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1 Introduction

Concept-based video retrieval has many advantages over other content-based
approaches (Snoek and Worring 2009). In particular, it is more straightforward
to define ranking functions on concept-based representations than for most
other content-based representations (Naphade et al 2006). For example, the
definition of a ranking function for the query “Find me tigers” is intuitively
more straightforward based on the concept Animal in a (video-) segment1 than
based on the color distribution in an example image. As the current state-of-the
art in automatic concept detection is not mature enough for ranking functions
directly using the binary concept labels occurs/absent (Hauptmann et al 2007),
concept-based search engines use the confidence score of a detector that the
concept occurrs. However, the uncertainty introduced by the use of confidence
scores makes the definition of effective and robust ranking functions again more
difficult. This paper presents a general framework for the definition of concept-
based ranking functions for video retrieval that fulfill these requirements.

Research in concept-based retrieval currently focuses on the retrieval of
video shots, which are segments of roughly five seconds length. According to
Kennedy et al (2008) the main problem here is the definition of query-specific
ranking functions, which are often modeled as weighted sums of confidence
scores. But the estimation of weights based on semantic distance of the concept
to the query or on relevance feedback has proven difficult, which leads to poor
performance (Aly et al 2009). Another approach learns weights for a set of
query classes based on relevance judgments for training queries (Yan 2006).
However, the gathering of relevance judgments for training queries is expensive
and it is unclear how to define a suitable set of query classes. Additionally,
although de Vries et al (2004) find that users do not only search for shots
but also for longer segments, concept-based search engines do not support this
retrieval task. A likely reason is that a single confidence score per segment does
not sufficiently discriminate relevant from nonrelevant segments. However, it is
not straightforward to define a more discriminative document representation
based on confidence scores. Therefore it is an important challenge to come up
with a framework to define ranking functions for varying retrieval tasks that
are effective for arbitrary queries.

The performance of detectors changes significantly with the employed de-
tection technique and the considered collection (Yang and Hauptmann 2008).
If a ranking function strongly depends on a particular distribution of confi-
dence scores, its performance varies, which is clearly undesirable. For example,
the confidence scores of the concept Animal in relevant shots for the query
“Find me tigers” can be high in one collection and low in another collection.
Now, if a ranking function assumes that confidence scores for the concept An-
imal in relevant shots are high, its performance will be poor for the second
collection. Because current ranking functions are weighted sums of confidence

1 We use the terms document and video shot or a longer video segment interchangeably
as both refer to retrievable units of information.
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scores they rely on the weight estimation to adapt the weights according to
the score distribution of the considered collection. However, how could we es-
timate these weightd for arbitrary detectors and collections? Therefore it is
also an important challenge to define robust ranking functions over detectors
of varying performance.

In this paper, we propose the Uncertain Representation Ranking (URR)
framework which describes a general way to define ranking functions which
meet the following challenges:

– they are effective for arbitrary queries, and
– they are robust over detector techniques and collections.

The framework uses a basic ranking function defined on representations of
binary concept labels and addresses the uncertainty of the concept detectors
separately. In this paper, we adapt effective ranking functions from text re-
trieval. To address detector uncertainty, the framework considers multiple rep-
resentations for each document. Applying the basic ranking function to each
representation leads to multiple possible retrieval scores for each document.
The final score is a combination of the expected score, which represents a good
guess of the score of a known representation, and the scores’ standard devi-
ation, which represents the chance that the score is actually higher or lower.
Taking into account the expected score makes the performance robust against
changes of detectors and collections. This paper focuses on the definition of
concept-based ranking functions. For this purpose we use results of existing
work for the setting of the ranking functions’ parameters.

To demonstrate that the framework produces effective and robust rank-
ing functions, we show that this is the case for the shot retrieval task and
the segment retrieval task. Note that the ranking functions used for these
tasks originate from ideas which we proposed earlier. In Aly et al (2008) we
propose to rank shots by the probability of relevance given the confidence
scores, marginalizing over all possible concept occurrence. The ranking func-
tion obtained through marginalization is equal to the expected score used in
the URR framework. The expected score allows us to additionally model the
risk of choosing a certain score. Furthermore, in Aly et al (2010) we propose
a ranking function for segment retrieval, where the idea of ranking by the
expected score and the scores’ standard deviation is used for the first time
for a concept language model ranking function and a document representation
in terms of concept frequencies. The URR framework generalizes this idea to
arbitrary ranking functions and representations.

The remainder of this paper is structured as follows. First in Sect. 2 related
work on treating uncertainty in information retrieval is presented. In Sect. 3 we
describe the proposed URR framework. In Sect. 4 and Sect. 5 the framework
is applied to shot and segment retrieval respectively. Then Sect. 6 describes
the experiments which we undertook to evaluate the URR framework. Sect. 7
discusses the experimental results. Finally, Sect. 8 presents the conclusions.
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2 Related work

In this section we describe how related work approaches uncertainty, both in
concept-based video retrieval and in text retrieval. Note that there are signif-
icant bodies of research on the storage of uncertainties in databases, see for
example Benjelloun et al (2006), and on the exploitation of uncertain knowl-
edge representations for the inference of new knowledge, see for example Ding
and Peng (2004), which lie outside the scope of this paper.

2.1 Concept-based Video Ranking Functions

Most concept-based video ranking functions use confidence scores of detectors
built from support vector machines. To ensure comparability of confidence
scores among concepts, confidence scores are usually normalized. Platt (2000)
provides a method to transform a confidence score into a posterior proba-
bility of concept occurrence given the confidence score, which we refer to as
probabilistic detector output.

Figure 1 shows a classification of existing concept-based ranking functions
into principle ways of dealing with detector uncertainty, to which we refer to as
uncertainty classes. On the left the figure shows the confidence scores o for the
three concepts of a shot together with their ranks within the collection. The
confidence scores are then used to determine the posterior probability of each
possible concept representations. At the bottom the occurrence probabilities
for each concept are combined into the expected concept occurrence. In the
following we will describe well-known methods of each uncertainty class.

In uncertainty class UC1, ranking functions (indicated by score ) take confi-
dence scores as arguments. Most ranking functions are weighted sums or prod-
ucts of confidence scores, where the used weights carry no particular interpre-
tation (Snoek and Worring 2009). Yan (2006) proposes the Probabilistic Model
for combining diverse knowledge sources in multimedia. The proposed ranking
function is a discriminative logistic regression model, calculating the posterior
probability of relevance given the observation of the confidence scores. Here the
confidence score weights are the coefficients of the logistic regression model.
The ranking functions of uncertainty class UC1 mainly have the problem that
they require knowledge about the confidence score distributions in relevant
shots, which is difficult to infer. Additionally, if a concept detector changes,
the distribution of confidence scores changes, making existing knowledge ob-
solete.

In uncertainty class UC2, ranking functions are based on the (inverse)
rank of the confidence scores within the collection (McDonald and Smeaton
2005; Snoek et al 2007). As only the ranks of confidence scores are taken into
account, estimating weights for this uncertainty class only requires knowledge
over the distribution of confidence scores in relevant shots relative to other
shots. Otherwise UC2 suffers from the same drawbacks as UC1.
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Confidence scores ~o

o1 (r1) o2 (r2) o3 (r3)

Shot d 0.3 (2.) 0.4 (9.) 0.2 (15.)

score (~o) (UC1)

score (~r) (UC2)

Concept occurrences ~c

C1 C2 C3

P (1, 1, 0|~o) 1 1 0

>

P (1, 1, 1|~o) 1 1 1

> [...]

P (0, 0, 0|~o) 0 0 0

E[C1] E[C2] [E[C3]Expected Concept Occurrence

score (~c′) (UC3)

score (1, 1, 1) (UC4)

score (E[C1], E[C2], E[C3]) (UC5)

Fig. 1 Uncertainty classes (UC1-UC5) of video shot ranking functions score using three
concepts: confidence score-based (o) (UC1), on the rank of confidence scores (r) based (UC2),
based on the most likely concept representation (c′) (UC3), based on the probability that
all concepts occur (UC4), and based on the expected concept occurrences (UC5).

In uncertainty class UC3, ranking functions take a vector of the most prob-
able concept representation as arguments. To the best of our knowledge, no
method of this class was proposed in concept-based video retrieval so far, most
likely due to the weak performance of concept detectors. Nevertheless, we in-
clude this uncertainty class in our discussion because methods of this class
have been used in spoken document retrieval, where the most probable spo-
ken sentence is considered (Voorhees and Harman 2000), and once concept
detectors improve, ranking functions from this class might become viable.

In uncertainty class UC4, ranking functions use a particular concept rep-
resentation, not necessarily the most probable, together with its probabil-
ity. Zheng et al (2006) propose the point-wise mutual information weight
(PMIWS) ranking function. As we showed in Aly et al (2008), the PMIWS
can be seen to rank by the probability of relevance given the occurrence of
all selected concepts multiplied by the probability that these concepts occur
in the current shot. The main problem of instances of uncertainty class UC4
is that concepts which only occur sometimes in relevant shots cannot be con-
sidered. To see this, let us assume perfect detection, a concept that occurs in
50% of the relevant shots, and a ranking function that only rewards shots in
which this concept occurs. Here, relevant shots, in which the concept does not
occur, receive zero score.

In uncertainty class UC5, ranking functions take the expected components
of concept occurrences as parameters. Li et al (2007) propose an adaptation
of the language modeling framework (Hiemstra 2001) to concept-based shot
retrieval. We show in (Aly 2010, p. 32) that the ranking function by Li et al
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(2007) can also be interpreted as using the expected concept occurrence in the
language modeling framework where concepts (terms) either appear or not.
Instead of focusing on one representation, as done by UC3 and UC4, this un-
certainty class combines all possible representations into the expected values
of a representation, which is then used in a ranking function. The ranking
functions of uncertainty class UC5 are limited to arguments of real numbers
because they are defined on expecations, which are real numbers. But some
existing effective probabilistic ranking functions, for example the Binary Inde-
pendence Model (Robertson et al 1981), are defined on binary arguments, and
therefore cannot be used. Furthermore, the ranking functions in uncertainty
class UC5 result in a single score, which abstract from the uncertainty that is
involved by using this result.

The URR framework proposed in this paper can be seen as a general rank-
ing framework of a new uncertainty class (UC6) of ranking functions that are
defined on the distribution of all possible concept-based representations of a
document. The URR framework uses a basic ranking function to calculate
a score for each possible representation. The final ranking score value of a
document is then calculated by combining the expected score and the scores’
standard deviation according to the probability distribution over the possible
representations for this document. This procedure has the following advan-
tages. Compared to the uncertainty classes UC1 and UC2, the basic ranking
function of the URR framework does not require knowledge about the distri-
bution of confidence scores in relevant segments. In contrast to the uncertainty
classes UC3 and UC4, which both only use a single concept-based represen-
tation, the URR framework takes into account all possible representations,
which reduces the risk of missing the actual representation of a document.
Finally, compared to uncertainty class UC5, the basic ranking functions in the
URR framework are defined on concept-based representations, which allow us
to re-use existing, effective ranking functions from text retrieval. Additionally,
the scores’ standard deviation in the URR framework can be seen as a measure
of the riskiness of score, which we show can be used in ranking.

2.2 Uncertainty in Text Retrieval

We are not the first to address uncertainty in information retrieval, which has
been done before in text retrieval, for example, in probabilistic indexing and in
the recently proposed Mean-Variance Analysis framework for uncertain scores,
as well as in several other areas. We describe the former two approaches in the
following.

2.2.1 Probabilistic Indexing

In probabilistic indexing for text retrieval, the assignment of an index terms to
a document is only probabilistically known. Croft (1981) approaches this un-
certainty by ranking documents according to the expected score of the binary
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independence ranking function (Robertson et al 1981). However, Fuhr (1989)
shows that, although the binary independence ranking function is a rank pre-
serving simplification of the probability of relevance function, the expected
binary independence score is not rank preserving to the expected probability
of relevance score. Instead, Fuhr (1989) ranks by the probability of relevance
given the confidences of indexers as a ranking function, marginalizing over all
possible index term assignments. This marginalization is equivalent to ranking
by the expected probability of relevance, which we use as a ranking component
of our URR framework in Sect. 4.

Note that there is a difference in interpretation between the marginaliza-
tion and the expected score used in the URR framework, which we discuss in
the following. The marginalization approach considers for each document the
probability of relevance of any document with the same indexer confidences,
which are similar to confidence scores in concept-based video retrieval. On
the other hand, the URR framework uses the expected score of a particular
document. This allows us to consider the scores’ standard deviation, which
represents the risk or opportunities of ranking a document by its expected
score. Additionally, Fuhr assumes that the true index term assignments of a
document are always unknown, but for the URR framework concept occur-
rences are only uncertain because of the uncertainty of detectors. Indeed, the
URR framework could be extended to handle the case where the occurrences
of some concepts are known, which we propose for future work. Additionally
to the expected score, the URR framework considers a component to represent
the risk inherent to a retrieval model when ranking a document.

2.2.2 Mean-Variance Analysis

Wang (2009) proposes the Mean-Variance Analysis framework for managing
uncertainty in text retrieval, which is based on the Portfolio Selection The-
ory (Markowitz 1952) in finance. We believe that the processes in finance are
more intuitive, therefore we first describe the Portfolio Selection Theory and
describe its application to text retrieval afterwards.

The Portfolio Selection Theory finds efficient portfolios based on the un-
certain future win of companies in a portfolio. The win of a portfolio is:

Win =
N∑

j=1

pj dj .Win (1)

whereWin is the random variable of the total win of the portfolio, dj .Win>0 is
the random variable of company dj ’s win

2, and pj (with 0≤pj≤1 and
∑

j pj=1)
is the percentage of the available budget invested in company dj . The Portfolio
Selection Theory assumes that analysts can predict the following statistical
components for a company dj :

2 We use similar notation to the unusual notation dj .W in throughout this paper to pre-
vent an excessive amount of subscripts.
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Fig. 2 The win distributions of company d1 and company d2. The area marked as “Oppor-
tunity for d1” shows the reason why a risk-loving investor (b < 0), would buy companies of
d1 (E[d.Win] is the expected win and the variance of the win is implicitly specified by the
shape of the Gaussian).

1. The expected win, E[dj .Win] (“What win is to be expected from the com-
pany d?”).

2. The variance of the win, var[dj .Win] (“How widely do the possible wins
vary?”).

3. The co-variance between the win of company d and any other company dj ,
cov[dj .Win, di.Win] (“How does the win of company dj influence the win
of company di?”).

The above statistical components are then used to find an efficient portfolio,
a set of percentages (p1, ..., pN), which optimizes the following expression:

E[Win]− b var[Win] (2)

where b is the risk parameter which represents the risk-attitude of the ana-
lysts. If b > 0, analysts are risk-averse. For b = 0, analysts would only invest
in the company of the highest expected win, which Markowitz (1952) identi-
fied as unreasonable in finance as the whole budge would be invested in the
company with the highest expected win. If b < 0, analysts like to take risks,
which we informally call risk-loving. Figure 2 shows an example of the win
distributions of two companies d1 and d2 ignoring the co-variance between
their wins. Intuitively, risk-averse and risk-neutral analysts invest everything
into company d2 (p1=0, p2=1) because it has a higher expected win. However,
risk-loving analysts speculate on a win of company d1 in the area denoted by
“Opportunity for d1” and therefore will increase p1.

In the Mean-Variance Analysis framework, a document d is equivalent to a
company and the uncertain score d.S of document d is equivalent to the uncer-
tain win d.Win of the company d. For a ranking function s the Mean-Variance
Analysis assumes that the expected score of a document is E[d.S] = score(f ),
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where f is the known representation of document d. Wang (2009) transforms
the Portfolio Selection criterion from Eq. (2) into a document ranking problem
by fixing a percentage pi to rank i rather than to a document and requires
that weights monotonically decrease (pi > pi+1). Therefore, it is no longer
a question as to what percentage to invest, but how to rank documents. In
contrast to the Portfolio Selection Theory, where a risk-neutral attitude b = 0
leads to unwanted results, a risk-neutral attitude is an intuitive solution in the
Mean-Variance Analysis framework because the expected value is an unbiased
estimator of the actual score (Papoulis 1984). Therefore, the scores’ variance
only adds something on top of an already reasonable solution rather than
making the solution reasonable, which is the case in the Portfolio Selection
Theory. For the transformed Portfolio Selection Theory formula in Eq. (2) to
the document ranking problem with fixed percentages, Wang (2009) proposes
a greedy algorithm as a solution, which ranks a document d∗ at rank j which
has the highest mean-variance trade-off:

d∗ = argmax
d

(

E[d.S]

− b pj var[d.S]

− 2b

j−1
∑

k=1

pj pk cov[d.S, dk.S]
)

(3)

where d1, ..., dj−1 are the previously ranked documents. In an analogy to the
Portfolio Selection Theory, the Mean-Variance Analysis requires estimations
for the variance and co-variance of the ranking status value, which Wang
(2009); Wang and Zhu (2009) provide.

The URR framework uses a similar ranking algorithm to the one proposed
in Eq. (3), using the scores’ standard deviation instead of its variance. In
the Mean-Variance Analysis, the reason for the uncertainty of a document’s
score is unspecified. On the other hand, in the URR framework the scores’
standard deviation originates from the uncertain document representation.
Similar to the Mean-Variance Analysis, the URR framework could also take
into account correlations between document representations, to influence the
standard deviation of the score. For example, videos usually follow a story
and the occurrence of concepts in nearby shots are correlated (the fact that an
Animal occurs in a shot influences the probability of an Animal in a nearby
shot). Yang and Hauptmann (2006) are the first to explore the exploitation
of such correlations in videos. As until now only oracle models trained on
the test collection were able to achieve significant improvements, we leave the
consideration of co-variances, although promising, to future work.
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Fig. 3 The score distributions for document d1 and document d2 considering two concepts.
P (d.C = c|o) is the probability that the actual concept occurrences are c.

3 The Uncertain Representation Ranking Framework

This section describes the URR framework which ranks segments by consid-
ering uncertain concept-based representations in a similar way as the Mean-
Variance framework (Wang 2009)3.

3.1 Intuitive Example

Before we formally define the URR framework we introduce an intuitive exam-
ple using a particular document representation and ranking function. Let us
consider a collection of two documents and n=2 concepts. Furthermore, let us
assume that an effective ranking function based on known concept occurrences
for the current query would be the following:

score (c) =

n∑

i=1

wi ci (4)

where c is a binary vector of concept occurrences, score (c) is the ranking
function, ci is a concept occurrence state of concept i (ci=1 if it occurs), and
wi is the weight for concept i. For this example, let w1 = 20 and w2 = 40.
We denote the uncertain concept occurrences in document d by the random
variable d.C. We assume that concept detectors can predict the occurrence of

3 The URR framework was originally proposed in the PhD thesis of the first author (Aly
2010).
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a concept probabilistically. For example, given a confidence score od,i for doc-
ument d, the probabilistic output of a concept detector for concept i, would be
P (d.Ci|od,i). For each document, there are 2n possible combinations of n con-
cept occurring or being absent, which we jointly denote by a vector of random
variables d.C. The probabilities of the occurrence of each of the n concepts
given the confidence scores o can then be combined to the posterior probability
of each combination concept stats c (a binary vector), P (d.C=c|o). According
to the ranking function in Eq. (4), each state combination c results in a score.
We denote the uncertain score of each document d as d.S = score (d.C), a
function of random variables, which is again a random variable4. From the
above, we can calculate the expected score of a document d, E[d.S|o], and it’s
standard deviation

√

var[d.S|o]. Figure 3 visualizes this scenario (the standard
deviation is represented by the spread of the distribution).

A search engine in a risk-neutral will rank document d2 above document
d1 because it has a higher expected score. However, similar to the analysts
in the previous section, the search engine in a risk-loving setting might prefer
document d1 over document d2 because of the higher probability that the doc-
ument has the highest score of 60. In the following section we define the URR
framework, which generalizes this intuitive case to arbitrary score functions
defined on arbitrary concept representations.

3.2 Definitions

Because the URR ranking framework is not specific to a particular type of
feature, let F = (F1, ..., Fn) be the considered representation of documents for
the current query consisting of n features (or representation). Formally, each
feature Fi is a random variable, a function of documents to feature values. For
example, the ranking functions in this paper consider concept occurrences,
denoted by Cs, and concept frequencies, denoted by CF s, as features. For the
query “Find me tigers”, a search engine might consider the frequencies of the
concept Animal and the concept Jungle CF = (CF1, CF2) as features where
CF1(d) and CF2(d) yield the frequency of the concept Animal and the concept
Jungle in document d respectively.

Furthermore, let score : rng(F) → IR be a ranking function which maps
known feature values to scores, where rng(·) denotes the range of a function.
For example, the simple ranking function in Eq. (4), score (f ∈ rng(F)) =
∑

iwi fi where wi is the weight feature value fi, is such a score function. Note
that we adopt the common notation of random variables and denote random
variables and functions in the same way as their range, therefore leaving out
rng(·) in the following (Papoulis 1984).

Because the feature values of documents are uncertain, we introduce the
random variable d.F for the feature values of document d. Furthermore, let
d.S=score (d.F) be the random variable for the score of document d which

4 Note that the distribution of d.C is discrete, although the score might be real-valued.
The reason is that the arguments to score , d.C, are discrete.
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results from the application of the ranking function score on d’s uncertain fea-
ture values d.F. For example, if a segment contains m shots and the considered
representation consists of n concept frequencies, the random variable of the
uncertain concept frequencies CFd ranges over (m + 1)n possible frequency
combinations, and the random variable d.S ranges over the scores obtained
from the application of score on each combination.

It is important to note the difference between the random variables F and
the ranking function score on the one hand, and its document-specific counter
parts d.F and d.S on the other hand. For example, score (F(d)) is the actual
score of document d based on the known features F(d). On the other hand,
d.F and d.S are random variables for the possible feature values and their
corresponding scores of document d.

We denote the posterior probability of a document d having representation
values f ∈ d.F given the confidence scores o as P (d.F = f |o), which we use to
calculate the expected score and its standard deviation.

3.3 Ranking Framework

Using the above definitions we now define statistical components of the URR
framework, the expected score and the scores’ variance. The most important
component of the URR framework is the expected score of a document d.
That is, if we consider the representation of d to be random, what score do
we expect on average. As the score d.S is a function of its representation d.F,
the expected score can be calculated by using the distribution of d.F given the
confidence scores of the document (Papoulis 1984):

E[d.S|o] =
∑

f∈d.F

score (f ) P (d.F = f |o) (5)

where E[d.S|o] is the expected score given the confidence scores o. Further-
more, the scores’ variance is (Papoulis 1984):

var[d.S|o] = E[d.S2|o]− E[d.S|o]2 (6)

with
E[d.S2|o] =

∑

f∈d.F

score (f )2 P (d.F = f |o) (7)

where E[d.S2|o] is the expected squared score. Similar to the greedy algorithm
in Eq. (3) of the Mean-Variance Analysis framework, the URR framework
finally ranks documents by the expected score plus a weighted expression of
the scores’ standard deviation:

RSV (d) = E[d.S|o]− b
√

var[d.S|o] (8)

where RSV (d) is the final ranking status value by which document d is ranked,
E[d.S|o] is the expected score of document d in Eq. (5), b represents the risk-
attitude of the search engine, and

√

var[d.S|o] is the scores’ standard deviation
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in Eq. (6). Equation 8 is the general ranking framework proposed in this paper.
In the following Sect. 4 and Sect. 5 we adapt the URR framework for two
particular basic ranking functions for particular representations.

4 Shot Retrieval

In this section we describe an adaptation of the URR framework to shot re-
trieval in which the expected score component is equivalent to the Probabilistic
Framework of Unobservable Binary (PRFUBE), which was originally proposed
by Aly et al (2008). Additional to the expected score, we define the scores’
standard deviation. For consistency reasons we use the name PRFUBE for our
method for shot retrieval, despite the additional consideration of the scores’
standard deviation.

4.1 Representation and Ranking Function

The PRFUBE considers binary concept-based representations, where each con-
cept either occurs or is absent in shot. By using the analogy of concept occur-
rences in shots and index term assignments to documents, PRFUBE re-uses
the probability of relevance given index term assignments (Robertson et al
1981) as a ranking function:

score (c) = P (R|C=c) =
P (C=c|R) P (R)

P (C=c)
(9)

where P (R|C=c) is the probability of relevance given that the concept occur-
rences c of the concept-based representationC, P (C=c|R) is the probability of
the concept occurrences c given relevance, P (C=c) is the prior of the concept
occurrences c, and P (R) is the relevance prior. Because of the uncertainty
of concept occurrences c, we use the ranking function in Eq. (9) as a basic
ranking function in the URR framework.

4.2 Framework Integration

The integration of the ranking function in Eq. (9) into the URR framework
requires the definition of a random variable for the uncertain representation
and its expected score. Let d.C be the uncertain binary concept-based rep-
resentation of document d, and let d.S = score (d.C) be the uncertain score
of document d define in Eq. (9). We now define the expected score and the
expected squared score which we used in the URR framework in Eq. (5) and
in Eq. (7). The expected score of document d is:

E[d.S|o] =
∑

c∈d.C

score (c) P (d.C = c|o) (10)
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where c is one of |d.C| = 2n possible representations of n considered concepts,
and o are the confidence scores for document d. Note that the calculation
in Eq. (10) has a run-time complexity of O(2n), which makes it inapplicable
to realistic numbers of concepts. We make the following independence assump-
tions to make the computation efficient:

P (C|R) =

n∏

i

P (Ci|R) (11)

P (C) =
n∏

i

P (Ci) (12)

P (d.C|o) =
n∏

i

P (d.Ci|oi) (13)

where Eq. (11) assumes conditional independence of all random variables Ci

given relevance, which is a common assumption in text retrieval. Follow-
ing Fuhr (1989), Eq. (12) assumes that concept variables are independent
in the whole collection. Finally, Eq. (13) assumes that the occurrence of con-
cepts is independent from the occurrence of other concepts (P (C1, C2|o1, o2) =
P (C1|o1, o2) (P (C2|o1, o2)) and from confidence scores of other concepts
(P (C1|o1, o2) = P (C1|o1)). Using the above independence assumptions, the
expected score in Eq. (10) can be expressed as follows:

E[d.S|o] = P (R)
∑

c∈d.C

n∏

i

P (Ci = ci|R)

P (Ci = ci)
P (d.Ci = ci|oi) (14)

where we can ignore the query-specific constant P (R). Additionally, because c
is a vector of binary values, the generalized distributive law can be applied (Aji
and McEliece 2000). This results in the expected score, which has a linear run-
time complexity in the number of concepts:

E[d.S|o] =
n∏

i=1

[ P (Ci|R)

P (Ci)
P (d.Ci|oi)

︸ ︷︷ ︸

Ci occurs

+
1− P (Ci|R)

1− P (Ci)
(1 − P (d.Ci|oi))

︸ ︷︷ ︸

Ci is absent

]

(15)

where P (Ci|R) is the probability of concept Ci occurring in relevant shots,
P (Ci) is the prior of concept Ci, and oi is the confidence score for concept
Ci. Here, the probability P (C|R) is a weight which has to be defined for each
query, and the prior P (C), which can be estimated from the data, see Sect. 6.
Furthermore, for the calculation of the scores’ standard deviation in Eq. (6),
we also require the expected squared score:

E[d.S2|o] =
∑

c∈d.C

score (c)2P (d.C = c|o) (16)
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Fig. 4 A concept-based Segment Representation and its analogy to a Spoken Document.
Note that, compared to the main text, we use here the shorter notation sj for shot d.sj .

The calculation in Eq. (16) also has a run-time complexity of O(2n). Using
similar assumptions and derivations as in Eq. (14) and in Eq. (15), we can
derive a more efficient function for the expected squared score:

E[d.S2|o] =
n∏

i=1

[[
P (Ci|R)

P (Ci)

]2

P (d.Ci|oi) +
[
1− P (Ci|R)

1− P (Ci)

]2

(1− P (d.Ci|oi))
]

(17)

where the parameters are the same as in Eq. (15). The expected score in Eq. (15)
and the standard deviation (calculated using the expected squared score in Eq. (17))
can then be used to calculate the URR retrieval score in Eq. (8).

5 Segment Retrieval

In this section we describe the Uncertain Concept Language Model (UCLM)
ranking function for segment retrieval, which was originally presented in Aly
et al (2010). While the original publication already contained the main ideas
of the URR framework, it was specific to the representation of document rep-
resentations of concept frequencies and concept language model as a ranking
function. In this paper, we describe the UCLM as an instance of the URR
framework.

5.1 Representation and Ranking Function

We model a long segment, for example a news item, as a sequence of shots.
Figure 4 shows the analogy between spoken text consisting of three spoken
words, and a segment consisting of the occurrence of three shots. We denote
the jth shot of a segment d as d.sj , and the occurrence of a concept Ci in
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d.sj as Ci(d.sj) ∈ {0, 1}. If we know the concept occurrences in each shot
of a segment, we can represent a segment by its concept frequencies, in an
analogy to the term frequency of a spoken text, as a sum of occurrences:
CFi(d) =

∑dl

j Ci(d.sj), where dl is the segment length in the number of shots.
For example, the segment in Figure 4 would be represented by the concept
frequency vector CF(d)=(5, 3, 1) meaning that there are five concept occur-
rences of the first concept, three of the second concept, and one of the third
concept.

Based on the representation of concept frequencies, we define a ranking
function, which is derived from the language modeling framework (Hiemstra
2001). The basic idea behind our approach is to consider the occurrence and
absence of a concept as two concept words of the language of this concept,
and instead of a single stream of terms, we have multiple concept streams. We
then use the language model ranking function with Dirichlet smoothing (Zhai
and Lafferty 2004) as a ranking function:

score (cf ) =
n∏

i

cfi + µ P (Ci|D)

dl + µ
(18)

where cf is a vector of n concept frequencies, Ci refers to the ith selected
concept, cfi is the concept frequency of concept Ci, P (Ci|D) is the prior of
encountering concept Ci, dl is the segment length (in numbers of shots), and
µ is the Dirichlet parameter. Note that in this setting, the segment length dl
is always known, since we assume a perfect segmentation of videos.

5.2 Framework Integration

Because the concept occurrences in each shot are uncertain, the concept fre-
quencies of the surrounding segment are also uncertain. Therefore, we intro-
duce for each segment d a random variable for its representation consisting of
concept frequencies d.CF = (d.CF1, ..., d.CFn), where d.CFi is the uncertain
concept frequency of concept Ci. As the representation of segment d is un-
certain, so is the concept language score in Eq. (18), for which we introduce
the random variable d.S = score (d.CF). The expected score and the expected
squared score are:

E[d.S|o] =
∑

cf∈d.CF

score (cf ) P (d.CF = cf |o) (19)

E[d.S2|o] =
∑

cf∈d.CF

score (cf )2 P (d.CF = cf |o) (20)

where cf is one of |d.CF| = (dl+1)n possible concept frequency representations
of n concepts in a segment with dl shots, P (d.CF = cf |o) is the probability
that segment d has the concept frequencies cf . For example, the probability
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of a concept frequency one for a concept Ci in segment d with segment length
dl = 3 is:

P (d.CFi = 1|o) = P (d.Ci = (1, 0, 0)|o) (21)

+ P (d.Ci = (0, 1, 0)|o)
+ P (d.Ci = (0, 0, 1)|o)

where d.C is a short form for (d.s1.C, d.s2.C, d.s3.C). Because of the inde-
pendence assumptions in Eq. (13), the probability of a sequence of concept
occurrences c in a segment in Eq. (21) for concept C is:

P (d.C = c|o) =
dl∏

j=1

P (d.sj .C = cj |o(d.sj))

where o(d.sj) is the confidence score of concept C in shot d.sj . Finally, the
probability that a segment has the concept frequency representation cf can
be calculated as follows:

P (d.CF = cf |o) =
n∏

i

P (d.CFi = cfi|o) (22)

where P (d.CFi=cfi|o) is calculated according to Eq. (21). In general, Eq. (22)
can be used to calculate the expected score in Eq. (19) and expected squared
score in Eq. (20) which to rank segments according to the URR ranking func-
tion in Eq. (8). However, the high number of possible representations prohibits
a direct calculation of the above formulae. To reduce the computational costs,
we use the Monte Carlo Sampling method (Liu 2002) to approximate the
expectations in Eq. (19) and in Eq. (20): we first generate NS random sam-
ples of concept frequency representations, cf1, ..., cfNS , from the distribution
P (d.CF|o). We generate a sample of a concept frequency of concept Ci for
segment d by using the concept occurrence probabilities of each shot:

cfk
i =

dl∑

j=1

[

(rnd() < P (d.sj .Ci|o)) ? 1 : 0
]

where k is the index of the sample, Ci is the considered concept, and rnd() gen-
erates a uniform random number in the interval [0 : 1]. The notation (X)?Y : Z
has the following meaning: if the generated random number is lower than the
probability of concept occurrence in shot j (X), we increase the concept fre-
quency of the sample by 1 (Y ), otherwise the frequency is left unchanged (Z).
We repeat this procedure for all considered concepts in the representation for
each of the NS samples. Note that the samples can be generated at indexing
time to reduce computational costs at query time. The Monte Carlo estimate
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Collection Shots Domain Queries Detectors
sets

Number of
concepts

Training
collection
for ADCS

tv05t 45,765 News 24 MM101 101 tv05d
tv06t 79,484 News 24 Vireo 374 tv05d
tv07t 18,142 G.TV 24 Vireo 374 tv05d
tv08t 35,766 G.TV 48 Vireo 374 tv05d
tv08t 35,766 G.TV 48 MM09 64 tv07d
tv09t 61,384 G.TV 24 MM09 64 tv07d

Table 1 Statistics of the collections used in the experiments. The following abbreviations
are used: tvXXt: TRECVid test collection of year 20XX, News: Broadcast News, G.TV:
General Dutch Television. The detector sets are described in the following publications:
MM101 (Snoek et al 2006), Vireo (Jiang et al 2010), MM09 (Snoek et al 2008).

for the expected score in Eq. (19) and the expected squared score in Eq. (20)
is then:

E[d.S|o] ≃ 1

NS

NS∑

k=1

score (cfk)

E[d.S2|o] ≃ 1

NS

NS∑

k=1

score (cfk)2

where both approximations have a linear run-time complexity in the number
of samples NS. Because the standard error of the Monte Carlo estimate is in
the order of 1/

√
NS, a good estimate is already achieved with relatively few

samples. Note that there are more advanced sampling methods which further
reduce the required samples, for example importance sampling (Liu 2002). But
here we focus on the qualitative results of sampling and leave more advanced
sampling methods for future work.

6 Experiments

In this section we present the experiments which we undertook to evaluate
the performance of the URR framework. We investigated two retrieval tasks
in connection with the annual TRECVid evaluation workshop (Smeaton et al
2006): the automatic shot retrieval task, which is a standard task in TRECVid,
and the segment retrieval task, which we proposed earlier to accommodate the
user’s need to search for longer segments (Aly et al 2010). Note that because
we focus on purely concept-based search the performance figures presented in
this section are not directly comparable with figures reported elsewhere which
also use features such as text and visual similarity.

6.1 Experiment Setup

In the following we describe the general experimental setup. Table 1 shows
statistics of the collections used. We used the output of state-of-the-art concept
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detectors which were released by participants of the TRECVid workshops. For
the segment retrieval task, we used a segmentation of broadcast news videos
into news items from the tv05t and tv06t collection, which was provided by Hsu
et al (2006). The segmentation resulted in 2, 451 news items and 5, 380 news
items respectively.

Some ranking functions use concept priors in their formula, which we esti-
mated from the data:

P (C) =

∑

d P (d.C|o)
N

where P (C) is the concept prior of concept C, P (d.C|o) is the posterior prob-
ability of concept C in shot d, and N is the number of shots in the collection.

Before we execute a query we first needed to select concepts and esti-
mate the corresponding ranking function parameters. We used the Annotation-
Driven Concept Selection (ADCS) which showed good performance on several
collections (Aly et al 2009). The ADCS method is based on a collection with
known concept occurrences and textual shot descriptions. The probability of
a concept occurrence given relevance was estimated by executing the textual
query on the shot descriptions and using the known concept occurrences for the
estimation of the probability (Aly et al 2009). The shot descriptions consisted
of the automatic speech recognition output together with the corresponding
Wikipedia articles of the occurring concepts. We used the general-purpose re-
trieval engine PF/Tijah (Hiemstra et al 2006) to rank the shot descriptions
in the training collection. The parameter m of the ADCS method states the
numbers of top-ranked shot descriptions we assume are relevant. For each con-
cept, the method estimates the probability of the concept’s occurrence given
relevance, P (C|R). To select concepts, we used these estimates together with
the concept priors to calculate the Mutual Information between a concept
and relevance which was identified by Huurnink et al (2008) as a measure of
usefulness. From the resulting ranked list of concepts, we selected the first n
concepts.

The performance of current concept detectors is still limited, and the result-
ing search performance is low compared to, for example, performance figures
from text retrieval. Therefore we also used our simulation-based approach (Aly
et al 2012) to investigate the search performance of the considered ranking
functions with increased detector performance. This is in line with work re-
ported in Toharia et al (2009) which artificially varied the quality of concept
detector performance in order to study the impact of improving or degrading
this, on retrieval.

In the simulation the confidence scores of the positive and the negative
class of known concept occurrences are modeled as Gaussian distributions.
Changes in detector performance are simulated by changing the Gaussians’
parameters. For each concept in each shot we generated confidence scores ran-
domly from the Gaussian corresponding to the concept occurrence status. On
the resulting collection of confidence scores, we executed the considered rank-
ing functions, resulting in the average precision of each method with these
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Rank Func. Description Definition

CombMNZ Multiply non-zero
∏

i P (Ci|oi) with P (Ci|oi) > 0

CombSUM Unweighted sum of scores
∑

i P (Ci|oi)

PMIWS Pointwise Mutual Information
Weighting Scheme

∑

i log
(

P (Ci|R)
P (Ci)

)

P (Ci|oi)

Borda Rank Based
∑

i rank(P (Ci|oi))

BIM Binary Independence Model
∑

i c
′
i log

(

p(1−q)
q(1−p)

)

ELM Expected Concept Occurrence
Language Model (λ = 0.1)

∏

i

[

λP (Ci|oi) + (1 − λ)P (Ci|D)
]

Table 2 Considered ranking functions (Rank Func.) for shot retrieval (c′ binary detector
output (P (C|o) > 0.5 → c′ = 1), p = P (C|R), q = P (C|R̄) ∼ P (C)).

confidence scores. We repeated this procedure 25 times, yielding an estima-
tion of the search performance we would expect for retrieval using detectors
with these parameters. To keep our discussion focused, we only investigate the
search performance when changing the confidence scores’ mean of the positive
class – therefore making the detector on average more confident about the con-
cept occurrences. For a more detailed description of this simulation approach,
we refer the interested reader to Aly et al (2012).

6.2 Shot Retrieval

In this section we describe the evaluation of our shot retrieval model PR-
FUBE described in Sect. 4. Table 2 shows the ranking functions to which we
compared the PRFUBE. Note that it would have been interesting to com-
pare PRFUBE with the Probabilistic Model for combining diverse Knowledge
Sources in Multimedia by Yan (2006). However, we were not able to include
this ranking function because it required confidence scores on a development
collection which are only available for the text collection tv05t. In the follow-
ing, we present the results from first investigating the influence of the risk
parameter b on the search results, the results of using the user study for con-
cept selection and the results from using automatic concept selection via the
ADCS method.

Risk Parameter Study Figure 5 shows the influence of the risk parameter b on
the search performance of PRFUBE in the tv05t collection. For a risk-averse
attitude, b > 0, the search performance quickly decreases to virtually zero and
for a risk-loving or risk-neutral attitude, b ≤ 0, the search performance stays
approximately the same. These results were similar in the other collections
investigated. Therefore, in the following we used a risk-neutral b = 0 attitude
for PRFUBE as it provided the best performance.

Performance Comparison Table 3 summarizes the retrieval performance of
the seven considered ranking functions over five collections with automatically
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Fig. 5 Risk parameter b for the ranking function RSV (d) = E[d.S|o]− b
√

var[d.S|o].

Collection tv05t tv06t tv07t tv08t tv08t tv09t Avg.
Rank Func. MM101 Vireo Vireo Vireo MM09 MM09 Rank

CombMNZ 0.064 0.033† 0.028 0.024† 0.042† 0.045† 4.7
10/8 700/30 100/20 10/15 100/30 100/10

PMIWS 0.054 0.039 0.021 0.041 0.058 0.067 2.7
100/8 200/30 200/15 50/4 50/4 50/2

Borda 0.050† 0.012 † 0.020† 0.030 0.045† 0.058 5.5
10/15 100/10 50/20 10/15 10/2 10/8

BIM 0.044† 0.024 † 0.026 0.037 0.050 0.063 4.8
10/8 100/2 100/8 100/4 50/2 50/2

ELM 0.071 0.040 0.031 0.040 0.050 0.064 2.3
10/8 600/30 50/10 100/4 10/2 50/2

PRFUBE 0.069 0.043 0.039 0.041 0.056 0.068 1.5
150/10 600/30 100/45 100/4 100/4 50/2

Table 3 Mean average precision of the ranking functions described in Table 2. For each
ranking function in each collection, three values are shown: first, the search performance in
MAP, second, the number of document considered by the ADCS method (m), and finally the
number of considered concepts (n). The † symbol indicates that the method is significantly
worse than the best method for this collection, according to a two-sided, paired Wilcoxon
signed rank test with a significance level of 0.05.

selected concepts using the ADCS method. For each ranking function, the
table reports three numbers. First, the optimal performance, in mean average
precision (MAP), the method achieved, second, the cut-off valuem, and finally,
the number of concepts n used to achieve this performance. On the right, the
average rank of the method over the six runs is reported. The PRFUBE is, on
average, the best ranking function. In three out of six runs, PRFUBE was the
best performing ranking function. In the remaining runs, its performance was
the second best and not significantly worse than the best run. When taking the
queries of all collections together, the MAP of the PRFUBE was significantly
better than the one of the ELM method and the PMIWS method.
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6.3 Segment Retrieval

We now describe the experiments we undertook to evaluate the performance
of the UCLM ranking function from Sect. 5 for segment retrieval. Because of
the novelty of the segment retrieval task there is no standard set of queries.
Therefore we decided on using the official queries for the tv05t and tv06t
collections, replacing the common prefix “Find shots of . . . ” with “Find news
items about . . . ”. Furthermore, we assumed that a news item is relevant to a
given query if it contains at least one relevant shot, which we determined from
the relevance judgments for the respective shot retrieval task. We propose that
for most queries this is realistic since the user could be searching for the news
item as a whole, rather than for shots within the news item.5

To the best of our knowledge, no comparable ranking functions exist for the
segment retrieval task. Therefore, we compared the UCLM ranking function
against extensions of the shot ranking functions from Table 2 and a ranking
function which is similar to the one from spoken document retrieval. To use the
shot ranking functions for segment retrieval, we used the average probability
of concept occurrence in the shots of a segment as the normalized confidence
score of the segment6:

P (d.C|od) =
∑

j P (d.sj .C|od)
dl

where P (d.C|od) is the normalized average occurrence probability of concept
C. Furthermore, using similar analogies of concept occurrences and term ut-
terances as in Sect. 5, we investigated two variants of the language modeling
framework. First, we used for every concept its most likely binary state (as-
suming a concept occurs if P (d.C|od) > 0.5) and determined the concept
frequencies through counting. Segments were then ranked using the language
modeling framework with Dirichlet smoothing (Zhai and Lafferty 2004):

Best-1(cf ) =
n∏

i

cfi + µ P (Ci|D)

dl + µ
(23)

where cfi is the concept frequency of concept Ci. We refer to this ranking
function as the Best-1 function. Second, we transferred the ranking function
from Chia et al (2008), which was originally proposed for spoken document
retrieval, to a concept-based ranking function, referred to as the expected
concept frequency language model ECFLM. The ECFLM method is based on
representations of expected concept frequencies, where the expected concept
frequency of a single concept is defined as:

E[d.CFi|o] =
dl∑

j=1

P (d.sj .Ci|oi(d.sj)) (24)

5 A similar assumption is made during the creation of relevance judgments for the text
retrieval workshop TREC, where a document is relevant if a part of it is relevant.

6 We also investigated the use of the minimum or maximum confidence score but did not
find any improvements
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Fig. 6 Risk parameter b for the ranking function RSV (d) = E[d.S|o]− b
√

var[d.S|o].

tv05t tv06t
Ranking function Concepts n MAP P10 Concepts n MAP P10
CombMNZ 10 0.105 0.045 8 0.034 0.040
PMIWS 6 0.102 0.080 2 0.050 0.065
Borda 1 0.090 0.000 2 0.052 0.061
Best-1 5 0.094 0.245 6 0.073 0.083
ECFLM 10 0.192 0.287 32 0.101 0.143
UCLM 10 0.214∗ 0.291 18 0.135∗ 0.151

Table 4 Results of comparing the proposed UCLM framework against four other methods
described in related work. The ∗ symbol indicates that the improvement of the UCLM
framework compared to this ranking function were significant according to a two-sided,
paired Wilcoxon signed rank test with a significance level of 0.05 against all other methods.

where E[d.CFi|o] is the expected concept frequency and P (d.sj .Ci|oi(d.sj))
is the occurrence probability of concept Ci in shot d.sj . Similar to the Best-
1 ranking function, the ECFLM ranks segments using the language model
ranking function in Eq. (23) replacing the concept frequency cfi with the
expected concept frequency in Eq. (24).

To rule out random effects when generating samples for the UCLMmethod,
see Sect. 5, we repeated each run ten times and reported the average.

Risk parameter study Figure 6 shows a parameter study of the UCLM rank-
ing function on the tv05t collection. The horizontal line represents the search
performance of the ECFLM ranking function which is independent of the con-
sidered risk. With a risk parameter larger than b > −1, the search performance
of the UCLM ranking function deteriorated. For values of b ≥ −1 the method
improved over the ECFLM method, and reached its maximum at b=− 2. We
performed similar parameters studies for the Dirichlet parameter µ and the
required number of samples NS, see 5. In both cases, the UCLM ranking
function was robust against parameter changes. We used NS=200 samples,
a Dirichlet parameter of µ=60, and a risk factor b= − 2 for the following
experiments.
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Fig. 7 Results from simulated concept detectors changing the mean of the positive class
µ1 using realistically set parameters.

Performance Comparison Table 4 shows the comparison results of the de-
scribed ranking function with the proposed UCLM ranking function. The
first column for each collection indicates the number of concepts under which
each ranking function performed the best. We see that the ranking functions
CombMNZ, CombSUM, PMIWS, Borda, and Best-1 perform worse than the
two ranking functions ECFLM and UCLM. The search performance of the
UCLM ranking function is 0.214 MAP for the tv05t and 0.135 for the tv06t col-
lection respectively. The improvement of the UCLM ranking function against
all other ranking functions was significant according to a two-sided, paired
Wilcoxon signed rank test with a significance level of 0.05.

6.4 Simulated Concept Detectors

In this section we describe the results we obtained by simulating the outputs of
concept detectors. The simulation procedure required a collection with known
concept occurrences, for which we used the tv05d collection. To make the con-
cept selection realistic, we divided the collection into a test and development
set (mm.dev and mm.test respectively) according to Snoek et al (2006)7. Fig-
ure 7 shows the results of improved detector performance on improved search
performance for the mm.dev collection with realistically set weights estimated
by ADCS8. The x-axis shows the increase in detector performance in terms of
MAP which resulted from the increase of the mean confidence scores of the
shots in which the concept occurs. The y-axis shows the resulting expected
search performance in terms of MAP. Figure 7 (a) shows that the PRFUBE
method consistently performs better than the other ranking functions at all

7 Note that we used the development collection from Snoek et al (2006) as a test collection
since it contained more shots; making the simulation results more realistic.

8 For shot retrieval, we left out the CombMNZ ranking function since it has similar results
to the PMIWS method. For segment retrieval, we left out the PMIWS since it performed
similar to CombMNZ.
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Fig. 8 The relationship between expected score and standard deviation of the PRFUBE
method and the UCLM method on the tv05t collection.

levels of concept detector performance. With high detector performance, the
search performance of the PRUFBE ranking function and the BIM ranking
function converges, as both rankings are similar under perfect detection.

Figure 7 (b) shows the simulation results for the segment retrieval task.
At low detector performance, the UCLM ranking function performs practically
identical to the ECFLM ranking function. With a higher detector performance,
the UCLM ranking function wins in performance. The Best-1 ranking function
increases performance only with much higher detector performance.

6.5 Influence of the Scores’ Standard Deviation

For the PRFUBE, the consideration of the scores’ standard deviation did not
improve performance, see Figure 5, while it did for the UCLM method, see
Figure 6. Therefore, we investigated whether the reason for this lies in the rela-
tionship between the expected scores and the scores’ standard deviation of the
respective function. Note that for a risk-loving attitude (b > 0), if the standard
deviation

√

var[d.S] increases monotonically with the expected score E[d.S],
it does not affect the ranking compared to only using the expected score. Fig-
ure 8 plots the expected score E[d.S] (x-axis) against the standard deviation
√

var[d.S] (y-axis) for the 200 highest ranked documents of the given queries
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in the tv05t collection. For PRFUBE, the standard deviation is roughly mono-
tonically increasing with the expected score, while for UCLM there is much
more variability. The results for other queries and collections were similar.

7 Discussion

We now discuss the experimental results obtained in the previous section.

Effectiveness Both derivations of the URR framework, PRFUBE and UCLM,
showed significant improvement over most other retrieval methods from other
uncertainty classes, as shown in Table 3 and Table 4. Furthermore, according
to the simulations presented in Figure 7, both methods will also continue
having a strong performance compared to other methods as concept detector
performance improves.

Robustness Given the relative low overall performance numbers, strong per-
formance in some collections could be caused by particular “lucky” detections
in relevant shots. Therefore, a robust retrieval method is not only effective
(has good performance in many collections) but also stable (performs similar
accross collections). Table 3 shows that the PRFUBE is robust in six different
collections. Similarly, the UCLM method performed stably for two collections.
Furthermore, the detector simulation experiments in Figure 7 suggest that the
performance improvements are robust against changes of detectors.

Risk-attitude In both instances of the URR framework, a risk-neutral or risk-
loving attitude helped performance. For the PRFUBE, the risk-loving attitude
did not increase performance. We propose that the almost monotonic relation-
ship between expected score and standard deviation in Figure 8 is the reason
why the standard deviation does not improve the ranking for PRFUBE. We
expect that the practically monotonic relationship of expected score and stan-
dard deviation of the PRFUBE originates from the independence assumptions
made in Eq. (11)-Eq. (13), which are known not to match the data (Cooper
1995), and propose further investigations for future work. For the UCLM,
there was much higher variability in the standard deviation compared to the
expected scores, giving the standard deviation the possibility to improve the
ranking. Here, a risk-loving attitude improved performance significantly over
the strongest baseline.

8 Conclusions

In summary, we proposed the Uncertain Representation Ranking (URR) frame-
work that meets the challenge to define effective and robust ranking functions
in concept-based video retrieval under detector uncertainty. While the frame-
work is independent of the retrieval task, we adapted it to the tasks of retriev-
ing shots and (long) segments. For shot retrieval, our framework improved over
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five baselines on six collections, and for segment retrieval, it improved signif-
icantly over four baselines on two collections. Furthermore, when simulating
improved concept detectors these improvements prevailed. We now discuss our
conclusions in more detail.

The URR framework considers basic ranking functions adapted from text
retrieval based on representations of known concept occurrences. The uncer-
tainty of detectors is handled separately: the framework takes into account
multiple concept-based representations per document. It uses the confidence
scores of detectors to assign each representation a probability of being the cor-
rect representation. The application of the considered basic ranking function
to the multiple representations results in multiple scores for each document.
Inspired by the Mean-Variance Analysis framework by Wang (2009), the URR
framework ranks documents by the expected score plus a weighted expres-
sion of the scores’ standard deviation, which represents the chance that scores
are actually higher than the expected score. We demonstrated the ability of
the general framework to produce effective and robust ranking functions by
applying it to two retrieval tasks: shot retrieval and segment retrieval.

For shot retrieval, the framework used the probability of relevance given
concept occurrences as a ranking function, which was derived from the proba-
bility of relevance ranking function originally proposed in text retrieval (Robert-
son et al 1981). In terms of mean average precision, this ranking function
improved over six baselines, representing other approaches to detector un-
certainty, on three out of six collections. For the collections where it showed
poorer performance than others, those were not significant. When considering
all queries of the six collections together, the improvements over all baselines
were significant. For segment retrieval, we proposed that ranking functions
should include the within-segment importance when retrieving long segments.
We used the concept frequency to represent the within-segment importance.
We calculated the expected score and scores’ standard deviation by Monte
Carlo Sampling to reduce prohibitively large number of possible representa-
tions, using 200 samples. Based on the representation of concept frequencies we
used the concept language model as a ranking function, which was originally
proposed in Aly et al (2010) and derived from language models in text re-
trieval, see Hiemstra (2001). We showed through simulation experiments that
the search performance improves with improved detectors. Based on these
results, we conclude that the application of the URR framework results in
effective ranking functions.

For ranking functions to be robust, the URR framework explicitly modeled
the risk-neutral choice and the risk of choosing this score by the expected
score and the scores’ standard deviation respectively. We found that a risk-
averse attitude resulted in poor performance for both retrieval tasks. For shot
retrieval, the consideration of the scores’ standard deviation did not improve
over the condition in which only the expected score was used.9 We found that

9 Note that the expected score is equivalent to ranking a marginalization approach which
we originally proposed in Aly et al (2008).
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the scores’ standard deviation often increased monotonically with the expected
score, which prevents the standard deviation to influence the ranking. We
attributed this behavior to the common independence assumptions made in
IR, which are also made in the shot ranking function but often do not match
the data (Cooper 1995). For the segment retrieval task, the use of the scores’
standard deviation significantly improved the search performance compared to
the condition of exclusively using the expected score. For both retrieval tasks,
the ranking functions derived from the URR framework performed between
the best two systems over all considered collections and detectors. Based on
these findings we conclude that the ranking functions derived from the URR
framework also perform robust.

The URR framework makes few assumptions about the uncertain repre-
sentation, which was done for the specific shot retrieval task and the segment
retrieval task. As future work we therefore aim to apply the URR framework to
other uncertain representations, for example the uncertain variants of spoken
text generated by probabilistic automatic speech recognition, or the uncertain
references to known entities in text retrieval. Finally, the URR framework
does not consider the overall performance of concept detectors which recently
received research interest (Yang and Hauptmann 2008). Therefore, we pro-
pose to extend the URR framework by measures which incorporate the overall
detector performance.
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