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Abstract 
The security of bilinear pairings against implementation attacks such as side channel 

and fault attacks is largely an uncharted area of research. Apart from one publication on 

the topic, coverage of this area is non-existent. Armed with the fact that the number of 

applications based on bilinear pairings is ever-increasing, the bilinear pairing algorithms 

themselves are constantly being enhanced and optimised such that they are commercially 

viable, and the fact that the current research on elliptic curve primitives is not applicable 

to bilinear pairings, makes this a vital topic for further investigation and analysis. 

This research aims to begin to fill this void. Along with addressing some of the 

more subtle aspects of implementation attacks, this research presents an investigation 

into the security of bilinear pairings against implementation attacks. Specifically, the 

process of performing the data analysis phase of a Side Channel Attack (SCA) is analysed. 

A theoretical fault attack on the Digital Signature Algorithm (DSA) is examined and 

implemented in practice. A number of candidate bilinear pairing algorithms are assessed 

for vulnerability to the SCA, first-order power analysis, which passively monitors the 

power consumption of a device. Furthermore, a number of candidate bilinear pairing 

algorithms are assessed for vulnerability to fault analysis, which seeks to actively disrupt 

the normal execution of an algorithm, 

Our principal results can be summarised as follows: We suggest computational im- 

provements to the Differential Power Analysis (DPA) data analysis process, which can 

reduce the number of operations by up to 97%. We demonstrate how a theoretical attack 

on the DSA using lattice reduction can be executed in practice with the aid of a glitch 

attack. We propose a novel SCA technique to attack various finite field operations. This 

attack involves analysing the structural evolution of finite field operations and is based 

on Correlation Power Analysis (CPA), which is a form of first-order power analysis. We 

examine the Tate, Ate and pairing for vulnerability to first-order power analysis and 



discover that given certain parameter choice, the Tate and Ate pairing can provide op- 

tions for minimising an attack, whereas the q~ pairing provides no such options and can 

be attacked from all parameter positions. We investigate the existence of opportunistic 

faults on the Weil, Tate and pairing and discover two types of fault attacks that can be 

successfully applied to the Weil and q pairing to reveal the secret key. This weakness is 

attributed to the absence or simplicity of the final exponentiation employed, highlighting 

the fact that the final exponentiation is a vital operation in bilinear pairing computation 

and in particular adds a layer of protection to pairings. This fact is further compounded 

in the proof that the Tate pairing is immune to such fault attacks. Finally, we provide rec- 

ommendations based on our findings for secure bilinear pairing implementation in terms 

of power and fault analysis. 
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Chapter 1 

Introduction 

1 .  Introduction 

Cryptanalysis is the process of attacking a cryptosystem with the ultimate goal of identi- 

fying weaknesses such that retrieval of information about the secret key is possible. The 

security of any cryptosystem is based on a mathematical problem that is hard to solve. 

Hence, traditionally, cryptanalysis focused on the mathematical structure of the cryp- 

tosystem and so mathematical attacks were used to uncover weaknesses. Cryptosystems 

resistant to this analysis were generally deemed to be strong cryptosystems. In princi- 

ple, the cryptosystem may be mathematically sound. However, mathematical resistance 

to cryptanalysis does not guarantee security. When the cryptosystem is implemented in 

a realistic and generally hostile environment it can be open to unforeseen and unantici- 

pated attacks, which bypass the robust mathematics on which the cryptosystem is based. 

An extremely powefil branch of cryptanalysis, referred to as the field of implementation 

attacks, covers a range of attacks that exploit features of the implementation, making ordi- 

narily secure algorithms insecure. This branch of cryptanalysis has become increasingly 

relevant due to the technological advances in the devices on which the cryptosystem can 

be implemented, making such attacks more of a threat. 



1.2 Overview of the Research Area 

The purpose of this section is to give a history of the developments in the field of imple- 

mentation attacks and bilinear pairings. Since both fields have until recently evolved in 

parallel, they will be described separately. Both fields have been well studied and so only 

the most notable and relevant developments will be mentioned. The Side Channel Crypt- 

analysis Lounge [I], any of the proceedings of Cryptographic Hardware and Embedded 

Systems (CHES) [60], or Fault Diagnosis and Tolerance in Cryptography (FDTC) [2], can 

be referred to, to access the vast body of papers in the field of implementation attacks. 

Similarly, Baretto's Pairing Based Crypto Lounge [12] can be referred to for results in the 

domain of bilinear pairings. 

1.2.1 Implementation Attacks 

Implementation attack is an umbrella term used to describe cryptanalytic attacks which 

exploit various implementation characteristics. There are a number of physical properties 

that can be exploited when considering a specific implementation on a specific device. 

One of these properties is the inescapable physical manifestations inherent in any device. 

Attacks which exploit observable characteristics of this form are called Side Channel 

Attacks (SCA). Another property is the fact that all computational devices are prone to 

error and malfunction given certain circumstances. Attacks which force a device to work 

outside its normal working conditions with the objective of inducing abnormal behaviour 

are referred to as Fault Attacks. 

The act of breaking a cryptosystem via implementation weaknesses has been known 

for decades. In 1965, the British intelligence agency MI5 eavesdropped on the Egyp- 

tian embassy in London by placing a microphone near the rotors of their Hagelin cipher 

machines. This attack, recounted in the novel "Spy Catcher" [I391 by Wright, a chief sci- 

entist with MI5, is just one account of an implementation attack that relies on exploiting 

information unintentionally leaked by a device. The rapid advancement of technology 



over the years and in particular the development of portable embedded devices known 

as smart cards [29], has heightened the relevance of implementation attacks. This is be- 

cause implementation attacks can be easily launched on the smart card, since physical 

measurements can be taken and faults can be injected with minimal effort. 

The application of SCA to attacking embedded devices began in earnest in 1996. 

In August 1996, Kocher [64] introduced a timing attack on a smart card implementing 

various public key algorithms. By measuring the time that it took to perform certain 

operations, one could deduce information about the private key. 

Then in September 1996, in a press release Boneh, DeMillo and Lipton announced 

the first account of fault analysis. The effect of faults on electronic systems has been 

studied since the 1970s when it was noticed that radioactive particles produced by ele- 

ments naturally present in packaging material [78] caused faults in chips. Specifically, 

Uranium-235, Uranium-238 and Thorium-230 residues present in the packaging decay 

to Lead-206 releasing a particles. These particles create a charge in sensitive chip areas 

causing bits to flip, affecting a chip's behavior. Boneh, DeMillo and Lipton realised the 

implications of such faults for the cryptographic world when they described a new type of 

cryptanalybc attack which focused on attacking specific algebraic properties of modular 

arithmetic. This idea, later published in Eurocrypt 1997 [21], while only theoretical at 

the time, sparked interest into both the search for possible opportunistic faults in existing 

cryptosystems and the need to find a mechanism by which to actually induce these faults. 

Some of the first researchers to the field were Biham and Sharnir, who in 1997 presented 

a theoretical fault attack applicable to almost any secret key cryptosystem 1191. 

In 1998, Kocher, Jaffe and Jun, hrther signaled the weakness of smart cards. Kocher 

et al. demonstrated how measuring the variation in power consumption of the hardware 

during execution could be used to deduce information about operations being performed. 

In a technical report first released [65] and later published [66], Kocher et al. defined two 

forms of power analysis, namely Simple Power Analysis (SPA) and Differential Power 



Analysis (DPA), both of which were applied to the Data Encryption Standard (DES) [96]. 

SPA is the most straightforward form of power analysis, and involves directly examining 

the power consumption acquired. SPA generally relies on the power consumption of a 

single execution and can reveal various characteristics of an algorithm, such as the in- 

struction sequences being executed. The application of SPA to DES showed that the 16 

individual rounds of the DES algorithm could be easily distinguished in the power con- 

sumption. DPA on the other hand, is a more complex form of power analysis, involving 

the acquisition of power consumption relating to various executions together with statisti- 

cal analysis techniques. DPA exploits variations in power consumption that are correlated 

to the data values being manipulated. These variations are typically much smaller than 

those associated with different instruction sequences, and may be obfuscated by noise and 

other factors. Statistical methods are used on a collection of power consumption acqui- 

sitions in order to reduce the noise and amplifjr data dependant power consumption. The 

application of DPA to DES allowed the extraction of the secret key. 

The apparent strength of these attacks sparked avid interest in the research cornmu- 

nity. This in turn has led to the development of attack variants and countermeasures, 

which have since shaped the development of embedded devices. In particular, aspects 

relating to the development of both hardware and software countermeasures, the develop- 

ment of other types of implementation attacks, the application of implementation attacks 

to different cryptosystems and algorithms, and the application of such attacks to other 

platforms, have received great attention from both the cryptographic and smart card com- 

munity. 

In 1999 a number of other cryptographic algorithms were shown also to be vulnerable 

to power analysis. At that time the official call for candidate algorithms for the Advanced 

Encryption Standard (AES), the intended successor to DES, was underway. In 1999, 

Chari, Jutla, Rao and Rohatgi [27] demonstrated that all AES candidate algorithms were 

in some way vulnerable to power analysis. The same year power analysis was also applied 



to modular exponentiation [86] and elliptic curve cryptosystems [31]. Fault attacks also 

progressed in 1999 when Kommerling and Kuhn [69] reported that a glitch attack on the 

external power supply and clock supply lines were the most useful fault attacks to inject 

in practice. 

Immediately after Kocher et al.'s [66] breakthrough, countermeasures to thwart these 

attacks and render the power consumption useless were investigated. One such coun- 

termeasure, known as masking, is where intermediate computations are handled under a 

probabilistic form to defeat statistical correlation. In 2000, masking techniques based on 

boolean and arithmetic hnctions were suggested by Coron and Goubin [32]. However, 

in the same year Messerges [84] developed a more powerful variant of DPA, which de- 

feated masking techniques and so-called DPA resistant implementations. These attacks 

were named second or high-order attacks, since they correlated the power consumption 

at multiple steps during a single computation. The development of this branch of power 

analysis has since led to the original DPA of [66] being referred to as first-order DPA. 

Another significant breakthrough in the field of SCA came in 2000 when the idea of 

using electromagnetic (EM) emanations as the side channel was proposed by Quisquater 

and Samyde [I1 11. The attacks Simple Electromagnetic Analysis (SEMA) and Differen- 

tial Electromagnetic Analysis (DEMA) were also proposed as the EM analog to SPA and 

DPA. Concrete results of these attacks were later demonstrated by Gandolfi, Mourtel and 

Olivier [42]. The usefulness of EM emanations was postulated for years, but this was the 

first time that concrete results were documented. 

In 2002, Chari, Rao and Rohatgi [28] developed another variant of the original DPA, 

referred to as a template attack. Template attacks were developed for scenarios where 

there is access to only a single power consumption acquisition. In addition to availing of 

the power consumption information that leaks naturally from a device, a template attack 

allows the adversary access to a device similar to the target. This allows the adversary 

to learn about various characteristics of the target device. In particular, the power con- 



sumption characteristics of instructions and noise characteristics of the device can be con- 

structed. This is usually achieved by determining the probability distribution of the power 

consumption of certain instructions. Also in 2002, a new class of fault induction attacks 

was revealed by Skorobogatov and Anderson [124], which was a form of semi-invasive 

optical fault attack which allowed control of specific registers. 

In 2004, Asonov and Agrawal [8] developed acoustic cryptanalysis, which uses the 

sound produced during the computation as the side channel. The authors of [8] announced 

that computer keystrokes and keypads used on telephones and automatic teller machines 

(ATMs) are vulnerable to attacks based on differentiating the sound produced by different 

keystrokes. By analysing recorded sounds, they were able to determine the text of data 

being entered. In the same year, Shamir and Tromer [I221 further demonstrated the use- 

fblness of acoustic cryptanalysis when they demonstrated that it was possible to conduct a 

timing attack against a CPU performing cryptographic operations. This attack was based 

on analysing variations in the CPU's humming noise. 

Also in 2004, Brier, Clavier and Olivier [24] dehed  another variant of first-order 

DPA, which they called Correlation Power Analysis (CPA). The authors of [24] high- 

lighted that there were some shortcomings with first-order DPA [66]. These shortcom- 

ings, which were manifested as inaccuracies in the results witnessed, were on account of 

the fact that the assumptions made about power consumption were incomplete. Brier et 

al. proposed a new model which takes more factors about what constitutes power con- 

sumption into account. 

In 2005, Percival[109] and Bernstein [17] described a type of timing attack based on 

monitoring the number of cache misses over a period of time. Then in 2006 Aciicmez, 

Koq and Seifert [3] developed another form of implementation attack, known as branch 

prediction analysis, that was shown to be successful against an openSSL RSA imple- 

mentation executing on a popular commodity PC. Branch prediction analysis employs 

a spy-process to monitor the different branches that the CPU's branch predictor takes, 



which can be analysed to reveal the secret. 

Throughout the years, since 1996, the field of implementation attacks has exploded. 

A vast body of papers relating to the attack [132, 1351 and defence [133, 591 of modular 

exponentiation, the attack [I021 and defence [6, 129, 431 of AES, the attack [9] and 

defense [I341 of ECC, the application of SCA to an FPGA [loll and ASIC [102], the 

advancement of second-order power analysis [I 3 1, 571, template attacks [112, 5, 1031 

and CPA [72], and the development of fault injection techniques [ l l ]  have appeared. 

To this day, the research and race for stronger attacks, more complete countermea- 

sures and attacks to overcome these countermeasures continues. One particularly im- 

portant topic in this field is the application of such attacks to novel cryptosystems. A 

relatively new phenomena in cryptography is the construction of cryptosystems based on 

bilinear pairings. 

1.2.2 Bilinear Pairings 

In 1985, Koblitz and Miller independently discovered the usefulness of elliptic curves 

over h i t e  fields for cryptography. They realised that discrete logarithm based cryptosys- 

tems might provide better security when based on the group of points on an elliptic curve 

rather than the conventional multiplicative group of a finite field. This realisation had the 

added benefit that elliptic curve cryptosystems could provide similar security levels for 

much shorter key length. Since then, there has been a vast amount of research into the 

development of cryptosystems based on elliptic curves. 

A bilinear pairing is a function that takes two elliptic curve points and outputs an 

element in some multiplicative finite field. Furthermore, a pairing satisfies some special 

properties, the most important being bilinearity. The two founding pairings are the Weil 

and Tate Pairing. Bilinear pairings made their first appearance into the realm of cryp- 

tography, when it was discovered that they could be used for cryptanalytic purposes. In 

1993, Menezes, Okamoto and Vanstone 1811 discovered that the Weil pairing could be 



used to attack discrete logarithm based systems on a certain class of elliptic curves. This 

attack is known as the MOV reduction. One year later, Frey and Ruck [40] defined a 

similar attack, the FR-reduction, which used the Tate pairing. This cryptanalytic use was 

the only known application of pairings until 2000, when Joux [55] and Sakai, Ohgishi 

and Kasahara [113], showed how bilinear pairings could be used constructively to build 

cryptographic protocols with unique properties. Since then, there has been avid interest in 

the field of bilinear pairings, leading to the f i t f u l  development of many new applications 

based on pairings [12]. The field of pairing based cryptography has evolved in two main 

directions. Namely, the development of pairing based protocols and the development of 

algorithms to efficiently compute a bilinear pairing. 

Undoubtedly the most striking application of pairings is the realisation of Identity 

Based Cryptography (also known as Identity Based Encryption (IBE)). IBE is a variant of 

public key cryptography originally proposed by Shamir in 1984 [121], where the user's 

public key is derived fiom their identity. The first concrete implementation of IBE how- 

ever, did not appear until 2001 when Boneh and Franklin [22] proposed an IBE scheme 

based on bilinear pairings. The breakthrough of this seminal work opened the floodgates 

for pairings to be used in many applications. For example, a myriad of key agreement 

schemes, short signature schemes and encryption schemes have been proposed. A survey 

of the many schemes can be found in [36]. 

Alongside the rapid development of pairing based protocols, algorithms to efficiently 

compute bilinear pairings have been continually developed and advanced. Since the bilin- 

ear pairing lies at the heart of these schemes, and is generally the most expensive compu- 

tation in the scheme, the efficiency of the pairing affects both whether such schemes will 

be adopted and where it will be used. Two methods to compute a bilinear pairing have 

been put forward. The first method was proposed in an unpublished manuscript by Miller 

[88] in 1986. This method is based on divisor theory [I361 and to date has been the foun- 

dation from which all pairing algorithms have been constructed. In 2006, an alternative 



technique was proposed by Stange [126]. Stange's method is based on elliptic nets, and 

will not be addressed in this thesis. Numerous optimisations to Miller's algorithm have 

been made, and in particular in the context of the Tate pairing, the time to compute crypto- 

graphically secure bilinear pairings has dramatically decreased from several minutes [79] 

to only a few milliseconds [14, 11 81. In addition, a number of variants of the Tate pairing, 

namely the q, q~ and the Ate pairing, have been developed. These bilinear pairings are 

becoming increasingly fast and efficient, yielding pairing based protocols that are viable 

competitors to more established public key cryptosystems like RSA. 

1.3 Motivation for this Research 

Due to the threat of implementation attacks, analysis of all cryptographic algorithms for 

vulnerability to implementation attacks is necessary. The smart card is the most notorious 

device for implementation attacks. Hence, analysis of cryptographic algorithms which 

may potentially be implemented on a smart card, is an urgent priority. 

As already mentioned, the popularity of bilinear pairings has seen the development 

of a plethora of pairing based protocols. One barrier to the adoption of pairings was their 

inability to compete with alternative cryptographic algorithms on resource constrained 

devices. However, the development of increasingly efficient pairing implementations has 

eliminated this barrier. In 2006, Scott, Costigan and Abdulwahab [I201 demonstrated 

that three bilinear pairing algorithms were efficiently computable on a smart card. These 

bilinear pairings were namely the BKLS algorithm for the Tate pairing [14], the Ate 

pairing [50], and the BGOhES algorithm for a truncated version of the q~ pairing, the 1 7 ~  

pairing [13]. An excerpt i?om [I201 presenting computation times and comparisons with 

RSA decryption is given at the end of this chapter in Table 1.1. Listed in this table are 

results for the number of clock cycles required to compute three types of pairings, the 

number of clock cycles per instruction (CPI), and the time in seconds. This development, 



while advancing the field of pairing based cryptography, raises some alarming open issues 

about the security of pairings on such devices. Hence, there are compelling reasons to 

investigate bilinear pairings for vulnerability to implementation attacks. 

The majority of implementation attacks on elliptic curve cryptosystems have studied 

the algorithm for point scalar multiplication [9,30], where the scalar is the secret param- 

eter of interest. For example, the Elliptic Curve Digital Signature Algorithm (ECDSA) 

requires the computation of [SIP, where P is a publicly known elliptic curve point and 

s is the secret scalar of interest. In cryptosystems based on pairings, however, the secret 

is not typically a scalar but an elliptic curve point. Hence, previous attacks defined are 

not applicable to bilinear pairings, requiring attack strategies and consequently defensive 

strategies to be rethought and re-evaluated. 

To date, one publication addressing power and fault analysis of bilinear pairings ex- 

ists. In 2004, Page and Vercauteren released the preprint [105], later published in [107], 

which assessed the general frame of bilinear pairings for vulnerability to DPA. They also 

assessed the Duursma-Lee algorithm [37] for the Tate pairing and Kwon-BGOS algo- 

rithm [71] for the rj pairing for vulnerability to one type of fault, namely a fault which 

alters the number iterations in a loop. However, multiple classes of implementation at- 

tacks and various algorithms for pairings exist. Implementation attacks are by their nature 

implementation specific, exploiting features of the implementation. Therefore, assessing 

the general h e  of a pairing while necessary and useful, is incomplete. Specific imple- 

mentations of pairings must be assessed, and in particular, efficient implementations that 

may be implemented on smart cards must be assessed so that potential vulnerabilities can 

be anticipated and appropriate countermeasures deployed. 

In this thesis, implementation attacks, and in particular first-order power and fault 

attacks, are investigated. The implications of first-order power and fault attacks with re- 

spect to bilinear pairings are examined. Specifically, the bilinear pairings algorithms that 

Scott et al. [I201 proved to be efficiently computable on a smart card are examined for 



vulnerability to first-order power analysis. The bilinear pairings, the BKLS algorithm for 

the Tate pairing [14], the Ate pairing [50], and the BGOhES algorithm for the q~ pair- 

ing [13], are three of the fastest implementations at present, and so are the most viable 

candidates for smart card adoption. This consequently makes them the most notable tar- 

gets for implementation attacks. An investigation into the vulnerability of each of these 

algorithms to first-order power analysis is presented. The analysis is performed in theory, 

using empirical knowledge about first-order power analysis. The bilinear pairings, the q 

pairing of Galbraith et al. [41], the Weil pairing [I171 and the BKLS algorithm for the 

Tate pairing [14], are investigated for vulnerability to fault attacks. Two of these bilinear 

pairings are not the most efficient algorithms but are chosen based on their characteris- 

tics. In particular, the three algorithms are chosen based on the varying complexity of 

their final exponentiation, since as will be demonstrated, this is a vital feature in either 

allowing or disallowing fault attacks. From our analysis, it will be demonstrated that there 

are certain characteristics that can either weaken or strengthen a bilinear pairing against 

power and fault attacks. Recommendations based on our findings will be given, which 

describe features for secure bilinear pairing implementation in the context of implemen- 

tation attacks. 

The structure of this thesis is as follows. Chapter 2 provides an overview of power 

and fault analysis. In this chapter, the necessary background, terminology and notation 

for the thesis are provided. The process of performing a power analysis attack and some 

of the various types of attacks mentioned in Section 1.2.1 will also be described. Chap- 

ter 3 provides an overview of bilinear pairings. In this chapter, the necessary concepts 

and definitions relating to finite field arithmetic, elliptic curve cryptography and bilinear 

pairings are given. The bilinear pairing algorithms that are required for the investigations 

described in the thesis are also provided. Chapters 2 and 3 also serve as a literature review, 

detailing the most notable advances in each field. The research contribution of this thesis 

is split into three chapters. Chapter 4 examines power and fault analysis in greater detail. 



Specifically, two aspects are presented. Namely, a fault attack on the Digital Signature Al- 

gorithm (DSA) is described and computational improvements to the data analysis phase 

of DPA are proposed. Chapter 5 explores bilinear pairings for vulnerability to power 

analysis. It is shown how the core operations in pairing computation are vulnerable to 

power analysis based on analysing the structural evolution of various finite field opera- 

tions. Analysis of these operations is carried out based on empirical knowledge about 

power analysis. The consequences of these findings are subsequently realised when it is 

shown how three pairing algorithms, namely the Tate, and Ate pairing, can be attacked 

with power analysis. Chapter 6 explores bilinear pairings for vulnerability to fault anal- 

ysis. It is shown how certain characteristics of bilinear pairings weaken the pairing and 

make it more susceptible to a fault attack. Specifically, fault attacks are demonstrated on 

the Weil and q pairing. Finally, the thesis is concluded in Chapter 7. The contributions of 

this thesis are summarised, recommendations for secure bilinear pairing implementation 

are given and areas for further exploration are discussed in this final chapter. 



Table 1 .l: Timings for pairings on a MIPS32 smart card [120], performed using an FPGA 
based emulator. Note the p is a 512 bit prime for the Tate pairing and a 256 bit prime for 
the Ate pairing. 

E (IF,) Tate Pairing 
E (F2379) rp Pairing 
E (IF,) Ate Pairing 
RSA Decryption 

9 MHz 
Clock Cycles Required 

9104450 
4311454 

------ 
10860479 
4740271 

20.57 MHz 
CIock Cycles Required I CPI I Time in Seconds 

- + 

E (IF,) Tate Pairing 
E(F2379) 7 2 ~  Pairing 
E (IF,) Ate Pairing 

CPI 

1.17 
1.16 
1.33 
1.08 

Time in Seconds 

1.01 
0.48 
1.21 
0.53 

10467010 
4891054 
13621597 

RSA Decryption 5072415 1.16 0.14 

1.35 
1.32 
1.67 

0.29 
0.14 
0.38 -- 



Chapter 2 

Power and Fault Analysis 

2.1 Introduction 

Implementation attacks can be classified into various categories. An implementation at- 

tack can be invasive or non-invasive, where the physical body of the target device can be 

tampered with, or go untouched. They can also be passive or active, in that the physical 

emanations that naturally leak are simply measured or certain reactions are purposely pro- 

voked. Specifically, this dissertation will consider two types of implementation attacks. 

Firstly, attacks which exploit the power consumption of a device and so are considered a 

type of passive, non-invasive SCA. Secondly, both invasive and non-invasive fault attacks 

which seek to disrupt the normal execution of a device are considered. The purpose of 

this chapter is to introduce and describe both of these types of implementation attacks. 

Firstly, power analysis is examined. In particular, the stages of performing a power 

analysis attack, the different techniques of power analysis and common countermeasures 

developed to thwart power analysis are described For demonstrative purposes, an exam- 

ple of Correlation Power Analysis (CPA) attacking the Advanced Encryption Standard 

(AES) is presented 

Secondly, fault analysis is examined. In particular, the process of performing a fault 



analysis attack is discussed. This involves looking at the mechanisms for fault creation 

and consequently the effects of such faults. Common countermeasures developed to 

thwart fault analysis are also described. For demonstrative purposes, an example of a 

fault attack on RSA using the Chinese Remainder Theorem (CRT) is given. 

Section 2.3 of this chapter is an excerpt from the paper "The Sorcerer's Apprentice 

Guide to Fault Attacks". This paper was performed in collaboration with Hagai Bar El, 

Harnid Choukri, Mike Tunstall and David Naccache. It was published originally in the 

first workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC) [lo] in 2004, 

and later in a special proceedings of the IEEE on Security and Cryptography in 2006 [I l l .  

2.2 Power Analysis 

Power analysis is a type of SCA which exploits the power consumption. In this section 

the process of performing power analysis, and the types of power analysis attacks that 

have been developed will be described. For demonstrative purposes, a worked example 

of a power analysis attack will be presented. Common countermeasures that have been 

developed to deter power analysis will then be described. 

2.2.1 Power Analysis Attack Methodology 

Two main stages are required to perform a power analysis attack, or any other SCA. 

The first stage consists of an interaction or acquisition stage, where the data of interest 

is captured. The second stage consists of an exploitation or analysis phase where the 

acquired data is analysed to reveal secret data. These stages are considered below. 

2.2.1.1 Data Acquisition 

Capturing the power consumption requires data acquisition equipment. This must be 

configured and calibrated to the target device, so that the optimal signal is acquired. The 



most common device attacked using power analysis is the smart card [86, 871, although 

other devices such as an ASIC [lo21 and FPGA [lol l  have more recently come under the 

scrutiny of power analysis. The experimental apparatus in which a smart card is the target 

will be described. 

Smart cards are currently infiltrating many aspects of our everyday life and so can 

be found in most peoples' possession. A smart card is a plastic card in which a micro- 

processor is embedded It generally consists of an 8, 16 or 32 bit processor, with ROM, 

EEPROM, and RAM, so is capable of performing computations. The smart card proces- 

sor is embedded in a gold or silver chip, as depicted in Figure 2.1, connecting it to the 

outside world through eight pins. Each pin has a different purpose and the locations, di- 

mensions and functional assignments of the contact points are specified in the I S 0  7816 

standard [53]. The main pins of interest for power analysis are the power supply - pin C1, 

the ground - pin C5 and the I/O - pin C7. 

Figure 2.1 : Smart card contact points. 

A smart card is an easy target for SCA (and fault attacks). Firstly, they are used 

in many cryptographic applications. The presence of a processor and memory on the 

smart card allows cryptographic operations to be executed, which in turn requires storage 

and usage of confidential information such as a secret key. Secondly, a smart card is a 

small, portable device which can easily be stolen. Thirdly, it is relatively straightforward 

to obtain the power consumption of a smart card. In addition, due to obvious space 



restrictions, typical hardware components to reduce or shield emanations cannot be used. 

A typical experimental apparatus where a smart card is being attacked using power 

analysis is depicted in Figure 2.2. This illustrates the attack configuration where, as the 

host instructs the smart card to perform a cryptographic operation, the power consumption 

is acquired using a digital oscilloscope. 

Figure 2.2: Experimental apparatus for power analysis attack. 

Acquiring the power consumption is facilitated by a smart card extension (which is 

a customised printed circuit board (PCB), photographed in Figure 2.3 and 2.4), which 

allows the pin contacts on the smart card to be accessed externally. By placing a resistor 

in series between the smart card's ground (C5 pin) and the true ground (in the reader), 

a probe can sample the voltage difference across the resistor, thus giving a measure of 

power consumption. 

Generally as many acquisitions as possible will be captured, and then sent on to the 

data analysis phase. The efficiency and effectiveness of data analysis will depend on the 



Figure 2.3: Smart card reader, PCB and 
card support. 

Figure 2.4: Close up of PCB, card sup- 
port, pins and jumpers. 

quality of the signals captured and so measures are taken in the data acquisition phase to 

improve signal quality. Two influences that affect signal quality are noise and desynchro- 

nisation. To minimise noise an array of filters and signal processing techniques are used. 

One of the most common practices is to capture the same acquisition a number of times 

(where the same data is repeatedly used) and then compute an average. To ensure that the 

power traces are synchronised techniques such as synchronised sampling are used, where 

the sampling equipment and smart card's internal clock are coordinated. This is where 

the modified reader (CLIO reader) and signal generator comes into play in Figure 2.2. A 

CLIO reader is a specialised high precision reader that has added functionality to control 

certain aspects of the smart card while in operation, such as control of the clock frequency 

which the smart card runs at. The IS0  7816 standard for smart card external clocks is 3.57 

MHz [53], although more recent smart cards may run up to 30 MHz. Depending on the 

chip in the smart card, an internal clock may or may not be present. In the case where the 

internal clock is absent, the smart card will run at the reader's clock frequency. This is 

generally either 3.57 MHz and 3.68 MHz. In the case where the internal clock is present, 

the smart card will communicate to the reader at the reader's frequency, and then revert 

back to its internal clock frequency for carrying out instructions. The additional fimction- 

ality that special purpose readers provide is to control the clock frequency. This allows 

the reader to dictate to the smart card what frequency to work at and so overrides the 



smart card's internal clock The most utilised clock frequencies of the CLIO reader are 1 

MHz, 2 MHz and 4 Mhz. The advantage of these frequencies is that they give a constant 

number of samples per clock cycle. Another common practice to improve the quality of 

the signal is to attach a probe to the I/O pin on the smart card (C7 pin), and trigger at 

the end of communication between the smart card and terminal. When communication 

between the smart card and terminal has terminated, the smart card will begin executing 

the operation which it has been assigned. This will be a common starting point in all 

executions and so in all acquisitions. By triggering at this point all acquisitions will be 

synchronised at this same point in time. 

The data acquisition phase will when possible, capture many acquisitions of the target 

while in operation. This may consist of inputting repeated, random or chosen messages to 

the target device and consequently, the target cryptographic algorithm. Once the required 

number of acquisitions have been captured they, along with the input data values, will be 

passed on to the data analysis phase of the attack. 

2.2.1.2 Data Analysis 

During a device's operation and cryptographic algorithm's execution, power will be con- 

sumed and hence dissipated As described above, this can be captured using data acqui- 

sition equipment. This data captured, which represents the power consumption and is 

seen on the data acquisition equipment as a signal, will be referred to as a power trace 

and will be denoted by t for the remainder of this thesis. The power consumption and 

so power trace captured is representative of the execution of the cryptographic algorithm 

and so will represent different stages of the algorithm fiom start to finish. Locations in 

the power trace will relate to different parts in the algorithm where certain operations are 

carried out on certain data. 

For example, Figure 2.5 depicts the power consumption of an AES execution. From 

this it can be seen that the there is a distinct repetitive pattern to this algorithm. AES 



consists of a number of rounds (determined by the bit length of the secret key) and so 

the paver trace mirrors what is happening in the algorithm. Figure 2.6 illustrates an 
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Figure 2.5: Power trace taken from a device executing AES. 

amplified view of a power trace. This power trace was acquired during the execution of 

DES. As can be seen from the labels on the image, specific features of the algorithm can 

be identified1. 

Time 

Figure 2.6: Power trace taken from a device executing DES. 

Power consumption is contributed to by many factors [85]. One of these factors is the 

operation and operands being processed. Given that at some point in the cryptographic 

algorithm the secret will be involved in an operation, power consumption relating to that 

secret (or operations that the secret is involved in) will be contained in the power trace. 

In older technologies, where SCAs were not yet a concern, this relationship was wor- 

ryingly noticeable to the extent that secret bits could be visibly read from a power trace. 

' ~ o t e ,  images 2.6 and 2.5 are courtesy of Gemplus Research and Development Laboratories [52] .  



For example, the well known attack, Simple Power Analysis (SPA) of the square and mul- 

tiply algorithm for modular exponentiation simply reads the private key bit by bit, as the 

power consumption for a square and a multiply operation was differentiable in the power 

trace. 

In more recent technologies, where SCA has influenced hardware design and algo- 

rithm implementation, such straightforward attacks are less of a concern. However infor- 

mation in the power trace relating to the secret is, while hidden, inescapably present. By 

taking many acquisitions and using statistical analysis techniques, data dependant power 

consumption can still often be identified. 

Two main models have been put forward to describe how the data being operated 

on effects the power consumption, they are namely the Hamming weight [66] and the 

Hamming distance model [24]. These models are central to understanding how to retrieve 

the information of interest hidden in power traces. 

In an w-bit microprocessor, binary data is coded D  = ~ 7 ' :  d j d ,  with bit val- 

ues d j  = {0,1}. The Hamming weight model is the simplest model and was initially 

proposed in [66,85]. It is based on the assumption that the power consumption is propor- 

tional to the Hamming weight of the data being handled at any point in time, that is the 

number of bits set to 1. It involves an affine relationship between the power consumption 

and the Hamming weight of the data being manipulated at a given point in time. This can 

be expressed as, 

w-1 

P = a H ( D )  + b where H ( D )  = dj 
j=O 

and P is the power consumption, D  is the value of the data being manipulated, H is 

a function that calculates the Hamming weight, a  is the scalar gain between the power 

consumption and the Hamming weight and the variable b is all other factors, such as 

acquisition noise, offsets and time dependent components contributing to the power con- 



sumption. 

The Hamming distance model, proposed by [24], generalises the Hamming weight 

model. The Hamming distance model is based on the assumption that the power con- 

sumption is proportional to the number of bits that flip from one state to the next and so 

involves the addition of another variable, R. This model can be expressed as, 

where the notation is the same as described in the previous model, and the value R repre- 

sents some previous state. 

One of the most power consuming components on a smart card microprocessor is the 

bus. The bus is responsible for transferring data between components, and in particular 

for fetching data and instructions to be executed by the microprocessor. As all the in- 

formation being processed by the chip is carried across the bus, this relationship can be 

exploited when secret information is sent across the bus. The Hamming weight model 

is most appropriate when between each value being sent across the bus, it is set to zero. 

If it is not set to zero between each value, then there is a transition from state R to state 

D. Generally a command fetched by the CPU will consist of several opcodes, which is 

usually an instruction followed by the data to be manipulated. This change in value be- 

tween R and D can be modeled by an exclusive or (XOR) between the two values. In this 

case, where typically D is the data being manipulated and R is the instruction opcode, the 

Hamming distance model is the most appropriate model to model the power consumption. 

These models can be used to estimate the power consumption. Given that the secret 

data will be used at certain points in the computation, it is reasonable to try and estimate 

the power consumption of data which is guessed to be the secret. The estimated power of 

the guessed secret, calculated using the chosen model, can then be correlated to the actual 

power to determine whether the guess for the secret was correct or not. This is the general 



idea behind using the power consumption to extract secret data, however just estimating 

the power consumption for the secret is insufficient since it will not be known where in 

the power trace to correlate to. Furthermore, it will not be known whether the correlation 

is being calculated to the secret or some other value. The usage of an operation in the 

algorithm involving some part of the secret and data known to the adversary, allows in- 

sight into the target locations where the secret is involved. In the literature, this operation 

is called a Selection Function. A selection function, &noted by S(), is an intermediate 

operation in the computation which involves some data that is known or computable by 

the adversary and some data which is in some way related to the secret key. Data which is 

known by the adversary will be denoted by a. Data which is related to the key will be de- 

noted by k. On accepting input a and k, the selection function will produce an unknown 

intermediate output value denoted by P. Therefore, P = S ( a ,  k). Generally k will relate 

to some n-bit portion of the key, and a will relate to some n-bit portion of the plaintext 

P. 

Since it will be known that n bits relating to the secret key are entered into the selec- 

tion function S()  with known data a ,  the hypothetical output of the selection function can 

be calculated given guesses for k. Let k,,,,, denote one such guess, then the hypothetical 

output P = S(a ,  kguess) can be calculated. As there are will be 2" possible values that 

kg,,,, can be, the hypothetical output of the selection function for each guess can also be 

calculated. This process in the literature is referred to as making key hypotheses. 

Differential side channel attacks are based on the adversary being able to capture 

many acquisitions of the target. This may involve executing the cryptographic algorithm 

with different input. Let N denote the number of times the cryptographic algorithm is 

executed and Pi denote the input for each execution, where 1 5 i 5 N. Then the 

hypothetical output Pi = S(ai ,  kg,,,,) can be calculated, where ai is derived from the 

input Pi. 

The hypothetical output produced from the selection function, can be used along with 



the power traces acquired, to identify which of the guesses for k is correct. For each 

guess for k, the power consumption is estimated for the various input Pi, based on the 

power model selected. Hence, Pi is converted to its estimated power consumption value. 

The estimated power consumption of Pi is then correlated to the actual power traces. 

This is repeated for all possible values of Ic,,,,, and input Pi. The key hypothesis with 

the highest correlation is identified as the correct value for the portion k of the secret. 

The way in which the correlation is performed and the correctness of a key hypothesis 

is established, depends on the type of attack and power model adopted. These will be 

discussed next. 

2.2.2 Qpes of Power Analysis 

The first attack combining many acquisitions with statistical analysis techniques to reveal 

secret information, was Differential Power Analysis (DPA) [66]. Since the discovery 

of DPA, various types of power analysis attacks have been defined. An overview of 

these attacks will be presented in this section. In each description it is assumed that the 

target device is invoked N times with N random input values Pi, where 1 < i I N. 

The cryptographic transformation of P, under the secret key K, TK(Pi), to produce the 

corresponding output Ci, will result in N power traces ti. The most familiar scenario 

is where Ci = EK(Pi) is calculated, and the cryptographic transform is an encryption 

algorithm E, which encrypts the plaintext Pi to produce ciphertext Ci. 

2.2.2.1 Differential Power Analysis 

Given that a suitable selection function S()  is identified, the correctness of a key hypoth- 

esis is established as follows. For each key hypothesis kg.uess, where 0 I kg,,,, < 2", 

the hypothetical output of the selection function Pi = S(ai, kgc,,,,,) is calculated, where 

ai is related to the known plaintext Pi. DPA categorises the power traces ti into two sets 

depending on one bit b of the hypothetical output Pi. The first set So will contain all the 



traces where b is equal to zero, and the second set S1 will contain all the remaining traces, 

i.e. where the output bit b is equal to one. A differential trace AkgUe,, for each hypothesis 

is calculated by finding the average of each set and then subtracting the resulting values 

from each other, i.e. 

The differential trace with the highest peak will validate a hypothesis for kguess, that is 

kguess corresponds to the Ak,,,,, featuring a maximum amplitude. 

DPA is based on the Hamming weight model and assumes that the power consumption 

for a logical 1 is different than a logical 0. By taking many acquisitions, when the correct 

secret is used to partition the traces, this difference is amplified and so presents itself in 

the form of a spike as depicted in Figure 2.7. 

lime 

Figure 2.7: Example of a differential trace Ak,,,,,. 

DPA has proven to be a very powerful attack. It has been applied to a number of 

cryptographic algorithms and has lead to the development of more honed attacks. DPA 

variants have been developed either in response to a countermeasure proposed to deter 

DPA [84], to target a specific algorithm [86], or to overcome some of the defects that 

DPA was shown to exhibit [24]. The most notable developments have been multiple-bit 

DPA [82, 721, second-order DPA [131, 571, Correlation Power Analysis (CPA) [24] and 



Template attacks [28, 1041. 

2.2.2.2 Correlation Power Analysis 

Some of the assumptions that DPA attacks make are incomplete and inaccurate. CPA was 

developed by [24] to address some of the defects of DPA. In contrast to DPA, CPA [24] is 

based on the Hamming distance model (although it can also be used with the Hamming 

weight model) and so takes into consideration previous states. In CPA the correctness 

of a key hypothesis is established as follows. For each key hypothesis kguess where 

0 I kg,,,, < 2n, the hypothetical output of the selection function Pi = S(ai, kgue,,) is 

calculated, where ai is related to the known plaintext Pi. CPA not only takes the entire 

output of the selection function into consideration, but considers the entire processors 

word. The estimated power consumption of this word is calculated based on the power 

model and then compared to the actual power consumption using a correlation test such 

as Pearson's correlation coefficient [go] (Equation (2.2)), 

where X is the power consumption at a given point in time and Y is the estimated power 

consumption derived fiom the power model adopted. The correlation coefficient with the 

value closest to +1 is identified as the correct key guess. 

2.2.2.3 First-Order Power Analysis 

Both previous forms of power analysis attacks are types of first-order power analysis. 

First-order power analysis is defined by [13 11 as "attacks characterized by the property 

that they exploit highly local correlation of the secret with the power trace. Typically, 

the secret-correlated power draw occurs at a consistent time during the encryption and 

has consistent sign and magnitude." In particular, a first-order attack exploits situations 



where known data a! comes in direct contact with secret data k, that is a selection function 

of the form /3 = S(a, k) exists. 

2.2.2.4 Second-Order Power Analysis 

A second-order DPA attack was originally defined by [66], and has since been developed 

by 1131, 571. Second-order DPA combines one or more samples within a single power 

trace, then formulates an attack based on the joint statistical properties of multiple as- 

pects of the power traces. For example, an operation of the form 0 = S(a, k) does not 

exist in the computation, but an operation of the form y = M ( a ,  x) exists where x is a 

random value and y is then later involved in a operation of the form = S(y, k) with 

the secret data k. This describes a typical masking scheme specifically designed to de- 

ter first-order power analysis by eliminating suitable selection functions involving known 

and secret data. Since there exists a relationship between the two functions y = M(a, x) 

and S(y, k), the power consumption still may be exploited by examining the locations 

in the power trace relating to these operations. This is just one (very trivial) example of 

second-order power analysis. Second-order DPA is more powerful than first-order DPA 

and has shown to be effective against implementations resistant to first-order DPA. For 

example, masking inhibits first-order DPA, but succumbs to second-order DPA. 

2.2.3 An Example of Power Analysis 

Various cryptographic algorithms and underlying functions in both public and private 

key algorithms have been assessed for vulnerability to power analysis. For example, the 

Data Encryption Standard (DES) [66,46, 61, the Advanced Encryption Standard (AES) 

[27, 83, 61, XTR [47], RSA [86,63], IDEA [73], RC5 [61] and RC6 [73] and cryptosys- 

terns based on elliptic curve cryptography (ECC) [31, 134,9], have been the subject of 

power analysis attacks. This has seen the development of both power analysis attacks and 

countermeasures tailored for specific algorithms. 



Here a particular example of a CPA attack of a naive implementation of AES, which 

was implemented on a Xilinx FPGA. The AES is a symmetric key encryption algorithm, 

which was introduced in 2001 as the successor to DES [34,98]. An overview of AES is 

given in Figure 2.8. 

Plaintext 

Cipher Key 

1 Round Key 1 - 9 
I. 

Round Key 10 

Ciphertext 

Figure 2.8: The Advanced Encryption Standard (AES). 

The intermediate operation or selection function of interest that CPA targets is the 

SubBytes function in the first round of the algorithm. This function satisfies all the 

properties required to make it a suitable selection function; it takes some known data re- 

lated to the input aij, where ai,j represents a byte of the plaintext Pi, and some unknown 

data related to the key kj, where kj represents a byte of the key K, to produce some 

unknown intermediate output data Pi, j, i.e. Pi, = ~ u b ~ y t  es(ai j @ kj) for 1 I j 5 16 



bytes of the 128 bit key and the 128 bit plaintext. Since AES was specifically designed 

to be byte-oriented and is implemented over the field G F ( ~ ~ ) ,  an 8-bit processor will be 

considered as the target for CPA, and so a byte of the key will be extracted at a time. 

If the first round of the encryption is targeted, ai,j will relate directly to the plaintext, 

and kj will relate directly to the key. To find b, the first byte of the key, the hypothetical 

output of the SubBytes hnction is calculated for all input plaintexts2 Pi and possible 

values for b, i.e. 0 5 ko ~g 28. This will produce an N x 28 matrix. Each entry in the 

matrix will be converted to its corresponding estimated power consumption value based 

on the power model chosen, which in this case was the Hamming weight model. To test 

each key hypothesis, the correlation coefficient (given in Equation (2.2)) is calculated be- 

tween each column in the matrix and the discrete time interval in all power traces where 

the SubByt es operation is identified to be executed. The column with the highest corre- 

lation is identified to be the correct key byte for b. The following figure shows the result 

of the correlation when 5000 plaintexts were encrypted using AES, and consequently re- 

lates to the number of acquisitions. Therefore, N = 5000. The correct key, which was 

the value 0x84, shows the strongest correlation of x 0.18 as illustrated3 in Figure 2.9. 

With more acquisitions, this correlation would be expected to tend towards 1. To find 

the remaining bytes of the key, the same process is performed except with the relevant 

plaintext bytes. 

The cryptanalytic process that was canied out to find the successor to DES, AES, was 

a rigorous exercise. The selection process attracted 15 different cryptographic designs 

from several countries. Each of these cryptosystems were publicly scrutinised by the 

cryptographic community. AES, originally known as Rijndael, was selected the winner 

and successor to DES after a five year standardisation process. While various counter- 

measures have been implemented to protect AES against power analysis, the ease with 

2~ctually only the first byte of the plaintext, which is exclusive or-ed with ko, is required. 
3 ~ h i s  figure was gemrated from acquisitions captured during collaboration withuniversity College Cork, 

Department of Electrical & Electronic Engineering. 



Figure 2.9: Correlation for ko. 

which a power analysis attack can be launched on an approved algorithm, highlights the 

significance of such implementation attacks. 

2.2.4 Common Countermeasures 

There have been two main ideologies in defining deterrents to power analysis attacks. 

The first approach is to bombard the power dissipation with noise so that the number of 

acquisitions required to distinguish the signal of interest from noise is infeasible. Insertion 

of random delays, random reordering of operations and usage of hardware and software 

noise generators are examples of some of the techniques developed to increase the number 

of acquisitions that an adversary has to capture. 

The second approach is to make the information present in the power trace unrelated 

to the secret. For example, boolean and arithmetic masking of the plaintext with a random 

value prevent predictions about the intermediate output of the selection function being 

made. Many masking mechanisms have been proposed [46,44, 6, 331. However they 

have also been shown to be vulnerable to second-order DPA [83,32] and template attacks 

[I 041. 



2.3 Fault Analysis 

A fault attack is a type of attack, which purposely seeks to disrupt the normal execution 

of a device, with the objective of producing faulty results which facilitate the extraction 

of secret information. In this section, the various methods that have been developed to 

induce a fault attack, types of faults that exist, and consequently the effects that these 

faults can have, will be described. To demonstrate the potential of a fault attack, an 

example where an otherwise mathematically robust cryptographic algorithm breaks down 

when exposed to a fault attack is presented. Hardware and software countermeasures 

developed for fault detection and prevention will then be described. 

2.3.1 Fault Analysis Attack Methodology 

Performing a fault attack involves disrupting the normal execution of a device in some 

way so that faulty output is produced. To do this an appropriate mechanism by which to 

induce a desirable fault must be identified. 

2.3.1.1 Mechanisms for Fault Creation 

Various mechanisms for fault creation and propagation have been researched and devel- 

oped. One of the most obvious approaches is to alter the normal working environment of 

the device. During chip manufacture, a number of predefined thresholds for characteris- 

tics such as supply voltage, clock or temperature are set. By forcing the device to work 

outside of these boundaries, abnormal behaviour can be provoked. 

Equipment such as an alcoholic cooler can be used to vary temperature until the chip 

exceeds the threshold's bounds. Glitch attack equipment, which consists of a modified 

reader with special capabilities, can be used to dictate nonstandard supply voltage or 

clock frequency to the device. Figure 2.10 shows a glitch attack set up. Depicted on the 

left is a CLIO reader and signal generator as described in Figure 2.2. The CLIO reader 



accepts nonstandard clock fi-equency from the signal generator, which it in turn dictates 

to the smart card. The change in clock frequency generally only lasts for a short period of 

time at a certain stage during the execution where it is hoped to achieve the desired fault 

affect. On the right, a CLIO reader with differential probe is depicted. The CLIO reader 

alone possesses the functionality to supply nonstandard voltage to the smart card during 

execution. 

Figure 2.10: Glitch fault attack set up consisting of a modified reader, signal generator 
and differential probe. 

Another approach to induce a fault is to expose the chip to extreme conditions. For 

example, by exposing a chip to intense light or a laser beam, since all electric circuits are 

sensitive to light due to photoelectric effects, the current induced by photons can induce a 

fault. The disadvantage with these attacks is they require more elaborate equipment such 

as a Scanning Electron Microscope (SEM) or Focused Ion Beam (FIJ3). A typical laser 

injection laboratory environment is depicted in Figure 2.1 1. 

Figure 2.1 1: Outer (left) and inner (right) view of laser fault injection equipment. 



2.3.1.2 Types of Paults 

Once a fault has been injected, two types of faults may be produced, namely provisional 

(transient) and destructive (permanent) faults. 

In a provisional fault, silicon is locally ionized so as to induce a current that, when 

strong enough, is falsely interpreted by the circuit as an internal signal. As ionization 

ceases so does the induced current (and the resulting faulty signal) and the chip recovers 

its normal behavior. Provisional faults have reversible effects and the circuit will recover 

its original behavior after the system is reset or when the fault's stimulus ceases. Exam- 

ples of provisional faults include single [loo] and multiple event upsets [I101 and dose 

rate faults [68]. 

In contrast, destructive faults, created by purposely inflicted defects to the chip's 

structure, have a permanent effect. Once inflicted, such destructions will affect the chip's 

behavior permanently. Examples of permanent faults include single event burnout [70, 

1271, single event snap back [67], single event latch-up [4] and total dose rate faults [26]. 

When using fault injection as an attack strategy, provisional faults are the method of 

choice. These allow for faults under numerous experimental conditions to be attempted 

until the desired effect is achieved. As a bonus, the system remains functional after the 

attack's completion. In contrast, a destructive fault would (usually) render the target 

unusable and will necessitate the manufacturing of a clone, For this dissertation, only 

provisional faults will be considered. 

2.3.1.3 Effects of Paults 

A provisional fault attack can have a number of effects. Memory can be modified. Data 

can be misread. Operations such as read and write operations can be broken. In an 

algorithm these effects are witnessed in the form of data being corrupted, loops running 

over or ending prematurely, or instructions being omitted or misinterpreted. 

The exact effect that the induced fault causes, and interpretation or knowledge of that 



effect, depends on the capability of the adversary. At one end of the spectrum exists a 

very powerful adversary who can dictate the time, location and effect of the fault. At the 

other, an adversary who has no control over these factors and must make use of a fault 

with unknown effect. To aid the adversary and empower the fault attack, the power con- 

sumption of the target can be used. As described in Section 2.2, the power consumption 

represents the execution of an algorithm where different sections in the power trace relate 

to different stages in the execution of the algorithm. For example, the loop iteration or 

round can be identified in the power trace. Therefore by monitoring the power trace, the 

optimal time to inject the fault can be identified. The power trace can also be used to tell 

whether the fault has been successful and has disturbed the normal execution in any way. 

Examples of how the power trace may be useful are depicted in Figures 2.12 and 2.13. 

These are an example of a glitch attack where the device's normal execution's power trace 

is compared to the device's faulty execution's power trace. In the first example (Figure 

2.12), the processor has skipped a number of instructions and resumed normal execution 

several microseconds after the glitch has been injected. This fault allows the selective 

execution of instructions in a program. In the second example (Figure 2.13), not only 

does the processor skip instructions, but the value of data manipulated by the processor is 

also modified. 

Figure 2.12: Example of a glitch attack which effect that a number of instructions are 
missed. 
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Figure 2-13: Example of a glitch attack which effect that a number of instructions are 
missed and data is corrupted. 

The implications of these effects of faults on cryptographic algorithms are potentially 

catastrophic. This will be demonstrated by an example of a fault attack on an implemen- 

tation of RSA using the Chinese Remainder Theorem (CRT) in Section 2.3.3. 

2.3.2 'Qpes of Fault Attacks 

Similar to power analysis attacks, there are two types of fault attacks, which are distin- 

guished by the number of samples that are required and the analysis procedures that are 

subsequently applied. 

2.3.2.1 Simple Fault Analysis 

Simple Fault Analysis (SFA) exploits a direct relationship between a faulty result and 

the secret in the implementation, and allows the secret to be derived directly from the 

erroneous output. The most prominent key exposure attack is on an RSA-CRT imple- 

mentation that can succeed with one fault. This example of SFA will be discussed below. 



2.3.2.2 Differential Fault Analysis 

Differential Fault Analysis (DFA) requires a certain number of faulty computational re- 

sults using the same secret. Here one assumes that faults are caused in a transient way. 

The faulty outcomes are used in conjunction with other techniques to reduce the key 

space. An example of DFA will be given in Chapter 4, when lattice reduction techniques 

are used to extract the secret from multiple faulty DSA computations. 

2.3.3 An Example of Fault Analysis 

The effect of opportunistic faults on cryptographic algorithms has not been researched 

as thoroughly as SCA. In this section, an example of how a fault attack can weaken the 

security of a cryptographic algorithm and allow extraction of the secret key is provided. 

This example is based on the attack of an implementation of RSA using the Chinese 

Remainder Theorem (CRT), which was presented in the first academic fault attack paper 

PI]. 

The attack on RSA using CRT is very simple, only requiring one fault to be inserted 

in order to factor the RSA modulus. Basically the attack works as follows: Let N = p x q, 

where p  and q  are two large prime numbers. Let m E Fb be the message to be signed, d 

the private key and s the RSA signature. The pre-computed values required for use in the 

CRT are a  and b, such that 

a = 1  ( m o d p )  
m d  { b = O  ( m o d p )  

a - 0  ( m o d q )  b = 1  ( m o d q )  

and d, and d, such that 

d , = d  ( m o d p - 1 )  

d,=d ( m o d q - 1 ) .  



Using repeated square and multiply calculate 

s, = rn4 (mod p) 

s, = mdq (mod q). 

The RSA signature s is then obtained by the linear combination s = a x s, + b x s, 

(mod N). 

The attack is based on being able to obtain two signatures of the same message, where 

one signature is correct and the other faulty. The faulty signature is where a fault is in- 

jected during the computation and corrupts either the computation of s, or s,. Figure 2.14 

illustrates the power consumption of a device performing RSA with CRT. This depicts 

four sources of power dissipation. The two traces of interest are the power consumption 

of a device performing RSA with CRT and the laser. Notice that the execution of the 

two exponentiations is clearly visible in the power trace and so the point in time where to 

inject the fault can be easily identified. 

Figure 2.14: Power consumption measurements taken during a fault attack on RSA with 
CRT. 

Let d = a x S, + b x d, (mod N) be the faulty signature (here it is assumed that the 

error occurred during the computation of s,, but the attack works just as well when s, is 



corrupted). Subtraction yields: 

E (a x sp + b x s,) - (a x s,, + b x 2,) 

E b(sq - 3,) (mod N )  

Hence, as b r 0 (mod p) and b = 1 (mod q) it follows that A = 0 (mod p) (but A $ 0  

(mod q)) meaning that A is a multiple of p (but not of q). Hence, a greatest common 

divisor (GCD) calculation gives the secret factors of N, i.e. GCD(A (mod N ) ,  N )  = p 

and q = N/p .  

In summary all that is required to break RSA is one correct signature and one faulty 

one. This attack will be successful regardless of the type or number of faults injected 

during the process provided that all faults affect the computation of sp or s,. The attack 

was extended in [56] to show that it is not even necessary to generate a correct signature. 

The faulty signature alone with the message, GCD(ie - m (mod N ) ,  N )  = p, where e 

is the public verification exponent, will yield the straightforward factorisation of N (an 

otherwise very difficult problem). 

2.3.4 Common Countermeasures 

Methods to avoid, detect andlor correct faults have been developed at two levels. At 

one level there are hardware protection, at the other software. Generally, best practices 

employ a combination of protection at both levels. 

Hardware protections are implemented by the chip manufacturer and can be either 

active or passive. Some of the most common active protections include detectors such 

as light, supply voltage and frequency, which react to any changes outside the predefined 

tolerance thresholds of the chip. Metal meshes, known as active shields, that cover the 

entire chip and have data continuously passing through them identify if there is a dis- 

connection or modification of the mesh. Time and hardware redundancy techniques such 



as simple time redundancy with comparison (STRC) [7], multiple time redundancy with 

comparison, re-computing with swapped operands, re-computing with shifted operands 

[log], simple duplication with comparison (SDC), multiple duplication with comparison 

(MDC), simple duplication with complementary redundancy (SDCR), dynamic duplica- 

tion [76] and hybrid duplication. These methods not only detect faults, but have the ca- 

pability to correct them. Passive protections include mechanisms that introduce dummy 

random cycles during code processing, bus and memory encryption, and a passive shield 

which is a metal layer covering some sensitive chip parts making light or electromag- 

netic beam attacks more difficult as the shield needs to be removed before the attack can 

proceed. 

Software countermeasures are implemented when hardware countermeasures are in- 

sufficient or as protection against future attack techniques that might defeat present- 

generation hardware countermeasures. The advantage of software countermeasures is 

that they do not increase the hardware block size, although they do impact on the pro- 

tected functions' execution time. Examples of software countermeasures include the use 

of checksums, randomisation of the execution or repeating an execution and comparing 

the results (this is known as execution redundancy). 

2.4 Conclusion 

The objective of this chapter was to give an introduction to the research area. In partic- 

ular, it was intended to demonstrate the power of implementation attacks and show how 

even cryptosystems which are widely accepted by the cryptographic community as other- 

wise secure, are weak and terrifyingly insecure when it comes to implementation attacks. 

The goal of our research is to use power and fault analysis to attack unassessed bilinear 

pairings. Therefore background material on pairings will be provided in the next chapter. 



Chapter 3 

Bilinear Pairings 

3.1 Introduction 

Since the introduction of bilinear pairings in the constructive sense, a multitude of pair- 

ing based protocols have been suggested. The viability of such applications however, 

ultimately depend on the efficiency and ease of computing the bilinear pairing. Compu- 

tation of a bilinear pairing requires knowledge and understanding of both finite field and 

elliptic curve arithmetic. 

The purpose of this chapter is to provide the necessary mathematical background, 

on both finite fields and elliptic curves, for bilinear pairings. In particular, it is the im- 

plementation of such pairings which are of interest, since the topic concerns assessing 

pairings for vulnerability to power and fault analysis. Hence, it is not the intention of 

this chapter to be comprehensive, providing only the necessary details required for the 

implementation of pairings. 

Firstly, finite fields are examined. Finite field are central objects in cryptography, 

because they enjoy very special properties. Initially they were the core of cryptosystems 

such as RSA and ElGamal[77]. In elliptic curve cryptography they serve as the building 

blocks upon which the elliptic curve is defined. Hence, the choice of field and arithmetic 



over the field are vital to the pairing computation. Specifically the binary and prime 

fields are dealt with since these form the basis for the candidate pairing implementations 

examined later in Chapter 5 and Chapter 6. 

Secondly, elliptic curves are examined. The use of elliptic curves for cryptography 

was suggested by Koblitz and Miller in 1985. The algebraic structure of elliptic curves 

makes them particularly attractive for public key cryptography. More importantly they 

form the basis fiom which pairings are constructed. Specifically, the relevant theory and 

required operations on elliptic curves for bilinear pairings will be discussed. 

Finally, bilinear pairings are examined. Bilinear pairings ultimately rely on the un- 

derlying elliptic curve, and hence the underlying finite field. Building on the material pre- 

sented in the previous sections, relevant material on bilinear pairings will be presented. 

Specifically, background on pairings, how they are computed, and the recent advances in 

the field are discussed. The particularly efficient and optimised candidate pairings, to be 

used in later analysis, are given. A pairing based protocol, namely Boneh and Franklin's 

B E  [22], is described to contextualise this research. The associated security of pairings 

and the study that has been performed in the area of power and fault analysis of elliptic 

curve cryptography is also discussed. 

3.2 Finite Fields 

Let F, be a finite field where q = pm and p is a prime known as the characteristic 

and rn is a positive integer known as the extension degree of F, over Fp. The non-zero 

elements of F, form a group under multiplication, known as the multiplicative group IF;, 

i.e. IF: = IF, - {O}. 



3.2.1 The Prime Field 

The prime field, where q = p, is constructed from integers modulo p, i.e. { O , l ,  . . . , p- 1}, 

with addition and multiplication performed modulo p. The prime field is denoted by IFp.  

3.2.2 The Binary Field 

The b i n q  finite field, where q = 2", can be constructed using a polynomial basis repre- 

sentation. The elements of the binary field are the binary polynomials where the degree is 

at most m - 1. The binary field, also referred to as the characteristic two field, is denoted 

by F2m. 

Addition of field elements is addition of the polynomials, with coefficient arithmetic per- 

formed modulo 2. Multiplication of field elements is performed modulo an irreducible 

polynomial, denoted by f (2). The irreducible polynomial f ( z )  is of degree m. 

3.2.3 The Extension Field 

The polynomial basis representation for binary fields can be generalised to all extension 

fields. Let p be a prime and m 2 2 known as the extension degree. Let F p [ z ]  denote 

the set of all polynomials in the variable z with coefficients from IF,. Let f ( z )  be an 

irreducible polynomial of degree m in Fp [z] . The elements of the extension field Fpm are 

the polynomials in F p [ z ]  of degree at most m - 1. 

Addition of field elements is the usual addition of polynomials, with coefficient arith- 

metic modulo IFp. Multiplication of field elements is performed modulo the irreducible 



polynomial f (z). 

3.2.4 Finite Field Arithmetic 

The main arithmetic operations performed in the finite field which are of interest for 

pairings are addition, subtraction, multiplication, division, exponentiation and inversion. 

Various hardware and software algorithms exist to compute each of these operations. 

To assess pairings in the context of implementation attacks, such as power and fault 

analysis, it must be considered how finite field elements are stored and operated on. For 

elements of prime characteristic, let n = [logap] be the bit length ofp and t = b / w l  be 

its word length, where the device has a w-bit processor. Elements in I!?, will be stored in 

arrays in memory as illustrated in Figure 3.1. 

Figure 3.1 : Storage of elements in IFp. 

Elements in the binary field will be stored similarly, where the bit length of each 

element is simply its degree m. Elements in the field extension will consist of a number 

of base field elements determined by the extension degree. For example, for the extension 

field Fpm where rn = 4, elements will consist of four IF, components. 

When implemented on an actual device, such as a smart card, the finite field arithmetic 

operations will operate on the finite field elements as stored in these structures. 

3.3 Elliptic Curves 

An elliptic cuve E(IF,) is the set of solutions (z, y) over F, to an equation of the form 



where ai E IF,,  together with an additional point at infinity, denoted 0. Simplified vari- 

ants of this equation exist for characteristic 2 ,3  and p prime. 

The number of points in E(F,), denoted by #E(F,), is called the order of E over 

IF , .  Hasse's theorem states that 

where the value t is the trace of Frobenius at q and It( 5 2 f i .  

3.3.1 The GroupLaw 

The points on an elliptic curve together with an identity element O and addition opera- 

tion, form an abelian group which is used in the construction of cryptographic systems. 

Therefore given two points P ,  Q E E(F,), there is a third point on E(F,) such that 

P + Q = R. Let P = (xl  , yl)  , Q = ( x Z ,  y2) and R = ( 2 3 ,  33) E E ( I F , ) .  Let the 

negative of a point P = ( x l ,  y l )  be -P = ( 2 1 ,  -yl) for q = p and - P = ( x l ,  XI + yl) 
for q = 2*. The addition rule is as follows. 

3 .  If P # Q then P + Q = R, where 

2 R = { x 3 = A  ~ 1 x 2  and X = (-) Y2 - Y1 

Y3 = X(x1 - x3) - Y1 
x2 - 2 1  

when the elliptic curve is over the prime field and defined by the equation 



and 
/ 

23 = X 2 + X + x 1 + x 2 + a  Y1+ Y2 

R =  ( and A = (-) X I  + X 2  
y3 = X(x1 + 23) 4- 23 + 91 

when the elliptic curve is over the binary field and defined by the equation, 

4. If P = Q then P + Q = R, where for prime characteristic 

and characteristic two 

x 3 = X 2 + X + a  Xl + Y1 
and X = (-&-) . 

y3 = x: + Ax3 + x3 

Note that the operation of P  + Q is known as point addition when P # Q and point 

doubling when P = Q. 

3.3.2 Point Scalar Multiplication 

Given that addition can be defined on elliptic curves, scalar multiplication can also be 

defined. The computation of [n] P, where n E Z and P E E(F,), given by 

[n]P = P + P  + ... + P (n times) 

is known as the scalar multiplication of a point. It is the primary operation in elliptic curve 

cryptography and achieved through a combination of point additions and doublings. 

A number of algorithms exist to perform point scalar multiplication. The most widely 



known and straightfonvard methods are the double and add and the double and addlsubtract 

methods. These methods are derived fiom the square and multiply algorithm for modular 

exponentiation, where the binary representation of n is used to determine the sequence of 

doubles and additions. 

3.4 Bilinear Pairings on Elliptic Cuwes 

Pairings in elliptic curve cryptography are functions which map a pair of elliptic curve 

points to an element of the multiplicative group of the underlying finite field. Two types 

of pairings were originally defined, namely the Weil [22] and the Tate [14] pairing. Both 

of these pairings will be defined in this section. 

3.4.1 Pairing Related Concepts 

There are a number of additional concepts that are required for bilinear pairings. Each of 

these will be discussed here. 

The order of a point P E E is defined as the smallest positive integer r such that 

[r]P = 0. Points of order r are also known as r-torsion points. The subgroup of r- 

torsion points in E is denoted by E [r], so 

The elliptic curve point input to Miller's algorithm, and so input to the bilinear pairing, 

must be a r-torsion point. 

The elliptic curve on which the pairing is implemented over, must possess some 

special properties. Two categories of elliptic curves, namely supersingular and non- 

supersingular elliptic curves are used for bilinear pairings. An elliptic curve E defined 

over F, is supersingular if p divides t, where t is the trace of Frobenius [48]. Conversely, 

an elliptic curve E defined over IF, is non-supersingular if p does not divide t. Non- 



supersingular curves are also referred to as ordinary. 

An extension field with special properties is also required. This is known as the 

embedding degree or security multiplier and is denoted by k. For technical reasons it 

is assumed that k > 1. The embedding degree is an extension degree that provides an 

extension field that contains the r-th roots of unity in Fqk, where the r-th roots of unity 

are defined as p, = {x E Pi, IxT = 1). The value of the embedding degree depends on 

a number of factors, one of which is the type of elliptic curve. For supersingular elliptic 

curves, the embedding degree is bounded by k 5 6, although the upper bound of the 

embedding degree depends on the underlying field. For supersingular elliptic curves over 

the large prime field, the embedding degree is bounded by k < 2. For supersingular 

elliptic curves over the binary field, the embedding degree is bounded by k 5 4. For 

supersingular characteristic three elliptic curves, the embedding degree is bounded by 

k 1 6. Hence, generally supersingular curves are used in conjunction with fields of 

characteristic two or three. For non-supersingular elliptic curves suitable for pairings, 

the bound for the embedding degree is not as restrictive. For a non-supersingular elliptic 

curve to be pairing friendly, it must have a reasonably small embedding degree k 5 24 

(for computational reasons) and contain a large subgroup r of prime order. However, to 

randomly find an ordinary curve with these properties, is not easy. Hence, a number of 

curve construction methods, which construct elliptic curves with these properties, have 

been developed. For example, MNT 189, 1191 give a method for constructing ordinary 

elliptic curves with embedding degree 3, 4 or 6 and Barreto and Naehrig [16] give a 

method to construct elliptic curves with embedding degree 12. For bilinear pairings, the 

elliptic curve or "pairing friendly curve" must have a relatively small embedding degree 

and contain a large prime order subgroup. 



3.4.2 Pairing Definitions 

Let E be an elliptic curve over a finite field F,. Let rl#E(Fq) be a prime not equal to the 

characteristic of the field F,. The embedding degree k is the smallest positive integer such 

that rJqk - 1. The embedding degree is chosen this way to ensure that the full r-torsion 

group E [r] of the elliptic curve is defined over the field E(Fqk), i.e. E [r] c E(Fqk). 

The group of r-th roots of unity in Fqk is defined as pT = {x E Pzk IxT = 1). The Weil 

pairing is a mapping 

w : E(Fqk)[r] x E(Fqk) [r] + PT, (3.1) 

and the Tate pairing is a mapping 

The Weil and the Tate pairing differ both on their input and their output. The Weil pairing 

accepts both input points from the subgroup ofpoints of order r, E(Fqk) [r], andproduces 

a unique value. The Tate pairing accepts one point from the subgroup E(Fqk) [r] and the 

other from the quotient group E(F,k)/rE(F,k). The output of the Tate pairing is not 

unique and is a member of a coset of the group (P;k)/(F$)T which is defined up to r-th 

powers. To produce a unique value, the reduced Tate pairing is defined. The reduced Tate 

pairing is defined as 

(ak-l)lT e(P, Q) = (., .)T (3 -3) 

This additional operation of raising the output of ( a ,  -), to the power of (qk - l ) / r  is 

known as the h a 1  exponentiation. The Weil and the Tate pairing are related [I361 in that 

Pairings exhibit the following properties, making them attractive and useful in a crypto- 

graphic context. 



1. w is bilinear in each variable. This means that w (SI+ Sz, T) = w (SI, T) w (S2, T )  

and w (S, TI + T2) = w (S, TI) w (S, T2) for all S, SI , S 2 ,  T ,  TI, T2 E E(F,k ) [TI. 

2. w is non-degenerate in each variable. This means that if w(S, T) = 1 for all T E 

E (F,k) [r] then S = 0 and also if w (S, T )  = 1 for all S E E (IF,,,) [r] then T = 0. 

The same properties hold for the Tate pairing e(S, T). 

3.4.3 Computation of Pairings 

Two methods to compute a pairing have been put forward. The first method was proposed 

in an unpublished manuscript by Miller [88] in 1986. This method is based on divisor the- 

ory [136] and to date has been the foundation from which all pairing algorithms have been 

constructed. In 2006, an alternative technique was proposed by Stange [126]. Stange's 

method, which is based on elliptic nets, is less efficient than Miller's algorithm requiring 

more field multiplications. 

Miller's algorithm consists of a double and add algorithm for elliptic curve point mul- 

tiplication with additional functionality. The input points P and Q to Miller's algorithm 

are chosen such that the point P is a point of order r. During the point scalar multiplica- 

tion of the point [r] P, which upon completion should result in 0, a distance relationship 

between the lines produced from the point addition and a static point Q is calculated. 

If Z A , ~  and VA+B are the diagonal and vertical lines which arise in the addition rule for 

adding A = [a] P to B = [b] P to produce C = A + B, and the point A has coordinates 

(xi, yi), the point C has coordinates (xi+1, yi+1), the point Q has coordinates (XQ, yQ), 

and the line through A and B has a slope of Xi ,  then explicitly 

In each round of the Miller loop, l A , ~  is divided by VA+B to produce an element in the 



extension field m E F$ referred to as the Miller variable. This value is multiplica- 

tively accumulated and eventually outputted from Miller's algorithm. Miller's algorithm 

is given in Algorithm 1. 

Algorithm 1 Miller's Algorithm [88] 
INPUT: P = ( z p ,  y p ) ,  Q = ( X Q ,  yQ)  e E(IF ,k )  
OUTPUT: m E FGk I mr = 1 
1: TcP,rn+-1 
2: for i c [log, ( T ) )  - 1 to 0 do 
3: m +- m2 . ~ T , T ( Q ) / ~ Z T ( Q )  

4: T +- 2T 
5: if ri = I then 
6: m m . ~ T , P  (Q) /UT+P(&)  

7 :  T + - T + P  
8: endif 
9: end for 

10: returnm 

The Weil pairing is calculated with two applications of Miller's algorithm. The output 

from the two calls to Miller's algorithm are then divided to produce the bilinear map value. 

Calculation of the Tate pairing requires only one application of Miller's algorithm. In this 

case the output from Miller's algorithm is raised to the power (qk  - l)/r to produce the 

bilinear map value. 

A vital requirement for the successful computation of all pairings is that the input 

points P and Q be linearly independent. If they are linearly dependent the bilinear map 

value will degenerate to 1. This can however be ensured through special choice of input 

points. Improvements to Miller's algorithm will be discussed next. 

3.5 Practical Pairing Implementations 

The efficient computation of pairings is essential to the efficiency and employability of 

the related pairing based cryptosystem. The general definitions of the Weil and Tate 

pairing were given in the previous section. However when implemented in their original 

form, they are uneconomical and time-wise, unattractive. Since their definition, many 

endeavours have been made to produce efficient pairing algorithms. These advances have 



lead to the development of extremely efficient pairing implementations. Some of the 

main advances in the optimisations of pairings and the resulting pairing algorithms, will 

be presented in this section. Specifically, five types of pairings algorithms, which are 

relevant for power and fault analysis of pairings in later chapters, will be presented. 

3.5.1 Optimisations 

Some of the main advances in the optimisation of pairings are as follows. The choice of 

elliptic curve and underlying field affect the efficiency of the pairing. Choosing an elliptic 

curve and finite field, in particular where efficient algorithms for finite field arithmetic are 

optimised, can immediately make the pairing more economical. 

Special choice of the input parameters P and Q can result in more efficient finite field 

operations. In practice one often works with specific subgroups to speed up the pairing 

computation. For example, choosing an elliptic curve point as an element of the base field 

E (F,) as opposed to the extension field E (IF$ ) will result in arithmetic being performed 

over the smaller and more efficient base field as opposed to the larger extension field. 

Both parameters however, cannot be chosen from the same group since P and Q must be 

linearly independent in order for the pairing not to degenerate. The modified Tate pairing 

satisfies this requirement and defines a pairing where both P and Q are efficiently chosen. 

The modified Tate pairing is specifically defined for supersingular elliptic curves since a 

distortion map (or non-rational endomorphism), denoted 4, allows elements from the 

base field E (F,) to be mapped to elements in the extension field E (IF$). For example, 

for E (IFp) : y2 - x3 + ax where p = 3 (mod 4) the distortion map (z, y) H (-x, iy ) 

where i2 = -1 exists. The modified Tate pairing is defined as 



and so 

e(P, Q )  = (P, g ( ~ ) ) $ ~ - ' ) l '  

where the distortion map q5 : E(F,) -+ E(F,k) allows the parameter Q to be chosen 

as a point on the elliptic curve over the base field while still ensuring that P and g(Q) 

are linearly independent. Note that +(Q) 6 E(F,)[r] and thus is linearly independent 

of P. In addition to the advantageous efficient arithmetic over the smaller field, if the 

distortion map is chosen so that the x coordinates always lie in a subfield (for example 

IF, of F q k ) ,  then all terms v 2 ~ ( Q )  and V T + ~ ( Q )  in Miller's algorithm (Algorithm 1) 

can be eliminated. As a result, the divisions in Miller's algorithm can be dropped. This 

optimisation is known as denominator elimination and was proposed by [14]. 

Special choice of the order r also has implications for the pairings efficiency. Miller's 

algorithm involves a number of arithmetic operations proportional to the Hamming weight 

of r. Therefore, it is advantageous to choose r with low Hamming weight. For example, 

Solinas primes which have the form 2" & 2b & 1, where a and b are coefficients from 

the elliptic curve equation, have low Hamming weight [125]. Choosing r as a Solinas 

prime will minimise the number of additions performed in the point scalar multiplication 

of [r] P in the Miller loop. Instead of choosing r with low Hamming weight, another idea 

is to choose r as a multiple of the group order, that is if that multiple should have a lower 

Hamming weight. If r is chosen in this way then r must evenly divide qk - 1 to give a 

smaller factor, thus resulting in reducing the complexity of the final exponentiation. 

3.5.2 The Weil Pairing 

The Weil pairing w (P, Q)  in its original definition consists of two applications of Miller's 

algorithm. The first application is with the point scalar multiplication of the point [r]P 

and the distance relationship being calculated to the static point Q. The second is with the 

point scalar multiplication of the point [r]Q and the distance relationship being calculated 

to the static point P. This is why both input points P and Q must be chosen so that they 



both are of order r. The output of both applications of Miller's algorithm, say ml and ma, 

are divided ml/m2 to produce the bilinear pairing. No final exponentiation is required 

for the Weil pairing. 

The Weil pairing is most notably associated in the cryptanalysis sense with the MOV 

attack, where the complexity of solving the Discrete Logarithm Problem (DLP) on a 

group of points on an elliptic curve is reduced to solving the DLP over a finite field 

[81], and in the cryptographic sense with Boneh and Franklin's Identity Based Encryption 

(IBE) [22]. However, it is the least efficient pairing algorithm. Its sibling Tate is more 

efficient, and so has received greater attention by the research community. In this thesis, a 

variant of the original Weil pairing will be considered [117]. By introducing a simple final 

exponentiation, the denominator elimination optimisation can be exploited. Algorithm 2 

and 3 describe the variant of the Weil algorithm considered here. To distinguish this 

version from the original, it will be referred to as W D  as opposed to w.  

The implementation assessed in this research was implemented over non-supersingular 

elliptic curves of prime characteristic E(JFp) (see Section 3.5.3). The embedding degree 

k = 2 andp is chosen as a 512 bit prime so as to achieve 1024 bit security. Elements in the 

extension field Fp2 are represented as polynomials a + xb with a,  b E IFp and irreducible 

polynomial x2 + 1. Elements in Fp2 can be multiplied as normal and then reduced mod- 

ulo x2 + 1. If p is chosen such that it is congruent to 3 (mod 4), then -1 is a quadratic 

non residue modulo p. In the occurrence of x2 in the multiplication of JFp2 elements, x2 

can be replaced with -1. This means that x can be considered as the imaginary root of 

the irreducible polynomial, in which case elements of the extension field can be repre- 

sented as a + i b  where i is the imaginary square root of -1. An additional advantage of 

choosing p z 3 (mod 4) is that a simple method exists to compute the square root, i.e. 

fi = x(p+1)/4 (mod p), which is advantageous for point compression. The additional 

exponentiation appended to this Weil variant, p - 1, is actually very cheap due to the 



Frobenius action; 

(a + ib)P = (up + ipbp) = (a - ib) (mod p)  

(a - ib} + (a + ib)p-' = 
(a + ib) (mod P )  

requiring only a conjugation and division, where T% = a - ib is the conjugate of m = 

a+ ib. 

Algorithm 2 This algorithm, referred to as the g function, adds elliptic curve points and 
caicwlahs the most recent contribution to the Miller variable. 
INPUT: A = (XA,YA), B = (XB,YB), C = (xc,Yc),D = (zD,YD),P = (xP,YP),Q = (XQ,YQ) E 

OUTPUT: g E Fp2 and updates A and C 
I: ( A ' , A ~ )  ~ A + B  
2: (C', Xz) +- C + D 
3: U + XI(XA+XQ) -YA+yQi 
4: v + yp + (yc - &(xc + xp))i 
5: A 6 A', C +- C' 
6: returng + u * v  

Algorithm 3 Computation of wD(P, Q) on E(FP) : y2 = x3 $- a x  + b [117]. 

INPUT: P = (XP,YP) E E(FP)[r], Q = (zQ,yQ) E E1(FP) 
OUTPUT: m E ( mr = 1 

1: ~ + ~ , A < P , C + Q  
2: for i +- Llog, (T)] - 2 to 0 do 
3: m c m2 * g ( ~ ,  A, C, C, P, Q) 
4: if ri = 1 then 
5: m+-m*g(A,P,C,Q,J',Q) 
6: end if 
7: end for 
8: return m + $ 

3.5.3 The Tate Pairing 

The Tate pairing in contrast to Weil, requires only one application of Miller's algorithm. 

This is coupled with a final exponent of (q" l ) / r  to produce a bilinear map value. This 

is why the point of order r  requirement is only enforced on the first input point P. As 

mentioned previously, the only restriction for Q is that it is linearly independent of P. 

A number of algorithms have been developed to calculate the Tate pairing, the two 



most notable being the Duursma-Lee algorithm [37] and the BKLS algorithm [14]. The 

Duursma-Lee algorithm for computing the Tate pairing was originally introduced to com- 

pute a pairing on a family of hyperelliptic curves, and supersingular elliptic curves in 

characteristic three E(IF3m). The BKLS algorithm (Barretto, Kim, Lynn and Scott) [14] 

was also developed for characteristic three supersingular elliptic curve, but more recently 

has been associated mostly with non-supersingular elliptic curves of prime characteristic 

E(IFp) [118]. The Duursma-Lee algorithm will be briefly mentioned in Chapter 5 and 6, 

however, it is the BKLS algorithm [I 181 that will be the focus of the analysis in this thesis. 

Both algorithms are given here for completeness. Algorithm 4 and 5 describe the BKLS 

algorithm for the Tate pairing and Algorithm 6 describes the Duursma-Lee algorithm. 

The BKLS algorithm is an extremely efficient implementation of the Tate pairing in 

which denominator elimination is employed, the input points P and Q are chosen such 

that finite field arithmetic over the base field can be exploited, and r is chosen as a Solinas 

prime with low Hamming weight [125]. The implementation assessed in this research 

was implemented over non-supersingular elliptic curves of prime characteristic E(IFp) 

with embedding degree k = 2. 

The modified Tate pairing does not apply to non-supersingular elliptic curves, hence 

no distortion map exists to map Q E E(FP) to a point on E (IF,k). Another technique for 

non-supersingular elliptic curves, which allows the point Q to be on E(IF,), involves the 

use of the twist of the elliptic curve, denoted by E'. Every elliptic curve has a quadratic 

twist. However, the twist becomes useful when both the original curve E and the twist E' 

are defined over the quadratic extension field Fp2, since the twist E1(IFP) is isomorphic to 

E(P",z). This allows the point Q to be chosen as a point in E1(FP), which is subsequently 

mapped to a point in E(lFp2). Note that choosing Q as an element over a smaller field 

actually has no implications for the efficiency of the pairing, since in the algorithm Q is 

operated on as a quadratic field element. Choosing Q as an element over a smaller field 

is only useful for the transmission and sharing of Q in cryptographic protocols. 



The final exponentiation for the Tate pairing involves raising the output of the Miller 

loop to the power of (pk  - l ) / r .  By breaking (pk  - l)/r into its factors ( p d -  l)(*% l ) / r ,  

where k is even and k = 2d, exponentiation in parts can be performed. Exponentiation 

to the factor pd - 1 is straightforward due to the Frobenius action (Equation (3.6)). The 

exponentiation to additional factors can be facilitated by fast exponentiation methods such 

as windowing or NAF of the exponent. Elements in the extension field Fp2 are represented 

as a + i b  for the same reasons as above. The modulus p  is chosen as a 512 bit prime so 

that 1024 bit security is achieved, as the "security multiplier" k = 2. 

Algorithm 4 This algorithm, referred to as the g function, adds elliptic curve points and 
calculates the most recent contribution to the Miller variable. 
INPUT: A = (xA,YA) ,B = ( ~ B , Y B ) , Q  = ( ~ Q , Y Q )  E E(F,z) 
OUTPUT: g E Fpz  and updates A 

1: (A', XI) + A + B 
2: u +- y~ - Xl (xQ + X A )  - y ~ i  
3: A 4-- A' 
4: return g c u 

Algorithm 5 Computation of e(P, Q) on E(Fp) : y2 = x3 + ax + b [14]. 
INPUT: P = (xp ,  y p )  E E(Fp)[r], Q = ( X Q ,  yB) E E1(FP) 
OUTPUT: m E F;2 ( 7n1' = 1 

1 :  m + l , A t P  
2: for i +- [log, (r)]  - 2 to 0 do 
3: m  + m2 * g(A, A, Q) 
4: if ri = 1 then 
5 : m+m* g(A,P,Q) 
6: end if 
7: end for 
8 : m + - E  
9: return m(p+l)lr 

3.5.4 The q Pairing 

The q pairing q(P, Q) generalises the results of the Duursma-Lee algorithm for the Tate 

pairing for supersingular curves in characteristic three. The 7 pairing specialises in pair- 

ings over supersingular curves of small characteristic. The main distinction between the 

7 pairing and its siblings is that it chooses the order of the Miller loop r as a multiple of 



Algorithm 6 Duursma-Lee Algorithm for E(F,) : Q/2 = z3 - x + b where b = k1 and 
q = 3m [I071 
I N P U T :  P = (XI, y l ) ,  Q = (22, y2) t E(F,n) 
OUTPUT: m E 1 rnr = 1 

1: m+-1 
2: for i t [log, ( r ) ]  - 1 to 0 do 
3 :  X l  + 2': 

4: yl ' y,3 
5: p + x ~ + x z + b  
6: X + - - y l . y ~ m - ~ ~  
7: g + X - p p - P 2  
8: m e m .  

1 / f  9: xz + x ,  
1/3 

10: yz +- yz 
1 1 :  endfor 
12: return mq3-I 

the group order such that it divides q" 1 nicely to give a small factor. This results in 

simplifying the final exponentiation. For example if q" 1 = 24m - 1 and r = 22m + 1, 

then the final exponentiation basically involves a conjugation and division. In addition 

the formulae for point addition and point double is explicitly derived and built into the 

algorithm. 

Recently Galbraith et al. [41] proposed a variant of the q pairing requiring no final 

exponentiation. This is enabled by reintroducing line hnction evaluations a(),  which the 

original q [13] does not have. It is this version of the q pairing that will be considered in 

this thesis, and so will be referred to as the 7~ pairing to distinguish it from the original 

q pairing. Algorithms 7 and 8 describe the q~ pairing. 

The implementation assessed in this research was implemented over supersingular 

curves of characteristic two. The embedding degree Ic = 4 and m = 271. Elements 

in the extension field E(F24,,) are represented as polynomials a0 + a l x  + a2x2 + a3x3 

with ai E IF2m and the irreducible polynomial x4 + x + 1. Elements in E(F24m) can be 

multiplied as normal and then reduced modulo x4 + x + 1.  In practice, the coefficients of 

elements in Fa4m are stored in four different cells in memory. The notation [ao] [al]  [a21 [a3] 

is defined to represent the storage of each of these elements. 



Algorithm 7 This algorithm, referred to as the g function, adds elliptic curve points and 
calculates the most recent contribution to the Miller variable. 
INPUT: A = ( X A ,  Y A ) ,  C = ( X C ,  y c ) ,  Q = ( X Q ,  y Q )  E E ( F 2 7 n )  
OUTPUT: g E F 2 4 m  and updates A 

1:  (A',Xl) + A +  C 
2 :  1 [YQ + Y A  + A l  ( X Q  + X A  + I ) ]  [ A 1  + X Q  + 1 ] [ X l  + xQ]  [o] 
3: v +  [ x Q + X C + 1 ] [ 1 ] [ 1 ] [ 0 ]  
4: A t A' 
5: return g  + 

Algorithm 8 Computation of qG(P, Q)  on E(F2m) : y2 + y = x3 + x + b [41]. 
INPUT: P = (XP, yp), Q = ( X Q ,  Y Q )  E E ( F 2 r n  ) 
OUTPUT: m E 1 mr = 1 
1: m + - l , A + P  
2: for 7. to 0 do 
3: m + m2 * g ( A ,  A, Q )  
4: end for 
5: return m 

3.5.5 The q~ Pairing 

The 7 7 ~  pairing m ( P ,  Q)  is a truncated version of the q pairing, that is the number 

of iterations of Miller's loop is reduced. The BGOhES algorithm (Barreto, Galbraith, 

O'hEigeartaigh and Scott) [13] is used to calculate the r p  pairing. 

The particular implementation assessed here was implemented over supersingular 

curves of characteristic two E(IF2m). The embedding degree Ic = 4 and m = 379. Both 

parameters input to the pairing, P and Q, are elements in E(IF2ln). The field F24m has 

elements s, t such that s2 = s + 1 and t2 = t + S. Elements in F24m will be represented 

using the basis 1, s ,  t ,  st. To map a point from the base field to a point on the quartic 

extension field IF2*,, the distortion map (x, y) = ( x  + s2, y + sx + t )  is used. The distor- 

tion map and the formulae for point addition and doubling are explicitly derived and built 

into the algorithm. Elements in the extension field E(F24,) are represented as before as 

polynomials ao + alx  + a2x2 + a3x3 with ai E IF2m and the irreducible polynomial is 

x4 + x + 1. Algorithm 9 describes the VT pairing. 



Algorithm 9 Computation of qT(P, Q) on E(F2m) : y2 + y = x3 + x + b [13]. 
INPUT: P = (rcp, y p ) ,  Q = ( X Q  , y ~ )  E E ( I F 2 7 n )  

OUTPUT: f E I f = 1 
1 :  u + x p + l  
2: f + u ~ ( r c p + x q + l ) + y ~ + y Q + b + l + ( ~ + ~ ~ ) s + t  
3: for i c 1 to (m + 1)/2 do 
4: U + X P , Z P + ~ , Y P + & ~ F  

5 :  ~ + I L ~ ( Z P + X Q ) + ~ P + Y Q + ~ P + ( U + ~ Q ) S + ~  

6: f+f.zg 
7: X Q  + X Q ,  Y Q  Y: 
8: end for 
9:  return f (22"-1)(2 'n  2(7n+1)/2+1)(2(mf1/2)+l) 

3.5.6 The Ate Pairing 

The Ate pairing [50] a(P, Q) is the most recently discovered pairing algorithm. It is 

related both to the Tate and the q pairing. The Ate pairing is a mapping 

Note that Ate prefers to make the first parameter P over the larger field, which is the 

opposite to the Tate pairing. In particular, P E E1(IFpk/d) and the second parameter 

Q E E (IFp), where d is the degree of the twist. Here only the quadratic twist is considered, 

hence d = 2. This affects the point scalar multiplication of [r] P ,  which is now calculated 

over the extension field E1(Fpkld). If lg(t)/lg(r) < 1 where t is the trace of Frobenius, 

then the Ate pairing is faster than the Tate pairing for non-supersingular curves E(Fp), 

since a truncated loop of length lg(t) is used instead of lg(r). To avail of this shorter 

Miller loop however, an elliptic curve with special properties must be used. Algorithms 

10 and 1 1 describe the Ate pairing. 

The implementation assessed in this research was implemented over non-supersingular 

elliptic curves of prime characteristic E(IFp). The embedding degree k = 4 and so 

d = 2 since k = 2d. The modulus p is chosen as a 512 bit prime so that 2048 bit 

security is achieved. There are two ways to represent elements in Fp4. Either as a quartic 

a + x b  + cx2 + d x 3  with a ,  b, c, d E IFp or as a quadratic built on top of a quadratic a + b x  



where a and b E Fp2. The second method is more efficient for impIementations. If p is 

chosen such that it is congruent to 5 (mod 8), then -2 is a quadratic non residue in IF, 

and 9 is a quadratic non residue in Fp2. This allows elements in FP4 to be represented 

as a pair of elements in Fp2, m = mR + imI with i = (-2)'14. In Algorithm 10, which 

calculates the Miller variable contribution, the points on the twisted curve E1(IFP2) must 

be converted to elements in E(Fp4). 

Algorithm 10 This algorithm, referred to as the g function, adds elliptic curve points and 
calculates the most recent contribution to the Miller variable. 
INPUT: A = ( Z A ,  Y A ) ,  B = (XB, Y B ) ,  Q = ( Z Q , Y $ )  E E(IFp4) 
OUTPUT: g E IFp& and updates A 

1 :  ( A / , x ~ ) ~ A + B  
2: u + i2yQ - i ( i 2 y ~ / 2  + x 1 ( i 2 z A / 2  + z Q ) )  
3: A c A '  
4: return g + u 

Algorithm 11 Computation of a(P,  &) on E(Fp) : y2 = x3 + ax + b [50]. 

I N P U T :  P = ( X P , Y P )  t E ' ( F p 2 ) [ ~ l ,  Q = ( Z Q , Y Q )  E E ( F p )  
OUTPUT: m E F;4 1 mr = 1  

1: m + l , A + P  
2: n t t - 1  
3: for i t [log, (n)J - 2  to 0 do 
4: m +- m2 * g ( A ,  A, Q )  
5: if ni = 1 then 
6: m + m * g ( A , P , Q )  
7: end if 
8: end for 
9 : m t "  ?n 

10: return m p 2  + 

3.6 Cryptographic Applications of Bilinear Pairings 

As mentioned previously, following the introduction of pairings in a constructive manner, 

a large amount of attention has been devoted to using bilinear pairings to build cryptosys- 

terns with novel properties. For example, a myriad of key agreement schemes, signature 

schemes and encryption schemes have been proposed. A survey of the many schemes 

can be found in [36]. In the context of this research, bilinear pairings where one of the 



parameters input to the pairing is a secret are of particular interest. As motivation, a brief 

description of an important pairing based protocol is given, namely the IBE scheme of 

Boneh and Franklin. 

The concept behind identity based cryptography was conceived in 1984 when Shamir 

[121] called for a public key, identity based encryption scheme in which the public key 

can be an arbitrary string. Shamir's original motivation for this scheme was to simplify 

the management of certificates in email systems. For example, if Alice wants to send an 

encrypted email to Bob, she encrypts the message using Bob's public key string, which 

simply corresponds to his email address. This differs considerably from traditional cer- 

tificate based schemes, allowing the public key to be derived in a deterministic way from 

the user's identity parameters. When Bob receives the encrypted message he contacts a 

third party, known as the Private Key Generator (PKC). Bob authenticates himself to the 

PKG and obtains his private key. Bob can now decrypt the encrypted message received 

from Alice. 

The first concrete implementation of IBE however, did not appear until 2001 when 

Boneh and Franklin [22] proposed an IBE scheme based on bilinear maps. The basic idea 

of Boneh and Franklin's IBE scheme is presented here. 

Let w : GI x GI -t G2 be a bilinear pairing. In the context of pairings as just 

described GI is a group of points on an elliptic curve over a finite field, and G2 is the 

underlying multiplicative finite field. Originally, Boneh and Franklin's IBE scheme was 

defined with the Weil pairing. However, any pairing definition can be used here. Let 

HI : (0, I)* -t GI and H2 : Gz -t {O,1}' be cryptographic hash functions where I 

is the bit length of the plaintext m to be encrypted. The PKG selects a private key s at 

random and computes its public key as Q = [SIP, where P E GI. 

Bob's private key is DB = [s]QB where QB = HI ( I D B )  and I D B  is the public key 

string, such as Bob's email address, associated with Bob's identity. Note that to compute 

DB, given P, Q and QB, is an instance of the Diffie Hellman Problem (DHP), in the 



group GI .  The DHP is the problem of given P, [x]P and [y] P, calculate [z] P = [xy] P 

[77]. Hence, only the PKG can calculate DB since it has access to the secret value s. 

Alice encrypts a message m E (0, l j l ,  by first randomly selecting an integer r and then 

computing the following values 

and sending the ciphertext pair (Cl, C2) to Bob. Bob can recover the original message m 

from the ciphertext (Cl, Cz)  by using his private key DB to compute 

To see how the bilinear property of the pairing enables the decryption of the ciphertext, 

observe that 

In the non-side channel and fault attack sense, an adversary who attempts to recover m 

from the ciphertext (Cl, C2) has to compute w(QB, Q)T h m  (P,  QB, Q,  el), which is 

an instance of the Bilinear Di£Ee-Hellman Problem (BDHP) (see Section 3.7). 

As can be seen here, it is the bilinear pairing in the decryption operation which relies 

on the private key DB. If this decryption operation is executed on a device such as a 

smart card, the pairing operation, since it involves the private key, will be a target for 

implementation attacks. 



3.7 Associated Security of Bilinear Pairings 

The development of cryptosystems based on elliptic curves has seen the definition of 

various hard problems and related security concepts upon which the security of the elliptic 

curve cryptosystems are based. A number of security concepts are associated with bilinear 

pairings in particular. The relevant concepts will be briefly mentioned here. 

In the case of IBE, where DB is Bob's private key, the attack on this scheme will 

consist of the adversary trying to find DB given (P, QB, Q, C1). This is an instance of the 

Bilinear Diffie-Hellman Problem (BDHP) which is the problem of computing e(P, P)xYZ 

given P, [XI P, [y] P, [z] P E Go. To solve the BDHP appears to require the adversary to 

be able to extract x, y and z from [XI P, [y] P and [z] P ,  which are instances of the Elliptic 

Curve Discrete Log Problem (ECDLP), an accepted hard problem to solve. 

When considering implementation attacks, these established security levels are null 

and void since the adversary uses additional information, such as side channel leakage like 

the power consumption or faulty pairing computation, to gain insights. Therefore, these 

established security concepts are irrelevant when considering power and fault analysis 

since pairings must be considered under new criteria. This is one of the main objectives 

of this thesis. 

3.8 Power and Fault Analysis of Elliptic Curve Primitives 

Elliptic curve cryptosystems have been open to much scrutiny in terms of implementation 

attacks such as power and fault analysis. Avanzi [9] presents a good overview of how 

elliptic curve primitives have been attacked with SCA. Also chapters 27, 28 and 29 of 

[30] provide a comprehensive overview on this topic. 

On the power analysis front, many successful attacks on the point scalar multiplication 

of [n] P where the scalar n is the secret, have been documented. For example, the classic 

double and add algorithm for point scalar multiplication is inherently vulnerable to SPA 



since the execution path is dependent on key bits [31]. This is particularly vulnerable 

since the formulae for point addition and point double differ, and so are differentiable in 

the power trace. Several alterations to the algorithm for point scalar multiplication have 

been proposed which effectively make the algorithm behave uniformly. For example, the 

double and add always algorithm which carries out dummy operations [31] and unified 

code for point addition and doubling [I341 have been proposed to hide the presence or 

absence of point additions, since the knowledge of this information indicates a 1 or a 0 

in the secret key n. However, these attempts have proved to be still open to attack as 

demonstrated by [I341 and [128]. 

Power analysis attacks such as DPA and CPA, have been equally successful on both 

the classic double and add algorithm and the double and add algorithms borne out of SPA 

attacks. Common countermeasures to deter these more powerful attacks include randomi- 

sation, which can be easily incorporated using the basic field properties. In particular, 

measures such as random projective coordinates, random elliptic curve isomorphisms or 

random field isomorphisms can be employed without much alteration of the algorithm. 

However, these so-called protected algorithms have also proved vulnerable to high-order 

DPA as demonstrated by [45]. 

Fault attacks have received less attention than their power analysis attack counterparts. 

The attack on the point scalar multiplication algorithm has again been prominent, where 

the scalar is the secret. The main types of attacks that have been developed have sought 

to corrupt an elliptic curve point involved in the computation so that it no longer lies on 

the correct curve. For example, inputting faulty elliptic curve points which are not on 

the prescribed elliptic curve can under certain circumstances reveal the secret [18]. By 

creating a fault during the computation of [n] P, then if the faulty output is not checked to 

be a point on the elliptic curve, then the secret key can be revealed [18]. Simple checks in 

these situations, such as checking whether P E E, can detect whether there has been an 

attack or not, and so suffices to prevent the adversary from extracting the key. However, 



this detection mechanism is not sufficient to catch all types of faults. An attack described 

in [20], targets the sign of the elliptic curve point. For example, a fault corrupts the point 

(x, y) so it becomes (x, -y). This faulty point is a valid element on the elliptic curve, 

and so will not be detected. 

As described, the majority of research has focused on the scenario where the target 

operation is the point scalar multiplication of the point [n] P and n is the secret scalar of 

interest. In pairings however, the scalar r which is required for point scalar multiplication 

of the point [r] P ,  is the order of the point P ,  and is a public value. Therefore, the research 

that has been performed on elliptic c w e  primitives is not relevant to pairings. In pairing 

based protocols, such as the IBE described in Section 3.6, it is the elliptic curve point 

input to the pairing which is the secret, and so the value of interest. 

3.9 Conclusion 

In this chapter, the relevant background on bilinear pairings was provided. Mathematical 

definitions and algorithm descriptions were given of the candidate pairing implementa- 

tions to be assessed in later chapters. In the next chapter, the process of power and fault 

analysis will be investigated in more detail. Subsequently, the application of these tech- 

niques to the pairing algorithms discussed here will be addressed. 



Chapter 4 

Further Analysis of Power and Fault 

Attacks 

4.1 Introduction 

In this chapter, a number of aspects of implementation attacks are examined in more 

detail. In particular, work that was performed during the familiarisation period of the 

research area is detailed. 

Firstly, a fault attack on the Digital Signature Algorithm (DSA) is described. The 

DSA is an asymmetric algorithm that is central to the Digital Signature Standard (DSS). 

The DSA provides authentication, integrity and non-repudiation [97]. A number of theo- 

retical attacks on the DSA, based on lattice reduction techniques, are widely known and 

have been reasonably researched over the previous years. Most of these attacks assume 

that there is some information known about the nonce, which is used in the generation 

of the DSA signature. One obvious technique to gain information on the nonce is to ma- 

nipulate the generation of the nonce using a fault attack. However, most of the attacks in 

the literature neglect to deal with a vital aspect of the attack, how the fault was actually 

injected in the first place. By performing a glitch attack on a smart card implementing the 



DSA, the generation of the nonce can be corrupted in such a way that a number of bits are 

set to zero. This provides the adversary with the necessary information about the nonce 

so that theoretical findings of previous work can be used to extract the entire private key 

[94,5 11. In Section 4.2, the first experimental results of this attack are described. 

Next, the process of performing Differential Power Analysis (DPA) is examined. This 

is generally a lengthy process. The data acquisition phase alone can take a long period 

of time, depending on a variety of practical factors, such as the duration of the moni- 

tored process, the oscilloscope to PC transfer rate, the equipment's sampling frequency, 

the number of power traces necessary to overpower the target's signal to noise ratio, etc. 

Then, when the data collected are passed to the data analysis phase, the data are manip- 

ulated in various ways to derive information on the key used. This is a tedious and time 

consuming process, involving repeated operations that can be improved upon. In Section 

4.3, a number of computational improvements to the data analysis phase of a SCA are 

proposed. These improvements, which do not affect the attack's precision or probability 

of success, are described in terms of DPA [66]. The methods described are applicable to 

other forms of SCA, such as Differential Electromagnetic Analysis (DEMA) [ I l l ,  421, 

where once the acquisition stage of the attack is complete, the data analysis phase is ex- 

actly the same as DPA. As an illustrative example, assuming that a classic DPA of a given 

device requires approximately 64,000 power trace operations, the techniques described 

would obtain exactly the same results by spending only 3% of the computational effort 

(namely approximately 2 1 00 operations). 

Section 4.2 describes work that was performed in collaboration with Phong ~ ~ u ~ g n ,  

Mike Tunstall and David Naccache and was published at the Public Key Cryptography 

conference in 2005 [95]. Section 4.3 describes work that was performed in collaboration 

with Mike Tunstall and David Naccache and was published at NATO Advanced Research 

Workshop on Security and Embedded Systems in 2005 [92]. Both projects were per- 

formed in Gemplus research and development laboratories in La Ciotat, France, using 



custom built Gemplus tools [52]. 

4.2 Fault Attack on the DSA: First Experimental Results 

In this section, the different stages that are required to execute a fault attack on the DSA 

are described. Firstly, DSA signature generation and verification is reviewed. 

4.2.1 DSA Signature and Verification 

The system parameters for the DSA [97] are { p ,  q ,  g}, where p is prime (between 5 12 and 

2048 bits), q is a 160 bit prime dividing p - 1 and g is an element of order q in the group 

IF,, i.e. gQ - 1 ( m o d  p). Each of these values is public information. The private key is 

an integer a E IF, and the public key is the group element P = g" ( m o d  p). 

Signature: To sign a message p, the signer picks a random k < q known as the nonce 

and computes 

r +  (gk ( (modp) )  ( m o d q )  and s t  H ( p )  + ( m o d  q )  k 

where H is a hash function. The signature of p is the pair: (r, s ) .  

Verification: To check (r, s) the verifier ascertains whether 

1 
r 1  (gwhow' ( m o d p ) )  ( m o d q )  where m t - (modq) and h + H ( p )  

S 

4.2.2 Attack Ovemew 

The attack on DSA proceeds as follows. Firstly, several DSA signatures are generated 

where the random value generated for k has been modified so that a few of k's least 



signscant bits1 are reset to zero2. This faulty k will then be used to generate a DSA 

signature. Using lattice reduction (see Section 4.2.6), the secret key a can be recovered 

from a collection of such signatures. 

4.2.3 Experimental Conditions 

The first question that arises in such an attack is how will this very specific fault attack be 

realised in practice. To determine the viability of such a targeted attack, the generation of 

k was implemented alone in a closed environment and analysed to determine the optimal 

locations for fault injection. To generate k, a random number generator is used to generate 

a 160 bit number. This number, the nonce k, is then compared to q to ensure that it is in 

IF:. If k > q - 1, then the nonce is discarded and a new k is generated. Two approaches 

can be used to analyse the generation of k.  The first approach is to use Simple Power 

Analysis (SPA) to characterise the power trace and identify when the random number 

generator is in operation. The second is to purposely include special commands in the 

implementation to indicate the start and end of the generation of k, thereby indicating the 

time in which to inject the fault. The technique detailed in [95] used the latter approach. 

A typical code fragment to generate k is as follows. Note that acCoproMessage [ I  is 

used to hold k as it is being generated. 

PutModulusInCopro (PrimeQ) ; 

RandomGeneratorstart ( ) ; 

status = 0; 

IOpeak ( ) ; 

for (i=O; icPrimeQ[Ol ; i++) { 

acCoproMessage [i+l] = ReadRandomByte ( ) ; 

'The attack can also just as validly target the most significant bits of k .  
'1t is also possible to nm a similar attack if the target bits are set to one as opposed to zero. 



1 
IOpeak ( 1  ; 

The I/O peak, IOpeak in the code fragment is a manually inserted command, which 

basically is a quick movement on the YO channel from one to zero and back again. By 

placing a probe on the 110 (which is the C7 pin on the smart card as described in Chapter 

2), this action can be detected by an oscilloscope. Since the command IOpeak indicates 

the beginning and end of the generation of k, the desired location in which to inject the 

fault can be easily identified. 

To compt the fault in the desired way, a CLIO reader was used to create a glitch 

attack during the execution of the generation of the nonce. A CLIO is a specialised high 

precision reader that allows one glitch to be introduced following any arbitrarily chosen 

number of clock cycles after the command sent to the smart card. A photograph of a 

CLIO reader was shown in Chapter 2. 

4.2.4 Generating a Faulty Nonce 

The command that generated k was attacked in every position between the two IOpeaks 

in the code. It was found that the fault did not affect the assignment of k (the instruction 

acCoproMessage [i+l I = ReadRandomByt e ( ) ; ) which always executed cor- 

rectly. However, it was possible to cause the loop to end prematurely. It was found that 

tampering with the evaluation of i, caused a number of the least significant bytes of k not 

to be assigned, and so were effectively set to zero. An evaluation of a position that reset 

the last two bytes was performed. Out of 2000 attempts 857 were corrupted. 

4.2.5 Glitching The Nonce During DSA Computations 

The next step to the attack is to recreate the same fault attack during the generation of 

the nonce k, except while it is part of the computation of the DSA signature. The po- 

sition found where a fault could be induced in the closed environment was equated to 
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Figure 4.1 : The top signal is the 110. The bottom signal is the power consumption. 

the generation of k in the natural working environment of the DSA. As changes in the 

value of k were not visible in the signature, this makes the attack more complex, since a 

faulty signature must be determined from a valid signature. To distinguish between such 

signatures, the 1/0 and the power traces can be used. An example of such monitoring is 

given in Figure 4.1. The objective of acquiring the power traces is to measure the time T 

elapsed between the end of the command sent to the card and the beginning of the cal- 

culation of r. This can be seen in the power consumption, as the chip will require more 

energy when the crypto-coprocessor is ignited. 

Let t denote the time that it takes to reach the start of the calculation of r knowing 

that the picked k was smaller than q (i.e. that it was not necessary to restart the picking 

process) then, if T = t the command has executed properly and Ic was picked correctly 

the first time. If T > t then any fault targeting k would be a miss (as k was regenerated 

given that the value of k originally produced was greater than q). Signatures resulting 

from commands that feature such running times can be discarded as the value of Ic will 

not present any exploitable weaknesses. When T < t the execution of the code generating 



k has been cut short, inferring that some of the least significant bytes will be equal to zero. 

This allows signatures generated from corrupted k values to be identified. 

Once the faulty signatures are generated, they are passed on to the next phase of the 

attack which involves the use of lattice reduction techniques. 

4.2.6 Use of Lattice Reduction to Retrieve a, 

To extract the DSA signer's private key a, the lattice attack of Nguy8n and Shparlinski 

[94] is employed. This attack requires partial information on the nonce k and a number 

of signatures, where these particular nonces are used to generate the signatures. The 

number of signatures required in order for the attack to success~lly retrieve the private 

key depends on the amount of information known. Since the glitch seeks to prevent the 

whole 160 bits of k being assigned, it is assumed that the known information used in the 

attack is the number of bits of k that are zero. The technique based on lattice reduction 

involves solving the closest vector problem. The lattice reduction aspect of the attack, 

which was executed by Nguy$n, one of the authors of the attack [94], is presented here 

for completeness. 

For a rational number z and m 1 1, LzJm denotes the unique integer a, such that 

a = z (mod m) (provided that the denominator of z is relatively prime to m) and 0 5 

u 5 m - 1. The symbol 1.1, is defined as (zlq = minbEZ ( Z  - bq( for any real z. 

Assume that the t least significant bits of a nonce Ic E (0,. . . , q - 1) which will 

be used to generate a DSA signature, are known. Hence, an integer a exists such that 

0 5 a 5 2' - 1 and k - a = 2'b for some integer b 2 0. Given a message p signed with 

the nonce k, the congruence 

a r - s k -  h (mod q), 



crtn be rewritten for s # 0 as: 

a~.2-%-' I= (a - ~-'h)2-~ + b (mad q). 

Now define the following two elements 

and remark that both t and u can easily be computed by the adversary horn the publicly 

known information. RecalIing that 0 5 b 5 q/zt, 

can be obtained and therefore 

(at - ?L - q/2"1 1,s q/2ec1, 

Thus, the adversary knows an integer t and a rational number v = u f q/2cf1 such that 

(at - v(,  I q/2@". 

In some sense, an approximation of d modulo q is known. Now, suppose this cam be 

repeated for many signatures, that is, d DSA signatures (Q, B ~ )  of hashes hi (where 1 5 

i 5 d) such that the C least significant bits of the corresponding nonce hi are known, 

are generated. From the previous reasoning, the adversary can compute integers ti and 

rational numbers vi such that 



The goal of the adversary is to recover the DSA private key a. This problem is very 

similar to the so-called hidden number problem introduced by Boneh and Venkatesan 

in [23]. The problem is solved by transforming it into a lattice closest vector problem 

(for background on lattice theory and its applications to cryptography, see [93]). More 

precisely, consider the (d + 1)-dimensional lattice L spanned by the rows of the following 

matrix 

The inequality (ui - ati 1, 5 q/2ef1  implies the existence of an integer ci such that 

Notice that the row vector c' = (atl + q c l ,  . . . , atd + q c d ,  a/2ef l )  belongs to L, since it 

can be obtained by multiplying the last row vector by a and then subtracting appropriate 

multiples of the first d row vectors. Since the last coordinate of this vector discloses the 

hidden number a, known as the hidden vector Z The hidden vector is very close to the 

(publicly known) row vector v' = (al, . . . , v d ,  0). By trying to find the closest vector to 

v" in the lattice L, one can thus hope to find the hidden vector Zand therefore the private 

key a. 

In the attack described above, the lattice is constructed as previously mentioned, then 

the closest vector problem is solved with respect to 5, using the so-called embedding 

technique that heuristically reduces the lattice closest vector problem to the shortest vector 

problem (see [94] for more details). 



4.2.7 Countermeasures 

The heart of this attack lies with the ability to induce faults that reset some of k's bits. 

Hence, any strategy which permits such anomalies to be avoided or detected will help 

thwart the attacks described. Any of the countermeasures described in Chapter 2 can be 

used to achieve this. Checksums implemented in software or hardware can be applied to 

buffers of data. The execution can be randomised, thus making it difficult to predict what 

the smart card is doing at any given cycle, and so difficult to target the fault. Repeated 

refreshments will refresh k by generating several nonces and exclusive-oring them with 

each other, separating each nonce generation from the previous one by a random delay. 

This forces the adversary to inject multiple faults in randomly shifting time windows in 

order to reset specific bits of k. 

It may also be possible to have real time testing of the random numbers being gen- 

erated by the smart card, such as that proposed in the FIPS140-2 [99]. However, even if 

this is practical, it may be of limited use as the attack requires very few signatures to be 

successful. Consequently, the attack may well be complete before it gets detected. 

4.2.8 Results 

In the experiment described, NTL's [I231 implementation of Schnorr-Euchner's BKZ 

algorithm [116] was used as the lattice basis reduction algorithm. To check results for 

any candidate y for the private key a, ,O = gY (mod p) was checked. To compute the 

success rates, the attack was executed 100 times with different parameters. Results can be 

seen in Table 4.1. For a successful attack, the speed at which the private key is retrieved 

will depend on the number of bytes reset in k. Naturally, there will be a tradeoff between 

the fault injection and the lattice reduction, meaning that when generating signatures with 

nonces with more reset bytes, the lattice phase of the attack will retrieve the key faster. 

Conversely if signatures generated with nonces having only one or two bytes reset, the 

lattice reduction phase will not run as quickly, but the fault injection part of the attack 



will be much simpler. 

Table 4.1 : Attack success rates. 

4.3 Computational Improvements to DPA 

Success Rate % 

100 
100 

Number of Bytes Set to Zero 
1 
2 

Differential Power Analysis (DPA), and similar Side Channel Attacks (SCA), are in prac- 

tice a lengthy process. The attack consists of a data acquisition phase followed by analysis 

of the data. In the context of DPA, the data analysis phase requires the data captured be 

added and subtracted in different combinations depending on the key hypotheses exam- 

ined. This is a repetitive task with many redundancies. By introducing a number of basic 

precalculations this phase of DPA can be accelerated. As a benchmark, the calculations 

that are involved in classic DPA [66] will be briefly detailed. 

Number of Signatures 

27 
12 

4.3.1 DPA Calculations 

The process of a DPA attack was described in Chapter 2. To briefly reiterate, a differ- 

ential trace Ak,,,,, is calculated by finding the average of each set, So and S1, and then 

subtracting the resulting values from each other, 

where all operations on power traces are computed in a point-wise fashion. 

Let N equal the number of acquisitions collected. Calculation of a single differential 



trace AkgueSs involves N - 2 additions (as there will be an average of $ elements in each 

set), two divisions and a subtraction. Therefore, for all hypotheses, the total number of 

operations to calculate all differential traces is 2n x (N + l), where n is equal to the bit 

length of Ic,,,,,. 

The operations involved in the calculation of differential traces are addition, subtrac- 

tion and division of power traces. Of these, the most utilised operation is addition of 

power traces. Therefore, any efforts to minimise the number of additions will see the 

optimisation of the data analysis phase. The division (calculation of mean) and subtrac- 

tion operations will be treated as constant, as these are fundamental operations in the 

calculation of the differential traces and so cannot be enhanced. 

4.3.2 The Global Sum 

The optimisation of DPA in terms of the calculations that it performs in the data analysis 

phase of the attack, involves changing how the differential traces are calculated. The 

simplest optimisation involves the calculation of the global sum G. The global sum is the 

summation of all the power traces that have been acquired, 

The calculation of the differential traces now only involves the summation of a single set, 

Here SleaSt represents the set with the least number of elements, 



The expected number of additions required to generate Sleast is 

If, for example, 1000 acquisitions were taken, this would result in an expected number 

of additions per hypothesis of 487. This is an improvement over the case where a set is 

chosen arbitrarily, when the expected number of additions would be 499 (i.e. $ - I). 
The cost of precalculating G for a single hypothesis is obviously not worthwhile. 

Note, however, that separate pre-computation of G is not mandatory. The trick here 

consists in computing a first hypothesis, just as in the original version of DPA, and then 

summing the two resulting average traces to get G, thereby allowing the complexity of 

the next 2" - 1 hypotheses calculations to be reduced at no extra cost. 

4.3.3 Formation of Power Trace Equivalence Classes 

Recall that inputs to the selection function Pi = S(ai ,  kg,,,,) consists of information 

known to the adversary ai, which may be related to the plaintext, and partial bits of the 

key Ic,,,,,, to produce unknown intermediate output Pi. Generally S ( )  will accept n bits 

of both ai and kg,,,,. For example, Figure 4.2 depicts a situation where different portions 

of the known data are entered into the selection function with different portions of the key. 

This would be typical of an n-bit processor working on words of data at a time. Similarly, 

in the case of symmetric ciphers such as AES and DES where the substitution box is 

chosen as the selection function, the S-Box will accept specific portions of the plaintext 

and the key. 

Such portions of a and k, will be denoted by ai,j and kg,,,,,j respectively and Sj () 

will be used to distinguish the selection function for these portions. Considering ai,j 



Figure 4.2: Selection function Sj (). 

alone, there are only 2n possible values which can enter a given selection function Sj(). 

Therefore, a number of the power traces will have the same value for ai,j, and thus can 

be treated in the same manner (i.e. they can be divided into a set of equivalence classes). 

A representative power trace Tl can be used to encapsulate all power traces ti, where the 

inputs ai,j to the selection hnction Si are equivalent. Tl is defined for Sj () as 

N 1 i fa i , i=Z 
TI = C u t i  where Xi = 

i=l (0  otherwise 

where 0 5 Z _< 2". This will produce 2" representative power traces from the N acquisi- 

tions, hence immediately reducing the number of power traces that must be worked with. 

Creating each representative power trace will require approximately - 1 additions, 

that is assuming that there is 6 power traces in each set. This must be repeated for all 2" 

representative power traces. The differential trace can now be calculated as, 

The representative power traces Tl can be used in conjunction with the global sum 

optirnisation. Precalculation for this optimisation involves the formation of the represen- 

tative power traces Tl and the global sum G, where G can be constructed as a function of 



requiring a further 2" - 1 additions. The differential trace can now be calculated as, 

To generate a single differential trace will require 2"-l- 1 additions. For all hypotheses, 

a total of 2" (2"-l - 1) additions will be required to calculate all the differential traces 

for one selection function. 

Therefore, the total number of operations that will be incurred in generating all dif- 

ferential traces is 

Total Calculations = 2" - - 1 + (2n - 1) + 2" (2"-' - 1) (2"" ) 

where for the representative power traces Tl to T2n, approximately & - 1 additions will 

be required to make up each Tl. An additional 2" - 1 summations will be required to form 

the global sum G, and 2"-l - 1 additions will be required to generate each differential 

trace (since only one set, SleaSt, needs summing), for the 2" key hypotheses. 

4.3.4 Combining Representative Power Traces 

Further efforts can be made to minimise the number of additions for the set Sleast. This 

involves precalculating certain representative power trace combinations so that computing 

a differential trace becomes more of a look up operation. In particular, it is the objective 

to precalculate certain representative power trace combinations so that groups of power 

traces that occur in the same set for one hypothesis, be recycled in subsequent hypothesis 

testing. Since there exist 2" representative power traces, pre-computing all possible 2"! 



combinations is infeasible. Hence, it is proposed that the representative power traces are 

partitioned into groups of size x, and the different possible combinations for each group 

are pre-computed. 

For example, for x = 2, adjacent power traces are summed. Each pair is defined as 

the value T21,21+l, where I takes the integer values in the interval [O, 2"-l] and 

The use of the combined power traces T21,21+1 in the evaluation of the set Sle,t, results in 

three possible scenarios for each pair: 

1. The pair occurs, i.e. Tzl + T21+1 appears in SleaSt. The probability of this occurring 

is i. In this case, one additional summation must be performed. 

2. The pair does not appear in Slast, i.e. the pair is in G. The probability of this 

happening is also a. In this case, no action is performed. 

3.  The two traces T21 and Tzl+l appear in two separate sets, There is a higher proba- 

bility of this happening, i.e. $. In this case, a single addition is required. 

The expected number of additions per AkgueS8 (assuming the global set already ex- 

ists), is therefore $ x 2"-l. This is because there are 2n-1 groups of three elements 

(T21 ,T21+1 and T21,21+l), one of which will be used to add to SleaSt with probability z .  
The differential trace can now be calculated as, 

where in calculating the set Slast, a check will be performed to determine whether the 

combinations of power traces 3 that arise in SlMst are already added. 

The precalculation of groups of representative power traces can be performed for any 

value x. However, it is preferable to choose x such that it evenly divides N, otherwise 



the groups will not be evenly distributed. Once the combined power traces have been 

generated, the number of additions that are required for the set Slemt can be described by 

where the number of groups is determined by $ and the probability of elements in that 

group turning up in Slemt is y. Note that this is only an approximation for the num- 

ber of additions required for each set. In practice the number of additions involved in 

generating As,,,8, will depend on the contents of the set, and whether the pre-computed 

combinations appear or not. 

Since the combined power traces must be pre-computed before the differential traces 

can be generated. This involves generating the 2" - 1 combinations necessary for each 

group of x power traces. This will involve 2" - x - 1 additions, as x power traces already 

exist. The amount of precalculation involved (incorporating G, Tl and the pre-computed 

combinations) is therefore, 

where generating 3 and G will require 2n (g - 1) + (2* - 1) and so N - 1 additions, 

following the reasoning given in Section 4.3.3. The total number of operations per dif- 

ferential trace will include the additions both as part of the precalculation and as required 

for the hypothesis. Therefore, the number of calculations for all hypotheses is 

Total Calculations = N - 1 + (2" - x - 1) L$] +2- ((y) IF]). 
The memory requirement is a vital factor, as the more pre-computed values that are 

required, the more memory they will take up, and the more time it will take to load 

these values into memory. In order to balance the time-memory trade off and achieve the 



optimal attack, the amount of memory that is required needs to be projected. The number 

of power traces that need to be stored in memory include the original N power traces 

ti, the global sum G, the representative power traces and the combined power traces, 

which is determined by 2" - x - 1 for groups of size x. 

4.3.5 Chosen Plaintext Differential Power Analysis 

Unfortunately, the precalculations previously made for the selection fhction Sj () will be 

redundant for the subsequent selection function Sj+1 0, as the power traces, when clas- 

sified according to the partial input aij, will fall into different equivalence classes from 

those that apply for ai,j+l. Therefore, for the selection function Sj+1(), regeneration of 

the representative power traces will be required. 

In classical DPA, the message given to the algorithm under attack is random. How- 

ever, if plaintexts can be chosen, the precalculated can be used to attack subsequent 

selection functions. The simplest case is where the input to the selection function Sl() 

can be made the same for S2 () , S3, . . . , SNs (where Ns is the number of selection func- 

tions used in one round of the algorithm under consideration). For example, suppose that 

the plaintext is constructed such that all plaintext bytes are equal, i.e. byte[l] = byte[2] = 

. . . = byte[l6] in AES [34]. This means that there are 256 possible values for the plain- 

text. Calculating the daerential traces for the first S-box (which is the selection function 

in this situation) will calculate the differential trace for all others at the same time, giving 

sixteen peaks at the points in time at which the sixteen key bytes are being manipulated. 

However, using this method may not always be advantageous, as some confusion can 

arise as to which peak corresponds to which key byte. 

A similar approach can be applied to an implementation of DES, where the plain- 

text can be generated such that the value ai,j entered into the even-numbered S-boxes 

(Sj mod z = ~ ( ) )  are all equal, and the value of aid entered into the odd numbered S-boxes 

(Sj mod zZ1()) are all equal. All the even numbered S-boxes can use the same set of 



data generated during the pre-calculation for the first S-box. The odd numbered S-boxes 

also use this data but with a permutation on the value associated with each representative 

power trace. This does not affect the quality of the results produced, as each S-box uses 

a different permutation. The differential trace will be at the same level as if a random 

plaintext was used. 

Note that these optimisations are applicable when the attack is concentrating on the 

first round of a block cipher. If the attack focuses on the last round, where the differential 

traces are related to the ciphertext, then these optimisations will be useless as the data 

cannot be controlled. 

4.3.6 Results 

For demonstrative purposes, the results are presented where DPA is performed on both 

the DES and AES. The selection function for both of these cryptographic algorithms is 

the substitution box (S-box) or SubBytes function. The S-box for DES accepts 6 bits 

at a time and so n = 6. The S-box for AES accepts 8 bits at a time and so n = 8. 

It is assumed that the number of times that DESIAES is executed is 1000. Therefore, 

N = 1000, which consequently relates to the number of power traces ti acquired. Table 

4.2 details the number of calculations involved in generating the differential traces for 

DES. Table 4.3 details the number of calculations involved in generating the differential 

traces for AES. 

The formulae that was used to derive these values were given in the previous section. 

The value for total calculations is derived from the number of precalculations required 

plus the number of additions for all hypotheses. As shown in Table 4.2 and Table 4.3, 

even the most straightforward optimisation, which involves forming a global sum value 

G, results in almost halving the number of calculations required to generate all differen- 

tial traces. The optimisation of forming representative power traces reduces the number 

of calculations required to generate all differential traces even kther .  The amount of 



Table 4.2: Optimisation results for DES. 

computation required for DES, with and without global sum, reduces to 5% and 8% re- 

spectively of the classic DPA calculations. The amount of computation required for AES, 

with and without global sum, reduces to 13% and 26% respectively of the classic DPA 

calculations. 

For the combined power trace optimisation, the number of calculations required to 

generate all differential traces continues to decrease, but this may be at the cost of in- 

creased storage requirements. The best results for a realistic amount of memory are ob- 

tained when 4 bits for both DES and AES are grouped together at a time. This reduces the 

workload to 3% and 7% of the original DPA for DES and AES respectively. However, the 

amount of memory required for this has increased. In addition, the fact that representative 

and combined power traces Tl will require more space than the original power traces ti, 

must be accounted for. Note that the size of the power traces will vary depending on a 

number of factors, such as the storage capacity of the oscilloscope, the amount of time 

spent localising the selection function using SPA, and the algorithm being attacked. The 

worst possible scenario when using the combined power trace optimisation is where the 

Number of 
Power Traces 

1000 

1001 

1064 

I 

Classic DPA 

Total 
Calculations 

63872 

Precalc. 

32167 

4904 

1984 - 

1536 
960 
5 12 

2983 
- 

2567 
2135 
3487 

31168 

3968 

Additions per 
hypothesis 

Optimisation 1 : 
Global Sum - 

1065 
- - 

1097 
1241 
3041 

3 1 

24 
15 
x 8 

Equivalence Classes 
with Global Sum 
Optimisation 3: 
Trace Combining 
2 bits 
4 bits 
8 bits 

Additions for 
all hypotheses 

998 

999 

103 1 
1175 
2975 

63872 

999 487 

62 

Optirnisation 2: 
Equivalence Classes 
wlout Global Sum 936 



Table 4.3: Optimisation results for AES. 

Precalc. Additions per Additions for 

Classic DPA 
Optimisation 1: 
Global Sum 999 487 124672 125671 1001 
Optimisation 2: 
Equivalence Classes 
w/out Global Sum 744 254 65024 65768 1256 

I Equivalence Classes 
with Global Sum 999 127 32512 - 33511 1257 

memory requirement becomes unmanageable and pre-computation actually inhibits the 

attack. There are two approaches that an adversary can employ to combat this situation. 

In the case where the acquisitions captured are large, the acquisitions can be split into 

sections, the DPA calculation performed on each section and the results concatenated to 

construct the full differential trace. Alternatively, the memory usage required can be de- 

termined so that the adversary can decide how much pre-computation is possible with the 

memory available, thus allowing maximum benefit from the optimisations described. 

Note that the ideas expressed in Section 4.3.5 have not been discussed in the example, 

as the gain for the overall attack depends on how the message can be manipulated. 

Optimisation 3 : 
Trace Combining 
2 bits 
4 bits 
8 bits 

4.4 Conclusion 

In this chapter, two aspects of implementation attacks were examined. Firstly, a fault 

attack on the DSA, which was already proven in theory, was validated in practice. The 

attack consisted of two stages. The first stage dealt with fault injection. The second 

involved forming a lattice for the data gathered in the previous stage and solving the 

1127 
1703 
8903 

96 
60 
x 32 

245 7 6 
15360 
8192 

25703 
17063 
17095 

- 

1385 
I 

1961 
9131 



closest vector problem to reveal the secret key. The experimental resuIts proved that 

launching an attack in practice was not only possible, lmt could find the key with just 

27 faulty signatures when one byte of k is zeroed. Secondly, a number of computational 

improvements to the data analysis phase of DPA were proposed. In the best case scenario 

these improvements resalted in a 97% and 93% seduction in data processing for DES and 

AES respectively. 

This research, formed the basis for the subsequent work which involved assessing 

bilinear pairings for vulnerability to botb power and fault analysis. The next two chapters 

present the research performed in this area. 



Chapter 5 

Power Analysis of Bilinear Pairings 

5.1 Introduction 

In this chapter, first-order power analysis of three bilinear pairing algorithms is discussed. 

Specifically, the BKLS algorithm for the Tate pairing, the Ate pairing and the BOGhES 

algorithm for r ) ~  pairing are assessed. In 2006, Scott et al. [I201 demonstrated that each 

of these bilinear pairing algorithms was efficiently computable and comparable with al- 

ternative public key algorithms on a resource constrained smart card. As demonstrated in 

Chapter 2, side channel attacks such as power analysis are very powerful attacks, partic- 

ularly in the context of smart cards. Therefore, analysis of bilinear pairings eligible for 

implementation on smart cards is necessary. To date, one publication on the topic of side 

channel analysis of pairings exists [107]. However, this is a large area of research with 

numerous attacks and various pairing algorithms and implementations to consider. 

Firstly, the contribution of [107], which describes a DPA style attack of the Duursma- 

Lee algorithm for the Tate pairing, is briefly reviewed in Section 5.2. In Section 5.3, 

a number of observations about bilinear pairings are made. These observations are of 

importance in the context of power analysis. 

In Section 5.4, finite field operations are examined for vulnerability to first-order 



power analysis. Bilinear pairings ultimately rely on the underlying finite field arithmetic. 

Hence, the vulnerability of the finite field operations will have consequences for bilinear 

pairings. First-order power analysis of the relevant finite field operations is described. 

A novel technique to attack finite field operations fiom a structural perspective is pro- 

posed. This technique is algorithm independent and so has implications for a range of 

cryptographic algorithms. 

The vulnerability of the underlying finite field operations are then described in the 

context of the three candidate pairing algorithms in Section 5.5. Potential first-order 

power analysis attacks on the Tate pairing, the Ate pairing and the 7~ pairing are given. 

The susceptibility to power analysis of each bilinear pairing is subsequently summarised, 

highlighting some of the key findings of the research. 

Countermeasures to deter first-order power analysis attacks are proposed in Section 

5.6. Finally this chapter is concluded in Section 5.7. Appendix A of this dissertation 

contains numerical examples of the attacks described in this chapter. 

The chapter contains joint work with Mike Scott, which was published at the Inter- 

national Conference on Cryptology - Vietcrypt 2006 [138]. This conference was held in 

Hanoi, Vietnam in September 2006. Sections 5.3,5.4 and 5.5 are part of the contribution 

of this thesis. 

5.2 Related Work 

As mentioned previously, the first work1 in the area of side channel attacks on pairings 

was performed by Page and Vercauteren [I061 in 2004. In this paper, both passive and 

active implementation attacks (namely power and fault analysis) on the Duursma-Lee 

algorithm (given in Algorithm 12) for computing the Tate pairing on supersingular elliptic 

curves in characteristic three was considered, which could be extended to the general case. 

I .  Since the publication of the works [106] and [138], there has been another publication on this topic by 
[62]. This deals with the case where classic DPA is applied to the multiplication operation over the binay 
field. 



In this section, a brief overview of the passive side channel attack aspect of the paper is 

presented. The active attack contribution of the paper will be examined in the next chapter 

when fault analysis of pairings are described. 

Algorithm 12 Duursma-Lee Algorithm for E (IF,) : y2 = x3 - x + b where b = f 1 and 
q = 3m [106]. 
INPUT: P = (XI, yl) ,  Q = ( 2 2 ,  y2) E E(Fp) 
OUTPUT: m E IFis I mr = I 
1: m t l  
2: for i +- Llog, (r)]  - 1 to 0 do 
3: 2 1  t 27 

4: yl t y: 
5: p + - z 1 + ~ 2 + b  
6: h + -yl .  ylo ; i2 
7: 9 t h - p p - p  
8 :  m c m  
9: 572 t z;' B 

10: y 2  + y;'3 
11:  endfor 
12: return rnq3- '  

First-order power analysis is based on the property that the secret is highly correlated 

with the power trace. First-order attacks exploit operations where known data a comes in 

direct contact with secret data k, that is, where a selection function ,B = S(a,  k) exists. 

In the Duursma-Lee attack, the authors of [I061 identified line 6 of the algorithm as the 

operation to attack. Since yl is related to the public point P, it will be known to the 

adversary. The coordinate y2 on the other hand relates to the secret point Q, so is of 

interest to the adversary. Hence, the operation yl - y2 can be used as an eligible selection 

function. Given that yl is known, the hypothetical product of the output of yl . y2 is 

calculated, given guesses for y2. 

Two types of power analysis attacks are detailed to determine the correctness of the 

guesses for ~ 2 .  Firstly an SPA attack is described. The success of this attack however, is 

reliant on the multiplication algorithm being the Shift and XOR method. Secondly, a DPA 

attack on the multiplication operation, where the multiplication algorithm is irrelevant, is 

proposed. This attack uses a classic DPA style approach to guess one bit of the secret 

coordinate y2 at a time. 



There are two main shortcomings of Page and Vercauteren7s work. Firstly, power 

analysis of pairings was proposed in a generic sense. When they presented their results, 

an efficient implementation of a pairing on a smart card had not yet been witnessed. In 

2006, Scott et al. 11201 presented the first timings for the computation of three highly 

optimised pairing algorithms, which were shown to be computed as efficiently as alterna- 

tive contemporary cryptosystems on a 32 bit smart card. Since the types of attacks being 

investigated are implementation specific, specific implementations of pairings must be 

assessed. Secondly, Page and Vercauteren's technique extracted one bit of the coordi- 

nate y2 at a time using DPA. In the previous chapter, the work involved in performing 

a DPA attack was examined. The intensive process of data manipulation was demon- 

strated. For characteristic three implementations, with the embedding degree k = 6, the 

recommended length of elements in the underlying field is 160 bits. This approximately 

achieves the recommended 1024 (or 960) bit level for index calculus security. Given that 

the DPA attack of [I061 reveals one bit of the secret coordinate y2 at a time, extraction 

of the secret is inefficient. In addition, [24] demonstrated that the assumptions that DPA 

make are incomplete, and so prone to inaccuracies. These facts raise the question whether 

a more computationally realistic and reliable attack can be performed. 

5.3 Bilinear Pairing Observations 

In this section, some useful observations about bilinear pairings are made, which aid 

first-order power analysis. The secret parameter can be entered as the first or second 

parameter in the bilinear pairing. For instance, in Boneh and Franklin's B E ,  the se- 

cret parameter is used in the decryption operation, i.e. the plaintext is uncovered as 

m = C2 69 H2(w(DB, Cl)), where the private key DB is entered as the first parame- 

ter in the pairing. Whereas, in Gentry and Silverberg's Hierarchial IBE (HIDE) [36], the 

secret parameter is also used in the decryption operation, but as the second parameter 



to the pairing. The operations and transformation that the elliptic curve point undergoes 

depends on the parameter position the point is entered in. Therefore, depending on which 

parameter the secret is entered as, will affect the choices for attack. This is particularly 

relevant for certain pairing algorithms, such at the Tate and Ate pairing, which as will 

be demonstrated, consists of two very different paths for the first and second parame- 

ter, and so presents two varying choices for attack2. In certain circumstances however, 

such choices may not be available. For instance, if the elliptic curve is supersingular and 

a distortion map q5 is used, as is the case with the 7 7 ~  and modified Tate pairing 6, the 

parameters to the pairing can be arbitrarily switched. For example, 

will yield the same result. In such situations, regardless of which parameter the secret is 

entered in, an equal number of choices for attack will exist. 

Each bilinear pairing algorithm must therefore be assessed given that the secret pa- 

rameter can be entered as either parameter. To distinguish between the different parame- 

ters, and so the various operations relating to that parameter choice, the term path will be 

used. Specifically when the secret is entered as the P parameter, it will be referred to as 

taking the P path and when the secret is entered as the Q parameter, it will be referred to 

as taking the Q path. 

On an elliptic curve, when represented using affine coordinates, the secret point will 

consist of the coordinates (x, y). Due to point compression however, only one of these 

coordinates needs to be extracted, since given x, y can be found by solving the elliptic 

curve equation E. Therefore, in each of the pairing algorithms, the coordinate x is the 

data value of interest. In particular, for first-order power analysis, operations in which 

the secret coordinate x comes in contact with known data are of particular importance. 

2 ~ o t e  that for the Tate and Ate pairing, while the secret parameter can take either path, it must hold its 
position for the entire protocol, so once the secret point has been allocated to a position in the pairing, it is 
fixed there. 



Operations involving elements fiom the base field IF,, where q = p or 2m, as opposed to 

the extension field F q k ,  are also preferable since extension field elements are k-bit times 

larger than that of base field elements. Finite field operations central to the computation 

of the pairing will be discussed next. 

5.4 Dissecting Bilinear Pairings 

Each type of bilinear pairing is different and so is implemented differently. Therefore, 

each pairing algorithm must be assessed individually for its susceptibility to power anal- 

ysis. There are common features between bilinear pairings and these are considered next. 

All bilinear pairings are constructed fiom the same building blocks of finite field 

arithmetic. A number of finite field operations are required for bilinear pairing computa- 

tion. The order and manner in which they are used is dependent on the type of pairing. 

Finite field addition, subtraction, multiplication, division, inversion, and exponentiation 

over both the base and extension field are common to the candidate bilinear pairings. For 

the Tate and the Ate pairing, arithmetic is over a prime field, whereas arithmetic is over a 

binary field for the rp pairing. 

Many algorithms exist to compute each finite field operation. For example, the operand 

scanning method, the product scanning method, the Karatsuba-Ofman method and/or the 

Comba method can be used to multiply two elements in the prime field, a . b where 

a, b E Fp. Similarly, the shift and XOR method, the right to left or left to right comb 

method for polynomial multiplication can be used with or without windows to multiply 

two elements in the binary field, a - b where a, b E F2m. A description of these methods 

can be found in [48]. 

In this section, a method is proposed by which the first-order power analysis attack, 

CPA, can be launched on a finite field operation regardless of the underlying algorithm 

used. This idea is based on analysing the structure of finite field operations and will be 



discussed next. 

5.4.1 Structural Analysis of Core Pairing Operations 

Consider a function of the form ,b' = S(a, k). If partial output of the function S() can 

be deterministically calculated given portions of a and k, where a relates to known data 

and k relates to the secret, then this function constitutes an eligible selection function. 

A first-order power analysis attack, such as DPA or CPA, can be performed on selection 

functions of this form. In the context of this research, S() represents a finite field oper- 

ation. For example, S()  could represent finite field multiplication a . k. To perform a 

first-order power analysis attack, an adversary must be able to determine a link bemeen 

the input to S() and the corresponding output produced, P. By analysing how an oper- 

ation progresses, that is, by looking at its structure, a connection between the input and 

output can be made. In practical implementations, finite field elements are stored and 

operated on as w-bit blocks, where w is typically 8, 16 or 32 bits, the word length of the 

processor. This allows the order and manner in which words of data are operated on, to 

be easily deduced. The interpretation of this order forms the basis for structural analysis. 

The examination of words of data is also appropriate for the methodology of CPA. 

In this section, structural analysis of the finite field operations multiplication, square 

root, and reduction will be performed. These operations are chosen for the following 

reasons. First, addition and multiplication are the operations fundamental to a finite field. 

Subtraction of field elements can be defined in terms of addition. Similarly, squaring and 

division of field elements can be defined in terms of multiplication. Since the structure 

of finite field addition is straightforward, the structure of finite field multiplication will 

only be considered. In addition, in all of the candidate pairing algorithms, finite field 

multiplication operates on known and secret data at some point, allowing it to be selected 

as an eligible selection function. Secondly, reduction is central to h i t e  fields and plays a 

role in almost all finite field operations. Finally, the square root operation, while it can be 



defined in terms of addition, multiplication and reduction, is unique to the 7~ pairing and 

so presents as an extra avenue of attack. 

5.4.2 Multiplication 

The basic method for multiprecision multiplication is the pencil-and-paper method for IFp 

and the shift and XOR method for F2m [I 151. Field multiplication of a ,  b E JFp can be 

accomplished by first multiplying a and b as integers, then reducing the result modulo 

p. Field multiplication of a ( z ) ,  b(z)  E IF2m can be accomplished by first multiplying 

a ( z )  and b(z )  as polynomials, which in the case of binary fields infers carry-fiee binary 

polynomial multiplication, then reducing the result modulo the irreducible polynomial 

f (2).  Figure 5.1 illustrates the pencil-and-paper multiplication method for IFp. 

Figure 5.1 : Multiplication of IFp elements: the pencil-and-paper method. 

The specific input words that are responsible for the specific output words can be 

distinguished using the structural representation of the multiplication. For example, the 

least significant word of the product c, is determined by the least significant words of 

a and b in both fields, IFp and F2m. This is because a0 . bo, where a0 and bo are w-bit 



words, produces a 2w-bit product. Of this product the lower word contributes to the 

least significant word of the final product c and the upper word contributes to the word cl 

(along with other intermediate products). 

In the situation where input to the multiplication is comprised of known and unknown 

data (for example, a may relate to a and b may relate to k), a first-order power analysis at- 

tack can be applied since predictions about the partial output of the multiplication can be 

made given partial input. So here, the multiplication operation is the selection function. 

The process of generating the key hypotheses when the multiplication operation is the se- 

lection function will be described next. This is described for the case where multiplication 

is performed over P2m. 

5.4.2.1 Hypotheses Generation 

Let ai E IFZm be data known to the adversary, where 1 5 i 5 N. Let k E P2n be a secret 

value unknown and of interest to the adversary. At some point in the target algorithm and 

on the target device, the operation ai . k (mod f (2)) will be calculated. It is assumed 

that numerous power traces ti relating to the execution of ai . k (mod f (2)) have been 

acquired. Therefore, N power traces corresponding to the known data ai should be in 

the possession of the adversary. Let Pi denote the 2m bit product resulting from the 

multiplication of ai . k before reduction is invoked. 

In memory the elements ai and lc will be stored in arrays ai = (ai [r - I], ai [r - 

21, . . . , ai[O]) and lc = (k[r - 11, k[r - 21 . . . k[0]) of w-bit words. Similarly, the product 

can be visualised as the array Pi = (Pi [s - 11, Pi [s - 21, . . . , Pi [0] ) . Note that r = 

is the number of words required to store ai and k, and s = is the number of words 

required to store pi. 

To uncover the secret k, CPA can be used to extract words of k at a time. In the field 

IF27n only one word of k, affects the most and least significant word of Pi since there is no 



bit propagation, i.e. 

Pi [o] = ai [Q] . k [O] 
pi[s-11 = ai[r-11-k[r- 11. 

All middle words of the product Pi = ai - k are affected by more than one word of k. 

Therefore, there are two possible positions from which the attack can commence. 

To extract the least significant word of k, k[O], CPA will correlate the hypothetical 

output of pi [0] = ai [O] . k [0] for each prediction of k [0], with the actual power consump- 

tion values. Algorithm 13 describes the steps to generate the data bank of hypothetical 

output that is used to correlate to the actual power consumption. 

Algorithm 13 Generate hypothetical output of the multiplication Pi [0] = ai[O] k[O] . 
&PUT: The set {m,&, . . . , a;) where the set is Imown/computable by the adversary 
OUTPUT: An N x 2" matrix Ho containing the output of cri [0] . k [0] 

1: f o r l < i < N d o  
2: X=rri[o] 
3: for 0 5 j < 2" do 
4: k[O] = j 
5 :  a[o] = x . ~ [ O I  
6: Ho( i , j )  = Bi[O] 
7: end for 
8: end for 

This algorithm produces a N x 2* matrix denoted by Ho. Note that the size of Ho 

depends on N and the word length w. When the word length is large, predictions for 

sections of w can instead be made. Section 5.4.6 further discusses this issue. The matrix 

Ho contains the hypothetical product of pi[O] given all possibilities for N known values 

of ai[O] when multiplied by the 2w possible values for k[O]. The data contained in Ho 

will be translated into its estimated power consumption values, and used in the correlation 

test for determining k[O]. The process of establishing which guess for k[O] is correct is 

described in Section 5.4.5. 

The multiplication of k[O] ai[O] will in fact produce a 2w-bit product fli[O]. Only 
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the least significant word of this product is required as entry in Ho. The most significant 

word of pi [0] contributes to the subsequent product word ,f3i [I]. 

To extract the remaining interior words of k, the attack proceeds similar to Algorithm 

13. Since all middle words in the 2m-bit product Pi are influenced by more than one word 

in k, k [1] cannot be found unless k [O] is known, k [2] cannot be found unless k[l] and k[O] 

is known, and so on. Therefore, line 5 in Algorithm 13 must be replaced by 

Pi [u] = (ai[O] - k[a]) + ( auxiliary words ) 

where 1 5 u 5 r - 2 and 1 5 v 5 s - 2. For instance, 

and 

Pi[2] = (ai[o] . k[l]) + (ai[o] k[2]) + (ai[ l ]  . k[l]) + (ai[2] k[01). 

An adversary could alternatively begin extracting the most sigmficant word of k, k[r- 

11. The attack on the most significant word is similar to the attack on the least significant 

word except the word positions that are focused on are ai[r - 11, k[r - 11 and Pi[s - 
11. In the case of multiplication over the binary field, predictions for the least and most 

significant word of k can be generated simultaneously. This is due to the fact that the 

product words Pi[O] and Pi[s - 11 depend only on the secret words k[O] and k[r - 11 

respectively. Once k[O] and k[r - 11 are identified, the remainder of k can be found by 

iteratively stepping inwards, in that the next step would be to find k[l] and k[r - 21. 

When multiplication is performed over the prime field, i.e. a, k E IF,, a similar 

attack can be launched. In this situation however, the attack is restricted to commencing 

from the least significant word. This is due to the propagation from carry bits which will 

significantly affect all other words. 



5.4.3 Square Root 

The square root method is only required for the 7 7 ~  pairing. Therefore square root calcu- 

lation over the binary field will be discussed. The method for calculating &, a E Famy 

is based on the Fermat7s little theorem: a2m E a. From this it can be seen that 6 can be 
2m-1 

calculated as a , which requires m - 1 squarings. A more efficient method, proposed 

by Fong et al. [38], can be obtained from the observation that & can be expressed in 

terms of the square root of the element z. Let a = zz1 aizi, where ai E (0, I). The 

square root of a can be written as 

m even i odd 

This ultimately involves splitting a into its odd and even coefficients, then performing a 

field multiplication and addition. 

If the irreducible polynomial is a trinomial and so represented as 

or pentanomial and so represented as 



then an efficient formula for calculating fi can be used. For example, 

h = z w  + z y  (mod f (2)) 

when f (z) is a trinomial and 

JE = zv + z? + z q  + z y  (mod f (2)) 

when f (z) is a pentanomial (assuming that m, n, q and r are odd). From the above, it can 

be understood that the process of calculating the square root involves splitting the value 

of interest into odd and even parts, hence it can be illustrated from a structural perspective 

as in Figure 5.2. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

0 2 4 6 81012141618202224262830 1 3 5 7 911131S1719212325272931 
Even Odd 

Figure 5.2: Square root of lF(Zm) elements where w = 32. 

The square root calculation involves a single operand. Hence, the square root oper- 

ation will only be useful in a first-order power analysis attack if, when the input to the 

square root is secret, it is subsequently combined with some known data. Here, the selec- 

tion function is of the form ,B = S(a,  A). Therefore, an adversary can make predictions 

about portions of k, and determine portions of A, which subsequently come in contact 

with known data. For this analysis it is assumed that the operation in which a and & are 

involved is a straightforward operation such as addition. 



5.4.3.1 Hypotheses Generation 

Let ai E lFZm be data known to the adversary, where 1 5 i <_ N. Let k E IF2m be a secret 

value unknown and of interest to the adversary. At some point in the target algorithm and 

on the target device, the operation ai + & will be calculated. It is assumed that numerous 

power traces ti relating to the execution of ai + fi have been acquired. Therefore, 

N power traces corresponding to the known data ai should be in the possession of the 

adversary. Let pi denote the rn-bit result from the operation of ai + A. The elements 

ai, k and pi will be represented as ai = (ai [r - I], ai [r - 21, . . . , ai [O] ), Ic = (k[r - 

l],k[r-21 ... k[O])andpi = (,Oi[r-l],Pi[r-21, ...,pi[ O])respectively,wherer = 

is the number of words required to store ai ,  k and pi, and u is used to index words, i.e. 

O < _ u < r - 1 .  

To uncover the secret Ic, CPA can be used to extract individual words of k at a time. 

Since the known data ai, comes in contact with 6 ,  knowledge about given partial 

k is required. Figure 5.2, provides the necessary insight into how k and h are related. 

Given a word of k, bits of are determined as follows: 

Let k[O] be the word of k to be extracted. The first step in the calculation of d% 

involves k being partitioned into even and odd coefficients. Hence, 7 bits of odd k[O], 

and 5 bits of even k[O] will be known. Let k, and k, denote the even and odd coefficients 

of k and let k, [O] and k, [0] denote the even and odd coefficients of k [O]. 

The second step involves the multiplication of two 7 bit quantities, k, . &. Since 

the multiplier & is known, and a portion of k,  is known from the guess from K[O], a 

portion of the product can be calculated using the structural analysis technique of the 

multiplication operation as described in Section 5.4.2. This portion will be 5 bits long. 

The final step in the square root operation is the addition (or exclusive or) of Ice and 

the product k, - f i  (mod f (z)). Since k,[0] and 5 bits of the product of k,[O] - f i  can 

be determined from k[O], %j' bits of can thus be calculated. 

Since there exists a deterministic link between portions of k and h, by making 



predictions about the possible values of words of k, and subsequently half words of the 

output of ai + fi, the power traces and the attack CPA can be used to determine which 

hypothesis for the word of k is correct. Algorithm 14 describes the steps to generate the 

data bank of hypothetical output for ai + fi. 
Algorithm 14 Generate hypothetical output of the operation ai[O] + a. 
INPUT: The set {ao, al...aN) where the set is known/computable by the adversary 
OUTPUT: An N x 2" matrix Ho containing the output of ai[O] + 

1 :  f o r l < i < N d o  
2: X = a i [ o ]  
3: for 0 < j < 2" do 
4: k[O] = j 
5: k,  [0] = k[0] even coefficients 
6: k,[O] = k[O] odd coefficients 
7: a = kc [O] + (ko [0] . fi) 
8: b [ 0 ]  =x + 
9: Ho (i, j) = Pi [O] 

10: end for 
11:  endfor 
12: return Ho 

Once again a N x 2W matrix Ho, to be input to the correlation test, will be pro- 

duced from this algorithm. The process of establishing which guess for k[O] is correct is 

described in Section 5.4.5. 

Once the first word of k has been identified, k[O], the remaining words of k can be 

found. For example, k[O] affects the least significant lower half word of a, k[l] 

affects the least significant upper half word of m, and so k[O] and k[l] affect the least 

significant word of fi, m. 
A numerical example of how a portion of f i  can be deterministically calculated, 

given a portion of k is given in Appendix A.1. 

5.4.4 Reduction 

One attractive aspect of finite fields is the fact that all elements are contained within a par- 

ticular finite group determined and enforced by the modulus. The procedure for modulo 

operations depends on the implementation, either lazy reduction can be performed [75], 



where the reduction is performed at the end of an operation, or reduction can be inter- 

leaved with an operation. For example, the entire multiplication of a . b can be performed 

before it is reduced or at intermediate steps during the multiplication of say a[O] . by a 

reduction can be performed. When reduction is performed will affect how the predictions 

for the hypothetical output of ,I3 = S(a, I c )  are made. In the case of attack on the multi- 

plication operations as described in Section 5.4.2, if lazy reduction is employed, then the 

attack can be applied as described. However, if interleaved reduction is used, the attack 

must be altered slightly so that the correct predictions are made. 

For characteristic two implementations, the modulus is specially chosen such that it 

permits fast reduction. Specifically, irreducible trinomials or pentanomials are preferred. 

Straightforward reduction can be performed using the shift and subtract method, where 

subtract over IF2n is XOR and subtract over IFp involves borrow bits. The reduction of 

a(z) = b(z) (mod f (2)) or a = b (mod p) basically involves lining the modulus up 

with the most significant bit of a (or a(z)) and subtracting to produce an intermediate 

value d. The modulus is then repeatedly lined up with intermediate d's until the bit length 

(or degree) of d is less than the bit length of p (or degree of f  (2)). 

If interleaved reduction is implemented, then it is more difficult to definitively cal- 

culate the hypothetical output of interest. For example, in the case of multiplication, 

prediction of partial output of c = a - b (mod p), requires the ability to calculate all of 

the product a .  b. Knowing only portions of a .  b is not s&icient since the waterfall effect of 

reduction will cause these portions to be lost in a manner unpredictable by the adversary. 

5.4.4.1 Hypotheses Generation 

Let ai E IFp be data known to the adversary, where 1 < i 5 N and n = [log2pl. Let 

k E IFp be a secret value unknown and of interest to the adversary. At some point in the 

target algorithm and on the target device, the operation ai - k (mod p) will be calculated, 

where reduction is performed at intermediate steps during the multiplication ai . k[O] 



(mod p). It is assumed that numerous power traces ti relating to the execution of ai - k 

(mod p) have been acquired. Therefore, N power traces, corresponding to the lmmn 

data ai ,  should be in the possession of the adversary. 

To uncover the secret k, CPA can be used to extract words of k at a time. To extract 

the least significant word of 6, Ic[O], CPA will correlate the hypothetical output of the 

intermediate output d = ai - k[O] (mod p) for each prediction of k[O], with the actual 

power consumption values. 

Note that the operation d = ai - k[O] will produce an (n + w)-bit result. d will 

subsequently be reduced by p to produce a n-bit value. Since the modulus is public, the 

resultant value will be used to verify the correct k[O]. Algorithm 15 describes the steps to 

generate the data bank of hypothetical output. 

Algorithm 15 Generate hypothetical output of the multiplication &[O] = ai . k[O]. 
INPUT: The set { a n ,  al,  . . . , a ~ )  where the set is known/computable by the adveisary 
OUTPUT: An M x 2W matrix Ho containing the output of &[O] = ai . k[O] 

1:  f o r l < i < N d o  
2: X = ai 
3: for 0 5 j < 2* do 
4: k[O] = j 
5 :  d = X . k[O] (mod p)  
6: H" ( i , j )  = d 
7: end for 
8: end for 
9: return Ho 

Once again a N x 2W matrix Ho, to be input to the correlation test, will be pro- 

duced from this algorithm. The process of establishing which guess for k[O] is correct is 

described in Section 5.4.5. 

To extract k[l], partial hypothetical output of (d = ai. k[l] (mod p)) + (d = ai k[O] 

(mod p)), where it is assumed that b[O] has been found, is calculated. This process 

is repeated until no words of k remain unknown. A similar process can be applied to 

reduction over the binary field F2m. 



5.4.5 Hypotheses Testing 

Once the hypotheses generation phase is complete, the hypotheses are tested using the 

generated matrix Hl, where 0 5 1 < r, and the data from the power traces ti. The matrix 

Hl will be of dimensions N x 2W. This contains the hypothetical output of the target finite 

field operation given all possible values for k[l] and known data ai, i.e. Pi = S(ai, k[l] ). 

In CPA, the correlation is calculated between the estimated power consumption of 

a particular value and the actual power consumption. Therefore, Hl is translated into 

its associated estimated power consumption. This amount depends on the power model 

adopted. If the Hamming weight model is favoured, then Hl is replaced with its Hamming 

weight. If the Hamming distance model is preferred, then Hamming distance between 

the state HE and the previous state R is calculated. Since R is an unknown constant 

reference state, the search space for this model is 22w as all previous reference states 

must be considered. 

Consider the case of k[O]. To identify which is the correct k[O], the correlation is cal- 

culated between the estimated power consumption of each column in Ho (this contributes 

to Y in Equation (2.2) in Chapter 2) and a discrete time interval in the acquired power 

traces ti where the target operation is being executed (this contributes to X in Equation 

(2.2) in Chapter 2). For example, the matrix Ho is translated into its corresponding Ham- 

ming weight values as follows, 

Each column in the matrix Ho, is correlated to a discrete interval in the power traces 

ti. Figure 5.3 depicts the typical power traces acquired3. Here the interval containing the 

3 ~ l ~ i s  figure was generated from acquisitions captured duiing collaboratioi~ with University College Cork, 
Department of Electrical & Electronic Engineering. 



target operation is highlighted. Each column in Ho, which correspond to the hypothetical 

output when k[O] = 0 up to 2W - 1, will be correlated to the area of interest. 
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Figure 5.3: Discrete time interval in power traces ti where target finite field operation is 
executing. 
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The hypothesis with the highest correlation, is identified as the correct least significant 

word k[O]. Identification of the remaining words of k proceeds in the same manner. 
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5.4.6 Computational Cost of Attacks 

In each of the attacks described, w bits of the key k were guessed at a time. This means 

the total number of hypotheses that must be made for k are 2W x 'Iog2 . Therefore, the 

efficiency of the attack depends on w. In the implementation of Scott et al. [120], where 

w = 32, it will be a computationally intensive task to extract one word. However, it is 



possible to calculate the partial correlation of practical portions of w. 

The authors of [24], who developed CPA, pointed out that if the correlation coefficient 

off independent bits amongst w is calculated, a partial correlation still exists and can be 

predicted as a function of the coefficient that would be generated if all the bits of w were 

included. This proportion is determined by 

where f bits from a w-bit word are known. Since the estimations for the power consump- 

tion now only considers portions of the word, the correlation will be proportional to the 

portion of the word considered, and so partial correlation will be witnessed. 

This can be used to attack implementations on processors with large word sizes, and 

so is particularly relevant for this work. For example, consider the multiplication of two 

values a and b to produce c, where a is known and b is unknown and the multiplication 

is carried out on a 32 bit processor. As highlighted in Section 5.4.2, the least significant 

word of the product c, is determined by the least significant words of a and b. Let a[O], 

b[O] and c[O] denote the least significant word of a, b and c respectively. Furthermore, let 

~ L S B  [O], ~MLSB [0], ~ L ~ ~ B  [O], bMSB [0] denote the four bytes of b[O] . Firstly, hypotheses 

can be made for bLsBIO] and the relating hypotheses tested. Since there only exist 2' 

hypotheses, this is feasible to do. The next byte of b[O], bMLsB[O] can then be tested in 

the same way. Based on Equation (5.1), & = 0.5 of the correlation that should be 

produced if all the bits were predicted, should be witnessed. 

Once the value (or the most likely candidate) for each byte has been identified, to gain 

further confidence in the bytes for bLsBIO] and bMLSBIO], the correlation for the least 

significant 16 bits of b[O] can be determined. The attacker should witness an increase 

in the correlation which should again be proportional to the correlation that should be 

witnessed given the correct 32 bits, specifically = 0.707 of this correlation should 



be seen. This can be continued for the remaining bytes of b[O]. This process requires the 

generation of 4 x 28 = 21° hypotheses, which is considerably less that if extracting a 

word of b, where a total of 232 hypotheses would be required. Figure 5.4 demonstrates 

typical partial correlations that might be witnessed for different size portions of a 32 bit 

word4. 

Figure 5.4: Various partial correlation peaks for a 32 bit word. As can be seen, the 
correlation for 4, 8, 16 bits is proportional to the correlation for the full 32 bits. 

5.5 Power Analysis of Candidate Bilinear Pairings 

The susceptibility of finite field operations to power analysis has implications for the 

vulnerability of the reliant pairing. When and how the various finite field operations are 

used in the pairing will affect the attack options for first-order power analysis. In this 

section, three particularly efficient pairing algorithms, which are presented in [120], are 

analysed for potential vulnerability to first-order power analysis. Building on the analysis 

of the previous section, that is, given that the underlying finite field operations can be 

4 ~ h i s  image is courtesy of Gemplus Research and Development Laboratories [52]. 



attacked as described, the consequences are assessed in the following pairing algorithms. 

5.5.1 Attack Assumptions 

The following assumptions are made about the attack on the target bilinear pairings. 

Firstly, the device in which the bilinear pairing algorithm is stored and executed, is a 

valid target for side channel attacks such as power analysis. This means that it is possi- 

ble to capture a power consumption measurement, referred to as a power trace, from the 

target device. 

Secondly, it is assumed that all parameters bar a secret elliptic curve point are pub- 

lished. Therefore, the finite field Fqk, the elliptic curve E, the other point entered into the 

pairing ( P  if Q is secret and Q if P is secret), and order of the Miller loop r are accessible 

to an adversary. 

Thirdly, it is assumed that the adversary can invoke multiple pairing computations 

with various valid input points. This allows the adversary to capture the power con- 

sumption of a number of pairing computations. The number of times that the pairing is 

executed, and corresponding power traces acquired, is N. 

Finally, the class of attacks that will be considered are first-order power analysis at- 

tacks such as CPA, which are based on the availability of an eligible selection function. 

5.5.2 The BKLS Algorithm for the Tate Pairing 

The BKLS algorithm [14] for the Tate pairing e(P, Q) is implemented on non-supersingular 

elliptic curves over the large prime field E (IFPk). The pairing accepts a point P E E (Fp) 

of order r and a point Q E E1(IFPkp) on a twist of the curve. e(P, Q) is evaluated to 

an element in the finite field @',I,. In the specific implementation described in [120], the 

embedding degree k = 2 and d = 2. Hence, the points P and Q have coordinates in IFp. 

The algorithm for the Tate pairing is described in Chapter 3. Briefly to recap, in 

this pairing the point scalar multiplication of the point [r] P = O is calculated involving 



calculation of a distance relationship between the lines produced during the point multi- 

plication and the point Q. This distance relationship is the heart of Miller's loop, and is 

calculated as 

Yj - Xj(xQ + x ~ )  - Y Q ~  (5.2) 

where an element of the form a + i b  E IFpz is produced with a ,  b E IFp. Usually a and b 

are stored separately. 

Problem: Given that the BKLS algorithm for the Tatepairing e(P, Q )  is the pairing im- 

plementation that is stored and being executed on a target device D, is it susceptible to 

first-order power analysis? 

Two scenarios will be considered. 

Scenario I. The cryptographic protocol requires the computation of e ( P ,  Q), where P is 

a public parameter ( x p  , y p )  and Q is a private parameter (xQ , yQ) . 

As described previously, during the computation of the Tate pairing, the P parameter is 

dynamic and the Q parameter is static. Since the order r is a publicly available parameter, 

the intermediate points b ] P  and so ( x j ,  y j )  and the slope Xj, which are calculated during 

a point addition or doubling in the computation of the point [r] P ,  can be generated by the 

adversary. 

From the perspective of an adversary utilising the power consumption, steps in the 

algorithm involving the secret with known data are of particular interest. Therefore, any 

meeting point between xp, yp ,  x j ,  yj and X j ,  and XQ and y~ will be subject to attack. 

The contact points that exist are tabulated in Table 5.1. These contact points are potential 

selection functions. 

From this table it can be seen that there are multiple options to attack X Q  in every 



Table 5.1: Attack options for the Tate Pairing: P public, Q private. 

Round 
1 

> 

1 

round, yet no opportunities to attack y ~  exist. This is due to the fact that y ~  is not 

combined with known data at any stage during the algorithm. Hence, no eligible selection 

function can be constructed. Explicitly, in round one the operations that y ~  is involved in 

can be described as 

Operation 1 Secret 

XQ f Xl '  I xQ 
AP,SP(XQ + XP) "Q 

ac-b2  and ( a + b ) ( b + c ) - a c - b  2 

where b represents y ~  and a  and c  are unknown. In all subsequent rounds, the operations 

that y ~  is involved in are of the form 

a c -  bd and ( a +  b ) ( d + c )  - a c -  bd 

where again b  relates to y ~  and a, c  and d  are unknown. Therefore, no selection function 

exists for the secret coordinate y ~  and so first-order power analysis is only possible on 

the coordinate XQ. Due to point compression however, XQ alone is sufficient to extract 

the secret Q. 

To extract X Q  any of the operations listed in Table 5.1 can be focused on. For demon- 

strative purposes, the operation X j ( X Q  + x j )  will be assessed. Given the point P, the order 

r and the modulus p, the intermediate values x j  and Xj  which arise in the calculation of 

[r] P can be computed. 

As previously demonstrated, the multiplication operation can be attacked using power 



analysis when operating on known and secret data. Therefore, given x j and X j ,  predic- 

tions can be made about portions of X Q ,  which can be verified using the hypothetical 

output of X j  ( X Q  + x j )  and the power traces ti. 

Let the target round in the Miller loop be the second round. Let x2 and A2 denote the 

values related to P involved in X 2  ( X Q  + x2). Let X 2  [0], x2[0] and xQ[O] denote the least 

significant words of X 2 ,  2 2  and X Q  respectively. By predicting possible values for xQ[O], 

the hypothetical output word r2 [O] where r2 [0] = X 2  [0] (x2 [0] + X Q  [0] ), can be computed. 

Then, for all points Pi input to the pairing e(Pi, Q) where 1 I i 5 N and possible 

values of xQ[O], the hypothetical output of the function X2[0] (x2[O] -k X Q  [0]) is calculated 

to populate the matrix Ho. The matrix Ho is in turn translated into its estimated power 

consumption values and compared with the actual power. This will determine which 

hypothesis for X Q [ O ]  gives the highest correlation. This procedure is used to extract the 

remainder of X Q .  

Since the secret X Q  is combined with h o w n  data in every round of the Miller loop, 

it is possible to further validate a guess for X Q  [0] by checking the correlation at multiple 

rounds. For example, given that the value g has exhibited the highest correlation for the 

least significant word of X Q  in r2[0] = X 2  [O] (x2[0] + X Q  [0]), it can be validated further 

by checking the correlation of 

and 

r4[0] = A4 [O] (x4[01 + g )  - 

A numerical example of how the hypothetical output of Xj(xQ + x j )  is deterministically 

calculated given xj, X j  and portions of X Q  is given in Appendix A.2. 

Scenario 11. The cryptographic protocol requires the computation of e(P, Q), where P is 



a private parameter and Q is a public parameter. 

In the scenario where P is secret and Q is public, the known value remains static through 

the computation, and the secret parameter is constantly changing. The values xp, yp and 

intermediate points [ j ]P  and so xj, yj  and Xj, which are calculated during the compu- 

tation of the point [r] P ,  are now secret. Attacking the first round will reveal x p  and yp 

directly. Attacking any other round will reveal x j  and yj, and so will require knowledge 

of the number of additions that have been used to produce [ j ]  P, so the required number 

of point subtractions can be applied to reveal the original point P. 

Again, from the perspective of an adversary utilising the power consumption, steps in 

the algorithm involving the secret with known data are of interest. The potential selection 

functions that exist in this case are tabulated in Table 5.2. 

Table 5.2: Attack options for the Tate Pairing: P private, Q public. 

From this table it can be seen that there exists no options to extract the secret coordi- 

nate yp and the only operations where x p  is accessible are XQ + x p  and XQ + Xj.  All 

other operations involve more than one unknown value. Therefore, in implementations 

where P is private and Q is public, first-order power analysis relies on the attack on the 

addition operations. 

Also, unlike the situation where Q is the secret, the focus of the attack can be on one 

round at a time. Multiple rounds to strengthen the confidence of a guess for a portion of 

xp  cannot be performed, since the portion of x j  used in one round will not be related to 

Secret 

X P  

Round 

1 

Operation 

x n  + X P  



the portion of xj used in the next round. 

5.5.3 The BGOhES algorithm for the 7~ Pairing 

The BGOhES algorithm [13] for the q~ pairing e ( P ,  Q )  is implemented on supersingu- 

lar elliptic curves over the binary field E (IF2m). Both parameters to the pairing P and Q 

are points on the curve E (IF2m). Hence P and Q will have coordinates in I F p  and so the 

coordinates ( x ,  y )  will be approximately the same bit length as m. qT(P,  Q) is evaluated 

to an element in P2km. In the specific implementation described in [120], the embedding 

degree k = 4. 

The algorithm for the rp pairing is described in Chapter 3. The q~ pairing is quite 

different to the Tate and Ate pairing: no distortion map is explicitly used as the map to 

the extension field is integrated into the algorithm, operations on points are completely 

avoided. A preliminary computation takes place outside the Miller loop: 

and the iterative square root of x p  and yp and squaring of xQ and y~ is required through- 

out the Miller loop. The distance relationship at the heart of Miller's loop is calculated 

as 

g + ~ ~ ( x ~ + x ~ ) + y p + ~ ~ + x ~ + ( u + x ~ ) ~ + t  

where an element a + bz + cz2 + dz3 E p24m is produced with a, b, c and d E IF2m. Gen- 

erally a, b, c and d are stored separately. Note that s = ( 0 , 1 , 1 , 0 )  and t = ( 0 , 1 , 0 , 0 )  E 

IF2sm are public elements that are derived from the distortion map and used to map ele- 

ments from the base field to the extension field. 

Problem: Given that the BGOhES algorithm for the rp pairing ~ T ( P ,  Q ) ,  is the pairing 

implementation stored and being executed on a target device D, is it susceptible tojrst- 



order power analysis? 

Two scenarios will be considered. 

Scenario I. The cryptographic protocol requires the computation of ~ T ( P ,  Q), where P  

is a public parameter and Q is a private parameter. 

During the computation of the r p  pairing both parameters, P and Q are dynamic. The 

values xp, yp and intermediate values xi and yi, which are related to the repeated square 

root of xp  and yp respectively, can be computed by the adversary. The secret values XQ, 

y~ or intermediate values x j  and yj, which are related to the repeated squaring of XQ 

and y~ respectively, are of interest to the adversary. Attacking outside the Miller loop 

or the first round of the Miller loop will reveal XQ and y~ directly. Attacking any other 

round will reveal x j  and yj, and will require knowledge of the number of squarings that 

have been applied to XQ and y ~ ,  so the required number of square root operations can be 

applied to reveal the original point Q. 

Any steps in the algorithm involving the secret with known data will be open to power 

analysis. Therefore, any meeting point between xp, yp, xi and yi, and XQ, y~ x j  and yj 

will be subject to attack. The contact points that exist are tabulated in Table 5.3. These 

contact points are again eligible selection functions. 

Table 5.3: Attack options for the q ~  Pairing: P public, Q private. 

Round 

Olluide loop 
Outside loop 

1 

Operation I Secret 

(XP + 1) * (xp + n:c) + 1) + yp + pr] + b + 1 1 XQ, YQ 
( X P  + 1 + xQ)s  I "Q 

X P . ( X ~ + X ~ ) +  y i + g Q + x i  I xQ, YQ 



From this table it can be seen that there are multiple options to attack XQ or a relation 

of XQ, xj, and YQ or a relation of YQ, yj, in every round. In addition, a number of 

operations can be combined to validate a prediction for a guessed portion. For example, 

and 

xP[O] ' (xi[()] f XQ[~] )  

involving addition and multiplication modulo the known irreducible polynomial f (z), can 

be used to validate a prediction for the portion XQ [0] . Given that the deterministic output 

for guesses of portions of XQ can be made in the above operations, CPA can be used to 

determine portions of XQ using the power traces. 

Scenario LZ. The cryptographic protocol requires the computation of m(P, Q), where P 

is a private parameter and Q is a public parameter. 

The 7 7 ~  pairing is different from the Tate and Ate pairing algorithms assessed in that the 

two paths in the pairing are almost symmetric and so are equally vulnerable. The values 

XQ, y~ or intermediate values x j  and yj, which are related to the repeated squaring of xQ 

and y ~ ,  can be computed by the adversary. The secret values xp, yp and intermediate 

values xi and yi, which are related to the repeated square root of x p  and yp, are of interest 

to the adversary. Attacking the outside the Miller loop or the first round of the Miller loop 

will reveal x p  and yp directly. Attacking any other round will reveal xi and yi and so 

will require knowledge of the number of square root operations that have been applied to 

x p  and yp, SO that the required number of squaring operations can be applied to reveal 

the original point P. The steps in the algorithm that involve the secret interacting with 

known data are tabulated in Table 5.4. 



Table 5.4: Attack options for the q~ Pairing: P private, Q public. 

An equal number of opportunities to attack x p  or a relation of xp, xi, and yp or a 

relation of yp, yi, exist when the point P is the secret. In addition to calculating the 

hypothetical output for any of the operations listed in Table 5.4, the structural analysis 

of the square root operation can be used in the attack of xp. For example, given xp[O], 

it was previously demonstrated how the least significant bit portion of @ could 

be determined from xp [0] . Therefore, a guess can be made for xp [O] and subsequently 

validated by xp[O] . (4% + xQ). 

5.5.4 The Ate Pairing 

The Ate pairing a(P, Q) is implemented on non-supersingular elliptic curves over the 

large prime field E(F,k). The pairing accepts a point P E E'(Fpk/d) of order r over 

the twisted curve, and a point Q E E(Fp) over the base curve. a(P, Q) is evaluated to 

an element in the finite field Fpk. In the specific implementation described in [120], the 

embedding degree k = 4 and d = 2. Hence the point P has coordinates in F,2 and Q has 

coordinates in IFp. 

The algorithm for the Ate pairing is provided in Chapter 3. Briefly to recap, in this 

pairing the point scalar multiplication of the point [r]P = (3 is calculated involving 

calculation of a distance relationship between the lines produced during the point multi- 

plication and the point Q. This distance relationship is the heart of Miller's loop, and is 



calculated as 

i2yQ - i(iZyj/2 + + XQ)) (5.3) 

where an element of the form a + ib E F,4 is produced with a ,  b E F,2. This for- 

mula is derived by combining the line evaluation with the coordinates of P "untwisted" 

from E1(F,z) to E (Fp4). Note that point scalar multiplication is calculated over the field 

E1(lFpz) which means the underlying finite field arithmetic fundamental to point addition 

and doubling is performed over Fpz . 

Problem: Given that the Ate pairing a(P, Q), is the pairing implementation stored and 

being executed on a target device D, is it susceptible tojrst-order power analysis? 

Two scenarios will be considered. 

Scenario I. The cryptographic protocol requires the computation of a(P, Q), where P is 

a public parameter and Q is a private parameter. 

As with the Tate pairing, the P parameter is dynamic and the Q parameter is static. Since 

the order r is a publicly available parameter, the intermediate points [j] P and so Xj, yj 

and A j ,  which are calculated during the computation of the point [r] P, can be generated 

by the adversary. The potential selection functions involving known data values xp, yp, 

xj, yj  and Xj, and the secret data values XQ and YQ are tabulated in Table 5.5. 

Table 5.5: Attack options for the Ate Pairing: P public, Q private. 

From this table it can be seen that opportunities exist to attack XQ in every round, yet 

Secret 

XQ 

XQ 

Round 
1 

2 to (Llog2nJ - 1) 

Operation 

-i(i"p/2 + /\p,2p{i2xp/2 + X Q ) )  

-i(~'"?~~//2 + Xj(k%$ J2 -t xg)) 



none exist to attack y ~ .  This is similar to the case in the Tate pairing where y~ only comes 

in contact with other unknown values. To extract XQ, the operation X j  (i2xj/2 + XQ) 

which involves addition of an element in IF, to an element in F,z and multiplication over 

FP2, can be isolated. To attack this operation, structural analysis of the multiplication 

operation can once again be used. Even though multiplication is performed over F,z, 

multiplication in F,z is constructed from multiplication in IF,. Let i2xj/2 = (xl, yl), 

X j  = (22, y2) and XQ = (x3, y3) where xi and yi E IF,. Firstly, internal addition, which 

involves addition in IFp, yields (xl + x3, yl) since XQ E IF, and so y3 = 0. The addition is 

followed by multiplication of the result (xl + 23, yl) by X j. Again a series of operations 

over IF, are used to compute this product. The multiplication of (x2, y2) + (xl + as,  yl) is 

calculated as 

where internal multiplications are over IF,. In this equation, all coordinates bar 2 3  are 

known. Since x3 is in fact XQ, by guessing portions of XQ the hypothetical output of any 

of the above operations can be used to verifL a guess using the power traces. For example, 

xz . (xl + 23) will serve as an eligible selection hc t ion .  

In addition, since the secret XQ is combined with known data in every round of the 

Miller loop, it is possible to hrther validate a guess for XQ [0] by checking the correlation 

at multiple rounds. 

Scenario 11. The cryptographic protocol requires the computation of a(P, Q), where P 

is a private parameter and Q is a public parameter. 

In the scenario where P is secret and Q is public, the known value remains static through 

the computation, and the secret parameter is constantly changing. The values xp, yp and 



intermediate points [j]P and so xj, yj and Xj, which are calculated during the compu- 

tation of the point [r] P ,  are now secret. Attacking the first round will reveal xp  and yp 

directly. Attacking any other round will reveal x j  and yj and so will require knowledge 

of the number of additions that have been used to produce [ j ]  P, so the required number 

of point subtractions can be applied to reveal P. The potential selection functions in the 

algorithm that involve the secret interacting with known data are tabulated in Table 5.6. 

Table 5.6: Attack options for the Ate Pairing: P private, Q private. 

- 

Round 

1 
2 to (llog,nl - 1) 

The attack of the Ate pairing is less forthcoming when the secret is P. When P is 

secret, the secret coordinate is over Fp2 as opposed to F, as in the previous case. This not 

only affects the complexity of the point addition and doubling operations which are over 

the extension field Fpz, but affects the size of the secret that must be extracted. The only 

option for attack is the coordinates related to xp, accessible in the either of the operations 

i2xp/2 +XQ or i2xj /2 + XQ. All other operations involve more than one unknown value. 

For instance, the output of the operation 

given guesses for portions of the secret xp, cannot be made. Therefore, in implementa- 

tions where P is private and Q is public, first-order power analysis will rely on the attack 

on i2xp/2 + xQ or i2xj/2 + XQ. 

In addition, unlike the situation where Q is the secret, the focus of the attack can be 

on one round at a time. Multiple rounds to strengthen the confidence of a guess for a 

portion of x p  cannot be performed, since the portion of x j  used in one round will not be 

related to the portion of X j  used in the next round. 

operation 

-i(i2yp/2 f Xl(i2xp/2 + xQ)) 
-i(i2yi/2 + Xl(i2xj/2 + XQ)) 

Secret 

XP, 'yP 

X i ,  V j  



5.5.5 Summary of Findings 

Three candidate bilinear pairings were assessed for vulnerability to first-order power anal- 

ysis. This analysis was performed based on the criteria required for first-order power 

analysis to be possible. The main findings are as follows. 

For the Tate pairing: The Tate pairing: 

a For e(P, Q), where P is public and Q is private, there exists multiple access points 

for first-order power analysis of the coordinate XQ at each and every round. In 

addition, multiple rounds can be combined to obtain a stronger level of confidence 

in the guesses for XQ. 

a For e(P, Q), where P is public and Q is private, no access points for first-order 

power analysis of the coordinate y~ exist. 

a For e(P, Q), where P is private and Q is public, access points for first-order power 

analysis of the coordinate xp  are restricted to the operations: XQ +xp and XQ + xj, 

and so a single round for either coordinate. In addition, if the attack focuses on xj, 

then the required subtractions will have to be applied in order to access the secret 

P. 

a For e(P, Q), where P is private and Q is public, no access points for first-order 

power analysis of the coordinate yp exist. 

Summary: The P path presents fewer options to attack than the Q path. Hence, it 

is recommended that the Tate pairing is executed as e(S, -), where S is the secret 

elliptic curve point. 

The q~ pairing: 

a For p ( P ,  Q), where P is public and Q is private, there exists multiple access 

points for first-order power analysis of both coordinates XQ and y~ at each and 



every round. However, multiple rounds cannot be combined to obtain a stronger 

level of confidence for the guesses for XQ or y ~ .  

a For m(P ,  Q), where P is private and Q is public, there exists multiple access 

points for first-order power analysis of both coordinates xp and yp at each and 

every round. However, multiple rounds cannot be combined to obtain a stronger 

level of confidence for the guesses for x p  or yp. 

a Summary: Both paths, P and Q are equally vulnerable to first-order power analy- 

sis in the -rp pairing. 

The Ate pairing: 

a For a(P, Q), where P is public and Q is private, there exists multiple access points 

for frrst-order power analysis of the coordinate XQ at each and every round. In 

addition, multiple rounds can be combined to obtain a stronger level of confidence 

in the guesses for XQ. 

a For a(P, Q), where P is public and Q is private, no access points for first-order 

power analysis of the coordinate y~ exist. 

For a(P, Q), where P is private and Q is public, access points for first-order power 

analysis of the coordinate x p  are restricted to the operations: i2xp/2 + XQ or 

i2xj/2 + XQ, and so a single round for either coordinate. In addition, if the attack 

focuses on xj, then the required subtractions will have to be applied in order to 

access the secret P. 

a For a(P, Q), where P is private and Q is public, no access points for first-order 

power analysis of the coordinate yp exist. 

a Summary: The P path presents fewer options to attack than the Q path. Hence, 

it is recommended that the Ate pairing is executed as a(S, .), where S is the secret 

elliptic curve point. 



These findings can summarised as in Table 5.7. 

Table 5.7: Summary: J indicates the presence of an avenue of attack, - indicates the 
absence of one. The accompanying symbols +, or J, indicate what operations are 
targeted. The accompanying letter S or M indicate whether a single round or multiple 
rounds can be used to validate an hypothesis. 

e(P,Q) 
9r(P, 

5.6 Countermeasures 

The main approach to deter first-order power analysis is to break the link between known 

data and secret data so p # S(a ,  k). This disables the adversary from forming hy- 

potheses. A number of countermeasures have already been anticipated to protect bilinear 

pairings against SCA [118, 1071, which achieve this effect. 

The property of bilinearity allows the either the known or the secret parameter in the 

pairing to be easily blinded. A pairing can be calculated as 

where a and b are random values in IF,, or 

P Public, Q Private 

where R is a random point in E(F,) and e is the bilinear pairing in question. 

While these may be effective in deterring SCA since a new random value will be used 

every time the bilinear pairing is called, they are expensive, ultimately requiring point 

scalar multiplication and calculation of two pairings respectively. 

P private, Q Public 

xQ 
J,{+l.IyM 
Q)J,+, .), S 

x P 

J, I+), S 
J,-- 

YQ 

w- 

YP - 



A more subtle countermeasure proposed by [I181 observes that repeated multiplica- 

tion of the Miller variable m by a random element in IFp will have no effect on the final 

pairing value since they will be eliminated in the final exponentiation. This is a less ex- 

pensive deterrent only requiring a field multiplication per iteration of the Miller loop. In 

order for this countermeasure to be effective, the random value must not only be multi- 

plied by the Miller variable, but must be multiplied by all intermediate values that make 

up the Miller variable. For example in the case of Tate (where the original unrandomised 

line function is given in Algorithm 4): 

where r E IFp. If a new random value is multiplied at every iteration of the loop, then 

first-order power analysis would no longer be possible. 

5.7 Conclusion 

In this chapter, it was shown that the BKLS algorithm for the Tate pairing, the BOGhES 

algorithm for the pairing, and the Ate pairing, in theory exhibit characteristics that 

enable first-order power analysis. Firstly, a novel technique to attack finite field opera- 

tions using CPA was given. It was shown how finite field multiplication, square root and 

reduction could be attacked by analysing the structural evolution of the operation. This 

technique, which was derived based on empirical knowledge about CPA, is algorithm 

independent. 

It was then detailed how the attack on the finite field operations, upon which bilinear 

pairings are constructed, has implications for the security of the reliant bilinear pairing. 

Each of the candidate bilinear pairing algorithms were assessed for first-order power anal- 

ysis, given the attack of the finite field operations. Consequently, a description of possible 

attacks of each pairing was detailed. Depending on the path that the secret takes, each 



bilinear pairing is open to varying degrees of a power analysis attack. The overall findings 

show that the two paths for the Tate and the Ate pairing present different opportunities 

for attack, i.e. the Q path is more accessible than the P path. In contrast, the pairing, 

while found to be the most efficient pairing on the smart card [120], is the least secure 

against fist-order power analysis with both paths being equally open to attack. Preventa- 

tive mechanisms to deter first-order power analysis, were subsequently detailed. 

It should be noted that the work presented in this chapter is theoretical. Execution of 

the attacks in practice requires access to the device on which the analysed bilinear pairings 

are implemented. To date such hardware implementations has not been available. In the 

next chapter, bilinear pairings will be assessed for vulnerability to fault analysis. 



Chapter 6 

Fault Analysis of Bilinear Pairings 

6.1 Introduction 

In this chapter, the security of bilinear pairings in the context of fault analysis is exam- 

ined In particular, the Weil pairing, the q pairing and the Tate pairing are investigated. As 

already discussed, there has been concentrated research into the computation of efficient 

bilinear pairings. Endeavours to find suitable elliptic curves [15,39, 161, optimisations to 

Miller's algorithm [14] and simplification of the final exponentiation [4 11, have produced 

fast bilinear pairings. However, there reaches a point where efficiency can compromise 

security. In the previous chapter, implementation attacks that passively monitor the ex- 

ecution were investigated. As demonstrated in Chapter 2, active implementation attacks 

such as fault analysis are also very powerhl attacks, posing a serious threat to any cryp- 

tographic algorithm. Therefore, fault analysis of bilinear pairings is also necessary. In 

particular, features which are incorporated to optimise the pairing must be examined to 

determine whether they may actually weaken it. 

The first, and only to date, description of a fault attack on bilinear pairings was by 

Page and Vercauteren [107], when they demonstrated an attack on the Duursma-Lee [37] 

and Kwon-BGOS [71, 131 algorithm for the Tate and 7 pairing. The fault type they 



focused on was one which caused the Miller loop to run over. By inducing extra iterations 

they are able to isolate a single contribution to the Miller loop, which could be trivially 

picked apart to find the secret. However, a range of faults exist, which can have various 

effects on an algorithm. In this chapter, another fault type is focused on, namely faults 

which cause data used in the computation to be corrupted in some way. This type of fault 

attack, and its consequences, is investigated for a range of pairing algorithms. 

Firstly the work of Page and Vercauteren is reviewed in Section 6.2. In Section 6.3, 

an overview of the type of fault attack described in this thesis is presented. This type of 

fault attack is entitled a data corruption fault attack. An overview of the candidate bilinear 

pairings that are assessed is presented. The general idea behind why such a fault attack 

can facilitate the extraction of the secret elliptic curve point is also discussed. 

In Section 6.4, concrete instances of a data corruption fault attack are given. In par- 

ticular, fault attacks on the 7 and Weil pairings, which enable extraction of the secret 

elliptic curve point, are detailed. An argument as to why such attacks are not applicable 

to the Tate pairing is also given, leading to an argument that the final exponentiation is 

vital in deterring fault attacks. Evidence is provided to support this argument by demon- 

strating that pairings having no final exponentiation or a simple final exponentiation are 

susceptible to data corruption fault attacks, whereas pairings with more complex final 

exponentiations are resistant to such attacks. This section is concluded by presenting a 

summary of the findings. 

Countermeasures to deter fault attacks come in two main forms, fault detection mech- 

anisms and fault prevention mechanisms. Fault detection mechanisms determine whether 

or not a fault has been injected. Fault prevention mechanisms obfuscate the execution 

so that even if a fault has been injected, the effects of the fault are completely lost and 

so useless to an adversary. In Section 6.5, countermeasures that exploit essential prop- 

erties of pairings are presented. Both fault detection and fault obfbscation approaches to 

thwarting fault attacks are addressed. 



Finally this chapter is concluded in Section 6.6. Appendix B of this dissertation con- 

tains numerical examples of the attacks described in this chapter. 

This chapter contains joint work with Mike Scott, which was published at the Interna- 

tional Conference on Pairing Based Cryptography - Pairing 2007 [137]. This conference 

was held in Tokyo, Japan in July 2007. Sections 6.3,6.4 and 6.5 are part of the contribu- 

tion of this thesis. 

6.2 Related Work 

Chapter 5 recounts the passive side channel attack aspect of the work of Page and Ver- 

cauteren [107]. In this section, the active fault attack contribution of the paper is exam- 

ined. 

Page and Vercauteren [lo71 describe a fault attack on the Duursma-Lee algorithm for 

computing the Tate pairing on supersingular elliptic curves in characteristic three and the 

Kwon-BGOS algorithm for the pairing on supersingular elliptic curves in characteristic 

two. The type of fault considered causes the Miller loop to run over such that the Miller 

loop bound r is replaced by 6 using a fault attack. The attack on Duursma-Lee algorithm 

(given in Algorithm 16) will be briefly reviewed here. 

Algorithm 16 Duursma-Lee Algorithm for E(F,) : y2 = x3 - x + b where b = &l and 
q = 3" [107]. 
INPUT: P = (XI, YL), Q = ( ~ 2 ,  y2) E E(IF,.) 
OUTPUT: m E P:6 I mr = 1 
1: m t l  
2: for4 t Llog ( r ) ]  - 1 to 0 do 3 3: 2 1  + Xl 

4: Yl ' Y? 
5: p + x 1 + x 2 + b  

6: X + -yl. ?42u - p2 
7: g c X - p p - p  2  

8: m t m - g  
1 / 3  9: x2 + xz 
1 / 3  10: ?42 +- y2 

11: end for 
12: return mq3-I - 



The implementation assessed considers supersingular elliptic curves over the field I F ,  

with q = 3m, k = 6 and with a final exponent of g3 - 1. Using the notation of Page and 

Vercauteren, elements in the sextic extension field F,6 will be represented as 

where IFq3 = F~ [p] / ( p  - p - b) and F,s = IFq3 [D] /(u2 + 1 ) .  The field is constructed as a 

tower of extensions, in that a quadratic is build on top of a cubic. This is a more efficient 

alternative for constructing extension fields as opposed to a straight sextic [35]. For the 

remainder of this section, elements in Fq3 will be represented as 

where ai E F, and elements in IF,B will be represented as 

where ai E Fq3. 

The heart of the Miller loop is the calculation of the Miller variable m. In each round 

the value g is multiplicatively incorporated into the Miller variable m as follows 

where 

9 = -YI ' 9 2 0  - ( X I  f 3 2  + b)2 - (xl  + x2 + b)p  - p2, 

Using the notation defined above g has the form 



If the fault causes the Miller loop to run over, then additional evaluations of g will be 

performed. If the Miller loop executes just a single extra iteration, then dividing a pairing 

eT+l (P, Q) where the Miller loop has executed r + 1 times, by a pairing eT (P, Q) where 

the Miller loop has executed the required number of times r, will yield, 

and so 

This corresponds to the factor produced from the extra round of the Miller loop induced 

by the fault. If this factor was not subsequently raised to the power of q3 - 1, then the 

secret could be easily extracted. For example, if the secret was related to the coordinates 

("2, y2), then by simply calculating xz = -(x:~+' + b) ,  one of the secret coordinates 

could be extracted. To access this simple factor g, and solve for the secret elliptic curve 

point, the final exponentiation has to be reversed however. 

The technique that Page and Vercauteren use to reverse this exponentiation will be 

described here, although a number of approaches could be taken. Elements in Pqs with 

order q3 - 1 are all in Fqa, or ofthe form ni = [0 a" for 0 5 i < q3. Let R = gq3-'. If a 

root p of R is found such that R = p93-1, then all roots have the form = blai poai]. 

Therefore, there must exist a particular r; that when multiplied by the root p is equal to 

the root of interest g. The method used in [107] to find this root p is known as the q- 

polynomial method, and is described by Lid1 and Niederreiter [74]. This root can be 

manipulated so that it is easier to work with. Specifically, the authors of [lo71 normalise 

p. Let p = [pl pol and so ,LA = [(m5 mq m3) (m2 ml m ) ] ,  the normalisation of the 



mot p, denoted ji, is calculated as 

Let IE = [(O 0 0) (k2 kl kO:O)]. NOW, the multiplication of fi by p, will yield 

where 

Since it is known that there must exist some value K E Fqs which when multiplied by 

the normalised root j i  will give the corrcct root g, i.e. g = ji . K, t h s e  equations along 

with the information known about g can be used to soIvc for g. From Equation (6.1), it 

can assumed that kz = -1 = 2 and Nl = f i 2  = 0, ailowing Equation (6.2) and (6.3) to 

be simplified to 

Therefore, given just one root of R, by normatising that root the corresponding values for 



mo, ml and ma can be substituted into Equation (6.5) and (6.6) to solve for K.  Multiply- 

ing K by ji will reveal the root of interest, g. 

The ability to reverse the final exponentiation depends on a special feature of the root 

of interest. The root g is not a full element in the sextic extension field, i.e. some of the 

coefficients are zero, 

9 = [(O 0 - yi . y z ) { - l  - ( X I  + x2 + b) - ( x i  + x2 + b)2 ) ] .  

thus providing additional information which aids the adversary to reverse the final expo- 

nentiation. 

Note that this attack depends on the fault causing the Miller loop to execute exactly 

one extra iteration. If however, a random number of iterations is induced, which is a 

more realistic scenario, then a number of faulty pairings need to be computed until the 

pair (eT+, ( P ,  Q) , eT+,+i ( P ,  Q ) )  are identified, for z random. Identifying these pairs is 

assumed to be possible, since SPA can be used on the power trace to identify the number 

of rounds that have been executed. 

6.3 Overview of Attack 

In this section, the general idea behind fault analysis of bilinear pairings is presented. 

First, the type of fault that is considered and the reasoning behind the choice of candidate 

pairings is given. 

63.1 Fault Type 

Fault attacks will target memory locations or registers used for computation. Therefore, 

the way in which data values in the bilinear pairing are stored and operated on, will in- 

fluence the focus of a fault attack. Fault attacks can be categorised as having three main 

effects on an algorithm. The first effect seeks to knock out a step in the computation, i.e. 



a no-op replaces another working instruction. This allows selective execution of instruc- 

tions in an algorithm. The second effect seeks to cause a loop either to end prematurely 

or to run over. The third effect seeks to cause the data being operated on to be corrupted 

in some way. Page and Vercauteren deal with the second type of fault. In this chapter, the 

effects of the third type of fault, a data corruption fault, on a number of candidate bilinear 

pairings are examined. 

A data corruption fault is defined as the modification of a data variable in some way. 

For example, a field element a E H24m will be represented as a0 + a l z  + a2z2 + a3z3 

with ai E Pam and so will be stored in four different memory locations. The notation 

[ao] [al] [a2] [a3] represents the storage of these elements. Each component of this repre- 

sentation is referred to as a cell. A fault can target any of the cells in memory, [ao] [al] [a2] 

or [a3]. For example, a data corruption fault may target the value [a3], producing an 

erroneous value [a3]'. The fault can alter either a bit, bits, byte or bytes of [as] to pro- 

duce [a3]'. A corrupt bilinear pairing computation, will be called a faulty pairing. Given 

a faulty pairing, the ability to derive the secret depends on the effect that the fault in- 

jected has caused and the bilinear pairing algorithm itself. In the three candidate bilinear 

pairings, the consequences of such faults are examined to determine whether the fault 

injected enables extraction of the secret. Details on fault injection techniques, fault types 

and effects, were presented in Chapter 2. 

6.3.2 Choice of Candidate Pairings 

Three bilinear pairing algorithms are selected for examination for vulnerability to a data 

corruption fault attack. The three pairings chosen are namely the Weil pairing, the r )  

pairing and the Tate pairing. Each of these is chosen based on the varying complexity of 

its final exponent. The version of the r )  pairing considered is the version of Galbraith et 

al. [41], who recently developed a version of the r )  pairing with no final exponentiation. 

This version of the r )  pairing considered here will be referred to as the r ) ~  pairing to 



distinguish it from the original q pairing, which has a final exponentiation. The version 

of Weil pairing considered is also a variant of the original and most widely recognised 

Weil pairing. The version of the Weil pairing considered employs a simple final exponent 

of p - 1, unlike the original which has no final exponentiation [117]. To distinguish 

the version of the Weil pairing considered here from the original Weil pairing, it will 

be denoted by wo since the version considered employs denominator elimination. The 

version of the Tate pairing considered is the original Tate pairing computed using the 

BKLS algorithm. It has the most complex final exponent of all the bilinear pairings 

considered of (p" l ) / r .  The algorithms for each of these bilinear pairings are given in 

Chapter 3. 

As was noted in Chapter 5, the secret parameter can be entered as the fist or second 

parameter in the bilinear pairing e(P, Q). Therefore, there are two potential avenues to 

attack the bilinear pairing, the P path and the Q path. The situation where the secret 

elliptic curve point can take either path is addressed in each attack description. 

6.3.3 The General Idea 

Bilinear pairings consist of two main parts, the Miller loop and the final exponentiation. 

Therefore, either part of the algorithm can be targeted. To attack the Miller loop, there 

are a number of locations that a data corruption fault can target. It can affect the Miller 

variable, the point P (or an intermediate point calculated during the computation of [r] P), 

the point Q (or an intermediate point calculated during computation of [r]Q, specifically 

in the case of the Weil and q~ pairing), or the order of the Miller loop. An attack that 

alters the order of the Miller loop was examined by [107]. All other possibilities for attack 

will be discussed in this chapter. To attack the final exponentiation, two data values can be 

targeted with a data corruption fault, either the Miller variable resulting from the Miller 

loop or the exponent can be affected. However, the consequences of tampering with either 

component in the final exponentiation is difficult to exploit, as will be discussed below. 



Let p(P, Q )  denote any of the candidate bilinear pairing algorithms, i.e. p(P, Q) = 

qG(P, Q),  wD (P,  Q )  or e(P, Q )  where qG (P,  Q )  denotes Galbraith et al.'s q pairing, 

wD(P, Q )  denotes the Weil pairing of [I171 and e(P, Q )  denotes the Tate pairing. Let 

p(P, Q)' denote a pairing algorithm in which a fault has been injected. The type of fault 

that produces p(P, Q)' is discussed in the respective attack descriptions. 

Adopting the approach of Page and Vercauteren and considering the Miller loop 

alone, the pairing p(P, Q )  can be represented as the product 

where gi accounts for all line function contributions. If a fault is injected into one of the 

line functions, then the following relationship can be exploited, 

where gi is the correct line contribution to the i-th iteration, gi is the corrupted line con- 

tribution to the i-th iteration, i is the round in the Miller loop where the fault was injected 

and r denotes the number of rounds in the Miller loop. For example, if a correct 

is calculated as 

(((((91)' . 9212 9 ~ ) ~ .  . .)2 . LIT-) 

and a faulty pairing is calculated as 

where the fault corrupts the line contribution in the third round of the algorithm, then 

dividing a correct pairing by a faulty pairing, where input parameters are identical for both 

'when the pairing involves double and additions, this may also be represented as ( ( ( , q ~ ) ~  .gz . . . .)2 - 
,q,) where in some rounds, depending on the binary representation of the loop order, both an addition and 
double is performed. 



pairings, will nullifl any parts of the pairing computation common to both executions, and 

leave the parts of the pairing computations where the two executions diverge, i.e. 

which are the remaining parts of the computation affected by the fault. An obvious ob- 

jective of the fault attack will be to inject a fault so that the difference between these two 

pairings p(P, Q) and p(P, Q)' is minimal, and so dividing p(P, Q) by p(P, Q)' isolates a 

part in the computation which is easy to exploit. Injecting a type of fault so that an ex- 

ploitable part of the computation is isolated, is the key idea behind the attacks proposed 

in this chapter. Some of the optimal locations for fault injection include the following. 

1. The fault should target the last round, or at least later rounds, in the Miller loop. 

The optimal round to attack is the final round. 

Any rounds that are targeted before the final round will require calculation of a 

number of square roots to access this fraction. 

2. The fault should target values used in the Miller loop which are required for use 

in a single round alone. This is particularly relevant for faults which affect rounds 

preceding the final round. If the fault affects values which are used in multiple 

rounds, then multiple contributions to the Miller variable will be affected. However, 

if the fault targets values used in the Miller loop which are only required for use 

in a single round then the fault can be contained, only affecting the Miller variable 

for that round. Places for possible injection are the coordinates xi, yi or the slope 

,Ai, which are the intermediate values in the computation of [r] P (or [r]Q). If these 

values are pre-computed and stored on the device and looked up when required 



[120], then the fault injected can be contained. However, if the fault affects Xi, Yi 

or Xi, where they are computed as part of the pairing, then the subsequent xi+l, 

yi+l or Xi+l will also be corrupted, leading to contamination of numerous parts of 

the computation, thus denying access to the single factor. 

Generally, as will be described below, once the fault targets these optimal locations a sin- 

gle factor (and by single factor it is meant a single Miller variable evaluation) from the 

Miller loop can be accessed. Accessing this single factor can greatly facilitate extraction 

of the secret, as was the case for [107]. However, in certain bilinear pairing algorithms 

extracting the secret is not this straightforward, since the output of the Miller loop under- 

goes another step in the pairing computation, the final exponentiation. 

If the bilinear pairing requires a final exponentiation, then relationship in Equation 

(6.8) becomes 

where f is the final exponent. To reclaim the straightforward relationship in (6.8), rever- 

sal of the final exponentiation is necessary. However, depending on f this may not be 

possible. 

The complexity of the final exponentiation depends on the bilinear pairing. In the 

situation where a simple final exponentiation exists, as is the case for the variant of the 

Weil pairing considered here, access to the output of the Miller loop is in fact possible. 

This is due to the Frobenius action. For example, let a + i b  be an element in the field F,z, 

with a,  b E IF,, the Frobenius action is calculated as 

(a  - ib) 
( a  + ib),-' = = c + id, 

(a  + ib) 

thus providing a straightforward relationship between c + id and a + ib. This will be 

demonstrated fwther in Section 6.4.2. In the situation where a more complex final ex- 

ponentiation exists, as in the case for the Tate pairing, the output of the Miller loop is 



difficult to access and accessing it is equivalent to solving a n-th root problem [54]. What 

makes the final exponentiation difficult to reverse is that it is a many-to-one relationship 

[41]. In general, the final exponentiation involves raising the output of the Miller loop to 

the power of (qk  - 1 ) l r .  This can be thought of as 

where a k ( q )  is the cyclotomic polynomial and k = 2d. Raising to the power of (4" 

1 )  and ( (qd  + l ) / a n ( q ) )  is easy using the Frobenius action. Raising to the power of 

( a k ( q )  l r )  is not as straightforward, requiring usage of an algorithm for fast exponentia- 

tion [91, 58, 591. 

Page and Vercauteren describe an attack of the Duursma-Lee algorithm for the Tate 

pairing, which has a final exponent of q3 - 1. In their attack they are able to reverse this 

final exponentiation and access the single factor from the Miller loop. This is because 

the single factor that they are accessing has a special form and so is identifiable from all 

other roots. In the next section, it will be shown that the successful attacks on the r ] ~  and 

Weil pairing, cannot be applied to the Tate pairing. This is because the factor that the Tate 

pairing produces from the Miller loop is not in general of special form and so cannot be 

pinpointed from all other roots. 

As mentioned above, the final exponentiation can itself also be the target of a fault 

attack. However, considering even the most powerhl scenario where a fault nullifies the 

final exponentiation, this means that the output of the bilinear pairing algorithm will be the 

output of the Miller loop. The output of the Miller loop will consist of all contributions to 

the Miller variable, which have been multiplicatively accumulated. These can be thought 

of as a system of multivariate equations similar to those described in [41], which [41] 

notes is difficult to solve. Therefore corrupting the final exponentiation, will not aid 

the adversaq in finding the secret. If the adversary can inject multiple faults such that 



the final exponentiation is nullified in one execution, and in a second execution the final 

exponentiation is nullified and a fault is injected into the Miller loop to isolate a single 

factor, then an attack could be launched. This however, is an unrealistic attack scenario. 

6.4 Specific Examples of Attack 

In this section, concrete instances of a data corruption fault attack on the r l ~  and Weil 

pairing are presented. It is then shown how such attacks are not applicable to the Tate 

pairing. Firstly, a number of assumptions are made about the fault analysis of the candi- 

date pairings. 

1. It is k s t  assumed that the adversary has the capability to inject a fault, i.e. the 

adversary has access to a glitch attack environment or a similar attack apparatus. 

2. It is assumed that the adversary will have knowledge of the point in time in which 

to inject the fault. This is based on the fact that the adversary can use Simple Power 

Analysis (SPA) to identify each round in the Miller loop via the power trace. 

3. It is assumed that the adversary can invoke multiple pairing executions for their 

choice of elliptic curve point. For example, p(Pi, Q) can be executed for various 

input points P, or p(P, Qi) can be executed for various input points Qi, where the 

secret of interest is in the former case the point Q and in the latter the point P. 

Note that the adversary also has the power to repeatedly input the same elliptic 

curve point to the pairing. 

4. In most cases it is assumed that the fault is injected into the last round of the Miller 

loop, for the reasons given above. 



6.4.1 Corrupting the q Pairing 

The q pairing q(P, Q) [13], specialises in pairings over supersingular curves of small 

characteristic. The main distinction between the 7 pairing and its siblings is that it chooses 

the order of the Miller loop r as a multiple of the group order such that it divides qk - 1 to 

give a small factor, resulting in a simple final exponentiation. For example, consider the 77 

pairing on a supersingular curve of characteristic two, if qk - 1 = 247n- 1 and r = 22"+1, 

which is a multiple of the order 2m & 2(m+1)/2 + 1, then the final exponentiation basically 

involves a conjugation and division, i.e. (22m - 1). 

Recently Galbraith et al. [41] described a variant of the q pairing, referred to as 

the q~ pairing, which required no final exponentiation, i.e. the result of the pairing is a 

unique element and a bilinear map without any final exponentiation. This is enabled by 

the additional evaluation of vertical line functions (which the original q pairing [13] did 

not require). 

When the authors of [41] presented the q~ pairing with no final exponentiation, they 

addressed possible security implications. Mathematical attacks such as a multivariate 

attack and a straight line program (SLP) were considered. However, they conclude that 

the pairing's security (in the non fault attack sense) is still strong, and breaking such a 

pairing requires solving the pairing inversion problem, which both [130] and [114] show 

is difficult. In this section, it is shown how pairings with no final exponentiation can easily 

succumb to a data corruption fault attack. 

Algorithm 7 and 8 given in Chapter 3, describe the q~ pairing. The implementation 

described considers supersingular elliptic curves over the binary field IF2n with k = 4. 

The heart of the Miller loop is the calculation of the Miller variable m. In each round the 

line functions 1 and v are calculated and then divided to produce g, which is multiplica- 

tively incorporated into the Miller variable m as follows 



The lines I and v to produce g, are calculated as 

1 = [YQ + !/A f X(XQ + XA + I)]  [A f XQ + 11 [A + xQ] [O] 

and 

The output of the pairing is an element in the extension field F24m. The cells of 1 and v 

will be denoted by [lo], [/I], [12], 1/31 and [vo], [vl], [v2], [v3] respectively. 

There are a number of possible locations in which the fault can be injected, and a 

number of different effects that this fault can have. A fault can be injected into any of the 

cells of E or v, or any of the coordinates XA, y ~ ,  XC, XQ or y~ and the fault injected can 

corrupt a bit or byte or multiple bits or bytes of the target. If a fault is injected into any 

of the cells of 1 or v, then the effect will be local, only corrupting the cell in question. If 

the fault is injected into one of the coordinates, then the resulting erroneous coordinate 

will have consequences for all subsequent operations in which the erroneous coordinate 

is used. The possible effects of the faults in these locations, will each be addressed in 

turn. 

Let vG(P, Q)' denote a corrupted pairing, where the fault is injected into the cell lo 

in the last round of the Miller loop. Division of the faulty pairing by the valid pairing, 

where input elliptic curve points are identical for both executions, will isolate the round 

in which the fault was injected to yield 

This division will produce an element in m24m, and can be thought of as four different cell 



values No, Nl, N2 and N3, where Ni E IF2rn. Therefore, 

which can be rewritten as 

Given qG(P, Q) and qG(P, Q)', the adversary can compute No, Nl, N2 and N3. 

Using knowledge of how multiplication in P24m is performed, it can be determined 

which cells on the right-hand-side of Equation (6.1 5) correspond to the cell on the left- 

hand-side of the equation. For instance, the following three equations can be derived. 

16 = Nolo + N111 + N212 + (NI + (6.16) 

11 = Nolo + 2Nl l l+  2N212 + (No + Nl)(lo + 11) + (Nl + N3)Z1 + 
( N2 + N3)12 (6.17) 

12 = N o ~ o + N ~ 1 1 + 2 N 2 ~ 2 + ( N z + N ~ ) 1 2 + ( N o + N 2 ) ( l 0 + l 2 )  (6.18) 

The adversary will obviously choose the optimal equation to solve. Equation (6.16), 

contains lb, whereas Equations (6.17) and (6.18) do not. Hence either Equations (6.17) 

or (6.18) contain less unknown information. 

In the scenario where P is private, (6.18) can be simplified to 



where 

In the scenario where Q is private, (6.18) can be simplified to 

where 

Note that Equation (6.17) could just as validly have been used. When P is secret, notice 

that Equation (6.19) is in fact a non-linear equation. However, when Q is secret a linear 

equation is obtained. To solve for Q, Equation (6.20) has two unknown variables and so 

two equations are required to solve the system. First however, the required equations must 

be produced. The main requirement is that the equations are produced with the same un- 

known variables. This can be achieved with two approaches. Either this can be performed 

by repeatedly executing the pairing with the objective of injecting various faults into lo, or 

the pairing could be executed with other parameters, qG(Pi, Q) for various elliptic curve 

points Pi, where the secret Q remains static. For example, if the first approach is used 



where two different faults are injected into lo to produce 16 and lg, 

rlG(P, Q)' - - m2' -- - 9' --  gr ' 1  1' [lolr[lll  [~21[131 - - -= -=  
9 9 ( l l v )  1 [ ~ 0 1 [ ~ 1 1 [ ~ 2 1 [ ~ 3 1  

= [No] [Nil [N2] [N3] 
rlG(P, Q )  m2' - ' 

7 ~ ( p ,  Q)" - m2' '9'' 9" - (Zulu) - l" - [lol"P1l ['21 1/31 = [N4] [N5] [NB] [N7] - - - 
VG(P, Q )  m2' a g" 9 ( 1 1 ~ )  I [1~][1~ l [121[z31  

then two entirely different sets of equations can be derived in the same variable. If the 

second approach is used, and the pairing is executed with other parameters, such as 

qG(Pi, Q)  for various elliptic curve points Pi where the secret Q remains static, then 

the required number of equations in the same variable can be derived in a similar manner. 

Given two such equations, modular Gaussian elimination [80] or simple substitution 

can be used. Alternatively, since XQ and y~ can be expressed in terms of each other 

using the elliptic curve equation, one fault alone will be sufficient to extract Q. A specific 

example of using the relationship between the coordinates x and y will be given in the 

next section. A numerical example of the attack described above is given in Appendix 

B.1.1. 

If a fault is injected into any of the other cells of 1,  then a similar process can be 

applied to derive similar equations. Hence, fault injection into any of the cells of I ,  is 

equivalent to solving a system of modular linear equations. 

In the scenario where the fault is injected during the calculation of the line function 

v ,  the q~ pairing succumbs to a more straightforward attack. Let qG(P, Q)' denote a 

corrupted pairing, where the fault is injected into the cell vo in the last round of the 

Miller loop. It is again assumed that the input elliptic curve points are identical for both 

executions. Division of the valid pairing by the faulty pairing will isolate the round in 

which the fault was injected to yield 



This division will produce an element in p24m, and can be thought of as four different cell 

values No, Nl, N2 and N3, where Ni E F2m. Therefore, 

which can be rewritten as 

Given qG(P, Q) and m(P, Q)', the adversary can compute No, NI, N2 and N3. Again, 

using knowledge of how multiplication in F24m is performed, it can be determined which 

cells on the right-hand-side of Equation (6.22) correspond to the cell on the left-hand-side 

of the equation. For instance, the following three equations can be derived. 

Since vl = 1 and v2 = 1, equations (6.24) and (6.25) can be simplified to 

210 = 
N o + N 1 + 4 N z + N 3 + 1  

9 (6.27) 
2No + N2 

where only one unknown piece of data remains, vo. Since vo is equal to [XQ + x c  + 11, 
either the coordinate XQ or x c  can be extracted depending on whether the secret is P or 

Q. A numerical example of this attack is given in Appendix B.1.2. 



If the target for the fault attack is instead a coordinate used in the calculation of 

the line function, various consequences can be observed. The main difference between 

corruption of a coordinate and corruption of a cell as described above, is that a coordinate 

may be influential in a number of cells. The coordinate x c  is only resident in the cell vo 

and so if corrupted will have similar consequences to the corruption of vo as described 

above. Similarly, if the coordinates XA, y~ or y~ are corrupted, then this is equivalent to 

the corruption of the cell lo. 

If however, the fault attack corrupts either the coordinate XQ or the slope A, then the 

fault will affect numerous cells. If the fault affects A, the cells 10, 11 and 12 will also be 

affected, and result in the introduction of an extra unknown variable into the system of 

linear equations. This results in an increase in the number of unknowns to four variables 

for P secret and three for Q secret. In addition, this extra variable is very specific in 

that the solution of the system of equations requires the ability to recreate identical faults. 

For example, the same A' must be created in at least three pairings in order to be able to 

extract Q. This is a difficult task to initiate and detect. If the fault affects XQ, then the 

cells 10, 11, 12 and vo will be corrupted. Therefore, the division of the valid and faulty 

pairing will not cancel one of the line functions, 1 or v, leaving a relationship of the form 

When expanded, a difficult modular non-linear equation is obtained. 

Another consequence of corrupting coordinates, is that the effect of the fault will not 

be local, as is the case for cell corruption. This is particularly problematic if the fault 

is injected in a round prior to the final round. For example, if the coordinates XA or y~ 

are corrupted in a round preceding the final round, then the subsequent point addition 

in which XA and y~ will be involved, will be affected. A common practice to optimise 

computation time is to pre-compute the intermediate points required in the computation of 



[r] P and store them on the device, so only a look-up operation is required as opposed to an 

elliptic curve point scalar multiplication [120]. In such an implementation, the fault can 

target the memory cell in which XA or y~ is stored, and so the effect will remain local. In 

scenarios where these types of attacks are a threat, this would be a valid argument against 

the use of pre-calculation. 

6.4.2 Corrupting the Weil Pairing 

The Weil pairing w(P, Q) over a prime characteristic elliptic curve with embedding de- 

gree k = 2, was originally defined with no final exponentiation. However by eliminating 

the vertical function evaluations (an optimisation known as denominator elimination), a 

Weil pairing wD(P, Q) with a simple final exponent can be more efficient [117]. 

Algorithms 2 and 3 given in Chapter 3, describe the Weil pairing. The particular 

implementation assessed [I171 considers ordinary elliptic curves over the prime field IF', 

with k = 2 and a final exponent of p - 1. The heart of the Miller loop is the calculation 

of the Miller variable m. In each round the value g, which consists of the evaluation 

of the line functions u and v are calculated and then multiplied to produce g, which is 

multiplicatively incorporated into the Miller variable as either 

or 

m t ( m ) 2 . g  and r n t r n - g  

depending on the binary representation of the order of the Miller loop and whether an 

addition or doubling is being performed The lines u and v to produce g are calculated as 



and 

v = [YP] [YC - A2(xc + X P ) ~ .  

The output of the pairing is an element in Fp2.  The cells of u and v will be denoted by 

[uo] [ul] and [vo] [vl] respectively. 

Again, a number of different locations can be targeted andvarious types of faults can 

be injected to cause different effects. The types of faults which aid in the extraction of 

the secret are far fewer than in the VG pairing. This is because direct access to the output 

of the Miller loop is not available. 

Let wD (Pi, Qi)' denote the Weil pairing in which a fault is injected into the last round 

in the Miller loop. The fault corrupts data in an unspecified way, i.e. either [uo], [ul], [vo] 

or [vl] is corrupted. The case where [uo] is corrupted, will be described for demonstrative 

purposes, however the same end result is witnessed for this type of fault regardless of the 

cell targeted. Division of the valid pairing by the fault pairing will yield 

This type of disruption of the execution has the following consequences, where raising an 

element in F,2 to the power of p - 1 involves a conjugation and division. 

which is equivalent to 

If this equation is expanded, a difficult multivariate non-linear equation is derived. The 

cancelations that were possible on the VG pairing, which allow access to a simple factor, 



are no longer possible. This is due to the final exponentiation. 

Since a general data corruption fault of the Weil pairing will not suffice to extract the 

secret, other fault types are examined Another more powerful and targeted attack that 

will facilitate extraction of the secret elliptic curve point, targets the sign of either [ul] 

or [vo] and so the coordinate y~ or yp.  This type of fault attack is referred to as a sign 

change fault attack since a single sign bit is flipped [20], assuming that the sign is stored 

as a single bit. 

Whether P or Q is the secret affects the optimal location to alter the sign (or flip the 

bit) and how the secret is extracted. When Q is secret the optimal location to inject the 

fault is the sign of the y~ coordinate, whereas when P is secret the optimal location is the 

sign of the yp  coordinate. This will be demonstrated below. 

Let the fault attack cause a change in sign in the y~ component of the elliptic curve 

point Q during the last round of the Miller loop, i.e. u is altered as follows 

Again it is assumed that one valid pairing w D ( P ,  Q) and one faulty pairing w o ( P ,  Q)', 

can be calculated. 

Since the implementation of the Weil pairing being assessed requires a final exponen- 

tiation, division of the valid pairing by a faulty pairing will yield the following: 

wD(P ,  Q )  - (m2- - g)pe' ( a  . v ) P - ~  - (a)'-' ([&(xA f Z Q )  - YA]  [YQ])P-' - - - -- - - 
wD(P,  Q)' (m2' - 9 ' ) ~ '  (u' . v)P-' (u')P-I ([Xi ( X A  + X Q )  - YA] [-YQ] )p-l 

Raising an element in FP2 to the power of p - 1 is simply a conjugation and division, 



which is equivalent to 

Therefore, 

[Xi (XA + XQ) - YA] [-yQ] 
['~(xA + XQ) - YA] [yQ] 

(6.28) 

This division will produce an element in FP2, and can be thought of as two different cell 

values NR and Nc where Ni E IFp. Therefore, 

Exploiting this relation, two linear equations can be derived, 

Since there exists two possible square roots, there are two possibilities for each equation. 

If P is secret, then three unknown values XA, y~ and Ai are present in the equation, 

and so will require three faults to be injected to solve for P. 

If Q is the secret however, two unknown values XQ and y~ are present in the equation. 

With the use of the elliptic curve equation E, only one fault needs to be injected to derive 

Q. Using the elliptic curve equation E, f can be substituted for y~ in 

either of the above equations. This will yield a cubic equation in one variable, which is 

solvable by Cardano's method [25]. For example Equation (6.29) reduces to 



where 

and Equation (6.30) reduces to 

where 

Given XQ, y~ can then be found by simply calculating f x$ +  ax^ - b. J 
When P is secret the optimal location is the sign of the yp coordinate in the line 

hnction v, which will similarly see P being extracted with only one fault. A numerical 

example of this sign change fault attack is given in Appendix B.2. 

As previously explained, the optimal time in which to inject the fault is the final round 

of the Miller loop. If the fault is injected in earlier rounds in the Miller loop, then the effort 

to extract the secret is increased. Any round preceding the h a 1  round sees the Miller 

variable m being squared. Therefore, to access equations similar to Equation (6.29) or 

Equation (6.30), multiple square roots calculations will be required. For example, let the 

fault corrupt the sign of yQ in the second last round of the Miller loop. The relationship 



between the output of the pairings and the data of interest is now 

and so 

This requires the computation of two square roots and so potentially four cubic equa- 

tions (depending on whether the square root exists or not). Hence, the earlier in the loop 

the fault is injected the greater number of cubic equations there will be to solve and test. 

It is expected that this problem can be combatted by using SPA to identify the target loop. 

6.4.3 The Resistance of Tate Pairing to a Data Corruption Fault 

The Tate pairing e(P, Q ) ,  has the most complex final exponent of ( q k  - 1)lr.  This not 

only ensures that the output of the pairing is unique, but it also serves as a defensive 

mechanism against fault attacks as will now be demonstrated. 

Algorithm 4 and 5 given in Chapter 3, describe the BKLS algorithm for the Tate 

pairing. The implementation assessed considers non-supersingular elliptic curves over 

the prime field IFp with k = 2 and a final exponent of (p2  - l ) / r .  Again, the heart of 

the Miller loop involves the calculation of the Miller variable my which consists of the 

calculation of g. In each round, g is calculated from the evaluation of the line function u, 

which is calculated as 

'U = [YA - ~ ( X Q  + X A ) ]  [-YQ] . 

As before, in each round g is multiplicatively incorporated into the Miller variable as 

either 

m + (m)2 m g  



or 

m t ( m ) 2 . g  and r n t m - g  

depending on the binary representation of the order of the Miller loop. Elements are in 

the extension field and consequently the output of the pairing is an element in F p z .  

The sign change fault attack of the Weil pairing will be used to examine the strength 

of the Tate pairing. This is for two main reasons. Firstly, the Tate pairing is most similar 

to the Weil pairing. Secondly the sign change fault attack is the most powerful of the 

attacks considered and so if Tate withstands this attack, it is inferred that it will withstand 

less powerful attacks such as the general data corruption fault. 

Once again it is assumed that a fault has been injected into the h a 1  round of the 

Miller loop. The contribution of the line function for that round can thus be isolated as 

Breaking the exponent into its factors as was demonstrated in equation (6.28), this can be 

simplified to 

However, the reversal of the exponent (p + l)/r is infeasible. To access 

and subsequently derive the secret elliptic curve point (whether it be P or Q), a specific 

n-th root, where n = ( p +  l ) / r ,  must be calculated. Since n divides the group order once, 

there exists a simple formulae to compute a n-th root, i.e. 



where s = (p + l)/n. However, The particular root of interest does not exhibit any 

special form, unlike the case of [107], and is a full quadratic element. Therefore, no 

extra information is available to aid in determining which is the root we are interested in. 

In addition, since there exists n n-th roots, where n is large, the cost of computing and 

testing all n-th roots, renders such an attack infeasible. 

6.4.4 Summary of Findings 

Three algorithms for bilinear pairings were examined for vulnerability to a fault attack. 

Two of these proved to succumb to a fault attack that facilitated the extraction of the 

secret. 

It was shown that Galbraith et al.'s version [41] of the q pairing, the q~ pairing, is 

susceptible to a data corruption fault attack. However, the ability to extract the secret 

depends on where the fault is injected and which parameter P or Q is the secret input 

point to qG(P, Q). If the fault affects any of the cells of the line function I ,  when Q is 

secret, a linear equation with two unknown variables is derived. However, if the same 

fault affects I when P is secret, a non-linear equation is derived. Therefore, for this type 

of attack the Q path is the less secure path in the pairing qG(P, Q). If the fault affects any 

of the coordinates XA, y ~ ,  or y ~ ,  then a similar conclusion about the vulnerability of the 

P and Q paths can be reached. If the fault affects the cell vo or the coordinate xc ,  then 

a simple congruence only needs solving, and so only requires one fault to be injected. 

This holds for both paths P and Q. If however the fault affects either the slope X or the 

coordinate XQ, then the steps to extract the secret are not as straightforward. In the case 

of the corruption of X the nutnber of unknown variables in the system of linear equations 

is increased. To generate the required number of equations to solve the system requires 

an identical fault to be injected into multiple pairing executions. If the fault affects the 

coordinate XQ, then a non-linear equation is obtained. 

It was shown that the type of data corruption fault, which was successfully applied 



to the r j ~  pairing, was ineffective against the Weil pairing. However, it was shown that 

another type of fault attack, namely a sign change fault, could be successfully applied to 

the Weil pairing to reveal the secret. The attack described was demonstrated to be equally 

powerful against both the P and Q path. 

It is not possible to attack the Tate pairing with either a general data corruption fault, 

or a sign change fault attack. This is on account of the final exponentiation which makes 

accessing the output of the Miller loop a difficult root finding problem. 

In addition to assessing three bilinear pairing algorithms, a number of points were 

made about the optimal time and location to inject a data corruption fault. In particular, 

it was noted that the final round is the best round to target and it is more advantageous 

to inject local faults. It was also discovered that pre-computation can actually aid a data 

corruption fault attack. 

6.5 Countermeasures 

Apart from choosing a pairing algorithm which has a complex final exponentiation, a 

number of fault obhscation and detection mechanisms can be used to prevent the de- 

scribed attacks. In this section, various techniques will be presented. 

6.5.1 Pault Obfuscation Mechanisms 

The aim of fault obfuscation techniques is to make the faulty pairings acquired by the 

adversary, useless. Page and Vercauteren [I071 describe a number of techniques that 

blind the input point known to the adversary. For example, by computing 

where P is public, Q is the secret and s is a random value in IF,, the values required for 

use in Equations (6.16), (6.17) and (6.18) and (6.29) or (6.30), i.e xp, yp, XA and y ~ ,  



will no longer be computable by an adversary. 

6.5.2 Fault Detection Mechanisms 

Numerous software and hardware mechanisms already exist to detect a fault attack that 

are not algorithm specific [ll]. For example, the simple act of executing the algorithm 

twice to check if the results are the same can be applied to any algorithm. The property 

of bilinearity inherent in pairings allows a method of fault detection, which is specific to 

pairings. By checking whether 

any faults injected will be caught. This can be applied to all pairings and should pick up 

any type of fault. The only drawback of this fault detection mechanism is that it is quite 

costly, requiring two pairing computations and additional point scalar multiplication of 

two points and exponentiation of an element in the extension field P , k .  

Other more cost effective methods of fault detection could involve random checking 

of whether the intermediate points used in the computation are still points on the curve, 

i.e check if xi, yi E y2 = x3 + ax + b or y2 + y = x3 + x + b. A check could be carried 

out in every round, however this could be expensive. There is also a possibility that this 

check will not be reliable. For example, the sign change fault attack of the Weil pairing 

returns a point that is still on the curve and so will pass this check. 

6.5.3 Hiding the n-th Root 

In the case of the Tate pairing where the difficulty of extracting the secret is based on 

a n-th root problem, one approach to m h e r  harden the Tate pairing against such fault 

attacks is to ensure that the n-th root of interest is difficult to obtain. In particular, in the 

event of the exact n-th root being identified, to combat data conuption fault attacks it is 



possible to set up the elliptic curve parameters such that n2 divides the group order once 

(i.e. p and r are specially chosen to meet this requirement). Now the problem of finding 

just one n-th root, i.e solving Equation (6.35), is equivalent to solving a Discrete Log 

Problem [54]. 

6.6 Conclusion 

In this chapter, it was shown that bilinear pairings incorporating of a simple or no final 

exponentiation are vulnerable to data comption fault attacks. Specifically, attacks on the 

q~ pairing, which reduced extracting the secret elliptic curve point to solving in one case 

a system of linear equations, and in another a simple congruence. A sign change fault 

attack of the Weil pairing was also demonstrated, which reduced extracting the secret 

elliptic curve point to solving a cubic equation. The attacks of the ~ J G  and Weil are not 

possible on the Tate pairing, due to its final exponentiation. 

In summary, the success of these attacks depends on the difficulty of reversing the 

final exponentiation. It is the nature of the final exponentiation to produce a unique value, 

however in doing this it also destroys information, making it difficult to recover the value 

which was exponentiated. 



Chapter 7 

Conclusion 

7.1 Review 

First-order power analysis is based on exploiting operations involving data known to the 

adversary and data related to the secret. In this thesis, three bilinear pairings, namely the 

Tate, Ate and qT pairing, were assessed for vulnerability to first-order power analysis. The 

places where known data comes in contact with secret data were identified. These points 

of contact between known and secret data occurs during various finite field operations 

such as finite field addition, multiplication, square root and reduction. Attacks on the 

finite field operations, multiplication, square root and reduction, were proposed. These 

attacks, which focus on analysing the structure of an operation, are based on the first- 

order power analysis attack Correlation Power Analysis (CPA). The implications of an 

attack on these finite field operations were then examined in the context of the candidate 

bilinear pairings. 

Each of the bilinear pairings assessed proved to be theoretical susceptible to first- 

order power analysis. However, it was shown that certain algorithms are more susceptible 

than others. In particular, it was shown that the number of options for first-order power 

analysis varies depending on the bilinear pairing, and the path that the secret takes. It was 



shown that in the BKLS algorithm for the Tate pairing e(P, Q) when the secret is entered 

as the P parameter, and so takes the path relating to P, then the number of operations 

involving known and secret data is less than if the secret is entered as the Q parameter 

and takes the path relating to Q. In fact, when the secret takes the P path there is only one 

operation per iteration of the Miller loop involving the secret and known data. In contrast 

to this when the secret takes the Q path there are three operations per iteration of the 

Miller loop involving the secret and known data. In the Ate pairing, a similar difference 

between the two paths P and Q was witnessed However, in the pairing, the number 

of options for using first-order power analysis was equivalent for both paths. 

One reason why the Tate and Ate pairings present two varying choices for attack and 

the pairing presents two equally vulnerable choices for attack, can be explained by 

looking at the original line function from Miller's algorithm 

where the line function is being calculated at the point C. Note that C will relate to Q 

when the Miller loop is calculating [r]P, and will relate to P when the Miller loop is 

calculating [r]Q. If the secret relates to (xC, ye) then the focus of the attack can be on 

either (xc - xi), Xi(xc - xi), yi - Xi(xc - xi) or (ye - yi), depending on what field 

the coordinates are part of. Whereas if the secret relates to (xi, yi) then the focus of the 

attack can only be on either of the operations (ye - yi) or (xC - xi), since the operation 

of X i  (xc - xi) will involve two unknown values xi and Xi. Also, if the secret relates to 

(xc, ye) then the focal operations where known data comes in contact with secret data 

are the subtractiodaddition and multiplication operation. While if the secret relates to 

(xi, yi) then there is only one focal operation where known data comes in contact with 

secret data, namely the subtractionladdition operation. 

When only one application of Miller's algorithm is required, as is the case with the 



Tate and Ate pairing, then the secret will present at most two or up to four avenues of 

attack depending on whether the secret is (xc, yc) or (xi, yi). However, if two applica- 

tions of Miller's algorithm are required, then an equal number of attack options will exist 

for the two paths since in either the first or second application of Miller's algorithm the 

secret will take the place of the (xc, yc) coordinate in the line function ZAIB (C) and so 

will present the maximum options for attack. 

This ultimately forms the argument that in the context of first-order power analysis, 

bilinear pairings which require two applications of Miller's algorithm will exhibit two 

equally vulnerable paths of attack via first-order power analysis. Furthermore, if the line 

function is calculated as in Equation (7.1) and only one application of Miller's algorithm 

is required, then the path that provides the fewest avenues of attack is the P path. 

Other findings presented in this thesis further consolidate the argument that the Q 

path is less secure than the P when only one application of Miller's algorithm is required. 

From Equation (7.1), it can be seen that the coordinates (xC, yC), which will relate to Q, 

and so the coordinates (XQ, yQ), are used without change in every round of the Miller 

loop. Therefore, the various hypotheses that are made for the value of Q, can be tested in 

a number of rounds. For example, if a prediction is made for the value of XQ (or even a 

part of zQ) then these predictions can be tested in the rounds i - 1, i,  i + 1; 

Z(Q) = (yQ - &-I) - Xi-l(xQ - xi-1) . . . Round i - 1 

l(Q) = (YQ - yi) - &(xQ - xi) . . . Round i 

1(Q) = (YQ - '&+I) - Xi+l(xQ - xi+l) . . . Round i + 1 

This describes a form of second-order power analysis which combines multiple samples 

from within one power trace. 

These findings leads us to the first two recommendations relating to the secure imple- 

mentation of bilinear pairings when considering power analysis. The first recommenda- 



tion has additional benefits in terms of efficiency. 

Recommendation 1. Bilinearpairings that require one application of Miller's algorithm 

are preferable to bilinearpairings which require two. 

Recommendation 2. Bilinearpairings that require one application of Miller's algorithm, 

and execute the line function lA,B (C)  in its original f o r ,  should accept the secret elliptic 

curve point as thejrst inputparameter to the pairing. 

Now, in the case with the q~ pairing, which presents two equally vulnerable paths to 

attack, this option for secret parameter placement will have no bearing on the number of 

access points for first-order power analysis. Therefore, in order to protect the pairing 

against first-order power analysis, countermeasures to deter power analysis must be im- 

plemented. One approach to deter first-order power analysis is to limit or effectively hide 

operations involving known and secret data. In Chapter 5, a number of countermeasures 

to achieve this effect were proposed. Such countermeasures should be used not only on 

the rp pairing but in all bilinear pairings. This leads us to the next recommendation for 

secure bilinear pairing implementation. 

Recommendation 3. All bilinearpairings should be implemented with countermeasures 

to deter power analysis. 

Fault attacks seek to exploit purposely induced faults in a computation. In this the- 

sis, three bilinear pairings, namely the Weil, Tate and Galbraith et al.'s VG pairing, were 

assessed for vulnerability to fault attacks. In particular, these candidate pairings were 

assessed for vulnerability to data corruption fault attacks, It was shown that the distin- 

guishing factor between whether a bilinear pairing succumbs to a data corruption fault 



attack or not could be attributed to the complexity of the final exponentiation employed. 

A simple final exponentiation, or even worse no final exponentiation, allows a data cor- 

ruption fault to derive the secret, whereas a complex final exponentiation disables a data 

corruption fault and prevents access to the secret. This was demonstrated in the descrip- 

tion of two types of data corruption fault attacks on the Weil and q~ pairing, which could 

not be applied to the Tate pairing. In the implementations examined the q~ pairing did not 

require any final exponentiation, the Weil pairing employed a simple final exponentiation 

and the Tate pairing employed a complex final exponentiation. The reason why a com- 

plex h a 1  exponentiation, and in particular a final exponent of (qk - l)/r, is prohibitive 

to fault analysis is the fact that reversing it is difficult. 

Furthermore, it was shown that certain measures could be used to further complicate 

the reversal of final exponentiation. In particular, it was found that utilising the full field 

representation is important. Since reversing the final exponentiation is an instance of a 

n-th root problem, failing to use the full field representation will provide an adversary 

with additional information that may be used to s imp le  root finding. 

It was also found that the intermediate points that are calculated as part of Miller's 

algorithm should be dynamically computed as part of the computation, as opposed to pre- 

computing the required points and slopes and storing them on the device. Pre-computation, 

which is a common measure to increase efficiency, can actually aid data corruption fault 

attacks since corrupted data can be contained instead of contaminating other information. 

These findings lead us to the following recommendations for secure bilinear pairing 

implementation when considering fault attacks. 

Recommendation 4. 172ejnal exponentiation should be included and chosen such that 

reversal of it is dificult. Specijcally, a jna l  exponent of the form (qk - l)/r is recom- 

mended. 



Recommendation 5. The Miller variable calculated at each round of the Miller loop will 

be an element in the extension jield F q k .  It is recommended that the &ll jield represen- 

tation of this element is utilised For example, i f k  = 6, then all six coertficients of the 

element should be active. 

Recommendation 6. It is recommended that the intermediate points required for the 

computation of [ r ]  P (or [r]Q) are not pre-computed, stored and looked up as part of the 

pairing algorithm. Instead, it recommended that they are dynamicali) computed. This 

may be at a cost to the computation time of the pairing. 

Recommendation 7. All bilinearpairings should be implemented with countermeasures 

to deter fault anaEysis. 

In this thesis, some of the key characteristics which compromise the security of bi- 

linear pairings have been identified. Most of these characteristics, which have weakened 

the bilinear pairing, have generally been incorporated to make the bilinear pairing more 

efficient. However, as is the case with all cryptosystems, there reaches a point where effi- 

ciency will compromise security. It is the hope that with the identification and recognition 

of such compromising characteristics a secure and robust definition of a bilinear pairing 

can be achieved in all security settings. 

7.2 Future Work & Open Questions 

Since bilinear pairings possess such a complex structure, and both fields of implemen- 

tation attacks and pairing based cryptography are constantly evolving, there are lots of 

aspects yet to be investigated. The open questions that have arisen as a result of this 

thesis will be examined here. 



Firstly, with respect to passive side channel attacks on bilinear pairings, there are 

many choices of parameters for the pairing. The elliptic curve can be supersingular or 

non-supersingular. It can be elliptic (genus 1) or hyper-elliptic (genus 2 2) [49]. The 

finite field over which the elliptic curve lies can be over the large or small prime field. The 

embedding degree can range from 2 to 24, which will consequently affect the size of the 

underlying field. The coordinate representation can be f i n e ,  projective or Jacobian. To 

date, the main bilinear pairings are the Weil, Tate, Ate, q and pairing. Such parameter 

choices can affect how these bilinear pairings are implemented, and so may expose further 

implementation vulnerabilities. In addition, there are various passive side channel attacks 

to consider. Chapter 2 touched on some of the most potent attacks, such as second-order 

power analysis, template attacks, EM attacks and timing attacks. In this thesis, specific 

pairings where examined for susceptibility to first-order power analysis. However, the 

choices for pairing algorithms, pairing parameters and side channel attack present many 

open problems. 

Another key aspect which deserves further research is the execution of an implemen- 

tation attack on a bilinear pairing algorithm in practice. The work presented in this thesis 

was theoretical. The work of Scott et al. [120], who presented the first timings of bilinear 

pairings on a smart card, actually performed their analysis using an FPGA based emula- 

tor, in which the smart card core is embedded. To perform these attacks in practice, access 

to a smart card implementing pairings is required, which to date has been unavailable. 

In the context of fault analysis of bilinear pairings, some of the main issues mentioned 

above, will also affect the potential for fault attacks. There are also various types of fault 

attacks with different affects to consider [l 11. In addition, the main type of fault attack 

that was concentrated on in this thesis was Simple Fault Analysis (SFA). One possible 

avenue for further investigation is Differential Fault Analysis (DFA), where a collection 

of multiple valid-faulty pairing pairs can aid in determining the secret key. For example, 



given the set 

{p(P, Q), p(P, Q)' P(P, QY"' P ( ~  Q)"' - - -1 

where mu1 tiple faults have been repeatedly injected into a pairing calculation for a given 

set of points P and Q, or the set 

where a fault is injected into different pairing calcuiations for different points A, is any 

information about the secret revealed? 

The recent development of Stage (1263, who proposes a new technique based on 

dliptic nets to compute pairings, also raises some questions pertaining to implementa- 

tion attacks. The research performed in this thesis, analysed bilinear pairings based on 

Miller's algorithm. Hence, analysis of elliptic nets for vulnerability to both p w e r  and 

fault analysis is another pertinent question that needs to be addressed. 
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Appendix A 

Numerical Examples of Power 

Analysis 

The purpose of this appendix is to demonstrate how the various finite field operations can 

be used as eligible selection functions, and so are suitable for use in a first-order power 

analysis attack, as was described in Chapter 5. Software was written in both Java and C 

to simulate the following examples. 

A.1 The Square Root Operation 

Let k relate to the secret value of interest. At some stage in the computation, an operation 

of the form ai + fi is calculated involving known information ai. In order to be able 

to make predictions for the output of ai + A, the adversary must be able to calculate 

given guesses for k. How analysing the structure of the square root operation gives 

insight into the relationship between k and &, will be demonstrated in this section. 



A.l.l Data Values 

Field parameters: 

The implementation assessed is over the binary field F2379, with reduction polynomial 

f (2) = 2379 + z315 + z301 + z287 + 1. From [38], fi = zlgO + z158 + 2151 + z144. 

A.1.2 Example 

The secret of interest k is 

where the most s i m c a n t  bit is on the left-hand-side and the least significant bit is on the 

right-hand-side.The square root of k is 

It is assumed that the target device has a 32-bit processor, and so is similar to the smart 

card of Scott et al. [120]. The least significant word of k, 

affects the the least sigmficant 16 bits of &, 

as follows. Firstly, the least significant word of k will be split into odd and even parts. 

The odd part of the least significant word of k, will then be multiplied by fi, reduced 

by f (z), then added to the even part of the least significant word of k. The splitting of 



D71C57AB into its odd and even parts is depicted in figure A. 1. 

31 29 27 25 23 21 19 17 15 13 11 9 7 5 3 1 3028262422201816141210 8 6 4 2 0 
Odd Even 

Figure A.1: Splitting the least significant word of k, D 7  1 C 5  7AB, into its odd and even 
parts. 

The multiplication of the odd part of the least significant word of k by fi can be calcu- 

lated since least significant word of k will be predicted in the hypothesis test and fi is 
public information. The subsequent reduction can also be calculated since f (z) is also 

known, however a reduction may not be required since odd .& may be less than f (2). 

odd -& (mod f (z)) = 

1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 0 0 1 1 1  

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

00000000000000000000000000  

The addition of the resultant value, odd .,/Z (mod f (z)), to the even least significant 

word of Ic can also be calculated given the guess for the least significant word of k. 

even +(odd.& (mod f (2))) = 

100100100001111100000000000000001001001100111001011101100111  

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  



When converted back to hexadecimal, it can be seen that the least si@cant 16 bits of 

the result corresponds to the least significant 16 bits of the A. 

As mentioned in Section 5.4.6, making guesses for 32 bits is infeasible. The technique 

described above will also work when considering smaller portions of k. For example, the 

last byte of 5, 

will affect the least significant 4 bits of &, 

the second last byte of k, 

will affect the next least significant 4 bits of &, 

and so the last 16 bits of k, 



will affect the the least significant 4 bits of 4 ,  

This enables hypotheses which are made for portions of b to be subsequently tested in 

operations such as ai + 4 involving known data. 

A.2 The Multiplication Operation 

Let XQ relate to the secret value of interest. At some stage in the computation, an oper- 

ation of the form X j  (xj -k XQ) is calculated involving known information X j  and xj. In 

order to perform first-order power analysis, it must be possible to make predictions for 

the output of Xj  (xj + XQ). Analysing the structure of the multiplication operation, aids in 

determining which parts of X j ,  x j  and XQ, affect Xj(xj + XQ). This will be demonstrated 

in this section. Note that the bilinear pairing in question is the Tate pairing as described 

in Chapter 5. 

A.2.1 Data Values 

Field parameters: 

The implementation assessed is over the prime field IFp. The elliptic curve is E(Fp): 

y2 = x3 + ax + b where 



and the order r = 

8000000000000000000000000000000000020001 

Input Points to e(P, Q): 

P: 

(24D466C77758F51374CC63BAF7055563BllD11399561914B45B937CO2AD5 

3318F8413E912324BA19797A817E1D5D9F9DCF2FBBFB2AOO5782D79B489FD 

CFD542El3C020B6B2170E1A586C5D3E08B41D16FA4l5C623DB7D5DAlB3FB9 

E7E1AB7FB812F90A476953D14C11206B63BC31A7F5393D4O49B357E3O755O 

742246A5B07677) 

Q: 
( 6 9 B 0 8 3 5 7 6 9 8 1 F 4 5 F 3 D 4 E 8 E 3 E F 1 2 B l E 3 7 C 3 5 A l A A 3 4 E l  

CF19982EAC7E460C560AFAB962997D2E25F8359B3AA4BBAABCDAFDl8C523F 

1F6F8F5l7FB6FFB5BF46DCOEB17B7B720C283B5A7C224ClEll77C2D2357OB 

F8C758528CCDCE9781DC273D092B98C86F74EF9B4299FE73657F7E9BFB58C 
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A.2.2 Example 

Let round two of the Miller loop be the target round in the power trace. The data values 

relating to this round are. 

xj: 

18F45F42ED73EBOAA1199916336F88915A69643CB~84EB65DlBFOCBl5200  

F5DBE900A664FCBF96102792069B15COF2F8AE2000859DEADll93C558A372 

954825 

Xj: 

5129212473B5BAC5A13COF131C86DABB35COFB99DODA7638EB78Cl3FDF9CE 

3FFBCCB184F4F32FF01AB031B01FAF6555FAFFE938174F929765D968DC6DA 

3 BA6 7D 

Focusing on the least sigdicant word x j [0] , XQ [O] and X [0] , 

In this example no reduction by the modulus p is required. If it was required, this could 

also be calculated by adding the two's complement of the least significant word of p, 

p' [0], to X j  [0] + xQIO]. Now to predict the output of the operation A (xj + XQ), the least 

signiscant words are again focused on, i.e. A j  [0] (xj [O] + xQ[O]), 
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Note that the least significant word of the redt  of X j [ O ]  (xj[O] + x~[0]), 2FBOA5B2, is 
the least significant word in the entire produce Ai (zj f xQ) pre-reduction mod p. 

This demonstrates that given known y, X j  and unknown ZQ, output portions of the op- 

eration .Aj(xj + xQ) can be deterministically calculated. 



Appendix B 

Numerical Examples of Fault 

Attacks 

The purpose of this appendix is to present concrete examples of the fault attacks described 

in Chapter 6. Software was written in both Java and C to simulate the following examples. 

B.l Data Corruption Fault of rlc Pairing 

This section describes a data corruption fault of the q~c pairing [41]. The fault attacks 

described here were detailed in Section 6.4.1. In each of the attack descriptions it is 

assumed that the point Q is the secret elliptic m e  point and so the coordinates (xQ, yQ) 

are of interest. 

B.1.1 Target Data. Cell lo 

The fault targets the cell lo in the last round of the Miller loop. 



B.l.l.l Data Values 

Field parameters: 

The implementation assessed is over the binary field F2271, with reduction polynomial 

f (2) = 2271 + z58 + 1 and elliptic curve E(F2271) : y2 + y = x3 + x. 

Input Points to rl~: (PI, Q) : 

Input Points to qc (P2,  Q):  



Valid Pairing qG (PI ,  Q) : 

[25113BDCDD9200B876451861074C193BB570A864612Al3079C93D3D8FlD9 

4166A70C,5339132DF97AEEFE6401F2C56B28DB23D4675OlC4EA6FBlDBDE4 

7E63181B4FAB1043,54689B2C103FD9AD37E24464D37C43D4C869F7562DO6 

4195D3DEED7258C9DE8547D2f2OBEO58D44CFFA54COO8EDED7lD776D2AF63 

EB1A7CAA41BOC6B101E4DE444DA4E01F] 

Faulty Pairing qG(Pl, Q)': 

[3259D5598613D936436A69A41E3A2AAO39AO8F5847C6lEA5F869DA5OEFFl 

2396166t50A17A7FA301950ECE64F8DB3604FF5B5EA6959986F2BClC9O4D5 

965DA662AA5ED03f6236CC14DC63BCD5F3C238043CDOEEA2E35~FOF9lBE2 

48DC415245A3D7979787D59f3D3C6FEEOA288253F9C26AOBA9586Dl4O74EF 

31DDA543D25BAOC9C3EF8885DA374441 

Valid Pairing qG (P2, Q) : 

[48C59B1D5CC04E01F067D1A9E2132A1A311A9A8AEOC886E669B92D7DB8BB 

8ACB0045f7424B7E7E4522C09B2791C021567009CEl98C5l6D8535CC462BC 

A95116DFE716BCF2,7CB5B888DFC3F8FA5CEllF9l4l78D554EC3E227E952F 

D3DF04E59613163373295EB6t4953CBB7ECO8OF64AOCOF4B8O4BDD43ACBlB 

05DD598EEFE045E80810385E68857DOl] 

Faulty Pairing qG (P2, Q)' : 

[5EE40B6945E2DCAEB19282AEF3CB2ED1A6C42CCCOC78AEOA3l85F73DD9FO 

8873D05Fl558C27BA29EOA25497FAOACCFC8B26AC2BCBE5DE5255896FA89 

B48903E1F5E2A98F,4486368D6D8DD1EA55AFF99C73DEAEC464CBO50A2FDA 

DB528AF85C51E03148F3C9B0,766E6FCEE9CD75B4OOOl769775OF8E3FO443 
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B.1.1.2 Steps to the Attack 

Step 1: Division of first faulty pairing by valid pairing. 

Step 2: Using the values generated from qG(Pl, Q)'/qG(P1, Q), namely No, Nl, N2 and 

N3, calculate data values relating to Equation (B.l). Note the derivation of this equation 

was discussed in Section 6.4.1. 

where 

xiii 



Step 3: Division of second faulty pairing by valid pairing. 

Step 4: Using the values generated fiomqG(P2, Q)'/rlc(P2, Q ) ,  namely N4, N5, N6 and 

N7, calculate data values relating to Equation (B.2). 

where 
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Step 5: Salve for XQ and y ~ .  This can be perfomd using substitutian as follows, 

(i) Multiply Equation (B. 1) by Az and Equation (B,2) by A to get, 

(ii) Add Equation (B.3) to Equation w.4) to get, 

Therefore, 

and so 



(iii) Substitute y~ into either of the original two equations to find XQ. Therefore, 

B.1.2 Target Data: Cell vo 

The fault targets the cell vo in the last round of the Miller loop. 

B.1.2.1 Data Values 

Field parameters: 

The implementation assessed is over the binary field F2271, with reduction polynomial 

f (z )  = z~~~ + z58 + 1 and elliptic curve E(F2271) : y2 + y = x3 + x. 

Input Points to qG (P, Q) : 

Data used in round of Miller loop targeted by the fault: 
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Intermediate point [i] P used in last round of line function. 

XA = 

38F3F251F96093C28B2B82D9EB12D93BD4E5DOC123D85lElAC5A3BF6BD998 

DD40BA 

YA = 

3EF89128D586F7F0082C10BD03D081549F29AC42A5lC67B5D62827l359CD3 

0594C85 

xc  = 

69E714DAOE9BF21C4E9D400F4ED644F8C8OE983D6OO26CD2AEC39ABOlOCEE 

129B34C 

YC = 

396F3AEE814BE1264FBDBOOAF1B38F74E9A61B40CD9C37O72l6A55ABAFOCA 

BC463A8 

A =  

18543BF3AAF8010C87D9C01123FCOBC6D29B6C25C6A783AEAC824742ODF6C 

25F9FA6 

Output from two (valid, faulty) pairing executions: 

Valid Pairing qG(P, Q): 

[25113BDCDD9200B876451861074C193BB570A864612Al3079C93D3D8FlD9 

4166A70C,5339132DF97AEEFE6401F2C56B28DB23D4675OlC4EA6FBlDBDE4 

7E63181B4FAB1043,54689B2C103FD9AD37E24464D37C43D4C869F7562DO6 

4195D3DEED7258C9DE8547D2,20BE058D44CFFA54COO8EDED7lD776D2AF63 

EBlA7CAA41BOC6B101E4DE444DA4EO1Fl 

Faulty Pairing qG(P, Q)': 

[4F38B1694502C41ADE928596BCA3CB37A65BEDAE8lB3F3l95986732Bl6EF 



B.1.2.2 Steps to the Attack 

Step 1: Division of the valid pairing by the faulty pairing. 

Step 2: Solving the congruence. 

Since we are dealing with binary fields, this means that any even multiples of elements in 

P2m will dissolve to zero. Therefore 

which is evaluated to 

vo = 

1275EA45B42F1F73C21442DE17D44F6360C95827FDFOl3l2Fl6A99DC87E94 

A0 98FA4 
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By simply addinglsubtracting the known value xc + 1, the secret coordinate XQ is found, 

B.2 Sign Change Fault Attack the of Weil Pairing 

This section describes a data corruption fault of the Weil pairing [117]. The fault attacks 

described here were detailed in Section 6.4.2. 

B.2.1 Data Values 

Field parameters: 

The implementation assessed is over the prime field IFp. The elliptic curve is E(IFp): 

y2 = x3 + ax + b where 

xix 



and the order r = 

8000000000000000000000000000000000020001 

Input Points: 

Data used in round of Miller loop targeted by the fault: 

Intermediate point [ i]P used in last round of the line function. 

XA = 

3A385AA26F93FC9279B2A69C326E3845C91302AD8l8l22EA2l48OD53O34A7 

A81A60C46778707619423A3D0299A18F29C35692ACOA4CEl923235FD5AODB 

130584 



Output from two (valid, faulty) pairing executions: 

Valid Pairing WD (P, Q )  : 

[66192B7F5D59DF1CB6238052468D262D3EEE879EO56FD7A7B52B4l8lC58A 

FAD1486AC1DAEA498CC73943159COF161CD3426DBE36FDA84DODD52OBF237 

CBD326E,9804ED2E2F5FEF2CD13165A2FAA44O4OBE92lF98ClE7O36EE9CCB 

57F324313B60C4D8B903646F32607F13B4F31C6AB5l9EOEAl8926B8B39E3A 

3DD93861EgD7811 

Faulty Pairing WD (P, Q)': 

[7414AEDA4113AF4A59A41591901EEA09C81A620153CAEO6973OF5616Al4A 

484BD9D4D5FE4515A9E19E11F8D6F8CDFC1AD5FA2A7C59BlD3C7F68D887Cl 

8A9DC2,79AF68D3AB50ED5D9628A79EDC59EC9FF82OAD7D3FB38C67l3576F 

74AED35C28454C677119A4D170E4700AEA9F4F8293EAF53lE77OFE25BDFl9 

E08E8780C630DI 

B.2.2 Steps to the Attack 

Step 1: Division of the valid pairing by the faulty pairing. 



Step 2: Calculate the square root of this value. 

[1D7B3A07709ACC56F84A24ABB88EBE62FD4580542E6l2739DF8BC4O8F2A9 

6075D1C2689F2C8CB86FOAB7F794EBADBOA28AF982B4372O6E38AE4C66D49 

924F682,A1FECD9DFEAE289E71CA3017312EA1EC55B4EOE8l6978OO2~B6A 

E8483888D51C83A2BED128C1341F044EFOD228A592D68F829AF82OC4OF7Fl 

04227CEgBB3AF51 

This exploits the relationship 

where two roots (f J) will be produced. Here we obtain the correct root. Let 

NR = 

1D7B3A07709ACC56F84A24ABB88EBE62FD4580542E6l2739DF8BC4O8F2A96 

075D1C2689F2C8CB86FOAB7F794EBADBOA28AF982B4372O6E38AE4C66D499 

24F682 

and 

Nc = 

A1FECD9DFEAE289E71CA3017312EA1EC55B4EOE816978002~B6AE8483888 

D51C83A2BED128C1341F044EFOD228A592D68F829AF82OC4OF7FlO4227CE9 
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Step 3: From this relationship we can generate two equations which relate to the grouping 

of real and complex values. We will just show the real here: 

We can calculate the coefficients of this equation since they are composed of known/computable 

values. 

( A  - NRA) = 

64DCD4C10F7816EF8D7C389BA17O9DA605EE8lC5F67339764546C2C4BO975 

6DAFC5119AA299957AEO5AE8FEB5A64DFBE8O1EOO73DBl6lO533l9B6B6CD5 

2 5 6A1 

Nc = 

A1FECD9DFEAE289E71CA3017312EA1EC55B4EOE8l6978OO2ADB6AE8483888D5lC83A 

2BED128C1341F044EFOD228A592D68F829AF82OC4OF7FlO4227CE9BB3AF5 

AixA - YA - N R A ~ X A  + NRYA = 

895341DAD464B48011914A33021B77238FDEFO77FBF59E124COO7043AA5AB 

53C223D7E0383761712E4ED4A87AFO8242A31A94AC7D7EFB4E7F2FlAC35O4 

924DC9 

To solve this we will need another equation with the same unknowns. However since 

there exists a relationship between XQ and y ~ ,  one equation will suflice. 

Step 4: Substitute 4 x 8  + axq - b for y ~ .  This gives a cubic equation: 
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where 

and so 

A. = 

6802A674045A31776FFB8CFBB67AD446CE7AA8O7B8FC47B3DFA77C4FA8BC5 

879COE05F5C00806413631186314B64E930BC5DO5EF35D8lBO95~8OBl6D 

25C6E2 

Bo = 

9960E747477925F838D6E65391C97CC2986BED3699CC28748FB80414ABlB7 

09E47E5267CODE54B5084B4EAE935C88F09741189C3AFlB9AE7DE82B3lD88 

E72D88 

Co = 

AF3B578B224A5C538C6E21DAA2AO319C89O377BCB93O57BOD2BEF9965F94A 

DB1276D26C9151C4A7FEE8BC76CBDEF24DOCF80F32EBlFO4BCFlAD4B3Dl49 

5 9BE4 8 

Step 5: Solve with Cardano's Method. Given Ao, Bo, Ca and the modulus p (which are 

all computable values by an adversary), solve for XQ. The roots that our Cardano method 

produces are 

root 1 = 

B1FOD753A62BC0458E230371B2E663321CEDC5DCOBBBFA88Bl6BB4A549310 

D7297AE3F90F87876C63D898891085FDB29C61005E94C85DB372879FA9534 
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20F48B 

root 2 = 

75C70FD2C28F0367D32F173281F4A611FF2DB79FAE53C328AlAC4B6379AD2 

11708183462E800A5B7AB5AA5BD6A3D2597356877BA46BFD955EB8462DOCE 

4B565B 

root 3 = 

2 0 4 9 4 6 0 A 6 9 A 5 D E 0 2 C 5 9 A O A 8 2 8 5 0 F 8 4 F 3 C D E 4 1 1 7 C 5 8 9 5  

7D93FB007216BEAAllOE4934CD357F3083D088CEC64CODEECA7C5B482F4C7 

6D56E 

where the first root corresponds to our secret coordinate XQ. 


