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Abstract

Traditionally, rich, constraint-based grammatical resources have been hand-coded. Scaling 
such resources beyond toy fragments to unrestricted, real text is knowledge-intensive, time- 
consuming and expensive.

The work reported in this thesis is part of a larger project to automate as much as 
possible the construction of wide-coverage, deep, constraint-based grammatical resources 
from treebanks. The Penn-II treebank is a large collection of parse-annotated newspaper 
text. We have designed a Lexical-Functional Grammar (LFG) (Kaplan and Bresnan, 1982) 
f-structure annotation algorithm to automatically annotate this treebank with f-structure 
information approximating to basic predicate-argument or dependency structures (Cahill 
et al., 2002c, 2004a). We then use the f-structure-annotated treebank resource to auto­
matically extract grammars and lexical resources for parsing new text into f-structures.

We have designed and implemented the Treebank Tool Suite (TTS) to support the 
linguistic work that seeds the automatic f-structure annotation algorithm (Cahill and van 
Genabith, 2002) and the F-Structure Annotation Tool (FSAT) to validate and visualise 
the results of automatic f-structure annotation.

We have designed and implemented two PCFG-based probabilistic parsing architec­
tures for parsing unseen text into f-structures: the pipeline and the integrated model. Both 
architectures parse raw text into basic, but possibly incomplete, predicate-argument struc­
tures (“proto f-structures”) with long distance dependencies (LDDs) unresolved (Cahill 
et al., 2002c).

We have designed and implemented a method for automatically resolving LDDs at 
f-structure level based on a finite approximation of functional uncertainty equations (Ka­
plan and Zaenen, 1989) automatically acquired from the f-structure-annotated treebank 
resource (Cahill et al., 2004b).

To date, the best result achieved by our own Penn-II induced grammars is a dependency 
f-score of 80.33% against the PARC 700, an improvement of 0.73% over the best hand­
crafted grammar of (Kaplan et al., 2004). The processing architecture developed in this 
thesis is highly flexible: using external, state-of-the-art parsing technologies (Charniak, 
2000) in our pipeline model, we achieve a dependency f-score of 81.79% against the PARC 
700, an improvement of 2.19% over the results reported in Kaplan et al. (2004).

We have also ported our grammar induction methodology to German and the TIGER 
treebank resource (Cahill et al., 2003a).

We have developed a method for treebank-based, wide-coverage, deep, constraint- 
based grammar acquisition. The resulting PCFG-based LFG approximations parse the 
Penn-II treebank with wider coverage (measured in terms of complete spanning parse) 
and parsing results comparable to or better than those achieved by the best hand-crafted 
grammars, with, we believe, considerably less grammar development effort. We believe 
that our approach successfully addresses the knowledge-acquisition bottleneck (familiar 
from rule-based approaches to Al and NLP) in wide-coverage, constraint-based grammar 
development. Our approach can provide an attractive, wide-coverage, multilingual, deep, 
constraint-based grammar acquisition paradigm.

v
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Chapter 1

In troduction

Parsing (determining the syntactic structure of a string) is an important step in natu­

ral language processing, as syntactic structure strongly determines semantic interpreta­

tion in the form of predicate-argument structures, dependency relations or logical form 

representations. For a substantial number of linguistic phenomena such as topicalisa- 

tion, wh-movement in relative clauses and interrogative sentences, however, there is an 

important difference between the location of the (surface) realisation of linguistic ma­

terial and the location where this material should be interpreted semantically. Resolu­

tion of such long-distance dependencies (LDDs) is, therefore, crucial in the determination 

of accurate predicate-argument structure, deep dependency relations and the construc­

tion of proper meaning representations such as logical forms (Johnson, 2002). Modern 

unification/constraint-based grammars such as Lexical-Functional Grammar (LFG) (Ka­

plan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) or Head-Driven Phrase Structure 

Grammar (HPSG) (Pollard and Sag, 1994) capture deep linguistic information including 

LDDs, predicate-argument structure, or logical form.

Developing deep unification/constraint-based grammars is a highly knowledge-intensive 

task and grammars are typically hand-crafted. Scaling rich, unification/constraint-based, 

computational grammatical resources beyond small fragments to unrestricted text is time- 

consuming and expensive, involving person-years of concerted grammar and lexicon de­

velopment (Butt et al., 1999, 2002). Few hand-crafted, deep unification grammars have 

in fact achieved the coverage and robustness required to parse a corpus of (say) the size
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and complexity of the Penn treebank: Riezler et al. (2002) show how a deep, carefully 

hand-crafted LFG is successfully scaled to parse the Penn-II treebank (Marcus et al., 1994) 

with discriminative (log-linear) parameter estimation techniques.

The situation is familiar from other knowledge-intensive engineering tasks in traditional 

rule-based, “rationalist” approaches in Artificial Intelligence (Al) and Natural Language 

Processing (NLP): it is an instance of the famous knowledge-acquisition bottleneck.

At the same time, much recent work in NLP has been corpus based, following what has 

been referred to as an “empiricist” research tradition. Treebank resources are available 

for increasing numbers of languages and treebank-based, probabilistic grammar induction 

and parsing is a cutting-edge research paradigm (Charniak, 1996; Johnson, 1999; Charniak, 

2000; Klein and Manning, 2003). Such approaches are attractive as they achieve coverage, 

robustness and performance while incurring very low grammar development cost. With a 

number of notable exceptions (Collins, 1999; Johnson, 2002; Hockenmaier, 2003), however, 

most of the induced grammars are “shallow”, i.e. they do not map text to information and 

even these exceptions are substantially less detailed than current unification/constraint- 

based grammars such as LFG and HPSG in the rationalist paradigm.

This situation poses a research question: is it possible to combine rationalist and 

empirical research methods to induce rich, wide-coverage, constraint-based grammars from 

treebanks?

This thesis presents a method of extracting wide-coverage, robust, probabilistic context- 

free grammar (PCFG)-based LFG approximations from automatically f-structure-annotated 

treebanks, two flexible PCFG-based processing architectures for parsing with such re­

sources, a method for automatically resolving LDDs at f-structure level based on a finite ap­

proximation of functional uncertainty equations extracted from the f-structure-annotated 

treebank resource and extensive evaluation of all these resources.

Our approach requires an f-structure-annotated treebank. We have designed and de­

veloped an algorithm which automatically annotates the Penn-II treebank with f-structure 

information (Cahill et al., 2002a; Burke et al., 2004b). The Penn-II treebank uses traces, 

coindexation and functional tags to represent a certain amount of deep linguistic informa­

tion. Our algorithm exploits this information together with categorial, configurational and
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head information to automatically annotate the Penn-II treebank with abstract syntac­

tic functional (LFG f-structure) information approximating to basic predicate-argument 

structures.

In order to successfully develop the automatic f-structure annotation algorithm, addi­

tional support tools are required. We designed and implemented the Treebank Tool Suite 

(TTS) (Cahill and van Genabith, 2002) to support the population of annotation matrices 

which constitute the linguistic basis for the automatic f-structure annotation algorithm. 

Once the automatic f-structure annotation algorithm has been implemented, we require 

tools to visualise and validate the output of automatic annotation. For this purpose, we 

designed and implemented the F-Structure Annotation Tools (FSAT).

PCFG parsing is a core technology used in this dissertation. A number of grammar 

transformations have been proposed to improve the quality of PCFG-based parsing, most 

notably those of Johnson (1999) and Klein and Manning (2003). In addition, there are a 

number of possible pre-processing steps that are usually carried out before automatically 

extracting a PCFG from a treebank. We thoroughly investigate pre-processing steps and 

grammar transformations and the way in which they interact in order to determine which 

combinations will produce the highest quality parse trees.

We have used our automatic f-structure annotation algorithm to develop two PCFG- 

based parsing architectures that parse raw text into f-structures (Cahill et al., 2002c).

In the pipeline architecture, we first extract a PCFG from the unannotated Penn-II 

treebank to parse new text. We then automatically annotate the most probable parse 

with LFG f-structure equations using our f-structure annotation algorithm. The equa­

tions are collected and passed to a constraint solver to generate an f-structure. In the 

in tegrated  model, we first annotate the Penn-II trees with f-structure equations and ex­

tract an annotated PCFG from the annotated treebank. We treat strings consisting of 

CFG categories followed by one or more f-structure equations as monadic categories for 

grammar extraction and parsing. We then parse with the annotated grammar and choose 

the f-structure-annotated tree with the highest probability. We collect the f-structure 

equations and pass them to a constraint solver to generate an f-structure.

Both architectures produce “proto f-structures“: basic, but possibly incomplete, predicate-
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argument structures with long-distance dependencies unresolved. Like in most other cur­

rent PCFG-based parsing technology (Johnson, 1999; Charniak, 2000; Klein and Manning, 

2003), linguistic material is interpreted purely locally where it occurs in the tree. In this 

thesis, we show how LDDs can be resolved at f-structure level based on a finite approxi­

mation of functional uncertainty equations (Kaplan and Zaenen, 1989; Dalrymple, 2001) 

and LFG subcategorisation frames automatically acquired from the f-structure-annotated 

treebank resource (Cahill et al., 2004b; O’Donovan et al., 2004). Unlike (Collins, 1999; 

Johnson, 2002), in our approach LDDs are resolved on the level of f-structure represen­

tation, rather than in terms of empty productions and co-indexation on parse trees. In 

order to reliably determine the quality of the f-structures generated by our methodology, 

we evaluate against three gold standards: the DCU 105 (Cahill et al., 2002a), the auto­

matically generated 2416 f-structures for the original trees in section 23 of the Penn-II 

treebank in a CCG-style experiment (Hockenmaier, 2003), and the PARC 700 Depen­

dency Bank (King et al., 2003). Currently our own induced grammars achieve preds-only 

f-structure/dependency f-scores of 80.33% and 81.24%, evaluating against the PARC 700 

and DCU 105, respectively. We achieve a preds-only f-score of 79.38% against the auto­

matically generated 2416 f-structures for the original trees in section 23 of the Wall Street 

Journal (WSJ) part of the Penn-II treebank.

We compare our work to other similar work on the resolution of LDDs. Collins (1999) 

only deals with wh-movement in relative clauses. It is difficult to carry out a satisfactory 

comparison, but we perform an experiment to compare our work at f-structure level. Our 

method of resolving LDDs at f-structure level performs better than Collins’ Model 3 trees 

with traces, evaluating against the DCU 105, the PARC 700 and the automatically gener­

ated 2416 f-structures for the original trees in section 23. In a post-processing approach, 

(Johnson, 2002) inserts empty nodes and their antecedents into parse trees in order to cap­

ture long-distance dependencies. Again, it is difficult to compare our work directly, but we 

carry out an experiment at f-structure level, evaluating against the DCU 105, the PARC 

700 and the automatically generated 2416 f-structures for the original trees in section 23. 

In all experiments, our method of resolving LDDs at f-structure level yields higher results 

than Johnson’s (2002) method of adding empty nodes and co-indexation to Charniak’s
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(2000) parser output to capture LDDs. Given the trees generated by Charniak’s (2000) 

parser, our method of resolving LDDs at f-structure achieves a preds-only f-score of 80.65% 

against the DCU 105. Generating f-structures from these trees with empty nodes added 

by Johnson’s (2002) software achieves an f-score of 79.52%. Kaplan et al. (2004) evaluate 

their hand-crafted LFGs against a subset of the PARC 700 with a reduced feature-set and 

achieve an f-score of 79.6%. For the same experiment, our own best PCFG achieves an 

f-score of 80.33%. Using the output of Charniak’s (2000) parser in our pipeline model, our 

method achieves an f-score of 81.79%, an improvement of 2.19% on the results of (Kaplan 

et al., 2004).

It is well known that PCFG-based approximations of unification grammars do not 

provide an adequate probability model (Abney, 1997), as sometimes probability mass is 

lost when the parser produces a most probable parse, but this parse cannot generate 

an f-structure. Given this, it is perhaps surprising that our automatically induced deep 

LFG resources and PCFG-based approximations outperform the best hand-crafted wide- 

coverage constraint-based grammars and sophisticated processing approaches.

Substantial treebanks (or dependency banks) are now available for many languages 

(including English, Japanese, Chinese, German, French, Czech, Turkish), while others are 

currently under construction (Arabic, Bulgarian) or near completion (Spanish, Catalan). 

We show how our method of acquiring large-scale, probabilistic LFG approximations can 

be migrated to German, a topologically different language (Cahill et al., 2003a), using 

the TIGER treebank resource (Brants et al., 2002). We successfully extract PCFG-based 

LFG approximations for German and parse unseen German text into LFG f-structures. 

Currently we achieve an f-score of 71% against a manually constructed gold standard of 

100 dependency structures.

This thesis presents a method for automatically acquiring large-scale, robust, prob­

abilistic English and German LFG approximations. We present a method for resolving 

long-distance dependencies at f-structure level, enabling our parsers to produce deep lin­

guistic representations. We show that, although our PCFG approximations do not provide 

a strictly adequate probability model, we achieve parsing results for English on the WSJ 

section of the Penn-II treebank equal to or better than those achieved by the best state-
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of-the-art hand-crafted grammars.

This thesis is structured as follows:

C hapter 2 describes and evaluates an automatic f-structure annotation algorithm for 

English and the Penn-II treebank.

C hapter 3 describes a suite of tools used in the development and the application of the 

automatic f-structure annotation algorithm presented in Chapter 2.

C hapter 4 outlines basic probabilistic context-free parsing models, and gives a brief dis­

cussion on alternative approaches to probabilistic parsing.

C hapter 5 describes a number of pre-processing steps and grammar transformations that 

can be applied to a treebank before extracting a PCFG. Each is examined in detail 

and an extensive evaluation of each transformation and pre-processing step and how 

they interact is carried out.

C hapter 6 presents two parsing architectures (pipeline and integrated) for parsing into 

LFG f-structures. We evaluate the basic, but possibly partial, predicate-argument 

structures (“proto f-structures”) generated. We then describe our method of re­

solving long-distance dependencies at the level of f-structure to produce “proper 

f-structures” and extensively evaluate the proper f-structures produced.

C hapter 7 compares our method of generating deep linguistic representations to other 

related work, in particular to the work of Collins (1999),Johnson (2002) and Riezler 

et al. (2002); Kaplan et al. (2004) and present results using external state-of-the-art 

parsers (Collins, 1999; Charniak, 2000) in our pipeline processing architecture.

C hapter 8 describes how we adapt the methodology developed for English to German 

and the TIGER treebank. We carry out evaluation of the German f-structures. We 

perform and evaluate a morphological case-simulating grammar transformation.

C hapter 9 concludes and outlines some areas of future work.
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Chapter 2

A utom atic  F -S truc tu re  

A nnotation

2.1 Background and M otivation

Deep grammars relate strings to information, represented in terms of logical forms, deep 

dependency or predicate-argument-adjunct structures. Deep unification or constraint- 

based grammars are usually hand-crafted, time-consuming and expensive to develop, 

and rarely achieve the coverage of state-of-the-art treebank-based probabilistic grammars. 

Much current parsing technology is treebank based, with grammars automatically induced 

from available treebank resources. The Penn-II treebank (Marcus et al., 1994), for exam­

ple, has been used to automatically extract probabilistic context-free grammars (PCFGs) 

(Charniak, 1996), combinatory categorial grammars (CCGs) (Hockenmaier and Steedman, 

2002), tree-adjoining grammars (TAGs) (Xia, 1999) and lexicalised grammars (Charniak, 

1997). Extracting grammars from treebanks is fast, cheap and provides wide-coverage 

grammars. The main disadvantage with this approach, however, is that the analyses pro­

vided by these grammars are mostly “shallow”. They do not map strings into meaning 

representations and, with a few notable exceptions, do not attempt to resolve long-distance 

dependencies.

This poses a research question: can “deep”, probabilistic constraint-based grammars, 

such as lexical functional grammar(LFG), be acquired from treebanks? The answer is yes,
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if an f-structure annotated treebank is at our disposal. Unfortunately, however, such a 

resource does not exist, so we have to create one. First generation treebanks represented 

mainly surface syntactic information in the form of CFG parse trees, while many second 

generation treebanks contain a certain amount of deep linguistic information to support 

the computation of “meaning” representations. The Penn-II treebank, for example, uses 

traces, coindexation and functional tags to represent deep linguistic information. We have 

designed an f-structure annotation algorithm which exploits this information together with 

categorial and configurational information to automatically annotate the Penn-II treebank 

with abstract syntactic functional information approximating to basic predicate-argument 

structures (Cahill et al., 2002a; Burke et al., 2004b).

In this chapter, I will first outline Lexical Functional Grammar and why we have 

chosen to annotate the Penn-II treebank using this formalism. I will briefly outline some 

previous approaches to automatic f-structure annotation and present our own annotation 

algorithm, including a description of the architecture and a thorough evaluation of our 

system.

2.2 Lexical Functional Grammar

LFG (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) belongs to the family 

of unification or constraint-based grammars. I will first briefly describe constraint-based 

grammars in general. I will then go on to describe LFG in more detail, and finally I will 

argue that LFG is a very suitable framework for our automatic annotation project.

2.2.1 U n ification  (or C o n stra in t-B ased ) G ram m ars

Constraint-based grammars extend context-free formalisms with the addition of Feature 

Structures or Attribute Value Matrices (AVMs). An AVM is a graphical representation of 

finite hierarchical sets. Alternatively, an AVM is a representation of a minimal, canonical 

model satisfying a logical description involving Boolean combinations of expressions in an 

equality logic (Johnson, 1988; Kaplan, 1995). Values of features in an AVM can be either 

complex or atomic, i.e values can, but must not, be other AVMs. Figure 2.1 shows an AVM 

induced by the conjunction over a set of terms (constraints) in an equality logic. Members



P R E D  ‘S E E ’

’ p r e d  ‘ J o h n ’ 

SU B J / 2 : NU M  SG
PERS 3 

' p r e d  ‘M a r y ’
OBJ f y  NU M  SG

P E R S 3
T E N S E  PA ST

/l(SUBj) =  h  
/l (OBJ) =  h

A  =

A  ( p r e d ) =  ‘s e e ’ 

a  ( t e n s e ) =  PAST  

A ( p r e d ) =  ‘J o h n ’

/ 2 ( n u m ) =  SG  

/ 2 ( p e r s ) =  3
/ 3 ( p r e d ) =  ‘M a r y ’ 

/ 3 ( n U M ) =  SG

A ( p e r s ) = 3

Figure 2.1: An example AVM satisfying a set of terms (constraints)

of the unification grammar family include LFG (Kaplan and Bresnan, 1982), Functional 

Unification Grammars (FUG) (Kay, 1985), PATR-II (Shieber, 1984), Generalized Phrase 

Structure Grammar (GPSG) (Gazdar et al., 1985) and Head-Driven Phrase Structure 

Grammar (HPSG) (Pollard and Sag, 1994).

2.2.2 LFG

Minimally, L F G  (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) involves two 

levels of representation: c(onstituent)-structure and f(unctional)-structure. C-structure 

captures language-specific phenomena such as word order and the grouping of constituents 

into larger phrases in the form of context-free trees. F-structure represents abstract syn­
tactic functions such as SUB.i(ect), OBj(ect), PRED(icate), COMP(lement), XCOMP(lement), 

OBL(ique), ADJUNCT etc. in the form of recursive attribute-value structures. F-structures 

approximate to predicate-argument-modifier representations, simple logical forms (van 

Genabith and Crouch, 1996; Cahill et al., 2003b) or deep dependency relations.

C-structure and f-structure representations are related in terms of “functional anno­

tations” of the form f . .. =  j. ... on tree nodes, i.e. attribute-value structure equations 

(or more generally: disjunctive, implicational, negative and set membership constraints) 

describing f-structures. Figure 2.2 shows an example c- and f-structure for the sentence 

John saw Mary. Each node in the c-structure is annotated with f-structure equations, e.g. 

|  s u b j =  [. The uparrows ( |)  point to the f-structure associated with the mother node, 

downarrows (j) to that of the local node. In a complete parse tree these |  j  meta variables
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are instantiated to unique tree node identifiers and a set of constraints (a set of terms in 

the equality logic) is generated which (if satisfiable) generates an f-structure.

N P
(T SUBj)= I

John

FRED

SUBJ

hi
OBJ

TENSE

FRED 1SEE((TSU BJ)(T0BJ))’ 

f i ­

fa-

PRED ‘J o h n ’
NUM SG
PERS 3
PRED ‘M a ry

NUM SG
PERS 3

M ary

Figure 2.2: C- and f-structures for the sentence John saw Mary

2.2.3 W h y  th e  LFG  F ram ew ork?

LFG is particularly attractive for multilingual grammar development as the level of f- 

structure representation abstracts away from certain (but not all) particulars of language- 

specific surface realisation (Butt et al., 1999, 2002). At the same time LFG provides 

a precise, flexible, computationally tractable and non-transformational interface between 

c-structure and f-structure representation for both parsing and generation (Butt et al., 

2002).

There are two specific reasons for using the LFG framework in our automatic anno­

tation project. The first is that while languages differ with respect to surface represen­

tations, they may encode the same (or very similar) abstract syntactic (and semantic) 

predicate-argument structures. Figure 2.3 illustrates this point. Irish is typologically a 

VSO-language, while English is an SVO-language. The same proposition expressed in 

Irish and English exhibits markedly different c-structure configurations but is associated 

with isomorphic (up to the values of P R E D  nodes) f-structure representations. This is a 

very useful property for applications such as machine translation (Kaplan et al., 1989).

The second reason is that unlike other constraint-based grammar formalisms, LFG 

has enjoyed a substantial body of work on automatic f-structure annotation architectures 

summarised in (Cahill et al., 2002c; Frank et al., 2003). These approaches automatically 

annotate (treebank or parse-generated) trees with f-structure equations to generate f- 

structures for those trees.
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N P
(T SUBj) =  I

John

C honaic

PRED ‘J o h n ’
NUM SG
PERS 3
PRED ‘M a r y

NUM SG
PERS 3

saw M ary

PREP ‘SEE((TSU BJ)(ToBJ))’ 

h'-

/a:

1F E IC ((tSU B j)('I 'O B j))’ 
PRED ‘SÉAN’ 
NUM SG 
PERS 3 
PRED ‘M a i r e ’

OBJ h ' -
J NUM SG

TENSE PAST

PRED

SUBJ

/ i :

OBJ

TENSE

Figure 2.3: C- and f-structures for an English and corresponding Irish
sentence

Our work builds on this research and develops more robust and large-scale systems. 

Our algorithm is theoretically formalism-independent and could, for example, also be 

applied to developing a large-scale HPSG grammar. Miyao et al. (2003) extract an HPSG 

for the Penn-II treebank, while earlier work by Tateisi et al. (1998) derives an HPSG from 

the hand-crafted English XTAG (Egedi et al., 1994). In this dissertation, however, we 

only deal with LFG.

2.3 Previous Work on A utom atic A nnotation

It would be desirable to have a substantial treebank, such as Penn-II, annotated with 

f-structure information as a resource for extracting probabilistic unification grammar re­

sources. The large number of context-free rule types that occur in the Penn-II treebank 

(>17000) make it unfeasible to manually annotate each rule type with f-structure informa­

tion. Therefore we would like to be able to automatically annotate such a large resource. 

Automatically generating f-structures from c-structure is not a completely new idea. Es­

sentially there have been three approaches to date, each of which I will describe in more 

detail below:

• Annotation algorithms (Lappin et al., 1989),

• Regular expression-based annotation (Sadler et al., 2000),
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There are two ways to derive an f-structure from a tree: direct transformation or indirect 

annotation. The direct method recursively and destructively transforms a treebank tree 

into an f-structure. The indirect method only ever adds information: it annotates the tree­

bank tree with f-structure annotations. These annotations are then collected and passed 

to a constraint solver which resolves the equations and, if the equations are consistent, 

outputs an f-structure.

2.3.1 A n n o ta tio n  A lg o rith m s

The earliest approach to automatically identifying functional grammatical categories such 

as s u b j , o b j , etc in phrase structure trees is probably due to Lappin et al. (1989). Nodes 

in trees are identified which correspond to grammatical functions. Their motivation was to 

generate a set of grammatical function-based transfer rules as part of a machine translation 

project.

Unpublished work (1996) by Ron Kaplan (p.c.) reports a direct automatic f-structure 

transformation algorithm to generate f-structures for an LFG-DOP project (Bod and 

Kaplan., 1998). His approach was to transform a tree (from the ATIS corpus) into an 

f-structure by walking through the tree and restructuring the tree into an f-structure.

2.3.2 R eg u la r E x p ressio n -B ased  A n n o ta tio n

A regular expression-based, indirect automatic annotation method is described in Sadler 

et al. (2000). This involves extracting a context-free phrase structure grammar (CF-PSG) 

from a treebank fragment. F-structure annotation principles are stated in terms of regular 

expressions matching CF-PSG rules. By applying regular expression-based annotation 

principles to the rules that are extracted, and using these annotated rules to re-match the 

original trees, f-structures can be generated for these trees. The number of annotation 

principles is appreciably smaller than the number of extracted CFG rule types since the 

regular expression-based annotation principles capture linguistic generalisations.

• Flat, set-based tree description rewriting (Frank, 2000).
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The flat, set-based tree description rewriting method of automatically annotating trees 

with f-structure descriptions developed by Frank (2000), can be seen as a generalisation of 

the regular expression-based technique of Sadler et al. (2000). Here the idea is that each 

tree is translated into a flat set description with terms from a tree description language. 

Annotation principles are then defined in terms of rules employing a rewriting system orig­

inally developed for transfer-based machine translation architectures (Kay et al., 1994). In 

certain circumstances, the principles can be applied order independently, or in a particular 

cascading order. One of the advantages of this method is that tree fragments of arbitrary 

depth can be considered, whereas in the regular expression-based method, tree depth is 

limited to 1 (i.e. CFG rules).

The methodologies presented in Sadler et al. (2000) and Frank (2000) have been ‘proof- 

of-concept’ and to date have only been applied to small subsets of the AP and Susanne 

corpus of the order of 100-200 trees. This, however, is not to claim that they cannot be 

scaled to a complete treebank.

2.4 Our A nnotation Algorithm

In the work reported here, we have chosen the algorithmic approach to automatic anno­

tation and developed an indirect annotation algorithm to annotate the >48,000 parse- 

annotated strings (without FRAG(ment) or x(unknown) constituents) in the Wall Street 

Journal (WSJ) section of the Penn-II treebank. The algorithm recursively traverses each 

tree and annotates each node in the tree with f-structure information. The annotation al­

gorithm was developed in two stages. The first stage produces what we refer to as “proto” 

f-structures which represent basic predicate-argument structure, but do not resolve long­

distance dependencies (LDDs). LDDs were treated in the second stage. The annotation 

algorithm is in a continuous state of development to further improve annotation results. 

Here, I will outline the core infrastructure and current results. For more detail on the an­

notation algorithm, see McCarthy (2003) and Burke (forthcoming). I will describe how we 

generate f-structures from f-structure-annotated trees and how we evaluate the f-structures

2 .3 .3  S et-B ased  Tree D escrip tion  R ew ritin g
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our annotation algorithm produces. Finally, I will briefly describe the implementation of 

the system.

2.4.1 Proto F-structures

Proto f-structures capture basic predicate-argument structure. Long-distance dependency 

phenomena such as topicalisation and wh-movement are partially represented in terms of 

T O P IC , T O PIC R E L  and FO C U S functions but are not resolved as arguments of the PR E D S  

subcategorising for the “moved” linguistic material. In order to support the maintainabil­

ity and extensibility of the linguistic information encoded in the algorithm, we separate 

the linguistic data from the algorithm itself and adopt a modular design. To produce 

proto f-structures, the following three modules are required. I will discuss them in greater 

detail below.

• Left-Right Context

• Coordination

• Catch-All and Clean-Up

Left-Right C ontext

The algorithm considers the elements of a local subtree of depth one (i.e. a CFG rule), and, 

if there is no coordination element (i.e. CC or C O N JP on the RHS or U C P on the LHS),1 left- 

right context annotation principles are applied. Coordination is treated separately in order 

to keep the left-right context annotation principles simple and perspicuous. The algorithm 

first locates the head daughter h of a local subtree, effectively creating a tripartition of 

left-context 1\ . ..  in, followed by head h, followed by right context rj ... rm: LHS —> 11 

. . .  ln h ri . ..  rm. We use a modified version of Magerman’s (1994) head-finding rules to 

locate the head.2 The complete set of modified rules is listed in Table 2.1. To find the 

head of a constituent, the algorithm first identifies the mother category in the “Category”

1See A p p en d ix  A  for a  d escr ip tion  o f  th e  P O S  ta g s  used  in th e  P en n-II T reebank
2Som e o f  M agerm an’s orig inal rules w ere changed in order to  g ive  b e tter  resu lts. For exam ple, M D  

(m od al verb) w as m oved from  after V P  to  th e  sta r t o f  th e  lis t o f p o ssib le  heads for V P , since in  our schem e, 
th e  m od al verb is a lw ays th e  h ead  o f a  V P . M ore d eta il a b ou t th e  changes m ade can  b e  found in M cC arthy  
(2003).
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column. If the value in the “direction” column is “Left”, it searches the daughters from 

left to right (head initial), otherwise, from right to left (head final). For each daughter 

X in the list of values in the table, it scans the children of the local constituent for the 

first occurrence of category X. If X occurs, that child is the head. If no child matches, 

the algorithm uses the first (or last, for head-final) child as the head. Asterisks (****) 

indicate that any categories after the asterisks should only be chosen as the head if there 

are no other matching categories. If there is a daughter whose category is one other than 

those occurring after the asterisks, choose the left-most or right-most of these daughters 

according to the search direction. Otherwise, choose the left-most or right-most daughter 

as the head. The head of an NP node is determined by a separate list of rules. To locate 

the head of an N P node, the algorithm first searches from right to left looking for the first 

node whose category label begins with N and satisfies the following conditions: (i) the 

category label does not have any Penn-II functional tags and (ii) if the node has label N P , 

it must not be preceded by punctuation. If no category is found, the information in Table

2.1 is used to find the head.

Category Direction Values
ADJP Right % QP JJ VBN VBG  ADJP $ JJR JJS DT FW  IN **** RBR RI3S RB
AD VP Left RBR RB RBS FW  ADVP CD **** JJR JJS JJ NP
CONJP Left CC RB IN
FRAG Left
INTJ Right
LST Left LS :
NAC Right NN NNS NNP NNPS NP NAC EX $ CD QP PR P VBG JJ JJS JJR ADJP FW
NP Right EX $ CD QP PR P VBG  JJ JJS JJR ADJP D T  FW  RB SYM PRP$ **** PRN POS
PP Left IN TO FW
PRN Left
PRT Left RP
QP Right $ % CD NCD QP JJ JJR JJS DT
RRC Left V P NP AD VP A D JP PP
S Right TO VP SBAR AD JP UCP NP P P-PR D  A D JP-PR D  N P-PRD
SBAR Right IN S SQ SINV SB A R  FRAG X
SBARQ Right SQ S SINV SBARQ FRAG X
SINV Right MD IN VBZ V BD  V B P VB AUX VP S SINV AD JP NP
SQ Right MD VBZ V BD  V B P VB AUX V P SQ
UCP Left CC S **** AD VP RB PRN
VP Left MD V BD  V BN  VBZ VB VBG  V B P POS AUX AUXG VP TO A D JP JJ NP
W H ADJP Right JJ AD JP
W H ADVP Left W RB
W HNP Right NN NNS NNP NN PS NP W DT W P W P$ W H ADJP W H PP W HNP
W H PP Left IN TO FW
X Left

Table 2.1: Our complete list of head-finding rules, based on a version of 
Magerman’s (1994) rules.

Once we have identified the head of each constituent, we use categorial and configu-
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Left Context Head Right Context
DT: |  S P E C :D E T  = j 

QP: |  SP E C :Q U A N T  = i  
JJ, A D J P : j e t  A D JU N C T

NN, NNS . ..  
T = 4

NP: I e  T A P P  

PP: I e  T A D JU N C T  

S, SBAR:| RELM O D = J.

Table 2.2: Simplified sample NP annotation matrix

rational information to assign annotations to the other constituents in the tree. We do 

this by consulting a left-right annotation matrix for the mother node of each local subtree. 

A simplified sample matrix for NP rules is shown in Table 2.2. The matrix specifies, for 

example, that a D T  node to the left of the head node of an N P constituent should get the 

annotation |  S P E C :D E T  =  j.

Populating the left-right context annotation matrices is done by hand using linguistic 

expertise. Given the scale of the Penn-II treebank, with more than 17,000 rule types, it is 

impossible to analyse each rule individually. Instead we only look at the most frequent rule 

types and extract generalisations. For each LHS category, we analyse the most frequent 

rule types such that the token occurrence of these rule types in the corpus covers at least 

85% of all occurrences of rules expanding that particular LHS. To give an example, instead 

of looking at >6,000 different N P rule types in the Penn-II treebank, we only consider the 

102 most frequent ones to populate the N P  annotation matrix (only 1.7% of the total NP  

rule types). These 102 NP rule types constitute 85% of all NP rule tokens. For example, 

the rule NP —> JJ NNS is a very common rule occurring 9,553 times in the basic grammar 

we extracted from the Penn-II treebank. However, the rule NP —> JJ JJ JJ JJ NNS 

only occurs once. While analysing the first rule, we come up with the generalisation 

that a JJ (adjective) to the left of a head in an NP rule should receive the annotation 

I  E t  ADJUNCT. This generalisation also applies to the less frequent rule providing a 

reasonable analysis for all elements of the rule. The fact that we can sample so few rules 

and still achieve good results is due to an interesting Zipfian property of treebanks. For 

each rule LHS category, a small number of very frequently occurring rules expand those 

categories, while there exists a large number of much less frequent rules, many of which 

may occur only once or twice in the whole treebank. In total we have constructed 23 left- 

right context annotation matrices for the 23 atomic (without Penn-II tags) LHS categories
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in Penn-II. The matrices are then generalised in that they also apply to rules with LHSs 

with Penn-II tags, such as N P -T M P , N P -L O C  etc. More detail on the annotation matrices 

can be found in McCarthy (2003) and Burke (forthcoming).

Coordination

Due to the comparatively flat analyses in the Penn-II treebank, coordinate constructions 

can be difficult to analyse. In order to keep our Left-Right Context annotation principles 

simple and perspicuous, they are only applied if the local tree does not contain coordina­

tion. We provide two sets of coordination annotation principles, depending on the type 

of coordination. For like-constituent coordination, we build sets of linguistically similar 

categories depending on the category of the LHS mother node, e.g. { n n , n n s , n n p }  etc 

for NP nodes. Using these similarity sets, we are able to determine the elements of a 

constituent that should be part of the coordination set, and which remaining constituents 

should be analysed using the left-right context annotation principles. Figure 2.4 shows 

the annotation of a coordinated VP structure. The VPs belong in the similarity set of 

VP, and so receive the annotation [€|conj. The annotation for the NP is found in the 

left-right context annotation matrix for VP, which says that an NP to the right of the 

head in a VP receives the annotation jobj= j. Unlike-constituent coordination is marked 

in the Penn-II treebank by means of the U C P  category. Figure 2.5 shows a UCP structure 

for the string 207 and growing. We treat this differently to like-constituent coordination 

with CC and C O N JP  constituents. Unlike-constituent coordination is more complex and 

difficult to analyse. Fortunately it does not occur very often, with 288 type and 590 token 

occurrences in the Penn-II treebank. For more detail on how we deal with coordination, 

see McCarthy (2003) and Burke (forthcoming).

Catch-All and Clean-Up

This step exploits the Penn-II functional information tags present in some of the node 

categories of the Penn-II treebank. Initially, the algorithm looks at the category labels 

and any functional tags on nodes that have received no f-structure annotation. By de­

fault, i f  the node has any functional tag information (e.g. -T M P , -L O C  . . . ) ,  we assign it
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VP

VP CC VP
jetcoNj T=4 letcoNj

V B ^ PRT and VB PRP$
T = j

1
Tpart=J. t=j Tposs=

open RP
T=4

up

deregulate its

N P
Tobj=J.

JJ

sheltered

N N

T=i
!

economy

Figure 2.4: Annotating VP coordination with similarity sets

UCP

NP
1

CD
1

207

CC
1

and

VP
1

VBG
1

growing

Figure 2.5: Unlike-constituent coordination in the Penn-II treebank

the annotation J. G T a d j u n c t , meaning that the local node’s f-structure is an element 

of the adjunct set of its mother node’s f-structure. If the category label on the node is 

p r n  (parenthetical), we also mark it as an adjunct. Sometimes it is necessary to over­

write default annotations on nodes. For example, p p - c l r  always gets annotated as an 

oblique argument (i.e. tOBL=4), overwriting any default annotation it might have previ­

ously received. Figure 2.6 shows an example structure with a p p - c l r  node receiving the 

annotation |O B L = J . .  -C L R  indicates a close relationship to the verb and we assume that 

a prepositional phrase that is closely related to the verb is in fact an oblique argument of 

that verb. Our left-right context annotation matrices sometimes overgeneralise. This is 

also corrected in the Catch-All and Clean-Up phase. For example, the VP matrix specifies 

that an NP occurring to the right of the head in a VP rule receives the annotation | O B J = | .  

However, if there are two NP arguments of the verb (i.e. direct and indirect), they cannot 

both receive the annotation | O B J = | ,  since, as well as being incorrect, the constraint solver 

would not be able to resolve the equations and would fail to generate an f-structure. The
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P R P $  N N  N N S  IN  N P
Î P O S S = i  j e Î A D J U N C T  | = J ,  | = j  t O B J = i

their television sets as NNS
1=1

Iscreens

Figure 2.6: Annotating PP-CLR nodes as oblique arguments

Catch-All and Clean-Up phase corrects the overgeneralisation and rewrites the annotation 

of the second NP argument (the indirect object) as |OBj2= |.

Figure 2.7: Outline of algorithm to generate proto and proper f- 
structures.

2.4.2 Proper F-structures

The first three components of the f-structure annotation algorithm generate proto-f- 

structures with long-distance dependencies unresolved. In order to produce proper 

f-structures that capture long-distance dependencies such as topicalisation and wh- 

movement, we exploit trace information encoded in the Penn-II treebank trees. Figure 2.7 

outlines the extended annotation algorithm, with an additional “Traces” component that 

deals with long-distance dependencies.



Non-local dependencies are encoded in the Penn-II treebank by means of traces. Fig­

ure 2.8 illustrates a tree containing traces. In this instance, the trace is used to capture 

A movement (i.e. movement to argument position). The indices on the W H N P -3  and 

*T*-3 node labels indicate that these constituents are linked. The W H N P  should be inter­

preted semantically where the *T*-3 label is located in the tree. To link these nodes in 

the automatically generated f-structure, the empty node is assigned the equation fS U B J  

=  jT O P lC R E L ,  indicating that the pronoun “who” should be semantically interpreted as 

the subject of the verb write. Using trace information we successfully capture linguistic 

phenomena such as passive, fronted constituents, wh-questions, A and A' movement. We 

also annotate arbitrary PRO (a phonetically null subject in non-finite verb constructions 

where the subject is unknown). The encoding of phenomena such as passive is important 

in LFG since the “surface-syntactic” grammatical functions such as S U B J and O B J differ 

from “logical” grammatical roles. Figure 2.9 shows an f-structure for the passive sentence 

An agreement was brokered by the U.N.. The surface subject of the sentence is not the 

logical subject of the verb broker, it is in fact the logical object. The logical subject of 

the verb is the U.N. which is the object of the oblique agent of the verb in the f-structure. 

Given that the f-structure indicates passive voice, however, it is possible to generate the 

correct logical form for this sentence.

2.4.3 F'rom A nnotated  Trees to LFG F-Structures

Once we have successfully annotated each node in a tree with f-structure information, we 

collect the equations and convert them into a P R O L O G  format. This is done by replacing the 

U P  and D O W N  in the node annotations with the required tree node number which is read off 

the tree. The equations are then passed to a P R O L O G  constraint solver, which is based on 

and extends the constraint solver in Gazdar and Mellish (1989). Our constraint solver can 

deal with equality constraints, disjunction and simple set-valued feature constraints. Since 

our f-structure annotations currently do not involve disjunctions, there should ideally be 

one and only one f-structure produced for each set of equations. Figure 2.10 shows the 

tree of Figure 2.8 after automatic annotation. The equations on each node are read off the

Trace Information
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RB
I

Not

PDT
I

all

DT
I

those

WHNP-3

oppose D T  NNS
I I

the changes

VP
I I

-NONE- VBD
I I

*T*-3 wrote 

Figure 2.8: A tree containing traces

An a g r e e m e n t  w as b r o k e r e d  b y  t h e  U .N

SUBJ
PRED ‘ A g r e e m e n t ’ 

NUM SG 
SPEC A 

PRED ‘Brgker{TSUBJ, TOB 
PASSIVE +

'a g r

OBL,a<J

'PRED •BY(TOBJ)’
PRED ‘U.N.’"

OBJ NUM SG
SPEC THE

Figure 2.9: The f-structure for the passive sentence An agreement was 
brokered by the U.N.
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tree and passed to a constraint solver which generates the f-structure in the same figure.

2.4.4 Evaluation

We provide two methods of evaluating our automatic f-structure annotation algorithm -  

qualitative and quantitative. I will outline these methods and current results below.

Quantitative Evaluation

Quantitative evaluation effectively evaluates the coverage of our annotation algorithm. We 

measure this in two ways: f-structure fragmentation and category annotation coverage. 

When a node in a tree fails to receive an annotation, this results in a separate f-structure 

fragment for the material below this node. This f-structure is not connected with the f- 

structure for the rest of the tree. Therefore the more nodes that fail to get an annotation, 

the more f-structure fragments will be produced for any particular tree. It sometimes 

happens that no f-structure is produced for an annotated tree. This occurs if there are 

feature-value clashes (inconsistent annotations) that the constraint solver cannot resolve. 

Table 2.3 illustrates the progress we have made in reducing the number of f-structure 

fragments and feature-value clashes since the beginning of the project. Currently over 

99.8% of the trees receive one complete f-structure. Only 85 trees do not produce an

f-structure because of feature-value clashes. 2 trees produce two f-structure fragments.

#  f-str. 
frags

(Cahill 
#  sent

)t al., 2002a) 
percent

(Cahill 
#  sent

;t al., 2002b) 
percent

(Cahill
#  sent

it al., 2003b) 
percent

cur 
#  sent

rent
percent

0 2701 5.576 166 0.343 120 0.25 85 0.178
1 38188 78.836 46802 96.648 48304 99.75 48337 99.818
2 4954 10.227 387 0.799 0 0 2 0.004
3 1616 3.336 503 1.039 0 0 0 0
4 616 1.271 465 0.960 0 0 0 0
5 197 0.407 70 0.145 0 0 0 0
6 111 0.229 17 0.035 0 0 0 0
7 34 0.070 8 0.017 0 0 0 0
8 12 0.024 6 0.012 0 0 0 0
9 6 0.012 0 0 0 0 0 0
10 4 0.008 0 0 0 0 0 0
11 1 0.002 0 0 0 0 0 0

Table 2.3: Automatic proto-f-structure annotation fragmentation results

An alternative way to look at the coverage achieved by the automatic f-structure
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(S
(NP-SBJ [u p -su b j =down]

(NP[up=down]
(RB [dow n-elem =up:a d ju n c t]  N o t[u p -p r ed = ’n o t ’ ] )
(P D T [u p -sp ec:det=down] a l l [ u p - p r e d = ’ a l l ’ ] )
(DT[up=down] th o s e [u p -p r e d = ' t h o s e ' ] )

)
(SBAR[up-relmod=down]

(W H N P -3 [u p -to p ic r e l= d o w n ,u p -to p ic r e l: in d e x = 3 ]
(WP[up=down] w h o[u p -p red = p ro , u p -p ro n _ f orm=’who’ ] )

)
(S[up=down]

(N P -SB J[u p-su bj =down, u p -su b j = up :t o p i c r e l ]
(-NONE- *T *-3)

)
(VP[up=down]

(VBD[up=down] w r o te [u p -p r e d = ’w r i t e ’ ,u p - t e n s e = p a s t ] )
)

)
)

)
(VP[up=down]

(VBP[up=down] o p p o se [u p -p r e d = ’o p p o se ’ , u p - te n s e = p r e s ] )
(NP[up-obj=down]

(DT [ u p -s p e c :det=down] th e [u p -p r e d = ’t h e ’ ] )
(NNS[up=down] c h a n g e s [u p -p r e d = ’ ch a n g e’ , u p -n u m = p l,u p -p er s= 3 ])

)
)
(. ■)

)

su b j : a d ju n c t : 1 : p red  : n o t  
sp ec  : d e t  : p red  : a l l  
p red  : t h o s e
relm od : t o p i c r e l  : in d e x  : 3 

p red  : pro  
pron_form  : who 

su b j : in d e x  : 3 
p red  : pro  
pron_form  : who 

p red  : w r it e  
t e n s e  : p a s t

p red  : oppose  
t e n s e  : p r e s
obj : sp ec  : d e t  : p red  : th e  

p red  : change  
num : p i  
p e r s  : 3

Figure 2.10: The tree presented in Figure 2.8 with f-structure equations 
automatically added to each node. These equations are col­
lected and passed to a constraint solver which generates the 
f-structure shown.
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annotation algorithm is to examine what percentage of each category does not receive an 

annotation. A summary of the current results is presented in Table 2.4. It shows that 

there is just one daughter of an S node and one daughter of an S B A R  node in the entire 

treebank that do not receive an annotation.3 Every other node receives an annotation 

100% of the time. This corresponds directly to the fragmentation results presented in 

Table 2.3, where there are two trees that receive two f-structure fragments. Each tree 

contains one of the unannotated nodes, leading to a fragmented f-structure.

LHS
Category

#U nannotated #T o tal 
RHS nodes

% Annotated

ADJP 0 32162 100
ADVP 0 30712 100
CONJP 0 878 100
IN TJ 0 167 100
LST 0 64 100
NAC 0 1270 100
NP 0 817076 100
NX 0 3739 100
PP 0 234009 100
PRN 0 3453 100
PRT 0 3191 100
QP 0 33775 100
RRC 0 113 100
S 1 232159 99.99
SBAR 1 62290 99.99
SBARQ 0 562 100
SINV 0 7669 100
SQ 0 1217 100
UCP 0 1899

OoT—
1

VP 0 403103 100
W HADJP 0 131 100
WHADVP 0 2615 100
W HNP 0 9650 100
W H PP 0 936 100

Table 2.4: Automatic proto-f-structure annotation coverage results

Tables 2.3 and 2.4 give us an indication of how much of the Penn-II treebank we are able 

to automatically annotate, but we also need to evaluate how accurate our annotations are: 

having near 100% coverage is irrelevant if the quality of the annotations is poor. Likewise, 

obtaining highly accurate annotations is not very useful if the coverage is low.

3These two cases involve unusual tree structures, about which we cannot make any generalisations. For 
more discussion, see Burke (forthcoming).
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In this section, I describe a set of experiments designed to measure the quality of the 

f-structures produced by our methodology. The qualitative measures compare the f- 

structure annotations generated by our automatic annotation procedure against those 

contained in DCU 105, a manually constructed gold standard set of f-structures for 105 

Penn-II trees selected at random from section 23 of the WSJ section of the treebank. 

Appendix B gives the list of gold standard sentences. The average string length is 23.98 

words, with the shortest string 2 words, and the longest 45 words. The trees have been 

manually annotated, and after a number of iterations, refined to provide a set of complete, 

correct annotations. The task that our automatic annotation method is confronted with is 

to match as many of these correct annotations as possible. We use two measures to eval­

uate the quality of our automatic annotation algorithm: we perform the standard e v a l b 4 

test to compare the automatically annotated trees with the manually annotated reference 

trees, as well as calculating precision and recall on the dependencies computed from the 

f-structures according to the method and evaluation software presented in Riezler et al. 

(2002) and Crouch et al. (2002).

evalb Evaluation

evalb is a bracket scoring program designed by Sekine k, Collins which reports precision, 

recall, non-crossing brackets and tagging accuracy for given data. The main advantage 

for us in using e v a l b  is that it provides a  quick and cheap way of evaluating the auto­

matically annotated trees against the manually annotated ones. In order to use e v a lb ,  

we treat a string consisting of a CFG category followed by one or more f-structure anno­

tations (e.g. V P [u p -x c o m p = d o w n ,u p -s u b j= d o w n -s u b j]) as an atomic node identifier. We 

calculate precision, recall and f-score (harmonic mean), as defined in (2.1), (2.2) and (2.3) 

respectively. The results of evaluating the automatically annotated 105 sentences against 

the gold standard are given in Table 2.5. Currently we achieve 81.42% precision, 77.7% 

recall and 79.52% f-score.

The major disadvantage with using e v a l b  is that it is an extremely severe and coarse-

4Available at: h ttp ://w w w .cs.nyu .edu/cs/pro jects/pro teus/evalb /

Q ualitative Analysis against the D C U  105
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grained evaluation metric, in that for any given node the set of equations produced au­

tomatically for that node must be identical to the set of manually created annotations, 

and what is more, they must appear in the same order. For e v a l b ,  therefore, the annota­

tions [2,1,3] and [1,3,2] are different (here 1, 2 and 3 represent f-structure equations). 

Similarly, partial but correct annotations (e.g. [1,3] against [1 ,2 ,3]) are scored as full 

mistakes by e v a lb .

Some good results may not be recognised by e v a l b .  Given this, in the next section we 

calculate precision and recall directly on descriptions of f-structures, or rather dependency 

relations derived from f-structures.

Bracketing Recall 81.42
Bracketing Precision 77.70
F-Score 79.52

Table 2.5: The result of evaluation using e v a l b

_ . number of correct constituents m proposed parse . .Precision = --------- ------ --------;-------- ;------------ -------------  (2.1)number of constituents in proposed parse

_ „ number of correct constituents m proposed parse . .Recall = ---------- ------ --------:-------- :------- ------------------- (2.2)
number of constituents in treebank parse

_ _ 2 * Precision * Recall ,n
F-Score = — ----—------------------ ---- --------- r— (2.3)Precision + Recall

Dependency Structure Evaluation

In order to calculate precision and recall directly on descriptions of f-structures, we 

use the evaluation methodology and software presented in Crouch et al. (2002) and

Riezler et al. (2002). Each f-structure is represented as a set of terms of the form:

r e l a t i o n  ( a r g u m e n t , a r g u m e n t) .  As an example, consider the sentence John saw Mary. 

From the f-structure in Figure 2.2, we extract a flat set of terms, as in (1).
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(1 ) s u b j ( s e e " 0 ,  j o h n ~ l ) ,  o b j ( s e e ~ 0 ,  m a r y ~ 2 ) , n u m ( j o h n ~ l , s g ) ,

p e r s ( j o h n " l , 3 ) ,  n u m (m a r y ~ 2 ,s g ) , p e r s ( m a r y ~ 2 ,3 ) , 

t e n s e ( s e e ~ 0 , p a s t )

We calculate precision, recall and f-score for complete f-structures and preds-only f- 

structures encoding basic predicate-argument-modifier relations. A preds-only f-structure 

contains only paths that end in a pred: value pair. The results are presented in Tables 

2.6 and 2.7. Currently we achieve an f-score of 96.5% on all grammatical functions, and 

an f-score of 94.21% preds-only against the DCU 105. Table 2.7 presents a breakdown by 

function of the preds-only evaluation. It shows that, for example, we achieve an f-score 

of 97% for S U B J and O B J and an f-score of 94% for X C O M P . We consider these results to 

be very promising. They show that our automatic annotation methodology is more often 

(slightly more) partial than incorrect. Furthermore, these results confirm our hypothesis 

that many correct automatic annotations are discounted by ev a lb .

All GFs Preds only
Bracketing Recall 96.34 93.95
Bracketing Precision 96.67 94.47
F-Score 96.50 94.21

Table 2.6: The result of evaluation using r e l a t i o n ( a r g u m e n t , 
a r g u m e n t)  against the DCU 105

2.4.5 Im plem entation

The automatic annotation algorithm was implemented in Java. In order to support main­

tainability and extensibility of the algorithm, it was modularised as much as possible to 

keep the linguistic data separate from the particulars of the implementation of the al­

gorithm. Each parse-tree is represented as a recursive N ode object. This makes it easy 

to traverse trees, to compute the local context and to add annotations to each node as 

required. As it was written in Java, the algorithm could easily be integrated into the suite 

of tools described in Section 3.3.
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D e p e n d e n c y P r e c i s i o n R e c a l l F - S c o r e

adjunct 911/997 = 91 911/965 = 94 93
app 19/19 =  100 19/19 = 100 100
comp 89/92 = 97 89/102 = 87 92
coord 176/184 = 96 176/191 = 92 94
det 267/271 = 99 267/269 = 99 99
focus 1/1 =  100 1/1 = 100 100
obj 453/463 =  98 453/468 =  97 97
obj2 1/1 = 100 1/2 =  50 67
obi 45/49 = 92 45/61 = 74 82
obl2 2/2 =  100 2/2 =  100 100
oblag 12/13 =  92 12/12 =  100 96
poss 75/78 =  96 75/83 =  90 93
quant 43/47 =  91 43/61 =  70 80

1 i AO /AA _ OK 42/50 =  84r e i m o a 4  ¿ j  4 4  — y o oy

subj 400/415 =  96 400/414 =  97 97
topic 12/12 =  100 12/13 =  92 96
topicrel 42/46 =  91 42/52 =  81 86
xcomp 145/161 =  90 145/146 =  99 94

Table 2.7: Precision and recall on preds-only descriptions of f-structures 
by grammatical function for the DCU 105

2.5 Summary

In this chapter I have outlined the motivation for developing a large treebank resource 

that has been annotated with functional information approximating to predicate-argument 

structure. I have presented our algorithm for automatically annotating the Penn-II tree­

bank with LFG f-structure information. Our algorithm is modular, with four main com­

ponents: Left-Right Context Rules, Coordination, Catch-All and Clean-Up, and Traces. 

Each component assigns f-structure equations to tree nodes, which are collected and passed 

to a constraint solver which produces an f-structure. Left-right context annotation matri­

ces are compiled manually and express generalisations based on most frequent rule types. 

Coordination is treated separately, as this simplifies the statement of the left-right con­

text annotation matrices. The Catch-All and Clean-Up component assigns annotations 

to unannotated nodes and overwrites some annotations in certain situations. Finally, 

the Traces component translates traces and coindexation in the trees to corresponding 

reentrancies in f-structure.

I have presented a number of quantitative and qualitative evaluation methods and
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experiments. Quantitative evaluation does not involve a gold-standard, while qualita­

tive evaluation does. Our quantitative methods measure the coverage of our automatic 

annotation algorithm. In contrast to counting annotated versus unannotated nodes and 

f-structure fragmentation, measuring unresolvable f-descriptions gives a first indication of 

the (lack of) quality as opposed to mere coverage of the automatic annotation results.

Quantitative evaluation is cheap and easy to implement. Qualitative evaluation in­

volves the manual construction of a ‘gold-standard’ fragment (DCU 105) against which 

the output of automatic annotation is evaluated. We have constructed a reference frag­

ment consisting of 105 manually annotated trees randomly selected from section 23 of 

the WSJ section of the Penn-II treebank. We have presented two variants for qualitative 

evaluation. The first reuses the standard e v a l b  evaluation software available from the 

probabilistic parsing community. Evaluation involving e v a l b  in this manner is extremely 

strict, and the results obtained using e v a l b  certainly provide lower bounds. In order to 

provide a more fine-grained evaluation, our second qualitative evaluation variant involves 

the translation of generated f-structures into a flat set of terms describing test and ref­

erence f-structures. Precision and recall are then computed on these term descriptions, 

following Riezler et al. (2002).

To summarise the particular results obtained in our automatic f-structure annotation 

experiments to date, 48337 Penn-II sentences (99.81% of the 48,440 trees without f r a g  

and x constituents) receive a complete f-structure. 85 trees are not associated with any f- 

structure. Using e v a l b ,  we obtained 77.7% precision and 81.42% recall. Following Crouch 

et al. (2002), we calculated precision and recall directly on sets of term descriptions of 

f-structures. For the preds-only set of equations, we obtain a precision of 94.47%, and 

recall of 93.95% and 96.67% and 96.34% for all grammatical functions. These results show 

that our automatic annotation methodology is more often partial than incorrect.
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Chapter 3

Tools and Infrastructure

This chapter presents the tools created to support the linguistic development of the au­

tomatic annotation algorithm. Tools are required to search and visualise the treebank 

resource, to support the population of the automatic annotation matrices, to carry out 

the annotation, and to visualise the output generated by the annotation algorithm. The 

tool suites are web-based, platform-independent, can be accessed by standard browsers 

and were developed using Java and Perl. I will first outline the motivation for the devel­

opment of such tools. I will then describe the tools in more detail, and finally I will state 

the advantages of the tool suite developed.

3.1 Background and M otivation

In order to successfully write an algorithm to automatically annotate the Penn-II tree­

bank with f-structure information, extra support tools arc required. The first stage of the 

algorithm relies on manually constructed annotation matrices. These matrices contain in­

formation about categories and return an annotation based on the category itself, whether 

it occurs to the left or right of the head of the local subtree, and what its parent category 

is. For example, Table 2.2 (page 16) gives a simplified sample matrix for NP. The table 

states inter alia that a DT to the left of a head under an NP node should receive the 

annotation f  S P E C :D E T  =  [ .

To facilitate the linguistic work on populating these matrices, we developed the Tree-
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bank Tool Suite (TTS)1 (Cahill and van Genabith, 2002). This allows context-free rule- 

and yield-based search on the treebank.

Once the linguistic basis for the automatic annotation algorithm is established, the 

algorithm has to be implemented and applied, and we need to validate and visualise the 

result of annotating the trees in the Penn-II treebank. To this end we developed the F- 

Structure Annotation Tools (FSAT).2 By visualising the result of the automatic annotation 

algorithm, we can identify problems and mistakes and provide important feedback for the 

development cycles. Figure 3.1 outlines the development cycles and our tools infrastructure 

interacting in order to transform the phrase-structure annotated Penn-II treebank into the 

f-structure-annotated Penn-II treebank. TTS supports the development of the linguistic 

basis of the automatic f-structure annotation algorithm, while FSAT applies the algorithm 

and visualises the results. I will outline the different tool suites in more detail in the 

sections below.

3.2 TTS: Treebank Tool Suite

A treebank is a corpus of parse-annotated text. The Penn-II treebank contains over 1 

million words and over 50,000 sentences. It is straightforward to extract the underlying 

context-free grammar from the treebank following Charniak (1996). It is also possible to 

extract variants of the underlying grammar. We extract three grammars from the Penn-II 

treebank. The first is a basic grammar, with empty productions and trace information 

removed, and all Penn-II functional information tags attached to CFG categories stripped. 

The second grammar is almost identical, but the functional information supplied in Penn-

II is retained. The third grammar is a head-lexicalised grammar which has been extracted 

using a modified version of Magerman’s (1994) head-finding rules (see page 15). The most 

basic grammar extracted from all WSJ sections of the treebank has 17,034 rule types. 

Given a particular rule type from this set, we would like to be able to find and view the 

following information from the treebank:

Available at http://www.computing.dcu.ie/~acahill/tts/
2Available at http://www.computing.dcu.ie/researchl/servlet/DisplayTree
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Figure 3.1: Tool suite development cycles
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• trees containing instances of the rule,

• subtrees rooted by the rule,

• the strings covered by the rule, with or without their surrounding 

context.

The treebank is first pre-processed in order to build an index for each context-free rule 

linking it to rule token occurrences in treebank trees. This is to facilitate efficient runtime 

retrieval, an important consideration for the end-user. The Interarbora software (Calder, 

2000) is used to display treebank trees graphically. Figure 3.2 outlines the architecture of 

the TTS tool. Grammars are extracted from a treebank and indices for each grammar are 

generated. The TTS uses these indices to provide the user with the choice of listing rules 

by frequency or to search and display information about one of the rules listed. If the 

user chooses a rule, they can display the yield of that rule, display the yield in context, 

constrain the yield of a rule to be displayed, display the entire trees containing a rule or 

display only the subtrees rooting a rule.

3.2.1 List Rules by Frequency

It is possible to list all the context-free rules in the extracted grammar by frequency. 

In addition, the user can choose to display only rules occurring more frequently than a 

particular threshold (Figure 3.3). It is also possible to select rules with a particular left 

hand side category only. By clicking on a rule, information about that rule is presented, 

as described in Section 3.2.2.

3.2.2 Search by R ule

When the user works with the tool (Figure 3.4), they are presented with a number 

of options. There is a list of context-free rules from which they can select the rule 

they wish to examine. This list can be further reduced to only display rules with a 

particular left hand side category. The user also has the option to change the grammar.
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Figure 3.2: Flow chart outline of the TTS tool
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When the user has chosen a context-free rule, they are first presented with a list of files 

with trees containing instances of the rule (Figure 3.5). They are then presented with the 

following presentation formats:

• Display trees

• Display subtrees

• Show yield

• Show yield in context

• Show constrained yield

In order to achieve fast response-times, if there are more than 50 solutions to a user’s 

query, they will be retrieved separately and presented in consecutive sets of 50. Figures

3.6, 3.7, 3.8 and 3.9 illustrate choosing the “display trees”, “display subtrees”, “show yield” 

and “show yield in context” options respectively. The yield with/without context options 

effectively turns the tool into a “yield in context” (YIC - KWIC) application. In contrast 

to t g r e p  (Pito, 1993), the TTS tool does not support arbitrary tree fragment (of variable 

depth) searches. However, we can often approximate such searches by using a TTS search 

option involving a context-free rule together with a terminal yield constraint. In order to 

select trees exhibiting object control constructions, the user can, for example, specify a 

VP —> VBD NP S rule and require that ' a s k e d  I a s k s  I a s k '  be an element of the yield of the 

rule. Figures 3.10 and 3.11 illustrate the result of this query.
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3.3 FSAT: F-Structure A nnotation Tools

Once we began to implement the automatic f-structure annotation algorithm, we needed 

a tool to apply, visualise and validate the result of automatically annotating Penn-II trees 

with LFG f-structure information. The FSAT tool presents the following options for each 

tree in the treebank:

• View lexicalised tree

• View annotated trees

• View f-description equations

• View f-structure

• View subcat frames

The tool presents each tree in the treebank in succession (Figure 3.12). Alternatively, 

the user can select a particular file from a particular WSJ treebank section. In addition, 

it is also possible to input a tree manually, by pasting the bracketed form of the tree to be 

automatically annotated into the indicated text box. The Interarbora software (Calder, 

2000) is again used to display trees graphically.

Lexicalised Trees: We use a modified version of the head-finding rules as described by 

Magerman (1994) (cf. Figure 2.1) to locate the head at each local subtree level. 

Lexical heads are displayed in brackets on the mother node (Figure 3.13). 

Annotated Trees: We run the automatic f-structure annotation algorithm on the tree 

and display the annotated tree (Figure 3.14).

F-Description Equations: The equations from the annotated tree are collected and 

printed to the screen (Figure 3.15).

F-structure: The equations are sent to a PROLOG constraint solver, which returns an 

f-structure for the automatically annotated tree (Figure 3.16).

Semantic Forms: The f-structure is passed to the subcategorisation-frame extraction 

program as described in Section 6.4.1 and the resulting frames are displayed (Figure 

3.17).
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Figure 3.13: The tree in Figure 3.12 after head-lexicalisation
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Figure 3.15: The f-description produced by the automatic annotation 
algorithm for the annotated tree in Figure 3.14
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Figure 3.16: The f-structure produced by the automatic annotation al­

gorithm for the f-description of Figure 3.15

3.4 Summary

3.4.1 Design and Implementation

We decided to write our own tool suites, since there were no tools available that matched 

our needs. In order to support the development of the linguistic basis of the f-structure 

annotation algorithm, we needed a tool that would allow us to search a treebank for 

occurrences of context-free rules and the data associated with them. While tg r e p  would 

have allowed us to perform context-free rule and tree-based searches, it did not display 

the results graphically or display all terminal yields covered by the rule. We also needed 

tools that apply and visualise output generated by the automatic f-structure annotation 

algorithm. We reused existing tree-graphing software (Calder, 2000) which could easily be 

integrated into our own software. We needed to create a platform-independent, web-based 

application that would support multiple users. The tools are also required to have fast 

response-times, since they are designed to be used online.
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Figure 3.17: The non-empty semantic forms extracted from the f-
structure in Figure 3.16

All of the tools were implemented in Java and Perl which made them perfectly suited 

to a web interface. The tools can be accessed by anybody that has a web browser. We 

take advantage of the session technology inherent in Java servlets, to allow more than one 

user to access the tool at the same time. We have installed the Interarbora tree-graphing 

software (Calder, 2000) locally so that we are not relying on external online resources at 

run time.

3 .4 .2  T h e  A d v a n ta g es o f  D e v e lo p in g  th e  T ool S u ite

The tools described above were essential to the development of the automatic f-structure 

annotation algorithm. TTS was used to populate the annotation matrices used by the 

algorithm. Without an efficient method of analysing and visualising the context-free rules 

underlying the Penn-II treebank, the development of these matrices would have been 

more tedious and time-consuming. With the treebank inspection tool, we display the 

most frequent rules, both overall and for individual left hand sides. We concentrated our
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efforts on the most frequent rules, assuming that many of the generalisations we gathered 

would also generalise to the less frequent rules.

It is often obvious what annotations many of the more frequent rules should receive. 

However, as the frequency of the rule types decreases, it is less often the case. The 

TVeebank Tool Suite allows us to easily find occurrences of rules in the treebank and to 

compute what terminal strings are covered by the rule. This makes the population of 

the annotation matrices easier and more efficient. Since we have easy access to actual 

occurrences of rules, we are less likely to make mistakes when assigning annotations.

Once the initial algorithm is in place, it is essential to be able to verify it and to make 

sure that there are no unwanted side effects of any changes made during the development 

cycles. The second set of tools described in Section 3.3 -FSAT- allow us to visualise, search 

and verify the annotation algorithm. We can see at a glance what annotation has been 

assigned to each node in the tree. It is much easier to debug a graphical representation of 

an annotated tree than a plain text version.

Without the tools described, the population of the annotation matrices would have 

been inefficient and ad hoc. The tools allow us to examine the results of the annotation 

algorithm and identify problems and mistakes. The tools described here proved an essential 

resource to support the development of the linguistic basis of the automatic annotation 

algorithm.
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Chapter 4

Probabilistic Context-Free Parsing  

M odels

4.1 Introduction

Parsing is an important step in natural language processing, as determining the syntactic 

structure of a string is important for semantic interpretation in the form of predicate- 

argument structure, deep dependency relations or logical form. In this chapter I will 

describe context-free grammars (CFGs), probabilistic context-free grammars (PCFGs) 

and a simple chart-based algorithm for parsing with such grammars. PCFGs can easily 

be extracted from treebanks (Charniak, 1996). Given a string, PCFGs order rank parse- 

trees, whereas a simple CFG can only enumerate all possible parses. CFGs have certain 

known weaknesses, such as their inability to take lexical information or structural context 

into account. The corresponding independence assumptions in PCFG models are often 

too strong. On the other hand, PCFGs are well understood mathematically, easy to 

implement and can use dynamic programming techniques and Viterbi pruning to support 

efficient processing. I will outline simple grammar transformation techniques to address 

some of the main problems of PCFGs, and briefly discuss some more complex parsing 

models.
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4.2 C ontext-F ree Parsing

Context-free parsing is a well-understood technology with a number of efficient algorithms 

designed for it. In this section I will first outline the properties of context-free grammars, 

and their probabilistic counterparts. I will then outline a probabilistic version of the 

CYK algorithm (Younger, 1967; Aho and Ullman, 1972), one of the most common parsing 

techniques used to parse with PCFGs.

4.2.1 C ontext-Free Grammars

The classification provided by the Chomsky hierarchy (Figure 4.1) shows that the class of 

languages defined by context-free grammars is equivalent to the class defined by push-down 

automata. Formally, a context-free grammar is a four-tuple ( E, V, S, P ), where:

• E is a finite, non-empty set of terminals (the alphabet);

• V is a finite, non-empty set of non-terminal symbols (category labels) such that

S n V  = 0;

• S € V is the start symbol;

• P is a finite set of production rules, A —> a, where A G V and a  G (V (J E)*.

Language class Grammar Automaton
3 Regular NFA or DFA
2 Context-Free Push-Down Automaton
1 Context-Sensitive Linear-Bounded Automaton
0 Free (Unrestricted) Turing Machine

Figure 4.1: The Chomsky hierarchy of language classes, grammars and 
automata.

4.2.2 Probabilistic C ontext-Free Grammars

Probabilistic context-free grammars extend CFGs by associating a probability with each 

production rule. Formally, a PCFG is defined as a five-tuple ( E, V, S, P, D ) where:

• E is a finite, non-empty set of terminals (the alphabet) ;



• V is a finite, non-empty set of non-terminal symbols (category labels) such that

S n V  = 0;

• S G V  is the start symbol;

•  P is a finite set of production rules, A —> a, where A G V  and a G (V  (J X)*;

• D is a function assigning a probability to each member of P. Moreover, 

VAeV D (a  I A ) =  L
A—> aeP

PCFGs define a language model in terms of probabilities over strings. The model 

defines the probability of a parse tree T given a string S, i.e. P(T|S). The most likely 

tree given a string is the tree that maximises P(T|S). It can be observed that maximising 

P(T|S) is equivalent to maximising P(T,S) since, given S, P(S) is constant. Furthermore, 

P(T,S) =  P(T)P(S|T), but since yield(T) = S, P(S|T) = 1. Thus P(T,S) =  P(T):

argmaxP(T | S) = arg max = arg max P(T, S) = arg max P(T)  (4.1)
T  T  T  T

Rule expansions in parse trees are independent. Hence, the probability of a tree T is 

defined as the product of the probabilities of the token occurrences of the rules expanding 

each left-hand side (LHS) to its right-hand side (RHS) in the tree:

n

P(T ) = [ J  P(RHSi  | LHSi)  (4.2)
1=1

Given a treebank, or corpus of parse-annotated text, it is relatively straightforward to 

extract a PCFG (Charniak, 1996). The probability associated with each rule is determined 

by relative frequency, by counting the number of times a rule occurs in a corpus and 

dividing it by the number of occurrences of all rules expanding the same left hand side.

r l T n r .  # { L H S ^ R H S j )
'' -  M S,) ' *

4.2.3 Parsing w ith  C ontext-Free Grammars

Tabular, memoisation, or chart-based parsers store intermediate results, avoiding the need 

to recompute identical analyses in different parts of the search space. Active chart parsers,
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in addition, store partially explored analyses. A chart is a set of vertices connected by 

labelled edges. Edges characterise a completed or partial constituent spanning a group 

of words. An active edge still has constituents to be found, whereas an inactive edge is 

completed.

The Cocke-Younger-Kasami (CYK) algorithm (Younger, 1967; Aho and Ullman, 1972), 

developed in 1965, is a chart-based bottom-up dynamic programming algorithm, with 

complexity 0(n3|N|3), where n is the number of words in the input sentence, and |N| is 

the number of non-terminals in the grammar. It requires the input grammar to be in 

Chomsky Normal Form (CNF), a restricted type of CFG where all of the rewrite rules 

must be of the form: A —> a  or A—>B C, where A,B,C are non-terminals and a  is a terminal 

symbol. It is straightforward to convert any CFG into CNF. The chart is filled from left 

to right and from bottom to top. An extended probabilistic version of the CYK algorithm 

that parses with PCFGs is outlined in Figure 4.2 (Aho and Ullman, 1972; Collins, 1999). 

The algorithm has three stages: initialisation, a base case and a recursive case. The 

initialisation stage initialises the dynamic programming array. The base case adds an 

entry in the chart for each word and its possible category labels. The recursive case builds 

up the chart p diagonally from bottom to top as follows: for each substring wj j  we look 

at all possible ways of breaking it into two parts Wj ^ and w ^ ^  j. We add A to p[i,j] iff:

• A —> B C is in our set of grammar rules G,

• B e  p[i,k],

• C G p [k + l,j] .

If we can find B and C satisfying those conditions, the probability of adding A to the chart 

is p[i,k,B] * p[k+l,j,C] * P(A —► B C)1. For Viterbi parsing, if this probability is higher 

than any entry for A already there, it overwrites that entry. It is also possible to compute 

the n most probable parses by storing the n most probable entries at each cell. Figure

4.3 shows the completed chart for the parse of the sentence The man saw Mary, given the 

grammar and probabilities indicated. For example, to assign the category NP to p[l,2], 

the algorithm looks at cells [1,1] and [2,2]. We add p[l,2,NP] = 0.48, since NP —* DT N is

1Where p[x,y,Z] is the probability that the string spanning positions x to y is analysed as the non­
terminal Z and P(Y —> a) is the probability assigned to production Y —> a .
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# G iven:
#  S e n te n c e  w l . . .w n
#  N on -T erm in als G
#  p i s  th e  dynam ic program ming a r r a y .
# B i s  an a rr a y  o f  b a c k p o in te r s  a l lo w in g
#  r e c o v e r y  o f  t h e  h ig h e s t  p r o b a b i l i t y  t r e e

¿ ¿ i n i t i a l i s a t i o n

f o r  a l l  i , j , k  
p [ i , j , k ]  = 0

# b a se  c a s e

f o r  i  = 1 . .  . n
f o r  k = 1 . . .  G

i f  k ->  w i i s  in  grammar 
p [ i , i , k ]  = P (k  ->  w i)

¿ ¿recu rsive  c a s e

f o r  s  = 2 . . . n
f o r  i  = 1 . . .  n -s+ 1  
j  = i+ s - 1  
f o r  m = i  . . .  j - 1  

f o r  k  = 1 . . .  G
f o r  k l  = 1 . . .  G

f o r  k2 = 1 . . .  G

prob  = p t i .m .k l ]  * p [m + l ,j ,k 2 ]  * P (k  ->  k l  k2) 
i f  (prob  > p [ i ,  j , k ] ) 

p [ i , j , k ]  = prob  
B [ i , j , k ]  = { m ,k l ,k 2 }

Figure 4.2: Pseudocode for the CYK algorithm.

assigned probability 0.6, [1,1] contains DT with probability 1.0 and [2,2] contains N with 

probability 0.8.

Parsing with PCFGs allows ranking of solutions. However, PCFGs have a certain 

bias for smaller, less-hierarchical trees. This is due to the fact that the probability of a 

parse-tree is calculated by multiplying the probabilities of all rules that contribute to it. 

A larger, more hierarchical tree will include more rules, therefore more rule probabilities 

to multiply out, possibly resulting in a smaller probability than a less-preferred tree with 

less structure. Similarly, PCFGs are biased towards non-terminals with fewer expansions 

over those with many expansions.
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Rule Prob. Rule Prob.
S - f NP VP 1.0 N -* man 0.8
NP —> DT N 0.6 DT -> the 1.0
NP -» PN 0.4 N -> saw 0.2
VP —> V NP 1.0 V -» saw 1.0

PN -> Mary 1.0

1 2 3 4
the man saw Mary

1 DT = 1.0 NP =0.48 S =  0.1536
2 3 II o ÔO
3 N = 0.2 

V = 0.8 VP = 0.32
4 PN = 1.0 

NP = 0.4

Figure 4.3: A PCFG and the chart for The man saw Mary.

4.3 Improving Probabilistic Context-Free Parsing

Standard probabilistic context-free parsing for natural language is limited because the 

independence assumptions are too strong. The independence assumptions allow us to 

calculate the probability of a parse tree by computing the product of the rules it uses. 

This means that the probability of rewriting a nonterminal X with a production R is 

independent of the previous sequence of rewrites. In order for context-free parsing to yield 

optimal results, it must take both lexical information and rule context into account. This 

can be done in a number of ways outlined in this section. In all cases, the basic idea is to 

complicate category labels, i.e. to encode some contextual information in a local category 

label. For example, the parent transformation (Johnson, 1999) allows us to encode rule 

context information. Similarly, head-lexicalisation allows us to encode lexical context.

4.3.1 Grammar Transformations

The independence assumptions of PCFG parsing are very strong, resulting in them being 

insensitive to much relevant contextual or lexical information. However, there are various 

ways in which contextual or lexical information can be “smuggled” into PCFGs, increasing 

their accuracy while maintaining their computational simplicity over other more complex
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parsing methods.

NNP
I

Mary saw

the man

NNP
I

Mary saw

the man

Figure 4.4: Augmenting all non-root, non-preterminal nodes with their 
parent category label

Johnson (1999) investigates the idea of a “parent-transformation” (credited to Char- 

niak) where each node N of a tree is annotated with its parent category label P to give 

N~P. The category label NP, for example, becomes NP' S, if it occurs under an S node 

(Figure 4.4). A training corpus can be transformed automatically in this manner before 

extracting a parent-annotated grammar. This grammar now has additional contextual 

information that a basic PCFG does not encode. For example, it is now possible to dis­

tinguish between NPs occurring as subjects of a sentence and NPs occurring as objects 

of a verb: NPs in subject position are daughters of S nodes, NPs in object position are 

daughters of VP nodes. Subject NPs will be annotated NP~S and object NPs will be 

annotated NP'VP. Johnson performs experiments on the Penn-II treebank, training on 

sections 02-21 and testing on section 22. The accuracy of the parser output is measured 

in terms of labelled precision and recall as defined in equations (2.1) and (2.2) on page 26. 

The parent transformation achieves labelled precision of 0.8 and labelled recall of 0.792, 

a significant improvement on the basic PCFG which achieves labelled precision of 0.735 

and labelled recall of 0.697. These results show that this transformation is a very simple 

yet effective method of weakening some of the independence assumptions that cause basic 

PCFGs to perform poorly.

Klein and Manning (2003) demonstrate that by using simple, linguistically motivated 

transformations which attenuate false independence assumptions latent in treebank gram­

mars, unlexicalised PCFGs can parse with high accuracy (86.3% f-score). They employ a
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number of grammar transformations to achieve this result. The first is Johnson’s parent 

annotation transformation. Next, horizontal history (as opposed to vertical history in the 

case of the parent transformation) is taken into account by markovising the rules from the 

head child out following Collins (1999). Another interesting observation is that by taking 

into account the context in which unary productions occurred (i.e. any non-terminal node 

with only one child received an extra annotation), accuracy improved by 0.55%. The sin­

gle most effective way of improving overall results was found to be annotating POS tags 

with their parent information. This provides key lexical insights into individual word be­

haviour that was previously unexploited. For example, the distribution of adverbs differs 

greatly depending on the parent category: also and now occur under ADVP most often, 

not and n’t occur most often under VP, only and just occur most often under NP etc. 

Annotations were also automatically added for certain determiners, adverbs, prepositions 

and auxiliary verbs, with further improved overall accuracy. Some functional tags present 

in the Penn-II treebank (e.g. -T M P ) were retained and automatically percolated down 

to the head of the phrase. Verb phrases were marked as being either finite or non-finite 

and sentences with empty subjects were given a special annotation. The idea of a base 

NP as defined in Collins (1999) was also introduced, where all NPs that dominate only 

pre-terminal symbols were annotated as NP-B. Klein and Manning (2003) show that by 

performing linguistically motivated transformations on the treebank trees, one can achieve 

accuracy almost as high as state-of-the-art parsers (Collins, 1999; Charniak, 2000), while 

staying in the PCFG processing and complexity paradigm.

4.3.2 Lexicalisation

Hindle and Rooth (1993) demonstrate that lexical dependencies are crucial for resolving 

ambiguities such as PP attachment. However, basic PCFGs do not take lexical information 

into account. For example, not all verbs can take two NP objects, yet for a simple PCFG, 

all verbs are equally likely to take two NP objects. One way to overcome this problem 

is to annotate each phrasal category with its head word (Figure 4.5). However, this 

immediately leads to sparse data problems, and methods to overcome this have to be 

devised. Carroll and Rooth (1998) present a system for head-lexicalised PCFG parsing. It
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parses using an unlexicalised PCFG and then a modified inside-outside algorithm finds the 

lexicalised frequencies, simulating lexicalisation of the chart. The context-free framework 

allows the use of efficient chart parsing techniques while incorporating important lexical 

dependencies.

S S'saw

Mary Saw DT NN
I I

the man

NNP'M ary
I

Mary

VP "saw

V~saw NP'm an

saw DT~the NN'man

I I
the man

Figure 4.5: A head-lexicalised tree

4.4 Some more com plex Approaches to Parsing

There are several other approaches to wide-coverage, probabilistic natural language pars­

ing, some of which achieve better results than simple or current, augmented PCFG-based 

models. Here I will outline two state-of-the-art parsers: Collins (1999) and Charniak 

(2000). Both parsers achieve results close to 90% f-score when tested on section 23 of the 

Penn-II treebank.

Collins (1999) presents three parsing models (1, 2 and 3). Model 1 is a basic history- 

based model. A history-based model (Black et al., 1992) incorporates a rich context 

model (where anything that has previously been generated can appear in the conditioning 

context) and uses decision trees to estimate its parameters. Collins’ Model 2 incorpo­

rates a distinction between complement and adjunct and Model 3 incorporates traces for 

wh-movement. Model 1 attempts to overcome the problem of sparse data in lexicalised 

parsing. This is done by decomposing the generation of the RHS of a rule so that the 

head constituent is generated first, then the left modifiers are generated, and lastly the 

right modifiers are generated. A parse-tree is represented as the sequence of decisions
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corresponding to a head-centred, top-down derivation of the tree. Table 4.1 outlines the 

results achieved by each model when evaluated against section 23 of the Penn-II treebank. 

LP is labelled precision, and LR is labelled recall as defined in equations (2.1) and (2.2) 

respectively. Model 3 achieves the best results with precision of 88.7 and recall of 88.6 

on sentences of length < 40. Model 2 outperforms Model 1 with precision and recall of 

88.7 and 88.5 on sentences of length < 40. Each model performs slightly worse overall on 

sentences of length < 100.

< 40 
LP

words
LR

< 10( 
LP

) words 
LR

Model 1 88.2 87.9 87.7 87.5
Model 2 88.7 88.5 88.3 88.1
Model 3 88.7 88.6 88.3 88.0

Table 4.1: Parsing results for Collins’ models 1, 2 and 3 against section 
23 of the WSJ (Collins, 1999)

The parser presented in Charniak (2000) is a probabilistic generative model which 

assigns a probability to a parse by a top-down process. A generative model uses the 

observation that maximising P(T, S ) is equivalent to maximising P(T\S) as shown in (4.1). 

P(T, S ) is then estimated by attaching probabilities to a top-down derivation of the tree. 

A generative model consists of a generative grammar and associated probabilities such 

that the total probability of the utterances recognised by the grammar sums up to exactly 

one. Charniak’s parser is inspired by a log-linear (or maximum entropy) probability model 

defined over a set of features. The strength of these models lies in their flexibility and 

their novel approach to smoothing (Berger et al., 1996). Smoothing is a vital component 

in any lexicalised parser, since without it, the parser will very quickly run into sparse data 

problems. Charniak’s parser achieves a 13% error reduction over the results in Collins 

(1997). Table 4.2 presents the results in terms of labelled precision and recall for this 

parser. It achieves precision and recall of 90.1 on sentences of length < 40, with a slight 

drop in performance on sentences of length < 100.

I have presented just two instances of alternatives to PCFG parsing using history- 

based models and probabilistic generative models. Other approaches are documented in 

the literature including Ratnaparkhi (1999) which implements a maximum entropy model.
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< 40 words <100 words
LP LR LP LR

Charniak 90.1 90.1 89.6 89.5

Table 4.2: Parsing results for Charniak’s parser against section 23 of the 
WSJ

Charniak (1997) implements a model which first computes a set of parses and later applies 

a word-based probability model to choose the most probable parse. Magerman (1995) 

outlines a statistical decision-tree model which differs from that of Charniak (1997) mainly 

in the type of probabilities it considers as part of the probability model. A probabilistic 

LR parser is described by Inui et al. (1997). This model was based on an earlier parser 

by Briscoe and Carroll (1993) but corrects the probability model. It gains some context- 

sensitivity by assigning a probability to each LR parsing action according to its left and 

right context. The Data-Oriented Parsing (DOP) framework combines already-seen tree 

fragments to build up the most probable parse-tree (Bod and Scha, 2003). The idea behind 

DOP is that contextual information is explicitly encoded in the tree fragments, addressing 

a key weakness of basic PCFGs.

4.5 Summary

In this chapter, I have introduced context-free grammars, probabilistic context-free gram­

mars and a simple chart-based algorithm for parsing with them. Parsing with (proba­

bilistic) context-free grammars is efficient, simple and easy to implement. Probabilistic 

treebank grammars are robust, almost always returning some parse for a given input. 

PCFGs tend to have certain biases, e.g. in favour of smaller, less hierarchical trees.

The main weakness of PCFGs is their inability to take rule or lexical context into 

account, since the independence assumptions that define the model are too strong. The 

simplest method for overcoming some of the weaknesses of PCFGs is to transform the 

grammar so that it encodes some contextual information. For example, Johnson (1999) 

augments each node with its parent category label, leading to much improved results over a 

basic PCFG. Klein and Manning (2003) demonstrate how some very simple linguistically- 

motivated grammar transformations can lead to a large improvement in the quality of the
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parse-trees produced by the parser. Grammar transformations such as these stay within 

the simple, efficient PCFG parsing paradigm, but with significantly improved results over 

base-line PCFGs. Lexicalised PCFG parsing tries to overcome the problem of lexical 

insensitivity of simple PCFG parsing (Hindle and Rooth, 1993; Carroll and Rooth, 1998).

More complex parsing techniques have been developed that do achieve even higher 

results, most notably those of Collins (1999) and Charniak (2000). They employ history- 

based and probabilistic generative models. However, these models are complicated to 

implement, and while source code for them is available, it is not easy to adapt them to 

different grammars.

In this thesis we will take advantage of the simplicity and efficiency of Viterbi-based 

PCFG parsing, as well as exploit the improvements that can be gained from simple gram­

mar transformations.

58



Treebank-Based PC FG  Extraction  

and Transformation Experim ents

5.1 Introduction

Probabilistic context-free phrase-structure grammars (PCFGs) and parsing with such 

grammars are a core technology used in the present dissertation. In this chapter I present 

a number of PCFG extraction and transformation experiments. These grammars are used 

in our PCFG-based LFG approximations presented in Chapter 6. Extracting probabilistic 

context-free grammars from treebanks is a fairly straightforward task (Charniak, 1996). 

As discussed in Chapter 4, one of the key weaknesses of PCFGs is their insensitivity to 

context. However, there are various ways in which PCFGs can take contextual or lex­

ical information into account, without sacrificing any of their computational efficiency 

or elegance. In this chapter I will present a number of methods of pre-processing and 

transforming PCFGs and experimental results showing what effect each transformation 

or pre-processing step has on a baseline grammar. I will then give results of parsing with 

grammars derived from a number of interacting transformations and pre-processing steps 

and discuss some of the general patterns we observe.

Chapter 5
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5.2 Basic Treebank Pre-Processing Prior to  Grammar Ex­

traction

PCFGs are often extracted automatically from parse-annotated corpora (treebanks) by 

reading off and counting rules from treebank trees. Usually, prior to grammar extrac­

tion, a number of pre-processing steps are carried out on the treebank. I will first look 

at the pre-processing originally carried out in Charniak’s experiments (Charniak, 1996) 

and demonstrate what effect each pre-processing step has on a baseline grammar. I will 

describe different ways in which unary productions can be treated and give experimental 

results for each.

5.2.1 Original Charniak Pre-Processing Steps

According to Johnson (1999), Charniak (1996) performs the following treebank pre­

processing steps in his original treebank-based PCFG parsing experiments:

• Remove all empty nodes and trace elements,

• Delete lexical items,

• Insert a root node,

• Remove all unary productions of the form X —> X,

• Remove all Penn-II functional information (e.g. -SBJ, -TPC labels),

• Replace the POS tags of all auxiliary verbs with AUX and AUXG tags.

We would like to know the contribution of each of the above to the grammars extracted 

and the parsing results, so we will examine each of them in more detail below.

As a baseline we will take a grammar with minimal pre-processing. To date, simple 

PCFG-based parsing technology does not support grammars that contain empty produc­

tions. The first step, therefore, is to remove them from any grammar induced from the 

treebank. For the sake of comparison, I will also assume that the WSJ section 23 input 

to the parser has already been tagged (unless otherwise stated). This ensures that there 

are no errors introduced at the tagging stage, and the only factors affecting the parsing
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Baseline
#  parses 2416
#  rules 25452
Labelled Precision 
Labelled Recall 
Labelled F-Score

72.32%
68.65%
70.44%

Unlabelled Precision 
Unlabelled Recall 
Unlabelled F-Score

74.57%
70.79%
72.63%

Accuracy 32.74%

Table 5.1: Results of parsing Section 23 with a baseline grammar

results are the parser and the grammars. The baseline grammar has not undergone any- 

pre-processing other than the removal of empty productions and lexical items. It still 

retains all Penn-II functional labels. All parsing experiments are carried out using the 

same parser (BitPar,Schmid (2004)),1 trained on sections 02-21 of the WSJ section of the 

Penn-II treebank and tested on section 23.2 We evaluate all parse-trees produced by each 

grammar using the evalb software, evalb measures labelled precision and labelled recall 

as defined in equations (2.1) and (2.2) on page 26. Unlabelled precision and recall are 

calculated in a similar manner, where the correctness of a constituent is measured only by 

the span of the brackets, ignoring the constituent label.

The results of parsing section 23 of the WSJ with the baseline grammar are presented 

in Table 5.1. The grammar achieves labelled precision of 72.32%, labelled recall of 68.65% 

and accuracy (percentage of non-crossing brackets) of 32.74%.

Insert a root node (labelled TOP)

Charniak (1996) added in a root node to the grammar as many of the trees in their version 

of the treebank did not have a topmost label. Figure 5.1 illustrates this step. Our version 

of the Penn-II treebank, however, does not have any trees without a topmost label, so the 

pre-processing we carry out is illustrated in Figure 5.2.

We pre-process the training data from sections 02-21 by adding a T O P  label to each 

tree and parse section 23 with this grammar. The results are shown in Table 5.2. The

1There is no explicit function in BitPar to allow parsing of tagged input. In order to parse tagged 
input, we create a dummy lexicon for each sentence with a unique entry for each tag-word pair.

2We pre-process section 23 in the same way we pre-process the training corpus to allow us to compare 
like with like.
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chewed D T
I

the
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I

bone

I I
The dog I

chew ed
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Figure 5.1: Adding a root node label TOP to a tree with no top label

grammar achieves labelled precision of 73.83% (an increase of 1.51%), labelled recall of 

70.27% (an increase of 1.62%) and accuracy of 32.74%. Compared to the baseline, the 

overall improvement in labelled f-score is 1.56%. There is no change in accuracy over the 

baseline grammar.

the bone

Figure 5.2: Adding a root node label TOP to a tree with a top label

R em o v e  all cy c lic  u n a ry  p ro d u ctio n s  o f  th e  form  X  —* X

Cyclic rules of the form X —> X result from deleting empty productions. They tend to 

cause problems for parsing efficiency. If all such rules are removed from the grammar (by 

collapsing such subtrees in the training corpus), the labelled f-score improves by 0.05% 

over the baseline. Accuracy increases by 0.04%. The complete results for parsing with a 

grammar that has no such cyclic unary productions is given in Table 5.3.



Adding T O P  label
#  parses 2416
#  rules 25489
Labelled Precision 73.83%
Labelled Recall 70.27%
Labelled F-Score 72.00%
Unlabelled Precision 75.96%
Unlabelled Recall 72.30%
Unlabelled F-Score 74.08%
Accuracy 7 4 %

Table 5.2: Results of parsing Section 23 with a grammar containing t o p  

labels

Removing all X —> X
#  parses 2416
#  rules 25444
Labelled Precision 72.34%
Labelled Recall 68.73%
Labelled F-Score 70.49%
Unlabelled Precision 74.60%
Unlabelled Recall 70.87%
Unlabelled F-Score 72.69%
Accuracy 32.78%

Table 5.3: Results of parsing Section 23 with a grammar that has no 
cyclic X —* X rules
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Deleting Penn-II functional labels
#  parses 2416
#  rules 14335
Labelled Precision 71.68%
Labelled Recall 66.67%
Labelled F-Score 69.09%
Unlabelled Precision 74.16%
Unlabelled Recall 68.98%
Unlabelled F-Score 71.48%
Accuracy 30.13%

Table 5.4: Results of parsing Section 23 with a grammar without Penn-II 
functional labels

Remove all Penn-II functional information

The Penn-II treebank contains many functional labels such as -S B J ,  -T M P , -L O C . Com­

pared to the baseline grammar, stripping functional labels in the grammar results in fewer 

rules (14,335 against 25,452). However, the accuracy of parsing with a grammar that dis­

cards this functional information decreases by 1.35% over the baseline grammar. Accuracy 

decreases by 2.61%. The results are shown in Table 5.4. Overall labelled f-score is 69.09%.

Replace the POS tags of all auxiliary verbs with AUX and AUXG tags

The original experiment presented in Charniak (1996) changed the POS tags of all occur­

rences of the most common auxiliary verbs to A U X  and A U X G . Table 5.5 lists the verbs 

whose POS tags are relabelled to A U X  or A U X G . A slight change to this pre-processing 

step is to only change the POS tags for occurrences of auxiliary verbs where they are 

followed by another verb. For example, the have in He has two sisters is not relabelled as 

an auxiliary, but the have in We have eaten dinner is. We carry out both changes, with 

the results as given in Table 5.6. Relabelling all occurrences of auxiliary verbs generates 

a grammar that produces slightly higher quality trees than the grammar that has only 

relabelled true auxiliary verbs. This results is perhaps a little surprising since relabelling 

only true auxiliary verbs seems more linguistically motivated, and therefore, we would 

expect it to perform slightly better than its counterpart that indiscriminately relabels all 

occurrences of auxiliary verbs. Compared to the baseline grammar, relabelling all occur­

rences of auxiliary verbs improves overall labelled f-score by 0.16%, and relabelling true
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Verb New POS tag Verb New POS tag
am AUX had AUX
are AUX do AUX
is AUX does AUX
was AUX did AUX
were AUX been AUXG
have AUX being AUXG
has AUX having AUXG

Table 5.5: Auxiliary verbs that receive a new POS tag

Relabel all occurrences of Only relabel true
auxiliary verbs auxiliary verbs

#  parses 2416 2416
#  rules 25531 25417
Labelled Precision 72.15% 72.02%
Labelled Recall 69.12% 68.99%
Labelled F-Score 70.60% 70.47%
Unlabelled Precision 74.38% 74.26%
Unlabelled Recall 71.25% 71.14%
Unlabelled F-Score 72.78% 72.67%
Accuracy 32.78% 32.62%

Table 5.6: Results of parsing Section 23 with a grammar that relabels 
auxiliary verbs

auxiliaries results in an overall improvement over the baseline grammar of 0.03%.

5.2.2 U nary Productions

There are a number of ways of pre-processing grammars with respect to unary productions. 

Removing all cyclic unary productions of the type X —► X was outlined above. In the 

baseline experiment, all unary productions are kept. I will outline two further experiments 

in this section:

1. Remove all unary productions,

2. Remove all unary productions, but store deleted information.

If we remove all unary productions, it is possible to do simple probabilistic CKY parsing 

(Younger, 1967; Aho and Ullman, 1972), as the transformation into Chomsky Normal Form 

(CNF) is trivial. We remove unary productions as follows. For each unary local subtree 

X dominating Y, X is deleted (as illustrated in Figure 5.3). Alternatively, we could have
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Mary saw d t  NN saw DT NN
I I  I I

the man the man

Figure 5.3: Removing unary production NP —» NNP

No unary productions
#  parses 2410
#  rules 29627
Labelled Precision 73.30%
Labelled Recall 71.89%
Labelled F-Score 72.59%
Unlabelled Precision 75.80%
Unlabelled Recall 74.35%
Unlabelled F-Score 75.07%
Accuracy 36.22%

Table 5.7: Results of parsing Section 23 with a grammar that has no 
unary productions

deleted Y (the NNP in Figure 5.3). We chose to delete X, the less specific category, so 

that the more specific category remains. We automatically pre-process the training corpus 

in this manner and parse section 23. The results of this experiment are given in Table

5.7. Six sentences now fail to get a parse, although labelled f-score improves by 2.15%. 

A possible contributing factor to this increase is the lower grammar coverage: the six 

sentences that failed to get a parse are complex, and the baseline grammar, although it 

successfully assigned a parse to them, possibly did not produce a good parse, therefore 

lowering overall labelled f-score. In order to test this, we add in a dummy parse (a list of 

tag-word pairs) for each of the sentences that failed to get a parse. Labelled f-score for 

the grammar with no unary productions is then 72.53%. This shows that the grammar 

with no unary productions achieves an overall improvement of 2.09% over the baseline 

grammar.
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NNP_NP VP

Mary V ^ ^ N P

saw DT NN
I I

the man

Figure 5.4: Removing unary production NP —► NNP

Unary productions deleted but encoded
#  parses 2412
#  rules 35979
Labelled Precision 75.50%
Labelled Recall 73.82%
Labelled F-Score 74.65%
Unlabelled Precision 77.65%
Unlabelled Recall 75.93%
Unlabelled F-Score 76.78%
Accuracy 38.31%

Table 5.8: Results of parsing Section 23 with a grammar that has no 
unary productions, however with new category labels intro­
duced to indicate where the unary productions once were.

Parsing with grammars that retain unary productions yields worse results than parsing 

with grammars that do not contain unary productions, but valuable information is being 

discarded when we remove all unary productions. We would like to somehow “remember” 

where the unary productions occurred. Figure 5.4 illustrates a pre-processing step that 

does just this. The pre-processed tree has a new category label x _ Y , which indicates 

that there was once a unary production at this point in the tree expanding Y into X. It 

is straightforward to restore such unary productions in the unary-production-less parse- 

trees generated by the parser. The results for this experiment are given in Table 5.8. 

This grammar achieves a labelled f-score of 74.65%, but it fails to produce a parse for 4 

sentences which previously received a parse.

NNP
I

Mary saw DT NN
I I

the man
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Group 1 Group 2
a Add root node 
b No root node

c No unary productions 
d No X —> X productions 
e Include all unary productions 
f No unary productions, but keep information

Group 3 Group 4
n Keep Penn-II functional labels 
o Remove Penn-II functional labels

p No AUX change 
q Change only true auxiliary verbs 
r Change all auxiliary verb labels

Table 5.9: The four groups of pre-processing steps used to test pre­
processing interaction. A grammar with one parameter from 
each group is extracted. This gives 48 grammars.

5.2.3 Com bining Pre-P rocessing Steps

Not all of the grammars presented achieve full coverage. The grammar with no unary 

productions that has kept the information about unary productions in the category label 

fails to find parses for 4 sentences, and the grammar with no unary productions and no 

record of them in category labels is unable to parse 6 of the 2,416 sentences in section 23. 

If we look at ways in which the pre-processing steps can co-occur, we need to distinguish 

four distinct groups of pre-processing steps (Table 5.9). This gives 48 possible grammars 

that can be extracted with these combinations of pre-processing steps. We perform pars­

ing experiments with all grammars. Table 5.10 gives the results for the top 10 grammars 

according to labelled f-score. None of the grammars in this table achieves complete cov­

erage, and in fact they have all been pre-processed to have no unary productions, but to 

store the relevant information in category label annotations as in Figure 5.4. Table 5.11 

shows the best grammars that achieve full coverage. All grammars in Table 5.11 have a 

root node label added and the better ones all have Penn-II functional tags. They all have 

unary productions, though some do not have cyclic unary productions of the form X —> 

X. Table 5.12 gives a summary of the increase or decrease each pre-processing step has 

over the baseline for labelled and unlabelled f-score, number of parses and the number of 

rules in each grammar.
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Grammar ^Parses Labelled 
F-Score (%)

Unlabelled 
F-Score (%)

Accuracy
(%)

afnr 2411 75.46 77.44 44.51
afor 2412 75.43 77.29 42.70
afoq 2412 75.21 77.06 42.21
afnq 2412 75.20 77.16 43.82
afop 2412 75.07 76.92 41.81
bfnr 2412 75.04 77.14 41.59
afnp 2412 75.01 76.98 43.51
bfnq 2411 74.79 76.90 40.92
bfor 2412 74.68 76.84 39.13
bfnp 2412 74.65 76.78 40.79

Table 5.10: Results for the best 10 grammars

Grammar ^Parses Labelled 
F-Score (%)

Unlabelled 
F-Score (%)

Accuracy
(%)

adnr 2416 72.18 74.25 35.01
aenr 2416 72.15 74.22 35.01
adnq 2416 72.07 74.15 34.92
adnp 2416 72.05 74.14 35.01
aenq 2416 72.03 74.11 34.88
aenp 2416 72.00 74.08 34.97
adoq 2416 71.09 73.33 32.34
ador 2416 71.06 73.33 32.34
aeoq 2416 71.00 73.25 32.47
aeor 2416 70.94 73.21 32.29

Table 5.11: Results for the best 10 grammars with full coverage

Increase/Decrease in
Pre-Processing

Step
#  Rules #  Parses Labelled 

F-Score (%)
Unlabelled

F-Score(%)
Accuracy

(%)
baseline 25452 2416 70.44 72.63 32.74

a +37 0 +1.56 +1.45 0
c +4175 -6 +2.15 +2.44 +3.48
d -8 0 +0.05 +0.06 +0.04
f +10527 -4 +4.21 +4.15 +5.57
0 -11117 0 -1.35 -1.15 2.61
q -35 0 +0.03 +0.04 -0.12
r +79 0 +0.16 +  0.15 +0.04

Table 5.12: The increase or decrease each pre-processing step has over a 
baseline grammar
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5.3 Gram m ar Transform ations

The pre-processing steps described in Section 5.2 do not address the main weaknesses of 

PCFGs in any way. The parent and grandparent transformations, however, do add contex­

tual information to category labels, effectively weakening the independence assumptions 

of PCFGs. In this section I will describe the parent and grandparent transformations 

(Johnson, 2002). I will also describe a grammar transformation that automatically adds 

f-structure information to category labels based on the automatic f-structure annotation 

algorithm presented in Chapter 2. I will present the results of parsing with parent- and 

grandparent-transformed grammars and with a grammar that is extracted from an f- 

structure-annotated version of the Penn-II treebank. Finally I will examine the way in 

which the transformations and pre-processing steps described interact with one another, 

presenting the results for the best and worst grammars. The full table of results is provided 

in Appendix C.

5.3.1 Parent/G randparent Transformations

The parent transformation is attributed to Charniak, but is first explored in detail in 

Johnson (1999). This transformation involves augmenting each non-root non-preterminal 

node in the tree with its parent category label as illustrated in Figure 5.5. This particular 

transformation effectively weakens many of the independence assumptions inherent in 

PCFGs. It is now possible, for example, to distinguish between subject NPs (occurring 

under S nodes) and object NPs (occurring under VP nodes). When evaluating the parser, 

the parse-trees produced by the parser need to be de-transformed. This involves removing 

the parent information from any parent-annotated nodes. The results of parsing with a 

parent-transformed grammar are given in Table 5.13. It achieves an overall labelled f-score 

of 79.28%, an 8.84% improvement over the baseline grammar. Accuracy increases 11.76% 

to 44.50%.

Similarly, one can automatically transform the training corpus with a grandparent 

transformation (illustrated in Figure 5.6). The results of parsing with such a grammar 

are given in Table 5.14. This grammar also performs significantly better, with an overall 

improvement of 8.44% on labelled f-score over the baseline grammar.
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Mary saw DT NN
I I

the man

Mary saw DT NN
I I

the man

Figure 5.5: Augmenting all non-root, non-preterminal nodes with their 
parent category label

Parent Transform ation
#  parses 2416
#  rules 41394
Labelled Precision 79.82%
Labelled R ecall 78.74%
Labelled F-Score 79.28%
U nlabelled Precision 81.78%
U nlabelled Recall 80.68%
Unlabelled F-Score 81.22%
Accuracy 44.50%

Table 5.13: Results of parsing Section 23 with a parent-transformed 
grammar

NNP
I

Mary saw DT NN
I I

the man

NNP
I

Mary

~S

saw DT NN
i I

the man

Figure 5.6: Augmenting all non-root, non-preterminal nodes with their 
grandparent and parent category labels



Grandparent Transformation
#  parses 2416
#  rules 67799
Labelled Precision 78.84%
Labelled Recall 78.93%
Labelled F-Score 78.88%
Unlabelled Precision 81.00%
Unlabelled Recall 81.09%
Unlabelled F-Score 81.04%
Accuracy 44.74%

Table 5.14: Results of parsing Section 23 with a grandparent-transformed 
grammar

Add F-Structure Information
#  parses 2416
#  rules 36704
Labelled Precision 76.76%
Labelled Recall 75.39%
Labelled F-Score 76.07%
Unlabelled Precision 78.97%
Unlabelled Recall 77.56%
Unlabelled F-Score 78.26%
Accuracy 41.93%

Table 5.15: Results of parsing Section 23 with an automatically f- 
structure-annotated grammar

5.3.2 F-Structure-A nnotated  Rules

The parent and grandparent transformations described in the previous section weaken 

the independence assumptions of PCFG models of parsing. An alternative method of 

weakening these independence assumptions is to automatically annotate each node in 

the tree with f-structure information, using the algorithm outlined in Chapter 2. An 

annotated PCFG (referred to as A-PCFG) is then extracted where each non-terminal 

symbol in the grammar has been augmented with LFG f-structure equations, e.g., 

N P [ |o b j= 1] —» D T[tsPE C =J.] NN[i=|] . Nodes followed by annotations are treated 

as a monadic category for grammar extraction and PCFG parsing. To evaluate the parse- 

trees produced by the parser, all LFG f-equations are deleted after parsing. The results 

are shown in Table 5.15. This grammar achieves an overall labelled f-score of 76.07, an 

improvement of 5.63% on the baseline. Accuracy increases 9.19% to 41.93%.

The results presented in Sections 5.3.1 and 5.3.2 show that the parent transformation
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F-Score vs Accuracy

Accuracy

Figure 5.7: The correlation between accuracy and labelled f-score

Increase in
Pre-Processing #  Rules #  Parses Labelled Unlabelled Accuracy

Step F-Score (%) F-Score(%) (%)
baseline 25452 2416 70.44 72.63 32.74

g +11252 0 +5.63 +5.63 +9.19
j +15942 0 +8.84 +8.59 +11.76
k +42347 0 +8.44 +8.41 +12

Table 5.16: The increase or decrease each pre-processing step has over a 
baseline grammar

leads to the greatest improvement in parsing results, improving the baseline by 8.84%. 

The automatically f-structure-annotated grammar also performs significantly better than 

the baseline with an overall labelled f-score of 76.07. Accuracy correlates closely with 

labelled f-score as can be seen from the graph in Figure 5.7. Table 5.16 gives a summary 

of the increase over the baseline that each transformation has for number of rules, parses, 

labelled and unlabelled f-score and accuracy.
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Group 1 Group 2
a Add root node 
b  No root node

c No unary productions 
d No X —> X productions 
e Include all unary productions 
f  No unary productions, but keep information

Group 3 Group 4
g Add f-structure annotation 
h No f-structure annotation

j Add parent 
k Add grandparent
m  No parent/grandparent transformation

Group 5 Group 6
n Keep Penn-II functional labels 
o Remove Penn-II functional labels

p  No AUX change 
q  Change only true auxiliary verbs 
r Change all auxiliary verb labels

Table 5.17: The six groups of transformations used to test transformation 
interaction. A grammar with one parameter from each group 
is extracted. This gives 288 grammars.

5.3.3 Com bining Transformations

We want to find out to what extent the grammar transformations and pre-processing steps 

discussed above interact. To this end, we performed 288 parsing experiments, examining 

each of the interactions. We grouped the transformation and pre-processing parameters 

into six different groups (cf. Table 5.17) and each experiment chooses one parameter from 

each group. 3 Once again we train grammars on sections 02-21 and test the parsing 

results on section 23. The results for all experiments are given in Appendix C. There were 

a small number of (extremely large) grammars that caused BitPar to produce corrupt 

data, and therefore we are unable to provide the results for those 21 experiments. Here I 

will present the results for the best 10 and worst 10 grammars.

Table 5.18 gives the results for the grammars that achieve the highest labelled f-score on 

the trees produced. Grammar adgjoq achieves the highest result, 81.27%. This grammar 

has a root node inserted, f-structure annotations, parent information on each category 

label, no X —> X cyclic unary productions, no functional labels and only true auxiliary 

verbs receive the new label AUX. As can be seen from this table, however, none of these 

grammars achieve full coverage, though they achieve almost full coverage (> 99.8%). Table 

5.19 gives the results of the grammars that achieve best highest labelled f-score and that 

have full coverage, The best grammar with full coverage is adhjnr with a labelled f-score

3g and h correspond to integrated and pipeline parsing models respectively, c.f Chapter 6
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Grammar ^Parses Labelled 
F-Score (%)

Unlabelled
F-Score(%)

Accuracy
(%)

adgjoq 2413 81.27 83.10 50.18
adgjor 2413 81.25 83.13 50.09
adgjop 2413 81.10 82.95 49.78
aegjor 2414 81.09 83.00 50.11
aegjoq 2414 81.00 82.85 50.07
adgjnr 2412 80.94 82.76 49.26
aegjnr 2413 80.91 82.74 49.33
aegjop 2414 80.81 82.69 49.67
adgjnq 2412 80.74 82.62 49.75
aegjnq 2413 80.66 82.55 49.64

Table 5.18: Results for the best 10 grammars with interacting transfor­
mations

Grammar #Parses Labelled
F-Score(%)

Unlabelled 
F-Score (%)

Accuracy
(%)

adhjnr 2416 80.48 82.30 47.48
aehjnq 2416 80.46 82.30 47.71
adhjnq 2416 80.46 82.31 47.62
aehjnr 2416 80.45 82.27 47.48
adhjnp 2416 80.39 82.21 47.31
aehjnp 2416 80.38 82.21 47.35
aeliknr 2416 80.38 82.29 48.11
aehknq 2416 80.34 82.23 47.97
adhknr 2416 80.34 82.25 47.71
adhknq 2416 80.33 82.21 47.66

Table 5.19: Results for the best 10 grammars with interacting transfor­
mations and full coverage

of 80.48%. This grammar has a root node inserted, parent information on each node, 

functional labels, no X —> X cyclic unary productions, no f-structure annotations and all 

occurrences of auxiliary verbs receive the new label AUX or AUXG.

Table 5.20 gives the results for the 10 grammars that have the lowest labelled f-score on 

the trees. The grammar that scores the lowest labelled f-score is b eh m op . This grammar 

has no root node inserted, has all unary productions, no f-structure annotations, no parent 

or grandparent information, no functional labels and no changes to the labels on auxiliary 

verbs. The feature that all grammars in this table have in common is m, which means 

that they have not undergone a parent or grandparent transformation. This indicates that 

the parent and grandparent transformations lead to higher quality parse trees. They all 

have full coverage, which might mean that they are being penalised for getting a (bad)
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Grammar ^Parses Labelled 
F-Score (%)

Unlabelled 
F-Score (%)

Accuracy
(%)

behmop 2416 69.09 71.48 32.34
bdhmop 2416 69.17 71.56 32.20
behmor 2416 69.31 71.70 32.29
behmoq 2416 69.37 71.74 32.47
bdhmor 2416 69.43 71.83 32.34
bdhmoq 2416 69.46 71.83 32.34
behmnp 2416 70.44 72.63 34.97
behmnq 2416 70.47 72.67 34.88
bdhmnp 2416 70.49 72.69 35.01
bdhmnq 2416 70.51 72.71 34.92

Table 5.20: Results for the poorest 10 grammars with interacting trans­
formations

parse for a sentence that another grammar cannot parse at all.

Dummy Parses

A way to measure this is to assign a dummy parse for any sentence that cannot be parsed. 

The dummy parse is just the list of tag-word pairs linked to a root node. Table 5.21 

gives the results for the 10 grammars that have the lowest labelled f-score on trees if a 

dummy parse is used when the grammar cannot parse a sentence. Similarly, Table 5.22 

gives the results for the 10 grammars that have the highest labelled f-score on trees when a 

dummy parse is inserted if the grammar cannot parse a sentence. These tables show similar 

patterns, where the better performing grammars all have a parent transformation and have 

been annotated with f-structure information. The grammars that perform poorest have 

either undergone no parent or grandparent transformation, or if they have a grandparent 

transformation, the coverage is poor. Including a dummy parse for unparsed sentences 

supports better comparison between grammars, since some grammars may yield a high 

f-score with poor coverage, and may not be as useful as a grammar with slightly lower 

labelled f-score, but better coverage.

General Trends

Observing the results presented in Appendix C, we can see some general trends in the pars­

ing results. The addition of f-structure information to categories (transformation g) gives 

better results than if this information is omitted. Adding parent or grandparent informa-
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Parser Labelled 
F-Score (%)

Unlabelled 
F-Score (%)

Accuracy
(%)

afgkor 68.83 71.34 52.86
afgkoq 68.90 71.29 52.52
behmop 69.09 71.48 30.13
bdhmop 69.17 71.56 30.01
behmor 69.31 71.70 30.05
afgkop 69.34 71.73 51.82
behmoq 69.37 71.74 30.26
bdhmor 69.43 71.83 30.13
bdhmoq 69.46 71.83 30.13
behmnp 70.44 72.63 32.74

Table 5.21: Results for the worst 10 grammars with interacting transfor­
mations and a dummy parse inserted where no parse is found

Grammar Labelled 
F-Score (%)

Unlabelled 
F-Score (%)

Accuracy
(%)

adgjoq 81.22 83.06 47.27
adgjor 81.20 83.09 47.19
adgjop 81.05 82.91 46.85
aegjor 81.05 82.97 47.14
aegjoq 80.96 82.81 47.10
adgjnr 80.88 82.70 46.52
aegjnr 80.84 82.68 46.52
aegjop 80.77 82.65 46.69
adgjnq 80.68 82.56 47.02
aegjnq 80.60 82.50 46.81

Table 5.22: Results for the best 10 grammars with interacting transfor­
mations and a dummy parse inserted where no parse is found
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tion leads to better parse trees, and combining the parent/grandparent transformations 

with the addition of f-structure information to category labels, leads to even higher re­

sults. Also, the difference in results between the transformations in Group 6 (changing 

the labels on auxiliary verbs) is very small, suggesting that this transformation has little 

effect on results. In general, adding in a root node label (transformation a) improves the 

quality of the parse trees produced. Grammars which keep unary productions tend to 

have better coverage than grammars that delete them. In general, keeping the Penn-II 

functional tags seems to improve results, though this is to be expected, since these encode 

a certain amount of contextual information.

5.4 Summary

I have described how the quality of PCFG parsing can be improved by various grammar 

transformations. I first examined the difference each grammar transformation on its own 

has over a baseline grammar. The parent transformation (Johnson, 1999) shows the most 

improvement (8.84%), while the addition of f-structure information to category labels also 

significantly improves results (by 5.63%). These transformations perform well, since they 

add contextual information to category labels. Charniak’s (1996) pre-processing steps 

do not affect overall results as much as the parent/grandparent/f-structure annotation 

transformations, though most pre-processing steps lead to improved parse tree quality. In 

particular, although labelled f-score increases, coverage decreases for some of the unary 

production transformations. I carried out a number of experiments to examine the way in 

which the grammar transformations and pre-processing steps interact with each other. In 

general, grammars with both a parent category label and f-structure annotations achieve 

the highest labelled f-score on trees. However, the same grammars without the f-structure 

annotations achieve slightly better coverage. Changing the label on auxiliary verbs im­

proves results slightly, although there is very little difference between changing the label 

only on true auxiliaries and changing the label on all occurrences of auxiliary verbs. The 

grammars that perform worst have not undergone a parent or grandparent transformation, 

and have no f-structure information added to category labels. The lowest scoring grammar 

achieves 69.09% labelled f-score on section 23 trees. This grammar has no root label, all

7 8



unary productions, no f-structure annotations, no parent or grandparent transformation, 

no Penn-II functional labels and no changes to the labels on auxiliary verbs. The gram­

mar that performs best achieves a labelled f-score of 81.27% with 99.88% coverage. This 

grammar has a root node inserted, no unary productions of the form X —► X, f-structure 

information added to category labels, parent information added to category labels, no 

Penn-II functional labels and only the labels on true auxiliary verbs have been changed 

to AUX. The transformations that have the greatest effect on parsing accuracy add con­

textual information to category labels, thereby weakening the independence assumptions 

of the PCFG. Further grammar transformations, such as those discussed in Klein and 

Manning (2003) will be explored in further research.
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Chapter 6

Parsing into F-Structures

6.1 Introduction

A large number of researchers have successfully extracted probabilistic grammars from 

treebank resources. Few, however, have attempted to automatically derive wide-coverage, 

rich, constraint-based grammars. In Chapter 2, I outlined an automatic f-structure an­

notation algorithm. We have used this algorithm to develop two PCFG-based parsing 

architectures (Cahill et al., 2002c) that parse strings into f-structures. In this chapter, 

I will present these two architectures, and show how they produce proto f-structures. 

Proto f-structures encode basic, but possibly incomplete, predicate-argument structures 

where long-distance dependencies (LDDs) are not resolved. Linguistic material is inter­

preted purely locally where it occurs in the tree. For many linguistic phenomena, however, 

there is an important difference between the location of the (surface) realisation of lin­

guistic material and the location where this material should be interpreted semantically. 

Resolution of such LDDs is therefore crucial in the determination of accurate predicate- 

argument structure. I present and evaluate an algorithm for resolving LDDs at the level 

of f-structure (Cahill et al., 2004b), based on finite approximations of LFG functional un­

certainty equations (Kaplan and Zacnen, 1989; Dalrymple, 2001). I show that the LDD 

resolution algorithm improves the quality of f-structures, and assess the accuracy of the 

algorithm. In order to determine reliable and representative quality assessment of the 

grammars generated by our methodology, we evaluate against three different gold stan-
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dards: the DCU 105 (Cahill et al., 2002a), the automatically generated 2,416 f-structures 

for the original treebank trees in section 23 of the Penn-II treebank, and the PARC 700 

Dependency Bank (King et al., 2003). Currently our best grammars achieve an f-score of 

81.24% preds-only and 87.04% all grammatical functions against the DCU 105. Against 

section 23, our best grammar achieves an f-score of 79.38% preds-only and 85.35% all GFs. 

Against the PARC 700, our best grammar achieves an f-score of 80.33% on the feature set 

presented in Kaplan et al. (2004).

6.2 Two Parsing Architectures

With the automatic annotation algorithm described in Chapter 2, we can automatically 

annotate the Penn-II treebank trees with f-structure information in the form of attribute- 

value structure equations. We have developed two parsing architectures that allow us to 

parse raw text into f-structures using PCFG-based approximations of probabilistic LFG 

grammars. Figure 6.1 illustrates the two models, pipeline and integrated.

6.2.1 The P ipeline M odel

In the pipeline architecture, we first extract a PCFG from the unannotated training corpus 

(sections 02-21 of the WSJ section of the Penn-II treebank) to parse new text. The most 

probable tree associated with a string is passed to the automatic f-structure annotation 

algorithm. The algorithm assigns f-structure equations to the nodes in the tree. We collect 

these equations and pass them to a constraint solver which generates an f-structure.

6.2.2 The Integrated M odel

In the integrated architecture, we extract a PCFG from the f-structure-annotated training 

corpus (A-PCFG). This generates rules such as: N P [ | o b j = J.]  —> D T [ T s p e c =J_] NN[|=|]. 

We treat strings consisting of CFG categories followed by one or more f-structure equa­

tions as monadic categories for grammar extraction and parsing. We then parse with the 

annotated grammar and choose the f-structure-annotated tree with the highest probabil­

ity. We collect the f-structure equations and pass them to a constraint solver to generate 

an f-structure.
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Figure 6.1: Two parsing architectures

6.3 Parsing into Proto F-Structures

Proto F-Structures are basic, but possibly incomplete, predicate argument structures w ith  

long-distance dependencies (LDDs) unresolved. Figure 6.2 shows a Penn-II style tree 

and f-structure for the sentence U.N. signs treaty the headline said w ith co-indexation to  

indicate the long-distance dependency between the COMP(lement) argument of the verb 

say and the fronted TOPic(alised) U.N. signs treaty. Figure 6.3 shows an incomplete 

argument structure w ith an unresolved LDD for the same string. Here, the TOPIC of the  

sentence is not resolved as the cOMp(lement) of say, resulting in a proto f-structure. The  

PCFG technology used in the basic pipeline and integrated architectures described above 

both  parse raw text into trees w ithout traces and em pty productions and generate proto 

f-structures w ith LDDs unresolved.

6.3.1 Evaluation

We train all grammars on sections 02-21 of the WSJ section of the Penn-II treebank. 

Following Crouch et al. (2002) and Riezler et al. (2002), we convert f-structures into 

dependency triple format and use their software to evaluate the quality of the proto f- 

structures against:

1. The DCU 105 (Cahill et al., 2002a)

2. The full 2416 f-structures automatically generated by the f-structure annotation algo­

rithm for the original Penn-II trees, in a CCG-style (Hockenmaier, 2003) evaluation 

experiment.
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s

signs treaty

TOPIC
SUBJ [PRED U.N.]
PRED sign
OBJ [pr e d  treaty!

m

SUBJ

PRED
.COMP

SPEC the 
PRED headline 
say

m

Figure 6.2: Penn-II style tree with LDD trace and corresponding re- 
entrancy in f-structure

Figure 6.4 shows the conversion of an f-structure into dependency triple format. We 

evaluate the proto f-structures produced by all grammars described in Chapter 5 against 

the DCU 105 as well as against the automatically generated f-structures for the full section 

23 of the Penn-II treebank. We also measure what percentage of the 2416 sentences 

receive one covering and connected f-structure (fragmentation). These results are given in 

Appendices D and E.

A g a in st D C U  105

Table 6.1 gives the results of the 5 grammars that achieve the highest f-score for preds- 

only proto f-structures in both the pipeline and integrated models. The integrated model 

performs better than the pipeline model in all cases. The parent-transformed grammars 

perform better than the other grammars, with 9 out of the 10 grammars in Table 6.1 

having a parent-transformation. Also interesting to note is that the inclusion of Penn-II 

functional labels does not seem to improve results in the integrated model, yet all of the top 

5 grammars in the pipeline model have Penn-II functional labels. This is probably because 

the inclusion of Penn-II functional labels in the integrated model results in more rules and
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signs treaty
■ "subj [p re d  U.N.]
TOPIC PRED sign

o b j [pr ed  trea ty ]
"spe c  the

SUBJ
pr e d  headline

PRED say

Figure 6.3: PCFG-style parse tree without empty productions and Proto 
f-structure with unresolved LDD and incomplete argument 
structure

t o p i c ( s a y  0 , s i g n ~ l )  
s u b j ( s a y  0, h e a d l i n e  2) 
s p e c  ( h e a d l i n e ~ 2 , t h e ~ 5 )  
s u b j  ( s i g n ~ l  , U . N .~ 3 )  
o b j ( s i g n ~ l  , t r e a t y ~ 4 )

SUBJ [p re d  U.N.l '
t o p ic PRED sign

OBJ [pr ed  trea ty ]
SPEC the

su bj
PRED headline

PRED say

Figure 6.4: Conversion of f-structures into dependency triple format

sometimes the duplication of information (e.g. NP-SBJ [u p -su b j= d o w n ]  ). Also, all of the 

ten grammars shown have unary productions of some kind as discussed in Section 5.2.2. 

Removing unary productions degrades parsing performance. Table 6.2 gives a breakdown 

by function of the preds-only evaluation of grammar a e g j o p .

A g a in st S e c tio n  23

We evaluate the proto f-structures produced for all 2416 sentences in section 23 of the 

Penn-II treebank by the same grammars given in Table 6.1 against the 2416 f-structures 

automatically generated by the f-structure annotation algorithm for the original Penn-II 

trees, in a CCG-style (Hockenmaier, 2003) evaluation experiment. The results are given
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Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
bfhjnr
afhjnr
afhjnp
aehjnr
bdhjnr

74.25
74.10
73.98
73.79
73.79

79.81
79.74
81.46
79.31
79.31

aegjop
begjop
begjoq
aegjoq
bfgmoq

74.80
74.70
74.67
74.41
74.36

81.20
81.21
80.14
79.87
79.76

Table 6.1: F-score results for the proto f-structures produced by the top 5 
grammars in both integrated and pipeline models against the 
DCU 105

DEP, PRECISION (%) RECALL (% ) F-SCORE (% )
focus 1/1 = 100 1/1 = 100 100
to p ic 12/12 = 100 12/13 = 92 96
d e t 230/240 = 96 230/269 = 86 90
x c o m p 124/144 = 86 124/146 = 85 86
a p p 14/15 = 93 14/19 = 74 82
co o rd _ fo rm 59/60 = 98 59/85 = 69 81
o b j 343/397 = 86 343/461 = 74 80
p o ss 56/60 = 93 56/81 = 69 79
q u a n t 39/54 = 72 39/52 = 75 74
a d ju n c t 641/804 = 80 641/947 = 68 73
su b j 247/271 = 91 247/414 = 60 72
co o rd 89/120 = 74 89/161 = 55 63
re lm o d 25/37 = 68 25/50 = 50 57
to p ic re l 22/26 = 85 22/52 = 42 56
co m p 23/30 = 77 23/65 = 35 48
ob i 25/51 = 49 25/61 = 41 45
o b L a g 5/11 = 45 5/12 = 42 43
ob l2 1/3 = 33 1/2 = 50 40
o b j 2 0/1 = 0 0/2 = 0 0

Table 6.2: Results for the preds-only evaluation of grammar aegjop 
against the DCU 105 broken down by function

Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
bfhjnr
afhjnr
afhjnp
aehjnr
bdhjnr

75.67
75.81 
75.50
75.82 
75.80

81.74
81.84
83.20
81.91
81.91

aegjop
begjop
begjoq
aegjoq
bfgmoq

75.33
75.31
75.39
75.43
74.97

82.72
82.69
81.85
81.88
81.49

Table 6.3: F-score results for the proto f-structures produced by the 
grammars in Table 6.1 against the f-structures automatically 
generated for annotated section 23
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DEP. PRECISION (%) RECALL (%) F-SCORE (%)
c o o rd  .fo rm 1197/1246 = 96 1197/1461 = 82 88
d e t 5206/5548 = 94 5206/6327 = 82 88
q u a n t 1054/1134 = 93 1054/1252 = 84 88
p o ss 1146/1239 = 92 1146/1454 = 79 85
x c o m p 2634/3012 = 87 2634/3352 = 79 83
o b j 7185/8401 = 86 7185/9538 = 75 80
to p ic 203/254 = 80 203/269 = 75 78
a d ju n c t 13601/17294 = 79 13601/19918 = 68 73
s u b j 5420/6214 = 87 5420/9148 = 59 71
c o o rd 1954/2552 = 77 1954/3014 = 65 70
a p p 262/379 = 69 262/433 = 61 65
to p ic re l 534/589 = 91 534/1072 = 50 64
fo cu s 5/7 = 71 5/11 = 45 56
re lm o d 545/872 = 62 545/1084 = 50 56
o b i 567/1169 = 49 567/1140 = 50 49
c o m p 348/646 = 54 348/810 = 43 48
o b L a g 83/211 = 39 83/181 = 46 42
o b j 2 12/48 = 25 12/44 = 27 26
o b l2 14/68 = 21 14/43 = 33 25

Table 6.4: Results for the preds-only evaluation of grammar aegjop  
against section 23 broken down by function

in Table 6.3. In all experiments, results improved over the DCU 105 results by between 

1.42% and 2.6% in the pipeline model and between 0.53% and 2.01% in the integrated 

model. Table 6.4 gives the results broken down by feature for grammar aegjop . Overall 

preds-only score for this grammar improved by 0.53%. Some features improved (e.g. 

coord, obj2, to p ic re l) , while others deteriorated (e.g. relmod, to p ic , xcomp). The 

results of the grammars that achieve the overall highest preds-only f-score in the integrated 

and pipeline models are presented in Table 6.5. This table shows that the grammars that 

achieve the highest scores against the DCU 105 do not score highest against the f-structures 

generated automatically for section 23. Interestingly, the pipeline model performs better 

than the integrated model when evaluating against the f-structures generated from the 

automatically annotated section 23 trees, whereas the integrated model performs better 

against the DCU 105. The DCU 105 is a small gold standard, and may not be large 

enough to give us an accurate indication of the performance of each parsing model, since 

with a small gold standard, there is more risk of overfitting.
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Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs {%)
aehknr
aehknq
adhknq
adhknr
behknq

76.13
76.08
76.03
76.03 
75.86

82.25
82.93
82.91
82.17
82.77

aegjor
aegjoq
begjoq
begjor
aegjop

75.46
75.43
75.39
75.36
75.33

81.19
81.88
81.85
81.06
82.72

Table 6.5: F-score results for the proto f-structures produced by the top 5 
grammars in both integrated and pipeline models against the 
f-structures automatically generated for section 23

6.3.2 Fragm entation

We evaluate what percentage of the 2416 sentences parsed produce one covering and con­

nected f-structure (fragmentation). Complete results for all grammars tested are given in 

Appendix E. Table 6.6 gives the fragmentation results for the 10 grammars in Table 6.1. 

Almost all sentences receive one covering and connected f-structure in both architectures 

(over 98.23%). However, knowing what percentage of sentences produce one covering and 

connected f-structure does not give us a full indication of the coverage of our parsers. We 

also need to know what percentage of sentences parsed do not produce any f-structure. 

Grammar A that does not produce as many covering and connected f-structures as Gram­

mar B, may still be producing fragments for the sentences that do not receive a covering 

and connected f-structure, whereas Grammar B may not be producing any f-structure 

for these sentences at all. The percentages of sentences receiving no f-structure for the 

grammars of Table 6.1 are given in Table 6.7. In this instance we see that these grammars 

either produce one covering and connected f-structure or do not produce any f-structure 

at all. They do not generate disconnected fragments. This is to be expected, since these 

grammars are our best ones. If we take a look at the fragmentation results for our poorest 

performing grammars however, we see that these grammars are in fact producing frag­

ments, though not many. This is perhaps not that surprising, since the fragmentation 

results for the automatic f-structure annotation algorithm show that over 99.8% of ap­

proximately 48,000 original Penn-II trees receive one covering and connected f-structure. 

In the pipeline model most of the sentences receive one covering and connected f-structure. 

This is because the f-structure annotation algorithm can look at more context when as-
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Pipeline Model Integrated Model
Grammar % Fragmentation Grammar % Fragmentation
bfhjnr 98.49 aegjop 99.34
afhjnr 98.23 begjop 99.29
afhjnp 98.45 begjoq 99.21
aehjnr 100.00 aegjoq 99.38
bdhjnr 100.00 bfgmoq 99.25

Table 6.6: Fragmentation results for the top 5 grammars in both inte­
grated and pipeline models against the 2416 sentences in sec­
tion 23

Pipeline Model Integrated Model
Grammar % 0 F-Structures Grammar % 0 F-Structures
bfhjnr 1.51 aegjop 0.66
afhjnr 1.77 begjop 0.71
afhjnp 1.55 begjoq 0.79
aehjnr 0.00 aegjoq 0.62
bdhjnr 0.00 bfgmoq 0.75

Table 6.7: Percentage of sentences producing no f-structure for the top 5 
grammars in both integrated and pipeline models against the 
2416 sentences in section 23

signing annotations. By contrast, the integrated parsing model is limited to local CFG 

rules. The annotations on the trees produced by the integrated model are more likely to 

conflict with each other, since the model cannot take context into account.

6.4 Parsing into Proper F-Structures

For a substantial number of linguistic phenomena such as topicalisation and wh-movement, 

there is an important difference between the location of the surface realisation of linguis-

Pipeline Model Integrated Model
Grammar % Fragmentation Grammar % Fragmentation
behmoq 99.83 afgkor 86.10
aehmoq 99.83 afgkoq 86.23
bdhmoq 99.83 afgkop 87.23
adhmoq 99.83 afgjnq 94.00
behmor 99.88 bfgjnq 93.41

Table 6.8: Fragmentation results for the worst 5 grammars in both in­
tegrated and pipeline models against the 2416 sentences in 
section 23



Pipeline Model Integrated Model
Grammar % 0 F-Structures Grammar % 0 F-Structures
behmoq 0.04 afgkor 13.90
aehmoq 0.04 afgkoq 13.77
bdhmoq 0.04 afgkop 12.77
adhmoq 0.04 afgjnq 6.00
behmor 0.04 bfgjnq 6.59

Table 6.9: Percentage of sentences producing no f-structure for the worst 
5 grammars in both integrated and pipeline models against 
the 2416 sentences in section 23

tic material and where this material should be interpreted semantically. The resolution of 

long-distance dependencies is therefore crucial in the determination of proper predicate- 

argument structures or deep dependency relations. Theoretically, LDDs can span un­

bounded amounts of intervening linguistic material as in

[U.N. signs treaty]i the paper claimed ...  a source said [ ]i.

In LFG, LDDs are resolved at the f-structure level, obviating the need for empty pro­

ductions and traces in trees using functional uncertainty (FU) equations (Kaplan and 

Zaenen, 1989; Dalrymple, 2001). FU equations are regular expressions specifying paths 

in f-structure between a source (where linguistic material is encountered) and a target 

(where linguistic material is interpreted semantically). To account for the fronted senten­

tial constituents in Figures 6.2 and 6.3 on pages 83 and 84, an FU equation of the form 

t  t o p ic  =  |  com p* com p would be required. The equation states that the value of the 

TOPIC attribute is token identical with the value of the final COMP argument along a path 

through the immediately enclosing f-structure along zero or more COMP attributes. This 

FU equation is annotated on the topicalised sentential constituent in the relevant CFG 

rule as follows

S -» S NP VP

T tO P IC = J. tS U B J = l  T=|

tropic=TcoMP*coMP

and generates the LDD-resolved proper f-structure in Figure 6.2 for the traceless tree in 

Figure 6.3, as required.

In addition to FU equations, subcategorisation information is a crucial ingredient in 

LFG’s account of LDDs. As an example, for a topicalised constituent to be resolved as
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the argument of a local predicate as specified by an FU equation, the local predicate must 

(i) subcategorise for the argument in question and (ii) the argument in question must 

not be already filled. Subcategorisation requirements are provided lexically in terms of 

semantic forms (subcategorisation lists) and coherence and completeness conditions (all 

grammatical functions (GFs) specified must be present, and no others may be present) on 

f-structure representations. Semantic forms specify which GFs a predicate requires locally. 

For our example in Figures 6.2 and 6.3, the relevant lexical entries are:

V - »  s a id  |P R E D = s a y ( t  SUBJ, t  COMP)

V —> s ig n s  tP R E D = s ig n ( | SUBJ, |  OBJ)

Local completeness requires that all GFs subcategorised for by the local PRED must be 

present at the local f-structure, while local coherence requires that no other GFs be present 

(note that adjuncts are non-subcategorisable GFs and thus exempt from these conditions). 

An f-structure is globally complete and coherent iff all its subsidiary f-structures are locally 

complete and coherent.

In order to model the LFG account of LDD resolution we require subcategorisation 

frames (i.e. semantic forms) and LDD resolution paths through f-structure. Traditionally, 

such resources were hand-coded. Here we show how they can be acquired from f-structure- 

annotated treebank resources.

6.4.1 E xtraction of Sem antic Forms

The extraction of semantic forms is described in full detail in O ’Donovan et al. (2004). Here 

we will be brief. LFG distinguishes between governable (arguments) and non-governable 

(adjuncts) grammatical functions (GFs). If the automatic f-structure annotation algorithm 

described in Chapter 2 generates high quality f-structures, reliable semantic forms can be 

extracted (reverse-engineered) (van Genabith et al., 1999): for each f-structure generated, 

for each level of embedding we determine the local PRED value and collect the governable, 

(i.e. subcategorisable) grammatical functions present at that level of embedding. For 

the proper f-structure in Figure 6.2 we obtain the following semantic forms (i.e. lemma 

followed by subcategorisation frame): s ig n ( [subj , obj] ) and say C [subj , comp]). We 

extract frames from the full WSJ section of the Penn-II treebank with over 48,000 trees
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(without f r a g  and x  constituents). Unlike many other approaches, our extraction process 

does not predefine frames, fully reflects LDDs in the source data-structures (cf. Figure 

6.2), discriminates between active and passive frames, computes GF, GF:CFG category 

pair- as well as CFG category-based subcategorisation frames and associates conditional 

probabilities with frames. Given a lemma I and an argument list s, the probability of s 

given I is estimated as:

P(s|I) :=
J2i=i count(l, Si

Table 6.10 summarises the results. We extract 3586 verb lemmas (root forms) and 

10969 unique verbal semantic form types (lemma followed by non-empty argument list). 

Including prepositions associated with the subcategorised OBLs and particles, this number 

goes up to 14348. The number of unique frame types (without lemma) is 38 without 

specific prepositions and particles and 577 with. F-structure annotations allow us to dis­

tinguish passive from active frames. Table 6.11 shows the most frequent subcategorisation 

frames for the lemma accept. Passive frames are marked p. O’Donovan et al. (2004) car­

ried out a comprehensive evaluation of the automatically acquired verbal semantic forms 

against the COMLEX resource (Macleod et al., 1994) for the 2992 active verb lemmas that 

both resources have in common. Here we report on the evaluation of GF-based frames for 

the full frames with complete prepositional and particle infomation. Relative conditional 

probability thresholds of 1% and 5% are used to filter the selection of semantic forms (Ta­

ble 6.12). One reason for the low recall score in Table 6.12 is that the Penn-II treebank is a 

very specific domain, whereas the COMLEX resource was built from various genres. The 

other reason is that COMLEX adds a set of 31 default locative prepositional arguments to 

any verb attested for at least one of them. Doing the same for our experiments increases 

recall to 40.8% for threshold 1%.

6.4.2 A pproxim ation of Functional U ncertainty Paths

We acquire finite approximations of FU-equations by extracting paths between co-indexed 

material occurring in the automatically generated f-structures from sections 02-21 of the
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W it h o u t  P r e p / P a r t W it h  P r e p / P a r t
L e m m a s 3586 3586
S e m . F o r m s 10969 14348
F r a m e  T y p e s 38 577
A c t iv e  F r a m e  T y p e s 38 548
P a s s iv e  F r a m e  T y p e s 21 177

Table 6.10: Verb results

S e m a n t ic  F o r m O c c u r r e n c e s P r o b a b i l i t y
a c c e p t ( [ o b j , s u b j] ) 122 0.813
a c c e p t ( [ s u b j ] ,p ) 9 0.060
a c c e p t ( [c o m p ,su b j]) 5 0.033
a c c e p t ( [ s u b j , o b i :a s] , p ) 3 0.020
a c c e p t ( [ o b j , s u b j , o b i :a s] ) 3 0.020
a c c e p t ( [ o b j , s u b j , o b i :fro m ]) 3 0.020
a c c e p t ( [ s u b j ] ) 2 0.013
a c c e p t ( [ o b j , s u b j , o b i : a t ] ) 1 0.007
a c c e p t ( [ o b j , s u b j , o b i :f o r ] ) 1 0.007
a c c e p t ( [ o b j , s u b j , xcom p]) 1 0.007

Table 6.11: Semantic forms for active and passive occurrences of the verb 
accept

Penn-II treebank. We extract 26 unique TOPIC, 60 t o p i c r e l  and 13 f o c u s  path types 

(with a total of 14,911 token occurrences), each with an associated probability. We dis­

tinguish between two types of TOPICREL paths, those that occur in wh-less constructions, 

and all other types (cf. Table 6.13). Given a path p and an LDD type t (either TOPIC, 

t o p i c r e l  or f o c u s ) ,  the probability of p given t is estimated as:

v m “ “"‘«'P)
E i = i  count(t,pi)

In order to obtain a first measure of how well the approximation models the data, 

we compute the path types in section 23 not covered by those extracted from sections 

02-21: 23/(02-21). There are 3 such path types (Table 6.14), each occuring exactly once. 

Given that the total number of path tokens in section 23 is 949, the finite approximation 

extracted from 02-23 covers 99.69% of all LDD paths in the unseen section 23.
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Threshold 1% Threshold 5%
P R F-Score P R F-Score

Exp. 73.7% 22.1% 34.0% 78.0% 18.3% 29.6%

Table 6.12: COMLEX comparison

w hrless  TOPICREL # w h -less TOPICREL #
s u b j 5692 a d ju n c t 1314
x c o m p : a d ju n c t 610 o b j 364
x c o m p :o b j 291 x c o m p :x c o m p :a d ju n c t 96
c o m p :su b j 76 x co m p : s u b j 67

Table 6.13: Most frequent wh-less TOPICREL paths

6.4.3 Long-D istance D ependency R esolution A lgorithm

Given a set of semantic forms s with probabilities V{s\l) (where I is a lemma), a set of 

paths p with V(p\t) (where t is either TOPIC, TOPICREL or FOCUS) and an f-structure / ,  the 

core of the algorithm to resolve LDDs recursively traverses / .  The core of the algorithm 

is given in Figure 6.5. The algorithm supports multiple, interacting TOPIC, TOPICREL and 

FOCUS LDDs. We use V(s\l) x V(p\t) to rank a solution, depending on how likely the PRED 

is to take semantic form s, and how likely the TOPIC, FOCUS or TOPICREL is resolved using 

path p. The algorithm also supports resolution of LDDs where no overt linguistic material 

introduces a source TOPICREL function (e.g. in reduced relative clause constructions). We 

distinguish between passive and active constructions, using the relevant semantic form 

types when resolving LDDs. The full algorithm also supports re-entrancy with adjuncts 

as in WHADVP relative clauses (the place where we met, etc.). However, in this case 

there will be no semantic form requesting the presence of the adjunct, so the semantic 

frame that affects the ranking probability is the frame that is already present in the local 

f-structure being resolved. The overall architecture of our system is presented in Figure 

6 .6 .

6.4.4 Evaluation o f F-Structures

We evaluate the proper f-structures produced by all grammars as described in Chapter 

5 against the DCU 105 (Cahill et al., 2002a) and against the automatically generated 

f-structures for section 23 of the Penn-II treebank. We also evaluate against the PARC
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02-21 23 23 /  (0 2 -2 1 )
TOPIC 26 7 2
FOCUS 13 4 0
TOPICREL 60 22 1

Table 6.14: Number of path types extracted

Recursively traverse /  to:

find t o p i c | t o p i c r e l | f o c u S :(7 pair; retrieve t o p i c | t o p i c r e l |F O C U S  paths; for each path p 
with GFj : ... : GFn : GF, traverse /  along GFi : ...: GF„ to sub-f-structure h\ retrieve 
local PRED:Z;

add GF:# to h iff
* GF is not present at h
* h together with GF is locally complete and coherent with respect to a semantic 

form s for I

rank resolution by P(s|Z) x V(p\t)

Figure 6.5: The core of the LDD resolution algorithm

700 Dependency Bank (King et al., 2003) following the experimental setup in Kaplan 

et al. (2004). There are systematic differences between the PARC 700 f-structures and the 

f-structures generated in our approach as regards feature-geometry, feature-nomenclature 

and the treatment of named-entities. In order to evaluate against the PARC 700 we need 

to map the f-structures produced by our parsers to a format similar to that of the PARC 

700 Dependency Bank. This is done as a post-processing stage on the annotated trees 

produced in both parsing architectures (see Figure 6.7). For the PARC 700 evaluation, 

in a pre-processing stage before parsing, all named entities are determined and marked as 

proper nouns (NNP) dominating a single string for parsing (see Figure 6.8). Fractions are 

also marked as single strings with a CD (cardinal number) POS tag. For full details on

Proper
F-Structures

Figure 6.6: The overall architecture of our system
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Figure 6.7: Mapping the output of our parsers to a format similar to the 
PARC 700 Dependency Bank

NP NP

Gulf IN NNP
I I

of Mexico

DT NNP 
I

the Gulf of Mexico

Figure 6.8: Pre-processing of named-entities for PARC 700 evaluation

the mapping, see Burke et al. (2004a).

A g a in st D C U  105

Table 6.15 gives the results of the top 5 grammars in both the integrated and pipeline 

models against the DCU 105. These are not the same grammars that achieve the highest 

f-score for proto f-structures against the DCU 105 (Table 6.1). We also evaluate the 

proper f-structures produced by the grammars in Table 6.1. The results are given in

Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All 

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
bfhkor
bfhjnr
bfhjop
afhjnr
afhjnp

79.88
79.84
79.78
79.65
79.55

84.67 
84.76 
87.20
84.68 
86.56

aegjop
begjoq
begjop
aegjoq
begjor

81.24
81.13
81.10
80.94
80.83

87.04
85.99
87.09
85.70
84.90

Table 6.15: F-score results for the proper f-structures produced by the top 
5 grammars in both integrated and pipeline models against 
the DCU 105
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Pipeline Model Integrated Moclei
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
bfhjnr
afhjnr
afhjnp
aehjnr
bdhjnr

79.84
79.65
79.55
79.40
79.40

84.76
84.68
86.56
84.35
84.35

aegjop
begjop
begjoq
aegjoq
bfgmoq

81.24
81.10
81.13
80.94
80.70

87.04
87.09
85.99
85.70
85.55

Table 6.16: F-score results for the proper f-structures produced by the 
grammars in Table 6.1 against the DCU 105

Table 6.16. Again the integrated model performs better than the pipeline model against 

the DCU 105. Resolving LDDs leads to improved quality f-structures. Overall results in 

the pipeline model improve by between 4.94% and 5.08% for all GFs and between 5.55% 

and 5.61% for preds-only. In the integrated model, overall preds-only results improve by 

between 6.35% and 6.46% and for all GFs, f-score improves by between 5.79% and 5.88%. 

There is more improvement in f-score in the integrated model, and in each model, there 

is more improvement in preds-only evaluation than in all grammatical functions. The 

best performing grammar aegjop achieves 81.24% preds-only and 87.04% all GFs f-score. 

Table 6.17 gives a breakdown by feature of the results of parsing with grammar aegjop 

against the DCU 105. The results for each individual feature stay the same or improve 

after LDD resolution.

Against Section 23

Table 6.18 gives the results for the grammars that achieve the highest preds-only f-score 

against the 2416 f-structures automatically generated by the f-structure annotation al­

gorithm for the original Penn-II trees, in a CCG-style (Hockenmaier, 2003) evaluation 

experiment. We also evaluate the proper f-structures produced for section 23 by the same 

grammars given in Table 6.1 against the automatically generated f-structures for section 

23. The results are given in Table 6.19. Resolving LDDs improves results against the 

automatically annotated section 23 by between 3.23% and 3.58% in the pipeline model 

and between 3.19% and 3.30% in the integrated model. Table 6.20 gives a breakdown by 

feature of grammar aegjop. The results for all features apart from app and obj2 increase. 

After LDD resolution, however, there is not the same increase in f-score between the DCU
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DEP. PRECISION (%) RECALL (%) F-SCORE (%)
focus 1/1 = 100 1/1 = 100 100
to p ic 12/12 = 100 12/13 = 92 96
d e t 253/264 = 96 253/269 = 94 95
x c o m p 139/160 = 87 139/146 = 95 91
c o o rd  -fo rm 71/72 = 99 71/85 = 84 90
p o ss 69/73 = 95 69/81 = 85 90
o b j 387/445 = 87 387/461 = 84 85
su b j 330/361 = 91 330/414 = 80 85
a p p 14/15 = 93 14/19 = 74 82
a d ju n c t 717/903 = 79 717/947 = 76 78
q u a n t 40/55 = 73 40/52 = 77 75
to p ic re l 35/42 = 83 35/52 = 67 74
c o o rd 109/143 = 76 109/161 = 68 72
co m p 35/43 = 81 35/65 = 54 65
re lm o d 26/38 = 68 26/50 = 52 59
ob i 27/56 = 48 27/61 = 44 46
o b L a g 5/11 = 45 5/12 = 42 43
ob l2

COCOIICO 
1—1 1/2 = 50 40

o b j 2 0/1 = 0 0/2 = 0 0

Table 6.17: Results for the preds-only evaluation of grammar aegjop 
against the DCU 105 broken down by function

Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
aehknr
aehknq
afhjnr
adhknq
adhknr

79.38
79.37
79.36
79.32
79.28

85.35
86.12
85.24
86.10
85.28

aegjor
aegjoq
begjoq
begjor
aegjop

78.73
78.73 
78.69 
78.66 
78.62

84.36
85.10
85.06
84.25
85.93

Table 6.18: F-score results for the proper f-structures produced by the top 
5 grammars in both integrated and pipeline models against 
the f-structures automatically generated for section 23

Pipeline Model Integrated Model
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
bfhjnr
afhjnr
aflijnp
aehjnr
bdhjnr

79.25
79.36
78.94
79.13
79.10

85.16
85.24
86.57
85.14
85.13

aegjop
begjop
begjoq
aegjoq
bfgmoq

78.62
78.59
78.69
78.73
78.47

85.93
85.88
85.06
85.10
84.84

Table 6.19: F-score results for the proper f-structures produced by the 
grammars of Table 6.1 against the f-structures automatically 
generated for annotated section 23
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105 and the 2416 automatically generated f-structures in section 23 as there had been 

before LDD resolution. The f-scores between the DCU 105 and the 2416 automatically 

generated f-structures decreases in the integrated model and preds-only in the pipeline 

model. The only increase in f-score between the DCU 105 and the 2416 automatically 

generated f-structures is in all grammatical functions in the pipeline model. This suggests 

the LDD resolution algorithm is not performing as well on the automatically generated 

f-structures for Section 23 as it is on the DCU 105. The LDD resolution algorithm only 

makes a distinction between two different types of TOPICREL functions (with and without 

wh elements). However, a number of more fine-grained distinctions are possible, such as 

prepositional-type t o p i c r e l  clauses such as in which. It is also possible to distinguish 

adverbial focus from non-adverbial focus, a distinction we have not made. Such experi­

ments remain for further work, but we would expect them to result in improved results 

when evaluating against the automatically generated f-structures for Section 23.

DEP. PRECISION (%) RECALL (%) F-SCORE (%)
coord-form 1288/1348 = 96 1288/1461 = 88 92
det 5594/6014 = 93 5594/6327 = 88 91
quant 1075/1172 = 92 1075/1252 = 86 89
poss 1240/1350 = 92 1240/1455 = 85 88
xcomp 2882/3333 = 86 2882/3352 = 86 86
obj 7739/9173 = 84 7739/9538 = 81 83
subj 6736/7915 = 85 6736/9151 = 74 79
topic 203/254 = 80 203/269 = 75 78
adjunct 14449/18714 = 77 14449/19919 = 73 75
coord 2094/2754 = 76 2094/3014 = 69 73
topicrel 771/1064 = 72 771/1074 = 72 72
comp 556/911 = 61 556/810 = 69 65
app 263/383 = 69 263/433 = 61 64
relmod 575/929 = 62 575/1084 = 53 57
focus 5/7 = 71 5/11 = 45 56
obi 615/1289 = 48 615/1140 = 54 51
obLag 83/217 = 38 83/181 = 46 42
obj 2 12/52 = 23 12/44 = 27 25
obl2 14/70 = 20 14/43 = 33 25

Table 6.20: Results for the preds-only evaluation of grammar aegjop 
against the f-structures automatically generated for section 
23 broken down by function
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Pipeline Model Integrated Model
Grammar F-Score (%) Grammar F-Score (%)
aehknp 80.33 begjop 78.74
bdhjnp 80.29 aegjop 78.60
behjnp 80.28 aegjnp 78.43
adhknp 80.26 afgmop 78.38
adhjnp 80.24 bfgmop 78.31

Table 6.21: F-score results for the proper f-structures produced by the top 
5 grammars in both integrated and pipeline models against 
the PARC 700

DEP. PRECISION (%) RECALL (%) F-SCORE (%)
n u m b e r - ty p e 419/435 = 96 419/440 = 95 96
de t_ fo rm 915/956 = 96 915/964 = 95 95
p ro n  _form 505/548 = 92 505/531 = 95 94
te n s e 974/1054 = 92 974/1051 = 93 93
n u m 3709/4004 = 93 3709/4145 = 89 91
c o o rd .fo rm 229/257 = 89 229/252 = 91 90
p ro g 169/174 = 97 169/203 = 83 90
s tm t_ ty p e 923/1050 = 88 923/1044 = 88 88
p e r f 73/82 = 89 73/86 = 85 87
p o ss 171/199 = 86 171/205 = 83 85
o b j 1459/1793 = 81 1459/1866 = 78 80
q u a n t 288/336 = 86 288/381 = 76 80
ad e g re e 997/1224 = 81 997/1290 = 77 79
p rt_ fo rm 34/41 = 83 34/46 = 74 78
o b L a g 33/41 = 80 33/45 = 73 77
su b o rd - fo rm 52/58 = 90 52/77 = 68 77
p e a se 34/41 = 83 34/52 = 65 73
su b j 1156/1371 = 84 1156/1779 = 65 73
c o m p 172/236 = 73 172/257 = 67 70
con j 377/531 = 71 377/552 = 68 70
p a ss iv e 140/176 = 80 140/238 = 59 68
x c o m p 305/431 = 71 305/478 = 64 67
a d ju n c t 2308/3535 = 65 2308/3568 = 65 65
to p ic re l 93/184 = 51 93/119 = 78 61
ob i 94/271 = 35 94/188 = 50 41
p re c o o rd - fo rm 0/0 = 0 0/6 = 0 0
fo cu s 0/0 = 0 0/5 = 0 0
o b j_ th e ta 0/6 = 0 0/11 = 0 0

Table 6.22: F-score results for the evaluation of grammar aehknp against 
the PARC 700 broken down by function
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Pipeline Model Integrated Model
Grammar F-Score (%) Grammar F-Score (%)
bfhjnr 76.36 aegjop 78.60
afhjnr 76.32 begjop 78.74
afhjnp 79.78 begjoq 75.38
aehjnr 76.79 aegjoq 75.17
bdhjnr 76.89 bfgmoq 74.95

Table 6.23: Evaluation of the top 10 grammars of Table 6.1 against the 
PARC 700

Pipeline Model Integrated Mocel
Grammar Preds 

Only (%)
All

GFs (%)
Grammar Preds 

Only (%)
All

GFs (%)
aehknp
bdhjnp
behjnp
adhknp
adhjnp

78.41
79.10 
79.06 
78.33
79.10

86.22
86.30 
86.28 
86.18
86.30

begjop
aegjop
aegjnp
afgmop
bfgmop

81.10
81.24 
78.95 
80.14
80.24

87.09
87.04
84.96
86.22
86.41

Table 6.24: F-score results for the proper f-structures produced by the 
grammars that perform best against the PARC 700 evaluated 
against the DCU 105

Against the PARC 700

We evaluate our grammars against the PARC 700 Dependency Bank following the exper­

imental setup in Kaplan et al. (2004) with a set of features that is a proper superset of 

preds-only, but a proper subset of all grammatical functions (preds-only C PARC C all 

GFs). Complete results for all grammars are given in Appendix D. Table 6.21 gives the 

results of the top five grammars in the pipeline model and the top five in the integrated 

model according to the evaluation against the PARC 700. Our best grammar currently 

achieves an f-score of 80.33%. Table 6.22 gives the results broken down by feature of this 

grammar. The pipeline model performs better than the integrated model, with a differ­

ence of 1.59% between the best pipeline model grammar and the best integrated model 

grammar. Table 6.23 gives the results of the proper f-structures produced by our top 10 

grammars of Table 6.1 against the PARC 700. The top grammars according to the DCU 

105 do not perform best against the PARC 700. Table 6.24 gives the results of evaluating 

the grammars that perform best against the PARC 700 against the DCU 105. These re­

sults indicate that while the grammars that perform best against the PARC 700 may not
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Similar patterns emerge as to which transformations and pre-processing steps are most 

useful for each parsing architecture and gold-standard evaluation experiment. The pipeline 

architecture performs best with Penn-II functional labels and either a parent or grand­

parent transformation. The integrated architecture usually performs better with a parent 

transformation and no Penn-II functional labels. However, it also performs well with no 

parent transformation, indicating that the f-structure information on category labels alone 

produces high quality f-structures. The difference in performance between the integrated 

model and the pipeline model against the PARC 700 is greater than against the DCU 105 

or the automatically generated f-structures for section 23. It is unclear why this is the 

case, and the observation requires further investigation.

6.4.5 Evaluation o f LDD R esolution

We measured the effect of LDD resolution in terms of overall improvement in f-score 

between proto f-structures and proper f-structures against the DCU 105 and against the 

automatically generated f-structures for Section 23. However, we would also like to know to 

what extent the LDD resolution considered in isolation is correct. In order to measure how 

many of the LDD re-entrancies in the gold-standard f-structures are captured correctly 

by our parsers, we developed evaluation software for f-structure LDD re-entrancies. To 

determine whether or not an LDD re-entrancy in a proper f-structure determined in one 

of our parsing architectures is correct, we must determine whether the path between the 

TOPIC, FOCUS or TOPICREL and its re-entrant element matches the corresponding path 

in the gold standard. It is straightforward to extract the re-entrancy paths from the 

dependency relations in triple format using the indices on the arguments. Figure 6.9 

shows the paths extracted for two sets of triples. Table 6.25 shows the results of LDD 

re-entrancy evaluation with a grammar in the integrated model achieving 81.6% correct 

LDD re-entrancies.1

Evaluating against the DCU 105, the accuracy of LDD resolution is higher in the inte­

grated model than in the pipeline model, probably for the reason that here the integrated

1There is only one example of FOCUS in our gold standard which, is re-entrant with an adjunct. Although 
our algorithm allows re-entrancy with adjuncts, this path has a low probability, so is therefore not chosen.

always give the top results against the DCU 105, they still achieve very high results.
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t o p i c ( s a y ~ 0,h a v e ~ 2) t o p i c ( s a y ~ 0, h a v e ~ 2) 
c o m p (sa y ~ 0,h a v e ~ 2) c o m p (s a y ~ 0 , b e ~ l )

x c o m p ( b e ~ l ,h a v e ~ 2)

Path: ttopic=|cornp Path: |top ic= tcomP:xcomP

Figure 6.9: Extracting re-entrancy paths from dependency relation 
triples

Pipeline Model Integrated Model
G ram m ar TO PIC FOCUS TO PICREL OVERALL Grammar T O PIC FOCUS TO PIC R EL OVERALL

bfhjnr
afhjnr
afhjnp
aehjnr
bdhjnr

88.00%
88.00%
88.00%
92.31%
92.31%

0.00%
0.00%
0.00%
0.00%
0.00%

67.33%
65.98%
68.00%
64.44%
64.44%

70.87%
69.92%
71.43%
69.49%
69.49%

aegjop
begjop
begjoq
aegjoq
bfgmoq

96.00%
96.00%
96.00%
96.00%

100.00%

0.00%
0.00%
0.00%
0.00%
0.00%

72.34%
71.58%
72.92%
73.68%
78.35%

76.03%
75.41%
76.42%
77.05%
81.60%

Table 6.25: LDD evaluation on the DCU 105 in both integrated and pipe­
line models

model has an overall higher f-score than the pipeline model. Table 6.26 gives the depen­

dency relation score for the three functions that trigger LDD resolution (TOPIC, FOCUS 

and t o p i c r e l )  in each grammar. The score for both t o p ic  and t o p i c r e l  is better in 

the integrated model than in the pipeline model. Also, the grammar that has no parent 

transformation has the best score for TOPIC and TOPICREL and also the best re-entrancy 

accuracy. Our algorithm attempts to find re-entrancies for all TOPIC, FOCUS and TOPI­

CREL elements, so obviously, the more unresolved correct instances of TOPIC, FOCUS and 

TOPICREL functions the parser finds prior to LDD resolution, the higher the score for the 

re-entrancies is likely to be. The score for re-entrancies cannot be higher than the depen­

dency relation score, and Tables 6.25 and 6.26 show that the scores are in fact quite closely 

related. Table 6.27 shows that, for example, the grammar bfgmoq correctly identifies the 

re-entrancy for all but one of the TOPICRELs it correctly identifies. Grammars that have 

higher scores for the functions that trigger LDD resolution will have higher overall scores 

for re-entrancy. The problem then is to try and generate grammars with improved de­

pendency results for these functions. Table 6.28 shows the grammars that achieve the 

highest overall LDD re-entrancy results. Interestingly, the grammars that perform best in 

the integrated models do not have any parent transformation, as this information seems 

to lead to poorer quality TOPIC, f o c u s  and t o p i c r e l  determination. Also, the pipeline
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Pipeline Model Integrated Model
Grammar TOPIC FOCUS TOPICREL Grammar TOPIC FOCUS TOPICREL
bfhjnr 88% 0% 71% aegjop 96% 0% 74%
afhjnr 88% 0% 68% begjop 96% 0% 74%
afhjnp 88% 0% 70% begjoq 96% 0% 75%
aehjnr 92% 100% 67% aegjoq 96% 0% 76%
bdhjnr 92% 100% 67% bfgmoq 100% 100% 80%

Table 6.26: Dependency relation results for T O P IC , FO CU S and T O PIC R E L  

against the DCU 105 in both integrated and pipeline models

TOPIC FOCUS TOPICREL
Dependency Relation 
Re-entrancy

13/13
13/13

0/0
0/0

39/45
38/45

Table 6.27: The dependency relation precision results and the re-entrancy 
precision scores for bfgmoq

model grammars in the table do not have any Penn-II functional labels -  information that 

generally tends to produce higher quality trees. It is currently difficult to say why exactly 

these grammars produce higher scores for the T O P IC , FO CU S and T O P IC R E L  functions, yet 

lower quality f-structures overall than most of our best grammars.

Pipeline Model Integrated Model
Gram m ar T O P IC FOCUS TO PIC R EL OVERALL G ramm ar T O PIC FOCUS TO PICH EL OVERALL

bfhjop
afhkor
bfhjoq
afhjop
afhkop

92.31%
84.62%
88.00%
84.62%
84.62%

0 .0 0 %
0 .0 0 %
0.00%
0 .0 0 %
0 .0 0 %

80.39%
78.85%
77.55%
76.92%
76.92%

82.17%
79.39%
79.03%
77.86%
77.86%

bfgmor
afgmor
bfgmoq
afgmoq
bfgmop

1 0 0 .0 0 %
1 0 0 .0 0 %
100.00%
1 0 0 .0 0 %
1 0 0 .0 0 %

0 .0 0 %
0 .0 0 %
0.00%
0 .0 0 %
0 .0 0 %

80.00%
78.79%
78.35%
77.08%
77.55%

82.81%
82.54%
81.60%
81.30%
80.95%

Table 6.28: The grammars that have the best LDD evaluation results 
against the DCU 105 in both integrated and pipeline models

6.5 Summary

I presented two PCFG-based parsing architectures for parsing raw text into f-structures, 

the pipeline model and the integrated model.

I evaluate the proto f-structures (basic, but possibly incomplete, predicate-argument- 

adjunct structures where LDDs are unresolved) produced by grammars in both models. 

Against the DCU 105, our best grammar in the pipeline model achieves an f-score of
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74.25% preds-only and 79.81% on all grammatical functions. Our best grammar in the 

integrated architecture achieves an f-score of 74.80% preds-only and 81.20% on all GFs. 

In a CCG-style experiment against the 2,416 automatically generated f-structures for the 

original treebank trees in section 23 (Hockenmaier, 2003), the pipeline model achieves 

higher results than the integrated model (75.67% preds-only and 81.74% all GFs). I 

evaluate what percentage of f-structures receive a covering and connected f-structure. 

Generally, for our best performing grammars, only a small number of sentences do not 

receive any f-structure and almost all sentences receive just one covering and connected 

f-structure.

I present and evaluate a finite approximation of LDD resolution in automatically con­

structed, wide-coverage, robust, PCFG-based LFG approximations, effectively turning 

the “half” (or “shallow” )-grammars presented in Section 6.3 and Cahill et al. (2002c) into 

“full” or “deep” grammars. In our approach, as in mainstream LFG (Dalrymple, 2001), 

LDDs are resolved in f-structure, not trees. The resolution algorithm requires functional 

uncertainty (FU) paths and subcategorisation frames. We automatically extract a finite 

approximation of FU paths and generate subcategorisation frames from the f-structure- 

annotated Penn-II treebank resource. Currently, the quality of the preds-only f-structures 

produced by our best grammars after LDD resolution improved results over the same 

grammars without LDD resolution by between 5.55% and 6.46% for the DCU 105, with 

the best grammar currently achieving 81.24% preds-only f-score and 87.04% f-score for all 

GFs. Against the 2,416 automatically generated f-structures for the original Penn-II tree­

bank trees, preds-only f-structures after LDD resolution improved by between 3.28% and 

3.58% with the best grammar currently achieving 79.38% preds-only f-score and 85.35% for 

all GFs. Evaluating against the PARC 700 Dependency Bank following the evaluation de­

scribed in Kaplan et al. (2004), our best grammar achieves an f-score of 80.33%. Although 

the improvement in f-structure f-score gives us an indication that our LDD resolution al­

gorithm is performing well, we also need to evaluate the LDD resolution independently. 

To do this, we measure the quality of the re-entrancies in the triples. Our best grammar 

achieves an overall score of 82.81% on LDD resolution paths against DCU 105. We show 

that the quality of the re-entrancies is dependent on the quality of the LDD resolution
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triggering functions in the f-structures.



Chapter 7

Comparison of Our Approach w ith  

Other Approaches

7.1 Introduction

The work reported in this dissertation provides treebank-based wide-coverage, robust, 

and -  with the addition of LDD resolution -  “deep” or “full” , PCFG-based LFG approx­

imations. Crucially, we do not claim to provide fully adequate statistical models. It is 

well known (Abney, 1997) that PCFG-type approximations to general constraint-based 

grammars can yield inconsistent probability models due to loss of probability mass: the 

parser successfully returns the highest ranked parse tree but the constraint solver cannot 

resolve the f-structure equations (generated in the pipeline or “hidden” in the integrated 

model) and the probability mass associated with that tree is lost. Research on adequate 

probability models for unification grammars is important. Miyao et al. (2003) present a 

Penn-II treebank-based HPSG with log-linear probability models. They achieve coverage 

of 50.2% on section 23, as against 98% in our approach. Hockenmaier (2003) provides 

CCG-based models including LDD resolution. Some of these involve extensive clean-up 

of the underlying Penn-II treebank resource prior to grammar extraction. In contrast, in 

our approach we leave the treebank as is and only add (but never correct) annotations. 

Earlier HPSG work (Tateisi et al., 1998) is based on independently constructed hand­

crafted XTAG resources. In contrast, we acquire our resources from treebanks and achieve
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substantially wider coverage. Collins’s (1999) Model 3 is limited to wh-traces in relative 

clauses (it does not treat topicalisation, focus etc.). Johnson’s (2002) work is closest to 

ours in spirit, adding empty nodes and their antecedents to parser output trees in order 

to capture LDDs. Riezler et al. (2002) and Kaplan et al. (2004) describe how a carefully 

hand-crafted LFG is scaled to the full Penn-II treebank with log-linear-based probability 

models. In this chapter I will compare our work to that of Collins (1999), Johnson (2002), 

Riezler et al. (2002) and Kaplan et al. (2004) and report on a number of experiments.

7.2 Other Deep Parsing Approaches

7.2.1 C ollins’ M odel 3

The only type of long-distance dependency dealt with by Collins’ Model 3 parser (Collins,

1999) is wh-movement in relative clauses. This is done by identifying a co-indexed gapped 

element in the parse tree with the WHNP head of the relative clause (SBAR). If the LHS 

of a rule features a gap annotation, Collins identifies three ways in which this gap may be 

passed to the RHS. First, the gap can be passed to the head of the phrase. Alternatively, it 

can be passed on to one of the left or right modifiers of the head. It can also be discharged 

as a t r a c e  argument to the left or right of the head. The example in Figure 7.1 (taken 

from Collins (1999)) shows how a gap is introduced by the WHNP and then passed down 

through the tree until it can be discharged as the complement of bought

Overall parsing results are improved slightly when wh-movement is incorporated into 

Collins’ parsing model. Model 3 achieves an f-score of 88.65% on sentences of length < 

40, where Model 2 that does not have any wh-movement achieves an f-score of 88.60%.

It is difficult to provide a satisfactory comparison of Collins’ Model 3 and our LDD 

resolution method, but we have carried out two experiments that compare them at the 

f-structure level. We use the output of Collins’ Model 3 parser and generate f-structures 

in two versions of our pipeline architecture. As there is no explicit link in Collins’ trees 

between the TRACE node and its antecedent, we add this automatically (assuming that 

all TRACE nodes are co-indexed with the nearest WHNP node in the tree) as in Figure 

7.2. We also re-label the TRACE node to -NONE- so that it resembles the trace informa-
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NP(store)

W HNP(that) S(bought)(H-gap)
I

WDT

th'at NP-C(IBM) VP(bought) (+gap)

IBM

VBD TRACE NP(week) 

bought last week

1. NP —> NP SBAR(-t-gap)

2. SBAR(+gap) -> WHNP S(+gap)

3. S(+gap) - »  NP-C VP(+gap)

4. VP(+gap) -* VBD TRACE NP

Figure 7.1: A -t-gap feature is added to non-terminals to describe wh- 
movement. The gap is passed through the tree until it is 
discharged as a TRACE complement to the right of bought

The

*T*-1 week

Figure 7.2: Co-indexing and re-labelling the TRACE node of Collins’ 
Model 3 output with the nearest WHNP node (cf. Figure 
7.1).
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Proper F-S tructures

Figure 7.3: Producing proper f-structures from the trees with traces from 
Collins’ Model 3 parser

Figure 7.4: Producing proper f-structures from the trees without traces 
from Collins’ Model 3 parser in our pipeline architecture

tion in the Penn-II treebank, to which our automatic f-structure annotation algorithm is 

sensitive. We carry out two experiments. First, we take the Collins’ Model 3 trees with 

traces and the automatically added co-indexation to the nearest WHNP and apply the 

automatic f-structure annotation algorithm (cf. Chapter 2) which translates traces and 

co-indexation in trees into corresponding re-entrancies in f-structure to produce proper 

f-structures (Figure 7.3). Second, we take the Collins’ Model 3 trees without traces or 

co-indexation and apply our f-structure annotation algorithm followed by LDD resolution 

(cf. Chapter 6) to produce proper f-structures (this is our standard pipeline processing 

architecture (Figure 7.4)). The two experiments are designed to discriminate between the 

effects of Collins’ traces in trees and our f-structure-based LDD resolution. We evaluate 

the f-structures against:

1. The DCU 105 (Cahill et al., 2002a),

2. The full 2416 f-structures automatically generated by the f-structure annotation algo­

rithm for the original Penn-II trees, in a CCG-style (Hockenmaier, 2003) evaluation 

experiment,

3. A subset of 560 dependency structures of the PARC 700 Dependency Bank following 

Kaplan et al. (2004).

The results are presented in Table 7.1. Using the trees with traces and automatically 

added co-indexation to the nearest WHNP to produce proper f-structures with the f- 

structure annotation algorithm in the architecture presented in Figure 7.3, we achieve
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DCU 105 Section 23 Parc 700
Preds-Only All GFs Preds-Only All GFs

Collins Model 3 - traces 
(pipeline + LDD resolution) 77.63% 85.30% 79.85% 86.29% 80.21%

Collins Model 3 + traces 
(f-structure annotation 

algorithm)

72.91% 80.68% 76.81% 83.49% 80.19%

Table 7.1: Evaluating the effect of Collins’ traces in trees and our f- 
structure-based LDD resolution

a preds-only f-score of 72.91% against DCU 105, 76.81% against the 2416 f-structures 

automatically generated by the f-structure annotation algorithm and 80.19% against the 

PARC 700. By contrast, using the trees produced by Collins’ Model 3 without traces 

or co-indexation in our standard pipeline architecture with LDD resolution (Figure 7.4, 

we achieve a preds-only f-score of 77.63% against DCU 105, 79.85% against the 2416 f- 

structures automatically generated by the f-structure annotation algorithm and 80.21% 

against the PARC 700 following Kaplan et al. (2004). The results show that our LDD 

resolution on f-structure outperforms Collins’ (1999) Model 3.

7.2.2 Johnson 2002

Johnson’s (2002) work is closest to ours in spirit. Like our approach he provides a finite 

approximation of LDDs. Unlike our approach, however, he works with tree fragments 

in a post-processing approach to add empty nodes and their antecedents to Charniak’s 

(2000) parse trees, while we present an approach to LDD resolution at the level of f- 

structure. It seems that the f-structure-based approach is more abstract (99 LDD path 

types against approximately 9,000 tree-fragment types in Johnson (2002)) and fine-grained 

in its use of lexical information (subcategorisation frames). In contrast to Johnson’s 

approach, our LDD resolution algorithm is not biased. Johnson’s approach is biased in 

favour of deeper patterns because it uses a pre-order traversal to insert empty nodes into 

the tree. Our algorithm, on the other hand, computes all possible complete resolutions and 

order-ranks them using LDD path and subcategorisation frame probabilities. It is difficult 

to provide a satisfactory comparison between the two methods, but we have carried out 

two experiments that compare them at the f-structure level.
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Proper
F-Structures

Figure 7.5: Producing proper f-structures from Charniak’s (2000) trees 
in the pipeline architecture

Proper
F-Structures

Figure 7.6: Producing proper f-structures from Charniak’s (2000) trees 
with empty nodes and coindexation added by Johnson (2002)

In the first experiment, we take the output of Charniak’s parser (Charniak, 2000) and, 

using the pipeline parsing model (Chapter 6), evaluate (both before and after LDD reso­

lution) against the DCU 105 (Cahill et al., 2002a), the full 2416 f-structures automatically 

generated by the f-structure annotation algorithm for the original Penn-II trees in a CCG- 

style (Hockenmaier, 2003) evaluation experiment, and against a subset of 560 dependency 

structures of the PARC 700 Dependency Bank following Kaplan et al. (2004)

In the second experiment, using the software described in Johnson (2002), we add 

empty nodes and coindexed antecedents to the trees generated by Charniak’s parser, pass 

these trees to our automatic annotation algorithm (Chapter 2) which generates proper 

f-structures and evaluate against the DCU 105, the full 2416 f-structures automatically 

generated by the f-structure annotation algorithm for the original Penn-II trees, and the 

PARC 700 Dependency Bank following Kaplan et al. (2004). Figures 7.5 and 7.6 outline 

the architectures of both experiments.

In the first experiment, LDD resolution is performed purely at the level of f-structures 

(as described in Chapter 6), in the second, LDD resolution is triggered purely by co­

indexation information on trees generated by Johnson’s (2002) software translated into 

corresponding re-entrancies in f-structure by the f-structure annotation algorithm of Chap­

ter 2. The results are given in Table 7.2. Our method of resolving LDDs at f-structure 

level results in a preds-only f-score of 80.65% against the DCU 105. Using Johnson’s 

(2002) method of adding empty nodes to the parse-trees results in an f-score of 79.52%
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C h a rn ia k -L D D  res. + L D D  res. Jo h n s o n  (2002)
DCU 105
A ll G ra m m a tic a l  F u n c tio n s 80.86% 86.65% 85.17%
P re d s  O n ly 74.43% 80.65% 79.52%
2416 Section 23% Sentences
All G ra m m a tic a l  F u n c tio n s 84.89% 88.38% 87.56%
P re d s  O n ly 79.34% 83.08% 82.33%
PARC 700
S u b s e t o f G F s  fo llow ing  K a p la n  e t  al. (2004) 81.4% 81.79% 81.75

Table 7.2: Comparison at f-structure level of LDD resolution to Johnson 
(2002) on the DCU 105

against the DCU 105. Against the 2416 f-structures automatically generated, and against 

the PARC 700, our method of resolving LDDs at f-structure level performs slightly better 

than using Charniak’s trees with empty nodes, traces and coindexation information added 

by Johnson (2002).

7.2.3 The English ParGram  Grammar

The only other wide-coverage LFG grammar for English that we are aware of is the 

hand-crafted LFG developed at the Palo Alto Research Center in California as part of 

the ParGram project (Butt et al., 1999, 2002). The aim of the ParGram project is to 

produce wide-coverage grammars for English, French, German, Norwegian, Japanese, and 

Urdu which are written collaboratively within the linguistic framework of LFG and with 

a commonly agreed set of grammatical features.

In Riezler et al. (2002) and Kaplan et al. (2004), the hand-crafted English gram­

mar is scaled to the full Penn-II treebank, using log-linear-based probability models to 

disambiguate parses. Currently, they achieve 79% coverage (full parse) and 21% frag­

ment/skimmed parses. By the same measure, full parse coverage is around 98% for our 

automatically acquired PCFG-based LFG approximations. Kaplan et al. (2004) report 

results for two of their hand-crafted grammars against the PARC 700, LFG core and LFG 

complete. LFG core is a version of LFG complete that moves most of the optimality 

marks into the n o g o o d  space.1 LFG core achieves an f-score of 77.6%, while LFG com­

plete achieves an f-score of 79.6% against the PARC 700. For the same experiment, our

JF o r  e x am p le , in  L F G  c o m p le te , a n  O T  m a rk  d isp re fe rs  to p ic a lis a tio n  b u t  th e  to p ic a lisa tio n  ru le  w ill 
b e  t r ig g e re d  if  no  o th e r  p a rs e  c an  b e  b u i lt .  In  L F G  core , if  th e  to p ic a lis a tio n  O T  m a rk  is in  th e  n o g o o d  
sp a c e , th e  to p ic a lis a tio n  ru le  w ill n e v e r b e  tr ig g e re d .
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own best automatically-induced grammar (presented in Chapter 6) achieves an f-score of 

80.33%. Using Collins’ Model 3 in our pipeline architecture (as describe in Section 7.2.1), 

we achieve 80.21%. Using Charniak’s (2000) parser in our pipeline model, we achieve 

81.79%, a 2.19% improvement over the best hand-crafted grammar presented in Kaplan 

et al. (2004).

It is instructive to compare the results established here to another experiment in Ka­

plan et al. (2004). Kaplan et al. show how the output trees generated by Collins’ Model 

3 can be processed deterministically into corresponding dependency relations, effectively 

implementing what was presented as a pipeline architecture in Cahill et al. (2002c). For 

this deterministic dependency conversion of the Collins trees, Kaplan et al. (2004) report 

an f-score of 74.6% against the PARC 700. Using our automatic f-structure annotation 

algorithm, we achieve 80.21% f-score for the Collins trees, an improvement of 5.61%. This 

and the other results reported here show that our automatic f-structure annotation al­

gorithm can be used to induce high-quality LFG resources and processing architectures, 

currently outperforming even the best manually created resources.

7.3 Summary

We have developed large-scale, treebank-based, probabilistic LFG approximations with 

LDD resolution that generate predicate-argument structures or deep dependency rela­

tions. We compare our work with three approaches that have similar aims. The first 

is Collins’ Model 3 parser (Collins, 1999) which deals only with wh-movement in relative 

clauses. To compare our work with this, we use the trees produced by Collins’(1999) parser 

in two versions of our pipeline processing architecture to produce f-structures from which 

we generate dependency relations. First we automatically add co-indexation to the nearest 

WHNP to the Collins’ Model 3 trees with traces. Our automatic f-structure annotation 

algorithm is sensitive to the traces and coindexation. Against the DCU 105, the Collins 

Model 3 trees with traces and co-indexation achieve a preds-only f-score of 72.91%. Evalu­

ating against the PARC 700, Collins’ Model 3 trees with traces and co-indexation achieves 

an f-score of 80.19%. Second, we use Collins’ Model 3 trees without traces or co-indexation 

and, in our standard pipeline parsing architecture, automatically annotate them with f-

113



structure information, resolve LDDs and produce proper f-structures. Against the DCU 

105, Collins’ Model 3 trees without traces or co-indexation achieve a preds-only f-score 

of 77.63%. Against the PARC 700, the trees without traces or co-indexation achieve an 

f-score of 80.21%. These results show that our LDD resolution on f-structure outperforms 

Collins’ (1999) Model 3.

Johnson (2002) presents an approach that adds empty nodes and their antecedents 

in a post-processing stage after parsing in order to capture long-distance dependencies. 

Again, it is difficult to compare our work directly with his, as the two approaches work on 

different levels of representation. We carried out two experiments that compare them at 

the f-structure level. First, we feed the trees generated by Charniak’s (2000) parser into 

our pipeline model with LDD resolution at f-structure level. Second, we take the trees 

generated by Charniak’s parser, apply Johnson’s (2002) post-processing to add empty pro­

ductions and coindexed antecedents to the trees and feed these trees into the automatic 

f-structure annotation algorithm which translates coindexation in trees into correspond­

ing re-entrancies in f-structure. Against the DCU 105, LDD resolution at the level of 

f-structure results in an f-score of 80.65% preds-only, while f-structures induced from 

Johnson’s post-processed trees achieve a preds-only f-score of 79.52%. Against the 2416 

f-structures automatically generated for the original trees in section 23, the f-structures 

induced from Johnson’s post-processed trees achieve a preds-only f-score of 82.33%, while 

LDD resolution at f-structure level on Charniak’s (2000) original trees results in a preds- 

only f-score of 83.08%. Against the PARC 700, LDD resolution at f-structure level results 

in an f-score of 81.79%, while f-structures induced from Johnson’s post-processed trees 

achieve an f-score of 81.75%.

Finally, we compare our dependency structures to those produced by the best hand­

crafted grammars of Riezler et al. (2002) and Kaplan et al. (2004). The LFG-complete 

grammar in Kaplan et al. (2004) achieves an f-score of 79.6% against the PARC 700, 

where our best grammar (Chapter 6) achieves an f-score of 80.33%. Using Collins’ Model 

3 in our pipeline architecture (as describe in Section 7.2.1), we achieve 80.21%. Using 

Charniak’s (2000) parser in our pipeline model, we achieve 81.79%, a 2.19% improvement 

over the best hand-crafted grammar presented in Kaplan et al. (2004). These results show
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that the quality of the f-structures and dependency relations produced by our methods, in 

both pipeline and integrated architectures, is comparable to or better than other existing 

similar work. Significantly, the results show that our methodology supports the automatic 

induction of wide-coverage and deep grammatical resources as well as the construction 

of flexible and modular processing architectures currently outperforming the best deep, 

hand-crafted, wide-coverage, constraint-based grammar resources. We believe that our 

methodology constitutes an important alternative to more traditional manual grammar 

development and processing architectures.
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M igrating A utom atic  

A nnotation-B ased Grammar 

A cquisition and Parsing to  

German and the TIG ER Treebank

8.1 Introduction

Developing deep unification grammars is a highly knowledge-intensive task and gram­

mars are typically hand-crafted. Scaling such grammars beyond small fragments to unre­

stricted, naturally occurring, real text, is time-consuming and expensive, involving, as it 

does, person years of expert labour. I have outlined a method of inducing wide-coverage, 

probabilistic LFG grammatical resources for English from an automatically f-structure 

annotated Penn-II treebank. In this chapter, I will describe how this methodology can be 

migrated to a different language and treebank resource, namely German and the TIGER 

treebank (Brants et al., 2002). German is substantially less configurational than English, 

and the TIGER treebank data structures consist of graphs with crossing edges rather than 

trees with traces as in Penn-II. In addition, the TIGER treebank features considerably 

richer functional annotations than those provided in the Penn-II resource. I present an 

f-structure annotation algorithm for TIGER and outline how LFG grammars for German

Chapter 8
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can be derived from the f-structure-annotated TIGER resource. I extract PCFG-based 

LFG approximations and report on a number of parsing experiments. I evaluate both the 

quality of the automatic f-structure annotation of the TIGER treebank, and the parser 

output. I then describe a morphological case-simulating grammar transformation and 

evaluate the results. Part of the work reported here and early results have appeared in 

Cahill et al. (2003a)

8.2 From TIG ER to a German LFG

The TIGER treebank (Brants et al., 2002) is a corpus of approximately 40,000 syntactically 

annotated German newspaper sentences. The annotation consists of generalised graphs, 

which may contain crossing and secondary edges. Crossing edges are used to represent 

long-distance dependencies and secondary edges represent information relating to certain 

re-entrancies such as shared subject in coordinate constructions. Edges are labelled, so 

that a TIGER tree encodes both phrase-structural information and dependency relations.

Forst (2003a,b) converts the TIGER graphs directly into f-structures in order to gener­

ate a set of reference f-structures to evaluate a hand-crafted wide-coverage German LFG. 

However, in order to be able to extract an annotated PCFG which can be used to parse 

text into f-structures, we require trees that have been annotated with f-structure equations, 

rather than the f-structures themselves.

Since the structure of the TIGER corpus is quite different to that of the Penn-II 

treebank, the approach taken to annotating the TIGER corpus with f-structure equations 

differs from the approach for English described earlier. German does not usually rely on 

configurational information to express functional information, a feature of English that 

was heavily exploited by us in our previous work. However, the TIGER corpus annotation 

scheme provides rich functional information by way of labelled edges in the graphs. By 

exploiting these labels we can annotate the TIGER corpus with f-structure equations.

8.2.1 From TIG ER  Graphs to  Trees

The first stage in annotating the TIGER corpus with f-structurc equations (in order to be 

able to extract PCFG-based LFG approximations) is to convert the TIGER, graphs into
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Category Description
S Sentence
CNP Coordinated noun phrase
NP Noun phrase
POS Tag Description
NN Common Noun
VAFIN Finite verb, auxiliary
PPOSAT Attributive possessive pronoun
KON Coordinate conjunction
PTKNEG Negative particle
ART Definite or indefinite article
Function Description
CJ Conjunct
NK Noun kernal element
NG Negation
CD Coordinating conjunction
HD Head
PD Predicate
SB Subject

Table 8.1: A glossary for the category, POS tag and functional labels used 
in the TIGER graph of Figure 8.1

trees similar to those found in the Penn-II treebank.1 Traces are used to represent the 

long-distance dependency information captured by crossing edges. Secondary edges have 

not been incorporated into the f-structure annotation procedure at this stage. Although 

these edges obviously contain useful information for the generation of f-structures, this 

information is currently not utilised, since it is unclear how one could encode them in a 

useful manner in the Penn-II style trees.

Figures 8.1, 8.3 and 8.4 illustrate how traces in tree data structures are used to repre­

sent the information encoded by crossing edges in the TIGER graphs. Table 8.1 provides 

a glossary for the labels used in Figure 8.1. The TIGER graph in Figure 8.1 indicates by 

means of crossing edges that Geschàftemachen and nicht die Politik form a discontinuous 

coordinated constituent, which wraps around the rest of the sentence. This information is 

represented in terms of traces in the corresponding tree in Figure 8.3. Note that the func­

tional information encoded in the TIGER graphs is preserved in the conversion process in 

terms of labels (-SB, -HD, etc.) on tree node categories.

1 Thanks to Michael Schiehlen who provided the code to convert the graphs into corresponding trees 
with traces.
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$( NN VAFIN PPOSAT NN KON PTKNE| ART NN

“ Geschäftemachen ist seine Welt und nicht die Politik . 
“ Business is his world and not the politics .

“ Business is his world, not politics. ”

Figure 8.1: TIGER graph #45, containing crossing edges

Annotated
TIGER
Trees

Figure 8.2: The process of annotating a TIGER tree with f-structure in­
formation

8.2.2 A nnotation  o f D erived Trees

The annotation of the trees derived from the TIGER graphs is a two-stage process, with 

a pre- and post-processing phase (see Figure 8.2).

The preprocessing is a simple walk through the tree in order to build a lookup table for 

the trace nodes. This is required since often the trace occurs before the coindexed node 

in the tree and the information on the coindexed node realising the displaced material 

is necessary to assign an f-structure equation to the trace node. Table 8.2 presents the 

lookup table generated by the tree in Figure 8.3.

The first stage of the TIGER tree annotation attempts to assign an f-structure equation 

to each node based on the TIGER functional labels present in the tree. We have compiled

Trace Trace Function Node Number Node Label
CD 12 KON

*T2* CJ 13 NP

Table 8.2: The lookup table generated in the pre-processing stage for the 
tree in Figure 8.3
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($*LR B * “ )
(S

CCNP-SB
(NN-CJ Geschäftemachen)

(*T1*-CD -)

(*T2*-CJ -)

)
(VAFIN-HD ist)

(NP-PD
(PPOSAT-NK seine)

(NN-NK Welt)

)
(KON-*Tl* und)

(NP-+T2*

(PTKNEG-NG nicht)

(ART-NK die)

(NN-NK Politik)

)
)
($. -)

)
“G e sc h ä fte m a c h e n  is t  se in e  W e lt u n d  n ic h t  d ie  P o litik . ”

Figure 8.3: TIGER graph #45 transformed into a Penn-II style tree with 
traces and co-indexation

an f-structure equation lookup table which assigns default f-structure equations triggered 

by each TIGER functional label. For example, the default entry for the SB (subject) label 

is T S U B J = | .  Table 8.3 gives the complete set of default annotations.

Default annotation is driven purely by TIGER functional annotations and sometimes 

over generates. It is possible to overwrite the default annotations. For example, the NK 

label (noun kernel element) alone is often ambiguous, though given some context, it is often 

straightforward to determine the f-structure equation required, e.g. an ART (article) node

TO P

$*LRB*

CNP-SB VAFIN-HD NP-PD KON -*Tl* NP-*T2*

NN-CJ *T1*-CD *T2*-CJ ist PPOSAT-NK NN-NK und PTKNEG-NG ART-NK NN-NKi l l  I I I ! I.
Geschäftemachen - seine Welt nicht die Politik

Figure 8.4: A graphical representation of the tree in Figure 8.3
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with an NK label can usually be annotated j  s p e c : d e t  = j (as in Figure 8.5). The second 

stage of the TIGER tree annotation involves overwriting default annotations in certain 

situations. These include:

• Determining the object of pre- and post-positions, labelled AC (adpositional case 

marker);

• Determining the behaviour of the CP (complementiser) labelled node;2

• Determining the head of a coordination phrase with more than one coordinating 

conjunction.

Figures 8.5 and 8.6 illustrate how the fiat TIGER analysis of a German PP can be an­

notated to give the correct f-structure analysis (with the preposition taking an OBj(ect) 

argument) by overwriting the default annotations on the trees. This is needed to encode 

the preferred hierarchical analysis of PPs.

PP

APPR-AC ART-NK NN-NK
1 = 1  |SPE C :D E T  =  |  [  G f  ADJUNCT

Eng. according to
Nach einer

a
Umfrage

s u r v e y

Figure 8.5: A flat analysis of a German PP and its default f-structure 
annotations

PP

APPR-AC
T = i

ART-NK NN-NK
(Tobj:SPEC:det) =  |  (t OBJ) =  i

Eng. according to
Nach einer

a
Umfrage

s u r v e y

Figure 8.6: A flat analysis of a German PP and its correct f-structure 
annotations after stage two of the TIGER tree annotation 
process

2In our analysis, true complementisers, e.g. daß  and ob, only contribute a COM P-FORM  feature to the 
f-structure, whereas other conjunctions contribute a semantic form that governs linguistic material.



Functional
Label

Description Default
Annotation

AC Adpositional case marker T=4
ADC Adjective component !g|  adjunct
AG Genitive attribute tspec:poss=|
AMS Measure argument of adjective lefadjunct
APP Apposition | e |  adjunct
AVC Adverbial phrase component le t  adjunct
cc Comparative complement tobl_compar=|
CD Coordinating conjunction t=l
CJ Conjunct leTconj
CM Comparative conjunction 1=1
CP Complementiser T=l
cvc Collocational verb construction adjunct
DA Dative Tobj2=|
DH Discourse-level head le t  adjunct
DM Discourse marker adjunct
EP Expletive es |topic=|
GL Prenominai genitive fspec:poss=J.
GR Postnominal genitive |eTadj-gen
HD Head T=i
JU Junctor letadjunct
MNR Postnominal modifier le t  adjunct
MO Modifier |e|adjunct
NG Negation |e|adjunct
NK Noun kernel element ¡ejadjunct
NMC Numerical component tnumber:spec=|
OA Accusative object t°bj= |
OA2 Second accusative object |aobj2=|
OC Clausal object txcomp=|
OG Genitive object t°bj-gen=|
OP Prepositional object tobl=|
PAR Paranthetical element |e|adjunct
PD Predicate t xcomp_pred=|
PG Pseudo-genitive |etadj_gen
PH Placeholder |e|adjunct
PM Morphological particle |e|adjunct
PNC Proper noun component |etname_mod
RC Relative clause tadj_rel=|
RE Repeated element tapp_clause=|
RS Reported speech tcomp=|
SB Subject jsubj=|
SBP Passivised subject tobl.ag=|
SP Subject or predicate Tsubj=|
SVP Separable verb prefix tpart_form=|
UC Unit component |e|adjunct
VO Vocative |e|adjunct

Table 8.3: Default annotations for each functional label in the TIGER 
treebank

122



Finally, a post-processing stage explicitly links trace nodes and the reference node. 

This involves adding equations such as | X C 0 M P : 0 B J  =  j to nodes with trace information. 

For example, in Figure 8.7, the NP-*T2* node receives the annotation je|subj:conj.

(TOP
($*LRB* “ )
(S[up=down]

(CNP-SB[up-subj=down]
(N N -C J[dow n-elem =up:conj]

G esch aftem achen)
(*T1*-CD - )
(*T2*-CJ - )

)
(VAFIN-HD[up=down] ist)

(NP-PD[up-xcom p_pred=down]
(PPO SAT-NK[up-spec:poss=down] s e in e )
(NN-NK[up=down] W elt)

)
(KON-*Tl*[up:subj=down] und)

(N P -*T 2*[dow n-elem =up:s u b j : co n j]
(PTKNEG-NG[down-elem=up:a d ju n c t]  n ic h t )
(AR T -N K [up-spec:det=down] d ie )
(NN-NK[up=down] P o l i t i k )

)
)
($. •)

)

Figure 8.7: The tree in Figure 8.3 after automatic annotation

subj : conj : 1 : pred : 'Geschäftemachen’

2 : spec : det : pred : die

adjunct : 3 : pred : nicht 

pred : 'Politik' 

coord_form : und 

xcomp_pred : spec : poss : pred : pro 

pred : 'Welt'

pred : ist

Figure 8.8: The f-structure produced as a result of automatically anno­
tating the tree in Figure 8.3

Figure 8.3 presents an input tree, Figure 8.7 the automatically annotated tree and 

Figure 8.8 provides the resulting f-structure.
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We first established the coverage of the annotation algorithm on the entire TIGER corpus. 

Table 8.4 presents the results. 96.86% of the 40,000 sentences receive one covering and 

connected f-structure. Ideally we would like to generate just one f-structure per sentence. 

There are, however, a number of sentences (1112) that receive more than one f-structure 

fragment. This is mainly due to strings such as Bonn, 7. September, where in the source 

TIGER graphs there is no clear relation between the individual constituents of the string 

and where we do not wish to enforce a relation for the sake of having fewer fragments. 

We believe that these strings are in fact fragments and should be treated accordingly. 

There are also a small number of sentences which do not receive any f-structure. This 

is as a result of feature clashes in the annotated trees, which are caused by inconsistent 

annotations.

We also evaluate the quality of the annotation against a manually constructed gold- 

standard of 100 f-structures. In our parsing experiments, we set aside sentences 8000-10000 

of the TIGER treebank for testing purposes. We extracted 100 sentences at random from 

these 2000 sentences, in order to develop our gold standard. The original TIGER trees 

for these sentences were converted into dependency structures following Forst (2003a) and 

manually corrected by Martin Forst. We use the triple encoding and evaluation software of 

Crouch et al. (2002). Table 8.5 shows that currently our automatic f-structure annotation 

achieves a preds-only f-score of 90.22% against this gold standard, with precision about 

7% higher than recall. Table 8.6 shows a more detailed analysis of how well the automatic 

f-structure annotation algorithm performs on specific functions. Most features achieve 

very high results, e.g. O B J is 94%, x c o m p  is 95%. The features that we score poorest 

on are T O P IC  and a p p - c l a u s e .  However, there are not that many occurrences of these 

feature in the gold standard. We expect all figures to improve as we refine the f-structure 

annotation algorithm.

8 .2 .3  E valuation  o f th e  A u to m a tic  A n n o ta tio n  A lgorithm
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#  f-str. frags #  sent percent
0 143 0.3573
1 38765 96.8641
2 1032 2.5787
3 75 0.1874
5 1 0.0025
6 1 0.0025
7 3 0.0075

Table 8.4: Coverage k, fragmentation results of German f-structure an­
notation algorithm

Preds Only Evaluation
Precision 93.71%
Recall 86.99%
F-Score 90.22%
Complete Match 25

Table 8.5: Evaluation of the f-structures produced by automatically 
annotating the TIGER trees against 100 gold-standard f- 
structures

8.3 Parsing Experim ents

Using the annotation method described above, we automatically annotate the TIGER 

corpus with f-structure equations. We then read off a grammar from the annotated tree- 

bank, resulting in an annotated PCFG (A-PCFG) for German. We use Helmut Schmid’s 

BitPar parser (Schmid, 2004) to parse with this grammar, using Viterbi pruning to obtain 

the most probable parse. We collect the f-structure annotations from the resulting parse 

tree and use a constraint solver to produce an f-structure for new text. All experiments 

instantiate the integrated parsing architecture described in Chapter 6.

An annotated grammar (A-PCFG) was extracted from the TIGER corpus excluding 

the 2000 sentences set aside for testing. Prior to grammar extraction, empty produc­

tions were removed from the TIGER trees while TIGER functional labels were kept. The 

grammar contains 65,758 rules. We also transformed the grammar using a parent transfor­

mation (Johnson, 1999) to give us PA-PCFG with 72,127 rules. Using these two grammars, 

we parsed the 2000 raw, untagged test strings. The results are presented in Table 8.7. We 

evaluated the quality of the trees produced by the parser and measure how many of the 

2000 sentences produce one covering and connected f-structure. Currently 95.47% of the
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D ependency Precision Recall F-score
circ-form 2/2 =  100 2/2 =  100 100
dem 7 /7  = 100 7 /7  =  100 100
obj2 5 /5  =- 100 5 /5  =  100 100
obi 11/11 =  100 11/11 =  100 100
obl-ag 6/6 =  100 6/6 =  100 100
part-form 11/11 =  100 11/11 =  100 100
adj-gen 79 /8 1  =  98 79 /82  =  96 97
coord-form 5 7 /5 8  =  98 57 /59  =  97 97
pron-type 16 /1 6  = 100 16 /1 7  =  94 97
det 26 9 /2 7 7  =  97 269 /283  =  95 96
xcom p 7 4 /7 7  =  96 74 /7 8  =  95 95
nam e-m od 2 9 /3 3  =  88 2 9 /29  =  100 94
obj 3 15 /329  =  96 315 /339  =  93 94
xcom p-pred 30 /3 1  =  97 30 /35  =  86 91
adjunct 5 3 8 /5 8 4  =  92 538/605  =  89 90
conj 122/145  =  84 122/138 =  88 86
com p-form 11/11 =  100 11 /15  =  73 85
com p 1 4 /15  =  93 14 /18  =  78 85
adj-rel 1 2 /1 4  =  86 12/15  =  80 83
number 1 5 /18  =  83 15/18  =  83 83
app 2 5 /2 6  =  96 25 /3 5  =  71 82
poss 1 6 /18  =  89 16 /22  =  73 80
obl-com par 3 /5  =  60 3 /3  =  100 75
subj 148/151  =  98 148/244  =  61 75
quant 1 2 /1 4  =  86 12 /22  =  55 67
app-clause 5 /9  =  56 5 /7  =  71 63
topic 0/1 =  0 0/0 =  0 0

Table 8.6: Preds-only evaluation of Automatically Annotating TIGER 
trees broken down by features

2000 sentences parsed with A-PCFG, and 97.9% of those parsed by PA-PCFG receive one 

covering and connected f-structure. A more detailed breakdown of the number of frag­

ments per sentence is presented in Table 8.8. We evaluate the quality of the f-structures 

produced in two ways. First we evaluate against our manually constructed gold standard 

of 100 f-structures. Second, in a CCG-style experimental setup (Hockenmaier, 2003), we 

automatically annotate the 2000 held-out original treebank trees with our f-structure anno­

tation algorithm, and evaluate the output of the parser for the 2000 raw, untagged strings 

against the automatically produced f-structures. We currently achieve a labelled f-score 

of 69.39% on the trees produced by A-PCFG. For the same grammar, the f-structures 

achieve an f-score of 71% and 74.61% on the 100 gold standard f-structures and the 2000 

automatically produced f-structures respectively. Unlike for English, applying the parent 

transformation (Johnson, 1999) to the German grammar does not improve results: there
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A-PCFG PA-PCFG
#  Rules
#  Parses
Lab. F-Score (2000 Trees)
Unlab. F-Score (2000 Trees) 
Tagging Accuracy (2000 Trees) 
Fragmentation (2000 f-structures) 
F-Score(100 f-structures) 
F-Score(2000 f-structures)

65758
1993

69.39%
73.72%
95.47%
95.8%

71.00%
74.61%

72127
1990

68.14%
73.16%
80.20%
97.9%

70.50%
74.04%

Table 8.7: Parsing Results

is a decrease of 0.5% in labelled f-score against the 100 gold-standard f-structures, and a 

decrease of 0.57% against the 2000 f-structures. In fact, the only respect in which PA- 

PCFG outperforms the A-PCFG is in fragmentation, i.e. the f-structures it produces are 

less fragmented, with a decrease of 2.1% in fragmentation from A-PCFG to PA-PCFG.

A-PCFG PA-PCFG
#  f-structure fragments #  sent percent #  sent percent

0 23 1.15 34 1.7
1 1916 95.8 1958 97.9
2 56 2.8 8 0.4
3 5 0.25

Table 8.8: Coverage &; fragmentation results of parsing with the anno­
tated grammar

8.4 Adding M orphological Information

Morphology is extremely important in determining functional information in non- 

configurational languages such as German. In the acquired grammars outlined above, 

we do not consider the rich arsenal of morphological information potentially available to 

us. For example, in (2), the accusative case marking on den Mann (the man-acc) indicates 

that it is the object of the verb sehen (to see), although it occurs in a position more 

usually filled by a subject. Consider the parse tree in Figure 8.9 that might be produced 

for this sentence by the parser described in Section 8.3. The parser does not recognise 

that den Mann is the object. By adding case information to constituents that encode case 

morphologically (ARTnom, ARTacc, . . . ) ,  the parser has an improved chance to rectify 

the situation and produce the correct tree, with proper grammatical function assignment,
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ART
|spec=|

I
Den

Den Mann sah die Frau 
the-acc man-acc saw the-nom woman-nom

It was the man the woman saw

Figure 8.9: An example of where the parser does not recognise functional 
information encoded in morphological case

as in Figure 8.10.

(2) Den Mann sah die Frau.
The-acc man-acc saw the-nom woman-nom
I t was the man the woman saw

8.4.1 A utom atically  Sim ulating M orphological Inform ation in TIG ER  

Trees

At the time of submission of the present dissertation, the morphological analysis 

for TIGER treebank trees was not completed. We hope to run further experiments when 

the morphologically-annotated version of the treebank becomes available. Until this is 

the case, however, we have experimented with a method for automatically simulating the 

effects of morphological case information where this can be ascertained. In order to do 

this, we simply exploit functional annotation labels in TIGER trees and percolate case 

information deduced from functional TIGER annotations downwards from the maximal 

projection in an automatic grammar transformation step. Table 8.9 illustrates the func­

tional labels that trigger morphological case and their associated cases. Whenever one 

of these labels is encountered, the algorithm projects the case feature associated with it

NN YVFIN
T=i T=4

NP
Tobj=|

Mann sah ART
|spec=j.

NN
T=i

die Frau



s

NP 
Ì°b j= |

ARTacc
tspec=|

I
Den

NN WFIN
Tyl t=4I

Mann
1

sah

VP
T=l

ARTnom
fspec=|.

I
die

NP 
|su b j= |

NN
T=!

I
Prau

Den Mann sah die Frau 
the-acc man-acc saw the-nom woman-nom

It was the man the woman saw

Figure 8.10: An example of where the parser does recognise functional 
information encoded in morphology

down to the lowest projection and augments certain POS tags with the relevant case infor­

mation. Figures 8.11 and 8.12 illustrate the effect of the transformation on TIGER trees. 

Only the POS tags listed in Table 8.10 are annotated with case information.

Functional
Label

Description Associated
Case

AG Genitive Attribute genitive
DA Dative dative
OA Accusative Object accusative
OA2 Second Accusative Object accusative
OG Genitive Object genitive
PD Predicate nominative
SB Subject nominative
SP Subject or Predicate nominative

Table 8.9: Table of Functional Tags and their associated morphological
cases

8.4.2 Experim ents and R esults

We extracted two grammars, CA-PCFG and CPA-PCFG (with additional parent trans­

formation) after the case transformation. CA-PCFG has 66,110 rules, while CPA-PCFG 

has 72,441, in comparison with 65,758 and 72,127 for A-PCFG and PA-PCFG. We ran
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s
NP-SB VVFIN-HD NP-OA

ART-NK NN-NK heiligte ART-NK NN-NK
I l  I I

Der Zweck die Mittel

Der Zweck heiligte die Mittel
the-nom purpose-nom sanctifies the-acc means-acc

T h e  en d  ju s t i f ie s  th e  m e a n s

Figure 8.11: A TIGER tree before case simulating grammar transforma­
tion

S
— r ~ —

NP-SB W FIN-HD NP-OA

ARTnom-NK NN-NK heiligte ARTacc-NK NN-NK
I l  I I

Der Zweck die Mittel

Der Zweck heiligte die Mittel
the-nom purpose-nom sanctifies the-acc means-acc

T h e  en d  ju s t i f ie s  th e  m e a n s

Figure 8.12: A TIGER tree after case simulating grammar transforma­
tion

POS Tag Description
ADJA
ART
PDS
PDAT
PIS
PIAT
PIDAT
PPER
PPOSS
PPOSAT
PRELS
PRF
PWS
PWAT

Adjective, attributive
Definite or indefinite article
Substituting demonstrative pronoun
Attributive demonstrative pronoun
Substituting indefinite pronoun
Attributive indefinite pronoun without determiner
Attributive indefinite pronoun with determiner
Non-reflexive personal pronoun
Substituting possessive pronoun
Attributive possessive pronoun
Substituting relative pronoun
Reflexive personal pronoun
Substituting interrogative pronoun
Attributive interrogative pronoun

Table 8.10: TIGER POS tags that receive case annotations
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the same experiments as outlined in Section 8.3. We measure the quality of the trees 

produced, what percentage of the held-out 2000 test sentences produce one covering and 

connected f-structure (fragmentation), the quality of the f-structures generated by the 

parsers against the manually constructed 100 reference f-structures, and (in a CCG-style 

experiment (Hockenmaier, 2003)) against the held-out 2000 original treebank trees auto­

matically annotated by our f-structure annotation algorithm. The results are presented 

in Tables 8.11 and 8.12. Using the CA-PCFG, 1993 sentences receive a parse. We obtain 

an f-score of 68.88 on the labelled trees. 1915 (95.75%) of the 2000 sentences receive one 

covering and connected f-structure. 1.15% of the sentences do not receive any f-structure. 

When we evaluate against our manually constructed gold standard, we achieve an f-score 

of 70.08. This is an increase of 0.08% on the same grammar without case simulation. Au­

tomatically annotating the original 2000 original treebank trees and comparing the parser 

output against it, produces an f-score of 74.56%. This does not improve on our previous 

experiments without case simulation. I expect there to be two main reasons responsible 

for this result: lack of coverage and the fine-grainedness of the grammar transformation.

Currently the addition of morphological case information is not complete enough. 

There are many instances where we cannot reliably determine case information, as in 

many prepositional phrases for example.3 In the cases where we are able to add case 

information, this is triggered by TIGER functional labels, and these functional labels 

alone seem to do just as well as the functional labels plus the automatically generated 

case marking. It remains to be seen whether more fine-grained automatic case simulation 

can produce better results. Morphological case marking in German is in fact sensitive to 

grammatical function, number and gender (see Table 8.13), and not just to grammatical 

function as in our simulation. If this information is available in TIGER trees, a more fine­

grained case marking grammar transformation can be attempted. I would expect that 

reliable addition of case information is a valuable grammar transformation, especially in 

instances where arguments do not appear in their “expected” positions (e.g. in stressed 

positions as in Example 2). The experiments show that the simple automatic case simu­

lation presented here does not yield improved parsing results. Of course, when the proper

3There are a number of German prepositions that can take either accusative or dative case, and from 
the context in the TIGER trees, we cannot determine which case it is.
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morphological analysis for the entire TIGER treebank is available, it will be possible to 

carry out more extensive experiments. One experiment would examine to what extent 

the morphology alone (ignoring functional labels) can be used to automatically annotate 

the TIGER treebank with f-structure information in order to carry out further parsing 

experiments.

CA-PCFG CPA-PCFG
#  Rules
#  Parses
Lab. F-Score (2000 Trees)
Unlab. F-Score (2000 Trees) 
Fragmenation (2000 f-structures) 
Tagging Accuracy (2000 Trees) 
F-Score(100 f-structures) 
F-Score(2000 f-structures)

66110
1993

68.88%
73.22%
95.75%
95.05%
71.08%
74.56%

72441
1979

67.23%
72.31%
97.3%

79.85%
69.25%
73.59%

Table 8.11: Parsing Results with Case Simulation

CA-PCFG CPA-PCFG
#  f-str. frags #  sent percent #  sent percent

0 23 1.15 43 2.15
1 1915 95.75 1946 97.3
2 57 2.85 11 0.55
3 5 0.25

Table 8.12: Coverage & fragmentation results of parsing with the anno­
tated grammar including Morphological Information

Masc. Fern. Neut.
NOM
ACC
GEN
DAT

der Mann 
den Mann 
des Mannes 
dem Mann

die Frau 
die Frau 
der Frau 
der Frau

das Kind 
das Kind 
des Kindes 
dem Kind

SG

NOM
ACC
GEN
DAT

die Männer 
die Männer 
der Männer 
den Männern

die Frauen 
die Frauen 
der Frauen 
den Frauen

die Kinder 
die Kinder 
der Kinder 
den Kindern

PL

Table 8.13: Grammatical function, number and gender influence case 
marking in German as this table illustrates
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In this chapter, I showed how the methodology for developing large-scale, PCFG-based 

English LFG grammar approximations induced from treebanks can be adapted to German. 

The method constitutes a novel approach to deep multilingual unification grammar acqui­

sition based on treebank resources and automatic f-structure annotation algorithms and 

can offer substantially reduced grammar development cost where a treebank is available. 

Depending on the size of the treebank, the method can deliver robust and wide-coverage 

unification grammars.

The method, originally developed and tested on English and the Penn-II treebank, 

has been adapted to German and the TIGER, treebank resource. We parsed 2000 sen­

tences with the LFG approximation extracted automatically from the f-structure anno­

tated TIGER treebank. We evaluated parser output against manually constructed gold- 

standard f-structures for 100 sentences and, against the full 2000 f-structures generated 

by the automatic f-structure annotation algorithm for the original held-out 2000 treebank 

trees in a CCG-style experiment. The basic A-PCFG achieves an f-score of 71% against 

the 100 gold standard f-structures and 74.6% against the 2000. We automatically add 

some morphological case information in a case simulating grammar transformation ex­

periment that improves f-score against the manually annotated gold standard by 0.08%. 

F-score on the 2000 automatically annotated original treebank trees decreases slightly by 

0.05%. I believe this is because the grammar transformation is too coarse-grained, since 

in many cases we are not able to determine case information from the functional labels 

alone. I expect more sophisticated grammar transformations to produce improved results 

and hope to explore this in future research. Once the proper morphological analysis of the 

treebank becomes available, we will carry out further experiments and comparisons with 

grammar transformations. The grammars reported on here achieve more than 95.75% 

coverage on unseen TIGER treebank data after a total of just over three person months 

of development effort. By contrast, a hand-crafted, fine-grained, wide-coverage German 

LFG grammar currently achieves approximately 70% coverage (measured as full spanning 

parse) after several person years of development effort (Forst, 2003a).

8.5 Sum m ary
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Chapter 9

Conclusions

Manual development of wide-coverage, deep, constraint-based grammatical resources that 

scale to unrestricted text is knowledge-intensive, time-consuming and expensive. This the­

sis is part of a larger project to automate wide-coverage, deep, constraint-based grammar 

development using treebank resources and automatic f-structure annotation algorithms to 

address the knowledge-acquisition bottleneck in constraint-bascd grammar development.

The work presented in this thesis has:

• contributed to the development, implementation and evaluation of an automatic f- 

structure annotation algorithm for the Penn-II treebank (Cahill et al., 2002a; Burke 

et al., 2004a,b).

• provided the corpus inspection, search and visualisation tools (TTS) (Cahill and 

van Genabith, 2002) as well as the f-structure annotation algorithm application and 

visualisation tools (FSAT). TTS has been essential in establishing the linguistic 

basis which seeds the f-structure annotation algorithm. FSAT has been essential in 

monitoring and validating the application of the automatic f-structure annotation 

algorithm to the treebank.

• investigated the interaction between treebank pre-processing and transformation 

steps on PCFG grammars and parsing performance.

• developed and evaluated two PCFG-based parsing architectures (pipeline and inte­

grated) for parsing raw text into proto f-structures (with LDDs unresolved) using
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• developed and evaluated an LDD resolution method on f-structure based on finite 

approximations of functional uncertainty equations and lexical resources (subcat­

egorisation frames) automatically acquired from the f-structure annotated Penn-II 

treebank resource (Cahill et al., 2004b).

• compared the results obtained against other state-of-the-art approaches (Collins, 

1999; Johnson, 2002; Riezler et al., 2002; Kaplan et al., 2004).

• integrated external state-of-the-art parsing technology (Collins, 1999; Charniak,

2000) into the pipeline processing model

• applied and evaluated the automatic wide-coverage, constraint-based grammar ex­

traction and parsing methods to German and the TIGER treebank resource (Cahill 

et al., 2003a).

The main, perhaps surprising, result is that our treebank-based, automatic, deep, 

constraint-based grammar acquisition method together with simple (strictly speaking, 

mathematically inadequate) but flexible PCFG-based processing architectures outper­

forms the best hand-crafted resources and sophisticated processing techniques. Currently, 

our best result is 81.79% f-score against the PARC 700, while Kaplan et al. (2004) report 

a score of 79.6%. Below I summarise these and the other main results obtained.

PCFG-based techniques are a core part of this dissertation. We explore a number of 

grammar transformations that can be applied to treebanks before the induction of PCFGs 

and examine how they interact. This indicates what grammar transformations and pre­

processing steps might be useful prior to grammar extraction. Our experiments show that 

grammars that have been parent-transformed, or that contain LFG f-structure equations 

perform well, with an increase of between 5.6% and 8.8% over a baseline grammar. Gram­

mars with both parent transformation and f-structure information perform even better, 

with the best grammar achieving 81.27% labelled f-score on trees against section 23 of the 

Penn-II treebank.

We develop two architectures (pipeline and integrated) that parse unseen text into 

proto f-structures. Proto f-structure are basic, but possibly incomplete, predicate-

the f-structure annotation algorithm (Cahill et al., 2002c).
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argument structures with long-distance dependencies (LDDs) unresolved. We evaluate 

the proto f-structures, and against the DCU 105, our best grammar in the pipeline model 

achieves an f-score of 74.25% preds-only and 79.81% on all grammatical functions (GFs). 

Our best grammar in the integrated architecture achieves an f-score of 74.8% preds-only 

and 81.2% on all GFs. In a CCG-style experiment (Hockenmaier, 2003), against the 

2,416 automatically generated f-structures for the original treebank trees in section 23, 

the pipeline model achieves higher results than the integrated model (75.67% preds-only 

and 81.74% all GFs). We evaluate what percentage of f-structures receive a covering and 

connected f-structure. Generally, for our best performing grammars, 99.8% receive one 

covering and connected f-structure and less than 0.2% of the sentences do not receive any 

or more than one f-structure fragments.

The resolution of LDDs is crucial in the mapping of text to information (represented in 

terms of predicate-argument or dependency structure). Most PCFG-based parsing does 

not deal with LDDs. We present a method of resolving LDDs at f-structure level us­

ing finite approximations of functional uncertainty equations and automatically acquired 

subcategorisation frames (O’Donovan et al., 2004), both extracted from the f-structure 

annotated Penn-II treebank. This allows our parsers to produce deep linguistic repre­

sentations. Currently, the quality of the preds-only f-structures produced by our best 

grammars after LDD resolution improves results over the same grammars without LDD 

resolution by between 5.55% and 6.46% against the DCU 105. Our best grammar achieves 

81.24% preds-only f-score and 87.04% f-score for all GFs. Evaluating against the PARC 

700 Dependency Bank following the evaluation described in Kaplan et al. (2004), our best 

grammar achieves an f-score of 80.33%. The improvement in f-structure f-score after LDD 

resolution indicates that our LDD resolution algorithm is performing well. However, we 

also need to evaluate the LDD resolution algorithm independently. We evaluate the qual­

ity of the re-entrancies in dependency structures and show that our best grammar achieves 

an overall f-score of 82.81% on LDD resolution paths against the DCU 105.

It is interesting to compare the research presented in this thesis to other approaches. 

We compare against three bodies of work: Collins (1999), Johnson (2002) and Riezler 

et al. (2002); Kaplan et al. (2004). It is difficult to perform a satisfactory comparison
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between our work and Collins (1999) or Johnson (2002), as they add empty nodes to 

parse trees to encode long-distance dependencies, while we resolve LDDs at the level of f- 

structure. We carry out a number of experiments at the level of f-structure in our pipeline 

parsing architecture. Our results show that our LDD resolution on f-structure outperforms 

Collins’ (1999) Model 3 and Johnson’s (2002) algorithm for recovering empty nodes and 

their antecedents. In order to compare our work with the hand-crafted wide-coverage 

LFG grammars of Riezler et al. (2002) and Kaplan et al. (2004), we map our f-structures 

to a format similar to the PARC 700 and evaluate against a subset of the PARC 700 

with a reduced feature set. Our best automatically induced grammar achieves an f-score 

of 80.33%, against 79.6% for the best hand-crafted grammar presented in Kaplan et al. 

(2004). Using the output of Charniak’s parser in our pipeline parsing architecture, we 

achieve an f-score of 81.79% against the PARC 700, an improvement of 2.19% over the 

best results presented in Kaplan et al. (2004). These results show that our treebank 

and automatic f-structure annotation algorithm-based grammar acquisition and PCFG- 

based parsing architectures can be used to induce high-quality LFG resources, currently 

outperforming even the best manually created resources and sophisticated (log-linear- 

based) processing architectures.

Our methodology can be ported to other languages and treebanks, and we carry out 

experiments on German and the TIGER treebank. With just three months of development 

effort, we created a German LFG approximation that can parse unseen newspaper text 

into f-structures. Our parser achieves an f-score of 71% against a gold standard of 100 

randomly selected sentences and achieves coverage (measured in terms of covering and 

connected f-structures) of over 95%.

Nothing in the methodology presented here precludes its application to other languages, 

corpora or formalisms. Suitable annotation schemes could also be applied to automatically 

derive HPSG typed feature structures (Miyao et al., 2003), dependency structures or logical 

forms (Cahill et al., 2003b). We believe that our approach can provide an attractive, wide- 

coverage, multilingual constraint-based grammar acquisition paradigm, complementing 

and, in certain cases, replacing, more traditional, manual grammar development.
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9.1 Future W ork

In both of our parsing architectures, quality of the parsing output correlates with the 

quality of the f-structures generated. We are experimenting with a number of methods of 

improving parser output. This feeds into our parsing architectures in two ways. First, we 

can improve the quality of our own grammars using standard PCFG parsing technology 

(Schmid, 2004), and second, we can incorporate external, state-of-the-art parsers (Collins, 

1999; Charniak, 2000) into our pipeline architecture to produce high quality f-structures. 

We aim to improve the quality of our grammars by investigating further grammar transfor­

mations. Klein and Manning (2003) present a number of linguistically motivated grammar 

transformations that significantly improve parsing results. We hope to incorporate at least 

some of them into future work. Our research into the case-simulating grammar transfor­

mation for German proved inconclusive. In ongoing work we hope to refine the automatic 

case-simulation transformation, and when the proper morphological information for the 

TIGER treebank becomes available, we will perform case-sensitive grammar transforma­

tion and extraction experiments.

It is well known that PCFG-based approximations of unification grammars do not 

provide an adequate probability model (Abney, 1997), as sometimes probability mass is 

lost when the parser produces a most probable parse, but this parse cannot generate an 

f-structure. We do not claim to provide an adequate probability model; rather we have 

taken an engineering approach to the problem, exploiting simple but effective approxi­

mations. In future work, we hope to explore more complex parsing models, in particular 

log-linear-based disambiguation models (Riezler et al., 2002; Miyao et al., 2003). While 

we have shown that our grammar induction and PCFG-based techniques perform well 

(in fact better than the current best hand-crafted grammars and sophisticated processing 

architectures), the probability model is, strictly speaking, inconsistent, and we expect an 

improved probability model to yield improved results. Another area of future research is 

to improve parsing by using subcategorisation frames. O’Donovan et al. (2004) show that 

large-scale, high-quality subcategorisation frames can be automatically extracted from the 

f-structure-annotated Penn-II treebank. While we have used these frames in our LDD res­

olution algorithm, they have not been incorporated into our PCFG parsing model. Carroll
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et al. (1998) show that subcategorisation probabilities can significantly improve parse ac­

curacy, and we hope to also improve parse accuracy using our automatically acquired 

subcategorisation frames.

Our long-distance dependency resolution algorithm is perhaps too coarse-grained. We 

only distinguish between two types of TOPlCRELs, but more fine-grained distinctions are 

possible, e.g. determiner-case TOPICREL as in customers whose addresses have changed. 

We hope to refine our LDD resolution algorithm to incorporate more fine-grained path 

distinctions. We have not yet investigated long-distance dependency resolution in our 

German LFG approximations, another area we hope to explore in the future.

This thesis has shown that large-scale high-quality probabilistic LFG approximations 

can be automatically acquired from treebanks. However, the f-structures that our gram­

mars generate do not quite feature the rich fine-grained feature set of hand-crafted gram­

mars. This poses an interesting area of future research: can the automatically acquired 

treebank-based LFG approximations be used to bootstrap manual grammar writing? This 

would be particularly interesting for languages where a treebank is available but no hand­

crafted grammar already exists, such as Chinese, Spanish or Arabic. Languages such as 

English and German that already have large hand-crafted LFGs could use the treebank- 

based LFG approximations as a fall back to improve coverage, one of the main weaknesses 

of hand-crafted grammars.

To date, grammars automatically induced from treebanks have not been used in prob­

abilistic generation. The main reason for this is that standard PCFGs do not associate 

strings with meaning representations. This thesis has shown how our PCFG-based LFG 

approximations automatically acquired from treebanks can associate strings with mean­

ing representations in the form of f-structures approximating to basic predicate-argument 

structures. The “refinement” grammars of Kaplan and Wedekind (2000) bear some sim­

ilarity to our automatically generated treebank-based PCFG LFG approximations. We 

hope to combine our work on automatically annotated treebanks and extracted PCFG- 

based LFG approximations with the theoretical work on LFG generation of Kaplan and 

Wedekind (2000) to investigate a treebank-unification-grammar-based probabilistic gen­

eration framework.
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A ppendix A

Non-punctuation tags in the  

Penn-II Treebank

Tag Label Tag Description

CC Coordinating conjunction e.g. and,but,or...

CD Cardinal Number

DT Determiner

EX Existential there

FW Foreign Word

IN Preposision or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List Item Marker

MD Modal e.g. can, could, might, may...

NN Noun, singular or mass

NNP Proper Noun, singular

NNPS Proper Noun, plural

NNS Noun, plural

PDT Predeterminer e.g. all, both ... when they precede an article

POS Possessive Ending e.g. Nouns ending i n ’s
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Tag Label Tag Description

PRP Personal Pronoun e.g. I, me, you, he...

PRP$ Possessive Pronoun e.g. my, your, mine, yours...

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO

UH Interjection e.g. uh, well, yes, my...

VB Verb, base form -  subsumes imperatives, infinitives and subjunctives

VBD Verb, past tense -includes the conditional form of the verb to be

VBG Verb, gerund or persent participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner e.g. which, and that when it is used as a relative pronoun

WP Wh-pronoun e.g. what, who, whom...

WP$ Possessive wh-pronoun e.g. whose

WRB Wh-adverb e.g. how, where why
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D C U  105 Gold Standard 

Sentences

A ppendix B

1. The investment community , for one , has been anticipating a speedy resolution .

2. “ The market has taken two views: that the labor situation will get settled in the 

short term and that things look very rosy for Boeing in the long term , ” said Howard 

Rubel , an analyst at Cyrus J. Lawrence Inc .

3. “ I would n’t expect an immediate resolution to anything . ”

4. In separate developments Talks have broken off between Machinists representatives 

at Lockheed Corp. and the Calabasas , Calif. , aerospace company .

5. United Auto Workers Local 1069 , which represents 3,000 workers at Boeing ’s 

helicopter unit in Delaware County , Pa. , said it agreed to extend its contract on a 

day-by-day basis , with a 10-day notification to cancel, while it continues bargaining

6. The planes , long range versions of the medium-haul twin-jet , will be delivered with 

Pratt & Whitney PW4060 engines .

7. Martinair Holland is based in Amsterdam .

8. The projects are big .
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9. “ Our long suit is our proven ability to operate ” power plants , he said .

10. “ This is a real thrust on our utility side , ” he said , adding that Canadian Utilities 

is also mulling projects in underdeveloped countries , though he would be specific .

11. Mr. Stram said Enron is considering building gas-fired power plants in the U.K. 

capable of producing about 500 megawatts of power at a cost of about $ 300 million 

to $ 400 million .

12. PSE Inc. said it expects to report third earnings of $ 1.3 million to $ 1.7 million , 

or 14 cents to 18 cents a share .

13. The company said the improvement is related to additional cogeneration facilities 

that have been put into operation .

14. CONCORDE trans-Atlantic flights are $ 2,400 to Paris and $ 3,200 to London .

15. Diamond Shamrock Offshore’s stock rose 12.5 cents Friday to close at $ 8.25 in New 

York Stock Exchange composite trading .

16. Kaufman &; Broad Home Corp. said it formed a $ 53.4 million limited partnership 

subsidiary to buy land in California suitable for residential development .

17. The land to be purchased by the joint venture has n’t yet received zoning and other 

approvals required for development , and part of Kaufman & Broad’s job will be to 

obtain such approvals .

18. Typically , developers option property , and then once they get the administrative 

approvals , they buy i t , ” said Mr. Karatz , adding that he believes the joint venture 

is the first of its kind .

19. And if rain does n’t fall soon across many of the Great Plains ’ wheat-growing areas 

, yields in the crop now being planted could be reduced , further squeezing supplies

20. That would be the lowest level since the early 1970s .
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21. The government estimates that the new plan will boost production next year by 

about 66 million bushels .

22. On the Chicago Board of Trade Friday , wheat for December delivery settled at $ 

4.0675 a bushel , unchanged .

23. In July , the CBOT ordered Ferruzzi Finanziaria S.p . A. to liquidate futures 

positions equal to about 23 million bushels of soybeans .

24. Unseasonably hot , dry weather across large portions of the Great Plains and in 

wheat-growing areas in Washington and Oregon is threatening to reduce the yield 

from this season’s winter wheat crop , said Conrad Leslie , a futures analyst and 

head of Leslie Analytical in Chicago .

25. That figure climbs to about 47 % in wheat-growing portions of Kansas , he said .

26. Looking ahead to other commodity markets this week

27. Late Thursday , after the close of trading , the market received what would normally 

have been a bullish U.S. Department of Agriculture estimate of the 1989-90 Florida 

orange crop .

28. It settled with a loss of 4.95 cents at $ 1.3210 a pound .

29. New York futures prices have dropped significantly from more than $ 2 a pound at 

midyear .

30. Barring a cold snap or other crop problems in the growing areas , downward pressure 

on prices is likely to continue into January , when harvesting and processing of 

oranges in Florida reach their peak , the analyst said .

31. On the New York Mercantile Exchange , West Texas Intermediate crude for Novem­

ber delivery finished at $ 20.89 a barrel , up 42 cents on the day .

32. There has been little news to account for such buoyancy in the oil markets .

33. Many traders foresee a tightening of near-term supplies , particularly of high-quality 

crudes such as those produced in the North Sea and in Nigeria .
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34. If a hostile predator emerges for Saatchi & Saatchi Co. , co-founders Charles and 

Maurice Saatchi will lead a management buy-out attempt , an official close to the 

company said .

35. Last week , Saatchi’s largest shareholder , Southeastern Asset Management , said 

it had been approached by one or more third parties interested in a possible restruc­

turing .

36. And Carl Spielvogel , chief executive officer of Saatchi’s big Backer Spielvogel Bates 

advertising unit , said he had offered to lead a management buy-out of the company 

, but was rebuffed by Charles Saatchi .

37. The executive said any buy-out would be led by the current board , whose chairman 

is Maurice Saatchi and whose strategic guiding force is believed to be Charles Saatchi

38. The executive denied speculation that Saatchi was bringing in the new chief executive 

officer only to clean up the company financially so that the brothers could lead a 

buy-back .

39. Asked about the speculation that Mr. Louis-Dreyfus has been hired to pave the way 

for a buy-out by the brothers , the executive replied , That is n’t the reason Dreyfus 

has been brought in .

40. It has n’t had any impact on us , nor do we expect it to , ” said a spokeswoman for 

Miller Brewing Co. , a major client of Backer Spielvogel .

41. Executives at Backer Spielvogel client Avis Inc. , as well as at Saatchi client Philips 

Lighting Co. , also said they saw no effect .

42. NEW ACCOUNT

43. ACCOUNT REVIEW

44. As expected , Young &; Rubicam Inc. along with two senior executives and a former 

employee , pleaded not guilty in federal court in New Haven , Conn. , to conspiracy 

and racketeering charges .
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45. KOREAN AGENCY

46. Samsung already owns Korea First Advertising Co. , that country’s largest agency

47. Revenue soared to $ 117 million from $ 81.5 million .

48. Operationally , Maxtor benefited from robust sales of products that store data for 

high-end personal computers and computer workstations .

49. He retired as senior vice president , finance and administration , and chief financial 

officer of the company Oct. 1 .

50. Southmark Corp. said that it filed part of its 10-K report with the Securities and 

Exchange Commission , but that the filing does n’t include its audited financial 

statements and related information .

51. Southmark said it plans to amend its 10K to provide financial results as soon as its 

audit is completed .

52. Alan Seelenfreund , 52 years old , was named chairman of this processor of pre­

scription claims , succeeding Thomas W. Field Jr. , 55 , who resigned last month

53. Messrs. Malson and Seelenfreund are directors of McKesson , which has an 86 % 

stake in PCS .

54. MedChem Products Inc. said a U.S. District Court in Boston ruled that a challenge 

by MedChem to the validity of a U.S. patent held by Pharmacia Inc. was without 

merit . ”

55. The patent is related to hyaluronic acid , a rooster-comb extract used in eye surgery

56. MedChem said the court !s ruling was issued as part of a first-phase trial ” in the 

patent-infringement proceedings and concerns only one of its defenses in the case .
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57. MedChem said that the court scheduled a conference for next Monday to set a date 

for proceedings on Pharmacia’s motion for a preliminary injunction .

58. Newspaper publishers are reporting mixed third-quarter results , aided by favorable 

newsprint prices and hampered by flat or declining advertising linage , especially in 

the Northeast .

59. Many papers throughout the country are also faced with a slowdown in classified-ad 

spending , a booming category for newspapers in recent years .

60. Improved paper prices will help offset weakness in linage , but the retailers ’ problems 

have affected the amount of ad linage they usually run , ” said Edward J. Atorino , 

industry analyst for Salomon Brothers Inc .

61. For instance , Gannett Co. posted an 11 % gain in net income , as total ad pages 

dropped at USA Today , but advertising revenue rose because of a higher circulation 

rate base and increased rates .

62. G annett’s 83 daily and 35 non-daily newspapers reported a 3 % increase in adver­

tising and circulation revenue .

63. At Dow Jones & Co. , third-quarter net income fell 9.9 % from the year-earlier 

period .

64. Revenue gained 5.3 % to $ 404.1 million from $ 383.8 million .

65. Ad linage at the Journal fell 6.1 % in the third quarter .

66. William O. Taylor , the parent’s chairman and chief executive officer , said earnings 

continued to be hurt by softness in ad volume at the Boston newspaper .

67. After a supply crunch caused prices to rise 14 % since 1986 to $ 650 a metric ton , 

analysts are encouraged , because they do n’t expect a price increase for the rest of 

this year .

68. Times Co. ’s regional daily newspapers are holding up well , but there is little sign 

that things will improve in the New York market , ” said Alan Kassan , an analyst 

with Shearson Lehman Hutton .
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69. According to analysts , profits were also helped by successful cost-cutting measures 

at Newsweek .

70. However , analysts point to positive advertising spending at several of its major daily 

newspapers , such as the Miami Herald and San Jose Mercury News .

71. GM is under intense pressure to close factories that became unprofitable as the giant 

auto m aker’s U.S. market share skidded during the past decade .

72. Now , GM appears to be stepping up the pace of its factory consolidation to get in 

shape for the 1990s .

73. Against that backdrop , UAW Vice President Stephen P. Yokich , who recently 

became head of the union’s GM department , issued a statement Friday blasting 

G M ’s flagrant insensitivity ” toward union members .

74. That means two plants one in Scarborough , Ontario , and the other in Lordstown 

, Ohio probably will be shut down after the end of 1991 .

75. But Canadian auto workers may benefit from a separate GM move that affects three 

U.S. car plants and one in Quebec .

76. That announcement left union officials in Van Nuys and Oklahoma City uncertain 

about their futures .

77. He said he believes GM has plans to keep building A-body cars into the mid-1990s .

78. Union officials have taken a beating politically as a result .

79. The French company said the government gave it 30 days in which to submit infor­

mation to further support its takeover plan .

80. Alan Nymark , executive vice president of Investment Canada , which oversees for­

eign takeovers , said it marked the first time in its four-year history that the agency 

has made an adverse net-benefit decision about the acquisition of a publicly traded 

company .

81. Mr. Andre issued the ruling based on a recommendation by Investment Canada .
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82. This has become a very politicized deal , concerning Canada’s only large , world- 

class bio-research or pharmaceutical company , ” Mr. Mehta said .

83. The university is considering a settlement proposal made by Connaught .

84. Officials for the two concerns , which are bidding C$ 30 a share for Connaught , 

could n’t be reached for comment .

85. Weatherford said market conditions led to the cancellation of the planned exchange

86. Weatherford currently has approximately 11.1 million common shares outstanding .

87. Earnings for most of the nation’s major pharmaceutical makers are believed to have 

moved ahead briskly in the third quarter , as companies with newer , big-selling 

prescription drugs fared especially well .

88. Less robust earnings at Pfizer Inc. and Upjohn Co. were attributed to those compa­

nies ’ older products , many of which face stiffening competition from generic drugs 

and other medicines .

89. In New York , the company declined comment .

90. Sales of both drugs have been hurt by new state laws restricting the prescriptions of 

certain tranquilizing medicines and adverse publicity about the excessive use of the 

drugs .

91. Revenue is expected to be up modestly ” from the $ 26.5 million reported a year ago

92. Sharp-witted and funny but never mean , she ’s a memorialist a bit like Truman 

Capote , if h e ’d been Jewish and female and less bitchy .

93. Rosie died young and Lily has remembered her as a romantic figure , who did n’t 

interfere much with her child’s education on the streets .

94. She analyzed families by their sleeping arrangements .
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95. Maybe Lily became so obsessed with where people slept and how because her own 

arrangements kept shifting .

96. They came by their strangeness honestly .

97. For the most part , though , th e re ’s much pleasure in her saucy , poignant probe 

into the mysteries of the Babylonian Bronx .

98. For his sixth novel , Mr. Friedman tried to resuscitate the protagonist of his 1972 

work , About Harry Towns . ”

99. Harry has avoided all that by living in a Long Island suburb with his wife , w ho’s 

so addicted to soap operas and mystery novels she barely seems to notice when her 

husband disappears for drug-seeking forays into Manhattan .

100. In 1984 the EPA notified Gulf Resources , which was a part-owner of the smelter , 

that it was potentially liable for sharing cleanup costs at the site under the federal 

Superfund program .

101. The company said that as part of its agreement with the EPA , it made certain 

voluntary undertakings with respect to intercorporate transactions entered into after 

the reorganization . ”

102. Under the agreement , Gulf must give the U.S. government 45 days ’ advance written 

notice before issuing any dividends on common stock .

103. Assuming that the market does n’t head into a bottomless free fall, some executives 

think Friday ’s action could prove a harbinger of good news as a sign that the 

leveraged buy-out and takeover frenzy of recent years may be abating .

104. W here’s the guy who can say Enough is enough ’ ” ?

105. There has n’t been any fundamental change in the economy , ” added John Smale , 

whose Procter &; Gamble Co. took an $ 8.75 slide to close at $ 120.75 .
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A ppendix C

Parsing Results for Section 23 

Trees

Group 1 Group 2

a A dd root node 

b No root node

c No unary productions 

d  No X  —» X  productions 
e Include all unary productions 

f No unary productions, but keep information

Group 3 Group 4

g Add f-structure annotation 
h No f-structure annotation

j Add parent 
k Add grandparent

m  No parent/grandparent transformation

Group 5 Group 6

n  Keep Penn-II functional labels 

o Remove Penn-II functional labels

p No A U X  change 
q Change only true auxiliary verbs 

r Change all auxiliary verb labels

The six groups of transformations used to test transformation interaction. 
A grammar with one feature from each group is extracted. This gives 288 
grammars.

There were a small number of grammars that caused BitPar to produce corrupt data, and 

therefore we are unable to provide the results for those 21 experiments here.

Grammar #Rules #Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

acgjnp 82729 2305 78.75 80.79 45.90

acgjnq 82615 2298 78.75 80.73 45.91

acgjnr 83014 2296 78.64 80.63 45.56

acgjop 65405 2334 78.65 80.70 46.14
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

acgjoq 65290 2328 78.66 80.67 46.09

acgjor 65887 2328 78.76 80.73 46.05

acgknp 148261

acgknq 148028

acgknr 148488

acgkop 116037 2134 77.01 79.05 45.17

acgkoq 115821 2113 76.96 78.97 45.34

acgkor 116597 2112 77.09 79.20 45.60

acgmnp 44055 2399 79.51 81.59 47.44

acgmnq 43999 2399 79.56 81.61 47.52

acgmnr 44267 2399 79.69 81.67 47.39

acgmop 35591 2399 79.56 81.56 46.52

acgmoq 35541 2399 79.78 81.79 46.85

acgmor 35896 2399 79.84 81.82 46.85

achjnp 48630 2391 78.72 80.82 45.38

achjnq 48656 2390 78.75 80.82 45.40

achjnr 48912 2387 78.91 80.93 45.08

achjop 29419 2396 78.89 80.97 44.91

achjoq 29448 2396 78.96 81.03 44.74

achjor 29797 2394 78.93 80.99 44.40

aclrknp 77410 2351 77.90 80.06 45.13

achknq 77414 2347 77.97 80.09 44.65

achknr 77757 2347 77.60 79.69 44.65

achkop 45677 2378 78.26 80.37 43.48

achkoq 45694 2378 78.22 80.35 43.44

achkor 46206 2377 78.48 80.57 43.42

achmnp 29613 2410 75.95 78.49 40.54

achmnq 29641 2410 76.04 78.56 40.54

achmnr 29792 2409 76.01 78.49 40.85

achmop 18968 2410 75.21 77.70 38.76

achmoq 19000 2410 75.31 77.82 39.09

achmor 19204 2410 75.46 77.90 39.71
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

adgjnp 68232 2412 80.58 82.47 46.48

adgjnq 68130 2412 80.74 82.62 46.93

adgjnr 68361 2412 80.94 82.76 46.43

adgjop 50527 2413 81.10 82.95 46.79

adgjoq 50459 2413 81.27 83.10 47.20

adgjor 50835 2413 81.25 83.13 47.12

adgknp 124442 2386 79.00 81.07 44.68

adgknq 124245 2385 79.11 81.17 44.78

adgknr 124536 2383 79.14 81.26 44.82

adgkop 91395 2398 79.54 81.48 45.08

adgkoq 91259 2396 79.57 81.50 45.28

adgkor 91784 2397 79.60 81.58 45.26

adgmnp 36816 2416 77.32 79.38 41.89

adgmnq 36756 2416 77.42 79.48 41.93

adgmnr 36940 2416 77.48 79.52 42.14

adgmop 27545 2416 77.17 79.30 41.51

adgmoq 27502 2416 77.26 79.38 41.76

adgmor 27753 2416 77.33 79.45 41.89

adhjnp 40820 2416 80.39 82.21 44.54

adhjnq 40770 2416 80.46 82.31 44.87

adhjnr 40933 2416 80.48 82.30 44.74

adhjop 21638 2416 79.29 81.30 42.67

adhjoq 21602 2416 79.41 81.40 42.88

adhjor 21811 2416 79.33 81.28 42.88

adhknp 66460 2416 80.23 82.14 44.74

adhknq 66366 2416 80.33 82.21 44.66

adhknr 66561 2416 80.34 82.25 44.62

adhkop 34345 2416 80.04 81.85 43.00

adhkoq 34296 2416 80.20 82.01 43.50

adhkor 34606 2416 80.13 81.96 43.38

adhmnp 25480 2416 72.05 74.14 32.78

adhmnq 25445 2416 72.07 74.15 32.66
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

adhrnnr 25559 2416 72.18 74.25 32.78

adhmop 14327 2416 70.82 73.08 30.01

adhmoq 14303 2416 71.09 73.33 30.13

adhmor 14456 2416 71.06 73.33 30.13

aegjnp 68046 2413 80.52 82.42 46.33

aegjnq 67943 2413 80.66 82.55 46.75

aegjnr 68172 2413 80.91 82.74 46.46

aegjop 50072 2414 80.81 82.69 46.64

aegjoq 50003 2414 81.00 82.85 47.06

aegjor 50375 2414 81.09 83.00 47.10

aegknp 124106 2388 79.07 81.12 44.89

aegknq 123907 2387 79.21 81.24 44.95

aegknr 124198 2387 79.27 81.37 45.25

aegkop 90621 2397 79.69 81.60 45.14

aegkoq 90483 2398 79.62 81.53 45.45

aegkor 91008 2397 79.62 81.57 45.35

aegmnp 36741 2416 77.32 79.39 41.93

aegmnq 36682 2415 77.43 79.51 42.03

aegmnr 36865 2416 77.48 79.52 42.14

aegmop 27332 2414 77.11 79.24 41.67

aegmoq 27291 2414 77.18 79.31 41.92

aegmor 27542 2416 77.25 79.39 41.97

aehjnp 40843 2416 80.38 82.21 44.58

aehjnq 40793 2416 80.46 82.30 44.95

aehjnr 40957 2416 80.45 82.27 44.74

aehjop 21656 2416 79.18 81.19 42.67

aehjoq 21620 2416 79.31 81.30 42.88

aehjor 21829 2416 79.25 81.20 42.84

aehknp 66530 2416 80.23 82.14 44.95

aehknq 66436 2416 80.34 82.23 44.91

aehknr 66631 2416 80.38 82.29 44.99

aehkop 34401 2416 80.02 81.82 43.17
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelied

F-Score

Accuracy

aehkoq 34352 2416 80.18 82.00 43.67

aehkor 34662 2416 80.10 81.92 43.63

aehmnp 25489 2416 72.00 74.08 32.74

aehmnq 25454 2416 72.03 74.11 32.62

aehmnr 25568 2416 72.15 74.22 32.78

aehmop 14335 2416 70.74 73.00 30.13

aehmoq 14311 2416 71.00 73.25 30.26

aehmor 14464 2416 70.94 73.21 30.05

afgjnp 91229 2294 77.18 79.03 45.29

afgjnq 91014 2285 77.27 79.09 45.25

afgjnr 91331 2285 77.16 79.00 45.43

afgjop 70502 2329 77.17 79.00 45.86

afgjoq 70308 2322 77.14 78.92 45.82

afgjor 70915 2321 77.35 79.13 46.14

afgknp 161852

afgknq 161553

afgknr 161934

afgkop 124505 2115 75.35 77.19 44.96

afgkoq 124225 2092 75.45 77.24 45.17

afgkor 125010 2086 75.48 77.38 45.40

afgmnp 48620 2399 77.95 79.76 47.60

afgmnq 48499 2399 78.05 79.88 47.73

afgmnr 48744 2399 78.13 79.88 47.64

afgmop 37993 2399 77.86 79.61 46.85

afgmoq 37903 2399 78.13 79.88 47.06

afgmor 38270 2399 78.23 79.97 47.19

afhjnp 62062 2381 77.45 79.16 45.02

afhjnq 61945 2378 77.50 79.21 44.95

afhjnr 62183 2375 77.61 79.30 45.01

afhjop 36459 2393 77.55 79.28 45.22

afhjoq 36371 2392 77.59 79.32 45.11

afhjor 36812 2391 77.77 79.44 45.42
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Grammar pilules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

afhknp 104841 2316 76.35 78.12 44.56

afhknq 104676 2307 76.48 78.23 44.43

afhknr 104995 2310 76.29 78.05 44.55

afhkop 59467 2373 76.94 78.70 44.46

afhkoq 59344 2367 77.00 78.73 44.40

afhkor 59946 2371 77.05 78.79 44.16

afhmnp 35971 2412 75.01 76.98 41.00

afhmnq 35904 2412 75.20 77.16 41.29

afhmnr 36063 2411 75.46 77.44 41.97

afhmop 22324 2412 75.07 76.92 39.22

afhmoq 22272 2412 75.21 77.06 39.59

afhmor 22534 2412 75.43 77.29 40.09

bcgjnp 84171 2297 78.37 80.67 45.93

bcgjnq 84041 2289 78.31 80.56 45.87

bcgjnr 84435 2288 78.15 80.40 45.41

bcgjop 65868 2328 78.35 80.64 46.22

bcgjoq 65752 2321 78.41 80.64 46.14

bcgjor 66346 2323 78.47 80.68 46.02

bcgknp 151956

bcgknq 151698

bcgknr 152142

bcgkop 117489 2119 76.55 78.90 44.93

bcgkoq 117267 2091 76.53 78.84 45.05

bcgkor 118033 2089 76.69 79.08 45.43

bcgmnp 44084 2405 78.78 81.11 46.65

bcgmnq 44028 2405 78.80 81.11 46.78

bcginnr 44296 2405 78.93 81.18 46.57

bcgmop 35485 2405 78.55 80.85 45.90

bcgmoq 35435 2405 78.79 81.09 46.32

bcgmor 35790 2405 78.99 81.25 46.32

bchjnp 47691 2393 78.73 81.07 46.13

bchjnq 47716 2393 78.77 81.10 46.09
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

bchjnr 47956 2391 78.86 81.10 45.55

bchjop 28021 2399 78.65 80.88 44.56

bchjoq 28045 2399 78.69 80.93 44.56

bchjor 28355 2399 78.72 80.90 44.23

bchknp 77197 2352 77.44 79.91 44.94

bchknq 77201 2351 77.47 79.88 44.75

bchknr 77499 2348 77.35 79.77 44.63

bchkop 44453 2377 78.32 80.67 43.88

bchkoq 44464 2375 78.29 80.65 43.92

bchkor 44943 2374 78.49 80.83 44.23

bchmnp 29627 2410 72.59 75.07 36.22

bchmnq 29655 2410 72.57 75.05 36.14

bchmnr 29806 2410 72.58 75.05 36.51

bchmop 18850 2410 71.33 73.94 33.82

bchmoq 18883 2410 71.46 74.07 34.15

bchmor 19087 2410 71.75 74.30 34.81

bdgjnp 70395 2409 79.52 81.48 46.82

bdgjnq 70271 2409 79.62 81.58 47.32

bdgjnr 70487 2409 79.67 81.59 46.74

bdgjop 51882 2411 79.92 81.87 46.45

bdgjoq 51811 2411 80.08 82.03 46.87

bdgjor 52191 2411 80.09 82.08 46.87

bdgknp 128652

bdgknq 128427

bdgknr 128742

bdgkop 93687 2394 78.21 80.31 44.90

bdgkoq 93536 2392 78.09 80.18 45.03

bdgkor 94088 2393 78.20 80.35 44.88

bdgmnp 36780 2416 76.07 78.25 41.89

bdgmnq 36720 2416 76.17 78.35 41.93

bdgmnr 36904 2416 76.24 78.39 42.14

bdgmop 27508 2416 75.92 78.16 41.51
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

bdgmoq 27465 2416 76.01 78.24 41.76

bdgmor 27716 2416 76.08 78.32 41.89

bdhjnp 41371 2416 79.28 81.23 44.45

bdhjnq 41311 2416 79.37 81.34 44.74

bdhjnr 41475 2416 79.36 81.30 44.62

bdhjop 21601 2416 78.15 80.27 42.67

bdhjoq 21565 2416 78.27 80.37 42.88

bdhjor 21774 2416 78.19 80.25 42.88

bdhknp 67729 2416 78.89 81.05 44.54

bdhknq 67619 2416 79.03 81.16 44.54

bdhknr 67812 2416 79.10 81.28 44.54

bdhkop 34308 2416 78.95 80.85 43.00

bdhkoq 34259 2416 79.11 81.02 43.50

bdhkor 34569 2416 79.04 80.97 43.38

bdhmnp 25444 2416 70.49 72.69 32.78

bdhmnq 25409 2416 70.51 72.71 32.66

bdhmnr 25523 2416 70.63 72.81 32.78

bdhmop 14290 2416 69.17 71.56 30.01

bdhmoq 14266 2416 69.46 71.83 30.13

bdhmor 14419 2416 69.43 71.83 30.13

begjnp 70207 2409 79.52 81.48 46.62

begjnq 70082 2409 79.63 81.59 47.16

begjnr 70297 2409 79.67 81.61 46.82

begjop 51410 2411 79.83 81.82 46.66

begjoq 51338 2409 79.98 81.94 47.07

begjor 51717 2411 80.02 82.01 47.12

begknp 128307

begknq 128082

begknr 128398

begkop 92887 2394 78.39 80.45 44.82

begkoq 92736 2394 78.21 80.26 44.90

begkor 93288 2394 78.31 80.38 44.95
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

begmnp 36704 2416 76.07 78.26 41.93

begmnq 36645 2416 76.18 78.37 42.01

begmnr 36828 2416 76.24 78.40 42.14

begmop 27295 2416 75.85 78.10 41.68

begmoq 27254 2416 75.92 78.16 41.93

begmor 27505 2416 75.99 78.25 41.97

behjnp 41394 2416 79.28 81.22 44.50

behjnq 41334 2416 79.36 81.33 44.78

behjnr 41499 2416 79.34 81.27 44.58

behjop 21619 2416 78.04 80.15 42.67

behjoq 21583 2416 78.17 80.27 42.88

behjor 21792 2416 78.10 80.16 42.84

behknp 67799 2416 78.88 81.04 44.74

behknq 67689 2416 79.04 81.16 44.66

behknr 67882 2416 79.14 81.30 44.78

behkop 34364 2416 78.92 80.83 43.17

behkoq 34315 2416 79.10 81.02 43.67

behkor 34625 2416 79.01 80.93 43.63

behmnp 25452 2416 70.44 72.63 32.74

behmnq 25417 2416 70.47 72.67 32.62

behmnr 25531 2416 70.60 72.78 32.78

behmop 14298 2416 69.09 71.48 30.13

behmoq 14274 2416 69.37 71.74 30.26

behmor 14427 2416 69.31 71.70 30.05

bfgjnp 92641 2286 78.93 81.01 45.14

bfgjnq 92408 2277 78.97 81.02 45.10

bfgjnr 92728 2276 78.89 80.96 45.25

bfgjop 70937 2323 79.06 81.11 45.93

bfgjoq 70740 2317 79.01 81.01 45.88

bfgjor

bfgknp

bfgknq

71347

165490

165165

2317 79.23 81.24 46.22
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Grammar #Rules ^Parses Labelled

F-Score

Unlabelled

F-Score

Accuracy

bfgknr 165540

bfgkop 125894

bfgkoq 125605

bfgkor 126385

bfgmnp 48651 2407 79.35 81.44 46.78

bfgmnq 48530 2407 79.52 81.61 46.95

bfgmnr 48775 2407 79.62 81.64 46.82

bfgmop 37887 2407 79.25 81.28 46.12

bfgmoq 37797 2407 79.50 81.55 46.45

bfgmor 38164 2407 79.62 81.63 46.61

bfhjnp 61153 2383 79.53 81.50 45.32

bfhjnq 61039 2383 79.62 81.58 45.20

bfhjnr 61303 2380 79.80 81.78 45.38

bfhjop 34979 2395 79.57 81.45 45.18

bfhjoq 34902 2395 79.68 81.58 45.39

bfhjor 35297 2394 79.77 81.64 45.36

bfhknp 104871 2321 78.04 80.17 44.03

bfhknq 104697 2314 78.14 80.20 43.86

bfhknr 104998 2314 78.16 80.19 44.38

bfhkop 58087 2372 78.99 81.01 44.01

bfhkoq 57969 2366 78.93 80.94 44.00

bfhkor 58542 2370 79.10 81.09 44.09

bfhmnp 35979 2412 74.65 76.78 38.31

bfhmnq 35912 2411 74.79 76.90 38.45

bfhmnr 36072 2412 75.04 77.14 39.10

bfhmop 22198 2412 74.43 76.59 36.40

bfhmoq 22147 2412 74.52 76.67 36.65

bfhmor 22409 2412 74.68 76.84 36.65
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A ppendix D

Parsing Results for F-Structures 

against the DCU 105 and PARC  

700

Group 1 Group 2
a Add root node 
b No root node

c No unary productions 
d No X —> X productions 
e Include all unary productions 
f No unary productions, but keep information

Group 3 Group 4
g Add f-structure annotation 
h No f-structure annotation

j Add parent 
k Add grandparent
m No parent/grandparent transformation

Group 5 Group 6
n Keep Penn-II functional labels 
o Remove Penn-II functional labels

p No AUX change 
q Change only true auxiliary verbs 
r  Change all auxiliary verb labels

The six groups of transformations used to test transformation interaction. 
A grammar with one feature from each group is extracted. This gives 288 
grammars.

There were a small number of grammars that causcd BitPar to produce corrupt data, and 

therefore we are unable to provide the results for those 21 experiments here.
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

acgjnp 72.10 78.58 78.26 84.15 74.56

acgjnq 70.91 76.44 76.16 81.18 71.78

acgjnr 71.93 77.59 76.49 81.42 71.95

acgjop 72.59 78.75 79.39 84.95 75.37

acgjoq 71.87 77.94 77.66 83.17 72.34

acgjor

acgknp

acgknq

acgknr

72.37 78.74 77.52 83.11 72.43

acgkop 74.00 77.37 53.62 67.05 71.59

acgkoq 72.74 76.05 53.35 66.69 68.43

acgkor 71.71 74.90 52.53 66.06 68.78

acgmnp 73.78 79.78 80.57 86.17 77.37

acgmnq 73.85 79.84 79.56 85.10 74.39

acgmnr 73.95 79.96 78.97 84.33 74.47

acgmop 73.52 79.82 80.36 86.18 77.53

acgmoq 73.95 80.27 79.58 85.36 74.45

acgmor 73.87 80.03 78.91 84.37 74.24

achjnp 69.12 74.45 77.14 82.33 73.94

achjnq 69.11 74.48 75.89 81.10 71.34

achjnr 69.33 74.73 75.28 80.31 71.21

achjop 67.83 73.93 76.40 82.24 73.81

achjoq 67.68 73.64 75.20 80.89 71.25

achjor 67.39 73.38 74.41 80.00 70.89

achknp 67.37 73.19 75.72 81.19 72.73

achknq 67.35 73.05 74.68 80.03 70.25

achknr 67.38 73.29 73.97 79.31 69.98

achkop 67.38 73.83 75.99 81.81 73.07

achkoq 67.39 73.67 74.70 80.38 70.67

achkor 67.42 73.73 74.10 79.55 70.29

achmnp 66.15 71.61 75.38 80.88 72.48
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

-f LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

achmnq 65.13 70.66 73.48 78.98 69.96

achmnr 64.88 70.53 72.61 78.10 69.71

achmop 64.94 69.43 74.93 79.32 72.28

achmoq 64.94 69.58 73.72 78.23 69.68

achmor 65.38 69.97 73.31 77.62 69.28

adgjnp 71.24 76.71 77.81 82.87 77.81

adgjnq 71.60 77.24 77.04 82.12 74.45

adgjnr 72.65 78.53 77.29 82.29 74.38

adgjop 72.87 78.47 79.42 84.51 77.84

adgjoq 72.58 78.26 78.19 83.26 74.44

adgjor 72.35 78.13 77.35 82.31 74.20

adgknp 71.69 75.22 79.17 82.36 77.54

adgknq 71.38 74.79 77.92 81.09 74.74

adgknr 71.44 75.65 77.17 80.86 74.43

adgkop 72.83 77.91 80.22 84.88 77.61

adgkoq 72.63 77.58 79.08 83.66 74.55

adgkor 71.92 76.93 77.49 82.03 74.12

adgmnp 72.36 78.17 79.66 84.99 77.27

adgmnq 72.27 78.17 78.35 83.83 74.22

adgmnr 72.36 78.48 77.81 83.25 74.25

adgmop 71.88 77.76 79.25 84.58 77.12

adgmoq 72.17 78.35 78.39 83.95 74.16

adgmor 72.48 78.57 77.80 83.18 73.87

adhjnp 73.68 79.10 81.17 86.30 80.24

adhjnq 73.76 79.13 80.09 85.13 77.02

adhjnr 73.79 79.40 79.31 84.35 76.79

adhjop 70.91 76.79 79.89 85.65 79.25

adhjoq 71.32 77.22 79.12 84.80 76.17

adhjor 71.16 77.27 78.36 84.04 75.81

adhknp 72.79 78.33 80.94 86.18 80.26

adhknq 73.12 78.60 80.20 85.29 77.03

172



DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

adhknr 73.55 79.19 79.72 84.78 76.69

adhkop 72.27 77.97 80.50 85.70 79.71

adhkoq 72.37 77.95 79.58 84.67 76.46

adhkor 72.24 77.75 78.90 83.59 76.04

adhmnp 70.30 74.17 79.80 83.77 77.86

adhmnq 69.36 74.07 78.02 82.69 74.54

adhmnr 69.47 74.08 77.22 81.45 74.27

adhmop 66.63 69.89 77.57 80.87 76.19

adhmoq 65.84 69.21 75.90 79.39 73.32

adhmor 66.31 68.98 75.63 78.12 73.04

aegjnp 72.56 78.95 79.09 84.96 78.43

aegjnq 72.92 79.48 78.31 84.19 75.05

aegjnr 74.04 80.80 78.61 84.40 74.87

aegjop 74.80 81.24 81.20 87.04 78.60

aegjoq 74.41 80.94 79.87 85.70 75.17

aegjor 74.21 80.83 79.07 84.80 74.99

aegknp 71.95 75.46 79.53 82.69 77.71

aegknq 71.65 75.03 78.25 81.39 74.88

aegknr 71.70 75.92 77.51 81.18 74.66

aegkop 73.18 78.26 80.47 85.13 77.91

aegkoq 73.15 78.08 79.53 84.09 74.89

aegkor 72.93 77.95 78.56 83.09 74.38

aegmnp 72.39 78.20 79.67 85.00 77.58

aegmnq 72.30 78.19 78.36 83.84 74.55

aegmnr 72.38 78.51 77.82 83.26 74.40

aegmop 71.92 77.83 79.27 84.61 77.80

aegmoq 72.21 78.42 78.41 83.98 74.78

aegmor 72.48 78.60 77.80 83.20 74.32

aehjnp 73.64 79.06 81.16 86.28 80.24

aehjnq 73.72 79.09 80.07 85.11 77.01

aehjnr 73.79 79.40 79.31 84.35 76.79
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DCU 105 PARC 700

Grammax Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

-f LDD Res.

aehjop 70.91 76.79 79.89 85.65 79.28

aehjoq 71.32 77.22 79.12 84.80 76.20

aehjor 71.16 77.27 78.36 84.04 75.84

aehknp 72.88 78.41 80.98 86.22 80.33

aehknq 73.21 78.68 80.24 85.33 77.07

aehknr 73.76 79.45 79.79 84.92 76.73

aehkop 72.20 77.87 80.46 85.65 79.77

aehkoq 72.29 77.85 79.54 84.62 76.54

aehkor 72.24 77.75 78.90 83.59 76.07

aehmnp 70.30 74.17 79.80 83.77 77.86

aehmnq 69.36 74.07 78.02 82.69 74.54

aehmnr 69.47 74.08 77.22 81.45 74.27

aohmop 66.60 69.84 77.56 80.84 76.19

aehmoq 65.81 69.16 75.89 79.36 73.32

aehmor 66.20 68.87 75.57 78.07 72.99

afgjnp 70.02 76.59 76.87 82.78 75.14

afgjnq 69.33 74.99 75.26 80.35 72.06

afgjnr 70.10 75.88 75.34 80.32 71.83

afgjop 71.09 77.48 78.49 84.20 75.84

afgjoq 70.34 76.50 76.80 82.36 72.69

afgjor

afgknp

afgknq

afgknr

70.71 77.17 76.31 81.94 72.39

afgkop 73.91 77.18 60.64 66.16 71.91

afgkoq 72.71 75.89 60.57 65.88 68.74

afgkor 70.82 73.89 60.03 64.46 68.36

afgmnp 73.17 79.39 79.99 85.71 78.30

afgmnq 73.32 79.51 79.05 84.68 74.84

afgmnr 73.43 79.49 78.49 83.88 74.73

afgmop 73.81 80.14 80.37 86.22 78.38
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

afgmoq 74.25 80.60 79.57 85.36 74.98

afgmor 74.00 80.16 78.84 84.28 74.59

afhjnp 73.98 79.55 81.46 86.56 79.78

afhjnq 73.38 78.84 79.83 84.92 76.53

afhjnr 74.10 79.65 79.74 84.68 76.32

afhjop 72.31 78.67 80.68 86.41 79.60

afhjoq 72.13 78.32 79.54 85.26 76.31

afhjor 71.90 78.08 78.67 84.24 76.04

afhknp 70.30 76.12 77.96 83.28 78.47

afhknq 70.30 75.98 76.79 81.95 75.08

afhknr 71.28 77.24 76.89 81.95 75.04

afhkop 71.31 77.78 79.40 85.35 78.80

afhkoq 70.99 77.37 77.91 83.82 75.59

afhkor 71.53 78.28 77.74 83.63 75.43

afhmnp 71.10 76.78 79.59 85.13 78.73

afhmnq 71.18 76.87 78.57 84.06 75.70

afhmnr 71.45 77.13 78.18 83.47 75.38

afhmop 69.87 74.93 78.99 83.80 78.23

afhmoq 69.97 75.15 77.98 82.99 75.38

aflimor 70.40 76.51 77.44 83.12 74.93

bcgjnp 72.41 78.84 78.78 84.52 73.98

bcgjnq 70.90 76.96 76.12 81.71 71.20

bcgjnr 71.80 77.98 76.39 81.90 71.48

bcgjop 72.55 78.72 79.37 84.93 74.98

bcgjoq 71.87 77.94 77.66 83.17 71.91

bcgjor

bcgknp

bcgknq

bcgknr

72.33 78.71 77.50 83.10 72.05

bcgkop 73.51 76.75 46.98 66.57 70.76

bcgkoq 72.28 75.49 46.70 66.22 67.71
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DCU 105 PARC 700

Grammax Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

bcgkor 71.27 74.37 45.86 65.58 68.05

bcgmnp 73.78 79.78 80.57 86.17 77.36

bcgmnq 73.85 79.84 79.56 85.10 74.36

bcginnr 73.91 79.92 78.95 84.31 74.44

bcgmop 73.84 80.14 80.54 86.38 77.47

bcgmoq 74.16 80.47 79.70 85.48 74.42

bcgmor 73.89 80.05 78.93 84.40 74.26

bchjnp 69.89 75.41 77.60 82.88 73.86

bchjnq 70.03 75.73 76.44 81.82 71.30

bchjnr 69.85 75.43 75.51 80.64 71.16

bchjop 68.00 74.48 76.60 82.72 73.78

bchjoq 68.01 74.50 75.38 81.46 71.14

bchjor 67.84 74.34 74.62 80.58 70.87

bchknp 66.80 72.72 75.42 80.93 72.79

bchknq 67.64 73.38 75.17 80.54 70.42

bchknr 67.88 73.75 74.61 79.95 70.07

bchkop 67.97 74.60 76.28 82.20 72.85

bchkoq 68.30 74.74 75.70 81.45 70.50

bchkor 68.57 75.30 75.21 80.98 70.11

bchmnp 66.31 71.46 75.68 81.01 72.22

bchmnq 65.66 70.99 74.15 79.59 69.75

bchmnr 65.87 71.34 73.49 78.87 69.56

bchmop 64.33 68.27 74.62 78.58 71.84

bchmoq 64.24 68.33 73.35 77.42 69.19

bchmor 64.58 68.78 72.94 76.90 68.94

bdgjnp 71.09 76.48 77.79 82.88 77.62

bdgjnq 71.69 77.24 77.20 82.29 74.23

bdgjnr 72.11 77.88 76.96 81.98 74.20

bdgjop 72.88 78.43 79.48 84.61 77.77

bdgjoq 72.84 78.46 78.46 83.56 74.45

bdgjor 72.37 78.13 77.40 82.41 74.02
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DCU 105 PARC 700

Grammar Preds Only Preds Only All GFs All GFs

-LDD Res. +LDD Res. -LDD Res. +LDD Res.

bdgknp

bdgknq

bdgknr

bdgkop 72.10 77.04 79.23 83.78 77.35

bdgkoq 71.90 76.55 78.12 82.45 74.33

bdgkor 70.95 75.75 76.52 80.87 74.20

bdgmnp 72.36 78.17 79.66 84.99 77.32

bdgmnq 72.27 78.17 78.35 83.83 74.28

bdgmnr 72.36 78.48 77.81 83.25 74.30

bdgmop 71.88 77.76 79.25 84.58 77.15

bdgmoq 72.17 78.35 78.39 83.95 74.19

bdgmor 72.48 78.57 77.80 83.18 73.90

bdhjnp 73.68 79.10 81.17 86.30 80.29

bdhjnq 73.76 79.13 80.09 85.13 77.04

bdhjnr 73.79 79.40 79.31 84.35 76.89

bdhjop 70.91 76.79 79.89 85.65 79.30

bdhjoq 71.32 77.22 79.12 84.80 76.23

bdhjor 71.16 77.27 78.36 84.04 75.87

bdhknp 72.79 78.33 80.94 86.18 80.15

bdhknq 73.12 78.60 80.20 85.29 76.96

bdhknr 73.55 79.19 79.72 84.78 76.62

bdhkop 72.27 77.97 80.50 85.70 79.77

bdhkoq 72.37 77.95 79.58 84.67 76.52

bdhkor 72.24 77.75 78.90 83.59 76.10

bdhmnp 70.30 74.17 79.80 83.77 77.89

bdhmnq 69.36 74.07 78.02 82.69 74.58

bdhmnr 69.47 74.08 77.22 81.45 74.30

bdhmop 66.63 69.89 77.57 80.87 76.21

bdhmoq 65.84 69.21 75.90 79.39 73.34

bdhmor 66.31 68.98 75.63 78.12 73.06

begjnp 72.47 78.75 79.11 84.99 78.22
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

begjnq 73.07 79.50 78.51 84.38 74.84

begjnr 73.48 80.11 78.27 84.07 74.68

begjop 74.70 81.10 81.21 87.09 78.74

begjoq 74.67 81.13 80.14 85.99 75.38

begjor

begknp

begknq

begknr

74.23 80.83 79.12 84.90 75.05

begkop 72.26 77.05 79.50 83.91 77.79

begkoq 72.04 76.66 78.39 82.69 74.75

begkor 71.84 76.57 77.47 81.76 74.54

begmnp 72.39 78.20 79.67 85.00 77.63

begmnq 72.30 78.19 78.36 83.84 74.61

begmnr 72.38 78.51 77.82 83.26 74.46

begmop 71.92 77.83 79.27 84.61 77.83

begmoq 72.21 78.42 78.41 83.98 74.81

begmor 72.48 78.60 77.80 83.20 74.35

behjnp 73.64 79.06 81.16 86.28 80.28

behjnq 73.53 78.79 80.09 85.14 77.03

behjnr 73.71 79.33 79.27 84.31 76.88

behjop 70.91 76.79 79.89 85.65 79.34

behjoq 71.32 77.22 79.12 84.80 76.26

behjor 71.16 77.27 78.36 84.04 75.90

behknp 72.88 78.41 80.98 86.22 80.21

behknq 73.21 78.68 80.24 85.33 76.99

behknr 73.76 79.45 79.79 84.92 76.69

behkop 72.20 77.87 80.46 85.65 79.83

behkoq 72.29 77.85 79.54 84.62 76.60

behkor 72.24 77.75 78.90 83.59 76.13

behmnp 70.30 74.17 79.80 83.77 77.89

behmnq 69.36 74.07 78.02 82.69 74.58
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

behmnr 69.47 74.08 77.22 81.45 74.30

behmop 66.60 69.84 77.56 80.84 76.21

behmoq 65.81 69.16 75.89 79.36 73.34

behmor 66.20 68.87 75.57 78.07 73.01

bfgjnp 70.33 76.74 77.23 82.98 74.53

bfgjnq 69.71 75.89 75.62 81.28 71.42

bfgjnr 70.28 76.59 75.60 81.17 71.27

bfgjop 71.05 77.45 78.47 84.18 75.44

bfgjoq 70.34 76.50 76.80 82.36 72.31

bfgjor

bfgknp

bfgknq

bfgknr

bfgkop

bfgkoq

bfgkor

70.67 77.13 76.29 81.92 71.98

bfgmnp 73.17 79.37 80.12 85.83 78.25

bfgmnq 73.34 79.50 79.17 84.80 74.81

bfgmnr 73.44 79.49 78.58 83.97 74.72

bfgmop 73.92 80.24 80.56 86.41 78.31

bfgmoq 74.36 80.70 79.76 85.55 74.95

bfgmor 74.17 80.32 79.03 84.47 74.64

bfhjnp 73.53 78.91 81.28 86.19 79.75

bfhjnq 73.48 78.88 80.18 85.17 76.55

bfhjnr 74.25 79.84 79.81 84.76 76.36

bfhjop 72.97 79.78 81.00 87.20 79.58

bfhjoq 72.32 78.85 79.39 85.35 76.33

bfhjor 72.53 79.01 79.01 84.79 75.92

bfhknp 70.32 76.11 78.02 83.36 78.34

bfhknq 70.85 76.55 77.57 82.77 75.17

bfhknr 71.56 77.22 77.51 82.46 75.02
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DCU 105 PARC 700

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

bfhkop 72.55 79.00 80.11 85.76 78.73
bflikoq 72.61 78.66 79.27 84.70 75.49

bflikor 73.26 79.88 79.14 84.67 75.32

bfhmnp 71.01 76.33 79.82 85.02 78.51

bfhmnq 71.33 77.06 78.94 84.55 75.47

bfhmnr 71.49 77.22 78.21 83.64 75.10

bfhmop 69.57 74.10 79.08 83.45 78.11

bfhmoq 69.67 74.26 78.07 82.54 75.23

bfhmor 69.99 74.94 77.41 82.00 74.81
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Parsing Results for F-Structures 

against the 2,416 F-Structures 

autom atically generated for 

Section 23

A ppendix E

Group 1 Group 2
a Add root node 
b No root node

c No unary productions 
d No X —> X productions 
e Include all unary productions 
f No unary productions, but keep information

Group 3 Group 4
g Add f-structure annotation 
h No f-structure annotation

j Add parent 
k Add grandparent
m No parent/grandparent transformation

Group 5 Group 6
n Keep Penn-II functional labels 
o Remove Penn-II functional labels

p No AUX change 
q Change only true auxiliary verbs 
r Change all auxiliary verb labels

The six groups of transformations used to test transformation interaction. 
A grammar with one feature from each group is extracted. This gives 288 
grammars.

There were a small number of grammars that caused BitPar to produce corrupt data, and 

therefore we are unable to provide the results for those 21 experiments here.
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

acgjnp 72.81 76.07 80.36 83.49 94.84

acgjnq 72.84 76.04 79.46 82.54 94.60

acgjnr 72.96 76.16 78.93 81.97 94.47

acgjop 73.54 76.84 81.09 84.26 96.14

acgjoq 73.44 76.72 80.11 83.26 95.92

acgjor

acgknp

acgknq

acgknr

73.70 77.11 79.64 82.86 95.88

acgkop 75.61 78.27 0.72 68.03 87.82

acgkoq 74.27 76.98 0.72 67.64 86.94

acgkor 73.81 76.43 0.69 67.86 86.98

acgmnp 74.93 78.40 82.28 85.64 98.92

acgmnq 75.01 78.47 81.40 84.73 98.92

acgmnr 75.00 78.42 80.67 83.95 98.79

acgmop 75.05 78.68 82.37 85.85 98.87

acgmoq 75.07 78.70 81.42 84.89 98.87

acgmor 75.02 78.61 80.70 84.08 98.83

achjnp 71.16 74.68 79.49 82.87 95.73

achjnq 71.01 74.48 78.41 81.76 95.69

achjnr 71.04 74.52 77.68 80.98 95.56

achjop 70.49 73.97 79.22 82.51 95.74

achjoq 70.35 73.76 78.18 81.42 95.74

achjor 70.32 73.71 77.40 80.58 95.57

achknp 69.69 72.62 78.20 81.02 94.47

achknq 69.60 72.55 77.21 80.04 94.38

achknr 69.48 72.39 76.40 79.15 94.29

achkop 69.19 72.52 78.22 81.38 95.29

achkoq 69.03 72.32 77.16 80.28 95.25

achkor 69.06 72.33 76.44 79.49 95.20

achmnp 68.81 71.85 77.97 81.09 96.27
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

achmnq 68.65 71.65 76.93 80.01 96.27

achmnr 68.60 71.59 76.17 79.17 96.14

achmop 67.69 70.62 77.50 80.45 96.43

achmoq 67.56 70.45 76.45 79.36 96.47

achmor 67.56 70.50 75.71 78.60 96.47

adgjnp 74.45 77.59 81.87 84.95 98.13

adgjnq 74.56 77.73 81.05 84.15 98.09

adgjnr 74.79 78.06 80.55 83.70 98.26

adgjop 74.66 77.99 82.00 85.23 97.97

adgjoq 74.73 78.07 81.12 84.36 98.01

adgjor 74.80 78.08 80.49 83.63 97.97

adgknp 73.17 75.97 81.09 83.86 97.28

adgknq 73.28 76.14 80.29 83.11 97.19

adgknr 73.30 76.21 79.60 82.44 97.31

adgkop 73.26 76.26 81.14 84.09 97.62

adgkoq 73.39 76.42 80.38 83.36 97.50

adgkor 73.34 76.37 79.57 82.54 97.62

adgmnp 72.95 75.77 80.89 83.67 98.39

adgmnq 73.00 75.85 80.00 82.83 98.34

adgmnr 73.35 76.31 79.53 82.42 98.43

adgmop 72.65 75.53 80.49 83.36 97.72

adgmoq 72.78 75.69 79.69 82.59 97.76

adgmor 72.91 75.81 79.10 81.95 97.68

adhjnp 75.63 78.83 83.37 86.54 100.00

adhjnq 75.83 79.05 82.67 85.86 100.00

adhjnr 75.82 79.13 81.91 85.14 100.00

adhjop 74.00 77.05 82.50 85.53 99.83

adhjoq 74.14 77.20 81.70 84.73 99.83

adhjor 74.13 77.17 80.96 83.92 99.83

adhknp 75.69 79.01 83.48 86.70 99.96

adhknq 76.03 79.32 82.91 86.10 99.96
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

adhknr 76.03 79.28 82.17 85.28 99.96

adhkop 74.58 77.86 82.91 86.11 99.92

adhkoq 74.88 78.15 82.24 85.42 99.92

adhkor 74.73 77.88 81.39 84.41 99.92

adhmnp 72.50 74.66 81.99 84.23 100.00

adhmnq 72.01 74.19 80.60 82.87 100.00

adhmnr 72.16 74.38 79.97 82.24 100.00

adhmop 70.29 71.84 80.75 82.32 99.88

adhmoq 70.04 71.77 79.50 81.31 99.83

adhmor 70.08 71.84 78.82 80.56 99.88

aegjnp 75.08 78.26 82.52 85.62 99.17

aegjnq 75.15 78.37 81.65 84.79 99.17

aegjnr 75.30 78.59 81.05 84.21 99.09

aegjop 75.33 78.62 82.72 85.93 99.34

aegjoq 75.43 78.73 81.88 85.10 99.38

aegjor 75.46 78.73 81.19 84.36 99.30

aegknp 73.46 76.24 81.36 84.11 97.82

aegknq 73.55 76.39 80.56 83.36 97.70

aegknr 73.60 76.49 79.88 82.69 97.86

aegkop 73.98 77.06 81.85 84.88 98.66

aegkoq 74.11 77.22 81.12 84.17 98.67

aegkor 73.93 77.01 80.17 83.18 98.62

aegmnp 73.45 76.24 81.39 84.15 99.46

aegmnq 73.47 76.29 80.49 83.29 99.42

aegmnr 73.80 76.72 80.03 82.88 99.50

aegmop 73.46 76.33 81.38 84.25 99.54

aegmoq 73.53 76.41 80.50 83.37 99.54

aegmor 73.66 76.56 79.95 82.80 99.63

aehjnp 75.64 78.83 83.37 86.54 100.00

aehjnq 75.84 79.06 82.67 85.86 100.00

aehjnr 75.82 79.13 81.91 85.14 100.00
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

aehjop 74.07 77.12 82.56 85.58 99.83

aehjoq 74.20 77.27 81.75 84.78 99.83

aehjor 74.18 77.24 80.99 83.96 99.83

aehknp 75.73 79.06 83.50 86.72 99.96

aehknq 76.08 79.37 82.93 86.12 99.96

aehknr 76.13 79.38 82.25 85.35 99.96

aehkop 74.68 77.95 82.96 86.15 99.92

aehkoq 74.99 78.24 82.30 85.46 99.92

aehkor 74.84 77.99 81.47 84.48 99.92

aehmnp 72.49 74.65 81.99 84.23 100.00

aehmnq 72.00 74.18 80.59 82.87 100.00

aehmnr 72.16 74.38 79.97 82.24 100.00

aehmop 70.29 71.84 80.75 82.32 99.88

aehmoq 70.03 71.77 79.50 81.31 99.83

aehmor 70.04 71.80 78.80 80.54 99.88

afgjnp 72.46 75.73 80.03 83.15 94.29

afgjnq 72.39 75.64 79.03 82.14 94.00

afgjnr 72.60 75.80 78.58 81.61 94.00

afgjop 73.32 76.61 80.92 84.06 95.92

afgjoq 73.28 76.52 79.94 83.05 95.74

afgjor

afgknp

afgknq

afgknr

73.57 76.90 79.50 82.66 95.56

afgkop 75.03 77.64 0.70 67.52 87.23

afgkoq 73.64 76.28 0.70 67.09 86.23

afgkor 73.08 75.69 0.68 67.17 86.10

afgmnp 74.83 78.34 82.20 85.58 98.75

afgmnq 74.89 78.40 81.33 84.69 98.79

afgmnr 75.00 78.49 80.72 84.03 98.79

afgmop 74.94 78.53 82.33 85.78 98.96
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

afgmoq 74.98 78.56 81.40 84.82 98.92

afgmor 75.01 78.56 80.71 84.06 98.83

afhjnp 75.50 78.94 83.20 86.57 98.45

afhjnq 75.56 79.00 82.36 85.72 98.32

afhjnr 75.81 79.36 81.84 85.24 98.23

afhjop 74.73 78.17 82.90 86.20 98.96

afhjoq 74.85 78.29 82.08 85.38 98.91

afhjor 74.99 78.41 81.50 84.73 98.79

afhknp 73.52 76.70 81.38 84.46 95.68

afhknq 73.39 76.60 80.36 83.45 95.28

afhknr 73.56 76.77 79.89 82.90 95.41

afhkop 73.43 76.79 81.80 85.08 98.10

afhkoq 73.51 76.86 80.94 84.20 97.85

afhkor 73.62 76.99 80.37 83.61 97.98

afhmnp 73.63 76.79 82.21 85.42 99.71

afhmnq 73.86 77.07 81.48 84.73 99.71

afhmnr 74.07 77.28 80.96 84.14 99.71

afhmop 72.59 75.83 81.69 84.91 99.71

afhinoq 72.90 76.12 81.09 84.31 99.75

aflimor 72.90 76.19 80.34 83.53 99.79

bcgjnp 72.44 75.75 80.00 83.18 94.34

bcgjnq 72.44 75.72 79.06 82.22 94.06

bcgjnr 72.61 75.87 78.56 81.67 93.97

bcgjop 73.42 76.77 81.01 84.24 95.88

bcgjoq 73.34 76.67 80.03 83.25 95.65

bcgjor

bcgknp

bcgknq

bcgknr

73.58 77.00 79.56 82.80 95.70

bcgkop 75.20 77.73 0.72 67.63 87.26

bcgkoq 73.72 76.25 0.72 67.12 86.13
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag.

bcgkor 73.24 75.73 0.69 67.32 86.07

bcgmnp 74.90 78.35 82.34 85.68 99.21

bcgmnq 74.96 78.40 81.45 84.76 99.21

bcgmnr 74.93 78.34 80.70 83.96 99.13

bcgmop 75.02 78.58 82.44 85.85 99.17

bcgmoq 75.05 78.61 81.50 84.91 99.17

bcgmor 75.04 78.58 80.82 84.16 99.17

bchjnp 71.18 74.74 79.47 82.85 95.82

bchjnq 71.13 74.63 78.51 81.84 95.82

bchjnr 71.10 74.64 77.74 81.07 95.69

bchjop 70.66 74.14 79.29 82.59 95.79

bchjoq 70.47 73.94 78.19 81.46 95.79

bchjor 70.44 73.96 77.44 80.72 95.71

bchknp 69.67 72.69 78.20 81.08 94.13

bchknq 69.63 72.62 77.25 80.12 94.13

bchknr 69.74 72.75 76.66 79.49 94.08

bchkop 69.92 73.37 78.71 81.98 95.08

bchkoq 69.74 73.17 77.62 80.86 94.99

bchkor 69.78 73.23 76.93 80.13 94.95

bchmnp 68.64 71.47 77.83 80.76 96.31

bchmnq 68.42 71.22 76.73 79.61 96.31

bchmnr 68.61 71.48 76.19 79.08 96.31

bchmop 67.41 70.21 77.38 80.20 96.60

bchmoq 67.31 70.10 76.32 79.11 96.60

bchmor 67.40 70.24 75.58 78.35 96.64

bdgjnp 74.23 77.39 81.56 84.67 97.26

bdgjnq 74.30 77.50 80.71 83.85 97.14

bdgjnr 74.38 77.67 80.09 83.26 97.34

bdgjop 74.52 77.79 81.86 85.04 97.88

bdgjoq 74.60 77.90 81.02 84.22 97.84

bdgjor 74.64 77.98 80.34 83.54 98.01
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Automatically Annotated Section 23 Section 23

Grammar Preds Only Preds Only All GFs All GFs Frag.

-LDD Res. +LDD Res. -LDD Res. +LDD Res.

bdgknp

bdgknq

bdgknr

bdgkop 73.00 75.95 80.87 83.77 97.28

bdgkoq 73.03 75.99 80.06 82.97 97.28

bdgkor 73.16 76.15 79.35 82.26 97.24

bdgmnp 72.95 75.77 80.89 83.67 98.39

bdgmnq 73.00 75.85 80.00 82.83 98.34

bdgmnr 73.35 76.31 79.53 82.42 98.43

bdgmop 72.65 75.53 80.49 83.36 97.72

bdgmoq 72.78 75.69 79.69 82.59 97.76

bdgmor 72.91 75.81 79.10 81.95 97.68

bdhjnp 75.61 78.82 83.36 86.53 100.00

bdhjnq 75.82 79.03 82.65 85.84 100.00

bdhjnr 75.80 79.10 81.91 85.13 100.00

bdhjop 74.00 77.05 82.51 85.53 99.83

bdhjoq 74.14 77.20 81.70 84.73 99.83

bdhjor 74.13 77.17 80.96 83.92 99.83

bdhknp 75.54 78.86 83.41 86.62 99.25

bdhknq 75.83 79.13 82.77 85.96 99.25

bdhknr 75.80 79.09 81.98 85.13 99.34

bdhkop 74.58 77.86 82.91 86.11 99.92

bdhkoq 74.88 78.15 82.24 85.42 99.92

bdhkor 74.73 77.88 81.39 84.41 99.92

bdhmnp 72.50 74.66 81.99 84.23 100.00

bdhmnq 72.01 74.19 80.60 82.87 100.00

bdhmnr 72.16 74.38 79.97 82.24 100.00

bdhinop 70.29 71.84 80.75 82.32 99.88

bdhmoq 70.04 71.77 79.50 81.31 99.83

bdhmor 70.08 71.84 78.82 80.56 99.88

begjnp 74.77 77.98 82.11 85.26 98.22
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

4-LDD Res.

Frag.

begjnq 74.86 78.11 81.27 84.45 98.09

begjnr 74.82 78.17 80.52 83.73 98.09

begjop 75.31 78.59 82.69 85.88 99.29

begjoq 75.39 78.69 81.85 85.06 99.21

begjor

begknp

begknq

begknr

75.36 78.66 81.06 84.25 99.25

begkop 73.76 76.82 81.62 84.61 98.45

begkoq 73.88 76.92 80.88 83.88 98.54

begkor 73.83 76.86 80.04 83.01 98.37

begmnp 73.45 76.24 81.39 84.15 99.46

begmnq 73.49 76.31 80.52 83.32 99.46

begmnr 73.80 76.72 80.03 82.88 99.50

begmop 73.49 76.37 81.42 84.29 99.63

begmoq 73.57 76.47 80.56 83.46 99.63

begmor 73.66 76.56 79.95 82.80 99.63

behjnp 75.63 78.83 83.37 86.54 100.00

behjnq 75.47 78.65 82.67 85.83 100.00

behjnr 75.80 79.11 81.91 85.13 100.00

behjop 74.07 77.12 82.56 85.58 99.83

behjoq 74.20 77.27 81.75 84.78 99.83

behjor 74.18 77.24 80.99 83.96 99.83

behknp 75.57 78.89 83.42 86.63 99.25

behknq 75.86 79.17 82.77 85.97 99.25

behknr 75.86 79.14 82.00 85.15 99.34

behkop 74.68 77.95 82.96 86.15 99.92

behkoq 74.99 78.24 82.30 85.46 99.92

behkor 74.84 77.99 81.47 84.48 99.92

behmnp 72.49 74.65 81.99 84.22 100.00

behmnq 72.00 74.18 80.59 82.87 100.00
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

Frag,

behmnr 72.16 74.38 79.97 82.24 100.00

behmop 70.29 71.84 80.75 82.32 99.88

behmoq 70.03 71.77 79.50 81.31 99.83

behmor 70.04 71.80 78.80 80.54 99.88

bfgjnp 72.10 75.41 79.66 82.84 93.70

bfgjnq 72.00 75.33 78.64 81.84 93.41

bfgjnr 72.17 75.45 78.16 81.28 93.41

bfgjop 73.20 76.58 80.82 84.05 95.74

bfgjoq 73.19 76.50 79.88 83.07 95.51

bfgjor

bfgknp

bfgknq

bfgknr

bfgkop

bfgkoq

bfgkor

73.45 76.85 79.41 82.66 95.38

bfgmnp 74.75 78.21 82.19 85.55 99.09

bfgmnq 74.81 78.28 81.33 84.66 99.13

bfgmnr 74.92 78.36 80.73 84.01 99.17

bfgmop 74.89 78.40 82.36 85.74 99.21

bfgmoq 74.97 78.47 81.49 84.84 99.25

bfgmor 75.03 78.52 80.82 84.14 99.21

bfhjnp 75.34 78.80 83.03 86.40 98.62

bfhjnq 75.43 78.88 82.24 85.61 98.62

bfhjnr 75.67 79.25 81.74 85.16 98.49

bfhjop 74.70 78.29 82.84 86.30 99.04

bfhjoq 74.85 78.43 82.06 85.49 99.04

bfhjor 75.01 78.67 81.52 84.98 98.96

bfhknp 73.43 76.59 81.34 84.35 95.91

bfhknq 73.46 76.58 80.49 83.47 95.59

bfhknr 73.66 76.85 79.96 82.94 95.59
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Automatically Annotated Section 23 Section 23

Grammar Preds Only 

-LDD Res.

Preds Only 

+LDD Res.

All GFs 

-LDD Res.

All GFs 

+LDD Res.

FVag.

bfhkop 73.77 77.34 81.93 85.36 98.06

bflikoq 73.93 77.44 81.24 84.60 97.80

bfhkor 74.09 77.65 80.67 84.03 97.97

bfhmnp 73.52 76.46 82.24 85.26 99.75

bfhmnq 73.73 76.74 81.47 84.54 99.75

bfhmnr 74.00 77.07 80.99 84.06 99.79

bfhmop 72.26 75.30 81.53 84.57 99.75

bfhmoq 72.56 75.58 80.91 83.96 99.75

bfhmor 72.55 75.64 80.16 83.19 99.79
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