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Abstract
Server-like or non-terminating programs are central to modern computing. It is a common

requirement for these programs that they always be available to produce a behaviour. One method

of showing such availability is by endowing a type-theory with constraints that demonstrate that

a program will always produce some behaviour or halt. Such a constraint is often called pro-

ductivity. We inroduce a type theory which can be used to type-check a polymorphic functional

programming language similar to a fragment of the Haskell programming language. This allows

placing constraints on program terms such that they will not type-check unless they are produc-

tive. We show that using program transformation techniques, one can restructure some programs

which are not provably productive in our type theory into programs which are manifestly produc-

tive. This allows greater programmer flexibility in the specification of such programs. We have

demonstrated a mechanisation of some of these important results in the proof-assistant Coq. We

have also written a program transformation system for this term-language in the programming

language Haskell.



Acknowledgments
I would like to thank my wife, Deirdre, for her long suffering patience. Without her contribu-

tion this thesis wold not exist. I also would like to thank Geoff Hamilton for his helpful suggestions

and encouragement. I would like to thank James for assistance with some of the mathematical de-

tails and Paul Bowman for helping to make the mathematics more accessible. I would like to

thank Rose Murphy for reading through the thesis despite not understanding it. I would also like

to thank my examiners, specifically the helpful and detailed suggestions for revisions given by

Conor McBride and the assistance of David Gray in making the section on transition systems

readable.



List of Figures

1.1 λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Example Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Church Rosser Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Simply Typed λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 System F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 System F Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7 Substitution and Modus Ponens . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.8 Choices for Evaluation Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9 Barendregt’s λ-cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1 Monotone Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Commutivity of Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Program for inf and inf2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Two Bisimilar Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Coequivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 System F+ Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Formation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.8 Term Substitution for System F+ . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Substitution for System F+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.10 System F+ Proof Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.11 System F+ Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.12 System F+ Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.13 Relations Related to Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.14 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.15 Explicit Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8



3.1 Actions and Labelled Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Compatible Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Cyclic Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Cyc Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 FunRec Pre-Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 FunRec Pre-Proof 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 FunRec Transformation to Cyclic Pre-Proof . . . . . . . . . . . . . . . . . . . . 75

4.6 Normalisation Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Normalisation (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Function Unfolding Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.10 Structural Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Structural Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.12 Guardedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.13 Program for plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.14 Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.15 Sumlen Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.16 Cyclic Pre-Proof for Sumlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Cyclic Proof for Sumlen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.18 Residual Sumlen Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 Unproductive Plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.20 Unproductive Plus Cyclic Pre-Proof . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Type Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2 Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Type Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Creating Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Term Generalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.6 Term Generalisation (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Pseudocode of Supercompilation . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Reification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.9 Reification Rules (Cont.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9



5.10 Stream Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Pre-proof for f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Proof for f, part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.13 Proof for f, part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.14 Supercompiled Stream Program . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Even . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Soundness Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Program for plus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Program for alt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.4 Named versus de Bruijn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.5 Type Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6 Type Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.7 Valid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.8 Type Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.9 The Program Axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.10 Shifting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.11 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.12 Shift Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.13 Substitution Type Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.14 Type Substitution Type Preservation . . . . . . . . . . . . . . . . . . . . . . . . 144

7.15 Lemma for Type Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.16 Evaluation Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.17 Type Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.18 Type Preservation of Transitive and Reflexive Closures . . . . . . . . . . . . . . 146

7.19 Strong Eval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.20 Progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.21 Transition System Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.22 Transition System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

10



7.23 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.24 Contextual Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.25 File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.26 Textual Term Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.27 Textual Type Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.28 On-line Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.29 Total Proof of Co-Natural Addition . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.1 Semi-Decidable Existential Functional . . . . . . . . . . . . . . . . . . . . . . . 154

11



Chapter 1

Introduction

Software plays an ever larger role in our lives. We see its impact in everything from automobiles

to films. It is likely that this trend of growing importance will not slow any time soon. At the

same time, demands on the quality and safety of programs have also increased, while methods

of dealing with quality have not kept pace. Formal methods have not always been able to keep

abreast of these increases in software complexity. If they are to be applicable, formal methods

must be able to address real needs in software in ways that are usable by practitioners. Such a

programme to improve the applicability of formal methods is necessarily ambitious. The present

work aims to make a contribution to the programme by increasing the applicability of automatic

methods of verification to a subset of the general problem.

Algorithms can be understood as an abstract description of a terminating process. When we

say that an algorithm has been developed to compute some quantity, we mean that we have a finite

procedure which is capable of producing an output value in finite time for any given inputs (where

value is suitably defined).

Algorithms, however, do not subsume all possible programs of interest. It was realised fairly

early on in the development of computers that certain programs, such as operating systems, should

never terminate by design. In order to deal with this class of intentionally non-terminating pro-

grams we need a theory of another class of programs entirely.

The class of programs which are potentially non-terminating is sometimes called reactive sys-

tems [3]. This is an alternative view of programs and their behaviour, which seeks to provide

constraints or proofs about behaviour of programs that we see in the real world, such as servers,

which do not necessarily terminate.

When we say a program is non-terminating we may mean more than one thing. A server,

12



such as the Apache web server, could be non-terminating in the sense that it repeatedly polls for

new connections to serve and once requests are received, serves them. This is an example of

a productive program. That is, we hope that it always produces some new behaviour when we

provide it with input.

This idea of productivity is in contrast to a non-terminating program which potentially does

nothing for an arbitrary period. If we view programs from the standpoint of reactive systems, a

non-productive system is quite similar to a system which halts since it no longer has behaviour, a

fact which is reflected in certain theories of reactive systems based on traces such as CCS (Cal-

culus of Communicating Systems) [57]. The distinction between the two different types of non-

termination (non-productive, and productive) will be central to our presentation.

As a formal method for demonstrating certain types of correctness, this thesis makes use of

types. We view types, which will be described in more detail in the next section, as representing the

specifications for the programs we write down. Types are a good way to demonstrate properties

since they make their claims about correctness based on a proof which is a systematic way of

describing how evidence should be laid out in order that we should believe it. This evidence based

approach allows a type checker, that is, an algorithm which automatically checks if we should

believe that the evidence provided does in fact demonstrate the property of interest. The method

by which the proof is initially created can then be a quite free exercise which is performed by a

theorem prover or even constructed by hand.

In the case of programs with potentially infinite behaviour it turns out that it can be a sticky

problem how we might go about writing down the evidence that our program does what some

specification claims. To represent infinite behaviour in a finite way, we naturally have to make use

of some sort of circularity. Demonstrating circular arguments in a way that is correct will turn out

to be central to this thesis.

We assume that the reader has some familiarity with functional programming so that we can

present more concretely how our approach will work. First, we start with a simple program,

written in the programming language Haskell [40].

map :: (a → b) → [a ] → [b ]

map f [ ] = [ ]

map f (x : xs) = (f x ) : (map f xs)

nats :: [Int ]

nats = 0 : (map (1+) nats)

13



The program nats is well known to functional programmers. It computes an infinite list of

numbers starting from 0. This program always computes a further value for any program which

might consume an arbitrary portion as input. It is because of this behaviour that we call it a

productive program. While a functional programmer can easily look at this program and deduce

that it is productive, it turns out to be problematic when we wish to write down a formal proof that

this is so. We shall sometimes call such productive computations, coterminating.

The type checker for Haskell will allow this program to pass as type-correct with no difficulty.

However, Haskell will also allow the following program to type check.

loop :: a

loop = loop

This essentially states that the program loop is of some arbitrary type a . In fact, we could

have put any more specific type there, say a → b and loop would still pass our type checker. This

may not be the worst thing if we are simply attempting to demonstrate that our programs won’t

produce bogus output. On the other hand, if we are interested in interpreting the type as some sort

of specification of performed behaviour, then it is really quite a big problem. Programs may claim

to have a type and do nothing, or claim to have a type and output only a portion of the claimed

type and then hang. There are many conditions in which this would not be a suitable specification.

Clearly a specification for a server which allows spinning off in non-productive computation for

eternity is a fairly weak specification.

In the interest of demonstrating certain behaviours such as termination and productivity hold

of our programs, our type system needs to be more careful than the one which is used by Haskell.

A theorem prover which used something analogous to the Haskell approach would allow any

theorem to be claimed as correct and this is clearly not a very useful theorem prover.

In theorem provers which use types to express theorems, such as Coq [8] and Agda [63] we

generally introduce some limited way of demonstrating termination and co-termination behaviour.

These (co)termination constraints ensure that our types are not plagued with non-terminating and

non-productive computations. Termination is generally demonstrated by showing that some finite

argument is always getting smaller. An example of such a program in Haskell might be as follows.

data Nat = Z | S Nat

plus :: Nat → Nat → Nat

plus Z y = y
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plus (S x ) y = S (plus x y)

The function plus in this program always calls itself on a structurally smaller argument. Pro-

vided that we insist that the construction of elements in Nat are only ever constructed themselves

by type correct and terminating programs we can be confident that plus terminates. It does what

it says on the tin; when we get two Nats, we produce another Nat without fail.

There is a very similar program to plus which we might call coplus . The plus program above

actually demonstrates productivity, a fact which was not important to us when we were worried

that it should terminate. However, if we would like an addition which can cope with numbers

which are potentially formed from an infinite number of S constructors we must show that they

are productive.

data CoNat = CZ | CS CoNat

coplus :: CoNat → CoNat → CoNat

coplus CZ y = y

coplus (CS x ) y = CS (coplus x y)

This program is essentially identical to plus aside from calling the type CoNat , which relates

that we are interested in potentially infinite data. To see that this program is productive, we can

note that there are no recursive calls which do not emit a constructor CS. This means that any

consumer of the behaviour of coplus is guaranteed to get what it is looking for without yielding

non-productive computations (provided that consumer is also a terminating or productive pro-

gram). This guarantee that we will emit a constructor by checking that it occurs just prior to our

recursive calls is generally known as a guardedness condition.

The method of demonstrating that programs terminate by using structural recursion, as in the

plus example, is quite attractive for a number of reasons. First, it is often quite natural to write

programs which are structurally recursive. When it is not natural, there are often methods of

introducing our reasoning about why the function terminates as arguments to the function. For

instance, we can use some auxiliary relation which demonstrates the decreasing nature of the

computation by providing a structure over which we can recurse. Finally, they demonstrate a kind

of compositionality, which allows us to reason piece-wise about whether things terminate and

compose them into terminating programs.

Things are a bit more complicated when attempting to show that programs are productive.

Productivity using a guard, a constructor which demonstrates we will definitely have some be-
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haviour prior to recursive calls, is often not a very natural way to write software. In addition it

is not so clear how to get around this fact by providing auxiliary code (though Danielsson does

demonstrate one approach [25]). The upshot is that there is a lot of room for improvement on

proving productivity.

A concrete example of the problem can be seen with the function sumlen . This function takes

a potentially infinite list, CoList , of potentially infinite numbers, CoNat , and sums them together

with the length of the list. We call this operation sumlen .

data Colist a = CNil | CCons a (Colist a)

sumlen :: Colist CoNat → CoNat

sumlen CNil = CZ

sumlen (CCons x xs) = CS (coplus x (sumlen xs))

This program is definitely productive, however it fails to meet a guardedness condition as the

recursive call to sumlen doesn’t have a constructor immediately surrounding it. Neither can we

simply move the CS constructor inside the coplus to avoid the problem.

sumlen inner :: Colist CoNat → CoNat

sumlen inner CNil = CZ

sumlen inner (CCons x xs) = coplus x (CS (sumlen inner xs))

This definition also fails to be guarded because the call to coplus may do something untoward

with the CS . Of course we know that it does not, but how can we justify this? We can do so by

inspecting coplus itself and how it will treat its argument. Essentially we would like to make this

program into a similar program which is itself guarded by careful transformation of the program

into the following.

sumlen � :: Colist CoNat → CoNat

sumlen � CNil = CZ

sumlen � (CCons x xs) = CS (aux x xs)

aux Z xs = sumlen � xs

aux (CS x ) xs = CS (aux x xs)

This program now meets a guardedness condition as each call exhibits a constructor around

each recursive call and hence is in a suitable form to be entered into Coq or Agda. Not only is it
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possible to transform the above program sumlen into sumlen � systematically we can also do so

automatically using the supercompilation program transformation procedure. This suggests that

we might attempt to type a larger class of programs automatically by using program transformation

as a tool with which to widen the net of programs for which we can provide types.

Unfortunately by using program transformation we have created for ourselves another prob-

lem. If we would like to use type theory to generate proofs which are machine checkable we have

now lost information about how the transformation took place. It is folklore that program trans-

formation is hard to do properly while retaining the meaning of programs. How then can we trust

that the program obtained after transformation is equivalent to the original?

The answer that we give in this thesis is that we should provide a bisimulation between the

original term and the final result term. This bisimulation will give evidence which can be automat-

ically verified, linking the original term to the transformed term. Because bisimulation preserves

termination properties as well as other behaviours, it allows us to be confident that type checking

the resultant term gives us information about the original term.

We now take a brief excursion into the type theory which will be required to understand this

thesis, followed by an overview of the structure of the thesis.

1.1 Type Theory

There are many frameworks for describing properties of program terms. However, most techniques

can be divided into two basic approaches. One approach is model-checking, where we make a

model of some program and then systematically explore the available behaviours to ensure that

some property holds. The method of exploring behaviours can vary widely, including state space

enumeration, abstract interpretation [22] and the use of various temporal logics [94].

One other broad class of approaches is to use type theory. Type theory approaches the prob-

lem of describing properties of programs in a structural and syntactic way in contrast to the much

more semantic model-checking approaches. No model is required as we describe proofs of our

properties concretely in terms of the actual program syntax. This approach of assigning properties

has a number of advantages in ease of implementation, and a tight coupling between the language

and the properties we wish to prove. The approach makes use of the Curry Howard Correspon-

dence to provide rich type theories such as those employed in theorem provers such as Agda [63],

Coq [8] or Isabelle [62] or more modest type systems such as those employed by general purpose
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functional programming languages such as ML and Haskell.

In type theory as applied to programs we view the type of the program terms as representing

their specification. The specification can then be said to correspond to a program when the pro-

gram type-checks, that is, the program can be shown by an algorithm to be of the type supplied.

Depending on how rich our type theory is, this provides us with a more or less general way of talk-

ing about the correctness of software. With very rich type theories, we should be able to capture a

great number of properties of interest.

This work marries the use of types with the technique of exploring behaviours. We use type

theory to ensure that the final answers are correct according to their specification, given as a type,

using a relatively simple type-checking algorithm. We search the program space to look for pro-

grams which are equivalent to the original program by construction, but which additionally meet

the syntactic conditions provided by our type theory. We avoid the problem of the correspondence

of our model to the program by using semantic preserving transformations of the original program.

1.1.1 λ-calculus

The λ-calculus is a simple proto-logic which has served as an important basis for theoretical

computer science. It is at once extremely simple, yet powerful. The language, together with

its evaluation relation, is Turing complete, meaning that it provides access to the full range of

computational power of a Turing machine. The Turing machine serves as an important yardstick

of universality in computation [88].

The language as given in Figure 1.1 shows just how simple the rules are. The syntax is com-

prised of variables, variable abstraction and term application. The reduction system is comprised

of little more than the replacement of variables with terms. The evaluation relation (which we

write as �) couples our syntax with a notion of computation built from substitution. The term on

the right hand side of the � relation is a β-reduct and the process is known as β-reduction.

The convention of renaming variables is known as α-conversion. α-conversion leads to an

important notion of equivalence. Two terms are said to be equivalent modulo α-conversion if we

can find a one-to-one renaming of variables (being careful that we keep unlike variables distinct in

our renaming) so that two terms are syntactically identical after the renaming. This α-conversion

step can be thought of as representing the fact that the name of a formal parameter of a function is

not consequential to the meaning. For instance, a function f(x) = 1+x is functionally identical to

one in which x is replaced with y, i.e. f(y) = 1 + y. We have opted here to use explicitly named
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Syntax

Var � x, y, z Variables
Term � r, s, t ::= x | λx. r | r s Terms

Free Variables

FV (x) ≡ {x}
FV (λx. r) ≡ FV (r)� {x}
FV (t s) ≡ FV (t) ∪ FV (s)

Substitution

x[x := t] ≡ t

x[y := t] ≡ x if x �= y

(r s)[x := t] ≡ (r[x := t]) (s[x := t])
(λy. r)[x := t] ≡ λy. r[x := t]

Provided that (λy. r) is α-converted to use
a fresh variable if y ∈ {x} ∪ FV (t).

Reduction

(λx. s) t � s[x := t] r � r�

λx. r � λx. r�

s � s�

s t � s� t
t � t�

s t � s t�

Figure 1.1: λ-Calculus

variables, as even though it complicates the technical machinery somewhat, it makes examples

much easier to read.

There are some complications which arise due to variable naming and which lead to the testing

of equality of variable names in our substitution rules. We need to avoid inadvertent capture of

variables when performing substitutions. Avoiding capture is achieved with a systematic renam-

ing of variables with a guaranteed fresh variable. Capture avoidance requires knowing the free

variables of a term. This is done using the FV function which is defined in Figure 1.1. This

function maps terms to sets of variables. The base case where FV is called on a variable, returns a

singleton set (a set with one member) with the variable. When called with an application, it simply

forms the union of the free variables of either term. When called on a λ abstraction it subtracts the

bound variable from the free variables of the subterm.

This technical complication of dealing with renaming can be eliminated with the use of de

Bruijn indices [26]. This involves the use of natural numbers to indicate which λ a given variable

is associated with. In fact, this approach is taken in the implementation and mechanisation of the

theory and we see this in more detail in Chapter 7.

The substitution function substitutes variables which are free in a term, with a new term. We
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can think of it as allowing a formal parameter to be replaced with a concrete representative. As

we see in Figure 1.1, the function is writen as r[x := t] and has the term r in which we would like

to perform substitution on the left, the variable we wish to replace is x and the new term is t. We

substitute whenever we encounter a variable of the same name, we distribute across application

and we substitute in a λ abstraction only if it does not inadvertently refer to a bound variable.

Again, this last problem is avoided by renaming bound variables appropriately.

When we read the rules for reduction we see there is a horizontal bar. We can read this as

stating that if what is above the bar is derivable, then we can derive the statement below the bar. For

example, supposing we have demonstrated that r � r�. From this it follows that λx. r � λx. r�.

We might also view this operationally as stating that evaluation is allowed under a λ abstraction.

1. (λx. x y) =α (λz. z y)

2. (λx. x) y � x[x := y] = y

3. (λy. (λx. y)) x � (λx. y)[y := x] =α (λz. y)[y := x]
= (λz.y[y := x]) = λz.x

4. (λx. (λx. x)) y � (λx. x)[x := y] =α (λz. z)[x := y]
= (λz. z[x := y]) = λz. z

Figure 1.2: Example Reductions

In Figure 1.2 we see some examples of various reductions and equivalences in the λ-calculus.

Example 1 shows an α-renaming which renames every variable x with the variable z in the local

scope of the λ-binder. In Example 2 we see a very simple reduction which involves the application

of a λ to a term y. Example 3 demonstrates a reduction which requires renaming in order to avoid

capture of a free variable within a local variable binding. Example 4 demonstrates a converse

situation where a reduction requires renaming to avoid confusion between a local variable and one

which is now free.

One of the important properties of the λ-calculus is the Church Rosser property [17]. Infor-

mally, this property allows us to ignore the order of reductions, and to know that various reduction

paths will arrive at the same term.

Definition 1.1.1 (Reflexive Closure). The reflexive closure Rr of a relation R :S×S is the exten-

sion of the relation R to include all pairs (x, x) ∈ S × S. That is Rr ::= R ∪ {(x, x) ∈ S × S}

Definition 1.1.2 (Transitive Closure). The transitive closure R+ of a relation R : S × S is the
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Figure 1.3: Church Rosser Property

extension of the relation R to include all pairs (x, y) ∈ S × S for all x, y such that there exists a z

with (x, z) ∈ R and (z, y) ∈ R+. That is

R+ ::= {(x, y)|(x, y) ∈ R ∨ ∃z.(x, z) ∈ R ∧ (z, y) ∈ R+}.

Definition 1.1.3 (Reflexive-Transitive Closure). The reflexive and transitive closure R∗ of a rela-

tion R :S × S is the extension of the relation R equal to (R+)r

Using the reflexive-transitive closure �∗ we can define the Church-Rosser property.

Theorem 1.1.4 (Church-Rosser Property). If s �∗ t and s �∗ u then there is a z such that

t �∗ z and u �∗ z.

A pictorial representation of the Church Rosser property is given in Figure 1.3. The starred

edges in this graph represent elements related by the �∗ relation. We see that though we can not

be sure that t and u in this figure are related to each other, we know that they are related by �∗ to

some third term z.

The λ-calculus without restriction exhibits terms which do not reduce to a value, under our

evaluation relation. The term (λx.x x)(λx.x x), sometimes called ω serves as an example. It

turns out that our evaluation relation is not well-founded. This means that computations via the

evaluation relation will potentially continue indefinitely.

Definition 1.1.5 (Well-Founded Relation). A well-founded relation R on a domain S × S is one

in which every non-empty set C ⊆ S of the domain has a minimum element with respect to R. A

minimum element s is an element for which s R t does not hold for any t.

Definition 1.1.6 (Evaluation Sequence). An Evaluation sequence is a sequence of terms t0 t1 t2 · · ·

such that each ti � ti+1.
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Definition 1.1.7 (Strong Normalisation). Strong normalisation for a language L is the property

that for every term r ∈ L there exists a term s ∈ L such that r �∗ s and there is no term t ∈ L

with s � t . The subset of terms which do not reduce, are called values.

Type theory for the λ-calculus was originally developed by Church. He developed it as a means

to ensure a minimum element for evaluation sequences[16]. The strong normalisation property,

which can be proved for the simply typed λ-calculus [83], ensures that all evaluation sequences

are finite, leading eventually to a minimum element.

The existence of such a minimum element for evaluation sequences, together with the Church-

Rosser property, allows us to see these minimum elements as canonical representatives of the

computation, a form which we will call a normal form. This representative gives us a concrete

syntactic form which we can use to settle questions of equivalence. That is, two terms will be the

same if their normal form is equivalent (modulo α-conversion). This form of equivalence, induced

by the evaluation relation is known as α,β-equivalence.

Definition 1.1.8 (α-equivalence). Given a term t, we take α-equivalence to be the least relation

closed under the rule:
x �= y y �∈ FV (t)

(λx. t) =α (λy. t[x := y])

Definition 1.1.9 (β-equivalence). Given terms t and s, we take β-equivalence to be the least

relation closed under the rule:

((λx. t) s) =β t[x := s]

It is also common to introduce a notion of η-equivalence, which corresponds with equivalence

up to η-conversion and captures a notion of extensionality. That is, two functions which would

arive at the same value are identified if one is simply the application of the same term to the formal

parameter of its λ-abstraction. This equivalence identifies a larger number of proofs. While it is

not necessary for our purposes we also give its definition below:

Definition 1.1.10 (η-equivalence). Given a term t we say take η-equivalence to be the least relation

closed under the rule:
x �∈ FV (t)

(λx. t x) =η t

The concept of equivalence we work with is very much like the notion of equivalence used in

the equation 3 = 1+2. We have some understanding of a process by which 1+2 can be converted

to a canonical representative, namely 3, and the equation can then be shown to hold by the reflexive
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property of equality. This brings the notion of equivalence and computation (reduction) into a

common framework.

1.1.2 Simple Theory of Types

In order to enrich the λ-calculus with a simple theory of types, we need to extend our exposition

above with a simple type system, qualifying λ-abstraction with types, and building up terms in

such a way that the term structure mirrors the type structure.

Types

TyBase � B Base Types
Ty � R,S, T ::= B | T → S

Terms

Term � r, s, t ::= x | λx :T. r | s t Terms
Γ ::= · | Γ ∪ {x :T}

Context Formation

· Ctx
Γ Ctx x �∈ dom(Γ)

Γ ∪ {x :T} Ctx

Typing Rules

Γ ∪ {x :T} � s : S
I→

Γ � (λx :T. s) : T → S

Γ ∪ {x :T} Ctx
IVarΓ ∪ {x :T} � x : T

Γ � r : S → T Γ � s : S
E→

Γ � (r s) : T

Figure 1.4: Simply Typed λ-Calculus

Curry realised that this type-system, given in Figure 1.4 represented a simple proof system

[23]. In fact it is the propositional fragment of minimal logic.

Terms are either variables (x), abstractions (λx : T. r) or applications (r s). We see that we

have altered λ-expressions to contain the type of the variable over which they close.

We additionally have to add contexts of free variables, in order that we can do book-keeping

on what type variables are when we encounter them. These variable contexts, represented by Γ can

either be empty (·) or extended with a variable of a given type (Γ ∪ {x :T}). We use the notation

dom(Γ), to denote the collection of variables in Γ. We test inclusion in the context Γ using the

relation (∈), such that when x has type T in context Γ, we write (x : T ∈ Γ). The formation of

contexts is constrained using the context formation rules and a well formed context will be written

(Γ Ctx). The context formation rules disallow formation of contexts with duplicate variables
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having different typings. This allows us to assume that any context dealt with in a proof is well

formed and does not contain duplicate variables with different type assignments.

The E→ rule may be familiar as the modus ponens of logic, and represents the replacement

of a hypothesis with a concrete representative. In functional programming languages, it is often

called function application, and involves the replacement of a parameter with a term in the body

of the function.

The I→ discharges a hypothesis, giving us a proof of a type which is parametric and dependent

on some other proof yet to be supplied, but which must be of a given type. The IVar rule states

that given that some hypothesis is of a given type in our context, we may simply assume it.

The evaluation relation for the simply typed λ-calculus remains unchanged from those given in

Figure 1.1. We can simply ignore the type annotations for the purpose of computation. However,

restricting ourselves to well-typed terms (those terms which have a correct type derivation using

the given formation rules, E→, I→ and IVar ) we have restricted terms in such a way that they will

always normalise to a value. We can thereby decide equality between terms using this principle

and have an assurance that all well-typed programs terminate.

The expression Γ � t : S is sometimes called a sequent and can be interpreted to mean that

t has type S in the presence of the typed free variables in Γ. The proofs of our types are given

by showing a consequent (that is, the sequent below the line) which can be derived from some

number of antecedents (those sequents which occur above the line). A simple example using the

ImpElim rule is as follows:

{x :S → T, y :S} Ctx
IVar{x :S → T, y :S} � x : S → T

{x :S → T, y :S} Ctx
IVar{x :S → T, y :S} � y : S
E→

{x :S → T, y :S} � x y : T

Here we see a term x y has type T using the ImpElim rule, together with two antecedents, one

of which requires a derivation that x has type S → T the other that y has type S. These further

derivations are each a consequent of the IVar rule which requires no antecedents, but requires a

validly formed context containing the variable. This results in a complete proof.

1.1.3 System F

The simple theory of types for the λ-calculus is, however, extremely restrictive. We must deal

only with concrete types, restricting ourselves to the propositional fragment of minimal logic.

A classic example of the limitation of such a system can be seen in the identity function

(λx : T.x). We would require a new identity function at every type T , despite the fact that
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structurally, they all have essentially the same form.

Girard[29] and Reynolds[72] developed a system known as System F which significantly en-

riches our type theory. This system allows quantification over types as well as terms. This extends

our parametrisation of hypotheses to include hypotheses about the types themselves, rather than

just about terms.

Because we have introduced variables which stand in for types, it is convenient to add an ad-

ditional context with type variables, ∆ In addition, since types will potentially contain variables

themselves, it is useful to constrain the formation of types, in a manner analogous to the forma-

tion rules for terms. The extension to the λ-calculus necessary to include these new features is

presented in Figure 1.5.

Since we now have type variables in addition to term variables, we need to be careful that

types themselves are well formed. We do this by including a separate type variable context ∆,

constrained by formation rules to avoid duplicate variables appearing in the context. If a context

∆ is well formed (according to the formation rules) we are justified in assigning a tag (∆ TyCtx).

This ensures that if (∆ ∪ {X} TyCtx) then (X �∈ ∆).

Types will now also have to respect type variable contexts. Type formation rules are given

which assign a tag type to a type T which has all free variables referring to variables in a context

∆ when (∆ � T type).

In addition we introduce two new terms, (ΛX. t) which represents a term with an abstract type

(X) which can be made concrete by application of the second newly introduced term (t[T ]) which

denotes type application. The type of such an abstraction is given by (∀X. T ). We can see how

these two new terms interact by looking at the extended substitution rules.

We re-use the former formation rules, substitution functions and evaluation relations and ex-

tend them to deal with the newly introduced forms. We show the extensions required to obtain

free-variables and substitution in Figure 1.6. Both substitution and the free type variable function

FV ty are overloaded to act on both terms and types.

This new substitution must work with both types and terms, as terms may contain references to

type variables. Explicit use of the substitution of types over terms is given in the reduction of type

applications using the � relation. We also introduce two new typing rules (AllIntro and AllElim)

which allow us to reason about types in abstract. These can be read in analogy to the ImpIntro and

ImpElim rules of the simply typed λ-calculus.

In terms of establishing our connection between computation and logic, this system corre-
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Types

TyVar � X,Y, Z Type Variables
Ty � R,S, T ::= X | R → S | ∀X. S

Terms

Term � r, s, t ::= x | ΛX. t | λx :T. r | s t | s T Terms

Contexts

∆ ::= · | ∆ ∪ {X} Γ ::= · | Γ ∪ {x :T}

Context Formation

· TyCtx
∆ TyCtx X �∈ ∆

∆ ∪ {X} TyCtx

∆ � · Ctx
∆ � Γ Ctx x �∈ dom(Γ) ∆ � T type

∆ � Γ ∪ {x :T} Ctx

Type Formation

∆ � R type ∆ � S type
∆ � R → S type

∆ ∪ {X} � R type
∆ � ∀X. R type

∆ ∪ {X} TyCtx
∆ ∪ {X} � X type

Evaluation

(ΛX. r)[T ] � r[X := T ]
s � t

s[T ] � t[T ]

Typing Rules

∆ ∪ {X};Γ � r : S
I∀∆;Γ � ΛX. r : ∀X. S

∆;Γ � s : ∀X. S
E∀

∆;Γ � s[T ] : S[X := T ]

Figure 1.5: System F
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Free Type Variables

FV ty(X) ≡ {X}
FV ty(R → S) ≡ FV ty(R) ∪ FV ty(S)
FV ty(∀X.R) ≡ FV ty(R)� {X}
FV ty(x) ≡ ∅
FV ty(f) ≡ ∅
FV ty(λx :T. r) ≡ FV ty(T ) ∪ FV ty(r)
FV ty(ΛX. r) ≡ FV ty(r)� {X}
FV ty(r s) ≡ FV ty(r) ∪ FV ty(s)
FV ty(r[S]) ≡ FV ty(r) ∪ FV ty(S)

Substitution

X[X := T ] ≡ T

X[Y := T ] ≡ X if X �= Y

(R → S)[X := T ] ≡ R[X := T ] → S[X := T ]
(∀Y. R)[X := T ] ≡ ∀Y. R[X := T ]

Provided that (∀Y.R) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV ty(R).

x[X := T ] ≡ x

(λx :S. r)[X := T ] ≡ λx :S. r[X := T ].r[X := T ]
(ΛY. r)[X := T ] ≡ ΛY. r[X := T ]

Provided that (ΛY.r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV ty(r).

(r s)[X := T ] ≡ (r[X := T ]) (s[X := T ])
(r[S])[X := T ] ≡ (r[X := T ])[(S[X := T ])]

Figure 1.6: System F Substitution
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sponds to the second-order intuitionistic logic that uses only universal quantification. This system

is in fact strongly normalising [30], and so we can continue to view equality as being expressed

by normalisation.

1.1.4 Curry Howard Correspondence

The programme of relating proof systems with computation does not stop at System-F. Eventu-

ally, Howard developed a full connection between natural deduction and type theory in what has

become known as the Curry-Howard Isomorphism or Correspondence [79]. This broadened out

type systems to encompass much more sophisticated logics, including higher order logics.

The basic programme is schematic and can be applied to many different logics and computa-

tional systems, hence why it is sometimes called a correspondence rather than an isomorphism.

We identify proofs with programs, where the correspondence is given by relating each formation

rule of our proofs and each syntactic method of combining type-correct programs. The type corre-

sponds with some proposition to be proved and the program is the proof that this type is satisfied.

Types ∼= Propositions

Programs ∼= Proofs

Evaluation ∼= Normalisation

Values ∼= Normal-Form Proofs

Computation in the Curry-Howard sense arises more obliquely. Essentially computation comes

from a notion of an equivalence relation over proofs. Proofs of the same proposition which are

related through this equivalence relation are considered to be essentially the same proof, or pro-

gram.

To tie our system together we construct a well-founded evaluation relation. This ordering

allows us to talk of least elements over terms which gives us our canonical representatives, or

normal forms.

We see in Figure 1.7 the analogy between equivalence of proofs under β-reduction and equiv-

alence of proofs using modus ponens and those which remove the intermediate form and follow

directly from the premise.

Generally speaking we will have a large number of potential methods of obtaining our canon-

ical form computationally as the evaluation relation is not deterministic. That is, there is often

more than one way to proceed.
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Natural Deduction

A A → B

B
∼=

A

...
B

Curry Howard

Γ � t : A Γ � (λx :S. s) : S → B

Γ � (λx : S.s) t : B
∼=

Γ � t : A
...

Γ � s[x := t] : B

Figure 1.7: Substitution and Modus Ponens

The strength of the λ-calculus, System-F and other related systems is that the path used for

the evaluation relation (from whence we derive our equivalence relation over proofs) is irrelevant,

since all paths lead to the same normal forms, a fact which is assured by the Church-Rosser

property.

Applicative Order Normal Order

t � t�

s t � s t�
s � s�

s t � s� t

Figure 1.8: Choices for Evaluation Order

Since the choice is open, we can choose a deterministic strategy for following the evaluation

relation to obtain a least element. Two common evaluation strategies for the λ-calculus are the

normal order and application order as shown in Figure 1.8.

These developments in type theory have helped to clarify the relationship between two formal

systems: programs and proofs. It has been the starting place for further developments including

Per Martin-Löf’s intuitionistic type-theory [50], Girard’s System-F [30], the Calculus of Construc-

tions [21] and a whole framework for understanding these various type systems in relation to each

other which was presented by Barendregt[7].

We can see a visualisation of Barendregt’s schema known as Barendregt’s λ-cube in Figure 1.9.

The coordinates of the cube correspond with having or not having the following properties:

• Terms depending on types as with System-F (also called λ2 in the figure). This system

allows terms which are parametric in some type. The types can be made concrete by appli-

cation to a concrete type.
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Figure 1.9: Barendregt’s λ-cube

• Types depending on types as with λω. This system allows the use of type functions, func-

tions which take a number of types and result in types. This allows type abstraction at the

type level.

• Types depending on terms as with λP . This is sometimes what is meant by dependent types,

as the types can depend on terms in the calculus. This system allows the use of functions

which map some number of terms to a type. When combined with the above two properties

we obtain the Calculus of Constructions (also called λPω in the figure).

1.2 Overview and Main Contributions

This work uses a fair amount of technical machinery from several different areas. Briefly we will

review how these pieces fit together in order to establish the main important novel results.

The core contribution of this work is to demonstrate the use of supercompilation for demon-

strating type correctness. We demonstrate that it is possible in some cases to check that a pro-

gram meets its specification by using semantic preserving transformations until it manifestly type-

checks using a type-checking algorithm. Since we use types as our specification of program cor-

rectness, we are demonstrating satisfaction of our specification by use of program transformation.

Because we actually transform programs at the level of proofs and supercompilation uses cyclicity

of structure, we find it natural to work with cyclic proof and so we introduce a cyclic type theory.

In order to ensure that our program transformations are acceptable, we construct a bisimulation,

giving evidence that our transformation is justified and retaining the evidential character which is

the strength of type-checking.

30



We begin in Chapter 2 by giving a brief introduction to some of the technical machinery that is

needed to understand the subsequent chapters. This includes an introduction to: least and greatest

fixed points, the Coq proof assistant, the term language and type system used in this thesis and

some notations.

We describe cyclic proof in Chapter 4 as a type system. Cyclic proof is the use of self-reference

in proof structure. It turns out that such cycles are implicitly present in the type systems of most

standard functional programming systems but not generally represented explicitly. We represent

this cyclicity explicitly and use it as the foundation for our transformation systems.

We divide these cyclic proofs into two classes: pre-proofs and proofs, the former being a super-

set of the later. Proofs are those pre-proofs that we demonstrate are sound, a restriction discussed

in Chapter 4. This soundness condition ensures termination for inductive types and co-termination

for co-inductive types.

Our explicit representation of cyclic proof follows from ideas of Santocanale [76], Brotherston

[13], Bradfield & Stirling [12] and Cockett [18]. The approach we give here enables us to represent

recursion in a transparent fashion which works for both inductive and co-inductive types. Addi-

tionally, it provides simple descriptions of proof transformations which make use of recurrence

structure, in our case, supercompilation.

The formulation of cyclic proofs given here is novel. We are unaware of any descriptions of

cyclic proofs in a natural deduction style and none for System F. In addition, the term theory is

simplified by the use of function constants which enables more fluidity in the use of cyclicity. A

mechanisation of some important results such as progress, preservation and weak soundness have

been constructed in the Coq proof assistant.

In Chapter 3, we describe (potentially infinite) transition systems and how to associate a tran-

sition system with any term. Transitions systems serve as the basis for our semantics. We develop

a theory of equivalence with respect to these transition systems, showing two terms to be equiva-

lent if their transition systems are bisimilar. This bisimilarity is described formally in Section 3.3.

Important properties of this theory have been mechanised in the Coq proof assistant.

Once we have a suitable notion of equivalence we establish that our proof transformations are

meaning preserving in Chapter 5. Specifically we show that the transition systems associated with

a proof after proof transformation are bisimilar to the original. Thus we provide a new approach

to understanding the formal basis for the supercompilation family of program transformations.

Because of this preservation of bisimilarity we can use proof transformation not only to obtain
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bisimilar terms, but to establish the soundness of terms by demonstrating bisimilarity with a term

which is manifestly sound. This is done by describing a variant of the Modal µ-calculus and how

it relates to our type theory. We show that the soundness criterion for our type systems implies that

a modal logic formula related directly to the type of a term is satisfied for the transition system

associated with a term.

Similar approaches have been used in local model checking by Bradfield, Stirling et al. in [12],

[11]. The approach herein gives us an explicit bridge between the type theory of functional pro-

gramming languages, program transformation of these languages and techniques in model check-

ing. A similar approach to proving soundness for a functional language was demonstrated in [56],

however no explicit use was made of transition systems or temporal logics, and the type system

was very simple. Connections between type inhabitation and modal-logic have been noted before

[18] and work has been done in establishing explicit type theories for temporal logics [80] [61],

however, the present work gives a more complete description of the connection for a type system

of a functional programming language.

The connection between types and formulas allows us to think of types as modal properties

of transition systems, clarifying how we should interpret inductive and co-inductive types and en-

dows our proofs with explicit demonstrations of equivalence to terms which syntactically manifest

soundness.

In Chapter 7, we describe the mechanisation of some results, which is done with the proof

assistant Coq[8] and a System F+ supercompiler written in Haskell. Finally in Chapter 8 we give

a final assessment of the contributions of this work and directions for further research.
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Chapter 2

Preliminaries

2.1 Greatest and Least Fixed Points

The theory of greatest and least fixed points is central to both definitions of inductive and coin-

ductive types in our theory and later is needed for understanding how this relates to behaviour.

For this reason we present a brief introduction following from a more complete picture given by

Gordon in [31].

Inductive and co-inductive types are least and greatest fixed point solutions respectively to

equations of the form X = F X . It is called a fixed point because F leaves the solution fixed

under application. They are least or greatest depending on whether the solution is the smallest or

largest solution to the equation respectively.

There are restrictions on the form of F which require us to give some definitions. We take a

universal set U and choose F to be an automorphism (a map with identical domain and codomain)

on the power set of this set, F : P(U) → P(U). We assume that X and Y are drawn from this

power set, or more formally, X,Y ∈ P(U).

Definition 2.1.1 (Monotone function). A function is said to be monotone if whenever X ⊆ Y it

follows that F X ⊆ F Y .

With these definitions in hand we can proceed to obtain solutions to our equation by either of

two methods which are dual to each other. The duality can be seen by the reversal of the direction

of the inequalities and the interchange of union and intersection.

Definition 2.1.2 (Induction). The set µX.F X is
�
{X | F X ⊆ X}

Definition 2.1.3 (Co-induction). The set νX.F X is
�
{X | X ⊆ F X}
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Figure 2.1: Monotone Function

In order to see the practical use of these definitions it is useful to take the familiar example of

the natural numbers, N. We can take F X to be {0} ∪ {S(x) | x ∈ X} a set which is parametric

in some set X . The natural numbers are then defined to be:

N ≡ µX.{0} ∪ {S(x) | x ∈ X}

We can think of this definition as building up our set, proceeding from a least set. To see how

this works we can take an initial, empty-set ∅ and build up partial solutions, which we will index

with an integer.

N0 ≡ F ∅ = {0} ∪ {S(x) | x ∈ ∅} = {0}

This set N0 is not yet a solution as F N0 �⊆ N0. We can however take a further iteration and

get closer.

N1 ≡ F N0 = {0} ∪ {S(x) | x ∈ {0}} = {0, S(0)}

As we take the limit of this process of partial constructions, we obtain a solution N which

contains all of its predecessors (a fact which is ensured by the monotone property).

We can however obtain a solution which contains the point at infinity by taking the greatest-

fixed point. Instead of building-up we will use a process of restricting-down. We will call this

dual construction, the co-natural numbers, or N.

That N ⊆ N follows from the fact that the greatest fixed point is the union of solutions to

the inequality X ⊆ F X which holds for N. The greatest solution also contains the point at

infinity, provided that we understand ∞ to be an element such that S(∞) = ∞. This is true since

N ∪ {∞} ⊆ F (N ∪ {∞}) which can be simplified as follows:
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F (N ∪ {∞}) = {0} ∪ {S(x) | S(x) ∈ (N ∪ {∞})} = N ∪ {S(∞)} = N ∪ {∞}

This process of building-up elements of inductive sets allows us to deconstruct any element of

such a set by a finite process of deconstruction. This process of deconstruction is recursion, and is

crucial to ensuring termination of algorithms in functional languages.

Dually, the process of restricting-down to obtain elements requires us to provide elements

through a potentially infinite process of construction. This leads us to the dual of recursion, namely

co-recursion. Any element in a co-inductive set must be produced in a way that ensures that it has

an acceptable behaviour (in the case of N, being one-more than some number) and is drawn from

a set for which all elements have such a behaviour.

Our dual concept of co-induction is therefore about the behaviour of objects, as opposed to

their finite construction. These infinite objects can be infinite streams, infinite trees or functions

of an infinite (or indefinite) number of arguments.

2.2 Coq

In this work we make use of the proof assistant Coq for some examples and to mechanise some of

the proofs. Coq makes extensive use of the Curry-Howard correspondence, identifying proofs and

terms, and all propositions are a type which must be satisfied by a (co)terminating term. It allows

proofs to be supplied as a term in a type theory: The Calculus of (Co)Inductive Constructions.

The term is then checked by a type-checker to ensure that a derivation for the term, with the given

type, is possible. The Coq proof assistant also provides a number of tools to help automate the

creation of the terms meeting particular types, including a flexible tactic language for doing so.

The separation of the proof/term creation step from type checking allows quite a lot of freedom

of implementation and an open architecture as it is not necessary to ensure under all conditions

that a technique is correct since the eventual proof will have to be supplied to the type-checker

in any event. The method does however have the disadvantage that enormous proofs can become

infeasible as every step of the proof must be maintained for the type checker.

Coq has sorts which are composed of either Set, Prop or Type. Prop is a special sort which

exhibits proof irrelevance, a feature which we discuss briefly in Section 2.3. For our purposes we

can ignore the distinction.

Terms in Coq are composed of sorts, constants, variables, type abstraction and term abstrac-

tion. We can think of Coq as allowing terms to depend on types as first class objects and types to
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depend on terms, putting it in the far corner of the Barendregt Cube in Figure 1.9.

A typical Coq program will have some data-types and functions which act on the data-types.

Theorems and Lemmas are represented by a program which inhabits or type checks for a type

which is the Theorem or Lemma to be described.

2.2.1 Theorems and Properties

To demonstrate how this principle works we can look first at some simple propositions and their

inhabitants. In Figure 2.2 we see a very simple theorem. This theorem demonstrates that conjunc-

tion of propositions is commutative.

Reserved Notation "x /\ y" (at level 80, right associativity).

Inductive and (A B:Prop) : Prop :=
conj : A → B → A ∧ B

where "A /\ B" := (and A B) : type scope.

Theorem and is commutative : ∀ A B, A ∧ B → B ∧ A.
Proof.
refine

(fun (A B : Prop) (p : A ∧ B) ⇒
match p with
| conj a b ⇒ conj B A b a

end).
Defined.

Figure 2.2: Commutivity of Conjunction

The type A∧B is the type of a pair of propositions and this data-type is introduced by way of an

inductive data-type declaration. The declaration states that we have an inductive type, parametric

in (or dependent on) two other types, A and B which are propositions. We can introduce this type

by way of a single constructor, conj. This conj constructor will take a proof of A (which we can

also read as a term of type A) and a proof of B.

We demonstrate the theorem we wish to prove using Theorem with the name and is -

commutative to which we attach a proposition, or type, which we wish to prove, which in

this case is: ∀ A B,A ∧ B → B ∧ A. We are essentially creating a new constant with name

and is commutative which we suggest has the type of ∀ A B,A ∧ B → B ∧ A. In order

to show that we are justified in suggesting such a constant exists we must show that the type is

inhabited by at least one term.

The term we supply is a function. The reason for this is that the proposition is parametric in

two types, so we must have an abstraction over the two types so that we can work with arbitrary

36



types. In addition, the implication is a statement that the proof is parametric in a term of type

A ∧B, that is a pair of terms each of type A and B respectively.

Consequently, our proof is a function, introduced with the keyword fun taking three param-

eters: A, B and a pair A ∧ B. We now make use of a principle of inductive types, namely the

capacity to perform elimination on the type by making use of the fact that they can only be intro-

duced by some finite number of constructors. Since in our case we have only a single constructor,

we have a match clause with only one branch, the case where the type was introduced with the

constructor conj. This constructor has two arguments, the two terms of type A and B, hence our

elimination supplies us with these two terms, which we bind to the variables a and b.

Now that we have these two terms, we can reconstruct a term of type A ∧ B by using the

constructor conj again and simply swapping the terms. Since the type of conj is parametric in

two other types, when creating a new term of this type we have to supply these. This is why we

actually have four parameters to the constructor in the term (conj B A b a). This final term is of

the appropriate type and we can then end our proof. The final line makes use of the Defined

keyword, which invokes the type-checker to see if the term does in fact have the type we have

stated. If it does not, then the entire theorem is rejected. If it does pass the type checker, then

we are allowed to use the constant and is commutative as a representative of this type and our

theorem can be considered to be true.

2.2.2 (Co)Recursion and (Co)Induction

There are a great number of mathematical objects and theorems which rely on a notion of induc-

tion. Induction is essentially the process of building up structures in a finite way starting with

some number of base cases which are taken to hold by definition.

As we saw above, the conjunction was introduced as an inductive type. However this type in

fact did not have any self-reference and therefore was in some sense degenerate. More interesting

inductive types make use of self-reference.

Properties of such structures can be proved by using recursion, which demonstrates how to

build up the property by demonstrating it on the base cases and that we can derive the property

given we assume that it holds of everything below. In order to have a notion of below we require

that we have a well-founded relation which gives us an ordering.

Since this is ubiquitous in the mathematical literature, in order to use type theory as a meta-

mathematical language, it was useful to extend it to include inductively defined structures and
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principles of induction including finite objects which can naturally be expressed by inductive types

[50].

Informally we can think of inductive types as being formed from a finite number of construc-

tors with the possibility of some self-reference. A very common example of such an inductive

type can be represented as follows:

µN ≡ 0 : N | S : N → N

This definition of the natural numbers (or Peano numbers) gives a constant 0 and a successor

function S which can be thought of as one plus some number which is already in N and gives us a

way to get the next value.

We use the prefix µ to refer to the fact that we are interested in viewing the type N as all objects

which are produced by some terminating process.

Coupled with these structures is a principle of elimination. This elimination principle allows

us to deconstruct our inductive types in order to describe properties which hold over the struc-

tures. The elimination principle we need for the natural numbers corresponds closely with the

well known Axiom of induction.

Definition 2.2.1 (Axiom of Induction). ∀P.P 0 ∧ ∀m.P m → P (S m) → ∀n.P n

One can see the basic approach involved in the generation of this principle where each con-

structor is individually proved to meet the property in question (in this case our constructors are

0 and S) assuming the properties hold on the sub-cases. The generalisation of this approach to

arbitrary inductively defined types is known as structural induction.

In fact we do not need to write down such a strict principle of induction for each data-type, we

can (with certain technical restrictions) safely allow such principles to be generated on the fly.

We do this by using recursion. The Coq proof-assistant takes such an approach. We can

therefore use Coq to help us get an intuition about how to perform inductive proofs in type theory.

The natural numbers in Coq can be written much as we did before, by describing the construc-

tors. The syntax of the definition of the natural numbers is as follows:
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Inductive Nat : Set :=

| O : Nat

| S : Nat → Nat.

Inductive lt : Nat → Nat → Prop :=

| lt O : ∀ n, O < S n

| lt S : ∀ n m, n < m → ((S n) < (S m))

where "n < m" := (lt n m) : nat scope.

This definition of Nat states that there are two constructors, O and S. The O constructor is a

natural number and the S constructor is a map from the natural numbers to themselves.

In addition we define a relation lt, which describes what it means for one natural number to

be less than another. We do this with a base case, lt O, which relates that a number plus one,

is always greater than zero, or more formally ∀ n.O < S n. The next case, lt S states that we

can always add one to both sides of the inequality, or ∀ n m. n < m → (S n) < (S m). We

introduce a notation < for lt to make proofs easier to read.

Supposing we want to demonstrate a property over all natural numbers such as the following:

∀n.∃m.n < m. That is, all natural numbers are bounded by some other natural number. In Coq

we might write this proof as follows:

Require Import Nat.

Definition bounded : ∀ n, ∃ m, n < m :=

(fix bounded (n : Nat) : ∃ m, n < m :=

match n as n0 return ∃ m, n0 < m with

| O ⇒ ex intro (fun m : Nat ⇒ O < m) (S O) (lt O O)

| S n1 ⇒

match (bounded n1) with

| ex intro m P ⇒

ex intro (fun m0 : Nat ⇒ S n1 < m0) (S m) (lt S n1 m P)

end

end).

The form of the proof looks very much like a functional programming language, and indeed
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we are using the Curry-Howard correspondence to demonstrate that the type of the program is

inhabited by a proof, or program term.

The universal quantification from our original statement is represented as a recursive function

bounded, taking a parameter n and showing that in all cases, we can produce the result type of

interest, ∃m,n < m. We know that bounded is recursive because of the fix keyword. It should

be noted that the definition name bounded, is being punned with the fixpoint variable bounded.

The definition name refers to the entire term, while the fixpoint variable is only in scope under the

fix binder.

The elimination is performed by a match statement which deconstructs n into two sub-cases,

one where n = 0 and one where n = S n1. Existentials are represented as a dependent pair. That

is, they are a pair of a term, and a proof that the term meets some property. We introduce them

by using the existential constructor ex intro. In this case we use ex intro, together with the term

that meets the property of interest, (S O), along with the proof, (lt O O), that zero is less then a

successor of a number and that it really does meet the property we are interested in (in this case

0 < m).

We can think of the justification of the use of our prior case as being based on the fact that

we have a recursive call which establishes this fact for the sub case, (bounded n1), which we can

then reuse to provide our n + 1 step. That the process terminates is assured by the fact that we

only work on sub-terms when we make recursive calls. We deconstruct the existential for the

prior case in order to reuse its proof P and m to construct a new proof that covers the m + 1

case. We do this by using the Coq library again which contains a lemma lt S with the type

∀n m.n < m → S n < S m. Since our subcase proves the n < m case, we simply apply this

lemma to produce the proof we need.

The dual principle of coinduction has associated with it coinductively defined types and core-

cursion as a method of generating proofs of properties. However, instead of recursing on ever

smaller arguments terminating at a base case, we will be adding a coinductive constructor at each

corecursive step.

An example in Coq using the co-natural numbers demonstrates the method of construction for

the point at infinity.
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CoInductive conat : Set :=

| O : conat

| S : conat → conat.

Definition inf : conat := (cofix inf : conat := S inf ).

Here we demonstrate the coinductive property by first using the constructor S and then we

are able to safely assume that inf satisfies a coinductive property (namely, that it is a co-natural

number). Essentially we are showing that we can always do the next thing, and so, despite being

non-terminating or of infinite data-type, we know that we will always produce a constructor of

the appropriate type. This program is productive and will not lead to non-termination without

behaviour. Similarly with our bounded definition, we are punning the co-fixpoint variable, inf ,

with the name of the term.

The introduction of co-inductive types has given us the ability to work with server-like or

reactive systems, since we can have infinite behaviours (some of which may be to react infinitely

to stimuli).

However, this slight change leads to a host of complications. We now are in danger of losing

many of the properties that we had previously with finite proofs. Normalisation can no longer be

relied upon to give us a notion of equivalence that is very useful, and neither is it obvious how

our computation should take place as the Church-Rosser property will not hold. The choice of

evaluation order is now important in leading us to results.

In this work, coinduction plays a central role. It is used to provide infinite data types at

the program level. However it is also used at the metalogical level to prove properties about the

behaviour of our term calculus and its type system. Specifically we will be manipulating programs

in such a way that we ensure that we retain their properties even if they are non-terminating.

2.3 Equality

At the core of many theories of mathematical reasoning is some notion of how to decide when

one thing is like another. In fact the question of equality is not a simple question. Indeed, whether

one thing is like another largely depends on what we would like to distinguish, and there are many

ways to settle the question including canonical forms, equivalence relations and isomorphisms.

It is often the case that canonical forms are used to decide the problem of equality. In type
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theory and proof theory, normalisation, a process whereby we find normal forms or canonical ref-

erents is employed. This has the advantage of keeping the process of computation tightly coupled

with proofs.

This approach however is not always fruitful. Normal forms can not be found in all formal

systems, as we saw for the untyped λ-calculus. When normal forms can always be found, it

proves to be a double edged sword. The very fact of a strong normalisation theorem precludes

the possibility of Turing-completeness. This fact follows from a very simple application of the

Halting problem. The Halting Problem is well known to be undecidable, and hence it follows that

a Turing-complete system will not always exhibit normal forms.

In some cases, we may not be interested in full Turing completeness, but rather the fact that

certain programs meet various important properties. However, we will find again that it is not al-

ways simple to represent equality as the result of a normalisation procedure, especially for infinite

programs.

In type theory there are also cases in which the structure of the proof is unimportant as the

information of consequence is completely constrained by the type, or the type is the only item of

interest. This leads to a notion of proof irrelevance. Proof irrelevance identifies all proofs of a

particular type. That is, we have an equivalence class of terms which does not distinguish between

any two terms which have the same type.

This granularity however is far too coarse for our purposes. We are interested in programs

which may be underspecified by their types. That is, we may have several programs which all are

inhabitants of a type, but which we wish to distinguish. To see where we might run into problems

with proof irrelevance, we can use the type Bool as an example. It has two inhabitants, true and

false and both are proofs of Bool. Identifying true and false in programs could lead to some

obvious problems.

So what type of equivalence are we looking for? We would like to equate programs, and

therefore proofs, which have the same behaviour, for a suitable notion of behaviour. Defining

behaviour, it turns out, is slightly more involved than it might at first seem. In order to do so,

we have to have some idea of what constitutes behaviour. Then we have to have some way of

demonstrating an equivalence between these two types of behaviour.

Contextual equivalence was recognised fairly early on (see especially Morris [59]) to give a

sensible answer to the question of what it means to have the same behaviour. Contextual equiva-

lence answers the question by requiring that two programs must behave identically in all possible
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CoInductive conat : Set :=
| O : conat
| S : conat → conat.
Definition inf : conat := (cofix inf : conat := S inf ).
Definition inf2 : conat := (cofix inf2 : conat := S (S inf2)).

Figure 2.3: Program for inf and inf2

surrounding contexts to be considered behaviourally identical. In other words, no amount of pro-

gramming in the term language will allow you to distinguish two terms if they are contextually

equivalent.

In some sense we can understand these contexts to be predicates over the behaviours of terms.

In the following definition we understand B to be the type of booleans, having two constants, true

and false which inhabit the type.

This description of equivalence is powerful, but it is also technically challenging to prove. It

requires quantification over contexts, which are relatively cumbersome. In addition, filling holes

in contexts does not respect α-equivalence. This means we lose our first notion of equality modulo

renaming of variables.

For this reason we will look to establish equality using an alternative method. It turns out

that there is another method of demonstrating equivalence of behaviour over systems with even an

infinite number of potential behaviours. This was discovered by Milner in the context of transition

systems, which we will describe in more detail in Chapter. For now, we would like the reader to

imagine the graphs in Figure 2.3 and Figure 2.4 as abstract depictions of the behaviour.

Going back to our example of the co-natural numbers, we can construct a program which

contains two terms, inf and inf2 which we have in Figure 2.3.

Visually, we can view these systems as being represented by the following S actions between

states, as in Figure 2.4. One of the systems emits an S and returns to the initial state. The other

system emits an S which leads to a new state, followed by an S returning to the initial state.

These two systems are, however, identical in some sense. We can make explicit the sense in

which they are the same by means of a coinductive relation that demonstrates their equivalence

which is given in Figure 2.5.

This relation is reflexive by construction, but it also has a rule that if we can demonstrate that

a further pair of terms is coeq we can demonstrate that the case with successors is coeq. That
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Sinf S S

S inf2

inf2

Figure 2.4: Two Bisimilar Systems

CoInductive conat : Set :=
| O : conat
| S : conat → conat.
Definition inf : conat := (cofix inf : conat := S inf ).
Definition inf2 : conat := (cofix inf2 : conat := S (S inf2)).

CoInductive coeq : conat → conat → Prop :=
| Coeq refl : ∀ (t:conat), coeq t t
| Coeq next : ∀ (t s:conat), coeq t s → coeq (S t) (S s).

Definition decomp (x : conat) : conat :=
match x with
| O ⇒ O

| S x’ ⇒ S x’
end.

Definition decomp eql : ∀ x, x = decomp x :=
fun x : conat ⇒
match x as c return (c = decomp c) with

| O ⇒ refl equal O

| S c ⇒ refl equal (S c)
end.

Definition inf coeq inf2 : coeq inf inf2 :=
cofix inf coeq inf2 : coeq inf inf2 :=

eq ind r (fun c : conat ⇒ coeq c inf2)
(eq ind r (fun c : conat ⇒ coeq (decomp inf) c)

(Coeq next inf (S inf2)
(eq ind r (fun c : conat ⇒ coeq c (S inf2))

(Coeq next inf inf2 inf coeq inf2) (decomp eql inf)))
(decomp eql inf2)) (decomp eql inf).

Figure 2.5: Coequivalence

44



this relation is coinductive will allow us to perform the following proof.

Theorem 2.3.1 (Behavioural equivalence of inf and inf2). coeq inf inf2

Proof. The proof proceeds coinductively with the coinductive hypothesis that coeq inf inf2. First,

we unfold the definitions of inf and inf2 to obtain S inf and S (S inf2) respectively. We can then

apply the constructor Coeq next of the coeq relation. This leaves us with coeq inf (S inf2) as

our goal. We can unfold the definition of inf to S inf yielding the goal coeq (S inf) (S inf2). Once

again we can apply the constructor coeq next to obtain coeq inf inf2 which is our coinductive

hypothesis.

This proof demonstrates an equivalence between inf and inf2. The central concept of equiv-

alence used in this work will be a coinductive equivalence relation using a similar technique to

demonstrate such a behavioural equivalence of program terms known as a bisimulation.

It is important to notice that in the proof we make use of the property that we are trying to

prove. It should be clear that this technique cannot be used in an unrestricted way or it would lead

to an inconsistent logic as we could generate a proof for any type simply by assuming the thing

we are trying to prove.

We ensure that this vacuous circularity cannot occur by insisting that we never make use of the

coinductive hypothesis until after we have made use of a constructor from the coinductive type we

wish to show has a proof. In the example above, we use Coeq next prior to the use of the coin-

ductive hypothesis. This principle of giving a constructor prior to use of the coinductive hypothesis

is known as the guardedness condition which we will define more formally in Chapter 4.

Guardedness is one method of ensuring that proofs are productive. Informally, productivity

means that when we examine the resulting coinductive proof by elimination, we are assured of

getting a constructor. The degenerate case (cofix f : A := f ) clearly does not satisfy this principle.

The approach of using coinduction to describe program behaviour has surprising consequences.

We find fruitful connections can be drawn between type theories and modal logics with fixed

points. Specifically we will find a fragment of the Modal µ-Calculus can be used to demonstrate

that programs satisfy a type (that is, type inhabitation). This allows us to transform our problem

of type inhabitation to the problem of determining the satisfaction of temporal formulae.

In previous work [37] we have shown how circularities can be recognised by the graph struc-

ture of behaviours. However, it is not necessary for vacuous circularity to be avoided in the case

of program transformation of general recursive programs. There is merely a requirement that the
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programs be contextually equivalent.

2.4 Language

We use a variant of Girard’s System F, which we call System F+ extended with inductive and

co-inductive types which is presented in Figure 2.6. We use this type system for several reasons.

Firstly, it is less difficult to work with than its more sophisticated relatives on the Barendregt cube

[7] (see Figure 1.9) yet it is still sophisticated enough to obtain interesting results.

While System-F is simpler than type theories which can be used for practical languages such as

Haskell [81], it is rich enough that the difficult problems found in practical programming language

type systems still arise and so it can inform the development of practical solutions. This allows us

to retain an economy of presentation while still dealing with difficult questions.

Variables

Var � x, y, z

Type Variables

TyVar � X,Y, Z

PosVar � X̂, Ŷ , Ẑ

Function Symbols

Fun � f,g

Types

Ty � A,B,C ::= 1 | X | X̂ | A → B | ∀X. A | A+B | A×B

| νX̂. A | µX̂. A

Terms

Tr � r, s, t, u, v ::= x | f | () | λx :A. t | ΛX. t | r s | r[A]
| left(t, A+B) | right(t, A+B) | (t, s)
| inν(t, A) | outν(t, A)
| inµ(t, A) | outµ(t, A)
| case r of {x1 ⇒ s | x2 ⇒ t}
| split r as (x1, x2) in s

Contexts

∆ ::= · | ∆ ∪ {X} | ∆ ∪ {X̂} Type Variable Contexts
Γ ::= · | Γ ∪ {x :A} Variable Contexts

Figure 2.6: System F+ Syntax

Briefly, we include the usual variables x, constants f , lambda terms λx :A. t, applications r s,
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type abstractions ΛX. t and type applications r[A].

We add to the usual System F language a unit type, 1, together with its inhabitant (). This

will represent a program for which no observations can be made. By observation we mean, there

is no reduction which can be performed on elements of unit type. This element is called a terminal

object in terms of Category theory [69].

To this we can add sum types, A + B together with two terms which provide right and left

injections into those types, left and right respectively. In addition we have an elimination term

case which allows us to map to some arbitrary type C.

We also include pairing (r, s) to inject into the product type A × B and an eliminator, split.

These are all effectively just a short hand for the usual Church encoding of sums and products (see

Appendix B).

To these algebraic constructions we add fixed points. We have two sets of (in) and (out) terms,

one for inductive types (corresponding with least fixed points or initial algebra semantics µX̂. A)

and one for co-inductive types (corresponding with greatest fixed points, or final co-algebraic se-

mantics νX̂. A). We distinguish the type variables used in these types from those using universal

quantification as we need to be more restrictive about what constitutes a well formed type. The re-

striction is that the types be strictly positive with respect to the use of (co)inductive type variables.

Since we do not require this of universal quantification we need to segregate the two. The positiv-

ity is enforced by the formation rules in Figure 2.7. Essentially we must insist that (co)inductive

type variables are not present in the context of the left hand side of the (→) type.

Unlike the other terms which we introduce (out) and (in) are not just syntactic sugar for Church

encodings. While it is possible to encode greatest and least fixed points in System F directly

(see Appendix B), without careful attention to the formation rules we would have introduced the

possibility of non-well-founded terms. The reason for this is subtle but is due to the fact that least

and greatest fixed points for a particular given functor must be constructed explicitly when using

Church encodings and we cannot assume their existence a priori without some further restriction

on the type.

Substitutions of a single variable will be written [x := t] or [X := A] for term and type

substitutions respectively. We give the definition of substitution defined as a recursive function on

terms and types in Figure 2.8 and Figure 7.6 respectively.

There also is the need to introduce recursive terms. Recursive terms in this presentation are

represented using function constants. Function constants are drawn from a countably infinite set
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Universally Quantified Type Variables

UV (∆ ∪ {X̂}) := UV (∆)
UV (∆ ∪ {X}) := {X} ∪ UV (∆)

Context Formation

· TyCtx
∆ TyCtx X �∈ ∆

∆ ∪ {X} TyCtx
∆ TyCtx X̂ �∈ ∆

∆ ∪ {X̂} TyCtx

∆ � · Ctx
∆ � Γ Ctx x �∈ dom(Γ) ∆ � A type

∆ � Γ ∪ {x :A} Ctx

Type Formation

UV (∆) � A type ∆ � B type
∆ � A → B type

∆ ∪ {X̂} � A type α ∈ {ν, µ}
∆ � αX̂. A type

∆ � A type ∆ � B type ◦ ∈ {+, ×}
∆ � A ◦B type ∆ � 1 type

∆ ∪ {X̂} TyCtx

∆ ∪ {X̂} � X̂ type

∆ ∪ {X} TyCtx
∆ ∪ {X} � X type

∆ ∪ {X} � A type
∆ � ∀X. A type

Figure 2.7: Formation Rules

Term Substitution

x[x := t] ≡ t

x[y := t] ≡ x if x �= y

f[x := t] ≡ f
(r s)[x := t] ≡ (r[x := t]) (s[x := t])
(λy :A. r)[x := t] ≡ λy :A. r[x := t]

Provided that λy :A. r is α-converted to use
a fresh variable if y ∈ {x} ∪ FV (t).

(ΛX. r)[x := t] ≡ ΛX. r[x := t]
inα(s,A)[x := t] ≡ inα(s[x := t], A)
outα(s,A)[x := t] ≡ outα(s[x := t], A)
()[x := t] ≡ ()
right(s,A)[x := t] ≡ right(s[x := t], A)
left(s,A)[x := t] ≡ left(s[x := t], A)
(s, u)[x := t] ≡ (s[x := t], u[x := t])
case r of {y ⇒ s | z ⇒ u}[x := t] ≡ case r[x := t] of {y ⇒ s[x := t] | z ⇒ u[x := t]}

Provided that λy :A. s or λz :A. u

are α-converted to use a fresh variable
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

split r as (y, z) in u[x := t] ≡ split r[x := t] as (y, z) in u[x := t]
Provided that λy :A. λz :A. u is
α-converted to use a fresh variable for y or z
if y ∈ {x} ∪ FV (t)
or z ∈ {x} ∪ FV (t) respectively.

Figure 2.8: Term Substitution for System F+
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Type Substitution on Terms

x[X := A] ≡ x

f[X := A] ≡ f
()[X := A] ≡ ()
(r s)[X := A] ≡ (r[X := A]) (s[X := A])
(r[A])[X := A] ≡ (r[X := A]) (A[X := A])
(λx :A. r[X := A] ≡ λx :A[X := A]. r[X := A]
inα(s,B)[X := A] ≡ inα(s[X := A], B[X := A])
outα(s,B)[X := A] ≡ outα(s[X := A], B[X := A])
right(s,B)[X := A] ≡ right(s[X := A], B[X := A])
left(s,B)[X := A] ≡ left(s[X := A], B[X := A])
(s, u)[X := A] ≡ (s[X := A], u[X := A])
(case r of {y ⇒ s | z ⇒ u})[X := A] ≡ case r[X := A] of

{ y ⇒ s[X := A]
| z ⇒ u[X := A]

(split r as (y, z) in u)[X := A] ≡ split r[X := A] as (y, z) in u[X := A]

Type Substitution on Types

X[X := A] ≡ A

X[Y := A] ≡ X if X �= Y

1[X := A] ≡ 1
B + C[X := A] ≡ B[X := A] + C[X := A]
B × C[X := A] ≡ B[X := A]× C[X := A]
(B → C)[X := A] ≡ B[X := A] → C[X := A]
(∀Y. B)[X := A] ≡ ∀Y. B[X := A]

Provided that (∀Y. B) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(ΛY. r)[X := A] ≡ ΛY. r[X := A]
Provided that (ΛY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

(αY. r)[X := A] ≡ αY. r[X := A], α ∈ {ν, µ}
Provided that (αY. r) is α-converted to use
a fresh type-variable if Y ∈ {X} ∪ FV (A).

Figure 2.9: Substitution for System F+
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Fun. With every term containing function constants is associated a function Ω which maps a

function constant f to a term t, Ω(f) = t, where t may itself contain function constants in the

domain of Ω. This allows us to deal with recursive and mutually recursive functions freely and

without difficulty. All of our proofs will be parametric in this Ω as a constant and so it will be

left implied. In addition to the constant Ω we also introduce a constant Ξ which associates each

function symbol with a type. That is if Ξ(f) = A then there is a derivation of · ; · � Ω(f) : A

under the assumption that cdot ; · � f : A. In other words, we are only interested in working with

well typed programs in the usual functional programming sense.

For a term t with type A in a variable context Γ and type variable context ∆ we write ∆ ;Γ �

t : A. A type derivation must be given using the rules given in Figure 2.10. Each elimination rule,

which corresponds to some sort of observation is denoted with an E, with a superscript indexing

the type which they eliminate. Introduction rules, which correspond with observable behaviour,

are given by I , together with a superscript indexing the type that they introduce.

Static Semantics

∆ � Γ ∪ {x :A} Ctx
IVar

∆ ;Γ ∪ {x :A} � x : A

∆ ;Γ ∪ {x :A} � t : B
I→

∆ ;Γ � (λx :A. t) : A → B

∆ ;Γ � r : A → B ∆ ;Γ � s : A
E→

∆ ;Γ � (r s) : B

∆ ∪ {X} ;Γ � t : A
I∀

∆ ;Γ � (ΛX. t) : ∀X. A

∆ ;Γ � t : ∀X. A ∆ � B type
E∀

∆ ;Γ � t[B] : A[X := B]
IΩ

∆ ;Γ � f : Ξ(f)

I1

∆ ;Γ � () : 1
∆ ;Γ � r : A ∆ ;Γ � s : B

I×
∆ ;Γ � (r, s) : (A×B)

∆ ;Γ � t : A ∆ � B type
I
+

L∆ ;Γ � left(t, A+B) : (A+B)

∆ ;Γ � t : B ∆ � A type
I
+

R∆ ;Γ � right(t, A+B) : (A+B)

∆ ;Γ � t : αX̂. A α ∈ {µ, ν}
Eα

∆ ;Γ � outα(t,αX̂. A) : A[X̂ := αX̂. A]

∆ ;Γ � t : A[X̂ := αX̂. A] α ∈ {µ, ν}
Iα

∆ ;Γ � inα(t,αX̂. A) : αX̂. A

∆ ;Γ � r : A+B ∆ ;Γ ∪ {x :A} � t : C ∆ ;Γ ∪ {y :B} � s : C
E+

∆ ;Γ � (case r of {x ⇒ t | y ⇒ s}) : C

∆ ;Γ � s : A×B ∆ ;Γ ∪ {x :A} ∪ {y :B} � t : C
E×

∆ ;Γ � (split s as (x, y) in t) : C

Figure 2.10: System F+ Proof Rules

Inductive and co-inductive types are described using a least and greatest fixed point notation,
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µX̂. A and νX̂. A, respectively. Intuitively the least fixed point corresponds with finite data-types

while the greatest fixed point corresponds with potentially infinite data-types.

The language makes use of iso-recursive types[70] (explicit folding and unfolding of recursive

types) which are introduced with explicit type coercions (in) and (out). The use of iso-recursive

types introduces the possibility of non-termination if the type is not given some additional restric-

tion as was described previously. We will restrict the form of types which can be used with the

(Iα/Eα) rule to meet an additional positivity condition on the structure of types following on from

the presentation given in [68]. The positivity restriction requires that all uses of the α rules close

over a variable which occurs strictly positively.

We introduce this positivity condition on types because an unrestricted version of inductive and

coinductive types can lead to inconsistency. To see that this is the case we can use the example of

the following type D ≡ νD̂. D̂ → D̂ (this is related to the domain equation for the λ-calculus,

see [77]). With this type we can construct the following proof:

· � {x :D} Ctx
· ; {x :D} � x : D

· ; {x :D} � outν(x,D) : D → D
· � {x :D} Ctx
· ; {x :D} � x : D

· ; {x : D} � outν(x,D) x : D
· ; · � λx :D. outν(x,D) x : D → D

If we take the term at the base of the tree λx :D. outν(x,D) x and call it ω we can form a

proof:

· ; · � ω : D → D
· ; · � ω : D → D
· ; · � inν(ω,D) : D

· ; · � ω inν(ω,D) : D

This proof is clearly a problem, since despite having no cyclic structure and not making use of

function constants, it will never normalise to a value. It is not a productive proof and should not

be allowed in a coinductive type. The source of the problem stems from the non-monotonicity (as

described in Section 2.1) of the functor F X = X → X and hence no guarantee of the existence

of greatest or least fixed points. Positivity is not the only method of ensuring that such fixed-points

exist, it is possible to show that other restrictions will also lead to consistent proofs. In System F,

by means of Church encodings (as in Appendix B), all terms which have the form of a constructor

must be demonstrated explicitly. This obviates the problem as System F is strongly normalising.

In fact, it is possible to exhibit Church encodings for recursive types which violate the positivity

condition, but which do not lead to inconsistency, a fact guaranteed by the strong normalisation of

System F (see AppendixC).
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With our terms and the static description of the language we also need to present our dynamic

rules. We will first describe a series of experiments, or atomic contexts which correspond to

elimination rules and which will induce a deterministic reduction strategy. This is in contrast to

our former description of the evaluation relation for System F which was not deterministic as it

included both call-by-name and call-by-value reduction. The experiments make use of a privileged

variable (−) which is the redex. The Experiments are presented in Figure 2.11.

Experiments

E[−] := − s case − of {x ⇒ r | y ⇒ s}
− A split − as (x, y) in r

outα(−, A)

Figure 2.11: System F+ Experiments

These atomic experiments induce the deterministic (functional) reduction relation given in

Figure 2.12. The left hand side of the reductions are induced in the sense that inversion on the

typing relation allows only the terms provided as redexes to the experiments. Inversion of the

typing relation is simply using the formation rules for typing to determine what restrictions are

present on the antecedents. It is therefore a property of the well-typedness of terms. We give a

more comprehensive description in Section 2.5.

We write down the structural rules for evaluation which allows us to decend into the redex

position over a general relation R as (s Rs t). We will then form the evaluation relations as the

closure under this structural rule.

Using the above provided atomic experiments we can then combine experiments to form more

general contexts by composition of experiments.

E∗[−] := E0[· · ·En[−]]

Here we have some context E∗[−] composed of a number of experiments. This description of

contexts in terms of atomic experiments will allow us to characterise the behaviour of terms and

will lead to our notion of equivalence.

In order to talk about contextual equivalence, which we will need later and discuss in Sec-

tion 2.3, we will need a definition for values. This definition is lazy in the sense that we do not

look further than the top level term constructor.

Definition 2.4.1 (V). A term v is a value, which we write v ∈ V if v is in the grammar:

λx :A. r | ΛA. r | inα(r, U) | (r, s) | left(r, A+B) | right(r, A+B)
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Reduction Rules

(λx : A.r) s �1 r[x := s] (ΛX.r) A �1 r[X := A]

outα(inα(r, U), U) �1 r f �δ Ω(f)

case left(r, A+B) of {x ⇒ s | y ⇒ t} �1 s[x := r]

case right(r, A+B) of {x ⇒ s | y ⇒ t} �1 t[y := r]

split (r, s) as (x, y) in t �1 t[x := r][y := s]

Structural Rules

r R r�

r Rs r�
r Rs r�

r s Rs r� s
r Rs r�

r A Rs r� A
r Rs r�

outα(r, U) Rs outα(r�, U)

r Rs r�

case r of {x ⇒ s | y ⇒ t} Rs case r� of {x ⇒ s | y ⇒ t}

r Rs r�

split r as (x, y) in t Rs split r� as (x, y) in t

Figure 2.12: System F+ Evaluation

Evaluation Relations

r �n s ::= r �s
1 s

r � s ::= r �s
δ s ∨ r �n s

r R+ s ::= r R s ∨ (∃r�.r R r� ∧ r� R+ s)
r R∗ s ::= r = s ∨ r R+ s

r ⇓ s ::= r �∗ s ∧ s ∈ V
r ⇓ ::= ∃s.r ⇓ s

r ⇑ ::= ∃s.r � s ∧ s ⇑

Figure 2.13: Relations Related to Evaluation

In Figure 2.13 we write �+ as the transitive closure and �∗ as the reflexive transitive closure

of the one-step evaluation relation. We provide a short hand for reduction to a particular value s as

r ⇓ s, and reduction to some value as r ⇓. Divergence is written as r ⇑ and it can be established

that (r ⇑) ↔ ¬(r ⇓).

2.5 Inversion

We make extensive use of inversion on the typing relation. The basic idea is that a given type can

only be introduced using particular constructors from the typing relation. This corresponds to a

case analysis on which formation rules could produce a given type, with subsequent elimination

of cases which would arrive at a contradiction. The inversion rules are given in Figure 2.14. The

proof of each rule follows directly from the definition of the typing relation.
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If ∆ ;Γ � x : A, then ∆ � Γ ∪ {x :A} Ctx.
If ∆ ;Γ � λx :A. t : C then C = A → B for some B and ∆ ;Γ ∪ {x :A} � t : B.
If ∆ ;Γ � s t : C then ∆ ;Γ � s : A → C and ∆ ;Γ � t : A for some A.
If ∆ ;Γ � ΛX. t : C then C = ∀X. B for some B and ∆ ∪ {X} ;Γ � t : C.
If ∆ ;Γ � s[A] : C then ∆ ;Γ � s : ∀X. B and B = C[X := A] for some B.
If ∆ ;Γ � (s, t) : C then C = A×B and ∆ ;Γ � s : A and ∆ ;Γ � t : B for some A,B.
If ∆ ;Γ � split s as (x, y) in t : C then ∆ ;Γ � s : A×B and

∆ ;Γ ∪ {x :A} ∪ {y :B} � t : C for some A,B.
If ∆ ;Γ � left(t, A+B) : C then C = A+B and ∆ ;Γ � t : A.
If ∆ ;Γ � left(t, A+B) : C then C = A+B and ∆ ;Γ � t : A.
If ∆ ;Γ � case r of {x ⇒ s | y ⇒ t} : C then ∆ ;Γ � r : A+B and

∆ ;Γ ∪ {x :A} � s : C and ∆ ;Γ ∪ {y :B} � s : C.
If ∆ ;Γ � f : C then Ξ(f) = C.

Figure 2.14: Inversion

2.6 Explicit Substitution

In the following chapter we need substitutions in order to make precise our notion of a cyclic proof,

and to that end we produce a typing sequent for explicit substitutions. This typing will demonstrate

not only that every term of the type is correct but also demonstrates explicitly the source and

target contexts. We show the formation rules for typed explicit substitutions in Figure 2.15. Our

presentation follows on work done by Pfenning [67] and Chapman [15].

The empty substitution, (·) leaves a term unchanged and if a term is well typed in a context,

then the application of the identity substitution will likewise leave the variable context unaffected.

For this reason the type of the substitution is the same as the variable context in which it can be

applied.

A term substitution is a pair of a variable and a term, composed with some substitution θ. It

takes us from a context in which the variable is present in the context at type A and the term has

a typing derivation with type A in a context which the free variable is removed, but some further

number of free variables are introduced as Γ�. It additionally takes another substitution having the

same context for application (Γ ∪ Γ�) as is needed after substitution of the term t and having a

target context consonant with the final substitution type (Γ��).

The situation is essentially the same for type substitutions, excepting that we must demonstrate

the well formedness of the type A rather than a typing derivation.

In order to apply an explicit substitution we use the function ⇐: Term → Sub → Term.

This will be needed when we want to establish definitional equality of a term with another term

after the application of a substitution. We define this application over both terms and types as well

as sequents. The application of a substitution over a sequent will have the type and term variable
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Explicit Substitutions

Sub � σ, θ Substitutions

Substitutions Formation

∆ ;Γ � · : «∆ ;Γ» sub

∆ ;Γ ∪ Γ� � θ : «∆ ;Γ��» sub ∆ ;Γ ∪ Γ� � t : A

∆ ;Γ ∪ {x :A} � (x, t) ◦ θ : «∆ ;Γ��» sub

∆ ∪∆� ;Γ � θ : «∆�� ;Γ» sub ∆ ∪∆� � A type
∆ ∪ {X} ;Γ � (X,A) ◦ θ : «∆�� ;Γ» sub

Substitution Application

t ⇐ · := t

t ⇐ (x, u) ◦ θ := (t[x := u]) ⇐ θ

t ⇐ (X,A) ◦ θ := (t[X := A]) ⇐ θ

B ⇐ · := B

B ⇐ (x, u) ◦ θ := B ⇐ θ

B ⇐ (X,A) ◦ θ := B[X := A] ⇐ θ

Substitution on Typed Terms

∆ ;Γ � (t : A) ⇐ θ := ∆ ;Γ � t ⇐ θ : A ⇐ θ

Substitution on Sequents

(∆ ;Γ � t : A) ⇐ θ := ∆� ;Γ� � t ⇐ θ : A ⇐ θ

where ∆ ;Γ � θ : «∆� ;Γ�» sub

Figure 2.15: Explicit Substitution
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contexts for the range of the substitution as specified by the formation rules for substitutions. It

is important to remember that this (⇐) is not syntactic, it is a total function at the meta-level and

therefore if we give the substitution explicitly, we can verify definitional equivalence under the

application of the function.

If one sequent is equivalent to another under substitution then we call the second a substitution

instance of the first. We define this formally as follows.

Definition 2.6.1 (Substitution Instance). A sequent (Γ� ;∆� � t : A) is said to be a substitution

instance of a sequent (Γ ;∆ � s : B)

iff ((Γ ;∆ � s : B) ⇐ σ) = Γ� ;∆� � t : A

and ∆ ;Γ � σ : «∆� ;Γ�» sub.

The fact that the resulting sequents are well typed is a result of the preservation of types under

substitution, a fact which has a mechanised proof in Chapter 7.
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Chapter 3

Transition Systems

3.1 Introduction

Transition systems have proved to be a very flexible tool for representing processes. The model

checking community has used them extensively for representing software and for determining

if software meets some specification. They are very flexible and cope well with representing

concurrency among other things.

We describe how a labelled transition system can be associated with any term in our calculus.

This opens the door to describing equivalence as a bisimilarity of transition systems. In addition

we relate type inhabitation to the satisfaction of properties in a temporal logic. This helps to bridge

the gap between inductive and coinductive types and greatest and least fixed points for transition

systems.

Formally, a transition system is a structure which consists of a collection of states and actions

and a relation which associates states via some action. Formally such a system is described by a

tuple as follows:

T = (S,A, δ ⊆ S ×A× S),

Where S is a set of states, A is a set of actions and δ(s,α, s�) is a relation representing potential

transitions from a state s to some state s� by way of some action α ∈ A.

For our purposes, sets of states will be represented by terms in the context of their associated

programs, and transitions will be generated according to the operational behaviour of the program.

Intuitively, we mean that the behaviour of a program makes choices for a calling program.

Transitions resulting from evaluation are not observable in the sense that they do not have any
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visible operational behaviour to the caller and are not distinguishable by the application of any

experiment. This might seem odd in that a non-terminating program is certainly different than one

which terminates. However, an infinite number of one-step evaluations can be seen as a failure to

make a choice and is equivalent (that is, bisimilar) to a transition system with no further edges.

3.2 System F+ Transition Systems

We first develop an alphabet of actions, given in Figure 3.1 which is directly based on the list of

experiments given previously in Figure 2.11. The labelled transition relation is given by describing

a relation, �→. This relation will describe external transitions only, that is, those which are visible

to the caller. The alphabet Act will form the edge labels of our transition systems. An arbitrary

action is described with γ which may range over any of the actions.

Meta Variables

MetaTerm � a, b, c, d

MetaType � M,N

Action Labels

ActVar � γ

Act ::= a :M | M | left | right | fst | snd | in

Transition Edge Formation Rules

· ; · � s : A → B

s
c :A�−−→ s c

· ; · � s : ∀X. A

s
C�−→ s C

left(s,A+B)
left�−−→ s right(s,A+B)

right�−−−→ s

(s, t)
fst�−−→ s (s, t)

snd�−−→ t

in(s, U)
in�−→ s

s �∗ t t
γ�−→ u

s
γ�−→ u

Figure 3.1: Actions and Labelled Transitions

The application (s c) supplying a test term (c) to a term (s), manifests itself in our transition

systems as the assumption that we have some term (c :A). Essentially we are describing the

transition system parametrically in terms of some other transition system of appropriate type.

This transition system only displays the external behaviour of terms. By external we mean

that some transition edge does not depend on data (in this case free variables). This is because
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our notion is formulated in terms of closed terms. We might introduce internal transition edges to

describe reduction for instance, but these are not necessary for our purposes.

It should be noted that when we write down our transition systems with terms and meta-terms,

we are writing down sets of terms rather than individual terms. This is due to the fact that the meta-

terms are assumed to be closed, and therefore contain no free variables, but are not concrete terms

themselves but exist in the meta-logic. They therefore stand in for any term of the appropriate type

and may exhibit any behaviour which is consonant with their type.

For reasoning about transition systems it turns out to be useful that the � relation is determin-

istic. By this we mean that we can order the sequence of reductions.

Theorem 3.2.1 (Evaluation is Deterministic). If ∆ ;Γ � t : A, and t � s and t � u, then u = s.

Proof. By induction on the term t and inversion on subsequent type derivations of the sub-terms.

• Case f: Since Ω is assumed to be a function.

• Case (t s): Since t is unique by the inductive hypothesis and is a λ-term (or non-terminating),

there is only one reduct for t s if t terminates (the substitution of the bound variable) which

is deterministic because substitution is a function (by its definition).

• Case (t[A]): Similarly as with t s.

• Case (case t of {x ⇒ r | y ⇒ s}): By the induction hypothesis t is either left, right or

non-terminating. If t it is non-terminating, then there is no reduction, and if it is terminating

we have the usual case evaluation rule leading to a substitution in either the right or left

branch. In either case it is deterministic as substitution is deterministic and by the inductive

hypothesis.

• Case split: Similarly as with case.

• Case out: Similarly as with case.

3.3 Bisimilarity

With the �→ relation defined, we can define a notion of bisimilarity coinductively. In essence we

will relate two terms if all of their actions are the same and all subterms are related. This is an

application of Parks’ principle [74] to co-inductively defined relations over transition systems.

59



In order to define bisimilarity we first define a pre-order �, which we call a simulation and

then take ∼ to be the symmetrised version of the relation.

Definition 3.3.1 (Simulation). A term s is said to simulate a term r, which we write r � s, if

whenever there is an r� and γ such that r γ�−→ r� then there exists an s� such that s γ�−→ s� and r� � s�.

Definition 3.3.2 (Bisimilarity). A term r is said to be a bisimilar to a term s, which we write

r ∼ s, if r � s ∧ s � r.

This gives us a definition of a coinductive equivalence relation between terms based solely

on observable behaviour. We will use this as the basis of our notions of proof equivalence, which

gives us great flexibility because we can manipulate pre-proofs which may in fact demonstrate non-

termination without fear that we alter termination properties. This is imperative for demonstrating

that our technique of showing soundness after transformation is correct.

3.4 Examples

We give a number of examples which motivate the above rules. The first example shows how case

destructuring and recombination results in a bisimilar term.

Example 3.4.1. x ∼ case x of {y ⇒ left(y,A+B) | z ⇒ right(z,A+B)}

Proof of Example 3.4.1. Suppose that x ⇑, then case x of · · · ⇑. Suppose that x ⇓, then x ⇓

left(y,A+B) ∨ x ⇓ right(z,A+B). If x ⇓ left(y,A+B) then under the evaluation relation,

and using the associated transition rule, both the left and right sides have the same transition,

namely x
left�−−→ y. Since bisimilarity is reflexive, y ∼ y. The argument follows symmetrically for

x ⇓ right(z,A+B) and therefore they are bisimilar.

In this proof we see how we might systematically use case analysis on the metavariables of

the transition system. All of this is taken care of automatically in the supercompilation algorithm

of Section 5.3.

Example 3.4.2. t ∼ λx :A. t x assuming that · ; · � t : A → B

In the above example we see a principle of extensionality. That is, we see the equivalence of

a function with an abstraction of that function applied to the abstracted variable. We demonstrate

bisimilarity in the following proof.
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Proof of Example 3.4.2. Both terms exhibit the transition c :A�−−→. In the first case this leads to t c

and in the second to (λx :A. t x) c. Since (λx :A. t x) c � t c, any further transition that either

exhibits will be matched by the other using the rule for forming transitions from evaluations.

3.5 Bismulation is Contextual Equivalence

We still have not shown that bisimulation is a suitable notion of equivalence over proofs. In

order to do so we will relate it back to a well accepted notion of operational equivalence called

contextual equivalence. This work is essentially the same as that given by Gordon in [32], aside

from the inclusion of universal type quantification.

Definition 3.5.1 (Contextual Order and Equivalence). Suppose (∆ ;Γ � r : A) and (∆ ;Γ �

s : A) we say that r and s are contextually ordered or (r � s) if (∀C.· ; · � C[r] : B) and

(· ; · � C[s] : B) and (C[r] ⇓ t) then (C[s] ⇓ t). We say that the terms are contextually equivalent,

or (r ∼= s) if the converse also holds.

Because bisimulation is concerned with behaviour, it deals with closed expressions, or expres-

sions in the empty context. We will find it necessary to be able to think of extensions of these

relations to open expressions.

First we need to be able to talk about relations over open expressions, or expressions with

variables in a context. We do this by defining proved expressions and the Γ-closure of a relation.

This allows us to exchange typed variables from a context with meta-variables and their typing

derivations. The meta-variables will then allow us to perform inversion on the typing derivation.

Definition 3.5.2 (Proved expression). A relation over proved expressions is a relation R which is

a subset of the tuples of the form (∆,Γ, r, s, A) = Rel which we will write (∆ ;Γ � r R s : A).

Definition 3.5.3 (Γ-Closure). Given a proved expression (∆ ;Γ � r R s : A), if (∆ = X0 · · ·Xj)

and (Γ = x0 : A0 · · ·xi : Ai) with (∆ � Γ Ctx) then the Γ-closure is the substitution

(r[�x := �c][ �X := �C] R s[�x := �c][ �X := �C]) for arbitrary well typed meta-terms �c, �C, with

typing derivations (· ; · � ci : Ai) and (· � Ci type).

Definition 3.5.4 (Open Extension). The open extension Ro of a relation R is defined such that

∆ ;Γ � r Ro s : A iff for all �t, r[�x := �c] R s[�x := �c] where �x are the variables of Γ for arbitrary

well typed meta-terms �c, �C, with typing derivations (· ; · � ci : Ai) and (· � Ci type).
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∆ ;Γ � r R s : A → B ∆ ;Γ � t R u : A
CE→

∆ ;Γ � r t �R s u : B

∆ � Γ ∪ {x :A} Ctx
CIVar

∆ ;Γ � x �R x : A

∆ ;Γ ∪ {x :A} � t R s : B
CI→

∆ ;Γ � (λx :A. t) �R (λx :A. s) : B

∆ ∪ {X} ;Γ � t R s : A
CI∀

∆ ;Γ � (ΛX. t) �R (ΛX. s) : ∀X. A

∆ ;Γ � t R s : ∀A. T
CE∀

∆ ;Γ � t[B] �R s[B] : A[X := B]
CI1

∆ ;Γ � () �R () : 1

∆ ;Γ � r R s : A ∆ ;Γ � t R u : B
CI×

∆ ;Γ � (r, t) �R (s, u) : A×B

∆ ;Γ � r R s : A
CI

+

L
∆ ;Γ � left(r, A+B) �R left(s,A+B) : A+B

∆ ;Γ � r R s : B
CI

+

R
∆ ;Γ � right(r, A+B) �R right(s,A+B) : A+B

∆ ;Γ � t R s : A[X := αX̂. A] α ∈ {µ, ν}
CIα

∆ ;Γ � inα(t, C) �R inα(s, C) : αX̂. A

∆ ;Γ � t R s : αX̂. A α ∈ {µ, ν}
CEα

∆ ;Γ � outα(t, C) �R outα(s, C) : T [X := αX̂. A]

∆ ;Γ � r R s : A+B ∆ ;Γ ∪ {x :A} � t R u : C ∆ ;Γ ∪ {y :B} � v R w : C
CE+

∆ ;Γ � (case r of {x ⇒ t | y ⇒ s}) �R (case s of {x ⇒ u | y ⇒ w}) : C

∆ ;Γ � r R s : A×B ∆ ;Γ ∪ {x :A} ∪ {y :B} � t R u : C
CE×

∆ ;Γ � (split r as (x, y) in t) �R (split s as (x, y) in u) : C

Figure 3.2: Compatible Refinement
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Definition 3.5.5 (Compatible Refinement). The Compatible Refinement �R of a relation R is

defined inductively in Figure 3.2. The compatible refinement ensures that the formation rules for

derivations are mirrored by the relation.

Definition 3.5.6 (Precongruence). A relation Ro is said to be a precongruence if it contains its

compatible refinement, that is �R ⊆ Ro .

Definition 3.5.7 (Congruence). A congruence is a precongruence which is also an equivalence

relation.

We will introduce a Lemma which will allow us to describe relations which are pre-congruences

using an alternative but more natural formulation. Because we need to describe variables which

may be relevant locally in a context, we use the notation ∆�;Γ�−A to denote the whole with locally

relevant contexts from ∆� and Γ�.

Lemma 3.5.8 (Congruence Lemma). Assuming that Ro is a preorder then Ro is a precongru-

ence iff:

∆ ;Γ � C[∆�;Γ�−A] : B ∆ ∪∆� ;Γ ∪ Γ� � r Ro s : A
Cong

Γ � C[r] Ro C[s] : B

Where ∆� and Γ� are the bound variables in C whose scope includes the hole −A.

Proof. We proceed by induction on the structure of C[−A] followed by inversion on its derivation.

First we prove (→):

• C[−A] = −A: ∆� = · and Γ� = · and therefore the conclusion ∆ ;Γ � C[r] Ro C[s] : A

is simply a restatement of the hypothesis.

• C[−A] = C � t: By the inductive hypothesis we have that ∆ ;Γ � C �[r] Ro C �[s] : D → B.

By compatible refinement we have that ∆ ;Γ � C �[r] t Ro C �[s] t : B and hence ∆ ;Γ �

C[r] Ro C[s] : B

• C[−A] = t[C �]: Similar to the previous argument.

• C[−A] = λx :D. C �[−A]: This decomposition constrains the variables of Γ� to have the

form Γ� = {x :D} ∪ Γ�� and by inversion we obtain the derivation ∆ ; {x :D} ∪ Γ�� �

C �[−A] : B. By the inductive hypothesis we have ∆ ;Γ ∪ {x :D} ∪ Γ�� � C �[r] Ro C �[s] : B

and by compatible refinement we obtain the goal.
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• C[−A] = ΛX. C �[−A]: This decomposition constrains the variables of ∆� to have the form

∆� = {X} ∪∆�� and by inversion we obtain the derivation {X} ∪∆�� ;Γ � C �[−A] : B.

By the inductive hypothesis we have ∆ ∪ {X} ∪∆�� ;Γ � C �[r] Ro C �[s] : B and by

compatible refinement we obtain the goal.

• The remaining forms are similar.

For the reverse direction (←):

• CIVar : Ro is reflexive as Ro is a pre-order.

• CI1: Ro is reflexive as Ro is a pre-order.

• CE→: Supposing we have ∆ ;Γ � s Ro s� : D → A and ∆ ;Γ � t Ro t� : D then we can

derive ∆ ;Γ � s t Ro s� t : B and ∆ ;Γ � s� t Ro s� t� : B and since Ro is a pre-order,

by transitivity, we can derive ∆ ;Γ � s t Ro s� t� : B.

• CE∀: Supposing we have ∆ ;Γ � s Ro t : ∀X. A and a well-formed type D. Taking the

context C[−A] = −A[D] we have ∆ ;Γ � s[D] Ro s�[D] : A[X := D].

• CI→: Suppose that ∆ ;Γ ∪ {x :D} � s Ro t : B. Using the context C[−A] = λx :D. −A

we have that ∆ ;Γ � λx :D. s Ro λx :D. t : B by the assumption Cong.

• CI∀: Suppose that ∆ ∪ {X} ;Γ � s Ro t : B. Using the context C[−A] = ΛX. −A we

have that ∆ ;Γ � ΛX. s Ro ΛX. t : B by the assumption Cong.

• The remaining forms are similar.

Theorem 3.5.9 (Substitution preserves similarity). Given ∆ ;Γ � u �o u� : A and ∆ ;Γ ∪ {x :A} �

s �o s� : B we have ∆ ;Γ � s[x := u] �o s�[x := u�] : B.

Proof. We proceed coinductively by constructing the simulation for s[x := u] �o s�[x := u�] : B

by induction on s and inversion on ∆ ;Γ ∪ {x :A} � s �o s� : B, mirroring each proof-rule, save

for the single case where we have a CIVar with variable x. In this case build the simulation from

the simulation of u �o u�.

Theorem 3.5.10 (Similarity is a precongruence). Given that ∆ ;Γ � s�o
t : A it follows that

Cong holds.
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Proof. Due to the congruence lemma, we can prove this by showing that ��o ⊆�o. We proceed

coinductively, with an inversion on the formation rules for �o.

• CIVar : By reflexivity.

• CI1: By reflexivity.

• CE→: Supposing that ∆ ;Γ � s �o s� : A → B and ∆ ;Γ � t �o t� : A we need to show

that ∆ ;Γ � s t �o s� t� : B. If s� ⇑ then s ⇑ and both applications diverge. If s does not

diverge, s ⇓ λx :A. r for some r then s� ⇓ λx :A. r� for some r� with r �o r� as a property

of the �o relation. By the substitution lemma, we have the conclusion.

• Similarly for the other rules.

Theorem 3.5.11 (Similarity is a Contextual Order). �⊆�

Proof. Suppose we have s � t with s and t at type A and an arbitrary expression − : A � r :

1 + 1. We need to show that r[s] ⇓ implies r[t] ⇓. By the congruence property it follows that

· � r[s] �o r[t] : 1 + 1. Hence, if r[s] ⇓ then r[s]
inr�−−→ u or r[s] inl�−−→ u and by the �o relation r[t]

must have the same edge. Hence r[t] ⇓, since either right or left is in V .

Theorem 3.5.12 (Bisimulation is Contextual Equivalence). ∼⊆∼=

Proof. This follows from the fact that similarity is a contextual order by symmetry.

Unfortunately a mechanisation of this proof has not yet been obtained, but some of the infras-

tructure has been provided including Γ-closure. It is hoped that a mechanisation will be completed

in future work.

We suspect that it requires an axiom of excluded middle between convergent and divergent

terms (a fact used in the proof here and in Gordon’s proof for contextual equivalence of FPC+[32])

and is not directly possible in an intuitionistic type theory. This excluded middle could, however,

be added as an axiom. We intend to fully mechanise this proof in the future. Though the uncon-

structive nature of the proofs is somewhat unsatisfying with such an axiom, it is unlikely to lead to

problems. We don’t actually require knowledge of which event occurs, only that divergence will

be preserved when it occurs.
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3.6 Properties of Bisimulations

The important properties of bisimulations are related to its ability to capture pre-proof equivalence

as well as proof equivalence.

Lemma 3.6.1 (Simulation is Reflexive). For all terms s we have that s � s.

Proof. A term, by definition, has the identical associated transition system, and therefore the same

edges.

Lemma 3.6.2 (Simulation is Transitive). Given s � t and t � r we have that s � r.

Proof. We have as an hypothesis that s � t. We know then that given an edge α leaving s there

is a corresponding edge leaving t and similarly, for each edge α leaving t there is corresponding

edge leaving r. Hence there must be a corresponding edge α leaving r for each α leaving s.

Lemma 3.6.3 (Bisimulation is Reflexive). For all s we have that s ∼ s.

Proof. By the definition of bisimulation and reflexivity of �.

Lemma 3.6.4 (Bisimulation is Symmetric). Given any terms s and t such that s ∼ t then t ∼ s.

Proof. Since s ∼ t is composed of s � t and t � s it is symmetric by construction.

Lemma 3.6.5 (Bisimulation is Transitive). Given any terms s,t and r such that s ∼ t and t ∼ r

we have that s ∼ r.

Proof. Since s ∼ t and s ∼ r implies that s � t and s � r and � is transitive, we can deduce

that s � r. Similarly, since r � t and t � s and we have that � is transitive, we can deduce that

r � s. Finally s � r and r � s implies s ∼ r.

Theorem 3.6.6 (Bisimulation is an Equivalence Relation). Bisimulation is reflexive, symmetric

and transitive.

Proof. This follows from the above lemmata.

Theorem 3.6.7 (Bisimulation preserves termination). Given a derivation · ; · � t : A and t ∼ s

then if t ⇑ then we have that s ⇑ and if t ⇓ then s ⇓

Sketch. The proof of this theorem is quite straightforward, though somewhat detailed, as conver-

gence leads to a behaviour by definition. Conversely, divergent terms exhibit no behaviours. A

mechanisation of this proof has been done in Coq.
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3.7 Related Work

For the purposes of reasoning about functional programs, and indeed the meaning of types them-

selves it is useful to use transition systems as a semantic domain. This approach is related to the

approach taken in process calculi such as CCS [55] and CSP [38]. The work for various process

calculi generally give the transition systems directly rather than viewing them as results of an

operational semantics of a programming language.

Early work on applicative bisimulation as a suitable equivalence for the lazy λ-calculus is

given by Abramsky in [2]. Further work is given by Howe in [39].

The framework given here is based on the one given by Gordon in [32]. We modify Gordon’s

work to cope with a polymorphic functional programming language. Gordon has also presented

bisimulation over other programming languages including an object calculus with sub-typing [34].

An unpublished work by Gordon deals with universal polymorphism [33].

Sands demonstrates a general framework for showing bisimulations between various term lan-

guages by means of a technique entitled Generalised Deterministic Structural Operational Seman-

tics (GDSOS). He demonstrates a number of sound reasoning techniques which can be applied to

any system which fits into this framework.

Further work involving extensions which deal with existential types have been developed by

Peirce and Sumii [82]. They note problems attempting to capture existential types when using

a traditional bisimulation relation. In their work bisimulations are extended to sets of relations

coupled with a context. The problems noted do not appear to effect the use of coinductive types in

our presentation.

The use of bisimulation in the context of programming languages with dependent types is

explored by McBride in [51]. This work demonstrates the impossibility of obtaining canonical

referents for term calculi which admit infinite objects.

Sangiorgi, Kobayashi and Sumii describe environmental bisimulations for a higher-order lan-

guage in [75]. This approach does not use the simple applicative bisimulations presented here.

In languages with side-effects, resource use or existential types, environmental approaches are

likely to be of interest. However, in a completely pure term language, they introduce unnecessary

complexity. For a further discussion of the relative merits of either approach see [44].
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Chapter 4

Cyclic Proof

4.1 Introduction

Cyclic proof is a method of describing proofs in a finite way using recurrences. The technique

of cyclic proof turns out to be a way of presenting inductive and coinductive arguments and a

convenient method of generically describing recursion. It has a number of advantages over the use

of standard inductive definitions in constructive type theory.

Firstly, we are able to represent inductive arguments and coinductive arguments in much the

same way and using the same framework. In addition, instead of seeing induction rules as con-

nected directly with a particular recursive term we can be much more fluid in our understanding

of the relationship between the type and the eventual principle of induction used by the term. We

give a simple example of this in Section 4.7.

The use of cyclic proof also allows us to defer arguments about the soundness of our (co)induction

principle until after we have performed rewrites. That is, if we establish that two proofs are the

same up to bisimilarity, the notion of equivalence defined in Chapter 3. If one proof is sound, then

so is the other.

We separate cyclic proofs into two classes: pre-proofs and proofs. The former is a super-

set of the latter. The proofs will be defined by a syntactic condition on the form of the proof

which we give in Section 4.6. The pragmatic value in separating pre-proof from proof is that

general programming constructs naturally fall into the classification of pre-proof whereas total[89]

programs are described with proofs. This could be a boon in software engineering practice where

it might not be possible to express certain sections of a program in a total fashion.

The approach described here does not even require soundness of individual sections of a proof
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which might be composed. The composition may in fact prove sound, though the components are

not. To see how this can be true, consider for example the following program (in Haskell):

data Nat = Zero | Succ Nat deriving Show

filter :: (a → Bool) → [a ] → [a ]

filter f [ ] = [ ]

filter f (x : xs) =

case f x of

True → x : (filter f xs)

False → filter f xs

from ::Nat → [Nat ]

from n = n : (from (Succ n))

nats :: [Nat ]

nats = from Zero

odd :: Nat → Bool

odd Zero = False

odd (Succ Zero) = True

odd (Succ (Succ n)) = odd n

test = filter odd nats

The filter function is not productive on colists for arbitrary functions f . We can provide the

example of the constantly false function to demonstrate that this is the case. However there is

absolutely nothing wrong with test , which in fact is productive, due to the specific character of

the combination of odd and nats . This demonstrates how soundness can be a fact which is only

true in composition.

By contrast, in a language such as Coq, we are forbidden from even writing a pre-proof, since

we might infect the proof system with unsound arguments. We cannot make use of auxiliary func-

tions which may be sound in a context but which are not sound in general and some compositions

of productive functions will not be possible even though they are demonstrably productive.

Cyclic proof additionally gives us new ways of connecting our understanding of proof with

practical programming languages. Typically, in functional programming languages, type checking

for defined functions is done by use of a typing rule that assumes the type of the function and

proceeds to check the body. This is the familiar rule from programming languages such as Haskell
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[32] [70] [65]. An example of such a typing rule, which we call here FunRec is as follows:

Γ, f : A → B � Ω(f) : A → B
FunRec

Γ � f : A → B

Coupled with restrictions on the form of recursive terms to ensure (co)termination (where

cotermination is understood to mean productivity), this rule can in fact be sound. However, it is

also opaque in the sense that any transformation of this proof tree will be rigidly expressed in

terms of the original function declarations.

A cyclic pre-proof essentially mirrors the type checking method of assuming recursive func-

tion types given above. Intuitively, the method given above is to assume the type of a recursive

function, place it in the context, begin to check its body, and then unify with its subsequent oc-

currence. Our cyclic pre-proof makes use of three contexts, the type variable context, the term

variable context and a new third context which keeps a type sequent holding the type term and

variable contexts. The same rule as given above can be presented schematically (we can only do

so schematically since we do not know the structure of Ω(f)) as follows:

∆ ;Γ � · : «∆ ;Γ» sub Cyc
ζ ∪ {∆ ;Γ � f : A → B} ∪ ζ � ;∆ ;Γ � (f : A → B) ⇐ ·

...
(ζ ∪ {∆ ;Γ � f : A → B}) ;∆ ;Γ � Ω(f) : A → B

IΩ
ζ ;∆ ;Γ � f : A → B

In this case the substitution · is the empty substitution as we are simply directly re-expressing

the sequent from the former term. In general the resulting term and contexts can change under the

application of the substitution. We will introduce this rule in more detail in the next section, but

this example demonstrates that anything currently well typed using the usual methods will have at

least a pre-proof in our system.

Gentzen showed that it was possible in some logical systems to remove cuts by providing a

rewriting of the proof [28]. If cuts can be entirely eliminated in all cases, the logical system is

said to admit a cut elimination procedure. We take this observation and the notion of cyclic proof

and couple it with proof rewriting using our evaluation relation. This allows us to remove inter-

mediate implication elimination steps. While we cannot expect there to be a general implication-

elimination procedure we can remove some intermediate computations. Perhaps more importantly,

it is possible to use this fact to rework pre-proofs into forms in which soundness is syntactically

apparent.

Our presentation of cyclic proof is related to the one given by Brotherston [13]. We however

present our system as a type theory using the rules from Figure 2.10. Cycles in the proof are
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presented as substitution instances of prior sequents, which are kept in a context. The present

method follows on work presented by us in [52]. Since in Brotherston’s system the terms are not

explcit the technical details are somewhat different. We want to preserve the behaviour of the

orginal computation. Proof irrelevance is not available to us and so the structure of the cycles are

more constrainted. Simply obtaining a correct type under substitution is insufficient.

In order to construct a proof, we initially create a pre-proof, that is, a cyclic derivation which

is not guaranteed to be sound, but is instead weakly sound, a condition described in Section 4.3.

In order to show that this pre-proof is in fact a proof we will require additional evidence. The

additional evidence is given as a structural or syntactic condition on the pre-proof structure. We

then take the pre-proof as being a proof. That this in fact leads to soundness is not demonstrated

until Chapter 6 as it requires the development of a semantic theory.

4.2 Cyclic Proof Rules

The presentation of cyclic proof is given by reuse of the proof rules from Figure 2.10. We extend

each of these rules with a context which stores the history of sequents encountered. We represent

the cyclic proofs with a relatively simple repeating structure with subsequent terms which are

instances of previous sequents. Instances are sequents which are definitionally equal after the

application of a well-typed substitution. We will call the rule that introduces this cyclicity a Cyc

rule.

Sequent Contexts

SeqCtx � ζ := · | (∆ ;Γ � t : A) ∪ ζ

Cyclic Proof Rules

∆ ;Γ � σ : «∆� ;Γ�» sub
Cyc(∆ ;Γ � t : A)

ζ ∪ {∆ ;Γ � t : A} ∪ ζ � ;∆� ;Γ� � (t : A) ⇐ σ

ζ ∪ {�} ;∆� ;Γ� � s : B
Label

ζ ;∆ ;Γ � t : A label �
Where � = ∆ ;Γ � t : A

Figure 4.1: Cyclic Proofs

A Cyc Rule is a rule formed by a well typed substitution ∆ ;Γ � σ : «∆� ;Γ�» sub and a

sequent which is a substitution instance in ζ.

A Label Rule is a shorthand convenience that allows to present proofs without keeping every

sequent in the sequent context. As such, the rule simply extends the sequent context of some al-

ready present inference step. The rule allows us to introduce a cycle by placing the current sequent
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into the context such that it is associated with a name. This cycle may in fact be vacuous, we will

not prohibit the construction of such cycles but instead they will have to be global restrictions on

the proof tree to be discussed later.

∆ ;Γ � σ : «∆� ;Γ�» sub
Cyc(�)

ζ ∪ {�} ∪ ζ � ;∆� ;Γ� � (s : A) ⇐ σ

...
ζ ;∆ ;Γ � s : A label �

Figure 4.2: Cyc Rule

An example of the form of a proof which makes use of the Cyc Rule is presented in Figure 4.2.

We notate the sequent which is added to the context with the label (in this case �) which helps us

to keep track of the sequent without having to write it out long hand each time.

The advantage of the cyclic proof form is that it gives us more freedom about the way in

which we would like to create recurrences and the function constants act as mere labels in the

terms, rather than dictating the form of the proof. The Cyc rule allows us to have parametric

circularities.

We could have used a form in which only renamings of variables were used, instead of the more

general instantiation. This can be easily introduced by allowing abstraction to terms equivalent

modulo β-reduction. However, the form as it is presented here simplifies the syntactic conditions

for demonstrating that the pre-proof is in fact a proof.

It is important to understand that in our discussion of terms, we do not eliminate function

constants from the term under scrutiny. Instead, we want to create cycles which are not dictated

by the function constant definitions at our disposal. The reason for doing so is that we want to be

freed from a certain level of the bureaucracy of syntax imposed by these definitions, but do not

yet know what will actually free us. It is only through the process of unfolding the definitions that

we become liberated from this bureaucracy. This is in some sense the essence of the approach of

supercompilation.

We can also transform the general proof rule into the more common form using function

constants as is done in standard functional programming languages. This is done by generating a

new function Ω� with a new term and type which allows us to represent the instance. That this rule

is justified as a replacement for instances is demonstrated by a systematic process of constructing

functions from cyclic proofs, given by reification (Section 5.4).
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4.2.1 Cyclic Type-Checking

Our implementation assumes that we have a term under scrutiny together with functions Ω and Ξ,

all of which allow us to ensure that the term is type-correct. In the implementation this is done

by using the IΩ rule. This version requires the use of the function Ξ since type-inference would

otherwise be undecidable for our proof-system. The form of the rule is given as:

Ξ(f) = A
IΩ∆ ;Γ � f : A

Of course, as it stands it merely asserts the type correctness of function constants. For this to

be useful we have to know that all of the terms in Ω type-check and are consistent (syntactically

equal) to the type given by Ξ. This is expressed in Definition 4.2.1. This rule is however, formally

equivalent to using a cyclic proof as we can see in Theorem 4.2.2.

We briefly describe how to produce a correct proof using the FunRec rule. The function Ω

is type-checked first. This involves type-checking each term of Ω. If the type of the proof of Ω

is the same as the type given by Ξ for every term in Ω than the program type-checks. We now

check the term under scrutiny, t, using the FunRec rule as well. If this type-checks, the program

is considered to be type-correct, and will have a valid cyclic pre-proof.

In Figure 4.3 and Figure 4.4 we use the notation Dtype to denote the type of a given derivation

D. We assume that the partial function T exists which follows from the fact that type-checking

is decidable for System F and inference is decidable given suitable annotations. We annotate type

folding and unfolding, injection into disjunctions as well as function constants.

More formally, we present the type-checking constraint on programs in Definition 4.2.1.

Definition 4.2.1 (Program Law). A program is said to be type-correct if

∀(f, s) ∈ Ω. · ; · � s : Ξ(f)

and the term under scrutiny t has a derivation · ; · � t : A. We introduce the partial function

T [∆,Γ, t] which produces the derivation ∆ ;Γ � t : A when it exists, as given in Figure 4.3 and

Figure 4.4.

This implies that t has a valid cyclic pre-proof, which we describe formally in Theorem 4.2.2.
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T [∆,Γ, x] := if ∆ � Γ ∪ {x :A} Ctx

then
∆ � Γ ∪ {x :A} Ctx
∆ ;Γ ∪ {x :A} � x : A

IVar else Fail

T [∆,Γ,f] :=
Ξ(f) = A

∆ ;Γ � f : A
IΩ

T [∆,Γ, ()] :=
∆ ;Γ � () : 1

I1

T [∆,Γ, (t, s)] := let D1 = T [∆,Γ, t] D2 = T [∆,Γ, s]

in
D1 D2

∆ ;Γ � (t, s) : D1
type ×D2

type

I×

T [∆,Γ, left(t, A+B)] := let D = T [∆,Γ, t]

in if Dtype = A then
D

∆ ;Γ � left(t, A+B) : A+B
I
+

L

else Fail

T [∆,Γ, right(t, A+B)] := let D = T [∆,Γ, t]

in if Dtype = B then
D

∆ ;Γ � right(t, A+B) : A+B
I
+

R

else Fail

T [∆,Γ, inα(t,αX̂. A)] := let D = T [∆,Γ, t]

in if Dtype = A[X := αX̂. A]

then
D

∆ ;Γ � inα(t,αX̂. A) : αX̂. A
Iα

else Fail

Figure 4.3: FunRec Pre-Proof
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T [∆,Γ,ΛX.t] := let D = T [∆∪,Γ, t]
in

D

Γ � ΛX.t : ∀X.Dtype
I∀

T [∆,Γ,λx :A. t] := let D = T [∆, {(x,A)} ∪ Γ, t]

in
D

∆ ;Γ � λx :A. t : A → Dtype
I→

T [∆,Γ, split t as (x, y) in s] := let D1 = T [∆,Γ, t]
(A×B) = D1

type or Fail

D2 = T [∆, {(x,A), (y,B)} ∪ Γ, s]

in
D1 D2

∆ ;Γ � split t as (x, y) in s : D2
type

E×

T [∆,Γ, case t of {x ⇒ r | y ⇒ s}] := let D1 = T [∆,Γ, t] (A+B) = Dtype or Fail

D2 = T [∆, {(x : A)} ∪ Γ, r]
D3 = T [∆, {(y : B)} ∪ Γ, s]

in if D2
type = D3

type

then
D1 D2 D3

∆ ;Γ � case t of {x ⇒ r | y ⇒ s} : D2
type

E+

else Fail

T [∆,Γ, t s] := let D1 = T [∆,Γ, t] (A → B) = D1
type or Fail

D2 = T [∆,Γ, s]

in if D2
type = A then

D1 D2

∆ ;Γ � t s : B
E→

else Fail

T [∆,Γ, t[A]] := let D = T [∆,Γ, t] ∀X. B = Dtype or Fail

in
D

∆ ;Γ � t[A] : B[X := A]
E∀

T [∆,Γ, outα(t,αX̂. A)] := let D = T [∆,Γ, t] (αX̂. A) = Dtype

in
D

∆ ;Γ � outα(t,αX̂. A) : A[A := αX̂. A]
Eα

Figure 4.4: FunRec Pre-Proof 2

P
�
ξ,

Ξ(f) = A

∆ ;Γ � f : A
Rec

�
:= let � = ∆ ;Γ � f : A in

if ∃ζ, ζ �. ξ = (ζ ∪ {�} ∪ ζ �)

then
∆ ;Γ � · : «∆ ;Γ» sub

ζ ∪ {�} ∪ ζ � ;∆ ;Γ � (f : A) ⇐ ·Cyc(�)

else
P[ζ ∪ {�} ;∆ ;Γ � Ω(f) : A]

ζ ;∆ ;Γ � Ω(f) : A label �
IΩ

P
�
ζ,

D1 · · ·Dn

S
Rule

�
:=

P[F , D1] · · · P[F , Dn]

ζ ;S
Rule

Figure 4.5: FunRec Transformation to Cyclic Pre-Proof

75



Theorem 4.2.2. If a term t has a proof · ; · � t : C using the IΩ rule, it has a cyclic pre-proof of

the same sequent.

Proof. First we will type-check the function Ω constructing sub-proofs that we will then be able

to reuse. For each (f, s) ∈ Ω we will create a pre-proof for s, namely · ; · � s : Ξ(f).

The algorithm is manifestly partially correct as we can construct each pre-proof using the

function in Figure 4.5, starting with ζ as the empty set, to transform the current Rec proof into one

of cyclic form.

The fact that this terminates, and is therefore totally correct, follows from the fact that there

are only a finite number of function constants and that terms themselves must be finite.

Given that we have Ω type-checks, we can simply reuse the proofs from Ω in the construction

of the proof of t replacing every occurrence of a FunRec rule with the pre-proof of the correspond-

ing term in Ω after doing a single function constant unfold using the Delta rule.

This proof has also been mechanised in Coq. We assume in this work that all programs under

consideration type-check, and therefore have a corresponding cyclic pre-proof.

4.3 Preservation and Progress

Based on the system with pre-proofs, we may already arrive at a number of results which are com-

mon for functional programming languages. Type preservation states that if we find a reduction,

it is of the same type as the original term. We can combine this with a notion of progress, which

states that there is always some reduction possible, with preservation to get a weak soundness

result.

In order to proceed we need a basic lemma governing substitution which is utilised by the

elimination rules. However in order to prove this lemma we need context weakening and strength-

ening lemmas. These are used to alter the form of the contexts in ways which preserve meaning.

We have not included them explicitly in our proof rules for the sake of brevity.

Lemma 4.3.1 (Weakening). Given a derivation ∆ ;Γ ∪ Γ� � t : B we can produce a derivation

∆ ;Γ ∪ {x :A} ∪ Γ� � t : B when x �∈ Γ

Lemma 4.3.2 (Strengthening). Given a derivation ∆ ;Γ ∪ {x :A} ∪ Γ� � t : B we can produce

a derivation ∆ ;Γ ∪ Γ� � t : B when x �∈ FV (t)
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The proof of preservation requires that we can invert typing derivations. Essentially since

types can only come from a limited number of proof rules we can prove properties by looking

only at these limited proof rules for a given type.

Lemma 4.3.3 (Substitution Preserves Types). Given derivations

∆ ;Γ ∪ {x : A} ∪ Γ� � r : B and

∆ ;Γ ∪ Γ� � s : A we can produce a derivation

∆ ;Γ ∪ Γ� � r[x := s] : B

Sketch. The proof proceeds by induction on the structure of r.

• (IVar ) In the variable case we perform case analysis on the variable to determine if it is

bound or free. If it is free, then we must check to see if it is equal to the substiution variable.

If it is, we will return s which has type A, the same type as x by construction.

If it is not equal, then we do not change the variable, and hence the type does not change.

If the variable is bound then we cannot replace it, and hence the type will not change.

• (E→) In the case of an application we distribute substitution according to its recursive defi-

nition on both subterms. We obtain the types for the sub-terms through inversion on the type

derivation. We can then use the inductive hypothesis on each sub-term, and apply ImpElim

to obtain a term of the original type.

• Other rules are similar to the ImpElim case

Theorem 4.3.4 (Preservation). Given a derivation ∆ ;Γ � r : A, then if r � s we have that

∆ ;Γ � s : A.

Sketch. Again the proof proceeds by structural induction on r. Each case proceeds by inversion

on the typing derviation and application of the inductive hypothesis and then applications of the

original proof rule.

The idea of progress is that we can always perform some further reduction unless we have a

value which is given in Definition 2.4.1.

Theorem 4.3.5 (Progress). Given a derivation · ; · � t : A we have that t � s or t ∈ V .
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Sketch. We have two cases depending on whether the term is a value or not. If the term is a

value, then we are done, if it is not a value then we perform inversion on the type derivation to

obtain one case for each of the various proof rules which is not a value. In this case, we apply

the inductive hypothesis on the sub-term. Each sub-term will either exhibit a step of evaluation,

which is progressive, or will return a value of the appropriate type (by type preservation). If it is

a value of the appropriate type then we can then perform one step of evaluation to obtain a new

term (t � s).

4.4 Normalisation

Some changes in the form of the proof which go beyond a simple application of the reduction re-

lation �n will turn out to be useful. Specifically these will include distributing reducing contexts

such that they are closer to the producer. This can help in both finding similar terms and eliminat-

ing intermediate constructors. We would like to find forms for our expressions prior to checking

for recurrences and unfolding since this will eliminate intermediate computations and simplify the

structure of the program. The term-level algorithm for normalisation is given in Figure 4.7 and

Figure 4.8. This function associates a new term together with its derivation such that it is bisimilar

to the original term and has the same type, meeting our notion of proof-equivalence. The function

is deterministic and total. This presentation follows on work presented in [53].

Definition 4.4.1 (Normal Form). A term t has normal form t�, written �t�N = t� which is given

by the rules in Figure 4.7 and Figure 4.8.

Normal Forms

I � i := x | f | i n | i[A] | out(i, A)
Vn � v := λx :A. n | ΛA. n | inα(n, U) | (n,m)

| left(n,A+B) | right(n,A+B)
N � n,m := v | i | case i of {x ⇒ n | y ⇒ m} | split i as (x, y) in n

Figure 4.6: Normalisation Grammar

We can characterise the terms after normalisation with the grammar given in Figure 4.6. A

term after normalisation will be a member of this set, that is, �t�N ∈ N . This characterisation

gives some insight as to the reason for shuffling around the various elimination rules. The final

form of our term is either a value in which subterms are normal, in which case it is in the set Vn,

or it will have no more than one elimination at the top level after normalisation and the sub-term
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is irreducible. The irreducible terms are in a set I which is a set of terms which are stuck. Later,

when we perform supercompilation, we will use the fact that the scrutinee of an elimination is in

I.

�x�N := x

�f�N := f
�()�N := ()
�left(t, A)�N := left(�t�N , A)
�right(t, A)�N := right(�t�N , A)
�(r, s)�N := (�r�N , �s�N )
�inα(t, A)�N := inα(�t�N , A)
�λx :A. r�N := λx :A. �r�N
�ΛX. r�N := ΛX. �r�N
�r s�N := if �r�N = λx :A. t

then �t[x := s]�N
else if �r�N = case t of {x ⇒ w | y ⇒ u}
then �case t of {x ⇒ w s | y ⇒ u s}�N
else if �r�N = split t as (x, y) in u

then �split t as (x, y) in u s�N
else �r�N �s�N

�r[A]�N := if �r�N = ΛX. t

else if �r�N = case t of {x ⇒ w | y ⇒ u}
then �case t of {x ⇒ w[A] | y ⇒ u[A]}�N
else if �r�N = split t as (x, y) in u

then �split t as (x, y) in u[A]�N
else �r�N [A]

�out(r, A)�N := if �r�N = inα(t, A)
then �t�N
else if �r�N = case t of {x ⇒ s | y ⇒ u}
then �case t of {x ⇒ outα(s,A) | y ⇒ outα(u,A)}�N
else if �r�N = split t as (x, y) in s

then �split t as (x, y) in outα(s,A)�N
else outα(�r�N , A)

Figure 4.7: Normalisation

Theorem 4.4.2 (Type Preservation for Normalisation). For a term with pre-proof derivation Γ �

t : A we can construct a pre-proof derivation Γ � �t�N : A

Proof. The partial correctness for preservation of types is based on an inductive argument on

t. Total correctness relies on a further argument about normalisation in System F. The proof

follows immediately for all introduction rules. For the elimination rules we use substitution, but

substitution preserves types. The remaining cases for elimination rules involve the following term

distribution laws.

• App-Split: Given ∆ ;Γ � split t as (x, y) in r s : C, by inversion on the derivation for this

sequent we have ∆ ;Γ � split t as (x, y) in r : A → C together with ∆ ;Γ � s : A for
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�

�
case t of
{ x ⇒ r

| y ⇒ s }

�

�

N

:= if �t�N = left(u,A)

then �r[x := u]�N
if �t�N = right(u,A)
then �s[y := u]�N
else if �t�N = case t� of {w ⇒ r� | z ⇒ s�}

then

�

�
case t� of
{ w ⇒ case r� of {x ⇒ r | y ⇒ s}
| z ⇒ case s� of {x ⇒ r | y ⇒ s} }

�

�

N
else if �r�N = split t� as (w, z) in s�

then �split t� as (x, y) in case s� of {x ⇒ r | y ⇒ s}�N
else case �t�N of {x ⇒ �r�N | y ⇒ �s�N}�

split t as (x, y)
in r

�

N

:= if �t�N = (s, u)

then �r[x := s�N [y := u]]
else if �t�N = case t� of {x� ⇒ r� | y� ⇒ s�}

then

�

�
case t� of
{ x� ⇒ split r� as (x, y) in r

| y� ⇒ split s� as (x, y) in s }

�

�

N
else if �t�N = split t� as (x�, y�) in r�

then �split t� as (x�, y�) in split r� as (x, y) in r�N
else split �t�N as (x�, y�) in �r�N

Figure 4.8: Normalisation (Cont.)

some A as can be seen from the following pre-proof fragment:

∆ ;Γ � split t as (x, y) in r : A → C ∆ ;Γ � s : A

∆ ;Γ � (split t as (x, y) in r) s : C

We can therefore construct a proof of ∆ ;Γ � split t as (x, y) in r s : C provided we

weaken the sequent ∆ ;Γ � s : A to ∆ ;Γ ∪ {x :A, y :B} � s : A in order to obtain the

proof:

∆ ;Γ � t : D × E

∆ ;Γ ∪ {x :A, y :B} � r : A → C ∆ ;Γ ∪ {x :A, y :B} � s : A

∆ ;Γ ∪ {x :A, y :B} � r s : C

∆ ;Γ � split t as (x, y) in r s : C

• Other App cases are similar.

• Split-Split: Given ∆ ;Γ � split (split t as (x, y) in r) as (x�, y�) in r� : C, by inversion on

the derivation for this sequent we have ∆ ;Γ � t : A×B together with ∆ ;Γ ∪ {x :A, y :B} �
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r : D × E and ∆ ;Γ{x� :D, y� :E} � r� : C as can be seen from the following pre-proof

fragment:

E := ∆ ;Γ ∪ {x :A, y :B} � r : D × E

∆ ;Γ � t : A×B E
∆ ;Γ � split t as (x, y) in r : D × E ∆ ;Γ ∪ {x� :D, y� :E} � r� : C

∆ ;Γ � split (split t as (x, y) in r) as (x�, y�) in r� : C

We can therefore construct a proof of ∆ ;Γ � split t as (x, y) in split r as (x�, y�) in r� : C

provided we weaken the sequent ∆ ;Γ ∪ {x� :D, y� :D} � r� : C to

∆ ;Γ ∪ {x :A, y :B, x� :D, y� :D} � r� : C in order to obtain the proof:

E :=

∆ ;Γ ∪ {x :A, y :B} � r : D × E ∆ ;Γ ∪ {x :A, y :B, x� :D, y� :D} � r� : C

∆ ;Γ ∪ {x : A, y : B} � split r as (x�, y�) in r� : C

∆ ;Γ � t : A×B E
∆ ;Γ � split t as (x, y) in split r as (x�, y�) in r� : C

• Split-Case: Given ∆ ;Γ � split (case t of {x ⇒ r | y ⇒ s}) as (x�, y�) in r� : C, by in-

version on the derivation for this sequent we obtain the sequents ∆ ;Γ � t : E + F and

∆ ;Γ ∪ {x :E} � r : A×B and ∆ ;Γ ∪ {y :F} � s : A×B and finally ∆ ;Γ ∪ {x� :A, y� :B} �

r� : C which we can see from the following pre-proof fragment:

E :=

∆ ;Γ � t : E + F ∆ ;Γ ∪ {x :E} � r : A×B ∆ ;Γ ∪ {y :F} � s : A×B

∆ ;Γ � case t of {x ⇒ r | y ⇒ s} : A×B

E ∆ ;Γ ∪ {x� :A, y� :B} � r� : C

∆ ;Γ � split (case t of {x ⇒ r | y ⇒ s}) as (x�, y�) in r� : C

Using these sequents we can weaken the sequent ∆ ;Γ ∪ {x� :A, y� :B} � r� : C to

∆ ;Γ ∪ {x :E, x� :A, y� :B} � r� : C and to ∆ ;Γ ∪ {y :F, x� :A, y� :B} � r� : C to

obtain the sequent

∆ ;Γ � case t of {x ⇒ split r as (x�, y�) in r� | y ⇒ split s as (x�, y�) in r�} : C seen in

the pre-proof fragment:
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E :=

∆ ;Γ ∪ {x :E} � r : A×B ∆ ;Γ ∪ {x :E, x� :A, y� :B} � r� : C

∆ ;Γ ∪ {x :E} � split r as (x�, y�) in r� : C

F :=

∆ ;Γ ∪ {y :F} � s : A×B ∆ ;Γ ∪ {y :F, x� :A, y� :B} � r� : C

∆ ;Γ ∪ {y :F} � split s as (x�, y�) in r� : C

∆ ;Γ � t : E + F E F
∆ ;Γ � case t of {x ⇒ split r as (x�, y�) in r� | y ⇒ split s as (x�, y�) in r�} : C

• Case-Split: Given ∆ ;Γ � case split t as (x, y) in r of {x� ⇒ r� | y� ⇒ s�} : C, by inver-

sion we obtain the sequents ∆ ;Γ � t : D × E and ∆ ;Γ ∪ {x :D, y :E} � r : A+B and

∆ ;Γ ∪ {x� :A} � r� : C and ∆ ;Γ ∪ {y� :B} � s� : C from the following proof fragment.

E :=

∆ ;Γ � t : D × E ∆ ;Γ ∪ {x :D, y :E} � r : A+B

∆ ;Γ � split t as (x, y) in r : A+B

E ∆ ;Γ ∪ {x� :A} � r� : C ∆ ;Γ ∪ {y� :B} � s� : C

∆ ;Γ � case split t as (x, y) in r of {x� ⇒ r� | y� ⇒ s�} : C

From these we can weaken two sequents to obtain ∆ ;Γ ∪ {x :D, y :E, x� :A} � r� : C

and ∆ ;Γ ∪ {x :D, y :E, y� :B} � s� : C which we can obtain the following proof frag-

ment:

Γ� := Γ ∪ {x :D, y :E}

E :=

∆ ;Γ� � r : A+B ∆ ;Γ�, x� :A � r� : C ∆ ;Γ�, y� :A � s� : C

∆ ;Γ ∪ {x :D, y :E} � case r of {x� ⇒ r� | y� ⇒ s} : C

∆ ;Γ � t : D × E E
∆ ;Γ � split t as (x, y) in case r of {x� ⇒ r� | y� ⇒ s�} : C

• Case-Case: Given ∆ ;Γ � case case t of {x ⇒ r | y ⇒ s} of {x� ⇒ r� | y� ⇒ s�} : C, by

inversion we obtain the sequents ∆ ;Γ � t : D + E and ∆ ;Γ ∪ {x :D} � r : A+B and

∆ ;Γ ∪ {y :E} � s : A+B and ∆ ;Γ ∪ {x� :A} � r� : C and ∆ ;Γ ∪ {y :B} � s� : C
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from the following proof fragment:

E :=

∆ ;Γ � t : D + E ∆ ;Γ ∪ {x :D} � r : A+B ∆ ;Γ ∪ {y :E} � s : A+B

∆ ;Γ � case t of {x ⇒ r | y ⇒ s} : A+B

E ∆ ;Γ ∪ {x� :A} � r� : C ∆ ;Γ ∪ {y� :B} � s� : C

∆ ;Γ � case case t of {x ⇒ r | y ⇒ s} of {x� ⇒ r� | y� ⇒ s�} : C

We weaken these sequents appropriately to obtain the following proof fragment:

Γ� := Γ ∪ {x :D}

E :=
∆ ;Γ� � r : A+B ∆ ;Γ�, x� :A � r� : C ∆ ;Γ�, y� :B � s� : C

∆ ;Γ� � case r of {x� ⇒ r� | y� ⇒ s�} : C

Γ�� := Γ ∪ {y :E}

F :=
∆ ;Γ�� � s : A+B ∆ ;Γ��, x� :A, � r� : C ∆ ;Γ��, y� :B � s� : C

∆ ;Γ�� � case s of {x� ⇒ r� | y� ⇒ s�} : C

∆ ;Γ � t : D + E E F

∆ ;Γ � case t of

{ x ⇒ case r of {x� ⇒ r� | y� ⇒ s�}

| y ⇒ case s of {x� ⇒ r� | y� ⇒ s�}

: C

• Unfold-Case: Given the sequent

∆ ;Γ � out(case t of {x ⇒ r | y ⇒ s},αX̂. A) : A[X := αX̂. A], by inversion we ob-

tain ∆ ;Γ � t : D + E and ∆ ;Γ ∪ {x :D} � r : αX̂. A and ∆ ;Γ ∪ {y :E} �

s : αX̂. A from the proof fragment:

∆ ;Γ � t : D + E ∆ ;Γ ∪ {x :D} � r : αX̂. A ∆ ;Γ ∪ {y :E} � s : αX̂. A

∆ ;Γ � case t of {x ⇒ r | y ⇒ s} : αX̂. A

∆ ;Γ � out(case t of {x ⇒ r | y ⇒ s},αX̂. A) : A[X := αX̂. A]

From these sequents we can construct the proof fragment:
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E :=

∆ ;Γ ∪ {x :D} � r : αX̂. A

∆ ;Γ ∪ {x :D} � out(r,αX̂. A) : A[X := αX̂. A]

F :=

∆ ;Γ ∪ {y :E} � s : αX̂. A

∆ ;Γ ∪ {y :E} � out(s,αX̂. A) : A[X := αX̂. A]

∆ ;Γ � t : D + E E F
∆ ;Γ � case t of {x ⇒ out(r,αX̂. A) | y ⇒ out(s,αX̂. A)} : A[X := αX̂. A]

• Unfold-Split: Given the sequent

∆ ;Γ � out(split t as (x, y) in r,αX̂. A) : A[X := αX̂. A], by inversion we obtain

∆ ;Γ � t : D × E and ∆ ;Γ ∪ {x :D, y :E} � r : αX̂. A from the proof fragment:

∆ ;Γ � t : D × E ∆ ;Γ ∪ {x :D, y :E} � r : αX̂. A

∆ ;Γ � split t as (x, y) in r : αX̂. A

∆ ;Γ � out(split t as (x, y) in r,αX̂. A) : A[X := αX̂. A]

From these sequents we can construct the proof fragment:

∆ ;Γ � t : D × E

∆ ;Γ ∪ {x :D, y :E} � r : αX̂. A

∆ ;Γ ∪ {x :D} � out(r,αX̂. A) : A[X := αX̂. A]

∆ ;Γ � split t as x in out(r,αX̂. A) : A[X := αX̂. A]

Theorem 4.4.3 (Characterisation of Normalisation). For any term t, with derivation ∆ ;Γ �

t : A, �t�N ∈ Vn.

Proof. First we show the partial correctness of the theorem based on the structure of the definition

of the normalisation function, and the result follows from its termination.

• �x�N = x: x ∈ I, therefore x ∈ N .

• �f�N = f: f ∈ I therefore f ∈ N .

• �()�N = (): () ∈ Vn therefore () ∈ N .
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• �right(t, A)�N = (): �t�N ∈ N therefore right(�t�N , A) ∈ Vn.

• �left(t, A)�N = (): �t�N ∈ N therefore left(�t�N , A) ∈ Vn.

• �(r, s)�N = (�r�N , �s�N ): �r�N , �s�N ∈ N therefore (�r�N , �s�N ) ∈ Vn.

• �inα(t, A)�N = inα(�t�N , A): �t�N ∈ N therefore inα(t, A) ∈ Vn.

• �λx :A. r�N = λx :A. �r�N : �t�N ∈ N therefore λx :A. �r�N ∈ Vn.

• �ΛX. r�N = ΛX. �r�N : �t�N ∈ N therefore ΛX. �r�N ∈ Vn.

• �r s�N : There are two cases:

– �t[x := s]�N ∈ N .

– else �r�N �= λx :A. t and hence it must be an elimination by inversion on the typing

relation, and by type preservation of normalisation. The elimination forms possible

are:

∗ �r�N = case t of {x ⇒ w | y ⇒ u}: �case t of {x ⇒ w s | y ⇒ u s}�N ∈ N

∗ �r�N = split t as (x, y) in u: �case t of {x ⇒ w s | y ⇒ u s}�N ∈ N

∗ �r�N = t u: �r�N ∈ I and �s�N ∈ N therefore �r�N �s�N ∈ I.

∗ �r�N = t[A]: �r�N ∈ I and �s�N ∈ N therefore �r�N �s�N ∈ I.

∗ �r�N = out(t, A): �r�N ∈ I and �s�N ∈ N therefore �r�N �s�N ∈ I.

• The remaining cases are similar to the case for application.

Here we have firmly established that the types are invariant under normalisation by suitable

manipulation of proof fragments obtained through inversion and occasional weakening.

However, our concept of equivalence requires that our proofs are not irrelevant up to the type

but must also maintain the behavioural characteristics up to bisimilarity.

Theorem 4.4.4 (Bisimilarity of Normalisation). For any term t with derivation ∆ ;Γ � t : A we

have that t ∼ �t�N

Proof. The proof of bisimilarity for normalisation proceeds by induction on terms.

• v ∼ �v�N : Since we are working with the Γ-closure, v will be a meta-variable for a term

and given that �v�N := v they are identical.
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• f ∼ �f�N , () ∼ �()�N : These cases are trivial using the definition of �t�N .

• left(t, A) ∼ �left(t, A)�N : Using the definition of normalisation we have �left(t, A)�N :=

left(�t�N , A). We have the transitions left(t, A) left�−−→ t and left(�t�N , A)
left�−−→ �t�N hence

we must show that t ∼ �t�N but this is the inductive hypothesis.

• right(t, A) ∼ �right(t, A)�N : This is just as with left(t, A).

• (r, s) ∼ �(r, s)�N : Since �(r, s)�N := (�r�N , �s�N ) We have the transitions (r, s)
fst�−−→ r

and (�r�N , �s�N )
fst�−−→ �r�N which means we must show that r ∼ �r�N , but this follows

from the inductive hypothesis. Similarly, (r, s) snd�−−→ s and (�r�N , �s�N )
snd�−−→ �s�N : which

leads to the goal s ∼ �s�N again proved using the inductive hypothesis.

• inα(t, A) ∼ �inα(t, A)�N : Using the definition of normalisation we obtain inα(t, A) ∼

inα(�t�N , A). We have the transition inα(t, A)
fold�−−→ t and inα(�t�N , A)

fold�−−→ �t�N . This

leads to the inductive hypothesis t ∼ �t�N .

• λx : A.r ∼ �λx : A.r�N : Again we obtain λx : A.r ∼ λx : A.�r�N from the definition of

normalisation. Using the transitions λx : A.r
@a�−−→ r[x := a] and λx : .�r�N

@a�−−→ �r�N [x :=

a] we have the goal r[x := a] ∼ �r�N [x := a] carefully choosing a from the Gamma

closure, which is in fact the goal.

• ΛX.r ∼ �ΛX.r�N : By the definition of normalisation we have ΛX.r ∼ ΛX.n[r]. Using

the transitions ΛX.r
@A�−−→ r[X := A] and ΛX.�r�N

@A�−−→ �r�N [X := A] leads to the goal

r[X := A] ∼ �r�N [X := A] which is also the inductive hypothesis.

• r s ∼ �r s�N : Here, we have several cases depending on the normalisation �r�N .

– �r�N = λx : A.t: Here we have that �r s�N = �t[x := s]�N which is β-equivalent to

��r�N s�N , hence we must show that r s ∼ �t[x := s]�N , By the inductive hypothesis

we have that r ∼ �r�N hence r ∼ λx : A.t. Since − s is an experiment r s ∼

(λx : A.t) s. This gives us r s ∼ t[x := s] by β-equivalence. Using the fact that

t[x := s] ∼ �t[x := s]�N we have finally that r s ∼ �t[x := s]�N .

– �r�N = case t of {x ⇒ w | y ⇒ u}: If t left�−−→ t� then we have w[x := t�] s ∼

w[x := t�] s[x := t�] but since x is not free in s this is true by reflexivity. Similarly

for t right�−−−→ t�. If t � t� then we step once in both proofs and use the coinductive

hypothesis.
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– �r�N = split t as (x, y) in u: If t fst�−→ t� and t
snd�−−→ s� then we have (u[x := t�][y := s�]) s ∼

(u[x := t�][y := s�]) (s[x := t�][y := s�]) but since x and y are not free in s, this is true

by reflexivity.

– �r�N �s�N : Here we can simply use the composition directly.

• r A ∼ �r A�N : Again we have two cases depending on the normalisation of �r�N .

– �r�N = ΛX. t: We have that r ∼ �r�N hence r ∼ ΛX. t. since − A is an experiment,

this gives us that r A ∼ t[X := A]. Since t[X := A] ∼ �t[X := A]�N we have finally

that r A ∼ �t[X := A]�N .

– As with the eliminations in the application case.

– �r�N A: Since r ∼ �r�N , and − A is an experiment r A ∼ �r�N A.

• out(r, A) ∼ �out(r, A)�N : Here we have several cases depending on the normalisation

�r�N .

– �r�N = inα(t, A): Here we have the goal out(r, A) ∼ �t�N . Since r ∼ �r�N

and �r�N = inα(t, A) we have r ∼ inα(t, A). But then by composition E[r] ∼

E[inα(t, A) for some experiment E, hence we choose E = out(−, A) and arive at

out(r, A) ∼ outα(inα(�t�N , A), A) which by the evaluation lemma is out(r, A) ∼

�t�N .

– �r�N = case t of {x ⇒ s | y ⇒ u}: Here the goal is

out(r, A) ∼ �case t of {x ⇒ outα(s,A) | y ⇒ outα(u,A)}�N . We proceed as with

the elimination forms in the application case.

– �r�N = split t as (x, y) in s:

– outα(�r�N , A): Since r ∼ �r�N , and out(−, A) is an experiment outα(r, A) ∼ outα(�r�N , A).

The use of the inductive hypothesis in the above proof assumes that �t�N terminates for arbi-

trary terms. This means that the above proof is only partially correct. To establish total correctness

we need to show termination.

Theorem 4.4.5 (Termination of Normalisation). For all terms t which have a pre-proof ∆ ;Γ �

t : A, �t�N terminates.
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Proof. Each step in the normalisation proof applies to one of two cases. It applies to a reduction

step using the evaluation relation, or it applies to subterms. The normalisation steps involving

subterms are terminating since we do not unfold function constants and terms are therefore finite.

The normalisation steps which perform a reduction however require that the term is smaller ac-

cording to the union of the subterm relation and another relation used to show that reduction is

strongly normalising for System-F given a suitable restriction on types (for instance some positiv-

ity condition). We assume that such a relation is given by our particular choice of restriction on

types and we use it here to show that subsequent reduction steps are decreasing monotonically in

normalisation.

The normalisation algorithm, as described here, coupled with the proof of type preservation

can easily be generalised to deal with normalisation of derivations. In the actual implementation

we merely use these facts to transform the term and produce the type derivation from this trans-

formed term. We sometimes overload the meaning of �t�N such that it can also work on sequents

and its corresponding derivation �∆ ;Γ � t : A�N .

Finally, we need a concept of information propagation. This captures the idea that the result

of a computation after decomposition yields information about the variable which is decomposed.

Definition 4.4.6 (Information Propagation). The following rewrites are used to propagate infor-

mation for terms.

• For (case c of {x ⇒ r | y ⇒ s}) we have the rewrite c := left(a,A+B) in r

• For (case c of {x ⇒ r | y ⇒ s}) we have the rewrite c := right(b, A+B) in s

• For (split c as (x, y) in r) we have the rewrite c := (a, b) in r

• For (outα(c,αX̂. T )) we have the rewrite c := inα(a,αX̂. T ) in the reduction context.

These rules are justified by bisimilarity. We can see that each of these cases arises directly from

the transition edge corresponding to the operational behaviour of the term or there is some further

reduction which will take place. As long as we don’t skip the reductions which must take place,

information propagation will preserve bisimilarity. We demonstrate this formally in Section 5.3.

The full process of recursively rewriting a term t using information propagation is given by the

function I[t].
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4.5 Function Unfolding

When transforming proofs using function constants to cyclic proofs it is critical that we be able

to unfold any function constant f and replace it with the associated body Ω(f). Once a function

constant is unfolded, there are possibilities for evaluation that were not there previously. We can

capture the idea of unfolding a function constant in a context of experiments E∗ by performing

normalisation on the term after replacing a function constant with its body associated under the

Ω function. This provides us with a new derived proof rule Iδ. This rule preserves not only the

types but also preserves our notion of behavioural equivalence as has was proved in Section 4.4.

We show this rule in Figure 4.9.

∆ ;Γ � I[�E∗[Ω(f)]�N ] : A
Iδ

∆ ;Γ � E∗[f] : A

Figure 4.9: Function Unfolding Rule

4.6 Proofs

In order to move from weak soundness to a notion of totality, or soundness we need to deal with

circularities in the proofs which can lead to non-terminating behaviour. To do this requires some

concept of semantics. We use a notion of soundness based on the transition systems induced by

the structural operational semantics of our language. Since we have not yet defined this we are

unable to show that any of our pre-proofs are in fact proofs.

However, for pragmatic reasons, instead of demonstrating soundness directly we give two syn-

tactic criteria, one for inductive and one for co-inductive types. These form sufficient conditions to

ensure soundness. The criteria are similar to those widely used for correctness of total languages

such as Coq and Agda. The justification for these rules is given later in Section 6.2 where we show

that these syntactic criteria on pre-proofs imply soundness and can be treated as proofs.

Definition 4.6.1 (Structural Ordering). A term t is said to be less in the structural ordering than a

term s, or t <s s using the relation <s given by the inductive definition in Figure 4.10.

Definition 4.6.2 (Structural Recursion). A derivation is said to be structurally recursive if for every

sequent used in a Cyc rule, there exists a privileged variable x such that for all Cyc rules, with

substitution σi, using that sequent we have that x ∈ dom(σi) and σ(x) <s x.
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case r of {x ⇒ s | y ⇒ t}
x S r

case r of {x ⇒ s | y ⇒ t}
y S r

split r as (x, y) in t

x S r

split r as (x, y) in t

y S r

outα(t,αX̂. A)

outα(t,αX̂. A) S t

<s:= S∗ Transitive closure of S

Figure 4.10: Structural Ordering

It should be mentioned that there is nothing in particular needed for this definition aside from

some guarantee that the cycles lead to a well founded recursion scheme. As such this represents

a particular implementation strategy and we could very well have used a more liberal approach.

One such approach is size-change termination as described by Neil Jones et al. in [41]. This

was adapted to dependent type theory by David Wahlstedt [93]. Andreas Abel and Thorsten

Altenkirch have also described a similar termination checking algorithm which forms the basis

of Agda’s termination and productivity checker [4]. Abel has introduced a notion of a sized type

which allows definitions which are not possible with a strictly syntactic criteria on terms[1]. It

would be interesting to see if there is some relation to transformation combined with syntactic

criteria. A visualisation of the definition adopted here is depicted in Figure 4.11.

∆ ;Γ � σ ◦ (x, t) ◦ σ� : «∆� ;Γ�» sub
Cyc(�)

ζ ∪ {�} ∪ ζ � ;∆� ;Γ� � (s : A) ⇐ σ ◦ (x, t) ◦ σ�

...
ζ ;∆ ;Γ � s : A label �

Where t <s x

Figure 4.11: Structural Recursion

Similarly, we must produce a rule for coinductive types which ensures that all terms of coin-

ductive type are productive. We here develop a guardedness condition specific to our type theory

of cyclic proofs. Essentially this condition ensures we encounter an introduction of a constructor

which cannot be eliminated on all coinductive cyclic paths. The only intermediate terms must

reduce finitely through eliminations of finite or inductively defined terms, ensuring that we will

not compute indefinitely prior to producing a constructor.
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While structural recursion is focused on determining whether the arguments of a recursive

term are subterms of some previously destructured term, the dual problem is of determining if a

recursive term’s context ensures that the term grows. This means we need ways of describing the

surrounding context of a term. However, the contexts we have developed thus far are structured

in terms of experiments. With coinductive terms we need exactly the opposite variety of contexts,

those surrounding terms which are not experiments.

The key important features of the contexts we are interested in turns out to be whether or not

they introduce constructors, and whether they are guaranteed not to remove them. These properties

are necessary in the construction of our proof that guardedness leads to productivity.

We can describe the relevant features of the context by describing a path. This path is a series

of constructors that allows us to demonstrate which directions to take down a proof tree to arive at

a recurrence.

Definition 4.6.3 (Path). A path is a finite sequence of pairs of a proof rule from Figure 2.10 and

an index denoting which antecedent it decends from. This pair is described as a rule-index-pair.

An example of such a path would be the following:

I
+
L
1,I×2,I→1

This denotes the context:

left((λx : B.−, s), A)

With some unknown (and for the purpose of proving productivity, inconsequential) variable x,

term s and types A and B.

With this in hand we can establish conditions for guardedness with recursive definitions based

on constraints on paths.

Definition 4.6.4 (Admissible). A path is called admissible if the first element c of the path p = c, p�

is one of the rule-index-pairs I+L
1, I+R

1, I×1, I×2, I∀1, Iα1, I→1, E+2, E+3, E×2,E∀1, IΩ1 and

p� is an admissible path.

Definition 4.6.5 (Guardedness). A path is called guarded if it terminates at a Cyc Rule, with the

sequent having a coinductive type and the path can be partitioned such that p = p�, [Iν1], p�� and

p� and p�� are admissible paths. We call Iν1 the guard.
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The idea behind the guardedness condition is that we have to be assured that as we take a

cyclic path we produce an Intro rule which will never be removed by the reduction relation. The

left hand-side of an elimination rule will never cause the elimination of such an introduction and

so is safe. However, the right hand side of an elimination rule may in fact cause the removal of

the introduction rule when we use the evaluation relation. Again, we give a visualisation of the

definition in Figure 4.12.

∆ ;Γ � σ1 : «∆1 ;Γ1» sub

ζ ∪ {S} ∪ ζ1 ;∆1 ;Γ1 � (s : νX̂. A) ⇐ σ1

...
P1

. . .

· · · Pi · · ·
...

∆ ;Γ � σn : «∆n ;Γn» sub

ζ ∪ {S} ∪ ζn ;∆n ;Γn � (s : νX̂. A) ⇐ σn

...
Pn

. . .

ζ ;∆ ;Γ � s : νX̂. A label S

Where Pi is guarded for i from 1 to n.

Figure 4.12: Guardedness

Using these two conditions of structural induction and guardedness we can define a proof.

Definition 4.6.6 (Proof). A proof is a pre-proof of a sequent (ζ ;∆ ;Γ � t : A) in which every

Cyc rule is either structurally recursive or productive. We will write the sequent for the proof

associated with the pre-proof (ζ ;∆ ;Γ � t : A) as (ζ ;∆ ;Γ � t : A).

4.7 Example

In order to get a better handle on how cyclic proof works practically, we present some examples

of programs and their transformations. We carry out the process quite manually such that none of

the considerations discussed in detail in Chapter 3 are needed.

We use over-bars to represent types which use greatest fixed points as a visual cue to the reader.

The type N is defined as νX̂. 1 + X̂ and represents the type of natural numbers including the point

at infinity. The type [A] is defined as νX̂. 1 + (A× X̂) and represents potentially infinite lists

with elements of type A. In Figure 4.15 we give a program which calculates the length plus the

sum of elements of a potentially infinite list. The example is somewhat contrived, but the addition

of the length is necessary to ensure that the program is productive. An infinite stream of zeros for

instance would not yield a productive sum.

We ascribe a type to each constant at the top level using the function Ξ. This serves two
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purposes: it allows us to avoid a bi-directional type-inferencing and type-checking algorithm,

simplifying our presentation, but also helps us ensure that each constant corresponds to a unique

type. The program Ω(ω) := ω is an example which can inhabit arbitrary types and whose type

would be ambiguous if one was not ascribed.

Ω(zero) := inν(left(, 1 + N),N)
Ω(succ) := λx :N. inν(right(x, 1 + N),N)
Ω(plus) := λx y :N.

case (outν(x,N)) of
{ z ⇒ y

| n ⇒ succ (plus n y)}
Ξ(zero) := N
Ξ(succ) := N → N
Ξ(plus) := N → N → N

Figure 4.13: Program for plus

The program for the term plus is given in Figure 4.13. The cyclic pre-proof associated with

the term plus, is given in Figure 4.14. Since we have a cyclic pre-proof we can now attempt

to show that this term is productive. We must demonstrate that all cycles meet the conditions

imposed by the guardedness and structural recursion criteria given above. Since we only have one

cycle, and this cycle is coinductive, we need only write down the associated path and check that it

meets the condition of a guarded path. We will take the liberty of eliding elements of the context

from the sequent when they are irrelevant. For instance, in the sequent (ζ ;∆ ; {x :A} � x : N),

ζ and ∆ are not relevant, as there is no Cyc rule and no free type variables in A.

p = IΩ
1, I→1, E+3, IΩ1, Iν1, I+R

1, IΩ1

We can see that the prefix p� = IΩ
1, I→1, E+3, IΩ1 and the suffix p�� = I

+
R
1, IΩ1 are

admissible and the Iν
1 is the guard. This meets the condition of guardedness and hence our pre-

· ; {x : N, y : N} � (x, n) : «· ; {y :N, n :N}» sub
Cyc(�)

{�} ; · ; {y :N, n :N} � (case outν(x,N) of {z ⇒ y | n ⇒ succ (plus n y)} : N) ⇐ {(x, n)}
Iδ

{�} ; · ; {y :N, n :N} � plus n y : N
I+R

{�} ; · ; {y :N, n :N} � right(plus n y, 1 + N) : 1 + N
Iν

{�} ; · ; {y :N, n :N} � inν(right(plus n y, 1 + N),N) : N

(A)

{�} ; · ; {x :N} � x : N
Eν

{�} ; · ; {x :N} � outν(x,N) : 1 + N {�} ; · ; {y :N} � y : N
A

Iδ
{�} ; · ; {y :N, n :N} � succ (plus n y) : N

E+

· ; · ; {x :N, y :N} � case outν(x,N) of {z ⇒ y | n ⇒ succ (plus n y)} : N label �
I→

· ; · ; · � λx y :N. case outν(x,N) of {z ⇒ y | n ⇒ succ (plus n y)} : N
Iδ

· ; · ; · � plus : N → N → N

(B)

Figure 4.14: Plus
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proof is in fact a proof.

Similarly, we can use the exact same proof tree with the slight modification of the type from

using the co-natural numbers N to the natural numbers N. In this case we need to show that

(n <s x). This can be done simply by walking through the proof rules. From the transitivity of

<s we have that n <s x as (outµ(x,N) <s x) together with n <s outµ(x,N), since we have

case (outµ(x,N)) of {z ⇒ y | n ⇒ succ (plus n y)}.

Ω(sumlen) := λxs : [N].
case (outν(xs, [N])) of
{ nil ⇒ zero
| p ⇒

split p as (n, xs�) in succ (plus n (sumlen xs�))}
Ξ(zero) := N
Ξ(succ) := N → N
Ξ(plus) := N → N → N
Ξ(sumlen) := [N] → N

Figure 4.15: Sumlen Program

· ; · � · : «· ; ·» sub
Cyc(�)

{†, �} ; · ; · � (plus : N → N → N) ⇐ · · ; · ; {n :N} � n : N · ; · ; {y :N} � y : N
{†, �} ; · ; {y :N, n :N} � plus n y : N

{†, �} ; · ; {y :N, n :N} � right(plus n y, 1 + N) : 1 + N
{†, �} ; · ; {y :N, n :N} � inν(right(plus n y, 1 + N),N) : N

{†, �} ; · ; {y :N, n :N} � succ (plus n y) : N

(G)

· ; · ; {x :N} � x : N
· ; · ; {x :N} � outν(x,N) : 1 + N · ; · ; {y :N} � y : N

G

{†, �} ; · ; {y :N, n :N} � succ (plus n y) : N
{†, �} ; · ; {x :N, y :N} � case outν(x,N) of {z ⇒ y | n ⇒ succ (plus n y)} : N
{†, �} ; · ; · � λx y :N. case outν(x,N) of {z ⇒ y | n ⇒ succ (plus n y)} : N

{†} ; · ; · � plus : N → N → N label �

(F )

F

{†} ; · ; · � plus : N → N → N · ; · ; {n :N} � n : N

· ; · � · : «· ; ·» sub
Cyc(†)

{†} ; · ; · � (· · · : [N] → N) ⇐ · · ; · ; {xs� : [N]} � xs� : [N]

{†} ; · ; {xs� : [N]} � sumlen xs� : N

{†} ; · ; {n :N, xs� : [N]} � plus n (sumlen xs�) : N

{†} ; · ; {n :N, xs� : [N]} � right(plus n (sumlen xs�), 1 + N) : 1 + N

{†} ; · ; {n :N, xs� : [N]} � inν(right(plus n (sumlen xs�), 1 + N),N) : N

{†} ; · ; {n :N, xs� : [N]} � succ (plus n (sumlen xs�)) : N

(E)

{†} ; · ; {p : (N × [N])} � p : (N × [N]) E

{†} ; · ; {p : (N × [N])} � split p as (n, xs�) in succ (plus n (sumlen xs�)) : N
(D)

{†} ; · ; {xs : [N]} � xs : [N]

{†} ; · ; {xs : [N]} � outµ(xs, [N]) : 1 + (N × [N]) {†} ; · ; · � zero : N D

{†} ; · ; {xs : [N]} � case (outµ(xs, [N])) of {nil ⇒ zero | p ⇒ split p as (n, xs�) in succ (plus n (sumlen xs�))} : [N] → N

{†} ; · ; · � λxs : [N]. case (outµ(xs, [N])) of {nil ⇒ zero | p ⇒ split p as (n, xs�) in succ (plus n (sumlen xs�))} : [N] → N

· ; · ; · � sumlen : [N] → N label †

Figure 4.16: Cyclic Pre-Proof for Sumlen

The cyclic derivation of the type of the sumlen term is given in Figure 4.16. We cut the
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pre-proof into several parts for the sake of presentation. It turns out that this pre-proof can be

transformed into a proof, however this is not immediately evident from the structure of the proof

as presented, as the original cyclic pre-proof does not meet the guardedness condition.

The pre-proof of plus, given by F , does meet the guardedness condition as was shown

above. However, the same is not true of sumlen. The pre-proof as given does not meet the

guardedness condition as there is an implication elimination that takes place in part E . In principle,

this application could strip some number of constructors from the subsequent call of sumlen.

In order to show that the semantic condition of productivity is indeed met we can make use of

proof transformation using the evaluation relation, and a restructuring of the cyclicity of the proof

to derive an equivalent pre-proof which meets the syntactic condition of guardedness.

We do this as a series of steps the first of which is presented in Figure 4.17. This pre-proof

simply unfolds more definitions and uses the evaluation relation to simplify proof steps rather than

using ImpElim steps in the proof. The resulting proof then uses the Cyc rule to produce cycles in

order to give a finite presentation.

· ; {xs : [N]} � (xs�, xs) : «· ; {xs� : [N]}» sub
Cyc(†)

{†, �} ; · ; {xs : [N]} � (

case (outµ(xs�, [N])) of
{ nil ⇒ zero
| p ⇒ split p as (n, xs�)

in succ (plus n (sumlen xs�))
}

: N) ⇐ (xs�, xs)

(H)

· ; {xs� : [N], n� :N} � (n�, n) : «· ; {xs� : [N], n :N}» sub
Cyc(�)

{†, �} ; · ; {xs� : [N], n :N} � (plus n� (sumlen xs�) : N) ⇐ (n�, n)

{†, �} ; · ; {xs� : [N], n :N} � right(plus n (sumlen xs�), 1 + N) : 1 + N

{†, �} ; · ; {xs� : [N], n :N} � inν(right(plus n (sumlen xs�), 1 + N),N) : N

{†, �} ; · ; {xs� : [N], n :N} � succ (plus n (sumlen xs�)) : N

(G)

· ; · ; {n :N} � n : N
· ; · ; {n :N} � outν(n,N) : 1 + N H

G

{†, �} ; · ; {xs� : [N], n :N} � succ (plus n (sumlen xs�)) : N

{†, �} ; · ; {n :N, xs� : [N]} � case outν(n,N) of {z ⇒ sumlen xs� | n ⇒ succ (plus n (sumlen xs�))} : N

{†} ; · ; {n :N, xs� : [N]} � plus n (sumlen xs�) : N label �

(F )

F

{†} ; · ; {n :N, xs� : [N]} � right(plus n (sumlen xs�), 1 + N) : 1 + N

{†} ; · ; {n :N, xs� : [N]} � inν(right(plus n (sumlen xs�), 1 + N),N) : N

{†} ; · ; {n :N, xs� : [N]} � succ (plus n (sumlen xs�)) : N

(E)

· ; · ; {p : (N × [N])} � p : (N × [N]) E

{†} ; · ; {p : (N × [N])} � split p as (n, xs�) in succ (plus n (sumlen xs�)) : N
(D)

· ; · ; {xs : [N]} � xs : [N]

· ; · ; {xs : [N]} � outµ(xs, [N]) : 1 + (N × [N]) · ; · ; · � zero : N D

· ; · ; {xs : [N]} � case (outµ(xs, [N])) of {nil ⇒ zero | p ⇒ split p as (n, xs�) in succ (plus n (sumlen xs�))} : N label †

· ; · ; · � λxs : [N]. case (outµ(xs, [N])) of {nil ⇒ zero | p ⇒ split p as (n, xs�) in succ (plus n (sumlen xs�))} : [N] → N

· ; · ; · � sumlen : [N] → N

Figure 4.17: Cyclic Proof for Sumlen
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In this final proof in Figure 4.17 we can demonstrate the productivity by checking the guard-

edness condition. For the path given by the Cyc rule associated with the †, we have p = E+3,

I×
2, Iν1, I+R

1, E+2, IΩ1 and p� = I
+
R
1. This is a prefix and suffix which is admissible, together

with the guarded rule Iν
1, hence this path is guarded.

For the path given by the Cyc rule associated with the �, we have p = IΩ
1, E+3, IΩ1, Iν1,

I
+
R
1 and p� = I

+
R
1. This path has an admissible prefix and suffix together with the guard Iν

1.

Since there are no other cycles in the pre-proof, and the cycles are all guarded, this pre-proof is a

proof.

Ω(f) := λs : [N].
case outν(s, �N�) of
{ nil ⇒ zero
| p ⇒ split p as (n, s�) in g s� n}

Ω(g) := λs� : [N], n :N.
in(right(case (out(n,N)) of

{ z ⇒ f s�

| n� ⇒ g s� n�},1+ N),N)

Figure 4.18: Residual Sumlen Program

Associated with this cyclic proof is a program which has the same structure as the proof and

is given in Figure 4.18. The technical procedure for generating this residual program is given in

Section 5.4. We can clearly see that the program contains constructors in g prior to calling f or

calling g and does not attempt to destructure the results of these calls but merely returns them it

is manifestly productive. We have removed intermediate computations such as the function plus

which could have been destroying the productivity of our computation. After transformation the

fact that it was not in fact doing anything untoward which might damage productivity is made

obvious in the syntax.

By contrast to the productive examples we give an example of an addition function, badplus

given in Figure 4.19, which would be perfectly suitable on an inductive type, however the prograrm

is rightly rejected as it is not guarded.

Ω(succ) := λx :N. inν(right(x,1+ N),N)
Ω(badplus) := λx, y :N.

case (outν(x,N)) of
{ z ⇒ y

| x � ⇒ badplus x� (succ y)}
Ξ(succ) := N → N
Ξ(badplus) := N → N → N

Figure 4.19: Unproductive Plus
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· ; · ; {x :N, y :N} � x : N
Eν

· ; · ; {x :N, y :N} � out(x,N) : 1 + N · ; · ; {x :N, y :N} � y : N

· ; {x� : [N]} � (x�, x) : «· ; {x :N}» sub
Cyc(†)

· ; · ; {x� :N, y :N} � case out(x,N) of
{ z ⇒ succ y
| x�

⇒ badplus x�

(succ (succ y))}

: N

IΩ
· ; · ; {x :N, y :N} � badplus x�(succ y) : N

E+

· ; · ; {x :N, y :N} � case out(x,N) of
{ z ⇒ y
| x�

⇒ badplus x�(succ y)}

: N label †

I→, I→
· ; · ; · � λx, y :N. case out(x,N) of

{ z ⇒ y
| x�

⇒ badplus x�(succ y)}

: N → N → N

IΩ
· ; · ; · � badplus : N → N → N

Figure 4.20: Unproductive Plus Cyclic Pre-Proof

We see in Figure 4.20 that the path for † consists of E+3,IΩ1 and therefore does not have a

guard.

It is also possible to have programs which are productive, but for which productivity will not

be discovered, even after the transformation rules which are given in Chapter 5. In the conclusion

we give a simple example of a clearly productive program (Figure 8.1which we are not able to

transform into a cyclic proof. We additionally demonstrate how such programmes might be in-

cluded. Of course, in the final analysis it must be impossible to transform all productive programs

into a syntactic form demonstrating productivity. We can make a pathological case that requires

us to determine if a given program halts prior to emiting a guard. This reduces the problem to the

halting problem.

4.8 Related Work

The importance of cyclic proof was probably first recognised by the model checking community

in providing proofs that transition systems with a potentially infinite number of states, satisfied

some temporal formula. The modal µ-calculus in particular is interesting because it has alternat-

ing greatest and least fixed points. Tableau methods for demonstrating satisfaction of µ-calculus

formulae were investigated by Bradfield and Stirling in [12]. These will be looked at in more detail

in Chapter 6.

Bradfield and Stirling’s work is what initially inspired the approach taken in the present work.

It differs in dealing with a Tableau system rather than a type theory and being concerned with

transition systems, not with a term calculus which is itself directly a programming language.

The work on cyclic proofs was initiated by Brotherston [13]. The formulation that was given

by Brotherston is in terms of a logic with induction rules. He first gives a formulation quite similar

to the one given for cyclic proofs without explicit reference to terms.
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In Brotherston’s formulation inductive definition sets are used which introduce inductive pred-

icates by way of productions. These productions are introduction rules for the predicates.

The monotone operator which ensures that this is meaningful (and does not lead to unsound-

ness) is constructed explicitly. In the present work we rely on the positivity of types to ensure

that such a monotone operator exists rather than constructing it. In addition, we define recursive

types using an explicit least and greatest fixed-point notation rather than simply giving a set of

productions.

The method given in this chapter differs since it makes reference to a term calculus. We use

a notion of equivalence based on the operational behaviour of the evaluation relation such that we

can use similar methods in the setting of a functional programming language. This opens the door

to the use of the evaluation relation to give us more freedom in the transformation proofs. We ex-

tend beyond simply representing inductive relationships as proof cycles, to include the generation

of new cyclic configurations of the same proof and include both induction and coinduction.

Our work shares important similarities with Cockett’s work on deforestation [18]. He de-

scribes cut-elimination in cyclic proofs with both inductive and coinductive types.

The present work differs from the one given by Cockett in the use of pre-proofs. Cockett uses

the Charity [19] programming language which is a total functional programming language. The

work here differs in that it deals with a general programming language (which is Turing complete)

with the aim of proving particular terms to be total. Cockett’s motivation for the use of similar

techniques was to explore equivalence of terms. Within Cockett’s framework soundness does not

need to be determined in each case. Only the rules and the transformations need to be justified.

We give a notion of bisimiliarity in Chapter 3 in order to define equivalence of proofs which

allows us to work with programs without regard to their termination. We use this result to demon-

strate in Chapter 5 how the more general supercompilation family of algorithms fit into the frame-

work of program transformation as cut-elimination (and cut-introduction) in cyclic proof extend-

ing Cockett’s work. In this case we seek to use automatic methods for establishing soundness

for programs which do not meet the restrictions required for deforestation. This method can cope

with programs which are not known to be terminating in contrast to the total programs given by

Cockett.

Santocanale has also investigated cyclic proof [76]. Santocanale’s approach is to start with

categorical notions of initial algebras and final coalgebras and to use this to uncover a term lan-

guage with a cyclic proof system which is suitable as a programming language. Rather than using
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function constants, as is done here, Santocanale looks at the more general notion of systems of

directed equations.

The investigation given here starts with the aim of bridging the gap between presently existing

programming languages, such as Haskell and Coq, with techniques from cyclic proof. For this

reason, the cyclic proof system given here differs significantly from the one given by Santocanale,

and more closely resembles a typical type system with a coinductive typing derivation relation

rather than an inductive one.
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Chapter 5

Program Transformation

5.1 Introduction

The study of program transformation is the broad study of methods of altering programs such that

they preserve program behaviours up to some notion of equivalence. For this reason, notions of

inclusion or equivalence of behaviours are critical to the study of program transformation.

Historically, program transformation is most often used to increase the efficiency of programs,

either in space or time or both. However, Turchin noted quite early that it can also be used as a

method for determining properties of software [86]. Similar approaches, using program transfor-

mation for verification have been taken up in several other works [48][35].

The present work uses program transformation for the purpose of establishing program (co)termination

behaviour, using new methods. We are interested in dealing with program termination behaviour

because we want to be able to view types as establishing properties of the programs for which

they have proofs. Using cyclic pre-proofs all types are inhabited and types which describe some

intended behaviour can be given proofs which have no behaviour at all. The generation of a proof

from a pre-proof will give us a guarantee that the type of the final program describes the actual

behaviours of the original program prior to transformation.

5.2 General Framework

Program transformation can be seen as a family of systems for the manipulation of terms. A very

general system was given by Burstall and Darlington [14]. Following on that work we present

some of their results in the context of proof transformations. We use those results to describe the
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supercompilation algorithm in Section 5.3. Supercompilation is a particular instance of this more

general framework which shares the twin properties of ensuring bisimilarity and termination of

the transformation.

The techniques can be broadly described as falling into the following basic steps: unfold-

ing, which is the replacement of function symbols with the terms that they represent, elimination,

which makes use of equivalence under the evaluation relation, generalisation which will introduce

new forms which are behaviourally equivalent and information propagation, which keeps track of

which behaviours we can assume to be true of a term. Folding involves creating a finite represen-

tation of the infinite proof tree by recognising a recurrence. We define all of these formally, and

then motivate their use with a particular example.

Definition 5.2.1 (Unfolding). A term r with derivation (∆ ;Γ � r : A) is said to be an unfolding

of a term f with derivation (∆ ;Γ � Ω(f) : Ξ(f)) such that Ω(f) = r and Ξ(f) = A.

Since we have built the proof rules to include unfolding as a derivation rule, we can use this

rule in an unrestricted way. It has no effect on the termination properties of programs as it simply

replaces terms with their definitions. It is what allows us to represent terms with infinite derivations

in a finite way.

Definition 5.2.2 (Folding). If a term r, with derivation (∆� ;Γ� � r : A) is encountered while

transforming a proof to a cyclic proof, such that t is a substitution instance of some term s

with derivation (∆ ;Γ � s : B) and substitution (∆ ;Γ � σ : «∆� ;Γ�» sub), that is,

(∆ ;Γ � s : B) ⇐ σ = (∆� ;Γ� � r : A) and further we have that (∆ ;Γ � s : B) ∈ ζ,

where ζ is the current sequent context, we can simply rewrite the pre-proof as a Cyc rule, and say

that we have made a fold.

If we think of the pre-proof as being a coinductive representation of the proof-rules, this fold-

ing rule is simply a co-fixpoint representation of the infinite proof tree utilising the recurrence to

give a finite presentation.

We also need to make use of generalisation. The least general generalisation (or LGG) is

in a strict sense the dual to unification as was first demonstrated by Plotkin [71]. Generalisation

simply allows us to introduce a number of implications and for-all proof rules using the assumed

equality modulo β-reduction. The need for generalisation comes from the need to produce finite

representations of our pre-proofs. We give a definition of generalisation in Definition 5.3.8. We

see an example of the use of generalisation in Section 5.5.
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The choices of generalisation are somewhat arbitrary as the calculus presented here admits

no single least general generalisation[49]. The choice of ordering which gives rise to the notion

of least will impact what results we obtain. This means that we must choose the generalisation

algorithm that we use in practice, based on heuristics, or leave the choice open to a user.

5.3 The Supercompilation Algorithm

Supercompilation [87] is a particular family of algorithms which make use of folding, unfold-

ing, generalisation and information propagation. It is a superclass of the partial evaluation and

deforestation program transformations, as it can perform these in addition to more sophisticated

transformations.

Supercompilation is characterised by composing the features: unfolding, folding, generalisa-

tion, reduction and information propagation in such a way as to ensure termination of the transfor-

mation algorithm. It can be thought of as a method of producing bisimilar programs by design. Just

as bisimilarity is coinductively defined and makes use of self-reference, we will find that construc-

tion of bisimilar programs using supercompilation follows a similar approach to the structure of a

bisimulation argument. We construct a term which has the syntax for the appropriate behaviours

and makes use of self-reference.

The fact that some elimination proof steps constrain the form of terms which share proof

structure with the term under elimination is known as information propagation. The full algo-

rithm requires that we find a finite representation of the cyclic pre-proof produced by driving, and

therefore we must use generalisation to avoid unbounded pre-proof sizes, by replacing some terms

with variables and folding to substitution instances.

Information propagation is quite straightforward in our framework. The definition of the

rewrites performed by information propagation are given in 4.4.6. It is essentially book keeping

of meta-variables with inversion on the typing derivations of these metavariables to arrive at equa-

tions. These equations can then be used as rewrites on further meta-variables in subsequent proof

steps. We can be assured that this is acceptable because the reduction relation is deterministic and

will always attempt to reduce the term under consideration for elimination first. Non-termination

of this term will not be affected by replacement of terms further up the proof tree as they will never

be reached in the event of non-termination.

Lemma 5.3.1 (Information Propagation). Information Propagation for a term t leads to a term t�
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such that t ∼ t�.

Proof. The proof of the bisimulation of the term after rewrites follows directly from inversion on

the typing derivation and the fact that simulation is a compatible refinement. The metavariables,

a,b and c are introduced through the definition of the transition relation.

• For case terms, case c of {x ⇒ r | y ⇒ s}, we have that the term c is of type · ; · �

c : A+B. If c ⇑ then (case c of {x ⇒ r | y ⇒ s}) ⇑. If c ⇓ then by inversion of the

type we arrive at two cases. In the first case we have that c = left(a,A+B). We can then

rewrite c with left(a,A+B) in the term resulting in the reduction (case c of {x ⇒ r | y ⇒

s}) �∗ r[x := a]. In the second case, similarly we have (case c of {x ⇒ r | y ⇒ s}) �∗

s[y := a], in which we can rewrite c with right(a,A+B). Since simulation includes the

reduction relation we can have our goal.

• For split terms, split c as (x, y) in r, we have that the term c is of type · ; · � c : A×B.

If c ⇑ then (split c as (x, y) in r) ⇑. If c ⇓ We can then rewrite c with (a, b) in the term

resulting from the reduction (split c as (x, y) in r) �∗ r[x := a][y := b]. Since simulation

includes the reduction relation we can have our goal.

• For unfolds we have that outα(a,αX̂. T ) requires · ; · � a : αX̂. T . If a ⇑ then

(outα(a,αX̂. T )) ⇑. If a ⇓ then by inversion on this type derivation we have one case,

that a is formed by inα(b,αX̂. T ) for some b. We then have the rewrite a = inα(b,αX̂. T )

for the term. Since simulation includes the reduction relation we can have our goal.

The subject of the supercompilation algorithm can be thought of as the potentially infinite

pre-proof tree in which intermediate elimination steps are removed by evaluation and information

propagation.

Definition 5.3.2 (Driving). Driving is the production of a pre-proof tree which has removed all

Elimination Introduction rule pairs by use of the evaluation relation � and rewritten by informa-

tion propagation. This driven pre-proof tree is potentially infinite.

Folding however is a more complex issue. In general program transformation we find that

folding can sometimes lead to unsound proofs and indeed transformed terms may lose behaviour
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that they once had. Various methods and mechanisms have been designed to cope with this prob-

lem. Notably, David Sands developed a condition of improvement and a syntactic calculus which

ensures improvement [73].

It is the case, however, that if a pre-proof is a proof, then we have no such concerns. The

folding cannot lead to non-termination as the proof tree shows it to be guarded and therefore we

cannot lose behaviours [24]. We can therefore dispense with complicated proofs of preserving

correctness and simply show that we have a proof.

We also find it necessary to generalise terms in order both to find cycles and to find a de-

composition into pre-proofs which meet our syntactic restrictions. The notion of a generalisation

assumes a poset, in our case (Terms,�) for a suitably defined �.

Definition 5.3.3 (Poset). A poset is a pair of a set P with a relation �⊆ P × P such that for

some pairs of elements in the set (a, b) ∈ P × P , one of the elements precedes the other, that is,

(a, b) ∈� or a � b. The relation � must be reflexive, anti-symmetric and transitive.

The application ordering is one choice of ordering for generalisations in System F , though

others are possible [66]. We base our relation on the one given in [49]. The idea is similar to

various types of substitution based generalisations but the substitutions are left implicit by leaving

them to the reduction relation. This helps us to ensure that the substitutions are correct if the

applications are type correct, and simplifies reasoning about the relation.

Definition 5.3.4 (Application Ordering). The application ordering states that a term s � t ( t is

more general than s) for any terms s and t where there exists a vector of terms −→u , which represents

some number of term and type applications, such that t −→u =β s with −→
u possibly empty.

Here we have = denoting syntactic equality modulo the �∗ reduction relation. No use is

made of function-constant unfolding, which is important as we need to restrict to a normalisable

fragment. It may be noticed that the particular definition here does not deal with permutations

of abstractions. This however simply means that fewer terms are considered in the ordering. To

remedy this, one can simply permute the order of abstractions in the generalisation.

Lemma 5.3.5 (� is reflexive). For any term t, t � t.

Proof. t
−→
u = t when −→

u is empty.

Lemma 5.3.6 (� is antisymmetric). For any terms t and s such that s � t, yet s �= t, then it is not

the case that t � s.
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Proof. Since we have that s � t for some t and s, we know that there are some types and terms −→u

such that t −→u = s by the definition of �. Since the application has a type having |−→u | fewer ∀ and

→ steps, the relation cannot be symmetric, as this would imply n− |−→u | = m and m− |−→u | = n.

This is only true if |−→u | = 0 which means that t = s, a contradiction with the hypothesis.

Lemma 5.3.7 (� is Transitive). For all terms t, s and v, if t � s and s � v then t � v.

Proof. This proof is straightforward though we have to be careful about the ordering of terms.

Since s
−→
u1 = t and v

−→
u2 = s. This means that t = v

−→
u2

−→
u1. We can then take −→

u = −→
u2

−→
u1 and

have that t = v
−→
u and hence t � v.

We have previously given the definition of an instance in Definition 2.6.1. The particular

instantiation algorithm used to provide instances is a partial function which provides us with a term

which is driven by the structure of the two terms under consideration. It will not find instances in

all cases in which it is possible, but necessarily returns an instance when it succeeds. We define

a type-instance partial-function tyinst : Type → Type → Var → (TypeVar → Type)

as given in Figure 5.1. We use the function fresh which chooses a variable or type variable

(depending on context) such that it is new with respect to a set.

tyinst [X,Y, T ,σ] := if X = Y then σ else fail

tyinst [1, 1, T ,σ] := σ

tyinst [A×B,C ×D, T ,σ] := let σ1 = tyinst [A,C, T ,σ]
in tyinst [B,D, T ,σ1]

tyinst [A+B,C +D, T ,σ] := let σ1 = tyinst [A,C, T ,σ]
in tyinst [B,D, T ,σ1]

tyinst [A → B,C → D, T ,σ] := let σ1 = tyinst [A,C, T ,σ]
in tyinst [B,D, T ,σ1]

tyinst [αX̂. A,αŶ . B, T ,σ] := let Ẑ = fresh(FV (A) ∪ FV (B) ∪ V)
in tyinst [A[X̂ := Ẑ], B[Ŷ := Ẑ], T ∪ {Ẑ},σ]

tyinst [∀X.A, ∀Y.B, T ,σ] := let Z = fresh(FV (A) ∪ FV (B) ∪ V)
in tyinst [A[X := Z], B[Y := Z], T ∪ {Z},σ]

tyinst [X,A, T ,σ] := if X ∈ T then fail

else if ∃(X,B) ∈ σ

then tyinst [B,A, T ,σ]
else σ ∪ (X,A)

Figure 5.1: Type Instance
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The term instance algorithm makes no direct reference to tyinst but the compatibility of types

is assumed by the algorithm, hence it must follow application of tyinst . We give the partial

function inst in Figure 5.2.

inst [x, y,V,σ] := if x �∈ V ∧ x = y then σ else fail

inst [f, g,V,σ] := if f = g then σ else fail

inst [left(t, A), left(s,B),V,σ] := inst [t, s,V,σ]

inst [right(t, A), right(s,B),V,σ] := inst [t, s,V,σ]

inst [in(t, A), in(s,A),V,σ] := inst [t, s,V,σ]

inst [(t, s), (r, u),V,σ] := let σ1 = inst [t, r,V,σ]
in inst [s, u,V,σ1]

inst [ΛX. t,ΛY. s,V,σ] := inst [t, s,V,σ]

inst [λx :A. t,λy :B. s,V,σ] := let z = fresh(FV (t) ∪ FV (s) ∪ V)
in inst [t[x := z], s[y := z],V ∪ {z},σ]

inst [out(t, A), out(s,B),V,σ] := inst [t, s,V,σ]

inst [t s, r u,V,σ] := let σ1 = inst [t, r,V,σ]
in inst [s, u,V,σ1]

inst [t[A], s[B],V,σ] := inst [t, s,V,σ]

inst




case t of
{ x ⇒ r

| y ⇒ s }
,

case u of
{ v ⇒ m

| w ⇒ n }
,V,σ



 :=

let z1 = fresh(FV (r) ∪ FV (m) ∪ V)
z2 = fresh(FV (s) ∪ FV (w) ∪ V)
σ1 = inst [t, u,V,σ]
σ2 = inst [r[x := z1], u[v := z1],V ∪ {z1},σ1]

in inst [s[y := z2], n[w := z2],V ∪ {z2},σ2]

inst

�
split t as (x, y)
in r

,
split u as (v, w)
in s

,V,σ
�

:=

let σ1 = inst [t, u,V,σ]
in inst [r, s,V ∪ {x, y},σ1]

inst [x, t,V,σ] := if x ∈ V then fail

else if ∃(x, s) ∈ σ

then inst [s, t,V,σ]
else σ ∪ (x, s)

Figure 5.2: Instance

Now that we have terms as a poset, we can continue to define generalisation in terms of that

ordering.

106



Definition 5.3.8 (Generalisation). A generalisation of two terms, t and s is a triple of a term g

and a vector of terms −→u and −→
v denoted (g,−→u ,

−→
v ) = t � s. The term g is constructed such that

g
−→
u =β t and g

−→
v =β s.

Generalisation can consist of any such term which is less than in the application ordering. �.

This means that there may be very many generalisations.

The generalisation algorithm actually implemented is relatively naive though it is more com-

plicated than most algorithms presented in the supercompilation literature because of the need to

represent types and the generalisation of types. Because we have type application and a reduction

relation that includes type substitution, we will start with describing the generalisation of types.

The algorithm for type generalisation is given by a partial function Gty : Type → Type →

TyCtx → P(TyVar) → TyCtx×Θ×Type shown in Figure 5.3.

In the algorithm we make use of a map that associates a variable with a pair of types θ : Θ

where Θ ≡ TyVar → Type×Type. This takes the place of a pair of substitutions which make

reference only to the same variables and simplifies the implementation.

Type generalisation is required before pursuing term generalisation. This ensures the con-

straint that the types are compatible is maintained during the term generalisation algorithm. We

will again need a map that associates variables with pairs of terms, constrained to have the same

type which we denote with the variable π : Π where Π ≡ Term → Term×Term×Type.

Once we have generalised types to obtain a suitably general type, we can proceed with term

generalisation using the partial function G : Term → Term → Type → TyCtx → TyCtx →

Ctx → Ctx → TyCtx → Ctx → P(Var) → P(TyVar) → Θ → Π → Ctx × Θ × Π ×

Term.

The algorithm for term generalisation is described in Figure 5.5 and Figure 5.6. In this descrip-

tion we see that there are three pairs of contexts: one context pair ∆a and Γa which describes the

context in which the first term has a derivation, ∆b and Γb in which the second term has a deriva-

tion and ∆c and Γc which is an extension which will be required for the resultant term to have a

successful derivation. The set V contains information about bound variables, and T about bound

type-variables. The algorithm is designed to return a generalised term together with an extended

context which can be used to find the derivation of the resultant term, along with a type and term

double-substitution allowing us to reconstruct either of the two original terms by substitution, or

to fail in an attempt to do so. Since our supercompilation algorithm is non-deterministic, failure is

an acceptable outcome.

107



Gty[X,Y,∆,V, θ] s.t. X = Y := (∆, θ, X)

Gty[1, 1,∆,V, θ] := (∆, θ, 1)

Gty[A×B,C ×D,∆,V, θ] := let (∆1, θ1, E) = Gty[A,C,∆,V, θ]
(∆2, θ2, F ) = Gty[B,D,∆1,V, θ1]

in (∆2, θ2, E × F )

Gty[A+B,C +D,∆,V, θ] := let (∆1, θ1, E) = Gty[A,C,∆,V, θ]
(∆2, θ2, F ) = Gty[B,D,∆1,V, θ1]

in (∆2, θ2, E + F )

Gty[A → B,C → D,∆,V, θ] := let (∆1, θ1, E) = Gty[A,C,∆,V, θ]
(∆2, θ2, F ) = Gty[B,D,∆1,V, θ1]

in (∆2, θ2, E → F )

Gty[∀X. A, ∀Y. B,∆,V, θ] := let Z = fresh(FV (A) ∪ FV (B) ∪ V ∪ dom(∆))
(∆1, θ1, C) =
Gty[A[X := Z], B[Y := Z],∆,V ∪ {Z}, θ]

in (∆1, θ1, ∀X.C)

Gty[αX̂. A,αŶ . B,∆,V, θ] := let Ẑ = fresh(FV (A) ∪ FV (B) ∪ V ∪ dom(∆))
(∆1, θ1, C) =
Gty[A[X̂ := Ẑ], B[Ŷ := Ẑ],∆,V ∪ {Ẑ}, θ]

in (∆1, θ1,αẐ. C)

Gty[A,B,∆,V, θ] := if ∃(X �→ (A,B)) ∈ θ

then (∆, θ, X)
else let Y = fresh(dom(∆) ∪ V)

in (∆ ∪ Y, θ ∪ (Y �→ (A,B)), Y )

Figure 5.3: Type Generalisation

108



We also need to be able to create patterns that is, terms which are suitably abstracted to capture

only those bound variables in their context, but which might then be supplied. A definition of a

pattern as we use it in the algorithm is as follows.

Definition 5.3.9 (Pattern). A pattern, p, of a given term t, with derivation ∆ ∪∆� ;Γ ∪ Γ� � t : C

is a generalisation of this term to a lambda (type and term) abstraction of the form p = Λ∆�. λΓ�. t

which only generalises variables from t which are bound in some context Γ� such that ∆ ;Γ �

p : ∀∆�. Γ� → C and (p[∆�]) Γ� � t.

The utility of such a definition of a pattern stems from the ability to create functions whose

instantiations reduce to terms which make different use of the currently bound context. This use

can be seen clearly in the following pair of terms:

case t of {x ⇒ r x | y ⇒ r y}

and

case t of {x ⇒ r in((), A) | y ⇒ r in((), A)}

We can derive from these a pair of patterns for r in generalisation, namely: (λx :A. r x) and

(λx :A. r in((), A)) which allows us to represent a generalised term for the pair as (λf :A → B. case t of {x ⇒

f x | y ⇒ f y}). The first term uses a variable in the bound context, the second does not. In the

general case we can imagine any number of bound variables used or not used in either of the two

terms, but the union of which is expressed in the abstraction given in the pattern. It is convenient

to be able to abstract functions of this form. I provide a definition of the partial function pattern

which implements our algorithm for creating patterns in Figure 5.4. In the actual implementation

the result term is strengthened to remove any unnecessary type or term variables from the context,

leading to a compact representation.

pattern[z, s, t,∆,Γ,V , T , θ,π] :=

let B = (FV (s) ∪ FV (t))− V
Bty = (FVty(s) ∪ FVty(t))− T
a = (z[Bty]) B
u = ΛBty. λB. s
w = ΛBty. λB. t

in (a, u, w)

Figure 5.4: Creating Patterns

109



G[x, y, A,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] s.t. x = y ∧ x ∈ V := (∆c,Γc, θ,π, x)

G[f,g, A,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] s.t. f = g := (∆c,Γc, θ,π,f)

G[(), (),1,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] := (∆c,Γc, θ,π, ())

G[s t, r u,E,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

if ∃A,B.(∆a ;Γa � s : A) ∧ (∆b ;Γb � r : B)
then let (∆c

1, θ1, F → E) = Gty[A,B,∆c, T , θ]
(∆c

2,Γ
c
2, θ2,π2, n) = G[s, r, F → E,∆a,∆b,Γa,Γb,∆c

1,Γ
c,V, T , θ1,π]

(∆c
3,Γ

c
3, θ3,π3,m) = G[t, u, F,∆a,∆b,Γa,Γb,∆c

2,Γ
c
2,V, T , θ1,π1]

in (∆c
3,Γ

c
3, θ3,π3, n m)

G[(λx :A. t), (λy :B. s), C → D,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let z = fresh(dom(Γa) ∪ dom(Γb) ∪ V)
(∆c

1,Γ
c
1, θ1,π1, r) =

G[t[x := z], s[x := z],∆a,∆b,Γa ∪ {(z, C)},Γb ∪ {(z, C)},∆c,Γc,V ∪ {z}, T , θ,π]
in (∆c

1Γ
c
1, θ1,π1,λx :C. r)

G[(ΛX. t), (ΛY. s),∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let Z = fresh(dom(∆a) ∪ dom(∆b) ∪ T )
(∆c

1, Gammac1, θ1,π1, r) =
G[t[X := Z], s[Y := Z],∆a ∪ {Z},∆b ∪ {Z},Γa,Γb,∆c,Γc,V, T ∪ {Z}, θ,π]

in (Γc
1, θ1,π1,ΛZ.r)

G[(s, t), (r, u), A×B,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let (∆c
1,Γ

c
1, θ1,π1,m) = G[s, r, A,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]

(∆c
2,Γ

c
2, θ2,π2, n) = G[s, r, B,∆a,∆b,Γa,Γb,∆c,Γc

1,V, T , θ,π]
in (∆c

2,Γ
c
2, θ2,π2, (m,n))

G[left(t, A), left(s,B), C +D,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let (∆c
1,Γ

c
1, θ1,π1, r) = G[t, s, C,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]

in (∆c
1,Γ

c
1, θ1,π1, left(r, C +D))

G[right(t, A), right(s,B), C +D,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let (∆c
1,Γ

c
1, θ1,π1, r) = G[t, s,D,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]

in (∆c
1,Γ

c
1, θ1,π1, right(r, C +D))

Figure 5.5: Term Generalisation
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G[outα(t,αX̂. A), outα(s,αŶ . B), C,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let (∆c
1, θ1, D) = Gty[A,B,∆c, T ∪ {X}, θ]

(∆c
2,Γ

c
2, θ2,π2, r) = G[t, s,αX̂. D,∆a,∆b,Γa,Γb,∆c

1,Γ
c,V, T , θ1,π]

in (∆c
2,Γ

c
2, θ2,π2, out(r,αX̂. D))

G[inα(t, A), inα(s,B),αX̂. C,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π] :=

let (∆c
1,Γ

c
1, θ1,π1, r) = G[t, s, C[X := αX̂. C],∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]

in (∆c
1,Γ

c
1, θ1,π1, inα(r,αX̂. C))

G




case t of
{ x ⇒ r

| y ⇒ s }
,

case t� of
{ x� ⇒ r�

| y� ⇒ s� }
, C,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π



 :=

let z = fresh(dom(Γa) ∪ dom(Γb) ∪ dom(Γc))
z� = fresh(dom(Γa) ∪ dom(Γb) ∪ dom(Γc))
D = typeof [∆a,Γa, t]
E = typeof [∆a,Γb, t�]
A+B = Gty[D,E,∆c, T , θ] or fail
(∆c

1,Γ
c
1, θ1,π1, t

��) = G[t, t�, A+B,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]
(∆c

2,Γ
c
2, θ2π2, r

��) =
G[r[x := z], r�[x� := z], C,∆a,∆b,Γa ∪ {(z,A)},Γb ∪ {(z,A)},∆c

2,Γ
c
2,V ∪ {x}, T , θ1,π1]

(∆c
3,Γ

c
3, θ3,π3, s

��) =
G[s[y := z�], s�[y� := z�], C,∆a,∆b,Γa ∪ {(y,B)},Γb ∪ {(y�, B)},∆c

3,Γ
c
3,V ∪ {y}, T , θ2,π2]

in (Γc
3, θ3,π3, case t�� of {x ⇒ r�� | y ⇒ s��})

G
�

split t as (x, y)
in s

,
split t� as (x�, y�)
in s�

, C,Γa,Γb,Γc,V, T , θ,π

�
:=

let z = fresh(dom(Γa) ∪ dom(Γb) ∪ dom(Γc))
z� = fresh(dom(Γa) ∪ dom(Γb) ∪ dom(Γc))
D = typeof [∆a,Γa, t]
E = typeof [∆b,Γb, t�]
A×B = Gty[D,E,∆c, T , θ] or fail
(∆c

1,Γ
c
1, θ1,π1, t

��) = G[t, t�, A+B,∆a,∆b,Γa,Γb,∆c,Γc,V, T , θ,π]
(∆c

2,Γ
c
2, θ2,π2, s

��) =
G[s[x := z][y := z�], s�[x� := z][y� := z�], C,∆a,∆b,Γa ∪ {(z,A), (z�, B)},

Γb ∪ {(z,A), (z�, B)},Γc,V ∪ {z, z�}, T , θ1,π1]
in (∆c

2,Γ
c
2, θ2,π2, split t�� as (x, y) in s��)

G[s, t, C,∆a,∆b,Γa,Γb,∆c,Γc, θ,π] :=

if ∃x.(x �→ (s, t)) ∈ π

then (∆c,Γc, θ,π, x)
else let z = fresh(dom(Γa) ∪ dom(Γb) ∪ dom(Γc))

(r, s�, t�, A) = pattern[z, s, t,∆a ∪∆c,Γa ∪ Γc,V, T , θ,π]
in (∆c,Γc ∪ (z,A), θ,π ∪ {v �→ (s�, t�)}, r)

Figure 5.6: Term Generalisation (Cont.)
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With the definition of generalisation, all of the necessary pieces are in place for a supercom-

pilation algorithm which generates cyclic proofs. To ensure that we indeed have an algorithm

we must still choose some constraints to ensure that the process of program transformation will,

in fact, terminate. In much of the literature on program transformation, a relation known as the

homeomorphic embedding relation has become fashionable as a means of ensuring termination

[46]. However, any termination condition is acceptable.

For the purpose of describing supercompilation we make reference to a whistle predicate that

has access to the path and current sequent under scrutiny. This is written as whistle[h, p] with h

being the sequent and p the path. This whistle tells us on when to give up, so that we can be sure

that the algorithm terminates.

In the actual implementation, a simple depth bound is used on the length of paths. The rea-

soning behind this is that implementations of the homeomorphic embedding are expensive and

its basis is fairly arbitrary. Using the homeomorphic embedding to control unfolding leads to

premature termination in some cases, and in some cases may lead to unnecessary search depth.

5.3.1 The Parts Assembled

Using these pieces we can now demonstrate a supercompilation algorithm over pre-proofs. The

pieces, and how they fit together can now be explained in a pseudocode algorithm given in Fig-

ure 5.7.

The supercompilation algorithm keeps track of the formerly encountered sequents in order to

find folds. This is kept as the current path, p which is simply a list of sequents. The supercom-

pilation algorithm itself is defined non-deterministically. We return a stream of pre-proofs. This

stream we can use to either obtain pre-proofs which are bisimulation equivalent, or we can filter

these for correct proofs meeting the syntactic conditions required of terms with total proofs.

We use a non-deterministic algorithm, rather than the more traditional deterministic approach.

This choice is driven by the need to find a term which meets the global condition of totality. In

our implementation this global condition is expressed as a predicate which can be used to filter a

potentially infinite stream monad Mω. The stream, however, is generated lazily, so we need not

actually develop the full space in order to find the term of interest. Further, we join these infinite

streams with an (Or) operator which makes a fair choice selection from the streams and generates

a new stream. The term Fail we use to denote non-deterministic failure, which is the zero of the

(Or) operator.
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We write the initial application of supercompilation, with an empty path, to a sequent · ; · �

t : A as S[t].

super history sequent =
h := normalise and perform information propagation on sequent

if our history exceeds the depth bound
then Fail

else
for every sequent h�, an instance of a sequent in the history
history with substitution σ

apply super to each term of the substitution σ to generate a σ�

return a Cyc rule with substitution σ�

Or
for every sequent h� in history , with root proof rule identical to h

generalise h h�

Or
unfold a function constant and return Iδ

Or
Attempt supercompilation on subterms and introduce a type level proof rule

Figure 5.7: Pseudocode of Supercompilation
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The basic idea of the algorithm is as follows:

• Try folds whenever there is an instance.

• Attempt generalisations whenever there is some structural similarity.

• Unfold function symbols when they are in a redex position.

• Otherwise descend structurally into the term.

We attempt all of these approaches for each sequent and join them together with a disjunction.

Because we have described bisimilarity over terms, and the supercompilation algorithm given

here results in cyclic pre-proof it is necessary to describe Reification given in Section 5.4 before

giving the correctness theorem for supercompliation, described in Theorem 5.4.1.

5.4 Reification

Reification is the process of producing a residual term from a cyclic proof. It is essentially an

application of the Curry Howard relationship between proof steps and terms. Each proof step is

reified as a term excepting for cycles, which are represented by function constants whose bodies

are the remaining term. We give rules for reifying a cyclic proof in Figure 5.8 and Figure 5.9.

The function R : (N → F) → D → (F → Term) × Term returns both a term and a function

Ω between a countable number of function constants and terms. The function R is total since

we insist that the proof or pre-proof to which it is applied is well-formed with respect to the Cyc

rule. This ensures that F will never be applied to a natural number for which there is no function

constant.

The function Ω is built up by turning cycles in the proof (which have already been marked)

into functions. The process may require abstraction if the context is not empty, in which case all

type variables free in the context must be turned into Λ-forms and variables free in the context

must be turned into λ-forms. These can then be applied to the respective variables and the term

which is stored is consequently a closed term which is a requirement on the form of Ω.

The correctness of reification is established by bisimilarity with the cyclic type derivation

produced by supercompilation. It may be possible to show equivalence with a greater class of

proofs but this is unnecessary.

Theorem 5.4.1 (Supercompilation is Correct). For any term t we have the bisimilarity ∀d ∈

S[t].t ∼ R[∅, d].
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R
�
F ,

D

S

�
::=

if S is a labeled recurrence with label †
then ({f �→ R[F ∪ {† �→ f}, D]}, f |σ|tyvar |σ|tvar) with a fresh function constant f
otherwise

R
�
F ,

S
Unit

�
::= (∅, ())

R
�
F ,

ζ ;∆ ;Γ � x : A
V ar

�
::= (∅, x)

R
�
F ,

∆ ;Γ � σ : «∆� ;Γ�» sub
S

Cyc(†)
�
::=

let (Ω1, r1) = R[F , D1]
...
(Ωn, rn) = R[F , Dn]

in (Ω1 ∪ · · · ∪ Ωn,F(†) |σ|type |σ|term)

R
�
F ,

D

ζ ;∆ ;Γ � λx :A. t : A → B
I→

�
::=

let (Ω, r) = R[F , D] in (Ω,λx :A. r)

R
�
F ,

D

ζ ;∆ ;Γ � ΛX. t : ∀X. A
I∀
�
::=

let (Ω, r) = R[F , D] in (Ω,ΛX. r)

R
�
F ,

D

ζ ;∆ ;Γ � left(t, A+B) : A+B
I
+
L

�
::=

let (Ω, r) = R[F , D] in (Ω, left(r, A+B))

R
�
F ,

D

ζ ;∆ ;Γ � right(t, A+B) : A+B
I
+
R

�
::=

let (Ω, r) = R[F , D] in (Ω, right(r, A+B))

Figure 5.8: Reification Rules
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R
�
F ,

D1 D2

S
I×

�
::=

let (Ω, t) = R[F , D1] (Ω�, s) = R[F , D2] in (Ω ∪ Ω�, (t, s))

R
�
F ,

D

ζ ;∆ ;Γ � inα(t,αX̂. A) : αX̂. A
Iα

�
::=

let (Ω, r) = R[F , D] in (Ω, inα(r,αX̂. A))

R
�
F ,

D1 D2

S
E→

�
::=

let (Ω, s) = R[F , D1] (Ω�, t) = R[F , D2] in (Ω ∪ Ω�, s t)

R
�
F ,

D

ζ ;∆ ;Γ � t[A] : B
E∀

�
::= let (Ω, r) = R[F , D] in (Ω, r[A])

R
�
F ,

D1 D1 D3

ζ ;∆ ;Γ � case r of {x ⇒ s | y ⇒ t} : C
E+

�
::=

let (Ω, r) = R[F , D1]
(Ω�, s) = R[F , D2]
(Ω��, t) = R[F , D3]

in (Ω ∪ Ω� ∪ Ω��, case r of {x ⇒ s | y ⇒ t})

R
�
F ,

D1 D2

ζ ;∆ ;Γ � split t as (x, y) in s : C
E×

�
::=

let (Ω, r) = R[F , D1]
(Ω�, u) = R[F , D2]

in (Ω ∪ Ω�, split r as (x, y) in u)

R
�
F ,

D

ζ ;∆ ;Γ � t : αX̂. A
Eα

�
::= let (Ω, r) = R[F , D] in (Ω, outα(r,αX̂. A))

R
�
F ,

D

S
Delta

�
::= R[F , D]

Figure 5.9: Reification Rules (Cont.)
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Proof. The bisimilarity of terms here is established by looking at the proofs which can be produced

by supercompilation for a given term t and then showing that reification faithfully preserves the

important behavioural aspects of proof structure.

The proof proceeds by coinduction.

We ensure termination with a whistle hence we can assume the inductive hypothesis holds for

any computed output.

The supercompilation algorithm will result in one of four cases. We will either create a cycle,

unfold, generalise or supercompile subterms.

• Subterms: Since normalisation preserves bisimulation equivalence we can assume that the

original term is bisimulation equivalent if the subterms are bisimulation equivalent.

• Generalisation: Generalisations are bisimilar by β-equivalence.

• Unfolding: Function constants are unfolded in the term. Function constant unfolding oc-

curs in the redex position and therefore is consistent with the evaluation relation and conse-

quently bisimulation.

• Cycles: In the production of cycles we look only at the list of previously encountered terms

in terms of outer-proof steps. This means that any cycle created must necessarily include

a proof step which is either an introduction or elimination rule, or a Delta rule. The Delta

rule is the only one that can lead to arbitrary non-termination because otherwise terms are

finite. This leads to two cases, either we have only Delta steps or we have Delta steps with

intermediate proof steps.

– Delta: If there are only Delta steps before a cycle this means that we are respecting the

non-termination of the original program since a cycle with only Deltas in the original

program was a program Ω such that two or more constants refer to each other. We can

therefore use the fact that application of bisimilar constants is bisimilar together with

the coinductive hypothesis.

– Intermediate: If there is an intermediate proof-step prior to creating a cycle, we pro-

duce the action associated with that proof-step for our bisimulation proof on both terms

(since R will produce a term for all but Delta steps). This leads to an action which is

duplicated by the original term since the behaviour arose from normalisation which is
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bisimilar to the original. Again we can use the fact that application of bisimilar terms

is bisimilar together with the coinductive hypothesis.

5.5 Example

The example given here comes from work done by Bertot and Komendantskaya in [9]. It was noted

in that paper that some programs do not meet the guardedness criteria but are plainly productive.

The particular example is notable since it makes use of both greatest and least fixed points. The

framework presented in the paper made use of relations which demonstrate always, eventually

type behaviour, which we also make use of in Section 6.2.

The natural numbers are defined identically to the co-natural numbers that were presented

earlier, aside from the use of the least fixed point, which excludes the point at infinity and is given

by the type N = µX.1 +X . We define streams of natural numbers co-inductively as the greatest

fixed point of a pair of a natural number and stream of natural numbers. The stream type over an

arbitrary type A is given by �A� = νX.(A×X).

Ω(true) := left((),1+ 1)
Ω(false) := right((),1+ 1)
Ω(zero) := inµ(left((),1+ N),N)
Ω(succ) := λx :N. inν(right(x,1+ N),N)
Ω(cons) := λx :N, s : �N�. inν((x, s), �N�)
Ω(le) := λx y :N.

case (outµ(x,N)) of
{ z ⇒ true
| x� ⇒

case (outµ(y,N)) of
{ z ⇒ false
| y� ⇒ le x� y�}}

Ω(pred) := λx y :N.
case (outµ(x,N)) of
{ z ⇒ zero
| n ⇒ n}

Ω(f) := λs : �N�.
split (outν(s,N)) as as (x, s�) in

split (outν(s�,N)) as (y, s��) in
case (le x y) of
{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}}

Figure 5.10: Stream Program

From the program in Figure 5.10 we can inspect the term for the function constant f. This
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term is productive in the sense that in all cases, it will eventually produce some element of an

output stream. However, it does so by recursion on its first argument until it has reduced it below

the subsequent element of the stream. This means that the program, as written does not pass the

guardedness condition. The failure to pass the condition is apparent in the cyclic pre-proof given

in Figure 5.11.

· ; · � f : �N� → �N�
· ; · � cons : N → �N� → �N�

· ; · � pred : N → N · ; {x :N} � x : N
· ; {x :N} � pred x : N · ; {s� : �N�} � s� : �N�

· ; {x :N, s� : �N�} � cons (pred x) s� : �N�
· ; {x :N, s� : �N�} � f (cons (pred x) s�) : �N�

(C)

· ; · � cons : N → �N� → �N� · ; {x :N} � x : N
· ; · � f : �N� → �N� · ; {s� : �N�} � s� : �N�

· ; {s� : �N�} � f s� : �N�
· ; {x :N, s� : �N�} � cons x (f s�) : �N�

(D)

· ; {y :N} � y : N
· ; {y :N} � outµ(y,N) : 1 + N · ; · � false : 1 + 1 · ; {x� :N, y� :N} � le x� y� : 1 + 1

· ; {x� :N, y :N} � case outµ(y,N) of {z ⇒ false | y�
⇒ le x� y�

} : 1 + 1

(E)

· ; {x :N} � x : N
· ; {x :N} � outµ(x,N) : 1 + N · ; · � true : 1 + 1 E

· ; {x :N, y :N} � case outµ(x,N) of {z ⇒ true | x�
⇒ case outµ(y,N) of {z ⇒ false | y�

⇒ le x� y�
}} : 1 + 1

· ; · � λx y :N. case (outµ(x,N)) of
{ z ⇒ true
| x�

⇒ case outµ(y,N) of
{ z ⇒ false
| y�

⇒ le x� y�
}}

: N → N → 1 + 1

(F )

F · ; {x :N} � x : N · ; {y :N} � y : N
· ; {x :N, y :N} � le x y : 1 + 1 D C

· ; {x :N, y :N, s� : �N�} � case (le x y) of {yes ⇒ cons x (f s�) | no ⇒ f (cons (pred x) s�)} : �N�
(G)

· ; {s : �N�} � s : �N�
· ; {s : �N�} � out(s, �N�) : N × �N�

· ; {s� : �N�} � s� : �N�
· ; {s� : �N�} � out(s�, �N�) : N × �N� G

· ; {x :N, s� : �N�} � split out(s�, �N�) as (y, s��)
in case (le x y) of

{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N�

· ; {s : �N�} � split out(s, �N�) as (x, s�)
in split out(s�, �N�) as (y, s��)

in case (le x y) of
{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N�

· ; · � λs : �N�. split out(s, �N�) as (x, s�)
in split out(s�, �N�) as (y, s��)

in case (le x y) of
{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N� → �N�

· ; · � f : �N� → �N�

(H)

Figure 5.11: Pre-proof for f

We can transform this pre-proof into a valid proof using supercompilation. The supercom-

piled version of this proof, which meets the guardedness criterion is given in Figure 5.12 and

Figure 5.13.

This alternative proof form is produced simply by removing intermediate elimination rules

and folding. We should pay special attention to the recurrences which are labelled by †,‡ and �.

Every fold to † yields cycles which meet the guardedness condition. This can easily be seen as
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the prior proof rules are all admissible and the final rule prior to the Cyc rule is guarded by a cons

(which unfolds to an (right) and (inµ)). For reasons of space we use binary derived rule (ICons )

for cons which the reader can easily see is simply (right) combined with (inν) and is therefore a

guard.

ζ ;∆ ;Γ � x : N ζ ;∆ ;Γ � s : �N�
ICons

ζ ;∆ ;Γ � cons x s : �N�
⇓

ζ ;∆ ;Γ � x : N ζ ;∆ ;Γ � s : �N�
I×

ζ ;∆ ;Γ � (x, s) : N× �N�
Iν

ζ ;∆ ;Γ � inν((x, s), �N�) : �N�
Iδ

ζ ;∆ ;Γ � cons x s : �N�

Every other symbol is used to mark an inductive cycle having a structural reduction in some

parameter. Since all cycles are inductive or coinductive, this final form yields a total proof which

meets the syntactic conditions on proofs simply by means of supercompilation.

It is important for the reader to note the use of Iδ in the proof. This particular proof relies

critically on information propagation and not simply normalisation. Without the propagation of

information there will be redundant impossible branches that are not eliminated which leads to a

failure to meet the guardedness condition. Specifically this fact is required in the ‡ branch.

From this proof we can use reification to obtain a bisimilar program which is given in Fig-

ure 5.14. The resulting program demonstrates the productivity much more directly. Each function

is either descending recursively on an inductive argument and then terminating with a guard, as in

the case of (g) and (h) or is directly productive, as with (f).

5.6 Related Work

Program transformation has an extensive literature and various techniques have been described for

a range of practical programming languages. Program transformation was a central point behind

Backus’s idea of liberation from the Von Neumann machine [6] and gave one motivation for the

development of functional languages.

The most well known technique from program transformation is partial evaluation, however

there are many techniques including unfold/fold[14], deforestation[92], supercompilation [87] and

others. Many compiler optimisations can be seen as special cases of program transformational

techniques.

120



· ; · ; {x :N} � x : N
· ; {s : �N�} � (s, (cons y s��)) : «· ; {y :N, s�� : �N�}» sub

Cyc(†)
{†} ; · ; {x� :N, s�� : �N�} � f (cons y s��) : �N�

ICons

{†} ; · ; {x :N, y :N, s : �N�} � cons x (f (cons y s��)) : �N�
(A)

· ; · ; · � zero : N
· ; {s : �N�} � (s, (cons zero s��)) : «· ; {s�� : �N�}» sub

Cyc(†)
{�, †} ; · ; {s�� : �N�} � f (cons zero s��) : �N�

ICons

{�, †} ; · ; {s�� : �N�} � cons zero (f (cons zero s��))) : �N�
(B)

· ; {x :N, s�� : �N�} � (x, x�) : «· ; {x� :N, s�� : �N�}» sub
Cyc(�)

{�, †} ; · ; {x� :N, s�� : �N�} � f (cons (pred x�) (cons zero s��)) : �N�
(C)

{†} ; · ; {x :N, y :N} � le x� y� : B A Z

E+

{†, ‡} ; · ; {x� :N, y� :N, x :N, y :N, s�� : �N�} � case (le x� y�) of
{ t ⇒ cons x (f (cons y s��))
| f ⇒ f (cons (pred x) s��)}

: �N�
(D)

· ; · ; {x� :N} � x� : N
· ; · ; {x� :N} � out(x�,N) : 1 + N B C

E+

{�, †, ‡} ; · ; {x� :N, s�� : �N�} � case out(x�,N) of
{ z ⇒ cons zero (f (cons zero s��)))
| x��

⇒ f (cons (pred x�) (cons zero s��))}

: �N�

Iδ
{†, ‡} ; · ; {x� :N, y� :N, x :N, y :N, s�� : �N�} � f (cons (pred x) (cons zero s��)) : �N� label �

(E)

{†} ; · ; {y :N} � y : N
Eµ

{†} ; · ; {y :N} � out(y,N) : 1 + N E D

E+

{†} ; · ; {x� :N, x :N, y :N, s�� : �N�} � case (out(y,N)) of
{ z ⇒ f (cons (pred x) (cons zero s��))
| y�

⇒ · · · }

: �N�
(F )

{†} ; · ; · � zero : N
· ; {s : �N�} � (s, cons y s��) : «· ; {y :N, s�� : �N�}» sub

Cyc(†)
{†} ; · ; {x :N, y :N, s�� : �N�} � f (cons y s��) : �N�

ICons

{†} ; · ; {x :N, y :N, s�� : �N�} � cons zero (f (cons y s��)) : �N�
(G)

{†} ; · ; {x :N} � x : N
Eµ

{†} ; · ; {x :N} � out(x,N) : 1 + N G F

E+

{†} ; · ; {x :N, y :N, s�� : �N�} � case (out(x,N)) of
{ z ⇒ cons zero (f (cons y s��))
| x�

⇒ · · · }

: �N�

Iδ
{†} ; · ; {x :N, y :N, s�� : �N�} � case (le x y) of

{ yes ⇒ cons x (f (cons y s��))
| no ⇒ f (cons (pred x) (cons y s��))}

: �N�

(H)

· ; · ; {s : �N�} � s : �N�
Eµ

· ; · ; {s : �N�} � out(s, �N�) : N × �N�

· ; · ; {s� : �N�} � s� : �N�
· ; · ; {s� : �N�} � out(s�, �N�) : N × �N� H

E×
{†} ; · ; {x :N, s� : �N�} � split out(s�, �N�) as (y, s��)

in case (le x y) of
{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N�

E×
· ; · ; {s : �N�} � split out(s, �N�) as (x, s�)

in split out(s�, �N�) as (y, s��)
in case (le x y) of

{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N� label †

I→
· ; · ; · � λs : �N�. split out(s, �N�) as (x, s�)

in split out(s�, �N�) as (y, s��)
in case (le x y) of

{ yes ⇒ cons x (f s�)
| no ⇒ f (cons (pred x) s�)}

: �N� → �N�

Iδ
· ; · ; · � f : �N� → �N�

(I)

Figure 5.12: Proof for f, part I
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· ; {x :N, y� :N : �N�} � (x, x�) ◦ (y�, y�) ◦ (s��, s��) : «· ; {x� :N, y� :N, s�� : �N�}» sub
Cyc(‡)

{‡} ; · ; {x� :N, y :N, s�� :N} � f (pred x�) (cons (succ y�) s��) : �N�
(W)

· ; · ; {x� :N} � x� : N
· ; {s : �N�} � (s, (cons y s��)) : «· ; {y :N, s�� : �N�}» sub

Cyc(†)
{†} ; · ; {y� :N, s�� : �N�} � f (cons (succ y�) s��) : �N�

ICons

{†} ; · ; {x� :N, y :N, s�� : �N�} � cons x� (f (cons (succ y�) s��)) : �N�
(V)

· ; · ; · � zero : N
· ; {s : �N�} � (s, (cons (succ y�) s��)) : «· ; {y� :N, s�� : �N�}» sub

Cyc(†)
{†} ; · ; {y� :N, s�� : �N�} � f (cons (succ y�) s��) : �N�

ICons

{†} ; · ; {y� :N, s�� : �N�} � cons zero (f (cons (succ y�) s��)) : �N�
(X )

{†, ‡} ; · ; {x�� :N, y� :N} � le x�� y� : B V W

E+

{†, ‡} ; · ; {x :N, x� :N, x�� :N, y� :N} � case le x�� y� of
{ yes ⇒ cons x� (f (cons (succ y�) s��))
| no ⇒ f (pred x�) (cons (succ y�) s��)}

: �N�
(Y)

· ; · ; {x :N} � x : N
Eµ

· ; · ; {x :N} � outµ(x,N) : 1 + N X Y

E+

{‡, †} ; · ; {x :N, x� :N, y� :N} � case out(x�,N) of
{ z ⇒ cons zero (f (cons (succ y�) s��))
| x��

⇒ · · · }

: �N�

Iδ
{†} ; · ; {x :N, y :N, x� :N, y� :N} � f (pred x) (cons (succ y�) s��) : �N� label ‡

(Z)

Figure 5.13: Proof for f, part II

Most techniques of program transformation are simpler in the context of functional or logic

programming since program transformation in the presence of side effects is much more complex.

For program transformation in a setting which includes side-effects it is possible to either

carefully deal with side effects, or first translate into a declarative intermediate language. The

former approach is often used in partial evaluators and other compiler optimisations. An example

of the later approach is described in [60].

A survey of partial evaluation techniques is given in [20]. In terms of the unfold/fold frame-

work it can be thought of most simply as a special case which makes use only of unfolding and

instantiation.

Turchin described supercompilation in the early 70s. An overview of supercompilation is

provided in [87]. As we have seen in this chapter supercompilation is an automated technique

of program tranformation that generalises partial evaluation by making use of folding from the

unfold/fold framework and the introduction of generalisations.

One of the most clear expositions of supercompilation was given for positive supercompilation

by Sørensen, Glück and Jones[78]. This restricted the algorithm to the propagation of positive

information while not propagating negative information which results when some predicate fails

to be satisfied in the course of computation.

A Coq mechanised verification of a supercompiler for a very simple language has been pre-

sented by Krustev in [45]. The language is much simpler than the term language used here, but
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Ω(true) := left((),1+ 1)
Ω(false) := right((),1+ 1)
Ω(zero) := inµ(left((),1+ N),N)
Ω(succ) := λx :N. inν(right(x,1+ N),N)
Ω(cons) := λx : N s : �N�.inν((x, s), �N�)
Ω(le) := λx y :N.

case (outµ(x,N)) of
{ z ⇒ true
| x� ⇒

case (outµ(y,N)) of
{ z ⇒ false
| y� ⇒ le x� y�}}

Ω(f) := λs : �N�.
split (outν(s,N)) as (x, s�) in

split (out(s�,N)) as (y, s��) in
case x of
{ z ⇒ cons zero (f (cons y s��))
| x� ⇒
case y of
{ z ⇒ g x� s��(cons y s��))
| y� ⇒
case (le x y) of
{ yes ⇒ cons (succ x) (f ((cons x) s��))
| no ⇒ h x� y� s��}}}

Ω(g) := λx :N s� : �N�.
case (outµ(x,N)); of
{ z ⇒ cons zero (f (cons (succ y) s))
| x� ⇒ g x� s}

Ω(h) := λx y :N s : �N�.
case (outµ(x,N)) of
{ z ⇒ cons zero (f (cons (succ y) s))
| x� ⇒
case (le x� y) of
{ yes ⇒ cons x (f (cons (succ y) s)
| no ⇒ h x� y s}}

Figure 5.14: Supercompiled Stream Program
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the mechanisation is also more complete.

The approach of supercompilation for the production of equivalent cyclic proofs is very close

to Cockett’s work on deforestation [18]. We extend the approach to supercompilation, and addi-

tionally manipulate terms which may or may not be total in contrast to the term language given by

Cockett.

The distillation algorithm is a program transformation algorithm which was described by

Hamilton[36] and which is capable of more sophisticated transformations than supercompilation.

It may be possible to use such more advanced program transformation techniques to expand further

the programs which we can show to be correct.

The present work uses a variant supercompilation algorithm which is non-deterministic. Non-

deterministic variants of supercompilation have been described before by Klyuchnikov and Romanenko[43].

The particular variant which we describe differs in that it is used to lazily provide a stream of su-

percompiled programs to a totality checker. This allows us to short-circuit when proofs fail to

demonstrate totality by violating the syntactic restrictions.
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Chapter 6

Soundness

6.1 Introduction

The use of bisimulation in a functional programming setting makes use of the fact that transition

edges can be associated with terms to create a transition system. This technique suggests that we

might also look at soundness as the satisfaction of a relation contingent on the structure of the

type. Such an approach of showing that a formula is satisfied by a transition system is known as

model checking. We construct a soundness proof in analogy with techniques from model checking.

The technique that we employ is quite close to infinite state local model checking using the

concept of an analytic tableau as in Bradfield and Stirling [12]. Instead of describing a tableau

system, we use a coinductive relation in the style of Milner and Tofte [56]. We however must

carefully require that the relation consumes only edges from the transition system, ensuring that

our concept of soundness corresponds with program behaviour and non-termination is excluded.

6.2 (Co)-Inductive Constructive Types

The supercompilation algorithm given in Section 5.3 results in pre-proofs rather than proofs. In

order to obtain proofs, we need to use the syntactic restrictions given in Section 4.6.

In demonstrating bisimulation in supercompilation, the question of termination is implicit

since reductions require input that will always behave identically if the input converges. The

convergence need only be to a value, that is, a term with some observable behaviour. If reductions

lead us to divergence, we need only worry that it does so in both cases in order to show they are

bisimilar. For the inhabitation of types we need to be more careful.
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To give an example we can look at the question of termination of the program which imple-

ments an evenness predicate given in Figure 6.1.

Ω(even) := λx : N.
case x of
{ z ⇒ true
| x� ⇒

case x� of
{ z ⇒ false
| x�� ⇒ case even x�� of {t ⇒ false | f ⇒ true}}}

Ξ(even) := N → B

Figure 6.1: Even

This program makes use of the function constant even within an experiment. The destructur-

ing of even x�� requires a chain of Delta unfoldings, one of which is necessarily as long as the x��

variable persists in producing an inr transition.

We have however, by assumption, taken x to be an inductive variable, and this limits the

process of eliminations to a finite one. The fact that it is finite is dictated by the meaning of the

variable belonging to the type. Namely that there is some finite sequence of transitions and that it

successfully satisfies the least-fixed point meaning of its associated formula.

Our problem then is to show that totality implies that given suitable total input, we always

provide the transitions required of the type when interpreted as a formula.

The use of transition systems to describe the behaviour of terms is suggestive that we might

be able to use techniques from model checking in order to demonstrate type correctness of proofs.

We can do this by producing a relation corresponding to the type of interest which, if satisfied will

demonstrate the type soundness of a term. The theorem which we need to prove is of the following

form.

Theorem 6.2.1 (Soundness). · � t : A → � t : A

The relation on the left, is a cyclic proof, a pre-proof meeting the necessary syntactic criteria.

The relation on the right is one which demonstrates soundness by way of a coinductive relation.

It essentially acts to test that the correct (as dictated by the type) transitions are available to be

accepted. The relation is itself coinductive as is the soundness proof. We show the relation in

Figure 6.2.

The relation demonstrates soundness by requiring that our transition system provide us with

an edge suitable for the type of the term. In this way it mirrors model checking since we ask for
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∀a. � a : 1 SUnit

∀aAB.(∀ct.· � c : A → a
c :A�−−→ t → � t : B) → � a : A → B SImp

∀aA.(∀Ct.a
C�−→ t → � t : A[X := C]) → � a : ∀X.A SAll

(∀atsAB.a
fst�−→ t∧ � t : A)∧

(∀s.a snd�−−→ s∧ � s : B) → � a : A ∧B SAnd

∀atAB.a
left�−−→ t∧ � t : A → � a : A+B SOrL

∀atAB.a
right�−−−→ t∧ � t : B → � a : A+B SOrR

∀atA.a in�−→ t∧ � t : A[X := µX.A] → � a : µX.A SFoldMu

∀atA.a in�−→ t∧ � t : A[X := νX.A] → � a : νX.A SFoldNu

∀aA.(∃tB.(t, B, a,A) ∈ R+ → � t : B) → � a : A SRecNu

∀aA.(∃tB.(t, B, a,A) ∈ R → � t : B) → � a : A SRecMu

Figure 6.2: Soundness Relation

the formula of interest to be satisfied by appropriate behaviours. It does not admit terms which fail

to provide edges, and so ⊥ is excluded by design.

We note that we can give any term as having a type of 1 and this does not present a problem

for us as the static semantics do not allow us to form terms which might look for behaviour from

terms of type 1. Since there are no experiments for programs of unit type, we will never seek

behaviour from them and our transition system will have no edge.

The relations R and R+ are free in the statement of the soundness relation and must be known

beforehand in order to demonstrate soundness in this manner. The relations must additionally

be monotonic and well-founded for R and anti-well-founded for R+. Because of the restrictions

on cyclic proofs, we already have these relations in hand. They are the relations induced by

the guardedness and structural recursion. Note, that <s by itself would not be sufficient, the

requirement of monotonicity requires that the relation be a relation which is monotonic globally.

Without this restriction it would be possible to have recursive terms which alternate increasing and

decreasing arguments leading to divergence.

However there is one feature to which notice should be drawn. The SImp rule makes use of

the relation · � c : A for the parameter c of type A. It might seem more natural to make this the

relation � c : A, however this would lead to the relation failing to respect the positivity condition.

Instead, we will find that this definition will be sufficient provided that we demonstrate substitution

preservation for the relation · � c : A. The lemma required is as follows:

Lemma 6.2.2 (Type Preservation). · � c : A ∧ x : A � t : B → · � t[x := c] : A

This type preservation requires only that we can re-establish the syntactic conditions for guard-

edness and structural recursion.
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Type Preservation. The proof proceeds by induction on the term and inversion on the derivation.

We will also need a decomposition Lemma which allows us to reduce each term to a value, or

a function symbol blocking evaluation. This makes use of the reduction relation without Ω.

Lemma 6.2.3 (Decomposition). ∀t.· � t : A → t ⇓ v ∨ ∃f.t ⇓ C[f ] where C[f ] is composed

strictly of atomic experiments.

Proof. The proof of Decomposition is straightforward since System-F+ is strongly normalising.

The only possibilities for the innermost redex are either a value, which is not reducible, a variable,

which is eliminated by inversion since the context is empty or a function symbol.

We now return to the proof that our cyclic proofs do in fact demonstrate soundness, that is

· � t : A → � t : A.

Soundness. The proof proceeds coinductively, with inversion on the typing relation. We will use

the syntactic criteria and the restriction on the form of types to positive types to ensure that we can

always produce the necessary edges.

For all applications of induction on the transition edge (after finitely many evaluation steps we

must obtain some labeled transition since the relation is finitely formed), we have two cases that

will arise based on the inductive structure of the transition relation: a concrete syntactic value or

an evaluation and an edge.

Type preservation for induction on the transition edge, when the edge is given by the evaluation

case, is proved by use of the type preservation of the transitive closure of the evaluation relation.

We have the following cases for application of the decomposition lemma on · � s : B.

• · � λx : A.t : A → C: From this we can apply the SImp rule. By induction on the transition

edge s
x : c�−−→ s� we obtain for s� a substitution t[x := c]. By substitution preservation we

obtain · � t[x := c] : C. We can now apply the coinductive hypothesis. The necessary type

preservation for the induction on the transition edge for the case that the edge is given by a

reduction which leads to an edge arises from the type preservation of the evaluation relation.

• · � ΛX. t : ∀X. A: Here we apply the SAll rule. By induction on the transition edge s
C�−→

s� we obtain for s� a substitution t[X := C]. This gives us the · � t[X := C] : A[X := C]

using the type substitution lemma. We apply the coinductive hypothesis.
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• · � v : B: eliminated as there is no context from which to form a derivation.

• · � (r, s) : A × C: Here we apply the SAnd rule, followed with the relation (r, s)
fst/snd�−−−−→

r/s respectively and finally the coinductive hypothesis.

• · � left(r, A+ C) : A + C: Here we apply the SOrL rule, followed with the s
left�−−→ r

transition rule and finally the coinductive hypothesis.

• · � right(r, A+ C) : A + C: Here we apply the SOrR rule, followed with the s
right�−−−→ r

transition rule and finally the coinductive hypothesis.

• · � inµ(x, µX.A) : µX.A: We apply the SFoldMu rule, followed with the s in�−→ x transition

rule and finally the coinductive hypothesis.

• · � inν(x, µX.A) : νX.A: We apply the SFoldNu rule, followed with the s in�−→ x transition

rule and finally the coinductive hypothesis.

• C[fn]: Here we proceed on the sub argument using well founded induction. We have two

cases:

– fn : ∀−→X.
−→
A → µX̂. .C → −→

D : In this case we unfold to reach a term C[Ω(fn)] ⇓ s.

We reapply the decomposition lemma leading to one of the above cases or we obtain

C �[fm] for some m. We use the product order of <s, one for each constant m below

r the bound on the number of function symbols. We proceed using the inductive

hypothesis. This means that eventually we must have that s ⇓ v for v ∈ V or we have

C ��[fo] for the coinductive case.

– fn : ∀−→X.
−→
A → νX.C: In this case we reach a term C[Ω(fn)] ⇓ s. We reapply the

decomposition lemma leading to one of the above value cases or we obtain C �[fm] for

some m. If it is the case that fm is a function with an inductive parameter we apply

the inductive hypothesis. We can only encounter it a finite number of times hence

reduction to a C[v] is inevitable. We can repeat this argument for every unfolding

of f i which is by necessity bounded by some constant r since our program is finite.

Because of our guardedness condition which ensures each unfolding of a coinductive

argument introduces only a finite number of contexts together with the above well

founded relation <s and the finite size of terms, we will eventually reach a value that

will reduce a finite number of times one for each context (by the progress lemma) until
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we reach a constructor. We now have C[Ω(fn)] �∗ v for a v ∈ V alue and can use

one of the above value cases to construct the soundness relation.

6.3 Examples

Ω(zero) := inµ(left(, 1 + N),N)
Ω(succ) := λx : N.inµ(right(x, 1 + N),N)
Ω(plus) := λx y : N.

case (outµ(x,N)) of
{ z ⇒ y

| x� ⇒
succ (plus x� y)}

Ξ(zero) := N
Ξ(succ) := N → N
Ξ(plus) := N → N → N

Figure 6.3: Program for plus

We can see how this soundness relation can be constructed in the particular case by looking

at a few examples. We start with Example 6.3.1 which demonstrates satisfaction of the soundness

relation using inductive types with the program from Figure 6.3.

Example 6.3.1. Since we have that � plus : N → N → N we can write the transitions:

plus
c :N�−−→ · d :N�−−→ case out(c,N) of {z ⇒ d | x� ⇒ succ (plus x� y)}

We can make use of the constructors for SImp twice. Now we perform inversion on the proof

of c to obtain two cases.

• c = in(left(x�, 1 + N),N):

case out(c,N) of {z ⇒ d | x� ⇒ succ (plus x� y)} � d

Since � d : N holds by assumption we are done with this case.

• c = in(right(x�, 1 + N),N):

case c of {z ⇒ d | x� ⇒ succ (plus x� y)} � succ (plus x� y)

Now we have:

succ (plus x� y)
in�−→ · right�−−−→ plus x� y

We can apply SFold and then SOrR and finally we have:
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plus x� y

With this we can apply the SRecMu rule using the fact that x� <s c, and then apply the

coinductive hypothesis.

Ω(zero) := inµ(left(, 1 + N),N)
Ω(succ) := λx : N.inµ(right(x, 1 + N),N)
Ω(alt) := λx y : N.

case (outµ(x,N)) of
{ z ⇒

case (outµ(y,N)) of
{ z ⇒ zero
| y� ⇒ alt (succ x) y�}

| x� ⇒ alt x� (succ y)}
Ξ(zero) := N
Ξ(succ) := N → N
Ξ(alt) := N → N → N

Figure 6.4: Program for alt

We can turn to another example program given in Figure 6.4 which demonstrates why we need

to give the restrictions on the relation R.

Example 6.3.2. Since we have that � alt : N → N → N we can write the transitions:

alt
c :N�−−→ · d :N�−−→ t

with t = case outµ(c,N) of

{ x� ⇒ case outµ(d,N) of

{ z ⇒ zero

| y� ⇒ alt (succ c) y�}

| x� ⇒ alt x� d}

.

We can make use of the constructors for SImp twice. Now we perform inversion on the proof

of c to obtain two cases.

• c = inµ(left(x�, 1 + N),N):

We have that t � case outµ(d,N) of {z ⇒ zero | y� ⇒ alt (succ c) y�}.

We perform inversion on the proof of d to obtain two further cases.

– d = inµ(left(y�, 1 + N),N):

In this case t �∗ zero. Since zero
in�−→ · left�−−→ U we can apply SFoldMu , SOrL and

SUnit and we are done.
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– d = inµ(right(y�, 1 + N),N):

Here we have t �∗ alt (succ c) y�. We can attempted to use the SRecMu rule plus

the coinductive hypothesis given that y� <s d.

• c = inµ(right(x�, 1 + N),N):

We have here that t �∗ alt x� (succ d). We can now use the SRecMu rule plus the

coinductive hypothesis given that x� <s c.

However, now the relation R which we have built is of the form

(∀cd.alt c (succ d) < alt (succ c) d) ∧ (∀cd.alt (succ c) d < alt c (succ d)).

This relation can be proved not to be anti-symmetric, so it is not possible to have supplied it

to the soundness relation.

This shows the importance of the indexing of the soundness relation according to the particular

relations that we have constructed from our cyclic proofs. The program term here is not sound and

an attempt to run this program in Haskell or a similar programming language will demonstrate

that it does not terminate unless both arguments are zero.

In order to see how our example works on a coinductively defined program we can deal again

with plus except this time using the program in Figure 4.13 where we deal with N rather than N.

Example 6.3.3. Since we have that � plus : N → N → N we can write the transitions:

plus
c :N�−−→ · d :N�−−→ case outν(c,N) of {z ⇒ d | x� ⇒ succ (plus x� y)}

We can make use of the constructors for SImp twice. Now we perform inversion on the proof

of c to obtain two cases.

• c = inν(left(x�, 1 + N),N):

Since � d : N holds by assumption we are done with this case.

• c = inν(right(x�, 1 + N),N):

Here we have:

case outν(c,N) of {z ⇒ d | x� ⇒ succ (plus x� y)} �∗ succ (plus x� y).

From here we have succ (plus x� y)
in�−→ · inr�−−→ plus x� y and so we can apply the

SFoldNu , SOrR rules followed by SRecNu with the fact that for the relation R+ we have

succ (plus x� y) > plus (succ x�) y.
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6.4 Related Work

Model checking is a very well studied field with a large amount of literature. There are numerous

modal logics of interest including LTL, CTL, CTL*[91] and the modal µ-calculus [10] among

others. Moller describes the various relationships between some of these calculi in [58].

Milner and Tofte give a co-inductive relational description of type inhabitation in [56]. They

use a method of representing recursive functions that is quite close to the method used here except-

ing that their map between function constants includes closures over an environment. The type

system in their presentation however is quite simple, being essentially quite close to the simply

typed λ-calculus. Additionally they only include a description for what we refer to as co-inductive

types. Namely, they use the greatest fixed-point to define inhabitation.

Stirling and Bradfield [12] give a tableau method for showing that a given model meets a

formula. In contrast, this work applies the same techniques to a transition system model generated

from a term. The novel contribution of the present work is to synthesise the approach taken by

Milner and Tofte and the already well developed approach of Stirling and Bradfield in order to

obtain a method of showing type inhabitation for functional programs.

There are a number of ways that model-checking can be related to proof and proof-search.

A unification of model checking and proof-search is described in [54][84][85]. A type system

equivalent to model-checking is described in [61] which helps to shed light on the connections

and differences between model-checking and type-theory. Our work differs in that it consists in

the reverse problem of starting with a term calculus and looking for suitable fragments of temporal

formulae which can be used to show type correctness.

There has been work on the use of program transformation techniques as applied to model-

checking, such as [90] and [47]. However, these techniques do not make use of program trans-

formation as a means to find terms which meet a syntactic restriction for soundness in a type

theory.
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Chapter 7

Implementation

The implementation of the work presented here is divided into two main pieces. The first is a

mechanised implementation of System-F with an extension including general recursion which

allows the production of cyclic proofs (using coinductively defined formation rules) in the Coq

proof assistant.

The second piece is an implementation of a supercompiler for the enriched System-F+ com-

bined with a totality checker implemented in the Haskell programming language.

7.1 Mechanisation in Coq

The mechanisation of the theory in Coq is done with a modified De Bruijin indexing style for

variables. We take the natural numbers as the index for type-variables, variables and function

constants.

The data type which describes type formation is given in Figure 7.1. It consists of type-

variables TV , implication Imp, universal quantification All, pairs for conjunction given by And,

disjunction by injection into a sum type given by Or, greatest fixed-points given by Nu, least

fixed-points given by Mu and a type with one constructor, One.

The data type describing terms is given in Figure 7.2. It consists of function constants F,

variables V , application App, type-application TApp, term abstraction Abs and type abstraction

Lam, pair introduction Pair, two constructors for injection into sum types, Inl and Inr, Unit which

has no elimination rule, Fold which is used to explicitly introduce Nu or Mu types, Case for

elimination of sums, Split for elimination of pairs and Unfold for elimination of Folds.
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Inductive Ty : Set :=
| TV : nat → Ty
| One : Ty
| Imp : Ty → Ty → Ty
| All : Ty → Ty
| And : Ty → Ty → Ty
| Or : Ty → Ty → Ty
| Nu : Ty → Ty
| Mu : Ty → Ty.

Figure 7.1: Types

Inductive Term : Set :=
| F : nat → Term
| V : nat → Term
| App : Term → Term → Term
| TApp : Term → Ty → Term
| Abs : Ty → Term → Term
| Lam : Term → Term
| Fold : Term → Ty → Term
| Unfold : Term → Ty → Term
| Inl : Term → Ty → Term
| Inr : Term → Ty → Term
| Case : Term → Term → Term → Term
| Pair : Term → Term → Term
| Split : Term → Term → Term
| Unit : Term.

Lemma term eq dec : ∀ (t1 t2 : Term), {t1 = t2} + {t1 �= t2}.

Figure 7.2: Terms
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7.1.1 Derivations

To this term and type syntax we add a data-type representing both type and term variable contexts.

These will hold all of the free variables in an open term and will be further constrained by our

formation rules. We add a notation:

[n ; l |= t @ ty]

Inductive Ctx : Set :=
| ctx : nat → list Ty → Ctx.

Inductive Holds : Set :=
| H : Ctx → Term → Ty → Holds.

Notation "[ n ; l |= t @ ty ]" := (H (ctx n l) t ty) (at level 0).

Figure 7.3: Contexts

which gives the number of free type variables, n, a list of the types of the free variables, l, the

term, t, and the type of that term, ty. The data-type is given in Figure 7.3. The directive at level 0

simply refers to the precedent table maintained by Coq to determine how it should interpret new

notations.

The de Bruijn notation allows us to describe variables simply by the use of natural numbers and

abstraction without explicit reference to the variable being captured. This is done by interpreting

the variable as a count of the number of λ-binders that must be traversed in order to reach the

binding lambda, or in the case of free-variables, as the index past the last λ-binder into the free

variable context.

Named de Bruijn

1. A,B;x :A → B � (λy :A. x y) : A → B 2 ; [0 → 1] � (λ0. 1 0) : 0 → 1

2. A,B; · � (λy :A. (λx :A → B. x y)) 2 ; · � (λ0. (λ0 → 1. 0 1))
: A → (A → B) → B : 0 → (0 → 1) → 1

3. ·; · � (ΛA.(λx : A.x)) : ∀A.A → A 0 ; · � (Λ.(λ0.0)) : ∀0 → 0

4. C; · � (λx : C.x) : C → C 1; · � (λ0.0) : 0 → 0

Figure 7.4: Named versus de Bruijn

To get an idea of how this notation works we demonstrate in Figure 7.4 the named and name-

less representation of some terms and their sequents, assuming two types themselves containing

no free variables, A and B.
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In the first entry in the table, the variable binder for y is replaced with a 0 which represents the

fact that it is bound to the first λ form above it. The type is given for that variable, but no variable

name needs to be used. The variable x which is a free variable is represented by 1. We subtract

one for each λ form we encounter, in this case, 1, and then use the resulting natural number as an

index to our variable context, in this case 0. Since there are no free type variables, the free-type

variable count is zero.

In the second case we see similar accounting with two bound variables.

In the third entry we see the use of type-variable accounting. We represent type variable

indexes in bold to help distinguish them from term variables. Finally in entry 4 we see the use of

free variables in the type context.

The use of a natural number to represent free variables in the type-context can be seen in

analogy with the term variables. Since in our nameless representation, term variables are simply

indices into our variable context from which we can recover their type, the types, which are not

themselves typed in System-F can be represented as nothing more than a bound on the size of

the context with the variable index demonstrating that the type is constrained to be below that

maximum.

The use of nameless representation requires functions which manipulate indices. For the de-

scription of our formation rules, we will require the function tyshift and tyshiftn, given in Figure 7.5

which manipulates type variables by shifting them by increasing integers above a certain thresh-

old. This ensures that we can bring terms under binders during substitution while keeping their

references correct.

The function tyshiftn takes a number by which to increase the variable, and a cut-off which

represents which variables are currently free. Anything under the cut-off will not be shifted.

Fixpoint tyshiftn (n : nat) (d : nat) (ty : Ty) {struct ty} : Ty :=
match ty with
| TV m ⇒ if le lt dec d m then TV (n+m) else TV m
| Imp t s ⇒ Imp (tyshiftn n d t) (tyshiftn n d s)
| All t ⇒ All (tyshiftn n (S d) t)
| And t s ⇒ And (tyshiftn n d t) (tyshiftn n d s)
| Or t s ⇒ Or (tyshiftn n d t) (tyshiftn n d s)
| Mu t ⇒ Mu (tyshiftn n (S d) t)
| Nu t ⇒ Nu (tyshiftn n (S d) t)
| One ⇒ One

end.

Figure 7.5: Type Shifting
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With type-shifting in hand we can turn to type substitution. This implements the substitution

described in Figure 7.6 in Section 2.4. The substitution function here shows how we have to raise

the indexes of types which we take under an All constructor as the index to the free variables

increases by one.

Additionally when we encounter a variable, we need to test for three cases. The first case is

whether the variable is the variable to be substituted. If so we simply return the substituting term,

which has now been appropriately shifted by the recursion. If we encounter a bound variable, we

simply return it. If we encounter a variable which is free, we need to shift it down by one, since one

lambda binder has been removed. Coq conveniently allows us to prove that we can always find a

predecessor and this means we need not worry about using subtraction, something which can often

complicate the implementation of de Bruijn indices. This proof is achieved by using False rec,

which essentially means that we can eliminate cases with hypotheses that lead to contradiction,

which makes use of the principle of ex falso quodlibet.

We introduce a concept of a valid type in Figure 7.7. A valid type is a type which has free

variables which are never larger than some cut-off. This will be needed for our formation rules, to

ensure that we do not use types which refer to variables which are not in context.

There are also some necessary invariants on the form of programs which must be maintained.

The first is that there is a total function Xi or Ξ which associates types with all function constants.

The second is that none of these types has free variables. Ξ is needed because System-F type

inference is undecidable. It is relatively easy to provide Ξ as a total function when writing func-

tional programs by giving a type of 0 to anything which represents a function constant not in our

program.

With these pieces in hand we can describe the basic structure of our type derivations which

are given as a data-type in Figure 7.8. We notice here that we have a co-inductive description of

our derivations. This means that cyclicity is allowable in the structure of the derivation. Despite

that fact, we will find that it is relatively straightforward to produce the standard progress and

preservation laws used for functional programs.

The Derivation data-type uses the familiar introduction and elimination rules altered slightly

to use the nameless representation. ImpIntro for example simply allows the use of a type from the

variable context to introduce an abstraction. The AllIntro step is perhaps more interesting. Here

we require that we step the number of free-type variables down by one, hence a requirement that

our antecedent is 1 + n or S n for some n and that every type variable is one smaller in terms of
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Definition tysub : ∀ (ty : Ty) (n : nat) (s : Ty), Ty.
Proof.
refine

(fix tysub (ty : Ty) (n : nat) (s : Ty) {struct ty} : Ty :=
match ty with
| TV m ⇒ match le lt dec n m with

| left p ⇒ match eq nat dec n m with
| left ⇒ s
| right p’ ⇒

(match m as m’ return (m = m’ → Ty)
with
| 0 ⇒ (fun p” ⇒ False rec )
| S m’ ⇒ (fun ⇒ TV m’)
end) (refl equal m)

end
| right ⇒ TV m

end
| Imp ty1 ty2 ⇒ Imp (tysub ty1 n s) (tysub ty2 n s)
| All t ⇒ All (tysub t (S n) (tyshift s))
| Mu t ⇒ Mu (tysub t (S n) (tyshift s))
| Nu t ⇒ Nu (tysub t (S n) (tyshift s))
| One ⇒ One
| And ty1 ty2 ⇒ And (tysub ty1 n s) (tysub ty2 n s)
| Or ty1 ty2 ⇒ Or (tysub ty1 n s) (tysub ty2 n s)

end).
destruct m. apply le n O eq in p. apply p’. auto. inversion p”.

Defined.

Fixpoint tysubt (t : Term) (n : nat) (s : Ty) {struct t} : Term :=
match t with
| F m ⇒ F m
| V m ⇒ V m
| Abs ty t ⇒ Abs (tysub ty n s) (tysubt t n s)
| Lam t ⇒ Lam (tysubt t (S n) (tyshift s))
| App f g ⇒ App (tysubt f n s) (tysubt g n s)
| TApp f ty ⇒ TApp (tysubt f n s) (tysub ty n s)
| Inl t ty ⇒ Inl (tysubt t n s) (tysub ty n s)
| Inr t ty ⇒ Inr (tysubt t n s) (tysub ty n s)
| Case t u v ⇒ Case (tysubt t n s) (tysubt u n s) (tysubt v n s)
| Pair t u ⇒ Pair (tysubt t n s) (tysubt u n s)
| Split t u ⇒ Split (tysubt t n s) (tysubt u n s)
| Fold t ty ⇒ Fold (tysubt t n s) (tysub ty n s)
| Unfold t ty ⇒ Unfold (tysubt t n s) (tysub ty n s)
| Unit ⇒ Unit

end.

Figure 7.6: Type Substitution
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Fixpoint valid (ty : Ty) (n : nat) {struct ty} : Prop :=
match ty with
| TV m ⇒
if le lt dec n m
then False
else True

| Imp s t ⇒ valid s n ∧ valid t n
| Or s t ⇒ valid s n ∧ valid t n
| And s t ⇒ valid s n ∧ valid t n
| One ⇒ True
| All t ⇒ valid t (S n)
| Nu t ⇒ valid t (S n)
| Mu t ⇒ valid t (S n)

end.

Variable Xi : nat → Ty.
Variable ProgTy : ∀ m, valid (Xi m) 0.

Figure 7.7: Valid

the number of free variables, a fact ensured by the tyshift applied to every type in the term-context

for our antecedent.

AllElim is essentially identical to the derivations given earlier, aside from the need to check

that our substituted type is in our type variable context.

Var requires that we introduce a variable with a type by ensuring that the natural number used

for formation is a valid index into our term-variable context, and formed with a type which is valid

at our current number of free type variables.

We will also need two additional parameters which must be provided with any program that we

want to use with our derivations to ensure that our theorems hold. These are given in Figure 7.9.

Essentially they state that we have a program which combines a total function Delta or Ω and

associates every function constant with a term and a corresponding proof that if we assume that

each function-constant is typed by Ξ then every term associated with that type has a derivation.

This is in fact the well known typing law from functional programming that allows us to introduce

recursive terms and leads to weak-soundness results, but also the possibility of general recursion.

The formulation we give here is straightforward to pass as a parameter with our programs

in order to form our derivations. We need only type-check each term under the assumption that

function constants are well typed, a process which has been mechanised in the implementation.
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CoInductive Derivation : Holds → Set :=
| FunIntro : ∀ n m l, Derivation [n ; l |= F m @ Xi m]
| ImpIntro : ∀ n l t ty xty, valid xty n → Derivation [n ; xty::l |= t @ ty]→

Derivation [n ; l |= (Abs xty t) @ (Imp xty ty)]
| ImpElim : ∀ n l t f ty xty, Derivation [n ; l |= t @ xty]→

Derivation [n ; l |= f @ (Imp xty ty)]→ Derivation [n ; l |= (App f t) @ ty]
| AllIntro : ∀ n l t ty, Derivation [S n ; map tyshift l |= t @ ty]→

Derivation [n ; l |= (Lam t) @ All ty]
| AllElim : ∀ n l t ty xty, valid xty n → Derivation [n ; l |= t @ All ty]→

Derivation [n ; l |= TApp t xty @ (tysub ty 0 xty)]
| VarIntro : ∀ n l ty i, valid ty n → i < length l → nth i l One = ty →

Derivation [n ; l |= V i @ ty]
| AndIntro : ∀ n l t s A B, Derivation [n ; l |= t @ A]→

Derivation [n ; l |= s @ B]→ Derivation [n ; l |= Pair t s @ And A B]
| AndElim : ∀ n l t s A B C, Derivation [n ; l |= t @ And A B]→

Derivation [n ; A::B::l |= s @ C]→ Derivation [n ; l |= Split t s @ C]
| OrIntroL : ∀ n l t A B, valid B n → Derivation [n ; l |= t @ A]→

Derivation [n ; l |= Inl t B @ Or A B]
| OrIntroR : ∀ n l t A B, valid A n → Derivation [n ; l |= t @ B]→

Derivation [n ; l |= Inr t A @ Or A B]
| OrElim : ∀ n l t u v A B C, Derivation [n ; l |= t @ Or A B]→

Derivation [n ; A::l |= u @ C]→ Derivation [n ; B::l |= v @ C]→
Derivation [n ; l |= Case t u v @ C]

| MuIntro : ∀ n l t A, valid A (S n) →
Derivation [n ; l |= t @ tysub A 0 (Mu A) ]→
Derivation [n ; l |= Fold t (Mu A) @ Mu A ]

| MuElim : ∀ n l t A, valid A (S n) →
Derivation [n ; l |= t @ Mu A]→
Derivation [n ; l |= Unfold t (Mu A) @ tysub A 0 (Mu A)]

| NuIntro : ∀ n l t A, valid A (S n) →
Derivation [n ; l |= t @ tysub A 0 (Nu A) ]→
Derivation [n ; l |= Fold t (Nu A) @ Nu A ]

| NuElim : ∀ n l t A, valid A (S n) →
Derivation [n ; l |= t @ Nu A]→
Derivation [n ; l |= Unfold t (Nu A) @ tysub A 0 (Nu A)]

| OneIntro : ∀ n l, Derivation [n ; l |= Unit @ One].

Figure 7.8: Type Derivations

Variable Delta : nat → Term.
Variable Prog : ∀ n l m, Derivation [n ; l |= F m @ Xi m]→

Derivation [n ; l |= Delta m @ Xi m].

Figure 7.9: The Program Axioms
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7.1.2 Progress and Preservation

The term substitution function is very similar to the type substitution function. It also requires the

use of a shifting function to help with the manipulation of indices. We also need a way to shift type

indices in terms for performing substitution of types in terms which is required by the evaluation

relation for System-F. These functions are given in Figure 7.11. Again we see the use of a short

proof to eliminate the possibility that no predecessor can be found to allow us to shift downward

variables which were above the cutoff.

Fixpoint shiftn (n : nat) (d : nat) (t : Term) {struct t} : Term :=
match t with
| F m ⇒ F m
| V m ⇒ if le lt dec d m then V (n+m) else V m
| App r s ⇒ App (shiftn n d r) (shiftn n d s)
| Lam r ⇒ Lam (shiftn n d r)
| Abs ty r ⇒ Abs ty (shiftn n (1+d) r)
| TApp r ty ⇒ TApp (shiftn n d r) ty
| Fold r ty ⇒ Fold (shiftn n d r) ty
| Unfold r ty ⇒ Unfold (shiftn n d r) ty
| Pair r s ⇒ Pair (shiftn n d r) (shiftn n d s)
| Split r s ⇒ Split (shiftn n d r) (shiftn n (2+d) s)
| Inl r ty ⇒ Inl (shiftn n d r) ty
| Inr r ty ⇒ Inr (shiftn n d r) ty
| Case r u v ⇒ Case (shiftn n d r) (shiftn n (1+d) u) (shiftn n (1+d) v)
| Unit ⇒ Unit

end.

Definition shift := shiftn 1.

Fixpoint tyshift term (d : nat) (t : Term) {struct t} : Term :=
match t with
| F m ⇒ F m
| V m ⇒ V m
| App r s ⇒ App (tyshift term d r) (tyshift term d s)
| Lam r ⇒ Lam (tyshift term (S d) r)
| Abs ty r ⇒ Abs (tyshiftn 1 d ty) (tyshift term d r)
| TApp r ty ⇒ TApp (tyshift term d r) (tyshiftn 1 d ty)
| Fold t ty ⇒ Fold (tyshift term d t) (tyshiftn 1 d ty)
| Unfold t ty ⇒ Unfold (tyshift term d t) (tyshiftn 1 d ty)
| Inr t ty ⇒ Inr (tyshift term d t) (tyshiftn 1 d ty)
| Inl t ty ⇒ Inl (tyshift term d t) (tyshiftn 1 d ty)
| Case t u v ⇒ Case (tyshift term d t) (tyshift term d u) (tyshift term d v)
| Pair t s ⇒ Pair (tyshift term d t) (tyshift term d s)
| Split t s ⇒ Split (tyshift term d t) (tyshift term d s)
| Unit ⇒ Unit

end.

Figure 7.10: Shifting
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Definition sub : ∀ (t : Term) (n : nat) (s : Term), Term.
Proof.
refine

(fix sub (t : Term) (n : nat) (s : Term) {struct t} : Term :=
match t with
| F m ⇒ F m
| V m ⇒ match le lt dec n m with

| left p ⇒ match eq nat dec n m with
| left p’ ⇒ s
| right p’ ⇒

(match m as m’ return (m = m’ → Term)
with
| 0 ⇒ (fun p” ⇒ False rec )
| S m’ ⇒ (fun ⇒ V m’)

end) (refl equal m)
end

| right p ⇒ V m
end

| Abs ty r ⇒ Abs ty (sub r (S n) (shift 0 s))
| Lam r ⇒ Lam (sub r n (tyshift term 0 s))
| App f g ⇒ App (sub f n s) (sub g n s)
| TApp r ty ⇒ TApp (sub r n s) ty
| Fold r ty ⇒ Fold (sub r n s) ty
| Unfold r ty ⇒ Unfold (sub r n s) ty
| Pair r u ⇒ Pair (sub r n s) (sub u n s)
| Split r u ⇒ Split (sub r n s) (sub u (S (S n)) (shiftn 2 0 s))
| Inl r ty ⇒ Inl (sub r n s) ty
| Inr r ty ⇒ Inr (sub r n s) ty
| Case r u v ⇒ Case (sub r n s) (sub u (S n) (shift 0 s)) (sub v (S n) (shift 0 s))
| Unit ⇒ Unit

end). destruct m. apply le n O eq in p. apply p’. auto. inversion p”.
Defined.

Figure 7.11: Substitution
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The implementation provides a number of important lemmas and theorems which will help us

to prove progress and preservation and to ensure that our implementation is indeed correct.

First we need a lemma which demonstrates that the shifting implementation is correct. This

theorem states that we can insert an arbitrary type into a context at a cutoff by shifting our term at

the index of the insertion.

Lemma shift correct : ∀ n s xty ty G L,
Derivation [n; G ++ L |= s @ ty]→
Derivation [n; G ++ (xty :: L) |= shift (length G) s @ ty].

Figure 7.12: Shift Correctness

The substitution preservation theorem given in Figure 7.13 demonstrates that substitution pre-

serves types given that we substitute a variable with a term of the same type as that variable in our

context.

The proof of this result is done by induction on the term t and requires a strengthening lemma,

which states that we can remove irrelevant variables from our contexts. In addition it uses the shift

correctness lemma.

Theorem sub preservation : ∀ t s n xty ty G L,
Derivation [n ; G++xty::L |= t @ ty]→
Derivation [n ; G++L |= s @ xty]→
Derivation [n ; G++L |= sub t (length G) s @ ty].

Figure 7.13: Substitution Type Preservation

Finally, we will need a similar result for type substitution. This is given in Figure 7.14. Es-

sentially this result states that for any valid type and a type derivation for a term t we can derive a

valid derivation for that term with one free type substituted. It turns out practically that this is by

far the hardest result to prove. It requires the lemma which is given in Figure 7.15.

Lemma tysub derivation : ∀ t n m l ty tyx,
valid tyx (n+m) →
Derivation [S (n+m); map (tyshiftn 1 m) l |=t @ ty]→
Derivation [(n+m); l |=tysubt t m tyx @ tysub ty m tyx].

Figure 7.14: Type Substitution Type Preservation

This lemma states that given an arbitrary term, we can substitute in both the context and the

term and the type to determine another valid type derivation. It is critical in proving the inductive

case for λ-abstraction. The rest of the proof is relatively straightforward.

From here we can describe our deterministic, normal-order evaluation relation, which we give

in Figure 7.16.
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Lemma tysub all : ∀ t ty tyx n m l,
valid tyx (n+m) →
Derivation [S (n+m); l |= t @ ty]→
Derivation [(n+m); map (fun ty ⇒ tysub ty m tyx) l |= tysubt t m tyx @ tysub ty m tyx].

Figure 7.15: Lemma for Type Substitution

Inductive Ev : Term → Term → Set :=
| ev f : ∀ n, Ev (F n) (Delta n)
| ev app : ∀ t t’ s, Ev t t’ → Ev (App t s) (App t’ s)
| ev abs : ∀ t s ty, Ev (App (Abs ty t) s) (sub t 0 s)
| ev tapp : ∀ t t’ ty, Ev t t’ → Ev (TApp t ty) (TApp t’ ty)
| ev lam : ∀ t ty, Ev (TApp (Lam t) ty) (tysubt t 0 ty)
| ev fold : ∀ t ty ty’, Ev (Unfold (Fold t ty’) ty) t
| ev unfold : ∀ t t’ ty, Ev t t’ → Ev (Unfold t ty) (Unfold t’ ty)
| ev inl : ∀ t r s ty, Ev (Case (Inl t ty) r s) (sub r 0 t)
| ev inr : ∀ t r s ty, Ev (Case (Inr t ty) r s) (sub s 0 t)
| ev case : ∀ t t’ r s, Ev t t’ → Ev (Case t r s) (Case t’ r s)
| ev pair : ∀ t s u, Ev (Split (Pair t s) u) (sub (sub u 0 (shift 0 t)) 0 s)
| ev split: ∀ t t’ u, Ev t t’ → Ev (Split t u) (Split t’ u).

Figure 7.16: Evaluation Relation

With this relation we can describe our theorem of type preservation which is given in Fig-

ure 7.17. This simply shows that any term which is the result of a single step evaluation in any

type and term variable context will have a derivation at the same type.

Theorem ev preservation : ∀ t t’ n l ty, Derivation Xi [n ; l |= t @ ty]→ Ev t t’ → Derivation
Xi [n ; l |= t’ @ ty].

Figure 7.17: Type Preservation

Similar results hold for the transitive and transitive-reflexive closures of evaluation as pre-

sented in Figure 7.18.

In addition to the evaluation relation, a program which can calculate an evaluated term is

also provided with a strong type specification. Because of the fact that System-F with general

recursion is not strongly normalising, it is not possible to represent this function directly unless

some additional constraint is given. Here we add an upper-bound on the number of computation

steps taken.

The strong specification states that given any natural number bound and a term t we can cal-

culate a term t� which is in the reflexive transitive closure.

We also have a progress result which states that anything in the empty context which is not a

value will reduce. Values are defined inductively as being either a λ-abstraction or a Λ-abstraction.

These are given in Figure 7.20. Proof of these results for the transitive and reflexive closures is
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Inductive Evplus : Term → Term → Set :=
| Evplus base : ∀ t t’, Ev t t’ → Evplus t t’
| Evplus next : ∀ t t’ t”, Evplus t t’ → Ev t’ t” → Evplus t t”.

Inductive Evstar : Term → Term → Set :=
| Evstar refl : ∀ t t’, t = t’ → Evstar t t’
| Evstar plus : ∀ t t’, Evplus t t’ → Evstar t t’.

Notation "t ˜> t’" := (Ev t t’) (at level 60).
Notation "t ˜>+ t’" := (Evplus t t’) (at level 60).
Notation "t ˜>* t’" := (Evstar t t’) (at level 60).

Theorem evplus preservation : ∀ t t’ n l ty, Derivation Xi [n ; l |= t @ ty] → t ˜>+ t’ →
Derivation Xi [n ; l |= t’ @ ty].

Theorem evstar preservation : ∀ t t’ n l ty, Derivation Xi [n ; l |= t @ ty] → t ˜>* t’ →
Derivation Xi [n ; l |= t’ @ ty].

Figure 7.18: Type Preservation of Transitive and Reflexive Closures

Definition eval : ∀ (bound : nat) (t : Term), { t’ : Term & t ˜>* t’}.

Figure 7.19: Strong Eval

straightforward.

Inductive Value : Term → Set :=
| Value Lam : ∀ t, Value (Lam t)
| Value Abs : ∀ t ty, Value (Abs ty t)
| Value Fold : ∀ t ty, Value (Fold t ty)
| Value Pair : ∀ t s, Value (Pair t s)
| Value Inl : ∀ t ty, Value (Inl t ty)
| Value Inr : ∀ t ty, Value (Inr t ty)
| Value Unit : Value Unit.

Theorem ev progress : ∀ t A, Derivation Xi [0; nil |= t @ A]→ { s : Term & t ˜> s} + (Value
t).

Figure 7.20: Progress

7.1.3 Transition Systems

Using these important results we can move to the description of transition systems and simula-

tion. We do this with two inductively defined data-types, describing labels in Figure 7.21 and our

transition system relation in Figure 7.22.

We can form labels by introducing an arbitrary term with a correct type derivation and appro-

priate type, as a test to look at the behaviour of some term which can be reduced to a λ-abstraction

and similarly for Λ-abstractions and types.

With labelled transition systems defined, we can move forward to the definition of simulation.
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Inductive label : Set :=
| lt : Term → label
| lty : Ty → label
| lft : label
| rgt : label
| fst : label
| snd : label
| fld : label.

Figure 7.21: Transition System Labels

Inductive trans : Term → label → Term → Type :=
| trans app : ∀ t1 t2 A B,

Derivation Xi [0; nil |= t1 @ Imp A B]→
Derivation Xi [0; nil |= t2 @ A]→
trans t1 (lt t2) (App t1 t2)

| trans tapp : ∀ t ty A,
Derivation Xi [0; nil |= t @ All A]→
valid ty 0→
trans t (lty ty) (TApp t ty)

| trans inl : ∀ t A B,
Derivation Xi [0; nil |= (Inl t B) @ Or A B] →
trans (Inl t B) lft t

| trans inr : ∀ t A B,
Derivation Xi [0; nil |= (Inr t A) @ Or A B] →
trans (Inr t A) rgt t

| trans fst : ∀ s t A B,
Derivation Xi [0; nil |= (Pair s t) @ And A B] →
trans (Pair s t) fst s

| trans snd : ∀ s t A B,
Derivation Xi [0; nil |= (Pair s t) @ And A B] →
trans (Pair s t) snd t

| trans fold : ∀ t ty,
Derivation Xi [0; nil |= (Fold t ty) @ ty] →
trans (Fold t ty) fld t

| trans next : ∀ l t1 t2 t3, t1 ˜>* t2 → trans t2 l t3 → trans t1 l t3.

Figure 7.22: Transition System
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This essentially follows directly from Gordon’s presentation [32]. If we want to show that a term b

simulates a we need to show that given any possible state a� that a can arrive at by any given label

l, that b similarly can arrive at a new state b� by that same label l and we can additionally prove

that b� simulates a�. This is essentially a form of Parks’ principle for transition systems.

CoInductive simulates : Term → Term → Type :=
| simulates base : ∀ a b,

(∀ a’ l,
trans a l a’ → {b’ : Term & trans b l b’ & simulates a’ b’})→

simulates a b.

Figure 7.23: Simulation

We have not yet produced a mechanisation of contextual equivalence for System-F, though

we expect that this result is possible using the given formulation. The theorem that one would

most likely attempt to prove is given in Figure 7.24. While different than the usual formulation for

contextual equivalence, this formulation should be more straight forward to prove. The one-hole

contexts would act as arbitrary semi-decidability predicates over terms. Essentially here we would

describe contextual equivalence as the inability to distinguish between two terms by the means of

any arbitrary constructible (continuous in the language of Synthetic Topology) semi-decidability

predicate[27] in System-F with general recursion.

Theorem contextual equivalence : ∀ C a b A,
Derivation Xi [0 ; nil |= a @ A]→
Derivation Xi [0 ; nil |= b @ A]→
a :<: b →
(∀ t : Term, Derivation Xi [0 ; nil |= t @ A]→

Derivation Xi [0 ; nil |= insert C t @ One]) →
evaluates (insert C a) Unit →
evaluates (insert C b) Unit.

Figure 7.24: Contextual Equivalence

7.2 Haskell Implementation

The Haskell implementation builds on the mechanisation in Coq and provides the expanded syn-

tax and formation rules for System-F+ given in the introduction, along with a type-checker, an

interpreter, a supercompiler, a natural-deduction-style proof printer and a totality checker. We use

the name Cocktail to denote the supercompiler.

The representation of sequents, derivations and terms using the modified de Bruijn scheme

follows the same pattern as in the Coq implementation. This turns out to simplify the process
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of abstraction, strengthening and generalisation as compared to a locally nameless representation,

which was used in an earlier design.

The supercompiler is non-deterministic, and we have implemented this using streams of re-

sults. The stream itself is formed using Luke Palmer’s ω-monad [64]. The ω-monad (which we

write Mω in the pseudocode) is specifically designed to allow non-deterministic interleaving be-

tween various streams in such a manner as to ensure that it enumerates over all possibilities. It is

so named because it can deal with the enumeration of cross-products of denumerable sets, those

of order type ω. It is similar to the list monad, though it technically violates the monad laws unless

we view lists modulo permutation of elements.

The ability to combine two streams in the ω-monad is given with the mplus operator. We can

think of these combinations as allowing us to specify alternative non-deterministic paths to take in

our supercompilation.

The syntax for source files is structured as in Figure 7.25 and the representation of the various

term and type level constructors are given in Figure 7.26 and Figure 7.27 respectively.

term
where
function_constant : type = term
...

function_constant : type = term

Figure 7.25: File Syntax

\ x : (A) . r := λx : A.r

inr(r,A) := right(r, A)
inl(r,A) := left(r, A)
(r,s) := (r, s)
/\ X . r := ΛX.r

case t of { inl(x) => r | inr(y) => s } := case t of {x ⇒ r | y ⇒ s}
split t as (x,y) in {r} := split t as (x, y) in r

fold(r,A) := inα(r, A)
unfold(r,A) := outα(r, A)

Figure 7.26: Textual Term Representation

A * B := A×B

A + B := A+B

A -> B := A → B

\-/ X . A := ∀X.A

nu X .(A) := νX.A

mu X .(A) := µX.A

Figure 7.27: Textual Type Representation
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In order to run our supercompiler we can invoke Main. Since no readline facility is used, it is

best to use the emacs shell interaction mode.

The online help can be invoked by typing:

:help

This leads to the options given in Figure 7.28. The program provides a number of program

manipulation tools and allows the user to manually produce bisimulation equivalent terms.

By loading a source file using the command:

:load ourfile.sup

followed by

:total 1

We can perform a search through lazily produced supercompiled programs and the first such

total program will be returned to the user.

Cocktail> :help

:load filename To Load a file
:quit To quit Cocktail
:out [filename] Output program to file
:proof [filename] Output derivation to PDF file
:super Supercompile the current program
:reify Reify term as program
:check Check totality of the program
:total [n] Supercompile the current program searching for a
provably total representative over n proofs
:help Show this message
:program To print the current program
:down [n] Descend further into a term taking the n’th branch
:up Ascend once step to the containing context term
:top Ascend to the top level closed term
:norm Normalise the present term
:display Show pdf of derivation
:unfold Unfold the blocking term
:fold Fold a term with a prior term
:term Show the present term
Cocktail>

Figure 7.28: On-line Help

In order to view the proof which the supercompiler has determined is total, we can output the

current proof using:
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:display

This will export a pdf containing the proof, with some attempts made to strengthen rules

implicitly to avoid overly large contexts. The output looks as in Figure 7.29.
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Figure 7.29: Total Proof of Co-Natural Addition
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Chapter 8

Conclusion and Further Work

We have presented a framework which utilises transformations on cyclic proof to perform program

manipulation with the intention of finding equivalent programs which can be demonstrated to be

total by a syntactic check.

In Chapter 2 we introduced a language based on System-F+ which enriches the base language

with sums, products and (co)inductive types and general recursion. This produces a language

rich enough to be comparable to the pure fragments of more standard functional programming

languages such as Haskell.

In Chapter 4 we introduced a novel framework for presenting a functional programming lan-

guage in a natural deduction style where we make use of recurrences to represent recursive struc-

ture. This provides a framework for program transformation in a strongly typed setting. The

totality of proofs is given by a restriction resembling structural recursion and a guardedness con-

dition which is novel.

The formal footing provided in this chapter should be helpful in understanding the process

of supercompilation and other cyclic program transformations such as the worker/consumer and

loop-rolling type.

Future work would extend the notion of cyclic proofs of the form we have presented to include

a language such as the calculus of constructions. This would allow much more sophisticated

specifications of program terms to be described.

In addition it would be useful to include a bisimulation substitution law. This would give an

extensional type which would allow the use of cyclic proofs which were bisimulation equivalent

to be substituted in the proof tree. Several example proofs appear to require such an extension to

demonstrate totality by way of program transformation.
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Perhaps most importantly this would provide a formal foundation for some approaches cur-

rently known as higher-order, or higher-level supercompilation [43]. The strength of type-theory

is in the ability to check the correctness of proofs quickly. Theorem proving in the manner of proof

assistants such as ACL2 [42] which use transformation of terms do not provide a checkable proof

of their chain of reasoning. If we insist that transformation techniques produce the proof of the

bisimulation then the problem of checking type correctness is possible given a suitable extensional

type theory with a bisimulation substituion rule. This will allow us to make better use of program

transformation techniques for theorem proving. Observational Type Theory[5] is probably the ap-

propriate tool for providing an evidential approach to program transformations of this nature. The

ability to provide explicit substitutions of bisimilar terms is required to type check a number of

interesting examples.

Ω(t) := inν(left(1, 1 + T),T)
Ω(delay) := λx : T.inν(right(x, 1 + T),T)
Ω(f) := delay f

Ω(join) := λx : T y : T.
case outν(x,T) of

z ⇒ t

| x� ⇒
case outν(y,T) of

z ⇒ t

| y� ⇒ delay (join x� y�)

Ω(ex) := λl : [A] p : ([A] → T).
case l of

z ⇒ f

| pair ⇒
split pair as (x, xs)
in delay (join (p x) (ex p xs))

Ξ(t) := T
Ξ(f) := T
Ξ(delay) := T → T
Ξ(join) := T → T → T
Ξ(ex) := [A] → (A → T) → T

Figure 8.1: Semi-Decidable Existential Functional

One example can be given for the type of an existential quantifier over the domain of semi-

decidable truth values given by the delay-monad: νX.A+X , which either returns an A or delays

a step, over the Sierpinski type 1 which is νX.1 + X , and which we will write as T. As we can

see from this type, it is isomorphic with the co-natural numbers. The program representing the

existential functional is given in Figure 8.1.
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If we attempt to perform program transformation on this term, we can in fact find a bisimilar

term for ex which meets the guardedness condition, however it relies on the associativity of join.

Supercompilation can easily show that join is associative as the terms join (join x y) z and

join (join x y) z both supercompile to identical terms. This means we can establish the type

correctness of the term ex provided we are allowed to substitute bisimilar terms. Both higher

level supercompilation [43] and distillation [36] are capable of automatically transforming this

example.

In Chapter 3 we gave a description of a transition system semantics for System-F+. The pre-

sentation here was developed based on Gordon’s published works, which we extended to include

universal quantification over types. Our mechanisation of this theory is novel.

It would be useful to extend this work to include a transition system for a richer calculus such

as the calculus of constructions. The inclusion of existential quantification may present difficulties,

but it is possible that this could be overcome using techniques such as used in environmental

bisimulations [44].

The extension could also potentially allow libraries mixing total and non-total terms. This can

make programming in total languages more flexible since some partial terms are in fact total in

a context, and this can sometimes be decided by program manipulation of cyclic proofs. Essen-

tially the restriction to particular terms as arguments of a partial function can be total provided it

is restricted in some way to ensure that these arguments are in the domain of the image. We can

imagine how totality would hold for a filter function over streams, provided that the filter predi-

cate was searching for a finite number in a list of natural numbers. Program transformation and

synthesis techniques could transform this into a single recursive term with a structurally reducing

argument, which would be total.

In Chapter 5 we provided a non-deterministic program transformation algorithm based on

supercompilation. The transformation methodology used is novel in several ways. The non-

deterministic search is breadth first but limited by a predicate which rejects paths which will not

meet conditions on cyclic proofs required to ensure totality. The use of program transformation to

obtain manifestly type correct terms is a novel development.

It would be useful to export a demonstration of the equivalence between the original and trans-

formed term. This could be done by producing a Coq term which demonstrates the bisimulation

relation with respect to the transition system semantics of the programming language. This would

dovetail nicely with a type theory which allowed substitutions of bisimilar terms. In addition
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this appears to be a fruitful way of ensuring that various optimising transformations in programs

such as compilers can demonstrate the correctness of their transforms and limit the scope for the

introduction of changes in termination behaviour.

In Chapter 6 we demonstrated a coinductive relational approach to looking at totality based

on ideas given by Bradfield and Stirling [12] and Milner and Tofte [56]. Our application of the

approach is unique and differentiates itself from that of Bradfield and Stirling by applying the

technique to a term language. We differentiate from Milner and Tofte in presenting relations

which do not include non-termination.

Much work is yet to be done on understanding the connections between models and transition

system approaches to the structural operational semantics of terms. The extension to term calculi

such as the calculus of constructions is one obvious step. In addition it would be useful to explore

other possible restrictions on cyclic proofs which might lead to satisfaction of relations of this

type. It would also be desirable to have a complete mechanisation of the approach given in this

work.

In Chapter 7 we gave two implementations. One of the implementations is the mechanisation

of sections of the theory provided in the proof assistant Coq. The mechanisation of System-F

enriched with general recursion and the transition system relation and simulation are novel.

It is hoped that the work done here can provide a basis for a full mechanisation of a super-

compiler in Coq. This would be a major step forward for program correctness. In order to do

this there are a number of steps which must be taken. A proof of contextual equivalence would

need to be completed for terms satisfying a bisimulation. The generalisation algorithm which has

been implemented in Haskell would need to be provided in Coq, and the supercompilation core

algorithm would also need to be implemented.

In conclusion we have produced novel contributions to the theory of cyclic type systems,

discovered new uses for supercompilation and provided a novel mechanisation of much of this

theory in Coq.

It seems likely that future programming languages in areas that require high availability or

extremely low failure rates will be forced to adopt formal methodologies for connecting specifica-

tions to their software. The need for automation in the process of checking specifications against

their programs will only become more important. We have made a contribution to this end.
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Appendix A

Supercompilation Implementation

super :: Path -> Holds -> Omega PreProof

super p h =

let h’ = sequentNorm h

in if whistle h’ p

then mzero

else do

-- * Instances *

-- find all potential instances in the history

-- and try them each, in turn.

(i,ts) <-

each . concat $

map (\ (i,h’’) ->

maybeToList $

fmap (\ s -> (i, nub \$ map snd s)) (h’’ >- h’))

(zip [0..] p)

-- Make all possible supercompiled derivations of

-- subterms not in the parent

ds <- sequence $

map (\textbackslash t -> do

let (Holds fctx vctx tctx _ _) = h’

ty <- each . eitherToList \$ typeof fctx vctx tctx t

let h’’ = (Holds fctx vctx tctx t ty)

super (h’:p) h’’) ts

return $ Pointer h’ (i+1) ds

‘mplus‘ do

-- * Coupling / Generalisation *

(_,h’’) <- each . maybeToList $ couples h’ p
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let oldpath = p

(gf@@(Holds fctx vctx tctx _ _),typargs,termargs) <-

each . eitherToList $ generalised_function h’ h’’

-- Make sure pointers are

-- offset properly for upcoming applications.

let stubpath = replicate (length typargs + length termargs)

placeholder

gd <- super (stubpath++oldpath) gf

let f = proofTerm gd

tyapp = foldr (\ ty f -> TApp f ty) f typargs

typath = replicate (length typargs) placeholder

(t,_) <- foldrM (\ ha (f,p) -> do

d <- super p ha

--let a = sequentTerm ha --

let a = proofTerm d

t = App f a

return (t,placeholder:p))

(tyapp,typath++oldpath)

(each termargs)

d’ <- each . eitherToList $ makeProof fctx vctx tctx t

return d’

‘mplus‘ do

-- * Function constant unfolding *

h’’ <- each . maybeToList $ unfold h’ -- unfold

r <- super (h’:p) h’’

return $ DeltaRule h’ r

‘mplus‘

-- * Subterm supercompilation *

super’ p h’
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Appendix B

System-F Embedding in Coq

Definition Zero := ∀ (a : Prop), a.

Notation "’0" := Zero (at level 1).

Lemma Zero uninhabited : ∀ t : ’0, False.

intros.

unfold Zero in t. apply t.

Defined.

Definition One := ∀ (a : Prop), a → a.

Notation "’1" := One (at level 1).

Definition unit : ’1 := (fun (a : Prop) (x : a) ⇒ x).

Implicit Arguments unit [a].

Notation "’()" := unit (at level 1).

Definition And (a : Prop) (b : Prop) := ∀ (z : Prop), (a → b → z) → z.

Notation "a |*| b" := (And a b) (at level 90, b at next level).

Definition pair : ∀ (a b : Prop), a → b → And a b :=

fun (a b : Prop) ⇒

fun (x : a) (y : b) ⇒

fun (z : Prop) (f : a → b → z) ⇒ f x y.

Implicit Arguments pair [a b].

Notation "[ x , y ]" := (pair x y) (at level 1, y at next level).

Definition fst : ∀ (a b : Prop), a |*| b → a :=

fun (a b : Prop) ⇒
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fun (p : ∀ (z : Prop), (a → b → z) → z) ⇒

p a (fun (x : a) (y : b) ⇒ x).

Implicit Arguments fst [a b].

Definition snd : ∀ (a b : Prop), a |*| b → b :=

fun (a b : Prop) ⇒

fun (p : ∀ (z : Prop), (a → b → z) → z) ⇒

p b (fun (x : a) (y : b) ⇒ y).

Implicit Arguments snd [a b].

Definition Or (a : Prop) (b : Prop) := ∀ (z : Prop), (a → z) → (b → z) → z.

Notation "a |+| b" := (Or a b) (at level 90, b at next level).

Definition inl : ∀ (a b : Prop), a → a |+| b :=

fun (a b : Prop) ⇒

fun (x : a) ⇒

fun (z : Prop) (left : a → z) (right : b → z) ⇒ left x.

Implicit Arguments inl [a].

Definition inr : ∀ (a b : Prop), b → a |+| b :=

fun (a b : Prop) ⇒

fun (y : b) ⇒

fun (z : Prop) (left : a → z) (right : b → z) ⇒ right y.

Implicit Arguments inr [b].

Definition case : ∀ (a b c: Prop), a |+| b → (a → c) → (b → c) → c :=

fun (a b c : Prop) ⇒

fun (x : a |+| b) (f : a → c) (g : b → c) ⇒

x c f g.

Lemma or inl : ∀ (a b c : Prop) (f : a → c) (g : b → c) (x : a),

case a b c (inl b x) f g = f x.

Proof.

unfold case.

unfold inl. auto.

Defined.

Lemma or inr : ∀ (a b c : Prop) (f : a → c) (g : b → c) (x : a),
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case a b c (inl b x) f g = f x.

Proof.

unfold case.

unfold inl. auto.

Defined.

Definition bool := ’1 |+| ’1.

Definition true := inl ’1 ’().

Definition false := inr ’1 ’().

Definition natF := (fun x : Prop⇒ x |+| ’1).

Definition mu (F: Prop→ Prop) := all (fun (x : Prop) ⇒ (F x → x) → x).

Definition fold (F : Prop→ Prop) : ∀ (x : Prop), (F x → x) → mu F → x.

Proof.

intros x k t.

apply (t x k).

Defined.

Definition inmu (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))

: F (mu F) → mu F.

Proof.

intros s.

unfold mu. unfold all.

intro x. intro k.

refine (k (FM (mu F) x (fold F x k) s)).

Defined.

Definition inmu’ (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))

: F (mu F) → mu F.

Proof.

intros s.

unfold mu. unfold all.

intro x. intro k.

refine (k (FM (mu F) x (fun t : mu F ⇒ t x k) s)).

Defined.
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Definition outmu (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))

: mu F → F (mu F).

Proof.

intros s.

apply (fold F).

apply FM. apply inmu. auto. auto.

Defined.

Definition outmu’ (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))

: mu F → F (mu F).

Proof.

intros s.

refine (s (F (mu F)) (FM (F (mu F)) (mu F) (inmu F FM))).

Defined.

Definition ex (F : Prop→ Prop) := ∀ y: Prop, (∀ x : Prop, F x → y) → y.

Definition pack (F : Prop→ Prop) : ∀ (x : Prop), F x → ex F :=

fun (x : Prop) ⇒

fun (e : F x) ⇒

fun (y: Prop) ⇒

fun (f : ∀ (z : Prop), F z → y) ⇒ f x e.

Definition unpack (F : Prop→ Prop)

: ex F → ∀ (y : Prop), (∀ (x : Prop), F x → y) → y :=

fun (u : ex F) (y : Prop) (f : ∀ (x : Prop), F x → y) ⇒

u y f.

Definition nu (F : Prop→ Prop) := ex (fun (x : Prop) ⇒ (x → F x) |*| x).

Definition unfold (F : Prop→ Prop)

: ∀ (x : Prop), (x → F x) → (x → nu F) :=

fun (x : Prop) ⇒

fun (f : x → F x) ⇒

fun (e : x) ⇒

pack (fun x ⇒ (x → F x) |*| x) x [f,e].

Definition outnu (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))
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: nu F → F (nu F).

Proof.

refine

(fun (u : nu F) ⇒

unpack u (F (nu F))

(fun (x : Prop) (w : (x → F x) |*| x) ⇒

FM (unfold x (fst w)) ((fst w) (snd w)))).

Defined.

Definition innu (F : Prop→ Prop) (FM : ∀ (a b : Prop), (a → b) → (F a → F b))

: F (nu (fun z ⇒ F z)) → nu (fun z ⇒ F z).

Proof.

refine (unfold (F (nu (fun z ⇒ F z))) (FM (outnu F FM))).

Defined.

Examples

Definition NatF := fun n : Prop⇒ ’1 |+| n.

Definition NatFM : ∀ a b : Prop, (a → b) → NatF a → NatF b.

Proof.

unfold NatF. intros a b f n. unfold Or in n. apply n.

intros. apply inl. auto.

intros. apply inr. apply f. exact H.

Defined.

Definition Nat := mu NatF.

Definition z : Nat := inmu NatF NatFM (inl Nat ’()).

Definition s : Nat → Nat := fun n : Nat ⇒ inmu NatF NatFM (inr ’1 n).

Definition FL := (fun N ⇒ ’1 |+| (Nat |*| N)).

Definition CoList := nu FL.

Definition FML : ∀ (a b : Prop), (a → b) → (FL a → FL b).

Proof.

unfold FL.

intros a b f c.

refine (c (’1 |+| (Nat |*| b)) (fun x : ’1⇒ inl (Nat |*| b) ’()) (fun x : (Nat |*|
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a) ⇒ inr )).

refine [ , ].

exact (fst x).

exact (f (snd x)).

Defined.

Definition FN := (fun N ⇒ ’1 |+| N).

Definition Conat := nu FN.

Definition FMN : ∀ (a b : Prop), (a → b) → (FN a → FN b).

Proof.

unfold FN.

intros a b f c.

apply (c (’1 |+| b) (fun x : ’1⇒ inl b ’()) (fun x : a ⇒ inr ’1 (f x))).

Defined.

Definition out FN := outnu FN FMN.

Definition inn FN := innu FN FMN.

Definition cz : Conat.

Proof.

unfold Conat. unfold FN.

cut ’1. apply unfold. intros. apply inl. auto.

exact ’().

Defined.

Definition cs : Conat → Conat.

Proof.

unfold Conat.

intros.

apply (fun (c : nu FN) ⇒ inr ’1 c) in H.

change (FN (nu FN)) in H.

apply inn FN.

unfold FN at 2.

change (FN (nu FN)). auto.

Defined.
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Definition inf : Conat := unfold FN Conat (fun x : Conat ⇒ inr ’1 x) cz.

Definition clt (n : nat) (c : Conat) : bool.

Proof.

refine

((fix clt (n : nat) (c : Conat) : bool :=

match n with

| 0 ⇒ true

| S n’ ⇒ (out FN c) bool (fun x : ’1⇒ false) (fun y ⇒ clt n’ y)

end) n c).

Defined.

Lemma inf infinity : ∀ (n : nat), clt n inf = true.

Proof.

induction n.

simpl. auto.

simpl.

unfold out FN.

unfold outnu. unfold unpack.

unfold inf at 1.

unfold unfold at 1. unfold pack at 1.

unfold FMN. unfold fst at 1.

unfold pair at 1. unfold inr at 1.

unfold inr at 1.

unfold fst at 1. unfold pair at 1.

unfold snd at 1. unfold pair at 1. unfold inf in IHn.

auto.

Defined.

Lemma inf infinity2 : ∀ (n : nat), clt n inf = true.

Proof.

induction n ; compute in × ; auto.

Defined.

Definition List (A : Prop) := ∀ (X : Prop), X → (A → X → X) → X.
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Definition nil := fun (A : Prop) (X : Prop) (n : X) (c : A → X → X) ⇒ n.

Definition cons := fun (A : Prop) (a : A) (l : List A) ⇒

fun (X : Prop) (n : X) (c : A → X → X) ⇒ c a (l X n c).

Implicit Arguments cons [A].

Definition mapl : ∀ (a b : Prop), (a → b) → List a → List b.

Proof.

refine

(fun (a b : Prop) ⇒

(fun (f : a → b) (foldr : List a) ⇒

foldr (List b) (nil b) (fun (x : a) (l : List b) ⇒ cons (f x) l))).

Defined.

Definition foldr : ∀ (a b : Prop), (a → b → b) → b → List a → b.

Proof.

refine

(fun (a b : Prop) ⇒

fun (f : a → b → b) (n : b) (l : List a) ⇒

l b n (fun (x : a) (y : b) ⇒ f x y)).

Defined.
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Appendix C

Non-positive Types in System-F

Definition Nat := ∀ (N : Prop), N → (N → N) → N.

Definition zero : Nat := fun (N : Prop) (z : N) (s : N → N) ⇒ z.

Definition succ : Nat → Nat := fun (n : Nat) ⇒

fun (N : Prop) (z : N) (s : N → N) ⇒ s (n N z s).

Definition List (A : Prop) := ∀ (X : Prop), X → (A → X → X) → X.

Definition nil := fun (A : Prop) (X : Prop) (n : X) (c : A → X → X) ⇒ n.

Definition cons := fun (A : Prop) (a : A) (l : List A) ⇒

fun (X : Prop) (n : X) (c : A → X → X) ⇒ c a (l X n c).

Implicit Arguments cons [A].

Definition LamMu := ∀ (X : Prop),

(Nat → X) →

(Nat → List X → X) →

((∀ (Y : Prop), ((X → Y) → Y)) → X) → X.

Definition var : Nat → LamMu :=

fun (n : Nat) ⇒

fun (X : Prop)

(v : Nat → X)

(f : Nat → List X → X)

(m : (∀ (Y : Prop), ((X → Y) → Y)) → X) ⇒

v n.

Definition func : Nat → List LamMu → LamMu :=
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fun (n : Nat) ⇒

fun (t : List LamMu) ⇒

fun (X : Prop)

(v : Nat → X)

(f : Nat → List X → X)

(m : (∀ (Y : Prop), ((X → Y) → Y)) → X) ⇒

f n (t (List X) (nil X) (fun (x : LamMu) (y : List X) ⇒ cons (x X v f m) y)).

Definition mu : (∀ (Y : Prop), (LamMu → Y) → Y) → LamMu.

Proof.

unfold LamMu.

refine

(fun (zi : (∀ (Y : Prop), (LamMu → Y) → Y)) ⇒

fun (X : Prop)

(v : Nat → X)

(f : Nat → List X → X)

(m : (∀ (Y : Prop), ((X → Y) → Y)) → X) ⇒

m (fun (Y : Prop) (g : X → Y) ⇒

g (zi X (fun e : LamMu ⇒ e X v f m)))).

Defined.
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