
An Information Architecture for Validating

Courseware

Mark Melia and Claus Pahl

School of Computing, Dublin City University, Dublin 9, Ireland
mmelia@computing.dcu.ie

Abstract. Courseware validation should locate Learning Objects incon-
sistent with the courseware instructional design being used. In order for
validation to take place it is necessary to identify the implicit and ex-
plicit information needed for validation. In this paper, we identify this
information and formally define an information architecture to model
courseware validation information explicitly. This promotes tool-support
for courseware validation and its interoperability with the courseware
specifications.

1 Introduction

The assembly of Learning Objects (LOs) into courseware is increasingly becom-
ing the norm in courseware construction. LO reuse offers course creators an
efficient methodology to create courseware from tried and tested components.
This methodology also has challenges. One of the most pressing challenges the
course creator faces is placing the right LO in the right place in courseware [8].
This is difficult as course creators typically only have high level knowledge of
the content and internal behaviour of each LO, due to 3rd party construction
and increasing internal complexity.

Quality courseware requires a consistent and suitable instructional design.
Due to a lack of understanding, a course creator may place LOs in courseware
that are not compliant with courseware’s instructional design. This causes in-
consistent pedagogy which can confuse, demotivate and isolate the learner and
could ultimately lead to the rejection of the course by the learner [7].

In this paper, we detail the courseware information that must be captured in
order to accurately validate courseware developed using LOs and define a layered
information architecture to that effect. The formal definition of the information
architecture allows for a validation engine to be built around it, providing tool
support to the course creator when validating courseware. Our formal definition
also facilitates for translation to and from external courseware representation
specifications such as SCORM [1] and IMS LD [5], allowing for interoperability.

2 Identification of Information Needs

Courseware validation is a complex task which involves evaluating courseware in
the context of its scope (the knowledge the courseware wishes to teach), instruc-

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

72

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tional approach (how it teaches this knowledge) and content used (educational
materials used in teaching). In the real world this may mean delegating vali-
dation tasks to experts. Validation of course structure may be delegated to an
instructional design expert, while content related issues, may be delegated to a
subject matter expert.

Fig. 1. Courseware Validation Concerns

In order for the courseware validation process to be automated, the implicit
knowledge and information used to validate courseware, known as the “course-
ware validation concerns”, must be identified and defined. Courseware infor-
mation changes over time (e.g. a more detailed learner model is possible post-
delivery) definitions must focus on one stage of the courseware life-cycle. Here
we define courseware information at the post-construction/pre-delivery stage of
the courseware life-cycle (i.e. after the courseware has been developed by the
course creator but before it is delivered to learners).

Fig. 1 outlines the courseware validation concerns for the post-construction/pre-
delivery stage of the coureware life-cycle. Three expert roles are represented in
the figure, the domain expert, the instructional designer and course accredita-
tion. These roles may be embodied by the one course creator, or may represent
several specialised course creators. Domain information outlines the knowledge
to be taught to the learner. The domain expert can also define basic rules of
thumb on how particular domain knowledge is taught (e.g. concept A always
before B). The scope of the courseware is defined in the context of the domain
information specifying the course pre-requisites and the course goals. The course
scope is usually defined by the course accreditation body. The instructional de-
sign defines a strategy for the transfer of knowledge to the learner and is derived
from general instructional design principles.

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

73

Courseware is defined as instructional logic combined with LOs. LOs are
the content which teach aspects of domain knowledge to the learner and are
described using metadata, outlining the material covered by the LO and the
method of instruction. Instructional logic specifies how the learner proceeds
through the courseware, from one LO to another.

3 Layered Information Architecture

3.1 Information Architecture Overview

By explicitly representing the courseware validation concerns identified in the
previous section it is possible to automatically validate courseware constructed.
The Courseware Authoring Validation Information Architecture (CAVIAr) al-
lows for the representation of the validation concerns using a system of lay-
ered models. CAVIAr extends the LAOS model, used in Adaptive Educational
Hypermedia (AEH) authoring. LAOS simplifies AEH authoring by separating
AEH concerns allowing the course creator to deal with each individually. [3].
Our model replicates the benefits of using the LAOS model in AEH authoring
by separating the courseware validation concerns.

Fig. 2. The Courseware Authoring Validation Information Architecture (CAVIAr)

The bottom three layers of the validation model, the domain model, the
goal and constraint model and the learner model, are replicated from the LAOS
model but adapted for validation. On top of these base layers the courseware
model and validation model are defined.

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

74

3.2 The Domain Model

The domain model is a formalism of knowledge in the form of a concept map,
where a node represents a concept and an edge represents the relationship from
one concept to another.

A conceptual graph for domain modeling in AEH authoring is formally de-
fined in [3]. In AEH the domain model serves as the main navigational tool,
while in courseware validation it serves as a semantic point of reference for LO
annotation (section 3.5).

We can define the courseware validation domain model requirements as fol-
lows:

Definition 1. A concept map CM is determined by the tuple <C,L> where C
is a set of concepts and L is a set of links.

– A concept c ∈ C is an abstract notion which is described using attributes.
There must be at least one attribute for each concept, the name of the concept
described as nc.

– A link l ∈ L is a tuple <c1, c2, tl, nl> with c1 ∈ C, c2 ∈ C start and end
concept respectively, nl is the name of the link. There are many types of
links, the link type adds semantics to the link, indicating what is meant by
the link. tl refers to the link type (e.g. “is-a”, “has-a”).

– Each concept c must have at least one link, the hierarchical link, which links
a concept to its parent concept. An exception of this is the root concept.

3.3 The Goal and Constraints Model

The purpose of the goal and constraints model in CAVIAr is to specify domain
pedagogic information and course conceptual goals. The course creator can ex-
press which concepts from the domain model are to be taught to the learner and
conceptual pre-requisite constraints between concepts.

We distinguish between two types of knowledge, deep knowledge and shal-
low knowledge, where deep knowledge implies an understanding of a concepts
underlying concepts or sub-concepts and shallow knowledge implies a passing
knowledge or a mere familiarity with a concept. To this effect, when defining a
model in terms of knowledge (i.e. the domain model), we must distinguish if we
mean deep knowledge or shallow knowledge. To do this, goals and constraints
have a strength - weak or strong, which specify deep knowledge or strong knowl-
edge respectively. This accommodates the needs of real courses as specified in
[2].

We now give a more formal definition of the elements which make up the
goal and constraint model.

Definition 2. The goal and constraint model is made up of the tuple <P,G>,
where P is a set of pre-requisite constraints, which specify a relationship between
concepts where one concept must be understood before the other concept and G
is a set of Goals.

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

75

– A pre-requisite constraint p ∈ P is described using the tuple <c1, c2, ps>,
where c1 ∈ C, c2 ∈ C and ps describes the strength of the pre-requisite con-
straint, weak or strong. Weak pre-requisites require only passing knowledge
of the pre-requisite concept, a strong pre-requisite requires deep knowledge of
the pre-requisite concept and its underlying concepts.

– A goal g∈G is described by the tuple <GC, alt, gg>, where GC is a set of
goal concepts, alt defines alternative goal and gg is a nested goal within the
goal g.

– A goal concept gc ∈ GC is made up of the tuple <c, gs>, where c refers to
a concept in the domain model gc ∈ C and gs is the strength of the goal, a
weak goal or a strong goal.

We can infer that the goal and constraint model is an overlay model on the
domain model in that the goal and constraint model is specified in terms of
the domain model. This is due to each gc ∈ C, meaning that GC ⊆ C and
pre-requisite constraints are expressed using concepts from the domain model.

3.4 The Learner Model

In CAVIAr, the learner model is used to represent the stereotypical learner
knowledge or pre-requisite knowledge for a courseware. The learner model is a
necessary layer of CAVIAr as concepts not covered in the courseware may be pre-
requisite of concepts in the courseware, but this knowledge is assumed learner
knowledge. In order for a validation engine to acknowledge the learner’s initial
assumed knowledge it must be modelled.

As we specify the learner model in terms of conceptual knowledge the learner
model elements also have a strength, weak or strong, as is the case for goals and
constraints.

We can also describe the learner model formally as follows:

Definition 3. The learner model is described by the tuple <kc, ks>, where kc
refers to a concept in the domain model kc ∈ C and ks is the strength of the
assumed knowledge, weak or strong.

The learner model is also an overlay model on the domain model as each
kc ∈ C, again meaning kc ⊆ C.

3.5 The Courseware Model

A course structure can be modeled as a directed graph. Learning resources are
nodes on the graph. A learner’s traversal through the graph’s edges depends on
variables, such as learner choice, assessment results, learning styles, feedback,
which are assessed at run-time. Learning resources in the course are annotated
using some metadata standard such as IEEE LOM [6]. The metadata maps the
learning resource to the concept(s) it addresses in the domain model.

Fig. 3 demonstrates how each LO in a course is associated with at least one
concept in the domain model, specified in the LO annotation (LO conceptual

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

76

Fig. 3. Grouping LOs according to the concept they cover

annotation is indicated in the diagram with an arrow from a LO to a concept).
LO conceptual associations can be used to group LOs. Grouping are made up of
LOs concerned with the same concept. This type of LO grouping is illustrated
in the diagram in figure 3 (dotted circle on course model indicates conceptual
groupings). Once we can group LOs by concept we can discriminate between
pedagogical strategies concerned with inter-conceptual pedagogy (strategy con-
cerning sequencing of the conceptual groupings) and intra-conceptual pedagogy
(pedagogical strategy concerning the LOs within each conceptual grouping).

We now give a more formal definition of the course model.

Definition 4. We consider courseware CW to be determined by the tuple <LO,LP, SP,EP>,
where LO represents a set of Learning Objects and LP is the set of learning
paths. SP and EP represent the start points and end points respectively in a
given courseware model.

– A learning path lp ∈ LP is defined by the tuple <lo1, lo2, G>, where lo1 ∈

LO, lo2 ∈ LO start and end learning objects respectively. G refers to a
boolean gate condition, which must be true for the learner to proceed down
that learning path.

– A learning object lo ∈ LO is defined by the tuple <LC,Alo>, where LC is
learning content and Alo is the LO’s annotation.

– A learning object’s annotation Alo is a tuple <M,CA>, M is a metadata
set used to describe a LO. CA is a set of conceptual annotation.

– Metadata m where m ∈ M is a tuple <att, val>, where att is the name of
the metadata attribute and val refers to its value.

– A Conceptual Annotation ca ∈ CA is a tuple <pur, c, s>, where pur is the
purpose of the annotation (i.e. to specify a competency in a particular con-

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

77

cept), c∈C a reference to domain concept and s the strength of the link to
the concept.

The connection between the courseware model and the lower layers is in the
LO’s annotation. Each LO’s annotation points to a concept c, where c ∈ C.

In our definition we have defined a LP with a boolean gate condition, G.
This gate condition allows the course creator to specify what learning path the
learner should take based on various variables found in e.g. the learner model.

3.6 The Validation Model

The Validation Model captures pedagogical rules that courseware must adhere
to. In the validation model layer the course creator can express undesirable prop-
erties of courseware and also properties which must be present in the courseware.

Validation can be split into two distinct parts, validation which is concerned
with learning content of one domain concept (i.e. intra-conceptual validation)
and validation which looks at how the course proceeds from one concept to
another in the course (i.e. inter-conceptual validation). Typical intra-conceptual
validation will ensure that each concept is taught in a uniformed manner, while
inter-conceptual sequencing might ensure that the strategy undertaken in the
course is one of depth-first (covering each concept in detail before moving on to
the next concept).

The formal definition of the lower four layers of CAVIAr allows for the forma-
tion of pedagogical rules. Here we specify a rule which states for every concept c
that is a goal concept, there must exist a LO annotated with that concept which
is of “Type” “Lecture”.
∀x∃y(c(x), c ∈ gci) ∧ (CWi.LO(y).A.CA.c = x) ∧ (CWi.LO(y).A.M(z).Att =′′

Type′′) ∧ (CWi.LO(y).A.M(z).value =′′ Lecture′′)
In the example below, we demonstrate how the rule above can be imple-

mented using the JESS rule language, a Java-based, Lisp-like, rule language [4].
The rule states that each concept in the goal model, “concepts-in-gm”, must
have a LO which is annotated to have a “resource type” of “lecture”. If this is
not the case the rule prints out the violating concept with the message “HAS
NO LECTURE”.

(defquery findConceptsLOs //QUERY: f ind the LOs a s s o c i a t ed with the given concept
(de c l a r e (v a r i a b l e s ? c))
(concept−to−l o (concept ? c) (l o ? l o)))

(defquery findLoResourceType //QUERY: Get the LOs with the given re source type
(dec l a r e (v a r i a b l e s ?x ? resourceType))
(lom (id ?x) (r e sou r c e type ? resourceType)))

(fo reach ?c ? concepts−in−gm // f o r each concept in goa l model
(bind ? l i s t (new java . u t i l . ArrayList))
(bind ? los−in−concept (new java . u t i l . ArrayList))
(bind ? concept−ok FALSE)
(bind ? i t r (run−query findConceptsLOs ?c)) // get LOs f o r concept
(whi le (? i t r hasNext) // f o r each LO

(bind ? token (c a l l ? i t r next))
(bind ? f a c t (c a l l ? token f a c t 1))
(bind ? lo (fact−s l o t−value ? f a c t l o))
(? l i s t add ? lo) // add LO to l i s t

)
(fo reach ? l ? l i s t // f o r each LO in l i s t

(bind ? i t r 2 (run−query findLoResourceType ? l l e c t u r e)) // does LO have re source

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

78

type l e c t u r e
(i f (? i t r 2 hasNext) then

(bind ? concept−ok TRUE) // i f i t does then concept ok
)

)
(i f (not ? concept−ok) then // i f the ? concept−ok va r i ab l e has not been changed − no

l e c t u r e type
(pr intout t ”CONCEPT ”? c” HAS NO LECTURE” c r l f)

)

)

4 Discussion

In this paper we have given an overview of the information needs for the vali-
dation of courseware. We have then taken the information needs identified and
defined a layered information architecture (CAVIAr), which allows for the ex-
plicit representation of each information need. The definition of each layer allows
for the formulation of pedagogical rules, which can be validated in the context
of our information architecture.

The formal definition of the CAVIAr allows for tool support to be built
around it, in our future work, we will design and implement a validation engine
based on CAVIAr. Another advantage of CAVIAr’s formal definition is that
it allows for translation from external courseware representations to CAVIAr,
allowing for interoperability with existing courseware specifications, thus em-
bracing the state of the art in courseware construction.

References

1. Advanced Distributed Learning. SCORM 2004 Overview, 2004. Available from:
http://www.adlnet.gov/scorm/index.cfm.

2. P. Brusilovsky and J. Vassileva. Course sequencing techniques for large-scale web-
based education. International Journal Continuing Engineering Education adn Life-
long Learning, 13(1/2):75–94, 2003.

3. A. I. Cristea and A. de Mooij. LAOS: Layered WWW AHS Authoring Model
and their corresponding Algebraic Operators. In Proceedings of The Twelfth Inter-
national World Wide Web Conference (WWW03), Alternate Track on Education.
ACM, May 20th - 24th 2003.

4. E. Friedman-Hill. JESS in Action: Java Rule-Based Systems. Manning Publications,
Greenwich, Connecticut, 2003.

5. H. Hummel, J. Manderveld, C. Tattersall, and R. Koper. Educational modelling
language and learning design: New oportunities for instructional reusability and
personalised learning. International Journal of Learning Technology, 1(1):110–126,
2004.

6. IEEE Learning Technology Standards Committee. LTSC WG12:Learning Object
Metadata, 2002.

7. J. W. Samples. The pedagogy of technology - our next frontier? Connexions,
14(2):4–5, 2002.

8. D. A. Wiley. The Instructional use of Learning Objects, chapter Connecting Learn-
ing Objects to Instructional Design Theory: A definition, a methaphor and a tax-
onomy. Association for Educational Communications and Technology, 2001.

Proceedings of the First International Workshop on Learning Object Discovery & Exchange

79

	.:

