
Organising the Knowledge Space
for Software Components

Claus Pahl

School of Computing,
Dublin City University, Dublin 9, Ireland

Abstract. Software development has become a distributed, collaborative process
based on the assembly of off-the-shelf and purpose-built components. The selection
of software components from component repositories and the development of com-
ponents for these repositories requires an accessible information infrastructure that
allows the description and comparison of these components.

General knowledge relating to software development is equally important in
this context as knowledge concerning the application domain of the software. Both
form two pillars on which the structural and behavioural properties of software
components can be addressed. Form, effect, and intention are the essential aspects
of process-based knowledge representation with behaviour as a primary property.

We investigate how this information space for software components can be or-
ganised in order to facilitate the required taxonomy, thesaurus, conceptual model,
and logical framework functions. Focal point is an axiomatised ontology that, in
addition to the usual static view on knowledge, also intrinsically addresses the dy-
namics, i.e. the behaviour of software. Modal logics are central here – providing
a bridge between classical (static) knowledge representation approaches and be-
haviour and process description and classification.

We relate our discussion to the Web context, looking at Web services as com-
ponents and the Semantic Web as the knowledge representation framework.

1 Introduction

The style of software development has changed dramatically over the past
decades. Software development has become a distributed, collaborative pro-
cess based on the assembly of off-the-shelf and purpose-built software com-
ponents – an evolutionary process that in the last years has been strongly
influenced by the Web as a software development and deployment platform.

This change in the development style has an impact on information and
knowledge infrastructures surrounding these software components. The se-
lection of components from component repositories and the development of
components for these repositories requires an accessible information infras-
tructure that allows their description, classification, and comparison. Or-
ganising the space of knowledge that captures the description of properties
and the classification of software components based on these descriptions is
central. Discovery and composition of software components based on these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310961?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Pahl

Repository

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

~~~~~~
~~~~
~~~~~
~~~~

Component/
Service

Component/
Service

Ontology

requires provides

match

interact

the Web

Client Provider

Fig. 1. A Service Component Development Scenario.

descriptions and classifications have become central activities in the soft-
ware development process (Crnkovic and Larsson (2002)). In a distributed
environment where providers and users of software components meet in elec-
tronic marketplaces, knowledge about these components and their proper-
ties is essential; a shared knowledge representation language is a prerequisite
(Horrocks et.al. (2003)). Describing software behaviour, i.e. the effect of the
execution of services that a component might offer, is required.

We will introduce an ontological framework for the description and clas-
sification of software components that supports the discovery and composi-
tion of these components and their services (Pahl (2003)). Terminology and
logic are the cornerstones of our framework. We will develop an axiomatised
ontology based on description logics (a logic underlying various ontology lan-
guages), i.e. a logic-based terminological classification framework. We exploit
a connection to modal logics to address behavioural aspects, in particular the
safety and liveness of software systems.

In Section 2 we describe the software development process in distributed
environments in more detail. In Section 3, we relate knowledge representation
to the software development context. We define an ontological framework for
software component description, supporting discovery and composition, in
Section 4. We end with some conclusions in Section 5.

2 The Software Development Process

The World-Wide Web is currently undergoing a change from a document- to
a services-oriented environment. The vision behind the Web Services Frame-
work is to provide an infrastructure of languages, protocols, and tools to
enable the development of services-oriented software architectures on and



Organising the Knowledge Space for Software Components 3

for the Web (W3C (2004)). Service examples range from simple informa-
tion providers, such as weather or stock market information, to data storage
support and complex components supporting e-commerce or online banking
systems. An example for the latter is an account management component of-
fering balance and transfer services. Service providers advertise their services;
potential users can browse repository-based marketplaces to find suitable ser-
vices, see Fig. 1. The prerequisite is a common language to express properties
of these Web-based services and a classification approach to organise these.
The more knowledge is available about these services, the better can a po-
tential user determine the suitability of an offer.

Services and components are related concepts. Web services can be pro-
vided by software components; we will talk about service components in
this case. If these services exhibit component character, then their physical
(or logical) composition to larger software system architectures is possible –
pluggable and reusable software components is one of the ultimate goals of
software developers. Even though our main focus are components in general,
we will discuss them here in the context of the Web Services platform.

The ontological description of component properties is our central concern
(Fig. 1). We will look at how these descriptions are used in the software de-
velopment process. Two activities are most important: discovery of provided
components (lower half of Fig. 1) in structured repositories and composition
of discovered components in complex service-based component architectures
through interaction (upper half of Fig. 1). In relation to the Web we in-
vestigate whether the Web can provide a suitable environment for software
development and what the requirements for knowledge-related aspects are.
For a software developer, this architecture means that most software devel-
opment and deployment activities will take place outside the boundaries of
her/his own organisation – making shared knowledge essential.

3 A Knowledge Space for Software Development

The Web as a software platform is characterised by different actors, different
locations, different organisations and different systems participating in the
development and deployment of software. As a consequence of this hetero-
geneous architecture and the development paradigm as represented in Fig.
1, shared and structured knowledge about components plays a central role.
A common understanding and agreement between the different actors in the
development process are necessary.

A shared knowledge space for software components in service-oriented ar-
chitectures is needed. The question how to organise this knowledge space is
the central question of this paper. In order to organise the knowledge space
through an ontological framework, we address three facets of the knowledge
space: firstly, types of knowledge that is concerned, secondly, functions of the
knowledge space, and, finally, the representation of knowledge (Sowa (2000)).



4 Pahl

Three types of knowledge can be represented in three layers:

• The application domain as the basic layer.
• Static and dynamic component properties as the central layer.
• Meta-level activity-related knowledge about discovery and composition.

We distinguish four knowledge space functions (Daconta et.al. (2003)) that
characterise how knowledge is used to support the development activities:

• Taxonomy – terminology and classification; supporting structuring and
search.

• Thesaurus – terms and their relationships; supporting a shared, controlled
vocabulary.

• Conceptual model – a formal model of concepts and their relationships;
here of the application domain and the software technology context.

• Logical theory – logic-supported inference and proof; here applied to be-
havioural properties.

The third facet deals with how knowledge is represented. In general, knowl-
edge representation (Sowa (2000)) is concerned with the description of entities
in order to define and classify these. Entities can be distinguished into ob-
jects (static entities) and processes (dynamic entities). Processes are often
described in three aspects or tiers:

• Form – algorithms and implementation – the ’how’ of process description
• Effect – abstract behaviour and results – the ’what’ of process description
• Intention – goal and purpose – the ’why’ of process description

We have related the aspects form, effect, and intention to software character-
istics such as algorithms and abstract behaviour. The service components are
software entities that have process character, i.e. we will use this three-tiered
approach for their description.

The three facets of the knowledge space outline its structure. They serve
as requirements for concrete description and classification techniques, which
we will investigate in the remainder.

4 Organising the Knowledge Space

4.1 Ontologies

Ontologies are means of knowledge representation, defining so-called shared
conceptualisations. Ontologies are frameworks for terminological definitions
that can be used to organise and classify concepts in a domain. Combined
with a symbolic logic, we obtain a framework for specification, classifica-
tion, and reasoning in an application domain. Terminological logics such as
description logics (Baader et.al. (2003)) are an example of the latter.



Organising the Knowledge Space for Software Components 5

The Semantic Web is an initiative for the Web that builts up on ontology
technology (Berners-Lee et.al. (2001)). XML is the syntactical format. RDF
– the Resource Description Framework – is a triple-based formalism (subject,
property, object) to describe entities. OWL – the Web Ontology Language –
provides additional logic-based reasoning based on RDF.

We will use Semantic Web-based ontology concepts to formalise and ax-
iomatise processes, i.e. to make statements about processes and to reason
about them. Description logic, which is used to define OWL, is based on con-
cept and role descriptions (Baader et.al. (2003)). Concepts represent classes
of objects; roles represent relationships between concepts; and individuals are
named objects. Concept descriptions are based on primitive logical combina-
tors (negation, conjunction) and hyprid combinators (universal and existen-
tial quantification). Expressions of a description logic are interpreted through
sets (concepts) and relations (roles).

We use a connection between description logic and dynamic logic (Schild
(1991)) – a modal logic for the description of programs and processes based on
operators to express necessity and possibility (Kozen and Tiuryn (1990)) – to
address safety (necessity of behaviour) and liveness (possibility of behaviour)
aspects of service component behaviour. The central idea behind this connec-
tion is that roles can be interpreted as accessibility relations between states,
which are central concepts of process-oriented software systems.

4.2 A Composition Ontology

An intuitive approach to represent software behaviour in an ontological form
would most likely be to consider components or services as the central con-
cepts (DAML-S Coalition (2002)). We, however, propose a different approach.
Our objectve is to represent software systems. These systems are based on
inherent notions of state and state transition. Both notions are central in our
approach. Fig. 2 illustrates the central ideas. Service executions lead from old
(pre)states to new (post)states, i.e. the service is represented as a role (a rect-
angle in the diagram). The modal specifications characterise in which state
executions might (using the possibility operator to express liveness proper-
ties) or should (using the necessity operator to express safety properties) end.
For instance, we could specify that a customer may (possibly) check his/her
account balance, or, that a transfer of money must (necessarily) result in a
reduction of the source account balance. These transitional roles are comple-
mented by more static, descriptional roles. For instance, preCond associates
a precondition to a prestate; inSign associates the type signatures of possible
service parameters. Some properties, such as the service name, will remain
invariant.

Central to our approach is the intrinsic specification of process behaviour
in the ontology language itself. Behaviour specifications based on the de-
scriptions of necessity and possibility are directly accessible to logic-based
methods; behaviour-related inference of component properties is possible.



6 Pahl

Service

Cond

Sign inv Sign

Cond

postpre

outSign

postCond

inSign

preCond

servDescrservName

LiteralLiteral

 ...

Fig. 2. A Service Component Ontology.

We propose a two-layered ontology for discovery and composition. The
upper ontology layer supports discovery, i.e. addresses description, search,
discovery, and selection. The lower ontology layer supports composition, i.e.
addresses assembly of components and choreography of their interactions. We
assume that execution is an issue of the provider – shareable knowledge is
therefore not required.

Table 1 summarises development activities and knowledge space aspects.
It relates the activities discovery, composition, and execution on services
(with the corresponding ontologies) to the three knowledge space facets.

Knowledge Aspect Knowledge Type Function
Discovery intention domain taxonomy
(upper ontology) (terminology) thesaurus
Composition effect component conceptual model
(lower ontology) (behaviour) component activities logical theory
Execution form component conceptual model

(implementation)

Table 1. Development Activities and Knowledge Space Facets.

4.3 Description of Components

Knowledge describing software components is represented in three layers. We
use two ontological layers here to support the abstract properties.

• The intention is expressed through assumptions and goals of services in
the context of the application domain.

• The effect is a contract-based specification of system invariants, pre- and
postconditions describing the obligations of users and providers.

• The form define the implementation of service components, usually in a
non-ontological, hidden format.



Organising the Knowledge Space for Software Components 7

We focus on effect descriptions here. Effect descriptions are based on modal
operators. These allow us to describe process behaviour and composition
based on the choreography of component interactions. The notion of com-
position shall be clarified. Composition in Web- and other service-oriented
environments is interaction. Components are considered as independent con-
current processes that can interact (communicate) with each other. Central
in the composition are the abstract effect of individual services and the in-
teraction patterns of components.

We introduce role expressions based on the role constructors sequential
composition R;S (or R◦S for functional roles), iteration !R, and choice R+S
into a basic ontology language to describe processes. Using this language, we
can express ordering constraints for parameterised service components for
interaction.

For instance, Login; !(BalanceEnq + Transfer) is a role expression de-
scribing an interaction process of an online banking user starting with a
login, then repeatedly executing balance enquiry or money transfer.

A logical effect specification focussing on safety is positive(balance) →
∀Transfer.reduced(balance) saying that if the account balance is positive,
then money can be transfered, resulting (necessarily) in a reduced balance.
Here, Transfer is the service; positive(balance) and reduced(balance) are pre-
and postcondition, respectively. These conditions are concept expressions.

4.4 Discovery and Composition of Components

Component-based development is concerned with discovery and composition.
In the Web context, both activities are supported by Semantic Web and Web
Services techniques. They support semantical descriptions of components,
marketplaces for the discovery of components based on intention descriptions
as the search criteria, and composition support based on semantic effect de-
scriptions. The deployment of components is based on the form description.

Discovery. The aim of the discovery support is to find suitable provided
components in a first step that match based on the application domain related
goals and that, in a second step, match based on the more technical effect
descriptions. This matching requires technical support, in particular for the
formal effect descriptions. Matching can be based on techniques widely used
in software development, such as refinement (which is for instance formalised
as the consequence notion in dynamic logic). We will focus on the description
of effects, i.e. the lower ontology layer (cf. Fig. 2):

• Service component-based software systems are based on a central state
concept; additional concepts for auxilliary aspects such as the pre- and
poststate-related descriptions are available.

• Service components are behaviourally characterised by transitional roles
(for state changes) and descriptional roles (auxilliary state descriptions).



8 Pahl

Matching and Composition. In order to support matching and compo-
sition of components through ontology technology, we need to extend the
(already process-oriented) ontology language we presented above (Pahl and
Casey (2003)). We can make statements about service processes, but we can-
not refer to the data elements processed by services. The role expression
sublanguage needs to be extended by names (representing data elements)
and parameters (which are names passed on to services for processing):

• Names: a name is a role n[Name] defined by the identity relation on the
interpretation of an individual n.

• Parameters: a parameterised role is a transitional role R applied to a
name n[Name], i.e. R ◦ n[Name].

We can make our Transfer service description more precise by using a data
variable (sum) in pre- and postconditions and as a parameter: balance ≥
sum → ∀ Transfer ◦ sum[Name] . balance = balance@pre− sum decreasing
the pre-execution balance by sum.

Matching needs to be supported by a comparison construct. We already
mentioned a refinement notion as a suitable solution. This definition, however,
needs to be based on the support available in description logics. Subsumption
is here the central inference technique. Subsumption is the subclass relation-
ship on concept and role interpretations. We define two types of matching:

• For individual services, we define a refinement notion based on weaker pre-
conditions (allowing a service to be invoked in more states) and stronger
postconditions (improving the results of a service execution). For example
true → ∀Transfer ◦ sum[Name].balance′ = balance − sum matches, i.e.
refines balance >= sum → ∀Transfer◦sum[Name].balance′ = balance−
sum since it allows the balance to become negative.

• For service processes, we define a simulation notion based on sequential
process behaviour. A process matches another process if it can simulate
the other’s behaviour. For example the expression Login; !(BalanceEnq+
Transfer);Logout matches, i.e. simulates Login; !BalanceEnq;Logout,
since the transfer service can be omitted.

Both forms of matching are sufficient criteria for subsumption. Matching of
effect descriptions is the prerequisite for the composition of services. Matching
guarantees the proper interaction between composed service components.

5 Conclusions

Knowledge plays an important role in the context of component- and service-
oriented software development. The emergence of the Web as a development
and deployment platform for software emphasises this aspect.

We have structured a knowledge space for software components in service-
oriented architectures. Processes and their behavioural properties were the



Organising the Knowledge Space for Software Components 9

primary aspects. We have developed a process-oriented ontological model
based on the facets form, effect, and intention. The discovery and the com-
position of process-oriented service components were the central activities.
This knowledge space has been based on an ontological framework formu-
lated in a description logic. The defined knowledge space supports a number
of different functions – taxonomy, thesaurus, conceptual model, and logical
theory. These functions support the software development and deployment
style in the Web and Internet environment.

Explicit, machine-processable knowledge is the key to future automation
of software development activities. In particular, Web ontologies have the
potential to become an accepted format that supports such an automation
endeavour.

References

BAADER, F., MCGUINESS, D., NARDI, D. and SCHNEIDER, P. (Eds.) (2003):
The Description Logic Handbook. Cambridge University Press.

BERNERS-LEE, T., HENDLER, J. and LASSILA, O. (2001): The Semantic Web.
Scientific American, 284(5).

CRNKOVIC, I. and LARSSON, M. (Eds.) (2002): Building Reliable Component-
based Software Systems. Artech House Publishers.

DACONTA, M.C., OBRST, L.J. and SMITH, K.T. (2003): The Semantic Web –
A Guide to the Future of XML, Web Services, and Knowledge Management.
Wiley & Sons.

DAML-S COALITION (2002): DAML-S: Web Services Description for the Se-
mantic Web. In I. Horrocks and J. Hendler (Eds.): Proc. First International
Semantic Web Conference ISWC 2002. Springer-Verlag, Berlin, 279–291.

HORROCKS, I., MCGUINESS, D. and WELTY, C. (2003): Digital Libraries and
Web-based Information Systems. F. Baader, D. McGuiness, D. Nardi and
P. Schneider (Eds), The Description Logic Handbook. Cambridge University
Press.

KOZEN, D. and TIURYN, J. (1990): Logics of programs. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pages 789–840. Elsevier
Science Publishers.

PAHL, C. (2003): An Ontology for Software Component Matching. In Proc. Fun-
damental Approaches to Software Engineering FASE’2003. Springer-Verlag,
Berlin, 208–216.

PAHL, C. and CASEY, M. (2003): Ontology Support for Web Service Processes.
In Proc. European Software Engineering Conference / Foundations of Software
Engineering ESEC/FSE’03. ACM Press.

SOWA, J.F. (2000): Knowledge Representation – Logical, Philosophical, and Com-
putational Foundations. Brooks/Cole.

SCHILD, K. (1991): A Correspondence Theory for Terminological Logics: Prelim-
inary Report. In Proc. 12th Int. Joint Conference on Artificial Intelligence.

W3C – WORLD WIDE WEB CONSORTIUM (2004): Web Services Framework.
http://www.w3.org/2002/ws.


