaily.com/alist.html
http://infoseek.go.com/Topic/News
http://www.tvguide.com
http://www.gist.com
http://www.filmland.com/boxoffice
http://www.eonline.com
http://www.imdb.com
http://www.film.com
http://www.broadcast.com
http://www.radio-locator.com


O ur URL queue was initially planned to be stored in RAM , however it soon became obvious this 

would consum e large am ounts o f  RAM  because the queues we managed very quickly grew to hold 

m any millions o f  URLs (and associated weights). Consequently, we employed a SQ L Server database 

to  manage our URL queue, which allowed us to integrate weighting logic into an SQL stored 

procedure, an example o f  w hich is show n in Figure 5.2.

CREATE PROCEDURE insertUrl
(

@new_url [varchar] (25 6),
@url_score [int])
A S

DECLARE 0res integer
SELECT @res = idx FROM urlQueue WHERE uri = 0new_url
if 0exists is NULL
BEGIN

INSERT INTO [urlQueue].[dbo].[urlQueue]
(

[uri],
[score]

)
VALUES
(

@new_url,
@url_score

)
END
else
BEGIN

update urlQueue SET score = score + 1 WHERE idx = ©exists 
update urlQueue SET citations = citations + 1 WHERE idx = 0exists 

END

Figure 5.2 : Stored Procedure to manage URL Queue.

T he operation o f  this stored procedure is quite straightforward. A  U RL (@new_url) and a 

score for that URL (@url_score) are firstly passed into the stored procedure as parameters. The 

database is queried to validate if  the U RL is already on  the queue. I f  the URL is no t found on the 

queue (at a list o f  visited URLs), the URL is added into the queue and this automatically generates a 

unique identification num ber (idx) for that URL as well as setting the status o f  that URL by default to 

CQ ’. If, however, the URL is found on the queue, the unique identification num ber for that URL is 

retrieved (@exists) and the score and citation count for that URL (identified by the unique identifier) 

is incremented.



5.1.5 D e v e l o p m e n t  I s s u e s

Developing, testing and running a web crawler such as the one we have described is 

certainly n o t a trivial task. Aside altogether from  the problem s o f  writing code capable o f  processing 

m al-form ed w eb data (which we have no t discussed), there are matters o f  netiquette involved also. 

Consequently, we integrated some rules into our crawler, as follows:

•  A  crawler m ust never request large num bers o f  docum ents from  the same host 

sequentially. Every effort m ust be m ade to change the target host as often as is 

feasible.

•  A  crawler m ust never (for w hatever reason) repeatedly request the same document. 

I f  a docum ent is unavailable, its position in the queue m ust be penalised to such an 

extent that it no longer resides at (or very near to) the top o f  the queue. This 

obviously requires a weighted queue such as the one show n in Table 5.1. Repeated 

failures m ust be taken into account and the docum ent flagged as unavailable and 

taken o ff  the queue, i.e. given a status o f  CE \

•  A  crawler m ust respect a web site m anager’s wishes as expressed using the robots 

exclusion protocol. W e have discussed robots exclusion previously.

5.1.6 W e b  C r a w l e r  O u t p u t

A lthough our crawler’s prim ary function was to investigate the linkage structure o f  the 

W W W , we did store inform ation from  each docum ent as it was downloaded. This data is outlined in 

Figure 5.3.

Figure 5.3 : Document subsections of crawled data
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Storing this m uch inform ation required that it be stored as part o f  eight different disk files for each 

w eb page downloaded. For example, any web page will be represented by the following files:

•  The web docum ent itself.

•  A  version o f  the H TM L file w ith a cache header and <base h ref= >  tag included for 

evaluation purposes and to act as a cache copy facility, were we to have required this.

•  A  cleaned docum ent file containing a single space delimited listing o f  all non-H T M L  mark-up 

w ords in the web page with all stopw ords removed.

•  A  bold text file, which was a space delimited listing o f  all bold text extracted from  a 

docum ent.

•  A n italic text file, w hich was a space delimited listing o f  all italic text extracted from  a 

docum ent.

•  A  header text file, a space delimited listing o f  all header text, separated into H 1-H6.

•  A n alternative image text file, a space delimited listing o f  all alt text46 contained within a 

docum ent.

• A nd finally an ‘im portant text’ file containing a space delimited concatenation o f  each o f  the 

previous four files to support searching o f  only ‘im portant text’, were we to have required 

this.

In  addition, w e thought it p rudent to store a listing o f  all images and email addresses found on these 

pages in case we w ere to im plem ent a Google style image-search facility o r an e-mail address search 

facility.

5.2 E x a m in in g  t h e  D a t a  g e n e r a t e d  f r o m  o u r  Craw ls

O u r goal in crawling live W W W  data was to  generate three different datasets using three 

different crawling strategies and to com pare the structure o f  W T_Connected to each o f  the crawled 

datasets. Tw o crawls were conventional crawls o f  W W W  data, each o f  w hich implemented a different 

queuing algorithm  and one other crawl w hich was limited to only gathering docum ents that were

4(5 Alt text refers to the alternative description for an image which HTML supports and will display is the image does not load 
o r while the image is loading. This alternative description becomes important if one is using a web browser with image 
support turned-off or if  network latency means long waits for images to download.



identified as being w ritten in the Irish language. The reason for the Irish language crawl was because 

we felt docum ents w ritten in a minority language w ould be m ore densely inter-linked than would be a 

m ore conventional subsection o f  the web and therefore, may provide an alternative to other (more 

conventional) w eb data w hen constructing a dataset to support experiments into linkage-based 

retrieval.

W e begin by examining the results o f  the Irish language crawl before we turn our attention 

to the two other crawls.

5.2.1 Ga e il g e , t h e  Ir ish  Language  Crawl

As m entioned earlier, the Irish language crawl w ould allow us to examine the density o f  

links betw een docum ents w ritten in a minority language on the WWW. W e will refer to this crawl as 

Gaeilge47 throughout the rem ainder o f  this dissertation.

Crawling data in just one language requires a language identification tool, w hich we developed. 

This tool operated based on the frequency o f  occurrence o f  the m ost com m only occurring short 

terms and trigrams [Grefenstette, 97]. Evaluation o f  the perform ance o f  our language identifier over 

100 pages random ly chosen from  the dataset shows that it correctly guessed the language o f  web 

pages 98% o f  the time. While we are aware that this figure seems very high, the crawler only followed 

links from  a page that was identified as being Irish and  this would undoubtedly have helped the 

reduce die rate o f  error. In  addition, m any Irish language docum ents contain text w ritten in both  Irish 

and English, w hich will further aid the identification process because even a docum ent containing a 

small proportion o f  Irish will be accepted as containing Irish. W e have included a brief description o f  

our language identification process in A ppendix A.

5.2.1.1 Qu e u e  D eta ils

The queue that was im plem ented for generating the language-specific dataset was an ageing 

weighted queue in w hich each docum ent on  the queue has an associated score, a score that is used to 

rank docum ents on  the queue in order to identify the next docum ent to be dequeued. The ageing 

aspect o f  the queue refers to the fact that each time a docum ent is dequeued, all previously existing

47 Gaeilge is the Irish language word for ‘Irish’



docum ents on the queue are aged by one unit, and the oldest docum ent on the queue is the next to be 

dequeued, thereby ensuring that no docum ent remains on  the queue indefinitely.

In  addition there was a distinction m ade betw een docum ents from  previously unseen 

websites and websites from  which docum ents have already been enqueued. I f  a docum ent was from  a 

previously unvisited website then that docum ent is given a higher score than a docum ent from  a 

previously visited website. In  addition, measures based in the addition o f  a small random  value were 

taken to avoid the scenario w here a num ber o f  docum ents from  one site were requested from  the 

server in sequence. Finally, if a URL that is on  the queue is cited by a newly downloaded docum ent, 

then this URL has its score increased so that it stands a higher chance o f  being downloaded eadier.

A ssum ing a downloaded docum ent was identified as being in Irish, it was parsed and then 

all links found were enqueued. However, if  a downloaded docum ent was identified as being English 

or some other language, it was discarded and the next top weighted docum ent on the queue was 

dequeued and crawled.

5.2.1.2 Se e d  U R L s

As we have seen earlier, each web crawler m ust have a set o f  seed URLs from  which to 

begin its crawl. P rio r to  crawling, a num ber o f  handpicked Irish language pages (twenty) were chosen 

to act as the seed URLs, bu t it soon became apparent that these seed URLs were inadequate. Given

the fact that the crawler only followed links from  Irish language docum ents and discarded all

docum ents in other languages, the crawler quickly ran out o f  docum ents on the queue having only 

downloaded a few thousand docum ents. A larger start-set was required. We generated this by 

following the process outiined in these diree steps:

•  Select a num ber o f  (20) unique to the language frequently occurring terms.

• For each term, query a search engine with wide coverage (Google) and parse out all 

the docum ents from  the top 1,000 results and add to a candidate queue.

•  Rem ove duplicate URLs from  the candidate queue and examine the remaining 

URLs to  rem ove obvious erroneous URLs in order to form  a starting set o f  URLs.

Using this approach, we were able to generate a starting set o f  8,322 Irish language 

docum ents, each o f  w hich was enqueued with a high weighting. I t  is possible that some non-Irish web
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pages would have slipped through as a result o f  mis-spelling or the presence o f  the language specific 

com m only occurring terms in other languages, bu t the language identification tool should identify 

such a page as n o t Irish and it will n o t form  part o f  the dataset. For example, the Irish term  for ‘and’ 

is ‘agus’ and this is also a frequently occurring term  on Italian web pages.

5.2.1.3 St a t is t ic s  o f  I r is h  L a n g u a g e  C r a w l

This crawl, which was run in July 2001, generated 26,998 docum ents that were successfully 

downloaded and classified as being Irish. We estimate that there are at least the same num ber o f  

docum ents on a mailing list archive that the crawler found, bu t we were disallowed access to these 

docum ents based on robots exclusion and there are likely many docum ents that our crawler didn’t 

find because our crawler only parsed links from  Irish language pages. The docum ents that comprise 

the 26,998-docum ent set came from  846 unique web sites and these sites from  29 top-level domains. 

Table 5.2 presents a sum m ary o f  the crawled data.

N um ber o f  D ocum ents 26,798

N um ber o f  Servers 846

Average D ocum ents per Sewer 32

N um ber o f  D ocum ents left on  Queue 0

N um ber o f  Servers left on Queue 0

Average num ber o f  images per D ocum ent 13

Average num ber o f  terms per D ocum ent 554

Average length (in bytes)of text in each D ocum ent 4,021

Average length (in bytes) o f  each D ocum ent 13,663

N um ber o f  Seed URLs 8,322

Table 5.2 : Statistics o f the Irish language crawl

Interestingly m ore .com domains featured than .ie dom ains in this dataset (see Figure 5.4). 

This has issues for im proved language focused web crawlers. Even were we in a position to have the 

resources to gather even m ore Irish language pages by downloading all .ie websites and then 

processing all docum ents to identify only Irish docum ents, we have illustrated that this is n o t a viable 

op tion  as we will n o t be able to gather all (or even a large percentage of) Irish language content.
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Figure 5,4 : Top level domain distribution o f Gaeilge

The fact that there were no URLs left on the queue w hen the crawler stopped means that 

the queuing algorithm  that was used for this crawl became irrelevant to the final dataset and therefore 

the nature o f  and  structure o f  the dataset was solely reliant on the fact that we only crawled the Irish 

language web by following docum ents which contained at least a minimal am ount o f  Irish text.

5.2.1.4 H y p e r l i n k  St r u c t u r e  o f  t h e  G a e il g e  c r a w l e d  d a t a .

U pon com pletion o f  the crawl, we were in a position to examine the hyperlink structure o f  

the docum ents that our crawler discovered. Table 5.3 details the linkage structure o f  the Gaeilge 

crawled data.

N um ber o f  links in dataset 264,794

N um ber o f  off-site links 41,590

N um ber o f  on-site links 223,204

Average off-site indegree 1.55

D ocum ents w ith a non-zero off-site in-degree 2,685

D ocum ents w ith a non-zero on-site in-degree 23,115

Average off-site in-degree for non-zero docum ents 15.49

Ratio o f  off-site : on-site links 1 : 5.37

Table 5.3 : Linkage Structure of the Gaeilge crawl

A  preliminary evaluation o f  the link structure o f  the Gaeilge crawl indicates a total o f  41,590 

off-site links w ithin the dataset. H ow ever, in total, only 2,685 docum ents contain off-site in4inks. This
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shows than only 10% o f  docum ents have off-site in-links, bu t com pared to the 5% o f  W TlOg this is a 

doubling o f  the num ber o f  off-site in-links, however this does fall short o f  W T_Connected which is at 

26%. Given the large size o f  the set o f  seed URLs, the density o f  off-site in-links into these 

docum ents was an issue. Figure 5.5 illustrates the num ber o f  docum ents with non-zero off-site 

indegree distributions grouped into buckets o f  1,000, ordered in the order that the documents were 

downloaded.
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Figure 5.5: The distribution of documents with a non-zero off-site indegree within 
the Irish Language crawl

From  Figure 5.5 we can see a limited num ber o f  docum ents containing non-zero off-site 

citations w ith docum ents that the crawler found eady on  (up to 6,000) as well as docum ents in the

17,000 to 24,000 range. Exam ining the reason for this, it appears (as a direct result o f  the queuing 

algorithm) that the large num ber o f  docum ents that com prise the seed URLs for the crawler are 

represented (with very few, exceptions) in the first 8,322 URLs in the graph. Any exceptions would be 

docum ents with off-site citations that got to the top o f  the queue ahead o f  some o f  the documents 

that comprise the seed URLs. A fter this point, we can see a m arked increase in the num ber o f  

docum ents with non-zero off-site citations. This leaves 2,307 docum ents containing off-site citations 

from  the remaining 18,476 docum ents, o r 12.5% o f  docum ents in total. In fact, only 4.3% o f  

docum ents associated w ith the 8,322 seed URLs contain off-site in-links.

This is a problem  and seems to illustrate the fact that our crawling based on language limits 

the possibilities o f  our crawler finding docum ents that are a source o f  off-site in-links into the seed 

URL docum ents. Intuitively, we would no t expect that there w ould be a significant difference 

betw een the num ber o f  pages w ith a non-zero off-site indegree betw een the seed URL docum ents 

and the docum ents that w ere downloaded that did no t comprise the seed URLs. This is especially



surprising because Google, the source o f  the seed URLs, incorporates linkage analysis (in the form  o f 

PageRank) into its ranking and based on our findings w ith W T_C onnected and research undertaken 

at A T& T Research labs, NJ [Amento et al., 00], the difference in retrieval perform ance between using 

raw off-site indegree and PageRank as a source o f  linkage inform ation is no t huge. So therefore, we 

conclude from  this crawl that the average off-site indegree value for each docum ent is actually being 

underestim ated and that there are m ore off-site in-links than we have discovered by following only 

Irish language pages.

The other irregularity in the graph is the dip in the num ber o f  docum ents with non-zero 

off-site indegree between 17,000 and 24,000 docum ents, w hich is present because a large num ber o f  

web pages contained deep w ithin the hierarchical structure o f  w eb sites were queued around this 

point.

So let us com pare W T_C onnected to the Gaeilge crawl.

W T_C o n n G a e i l g e

N um ber o f  docum ents 120,494 26,798

N um ber o f  off-site links 171,740 41,590

Average off-site indegree 1.43 1.55

Table 5.4 : Comparing off-site in-degree statistics o f WT_Connected and Gaeilge

Com paring Gaeilge to W T_Connected we can see that although the dataset sizes are very 

different, the average off-site indegree o f  each docum ent is very similar for both  datasets. This is 

prom ising and seems to lend weight to the findings o f  our experiments on W T_Connected, but we 

have identified a possible irregularity w ith regard to the distribution o f  docum ents w ith a non-zero 

off-site indegree and consequently we are interested to see if  we find similar figures from  the other 

two (larger) conventional crawls.

5.2.1.5 Co n c lu sio n s  fr o m  t h e  Ga eilg e  Crawl

O u r first conclusion that we can draw from  the generation o f  this dataset regards the fact 

that the average off-site indegree o f  each docum ent is very similar for bo th  datasets, although we have 

identified a problem  w ith the num ber o f  docum ents containing a non-zero off-site indegree, which 

suggests that the crawl underestim ates the true density o f  off-site links.
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O u r second conclusion regarding the crawling o f  Irish language specific data leads us to 

believe that it is no t possible to accurately crawl a large percentage o f  docum ents in the Irish language 

relying on following the link structure o f  the docum ents alone. W hether this is due to the link 

structure o f  the docum ents themselves, o r due to the bi-lingual nature o f  the docum ents which would 

cause the set o f  Irish docum ents gathered by our crawler no t to reach an acceptable level o f  

connectivity, we do n o t know. This did cause problem s as illustrated in Figure 5.5 where the 

distribution o f  off-site indegree across docum ents could in no way be considered to be uniform, 

w hich is a result o f  problem s with using a large seed URL set and producing a small dataset.

Recall that we generated eight representations o f  each dow nloaded docum ent to facilitate 

the provision o f  content-retrieval facilities o f  the datasets if  we so wished. W ith the Gaeilge dataset, 

w e did index all dow nloaded Irish language docum ents and provided conten t retrieval facilities over 

the docum ents using a version o f  our search engine described in the previous chapter. This search 

engine called Focail48 im plem ented our scarcity-abundance technique for regulating the influence o f  

linkage analysis and was the first Irish language search engine tha t we are aware of, bu t access is 

restricted to inside the University only. A  screenshot o f  the search engine is show n in Figure 5.6.

48 Focail is an obvious name for an Irish language search engine as it is the Irish word for ‘word1
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Figure 5.6 : The Focaii Search Engine

5.2.2 C o n v e n t io n a l  W e b  C ra w ls

In  addition to the Gaeilge crawl, we made two conventional (not language dependent) web 

crawls im plem enting two different queuing algorithms, one o f  which was based on an ageing queue 

w ith highly weighted URLs linked via off-site links and the o ther crawl was designed to maximize the 

num ber o f  websites that the crawler gathered docum ents from. W e will refer to these two 

conventional crawls as ‘ageing-crawl’ and ‘website-crawl’ respectively.

5.2.2.1 A g e i n g  C r a w l  : T h e  Se c o n d  C o n v e n t io n a l  W e b  C r a w l

This crawl, die first o f  our conventional crawls, produced a W T2g sized dataset, which 

com prised 253,922 H T M L  docum ents. Total links within the dataset are 9,081,632. W hen we stopped 

the crawler, another 3,116,690 URLs had been identified and remained on the queue.

5.2.2.1.1 Q u e u e  D e t a il s

T he queue that was im plem ented for this crawl was an ageing queue. All seed URLs were 

weighted highly prior to crawling. O nce the crawling process was underway each new URL being 

enqueued was firstly classified as being on-site o r off-site w ith URLs associated with off-site links

http://136.206.19.16/query.php4


being allocated a higher weight than on-site linked URLs. This was done so as to ensure that 

documents linked to via off-site links would be included in the dataset. In addition, a small random 

value was used to influence weights to keep too many pages from a single site being dequeued 

together. Since die queue was an ageing queue, after each document was downloaded, all documents 

on the queue were aged by one age unit.

5.2.2.1.2 St a r t in g  Se t  o f  D o c u m e n t s  o n  t h e  U R L  Q u e u e

As we have seen, each web crawler must have a set o f  seed URLs from which to begin its 

crawl. Prior to crawling, a number o f handpicked pages (twenty) were chosen to act as the seed URLs. 

These URLs comprised the top eighteen URLs as ranked by our SiteRank experiment at AT&T (see 

Appendix B) and two local interest URLs o f our own choice.

5.2.2.1.3 St a t is t ic s  o f  t i  ie  a g e in g  C r a w l

As previously mentioned, this crawl produced 253,922 documents o f conventional web 

data using the crawling and queuing approach described in the previous pages. These web documents 

originated from 26,730 different web sires. Table 5.5 illustrates the nature o f  the dataset and provides 

statistics on the documents themselves and the queue.



N um ber o f  D ocum ents 253,922

N um ber o f  Servers 26,730

Average D ocum ents per Server 9.5

N um ber o f  D ocum ents left on Q ueue 3,116,690

N um ber o f  Servers left on  Queue 125,374

N um ber o f  unseen Servers left on  Q ueue 108,397

Average num ber o f  images per D ocum ent 32

Average num ber o f  terms per D ocum ent 620

Average length (in bytes)of text in each D ocum ent 4575

Average length (in bytes) o f  each D ocum ent 24,306

N um ber o f  Seed URLs 20

Table 5.5 : Statistics o f the first conventional web crawl (ageing crawl)

O w ing to the fact that we stopped the crawler after it had dow nloaded 253,922 documents, 

the queuing algorithm would have been influential in the final com position o f  the full crawled dataset.

5.2.2.1.4 H y p e r l i n k  St r u c t u r e  o f  t h e  D a t a s e t

Table 5.6 summarises the linkage structure o f  the ageing crawl dataset. These figures relate 

to the dow nloaded docum ents only and do n o t include any docum ents that were still on the queue.

N um ber o f  links within dataset 9,081,632

N um ber o f  off-site links 4,120,718

N um ber o f  on-site links 4,960,914

Average off-site indegree 16

D ocum ents w ith a non-zero off-site m-degree 80,204

D ocum ents w ith a non-zero on-site in-degree 215,414

Average off-site in-degree for non-zero documents 51

Ratio o f  off-site : on-site links 1 :1.2

Table 5.6 : Linkage Structure o f the first conventional crawl (ageing crawl)



A  preliminary evaluation o f  the link structure o f  the ageing crawl dataset indicates a total o f  

4,120,718 off-site links between docum ents in the dataset. H ow ever, in total, only 80,204 documents 

actually contain off-site in-links. This illustrates that w ith this crawl 32% o f the docum ents have off- 

site in-links as opposed to the 10% w ith the Irish Language crawl and 26% W T_Conn. One 

interesting aspect o f  this crawl is that the num ber o f  off-site links associated with downloaded 

docum ents is alm ost as large as the num ber o f  on-site links and the average off-site indegree o f  each 

docum ent is 16. Anecdotally, this figure seems to be too large, bu t we needed to run m ore 

experim ents w ith live W W W  data (see next chapter) to validate our belief that this figure is too large.

W T_C o n n A g e in g  Craw l

N um ber o f  docum ents 120,494 253,922

N um ber o f  off-site links 171,740 4,120,718

Average off-site mdegree 1.43 16

Table 5,7 : Comparing off-site in-degree statistics between WT_Connected and the 
first conventional crawl (ageing crawl)

T he ageing crawl is com pared to W r_.C onnected in Table 5.7 and we can see that the 

dataset sizes are very different and the average off-site indegree o f  the ageing crawl is over 11 times 

that o f  W T_Connected. This is a huge difference and upon closer examination we discovered a 

reason for this large average off-site indegree figure. This reason is that there is a strongly connected 

com ponent w ithin the 253,922 docum ents w hich increases the num ber o f  off-site links between 

docum ents so that the average indegree figure for each docum ent becom es artificially high. This 

strongly connected com ponent is com prised o f  web pages from  the popular “about.com ” network o f 

web sites and the very presence o f  this strongly connected com ponent is dependent on the m ethod 

we used to identify the dom ain to w hich a w eb page belongs.

O u r m ethod o f  identifying websites was based on examining the lowest level o f  the URL 

string, which is an acceptable and obvious m ethod  o f  doing this. For example, the lowest level o f  the 

URL ‘h ttp ://re sea rch .m icro so ft.co m /p u b s/’ is ‘research.m icrosoft.com ’ and the lowest level o f  

‘h ttp ://w w w .m icro so ft.co m /serv ers /’ is ‘ww w .m icrosoft.com ’. Both ‘research.microsoft.com’ and 

‘ww w .m icrosoft.com ’ could no t be considered to be from  the same dom ain (although they both 

represent a single organisation) and we believe that it would be a mistake to do so. Yet, the strongly 

connected com ponent o f  the 253,922 docum ents is strongly connected precisely because we do view 

the entire low est level o f  the URL string as being the domain.
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T he ‘about.com ’ netw ork is com prised many hundreds o f  websites referred to as ‘G uide’ 

sites w hich are organized in a hierarchical structure, each o f  w hich links back up its hierarchical path 

to the ro o t page. For example ‘h ttp ://h o m e .ab o u t.co m ’ links to ‘h ttp ://h is to ry .ab o u t.co m /’ which 

links to  ‘h ttp ://eu ropeanh isto ry .abou t.com /’ each o f  w hich links back up the hierarchical path back 

to all sites along the path and also onto many o ther sites w ithin the ‘about.com ’ network. In  all, 44,880 

docum ents originate from  the ‘about.com ’ netw ork w ith a further 271,356 docum ents on the queue. 

The average off-site in-degree o f  each o f  these 44,880 docum ents is 39 and if  we remove them  from  

the dataset we are left w ith a dataset o f  size 209,042 docum ents and the revised linkage statistics are 

show n in Table 5.8.

N um ber o f  links w ithin dataset 5,192,350

N um ber o f  off-site links 2,099,387

N um ber o f  on-site links 3,439,193

Average off-site indegree 10

D ocum ents w ith a non-zero off-site in-degree 74,040

D ocum ents w ith a non-zero on-site in-degree 176,570

Average off-site in-degree for non-zero docum ents 28

Ratio o f  off-site : on-site links 1 :1.6

Table 5.8 : Revised linkage statistics for the first conventional crawl (ageing crawl)

As can be seen, w hen this strongly connected com ponent is rem oved from  the dataset, the 

average off-site indegree o f  each docum ent drops from  16 to 10 and the ratio o f  off-site : on-site links 

drops from  1 : 1.2 dow n to 1 : 1.6. H ow ever, the num ber o f  off-site links into each docum ent 

averaging at 10 still seems to be very high. This we feel is still overestimating the num ber o f  off-site 

links on  the WW W .

WT_CONN Re v is e d  
A g e in g  Craw l

N um ber o f  docum ents 120,494 209,042

N um ber o f  off-site links 171,740 1,753,157

Average off-site indegree 1.43 10

Table 5.9 : Comparing off-site in-degree statistics between W T Connected and 
revised figures for the first conventional crawl (ageing crawl ) with the strongly 
connected component removed.
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Com paring these revised figures to W T_C onnected in Table 5.9, we can see that although 

the dataset sizes are still quite different, the average off-site indegree o f  each docum ent is closer to 

W T_C onnected than was the case previously. Can we assume that an average off-site indegree figure 

o f  10 is m ore representative o f  the W W W  than the 1.43 figure o f  W T_C onnected and the 1.55 figure 

o f  Gaeilge? O nce again, we could n o t com e to any definite conclusion and additional research is 

required.

5.2.2.1.5 Co n c l u sio n s  fr o m  t h is  Crawl

This crawl does suggest that the off-site indegree density w ithin bo th  W T_Connected and 

the Gaeilge crawl underestim ates the true linkage structure o f  the W W W , which intuitively we felt was 

the case after exam ining the linkage structure o f  the Gaeilge crawl. E ven w hen we extracted the 

strongly linked com ponent associated w ith the popular “about.com ” network o f  web sites, the 

average off-site indegree figure still remains a t 10, w hich we believe is too high. We ran the second 

conventional w eb crawl to see if  we could replicate any o f  the findings from  w ithin either the Gaeilge 

crawl or this crawl.

5.2.3 We b Sit e  Crawl : T h e  Se c o n d  Co n v e n t io n a l  Web  Crawl

In  addition to the previously described crawl, we ran the crawler again this time with a 

different queuing algorithm, which is described below. This dataset produced by the second crawl 

consisted o f  126,996 H T M L  docum ents. Total links within the dataset were 4,401,017 and another 

3,087,859 o ther docum ents were identified and remained on the queue. So once again, the queuing 

algorithm  was influential in the final construction o f  the dataset.

5.2.3.1 Qu e u e  D eta ils

The queue that was im plem ented differed from  the queue im plem ented for the previous 

conventional web crawl in that m uch m ore emphasis was placed on  gathering docum ents from  as 

m any websites as possible. W here a URL was found from  a website that had n o t yet been visited by 

the crawler, that U RL was weighted so that it w ould be near the top o f  the queue. This will inevitably 

have an effect on  the average docum ents per server that this crawl found.
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5.2.3.2 St a t is t ic s  o f  t h e  Se c o n d  C o n v e n t io n a l  C r a w l

O ur seed URLs for this crawl were generated in a m anner similar to the generation m ethod 

for the previous conventional crawl (ageing crawl). This crawl produced 126,996 docum ents o f  

conventional web data. This is equivalent in size to the W T_Connected dataset described in the 

previous chapter, so we should find that the linkage structure is n o t that dissimilar to W T_Connected, 

were W T_C onnected to accurately reflect the true linkage structure o f  docum ents on the WWW. 

These 126,996 docum ents originated from  117,312 unique domains, w hich clearly illustrates the 

success o f  the queuing algorithm. Table 5.10 summarises the nature o f  the dataset w ith figures from 

the ageing crawl (Table 5.5) also included.

WEBSITE CRAWL AGEING CRAWL

N um ber o f  D ocum ents 126,996 253,922

N um ber o f  Servers 117,312 26,730

Average D ocum ents per Server 1.1 9.5

N um ber o f  D ocum ents left on Queue 3,087,859 3,116,690

N um ber o f  Servers left on  Queue 332,554 125,374

N um ber o f  unseen Servers left on Queue 218,673 108,397

Average num ber o f  images per D ocum ent 24 32

Average num ber o f  terms per D ocum ent 564 620

Average length (in bytes) o f  text in each D ocum ent 3,817 4575

Average length (in bytes) o f  each D ocum ent 21,875 24,306

N um ber o f  Seed URLs 20 20

Table 5.10 : Statistics o f  the second conventional crawl (website crawl).

The m ost striking figure from  this crawl is the average num ber o f  docum ents per server, 

which is 1.1, especially w hen com pared to 9.5 for the ageing crawl. This clearly illustrates the fact that 

the crawler did indeed hit a large proportion  o f  websites. A nother m ajor difference is the num ber o f  

unseen servers left on  queue. A lthough the website crawl has only downloaded about half the num ber 

o f  docum ents as the ageing crawl, we see that there are 218,673 unseen servers left on the queue as 

opposed to 108,397 unseen servers left on  the queue o f  the ageing crawl. This clearly shows that the 

queuing algorithm  n o t only affects w hat docum ents are downloaded, but by favouring docum ents on 

new  (unseen) servers we also influence the docum ents on the queue as well.
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5.2.3.4 H y p e r l i n k  St r u c t u r e  o f  t h e  D a t a s e t

Table 5.11 illustrates the linkage structure o f  the dataset.

WEBSITE c r a w l A GEING CRAWL

N um ber o f  links w ithin dataset 4,401,017 5,192,350

N um ber o f  off-site links 2,647,701 2,099,387

N um ber o f  on-site links 1,773,316 3,439,193

Average off-site indegree 21 16

D ocum ents with a non-zero off-site in-degree 124693 74,040

D ocum ents w ith a non-zero on-site in-degree 46440 176,570

Average off-site in-degree for non-zero docum ents 21 28

Ratio o f  off-site : on-site links 1 : 1.48 1 : 1.6

Table 5.11 : Linkage Structure o f the website crawl and the ageing crawl

O nce again (as was the case with the ageing crawl) the average off-site indegree o f  each 

docum ent seems too large, this time the figure is 21. Exam ining the link structure o f  the second crawl 

we find that only 412 docum ents from  the ‘about.com ’ netw ork [ABOUT, 02] exist within the 

126,996 docum ents and they only have 6,288 off-site in-links associated w ith them  so their removal 

w ould have no  noticeable effect o f  the statistics presented above.

W D C o n n W e b s it e  C r a w l A g e i n g  Cr a w l

N um ber o f  docum ents 120,494 126,996 253,922

N um ber o f  off-site links 171,740 2,627,701 4,120,718

Average off-site indegree 1.43 21 16

Table 5.12 : Comparing off-site in-degree statistics between WT_Connected and the 
website and ageing crawls

W hen com pared to W T_Connected, the dataset size o f  the website crawl is roughly 

equivalent bu t there is alm ost a fifteen-fold increase in the average off-site indegree figure for each 

docum ent, w hich once again suggests that W T_C onnected (and the Gaeilge crawl) is underestimating 

the true linkage structure o f  docum ents on the WW W . O ur belief is that the figure o f  21 is far too 

high to represent the real W W W  average off-site indegree, and we have identified some issues with 

this crawl (like the previous crawl) that do pose cause for concern and would influence the average
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off-site indegree figure. Figure 5.7 illustrates the com position o f  the top 100 docum ents from  the 

crawl, as ranked in order o f  off-site indegree using our own rough classification. As can be seen 46% 

o f  the docum ents all originate from  one highly connected group o f  web pages all based around the 

‘deviantart.com ’49 [D EV IA N TA RT, 02] domain. This problem  is similar to the ‘about.com ’ problem  

from  the last crawl. U pon closer examination, we found there to be 5,121 documents from  this 

dom ain in the 126,996-document dataset (with another 95,043 on  the queue). These 5,121 documents 

are the target o f  340,732 in-links, w hich would reduce the num ber o f  off-site in-links by 13% to 

2,286,969.

t l  Adult Material 

0 "deviantart.com " domain

□  W eb Search Related

□  Other Internet 

B  General

Figure 5.7 : Examining what documents comprise the top 100 indegree documents 
from the second crawl

In  addition, the second largest grouping o f  w eb pages is from  sites containing adult 

material. Exam ining the link structure o f  these sites suggests that they are densely interlinked and 

form  a tightly connected com m unity50 and that this will further skew the indegree figures for the 

dataset as a whole.

Regarding the density o f  adult content within the 126,996 docum ents, we ran a small 

experim ent to identify how  m any o f  the top 10,000 docum ents ranked by off-site indegree actually

49 DeviantArt is a popular online art community

50 Primarily we believe that commercial reasons prevail here and commercial reasons dictate that these websites containing 
adult content will be densely interlinked.
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contained adult content and w hat was the average indegree o f  these docum ents. O u r estimate is that 

50% o f  the top 10,000 ranked docum ents are related to adult conten t and that each o f  these 

docum ents has an average off-site indegree o f  162. These figures are based on an examination o f  100 

docum ents chosen at random  from  the top 10,000. This figure o f  50% would result in 810,000 off- 

site links existing into these pages from  only the top 10,000 docum ents which, w hen com bined with 

the previous reduction, w ould reduce the off-site indegree figure to 1.48 million and consequently the 

average off-site indegree figure is reduced to 12.6. Further detailed examination o f  the dataset will 

m ost probably find m ore o f  these sites and thus reduce the indegree figures further.

This issue arose because o f  the crawling algorithm that we implemented which aims to 

reach as many websites as possible. Consequently, when the crawler finds a densely intedinked 

netw ork o f  websites it will likely visit each website and, depending on the link structure o f  this 

netw ork o f  web pages, the average indegree count could rise dramatically, as was the case w ith this 

crawl. Indeed the higher the indegree count o f  these web pages, the higher the score they will have on 

the URL queue. Based on the extraction o f  adult content from  the top  10,000 pages and the removal 

o f  the ‘deviantart.com ’ netw ork we present revised linkage figures for the website-crawl in Table 5.13. 

N ote that these figures would be subject to further dow nw ard revision were we to remove all adult 

content from  the dataset and no t just content from  the top 10,000 pages.

W T _C O N N R e v i s e d  W e b s it e  
C r a w l

N um ber o f  docum ents 120,494 116,875

N um ber o f  off-site links 171,740 1,476,969

Average off-site indegree 1.43 12.6

Table 5.13 : Comparing off-site in-degree statistics between WT_Connected and the 
revised figures for the website crawl

A fter examining the results o f  the three crawls o f  w eb data that we made we are only in a 

position to  conclude that we are no t sure as to the actual link structure o f  the W W W  and if  indeed 

simply gathering a dataset o f  docum ents will be sufficient to accurately recreate the linkage structure 

o f  the WWW.



5.3 Co m p a r in g  a l l  f iv e  d a t a se t s

These comparisons have been carried ou t on the original datasets that we crawled, and no t 

on the revised figures that we have presented after examining the crawled data. Table 5.14 shows a 

com parison o f  docum ent and server figures for the three crawls, W TlO g and W T_Connected.

W T IO g W T _C o n n G a e il g e A g e in g W eb site

N um ber o f  D ocum ents 1,692,096 120,494 26,798 253,922 126,996

N um ber o f  Servers 11,680 11,611 846 26,730 117,312

Average D ocum ents per Server 144.8 10.4 32 9.5 1.1

Table 5.14 : Comparing the number o f documents and servers across all five 
datasets

T he m ost striking difference betw een the five datasets is the average num ber o f  documents 

per server. W e have plotted these figures graphically in Figure 5.8.

Figure 5.8 : The average number of documents per server for WTlOg, 
W T^Connected and each of the three crawls

T he standard deviation o f  the average num ber o f  docum ents per server value is 59.93, 

w hich is quite large and illustrates that these experiments could n o t identify the required average 

num ber o f  docum ents per server to accurately reflect the W W W  on a small scale. I f  we remove 

W TlO g from  the calculation, the standard deviation figure is 13.18. Large differences exist between 

the figures in the three w eb crawls as well, bu t the reason for these is the fact that the Irish language



crawl was com pleted, thus rem oving all docum ents from  the queue while bo th  the ageing-crawl and 

the website-crawl were bo th  halted w ith a large num ber o f  docum ents remaining on the queue. This 

w ould affect the num ber o f  servers crawled as a percentage o f  dow nloaded docum ents because both 

queues weighted URLs associated w ith off-site links higher than URLs associated w ith on-site links, 

so URLs w hich are linked across website boundaries would be at die top o f  the queue. The second 

conventional crawl (the website-crawl) has an  even lower average num ber o f  docum ents per server 

value than the ageing-crawl because (as we have m entioned previously) the website-crawl imposes an 

added weight to URLs from  websites that have never before been seen by the crawler. This 

discrepancy is m ore evident from  Figure 5.9.

300000 i-«...  .... .. ..... -..-..... — ...... -....... ....."— ------------------------------------------

W TjConn Gaeilge Ageing Website

Figure 5.9 : Comparing the number of documents and the number of documents 
per server for WT_Connected and each of the three crawls

H ere, w hen we com pare the num ber o f  documents to the num ber o f  servers within the 

datasets for all bu t WTlOg51 we can clearly see the benefit that can be gained from  the website-crawl 

queuing algorithm if the aim o f  the crawler is to maximise the num ber o f  web servers reached. This is 

in contrast to the ageing-crawl, which implements a m ore conventional queuing algorithm than the 

website-crawl, which shows a very similar value (9.5) to that o f  W T_Connected (10.4). However, the 

results are still inconclusive. W e cannot generate a definite figure for the average num ber o f

51 The reason WTlOg is not used is due to the fact that the size of WTlOg would make the examination o f the number of 
servers difficult as the graph would not be able to illustrate the figures as a proportion of WTlOg documents.
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docum ents per server required w hen crawling the W W W  or if  W T_C onnected is representative o f  

live W W W  data.

W e will now  examine the sizes o f  the crawls w hen com pared to W TlOg and 

W T_Connected.
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Figure 5.10 : Illustrating the number o f  documents in WTlOg, WT_Connected and 
each o f the three crawls.

Figure 5.10 clearly illustrates the differences in volum e o f  docum ents between the five 

datasets. T he ageing-crawl is the largest o f  the datasets that we have generated, bu t it is only 15% o f  

the size o f  W TlOg. While the smallest dataset, the Gaeilge crawl is only 1.6% o f  the size o f  WTlOg. 

O ur feelings are that W TlO g is the accepted standard dataset for bo th  ad-hoc and web based retrieval 

experim ents at TR E C  and that any new  dataset to support experim ents into linkage analysis should, at 

least, aim  to replicate the size o f  WTlOg.

Aside from  the num ber o f  docum ents and servers w ithin the datasets, the linkage issue is 

also o f  vital im portance. In  order to accurately evaluate w hich linkage algorithms will operate m ost 

effectively in the real w orld we m ust be able to generate a dataset w ith the correct density o f  off-site 

links and to  a lesser extent on-site links. Table 5.15 shows the average off-site indegree and the 

percentage o f  docum ents w ith a non-zero off-site in-degree for b o th  T R E C  (WT) datasets and all 

three crawls.



W TIO g W T _C o n n G a e il g e A g e in g W eb site

Average off-site indegree 0.1 1.4 1.5 16 21

Ratio o f  off-site : on-site links 1:45.95 1 : 2.20 1 : 5.37 1 : 1.20 1 : 1.48

Percentage o f  docum ents w ith a 
non-zero off-site in-degree

1.8 25.9 10.0 31.5 98.2

Table 5.15 : Examining the linkage structure of the crawls

The m ost striking result from  Table 5.15 is the average off-site indegree between the 

datasets. Figure 5.11 illustrates this m ore clearly. W TlOg, as we have already identified, has a linkage 

structure that is incapable o f  supporting experiments into linkage-based retrieval, hence the 

construction o f  the m ore densely interconnected W T_Connected, w hich did show improvements in 

retrieval perform ance. H ow ever, we were no t sure o f  how  accurate the off-site links structure o f  

W T_C onnected was, therefore we built the crawler and ran die experiments that were outlined in this 

chapter. W e were hoping to find some indication that either W T_C onnected was representative, or 

not, o f  the W W W  as a whole, bu t we were no t able to do this. A  huge discrepancy exists between the 

ageing-crawl and the website-crawl, and bo th  o f  these crawls w hen com pared to the Gaeilge crawl and 

the W T datasets. The results o f  our three crawls clearly illustrate that we were unable to come to any 

conclusions about W T_C onnected by running these crawls. W e still do now  know  w hat the average 

off-site indegree o f  docum ents on the W W W  is and how  this should be replicated in a dataset.

25 --------------------------------------------------------------- -------------------------- -----------------------------------

W T10g W T_Conn Gaeilge Ageing Website

Figure 5.11 : The average off-site indegree of each crawl and the WT datasets
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I f  we examine the standard deviation o f  the off-site indegree figures betw een these crawls 

and the T R E C  datasets, we can see that it stands at 6.68 w ith the average at 5.4. W e have identified 

som e problem s with the crawled data in b o th  the ageing-crawl and the website-crawl, which would 

influence these figures. We have show n that a m ore accurate figure for the ageing-crawl is 10 while a 

revised figure for the website-crawl stands at 12.6 and this is illustrated in Figure 5.12.
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Figure 5.12 : The average off-site indegree of each crawl and the W T datasets using 
revised figures for the ageing and website crawls

W e can reduce the average off-site indegree figure for the website crawl further by carrying 

o u t a m ore exhaustive examination o f  the dataset, yet there w ould still be differences between the 

crawls. H ow  then can w e assume that any o f  these represent the ideal off-site indegree for each 

docum ent? Anecdotally, the figure o f  10 off-site in-links for each docum ent seems too large to be 

accurate.
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Figure 5.13 : Illustrating the percentage of documents with a non-zero off-site 
indegree.

T he difference betw een bo th  the percentage o f  docum ents w ith a non-zero off-site in

degree on b o th  the ageing-crawl and the website-crawl as shown in Figure 5.13, is striking. By varying 

the queuing algorithm, the structure o f  the final dataset can be changed enormously, with m ore than a 

threefold increase in the percentage o f  docum ents w ith a non-zero off-site indegree over the next best 

crawl. Clearly then it is impossible to simply develop web crawler and crawl a dataset o f  the required

size in one process. We can summarise the reasons thus:

•  W e are still n o t sure o f  w hat the linkage structure o f  the W W W  is; and

* W e have show n that the queuing algorithm  influences the nature o f  the crawled dataset

(unless all docum ents from  the queue are removed) and it is vital that the queuing algorithm 

is correct, bu t w ithout knowing the nature o f  the linkage structure o f  the W W W  we are no t 

in a position to  design the correct queuing algorithm.

W e could keep varying our queuing algorithms and sending ou t web crawlers, b u t w ithout having an 

exact goal for the crawler we w ould never know  at w hat point the queuing algorithm is successful.
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5.4 Co n c l u s io n

As a result o f  running these experimental web crawls it was obvious to us that in order to 

adequately evaluate the benefits o f  Linkage Analysis, a fully representative dataset would be required, 

bu t representing what? H ow  do we know  w hat a representative dataset should look like if  no such 

dataset exists? I t is intuitive that the larger a p roportion  o f  the web that we crawl and download, the 

richer (and m ore accurate) the linkage structure will be. Google, for examples indexes over 2 Billion 

w eb pages and therefore the linkage structure o f  its index would be m ore com plete and better support 

linkage algorithms than would W TlOg or probably even W T_Connected.

Consequently, any linkage analysis technique will benefit from  a larger index and this 

should be reflected w hen building a dataset for experiments, yet a dataset that is too large will 

discourage participation am ong participants as the resources required would be too great. We should 

attem pt to accurately represent the rich linkage structure o f  the web in a small dataset bu t how  can 

this be done? W e will look into this in the next chapter. W hat we do now  know, however is that 

sending out a web crawler to generate a dataset is no t the answer in that we are very unlikely to 

stum ble across the correct linkage structure by crawling a dataset. Therefore, we m ust examine the 

linkage structure o f  the W W W  to see w hat clues we can extract to identify w hat are the requirements 

o f  an ideal dataset to support faithful experiments into linkage-based retrieval.

T he reason w hy we stopped the crawling process w ith a large num ber o f  documents 

rem aining on the queue for both  the ageing and website crawls was primarily because it was taking 

large am ounts o f  time to dow nload the docum ents. The average netw ork latency in simply 

downloading each docum ent was in the order o f  2.5 seconds52. In  addition, the time taken to parse 

each docum ent, generate disk files and add link data into a crawl database, update the URL queue, 

select the next URL and adhere to the robots exclusion standard clearly illustrates that these web 

crawls were lengthy processes. A lthough each crawl was com pleted with minimal interruption, the 

crawls (excluding the smaller Irish language crawl) w ould have taken 3 and 5 weeks to complete.

Clearly, had we developed a crawler specifically to support m ore efficient downloading o f  

large num bers o f  web pages we could have generated m uch larger crawls in a reasonable time period,

52 This figure o f  2.5 seconds is based on a random sample o f  200 documents from unique URLs extracted from the URL 
queue o f the WebSite Crawl, This does seem to be a very long time and secondary observations from the experiment 
shows that the vast majority o f documents are downloaded in under a second, with a small number taking considerably 
longer.
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how ever we were primarily interested in examining the behaviour o f  web crawlers and their ability to 

crawl a dataset to support faithful experiments into linkage-based web retrieval.

5.5 Su m m a r y

W eb Crawlers are complex software tools that traverse the W W W  gathering web pages. 

W eb crawlers can n o t know  o f  the existence o f  all docum ents in the W W W , rather, given a small set 

o f  seed URLs, a crawler will extract links from  downloaded docum ents and using a queue o f  URLs 

will store the URLs o f  docum ents that it has n o t yet seen. The prioritisation o f  URLs to download is 

based on a queuing algorithm.

We m ade three crawls o f  live W W W  data for these experiments. The first crawl was an Irish 

language specific crawl w hich downloaded 26,798 docum ents in the Irish language, each o f  w hich had 

an average off-site indegree o f  1.55 w hich was quite similar to the average off-site indegree figure o f  

W T_C onnected w hich was encouraging for the results o f  our experiments in the previous chapter, yet 

our intuition suggested that the distribution o f  off-site indegrees across the 26,798 docum ents was not 

natural and reflected the choice o f  seed URLs that we made. O ur belief was that the true off-site 

indegree o f  docum ents was actually being underestim ated by the Irish language crawl.

T he second and  third crawls w ere m ore conventional crawls o f  W W W  data, in that they 

were no t language specific and no restrictions were placed on the crawler’s movements when 

gathering docum ents, save any restrictions from  the crawler’s adherence to the robots exclusion 

standard. T he findings o f  these tw o crawls (264,794 and 126,996 docum ents in size) suggests that the 

figure o f  1.55 off-site links into each docum ent as found by die Irish language crawl was indeed an 

underestim ation o f  the real nature o f  W W W  data. These crawls produced average off-site indegree 

figures o f  16 and 21 respectively, however, w hen  these figures are adjusted to take into account 

irregularities we found in the link structure o f  the crawled data the figures became 10 and 12.6 

respectively. H ow ever, neither o f  these figures was similar to the figures for both  the Irish language 

crawl and W T_Connected. W e refer the reader to Figure 5.10, 5.11 and 5.12 as well as Table 5.15 for 

a com parison o f  the findings from  the web crawls.
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Given that the three crawls produced different average off-site indegree figures, we were 

no t in a position to declare that W T_C onnected is actually representative o f  true W W W  linkage 

stmcture. Rather, m ore experimentation was needed and this is presented in the following chapter.
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C h a p t e r  6

P R O P E R T IE S  O F  A N  ID E A L  T E S T  C O L L E C T IO N  T O  SU PPO R T  F A IT H F U L  
E X P E R IM E N T S  IN T O  L IN K A G E -B A S E D  R E T R IE V A L

In this chapter, we discuss our random sample of 5,000 u>eb pages. We examined the linkage 
structure of mb pages so that we can identify the requirements of any future test collection that aims 
to support faithful evaluation of linkage-based techniques. After discussing the random sample, we 
examine the distribution of off-site indegrees from the 5,000 web pages and show that they follow a 
power-law distribution. Finally, we develop a set of requirements for any future test collections that 
aim to support linkage-based experimentation.

6.1 In t r o d u c t io n

W hen building a test collection to support experiments into retrieval o f  docum ents from 

the W W W  there are a num ber o f  requirements that should be adhered to [Bailey et al., 01]. These 

requirements are to:

•  M odel real w eb search, by means o f

A  sufficiently large dataset 

Representative web queries 

Sufficiently complete relevance judgments.

•  Include the required and appropriate type o f  link density to enable meaningful 

experim ents into linkage-analysis based m ethods.

•  Support algorithms for experim entation into distributed IR  w hich allows merging 

o f  results from  different types o f  retrieval systems and methodologies.

•  Be o f  a high enough quality so as n o t to discourage people from  using it. H igh (in 

this case) means that all reasonable attem pts m ust be made to rem ove binary and 

unclean data from  the dataset.
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W e have already seen that W TlO g (and its predecessor WT2g) does no t support truly 

investigative experiments into linkage-based retrieval, findings w hich all o ther participants in the 

T R E C  web track agree upon. O ur experiments using W T_C onnected do show  m odest improvements 

in retrieval perform ance w hen linkage-based approaches are com pared to conventional content-only 

approaches. Consequently, to  support further research in the field o f  W W W  IR, we m ust identify 

w hat key com ponents should comprise an ideal test collection that is capable o f  supporting 

experiments into linkage-based retrieval. G iven that the results o f  our crawls presented in the previous 

chapter were inconclusive in answering the question o f  how  to create such an ideal test collection, we 

m ust examine the structure o f  live W W W  data in order to correctly identify and characterize its 

linkage structure for replication in a test collection that is to faithfully support linkage-based retrieval 

experiments.

6.2  E x a m i n i n g  W W W  St r u c t u r e

A fter TR EC -8 (1999) it was apparent to m ost o f  the participants in the web track that the 

one o f  the primary reasons for the failure to improve retrieval perform ance o f  any linkage-analysis 

techniques was due to the dataset [Hawking, 01], [Bailey et al., 01]. The W T2g dataset consisted o f 

247,491 H T M L  pages b u t the num ber o f  closed off-site links was hopelessly inadequate as can be 

seen in Figure 6.1 which illustrates the difference in average off-site indegree betw een the TR EC  test 

collections, W T_C onnected and our crawls o f  web data (using the revised figures) as discussed in the 

preceeding chapter. W TlOg, which followed from  W T2g was no t m uch better, even though it had a 

tenfold increase in the num ber o f  off-site links, and as we have seen, no group has been able to show 

im provem ents in retrieval perform ance for typical W W W  queries using W TlOg and link-based 

retrieval.



W T2g W T10g WT_Conn Gaeilge Ageing Website

Figure 6.1 : Average document off-site indegree from a number of source

As can be seen from  the diagram above, the average docum ent off-site indegree values vary 

enorm ously and even our ow n crawls o f  W W W  data were inconclusive in terms o f  capturing a faithful 

representation o f  the W W W , w ith each reporting different off-site indegrees. Consequently, we were 

n o t to know  how  representative any o f  the figures are o f  real W W W  off-site indegrees. In  Chapter 4, 

w e have show n that m odest im provem ents in retrieval perform ance are possible w hen incorporating 

linkage-based retrieval techniques into conventional IR  ranking algorithms w hen using the 

WT__Connected dataset. Therefore, we have undertaken to examine the linkage structure o f  the 

W W W  so that we are in a  position to:

•  Clarify, if  indeed, W T_C onnected accurately recreated the off-site indegree structure o f  the 

W W W , w hich we did n o t think was the case and;

•  Identify the indegree structure o f  the W W W  for b o th  off-site and on-site links so that we are 

in a position to identify requirements for any new  dataset tha t is being generated to support 

experiments into linkage-based retrieval.

•

6.2.1 D e t a il s  o f  r e a l -w o r l d  e x p e r im e n t s

W e have seen that increasing the density o f  off-site links betw een docum ents w ithin the test 

collection can lead to m odest im provem ents in precision (as was the case w ith W T_Connected), so 

therefore the ideal course o f  action would be to increase the num ber o f  off-site links within a test
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collection until we meet the average indegree, or ore specifically, the average on-site and off-site 

indegree o f  documents on the WWW. Our web crawls to try and determine these figures were 

inconclusive in that all three returned different figures for average document off-site and on-site 

indegrees. I t  is intuitive that the larger a proportion o f die web that we index, the richer and more 

representative the linkage structure w ill be. Consequentiy, the results o f any experiments into linkage 

analysis techniques will be more accurate and benefit from a larger index, which by its very nature 

would be more representative o f the WWW. This makes sense, i f  we take Google as an example, it 

indexes 2,073,418,204 web pages (as o f July 2002) and we believe that its PageRank algorithm does 

indeed improve retrieval performance.

However, many o f the research groups around the world w ill be unable to process large 

amounts o f data, but would be still interested in running linkage-based experiments. This is why the 

TREC web track keeps the size o f its dataset at 10GB (with die larger 100GB large web task dataset 

for participants who have the resources to process this much data). This aspect should be considered 

when building a dataset for experiments; it must not be too large so as to discourage participation, but 

must accurately represent the rich linkage structure o f die web. TREC web test collections have kept 

the datasets small in size, but have been unable to accurately recreate the linkage structure o f the 

W W W  and this is borne out by the poor retrieval performance o f linkage algorithms in TREC 

experiments over the past three years.

In  order to identify the requirements for a small-scale test collection, which faithfully 

models the linkage structure o f die WWW, we must to examine in detail the structure o f die W W W  

itself.

6.2.1.2 V i e w i n g t h e  W W W  as a  g r a p h
From graph theory, we know that an edge connects two nodes together in a graph. I f  the 

graph is a directed graph, each edge will have a source and a target node associated with it. Any 

outgoing edge from one node is an incoming edge on another node, so we can view each edge as 

being an in-edge from  one node and an out-edge from another node. On the WWW, which is a huge 

directed graph, we generally assume that a link connects two documents together and the same 

observation applies to links as to edges in a graph. We can assume that an out-link from one 

document w ill be an in-link into another document53. I t  follows trivially that the number o f in-links is

53 We accept that this is not always the case, as hyperlinks do actually exist which do not actually point to another web page 
because the destination page has been deleted or removed, or the link itself is incorrect.



equal to the number o f out-links and this should allow us to identify the web page indegree 

requirements based on outdegrees o f  web pages that we will observe.

6.2.1.3 H o w t o  i d e n t i f y In -links
Since the W W W  is a directed graph and each out-link is also an m-link, were we to find by 

observation the average outdegree o f each document on the WWW, then we can also identify the 

average indegree o f every document. However, is this really the case? I t  w ill be clear to anyone that 

has spent more than a few minutes browsing the hyperlinked structure o f the W WW  that links can 

point to documents that no-longer exist. These are ‘broken links’ and normally result in the user 

seeing an H T T P  404 error: file not found’.

This is a problem that is caused by the very open nature o f the WWW. Since anyone can 

publish and link, this results in the W W W  being chaotic in nature in that no-one individual or 

organization is in control and the author o f a web page can remove it, rename it, move it  or alter its 

content at any time the author desires. Once the target document o f a link is moved, unless the author 

o f the document that contains the link knows o f the change, then the link becomes and remains 

broken. I t  is this very chaotic nature o f the W W W  that we will employ later to identify the distribution 

o f indegrees across web pages in a test collection.

However, i f  we can identify what proportion o f links on the W W W  are broken we can

adjust the average outdegree figure to take into account the percentage o f links that we found to be 

broken and let the new figure represent the average indegree o f  web pages, as in the following 

formula where N  is the number o f documents from which the links were examined and error« is the 

number o f broken links found on a page n.

'T . ° UtDeSn X  errorn

N N
/

However, we need to know more than the average outdegree o f each web page i f  we are to 

identify the characteristics o f the WWW. We also need to know the average number o f off-site out- 

links and the average number o f on-site out-links which can be discovered by observation.



6.2.2 Su r v e y i n g  t h e  L i n k a g e St r u c t u r e  o f  t h e  W W W
In  order to correctly identify the average in-degree (both off-site and on-site) o f web pages 

we must carry out our own survey o f  the linkage structure o f the W W W  as it is in 2002. Our chosen 

technique was to sample web pages at random. Previous work had been carried out in this area, an 

example being the SOWS survey o f web structure, which also involved the random sampling o f 

W W W  pages. In  addition, Cyveillance [Cyveillance, 00] have carried out experiments two years ago 

[Murray &  Moore, 00] in order to size the Internet and they have found that the average page contains 

23 on-site out-links and 5.6 off-site out-links, however they did lim it their processing o f web pages to 

pages under 200KB in size. In  addition we were interested in links specifically to web pages based on 

examining in detail the links from  pages, while SOWS and Cyveillance were simply interested in the 

number o f links from a page, so we felt it best to carry out our own survey and detailed evaluation.

6.2.2.1 SOWS III
The latest SOWS survey [SOWSIII, 99] o f the W W W  (the third in a series) was carried out 

in 1999. The target population for the survey was (obviously) all documents from the WWW. Their 

chosen method o f generating random URLs was to firstly generate two lists, each containing 45 

randomly chosen terms. For each run, words from each list were paired randomly and used as query 

terms to the AltaVista search engine. To further avoid bias, a computer generated random number 

was used to select the starting point for extracting the results from  AltaVista’s query response, i.e. for 

each query AltaVista generated a ranked list o f web pages but the extracted results were not always the 

top scored pages.

The survey was based on fetching and examining 200 URLs chosen randomly from a pool 

o f a possible 1,964, the pool being chosen using the random URL generation method outlined above. 

One requirement for each o f  the chosen 200 URLs was that the document associated w ith the URL 

contained at least 4 out-links. The 200 documents were downloaded, examined and found to contain 

4,851 links, 261 o f them (5.7%) were dead-links and 28.5% o f  the 200 pages contained at least one 

dead link. We have summarized the findings o f SOWS I I I  in the following table.
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Sample size (number o f documents) 200

Number o f links 4,581

Average number o f links per document 22.9

Number o f  dead-links 261

Average number o f dead-links per document 1.3

Percentage o f documents containing dead-links 28.5%

Table 6.1 : Summary o f the findings o f SOWS III

However, no information was provided on whether these dead links were mostly off-site or 

on-site and this is information that we required. A  basic statistical review o f  the accuracy o f SOWS I I I  

is shown in Table 6.2.

Confidence level 95% 99%

Population Size Unknown Unknown

Sample size 200 200

Confidence Interval 6.93% 9.12%

Table 6.2 : Statistical review of the accuracy of SOWS III

As can be seen, at a 99% confidence level54 the confidence interval55 is 9.12%, which states 

w ith a probability o f 99% that the sample is plus or minus 9.12% o f  the stated values shown for the 

sample. A t the more commonly used 95% confidence level the confidence interval drops to 6.93% 

which (like the 99% confidence level) is quite high. Population size is ignored, as is often the case 

when a population is large or unknown. We felt that for our random sample o f web pages, it would be 

beneficial to increase the sample size so that we could reduce the confidence interval.

6.2.2.2 O u r  S u r v e y  o f  5,000 r a n d o m  w e b  p a g e s

We took a different approach to generating random URLs than that taken in the SOWS I I I  

survey. We developed a JA V A  application that selected random URLs by using a web accessible 

random URL generator [UROULETTE, 02]. A  handful o f such services exist on the web, such as the

54 The Confidence Level o f a survey is expressed as a percentage and illustrates how certain one can be about the result o f a 
survey, e.g. a 95% confidence level means that you are 95% certain o f  the result.

55 The Confidence Interval o f a survey is the plus-or-minus figure that illustrates how accurate the result of the survey is, e.g. 
a confidence interval of 5% means that any value taken from the survey can be +  or — 5% o f that value.



random page generator run by Yahoo [YAHO O , 02] which one must assume works over their index, 

so we avoided using this random page generator as we felt the Yahoo index would be more likely to 

contain high quality documents because it is a humanly generated index. Upon request URouLette will 

generate a random URL. Our sample size was 5,000 and the accuracy statistics for the survey are 

shown in Table 6.3. The 95% and 99% confidence intervals are both much smaller than the SOWS 

sample, which indicates that our sample could be classified as being more statistically reliable.

Confidence level 95% 99%

Population Size Unknown unknown

Sample size 5000 5000

Confidence Interval 1.39% 1.82%

Table 6,3 : Statistical review o f the accuracy o f our experiment

One caveat with our experiments is that the above figures assume truly random sampling 

and since we relied on URouLette fo r our random URLs, we are not sure how random our sample is 

and from how large a list o f candidate URLs the random URLs are chosen. A ll random sampling 

techniques (even SOWS) that rely on choosing a document at random from a web crawl are only 

random with respect to the crawled data, which w ill be a fraction o f the WWW, and thus can not be 

classidied as truly random. Truly random sampling would involve some form  o f random IP address 

generation and subsequent file selection. However considering this, we w ill refer to our sample as 

being a ‘random’ sample, although the degree o f randomness is in question.
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Figure 6.2 : The Random URL crawler showing the 13th URL and its out-links
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For each o f the 5,000 URLs that were sampled, that page was immediately downloaded, all 

embedded links were extracted and using the cache facility o f  our web crawler described in Chapter 5, 

saved to disk. An example o f a document being downloaded is shown in Figure 6.2 and one o f the 

downloaded documents is shown in Figure 6.3. In  cases where the URLs associated with embedded 

links were represented by a relative URL, these were resolved into an absolute URL. Only URLs that 

used the HTTP protocol56 were accepted, all other protocols were ignored. Each URL was then 

identified as being either off-site or on-site in nature and our application downloaded the associated 

document and stored this document on disk for subsequent validation that the document is actually 

content-bearing and not just a H T M L  encoded H T T P  404 : file not found’ error. URLs that no 

longer existed and whose servers didn’t return a HTTP 404 type error message were flagged as such 

and considered to be broken URLs.

C A C H E  D o c u m e n t
The page may have changed since we :3pv»Ti|oodoo it in 2002,

Focaii is not affiliated with the authors of this page, nor are we responsible for its content,

W E L C O M E

Alaska's Fishing Unlimited 
Lodge is a superb, Bristol 
Bayj fly out fishing lodge 
whose backyard is the 
famous [liamna Trophy 

-------------------------- ;

Figure 6,3 : A  cached document from our random sample o f WWW documents

We repeated this process 5,000 times over an eight-day period. The reason for the lengthy 

time period was that we did not wish to send many simultaneous requests to URouLette as well as the 

additional requirement that we downloaded all linked pages, which takes time.

56 We didn’t process any embedded links using MAILTO or GOPHER or FTP protocols.
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The information that was stored about each downloadable linked document was as follows:

•  Source and target URLs

• Source and target hosts

•  Type o f link (off-site or on-site)57

•  The associated anchor text

•  Hag identifying i f  the URL is dead or not, however our application could only identify i f  a

URL didn’t exist. In  many cases an HTTP 404 type error message was returned by a web

server, necessitating our saving each target URL to disk and inspecting each suspect 

candidate URL (based on the text w ithin the document) whose content was based around 

explaining that the document was no-longer available. An example o f one such page is shown 

in Figure 6.4.
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Co : . . ;:i .....................................................

CACHE Document
The page may have changed since we downloaded it in 2002,

Focail is not affiliated with the authors of this page, nor are we responsible for its content.

i  > hUn://vAVW-aeocitiB5.com/Athens/AcroDolj£/3261/sern.htm

a

'ÏSüESoO&GeoC
Whoops! We cant find your page

The web page you are trying 1o access doesn't exist on Yahoo1 GeoCities 
hilpc ■ 51É C is. CO « i > Aiti * IlS.Aci "P’>ÌPS 326 I I Elm

Try a seaich or visit our help .area for more information.

Search Yahoo! GeoCities AfrVeRTiSEMEHT

Vaho o!

juokrom» Zone (Mixed)
zi

Figure 6.4 : An example o f a downloaded page that no longer exists.

57 Self-links are assumed to be on-site links in this case.



6.2.2.3 Pr e l i m i n a r y  O b s e r v a t i o n s f r o m  t h e  R a n d o m  Sa m p l e  (PRELIM)
Based on our experiments we are in a position to present our findings based on our random 

sample o f 5,000 web pages. Let us start by looking at statistics fo r the number o f documents 

downloaded.

Sample size (number o f documents) 5,000

Number o f unique documents downloaded 64,125

Number o f  documents identified 64,483

Total URLs discovered from  out-links 60,945

Table 6.4 : Unique document statistics from our random sample o f WWW 
documents

As can be seen from  Table 6.4 our survey identified 64,483 web pages, but by extracting 

just the out-links from these documents fewer documents were found, which illustrates the number 

o f URLs identified as out-link target URLs that were actually represented in the random sample. So let 

us examine the link structure o f these 5,000 documents.

Documents that contain out-links 3,940

Documents w ith no out-links 1,060

Documents w ith off-site out-links 2,706 |

Documents w ith on-site out-links 3,571

Table 6,5 : Basic linkage structure o f documents from the random sample

From Table 6.5 we can see that 78.8% o f the sample documents (3,940) contain at least one 

out-link, leaving only 1,060 documents (21.2%) w ithout even one out-link. Examining the nature o f 

these links illustrates that 54.1% o f documents have a positive off-site outdegree while 71.4% o f 

documents have a positive on-site outdegree. However, this information is still not enough to identify 

the indegree structure o f the full WWW. For this we need to examine the number of, and nature of, 

the links parsed from  the 5,000-document sample, which is shown in Table 6.6.



Total number o f links found 98,579

Number o f which are off-site 25,813

Number o f which are on-site 72,766

Table 6,6 : Examining the types o f  links found

As can be seen, a total o f 25,813 off-site links and 72,766 on-site links were parsed from the 

5,000-document sample. Based on the findings shown in Table 6.6 from our sample, we are in a 

position to state average outdegree figures for each document, as shown in Table 6.7.

Average off-site out-degree for each document 5.2

Average on-site out-degree fo r each document 14.6

Average out-degree for each document 19.8

Table 6.7 : Average document outdegrees

Plotted on a graph (Figure 6.5) we can see the percentage o f  out-links from  each document 

that fall into each o f  the two categories o f links (off-site and on-site). As would be expected, the 

number o f navigational (on-site) links far outweighs the number o f judgement bearing (off-site) links, 

by a figure o f almost 3 to 1.

0  Percentage of links that are off-site 

^ Percentage of links that are on-site

Figure 6.5 : Percentage of both on-site and off-site links

Recall from Chapter 2 that the H W  (Hyperlink Vector Voting) technique, which allows 

the anchor text o f  an in-link to a document to describe the document’s content, requires the existence
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o f anchor text descriptions to be successful. Anchor text statistics from  the random sample o f 

documents is shown in Table 6.8.

Number o f links w ith anchor text 79,372

Number o f  links w ithout anchor text 19,207

Number o f  off-site links w ith anchor text 20,021

Number o f on-site links w ith anchor text 59,351

Table 6.8 : Anchor Text Statistics for the random sample

As can be seen 80.5% o f all links include anchor text descriptions with the remaining 19.5% 

lacking them (these are likely represented by images). Off-site links contain a slightly lower percentage 

o f anchor text descriptions at 77.6% o f  the total while on-site links show an 81.6% positive anchor 

text presence.

6.2.2.4 Id e n t i f y i n g  a n d  r e m o v i n g  b r o k e n  links f r o m  t h e  C a l c u l a t i o n

These experiments on the 5,000-document sample provide us w ith our first indication o f 

the true linkage structure o f the WWW. Recall our assumption that each-and-every link on the WWW 

is both an out-link from one document and an in-link into another document. However, the one 

caveat that restricts us from simply estimating the average indegree o f W W W  documents to be 19.8, 

comprised o f 5.2 off-site links and 14.6 on-site links is that we have ignored how many o f these links 

are in fact linking to non-existent documents (broken links). We will review our findings presented 

above, in light o f the fact that our examination o f the downloaded documents identified 3,136 o f the 

linked URLs to be broken links, in that they point at documents that do not exist. The reason for the 

broken links is not o f interest to us, rather the fact that 3.2% o f the links we parsed from the 

document sample were broken and these links originated from 842 separate documents. We have not 

included in these figures another 1,271 links that we were unable to download or process documents 

for, either due to not using the HTTP protocol or because o f  serious errors in the H T M L  o f the web 

page and these links were not included in die original statistics. Were we to have included these links, 

we would find that a 4.4% o f links were broken, not 3.2%.

Considering this information (based on die 3.2% figure) we must review our findings and 

present new figures (referred to as ‘Revised T) below in Table 6.9, which displays the figures for links 

that are working (i.e. not broken). The number o f links found drops by 3,136 from our preliminary 

figures (“Prelim’) w ith a corresponding drop in the number o f off-site and on-site links.



PRELIM REVISIO N 1

Total number o f  links found 98,579 95,443

Number o f  which are off-site 25,813 24,580

Number o f  which are on-site 72,766 70,863

Table 6.9 : Examining the types o f links found, excluding broken links and
comparing the results to the preliminary figures

This results in an expected drop in the average outdegree from 19.8 to 19.1 (see Table

6.10) w ith the average off-site outdegree dropping by from 5.2 to 4.9 and the average on-site 

outdegree dropping from 14.6 to 14.2. Off-site links show a higher percentage drop than on-site links

and this is intuitive because we would assume that the probability o f a link being broken is higher for

off-site links dian it  would be for on-site links.

PRELIM REVISIO N 1

Average off-site out-degree for each document 5.2 4.9

Average on-site out-degree for each document 14.6 14.2

Average out-degree for each document 19.8 19.1

Table 6.10 : Revised average document outdegree figures compared to the 
preliminary figures

We also note no notable change in the ratio o f  links that are off-site and on-site as shown in 

Figure 6.6.

H Percentage of links that are off-site 

H Percentage of links that are on-site
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Figure 6.6 : Revised percentage of both on-site and off-site links



Our findings presented over the last number o f  pages based on the random sample clearly 

illustrate that WT_Connected seriously underestimates the link density o f  the WWW. WTlOg has a 

lower link density than WT_Connected so the problems w ith W TlOg are even more acute. Assuming 

that all out-links (with the exception o f  broken-links) also act as in-links, and the off-site /  on-site 

separation between link types does not change after link inversion58 then we can compare the average 

off-site indegree o f  WT_Connexted to that o f  the random sample (after a process o f link inversion) as 

illustrated in Figure 6.7.

<1>0)o>tt)■Oc
</>
O0)u>füi—a>><

Figure 6.7 : Comparing W T_Conn to the Random Sample

6.2.2.5 F u r t h e r  O b s e r v a t i o n s f r o m  o u r  R a n d o m  Sa m p l e
During the course o f  our examination o f the link structure o f the sample set o f documents, 

we did notice that a large number o f links point to advertisement web pages, which are paid links 

whereby the owner o f  a web page earns a small amount o f money each time a user follows a particular 

paid link. In  all we found 935 (non-broken) URLs that link to advertisement web pages. An example 

o f such a paid link is shown in Figure 6.8 where the paid link is highlighted. In all, 1% o f  the total 

number o f  links were paid links.

58 Link inversion is simply the name we give to the process o f altering our view of links from out-links originating from a set 
o f documents A  into in-links to a set of documents B
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Figure 6.8 : A n example o f an advertisement link.

Although these paid links are valid and there is no reason for them to be removed from the 

link count experiments, were we to remove both the advertisement and broken links we get new 

linkage figures as displayed in Table 6.11. In  all, 4,071 URLs were removed (4.1% o f the total) which 

were linked to by 1009 distinct documents from the sample.

PRELIM REVISIO N 2

Total number o f  links found 98,579 94,508

Number o f  which are off-site 25,813 23,650

Number o f  which are on-site 72,766 70,858

Table 6.11 : Revised examination o f link types when both advertising and broken 
links are removed, compared to our preliminary figures

This effects the average outdegree calculations as shown in Table 6.12.



PRELIM REVISION 2

Average off-site out-degree for each document 5.2 4.7

Average on-site out-degree for each document 14.6 14.2

Average out-degree for each document 19.8 18.9
-------------------1

Table 6.12 : Revised average document outdegree figures when both advertising and 
broken links are removed compared to the preliminary figures

6.2.3 O u r  F i n d i n g s
A  comparison between our preliminary findings and those o f the SOWS I I I  survey are 

shown in Table 6.13. As can be seen there is no notable difference between the results o f both 

findings, which adds weight to the validity o f our chosen sampling method. The average outdegree o f 

each document is higher for SOWS, but the requirement o f at least four out-links per document 

would affect these results. Our survey found that less links are broken w ith less than one broken link 

found per document as opposed to 1.3 by SOWS III. One likely explanation for this is the widespread 

availability o f link validation tools such as CyberSpyder Link Test [CYBERSPIDER, 02] or improved 

web authoring tools such as Macromedia Dreamweaver [DREAMW EAVER, 02] that include built-in 

FTP facilities that restrict the opportunity for error.

SOWS I I I OUR SAMPLE

Sample size (number o f documents) 200 5,000

Number o f  links 4,581 98,579

Average number o f links per document 22.9 19.8

Number o f  dead-links 261 4407

Average number o f dead-links per document 1.3 0.9

Percentage o f documents containing dead-links 28.5% 16.8%

Table 6.13 : Comparing our findings to the SOWS III survey findings.

Comparing our findings to those o f Cyveillance we do find a difference in the average on

site outdegree o f each document, but the average off-site outdegree is very similar as can be seen from 

Table 6.14 which is encouraging once again for the validity o f  our sample. This suggests that people 

are creating roughly the same number o f off-site links from documents now as was the case two years 

ago when Cyveillance published their results even though improved search engines and recent issues



regarding the legality o f  deep linking59 [Wired, 02] could have been expected to have resulted in a 

decrease in the number o f off-site links being created.

1 C YVEILLAN C E PRELIM

Average off-site out-degree for each document 5.6 5.2

Average on-site out-degree for each document 23 14.6

Average out-degree for each document 28.6 19.8

Table 6.14 : Comparing our findings to Cyveillance

However, in order to extract indegree figures from this experiment, we must remove 

broken links from  the process. I f  we do so, then based on our findings from the first revised figures 

presented in Table 6.9 and Table 6.10, we can identify that the average out-degree o f a page 

(excluding broken links only) is 19.1, w ith 4.9 off-site out-site links and 14.2 on-site outLinks. 

Therefore, after inversion, we can state that the average document on the W W W  has an off-site 

indegree o f 4.9 and an on-site indegree o f  14.2. Paid links, although not usually considered to be 

judgement bearing, do point to documents that do exist and thus are valid links and were not 

removed from the calculations.

While this may seem like too many links, one must remember that indegrees o f  web pages 

are not uniform  over all web pages, rather the combined indegree o f all pages are distributed un

evenly over web pages, meaning that not all pages w ill have an off-site indegree o f (in the region of) 

4.9. This is clearly the case and can be seen i f  one takes ten popular web sites and calculates the 

indegree o f the root page o f  each site (Table 6.15). We used the Google lin k :’ query60 to calculate 

these figures, so given that Google does not index the entire W W W  it is to be expected that these 

figures underestimate the true indegree o f these web pages.

59 Deep Links are off-site links that bypass another site's front page, leading users directiy to specific content within the site.

60 Google supports querying the webpages that link into a particular URL by prefixing the URL with “link:’ and sending this 
as a query. In this way we are able to compute a lower bound on the indegree of any web page.



WEBSITE INDEGREE
www.google.com 210,000
www.microsoft.com 132,000
www.yahoo.com 623,000
www.msn.com 143,000
www.apple.com 90,600
www.dmoz.org 595,000
www.nasa.gov 89,100
www.adobe.com 113,000
www.cnn.com 103,000
www.sun.com 87,000

T able 6.15 : The root page, indegrec o f  ten popular roo t web sites

The average indegree of each of these web pages is 218,570, which is many times higher 
than the average indegree that we have just identified by experimentation. The distribution of 
indegrees (and outdegrees) for web pages has been shown by experimentation and observation to 
approximate a power-law distribution and we will now examine if the outdegree distribution of our 
sample of 5,000 pages approximates a power law distribution. If so, then this adds further weight to 
die validity of our sample.

http://www.google.com
http://www.microsoft.com
http://www.yahoo.com
http://www.msn.com
http://www.apple.com
http://www.dmoz.org
http://www.nasa.gov
http://www.adobe.com
http://www.cnn.com
http://www.sun.com


6.3 D ist r ib u t io n  of  In d e g r e e  a m o n g st  D o c u m e n t s

I t  has been discovered that the distribution o f web page, indegrees follows closely to a 

power-law distribution [Broder et al., 00], yet we have recently seen further evidence that the 

distribution does not follow a pure power-law [Pennock et al., 02], rather it can be said to 

approximate a power-law distribution. We are told that die “ distribution o f  inbound links on the web 

as a whole is closest to a pure power-law”  while “ category specific distributions exhibit very large 

derivations from  power-law scaling” . This raises issues for the generation o f test collections because 

any attempt to influence the documents comprising a dataset in order to include some category 

specificity w ill not correctly represent the natural W W W  link structure. However, given that we are 

looking at a non category-specific collection o f web pages when building a test collection we can be 

satisfied that the distributions o f document indegrees should approximate a power-law distribution.

6.3.1 P o w e r -l a w  D istributions

Power-laws are used in mathematics when one wishes to relate one quantity to the power o f 

another and can be written thus:

x = y s (6.2)

where x is equal to the value o f y to the power o f z (z is the exponent o f the power-law). A  power-law 

implies that small occurrences are extremely common whereas large occurrences are extremely rare, 

so i f  applied to web page indegrees or outdegrees this means that the vast majority o f web pages have 

a very small number o f in-links (or out-links) and a few pages have a large or enormous number o f in

links.

Power-law distributions are not just used to describe the indegrees o f web pages (and 

computer science problems in general), rather they are common to both man made and naturally 

occurring phenomena [Mitzenmacher, 01]. From computer science we see power-law distributions in 

web page indegrees [Broder et al., 00], [Barabasi et al, 00] (as we have seen above), outdegrees 

[Faloutsos et al., 99], in the number o f pages on websites [Adamic &  Huberman, 01], in models for 

Internet growth [Mitzenmacher, 01], and even in the distributions o f  word frequencies in language 

[Zipf, 32], [Miller, 96], [Adamic, 00].

The characteristic signature o f data that follows a power-law is that when the data is plotted 

on a log-log scale, the distribution shows itself to be linear (with the slope based on the exponent)



which is how we will identify power-law distributions. A sample synthetic plot of the (pure power- 
law) distribution of visitors to websites is shown in Figure 6.9. Given that this is a plot of synthetic 
data we would expect the correlation co-efficient to be 1.0. In out case this value was 0.9998.
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Figure 6.9 : A power-law distribution plotted on a log-log scale

If however the data is plotted on conventional (linear) scale axes then the curve of data that follows a 
power-law distribution would be an L shape, as shown in Figure 6.10 and is seen to hug the axes of 
the diagram. This is using the same synthetic data that we used in Figure 6.9.
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Figure 6.10 : A powcr-law distribution plotted on a linear scale

A simple description of a power-law distribution is that the data lias:

• a few elements that score very high
• a medium number of elements with average scores
• a huge number of elements with very low scores

If we plot the outdegree distribution of our random sample of 5,000 web pages on axes of 
linear scale the result should be an L shaped graph as would be expected were the data to approximate 
a power-law distribution. This graph is shown in Figure 6.11 and as can be seen, the graph is L shaped 
and hugs the axes, which is the signature of data that follows a power-law distribution when plotted 
on linear axes.
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Figure 6.11 : The outdegree distribution of our random sample plotted on a linear 
scale

However, i f  we plot the outdegree distribution o f our random sample on axes o f log-log 

scale the result is shown in Figure 6.12. I t  is clearly visible (by examination) that this result 

approximates a power-law distribution (albeit w ith slight deviations) and this is as we would expect 

were our sample valid and be representative o f true W W W  link distributions. The included trendline 

has a correlation co-efficient o f  0.8692.

Outdegree

Figure 6.12 : The outdegree distribution of our random sample plotted on a log-log 
scale including trendline (correlation co-efficient is 0.8692)
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This plot in Figure 6.12 ignores the fact that many o f the links that we examined were 

broken links and Figure 6.13 shows a plot o f  the out-degree distribution for the random sample o f 

web pages, excluding broken links. Once again, the graph is plotted on a log-log scale and we can see 

that the result is similar to Figure 6.12 and that the non-broken outdegree o f  the random sample o f 

pages also approximates a power law.

Figure 6.13 : The outdegree distribution of our random sample excluding all broken 
links plotted on a log-log scale, with trendline (correlation co-efficient 0.865)

Recall that we are interested in both off-site and on-site out-links and i f  we examine the 

distribution o f  off-site out-links in isolation61 (ignoring that many broken links exist) we can see that 

this too approximates a power-law (to a greater extent) as can be seen in Figure 6.14.

61 ‘In isolation’ refers to the fact that just on-site or off-site links are displayed



Off-site outdegree

Figure 6.14 : Hie off-site outdegree distribution o f  ou r random  sample plotted on  a 
log-log scale with trendline (correlation co-efficient 0.8947)

Examining the on-sitc outdegree distribution (in isolation also) of on-site links (once again 
including broken-links) we can see that this also approximates a power-law distribution and is plotted 
in Figure 6.15.

Figure 6.15 : The on-sitc outdegree distribution o f  our random  sample plotted on a 
log-log scale with trendline (correlation co-efficient =  0.8679)
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If we plot both graphs again this time removing all broken-links the findings are as 
expected and differ little from the plots in which all links were included. Figure 6.16 illustrates the log- 
log plot of die distribution of off-site outdegrees of of-site links in isolation.

Figure 6.16 : T he off-sitc outdegree distribution o f  ou r random  sample plotted on  a 
log-log scale with broken links removed, including trendline (correlation co-efficient 
=  0.9005)

Finally, the results of the distribution of on-site outdegrees of non-broken on-site links arc 
plotted in isolation on Figure 6.17 with the expected results.



10000

On-site outdegree

Figure 6.17 : The on-site outdegree distribution o f our random sample plotted on a 
log-log scale with broken links removed, including trendline (correlation co-efficient 
= 0.8542)

By examining the distribution o f outdegrees from  our random sample, we have illustrated 

that the distribution approximates a power-law and that this is precisely what we would expect to find 

i f  our sample adequately reflected the WWW.

We know [Broder et al., 00] that document indegrees (including off-site indegrees) also 

approximate (or follow) a power-law distribution. Consequently, when building a dataset to support 

faithful experiments into linkage-based retrieval o f web pages, the indegree distribution o f links within 

the dataset should approximate a power-law distribution and our average outdegree figures indicate 

the link density that we would expect to find in such a dataset. We w ill now examine the requirements 

fo r such a dataset.
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6.4 Sp e c if ic a t io n  of A  Dataset  t o  f a it h fu l l y  suppo rt  Lin ka g e-based  

Retrieval  E x pe r im e n t s

As a result o f our random sample o f 5,000 web pages and the work o f the TREC web 

track organisers into methods o f constructing a test collection [Bailey et al., 01] and identifying that 

indegree distributions o f web pages follow or approximate a power law we can identify the 

requirements fo r a test collection that is to support linkage-based retrieval experiments. This test 

collection should:

•  Model real web search, by means o f

■ A  sufficiently large dataset [Bailey et al., 01].

■ Representative web queries [Bailey et al., 01].

* Sufficiently complete relevance judgments [Bailey et al., 01].

■ Sufficiently high generality o f the dataset so as to clearly illustrate any benefit which 

linkage-based retrieval techniques bring to web retrieval.

•  Include the required link structure to accurately reflect the true link structure o f the W WW  

and in so doing enable meaningful experiments into linkage-based retrieval methods. This 

structure can be thus summarized:

■ Must have an average off-site indegree o f  (or near) 4.9 based on our findings from 

our random sample o f 5,000 web pages after we had removed all broken links.

■ Must have an average on-site indegree o f  (or near) 14.2.

■ The indegree distributions (both off-site and on-site) must approximate a power-law 

distribution w ith exponents (and the slope o f  the data on a log-log plot) capable o f 

producing the two figures mentioned above.

We will examine each o f the requirements now, starting w ith the dataset.



The concept o f how large is a sufficiently large dataset is an issue that we will not examine 

in this dissertation, except to m irror the TREC web track organisers [Bailey et al., 01] when they say 

that “ the desire for representativness o f  die general web argues for a large collection, but the 

requirement for ‘sufficiently complete’ relevance judgements argues against it” . Our belief is that the 

compromise decided upon by the TREC Web track organizers for a WTlOg size dataset (1.69 million 

H T M L  documents) is sufficient and this belief is validated by the fact that the TREC 2002 Web Track 

test collection (the .gov62 collection), the successor to WTlOg, is no larger than WTlOg. In  fact, the 

total number o f documents in the .gov collection is 1,247,753 [GOV, 02], which is actually somewhat 

smaller that WTlOg. We have not carried out an examination o f the .gov collection and we await the 

findings o f the TREC participants who are using the .gov collection for TREC-2002.

Queries
Representative web queries are easily generated by extracting queries at random from a web 

query log, as was the case with TREC queries from recent years. We do however suggest that 

cognisance is taken o f the distribution o f  query lengths as we have done in our experiments in 

Chapter 4 and as has been discussed in [Silverstein et al., 98]. We believe that it would be a mistake to 

simply choose web queries that are more likely to support linkage-based web retrieval (such as short 

or broad focus queries) as this would serve to devalue the results o f the experiments. Rather, choosing 

the correct distribution o f  web queries based on their length w ill illustrate the benefit o f techniques 

for combining content and linkage evidence (based on the query) such as the scarcity-abundance 

technique we have described in Chapter 4 and may even illustrate the need for clever methods o f 

combining linkage and content scores which are optimized for the particular requirements o f a query.

R e le v a n c e  J u d g e m e n ts

The requirement fo r sufficiently complete relevance judgements is the primary issue that 

prohibits us from generating such an ideal dataset and running linkage-based evaluation experiments 

ourselves. An organization such as NIST as part o f the TREC series o f  conferences has the resources 

to manually generate relevance judgements over a text collection such as WTlOg. However, not even 

N IST have the resources to generate complete relevance judgements, rather they use the pooling 

technique to drastically reduce (to 4% o f the full dataset) the number o f documents that require 

human inspection. The pooling technique requires numerous diverse retrieval algorithms to generate

Dataset

62 The .gov collection has been generated from a crawl o f .gov web pages, presumably restricted to .gov domains due to legal 
issues



the pool o f candidate documents and then human inspection and judgement is required to evaluate 

each document in the pool. Even the pooling technique is far beyond the capabilities o f our resources. 

For example, in TREC-9 (web track) 70,071 documents required human inspection in order to build 

incomplete relevance judgements. This would take a single individual evaluating 60 documents per 

hour, working 40 hours per week, over 29 weeks to complete the evaluation process. Had the WTlOg 

dataset been larger, there would have been an even larger number o f documents requiring human 

relevance judgements and this is another reason why W TlOg was no larger than 1.69 million 

documents.

Generality
Generality is an issue that is o f  vital importance i f  we are to see significant benefits being 

gained by any one retrieval technique over another. Generality affects the queries chosen because we 

must ensure that relevant documents for each query exist in the test collection, otherwise the queries 

would be useless for experimentation. A  certain minimal level o f  generality is required and we see no 

reason to deviate to any great extent from the W TlOg level which was 0.00155 which infers that

0.155% o f all documents in the dataset have been (manually) found relevant (using the pooling 

technique) to any one o f the fifty web queries that comprised part o f  the test collection. I t  is also o f 

utmost importance that when generating a dataset that one does not choose documents for the 

dataset based on document content being related to some particular topic. In  other words, the dataset 

must dictate possible topics as opposed to the topics dictating what documents comprise the dataset. 

Recall that we are told that die ‘category specific (indegree) distributions exhibit very large derivations 

from  power-law scaling’ from  [Pennock et al., 02], therefore, in order to accurately evaluate linkage- 

based rettieval we must accurately recreate the linkage structure o f  the WWW, and category specific 

datasets would not approximate a natural power-law distribution o f link densities.

link Structure
The second and final set o f requirements for a faidiful representation o f the W WW  is that 

we must accurately recreate the link structure o f the WWW, which we have discussed at length in this 

and the previous two chapters. Previous datasets such as W TlOg have failed in this requirement and 

we can see that accurately recreating the linkage structure o f the W W W  was not one o f die top 

priorities when generating the W TlOg dataset as we are told that they (the TREC web track 

organizers) wished to construct a corpus which “ contained many inter-server links (to permit 

meaningful experimentation w ith hyperlinks)”  [Bailey et al., 01] as opposed to aiming to accurately 

recreate the linkage structure o f the WWW. Our findings have shown that documents within the



dataset must have an average off-site indegree o f (or near) 4.9, an average on-site indegree o f (or near)

14.2 and that the indegree distributions (both off-site and on-site) must approximate a power-law 

distribution. We believe that linkage-based experiments on such a dataset w ill clearly illustrate the 

benefit to be gained from linkage-based retrieval techniques such as SiteRank over conventional 

content-only techniques.

6.4.1 How t o  G e n e r a t e  a  F a i t h f u l  T e s t  C o l l e c t i o n

We have mentioned earlier that test collection queries can be extracted from query logs to 

match length distribution figures, but the question o f how to generate a dataset o f documents o f 

suitable size w ith a representative link structure for use in W W W  information retrieval experiments is 

not as straightforward. So let us examine a few options:

•  I f  we crawl all the W W W  then we w ill obviously m irror exactly the link structure, but this is 

not an option as not all documents can be reached by following the linkage structure o f the 

W W W  and in any case, this would be far beyond the resources o f most research groups.

•  I f  we randomly sample 1.5 million pages then we w ill get pages w ith a representative 

outdegree structure, but unless the pages that are linked to are also in the dataset (chosen 

randomly also) then this out-degree structure is meaningless so this is unlikely to succeed. 

This does assume a source o f  random URLs, although the technique used by SOWS I I I  

integrated w ith the Google search engine would probably suffice for this purpose.

•  Simply randomly sampling a number o f  pages again (123,00063 w ill suffice) and adding in all 

documents referenced by these documents w ill produce a dataset o f almost 1.5 million 

documents in size. However, the linkage structure would only be based on the 123,000 

randomly chosen documents (which w ill mostly have an off-site indegree o f 0, as we have 

seen from the Gaeilge crawl) and our findings presented in the previous chapters would 

indicate that the majority o f the other documents (at least 63.8%) would only have an 

indegree o f 1. We would still need to remove some documents from the dataset to produce

63 123,000 web pages will contain non-broken links to 1,498,853 unique documents based on the findings of our random 
sample, which shows that each document (on average) contains 19.1 non-broken links to other documents, but we have 
taken into account problems caused by duplication o f linked URLs. From our random sample, over 35% of links did not 
identify new (never before seen) URLs.



1.5 million documents, but care must be taken to retain the representative link structure at 

each removal (or addition) o f  a document from the dataset, which is by no means a trivial 

task.

•  We could send out a web crawler to download 1.5 million pages from  the WWW. In  Chapter

5 we have illustrated that simply sending out a web crawler using a queuing algorithm that 

weights off-site links higher than on-site links w ill overestimate the number o f off-site links 

and for that reason a test collection based on this dataset w ill not be representative, however 

a subset o f it  might. One could send out a simple FIFO  queue (breadth first search) and 

gather web data this way. Once again, however, only out-links w ill be extracted and the 

problem w ith the distribution o f in-links o f the previous point applies once again here. In  

addition, by using a web crawler (based on some queuing algorithm) one is more likely to 

find oneself stuck in local small highly connected components. I f  one kept crawling the 

WWW, periodically examining the link structure o f  the crawled data until the desired link 

structure is found, then all control over the size o f the final dataset is relinquished.

The only realistic alternative to crawling the W W W  and stopping when one has attained 

the desired linkage structure and a minimum number o f documents is to follow the approach taken by 

the TREC Web track organizers when fabricating WTlOg. As we have discussed in Chapter 3 (Figure

3.10), the W TlOg corpus is a subset o f  the 100GB VLC dataset, which is itself a subset o f  a 300 GB 

Internet Archive crawl completed in early 1997. WTlOg, we are told [Bailey et al., 00] “ was 

constructed by selecting from  a superset o f documents in such a way that desirable corpus properties 

were preserved or optimised” . We have already discussed our desirable corpus properties above.

The TREC web track organisers employed a four-phase process [Bailey et al., 01] when generating the 

W TlOg dataset. These phases were:

1. Choice o f superset, which was the 100GB VLC2 subset o f  an Internet Archive crawl from 

1997, chosen due to time constraints and the “ time consuming nature”  o f  certain phases o f 

the analysis process. This superset was not chosen due to any particular linkage structure o f 

the documents contained therein, rather it  was readily available.

2. Rejection o f  unwanted data, based on removing non-English documents, eliminating 

duplicate documents (based on checksums) and removal o f  documents whose URL did not 

end w ith  a .html (and variants) or .txt.



3. Characterisation o f servers, which involved the selection o f a set o f requirements 

requirements that servers must meet in order to be ranked for selection for the final dataset.

4. Selection o f W TlOg servers and pages from servers based on server characterisation 

measures discovered in the previous phase which include; server size distribution, in-link and 

out-link densities and presence o f homepages and relevance to 10,000 large web task queries.

We recommend a similar phased process, but in our case, we foresee only three phases to be 

necessary given that we already know the required characterisation o f the dataset from our 

experiments presented previously. Our suggested phases are as follows:

1. Generate a superset o f documents, most probably by a process o f crawling the WWW, 

although were an alternative source o f data o f suitable size w ith a rich link structure to be 

found then this may be sufficient. This superset must contain a sufficient quantity o f links 

between documents to allow the extraction o f a subset o f 1.5 million documents with their 

associated linkage structure (7.23 m illion off-site links and 21.3 million on-site links) 

distributed over all documents so that a power-law distribution is approximated. This will 

allow for the extraction o f a component o f the superset that w ill accurately recreate the link 

structure o f the WWW. The exact size o f this superset is dependent on the queuing algorithm 

employed by the web crawler as this w ill dictate the link density o f the superset. As we have 

seen, i f  phase 1 produces a superset (for example, the 100 GB collection) that is incorrect 

(with respect to our requirements) then the whole process will fail to produce a 

representative subset. We feel that diis area is worthy o f additional research.

2. A  certain amount o f  unwanted data w ill have to be rejected such as the elimination o f binary 

or duplicate documents. This may influence the size o f the superset created in phase 1, so 

one must consider this and be prepared to prune the superset prior to executing phase 3 

(below).

3. Finally, generate a subset o f  the required size (we suggest 1.5 million documents), extracted 

from the superset, along w ith the links between these documents, which should be 7.23 

m illion off-site links and 21.3 m illion on-site links. These links should be distributed to 

approximate a power-law distribution. A ll candidate documents must be weighted for 

selection w ith respect to their value w ithin the subset and therefore these values must be 

calculated based on the documents that already have been selected for the dataset. Taking



such an approach, documents are judiciously added from the superset to the subset until die 

required properties o f  the subset have been realised. We refer the reader to [Bailey et al., 01] 

for a description o f a similar a process, which realised different goals.

We cannot hope to develop die dataset with the representative link structure ourselves and 

subsequendy develop the incomplete relevance judgements to support meaningful experiments. Even 

generating the pool o f  relevant documents in order to generate incomplete relevance judgements 

requires many diverse retrieval algorithms and techniques, each o f which produces ranked lists o f 

highly scored documents for each query. In  TREC-9, a total o f 23 research groups participated in the 

Web track [Voorhees &  Harman, 00] and these groups produced 59 different sets o f results that were 

added to the pool. This means that possibly 59 diverse retrieval algorithms produced these results, 

which one single research group would be unable to replicate w ith in any reasonable resource 

constraints. The diverse nature o f these retrieval algorithms is clearly highlighted by the fact that only 

the top 100 ranked documents o f each algorithm were added to the pool, yet the mean actual pool 

size for each query [Hawking, 01] was 1,401. In  addition, it has been found [Zobel, 98] that the quality 

o f the pools used (based on die diversity o f systems contributing and the number o f scored 

documents taken from each experiment) do affect the quality o f  the resulting test collection. 

Therefore were one single research group to attempt to generate pools o f documents required for 

incomplete relevance judgements then many diverse retrieval systems would need to be designed, 

developed and deployed in order to generate a quality pool o f documents from which incomplete 

relevance judgements can be distilled. This would be beyond the resources o f most research groups.

Recall from earlier that one o f the requirements when building a test collection to support 

experiments into W W W  information retrieval is that the test collection must include the required and 

appropriate type o f link density to enable meaningful experiments into linkage-based methods. We 

have shown that the TREC test collections do not faithfully reproduce the actual linkage structure o f 

the W W W  and have identified the linkage requirements that any such test collection should adhere to. 

However, it is our belief that in order to generate such a dataset (o f adequate size) would require 

crawling a dataset many times larger and extracting a densely linked subset approximating a power law 

distribution which is beyond the scope o f both our resources. We simply do not have the available 

resources to crawl a large dataset, which accurately recreates the linkage structure o f the W W W  (in 

order to support faithful experiments into linkage-bases retrieval), and generate (even) incomplete 

relevance judgements. Even the TREC web track organizers only processed the 100GB VLC2



collection when generating WTlOg and not the (readily available) 320GB superset o f the VLC2 due to 

the “ time consuming nature o f certain phases o f  the analysis” .

I t  is for reasons like this that the TREC series o f conferences is so valuable to the research 

community as it takes the tedious, time-consuming and very expensive work out o f  the process o f 

evaluating retrieval performance. While it would be impossible for a participating group such as 

ourselves to build the dataset and gather queries w ith relevance judgements, by operating under the 

umbrella o f TREC, we are given an opportunity to evaluate algorithms in an environment that models 

the real world (albeit in a limited way sometimes) to which we would otherwise not have the resources 

to replicate ourselves.

6.5 Sum m ary

A  test collection to support experiments into retrieval o f documents from  the W W W  has 

an associated list o f requirements, which include:

•  to model real W W W  search by means o f a sufficiently large dataset, representative web 

queries and sufficiently complete relevance judgements.

•  to include the required and appropriate type o f link density.

In  order to examine the required link density and the appropriate type o f  link density that 

would be required to fu lfill the above requirements, we sampled 5,000 web pages chosen at random 

from the W W W  and examined the out-link structure o f these web pages. Our findings suggested that 

the average web page has an average off-site outdegree o f 5.2 and an average on-site outdegree o f 

14.6. However, when we revised these figures to remove broken links from  the sample we found that 

the average off-site outdegree dropped to 4.9 w ith a corresponding decrease in average on-site 

outdegree to 14.2. This clearly illustrated that the actual link densities and type distribution on the 

W W W  are not reflected in either WT_Connected or WTlOg, although WT_Connected is far closer to 

the real WWW.

Based on these figures we could state that the average web page has an off-site indegree o f 

4.9 and on on-site indegree o f 14.2. However, these averages are not distributed uniformly over all 

web pages. I t  has been found that the indegree and outdegree distribution o f web pages approximates



a power-law distribution and our random sample is no exception. Therefore, we were in a position to 

state that a test collection to faithfully support linkage-based retrieval experiments must have:

•  an average indegree figures as just mentioned above.

•  this indegree distributed according to an approximate power-law distribution.

•  a dataset o f suitable size (1.5 m illion documents seems sufficient).

• representative web queries, perhaps from  a query log, which m irror the discovered 

distribution o f query lengths.

•  relevance judgements which are sufficiently complete for the dataset and queries.

We have shown that link densities on the W W W  are not reflected in either WT_Connected 

or WTlOg, although WT_Connected is far closer to the real W W W  and we have developed a set o f 

requirements fo r a test collection, which could faithfully support linkage-based retrieval experiments.

We have also discussed some methods o f generating such a test collection, but concluded 

that the only sure method was to gather a large superset o f documents and extract a subset, which 

becomes the dataset and fulfills the requirements outlined above. However, this is as far as we can 

take this research. We simply do not have the available resources to crawl a large dataset (and likely 

extract a subset), which accurately recreates the linkage structure o f the W W W  (in order to support 

faithful experiments into linkage-bases retrieval), and generate (even) incomplete relevance 

judgements.

Besides simply confirming our inability to create a TREC-like collection, we have 

provided the research community w ith a path to follow, which we firm ly believe is the next logical 

step in experimenting w ith linkage analysis techniques. W ith WT_Connected we have shown that 

increasing linkage densities can improve retrieval performance, albeit only slightly. For too long the 

linkage-based IR  field has been metaphorically stuck on the starting line, trying to evaluate algorithms 

w ith much potential, but on test collections that were always going to cause experiments to fail. W ith 

the findings o f the research presented in this thesis, we have dropped the flag and hopefully now the 

race can commence, a race to develop and successfully evaluate new and better algorithms than 

PageRank, algorithms to power new and even better search services than Google.

-228-



C h a p t e r  7

CONCLUSIONS A N D  FUTU RE RESEARCH O PPO RTUNITIES

7.1 C o n c lu s io n s  f r o m  t h i s  R e s e a r c h

In  recent years, the widespread use o f the W W W  has brought information retrieval systems 

right into the homes o f many people. We are a very fortunate generation, in that we have access to 

many billions o f documents (web pages) and have (free-of-charge) access to powerful, fast and highly 

efficient search facilities over these documents provided by search engines such as Google 

[G O O G LE, 02] or Teoma [TEOMA, 02]. In  the early days o f publicly accessible search engines (all 

o f  9 years ago), search engines were designed using conventional term weighting strategies and were 

based on directly computing the similarity between a query and the text appearing in a web page. The 

term weighting strategies implemented were likely based on the Vector and Probabilistic models o f 

IR, which we have discussed in Chapter 1. While these initial "first generation" o f web search engines 

addressed the engineering problems o f web spidering and efficient searching for large numbers o f 

both users and documents, they did not innovate much in the approaches taken to searching.

However, the last five years have shown that we can extract additional latent information 

from web documents, which we believe can be used to aid retrieval performance o f web search 

engines. This latent information is mined from the ubiquitous hyperlink and the exploitation o f this 

latent information is called linkage analysis. Anecdotally, linkage analysis appears to have improved 

retrieval effectiveness o f  web search, yet there is little scientific evidence in support o f the claims for 

better quality retrieval, which is surprising. Participants in the three most recent TREC conferences 

(1999, 2000 and 2001) have been invited to perform benchmarking o f information retrieval systems 

on web data and have had the option o f using linkage information as part o f their retrieval strategies. 

The general consensus from  the experiments o f these participants is that linkage information has not 

yet been successfully incorporated into conventional retrieval strategies.

The goal o f the TREC series o f conferences is to foster research into the information 

retrieval and encourage participants to take part in retrieval benchmarking experiments in a spirit o f 

openness and knowledge sharing. The evaluation methodologies employed for the TREC conference
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experiments are the standard measures o f Precision and Recall which are used in conjunction with test 

collections. Test collections have a long tradition o f  use in IR  and they comprise documents, queries 

and relevance judgements and are used in large-scale retrieval experiments. TREC has supported 

experiments into W W W  IR for the TREC-8, TREC-9 and TREC-2001 web tracks (with 2002 not 

having taken place yet). The aim o f  these web tracks were to provide a framework within which 

participating research groups could come together and evaluate their retrieval techniques, especially 

linkage-based techniques on a test collection o f over 1.69 m illion web documents (for TREC-9 and 

TREC-2001).

There are three generally accessible test collections for the evaluation o f retrieval o f Web 

documents (WT2g, W TlOg and VLC2) and these were available to participants in the TREC series o f 

conferences. We have presented in this thesis experiments based on our own linkage-based retrieval 

strategies which have been evaluated on both WT2g and WTlOg. Our TREC-8 experiments [Gurrin

&  Smeaton, 99] into linkage-based retrieval were based around citation ranking and were unsuccessful 

at improving retrieval performance (over conventional content retrieval) using the 'A million 

document WT2g dataset. This finding was mirrored by all other participants at TREC-8, which was a 

surprise to many as anecdotally it was felt that linkage analysis improved retrieval performance over 

conventional content-only retrieval.

For the TREC-9 conference, we developed more advanced algorithms based on citation 

ranking, spreading activation and co-citation analysis incorporating spreading activation [Gurrin &  

Smeaton, 00]. The test collection provided by TREC was a much larger test collection called WTlOg 

which comprised 1.69 million documents, which we have examined in detail. Our findings from our 

TREC-9 experiments showed that linkage-based retrieval was again o f  no benefit to retrieval 

performance and these findings (once again) were shared by other participating groups. However, our 

belief was that the test collection was not capable o f  faithfully supporting linkage-based retrieval 

experiments.

As part o f  a research internship in A T & T  research labs we developed the SiteRank linkage- 

based retrieval algorithm to a specified requirement fo r an algorithm based on PageRank, but which 

propagated rank between web pages by taking a website-centric view o f the process. W ith the 

conventional PageRank algorithm, it is possible to artificially increase the rank o f  a web page by 

creating a clever synthetic linkage structure surrounding that page. The SiteRank algorithm that we 

developed and present as part o f this research helps eliminate this problem by lim iting the influence



o f  web pages from any one web site, thus making it more difficult and more expensive to artificially 

increase a web page’s rank in this manner. In  our experiments (on a different test collection described 

below), SiteRank slightly outperforms PageRank, but SiteRank’s main augmentation to PageRank is 

that it was developed to help combat the problem o f  search engine persuasion and due to the nature 

o f  die underlying dataset, we were not in a position to specifically test SiteRank’s search engine 

persuasion defeating properties.

Given our belief that neither WT2g nor WTlOg (both o f  which included incomplete 

relevance judgements) were capable o f  supporting linkage-based retrieval techniques (including 

SiteRank) we extracted a densely linked subset from  W TlOg which we called WT_Connected to 

support our experiments. WT_Connected maximised the number o f and density o f off-site links, as 

much as we could given that W TlOg was our source. A  number o f new experiments based on our 

previous TREC experiments (for both TREC-8 and TREC 9), SiteRank and PageRank were executed 

on this new dataset. In  addition, we evaluated a new method o f combining linkage and content 

evidence together to produce a final ranking. Prior to this the most widely used method was to 

incorporate best guess parameters into the process, or an alternative technique which regulated 

linkage influence based on the number o f terms in the query. Our technique was based on the size o f 

die result-set o f highly scored documents and operated on die assumption that a larger result-set 

signifies a broader query and this requires higher linkage influence and vice-versa. However, any 

improvements shown by this technique are not significant and additional experiments would be 

beneficial on a new test collection.

Our findings from  these experiments illustrate that it is possible to gain moderate 

improvements in retrieval performance when running experiments using standard TREC evaluation 

procedures and measurements on WT_Connected as opposed to WTlOg. These findings are 

discussed in Chapter 4. Hence, we can conclude that it is possible to show retrieval performance 

improvements using conventional TREC evaluation methodologies i f  the underlying test collection is 

better capable o f supporting experiments into linkage-based retrieval. By this, we mean that the test 

collection must contain a dataset w ith a suitable density and type o f  links between documents. The 

question remained, what is a suitable link density and what types o f  links are suitable and in what 

quantities? In  an attempt to answer these questions we made three crawls o f live W W W  data.

The first crawl was an Irish language specific crawl which downloaded 26,798 documents in 

die Irish language, each o f which had an average off-site indegree o f 1.55 which was quite similar to
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die average off-site indegree figure o f WT_Connected which was encouraging for the results o f our 

experiments as presented in the previous chapter. However, our intuition suggested that the 

distribution o f off-site indegrees across the 26,798 documents was not uniform and reflected the 

choice (and quantity) o f seed URLs that we made. Our belief was that the true off-site indegree o f 

documents was actually being underestimated by the Irish language crawl, and by WT_Connected as

The second and third crawls were more conventional crawls o f W W W  data, in that they 

were not language specific and no restrictions were placed on the crawler’s movements when 

gathering documents, save the queuing algorithm employed and any restrictions from the crawler’s 

adherence to the robots exclusion standard. The findings o f these two crawls (264,794 and 126,996 

documents in size) suggests that the figure o f  1.55 off-site links into each document as found by the 

Irish language crawl was indeed an underestimation o f  the real nature o f  W W W  data. These crawls 

produced average off-site indegree figures o f 16 and 21 respectively, however, when these figures are 

adjusted to take into account irregularities we found in the link structure o f the crawled data die 

figures dropped to 10 and 12.6 respectively. Neither o f these figures were similar to the figures for 

both the Irish language crawl and WT_Connected. We refer the reader to Figure 5.10, 5.11 and 5.12 

as well as Table 5.15 for a comparison o f the findings from the web crawls.

Given that the three crawls produced different average off-site indegree figures, we were 

not in a position to conclude that WT_Connected is actually representative o f true W WW linkage 

structure. Rather, more experimentation was needed so we undertook to generate a random sample o f 

web pages in order to identify the actual link structure o f the WWW.

We sampled 5,000 web pages chosen at random from die WWW, and examined the out- 

link structure o f  these web pages. Our findings suggested that the average web page has an average 

off-site outdegree o f 5.2 and an average on-site outdegree o f 14.6. However, when we revised these 

figures to remove broken links from the sample we found that the average (operational) off-site 

outdegree dropped to 4.9 w ith a corresponding decrease in average on-site outdegree to 14.2. This 

clearly illustrated that the actual link densities and type distribution on the W W W  are not reflected in 

either WT_Connected or WTlOg, although WT_Connected is a far closer to the real WWW.

Based on these figures and since each link has both a source and a target document, we 

concluded that the average web page has an off-site indegree o f 4.9 and on on-site indegree o f 14.2. 

This clearly illustrated tiiat the actual link densities and type distribution on the W W W  are not



reflected in either WT_Connected or WTlOg, although WT_Connected is far closer to the real 

WWW. However, these average web page indegree figures are not distributed uniformly over all web 

pages. I t  has been confirmed that the indegree and outdegree distribution o f web pages follows (or 

approximates) a power-law distribution and our random sample is no exception.

As a result o f our random sample o f web pages we have developed a set o f requirements 

for any test collection which is expected to support linkage-based retrieval experiments. Such a test 

collection must have:

•  an average off-site indegree o f 4.9 and an average on-site indegree o f  14.2.

•  these indegrees distributed according to (or approximating) power-law distributions.

•  a dataset o f suitable size (1.5 million documents seems sufficient).

•  representative web queries, perhaps from a query log, which m irror the actual distribution o f 

search engine query lengths.

•  relevance judgements which are sufficiently complete for the dataset and queries.

We have also discussed some methods o f generating such a faithful test collection, but 

concluded that the only sure method was to gather a large superset o f documents and extract a subset, 

which becomes the dataset and fulfills the requirements outlined above. However, this is as far as we 

can take this research. The next step, which is the creation o f the dataset and relevance judgements, 

will be up to an organization such as NIST because generating a test collection is an extremely 

resource hungry activity and it requires the resources o f organisations such as NIST to co-ordinate 

large-scale retrieval experiments using test collections as is the case w ith the annual TREC series o f 

conferences. For example, to generate a test collection as described above one would have to crawl a 

large superset o f documents and distill from this superset a smaller set o f documents that eventually 

becomes the dataset. In addition, relevance judgements must be constructed and we have illustrated 

that this is beyond the resource capabilities o f a small research group as we estimate that it would 

require (assuming a number o f  sources o f documents for pooling) 29 man weeks to generate 

incomplete relevance judgements for 50 queries on a test collection similar in size to WTlOg.

Besides simply confirming our inability to create a TREC-like collection, we have 

provided the research community w ith a path to follow, which we firmly believe is the next logical
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step in experimenting w ith linkage analysis techniques to aid retrieval performance. With 

WT_Connected we have shown that increasing linkage densities can improve retrieval performance, 

albeit only slightly.

7.2 T e c h n iq u e s  fo r  Co m b in in g  link ag e  a n d  Co n t e n t  Ev id e n c e  at 

q u e r y  t im e

Although die improvements shown by our scarcity-abundance technique for regulating 

linkage influence outperforms best-guess parameters regulation technique at rank 5 and 10 

documents, and is at least equal to the best-guess parameter values at all levels until 30 documents, the 

performance improvement is only just over 2% which is not large enough to prove the benefit o f the 

scarcity-abundance technique. However, we believe that this area is wortiiy o f additional research. 

Our intuition suggests that a two-phase process would be required to provide effective retrieval 

facilities over web data. The first phase would be to execute the query and obtain a result-set, then 

based on the result set, identify an optional ranking formula fo r that query (incorporating a number o f 

sources o f evidence). Phase 2 would be to rank the documents from the result-set from the first phase 

using this optimal ranking formula. We have only examined situations in which two sources o f 

evidence are available (content and linkage), however, the technique may be expanded to incorporate 

other sources o f evidence (such as media metrics or click-through rates). This could be visualised as 

each query being mapped onto a point in an n dimensional ‘query space’, where n is the number o f 

sources o f evidence available, and the point inferring the ranking formula.

There are other likely techniques fo r combining linkage and content evidence as well. For 

example, the best-guess parameter figures we have oudined would require tuning, but all experiments 

must be executed on a test collection that faithfully models the W W W  and is capable o f supporting 

such experiments.
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A ppendix A

In  order to identify the language o f  a document we used a combination o f most frequent 

short tokens per language and most frequent trigrams per language. We calculated die probabilities o f 

a term being found next in a document using the relative frequencies o f the occurrences o f all terms 

over a very large number o f observations. The top Irish Terms and dieir probabilities are shown 

below.

Identifying Irish  D ocum ents

ar agus na ag tà sa ò sé seo bhi
.02832 .02603 ,02531 .01333 .00875 .00693 .00666 .00661 .00640 .00596

Table AT The top 10 Irish Terms and their probabilities

ach | ar_ na eh _na | _bh Gus agu nn
.00932 1 .00885 .00757 .00746 .00523 .00519 [ .00517 .00461 .00460 .00455

Table A.2 : The top 10 Irish Trigrams and their probabilities

The probabilities o f a term occurring are calculated according to the following formula, 

letting tf(T„) be the term frequency o f T„ in the corpus and N  is die total number o f words in die 

corpus:

I t  has been found by experimentation within our university [Clarke &  Kelly, 98] that as little 

as 150KB o f text is required as a corpus to select die most frequent terms and trigrams. For diis



experiment, we gathered 1.5MB o f Irish language text (1 MB was chosen from newspapers and 0.5 

M B was chosen from  websites1.

Once we had the probabilities o f all terms in a corpus calculated, ten o f the top terms were 

selected for use in the language disambiguation task. These were not simply the top ten terms as there 

would have been some crossover between top tanked Irish terms and top ranked English terms. 

Therefore the top 10 acceptably unique terms &  trigrams were chosen. Table A.3 illustrates three 

terms w ith high probabilities in both Irish and English.

TERM IRISH PROBABILITY ENGLISH PROBABILITY
i 0.0170186428 0.0052848242
as 0.0028423538 0.0070093457
a 0.0400058345 0.0193035157

Table A.3 : Illustrating die cross-over between commonly occurring Irish and 
English terms

Through the use o f both term tokenisers and trigram tokenisers any incoming document 

was decomposed into vectors o f both terms and trigrams. Based on these vectors each document was 

given a probability o f being Irish based on the frequency o f occurrences o f the top 10 terms and 

trigrams in both Irish and English. For example the Irish Trigram score o f a document would be the 

sum o f the probabilities o f  each occurrence o f each o f  the top 10 Irish Terms divided by the total 

number o f terms. In  this way we get a probability score for each document being Irish. I f  the 

document passes a threshold it is accepted as Irish, however i f  the document is does not pass a 

threshold then it is the subject o f additional examination. This is because many Irish Language web 

pages w ill not be entirely Irish, even i f  a fraction o f a document was Irish we wanted to be able to add 

it to the dataset. Therefore, i f  a document was not Irish, but the probability value for the document 

surpassed a lower bound, then we calculated the probability o f die document being English using a 

similar manner to the calculation o f Irish probabilities. I f  a document had a high English probability 

yet had a sufficiently high Irish term score the document was assumed Irish.

In  addition to the problem o f bi-lingual documents, there are other languages on the Web 

other than Irish and English that may influence the language detection process. Since, by the very 

nature o f  the web being linked and since crawlers traverse the web by following links, we had to allow

1 The text was chosen from a number o f different web sites: Entertainment, News, Sport, tv listings.



for the fact that a document could be added to the queue which was neither Irish nor English. To 
combat this problem, we selected eight common European languages and using the five most 
frequently occurring terms [Grefcnstette, 97] checked each page for its similarity to these languages, in 
case the crawler was straying from Irish and English pages. Periodic examination of the URL queue 
allows us to remove any other problem URLs that we found. In this way we gathered 26,798 Irish 
language documents. Adherence to the Robots Exclusion Standard disallowed us from gathering 
additional documents that our crawler located.



A ppendix B

SiteRank Top 100 Ranked URLs

These URLs are shown in decreasing order o f SiteRank score.

RANK URL SCORE
0 http://www.netscape.com/ 20.075829
1 http://www.microsoft.coin/ 17.856512
2 http://www.yahoo.com/ 16.047762
3 http://home.netscape.com/ 14 .709599
4 http://www.microsoft.com/ie/ 13.441017
5 http://www.adobe.com/ 10.052464
6 http://home.netscape.com/comprod/mirror/index.html 0 .126648
7 http://www.adobe.com/products/acrobat/readstep.html/ 7 . 921433
B http://www.excite.com/ 7 .60487 9
9 http://www.lycos.com/ 6.079511
10 http://www.real.com/ 6.708895
11 . http://www.digits.com/ 6.6B8189
12 http://worldwidemart.com/scripts/ 6.140473
13 http://www.freeservers.com/ 5.627914
14 http://www.stpt.com/ 5.052332
15 http://www.altavista.com/ 4.689640
16 http://home.netscape.com/download/ 4 . 323414
17 http://home.netscape.com/comprod/mirror/client download.html 4.308418
18 http://www.mapquest.com/ 4 .292669
19 http://www.apache.org/ 4.046741
20 http://www.winzip.com/ 3.972477
21 http://www.macromedia.com/shockwave/download/ 3.966242
22 http://www.webcrawler.com/ 3.945361
23 http://www.apple.com/ 3. 698875
24 http://www.cnn.com/ 3. 629958
25 http://www.addme.com/ 3.437808
26 http://www.microsoft.com/windows/ie/default.htm 3.41965
27 http://home.netscape.com/computing/download/index.html 3.194697
2B http://www.webring.org/ 3.13005
29 http://www.netscape.com/download/ 2. 984217
30 http://www.netnanny.com/ 2.977 87 9
31 http://home.about.com/ 2.971290
32 http://www.realaudio.com/ 2.962301
33 http://home.netscape.com/download/index,html/ 2 . 767500
34 http://www.cyberpatrol.com/ 2 .760402
35 http://www.sun.com/ 2 .715243
36 http://www.linux.org/ 2 .601929
37 http://www.freefind.com/ 2.631474
3G http://www.egroups.com/ 2.60158139 http://www.macromedia.com/ 2.577999
40 http://www.microsoft.com/ie/logo.asp 2.546094
41 http://www.microsoft.com/frontpage/ 2.510393
42 http://www.nasa.gov/ 2.483305
43 http://www.apple.com/quicktime/ 2.455769
44 http://www.redhat.com/ 2.423023
45 http://www.microsoft.com/windows/ie/ 2.387594
46 http: //www. zdnet. com/down loads/altavista/ 2.38757
47 http://www.microsoft.com/ie/ie.htm 2.329393
48 http://www.webjump.com/ 2.309386
49 http://www.nsf.gov/ 2.296819
50 http://www.worldwidemart,com/scripts/ 2.267700
51 http://www.ibm.com/ 2 .261238
52 http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html 2 .245173
53 http://www.tucows.com/ 2 .237581
54 http://www.usatoday.com/ 2. 15026
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55 http //www.eads.com/ 2 .146364
56 http //www.weather.com/ 2.125444
57 http //www.netscape.com/comprod/mirror/client download.html 2 .094992
50 http //www.nytimes.com/ 2.090128
59 httj) //12 3counter.mycomputer.com/ 2.073024
60 http //www.whitehouse.gov/ 2.058892
61 http //www.hp.com/ 2.055855
62 http //www,eff.org/blueribbon.html 2.038750
63 http //www. hwg . orc[/ 2.0364
64 http //www.census.gov/ 2.010182
65 http //counter.mycomputer.com/ 2.008063
66 http //j ava.sun.com/ 1.998716
67 http //www.google . com/ 1.98311460 http //www.w3.org/ 1.91467
69 http //www.microsoft.com/windows/Te/download/windows.htm 1.900927
70 http //www.safesurf.com/ 1.621005
71 http //www.netmind.com/ 1. 730375
72 http //www.yahooligans.com/ 1. 704588
73 http //www.netscape.com/download/index.html/ 1.69374
74 http //www.nih.gov/ 1.685862
75 http //www.dogpile.com/ 1. 602923
76 http //www.intel.com/ 1. 647742http //www. winamp. com./ 1.586767
78 http //www.ed.gov/ 1.571733
79 http //www.icq.com/ 1.559529
80 http //www.flycast.com/about us/about-privacy.html 1.546880
81 http //www.guestworld.com/ 1.535662
82 http //www.aol.com/ 1.512522
83 http //www.northern light.com/ 1.511045
84 http //www.virtualave.net/ 1. 51092285 http //www.msn.com/ 1.496504

http //www.unitedmedia.com/comics/dilbert/ 1.484103
http //www.onelist.com/ 1. 45412280 http //www.eff.org/ 1. 43490809 http //www.cdc.gov/ 1. 43227

90 http //www.linkstoyou.com/ 1.42599
91 http //www.excite.com/navigate/ 1.422774
92 http //www.netscape.com/comprod/mi rror/index.html 1. 417294
93 http //www.switchboard.com/ 1. 405176
94 http //www.ebay.com/ 1.38906
95 http //www.house.gov/ 1.388995

http //www.sgi.com/ 1.37562997 http //www.nlm.nih.gov/ 1. 363653
98 http //www.networksolutions.com/ 1.359643
99 http //www.persiankittv.com/ 1.313381

http://www.eads.com/
http://www.weather.com/
http://www.netscape.com/comprod/mirror/client
http://www.nytimes.com/
http://www.whitehouse.gov/
http://www.hp.com/
http://www.census.gov/
http://www.google
http://www.w3.org/
http://www.microsoft.com/windows/Te/download/windows.htm
http://www.safesurf.com/
http://www.netmind.com/
http://www.yahooligans.com/
http://www.netscape.com/download/index.html/
http://www.nih.gov/
http://www.dogpile.com/
http://www.intel.com/
http://www.ed.gov/
http://www.icq.com/
http://www.flycast.com/about
http://www.guestworld.com/
http://www.aol.com/
http://www.northern
http://www.virtualave.net/
http://www.msn.com/
http://www.unitedmedia.com/comics/dilbert/
http://www.onelist.com/
http://www.eff.org/
http://www.cdc.gov/
http://www.linkstoyou.com/
http://www.excite.com/navigate/
http://www.netscape.com/comprod/mi
http://www.switchboard.com/
http://www.ebay.com/
http://www.house.gov/
http://www.sgi.com/
http://www.nlm.nih.gov/
http://www.networksolutions.com/
http://www.persiankittv.com/


A ppendix C

Results o f  E xperim ents on W T _C onnected

We now present the scores obtained by all ten algorithms when executed against 

WT_Connected using the distilled relevance judgements. These are the total scores, averaged over all 

queries. A ll 50 queries used in our experiments are included in Table A.4 below.

OUR ID TREC
ID

QUERY
1 451 bengal cat bengals
2 452 beaver beavers habitat
3 453 hl-inger hunger hunger organization eradication eradicate group
4 4 54 parkinson parkinson’s disease
5 455 jackie robinson jackie robinson first game
6 4 56 end world 2000 apocalypse

457 Chevrolet chevy truck
8 458 fasting fasting religion religious

lender forclose property lender forclose property legal legally
4 60 moses moses moses israel

11 461 lava lava lava lamp lamps
12 462 realtor realtor new jersey new jersey residential real estate
13 463 tartan tartan tartan Scottish Scotland Scot
14 464 nativity scene ban states cities state city nativity ban nativity ban 

nativity ban
15 465 deer disease human Lyme
16 466 peer gynt Grieg
17 4 67 dachshund dachshund dachshund wiener dog dog
18 468 incandescent incandescent incandescent light bulb light bulb history

469 Steinbach steinbach steinbach nutcracker nutcrackers
20 470 mistletoe beneficial benefit
21 471 mexican food mexican food mexican food popular
22 472 antique appliance restorations20antique appliance restoration&20antique 

appliance restoration&20museum dealer
23 473 toronto film festival toronto film toronto film movie
24 474 e mail e mail e mail business benefit internet
25 475 zirconium zirconium properties
26 476 Jennifer aniston Jennifer aniston movies tv television
27 4 77 royal Caribbean cruise royal Caribbean cruise royal Caribbean cruise 

line ships
28 478 baltimore mayor baltimore mayor baltimore mayor name
29 479 kappa alpha psi kappa alpha psi kappa alpha psi information
30 480 car traffic car traffic car traffic report Washington maryland Virginia
31 481 babe ruth babe ruth babe ruth baseball

482 pine tree pine tree growth rate
33 483 rosebowl parade rosebowl parade rosebowl parade rose bowl
34 484 skoda skoda skoda automobile car
35 485 gps gps gps clock accuracy clock



36
37
38
39
40
41
42
4 3

”iT
45
46
47
48
49
50

4 8 6 e l  d o r a d o  c a s i n o  e l d o r a d o  r e n o
487 angioplasty angioplasty angioplasty follow repeat
488 newport beach newport beach newport beach entertainment
489 calcium calcium medical benefit benefits supplements supplement
490 motorcycle helmet motorcycle helmet law safety
491 tsunami tsunami20japanese wave
492 savings savings savings bonds saving bond
4 93 retirement community retirement community retirement community us 

canada
4 94 nirvana nirvana members
4 95 roaring twenties 20s
496 tmj tmj tmj temporal mandible joint
4 97 orchid orchid orchids grow growing industry
498 hair transplant hair transplant hair transplant procedure
499 pool cue pool cue pool cue use development select origin
500 dna dna testing

Table A.4 : Weighted Queries used in our experiments

-253-



Queryid (Num): Content-only
Total number of documents over all queries

Retrieved : 34196
Relevant : 254
Rel ret : 218

Interpolated Recall - Pr>
at 0.00 0.5050
at 0.10 0.4770
at 0.20 0.4171
at 0.30 0.3677
at 0.40 0.3548
at 0.50 0.3244
at 0.60 0.2654
at 0.70 0.1908
at 0.80 0.1767
at 0.90 0.1384
at 1.00 0.1316

Average precision (non-interpolated) 
docs(averaged over queries)

for all rel

:ecision
0.2854

At 5 docs : 0.2389
At 10 docs : 0.1833
At 15 docs : 0.1611
At 20 docs : 0.1500
At 30 docs : 0.1167
At 100 docs : 0.0444
At 200 docs : 0.0246
At 500 docs : 0.0114
At 1000 docs : 0.0061

R-Precision (precision after R (= num_rel for a 
query) docs retrieved):

Exact: 0.2777 Exact: 0.2777



Queryid (Num): Link 1
Total number of documents over all queries

Retrieved: 34196
Relevant: 254
Rel ret: 219

Interpolated Recall - Precision Averages:
at 0.00 0.0270
at 0.10 0.0258
at 0.20 0.0209
at 0.30 0.0208
at 0.40 0.0166
at 0.50 0.0163
at 0.60 0.0152
at 0.70 0.0144
at 0.80 0.0141
at 0.90 0.0129
at 1.00 0.0107

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0135
Precision:

At 5 docs : 0.0000
At 10 docs: 0.0056
At 15 docs : 0.0074
At 20 docs: 0.0083
At 30 docs: 0.0093
At 100 docs: 0.0072
At 200 docs: 0.0061
At 500 docs: 0.0085
At 1000 docs: 0.0061

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0063
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5

5
-

Queryid (Num.) : Link 2
Total number of documents over all queries 

Retrieved: 34196
Relevant: 254
Rel ret : 218

Interpolated Recall - Precision
at 0.00 0.2362
at 0.10 0.2325
at 0.20 0.1966
at 0.30 0.1550
at 0.40 0.1430
at 0.50 0.1388
at 0.60 0.1005
at 0.70 0.0541
at 0.80 0.0520
at 0.90 0.0370
at 1.00 0.0327

Average precision (non-interpol.
docs(averaged over queries) 

0.1132
Precision :
At 5 docs: 0.0944
At 10 docs : 0.0694
At 15 docs : 0.0537
At 20 docs: 0.0528
At 30 docs: 0.0537
At 100 docs: 0.0331
At 2 00 docs: 0.0222
At 5 00 docs: 0.0109
At 1000 docs: 0.0061

R-Precision (precision after R
query) docs retrieved):

Exact : 0.0912

for all rel

(= num rel for a



Queryid (Num): Link 3
Total number of documents over all queries

Retrieved: 34196
Relevant: 254
Rel ret: 218

Interpolated Recall - Precision Averages:
at 0.00 0.5042
at 0.10 0.4734
at 0.2 0 0.4164
at 0.30 0.3655
at 0.40 0.3528
at 0.50 0.3236
at 0.60 0.2545
at 0.70 0.1747
at 0.80 0.1645
at 0.90 0.1277
at 1.00 0.1210

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2795
Precision :
At 5 docs : 0.2444
At 10 docs: 0.1833
At 15 docs : 0.1630
At 20 docs : 0.1472
At 30 docs: 0.1148
At 100 docs: 0.0444
At 200 docs: 0.0247
At 500 docs: 0.0114
At 1000 docs: 0.0061

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.2610
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Queryid (Num) : Link 4
Total number of documents over all queries 

Retrieved: 34196
Relevant: 254
Rel_ret: 218

Interpolated Recall - Precision Averages: 
at 0.00 0.5057
at 0.10 0.4776
at 0.20 0.4178
at 0.30 0.3648
at 0.40 0.3520
at 0.50 0.3228
at 0.60 0.2553
at 0.70 0.1746
at 0.80 0.1647
at 0.90 0.1280
at 1.00 0.1214

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision
0.2799

At 5 docs : 0.2500
At 10 docs : 0.1861
At 15 docs : 0.1630
At 20 docs : 0.1486
At 30 docs : 0.1148
At 100 docs : 0.0442
At 200 docs : 0.0249
At 500 docs : 0.0114
At 1000 docs : 0.0061

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2603



Queryid (Mum): Link 5
Total number of documents over all queries

Retrieved: 34196
Relevant : 254
Rei ret : 218

Interpolated Recall - Precision Averages:
at 0.00 0.1857
at 0.10 0.1672
at 0.20 0.1470
at 0.30 0.1219
at 0.40 0.1178
at 0.50 0.1106
at 0.60 0.0973
at 0.70 0.0707
at 0.80 0.0644
at 0.S0 0.0452
at 1.00 0.0377

Average precision (non-interpolated) for all rei
docs(averaged over queries)

0.0903
Precision:
At 5 docs : 0.0500
At 10 docs: 0.0639
At 15 docs : 0.0722
At 20 docs: 0.0750
At 30 docs : 0.0787
At 100 docs: 0.0406
At 200 docs: 0.0244
At 500 docs: 0.0114
At 1000 docs: 0.0061

R-Precision (precision after R (= num rei for a
query) docs retrieved):

Exact : 0.0492
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Queryid (Nura): PageRank Parameter values
Total number of documents over all queries 

Retrieved: 34196
Relevant: 254
Rel_ret: 218

Interpolated Recall - Precision Averages: 
at 0.00 0.5037
at 0.10 0.4755
at 0.20 0.4161
at 0.30 0.3620
at 0.40 0.3526
at 0.50 0.3226
at 0.60 0.2546
at 0.70 0.1773
at 0.80 0.1636
at 0.90 0.1272
at 1.00 0.1205

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

decision:
0.2788

At 5 docs: 0.2444
At 10 docs: 0.1833
At 15 docs: 0.1630
At 20 docs: 0.1486
At 30 docs: 0.1130
At 100 docs: 0.0444
At 200 docs: 0.0246
At 500 docs: 0.0114
At 1000 docs: 0.0061

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2604



Queryid (Num): PageRank S-A
Total number of documents over all queries

Retrieved: 34196
Relevant: 254
Rel ret: 218

Interpolated Recall - Precision Averages:
at 0.00 0.5036
at 0.10 0.4759
at 0.20 0.4161
at 0.30 0.3634
at 0.40 0.3538
at 0.50 0.3238
at 0.60 0.2558
at 0.70 0.1768
at 0.80 0.1629
at 0.90 0.1272
at 1.00 0.1206

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2793
Precision :
At 5 docs : 0.2444
At 10 docs: 0.1806
At 15 docs : 0.1593
At 20 docs: 0.1486
At 30 docs: 0.1139
At 100 docs: 0.0444
At 200 docs: 0.0246
At 500 docs: 0.0114
At 1000 docs: 0.0061

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.2615



-2
5

8
-

Queryid (Num): SiteRank Parameter Values
Total number of documents over all queries 

Retrieved: 34196
Relevant : 
Rel ret:

Interpolated Recall
at 0. 00 0
at 0.10 0
at 0.20 0
at 0.30 0
at 0.40 0
at 0.50 0
at 0. 60 0
at 0.70 0
at 0. 80 0
at 0.90 0
at 1. 00 0

Average: precision

254
219
- Precision Averages:

(non-interpolated) 
docs(averaged over queries)

for all rel

recision:
0.2820

At 5 docs : 0.2556
At 10 docs : 0.1778
At 15 docs : 0.1537
At 20 docs : 0.1431
At 30 docs : 0.1120
At 100 docs : 0.0447
At 200 docs : 0.0250
At 500 docs : 0.0113
At 1000 docs : 0.0061

R-Precision (precision after
query) docs retrieved):

Exact: 0.2574

R (= num rel for



Queryid (Num): SiteRank S-A
Total number of documents over all queries

Retrieved: 34196
Relevant: 254
Rel ret: 219

Interpolated Recall - Precision Averages:
at 0.00 0.5050
at 0.10 0.4635
at 0.20 0.4274
at 0.30 0.3676
at 0.40 0.3501
at 0.50 0.3269
at 0.60 0.2669
at 0.70 0.1860
at 0.80 0.1699
at 0.90 0.1342
at 1.00 0.1285

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2853
Precision :
At 5 docs : 0.2556
At 10 docs: 0.1806
At 15 docs : 0.1574
At 20 docs: 0.1417
At 30 docs: 0.1139
At 100 docs: 0.0450
At 2 00 docs: 0.0249
At 500 docs: 0.0113
At 1000 docs: 0.0061

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.2690



We now present die scores obtained by a selection o f the linkage algorithms and the 

content-only experiment when executed against WT_Connected using the distilled relevance 

judgements. N ote that we have included all fifty TREC queries even though fourteen o f  them do not 

contain any relevant documents in the WT_Connected test collection.

The experiments we include here are:

•  Content-only Experiment.

• Link 3 : Normalised indegree weighting, best guess combination.

•  Link 4 : Normalised indegree weighting, scarcity-abundance combination.

• SiteRank using scarcity-abundance combination.

Content-only Experim ent
Using the BM25 Ranking Algorithm
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Queryid (Num): 1
Total number of documents over all queries 

Retrieved: 1000
Relevant : 7
Rel_ret: 4

Interpolated Recall - Precision Averages: 
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.1875
at 0.40 0.1875
at 0.50 0.0059
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.1705

At 5 docs: 0.4000
At 10 docs: 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2857



Queryid (Num) : 2
Total number of documents over all queries

Retrieved: 1000
Relevant: 16
Rel ret: 16

Interpolated Recall - Precision Averages:
at 0.00 0.1818
at 0.10 0.1818
at 0.20 0.1818
at 0.30 0.1316
at 0.40 0.0347
at 0.50 0.0280
at 0.60 0.0260
at 0.70 0.0168
at 0.80 0.0168
at 0.90 0.0168
at 1.00 0.0168

Average precision (non-interpolated) for all rel
docs(averaged ove: queries)

0.0643
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs : 0.1333
At 100 docs: 0.0600
At 200 docs: 0.0300
At 500 docs: 0.0200
At 1000 docs: 0.0160

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.1250



Queryid (Num.) : 3
Total number of documents over all queries 

Retrieved: 1000
Relevant: 16
Rel^ret: 15

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.8333
at 0.40 0.6429
at 0.50 0.6429
at 0.60 0.5714
at 0.70 0.5714
at 0.80 0.2414
at 0.90 0.1807
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision ;
0.6001

At 5 docs: 0.8000
At 10 docs: 0.6000
At 15 docs : 0.6000
At 20 docs: 0.5500
At 30 docs : 0.4000
At 100 docs: 0.1500
At 200 docs : 0.0750
At 500 docs : 0.0300
At 1000 docs : 0.0150

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.5 625



Queryid (Num): 4
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 8

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.2273
at 0.70 0.1463
at 0.80 0.1321
at 0.90 0.1270
at 1.00 0.1270

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.3618
Precision:
At 5 docs : 0.2000
At 10 docs : 0.4000
At 15 docs : 0.2667
At 20 docs : 0.2000
At 30 docs : 0.1667
At 100 docs: 0.0800
At 2 00 docs: 0.0400
At 500 docs: 0.0160
At 1000 docs: 0.0080

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.5000



Quervid (Num): 5
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Quervid (Num): 6
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0588
at 0.10 0.0588
at 0.20 0.0588
at 0.30 0.0588
at 0.40 0.0588
at 0.50 0.0588
at 0.60 0.0095
at 0.70 0.0095
at 0.80 0.0095
at 0.90 0.0095
at 1.00 0.0095

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0342
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num.) : 7
Total number of documents over all queries 

Retrieved: 1000
Relevant : 6
Rel_ret: 6

Interpolated Recall - Precision Averages:
at 0. 00 0.1000
at 0.10 0.1000
at 0.20 0.0645
at 0.30 0.0645
at 0.40 0.0645
at 0.50 0.0645
at 0.60 0.0645
at 0.70 0.0450
at 0.80 0.0450
at 0.90 0.0297
at 1.00 0.0297

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision *

0.0541

At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0400
At 200 docs : 0.0250
At 500 docs : 0.0120
At 1000 docs : 0.0060

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num.) : 8
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0. 0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num) : 9
Total number of documents over all queries 

Retrieved: 1000
Relevant: 
Rel ret:

1
0

Interpolated Recall - Precision Averages:
at 0.00 
at 0.10 
at 0.20 

0.30 
0.40 

at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00 

Average precision

at
at

0 . 00 0 0
0 . 00 0 0
0 . 00 0 0
0 .0 0 0 0
0 . 00 0 0
0 . 00 0 0
0 . 00 0 0
0 . 00 0 0
0 . 00 0 0
0 . 0 0 0 0
0 . 0 0 0 0
(non-interpolated) for all rel

docs(averaged over queries)

recisioni
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after
query) docs retrieved):

Exact: 0.0000

R (= num rel for a



Queryid (Num): 10
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs: 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 11
Total number of documents over all queries

Retrieved: 
Relevant: 
Rel ret:

816
1
1

Interpolated Recall - Precision Averages: 
at 0.00 0.0238
at 0.10 0.0238
at 0.20 0.0238
at 0.30 0.0238
at 0.40 0.0238
at 0.50 0.0238
at 0.60 0.0238
at 0.70 0.0238
at 0.80 0.0238
at 0.90 0.0238
at 1.00 0.0238

Average precision (non-interpolated) 
docs(averaged over queries)

for all rel

recision:
0.0238

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0010

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num) : 12
Total number of documents over all queries

Retrieved: 1000
Relevant: 11
Rel ret: 11

Interpolated Recall - Precision Averages:
at 0.00 0.2500
at 0.10 0.2500
at 0.20 0.2500
at 0.30 0.2500
at 0.40 0.1667
at 0.50 0.1429
at 0.60 0.0762
at 0.70 0.0762
at 0.80 0.0476
at 0.90 0.0388
at 1.00 0.0381

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1384
Precision:
At 5 docs : 0.2000
At 10 docs: 0.2000
At 15 docs: 0.2000
At 20 docs: 0.2000
At 30 docs : 0.1667
At 100 docs: 0.0700
At 200 docs: 0.0450
At 500 docs: 0.0220
At 1000 docs: 0.0110

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.1818
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Queryid (Num): 13
Total number of documents over all queries 

Retrieved: 1000
Relevant: 16
Rel_ret: 15

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 0.6667
at 0.20 0.3684
at 0.30 0.3684
at 0.40 0.3684
at 0.50 0.3214
at 0.60 0.3030
at 0.70 0.1165
at 0.80 0.0867
at 0.90 0.0413
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.2953

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.2667
At 20 docs : 0.3500
At 30 docs : 0.3000
At 100 docs : 0.1100
At 200 docs : 0.0650
At 500 docs : 0.0300
At 1000 docs : 0.0150

R-Precision (precision after R (= num_rel for
query) docs retrieved):

Exact: 0.3125



Queryid (Num): 14
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret : 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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Queryid (Num): 15
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel_ret : 

Interpolated Recall 
at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 

00

Precision Averages: 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588 
0.0588

Average precision (non-interpolated) for all 
docs(averaged over queries)

at 1.
rel

recision:
0.0502

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0. 0000
At 20 docs: 0. 0000
At 30 docs : 0.0333
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (precision after
query) docs retrieved):

Exact: 0.0 00 0

R (= num rel for



Queryid (Num): 16
Total number of documents over all queries

Retrieved: 0
Relevant : 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0. 0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0. 0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 2 00 docs : 0.0000
At 500 docs : 0.0000
At 10 00 docs : 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 17
Total number of documents over all queries 

Retrieved: 1000
Relevant : 8
Rel_ret : 8

Interpolated Recall - Precision Averages: 
at 0.00 0.3125
at 0.10 0.3125
at 0.20 0.3125
at 0.30 0.3125
at 0.40 0.3125
at 0.50 0.3125
at 0.60 0.3125
at 0.70 0.2692
at 0.80 0.2692
at 0.90 0.1176
at 1.00 0.1176

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.2287

At 5 docs : 0.0000
At 10 docs : 0.2000
At 15 docs : 0.2667
At 20 docs : 0.2500
At 30 docs : 0.2333
At 100 docs : 0.0800
At 200 docs : 0.0400
At 500 docs : 0.0160
At 1000 docs : 0.0080

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2500



Queryid (Num): 18
Total number of documents over all queries

Retrieved: 1000
Relevant : 5
Rel ret : 5

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.2000
at 0.60 0.2000
at 0.70 0.2000
at 0.80 0.2000
at 0.90 0.0450
at 1.00 0.0450

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2890
Precision:
At 5 docs: 0.4000
At 10 docs : 0.2000
At 15 docs : 0.2000
At 20 docs: 0.2000
At 30 docs : 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0250
At 500 docs: 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.4000



- 269 
-

Queryid (Nurti) : 19
Total number of documents over all queries 

Retrieved: 96
Relevant: 5
Rel_ret: 5

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.3750
at 0.40 0.3750
at 0.50 0.3750
at 0.60 0.3750
at 0.70 0.2500
at 0.80 0.2500
at 0.90 0.2500
at 1.00 0.2500

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision:
0.4242

At 5 docs: 0.2000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.2500
At 30 docs: 0.1667
At 100 docs: 0.0500
At 200 docs: 0.0250
At 500 docs: 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2000



Queryid (Num): 20
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret : 2

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0833
at 0.20 0.0833
at 0.30 0.0833
at 0.40 0.0833
at 0.50 0.0833
at 0.60 0.0408
at 0.70 0.0408
at 0.80 0.0408
at 0.S0 0.0408
at 1.00 0.0408

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0621
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



-2
7

0
-

Quervid (Num) : 21
Total number of documents over all queries 

Retrieved: 1000
Relevant : 1
Rel_ret: 1

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 1.0000
at 0.80 1.0000
at 0.90 1.0000
at 1.00 1.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision:
1.0000

At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0100
At 200 docs : 0.0050
At 500 docs : 0.0020
At 1000 docs : 0.0010

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 1.0000



Queryid (Num): 22
Total number of documents over all queries

Retrieved: 1000
Relevant: 11
Rel ret : 9

Interpolated Recall - Precision Averages:
at 0.00 0.1579
at 0.10 0.1579
at 0.20 0.1579
at 0.30 0.0976
at 0.40 0.0735
at 0.50 0.0706
at 0.60 0.0380
at 0.70 0.0279
at 0.80 0.0278
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0676
Precision:
At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0600
At 200 docs: 0.0350
At 500 docs: 0.0180
At 1000 docs: 0.0090

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0909



- 271 
-

Queryid (Num) : 23
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision :
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 24
Total number of documents over all queries

Retrieved: 1000
Relevant: 12
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0345
at 0.20 0.0081
at 0.30 0.0081
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0111
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs : 0.0080
At 1000 docs : 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0833



-272-

Queryid (Num): 2 5
Total number of documents over all queries 

Retrieved: 1000
Relevant: 2
Rel_ret: 2

Interpolated Recall - Precision Averages:
at 0.. 00 0.. 0952
at 0.. 10 0..0952
at 0..20 0..0952
at 0.,30 0..0952
at 0..40 0..0952
at 0..50 0., 0952
at 0.. 60 0., 0952
at 0., 70 0..0952
at 0., 80 0..0952
at 0., 90 0., 0952
at 1., 00 0.. 0952

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision
0.0833

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num.) : 26
Total number of documents over all queries 

Retrieved: 1000
Relevant: 19
Rel_ret: 19

Interpolated Recall - Precision Averages:
at 0.. 00 0 ,. 6667
at 0 ..10 0 .. 6667
at 0 .,20 0 .. 6316
at 0 .. 30 0 .. 6316
at 0 ., 40 0 ..6316
at 0 .,50 0 .. 6316
at 0 ., 60 0 ..6316
at 0 .,70 0 ..3810
at 0 ., 80 0 ..3810
at 0 ., 90 0 ..0293
at 1 ., 00 0 ..0293

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision;
0.4527

At 5 docs: 0.6000
At 10 docs: 0.5000
At 15 docs: 0.6000
At 20 docs : 0.6000
At 30 docs : 0.4000
At 100 docs : 0.1600
At 200 docs : 0.0850
At 500 docs : 0.0340
At 1000 docs : 0.0190

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.6316



Queryid (Num): 27
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 28
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0027
at 0.70 0.0027
at 0.80 0.0027
at 0.90 0.0027
at 1.00 0.0027

Average precision (non-interpolated) for all rel
docs{averaged over queries)

0.2514
Precision:
At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.5000



-2
7

4
-

Queryid (Num) : 29
Total number of documents over all queries 

Retrieved: 1000
Relevant : 5
Rel_ret: 4

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.7500
at 0.40 0.7500
at 0.50 0.7500
at 0.60 0.7500
at 0.70 0.1905
at 0.80 0.1905
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision .

0.5214

At 5 docs: 0.6000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0200
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.6000



Queryid (Mum): 30
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R {= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 31
Total number of documents over all queries 

Retrieved: 1000
Relevant: 3
Rel_ret: 3

Interpolated Recall - Precision Averages :
at 0.. 00 0..3000
at 0.. 10 0..3000
at 0..20 0..3000
at 0.. 30 0..3000
at 0.. 40 0,.3000
at 0.. 50 0..3000
at 0.. 60 0..3000
at 0.. 70 0..3000
at 0.. 80 0..3000
at 0.. 90 0..3000
at 1.. 00 0,.3000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.2217

At 5 docs : 0.0000
At 10 docs : 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs : 0.0300
At 200 docs : 0.0150
At 500 docs : 0.0060
At 1000 docs : 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0 00 0



Queryid (Num): 32
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 1.0000
at 0.80 1. 0000
at 0.90 1.0000
at 1.00 1.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

1.0000
Precision :
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs: 0.0667
At 100 docs: 0.0200
At 2 00 docs: 0. 0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 1.0000
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Queryid (Num.): 33
Total number of documents over all queries 

Retrieved: 1000
Relevant 3 
Rel_ret: 3

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.0070
at 0.80 0.0070
at 0.90 0.0070
at 1.00 0.0070

Average precision (non-interpolated) for all rel docs(averaged over queries) 
0.6690

Precision:
At 5 docs: 0.4000
At 10 docs: 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs: 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0060
At 1000 docs 0.0030

R-Precision (precision after R (= num_rel for a query) docs retrieved): 
Exact 0.6667



Queryid (Num): 34
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.5000
at 0.70 0.5000
at 0.80 0.5000
at 0.90 0.5000
at 1.00 0.5000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4167
Precision :
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs: 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 10 00 docs : 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 35
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages:
at 0.. 00 0..0000
at 0.. 10 0..0000
at 0..20 0..0000
at 0..30 0. , 0000
at 0., 40 0., 0000
at 0..50 0., 0000
at 0.. 60 0., 0000
at 0..70 0..0000
at 0.. 80 0., 0000
at 0.. 90 0., 0000
at 1.. 00 0.. 0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision .

0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num. rel for a
query) docs retrieved):

Exact: 0.0 00 0



Queryid (Num.) : 36
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1. 0000
at 0.20 1. 0000
at 0.30 1.0000
at 0.40 1. 0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.7500
at 0.80 0.7500
at 0.90 0.7500
at 1.00 0.7500

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.9167
Precision :
At 5 docs : 0.6000
At 10 docs: 0.3000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0300
At 2 00 docs : 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0030

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.6667



Queryid (Num): 37
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages:
at 0. 00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0. 40 0.0000
at 0. 50 0.0000
at 0. 60 0.0000
at 0. 70 0.0000
at 0. 80 0.0000
at 0. 90 0.0000
at 1. 00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.0000

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs: 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 38
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 6

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.0400
at 0.30 0.0400
at 0.40 0.0400
at 0.50 0.0400
at 0.60 0.0258
at 0.70 0.0258
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0824
Precision :
At 5 docs: 0.2000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0400
At 200 docs: 0.0200
At 500 docs : 0.0120
At 1000 docs : 0.0060

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.1250



Queryid (Num) : 39
Total number of documents over all queries

Retrieved: 0
Relevant : 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.S0 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs : 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 40
Total number of documents over all queries

Retrieved: 1000
Relevant: 5
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.2222
at 0.40 0.2222
at 0.50 0.0064
at 0.60 0.0064
at 0.70 0.0051
at 0.80 0.0051
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1468
Precision :
At 5 docs : 0.2000
At 10 docs : 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0060
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2000



Queryid (Num): 41
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated,) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 42
Total nuinber of documents over all queries

Retrieved: 1000
Relevant : 3
Rel ret : 3

Interpolated Recall - Precision Averages:
at 0.00 0.0294
at 0.10 0.0294
at 0.20 0.0294
at 0.30 0.0294
at 0.40 0.0146
at 0.50 0.0146
at 0.60 0.0146
at 0.70 0.0035
at 0.80 0.0035
at 0.90 0.0035
at 1.00 0.0035

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0158
Precision :
At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0100
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 43
Total number of documents over all queries 

Retrieved: 1000
Relevant: 8
Rel_ret: 8

Interpolated Recall - Precision Averages:
at 0., 00 1., 0000
at 0..10 1..0000
at 0..20 1..0000
at 0..30 1.. 0000
at 0..40 1.. 0000
at 0..50 1.. 0000
at 0.. 60 0..5556
at 0..70 0..4286
at 0.. 80 0..3684
at 0.. 90 0..0274
at 1.. 00 0..0274

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision;
0.6725

At 5 docs : 0.8000
At 10 docs : 0.5000
At 15 docs : 0.4000
At 20 docs : 0.3500
At 30 docs : 0.2333
At 100 docs : 0.0700
At 200 docs : 0.0350
At 500 docs : 0.0160
At 1000 docs : 0.0080

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.5000



Queryid (Num) : 44
Total number of documents over all queries

Retrieved: 1000
Relevant: 26
Rel ret: 26

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 0.5385
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.1831
at 0.60 0.1417
at 0.70 0.1242
at 0.80 0.1068
at 0.90 0.0836
at 1.00 0.0615

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.3603
Precision :
At 5 docs : 0.8000
At 10 docs : 0.5000
At 15 docs : 0.4667
At 2 0 docs: 0.4500
At 30 docs: 0.3667
At 100 docs: 0.1400
At 2 00 docs: 0.1000
At 500 docs: 0.0520
At 1000 docs: 0.0260

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.4231



Queryid (Num): 45
Total number of documents over all queries

Retrieved: 
Relevant: 
Rel_ret: 

Interpolated Recall
at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00

Average precision (non-interpolated)

284 
26 
10

- Precision Averages: 
1.0000 
0.3750 
0.0366 
0.0366 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000

for all rel
docs(averaged over queries)

recision :
0.1008

At 5 docs: 0.4000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs : 0.1500
At 30 docs : 0.1667
At 100 docs : 0.0500
At 200 docs : 0.0300
At 500 docs : 0.0200
At 1000 docs : 0.0100

R-Precision (precision after
query) docs retrieved):

Exact: 0.1923

R (= num rel for



Queryid (Num): 46
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.1667
at 0.10 0.1667
at 0.20 0.1667
at 0.30 0.1667
at 0.40 0.1667
at 0.50 0.1667
at 0.60 0.0833
at 0.70 0.0833
at 0.80 0.0833
at 0.90 0.0833
at 1.00 0.0833

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1250
Precision :
At 5 docs : 0.0000
At 10 docs: 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0667
At 100 docs : 0.0200
At 2 00 docs: 0.0100
At 5 00 docs : 0.0040
At 10 00 docs : 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 47
Total number of documents over all queries 

Retrieved: 1000
Relevant : 3
Rel_ret: 3

Interpolated Recall - Precision Averages:
at 0.00 0.1111
at 0.10 0.1111
at 0.20 0.1111
at 0.30 0.1111
at 0.40 0.1034
at 0.50 0.1034
at 0.60 0.1034
at 0.70 0.1034
at 0.80 0.1034
at 0.90 0.1034
at 1.00 0.1034

Average precision (non-i erpolated) for all rel 
docs(averaged over queries)

recisioni
0.1049

At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.1000
At 30 docs : 0.1000
At 100 docs : 0.0300
At 200 docs : 0.0150
At 500 docs : 0.0060
At 1000 docs : 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 48
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R {= num rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 49
Total number of documents over all queries 

Retrieved: 1000
Relevant: 2
Rel_ret: 2

Interpolated Recall - Precision Averages :
at 0. 00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0. 50 0.5000
at 0. 60 0.0157
at 0.70 0.0157
at 0.80 0.0157
at 0. 90 0.0157
at 1. 00 0.0157

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.2579

At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0100
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.5 00 0



Queryid (Num): 50
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs: 0.0000
At 10 docs : 0.0000
At 15 docs: 0.0000
At 2 0 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 5 00 docs : 0.0000
At 1000 docs : 0. 0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Best Guess Param eter R anking E xperim ent (link3)
Combining Linkage and Content evidence using ‘best-guess’

parameters
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Queryid (Num): 1
Total number of documents over all queries 

Retrieved: 1000
Relevant: 7
Rel_ret: 4

Interpolated Recall - Precision Averages:
at 0 .. 00 0 ..5000
at 0 ., 10 0 ..5000
at 0 ..20 0 ..5000
at 0 .,30 0 ..1765
at 0 ..40 0 .. 1765
at 0 ..50 0 ..0059
at 0 ., 60 0 .. 0000
at 0 ..70 0 ..0000
at 0 ., 80 0 .. 0000
at 0 .. 90 0 ..0000
at 1 .. 00 0 ..0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.1689

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs : 0.1500
At 30 docs : 0.1000
At 100 docs : 0.0300
At 200 docs : 0.0150
At 500 docs : 0.0060
At 1000 docs : 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2 857



Queryid (Num): 2
Total number of documents over all queries

Retrieved: 1000
Relevant: 16
Rel ret: 16

Interpolated Recall - Precision Averages:
at 0.00 0.1481
at 0.10 0.1481
at 0.20 0.1481
at 0.30 0.1034
at 0.40 0.0326
at 0.50 0.0272
at 0.60 0.0254
at 0.70 0.0168
at 0.80 0.0168
at 0.90 0.0168
at 1.00 0.0168

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0538
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0667
At 20 docs : 0.1000
At 30 docs: 0.1333
At 100 docs: 0.0600
At 2 00 docs : 0.0300
At 500 docs: 0.0200
At 1000 docs : 0.0160

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0625
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Queryid (Num) : 3
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel ret:

16
15

Interpolated Recall - Precision Averages : 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.8333
at 0.40 0.6429
at 0.50 0.6429
at 0.60 0.5263
at 0.70 0.5217
at 0.80 0.3095
at 0.90 0.1786
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision :
0.5985

At 5 docs : 0.8000
At 10 docs : 0.6000
At 15 docs : 0.6000
At 20 docs : 0.5000
At 30 docs : 0.4000
At 100 docs : 0.1500
At 200 docs : 0.0750
At 500 docs : 0.0300
At 1000 docs : 0.0150

R-Precision (precision after
query) docs retrieved):

Exact: 0.5625

R (= num rel for a



Queryid (Num): 4
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 8

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.2273
at 0.70 0.1429
at 0.80 0.1321
at 0.90 0.1212
at 1.00 0.1212

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.3779
Precision :
At 5 docs : 0.4000
At 10 docs: 0.4000
At 15 docs: 0.2667
At 20 docs: 0.2000
At 30 docs: 0.1667
At 100 docs: 0.0800
At 200 docs: 0.0400
At 500 docs: 0.0160
At 1000 docs: 0.0080

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.5000
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Queryid (Nurn): 5
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision:
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Nura): 6
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0588
at 0.10 0.0588
at 0.20 0.0588
at 0.30 0.0588
at 0.40 0.0588
at 0.50 0.0588
at 0.60 0.0094
at 0.70 0.0094
at 0.80 0.0094
at 0.90 0.0094
at 1.00 0.0094

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0341
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 7
Total number of documents over all queries

Retrieved: 1000
Relevant: 6
Rel ret: 6

Interpolated Recall - Pr̂
at 0.00 0.1000
at 0.10 0.1000
at 0.20 0.0645
at 0.30 0.0645
at 0.40 0.0645
at 0.50 0.0645
at 0.60 0.0645
at 0.70 0.0442
at 0.80 0.0442
at 0.90 0.0337
at 1.00 0.0337

Average precision (non-j srpolated) for all rel 
docs(averaged over queries)

:ecision:
0.0545

At 5 docs: 0.0000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0400
At 200 docs: 0.0300
At 500 docs: 0.0120
At 1000 docs: 0.0060

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 8
Total number of documents over all queries

Retrieved: 0
Relevant : 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs : 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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Queryid (Num.) : 9
Tota l number o f documents over a l l  queries 

Retrieved: 1000
Relevant : 1
R e l_ re t: 0

In te rpo la ted  Recall -  Precis ion Averages: 
a t 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-in terpolated) fo r  a l l  re l  
docs(averaged over queries)

rec is ion :
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t  : 0 . 0 0 0 0



Queryid (Num): 10
Tota l number o f documents over a l l  queries

Retrieved: 0
Relevant: 0
Rel re t : 0

In te rp o la ted  Recall -  Precis ion Averages:
a t 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  r e l
docs(averaged over queries)

0.0000
Precis ion:

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 10 00 docs: 0.0000

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000



Queryid (Num): 11
Tota l number o f documents over a l l  queries 

Retrieved: 816
Relevant: 1
Rel_ret: 1

In te rpo la ted  Recall -  Precision Averages:
at 0. 00 0.0222
at 0.10 0.0222
at 0.20 0.0222
at 0.30 0.0222
at 0.40 0.0222
at 0.50 0.0222
at 0. 60 0.0222
at 0.70 0.0222
at 0. 80 0.0222
at 0. 90 0.0222
at 1. 00 0.0222

Average p rec is ion  (non-interpolated) fo r  a l l  re l  
docs(averaged over queries)

0. 0222
P rec is ion :

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0100
At 200 docs : 0.0050
At 500 docs : 0.0020
At 1000 docs : 0.0010

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Queryid (Num): 12
Tota l number o f  documents over a l l  queries 

Retrieved: 1000
Relevant: 11
Rel_ret: 11

In te rp o la ted  Recall -  Precision Averages:
at 0., 00 0,.2500
at 0. 10 0,.2500
at 0.,20 0..2500
at 0.,30 0..2500
at 0., 40 0..1613
at 0., 50 0,.1429
at 0., 60 0.. 0762
at 0.,70 0,.0762
at 0., 80 0,.0474
at 0., 90 0,.0379
at 1.. 00 0,.0377

Average p rec is ion  (non-interpolated) fo r  a l l  r e l  
docs(averaged over queries)

:ecision :
0.1378

At 5 docs : 0.2000
At 10 docs : 0.2000
At 15 docs : 0.2000
At 20 docs : 0.2000
At 30 docs : 0.1333
At 100 docs : 0.0700
At 200 docs : 0.0450
At 500 docs : 0.0220
At 1000 docs : 0.0110

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 1 8 1 8



Queryid (Num): 13
Tota l number o f documents over a l l  queries 

Retrieved: 1000
Relevant: 16
Rel_ret: 15

In te rpo la ted  Recall -  Precis ion Averages:
at 0., 00 1..0000
at 0., 10 0..6667
at 0.,20 0..3684
at 0.,30 0..3684
at 0..40 0..3684
at 0..50 0..3448
at 0.. 60 0..3448
at 0..70 0..1008
at 0.. 80 0..0890
at 0.. 90 0..0401
at 1.. 00 0.. 0000

Average p rec is ion  (non-in terpolated) fo r  a l l  r e l  
docs(averaged over queries)

re c is io n :
0.3001

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.3333
At 20 docs : 0.3500
At 30 docs : 0.3333
At 100 docs : 0.1100
At 200 docs : 0.0650
At 500 docs : 0.0300
At 1000 docs : 0.0150

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 3 1 2 5



Queryid (Num): 14
Tota l number o f documents over a l l  queries

Retrieved: 0
Relevant: 0
Rel r e t : 0

In te rp o la ted  Recall -  Precis ion Averages:
a t 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  re l
docs(averaged over queries)

0.0000
Precis ion :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 10 00 docs: 0.0000

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000
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Queryid (Num): 15
Tota l number o f documents over a l l  queries 

Retrieved: 1000
Relevant : 
Rel re t :

In te rpo la ted  Recall -  Precis ion Averages: 
at 0.00 0.0571
at 0.10 0.0571
at 0.20 0.0571
at 0.30 0.0571
at 0.40 0.0571
at 0.50 0.0571
at 0.60 0.0571
at 0.70 0.0571
at 0.80 0.0571
at 0.90 0.0571
at 1.00 0.0571

Average p rec is ion  (non-interpolated) fo r  a l l  r e l  
docs(averaged over queries)

recision :
0.0494

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0333
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Queryid (Num): 16
Tota l number o f documents over a l l  queries

Retrieved: 0
Relevant: 0
Rel r e t : 0

In te rpo la ted  Recall -  P recis ion Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
a t 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  re l
docs(averaged over queries)

0.0000
Precis ion :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 10 00 docs: 0.0000

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000



Queryid (Num) : 17
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 8

Interpolated Recall - Precision Averages:
at 0.00 0.3333
at 0.10 0.3333
at 0.20 0.3333
at 0.30 0.3333
at 0.40 0.3125
at 0.50 0.3125
at 0.60 0.3125
at 0.70 0.1346
at 0.80 0.1346
at 0.90 0.1081
at 1.00 0.1081

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2115
Precision:

At 5 docs : 0.0000
At 10 docs : 0.3000
At 15 docs : 0.2667
At 20 docs: 0.2500
At 30 docs : 0.1667
At 100 docs: 0.0800
At 200 docs: 0.0400
At 500 docs : 0.0160
At 1000 docs: 0.0080

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.2500



Queryid (Num): 18
Total number of documents over all queries

Retrieved: 1000
Relevant : 5
Rel ret: 5

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.2000
at 0.60 0.2000
at 0.70 0.2000
at 0.80 0.2000
at 0.90 0.0442
at 1.00 0.0442

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2888
Precision:

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.2000
At 20 docs: 0.2000
At 30 docs: 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0250
At 500 docs: 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.4000



-S
6Z

-

Queryid (Num): 19
Total number of documents over all queries 

Retrieved: 96
Relevant : 5
Rel_ret: 5

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.3333
at 0.40 0.3333
at 0.50 0.3333
at 0.60 0.3333
at 0.70 0.2273
at 0.80 0.2273
at 0.90 0.2273
at 1.00 0.2273

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision
0.4002

At 5 docs : 0.2000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs : 0.1500
At 30 docs : 0.1667
At 100 docs : 0.0500
At 200 docs : 0.0250
At 500 docs : 0.0100
At 1000 docs : 0.0050

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.2000



Queryid (Num): 20
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0833
at 0.20 0.0833
at 0.30 0.0833
at 0.40 0.0833
at 0.50 0.0833
at 0.60 0.0408
at 0.70 0.0408
at 0.80 0.0408
at 0.90 0.0408
at 1.00 0.0408

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0621
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 21
Total number of documents over all queries

Retrieved : 1000
Relevant: 1
Rel ret: 1
rpolated Recall - Pr<
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 1.0000
at 0.80 1.0000
at 0.90 1.0000
at 1.00 1.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision
1.0000

At 5 docs: 0.2000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0010

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 1.0000



Queryid (Num): 22
Total number of documents over all queries

Retrieved: 1000
Relevant: 11
Rel ret: 9

Interpolated Recall - Precision Averages:
at 0.00 0.1579
at 0.10 0.1579
at 0.20 0.1579
at 0.30 0.0952
at 0.40 0.0725
at 0.50 0.0706
at 0.60 0.0370
at 0.70 0.0289
at 0.80 0.0289
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0665
Precision:
At 5 docs: 0.0000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs: 0.0600
At 200 docs: 0.0350
At 500 docs: 0.0180
At 1000 docs: 0.0090

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0909



Queryid (Num): 23
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (2'Jum) : 24
Total number of documents over all queries

Retrieved: 1000
Relevant: 12
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0333
at 0.20 0.0080
at 0.30 0.0080
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0110
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.0833



-298-

Queryid (Num.) : 25
Tota l number o f documents over a l l  queries 

Retrieved: 10 00
Relevant: 2
Rel_ret: 2

In te rpo la ted  Recall -  Precision Averages:
at 0.. 00 0..0870
at 0.. 10 0..0870
at 0..20 0..0870
at 0.. 30 0..0870
at 0.. 40 0.. 0870
at 0.. 50 0.. 0870
at 0.. 60 0.. 0870
at 0.. 70 0.. 0870
at 0.. 80 0..0870
at 0.. 90 0..0870
at 1.. 00 0..0870

Average p rec is ion  (non-interpolated) fo r  a l l  r e l  
docs(averaged over queries)

recision :
0.0792

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Queryid (Num): 26
Tota l number o f  documents over a l l  queries

Retrieved: 1000
Relevant : 19
Rel re t : 19

In te rp o la ted  Recall -  Precis ion Averages:
a t 0.00 0.6667
at 0.10 0.6667
at 0.20 0.6316
at 0.30 0.6316
at 0.40 0.6316
at 0.50 0.6316
at 0.60 0.6316
at 0.70 0.3721
at 0.80 0.3721
at 0.90 0.0293
at 1.00 0.0293

Average p rec is ion (non-interpolated) fo r  a l l  re l
docs(averaged over queries)

0.4517
Precis ion :

At 5 docs : 0.6000
At 10 docs : 0.5000
At 15 docs : 0.6000
At 20 docs: 0.6000
At 30 docs : 0.4000
At 100 docs: 0.1600
At 2 00 docs: 0.0850
At 500 docs: 0.0340
At 10 00 docs: 0.0190

R-Precision (prec is ion a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.6316



Queryid (Num): 27
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 28
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0028
at 0.70 0.0028
at 0.80 0.0028
at 0.90 0.0028
at 1.00 0.0028

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2514
Precision:

At 5 docs : 0.2000
At 10 docs: 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.5000
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Queryid (Num): 29
Total number of documents over all queries 

Retrieved: 1000
Relevant: 5
Rel_ret: 4

Interpolated Recall - Precision Averages: 
1.0000 
1.0000 
1.0000 
0.7500 
0.7500 
0.7500 
0.7500 
0.1905 
0.1905 
0.0000 
0.0000
(non-interpolated) for all

at 0.00 
at 0.10 
at 0.20 

0.30 
0.40 

at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00 

Average precision

at
at

rel
docs(averaged over queries)

:ecision:
0.5214

At 5 docs : 0.6000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs : 0.1500
At 30 docs : 0.1333
At 100 docs : 0.0400
At 200 docs : 0.0200
At 500 docs : 0.0080
At 1000 docs : 0.0040

R -Precision  (p rec is ion  a f te r
query) docs r e t r ie v e d ) :

Exact: 0.6000

R (= num rel for a



Queryid (Num): 30
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 31

Total number of documents over all queries 
Retrieved: 1000
Relevant 3 
Rel_ret: 3

Interpolated Recall - Precision Averages: 

at 0.00 0.3000
at 0.10 0.3000
at 0.20 0.3000
at 0.30 0.3000

at 0.40 0.3000
at 0.50 0.3000
at 0.60 0.3000

at 0.70 0.3000
at 0.80 0.3000
at 0.90 0.3000
at 1.00 0.3000

Average precision (non-interpolated) for all rel docs(averaged over queries) 
0.2217

Precision:

At 5 docs: 0.0000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0030 

R-Prccision (precision after R (= num_cel for a query) docs retrieved): 
Exact: 0.0000



Queryid (Num): 32
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret : 2

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 0.6667
at 0.70 0.6667
at 0.80 0.6667
at 0.90 0.6667
at 1.00 0.6667

Average precision (non-interpolated) for all rel
docs(averaged ovei queries)

0.8333
Precision :
At 5 docs : 0.4000
At 10 docs: 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.5000



Queryid (Num): 33
Total number of documents over all queries 

Retrieved: 1000
Relevant: 3
Rel_ret: 3

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.0070
at 0.80 0.0070
at 0.90 0.0070
at 1.00 0.0070

Average precision (non-i srpolated) for all rel 
docs(averaged over queries)

:ecision
0.6690

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs : 0.1000
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0060
At 1000 docs : 0.0030

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.6667



Queryid (Nurti) : 34
Total number of documents over all queries

Retrieved: 1000
Relevant : 2
Rel ret : 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.5000
at 0.70 0.5000
at 0.80 0.5000
at 0.90 0.5000
at 1.00 0.5000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4167
Precision :
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 35
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average: precision (non-j
docs(averaged over queries)

recision:
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R -Precision  (p rec is ion  a f t e r  R {= num_rel for a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 36
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.7500
at 0.80 0.7500
at 0.90 0.7500
at 1.00 0.7500

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.9167
Precision:
At 5 docs : 0.6000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs : 0.0060
At 1000 docs: 0.0030

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.6667
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Queryid (Num) : 37
Total number of documents over all queries

Retrieved: 
Relevant : 
Rel_ret: 

Interpolated Recall 
at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00 

Average precision

0 
0 
0

- Precision Averages:
0000 
0000 
0000 
0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000
(non-interpolated) for all rel

docs(averaged over queries)

decision
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R -Precision  (p rec is ion  a f te r
query) docs r e t r ie v e d ) :

Exact: 0.0000

R (= num rel for a



Queryid (Num) : 38
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 6

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.0400
at 0.30 0.0400
at 0.40 0.0400
at 0.50 0.0400
at 0.60 0.0256
at 0.70 0.0256
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0824
Precision:
At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0400
At 200 docs: 0.0200
At 500 docs : 0.0120
At 1000 docs: 0.0060

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.1250
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Queryid (Num.) : 39
Tota l number o f documents over a l l  queries

Retrieved: 0
Relevant : 0
Rel re t  : 0

In te rpo la ted  Recall -  Pr
at 0 . 00 0 . 0 0 0 0

at 0 . 10 0 . 0 0 0 0

at 0 . 20 0 . 0 0 0 0

at 0 . 30 0 . 0 0 0 0

at 0 . 40 0 . 0 0 0 0

at 0 . 50 0 . 0 0 0 0

at 0 . 60 0 . 0 0 0 0

at 0 . 70 0 . 0 0 0 0

at 0 . 80 0 . 0 0 0 0

at 0 . 90 0 . 0 0 0 0

at 1. 00 0 . 0 0 0 0

Average: p rec is ion (non-:
docs(averaged over querii

0 . 0 0 0 0

Precis ion :
At 5 docs : 0 . 0 0 0 0

At 10 docs : 0 . 0 0 0 0

At 15 docs : 0 . 0 0 0 0

At 20 docs : 0 . 0 0 0 0

At 30 docs : 0 . 0 0 0 0

At 100 docs : 0 . 0 0 0 0

At 200 docs : 0 . 0 0 0 0

At 500 docs : 0 . 0 0 0 0

At 1000 docs : 0 . 0 0 0 0

R-Precision (precis ion e
query) docs re t r ie v e d ) :

. f te r  R (= num^rel fo r  

Exact: 0.0000



Queryid (Num): 40
Tota l number o f documents over a l l  queries

Retrieved: 1000
Relevant: 5
Rel re t : 4

In te rp o la ted  Recall -  Precis ion Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.2222
at 0.40 0.2222
at 0.50 0.0064
at 0.60 0.0064
at 0.70 0.0052
at 0.80 0.0052
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  r e l
docs(averaged over queries)

0.1468
Precis ion :

At 5 docs : 0.2000
At 10 docs: 0.2000
At 15 docs: 0.1333
At 2 0 docs: 0.1000
At 30 docs : 0.0667
At 100 docs : 0.0200
At 2 00 docs: 0.0100
At 500 docs: 0.0060
At 10 00 docs: 0.0040

R-Precision (prec is ion a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.2000
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Queryid (Num): 41
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision :
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R -Precision  (p rec is ion  a f te r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 42
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages :
at 0.00 0.0270
at 0.10 0.0270
at 0.20 0.0270
at 0.30 0.0270
at 0.40 0.0137
at 0.50 0.0137
at 0.60 0.0137
at 0.70 0.0035
at 0.80 0.0035
at 0.90 0.0035
at 1.00 0.0035

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0147
Precision:

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0100
At 200 docs: 0.0100
At 500 docs : 0.0040
At 1000 docs: 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num.) : 43
Tota l number o f documents over a l l  queries 

Retrieved: 1000
Relevant: 8
R e l_ re t: 8

In te rpo la ted  Recall -  Precis ion Averages :
at 0., 00 1,,0000
at 0., 10 1.,0000
at 0.,20 1,,0000
at 0.,30 1,,0000
at 0., 40 1,,0000
at 0., 50 1,, 0000
at 0., 60 0,,5556
at 0., 70 0,,4286
at 0., 80 0,.3684
at 0., 90 0.,0273
at 1.. 00 0,.0273

Average p rec is ion  (non-in terpolated) fo r  a l l  r e l  
docs(averaged over queries)

:e c is ion :
0.6725

At 5 docs : 0.8000
At 10 docs : 0.5000
At 15 docs : 0.4000
At 20 docs : 0.3500
At 30 docs : 0.2333
At 100 docs : 0.0700
At 200 docs : 0.0350
At 500 docs : 0.0160
At 1000 docs : 0.0080

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 5  0 0  0



Queryid (Num): 44
Tota l number of documents over a l l  queries

Retrieved: 1000
Relevant: 26
Rel re t : 26

In te rpo la ted  Recall -  Precis ion Averages:
a t 0.00 1.0000
at 0.10 1.0000
at 0.2 0 0.5385
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.1831
at 0.60 0.1417
at 0.70 0.1242
at 0.80 0.1068
at 0.90 0.0833
at 1.00 0.0613

Average p rec is ion  (non-interpolated) fo r  a l l  r e l
docs(averaged over queries)

0.3603
Precis ion:

At 5 docs : 0.8000
At 10 docs: 0.5000
At 15 docs: 0.4667
At 2 0 docs: 0.4500
At 30 docs: 0.3667
At 100 docs: 0.1400
At 2 00 docs: 0.1000
At 500 docs: 0.0520
At 1000 docs: 0.0260

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.4231
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Queryid (Num) : 45
Total number of documents over all queries 

Retrieved: 284
Relevant: 26
Rel_ret: 10

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 0.2727
at 0.20 0.0364
at 0.30 0.0364
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0. 80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

■ecision :
0.0982

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.2667
At 20 docs : 0.2000
At 30 docs : 0.1667
At 100 docs : 0.0500
At 200 docs : 0.0300
At 500 docs : 0.0200
At 1000 docs : 0.0100

R -Precision  (p rec is ion  a f t e r  R (= num_rel for a
query) docs r e t r ie v e d ) :

Exact: 0.1538



Queryid (Num): 46
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.1667
at 0.10 0.1667
at 0.20 0.1667
at 0.30 0.1667
at 0.40 0.1667
at 0.50 0.1667
at 0.60 0.0833
at 0.70 0.0833
at 0.80 0.0833
at 0.90 0.0833
at 1.00 0.0833

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1250
Precision :
At 5 docs : 0.0000
At 10 docs: 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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Queryid (Num): 47
Total number of documents over all queries 

Retrieved: 1000
Relevant: 3
Rel_ret: 3

Interpolated Recall - Precision Averages:
at 0.00 0.1111
at 0.10 0.1111
at 0.20 0.1111
at 0.30 0.1111
at 0.40 0.1034
at 0.50 0.1034
at 0.60 0.1034
at 0.70 0.1034
at 0.80 0.1034
at 0.90 0.1034
at 1. 00 0.1034

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

-ecisio.n
0.1049

At 5 docs: 0.0000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.1000
At 30 docs: 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0030

R -Precision  (p rec is ion  a f te r  R (= num_rel fo r  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 48
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num) : 49
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel ret:

2
2

Interpolated Recall - Précision Averages : 
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0163
at 0.70 0.0163
at 0.80 0.0163
at 0.90 0.0163
at 1.00 0.0163

Average précision (non-interpolated) for ail rel 
docs(averaged over queries)

recision :
0.2581

At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0100
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R -Precision  (p rec is ion  a f te r
query) docs r e t r ie v e d ) :

Exact: 0.5000

R (= num rel for a



Queryid (Num): 50
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



I n d e g r e e  R a n k i n g  E x p e r i m e n t  u s i n g  N o r m a l i s e d  

i n d e g r e e  s c o r e s  i n c o r p o r a t i n g  t h e  S c a r c i t y - A b u n d a n c e

t e c h n i q u e  ( l i n k 4 )

C o m b i n i n g  L i n k a g e  a n d  C o n t e n t  e v id e n c e  u s in g  t h e  s c a r c i t y -  

a b u n d a n c e  t e c h n i q u e  f o r  r e g u l a t i n g  l i n k a g e  i n f l u e n c e



Queryid (Num): 1
Total number of documents over all queries

Retrieved: 1000
Relevant: 7
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.1765
at 0.40 0.1765
at 0.50 0.0059
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1689
Precision :

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2857



Queryid (Num): 2
Total number of documents over all queries

Retrieved: 1000
Relevant: 16
Rel ret: 16

Interpolated Recall - Precision Averages:
at 0.00 0.1667
at 0.10 0.1667
at 0.20 0.1667
at 0.30 0.1220
at 0.40 0.0333
at 0.50 0.0274
at 0.60 0.0257
at 0.70 0.0168
at 0.80 0.0168
at 0.90 0.0168
at 1.00 0.0168

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0604
Precision:
At 5 docs : 0.0000
7̂.t 10 docs : 0.0000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs: 0.1333
At 100 docs: 0.0600
At 200 docs: 0.0300
At 500 docs: 0.0200
At 1000 docs: 0.0160

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.1250



Queryid (Num) : 3
To ta l number o f documents over a l l  queries 

Retrieved: 1000
Relevant: 16
Rel re t :  15

In te rpo la ted  Recall -  Precis ion Averages:
at 0., 00 1., 0000
at 0., 10 1., 0000
at 0.,20 1., 0000
at 0.,30 0..7143
at 0.,40 0., 6000
at 0., 50 0., 6000
at 0., 60 0.,5217
at 0., 70 0.,5217
at 0., 80 0.,3171
at 0., 90 0., 1765
at 1., 00 0,, 0000

Average p rec is ion  (non-in terpolated) fo r  a l l  r e l  
docs(averaged over queries)

0.5829
P rec is io n :

At 5 docs: 0.8 000
At 10 docs: 0.6000
A t 15 docs: 0.600 0
At 20 docs: 0.5000
At 30 docs: 0.4000
At 100 docs: 0.1500
At 200 docs: 0.0750
At 500 docs: 0.0300
At 1000 docs: 0.0150

R-Precision (precis ion a f te r  R ( = num_rel fo r  a 
query) docs re t r ie v e d ) :

Exact: 0.5625



Queryid (Num): 4
Tota l number of documents over a l l  queries

Retrieved: 1000
Relevant: 8
Rel re t : 8

In te rpo la ted  Recall -  Precis ion Averages:
at 0.00 1. 0000
at 0.10 1.0000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.4444
at 0.50 0.4444
at 0.60 0.2273
at 0.70 0.1429
at 0.80 0.1296
at 0.90 0.1212
at 1.00 0.1212

Average p rec is ion  (non-interpolated) fo r  a l l  r e l
docs(averaged over queries)

0.3707
Precis ion :

At 5 docs : 0.4000
At 10 docs: 0.4000
At 15 docs : 0.2667
At 20 docs: 0.2000
At 30 docs: 0.1667
At 100 docs: 0.0800
At 200 docs: 0.0400
At 500 docs: 0.0160
At 10 00 docs: 0.0080

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.3750



Queryid (Num) : 5
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:

At 5 docs: 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 6
Total number of documents over all queries 

Retrieved: 1000
Relevant : 2
Rel_ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0588
at 0.10 0.0588
at 0.20 0.0588
at 0.30 0.0588
at 0.40 0.0588
at 0.50 0.0588
at 0.60 0.0094
at 0.70 0.0094
at 0.80 0.0094
at 0.90 0.0094
at 1.00 0.0094

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.0341

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0100
At 200 docs : 0.0050
At 500 docs : 0.0040
At 1000 docs : 0.0020

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 7
Tota l number o f  documents over a l l  queries 

Retrieved: 1000
Relevant: 6
R e l_ re t: 6

In te rpo la ted  Recall -  Precision Averages :
at 0., 00 0..1000
at 0., 10 0., 1000
at 0..20 0..0645
at 0., 30 0.,0645
at 0., 40 0..0645
at 0..50 0..0645
at 0.. 60 0..0645
at 0..70 0.. 0442
at 0., 80 0.. 0442
at 0.. 90 0.. 0335
at 1.. 00 0.. 0335

Average p rec is ion  (non-interpolated) fo r  a l l  re l  
docs(averaged over queries)

:ec is ion :
0.0545

At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0400
At 200 docs : 0.0300
At 500 docs : 0.0120
At 1000 docs : 0.0060

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R  ( =  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Queryid (Num): 8
To ta l number o f documents over a l l  queries

Retrieved: 0
Relevant: 0
Rel re t : 0

In te rp o la ted  Recall -  Precis ion Averages:
a t 0.00 0.0000
a t 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
a t 0.60 0.0000
at 0.70 0.0000
a t 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-in terpolated) fo r  a l l  r e l
docs(averaged over queries)

0.0000
Precis ion :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 2 0 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 5 00 docs: 0.0000
At 10 00 docs: 0.0000

R-Precision (prec is ion a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000



Queryid (Num) : 9
Tota l number o f documents over a l l  queries

Retrieved: 1000
Relevant: 1
Rel re t : 0

In te rpo la ted  Recall -  P recis ion Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  re l
docs(averaged over queries)

0.0000
Precis ion :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 5 00 docs: 0.0000
At 1000 docs : 0.0000

R-Precision (precis ion a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000



Queryid (Num): 10
Tota l number o f documents over a l l  queries

Retrieved: 0
Relevant: 0
Rel re t : 0

In te rpo la ted  Recall -  P recis ion Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average p rec is ion  (non-interpolated) fo r  a l l  r e l
docs(averaged over queries)

0.0000
Precis ion :

At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 10 00 docs: 0.0000

R-Precision (p rec is ion  a f te r  R (= num re l  fo r  a
query) docs re t r ie v e d ) :

Exact : 0.0000



Queryid (Num): 11
Total number of documents over all queries 

Retrieved: 816
Relevant: 1
Rel_ret: 1

Interpolated Recall - Precision Averages: 
at 0.00 0.0227
at 0.10 0.0227
at 0.20 0.0227
at 0.30 0.0227
at 0.40 0.0227
at 0.50 0.0227
at 0.60 0.0227
at 0.70 0.0227
at 0.80 0.0227
at 0.90 0.0227
at 1.00 0.0227

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

•ecision :
0.0227

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0010

R -Precision  (p rec is ion  a f t e r  R (= num_rel for a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num) : 12
Total number of documents over all queries

Retrieved: 1000
Relevant: 11
Rel ret: 11

Interpolated Recall - Precision Averages:
at 0.00 0.2500
at 0.10 0.2500
at 0.20 0.2500
at 0.30 0.2500
at 0.40 0.1613
at 0.50 0.1429
at 0.60 0.0762
at 0.70 0.0762
at 0.80 0.0474
at 0.90 0.0377
at 1.00 0.0377

Average precision (non-interpolated) for all rel
docs{averaged over queries)

0.1378
Precision:
At 5 docs : 0.2000
At 10 docs: 0.2000
At 15 docs : 0.2000
At 20 docs: 0.2000
At 30 docs : 0.1333
At 100 docs: 0.0700
At 200 docs: 0.0450
At 500 docs: 0.0220
At 1000 docs: 0.0110

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.1818



Queryid (Num) : 13
Total number of documents over all queries

Retrieved: 1000
Relevant: 16
Rel ret: 15

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 0.6667
at 0.20 0.3684
at 0.30 0.3684
at 0.40 0.3684
at 0.50 0.3448
at 0.60 0.3448
at 0.70 0.0960
at 0.80 0.0903
at 0.90 0.0396
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2993
Precision:

At 5 docs : 0.4000
At 10 docs: 0.2000
At 15 docs: 0.3333
At 20 docs: 0.3500
At 30 docs : 0.3333
At 100 docs: 0.1100
At 200 docs: 0.0700
At 500 docs : 0.0300
At 1000 docs: 0.0150

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.3125



Queryid (Num): 14
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:

At 5 docs: 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



• 6
11 

'

Queryid (Num) : 15
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel ret:

2
2

Interpolated Recall - Precision Averages:

Average

at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00

precision

0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
0.0556 
(non-interpolated) for all rel

docs(averaged over queries)

:ecision .

0.0486

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0333
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num) : 16
Total number of documents over all queries

Retrieved: 0
Relevant : 0
Rel ret : 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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2
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Queryid (Num): 17
Total number of documents over all queries 

Retrieved: 1000
Relevant: 8
Rel_ret: 8

Interpolated Recall - Precision Averages: 
at 0.00 0.3333
at 0.10 0.3333
at 0.20 0.3333
at 0.30 0.3333
at 0.40 0.3125
at 0.50 0.3125
at 0.60 0.3125
at 0.70 0.1296
at 0.80 0.1296
at 0.90 0.1053
at 1.00 0.1053

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.2091

At 5 docs: 0.0000
At 10 docs: 0.3000
At 15 docs: 0.2667
At 20 docs: 0.2500
At 30 docs: 0.1667
At 100 docs: 0.0800
At 200 docs: 0.0400
At 500 docs: 0.0160
At 1000 docs: 0.0080

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2500



Queryid (Num): 18
Total number of documents over all queries

Retrieved: 1000
Relevant : 5
Rel ret: 5

Interpolated Recall - Precision Averages :
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.2000
at 0.60 0.2000
at 0.70 0.1905
at 0.80 0.1905
at 0.90 0.0442
at 1.00 0.0442

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2869
Precision:
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0250
At 500 docs: 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.4000
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Q u e r y i d  (Num): 19
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  96
R e l e v a n t  : 5
R e l _ r e t :  5

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t 0. 00 1.  0000
a t 0 .1 0 1. 0000
a t 0 .2 0 1. 0000
a t 0 .3 0 0 .3 7 5 0
a t 0. 40 0 .3 7 5 0
a t 0 .5 0 0 .3 7 5 0
a t 0. 60 0 .3 7 5 0
a t 0. 70 0 .2 5 0 0
a t 0 .8 0 0 .2 5 0 0
a t 0. 90 0 .2 5 0 0
a t 1. 00 0 .2 5 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n  ;
0 .4 2 4 2

At 5 d o cs  : 0 .2 0 0 0
At 10 d o cs  : 0 . 3 0 0 0
At 15 d o c s : 0 .2 0 0 0
At 20 d o c s  : 0 . 2 5 0 0
At 30 d o c s  : 0 .1 6 6 7
At 100 d o c s  : 0 . 0 5 0 0
At 200 d o c s  : 0 .0 2 5 0
At 500 d o c s  : 0 .0 1 0 0
At 1000 d o c s  : 0 .0 0 5 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 2 0 0 0



Q u e r y i d  (Num): 20
T o t a l  number  o f  d o cu m en t s  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 2
Rel  r e t : 2

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .0 8 3 3
a t  0 .1 0 0 .0 8 3 3
a t  0 .2 0 0 .0 8 3 3
a t  0 .3 0 0 .0 8 3 3
a t  0 .4 0 0 .0 8 3 3
a t  0 .5 0 0 .0 8 3 3
a t  0 .6 0 0 .0 3 9 2
a t  0 .7 0 0 .0 3 9 2
a t  0 .8 0 0 .0 3 9 2
a t  0 .9 0 0 .0 3 9 2
a t  1 .0 0 0 .0392

A v e r a g e  p r e c i s i o n ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .0 6 1 3
P r e c i s i o n  :

A t  5 d o c s  : 0 . 0 0 0 0
At  10 d o c s  : 0 .0 0 0 0
At  15 d o c s : 0 .0 6 6 7
A t  20 d o c s : 0 .0 5 0 0
At  30 d o c s : 0 .0 3 3 3
At  100 d o c s : 0 .0 2 0 0
At  200 d o c s : 0 .0 1 0 0
At  500 d o c s : 0 .0 0 4 0
At  1000 d o c s : 0 .0 0 2 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d ocs  r e t r i e v e d ) :

E x a c t  : 0 . 0 0 0 0



Q u e r y i d  (Num): 21
T o t a l  number  o f  d o c u m e n t s  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t :  1
R e l _ r e t :  1

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t 0., 00 1..0000
a t 0.. 10 1..0000
a t 0..20 1.. 0000
a t 0..30 1. . 0000
a t 0..40 1.. 0000
a t 0..50 1.. 0000
a t 0., 60 1..0000
a t 0., 70 1,.0000
a t 0.. 80 1..0000
a t 0., 90 1,,0000
a t 1.. 00 1. . 0000

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n
1.  0000

At 5 d o c s  : 0 . 2 0 0 0
At 10 d o cs  : 0 . 1 0 0 0
A t 15 d o c s  : 0 .0 6 6 7
At 20 d o cs  : 0 . 0 5 0 0
At 30 d o cs  : 0 . 0 3 3 3
At 100 d o cs  : 0 .0 1 0 0
At 200 d o c s  : 0 . 0 0 5 0
At 500 d o c s  : 0 .0 0 2 0
At 1000 d o c s  : 0 .0 0 1 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  1 . 0 0 0 0



Q u e r y i d  (Num): 22
T o t a l  number  o f  d ocum en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 11
Rel  r e t : 9

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .1 5 7 9
a t  0 .1 0 0 .1 5 7 9
a t  0 .2 0 0 .1579
a t  0 .3 0 0 .0952
a t  0 .4 0 0 .0 7 2 5
a t  0 . 5 0 0 .0 7 0 6
a t  0 .6 0 0 . 0 3 6 6
a t  0 .7 0 0 .0 2 8 9
a t  0 .8 0 0 .0289
a t  0 .9 0 0 .0000
a t  1 . 0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  over q u e r i e s )

0 .0664
P r e c i s i o n  :

A t  5 d o c s  : 0 .0000
At  10 d o c s  : 0 . 1 0 0 0
At  15 d o c s  : 0 . 0667
At  20 d o c s : 0 .1 5 0 0
At  30 d o c s : 0 .1 0 0 0
A t  100 d o c s : 0 .0600
A t  200 d o c s : 0 .0 3 5 0
A t  500 d o c s : 0 .0180
At  1000 d o c s : 0 .0 0 9 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t  : 0.  0909
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Queryid (Num): 23
Total number of documents over all queries 

Retrieved: 0
Relevant : 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs : 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 24
Total number of documents over all queries

Retrieved: 1000
Relevant: 12
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0333
at 0.20 0.0080
at 0.30 0.0080
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0110
Precision:
At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0833
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Queryid (Num): 25
Total number of documents over all queries 

Retrieved: 1000
Relevant: 2
Rel_ret: 2

Interpolated Recall - Precision Averages: 
at 0.00 0.0870
at 0.10 0.0870
at 0.20 0.0870
at 0.30 0.0870
at 0.40 0.0870
at 0.50 0.0870
at 0.60 0.0870
at 0.70 0.0870
at 0.80 0.0870
at 0.90 0.0870
at 1.00 0.0870

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision .

0.0768

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 26
Total number of documents over all queries

Retrieved: 1000
Relevant : 19
Rel ret: 19

Interpolated Recall - Precision Averages:
at 0.00 0.6667
at 0.10 0.6667
at 0.20 0.6316
at 0.30 0.6316
at 0.40 0.6316
at 0.50 0.6316
at 0.60 0.6316
at 0.70 0.3721
at 0.80 0.3721
at 0.90 0.0293
at 1.00 0.0293

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4508
Precision:
At 5 docs : 0.6000
At 10 docs: 0.5000
At 15 docs : 0.6000
At 20 docs : 0.6000
At 30 docs : 0.4000
At 100 docs: 0.1600
At 200 docs: 0.0850
At 500 docs: 0.0340
At 1000 docs: 0.0190

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.6316
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Queryid (Num): 27
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision :
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 28
Total number of documents over all queries

Retrieved: 1000
Relevant : 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0028
at 0.70 0.0028
at 0.80 0.0028
at 0.90 0.0028
at 1.00 0.0028

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2514
Precision:
At 5 docs : 0.2000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.5000



- 
3

2
6

-

Queryid (Num): 29
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel ret :

5
4

Interpolated Recall - Precision Averages:
at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00 

Average precision

1 .0 0 0 0
1 .0 0 0 0
1 . 0 0 0 0
0.7500
0.7500
0.7500
0.7500
0.1905
0.1905
0 .0 0 0 0
0 .0 0 0 0
(non-interpolated) for all rel

docs(averaged over queries)

:ecision .

0.5214

At 5 docs: 0.6000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0200
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after
query) docs retrieved):

Exact: 0.6000

R (= num rel for a



Queryid (Num): 30
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs : 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R {= num_rel for a
query) docs retrieved):

Exact : 0.0000



Q u e r y i d  (Num): 31
T o t a l  number  o f  d ocum en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t  : 
R e l _ r e t : 

I n t e r p o l a t e d  R e c a l l  
a t  0 . 0 0  
a t  0 .1 0  
a t  0 .2 0  
a t  0 .3 0  
a t  0 .4 0  
a t  0 .5 0  
a t  0 .6 0  
a t  0 .7 0  
a t  0 .8 0  
a t  0 .9 0  
a t  1 . 0 0

P r e c i s i o n  A v e r a g e s :
0 .3000  
0 .3 0 0 0  
0 .3 0 0 0  
0 .3 0 0 0  
0 .3 0 0 0  
0 .3 0 0 0  
0 .3000  
0 .3000  
0 .3000  
0 .3 0 0 0  
0 .3 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

: e c i s i o n  :
0 .2217

At 5 d o c s  : 0 . 0 0 0 0
At 10 d o cs  : 0 .3 0 0 0
At 15 d o cs  : 0 .2 0 0 0
At 20 d o c s  : 0 . 1 5 0 0
At 30 d o c s  : 0 .1000
At 100 d o cs  : 0 .0300
At 200 d o c s  : 0 .0150
At 500 d o c s  : 0 .0060
At  1000 d o c s  : 0 . 0 0 3 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0

R (=  num r e l  f o r



Q u e r y i d  (Num): 32
T o t a l  number  o f d o c u m e n t s  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 2
Rel  r e t : 2

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 1 .0 0 0 0
a t  0 .1 0 1 .0 0 0 0
a t  0 .2 0 1 .0 0 0 0
a t  0 .3 0 1 .0 0 0 0
a t  0 .4 0 1 .0 0 0 0
a t  0 .5 0 1 .0 0 0 0
a t  0 .6 0 0 .6 6 6 7
a t  0 .7 0 0 .6 6 6 7
a t  0 .8 0 0 .6 6 6 7
a t  0 .9 0 0 .6667
a t  1 .0 0 0 .6 6 6 7

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .8 3 3 3
P r e c i s i o n  :

A t  5 d o cs  : 0 .4 0 0 0
A t  10 d o c s : 0 .2 0 0 0
A t  15 d o c s : 0 .1 3 3 3
A t  20 d o c s : 0 .1 0 0 0
A t  30 d o c s : 0 .0667
At  100 d o cs  : 0 . 0 2 0 0
A t  2 00 d o c s : 0 .0 1 0 0
A t  5 00 d o c s : 0 .0 0 4 0
A t  10 00 d o c s : 0 .0 0 2 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .5 0 0 0
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Queryid (Num) : 33
Total nuinber of documents over all queries 

Retrieved: 1000
Relevant : 3
Rel_ret: 3

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.0070
at 0.80 0.0070
at 0.90 0.0070
at 1.00 0.0070

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.6690

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs : 0.1000
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0060
At 1000 docs : 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.6667



Queryid (Num): 34
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.5000
at 0.70 0.5000
at 0.80 0.5000
at 0.90 0.5000
at 1.00 0.5000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4167
Precision:
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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Queryid (Num) : 35
Total number of documents over all queries 

Retrieved: 0
Relevant : 0
Rel_ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at O.SO 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 36
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.7500
at 0.80 0.7500
at 0.90 0.7500
at 1.00 0.7500

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.9167
Precision:
At 5 docs : 0.6000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.6667



Q u e r y i d  (Num): 37
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  0
R e l e v a n t :  0
R e l _ r e t :  0

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s  :
a t 0., 00 0. . 0000
a t 0.. 10 0..0000
a t 0..20 0..0000
a t 0..30 0..0000
a t 0..40 0..0000
a t 0..50 0..0000
a t 0.. 60 0..0000
a t 0., 70 0.. 0000
a t 0.. 80 0.. 0000
a t 0.. 90 0..0000
a t 1.. 00 0..0000

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n :
0 .0 0 0 0

At 5 d o c s  : 0 . 0 0 0 0
At 10 d o c s  : 0 . 0 0 0 0
At 15 d o c s  : 0 .0 0 0 0
A t 20 d o c s  : 0 .0 0 0 0
At 30 d o c s  : 0 .0 0 0 0
At 100 d o c s  : 0 .0 0 0 0
At 200 d o c s  : 0 .0 0 0 0
A t 500 d o c s  : 0 .0 0 0 0
At 1000 d o c s  : 0 .0 0 0 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t : 0 . 0 0 0 0



Q u e r y i d  (Num): 38
T o t a l  number o f d o cu m en t s  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 8
Rel  r e t : 6

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .5 0 0 0
a t  0 .1 0 0 .5 0 0 0
a t  0 .2 0 0 .0 3 9 6
a t  0 .3 0 0 .0 3 9 6
a t  0 .4 0 0 . 0 3 9 6
a t  0 .5 0 0 . 0 3 9 6
a t  0 .6 0 0 . 0 2 5 6
a t  0 .7 0 0 . 0 2 5 6
a t  0 .8 0 0 .0 0 0 0
a t  0 .9 0 0 .0 0 0 0
a t  1 .0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .0 8 2 3
P r e c i s i o n  :

At  5 d o cs  : 0 .2 0 0 0
At  10 d o c s : 0 .1 0 0 0
At  15 d o cs  : 0 . 0667
At  20 d o c s : 0 .0 5 0 0
At  30 d o c s : 0 .0 3 3 3
At  100 d o c s : 0 .0 3 0 0
At  200 d o c s : 0 .0 2 0 0
At  5 00 d o c s : 0 .0 1 2 0
A t  10 00 d o c s : 0 .0 0 6 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 . 1 2 5 0



Q u e r y i d  (Num): 3 9
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  0
R e l e v a n t  : 0
R e l _ r e t :  0

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :  
a t  0 . 0 0  0 .0 0 0 0
a t  0 . 1 0  0 .0 0 0 0
a t  0 . 2 0  0 .0 0 0 0
a t  0 . 3 0  0 .0 0 0 0
a t  0 . 4 0  0 .0 0 0 0
a t  0 . 5 0  0 .0 0 0 0
a t  0 . 6 0  0 .0 0 0 0
a t  0 . 7 0  0 .0 0 0 0
a t  0 . 8 0  0 .0 0 0 0
a t  0 . 9 0  0 .0 0 0 0
a t  1 . 0 0  0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n :
0 .0 0 0 0

At 5 d o c s : 0 .0 0 0 0
At 10 d o c s  : 0.  0000
At 15 d o c s  : 0 .0 0 0 0
At 20 d o c s : 0 .0 0 0 0
At 30 d o c s  : 0 .0 0 0 0
At 100 d o c s : 0 . 0 0 0 0
At 200 d o c s  : 0 . 0 0 0 0
At 500 d o c s  : 0 .0 0 0 0
At 1000 d o c s  : 0 .0 0 0 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Q u e r y i d  (Num): 40
T o t a l  number  o f  d o cu m en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t  : 5
Rel  r e t : 4

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .5 0 0 0
a t  0 .1 0 0 .5 0 0 0
a t  0 .2 0 0 .5 0 0 0
a t  0 .3 0 0 .2222
a t  0 .4 0 0 .2222
a t  0 .5 0 0 .0 0 6 3
a t  0 .6 0 0 .0 0 6 3
a t  0 .7 0 0 .0052
a t  0 .8 0 0 .0052
a t  0 . 9 0 0 .0 0 0 0
a t  1 . 0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d o v e r  q u e r i e s ) 

0 .1467
P r e c i s i o n  :

A t  5 d o c s : 0 .2 0 0 0
At  10 d o cs : 0 .2 0 0 0
At  15 d o cs : 0 .1 3 3 3
At  20 d o cs : 0 . 1 0 0 0
At  30 d o cs : 0 . 0667
At  100 d o c s : 0 . 0 2 0 0
A t  2 00 d o cs : 0 . 0100
At  500 d o c s : 0 . 0 0 6 0
At  1000 d o cs : 0 .0 0 4 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .2 0 0 0



Queryid (Num) : 41
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision {precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 42
Total number of documents over all queries

Retrieved: 1000
Relevant : 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 0.0270
at 0.10 0.0270
at 0.20 0.0270
at 0.30 0.0270
at 0.40 0.0137
at 0.50 0.0137
at 0.60 0.0137
at 0.70 0.0034
at 0.80 0.0034
at 0.90 0.0034
at 1.00 0.0034

Average precision (non-interpolated) for ail rel
docs(averaged over queries)

0.0147
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0100
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000
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Q u e r y i d  (Num): 43
T o t a l  number  o f  d o c u m e n t s  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t :  8
R e l _ r e t :  8

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t 0., 00 1., 0000
a t 0.. 10 1.,0000
a t 0..20 1.,0000
a t 0.,30 1,,0000
a t 0., 40 1.,0000
a t 0., 50 1., 0000
a t 0., 60 0.,5556
a t 0.,70 0.,4286
a t 0.,80 0.,3684
a t 0.. 90 0., 0273
a t 1., 00 0., 0273

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n :
0 .6 7 2 5

At 5 d o cs  : 0 . 8 0 0 0
At 10 d o cs  : 0 . 5 0 0 0
At 15 d o cs  : 0 . 4 0 0 0
At 20 d o cs  : 0 .3 5 0 0
At 30 d o c s  : 0 .2 3 3 3
At 100 d o c s  : 0 .0 7 0 0
At 200 d o c s : 0 . 0 3 5 0
At 500 d o cs  : 0 . 0 1 6 0
At 1000 d o cs  : 0 . 0 0 8 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 5 0 0 0



Q u e r y i d  (Num.) : 44
T o t a l  number  o f  d o cu m en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 26
Rel  r e t : 26

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 1 .0 0 0 0
a t  0 .1 0 1 .0 0 0 0
a t  0 .2 0 0 .5 3 8 5
a t  0 .3 0 0 .5 0 0 0
a t  0 .4 0 0 .5 0 0 0
a t  0 .5 0 0 .1 8 3 1
a t  0 .6 0 0 .1417
a t  0 .7 0 0 .1242
a t  0 . 8 0 0 .1 0 6 3
a t  0 .9 0 0 .0 8 3 3
a t  1 .0 0 0 .0 6 1 3

A v e r a g e  p r e c i s i o n ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .3 6 0 3
P r e c i s i o n  :

At  5 d o c s : 0 .8 0 0 0
At  10 d o c s : 0 .5 0 0 0
At  15 d o c s : 0 .4667
At  20 d o c s : 0 .4 5 0 0
At  30 d o c s  : 0 .3667
At  100 d o c s : 0 .1 4 0 0
At  2 00 d o c s : 0 .1 0 0 0
At  500 d o c s : 0 .0 5 2 0
At  1000 d o c s : 0 .0 2 6 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .4 2 3 1
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Queryid (Num): 45
Total number of documents over all queries 

Retrieved: 284
Relevant 26 
Rel_tet 10

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 0.3750
at 0.20 0.0366
at 0.30 0.0366
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (noil-interpolated) for all rcl docs(averaged over queries) 
0.1012

Precision:
At 5 docs: 0.4000 
At 10 docs: 0.3000 
At 15 docs: 0.2000 
At 20 docs: 0.2000 
At 30 docs: 0.1667 
At 100 docs: 0.050(1 
At 200 docs: 0.031X1 
At 500 docs: 0.0200 
At 1000 docs: 0.0100 

R-Precision (precision after R (= num_rel for a query) docs retrieved): 
Exact 0.1923



Queryid (Num): 46
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.2000
at 0.10 0.2000
at 0.20 0.2000
at 0.30 0.2000
at 0.40 0.2000
at 0.50 0.2000
at 0.60 0.0833
at 0.70 0.0833
at 0.80 0.0833
at 0.90 0.0833
at 1.00 0.0833

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1417
Precision:
At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Q u e r y i d  (Num): 4 7
T o t a l  number  o f  d o cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t :  3
R e l _ r e t : 3

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s  :
a t 0.  00 0 . 1 1 1 1
a t 0 .1 0 0 . 1 1 1 1
a t 0 .2 0 0 .1 1 1 1
a t 0. 30 0 .1 1 1 1
a t 0 .4 0 0 .1 0 0 0
a t 0 .5 0 0 . 1 0 0 0
a t 0. 60 0 .1 0 0 0
a t 0 .7 0 0 .1 0 0 0
a t 0 .8 0 0 .1 0 0 0
a t 0. 90 0 .1 0 0 0
a t 1. 00 0 .1 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n :
0 .1 0 3 7

At 5 d o c s : 0 .0 0 0 0
At 10 d o c s : 0 .1 0 0 0
At 15 d o cs  : 0 .0 6 6 7
At 20 d o c s : 0 .1 0 0 0
At 30 d o c s : 0 . 1 0 0 0
At 100 d o c s  : 0 . 0 3 0 0
At 200 d o cs  : 0 . 0 1 5 0
At 500 d o c s : 0 .0 0 6 0
At 1000 d o c s : 0 .0 0 3 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Q u e r y i d  (Num.) : 48
T o t a l  number  o f d o cu m en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 0
R e l e v a n t : 0
Rel  r e t : 0

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .0 0 0 0
a t  0 .1 0 0 .0 0 0 0
a t  0 .2 0 0 .0 0 0 0
a t  0 .3 0 0 .0 0 0 0
a t  0 .4 0 0 .0 0 0 0
a t  0 .5 0 0 .0 0 0 0
a t  0 .6 0 0 .0 0 0 0
a t  0 .7 0 0 .0 0 0 0
a t  0 .8 0 0 .0 0 0 0
a t  0 . 9 0 0 .0000
a t  1 . 0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .0 0 0 0
P r e c i s i o n  :

A t  5 d o c s  : 0 .0 0 0 0
At  10 d o cs  : 0 .0 0 0 0
At  15 d o cs  : 0 .0 0 0 0
At  20 d o c s : 0 .0 0 0 0
At  30 d o c s : 0 .0 0 0 0
At  100 d o c s : 0 .0 0 0 0
At  2 00 d o c s : 0 .0 0 0 0
At  500 d o c s : 0 .0 0 0 0
At  10 00 d o c s : 0 .0 0 0 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 . 0 0 0 0
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Q u e r y i d  (Num.) : 49
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t  : 
Rel  r e t :

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s  :
0 .5 0 0 0  
0 .5000  
0 .5 0 0 0  
0 .5 0 0 0  
0 .5 0 0 0  
0 .5 0 0 0  
0 .0161  
0 .0 1 6 1  
0 .0 1 6 1  
0 .0 1 6 1  
0 . 0 1 6 1

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

a t  0 .0 0  
a t  0 .1 0  
a t  0 .2  0 
a t  0 . 3 0  
a t  0 .4 0  
a t  0 .5 0  
a t  0 .6 0  
a t  0 . 7 0  
a t  0 .8 0  
a t  0 .9 0  

1.a t 00

r e c i s i o n :
0 .2 5 8 1

At 5 d o c s  : 0 . 2 0 0 0
At 10 d o c s  : 0 . 1 0 0 0
At 15 d o c s  : 0 .0 6 6 7
At 20 d o c s  : 0 . 0 5 0 0
At 30 d o c s  : 0 .0 3 3 3
At 100 d o cs  : 0 . 0 1 0 0
At 200 d o c s  : 0 .0 1 0 0
At 500 d o c s  : 0 . 0 0 4 0
At 1000 d o c s  : 0 . 0 0 2 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 5 0 0 0

(=  num r e l  f o r



Q u e r y i d  (Num.) : 50
T o t a l  number  o f d o cu m en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 0
R e l e v a n t : 0
Rel  r e t : 0

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0. 0000
a t  0 .1 0 0 .0 0 0 0
a t  0 .2 0 0 .0 0 0 0
a t  0 .3 0 0 .0 0 0 0
a t  0 .4 0 0 .0 0 0 0
a t  0 . 5 0 0 .0 0 0 0
a t  0 .6 0 0 .0 0 0 0
a t  0 .7 0 0 .0 0 0 0
a t  0 .8 0 0 .0 0 0 0
a t  0 .9 0 0 .0 0 0 0
a t  1 .0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .0 0 0 0
P r e c i s i o n  :

A t  5 d o c s : 0 .0 0 0 0
At  10 d o c s : 0 .0 0 0 0
At  15 d o cs  : 0 .0 0 0 0
At  2 0 d o c s : 0 .0 0 0 0
A t  30 d o c s : 0 .0 0 0 0
At  100 d o c s : 0 .0 0 0 0
At  2 00 d o c s : 0 .0 0 0 0
At  500 d o c s : 0 .0 0 0 0
At  1000 d o c s : 0 .0 0 0 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .0 0 0 0



S i t e R a n k  E x p e r i m e n t  i n c o r p o r a t i n g  t h e  S c a r c i t y -  

A b u n d a n c e  t e c h n i q u e  ( S i t e R a n k _ Q u e r y )

C o m b i n i n g  L i n k a g e  a n d  C o n t e n t  e v i d e n c e  u s i n g  t h e  s c a r c i t y -  

a b u n d a n c e  t e c h n i q u e  f o r  r e g u l a t i n g  l i n k a g e  i n f l u e n c e .
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Queryid (Num): 1
Total number of documents over all queries 

Retrieved: 1000
Relevant: 7
Rel_ret: 4

Interpolated Recall - Precision Averages: 
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.1667
at 0.40 0.1667
at 0.50 0.0048
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.1673

At 5 docs: 0.4000
At 10 docs: 0.2000
At 15 docs: 0.1333
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2857



Queryid (Num): 2
Total number of documents over all queries

Retrieved: 1000
Relevant: 16
Rel ret: 16

Interpolated Recall - Precision Averages:
at 0.00 0.1429
at 0.10 0.1429
at 0.20 0.1379
at 0.30 0.1091
at 0.40 0.0402
at 0.50 0.0332
at 0.60 0.0251
at 0.70 0.0169
at 0.80 0.0169
at 0.90 0.0169
at 1.00 0.0166

Average precision (non-interpolated) for all rel
docs(averaged ovei queries)

0.0574
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.1333
At 20 docs: 0.1000
At 30 docs : 0.1333
At 100 docs: 0.0600
At 200 docs: 0.0350
At 500 docs : 0.0200
At 1000 docs: 0.0160

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.1250
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Q u e r y i d  (Num): 3
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t :  16
R e l _ r e t :  15

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t 0., 00 1, , 0000
a t 0.,10 0..8333
a t 0.,20 0,,8333
a t 0. 30 0..8333
a t 0.,40 0,.6923
a t 0.,50 0..6923
a t 0., 60 0.. 6667
a t 0.,70 0,.4800
a t 0., 80 0,.3611
a t 0., 90 0..1500
a t 1., 00 0,.0000

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n  :
0 .5838

At 5 d o c s : 0 .8 0 0 0
At 10 d o c s : 0 .6 0 0 0
At 15 d o c s : 0 .6667
At 20 d o c s : 0 .5 5 0 0
At 30 d o c s : 0 .4 0 0 0
At 100 d o c s : 0 .1 5 0 0
At 200 d o c s  : 0 . 0 7 5 0
At 500 d o cs  : 0 . 0 3 0 0
At 1000 d o cs  : 0 .0 1 5 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t  : 0 . 6 2 5 0



Q u e r y i d  (Num): 4
T o t a l  number  o f  d o cu m en t s  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 8
R e l  r e t : 8

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .6 0 0 0
a t  0 .1 0 0 .6 0 0 0
a t  0 .2 0 0 .6 0 0 0
a t  0 .3 0 0 .6 0 0 0
a t  0 . 4 0 0 .4 4 4 4
a t  0 .5 0 0 .4 4 4 4
a t  0 .6 0 0 .2 0 0 0
a t  0 .7 0 0 .1 5 3 8
a t  0 .8 0 0 .1 3 3 3
a t  0 .9 0 0 .1 3 3 3
a t  1 .0 0 0 . 1 3 3 3

A v e r a g e  p r e c i s i o n ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

0 .3 3 3 0
P r e c i s i o n :

At  5 d o c s  : 0 .6 0 0 0
At  10 d o c s : 0 .4 0 0 0
At  15 d o c s : 0 .2 6 6 7
At  20 d o c s : 0 .2 0 0 0
At  30 d o c s : 0 .1 6 6 7
At  100 d o c s : 0 .0 8 0 0
At  2 00 d o c s : 0 .0 4 0 0
At  500 d o c s : 0 . 0 1 6 0
At  1000 d o c s : 0 .0 0 8 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .3 7 5 0
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Queryid (Num) : 5
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision .

0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 6
Total number of documents over all queries

Retrieved: 1000
Relevant : 2
Rel ret : 2

Interpolated Recall - Precision Averages:
at 0.00 0.0476
at 0.10 0.0476
at 0.20 0.0476
at 0.30 0.0476
at 0.40 0.0476
at 0.50 0.0476
at 0.60 0.0073
at 0.70 0.0073
at 0.80 0.0073
at 0.90 0.0073
at 1.00 0.0073

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0274
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num) : 7
Total number of documents over all queries 

Retrieved: 1000
Relevant : 
Rel ret :

Interpolated Recall - Precision Averages: 
at 0.00 0.1429
at 0.10 0.1429
at 0.20 0.0625
at 0.30 0.0625
at 0.40 0.0625
at 0.50 0.0625
at 0.60 0.0625
at 0.70 0.0459
at 0.80 0.0459
at 0.90 0.0282
at 1.00 0.0282

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.0611

At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0400
At 200 docs : 0.0250
At 500 docs : 0.0120
At 1000 docs : 0.0060

R-Precision (precision after
query) docs retrieved):

Exact: 0.0000

R (= num rel for a



Queryid (Num): 8
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 9
Total number of documents over all queries

Retrieved: 1000
Relevant: 1
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 10
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Q u e r y i d  (Num): 11
T o t a l  number  o f  d ocum en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  816
R e l e v a n t : 1
R e l _ r e t :  1

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :  
a t  0 . 0 0  0 .0 2 5 6
a t  0 . 1 0  0 .0 2 5 6
a t  0 . 2 0  0 .0 2 5 6
a t  0 .3 0  0 .0 2 5 6
a t  0 . 4 0  0 .0 2 5 6
a t  0 . 5 0  0 .0 2 5 6
a t  0 . 6 0  0 .0 2 5 6
a t  0 . 7 0  0 .0 2 5 6
a t  0 . 8 0  0 .0 2 5 6
a t  0 . 9 0  0 .0 2 5 6
a t  1 . 0 0  0 .0 2 5 6

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l  
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n
0 .0 2 5 6

At 5 d o c s : 0 .0 0 0 0
At 10 d o c s  : 0 . 0 0 0 0
At 15 d o c s  : 0 . 0 0 0 0
At 20 d o c s : 0 . 0 0 0 0
At 30 d o c s  : 0 .0 0 0 0
At 100 d o c s  : 0 . 0 1 0 0
At 200 d o c s  : 0 . 0 0 5 0
At 500 d o c s  : 0 . 0 0 2 0
At 1000 d o c s  : 0 .0 0 1 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Q u e r y i d  (Num): 12
T o t a l  number  o f  d o cu m en t s  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 11
Rel  r e t : 11

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 .0 0 0 .3 3 3 3
a t  0 .1 0 0 .2 8 5 7
a t  0 .2 0 0 .2 5 0 0
a t  0 .3 0 0 .2 5 0 0
a t  0 .4 0 0 .1 5 0 0
a t  0 .5 0 0 .1 5 0 0
a t  0 .6 0 0 .0737
a t  0 .7 0 0 .0 6 8 4
a t  0 .8 0 0 .0 4 2 5
a t  0 .9 0 0 .0 3 3 0
a t  1 .0 0 0. 0318

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d o v e r  q u e r i e s )

0 .1514
P r e c i s i o n  :

At  5 d o cs : 0 . 2 0 0 0
A t  10 d o cs : 0 . 2 0 0 0
A t  15 d o cs : 0 . 2 0 0 0
At  2 0 d ocs : 0 . 2 0 0 0
At  30 d ocs : 0 .1 3 3 3
At  100 d o cs : 0 . 0 7 0 0
At  2 00 d o cs : 0 . 0 4 0 0
At  500 d ocs : 0 . 0 2 2 0
At  10 00 d ocs : 0 .0 1 1 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .1 8 1 8
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Queryid (Num): 13
Total number of documents over all queries 

Retrieved: 1000
Relevant: 16
Rel_ret: 15

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 0.4000
at 0.20 0.3500
at 0.30 0.3500
at 0.40 0.3500
at 0.50 0.3077
at 0.60 0.2857
at 0.70 0.1250
at 0.80 0.0884
at 0.90 0.0254
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision;
0.2671

At 5 docs: 0.4000
At 10 docs: 0.2000
At 15 docs: 0.2667
At 20 docs: 0.3500
At 30 docs: 0.3000
At 100 docs: 0.1200
At 200 docs: 0.0650
At 500 docs: 0.0280
At 1000 docs: 0.0150

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2500



Queryid (Num): 14
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num) : 15
Total number of documents over all queries

Retrieved: 1000
Relevant : 2
Rel ret: 2

Interpolated Recall - Pr<
at 0. 00 0.0455
at 0. 10 0.0455
at 0.20 0.0455
at 0. 30 0.0455
at 0. 40 0.0455
at 0.50 0.0455
at 0. 60 0.0455
at 0.70 0.0455
at 0. 80 0.0455
at 0. 90 0.0455
at 1.00 0.0455

Average precision (non-i
docs(averaged over queri'

0.0400
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0333
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (precision c
query) docs retrieved):

Exact : 0.0000

for all rel

R (= num rel for a



Queryid (Num): 16
Total number of documents over all queries

Retrieved: 0
Relevant : 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num): 17
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 8

Interpolated Recall - Precision Averages:
at 0.00 0.2941
at 0.10 0.2941
at 0.20 0.2941
at 0.30 0.2941
at 0.40 0.2941
at 0.50 0.2941
at 0.60 0.2941
at 0.70 0.1132
at 0.80 0.0805
at 0.90 0.0576
at 1.00 0.0576

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1774
Precision:
At 5 docs : 0.0000
At 10 docs : 0.2000
At 15 docs : 0.2000
At 20 docs: 0.2500
At 30 docs : 0.1667
At 100 docs: 0.0700
At 200 docs: 0.0400
At 500 docs: 0.0160
At 1000 docs: 0.0080

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.2500



Queryicä (Num) : 18
Total number of documents over all queries

Retrieved: 1000
Relevant : 5
Rel ret : 5

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.2727
at 0.60 0.2727
at 0.70 0.1667
at 0.80 0.1667
at 0.90 0.0746
at 1.00 0.0746

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4028
Precision:
At 5 docs : 0.4000
At 10 docs: 0.2000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1333
At 100 docs: 0.0500
At 200 docs: 0.0250
At 500 docs : 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.4000



Queryid (Num) : 19
Total number of documents over all queries

Retrieved: 96
Relevant: 5
Rel ret: 5

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.3750
at 0.40 0.3750
at 0.50 0.3750
at 0.60 0.3750
at 0.70 0.2500
at 0.80 0.2500
at 0.90 0.2500
at 1.00 0.2500

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4242
Precision:
At 5 docs : 0.2000
At 10 docs : 0.3000
At 15 docs: 0.2000
At 20 docs: 0.2500
At 30 docs : 0.1667
At 100 docs: 0.0500
At 200 docs: 0.0250
At 500 docs: 0.0100
At 1000 docs: 0.0050

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.2000



Queryid (Num) : 20
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0909
at 0.10 0.0909
at 0.20 0.0909
at 0.30 0.0909
at 0.40 0.0909
at 0.50 0.0909
at 0.60 0.0377
at 0.70 0.0377
at 0.80 0.0377
at 0.90 0.0377
at 1.00 0.0377

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0643
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000
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Q u e r y i d  (Num) : 21
T o t a l  number  o f  do cu m en ts  o v e r  a l l  q u e r i e s  

R e t r i e v e d :  1000
R e l e v a n t  : 
R e l _ r e t  : 

I n t e r p o l a t e d  R e c a l l

1
1
P r e c i s i o n  A v e r a g e s :

a t 0. 00 1 .0 0 0 0
a t 0 .1 0 1 .0 0 0 0
a t 0 .2 0 1 .0 0 0 0
a t 0 .3 0 1 .0 0 0 0
a t 0 .4 0 1 .0 0 0 0
a t 0 .5 0 1 .0 0 0 0
a t 0. 60 1 .0 0 0 0
a t 0 .7 0 1 .0 0 0 0
a t 0. 80 1 .0 0 0 0
a t 0. 90 1 . 0 0 0 0
a t 1. 00 1 .0 0 0 0

A v erag e : p r e c i s i o n (non- :
d o c s ( a v e r a g e d  o v e r  q u e r i e s )

r e c i s i o n
1 .0 0 0 0

At 5 d o c s  : 0 .2000
At 10 d o c s  : 0 .1000
At 15 d o c s  : 0 .0667
At 20 d o c s  : 0 . 0 5 0 0
At 30 d o c s  : 0 .0 3 3 3
At 100 d o c s : 0 .0100
At 200 d o c s : 0 .0050
At 500 d o c s : 0 .0 0 2 0
At 1000 d o c s : 0 .0 0 1 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  1 . 0 0 0 0

R (=  num r e l  f o r  a



Q u e r y i d  (Num): 22
T o t a l  number  o f  d o cu m en ts  o v e r  a l l  q u e r i e s

R e t r i e v e d : 1000
R e l e v a n t : 11
R e l  r e t : 9

I n t e r p o l a t e d  R e c a l l  -  P r e c i s i o n  A v e r a g e s :
a t  0 . 0 0 0 .1 4 2 9
a t  0 . 1 0 0 .1429
a t  0 . 2 0 0 .1 2 0 0
a t  0 . 3 0 0 .0 8 7 0
a t  0 .4 0 0 .0 6 8 5
a t  0 .5 0 0 .0667
a t  0 . 6 0 0 .0 4 7 0
a t  0 . 7 0 0 .0364
a t  0 .8 0 0 . 0 3 4 6
a t  0 . 9 0 0 .0 0 0 0
a t  1 . 0 0 0 .0 0 0 0

A v e r a g e  p r e c i s i o n  ( n o n - i n t e r p o l a t e d )  f o r  a l l  r e l
d o c s ( a v e r a g e d o v e r  q u e r i e s )

0 .0624
P r e c i s i o n  :

A t  5 d o cs : 0 . 0 0 0 0
At  10 d ocs : 0 .0 0 0 0
At  15 d ocs : 0 . 1 3 3 3
At  20 d ocs : 0 .1 0 0 0
A t  30 d o cs : 0 .1 0 0 0
A t  100 d ocs : 0 . 0 6 0 0
At  200 d ocs : 0 . 0 3 5 0
A t  500 d ocs : 0 . 0 1 8 0
A t  1000 d o c s : 0 . 0 0 9 0

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (= num r e l  f o r  a
q u e r y )  d o cs  r e t r i e v e d ) :

E x a c t  : 0 .0 0 0 0
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Queryid (Num): 23
Total number of documents over all queries 

Retrieved: 0
Relevant : 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recisioni
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retr ieved):

Exact : 0.0000



Queryld (Num): 24
Total number of documents over all queries

Retrieved: 1000
Relevant: 12
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.0833
at 0.10 0.0278
at 0.20 0.0101
at 0.30 0.0101
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0108
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0833
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Queryid (Num): 25
Total number of documents over all queries 

Retrieved: 1000
Relevant : 2
Rel_ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.0909
at 0.10 0.0909
at 0.20 0.0909
at 0.30 0.0909
at 0.40 0.0909
at 0.50 0.0909
at 0.60 0.0909
at 0.70 0.0909
at 0.80 0.0909
at 0.90 0.0909
at 1.00 0.0909

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.0812

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.0000



Queryid (Num) : 26
Total number of documents over all queries

Retrieved: 1000
Relevant : 19
Rel ret: 19

Interpolated Recall - Precision Averages :
at 0.00 0.6667
at 0.10 0.6667
at 0.20 0.6250
at 0.30 0.5714
at 0.40 0.5714
at 0.50 0.5714
at 0.60 0.5714
at 0.70 0.3659
at 0.80 0.3636
at 0.90 0.0239
at 1.00 0.0239

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4203
Precision :
At 5 docs : 0.6000
At 10 docs : 0.5000
At 15 docs: 0.4000
At 20 docs: 0.5500
At 30 docs : 0.4000
At 100 docs: 0.1600
At 200 docs: 0.0850
At 500 docs: 0.0340
At 1000 docs: 0.0190

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.5263



Queryid (Num): 27
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0. 0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 28
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0027
at 0.70 0.0027
at 0.80 0.0027
at 0.90 0.0027
at 1.00 0.0027

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2514
Precision :
At 5 docs : 0.2000
At 10 docs: 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs: 0.0333
At 100 docs: 0.0100
At 200 docs: 0.0050
At 500 docs: 0.0020
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.5000



Queryid (Num): 29
Total number of documents over all queries

Retrieved: 1000
Relevant: 5
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 0.7500
at 0.40 0.7500
at 0.50 0.7500
at 0.60 0.7500
at 0.70 0.1905
at 0.80 0.1905
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.5214
Precision:
At 5 docs: 0.6000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1333
At 100 docs: 0.0400
At 200 docs: 0.0200
At 500 docs: 0.0080
At 1000 docs: 0.0040

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact: 0.6000



Queryid (Mum): 30
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision:
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 31
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 0.2500
at 0.10 0.2500
at 0.20 0.2500
at 0.30 0.2500
at 0.40 0.2500
at 0.50 0.2500
at 0.60 0.2500
at 0.70 0.2500
at 0.80 0.2500
at 0.90 0.2500
at 1.00 0.2500

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2222
Precision:
At 5 docs : 0.0000
At 10 docs: 0.2000
At 15 docs : 0.2000
At 20 docs: 0.1500
At 30 docs : 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs : 0.0060
At 1000 docs: 0.0030

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 32
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 1.0000
at 0.80 1.0000
at 0.90 1.0000
at 1.00 1.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

1.0000
Precision:
At 5 docs : 0.4000
At 10 docs: 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 1.0000
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Queryid (Num): 33
Total number of documents over all queries 

Retrieved: 1000
Relevant: 
Rel_ret: 

Interpolated Recall
at 0.00 
at 0.10 
at 0.20 
at 0.30 
at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00

3
3

- Precision Averages : 
0000 
0000

1.0000
, 0000 
0000 

,0000 
, 0000 

0.0064 
0.0064 
0.0064 
0.0064

Average precision (non-interpolated) 
docs(averaged over queries)

for all rel

recision:
0.6688

At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs : 0.1000
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 500 docs : 0.0060
At 1000 docs : 0.0030

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t  : 0 . 6 6 6 7

R (=  num r e l  f o r



Queryid (Num): 34
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.5000
at 0.70 0.5000
at 0.80 0.5000
at 0.90 0.5000
at 1.00 0.5000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.4167
Precision :
At 5 docs : 0.4000
At 10 docs : 0.2000
At 15 docs : 0.1333
At 20 docs : 0.1000
At 30 docs : 0.0667
At 100 docs : 0.0200
At 200 docs : 0.0100
At 5 00 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0. 0000



Queryid (Num) : 35
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R {= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num) : 36
Total number of documents over all queries 

Retrieved: 1000
Relevant : 3
Rel_ret: 3

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 1.0000
at 0.70 0.7500
at 0.80 0.7500
at 0.90 0.7500
at 1,00 0.7500

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

:ecision:
0.9167

At 5 docs: 0.6000
At 10 docs: 0.3000
At 15 docs: 0.2000
At 20 docs: 0.1500
At 30 docs: 0.1000
At 100 docs: 0.0300
At 200 docs: 0.0150
At 500 docs: 0.0060
At 1000 docs: 0.0030

R -Precision  (p rec is io n  a f t e r  R (= num_rel fo r  a
query) docs r e t r ie v e d ) :

Exact: 0.6667



Queryid (Num): 37
Total number of documents over all queries 

Retrieved: 0
Relevant : 0
Rel_ret: 0

Interpolated Recall - Precision Averages : 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision :
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num) : 38
Total number of documents over all queries

Retrieved: 1000
Relevant: 8
Rel ret: 7

Interpolated Recall - Precision Averages:
at 0.00 0.2500
at 0.10 0.2500
at 0.20 0.0408
at 0.30 0.0408
at 0.40 0.0408
at 0.50 0.0408
at 0.60 0.0318
at 0.70 0.0283
at 0.80 0.0072
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0528
Precision:
At 5 docs : 0.2000
At 10 docs: 0.1000
At 15 docs : 0.0667
At 20 docs: 0.0500
At 30 docs : 0.0333
At 100 docs: 0.0400
At 200 docs: 0.0250
At 500 docs: 0.0120
At 1000 docs: 0.0070

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.1250
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Queryid (Num) : 39
Total number of documents over all queries

Retrieved: 
Relevant: 
Rel ret:

Interpolated Recall - Precision Averages:

at
at

at 0.00 
at 0.10 

0.20 
0.30 

at 0.40 
at 0.50 
at 0.60 
at 0.70 
at 0.80 
at 0.90 
at 1.00

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 

0000 
0000 
0000 
0000

Average precision (non-interpolated) 
docs(averaged over queries)

for all rel

recision:
0.0000

At 5 docs: 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs: 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (p rec is ion  a f te r
query) docs r e t r ie v e d ) :

Exact: 0.0000

R (= num rel for a



Quervid (Num): 40
Total number of documents over all queries

Retrieved: 1000
Relevant: 5
Rel ret: 4

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.2000
at 0.40 0.2000
at 0.50 0.0055
at 0.60 0.0055
at 0.70 0.0043
at 0.80 0.0043
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.1420
Precision:
At 5 docs : 0.2000
At 10 docs: 0.2000
At 15 docs : 0.1333
At 20 docs: 0.1000
At 30 docs : 0.0667
At 100 docs: 0.0200
At 200 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0040

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.2000



-358-

Queryid (Num): 41
Total number of documents over all queries 

Retrieved: 0
Relevant: 0
Rel_ret: 0

Interpolated Recall - Precision Averages: 
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision
0.0000

At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs : 0.0000
At 30 docs : 0.0000
At 100 docs : 0.0000
At 200 docs : 0.0000
At 500 docs : 0.0000
At 1000 docs : 0.0000

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m ^ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 0 0 0 0



Queryid (Num): 42
Total number of documents over all queries

Retrieved: 1000
Relevant: 3
Rel ret: 3

Interpolated Recall - Precision Averages:
at 0.00 0.0208
at 0.10 0.0208
at 0.20 0.0208
at 0.30 0.0208
at 0.40 0.0150
at 0.50 0.0150
at 0.60 0.0150
at 0.70 0.0032
at 0.80 0.0032
at 0.90 0.0032
at 1.00 0.0032

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0130
Precision :
At 5 docs : 0.0000
At 10 docs: 0.0000
At 15 docs: 0.0000
At 20 docs : 0.0000
At 30 docs: 0.0000
At 100 docs: 0.0100
At 2 00 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0030

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000
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Queryid (Num): 43
Total number of documents over all queries 

Retrieved: 1000
Relevant: 8
Rel_ret: 8

Interpolated Recall - Precision Averages: 
at 0.00 1.0000
at 0.10 1.0000
at 0.20 1.0000
at 0.30 1.0000
at 0.40 1.0000
at 0.50 1.0000
at 0.60 0.6250
at 0.70 0.6000
at 0.80 0.2800
at 0.90 0.0240
at 1.00 0.0240

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.6911

At 5 docs : 0.8000
At 10 docs : 0.6000
At 15 docs : 0.4000
At 20 docs : 0.3000
At 30 docs : 0.2333
At 100 docs : 0.0700
At 200 docs : 0.0350
At 500 docs : 0.0160
At 1000 docs : 0.0080

R -Precision  (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.6250



Queryid (Num): 44
Total number of documents over all queries

Retrieved: 1000
Relevant : 26
Rel ret : 26

Interpolated Recall - Precision Averages:
at 0.00 1.0000
at 0.10 1.0000
at 0.20 0.5000
at 0.30 0.4706
at 0.40 0.3793
at 0.50 0.1781
at 0.60 0.1356
at 0.70 0.1193
at 0.80 0.1193
at 0.90 0.0822
at 1.00 0.0559

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.3420
Precision:
At 5 docs : 0.8000
At 10 docs: 0.5000
At 15 docs : 0.4 667
At 20 docs: 0.4000
At 30 docs: 0.3667
At 100 docs: 0.1500
At 200 docs: 0.1050
At 500 docs: 0.0520
At 1000 docs: 0.0260

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact: 0.3077



-360-

Queryid (Num): 45
Total number of documents over all queries 

Retrieved: 284
Relevant: 2 6
Rel_ret: 10

Interpolated Recall - Precision Averages:
at 0.. 00 1., 0000
at 0..10 0..3750
at 0.,20 0.,0366
at 0.,30 0., 0366
at 0.. 40 0.,0000
at 0.,50 0., 0000
at 0., 60 0., 0000
at 0..70 0..0000
at 0.. 80 0..0000
at 0.. 90 0. . 0000
at 1.. 00 0.,0000

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision
0.0989

At 5 docs : 0.4000
At 10 docs : 0.3000
At 15 docs : 0.2000
At 20 docs : 0.1500
At 30 docs : 0.1667
At 100 docs : 0.0500
At 200 docs : 0.0300
At 500 docs : 0.0200
At 1000 docs : 0.0100

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t :  0 . 1 9 2 3



Queryid (Num): 46
Total number of documents over all queries

Retrieved: 1000
Relevant: 2
Rel ret: 2

Interpolated Recall - Precision Averages:
at 0.00 0.5000
at 0.10 0.5000
at 0.20 0.5000
at 0.30 0.5000
at 0.40 0.5000
at 0.50 0.5000
at 0.60 0.0800
at 0.70 0.0800
at 0.80 0.0800
at 0.90 0.0800
at 1.00 0.0800

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.2900
Precision :
At 5 docs : 0.2000
At 10 docs: 0.1000
At 15 docs: 0.0667
At 20 docs : 0.0500
At 30 docs: 0.0667
At 100 docs: 0.0200
At 2 00 docs: 0.0100
At 500 docs: 0.0040
At 1000 docs: 0.0020

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.5000



Queryid (Num): 47
Total number of documents over all queries 

Retrieved: 1000
Relevant : 3
Rel_ret: 3

Interpolated Recall - Precision Averages: 
at 0.00 0.1200
at 0.10 0.1200
at 0.20 0.1200
at 0.30 0.1200
at 0.40 0.1200
at 0.50 0.1200
at 0.60 0.1200
at 0.70 0.1200
at 0.80 0.1200
at 0.90 0.1200
at 1.00 0.1200

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision;
0.1121

At 5 docs : 0.0000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.1000
At 30 docs : 0.1000
At 100 docs : 0.0300
At 200 docs : 0.0150
At 500 docs : 0.0060
At 1000 docs: 0.0030

R - P r e c i s i o n  ( p r e c i s i o n  a f t e r  R (=  n u m _ r e l  f o r  a
q u e r y )  d o c s  r e t r i e v e d ) :

E x a c t : 0 . 0 0 0 0



Queryid (Num): 48
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret: 0

Interpolated Recall - Precision Averages:
at 0.00 0. 0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0. 0000
at 0.80 0.0000
at 0.90 0. 0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs: 0. 0000
At 100 docs: 0.0000
At 2 00 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs : 0.0000

R-Precision (precision after R (= num rel for a
query) docs retrieved):

Exact : 0.0000



Queryid (Num): 49
Total number of documents over all queries 

Retrieved: 1000
Relevant: 2
Rel_ret: 2

Interpolated Recall - Precision Averages : 
at 0.00 0.3333
at 0.10 0.3333
at 0.20 0.3333
at 0.30 0.3333
at 0.40 0.3333
at 0.50 0.3333
at 0.60 0.0117
at 0.70 0.0117
at 0.80 0.0117
at 0.90 0.0117
at 1.00 0.0117

Average precision (non-interpolated) for all rel 
docs(averaged over queries)

recision:
0.1725

At 5 docs : 0.2000
At 10 docs : 0.1000
At 15 docs : 0.0667
At 20 docs : 0.0500
At 30 docs : 0.0333
At 100 docs : 0.0100
At 200 docs : 0.0100
At 500 docs : 0.0040
At 1000 docs : 0.0020

R-Precision (p rec is ion  a f t e r  R (= num_rel for  a
query) docs r e t r ie v e d ) :

Exact: 0.0000



Queryid (Num): 50
Total number of documents over all queries

Retrieved: 0
Relevant: 0
Rel ret : 0

Interpolated Recall - Precision Averages :
at 0.00 0.0000
at 0.10 0.0000
at 0.20 0.0000
at 0.30 0.0000
at 0.40 0.0000
at 0.50 0.0000
at 0.60 0.0000
at 0.70 0.0000
at 0.80 0.0000
at 0.90 0.0000
at 1.00 0.0000

Average precision (non-interpolated) for all rel
docs(averaged over queries)

0.0000
Precision :
At 5 docs : 0.0000
At 10 docs : 0.0000
At 15 docs : 0.0000
At 20 docs: 0.0000
At 30 docs : 0.0000
At 100 docs: 0.0000
At 200 docs: 0.0000
At 500 docs: 0.0000
At 1000 docs: 0.0000

R-Precision (precision after R (= num_rel for a
query) docs retrieved):

Exact : 0.0000


