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The process notion is central in computing. Business processes and workflow processes
are essential elements of software systems implementations. Processes are connected to

notions of interaction and composition. The Web Services Framework as a development

and deployment platform for services is based on the assembly of interacting processes
as the compositional paradigm. Service-based software development on and for the Web

platform embracing the philosophy of discovering and using third-party services makes

a shared knowledge representation framework necessary. We develop a semantical and
ontological framework for service process composition. We propose a framework for the

compositional definition of Web services based on the π-calculus to define protocol-like

restrictions on service interactions and based on description logic and ontologies to guide
the discovery and modelling of services and processes.

Keywords: Web services, service orchestration and choreography, service composition,

service processes, composition ontology.

1. Introduction

The process notion is widely used in computing – in both a technical as well as

application-oriented form. Processes as interacting agents has been a technical prin-

ciple of organising and modelling software systems. Business processes and workflow

processes are examples of the process concept in application contexts.

Recently, the Web Services Framework (WSF) has emerged as a platform for

the development and deployment of service-oriented software architectures 1,3. The

assembly of interacting services to processes (implementing business or workflow

processes) is the principle of architectural composition. Service-based software de-

velopment on and for the WSF – the development perspective rather than deploy-

ment – receives currently increased attention. Adequate languages and techniques

are needed to support a software developer the development activities. Service com-

position to processes is a central activity in this context 4,5,6,7,8. The current dis-

cussion about orchestration and choreography as two forms of process composition

highlights this development 9. A comprehensive formal framework to support com-
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positional service development is, however, still lacking.

A central requirement for the development of service-oriented architectures and

processes in these architectures on the Web is shared knowledge representation due

to the distributed and shared nature of the Web. Embracing the Semantic Web

paradigm of providing and sharing semantical information is the key to the solution

of the development problem. Ontologies can provide the technical infrastructure for

this endeavour.

Our objective here is to develop a semantical and ontological framework for pro-

cesses for the Web services platform. We propose a framework for the compositional

definition of Web services based on the π-calculus to define protocol-like restrictions

on service interactions and based on description logic and ontologies to guide the

discovery of services and processes.

• Our aim is to give semantics to a process composition framework – se-

mantics are central for both the internal (formalisation and definition) and

external perspective (knowledge sharing),

• We will develop an ontological framework for service process description,

modelling, and discovery that supports reusability and maintainability of

software, i.e. to allow services to be composed and service processes to be

reused.

The objective is an ontological framework that can be used as a description format

and that can support essential development activities such as composition. While

individual choreography and orchestration languages are defined in sufficient detail,

integrated approaches based on choreography and orchestration are so far informal,

using examples to motivate and illustrate differences. Ontologies for semantic Web

service development 22,23 have focussed so far on the description and matching of

individual services.

Our approach is based on a technical model, that captures essential semantical

requirements and formally defines the platform (Section 3). Then, we address the

ontological representation (Section 4). A fully formalised framework cannot be pre-

sented within the given scope here; we however discuss the central concepts behind

such a formalisation. Here we integrate and apply to Web service composition a

number of results that we have presented elsewhere 14,27,28. Since semantic Web

services have been widely addressed, we also show how our framework can be in-

tegrated with semantic Web services (Section 5). A broader range of applications

and tool implementations based on the technical and ontological framework and a

comprehensive discussion follows (Section 6). We start, however, with an outline of

service process development in the next section.

2. Development of Composite Service Processes

The term process modelling is associated with the dynamic behaviour of organisa-

tions, businesses, or systems. The basic idea is that these systems can be thought
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Fig. 1. The Web as a Service-oriented Development and Deployment Platform.

of as operating or behaving as a number of interrelated processes. Process models

are constructed that can form the basis of software systems to support the pro-

cesses. Important in our context is active modelling, i.e. considering the execution

of process actions in a software infrastructure such as the Web Services Framework

(WSF) platform.

A service is made up of a coherent set of operations provided at a certain loca-

tion. The service provider makes an abstract service interface description available

that can be used by potential service users to locate and invoke the service. Ser-

vices are often used ’as is’ in single request-response interactions 10, but more and

more the composition of services to processes is important – the recent discussion

about orchestration and choreography of Web services supports this observation 9.

Existing services can be used to form business or workflow processes. The principle

of architectural composition here is process assembly.

The WSF provides a platform to invoke services on a once-off basis. Real value,

however, will be added if services can be composed 9. Orchestration and choreog-

raphy are two forms of service composition and collaboration.

• Orchestration refers to a composed business process that may use both

internal and external Web services to fulfil its task. The business process

is controlled by one of the agents in the system. The process is described

at the message level, i.e. in terms of message exchanges, focusing on the

execution order.

• Choreography addresses the interactions that implement the collaboration

between services. Multiple agents are considered. Either each agent de-

scribes its own part in the interaction or a global perspective is taken fo-

cusing on the connections.

The discovery and invocation infrastructure – a registry or marketplace where



potential clients can search for suitable services and an invocation protocol – with

the services and their clients form a service-oriented architecture. Protocols and

languages for description and composition are central elements of a service-oriented

architecture. Fig. 1 illustrates this infrastructure for the WSF with a repository that

can implement the registry or marketplace, a service interaction infrastructure and

ontologies are central knowledge bases that integrate the various sofware engineering

activities for service development and deployment. Software engineering for service-

oriented architectures is a two-step process – assuming that service repositories are

available:

• Discovery is based on abstract computation descriptions (and other soft-

ware properties), formalised based on ontologies – see upper half of Fig.

1.

• Assembly and usage is about composition of matching service processes and

their interaction through invocation – see lower half of Fig. 1.

An essential part of service-orientation is the possibility to make a service available

to other users. This requires adequate semantical, ontology-based description.

A sample application – an online shopping system – shall accompany our ser-

vice process framework. In Fig. 2, five services with their interfaces and inter-

action processes are described. It is the latter processes that we are interested

in. Each of these services implements a process – the orchestration perspective.

Login;((Catalog+Quote)*;Purchase)*;Logout is a process expression describ-

ing an interaction process of an online shopping user starting with a login, then

repeatedly buying products (which consists of an internal loop of product retrieval

– catalog browsing or quotation enquiries – and then purchasing), before logging

out.

The interactions resulting from the service invocations (e.g. Catalog! as out-

put) and service provision (e.g. Login? as input) are the result of service chore-

ography, see Fig. 3. For instance, ShoppingProcess is a client of CatalogServer,

PurchaseServer and LoginServer; PurchaseServer is a client of Stocks.

As part of a development, the shopping process needs to be implemented.

The ShoppingProcess is linked to three other services, i.e. CatalogServer,

PurchaseServer, and LoginServer, through three different connectors. For in-

stance, the subprocess (Catalog?+Quote?)* with the corresponding operation sig-

natures forms a requirements specification that has to be matched by an existing

provided service – here the CatalogServer satisfies the requirements. The term

(Catalog+Quote)* is only part of the full shopping behaviour and relates only to

the first connector. The purchase-part is dealt with by the second connector.

3. Services and Processes – an Operational Framework

Description and composition are central design activities. In this section, we develop

an abstract language and a technical model that form an operational framework for



Service ShoppingProcess

operation import Login [no:int,user:string] : bool

import Catalog [ID:int] : product

import Quote [prod:product] : price

import Purchase [prod:product] : void

import Logout [no:int] : void

process Login!;((Catalog!+Quote!)*;Purchase!)*;Logout!

Service CatalogServer

operation export Catalog [ID:int] : product

export Quote [prod:product] : price

process (Catalog?+Quote?)*

Service PurchaseServer

operation export Purchase [prod:product] : void

import Available [ID:int] : bool

process (Purchase?;Available!)*

Service Stocks

operation export Available [ID:int] : bool

process (Available?)*

Service LoginServer

operation export Login [no:int,user:string] : bool

export Logout [no:int] : void

process (Login?+Logout?)*

Fig. 2. Bank Account Services and Processes – Orchestration Aspects.

both activities. We formalise orchestration and choreography within this semantical

framework. This framework serves to capture requirements and forms an underlying

layer for the ontological framework.

3.1. Orchestration and choreography description

Various orchestration and choreography languages have been proposed by various

organisations. We follow the discussion in 9 to extract the central language concepts.

We chose the π-calculus 13 as the basis for our framework. Classical service com-

position models that focus on simple input/output-oriented functional behaviour

are not adequate here. While choreography is often about fixed connections, in

order to support evolution and change management, a flexible connection manage-

ment for services is required. The π-calculus is a calculus for mobile, distributed

systems. Mobility in the π-calculus is achieved through the possibility of passing

channel names along connections, which can be used by the recipients as references



Connector Catalog

connection ShoppingProcess SP, CatalogServer CS

messages Catalog [out SP, in CS] int -> prod

Quote [out SP, in CS] product -> price

Connector Purchase

connection ShoppingProcess SP, PurchaseServer PS

messages Purchase [out SP, in PS] prod -> void

Connector Login

connection ShoppingProcess SP, LoginServer LS

messages Login [out SP, in LS] int,string -> bool

Logout [out SP, in LS] int -> void

Connector Stocks

connection PurchaseServer PS, Stocks ST

messages Available [out PS, in ST] int -> bool

Fig. 3. Bank Account Services and Processes – Choreography Aspects.

to create connections dynamically. The π-calculus is a formal calculus focusing on

(bi-)simulation as a notion of process equivalence based on observable behaviour.

It has two benefits over classical process algebras such as CSP or CCS. We use

the similarity between mobility and evolution here – both are about changes in the

relationship to other agents or services – to address flexible connection manage-

ment. We also use this approach to allow service providers and clients to agree on

interaction channels dynamically.

3.1.1. Orchestration

We can derive the following core requirements for an orchestration notation from

languages such as WS-BPEL 9:

• basic elements: message-based actions in two forms – invocations for exter-

nal services and receive/reply actions if the service is available to others,

• process language: sequence, choice, iteration, and concurrency are the ser-

vice process combinators,

• abstraction and export interface: a process can be provided as a Web service,

• state and data: variables and parameters for actions are needed.

A number of other, more advanced aspects can also be identified. These include

transactions and exception handling. We, however, focus on the more central ones

here. The focus of orchestration is visualised in Fig. 5. The business process itself



Process Expression:

P ::= A action

P1;P2 sequential composition

P1|P2 parallel composition

P1 + P2 non-deterministic choice

P∗ iteration

Abstraction:

Q[s1, . . . , sn] = P where s1, . . . , sn services in P

Actions:

s?[x] receive action

s![x] reply action

let y = s![x] in P invoke action

assuming service operation s and data item x

Fig. 4. Orchestration Language.

and the Web services that implement the process are separated. This keeps the

process logic apart from its implementation. A process description can serve different

purposes:

• to define a business process in terms of actions and control flow – and also

in terms of the concrete services that are used,

• to describe the external, observable interaction pattern that a service can

engage in a composed system (if the process is made available as a service).

A process is executed by an orchestration engine which invokes the respective service

operations for each process action.

We capture the foundations of orchestration in form of a process language and

model focussing on aspects of service compositions. A process description is about

control flow and the determination of the execution order. We start with abstract

actions to concentrate on control flow first – data aspects and also interactions

will be added later. Service processes are inductively formed based on basic

process names, named process expressions, and combinators, see upper part of Fig.

4. A named process expression (an abstraction) is defined by a service process

expression. The process definition is recursive. Based on basic processes (which are

Web services), composite service processes can be defined, i.e. expressions such as

P = s1; s2;Q can be used. We also use the notation P
s1;s2−→ Q to emphasise the

transitional character of processes. Note, that we often drop the parameter list [..]

of actions, if we are only interested in the process control flow, i.e. use s! instead of

s![x].
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Example 1. We can specify an abstract business process for an online shopping

system:

OnlineShopping = Login; ((Catalog + Quote)*; Purchase)*; Logout

This orchestration example ignores the import/export classification of process

elements necessary for choreography as well as data aspects.

We can add import/export directions and data by refining the notion of actions,

see lower part of Fig. 4. Receive and reply actions are needed to provide functionality

in form of a service. Invocation is needed to use other services. The invocation

provides a scope for the returned result y of the interaction.

3.1.2. Choreography

Similar to our orchestration discussion, we summarise the main requirements for a

choreography description notation based on languages such as WSCI 9 and WS-CDL
2:

• basic activities: request and response actions for local activities, invoke to

call operations of external services,

• structured activities: loop, sequence, choice, and concurrency,

• infrastructure: channels (connections) between ports, which represent ser-

vices and their operations.

The focus of choreography is observable interaction behaviour, not execution; see its

visualisation in Fig. 5. The orchestration model is a process model with its focus on

control flow and execution order. The choreography model is an interaction model.

It is about the interaction of processes, i.e. synchronisation and exchange of data.



Actions:

s?[x] receive action

s![x] send action

assuming service operation s and data item x.

Interaction:

s![x]; s?[y] invoke-return: for each operation s in P a write-read sequence

where y is the returned result from an external service

s?[x]; s![x] receive-reply: for each operation s in P a read-write sequence

where f is some internal service functionality

assuming a process expression P .

Fig. 6. Choreography Language.

Essential in modelling service process interaction is to add data and message flow

between service processes.

Web services are connected through a network. The network endpoints that

represent services are called ports – service names act as port names. Services (and

their ports) can be receivers and senders of data, i.e. read from or write to com-

munication channels set up between the ports, see Fig. 6 upper part. Note, that

in contrast to orchestration, we have abstracted here from the difference between

provider actions (receive/reply) and client actions (invoke). An interaction is the

activation of a remote service. Two forms shall be provided, see Fig. 6 lower part.

These interactions are the basic building blocks of the process life cycle.

Example 2. The interaction Quote![prod]; Quote?[price] is an invoke-return

example that asks a service Quote for a quote for product prod and receives the

price in the following action using the same channel.

All input service names in a process expression need to be bound to a concrete

service that can execute the service functionality. Finding suitable services that

match each individual service requirements is part of the process model and its

matching support, and managing the connections is part of the interaction model

and its connection support.

So far, the concurrent composition of processes does not allow interactions. A

transition rule (called reaction rule in the π-calculus) can capture interaction and

describe the data flow in these interactions – see Fig. 8. A shared channel can

be created that forms a connection between two service processes. Usually, the

port names act as channel names (the π-calculus requires matching port names to

establish a connection; we will loosen this constraint later on). Choreography is

often about fixed connections 9, but in order to enable dynamic establishment and

changes in choreographies, we use the π-calculus approach to mobility.



3.1.3. Interpretation and semantics

Processes are composed of individual services and their provided operations. Each

of these is a state transition, i.e. transforms a state of an underlying system into

another. The process expressions shall therefore be interpreted in Kripke transition

systems 11, a form of labelled transition systems.

A Kripke transition system (KTS) is a semantic structure {S,L, T, I} con-

sisting of a set of states S, a set of action labels L, a transition relation T on S,

and an interpretation I. Service processes P are interpreted in KTS as transition

relations P I ∈ T on S × L× S:

• sequential composition executes one process after the other,

• the choice operator chooses one process non-deterministically,

• the iteration repeats the process a non-deterministically chosen (finite)

number of times,

• parallel composition executes both processes.

Addressing the semantics here is important as it will allow us later to formally

integrate this technical framework with the ontological framework.

3.2. Composition support

Descriptions are needed for providers to publish their services in accessible repos-

itories and for potential clients to capture service requirements. Service processes,

whose descriptions match, can be composed. We provide a simple development and

deployment model for services in form of a life cycle model, before addressing tech-

niques needed for individual activities such as matching and composition in that

life cycle.

3.2.1. Life cycle and activities

Description and matching are design activities. Essential is, however, the support of

the full process life cycle to integrate deployment aspects as well 12,28. Each service

s in our interaction model is actually a family of ports sC , sI , sR that address the

needs of the different life cycle activities. Port sC is a contract port, representing

an interface that captures abstract properties. sI and sR are connector ports for

interaction – sI handles service invocation and input and sR handles the service

reply. We express the service life cycle in an annotated process notation based

on the three port types

Req sC ![sI ]; ( Inv sI ![a, sR]; Res sR?[y] )∗

for the client with annotations for requesting, invoking, and result. Dual to the

client view, there is a provider view

Pro sC?[sI ]; ( Exe sI?[a, sR]; Rep sR![f(a)] )∗



Client:

C[m1, . . . ,ml]
def
=

Req m1
C ![m1

I ]; (Inv m1
I ![a

1,m1
R];Res m1

R?[y1])∗
| . . . |
Req ml

C ![ml
I ]; (Inv ml

I ![a
l,ml

R];Res ml
R?[yl])∗

Provider:

P [n1, . . . , nk]
def
=

( Pro n1C?[n1I ]; (Exe n1I?[y1, n1R];Rep n1R![f(y1)])∗
+ . . . +

Pro nkC?[nkI ]; (Exe nkI?[yk, nkR];Rep nkR![f(yk)]) ∗ )∗

Fig. 7. Composition and Interaction Protocol.

with annotations for providing, executing, and replying. In the client view,

Req sC ![sI ] is an annotated output action of service s. A process or service can

request Req a service using contract port sC . Connector port references sI and

sR are subsequently sent for further interactions. If matching between a client port

and a provider port is successful, then the client and the provider process can be

composed, i.e. a client can interact with the provided service repeatedly. The client

would invoke Inv the service at port sI and receive a result Res at port sR. Here,

the π-calculus mobility approach is exploited – channel names are sent along the

connections, which allows clients and providers to automatically and, if necessary,

dynamically decide upon interaction channels for service execution.

Activities are captured in a standard life cycle form, which represents a compo-

sition and interaction protocol, see Fig. 7, that formalises the development and de-

ployment scenario given in Fig. 1. This protocol integrates development metamodel

elements such as matching and composition with concrete deployment process inter-

actions. Clients C are parameterised by their required services. All service requests

need to be satisfied – expressed by a parallel composition of individual ports – be-

fore any interaction can happen. Service providers P need to be replicated in order

to deal with several clients at the same time. Providers do not need to engage in

interactions with all their ports – modelled by using the choice operator instead

of the parallel composition for client services. Clients C and servers S can then be

composed in parallel to form a system.

A service process is often both service client and provider (e.g. PurchaseServer

in our sample application), which would require an extension of the protocol. Re-

quirements Req mi
C ![mi

I ] (i = 1, .., l) have to be satisfied and connectors have to

be established, before any service Pro njC?[njI ] (j = 1, .., k) can be provided.



3.2.2. Matching

Matching is central in composition. An existing provided service that is reused and

integrated, for instance into a business process, must match the client requirements

in order to allow the business process to fulfil its task. To support matching of

required and provided processes is our main goal.

• Import processes describe how a process expects to use other services.

• Export processes describe how provided services have to be used.

These two process description forms are elements of an orchestrated business pro-

cess. Orchestration elements are more relevant to matching than choreography as-

pects such as interaction, which is more deployment-oriented.

The specification of service processes describes the ordering of observable activ-

ities of a process. We use a notion of simulation to define process matching. The

requested process is the import process pattern that the client expects the provider

to support through the export process pattern.

A provider process P simulates a requested client process C if

there exists a binary relation R over the set of processes such that

if whenever CRP and C
m−→ C ′ then there exists P ′ such that

P
n−→P ′ and C ′RP ′. We say that P matches C in this case.

This definition originates from the simulation definition of the π-calculus 13. In order

to determine simulations, i.e. to decide matching, we need the notion of a transition

graph. A transition graph G = (N,E) for a composite process P and a KTS

(S,L, T, I) for P is a graph that represents all possible executions of P with N ⊆ S
subset of states and E ⊆ T subset of relations. A process simulates another if we can

construct a homomorphism between the transition graphs of the process expressions.

A transition graph can be constructed inductively over the syntactical structure of

a composite process expression. This means that the relation can be computed. In
14, we have presented a constructive form of determining the simulation via the

calculation of transition graphs.

The provider needs to be able to simulate the request, i.e. needs to meet the

requirements of the client. However, this is not a bisimulation – irrelevant elements

in the provider process are not permitted. Dynamic binding of concrete services to

the process names is possible. Our matching definition is about potential interaction,

and not only fixed connections as assumed in most choreography languages.

Example 3. The provider provides a service process

Login;(Catalog+Quote)*;Purchase

and the requestor expects support of the process

(CatalogBrowse+QuoteProd)*;ProdPurch



If the pairs of service operations Catalog/CatalogBrowse, Quote/QuoteProd, and

Purchase/ProdPurch match based on their individual service descriptions (e.g. sig-

nature equality), then the provider matches (i.e. simulates) the requested process.

3.2.3. Connection and interaction

Composition consists of two activities: matching and connection. Successful match-

ing can result in a connection between service ports. From the perspective of a

business process, concrete services are connected to the abstract business process

actions. So far, we have been looking at matching of abstract process descriptions.

We now focus on the computational side of compositions. The connection of match-

ing services shall now be formalised using an operational execution semantics.

In the composition process we can distinguish a contract phase where both pro-

cess instances try to form a contract based on matching abstract descriptions. The

connection phase establishes a connector channel for interaction between the ser-

vices. We capture contract and connector establishment in form of two transition

rules. This formalises the connection of provider and client in the WSF – a virtual

link between URIs that is used by for instance the SOAP protocol.

For a parallel composition of a client mC ![mI ];C and a provider nC?[nI ];P ,

both processes commit themselves to a communication along the channel between

ports mC and nC , if their specifications match. We define a composition C_P

as {c/mI}C|{c/nI}P where c is a private channel between the two processes, i.e. it

is a parallel composition where a private channel, the connector, replaces the port

names for the interaction. The contract rule, see Fig. 8, formalises the process of

matching and commitment. The arrows→ denote state transitions of the individual

processes, either through observable actions x![y] and x?[y] or through internal, non-

observable interactions τ . The contract rule differs from the π-calculus reaction

rule which requires channel names to be the same 13. We only require equality of

signatures. Type systems for the π-calculus usually constrain data that is sent; we

constrain interaction between processes.

Example 4. The client requires a service (annotation Req) through port QuoteC
and the server provides a service (annotation Pro) through port QuoteProdC

Clt
def
= Req QuoteC![QuoteI];Clt

′

Pro
def
= Pro QuoteProdC?[QuoteProdI];Pro

′

which can result in a commitment of contract ports.

A connector is created if a client requesting mI invokes a service nI at the server

side, described by the connector rule, see Fig. 8. Parameter data a and a reply

channel mR are sent to the provider. Parameter a replaces x in P .

Example 5. The composition of Pro’ and Clt’ creates a connector that allows



Contract Rule:

Req mC ![mI ];C
mC ![mI ]−→ C Pro nC?[nI ];P

nC?[nI ]−→ P

Req mC ![mI ];C+M1|Pro nC?[nI ];P+M2
τ−→ C_P

〈 sign(nC)=sign(mC)

Connector Rule:

Inv mI ![a,mR];C
mI ![a,mR]−→ C Exe nI?[x, nR];P

nI?[x,nR]−→ P

Inv mI ![a,mR];C +M1|Exe nI?[x, nR];P +M2
τ−→C_{a/x}P

〈 sign(nI)=sign(mI)

where sign is a function that represents the interface signature of individual oper-

ations (input- and output parameters) and M1 and M2 are arbitrary processes.

Fig. 8. Contract and Connector Rule.

the client to use a provided service, e.g. QuoteProd.

Clt′
def
= Inv QuoteI![pid].Clt

′′

Pro′
def
= Exe QuoteProdI?[x].Pro

′′

The requestor can invoke (Inv) a service through the interaction port QuoteI , which

will trigger the execution (Exe) of QuoteProdI with parameter pid by the server.

4. Services and Processes – an Ontological Framework

Service-based software development on the Web is ideally supported through ontol-

ogy technology to enable the shared representation of knowledge, here service and

service process descriptions, and reasoning about this service knowledge, see Fig. 1.

We illustrate what ontology technology can do for service process composition and

how description, discovery, and composition of services processes can be represented

in and supported by a description logic that underlies a Web ontology language.

4.1. A knowledge space for service processes

Before developing an ontological framework for service processes, we explore the

process notion from a wider knowledge representation point of view. We define a

knowledge space for service-based processes by identifying its main facets. Ontologies

are knowledge representation frameworks. In our context, two types of knowledge

are important: domain-specific knowledge about the context of the process deploy-

ment (which we neglect) and software-specific knowledge about technical aspects of

services and processes (which we focus on).

In general, knowledge representation 15 is concerned with the description of en-

tities in order to define and classify these. Entities can be distinguished into objects

(static entities) and processes (dynamic entities). Processes are often described in

three aspects or tiers:



Knowledge Aspect Knowledge Type Function

Discovery intention domain taxonomy,

(terminology) thesaurus

Composition effect service/process conceptual model,

(behaviour) and activities logical theory

Execution form service/process conceptual model

(implementation)

Fig. 9. Development Activities and Knowledge Space Facets.

• Form – process and implementation – the ’how’ of process description,

• Effect – abstract behaviour and results – the ’what’ of process description,

• Intention – goal and purpose – the ’why’ of process description.

We have related the aspects form, effect, and intention to software characteristics

such as processes and abstract behaviour. Services are software entities that have

process character or can be assembled to processes. We can use this three-tiered

approach for their description.

We can distinguish four ontology functions 16 that characterise how knowledge

is used to support the process modelling activities:

• Taxonomy – terminology and classification to support structuring and

search. Basic taxonomies can support for instance service signatures.

• Thesaurus – terms and their relationships to support a shared, controlled

vocabulary. Dealing with equality and equivalence is an advanced thesaurus

functionality.

• Conceptual model – a formal model of concepts and their relationships of

the application domain and the software technology context. A conceptual

model for service processes is the aim here.

• Logical theory – logic-supported inference and proof applied to behavioural

properties. Matching is the main activity here, supported by a logical the-

ory.

Fig. 9 summarises activities for the development of service-based software systems

and knowledge space aspects. It relates the activities discovery, composition, and

execution on services (with the corresponding ontologies) to the three knowledge

space facets.

The technical framework (see Section 3) goes beyond what we need for the on-

tological framework in order to support the core development activities for service-

based software systems. Ontologies, which fill the knowledge space, are needed to



support discovery through description and composition through matching of pro-

cesses, i.e. port orientation and other interaction and choreography aspects are less

relevant. The ontological framework therefore abstracts the underlying operational

framework, which defines the development and deployment infrastructure.

We develop the ontological framework in terms of a description logic 17. Descrip-

tion logic as an underlying logic of the Semantic Web is particularly interesting for

the software development context due to a correspondence between description logic

and dynamic logic (a modal logic of programs) 18. This correspondence, based on a

similarity between quantified constructors (expressing quantified relations between

concepts) and modal constructors (expressing safety and liveness properties of pro-

grams), can add process-specific reasoning support to our framework. Dynamic

logic program expressions correspond to the process expressions we introduce into

description logic – effectively realising a simple dynamic logic in a description logic.

This allows us to incorporate modal reasoning about programs and processes into

a description logic framework.

4.2. A basic process ontology

Ontologies are formal frameworks that provide various functions through knowledge

description and reasoning techniques. The starting point in defining an ontology

is to decide what the basic ontology elements represent. Here, the ontology shall

formalise process-based, i.e. state-transition-based software systems. Three elements

define the ontology language: concepts, roles, and constructors.

• Concepts are classes of objects with the same properties. Individuals

are named objects. Concepts represent software system properties in this

context. Systems are dynamic. Descriptions of properties are inherently

based on underlying notions of state and state change.

• Roles in general are relations between concepts. Here, they shall represent

two different kinds of relations. Transitional roles represent service oper-

ations in form of accessibility relations on states, i.e. they represent services

resulting in state changes. Descriptional roles represent properties of a

state such as invariant descriptions like service name and description or

pre- and postconditions (if they are part of the description format).

• Constructors allow more complex concepts to be constructed in form of

concept descriptions. Classical constructors include conjunction u and

negation ¬. Hybrid constructors are based on a concept and a role. The

constructor ∀R.C is interpreted based on either an accessibility relation R

to a new state C for transitional roles, or based on a property R satisfying

a constraint C for descriptional roles.

Our service process ontology is presented in Fig. 10. A state is an abstract concept

(represented by circles) that is described in terms of elements of auxiliary domains

through descriptional roles such as mutable and invariant state properties (formal
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Fig. 10. Sample Service Process Ontology.

conditions, textual descriptions, etc.). The two essential state concepts, presented

at the centre of the ontology visualisation, are pre and post, which denote abstract

pre- and post-states for service process transitions (not to be confused with pre- and

postconditions). For example, ∀outSign.int specifies a post-state by associating an

output signature int. Roles that connect the state and description concepts are

represented through rectangles.

We interpret concepts and roles in Kripke transition systems, as we did with

the technical framework. This is the key to a formal integration of the process view

we looked at earlier on and the ontological view we are looking at now. Kripke

transition systems are used to interpret modal logics; they also suffice to interpret

description logics. Concepts are interpreted as sets of states. Transitional roles are

interpreted as accessibility relations. Descriptional roles are interpreted as relations

involving other concept domains.

4.3. Orchestration and choreography

4.3.1. Orchestration

We have introduced the representation of basic services in a description logic-based

ontology in Section 4.2. An ontology that captures service processes and their com-

position, however, requires an extension of classical description logics. So far, roles

– representing service operations – are atomic. Role constructors, see Fig. 11,

allow us to integrate process description and composition into an ontology frame-

work. Note, that usually the constructors R ◦S, R+, R∩S, and R∪S are used, see
17. This new language is a first extension of ALC, a standard ontology language.

So far, this extended language realises a conceptual model for the representation of

service processes.



Basic Concepts:

C ::= A atomic concept

C1 u C2 conjunction

C1 t C2 disjunction

¬C negation

Concept Descriptions:

C ::= ∀R.C value restriction

∃R.C existential quantification

Role Constructors:

R ::= A action

R1;R2 sequential composition –

we also use R1 ◦R2 for functional composition

R1|R2 parallel composition

R1 +R2 non-deterministic choice

R∗ iteration

Names and Parameters:

nN name n with nIN = {(nI , nI)} for the interpretation nI of n

R ◦ nN parameterised role with transitional role R and name nN

Fig. 11. Ontology Language.

Example 6. A description logic expression such as

∀ (Catalog+Quote)*;Purchase.postState

that describes a composite process is now permitted.

Axioms and inference rules allow us to capture activity-related properties in the

logic, for instance in order to reason about matching. The axioms

∀R.∀S.C ⇔ ∀R ;S.C

∀R+ S.C ⇔ ∀R.C t ∀S.C
describe the conversion between logical operators and role expression combinators,

acting somewhat like a thesaurus for service process expressions.

We integrate data and process parameters into the logic in our second language

extension step. We introduce data in form of names, see Fig. 11. We follow an ap-

proach here that we developed originally for component composition 14 and adapted

to the Web service context in 27. Names stand for individual data elements. Names

are denoted by a role, interpreted by an identity relation. A parameterised role

is a transitional role applied to a name. We often drop the N -postfix when it is

clear from the context that a name is referred to.



Service PurchaseServer

operation

prePurchase ≡ ∀Purchase ◦ prodN .postPurchase
u ∀inSign.product

postPurchase ≡ ∀outSign.void

preAvailable ≡ ∀Available ◦ IDN .postAvailable
u ∀inSign.int

postAvailable ≡ ∀outSign.bool

process

pre ≡ ∀!(Purchase + Available).post

invariants

invPurchase ≡ ∀opName.{"purchase"}
u ∀opDescr.{"executes purchase of product"}
u ∀Purchase ◦ prodN .invPurchase

invAvailable ≡ . . .

Fig. 12. Ontological Specification of the PurchaseServer.

Example 7. Given a transitional role Login and a descriptional role outSign

∀ Login ◦[idN,pwdN].∀outSign. bool

means that by executing Login ◦[idN,pwdN] a state can be reached that is de-

scribed by a result value with signature bool . The term Login ◦[idN,pwdN] is a

composite role expression in which the identifiers idN and pwdN are constant roles

(names).

With the ontology language, Fig. 11, now being complete, we can look at a more

complete example.

Example 8. In Fig. 12, we have specified the PurchaseServer from Fig. 2 in an

ontological notation.

The process ontology we have developed here is closely related to the process-

based orchestration language – compare Figs. 4 and 11. We have already discussed

the semantical integration through Kripke transition systems earlier on. We demon-

strate how other constructs such as matching can also be represented in the logic

in the remainder of this section.



4.3.2. Choreography

Earlier on, we distinguished the orientation of ports, i.e. we had different input and

output actions, s?[x] and s![x], respectively. These are important for the interactions

with actual providers of services. Since matching of processes is only concerned with

control flow patterns in the choreography view, we ignore this distinction here, i.e.

the composite role s ◦ [x] (or s ◦ x) abstracts both s?[x] and s![x]. Interaction does

not need to be modelled further in an ontological form.

4.4. Composition support

4.4.1. Matching

The central inference technique in description logics is subsumption. Subsumption

of concepts C1 v C2 is the subset-relationship CI1 ⊆ CI2 of the corresponding

interpretations, i.e. the object classes. Equally, we define subsumption for roles

R1 v R2 as RI1 ⊆ RI2. Before coming back to subsumption, we define service process

matching – in the expected way.

A provider process P [n1, .., nk] matches a client process

C[m1, ..,ml], if P [n1, .., nk] simulates C[m1, ..,ml].

Subsumption on roles is input/output-oriented, whereas the simulation needs

to consider internal states of the composite role execution. For each request in a

process, there needs to be a corresponding provided service. Although clearly not

the same, matching is a sufficient condition for subsumption 14:

If the process expression P [n1, . . . , nk] simulates the process

C[m1, . . . ,ml], then C is subsumed by P , i.e. C v P .

Due to the same semantics as the operational framework, we can use the transition

graphs approach presented earlier on to reason about simulation.

Example 9. Matching of processes – see Example 3 – is now also supported

between ontological process expressions.

We formulate composition based on matching process descriptions in form of an

inference rule in the next subsection.

4.4.2. Connection and interaction

The operational semantics of interaction can be defined in form of process calculus-

style contract and connector rules – we have introduced some examples, see Fig. 8.

In terms of the ontology, services were so far described as transitional roles and we

considered system states that describe service (and process) properties such as pre-

and post-states to define transitional process behaviour.

While we do not fully formalise composition and interaction in the ontology

framework, we show how this can be achieved through inference rules of our de-



scription logic. We reformulate the original contract rule (Fig. 8), here without

annotations:

mC ![mI ]; pmC

mC ![mI ]−→ pmC
nC?[nI ]; pnC

nC?[nI ]−→ pnC

mC ![mI ]; pnC
+M1|nC?[nI ]; pnC

+M2
τ−→ pmC

_pnC

〈 sign(nC)=sign(mC)

in terms of the ontology language through a description logic inference rule:

∀ mC ◦mI . postmC
∀nC ◦ nI . postnC

∀ mC ◦mI |nC ◦ nI . postmC
upostnC

〈 sign(nC)=sign(mC)

This inference rule for parallel composition complements other constructor-specific

axioms and rules that we can derive from dynamic logic and process calculi, such

as the axiom ∀R;S.C ≡ ∀R.∀S.C for the sequence operator. These axioms and

inference rules form an application-specific extension of description logic that allows

us to infer more properties about service processes and their interactions. In terms

of the knowledge space, they lift the conceptual model to a logical theory for service

processes.

5. Application in Semantic Service Engineering

Semantic Web services 20,21 are widely propagated as means of improving the dis-

covery and composition of Web services. Ontologies are used to capture service

properties. We demonstrate now that our service process ontology can be utilised

within this semantic service context in order to demonstrate the applicability of our

framework.

The central issue in the semantic services context is matching of individual

services for service-level interactions, rather than the service process matching we

looked at so far. The description of services normally includes behavioural aspects

(e.g. pre- and postconditions), but also non-functional descriptions such as the au-

thor or a textual description of the service. We focus on abstract (functional) be-

haviour here. OWL-S 22 and WSMO 23 are examples of ontological frameworks that

support matching of semantically described services. Both focus on the semantical

description of services including abstract descriptions, quality-of-service aspects,

and functional abstractions such as pre- and postconditions. Our approach, how-

ever, complements OWL-S and WSMO. OWL-S and WSMO represent services as

concepts in the ontology, not as transitions. Therefore, the bridge to dynamic logic

cannot be exploited directly. Dynamic logic is a logical framework that subsumes

pre- and postcondition specification 11. This allows us to integrate these service and

service process contracts easily into our framework. Similar to signatures, we can

associate (descriptive) pre- and postcondition roles to pre- and poststates, respec-

tively (see Fig. 13).

5.1. Contractual Description and Matching

We can extend the service specification by contractual information to capture service

semantics. We use pre- and postconditions as abstractions 24, enabling the design-



by-contract approach 25.

Example 10. A requirements specification of a service user for a Login operation

is:

operation Login[id:ID,passwd:Pass]

pre syntaxOK(id)

post valid(id) ∨ invalid(id) ∨ unknown()

An example of a service provider specification for a UserLogin service is:

operation UserLogin[id:ID,passwd:Pass]

pre true

post valid(id) ∨ invalid(id)

Two services described by pre- and postconditions and represented by contract

ports nC and mC match, if nC refines mC :

Contract port nC matches mC if nC refines mC , i.e. if the precon-

dition is weakened and the postcondition is strengthened. In this

case, we write typec(nC) ≤ typec(mC).

This definition is derived from the consequence rule of dynamic logic, which ex-

presses refinement of programs 11,26. The type notion here extends the signature

notion sign we used earlier on. We have used a simple contract idea here to illustrate

the technique; in practice a more advanced variant might be used 26.

Example 11. The provided service UserLogin matches the requirements of Login

in Example 11. Operation UserLogin has

• a weaker, less restricted precondition (syntaxOK(id) implies true) and

• a stronger postcondition (the disjunction valid(id)∨invalid(id) implies

valid(id) ∨ invalid(id) ∨ unknown()).

This means that the provided service satisfies the requirements; it is even better

than requested.

Preconditions constitute provision declarations rather than requirements for the

client. Consequently, clients often do not specify them in their strongest form.

5.2. Ontological support

Matching of services has been defined in terms of implications on pre- and postcon-

ditions of service operations, and has been represented as a subtype relation between

the contract ports. Again, we want to integrate reasoning about services contract

matching with subsumption. The matching inference rule for transitional roles

shall be defined as follows:

∀preCond.preP u ∀P.∀postState.postP
∀preCond.preC u ∀P.∀postState.postC

〈preP v preC
postC v postP
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Fig. 13. Semantic Services Ontology.

Given a provided service operation P with corresponding pre- and postconditions,

P can also be used in a context that is required by a potential client (in terms of

pre- and postconditions for an abstract service operation C).

Matching implies subsumption, but is not the same. Matching of services is,

however, a sufficient criterion for subsumption.

If a service operation P matches (i.e. refines) a service operation

R, then P v R.

5.3. Semantic service processes

Our framework for semantic services matching has followed the philosophy of rep-

resenting service-based software systems in form of a transition-oriented ontology;

it has, however, not been fully integrated yet. In order to obtain a semantic service

process framework based on semantic services and service processes, we need to add

some support.

A notion of consistency of composite roles relates service processes to the un-

derlying individual service specifications based on, for instance, pre- and postcon-

ditions. A concept description ∀P [R1, . . . , Rn].C with composite transitional role P

is reachable if the set of state transitions {(a, b) ∈ P I |∃b.b ∈ CI} is not empty. A

composite role P [R1, . . . , Rn] is consistent, if the last state is reachable through

transitions. This abstract definition can be supported by a more constructive prop-

erty. A composite transitional role P is consistent if the following (sufficient) con-

ditions are satisfied:

• for each sequence R;S in P : ∀postCond.postR v ∀preCond.preS
• for each iteration !R in P : ∀postCond.postR v ∀preCond.preR



• for each choice R+ S in P : ∀preCond.preR u ∀preCond.preS and

∀postCond.postR u ∀postCond.postS
• for each parallel composition R|S in P : ∀preCond.preR u ∀preCond.preS

and ∀postCond.postR u ∀postCond.postS

We assume here that syntactical consistence is guaranteed, i.e. that for instance

signatures match syntactically, if needed.

A consistent service process is a consistent composite role expression

P [R1, . . . , Rn] constructed from transitional role names R1, . . . , Rn and the role

connectors. In a combined semantic service process approach, consistency is a core

requirement.

6. Application and Evaluation

The contribution of this paper is a two-layered, operational and ontological service

process framework. In addition to the application to semantic service process en-

gineering tasks, which we have described in the previous section, we now take a

look at a broader range of specific applications and tool implementations and their

evaluation.

6.1. Applications

Our contribution shall be evaluated using two application contexts to demonstrate

the versatility of our approach: the first, service topology management, shall only

utilise the operational process framework from Section 3; the second uses the onto-

logical framework from Section 4 as a foundation for a conceptual service modelling

and execution environment.

6.1.1. Service topology management

Service topology refers to the distributed architecture of service-based software sys-

tems and focuses on the functional and in particular non-functional characteristics

as a result of the distributed locations in this architecture.

Service processes are at the core of service-oriented architectures. TOPMAN 32

is a model-driven development environment for service processes and the topologies

they are embedded in. TOPMAN uses a model-driven approach in order to generate

executable service interactions for service topologies based on UML-style process

models. It allows these topologies to be configured based on abstract models rather

than implementation descriptions.

TOPMAN is based on a process calculus to express service topology patterns

as process abstractions. In order to clarify the topology of service processes, the

notions of distribution and location need to be made explicit in topology models.

In terms of our framework, the distinction between orchestration and choreography

views on service systems need to be clarified. These topology aspects determine



some of the crucial non-functional quality-of-service (QoS) properties such as effi-

ciency, reliability and availability. TOPMAN uses the orchestration view, which is

currently best supported by deployment platforms based on WS-BPEL. The oper-

ational model we presented here allows standard topology patterns to be described

as service process abstractions. An example is the centralised topology pattern (also

called Hub&Spoke)

Centralised
def
= ( Hub? | ( Spoke1! | . . . | Spoken! ) )∗

which specifies the outer-level process of a centralised Hub receiving repeatedly

invocation requests from a range of Spokes.

6.1.2. Conceptual service modelling and execution

While TOPMAN focuses on non-functional QoS properties, we have also investi-

gated ontology-based conceptual modelling of functional properties 33, which we

have combined with some service middleware functions.

The conceptual modelling environment is ontology-based 33. It uses the service

ontology from Section 4 as the formalisation of its UML-based graphical modelling

notation. Moreover, the service ontology acts as a matchmaking engine using the

matching rules defined earlier for both checking the correctness of abstract process

composition and the discovery of semantically suitable services based on abstract

service specifications – based on the semantic Web service application described in

Section 5.

A UML-style process modelling notation, based on UML activity diagrams that

can be annotated by semantic conditions, is the starting point. Using a recent on-

tology modelling standard, OMG’s Ontology Definition Metamodel, we could inte-

grate a UML-based modelling notation with an underlying ontology model thanks to

metamodels and transformations provided by the ODM. Transformations between

UML, OWL, and executable languages such as WS-BPEL support composition and

code generation. This modelling environment is integrated with the GLORIS broker

and execution engine 34 that allows distributed services to be located and invoked.

6.2. Evaluation

The core elements of our framework need to be evaluated according to their specific

properties. Firstly, the operational process model needs to be looked at in terms of

the soundness of the theoretical framework and its completeness with respect to the

desired range of modelling support. The tractability of the theory is also an issue.

Secondly, the ontological framework (based on the process foundations) needs to

be looked at in terms of adequacy of the modelling notation and interoperability to

enable integration with other service engineering techniques. Again, tractability is

an issue. Additonally, the methodological integration with semantic services needs

to be looked at in terms of its effectiveness as a methodology.



These applications of our foundational framework to develop the Web service

development and deployment environments are supported by case studies:

• Banking: two aspects have been investigated: legacy systems integration

and an online banking application. We have used a simplified online banking

application throughout the paper to illustrate the notations and techniques

we have introduced.

• E-learning: learning technology systems are knowledge-based applications

that benefit from being exposed as semantically annotated service-oriented

architectures.

We have developed tool prototypes to validate the central elements of our frame-

work. Tool implementations complement and support the conceptual case studies

in our evaluation of our framework as foundations for the core of a comprehensive

service engineering solution.

The operational framework should be sound, tractable and complete in its pro-

vision of a description and modelling calculus:

• Soundness and tractability properties drectly base on those of the π-

calculus. The notation and rules are a straightforward extension of the

π-calculus that can easily be shown to be sound and tractable 12.

• The completeness of the modelling support is demonstrated by providing

a standard range of basic actions and combinators – which is confirmed by

our modelling case studies and process calculus literature 13.

The ontology framework aims to support semantics-based conceptual modelling,

which requires adequacy, interoperability and tractability to be discussed as major

desirable characteristics:

• The adequacy of the modelling notation is a major requirement. We have

addressed this by carrying out different modelling case studies – two in the

banking context and one in e-learning systems development 33. All case

studies have supported the notation as sufficient to address the various

functional aspects of the respective system.

• Interoperability of models with other notations and tools is enabled through

ODM, the Ontology Definition Metamodel 31, which defines a number of

metamodels for UML, OWL, and other conceptual modelling notations, and

transformations between them. This, for instance, allows to convert existing

UML models into ontological representations that could be integrated into

our approach, or to use UML as a visual front-end for ontologies as we have

done it in our conceptual modelling application (Section 6.1.2).

• The tractability of the ontological framework is essentially determined by

the decidability of the underlying description logic. We have positively as-

serted this property in 14 for the process ontology and its logical basis.



The methodological framework of the semantic service and service process in-

tegration needs to be demonstrated as being effective. Although we only presented

an outline of such as methodology – our focus has been on foundations for no-

tations and specific techniques – we have used and analysed service engineering

and service-oriented architecture in different contexts. In particular the banking

applications with a legacy integration project and a from-scratch development have

provided valuable insights that have confirmed the benefits of service-based software

development, but also the need to support these through semantic modelling and

semantic annotations for discovery and execution of both services and processes.

7. Conclusions

The notion of processes is ubiquitous in computing – as a technical term for inter-

acting systems or as an application-oriented one in business and workflow processes.

Consequently, a wide range of formal models and modelling notations for process

development has been devised.

Service-oriented architecture is a new architectural paradigm for software devel-

opment. The current focus on usage (deployment, invocation, and reply) in these

architectures has to be complemented by a more development-oriented one. Reuse

of services in service assemblies is the ultimate development objective; process as-

sembly is the principle of architectural composition of reusable services.

We have followed a layered approach to provide a basic semantic framework sup-

porting a service engineering discipline. Firstly, we have presented an operational

infrastructure model, focusing on service process interaction and composition, that

facilitates development and deployment activities. Secondly, based on the infrastruc-

ture model, we have introduced an ontological framework to support development

in the Web environment. An infrastructure model is needed as the underlying basis

for an ontological layer that addresses aspects of this infrastructure. An ontological

framework is needed to make process-oriented composition work as a development

approach for a software developer for the Web platform with its emphasis on shared

knowledge and joint activities. We have developed a basic framework based on on-

tologies, service-oriented architectures and processes, and underlying logics, applied

to the Semantic Web and the Web Services Framework. In particular in the Web

context, knowledge representation and knowledge sharing are becoming increasingly

important for software development on the Web platform.

A central objective for both aspects – infrastructure and ontology – was to make

the process characteristics as explicit as possible. We feel that the gap between meta-

data and annotation approaches (which are often captured ontologically) and op-

erational process models and semantics has been to be narrowed in our framework,

enabling a seamless integration of abstract description and process composition.
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