
Automatic Inductive Theorem Proving

and Program Construction Methods

Using Program Transformat ion

Md. Humayun Kabir, M.Sc. in Computer Science

A the& pr-d in hEUment of the requkmentw
fox the w e e of Dmtw of PMosapbp (Pb.D.)

$0 the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisor: Dr. Geoff Hamilton

September 2007

@ Md. Humayun Kabir 2007

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of the degree of Doctor of Philosophy

(Ph.D.) is entirely my own work and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the

text of my work.

(Md. Humayun Kabir)

Student ID No. 52171221

Date: 20/6S/ha7 I

Acknowledgements

I would like to express my thank to several people and organisations without whom

this thesis would not exist.

First, and foremost, I would like to extend my sincerest gratitude and respect

to my supervisor Dr. Geoff Hamilton for his supervision and encouragement during

the period of my doctoral research without whom this work would never have seen

the light of day. I would also like to extend my sincerest gratitude and respect to Dr.

David Gray for many valuable discussions that I had with him during my second

year of study. He was my acting supervisor during my second year of study when

Geoff was on sabbatical. I would like to thank all of my colleagues who helped me

directly or indirectly during the course of this work. I would also like to thank my

employer for granting me the necessary higher study leave to complete my doctoral

research. Finally, the School of Computing must also be thanked for funding the

work of this thesis and providing me with a nice working atmosphere.

Md. Humayun Kabir

Contents

Declaration ii

Acknowledgements iii

Abstract viii

1 Introduction 1

. 1.1 Motivation 1
. 1.2 AirnsofThrsis 3

. 1.3 Program Transformation 5
. 1.4 Inductive Theorem Proving 6

. 1.4.1 Mathematical Induction 6

. 1.4.2 Limit~tionsoEInductiveInfer.encc 1.0
. 1.5 Program Synthesis 11

. 1 Program Tkmsformation and Inductive Theorem Proving 12
. 1.7 Tha~is Contributiom 14
. 1.8 AnOverviewofPoitin 15

. 1.9 Structure of Thesis 16

2 Background
. 2.1 Introduction

. 2.2 Program Transformation
. 2.2.1 Language

2.2.2 Unfold/Fold Methodology (Burstall and Darlington)
. 2.2.3 Partial Evaluation

. 2.2.4 Supercompilation
. 2.3 Inductive Theorem Proving

. 2.3.1 Recursion Analysis

. 2.3.2 Rippling 41

. 2.3.3 Proof Planning 44

. 2.3.4 Proof Critics 47

. 2.4 Program Synthesis 50

. 2.4.1 Constructive Synthesis 50

. 2.4.2 Deductive Synthesis 52

. 2.4.3 Middle-Out Synthesis 53

. 2.4.4 Inductive Synthesis 54

. 2.5 Inductive Theorem Proving Using Program Transformation 55

. 2.5.1 Metacornputation 55

. 2.5.2 Partial Evaluation 56

. 2.5.3 Supercompilation 56

. 2.6 Use of Lemmas and Generalization Techniques 58

. 2.6.1 Cut Elimination 59

. 2.6.2 Use of Lemmas and Generalization in Induction 60

. 2.7 Conclusion 63

3 Distillation 64
. 3.1 Introduction 64

. 3.2 Program Transformation Using Distillation 65

. 3.2.1 Folding and Generalization 65

. 3.2.2 Construction of Partial Process Trees 66

. 3.2.3 Rules for Residual Program Construction 68
. 3.3 Examples 70

. 3.4 Termination of the Distillation Algorithm 74

. 3.5 Correctness of Distillation Algorithm 80

. 3.6 Distilled Form 82
. 3.7 Conclusion 82

4 Theorem Proving in Poitin 84

. 4.1 Introduction 84

. 4.2 Pre-Processing Phase 84

. 4.3 Explicit Quantification in Poitin 85

. 4.4 Inductive Theorem Proving in Poitin 88

. 4.4.1 Proving Universally Quantified Conjectures 88

. 4.4.2 Proving Existentially Quantified Conjectures 96

. 4.5 Soundness of Proof Techniques 102

. 4.6 Completeness 109

. 4.7 Conclusion 110

5 Program Construction in Poitin 111

. 5.1 Introduction 111

. 5.2 Form of Input Specification 111

. 5.3 Construction of Program in Poitin 112

5.3.1 Distillation Rule for Program Construction 112

. 5.3.2 Precondition and Postcondition Analysis 113

. 5.3.3 Construction Process 114

. 5.3.4 Program Construction Rules C 114

. 5.4 Examples 118

. 5.5 Proof of Correctness 126

. 5.6 Conclusion 131

6 Implement ation and Results 132

. 6.1 Introduction 132

. 6.2 Poitin: a Prototype Version 132

. 6.2.1 Module Toplevel 133

. 6.2.2 Module ATP 133

. 6.2.3 Module Distill 135

. 6.2.4 Implementation of the Proof Rules A and & 137

. . . . 6.2.5 Implementation of the Program Construction Rules C 138

. 6.3 Results 138

. 6.4 Conclusion 144

7 Conclusion and Future Work 145

. 7.1 Summary of Thesis 146

. 7.1.1 Background 146

. 7.1.2 Distillation 146

. 7.1.3 Theorem Proving in Poitin 147

. 7.1.4 Program Construction in Poitin 147

. 7.1.5 Implementation and Results 147

. 7.2 Research Contributions 148

. 7.3 Future Work 149

. 7.3.1 Distillation 149

. 7.3.2 Inductive Theorem Proving 150

. 7.3.3 Program Verification 151

. 7.3.4 Program Construction 151

. 7.3.5 Implementation 152

Bibliography 153

A DistilIation 163

. A.1 Exampla 163

. A. l . l AccurnuInting Patterns 163

. A . 1.2 Accumulating Parameters 174

. A . 1.3 Obstructing Function Calls 185

. A.1.4 Examples for Theorem Proving 192

B Theorem Proving in Poitin 207
. B.1 Exmple 207

vii

Abstract

We present new approaches to prove universally and existentially quantified conjec-

tures and to construct programs from the resulting proofs. These theorem proving

and program construction techniques make use of the distillation algorithm to trans-

form input conjectures into a normalised form which we call distilled form. The proof

rules are applied to the resulting distilled program. Our theorem proving and pro-

gram construction techniques have been implemented in a theorem prover which

we call Poitin. We give an overview of the distillation algorithm, and then present

the proof and program construction techniques implemented in Poitin. Our imple-

mentation of the proof and program construction techniques used in Poitin is then

presented. The soundness of the proof technique is shown with respect to a logical

proof system using sequent calculus. We show that the constructed programs are

correct with respect to their specification.

The main contributions of this thesis can be summarised as follows. First, we

present fully automatic, and efficient inductive theorem proving techniques. Second,

we present a novel program construction technique to construct correct programs.

Third, we have shown how automatic program transformation can be used in a

novel way in an inductive theorem prover. Finally, the use of distillation to obtain

a normal form of the input program reduces over-generalization and generation of

non-theorems. We have implemented the theorem prover and demonstrated it on

some examples. The use of distillation in the framework of Poitin has eased the

automation of the proof and program construction techniques in a reduced search

space to make it fully automatic and efficient.

. 4.2 Form of input conjecture 86

. 4.3 Form of proof expressions

. 4.4 Distillation rules for quantifiers

. 4.5 Proof rules for universal quantification

. 4.6 Proof rules for existential quantification

. 4.7 Sequent calculus rules for language

. 5.1 Form of input specification for program construction

. 5.2 Distillation rule for program construction

. 5.3 Program construction steps

. 5.4 Program construction rules C

. 5.5 Program construction rules C (Continued)

. 6.1 Data type of ATP module

. 6.2 Functions of ATP module

. 6.3 Some function definitions for failed proofs

. 6.4 Constructed programs for specifications of Table 6.4

. A.l Partial process tree (1) for T i e v e n (plus x x)]

. A.2 Partial process tree (2) for T i e v e n (plus x x)]

. A.3 Partial process tree (3) for T i e v e n (plus x x)]

. A.4 Partial process tree (4) for T i e v e n (plus x x)]

. A.5 Partial process tree (5) for T [e v e n (plus x x)]

. A.6 Partial process tree (6) for T i e v e n (plus x x)]

. A.7 Residual program for Tueven (plus x x)]

. A.8 Partial process tree (1) for T i e v e n (doublea x Z e r o)]

. A.9 Partial process tree (2) for T [e v e n (doublea x Z e r o)]

. A.10 Partial process tree (3) for T i e v e n (doublea x Z e r o)]

. A.ll Partial process tree (4) for T [e v e n (doublea x Z e r o)]

. A.12 Partial process tree (5) for T i e v e n (doublea x Zero)]

. A.13 Partial process tree (6) for T i e v e n (doublea x Z e r o)]

. A.14 Residual program for T i e v e n (doublea x Z e r o)]

A.15 Partial process tree (1) for Tiappend (reverse xs) ys]
A.16 Partial process tree (2) for T[append (reverse xs) ys]
A.17 Partial process tree (3) for T[append (reverse xs) ys]

. A.18 Residual program for Tuappend (reverse x s) ys]

. A . 19 Function definitions

A.20 Residual program for T[egpaum (plus x y) (plus y x> j 194

A.21 Partial process tree (1) far T[i$ (even s) (ernurn (double y) x)] . . 196

A.22 Partial process tree (2) for Tiif (even x) (eqn,um (double y) x) l . . 197
A.23 Partial procpss tree (3) for T[iff (even x) (eqnzlm (dozshle y) x)] . . 198

A.24 Partial process tree (4) for Tiif (even s) (eqnum (double 8) $)I
(Cant. of Fig. A.25) . 200

A.25 Partial process tree (5) for T([@ (euen x) (eqnum (double y) x)] . . 201

A.26 PartiaI process tree (6) for T[iJ (euen s) (eqnurn (double y) a)] . . 203

A.27 Partid process tree (7) for T[[$ff (even x) (eqnum (double y) x) l . . 206
A.28 Residual program for T[ifl (even x) (eqnurn (double y) z)] 206

List of Tables

2.1 Induction suggestions by recursion analysis 40

6.1 Some conjectures proved in Poitjn 139
6.2 Some of Poitin's failures . 141
6. 3 ConjecturesofTable6.2proved bySPXEusingdivergencecriticand

rippling . 142

6.4 Some specificat. ions for program construction 142

xii

Chapter 1

Introduction

1.1 Motivation

The realization that a powerful theorem prover can provide a key component of many

"intelligent machines" and the objective and creative attributes of mathematical

reasoning made mathematicians and computer scientists interested in automated

theorem proving. The dream of mechanizing mathematical reasoning with computer

programs has been around since the early stages of electronic computers.

Mathematical induction is a method to reason about mathematical and compu-

tational objects containing repetition. Augustus De Morgan defined and introduced

the term Mathematical Induction in his article Induction (Mathematics) which was

published in the Penny Cyclopaedia [80]. Though the method of mathematical in-

duction has been exploited in proofs for several centuries, this was the first formal

definition.

Using mathematical induction, by generating a finite number of cases from an

input formula, the formula can be proved for an infinite number of cases. To prove

a universally quantified conjecture, the premises of an induction consist of one or

more base cases, and one or more step cases. For example, to prove a conjecture

about natural numbers, in the base case, the conclusion of the induction rule will

be proved for some initial value 0. In the step case, the conclusion is proved for

Succ(n) assuming that the conjecture is true for a generic natural number n. In this

way, the theorem is proved for an infinite number of successive values.

To reason about mathematical objects like natural numbers, data structures like

lists and trees, recursively defined functions, hardware verification and many more

aspects in mathematics, properties to be proved are specified as universally and/or

existentially quantified conjectures. In order to prove that a statement is t r u e from

some assumptions using the rules of inference, the proof system is provided with a

rich knowledge of the domain, which constructs the relevant underlying theory. An

automatic inductive theorem prover is used to prove these conjectures for an infinite

number of successive values by performing base and step case proofs.

Some examples of inductive provers using explicit induction rules are the Boyer-

Moore theorem prover (NQTHM) [8, 91, ACL2 [62], INKA, AF2, QuodLibet, Oys-

ter/CLAM [21] and IsaPlanner [37, 381. ACL2 is the re-implementation of NQTHM.

We henceforth refer to the Boyer-Moore Theorem Prover as BMTP. RRL and SPIKE

are implicit inductive theorem provers. Two examples of inductive theorem provers

using program transformation techniques are Poitin [45] and Turchin's theorem

prover [102]. Alan Bundy and his research group have developed knowledge-based

theorem proving techniques rippling [13, 23, 15, 181 using explicit induction, and

proof planning [13, 14, 521 for the automation of inductive reasoning. The details

of the early and recent developments in automatic theorem proving can be found in

the Bundy's survey paper [16].

Despite significant improvement in this area, automatic inductive reasoning cre-

ates challenging problems in the search for inductive proofs of some conjectures. In

explicit induction, an infinite number of induction rules can exist in inductive proofs,

which cannot be pre-stored. An inductive proof may require an arbitrary lemma to

be conjectured and proved to complete the proof, or may require generalization

to be performed. The search for appropriate lemmas and performing appropriate

generalizations may cause infinite branching points in the search space. The usual

approach to proving existential theorems is also more problematic.

Metacomputation 1102, 103, 421 is an alternative to formal logic to prove the

truth or falsity of logical formulae. Metacomputa t ion is the task of simulating, an-

alyzing or transforming programs by means of other programs. In recent work 1451,

Hamilton has presented a novel theorem proving technique using the distillation pro-

gram transformation technique [45] to prove inductive theorems fully automatically.

This technique is similar to that of Turchin's theorem proving technique [103, 1021

in conjunction with the supercompiler [lo l l . We consider a proof system where

a computer program is a model, and we conjecture that a model-based approach

reduces the search space usually associated with the axiomatic approach, thus mak-

ing it easier to automate. By specifying an input conjecture as a program, it is

possible to transform this to a more efficient equivalent program using automatic

program transformation techniques, and the proof can be completed on this trans-

formed program without using any intermediate lemmas. Thus, automatic program

transformation can be used to aid inductive theorem proving.

We also propose the use of metacomputation-based formal methods, which lead

to the development of computer programs from program specifications derived from

existential theorems. The purpose of program transformation is to develop an equiv-

alent but correct and efficient program by a sequence of manipulations using a set

of transformation rules from a possibly inefficient input program. The method of

program synthesis develops a correct and efficient executable program from an unex-

ecutable specification describing the behaviour of the expected program, and ensures

that the developed program meets its specification by verification. Hence, program

synthesis can be seen as an extreme form of program transformation [85].

Program transformation is closely related to inductive theorem proving and pro-

gram construction. This thesis sets out to use the distillation program transforma-

tion technique to develop metacomputation-based inductive theorem proving and

program construction methods.

1.2 Aims of Thesis

The aim of this thesis is to design and implement a fully automatic

metacomputation-based inductive theorem prover which can be used to prove univer-

sally and existentially quantified conjectures, and to construct programs from input

program specifications. Poitin is written in Standard ML. To make the user of the

theorem prover free from the burden of supplying explicit type annotations, we plan

to implement the current version without any explicit use of type systems. We con-

sider a higher order functional language with first order quantifiers. The language is

typed using the Hindley-Milner polymorphic typing system [49, 79, 341. We assume

programs in the language are well-typed. Though we do not include the Hindley-

Milner polymorphic type checker within our current version, it is possible to include

this type checker within our system. As we have explained in the previous section,

the limitations of inductive inference are major obstacles in the automation of proof,

which limit the power of a theorem prover. This is also problematic for automatic

program construction. In this thesis, we tackle these problems by incorporating the

distillation program transformation algorithm within the inductive theorem proving

and program construction framework of Poitin. We construct a hierarchy of source

to source transformations of the input conjectures and program specifications to

facilitate metacomputation using additional rules for handling quantification.

We extend the theorem proving technique of Poitin [45] to handle explicit univer-

sal and existential quantifications to prove explicitly quantified inductive conjectures

fully automatically. In [45], all free variables of the input conjectures are considered

implicitly universally quantified, and therefore does not deal with explicit quantifi-

cation. We have defined distillation rules for quantifiers and the proof rules for

universal and existential quantifications. We have developed a program construc-

tion method to construct correct, efficient and executable functional programs from

the proofs of non-executable input specifications using program construction rules

in Poitin.

We present the distillation program transformation algorithm, which is used to

transform the programs associated with the input conjectures and program spec-

ifications to obtain output programs which are in normal form. Distillation has

the effect of removing intermediate data structures from programs, which could

otherwise cause proof failures. This makes the proof and program construction

techniques free from the problem of conjecturing intermediate lemmas and reduces

over-generalization.

We then present proof techniques to prove inductive conjectures. We define

distillation rules to deal with quantifiers at the meta-level, and proof rules for uni-

versal and existential quantification. To prove an inductive conjecture, distillation

is first applied to the input conjecture. The distilled program is then pre-processed

to obtain a proof expression to which the proof rules are then applied.

Finally, we present a constructive approach to constructing programs from in-

put program specifications. The construction method performs a verification proof

of the input specification to reject unsatisfiable specifications (i.e., specifications de-

rived from non-theorems) to ensure that programs are constructed only from correct

specifications. A distillation rule is defined to handle input specifications, and pro-

gram construction rules are defined to construct programs from the resulting proof

expression obtained.

We have implemented our proposed methods for inductive theorem proving and

program construction, and added them to the theorem prover Poitin. We demon-

strate the theorem prover on a number of inductive conjectures, and program spec-

ifications.

1.3 Program Transformation

Program transformation deals with the development of techniques and strategies

which can be used to transform an inefficient program using a set of meaning preserv-

ing rules guided by the application of strategies to obtain a more efficient equivalent

program (faster execution and less storage requirements).

There are two different approaches to program transformation: the algebraic

approach and the operational approach. The algebraic approach uses axioms and

theorems to rewrite expressions to obtain more efficient equivalent expressions. In

this approach, a new theorem has to be invented to perform a new class of transfor-

mations.

The operational approach to program transformation uses a set of meaning pre-

serving rules to obtain a more efficient equivalent program by generating new recur-

sion equations. An example of this approach is the unfold/simplify/fold methodology

of Burstall and Darlington [24]. Unfolding replaces a function call with the function

body and folding replaces an expression which matches the function body with the

corresponding function call. New recursive equations are generated by simplifying

the old ones through the application of a set of meaning preserving rules.

The use of intermediate data structures in functional programming makes pro-

grams more readable, but this makes programs inefficient. Burstall and Darlington's

transformation technique [24] has been extended to more powerful automatic trans-

formation techniques such as deforestation [104, 1051, supercompilation [loll and

distillation [45, 461 to remove intermediate data structures.

Distillation is more powerful than deforestation and supercompilation; some use-

ful transformations cannot be performed by these techniques which can be performed

by distillation [46]. Distillation can produce superlinear improvement in the runtime

of programs, whereas other techniques can produce only linear improvement. In de-

forestation and supercompilation, matching is performed on flat terms; functions are

considered to match if they have the same names. Distillation allows matching of

recursive terms where different recursive terms are considered to match if they have

the same recursive structure even though they contain different function names.

The operational approach of program transformation using distillation is used

in this thesis to develop our metacomputation-based inductive theorem proving and

program construction framework.

1.4 Inductive Theorem Proving

1.4.1 Mathematical Induction

Mathematical induction uses induction rules to infer universal statements incremen-

tally. To evaluate the various capabilities of different inductive theorem proving

systems, two categories of problems are identified [51]:

a V-quantified: The category which only uses the universal quantifier and do not

include any synthesis problems.

V3-quantified: The category which includes program synthesis problems that

require proving existentially quantified formulas, and construction of existen-

tial witnesses.

Different types of induction can be used to deal with inductive proofs. Two

approaches for constructing inductive proofs are explicit and implicit induction.

Explicit induction techniques depend on a semantic ordering while implicit induction

techniques rely on a syntactic ordering (the one which shows the termination of the

definitions).

Explicit Induction

In explicit induction, induction rules are explicitly incorporated into proofs. One

such rule is Peano induction for natural numbers (N) of the following form [17]:

P(O), Vn : nat. (P(n) + P(Succ(n)))
Vn : nat.P(n) (1.1)

In the application of the above induction rule in the proof of the conjecture

Vn : nat .P(n) where P is the property to be proved, P(0) is called the base premise,

Vn : nat . (P(n) + P(Succ(n))) is the step premise, P (n) is called the induction

hypothesis, P(Succ(n)) is the induction conclusion, n is the induction variable, and

Succ(n) is the induction term.

The one-step induction rule for lists is of the following form:

A two-step induction rule for natural numbers is given by the following form:

P(0) , P(Succ(0)) , Vn : nat. (P(n) + P(Succ(Succ(n))))
Vn : nat.P(n) (1.3)

The two-step induction rule (1.3) is structurally similar to the recursive definition

of the even predicate which is given below.

even(0) t) true

even(Succ(0)) t) false

even(Succ(Succ(n))) +, even(n)

This shows the duality relationship between recursive definitions and the form

of induction rules. This duality relationship allows us to construct new induction

rules and also to select the proper induction rule to prove the properties of recur-

sive functions. The success of an inductive proof mainly depends on the selection

of the induction rule and the induction variable. Most of the inductive theorem

proving techniques generate customised induction rules from the recursive defini-

tions appearing in the conjecture to be proved. The recursion schema contributes

to the corresponding induction schema; e.g., a 2 step recursion schema constructs

a 2 step induction schema, the schema Succ(Succ(n)) of the even predicate builds

the induction schema P(Succ(Succ(n))). The patterns in the left hand side of the

base and recursive equations of the function are used to build the required induction

schema. According to recursion analysis [8, 9, 15, 19, 971 (§2.3.1), the variable in

the recursive argument position of a function appearing in a conjecture is selected as

a potential induction variable. Induction is performed on the structural form of the

finally selected induction variable using the induction rule suggested by recursion

analysis.

Example 1

Consider the proof of the associativity of addition theorem about natural numbers

given by conjecture (1) using the recursive definition of the + function using the

standard rewriting technique [17].

'dx : nat.Vy : nat.Vz : nat.x + (y + Z) = (x + y) + z (1)

The following rewrite rules (i) and (ii) derived from the recursive definition of +
function, and (iii) derived from the replacement rule for Succ are used in the proof

of conjecture (1) for the free data type nut [17].

O + Y + Y (9
Succ(x) + y + Succ(x + y) (ii)
Succ(x) = Succ(y) + x = y (iii)

We use the 1-step induction rule (1.1) for nut on x. In the base case, the

conclusion is proved for x = 0 by the base case premise of the conclusion of rule

(1.1). The application of the rewrite rule (i) to the base case results in the following

proof step.

t- 0 + (y + z) = (0 + y) + z (by base case premise of induction rule (1.1))

1 y + z = y + z (by (i))

This can be proved by symbolic evaluation.

In the step case, the conclusion is proved for x = Succ(x) by the step case

premise of the conclusion of rule (1.1) assuming the conjecture (1) is true for some

generic natural number x. Thus, x + (y + z) = (x + y) + z is the induction hypothesis.

The application of the rewrite rules (ii) and (iii) to the induction conclusion results

in the following proof steps.

x + (y + z) = (x + y) + z t- Succ(x) + (y + z) = (Succ(x) + y) + z

(by step case premise of induction rule (1.1))

t Succ(x + (y + z)) = (Succ(x + y)) + z (by (ii))

t- Succ(x + (y + z)) = Succ((x + y) + z) (by (ii))

k x + (y + z) = (x + y) + ~ (by (iii))

In this state of the proof, a complete copy of the induction hypothesis is found

in the simplified induction conclusion, and the proof can be easily completed.

Strong Fertilization

Strong fertilization is a technique that uses the induction hypothesis to prove the

induction conclusion. In the step case, a copy of the induction hypothesis is found

embedded in the induction conclusion, which then can be replaced by the value true

(T). Let R be the set of rewrite rules, Ind and I H are the suggested induction rule

and induction hypothesis respectively. Then, the application of strong fertilization

in the step case proof can be represented as follows.

Induction Hypothesis I - Induction Conclusion

tR E [Induction Hypothesis]

~ I H E[Tl

E is the context which may be empty or a subterm which is a part of the

simplified induction conclusion.

We apply strong fertilization to the simplified induction conclusion in Example

1 to prove it to be true using the induction hypothesis x + (y + z) = (x + y) + z.

This completes the step case proof successfully, which demonstrates that conjecture

(1) is an inductive theorem.

Weak Fertilization

Sometimes the proof attempt gets stuck before obtaining a complete copy of the

induction hypothesis embedded within the simplified induction conclusion, but a

part of the induction hypothesis is found embedded within the simplified term. By

replacing this part of the simplified induction conclusion with the opposite side of the

induction hypothesis, a simplified goal can be obtained which can be proved easily

in some cases. This fertilization technique is called weak jertilization [17]. This

technique is applicable only when the conjecture and the hypothesis are expressed

as equations, thus allowing the use of the hypothesis as a rewrite rule. In some

cases, neither strong nor weak fertilization is applicable. In these cases, appropriate

intermediate lemmas or generalization can help to complete the proof.

Implicit Induction

In the implicit induction approach, the induction scheme is not known beforehand.

Examples of this approach include the cover set method [110, 1111, test set method

[6, 51, and rewriting induction method [84]. Each of these methods provides a

set of terms or pairs(context,term) which is used to replace the induction variable

depending on the context. This produces a set of new conjectures which can be

further simplified by using smaller instances of the original conjecture called the

induction hypothesis. The proof is completed when all newly generated conjectures

are simplified into known inductive theorems.

Descente Infinie

Induction is a very commonly used technique for proving theorems, but it is less

commonly used in the form of descente infinie, (re)discovered by Pierre de Fermat

(1606-1665). In this method, for any proof of a conjecture, it is required to show

for each assumed counterexample of the conjecture, the existence of another coun-

terexample of the conjecture that is strictly smaller in some well-founded ordering.

The resulting infinite sequence of "smaller" counter examples contradicts the well-

founded order requirement, hence original counterexample is invalid. First, the proof

is started with the initial conjecture, and it is simplified using case analysis. In the

step case, the induction conclusion is simplified, and, every time it is searched for

a current goal which is a similar but a different instance of the original conjecture.

The original conjecture is then applied as the induction hypothesis to prove the in-

duction conclusion. Finally, it is needed to show the well-founded ordering in which

all the instances of the original conjecture that have been applied as the induction

hypotheses are smaller than the original conjecture.

For example, to prove a property P that is true of all natural numbers N, one

may demonstrate that if P is not true of an arbitrary natural number n, then it

is not true for a smaller number m < n, which can be used to infer an infinite

decreasing sequence of natural numbers. This can be explained by an inference rule

of the following form [I I]:

Vx : na t . (lP (x) + (3y : nat.y < x A l P (y)))
Vx : nut. P (x) (1.4)

specific to nat where < is the reducing well-founded ordering. A formal framework

has been presented by integrating induction in the form of descente infinie with

deductive theorem proving system in [109].

1.4.2 Limitations of Inductive Inference

Inductive theories are (i) usually incomplete [43], i.e., there exists true but unprov-

able formulae and (ii) they do not admit cut elimination, so, arbitrary intermediate

formulas may need to be proved and then used to prove the current conjecture [69].

These two problems introduce infinite branching into the search space.

The cut rule is required to introduce intermediate lemmas and to perform gen-

eralizations. Gentzen's cut rule for sequent calculus is of the following form:

A , r F a r t A
r kn (1.5)

The cut rule allows us to first prove A with the aid of A, and then eliminate A

by proving it from r where A is the cut formula. In inductive proof, this cut formula

is the generalized formula or lemma. The use of cut elimination in logical systems

means that if a proposition has a proof which uses some intermediate proposition

for that proof, then it has a direct proof with a series of proof rewriting which does

not require any intermediate proposition. This was shown to be true by Gentzen

for first order theories [39], but Kreisel has shown that it is not true for inductive

theories [69]. See [15] for details.

An unbounded number of induction rules are required to construct and apply

dynamically, which cannot be pre-stored. Some common problems that arise in

the search for an inductive proof are induction rule choice, speculating lemmas and

identifying the need for and performing generalization.

1.5 Program Synthesis

Program synthesis deals with the systematic development of an executable program

from an unexecutable specification describing the behaviour of the program to be

constructed, and verifying that the constructed program satisfies the specification.

Synthesis methods need to incorporate techniques which use a constructive approach

to construct the unknown program/value. The main techniques for program syn-

thesis are:

1. Constructive synthesis

2. Deductive synthesis

3. Middle-out synthesis

It is possible to construct recursively defined programs by proving a synthesis

conjecture of the form b'x : r1 .3y : r2.spec(x, y), where x and y are the input and

output variables respectively and spec is the formal relationship between x and y

usually expressed in terms of predicates, relations, and functions.

Constructive synthesis or proofs-as-programs in functional programming is based

on the Curry-Howard isomorphism [50] in constructive type theory, e.g., Martin-

Lof's constructive type theory [77]. The constructive type theories are logics for

reasoning about functional programs. In the proofs-as-programs concept, the proof

itself is considered as the program to be extracted. There is a one-to-one relationship

between a constructive proof of an existence theorem and a program (a function)

that computes witnesses of the existentially quantified variables. For example, a

synthesis specification can be expressed in the following form in constructive type

theory:

f (x) : ALL x : nat.EX y : nat.(even(x)) t, double(^) = x)

The function f (x) can be constructed from the proof of the above specification.

The constructed function satisfies the specification. The function f (x) will compute

a witness for y for every x.

Deductive synthesis can derive executable programs from high level specifica-

tions by applying inference rules. This synthesis technique usually employs theorem

proving to synthesise correct programs from specifications.

The third approach (middle-out reasoning) allows undefined functions in the

synthesis conjecture [68]. In order to extract the definition of the undefined function

from the synthesis proof of this conjecture, definition-like subgoals are identified

during the synthesis proof, and these are converted to program definitions. These

definitions are then used to complete the proof, and to define the synthesised pro-

gram. Higher-order unification is used to instantiate the undefined function.

1.6 Program Transformation and Inductive Theorem

Proving

There is a close correspondence between program transformation and inductive the-

orem proving.

Recursion and induction can be regarded as duals. The induction in proof corre-

sponds to the recursion in the program. The unfold/fold transformation technique

can be used for inductive proof that does not use any explicit induction schema.

The schema is constructed implicitly by unfolding the recursive definitions of the

functions. This idea is analogous to the recursion analysis technique employed in

the Boyer-Moore theorem prover [8]. The given function definitions are utilised to

prove theorems about them. The recursion present in the definitions corresponds

to the required induction. Unfolding accomplishes the base case and the induction

step, and folding roughly corresponds to the application of the induction hypothesis

[26, 451.

The unfold/fold program transformation technique proposed by Burstall and

Darlington [24] uses the associativity or commutat iv i ty properties of functions as

laws only when they can make a fold possible. In a diverged inductive proof attempt,

the information obtained from the divergence pattern can be used to suggest lemmas

which are used as rewrite rules to overcome this divergence. Usually, the subterm(s)

of the rewritten conclusion is(are) used to identify lemmas based on some heuristics.

After conjecturing the lemmas, the initial conjecture can be proved by applying the

computing the task specified by that proposition. By controlling the proofs, we can

improve the efficiency of programs extracted from the proof of existential theorems.

"Proofs and programs are the same thing, and simplifying a proof corresponds to

executing a program" [106].

1.7 Thesis Contributions

This thesis mainly contributes to the fields of metacomputation-based inductive

theorem proving and program construction. The primary objective of this thesis is

to show how automatic program transformation can be used in a novel way in an

inductive theorem prover. This thesis undertakes the theoretical study as well as the

practical implementation of the intended inductive theorem proving and program

construction techniques to deal with explicit quantification using the distillation

program transformation algorithm.

We define a higher order functional language with quantifiers to express input

conjectures and program specifications. We explore the distillation program trans-

formation algorithm, and apply this algorithm to some example programs. We show

that the distillation algorithm terminates on all input programs, and that it is cor-

rect.

We present fully automatic, and efficient, inductive theorem proving techniques.

We define distillation rules for universal and existential quantification to deal with

quantifiers at the meta-level, and define proof rules for proof expressions. We show

how the distilled form of the program associated with an input conjecture can be

converted to proof expressions, and show how the proof rules can be used to prove

them. One big advantage of these proof techniques is that no intermediate lemmas

are required, which helps to avoid infinite branch points in the search space. The

existential proof rules perform a pure existence proof of the existential conjecture

without requiring the construction of any witness to obtain the truth value of the

conjecture. The inclusion of the distillation algorithm within our proof techniques

has reduced over-generalization and generation of non-theorems, and allows us to

prove more theorems than Turchin's theorem prover. We show the soundness of our

proof techniques with respect to a logical proof system using sequent calculus.

We present a novel program construction method to construct executable pro-

grams from input specifications derived from existential theorems. As far we know,

this is the first time automatic program transformation is used in a program con-

struction method. We define distillation rules to handle input specifications at the

meta-level, and program construction rules for proof expression obtained by dis-

tillation of the program associated with an input specification. We show that the

constructed program is correct with respect to the input specification. We give a

proof of correctness of the program construction method. We also argue that as

programs are constructed using distillation, they are likely to be more efficient than

programs constructed using other techniques.

We have implemented the distillation algorithm, the inductive theorem proving

and program construction techniques and added them to the theorem prover Poitin.

The use of distillation within the framework of Poitin has eased the automation of

the proof and program construction techniques to make Poitin a fully automatic

and efficient theorem prover. We have presented some results of the application of

the Poitin theorem prover to inductive theorems and program specifications. The

main outcome is that the proof techniques of Poitin can be used to prove inductive

conjectures fully automatically without the need for conjecturing any intermediate

lemmas. Our program construction techniques can be used to construct totally

correct programs from input specifications.

Finally, we give some suggestions for future research.

1.8 An Overview of Poitin

A diagrammatic overview of the processes realized in the theorem prover Poitin is

shown in Figs 1.1 and 1.2.

(Input conjecture I
(Distillation

Proof rules

JPraofJ
Figure 1.1: Theorem proving in Poitin

For universally and existentially quantified conjectures, distillation is applied

to the input conjecture to obtain a distilled form as shown in Fig. 1.1. A proof

expression is obtained by pre-processing this distilled expression. The proof rules

for universal and existential quantifications are then applied to this proof expression

to obtain the truth value of the conjecture.

Verification

Distillation

Program construction rules

Constructed program I

Figure 1.2: Program construction in Poitin

For program construction, the input specification is verified to check whether it is

satisfiable or not as shown in Fig. 1.2. If the specification is satisfiable, distillation is

applied to the input specification to obtain a distilled form. A proof expression is ob-

tained by pre-processing this distilled expression. Finally, the program construction

rules are applied to the proof expression to construct a program.

1.9 Structure of Thesis

The rest of this thesis is structured as follows:

Chapter 2: We survey the research carried out in the fields of inductive

theorem proving and program synthesis. Also, we give an overview of the

metacomputation-based inductive theorem proving technique using supercom-

pilation.

Chapter 3: We give an overview of the novel program transformation tech-

nique distillation. We explore the details of the distillation algorithm and its

termination proof. We show how distillation can be used to transform more

complex input programs which cannot be transformed using supercompilation.

a Chapter 4: We present proof techniques to prove universally and existentially

quantified conjectures using the normalized program obtained with the distil-

lation algorithm presented in Chapter 3. We also give a proof of the soundness

of these rules.

Chapter 5: We present program construction techniques for the construction

of programs from input specifications using the normalized program obtained

with the distillation algorithm presented in Chapter 3. We then show the

correctness of the constructed programs with respect to their specification.

a Chapter 6: We give an overview of the prototype version of Poitin which we

have implemented using the distillation algorithm, proof and program con-

struction techniques as presented in the previous chapters, and give some re-

sults of applying this tool.

a Chapter 7: We conclude our thesis, and give a summary of the work presented.

Finally, we give suggestions for future research which can be carried out based

on the work done so far.

Chapter 2

Background

2.1 Introduction

This chapter gives an overview of the research carried out in the fields of automatic

program transformation, inductive theorem proving using explicit induction, pro-

gram synthesis techniques, and metacomputation-based inductive theorem proving

using automatic program transformation. We also discuss the limitations of in-

ductive inference, and existing metacomputation-based inductive theorem proving

techniques.

2.2 Program Transformation

In this section, we give a brief overview of Burstall and Darlington's program trans-

formation technique and partial evaluation. We also present the supercompilation

program transformation algorithm based on the presentation in [46] and [95].

2.2.1 Language

In this section, we describe the syntax and semantics of the language which will

be used throughout this thesis. The language is a simple higher order functional

language as described in Fig. 2.1.

The syntax of the language covers all possible forms of expression of a higher

order functional language using variables, application, and abstraction. A program

in the language is defined by an expression to be evaluated and a set of definitions

of the functions exploited in the expression. All of the user defined functions must

have unique names, and all of the variables in the function body must be bound to

prog ::=

e ::=

1
I
D
I
I
I
I

p ::=

eo where fi = el ; . . . ; f, = en;

v

c el ... en

Av.e

f
eo el

case eo o f p l : el I ... I pk : ek

let vl = e l , . . . , v, = e, in eo

letrec f = eo in el

program

variable

constructor application

lambda abstraction

function variable

application

case expression

let expression

letrec expression

pattern

Figure 2.1 : Higher order functional language

the formal arguments of the function. Recursion is introduced at the top level using

the where construct. The letrec expression is used in the language to allow local

function definitions which may contain non-local variables.

The language uses constructs to build and facilitate operations on algebraic data

structures. An algebraic data type is constructed by combining other data types

with the help of constructors. For example, the List type is a common example of

algebraic data type with two constructors: Nil for empty list ([I) with no argument,

and Cons (::) with two arguments for a non-empty list.

List T = Nil I Cons T (List 7)

Cons constructs a non-empty list by combining the head element of type T with

the tail of the list.

Each constructor has a fixed arity: Nil and Zero both have arity 0, Cons has

arity 2, Succ has arity 1. Each constructor application must be saturated in order

to construct a data structure. The truth values True and False are defined as

constructors.

Data structures are decomposed and operated on in the selector of a case ex-

pression by pattern matching. Within case expressions of the form:

case eo of pl : el I . . . I pk : ek

eo is called the selector, el . . . ek are called the branches, and pl . . . pk are the patterns.

The pattern variables of a case expression and A-abstraction argument variables are

locally bound. Variables with the same name in an outer scope will no longer be in

scope inside this binding. Within a case expression, patterns are distinct and mutu-

ally exclusive. The selector expression eo is evaluated to head normal form to match

with any of the patterns appearing in the alternative branches before selecting any

of the branch expressions by pattern matching.

The conditional if eo then el else e2 is represented using a case expression of

the form case eo of T r u e : el 1 False : e2.

The case expression can also be used for decomposing compound data structures.

For example, a case expression that decomposes a list data structure is of the form:

case eo of N i l : el I Cons x x s : ea.

The language is typed using the Hindley-Milner polymorphic typing system [49,

79, 341, which prevents the forming of any type incorrect expressions. We assume

programs in the language are well-typed, and the recursive data types are defined as

algebraic types. The operational semantics of the language is normal order reduction.

An example of a program in the language is given below, which reverses the list

x s . The program consists of the expression reva x s N i l and uses the accumulative

recursive definition of the reverse function.

reva xs Nil
where

reva = Xxs.Xys. case xs of

Nil : ys

I Cons x xs' : reva xs' (Cons x ys)

Figure 2.2: Example of a program

2.2.2 Unfold/Fold Methodology (Burstall and Darlington)

Burstall and Darlington's unfold/fold program transformation technique [24] is a

semiautomatic transformation system, which requires user guidance for supplying

eureka steps in transforming programs. In this transformation system, the following

six transformation rules are used to transform an input program defined using first

order recursion equations.

1. Definition. This rule introduces new definitions ensuring that the left hand

side of each new definition is not an instance of the left hand side of an existing

definition.

2. Instantiation. Introduce a substitution instance of an existing definition.

3. Unfolding. For any two definitions f vl . . . v, = e and f' vi . . . vk = el, if e'

contains an occurrence of f vl . . . v,, then this occurrence is replaced by e in

f ' vi . . . v; = e' [e l f vl . . . v,] producing a new definition.

4. Folding. For any two definitions f vl . . . v, = e and f' v i . . . v; = el, if e'

contains an occurrence of an instance of e, then this occurrence is replaced

by the corresponding instance of f v l . . . v, in f ' v i . . . v; = e' [f vl . . . v,le]

producing a new definition.

5. Abstraction. A where clause may be introduced to create a new definition

from an existing definition f v l . . . v, = e by replacing sub-expressions with

variables ensuring that the new variables do not exist in the source definition:

f v1 . . . v , = e [x l / e l , . . . , x,/e,] where (X I , . . . , x n) = (e l , . . , en) .

6. Laws. The associativity or commutativity properties of the primitives are used

to rewrite the right hand side of a definition to obtain a new definition.

These rules ensure the partial correctness [65, 88, 901 of the derived program.

Total correctness of the derived program is achieved by applying transformation

strategies. Instantiation and unfolding do not alter efficiency in the transformed

program. Folding at least preserves efficiency when the argument used in substitu-

tion is lower in some well-founded ordering than that used in the input equation being

transformed. Improvements is introduced by rewriting lemmas and using abstrac-

tion. Burstall and Darlington have devised a simple strategy which leads to powerful

transformations applicable to many example programs. This strategy includes the

steps which are described by making any necessary definitions, instantiating, for

each instantiation unfolding repeatedly, trying to apply laws and abstraction, then

folding repeatedly.

Consider the unfoldlfold transformation of the term reverse xs using the recur-

sive definitions of reverse and append as given below 1241.

1. reverse [] = [I given

2 , r e v e r s e (x : : x s ') = a p p e n d (r e v e r s e x s ') (x : : []) given

3. append [I ys - - YS given

4. append (x :: xs') ys = x :: (append xs' ys) given

The associativity of append is given by the following equation:

append (append xs ys) zs = append xs (append ys zs)

A new function f is defined by generalizing (x :: 1) to ys.

5. f xs ys = append (reverse xs) ys definition (eureka)

6. f n Ys = ys instantiate and unfold
7, f (x :: xs') ys = append (append (reverse xs') (x :: 1)) ys

instantiate and unfold

= f xs' (append (x :: 1) ys) associativity and fold

8. reverse (x :: xs') = f xs' (x :: 0) fold 2 with 5

The following program is obtained from the above transformation steps.

reverse 1 = [I
reverse (x :: xs') = f zs' (x :: 1)

f U YS = ys

f (X :: XS') ys = f xs' (append (x :: 1) ys)

By using a Redefinition rule, we can obtain a more succinct program

reverse xs = f xs 1.

In their program improvement system [24], users were required to supply the

new equations of any definitions, useful lemmas to use as rewrite rules, information

about the associativity or commutativity of functions, and the properly instantiated

definitions.

2.2.3 Partial Evaluation

Partial evaluation [56, 551 is a program optimization technique which transforms a

given program distinguishing between static and dynamic data. It derives a residual

program based on the static input data, and when the rest of the input, called

dynamic data is provided, this residual program calculates the whole output as

would the original program.

For example, consider a source program p which needs two inputs in1 (static)

and in2 (dynamic) for its evaluation. If the input data in1 is supplied, the partial

evaluator will construct a program pi,^. When the rest of the input in2 is supplied, it

will produce the same result that would have been produced if in l , in2 were supplied

together [55]. Thus, b] [inl, in21 = binl] in2. A partial evaluator is a program

specializer, where the specialization is done by performing those calculations that

depend on static data, and generating code for those calculations that depend on

dynamic data.

Using the definition of append (52.2.2), the partial evaluation of the term

append (append 1 xs) ys results in the term append xs ys where 1 is the static

input. The partial evaluation of append (x :: xs) ys results in x :: (append xs ys)

where the partially static input x :: xs consists of the dynamic input x and xs.

2.2.4 Supercompilation

Turchin's supercompiler [101, 1031 is a semantics-based program transformation

technique defined for the Refal language. The supercompiler is more powerful than

partial evaluation and deforestation, and it can lead to a very deep structural trans-

formation of an input program. It supervises the operation of the whole input pro-

gram, compiles it, and produces a faster program with the same semantic value. The

supercompiler uses a set of transformation rules which preserve the functional mean-

ing of the program to perform a step-by-step transformation of the input program.

The positive supercompiler [94, 95, 421 is a newer version of Turchin's supercompiler

in a functional language setting.

Transformation Using Supercompilation

A residual program is constructed by transforming an input program defined with

an expression containing free variables and definitions of functions used in the ex-

pression using supercompilation. The language for which supercompilation is to be

performed is a simple higher-order functional language defined in $2.2.1.

The supercompilation rules are defined by identifying the next reducible expres-

sion (redex) within some evaluation context. An expression which cannot be broken

down into a redex and a context is called an observable.

Definition 2.2.1 Redexes, contexts and observables

Redexes, contexts and observables are defined more formally by the grammar shown

in Fig. 2.3, where red ranges over redexes, con ranges over contexts and obs ranges

over observables. We use the notation con(e) to represent an expression which is

broken down into an evaluation context con and the redex e.

red ::=

I
1
I

con ::=

I
I

obs ::=

1
I

f
(Xv.eo) el

case (v el. . . en) of pl : ei (. . . I pk : ek

case (c e l . . . en) of pl : ei I . . . I pk : e i

()
con e

case con of p~ : el I - I pk : el,
v el . . . en

c e l ... en

Xv.e

Figure 2.3: Grammar of redexes, contexts and observables

Lemma 2.2.2 Unique decomposition property

For every expression e, either it must be an observable or it can be decomposed into

a unique context con and a redex r such that e = con(r).

Example 2 (Context and Redex)

For a case expression case (f el . . . en) of pl : e', I . . . 1 pk : e;, the redex is f , and

it must be unfolded to select the appropriate branch of the case expression. The

context is case (() el . . . en) of pl : ei I . . . (pk : e;. In a function application,

f l (fi x) y, the redex is f l and the context is () (f2 x) y. So the function f l must

be unfolded.

The central operation in supercompilation is driving. Supercompilation applies

folding and/or generalization techniques to ensure the termination of driving.

Driving

Driving is achieved by normal order reduction of an input program, which may con-

struct a potentially infinite process tree to represent all of the possible computations

of the given expression of the input program.

The rules for normal order reduction are defined by the map N from expres-

sions to ordered sequences of expressions [el . . . en] as shown in Fig. 2.4. Within

these rules, the notation e{vl := el, . . . , vn := en) represents the simultaneous sub-

stitutions of the sub-expressions e l , . . . , en for the free occurrences of vl, . . . , v,,

respectively, within e.

N[v e l . . . en] 4 = [el,. . . ,en]

N[c el . . . en] 4 = [el,. . . ,en]

N[Xv.e] 4 = [el

NUcon(f)I 4 = lunfold(con(f)) $1
NIIcon((Xv.eo) el)] 4 = [con(eo[e1/v])]

Nl[con(case (v e l . . .en) of pl : e i l . . . lpk : e i)] $

= [v e l . . . en, con(e:){v e l . . . en := PI), . . . , con(ei){v el

N[con(case (c el . . . en) of pl : ei 1 . . . l pk : el)] 4
= [con(eQ(vl := e l , . . . ,vn := en))]

where pi = c v l . . . vn

Figure 2.4: Normal order reduction rules

The function unfold unfolds the function f in its argument expression con(f) as

follows:

unfold(con(f)) 4 = con(e) where f is defined by f = e, and (f, e) E 4

The normal order reduction rules are mutually exclusive and together exhaustive

by the unique decomposition property. In rule (N6), the pattern information in each

of the case branches is propagated to the occurrences of the redex variable within

the corresponding branch expression. This information propagation within the case

expression is called unification-based information propagation [95].

Definition 2.2.3 (Process t rees)

A process tree is a directed acyclic graph where each node is labelled with an ex-

pression, and all edges leaving a node are ordered. One node is chosen as the root

of the tree, and the original expression is assigned to the root.

If a node N is labelled with an expression e and N[[e] = [el, . . . , en], then N has

n child nodes from left to right which are labelled with the expressions e l , . . . ,en

respectively. A process tree e + t l , . . . , tn is the tree with the root labelled e and n

children which are the subtrees t l , . . . , t n respectively. Within a process tree t , for

any node a, t (a) denotes the label of a . The set of ancestors of a in t is denoted

by anc(t, a), and t{a := t ') denotes the tree obtained by replacing the subtree with

root a in t by the tree t'.

A process tree is constructed from the transformation of an expression e using

the following rule:

71.11 4 = e + T[el] 4 , . . . , 7[en] 4 where N[e] 4 = [el,. . . ,en] (71)

Thus, driving is achieved by the application of rule (T I) , which constructs a

process tree using normal order reduction and unification based information prop-

agation. The continued application of rule (71) may construct an infinite process

tree.

To construct a residual program, we need to construct a partial process tree

during the application of rule (71) by creating repeat nodes within the process

tree t at the occurrence of an instance p of an ancestor a where t(P) contains a

recursive call to a function f in the redex. A repeat node corresponds to the fold

step during transformation. The motivation behind the creation of repeat nodes is

that the continuous unfolding of a recursive function will lead to non-termination of

the transformation process if folding is not performed.

Definition 2.2.4 (Partial process trees)

A partial process tree is a process tree which contains repeat node(s). A repeat node

has a dashed edge to an ancestor within the process tree.

Definition 2.2.5 (Instance)

An expression e is an instance of another expression el, denoted by e' 4 e, if there

is a substitution B such that elB = e where B gives the values for the unique free

variables of el, and = represents the semantic equivalence between two expressions.

During the construction of a process tree, if the current expression e is an instance

of the label e' of an ancestor a, then a dashed edge e --+ a is created within the

process tree representing the occurrence of a repeat node. This process is repeated

for every occurrence of an instance of the label of an ancestor node, which leads to

the construction of a partial process tree. Within a partial process tree t', if ,8 is the

repeat node for a matching ancestor node a, then a is called the function node. The

possibility of creating a repeat node is only checked when the redex of the current

expression is a function.

Example 3

Consider the transformation of the following program using the driving rule (7 1)

with repeat nodes.

append (append xs ys) zs

where

append = Xxs.Xys. case xs of

Nil : ys

I Cons x zs' : Cons x (append xs' ys)

This constructs the partial process tree as shown in Fig. 2.5.

Figure 2.5: Partial process tree for T[append (append xs ys) zs]

2 7

The partial process tree in Fig. 2.5 has been simplified for ease of presentation.

A residual program is extracted from a partial process tree using a set of rules P

which are defined in Fig. 2.6. Each of the function nodes to which the dashed edge

points, corresponds to the initial call of a function, and each of the repeat nodes from

which the dashed edge originates, corresponds to the recursive call of that function

in the residual program. The body of the function is constructed from the labels of

the intermediate nodes.

p [(~ el . en) + t l , . . tn] = v (Putl]) . . . (Putn]) (P I)

P[(c el . . . en) + t l , . . . , tn] = c (P[tl]) . . . (put,]) (P2)
P[(Av.e) + t] = Av.(P[tj) (7'3)

P[[a = (con(f)) -+ t] (P4)
= le t rec f ' = Xul . . . vn.(P[t])

in f' vl . . . v,, if $3 E t .p --+ a and ,B - a{vl := e l , . . . ,v, := en}

= Put], otherwise

PUP = (con(f)) --+ a] = f ' el . . . en (7'5)
if ,B - a{vl := e l , . . . ,vn := en}

Pl[(con((Xv.eo) el)) -+ t] = Put] 0'6)

P[(con(case (v el . . .en) of pl : e i l . . . I pn : e;)) + t o , . . . ,t,] (7'7)

= case (?[to]) of PI : (P[tl]) 1 . I Pn : (P[tn])

P[(con(case (c el . . . en) of pl : e i l . . . I pn : ek)) + t] (P8)
= Put]

Figure 2.6: Rules for residual program construction in supercompilation

Rule (Pl) processes a tree with root labelled with a variable application and

n subtrees t l , . . . , t,. The result of this rule application is a variable application

where the subtrees tl, . . . , t, are further processed to construct the arguments of the

variable application. Similarly, rule (P2) processes a tree with root labelled with

a constructor application with n subtrees t l , . . . , t n to construct the constructor

application. Rule (P3) processes a tree with root labelled with a A-expression with

a single subtree t. The body of this A-abstraction is obtained by processing the

subtree t .

In rule (P4), the root node a of the tree is labelled with an expression con(f)

which contains the function f in the redex, and the root is connected with the

subtree t . Two situations may arise in the application of rule (P4) to the current

tree. If there exists a node ,B in t such that ,B --+ a and ,B is an instance of a,

then the result of processing the current tree is to introduce a local function of

the form of letrec f = eo in el in the residual program. The constructed letrec

expression contains the definition of a new function f ' with an initial call f ' vl . . . vn

where vl . . . vn are the variables in a which are instantiated to give P. The new

function f ' is parameterised only by those free variables in the function node which

are instantiated with different values in the repeat node(s) and hence change, so the

defined local function may contain non-local variables. The definition of this new

function is obtained by processing the subtree t . If there is no repeat node for a,

the result of processing the tree is given by the result of processing the subtree t.

In rule (P5), a repeat node ,B containing an expression c o n (f) is processed, which

has a dashed edge to an ancestor node a . As the repeat node ,B is an instance of

the function node a, an appropriate recursive call to the function f ' (which was

made at the occurrence of the function node a by rule (P4)) is introduced in the

residual program. The parameters el . . . en in the recursive call to f ' correspond to

the variables vl . . . v, of the original call to f '.
Rule (P6) processes a tree with root labelled with a A-application with a subtree

t. An expression contributing to the residual program is constructed by processing

the subtree t . Rule (P7) processes a tree with root labelled with an expression

containing a case expression in the redex where the selector of the case expression is

a variable application u el . . . en. The root of the tree is connected with the subtrees

t o , . . . , tn from left to right. A case expression is constructed to contribute to the

residual program where the selector variable application is given by processing the

first subtree to, and the branch terms are constructed by processing the remaining

subtrees t l , . . . , t , respectively. Rule (P8) processes a tree with root labelled with

an expression containing a case expression in the redex where the selector of the

case expression is a constructor application c el . . . en. An expression is constructed

to contribute to the residual program by processing the single subtree t which is

connected with the root.

According to the folding scheme as described above, during the supercompila-

tion of the term append (append xs ys) zs, the application of the residual program

construction rules P to the constructed partial process tree in Fig. 2.5 introduces

two new function definitions and their corresponding initial calls using two letrec

expressions in the resulting residual program. The recursive function f 2 is intro-

duced within the residual program for the function node labelled with append ys' zs

(Fig. 2.5). The recursive function f 0 is introduced within the residual program for

the function node labelled with append (append xs ys) zs (Fig. 2.5). The residual

program which is extracted from the partial process tree in Fig. 2.5 resulting from

the supercompilation of the term append (append xs ys) zs is shown in Fig. 2.7.

letrec

f 0 = Xxs. case xs of

Nil : case ys of

Nil : zs
I Cons y ys' : Cons y (letrec

f 2 = Xys'. case ys' of
Nil : zs

I Cons y' ys" : Cons y1 (f2 ys")

in f2 ys')

I Cons x xs' : Cons z (fO xsl)

in fO xs

Figure 2.7: Constructed residual program from the partial process tree in Fig. 2.5

Termination of Supercompilation

It cannot be guaranteed that the transformation rules for supercompilation (so far

as we have presented) will terminate even in the presence of folding for all input pro-

grams. The user defined functions exploited in the input program to be transformed

may have divergent properties. These divergent properties will prevent the creation

of repeat nodes within the process tree, so folding cannot be accomplished. In this

section, we show how one can obtain termination of supercompilation by performing

generalization.

To construct a partial process tree, generalization must be performed through

the extraction of sub-expressions which cause successively larger expressions to be

encountered during transformation. The divergence properties which are common

in functional program transformations are identified in [25, 44, 94, 751.

Example 4 (Obstructing function call)

Consider the transformation of the expression reverse xs using the following naive

definition of the list reversal function using the append function.

reverse = Xxs. case xs of

Nil : Nil

I Cons x xs' : append (reverse xs') (Cons x Ni l)

The transformation of the expression reverse xs encounters successively larger

expressions

reverse as, case (reverse xs') o f . . ., case (case (reverse xs") o f . . .) o f . . . , . . .
with an accumulating context. The call to reverse prevents the context from being

reduced, so this function call is an obstructing function call. This will cause the

non-termination of the transformation process. In supercompilation, the obstructing

function call reverse xs' is extracted from its surrounding context and is transformed

separately to avoid non-termination.

A recursive call to a function f is an obstructing function call if it causes a

successively larger context in each unfolding.

Example 5 (Accumulating parameter)

Consider the transformation of the program given in Fig. 2.2. The transformation of

the expression reva xs Nil encounters successively larger expressions reva xs Nil ,

reva xs' (Cons x Ni l) , reva xs" (Cons x' (Cons x N i l)) In each unfolding,

the recursive call to the reva function accumulates new output in its second para-

meter generating a successively growing sub-expression in this parameter. So, the

second parameter in the definition of reva is an accumulating parameter. In super-

compilation, the accumulating parameter is therefore extracted automatically and

is transformed separately to avoid non-termination.

A parameter in a recursively defined function f is an accumulating parameter

if f accumulates output in this parameter resulting in progressively larger sub-

expressions in this position on each unfolding of f .

Example 6 (Accumulating pattern)

Consider the transformation of the following program.

plus x x

where

plus = Xx.Xy.case x of

Zero : y

(succ x' : Succ (plus x' y)

The transformation of this program encounters successively larger expressions

plus x x, plus x1 (SUCC X I) , plus x" (SUCC (SUCC x")), In each unfolding, the sec-

ond parameter in the recursive call to the plus function accumulates a successively

larger term by accumulating patterns. This pattern accumulation is caused by the

unification-based information propagation used in supercompilation. This cannot

be removed by rewriting as the plus function recurses over its first argument. In

supercompilation, this problem is avoided by extracting the accumulating variable

automatically and transforming it separately.

The transformation of an input program may cause an infinite sequence of trans-

formation steps even in the presence of folding, if any of the above non-termination

properties exists within the program. In all of the above cases, each of the expres-

sions in the divergent sequence embeds a previous expression in the sequence. So,

we need to detect when the current expression becomes an embedding of a previous

expression, and generalize accordingly.

The form of embedding which is used to detect embedding and to perform gen-

eralization is based on the homeomorphic embedding relation (<I) derived from the

results of Higman and Kruskal [70, 481. The Higman and Kruskal theorem states

that in an infinite sequence of terms to, t l , . . ., there definitely exists numbers i , j

such that i < j for which ti t j . If ti i] tj, then the term ti is fully embedded in a

larger term t j .

Theorem 2.2.6 (Higman and Kruskal theorem) If F is a finite set of function

symbols, then any infinite sequence t l , t2 , ... of t erms in the set T (F) of t erms over

F contains two terms ti and tj, where i < j , such that ti t j .

We extend the notion of homeomorphic embedding relation to all of the expres-

sions of the higher order functional language described in $2.2.1. Homeomorphic

embedding is also used in term rewrite systems [35], supercompilation [103], posi-

tive supercompilation [95, 42, 461, and in distillation [45, 461 to obtain termination.

Definition 2.2.7 (Well-quasi order)

A well-quasi order on a set of elements S is a reflexive, transitive relation 5, such

that for any infinite sequence of elements s l , s2,. . .from S there are numbers i, j

with i < j and si 5, sj.

Based on this relation, in an infinite sequence of expressions el , e2,. . . which may

be encountered during the transformation of an expression e, there definitely exists

some terms ei, e j with i < j and ei <Is ej. So, eventually, an embedding of ei is

found in ej and unfolding will not be continued indefinitely. Then generalization(s)

followed by folding will help to obtain termination.

A dynamic embedding detection algorithm based on the homeomorphic embed-

ding relation is devised to monitor diverging sequences of terms during transfor-

mation of the input program, and generalization is performed to avoid possible

non-termination. Homeomorphic embedding is defined more formally as follows.

Definition 2.2.8 (Homeomorphic embedding relation)

Variable Diving Coupling
32 E (1.. . n).e <I ei Vi E { I . . .n}.ei a ei

x a y e a el,... ,en) u (e l , . . . , en) a u (ei, . . . , e;)
For variables, a variable x is embedded within another variable y. Diving detects

embedding of a sub-expression within a larger expression and coupling detects em-

bedding of all the sub-expressions of two expressions which have the same top-level

functor. In diving, an expression e is embedded within any of the sub-expressions

el, . . . , en of a larger expression. In coupling, all of the sub-expressions el , . . . , en

are embedded within the corresponding sub-expressions ei , . . . , e; where u is the

common outermost functor of the two expressions. Some examples of homeomor-

phic embedding and non-embedding are shown in Fig. 2.8 where e' is the previous

expression and e is the current expression.

e' <I e el $ e

f l x <I f 2 (fl x') f l (f 2 x) $ f l x

f i x a fl (f2x1) f l (f 2 2) $ f2 (f l X)

f l (f 2 4 a fl (f2 (f2 2'))

fl Y a fl (f 2 (f2 Y))
1 a f l (f 2 ~) (f 2 2) -

Figure 2.8: Examples and non-examples of homeomorphic embedding

The form of embedding as shown by the example f l x a f2 (fl XI) in Fig. 2.8

is called strict embedding (a) in [46]. This form of embedding is identified when

a previous expression e' is found fully embedded in any of the argument ei of an

expression of the form u(el, . . . , en). A real example of such an embedding is detected

in the transformation of reverse zs in Example 4.

We extend the notion of strict embedding to deal with the embedding of case

expressions, where the selectors of the case expressions are embedded within each

other. Thus, con(fl x) a con(f2 (fl x')).

Generalization involves replacing sub-expressions with new variables. The ex-

pression resulting from the generalization of an expression e is expressed with a let

expression of the form let vl = e l , . . . , vn = en in eg to permanently extract the

sub-expressions e l , . . . , en from e, which will be transformed separately. The oc-

currences of the sub-expressions e l , . . . , en within e are replaced with the variables

vl, . . . , v, respectively.

Definition 2.2.9 (Generalization)

The generalization of two expressions e and e' is a triple (eg, 8, 8'), where 8 and 8'

are the corresponding substitutions which are used to specialize eg back to e and el,

respectively, such that e G e,8 and e' = eg8'. The substitutions 8 and 8' give the

values of the sub-expressions extracted from the expressions e and el, respectively.

There is a loss of knowledge about an expression due to the extraction of sub-

expressions in generalization. The most specific generalization causes the least pos-

sible loss of knowledge. Hence, the most specific generalization is performed in

supercompilation. If there is more than one ancestor which is embedded within the

current expression, then the closest ancestor is used to perform the most specific

generalization.

Definition 2.2.10 (Most specific generalization (msg))

The generalization (eg, 8, 0') of two expressions e and e' is the most specific

generalization if for every other generalizations (e$, 8", 8"'), eg is an instance of e$.

The most specific generalization of two expressions e and el, denoted by e n e l ,

is computed by exhaustively applying the following rewrite rules to the initial triple

(v, {v : = e) , {v : = el)) as given in [46].

(e, {v := 4(el , . . . ,en)) u 0, {V := 4(ei , . . . , e;)) U 8')

4
(e{v := 4(vl,. . . , v,)), {vl := e l , . . . , vn := en) U 8, {vl := ei, . . . , v, := e;) U 8')

(e, {vl := el, v2 := el) U 8, {vl := el', vz := el') U 8')

4
(e{vl := v2), {v2 := el) U 8, (212 := el') U 8')

The first of these rewrite rules is applied to expressions where both of the expres-

sions have the same outermost functor. This functor is made the outermost functor

of the generalized expression. The second rule looks for the common sub-expressions

within an expression, and replaces them with the same variable. The rewrite rules

are repeatedly applied to the arguments of the functors to obtain the generalized

expression, and the sets of extracted sub-expressions. Any two expressions el and

e2 are strictly embedded if and only if el n e2 = con(v).

Fig. 2.9 shows the most specific generalizations of the embedding examples

of Fig. 2.8 which cover generalizations of obstructing function calls, accumulating

patterns and accumulating parameters.

e' e eg e 6'

f l x f 2 (f l X I) v { v : = f 1 x } { v : = f 2 (f l x '))

f l x f l (f 2 x ') f l v { v := x } { v := f , XI}

f l (f 2 5) f l (f 2 (f 2 2')) f l (f 2 V) { v := x} { v := f 2 2 ')

f l Y f l (f 2 (f 2 Y)) f l v { v := y} { v := f 2 (f 2 Y)}
f l X X f 1 (f 2 x 1) (f 2 x ') f l V V { v : = x) { v : = f 2 x 1)

Figure 2.9: Examples of most specific generalization

During supercompilation, if the current expression e is a strict embedding of a

previously encountered expression e', then the current expression contains an ob-

structing function call. In this case, the subtree rooted at e is replaced with the

result of transforming the generalized form of e in which the obstructing function

call is extracted. If e is a non-strict embedding of el, then the subtree rooted at el

is replaced with the result of transforming the generalized form of e'.

Generalization introduces let expressions into the partial process tree. The nor-

mal order reduction rule and the residual program construction rule for the let

expression are given by the rules (N8) and (739) as shown in Fig. 2.10.

In rule (P 9) , a tree rooted at a let expression with n + 1 subtrees is processed.

The expressions obtained by processing the subtrees t l , . . . , t , are substituted for

the variables vl , . . . , v, within the expression obtained by processing the leftmost

subtree to.

The extract and abstract operations deal with the generalization of strict and

non-strict embeddings of expressions respectively, within the process tree.

Nulet vl = el, . . . , vn = en i n e,] r#~ = [eg, e l , . . . , en] (N8)

?[(let vl = el, . . . , vn = en in e,) + to,. . . , tn] (7'9)

= (P[to]) { ~ l := Pit1], . . ., vn := P[tn]}

Figure 2.10: Rules for let expression

In a strict embedding e' Q e, the generalized form of e is obtained by extracting

the obstructing function call from e using the extract operation. The extraction of

an obstructing function call e' from an expression e, denoted by e' t e, is defined

by applying the following rewrite rules to the initial triple (0, el, e).

I I (con, f el . . . en, f el . . . ek)

4
(con, f el . . . e,,unfold(fl ei . . . ek))

4
(con, f el . . . en, case eb of pl : eil . . . lpk : ek)

4
(case con of pl : e i l . . . lpk : eL, f e l . . .en, e;)

The generalized form of an expression e resulting from extracting an obstructing

function call from it is constructed using the following extract operation:

Definition 2.2.11 (Ext rac t operat ion)

extract(el, e) = let v' = eh in (e, {v := con(v')))9,, if match(ei, e;)

= (eg {v := con(e;))) O,, otherwise

where e' n e = (e,, {v := el) U 8,1, {v := e2) U 8,)

el t e2 = (con, ei , e;)

In the above extract function, el a e2 and Bet, 8, give other substitutions for

most specific generalization of the expressions e' and e respectively, which do not

involve obstructing function calls.

If the current expression e is a non-strict embedding of a previously encountered

expression el, then the generalized form of e' is obtained using the abstract

operation.

Definition 2.2.12 (Abstract operation)

abstract(el, e) = let vl = el, . . . , v, = en in eg

where e' f l e = (eg, {vl := el, . . . , v, := en), 8)

If the partially constructed process tree t contains a node P = con(f) in which

the redex is a function, supercompilation checks for the occurrence of a repeat node,

or else applies unfolding or a generalization operation. The generalization operation

introduces a generalization node within the process tree, which contains the gen-

eralized form of an expression. To construct a partial process tree which contains

repeat nodes and generalization nodes, supercompilation is more formally defined

as shown in Fig. 2.11.

T[P] 4 = if t (P) = con (f) ('7-1)
then if 3a E anc(t, P).t(a) 4 t(P)

then t{p := t(P) --+ a)

else if 3a E anc(t, P).t(a) t(P)

then if t (a) a t(P)

then t{p := T[extract(t(a), t(@))] 4)
else t{a := T[abstract(t(a), t(@))] 4)

else t{D := t(P) + T[unfold(t(P)) 4)
else t{P := t(P) + Tiel] 4 , . . . ,Tien] 4) where h/[e] 4 = [el,. . . , en]

Figure 2.11: Algorithm of supercompilation

Example 7 (Generalization of accumulating parameter)

The supercompilation of the expression reva xs Nil for the program given in Fig. 2.2

encounters successively larger expressions reva xs Nil, reva xs' (Cons x Nil),

reva xs" (Cons XI (Cons x Nil)), This will cause non-termination of the

transformation process if generalization is not performed.

We can see that reva xs' (Cons x Nil) is a non-strict embedding of reva xs Nil.

So, the most specific generalization of reva xs Nil and reva xs' (Cons x Nil) is

performed to achieve termination of the supercompilation process, which results in

the triple (reva xs v, {v := Nil), {v := Cons x Nil)).

Now, the subtree rooted at reva xs Nil is replaced with the result of transforming

the generalized form let v = Nil in reva xs v. This results in the partial process

tree which is shown in Fig. 2.12.

let v = Nil in reva xs v (G I)

case xs of \
\

I reva XS' (Cons x 21) (R1) I

Nil : v

I Cons x xs' : reva xs' (Cons x v)

Figure 2.12: Partial process tree for Tbreva xs Nil]

\
\
\

I I

The partial process tree contains a generalization node (G I) , a function node

(F l) and a repeat node (R1). During the transformation of the function node (F l) ,

the repeat node (R1) is created at the occurrence of the instance reva xs' (Cons x v)

of the ancestor expression reva xs v.

The application of the residual program construction rules 'P to the partial

process tree shown in Fig. 2.12 introduces a local function fO defined with a le-

t r e c expression and the following residual program is constructed from this partial

process tree.

letrec fO = Xxs.Xv.case xs of

Nil : v

I Cons x xs ' : fO xs' (Cons x v)

in fO xs Nil

2.3 Inductive Theorem Proving

The proofs of most inductive conjectures have a similar overall structure. To prove

an inductive conjecture, one needs to select an induction schema, and an induction

hypothesis for fertilization. The proofs of some conjectures may require intermediate

lemmas, or a more generalized formula may need to be generated and proved to

prove the original conjecture. Sometimes, the information obtained from failed proof

attempts is used productively to give a successful proof of such conjectures. The

selection of an induction variable, induction term and generation of the induction

hypothesis are codified as a heuristic to incorporate an induction rule into a proof

system that has a greater chance of success in finding successful proofs for inductive

conjectures. Recursion analysis [8] is one such heuristic which is used in explicit

inductive theorem provers.

Logic provides a low-level explanation of a mathematical proof by showing the

proof as a sequence of steps, but a high-level understanding is also needed to explain

many common observations about the mathematical proofs to complement the low-

level understanding. It is possible to capture the common structure in proofs by

collecting similar proofs into families having similar structure [14]. For example, the

common structures in theorems that require induction to prove them, are classified

into one family. This common structure is then implemented as an induction heuris-

tic, and is used to guide the proofs about such theorems. A proof plan represents

the overall understanding of such a proof.

2.3.1 Recursion Analysis

Explicit inductive theorem provers use induction rules to prove inductive theorems.

Boyer and Moore exploited the recursion-induction duality and implemented a the-

orem prover using structural induction to prove theorems about recursive LISP

functions by evaluation and fertilization using the induction hypothesis [7]. BMTP

[8, 91 uses explicit induction rules to prove inductive theorems. Recursion analysis is

the process of constructing an appropriate induction rule and suggesting the induc-

tion variable(s) for a conjecture. Boyer and Moore invented recursion analysis [8]

to use in BMTP. It was studied and extended by Stevens [97] and Walther [I081 for

generalizing, combining and refining induction suggestions. We describe recursion

analysis for the following conjecture using the recursive definition of even ($1.4.1)

which is adopted from [15]:

'dx : nat.'dy : nat.even(x) A even(y) ?r even(x + y)

Recursion analysis works by recursion-induction duality. It analyses each of the

recursive definitions of the conjecture to be proved to construct an induction

rule.

The preliminary analysis outputs n induction suggestions from a conjecture

consisting of n recursive definitions. Each induction suggestion consists of

an induction scheme corresponding to the recursion scheme of the function

analysed and a potential induction variable. The base equations of each

recursive definition generate the base premises of the induction rule, and the

recursive equations generate the step premises. Thus, the following induction

scheme is suggested for the even predicate.

r k P(0) I? t P(Succ(0)) I?, n' : nat, P (n l) k P(Succ(Succ(nl)))
r , n : nat t P (n)

a BMTP [9] suggests induction based on a measure of the formal parameters of

the recursive function appearing in the conjecture by inspecting which argu-

ments are decreasing in the recursive call. The decreasing formal arguments of

a function are called recursive arguments. This suggests all of the decreasing

variables of the function definition as candidate induction variables. The non-

variable arguments are excluded from the recursion analysis process to suggest

induction even though the formal arguments are decreasing.

a Once the induction suggestions are obtained, the system tries to merge them

to accommodate all of the functions. Finally, a suitable induction is chosen

for the conjecture by using various heuristics.

The occurrence of a variable in the recursive argument position of a function is

called unflawed, and the occurrence in the non-recursive argument position is called

a Jawed occurrence. Only the universally quantified variables which have no flawed

occurrences are selected as candidate induction variables.

In the above conjecture, even recurses over its single argument in 2 steps, and +
is a single-stepping recursively defined function (51.4.1) which recurses over its first

argument x. The induction suggestions are summarised in Table 2.1.

Induction variables Functions Schema Recursion term Status

x even 2 step Succ(Succ(x)) unflawed

Y even 2 step Succ(Succ(y)) flawed

x + 1 step Succ(x) subsumed

Table 2.1: Induction suggestions by recursion analysis

In the raw induction suggestions, two different induction schemata: a 2-step

and a 1-step schema are suggested for the variable x for the functions even and

plus respectively. The 2-step schema subsumes the 1-step induction. As y has a

flawed occurrence in the term x + y, the induction suggestion is cancelled (as un-

flawed induction is available). The problem with the flawed occurrences is that if

such occurrences are substituted in the induction term, these occurrences cannot

be rewritten in the induction conclusion, which prevents the application of strong

fertilization. So, recursion analysis suggests the 2-step induction rule and the in-

duction variable x as the final induction suggestion for the above conjecture. Using

the final induction suggestion, the base and step cases are formed from the input

conjecture. The base and recursive equations of the functions are used as rewrite

rules to rewrite these newly formed goals.

If all of the available induction variables are flawed, recursion analysis suggests

all of them as induction variables. In the cases where the required induction cannot

be suggested from the recursion of the functions appearing in the conjecture, an

extension of recursion analysis is developed to suggest appropriate induction as

presented in [19]. Recursion analysis also does not perform well in the presence of

existential variables [68].

2.3.2 Rippling

Rippling [13, 15, 18, 231 is a powerful proof technique in guiding the search for

an inductive proof using explicit induction. The rippling technique presented in

[23] is static as the wave-rules are formed from the function definitions, lemmas,

and equivalences. It uses meta-level annotations called wave-fronts to indicate the

mismatch between the induction hypothesis and the induction conclusion in the step

case. In the step case of an inductive proof, the induction conclusion differs from the

induction hypothesis in the presence of constructors (i.e., induction terms) and wave-

fronts. The wave-front represents the induction term, and the wave-hole represents

the induction variable. For presentation purposes, we use boxes to represent wave-

fronts, and underlines (-) to represent wave-holes. An annotated term is called

a wave term. For example, even(doub1 e(l Succ(3) b) is an annotated wave term,

which is the annotated induction conclusion for the conjecture even(double(n)).

Within the annotated term, ISuee(,) is the wave-front and n is the wave-hole.

We use the following terminologies to describe the rippling process. More formal

definitions of these terminologies are available in 123, 18, 15, 851.

Wave-fronts contain functions and arrows 4 to indicate the directions of

movement. The f indicates the outward directed wavefront and 4 indicates the

inward directed wavefront. Rewriting of the annotated induction conclusion using

the wave-rules will move the wave-fronts in the indicated direction.

Definition 2.3.1 (Skeleton)

The parts of the annotated induction conclusion deleting the wave-fronts and their

contents, but retaining the contents of the wave-holes are called the skeleton. This

skeleton will be a renaming of the inductive hypothesis.

For example, the deletion of the wave-front from the annotated induc-

tion conclusion even(doub1 e((Succ(n) 1)) will construct the skeleton even (doubl e(n)) .
The wave-rules are annotated rewrite rules formed from the step cases of re-

cursive function definitions, non-recursive definitions, lemmas and equivalences.

The annotated wave rules are applied successively to rewrite the annotated in-

duction conclusion while preserving the skeleton, so that a complete copy of the

induction hypothesis is found embedded within the induction conclusion, which en-

ables strong fertilization to be performed. A dynamic version of rippling has also

been developed 1921. Rippling can also apply any of the techniques, such as weak

fertilization, generalization of the current goal, or discovering lemmas to unblock

rippling. Rippling has also been extended to handle existential variables for pro-

gram synthesis in the work on middle-out reasoning [68] from synthesis conjectures

expressed as existential theorems.

Rippling is used to help select an appropriate form of induction for a conjecture

to be proved. Various forms of rippling such as rippling-out, rippling-in, rippling-

sideways and rippling-across have been embodied in the generalized ripple tactic as

special cases to extend the range of theorems to be proved. All of these techniques

are described in 1231. To give an account of how rippling works, we give an overview

of the rippling-out technique.

Rippling Out

Rippling out is a heuristic control technique of step case proofs in mathematical

induction. In the ripple-out technique, a tactic is used to manipulate the induction

conclusion using wave-rules, so that a complete copy of the induction hypothesis

is found embedded within the induction conclusion. Then, using the induction

hypothesis, the induction conclusion is fertilized, which completes the step case

proof.

Consider the proof of the associativity of append for lists of natural numbers,

which we adopted from [15]. In demonstrating the example, we use the syntax as

presented in [15].

Vxs : list(nat).Vys : list(nat).Vzs : list(nat).xs <> (y s <> 2s) = (x s <> ys) <> zs

Ripple analysis suggests a 1-step list induction on x s . The induction hypothesis

is: t <> (y s <> z s) = (t <> ys) <> z s where t is any list of type l i s t (na t) .

We skip the base case proof here as it is trivial. In the step case, the induction

conclusion is:

k [::f <> (y s <> 2s) = (p z h <> y s) <> 2s

The following wave-rules are used in the step case proof.

These wave-rules are annotated versions of the recursive definition of <> and

the replacement rule for :: [15]. Applying wave-rules (2.1) and (2.2) to the annotated

induction conclusion, we obtain the following proof steps in the step case.

h :: t <> (y s <> xs)

h :: (t <> ys) <> z s

s<> zs) = (t <> ys) <> zs

Now, a complete copy of the induction hypothesis is embedded within the simpli-

fied induction conclusion, and strong fertilization is performed to obtain h = h A T.

This is simplified to T, which completes the step case proof.

Ripple Analysis

Ripple analysis is the rational reconstruction and extension of the heuristics used

in recursion analysis as implemented in BMTP to select the induction variables

and schemes [19]. Ripple analysis performs a one-level look-ahead into the rippling

process to see what induction rules would permit the initial stage of rippling to take

place [15]. It is observed that the flawed induction variables (as defined by recursion

analysis) in some conjectures give rise to successful proofs, whereas the unflawed

ones cause proof failures.

Ripple analysis uses all of the available wave-rules to suggest induction variables

and rules. The wave-fronts in these wave-rules suggest the form of induction. This

allows the use of any function arguments as induction variables provided there is

a wave-rule in which this argument contains a wave-front. Thus, ripple analysis

can suggest an appropriate induction even if recursion analysis fails, which allows

rippling to prove more theorems.

Termination of Rippling

The various forms of rippling direct and restrict the search for an inductive proof

to avoid combinatorial explosion. Rippling moves the wave-front outwards until

it is "beached". The proof of termination of rippling is based on a well-founded

measure that decreases when outward directed wave-fronts move towards the root

of a term, and inward directed wave-fronts move towards the leaves. A termination

proof for rippling is given in [23, 3, 21. In verification and synthesis problems using

meta-variables and existential quantifiers, rippling may not terminate [23].

Advantages of Rippling

The main advantages of rippling compared to conventional rewritings are described

as follows [15]:

1. The application of the wave-rules to an annotated term based on wave anno-

tations match is skeleton preserving, and this always terminates.

2. Rippling provides a useful heuristic guidance in failed proof attempts by sug-

gesting patches to a partial proof, which help in the selection of lemmas, in-

duction rule choice and generalization.

2.3.3 Proof Planning

The rationale behind proof planning [13, 14, 521 is to guide an inductive theorem

prover in the search for a proof leading to a probable success, and predicting probable

failures by making use of explicit plans so that the proof process can be managed

using different heuristics to obtain a successful proof. A proof plan is an outline or

the specification of the strategy for controlling a whole proof, or a large part of a

proof.

Proof plans can provide a high-level understanding of a proof to ease the process

of automatic reasoning. Proof plans are constructed to capture the common struc-

ture in proofs by collecting similar proofs into families having similar structure.

The search towards a successful inductive proof requires the application of vari-

ous heuristics in an ordered sequence, for example, induction, symbolic evaluation,

unfolding, ripple-out, fertilization etc. All of these heuristics can be implemented

as programs called tactics which will control the application of the rewrite rules to

control the search for a proof.

A proof plan is a tree consisting of customised tactics based on the current

theorem to be proved to direct the search for a proof, which is used to reason about

the current conjecture, available methods to prove it, and to facilitate the flexible

application of the plan.

Components of a Proof Plan

A proof plan consists of two parts: tactic and method.

a Tactic: This is a procedure that applies a sequence of rules of inference at the

object level. High-level tactics are defined by combining lower-level sub-tactics.

a Method: The specification of a tactic is called a method. It is a frame contain-

ing information about the preconditions for the attempted application of the

tactic, and eflects of the successful application of the tactic.

If the syntactic structure of an input formula matches the preconditions specified

in the meta-logic of a method, the corresponding tactic will be applicable.

Tactic Specifications

A method expresses the specifications of a tactic with a list of slots in the frame.

Fig. 2.13 lists the basic slots of a method specifying a tactic in general. Each of these

slots contains a formula in the sorted meta-logic, and shows the syntactic properties

of the input formula before and after the tactic application.

Each tactic has its own method to specify itself. The details of the specifications

of the tactics are beyond the scope of this thesis, and are explained in [13].

Slot name Description

Name Specifies the name of the method and applicable argument

lists

Declarations A list of quantifiers, and sort declarations for meta-variables

global to all the slots except the Tactic slot

Input A schematic representation of the goal formula before tactic

application

Preconditions Conditions expressed in meta-logic, which must hold for the

tactic to be applicable

Output A schematic representation of the goal formula after tactic

application

Effects Properties written in meta-logic, which the output formula

must satisfy after the application of the tactic

Tactic A program which controls the application of the object-level

rules of inference

Figure 2.13: Slots of a method

As an example, the specification for the induction tactic is given in Fig. 2.14

[13]. The tactic slot gives the definition of a program, induction, which takes the

input formula, and returns the output formula. Here, forms is the set of all for-

mulae, wars is the set of all variables over natural numbers, BFm and SFm denote

formulae formed in the base case, and formulae formed in the step case with proper

replacements of universal variables (with constructors) in the input formula Fm.

prim-rec-ind ('v'Y.Fm1, Y) is the application of primitive recursive induction to Fml

with respect to Y, and replace-all (S, T, Exp) constructs an expression by replacing

all occurrences of S with T in Exp.

Use of Proof Plans

A method is constructed to formalise a proof plan for the current conjecture to

be proved corresponding to one of the top-level tactics. In the domain of inductive

theorem proving, proof planning has been implemented in the Oyster-CLAM system

[20], XCLAM [87] and IsaPlanner [37, 381. In the domain of program synthesis,

some of the proof planning-based synthesis frameworks are syntheses of functional

programs by Smaill and Green [91], syntheses of recursive programs by Armando,

Smaill and Green [I], and middle-out synthesis by Kraan, Basin and Bundy [68].

Figure 2.14: Induction method

Slot name Specificat ion

Name Induction

Declarations VX E vars, VFm E forms, VBFm E forms,

VSFm E forms

Input VX.Fm

Preconditions nil

Output B F m A VX(Fm + S F m)

Effects B F m = replace-all (X, 0, F m) A

S F m = replace-all (X, Succ(X) , F m)

Tactic induction(VY.Fm1) = prim-rec-ind(VY.Fm1, Y)

Advantages

r

Proof planning extends the tactic-based theorem proving paradigm through the

explicit representation of proof strategies which reduces the search control prob-

lem. Some key benefits of the proof planning approach to the development of proof

strategies are clarity, modularity, reliability, flexibility, re-usability, and increased

automation.

2.3.4 Proof Critics

An inductive proof often fails because of improper use of induction, lacking appro-

priate rewrite rules or failing to perform appropriate generalization. To learn from

failed proof attempts, the standard patterns of proof failure and appropriate patches

to the failed proof attempts are represented as critics. Several approaches to the

productive use of proof failures in inductive proofs are described in [52, 53, 107, 541.

These techniques study the divergence pattern of a failed proof attempt, and auto-

matically suggest ways to recover from the failure leading to a successful proof.

Use of Planning Critics

Ireland has proposed an extension of proof plans by using proof critics to exploit

partial success or failure in the search for an inductive proof [52]. A critic is a small

program which identifies problems as well as providing solutions to the problems

in a failed proof plan. Proof critics are used to capture patchable exceptions to a

tactic and hence to the basic proof plan. Each critic is associated with a method.

The failure or partial success of a method activates its associated critics, which is

determined by the critic preconditions.

In exploiting partial success in a failed proof plan, Ireland [52] analyses the

success and failures of the preconditions to identify the causes of failure, for example,

missing wave rule or missing sink etc. He then uses this information to propose

proof critics to initiate the search for a lemma corresponding to the missing wave-

rule or perform online generalization through the introduction of a sink by providing

appropriate patches.

The work of Ireland and Bundy [53] is based on the concept of proof critics in

a proof planning framework. They have presented a novel architecture to automat-

ically discover eureka steps like refining induction, missing lemmas, generalization

etc. by systematic analysis of the failure of rippling by using corresponding critics.

For example, the failure of the inductive proof of Vxs.reverse (as) = reversea (xs, Nil)

(i.e., reversea is the accumulative version of reverse) because of a lack of proper gen-

eralization during rippling can be captured as a critic. The solution provided by the

patch associated with the critic is the generalization of the goal through the intro-

duction of an accumulator variable into the original conjecture. Using the notion

of proof critic, Ireland and Bundy have extended the proof critic mechanism for ac-

cumulator generalization involving multiple sinks [54]. This technique is built upon

the technique of patching proofs used in [53], but greatly extends its power.

Divergence Critic

The divergence critic [I071 is a computer program to monitor the construction of

inductive proofs to identify diverging proof attempts. It identifies when and how

the proof attempt is diverging by means of a difference matching procedure. The

critic then proposes appropriate lemmas and generalizations that guide the proof

successfully without divergence. In the SPIKE system [66], this critic has been

implemented and a number of diverging theorems were proved successfully.

While the proof process is continued, an accumulating term structure may ap-

pear that causes the divergence. The difference matching technique identifies the

accumulating term structure causing divergence. Difference matching and rippling

are both used to propose lemmas that ripple out the accumulating term structure.

Consider the proof of the following conjecture as illustrated in [107].

The following rewrite rules are used in the proof of the above conjecture.

A 1-step induction for nut is applied on x . The base case is trivial. In the step

case, the induction hypothesis is, doubl e (x) = x + x , and the induction conclusion is,

double(Succ(x)) = Succ(x) + Succ(x). Rewriting of the induction conclusion using

the above rewrite rules, and then fertilizing the left hand side using the induction

hypothesis results in the proof term Succ(x + x) = Succ(x) + x . This equation

cannot be simplified any further. So, the prover tries to apply another induction on

x , which generates the following diverging sequence:

Succ(x + x) = Succ(x) + x

Succ(Succ(x + 2)) = Succ(Succ(x)) + x

Succ(Succ(Succ(x + x))) = Succ(Succ(Succ(x))) + x

The cause of this divergence is the lack of the rewrite rule

Succ(X) + Y = Succ(X + Y)

which is needed to remove the Succ function accumulating in the first argument

position of + in the right hand side. The prover repeatedly performs an induction

on x , but it is unable to simplify. This rewrite rule can be derived from the lemma

V x : nat.Vy : nat.Succ(x) + y = Succ(x + y).

To recognize when a proof attempt is diverging, the critic looks for diverging

patterns in the proof attempt. It first determines the sequence of equations which

the prover tries to prove by repeated induction on x as shown above. The critic

then tries to identify the accumulating and nested term structure which is causing

divergence by difference matching [I071 of the successive equations of the divergence

sequence.

The divergence critic suggests the following wave rule:

The annotated induction conclusion doubl e(lSuee(g)i) = +
can be proved without divergence by using the above wave rule along with the wave

rules that are obtained from the rewrite rules.

There are some limitations to the divergence critic as pointed out in [107]. Iden-

tifying divergence is undecidable in general. This critic may identify a divergence

even if there is none at all, or even if it identifies a divergence correctly, it may not

be able to suggest appropriate lemmas.

2.4 Program Synthesis

A program is often written with respect to a specification, and it is assumed that

this program will satisfy the specification. Only a formal proof of correctness can

guarantee that a program meets its specification. A program should be developed

in such a way that it must behave according to the specification [99].

In this section, we present an overview of the research that has been under-

taken in various program synthesis methods in functional and logic programming

as declarative programs are easier to analyze and reason about. A survey of proof

planning based synthesis methods is presented in [86]. A survey of existing work

on constructive, deductive and inductive synthesis of logic programs is presented

in [36].

2.4.1 Constructive Synthesis

Classical logic, which is the standard foundation of mathematics, is based on truth

functional semantics, and allows the law of the excluded middle (A V i A = T)

as an axiom. In this semantics, every proposition is either true or false. A proof

of a proposition asserts the existence of an object without showing how it can be

constructed.

In constructive logic, the proof of a proposition has a computational content

using constructive derivation. The law of the excluded middle is not valid in this

logic, so, for a general proposition A, A V 1 A is not provable. The pure existence

proof of 3y.spec(y) in classical logic is replaced with a constructive proof which

involves the construction of the object y and showing that the specification spec

holds for y; the result is a pair (y,p). The proof of Vx.spec(x) is a function taking

any object x to a proof of spec(x). The constructive proof of Vx.3y.spec(x, y) will

construct a function f (x) which will compute the witness y in terms of x so that

Vx.spec(x, f (x)). The function takes a as a value of x to compute a value f (a)

which satisfies spec(a, f (a)). So, Vx.3y.spec(x, y) is the specification to construct

the program f (x) which satisfies the specification.

Types originate from programming languages and propositions from logic. Con-

structive type theory, based primarily on the work of Martin-Lof [77], is simulta-

neously a logic and a programming language in which propositions and types are

analogous based on certain assumptions. The logicians Curry and Howard observed

the correspondence between proofs and programs: propositions and types are duals

forming the notion of propositions-as-types which is known as the Curry-Howard

isomorphism [50, 331. The specification p : P means both that p is of type P and p

is the proof of the proposition P.

Curry-Howard isomorphism links typed lambda calculus and constructive logic.

Using this isomorphism, proofs become terms of lambda calculus. Thus, each proof

rule of constructive logic has a corresponding program formation rule. In addition to

these rules, there are also induction rules for inductive data types. These rules are the

basis of constructive type theory, i.e., a formal system where program development

and verification are done hand-in-hand. The following are some rules of constructive

type theory:

I- A is a type
AS

x : A E I ' r , x : A k e : B
t s : A r l - x : A (Hyp) r I- (A s : A).e: (A + B) (+ I)

r t e l : A* B r k e2: A r , ~ : A I-p: P
r l- (el e2) : B (" E, F I- (Ax: A).e: (Vx: A) .P

To synthesise a program p from the specification A + (B + A) for types A and

B such that I- p : A + (B + A), the program is represented with a metavariable.

The proof rules are applied to the specification from the conclusion to the premises

of each rule [99, 41. The application of the rule + I twice to the specification results

in the following steps:

M is unified with Ax.Ml (x), and MI (x) is unified with Ay. M2(x, y). The application

of Hyp unifies x : A with M2(x, y) : A, instantiating M2(x, y) to x which completes

the proof. Substitutions result in the synthesised program Xx.Xy.x.

2.4.2 Deductive Synthesis

The purpose of deductive program synthesis is to derive an executable program from

a high level specification by applying correct inference rules.

Deductive Synthesis of Logic Programs

Deductive synthesis can deduce logic programs from a specification using some pre-

defined deduction rules [36]. In order to synthesise a correct program from a spec-

ification, the deduction strategy involves theorem proving methods. The synthesis

process starts with a pair (M,Q) where M is a set of axioms, containing the logic

specification, and Q is the query for which a logic program will be deduced by correct

inference rules from M.
The work of Lau et al. for logic program synthesis in [71] is an unfold/fold based

semi-automatic system. This approach provides a partially correct program. The

specification is an iff formula, and M is a set of iff formulas. The iff formula is a

definition. The method employs fold-unfold in a strictly top-down manner. To syn-

thesise a recursive logic procedure from a given first-order logic specification (with

definitions in normal form) with a given head of the procedure, head of the required

implication and form of the required set of recursive calls, they start by defining an

initial problem called folding problem involving Q. This folding problem is decom-

posed into subproblems until the subproblems are easily solved. The subsolutions

are then composed into a solution to the initial fold problem. Unfolding is performed

only when it contributes to a fold. In this system, the initial fold problem corre-

sponds to selecting the type of induction, initial unfolding corresponds to induction,

and the final folding to fertilization.

Deductive Synthesis of Functional Programs

A deductive framework to synthesise functional programs using a derivation proof

method from an input specification, describing the relation between the input and

output of the desired program, is presented in [73, 741. The framework incorporates

ideas from resolution and inductive theorem proving for both interactive and auto-

matic implementation. They adopt classical logic, but restrict it to be constructive

whenever necessary in a deductive-tableau proof system to extract programs from

proofs. In this synthesis system, for a given specification of the form f (a) + find z

such that spec(a, z) , a theorem of the form (Va)(3z).spec(a, z) is proved to extract

a program of the form f (a) + t [a] that meets the specification. The proof is suf-

ficiently constructive to indicate a computational method to find the output z in

terms of input a. Thus, the system proves the existence, for any input, of an output

that satisfies the specified conditions in a background theory.

2.4.3 Middle-Out Synthesis

Proof planning can help to guide the search at the meta-level of a synthesis proof by

making a plan of the object level proof. Synthesis conjectures are expressed using

existential variables to represent output values, and allow undefined functions in

the conjecture. This makes the verification proof and synthesis process difficult as

the required induction cannot be determined. Middle-out reasoning as a part of

proof planning was first proposed in [22] to solve this problem by postponing the

selection of induction scheme until late in the proof. Middle-out reasoning represents

unknown terms that are to be synthesised by meta-variables. It allows the meta-

level representation of an object-level term and middle-out reasoning helps proof

planning to proceed even though an object is not fully known. The meta-variables

may not always be instantiated properly to correct programs.

Middle-Out Reasoning in Functional Program Synthesis

An application of middle-out reasoning with proof planning and rippling to synthe-

sise functional programs in the context of the formula-as-types principle is presented

in [91]. A recursive functional program can be synthesised from the inductive proof

of a specification of the form Vinput.3output.spec(input, output) in constructive type

theory derived from Constable's Nuprl [31]. A meta-variable is used to stand for

the existential witness term so that it will be subsequently instantiated to an object

level-term as the proof progresses. Proof planning is used for induction as the basis

of the synthesis approach. Rippling is used to manipulate the goal so that an induc-

tion hypothesis can be applied for fertilization in the step case. In [I], Armando et al.

present an automatic technique for inductive synthesis of recursive functional pro-

grams from non-executable input/output specifications of the form Vx.3y.spec(x, y).

This technique uses proof plans [13] with some extensions and generalizations to

guide the synthesis process. The work is based on Martin-Lof's constructive type

theory [77] to achieve total correctness of the synthesised program. In their work us-

ing middle-out reasoning, meta-variables are used to instantiate unknown programs,

so the development of a program and its proof is done hand-in-hand.

Middle-Out Reasoning in Logic Program Synthesis

In [67] and [68], Kraan et al. extensively used middle-out reasoning to synthesise

logic programs, and in the selection of an appropriate induction scheme. Synthesis

is performed by planning the verification of a program while leaving the program

unknown represented by a meta-variable. In this synthesis planning, the proof steps

that depend on the program are postponed as long as possible to partially instantiate

the program. The base case of the synthesis proof allows the instantiation of the

base case of the program, and the step case of the program is obtained from the step

case of the proof.

Recursion analysis [9]/ripple analysis [15, 191 can find induction only if all of

the functions are defined and required lemmas are available. For example, in the

following conjecture, even is undefined. Recursion analysis or ripple analysis fails

to determine the appropriate induction for this conjecture because the induction

scheme may correspond to the recursion scheme of the undefined function.

ALL x : nat . (even(x)) H (E X y : nat.y x Succ(Succ(Zero)) = x)

However, middle-out reasoning [22] can find appropriate induction schemes in

such cases. The selection of induction is postponed in the planning process, and

a schematic step case is formed by replacing the potential induction variable with

a constructor represented by a meta-variable applied to this potential induction

variable in the induction conclusion. Rippling of the schematic step case fully in-

stantiates the meta-variable with the appropriate induction type after fertilization

has been performed.

Kraan et al. identified the possibility of non-termination of the rewriting process

in middle-out induction in the presence of meta-variables using rippling. They also

identified that speculative rippling may lead to non-termination in failure branches.

2.4.4 Inductive Synthesis

Inductive synthesis uses artificial intelligence techniques to synthesise programs from

incomplete information, such as examples, by means of inductive inference [36]. The

purpose of inductive synthesis is to formulate general rules. Inductive inference is

related to generalization, whereas deductive synthesis is related to specialisation.

The inductive synthesis of logic programs starts with a logic specification ex-

pressed with a set of examples, and an intended relation. The synthesised program

must be consistent with respect to the specification, and must also cover the un-

specified examples in the case of incomplete specification.

The inductive synthesis methods are classified as traced-based approaches or

model-based approaches. The trace-based approach uses folding, matching and gen-

eralization to synthesise a generalized program containing loops and recursion. The

trace-based approach has received much attention in the context of functional pro-

gramming 1931.

An inductive synthesis method to synthesise recursive functional program from

input/output examples based on the recurrence-detection method of Summers 1981

is presented in 1641.

The model-based approach constructs a finite axiomatisation of a model of the

examples. Plotkin's idea of least general generalization [82, 831 is the basis of most

model-based approaches of logic program synthesis.

2.5 Inductive Theorem Proving Using Program Trans-

format ion

Automatic program transformation techniques, such as supercompilation and distil-

lation, are capable of metacomputation using rules and strategies in metalanguage.

These techniques can be used in proving inductive theorems. Metacomputa t ion is

an alternative to formal logic in automated theorem proving. General propositions

which require quantification, and proofs using mathematical induction, can be han-

dled with metacomputation 1103, 42, 411.

For a given program defined with a term and recursive definitions, it is possible

to show that the given definitions satisfy the specification described by the term. In

this section, we give an overview of the use of metacomputation to prove inductive

theorems using program transformation techniques.

2.5.1 Metacomputation

Metacomputation is one level higher than ordinary computation, where programs are

treated as data objects. For example, program specialization is a metacomputation

task. The programs which have the capability to perform metacomputation are

metaprograms. The application of a metaprogram M to a program prog is defined

as < M prog >.
A metasys t em is defined as a system which integrates, controls and processes

other systems as objects. The step from an initial program prog to the application of

a metaprogram M to an encoded form prog of prog is called a metasys tem transition.

A multi-level metasystem hierarchy can be obtained by repeated use of metasystem

transitions. A formal description of metacomputation and metasystem transitions

is given in [42, 411.

2.5.2 Partial Evaluation

In [58], Julia has shown the development of proofs by structural induction about

program transformations using partial evaluation. The parts of the transformation

that depend on static data are unfolded, and those parts that depend on the dynamic

data are residualized and simplified using the induction hypothesis.

In [58], Julia has used a partial evaluator to automate inductive proof using

Scheme. She proved the associativity of append theorem by case analysis on the

input variable x s , and simplifying the corresponding base and step cases using the

definition of the append function with the help of a partial evaluator.

append (append x s y s) zs = append x s (append y s xs)

In the base case proof of the above theorem, the static value [] and in the step

case proof, the partially static value x :: x s where both x and x s are dynamic, were

used to construct the corresponding cases based on the structure of xs. The sub-

goals resulting from the substitutions were simplified using Consel's partial evaluator

Schism. Schism does not unfold an application if all of the arguments are dynamic.

The details of this proof system is given in [58].

2.5.3 Supercompilation

Metacomputation provides an alternative method of automated theorem proving us-

ing formal logic. In this paradigm, the computation process can be fully mechanized

using unfold-fold based program transformation. The ability of the supercompiler

[loll to perform a deep transformation of the function definitions can be used in the-

orem proving. To prove that a certain property P holds for all values of x expressed

by the logical formula V x . P (x) , we can transform the original definition of P (x)

to T r u e using supercompilation. The use of supercompilation in theorem proving

presented in this section is based on the work in [102, 81, 94, 42, 411.

Proving Logical Formulae Using Metasystem Transitions in Conjunction

with Supercompilation

Logical formulae which are universally and existentially quantified require, com-

putationally, a metasystem transition. Let ALL and EX be two functions which

use the supercompiler to prove universally and existentially quantified conjectures

respectively.

To prove a universally quantified formula Vx.prog(x), the following metacompu-

tation takes place. If the supercompiler constructs a function where all of the exit

points are Rue, it outputs Rue. Otherwise, it outputs I.

True, Vx.prog(x) i s proven < ALL prog(x) >=
I, Unproved

To prove an existentially quantified formula 3x.prog(x), the following metacom-

put ation takes place. The function EX constructs a potentially infinite process tree

by driving prog using the breadth-first principle. If it finds any R u e exit point, it

outputs True. Otherwise, it continually searches until it is stopped.

True, 3x.prog(x) is proven
< EX prog(x) >=

is stopped, Unproved

To prove a conjecture Vx.3~. f x y, the following metasystem transition scheme

is constructed.

< ALL >
< E X x >

< f @ Y >

In the above scheme, the function EX performs driving of f x y where x is free.

Then, the function ALL applies supercompilation on the resulting term obtained.

Example 8

Consider the proof of the associativity of plus theorem for natural numbers.

ALL x.ALL y.ALL z.eqnum (plus (plus x y) z) (plus x (plus y 2)) (8.1)

The following definition of the function eqnum and the definition of plus as

defined in $2.2.4 are used to prove the above conjecture.

eqnum = Xx.Xy. case x of

Zero : case y of

Zero : Due

I Succ y' : False

I Succ x' : case y of

Zero : False

(SUCC y' : eqnurn x' y'

The supercompiler transforms the body of conjecture (8.1) to obtain the following

program.

letrec

fO = Ax, case x of
Zero : case y of

Zero : case z of

Zero : R u e

I Succ z' : letrec

fl = Az'. case z' of
Zero : D u e

I Succ z" : fl z"

in fl z'

1 Succ y' : letrec

fl = Xv'. case y' of
Zero : case z of

Zero : D u e
I Succ z' : letrec

f2 = Xz'. case z' of

Zero : D u e
I Succ z" : f2 z"

in f2 z'

(Succ y" : fl y"

in fl y'

I Succ x' : fO 2'

in fO x

By inspecting the above term, we see that all of the exit points from the term

are True. Turchin requires that all of these functions are total, and thus guaranteed

to terminate. Supercompilation recognizes that the above term is transformable to

True. This proves the associativity of plus theorem.

2.6 Use of Lemmas and Generalization Techniques

In this section, we discuss how the concept of cut elimination relates to proof and

program transformation techniques. Also, we briefly consider the use of intermediate

lemmas and generalization in inductive proofs.

2.6.1 Cut Elimination

The inability to generate and prove a well-founded ordering for the non-trivial recur-

sive data types, and the inability to generate new induction rules based on that or-

der by computer programs, limits the power of automatic inductive theorem provers.

The cut rule is therefore required to propose intermediate lemmas and for the gener-

alization of conjectures ($1.4.2). Gentzen's original formalisation of sequent calculus

contains the cut rule (Cut(1) in Fig. 2.15).

Despite strong arguments in favour of the fact that inductive theories do not

admit cut elimination, some research demonstrates cut elimination (cut-free proof)

in the presence of induction in first order intuitionistic logic [76, 78, 1001 and also

in classical logic [lo, 12, 111. Some research [45, 103, 1021 in the field of inductive

theorem proving in functional programming using metacomputation techniques has

been carried out that does not make use of any explicit intermediate lemmas, whereas

some other existing inductive proof techniques need to use explicit lemmas in such

proofs.

Simon Marlow's research [75] draws a relationship between the ideas of program

deforestation and cut elimination. The goal of deforestation is to eliminate the

intermediate data structures by reducing it to a normal form. Marlow reformulates

first order deforestation making it similar to the formulation of cut elimination, and

combined it with the non-recursive cut elimination algorithm. Marlow uses let to

represent those data structures that will not be removed by deforestation, and cu t

to represent eliminable data structures. The term form corresponding to the cut

rule of logic is the cut construct (Cut (2)).

r , A t a r k A c u t (l) r t - t : A r , ~ : A F U : B
r k a I ' F c u t x = t in u : B

Cut (2)

Figure 2.15: Cut rule (Cut(1)) and the cut construct (Cut(2))

In [30], Cockett argued that Wadler's deforestation technique [I041 and

Burstall/Darlington's unfold/fold transformation [24] are necessarily shadows of an

underlying cut elimination procedure, and should be more generally recognized as

proof techniques.

2.6.2 Use of Lemmas and Generalization in Induction

Various heuristics are used to suggest intermediate lemmas and for generalization.

Rippling [23] uses rich heuristics to conjecture lemmas to design new wave rules to

unblock rippling, and to generalize goals so that wave rules apply.

Use of Lemmas in Inductive Proof

To explain the use of intermediate lemmas in inductive proof, we consider the in-

ductive proof of the commutativity of addition theorem given by the following con-

jecture using standard rewriting techniques. The rewrite rules of 51.4.1 are used in

this proof.

A L L x : nat .ALL y : na t . x + y = y + x

Both of the variables x and y are universally quantified. The variable x has

one unflawed and one flawed occurrence, and the variable y also has one unfiawed

and one Pawed occurrence. Recursion analysis suggests both of them as induction

variables. However, we use x as the induction variable in this case. We perform a

1-step induction on x. The induction hypothesis is: x + y = y + x. The base case is

simplified as follows.

k 0 + y = y + 0 (by base case premise of induction rule (1.1))

k y = y + O (by rewrite rule (i))

To prove the subgoal y = y + 0, we perform 1-step induction on y. We assume

the induction hypothesis y = y + 0. In the base case, 0 = 0 + 0, which is simplified

to 0 = 0 by rewrite rule (i). In the step case, the induction conclusion is constructed

and it is simplified as follows.

y = y + 0 k Succ(y) = Succ(y) + 0 (by step case premise of

induction rule (1. I))

t Succ(y) = Succ(y + 0) (by rewrite rule (ii))

k y = y + O (by rewrite rule (iii))

Now, the simplified induction conclusion contains a complete copy of the in-

duction hypothesis. So, strong fertilization can be performed. This simplifies the

step case proof of the subgoal y = y + 0 to T. The simplification of the induction

conclusion for the original conjecture proceeds as follows.

x + y = y + x I- Succ(x) + y = y + Succ(x) (by step case premise of

induction rule (1.1))

I- Succ(x + y) = y + Succ(x) (by rewrite rule (ii))

The proof is stuck at this point. No further rewriting of this partially simplified

induction conclusion is possible. This unsolved goal does not suggest any general-

ization. To simplify this, we need the following rewrite rule:

y + Succ(x) = Succ(y + x) (iv)

The right hand side of Succ(x + y) = y + Succ(x) suggests a lemma of the form

Vy : nat.Vx : nat.y + Succ(x) = Succ(y + x). This lemma is used to derive the

above rewrite rule which is used to simplify the unsolved goal. Before using this

rewrite rule, we prove the lemma Vy : nat.Vx : nat.y + Succ(x) = Succ(y + x).

Recursion analysis suggests a 1-step induction on y. The induction hypothesis is:

y + Succ(x) = Succ(y + x). The base case is simplified as follows.

t- 0 + SUCC(X) = Succ(0 + x) (by base case premise of induction rule (1.1))

k Succ(x) = Succ(x) (by rewrite rule (i))

k x = x (by rewrite rule (iii))

In the step case, the induction conclusion is constructed and it is simplified using

the rewrite rules (ii) and (iii) as follows.

y + Succ(x) = Succ(y + x) I- Succ(y) + Succ(x) = Succ(Succ(y) + x)

k Succ(y + Succ(x)) = SUCC(SUCC(~ + x))

k y + Succ(x) = Succ(y + 2)
Now, the simplified induction conclusion contains a complete copy of the induc-

tion hypothesis. So, strong fertilization is performed. This simplifies the step case

proof of the lemma to T. Now, we complete the remaining step case proof of the

commutativity of addition theorem using the new rewrite rule with the existing set

of rewrite rules.

x + y = y + x t Succ(x + y) = y + Succ(x)

k Succ(x + y) = Succ(y + x) (by rewrite rule (iv))

I- x + y = y + x (by rewrite rule (iii))

Now, the induction conclusion contains a complete copy of the induction hy-

pothesis. By performing strong fertilization, this is simplified to T. This proves the

theorem.

Generalization in Inductive Proof

The need for generalization of a goal is also a consequence of the failure of cut elim-

ination in inductive theories. To see how generalization helps to achieve a successful

proof in a diverged proof attempt, consider the proof of the following conjecture

which is a variant of the associativity of <> theorem using standard rewriting tech-

niques. We adopt this example from [15].

Vxs : l i s t (~) . x s <> (x s <> xs) = (x s <> xs) <> xs

We consider only the step case proof using the following rewrite rules.

(H : : T) < > L + H : : (T < > L) (i)

X l : : X 2 = Y l : : Y 2 + X l = Y l A X 2 = Y 2 (ii)

Recursion analysis suggests a 1-step list induction rule (1.2) on xs , though the

3rd, 5th and 6th occurrences of xs are flawed. The induction hypothesis is:

In the step case proof, the simplification of the induction conclusion proceeds as

follows:

t- (h :: t) <> ((h :: t) <> (h :: t)) = ((h :: t) <> (h :: t)) <> (h :: t)

t h :: (t <> (h :: (t <> (h :: t)))) = (h :: (t <> (h :: t))) <> (h :: t)

No further simplification is possible, which causes the proof procedure to fail.

Only generalizing apart of the 2nd, 3rd, 5th and 6th positions of the original con-

jecture by introducing a new universally quantified variable ys can help the proof

to go through. This will generate the new conjecture as given below.

Vxs : l i s t (~) .Vys : l i s t (~) . x s <> (ys <> ys) = (x s <> ys) <> ys

Now, recursion analysis will suggest a 1-step list induction on xs, but this time

it is unflawed, as both of its occurrences are in the recursive argument position of

the function <>. The above generalized conjecture can be proved successfully using

strong fertilization.

2.7 Conclusion

In this chapter, we have presented the background research on the state of the art

work in the areas of program transformation, automatic inductive theorem proving

techniques and strategies, program synthesis, and metacomputation based theorem

proving using program transformation. We have discussed the limitations of induc-

tive inference and the use of the cut rule to introduce intermediate lemmas and

to perform appropriate generalizations while preventing over-generalization, which

may cause infinite branching points into the search space.

Burstall and Darlington's unfold/fold program transformation technique is a

semiautomatic user-guided transformation system. They use associativity or com-

mutativity properties of primitives as laws when folding is possible to generate ef-

ficient programs. Supercompilation is more powerful than partial evaluation and

deforestation. Supercompilation is a fully deterministic transformation algorithm.

Over-generalization occurs a lot in supercompilation. The unification-based infor-

mation propagation in supercompilation makes it appropriate for metacomputation-

based inductive theorem proving.

Among the various inductive proof techniques, rippling is a powerful knowledge-

based theorem proving technique using explicit induction. Rippling provides a useful

heuristic guidance in failed proof attempts in the selection of lemmas, induction rule

choice and generalization. Ripple analysis can suggest an appropriate induction even

if Boyer and Moore's recursion analysis fails, which allows rippling to prove more

theorems. In middle-out synthesis, a meta-variable is instantiated to unknown pro-

gram when the proof is completed. The rewriting process may not always terminate

in middle-out induction in the presence of meta-variables using rippling.

Metacomputation provides an alternative to inductive theorem proving using

explicit induction. Turchin has shown the use of metasystem transition in theorem

proving using supercompilation. This technique has not been studied in depth to

prove existential theorems and in the construction of programs involving different

data types. The power of a metacomputation-based theorem prover largely depends

on the program transformation technique incorporated in its proof technique. To

tackle the challenging problem of removing intermediate structures from programs

more naturally, the transformation technique must be equipped with strong heuris-

tics. In Chapter 3, we present the more powerful distillation program transformation

algorithm [45, 461 for higher order functional programs which can be used for this

purpose.

Chapter 3

Distillation

3.1 Introduction

In this chapter, we describe the distillation program transformation technique. Dis-

tillation [45, 461 is a powerful program transformation algorithm to remove interme-

diate data structures from higher order functional programs.

Distillation is more powerful than supercompilation; supercompilation can pro-

duce only a linear improvement in run-time performance of programs [loll , while

distillation can produce superlinear improvement. In supercompilation, matching is

performed on flat expressions only; functions are considered to match only if they

have the same name. In distillation algorithm, matching is also performed on re-

cursive expressions, which are considered to match if they have the same recursive

structure even though they may contain different function names.

Many of the expressions which are extracted using generalization in supercom-

pilation may actually be intermediate within the resulting generalized expression,

but will not be transformed away. This will result in an over-generalized expression,

which is not desirable. In distillation, if an expression has been generalized, then

this generalization is undone and the extracted sub-expressions are substituted back

into the expression resulting from the transformation of the remaining generalized

expression. The resulting residual program is further transformed to try and remove

these intermediate structures.

Two different versions of distillation have been proposed by Hamilton. The first

version [45] is implemented in the framework of the theorem prover Poitin [45]. In

[45], Hamilton defined the distillation algorithm with a set of 9 transformation rules,

and has shown its use in inductive theorem proving [45].

The version of distillation presented in [46] constructs partial process trees by

transforming input programs, and constructs residual programs from the resulting

partial process trees. We present the distillation transformation technique based on

the presentation in [46].

3.2 Program Transformation Using Distillation

In this section, we give an overview of the distillation algorithm. The language for

which the transformations are to be performed is a simple higher order functional

language as described in 52.2.1.

In our presentation of the distillation algorithm, unlike in [46], we do not sep-

arately transform the sub-expressions extracted using generalization. The residual

program therefore contains these extracted sub-expressions in their original form.

In addition, unlike in [46], rather than constructing a local function using a letrec

expression from a cycle in the partial process tree, the resulting recursive expres-

sion is constructed using new Node/Repeat constructs. The construct Node

f: e [(Repeat f: el)/v] is equivalent to letrec f = Xul . . . vn.e[(f el . . . e,)/v] in

f V. . . . vn where {vl . . . v,) = fv(e).

3.2.1 Folding and Generalization

Folding is performed when the current expression is an instance of a previously

encountered expression. In supercompilation, matching is performed on flat terms;

functions are matched if they have the same name. In distillation, matching is also

performed on recursive terms; different functions are matched if their corresponding

recursive definitions also match. If any expression containing a function call or a

function node in the redex is an instance of a previously encountered expression

within the partially constructed process tree, then a repeat node is created at the

occurrence of the current expression. In the case of a successful match for expressions

containing a function call or a function node in the redex, the original occurrence of

the expression is replaced by a Node construct, and the re-occurrence is replaced

by a corresponding Repeat construct.

A Node expression is the process tree representation of a recursive function,

and hence it is further transformed in the hope of finding a match with a further

Node expression. A local function is defined using a letrec expression only when

the matched expressions are of Node type. In transforming a letrec expression, a

local function is defined using a letrec expression in the residual program from the

resulting subtree rooted at a function node a! with a function call in the redex and

a repeat node which points to the function node.

Generalization is performed to ensure termination if the current expression is

an embedding of a previously encountered expression. To perform generalization,

sub-expressions are extracted from expressions as described in 92.2.4. Special guid-

ance is needed to control the whole generalization process during transformation.

In 52.2.4, we have defined two types of embedding: strict and non-strict. If there

is a strict embedding, the current (embedding) expression is generalized, whereas,

the previous (embedded) expression is generalized if there is a non-strict embed-

ding. We extend this non-strict homeomorphic embedding relation and the most

specific generalization to Node and letrec expressions. In supercompilation, the

extracted sub-expressions are not transformed away, and therefore the constructed

residual program contains these intermediate structures. In distillation, the residual

program constructed from supercompilation is further transformed to try to remove

these intermediate structures. The extraction of sub-expressions as a result of gen-

eralization is only made permanent in distillation when the embedding of a recursive

expression is encountered. Thus, generalization will be performed at most twice for

each expression; once when the redex is a function and once when the redex is a

recursive expression.

3.2.2 Construction of Partial Process Trees

The output of distillation is a partial process tree from which a residual program can

be constructed. The distillation algorithm is defined by the rule shown in Fig. 3.1.

The normal order reduction rules JV are defined in Fig. 2.4. The residual program

construction rules P (excluding rules (P4) and (7'5)) as defined in Fig. 2.6 are used

along with the rules of $3.2.3. In this rule, the nodes which contain a function call,

function node, repeat node, let or a letrec expression in the redex, are handled

differently than the nodes which do not.

If the current node p contains an expression in which the redex is a function,

and this expression is an instance of an expression within an ancestor node a, then

a repeat node is created. A residual program is constructed from the tree rooted

at a and this residual program is further transformed to construct a new partial

process tree. The sub-tree rooted at a is replaced with this partial process tree. If

the expression contained in the current node P is a strict embedding of an expres-

T[P] 4 = if t (P) = c o n (f) (7 1)
then if 3 a E anc(t ,p) . t (a) I. t (P)

t h e n t { p := t (P) --+ a) { a := T[P[a]] 4)

else if 3 a E anc(t , P).t(a) t (P)
then if t(a) a t (P)

then t { p := T [P [T [e x t r a c t (t (a) , t (P))] +]] 4)

else t { a := T[P[T[abstract(t(a),t(P))] 4)

else t {P := t (P) + T [u n f o ld(t (P)) $1 4)

else if t (P) = Node f: e

t h e n if 3 a E anc(t , P).t(a) 4 t (P)

then t { p := t (P) --+ a)

else if 3 a E anc(t , P).t(a) t (P)
then t { a := T([abstract(t(a), t (P))] 4)

else t { p := t (P) + T [e] 4)

else if t (P) = Repeat f: e

then t{P := T [e] 4)

else if t (P) = con(1etrec f = eo in e j)

then t {P := t (P) -, ef -, T[unf o ld (e f) (4 U { f , eo))] 4)

else if t (P) = let v l = e l , . . . , vn = en in eg

t h e n t { p := t (P) + T [e g] 4)

else t {@ := t (P) + T [e l] 4,. . . , T [e n] 4)

where M[t(P)] 4 = [e l , . . . , en]

Figure 3.1: Distillation algorithm

sion within an ancestor node a, generalization is performed as described in 52.2.4

using the extract operation. The resulting generalized expression is transformed to

construct a partial process tree from which a residual program is constructed. The

extracted sub-expression is substituted back into this program, which is then fur-

ther transformed to construct a new partial process tree. This partial process tree is

used to replace the sub-tree rooted at P. If the expression contained in the current

node p is a non-strict embedding of an expression within an ancestor node a, most

specific generalization is performed. The generalized form of the expression within

the node a is obtained using the abstract operation. This generalized expression

is transformed to construct a partial process tree from which a residual program is

constructed. The extracted sub-expressions are substituted back into this program,

which is then further transformed to construct a new partial process tree which is

used to replace the sub-tree rooted at a .

If the expression within the current node ,B contains an expression Node f: e in

the redex, which is an instance of an expression within an ancestor node a, then a

repeat node is created. If the current expression is a homeomorphic embedding of

an expression within an ancestor node a, most specific generalization is performed.

However, in this case, generalization is permanent. The partial process tree obtained

by transforming the resulting generalized expression is used to replace the sub-tree

rooted at a. Otherwise, the sub-expression e is further transformed.

If the expression within the current node /3 contains an expression Repea t f: e

in the redex, then the sub-expression e is further transformed.

If the expression within the current node ,8 contains a le t rec expression in the

redex, then the function definition is added to 4, and the unfolded function call is

further transformed. The resulting sub-tree is added to the sub-tree rooted at P
with the function call as the descendant.

If the current node ,B contains a let expression let vl = e l , . . . , v, = en in eg,

then the remaining generalized expression eg is transformed. The resulting sub-tree

is added to the sub-tree rooted at ,B.

For any other expression e, the expressions obtained by normal order reduction

of the expression e are transformed separately, and added as children to the sub-tree

rooted at e.

3.2.3 Rules for Residual Program Construction

The following rules for program construction are re-defined.

P[a = (con(!)) + t] (P4)

= Node f : (PItl)), if 3P E t.P --+ a and P = a{vl := e l , . . . , v, := en}

= p[t], otherwise

Pup = (con(!)) --+ a] = Repea t f : (con(!)) (p5)

where ,B 5 a{vl := e l , . . . , v, := en}

P[(let vl = el, . . . , v, = en in eg) += t] (7'9)
= (P[t]) {vl := e l , . . . , vn := en)

Rule (P4) processes a tree rooted at a which contains an expression with a

function in the redex and a sub-tree t . If there exists a node ,B within the sub-tree

t such that ,B is an instance of a, then the result of processing the current tree is

Node f : e where e is the expression obtained from the sub-tree t , and f is a new

name for this local definition. Otherwise, the residual program is constructed from

the sub-tree t.

In rule (P5), a repeat node ,B containing an expression in which the redex is a

function is processed, which has a matching function node a. The result of processing

the current tree is Repea t f : e where f is the function which was introduced for

the function node and e is the current expression.

In rule (P9), a tree rooted at a let expression is processed. The sub-expressions

el , . . . , en are substituted for the variables vl, . . . , v, within the expression obtained

by processing the child sub-tree.

The partial process tree constructed by distillation may contain Node expres-

sions within its nodes. Therefore, in addition to the residual program construction

rules defined in s2.2.4, the following rules are used to deal with these expressions

within the partial process tree.

P[a = (Node f: e) + t] (p10)

= letrec f = Xul.. . Vn.P[t]

in f vl . . . v,, if 3P E t.,B --+ a and p a{vl := el , . . . , v, := en >
= Pit], otherwise

P[,B = (Node f: e) --+ a]

= f el . . . en

where ,B - a{vl := el , . . . , v, := en)

Rule (P10) processes a tree rooted at a which contains an expression Node

f: e with sub-tree t. If there exists a node ,B within the sub-tree t such that ,B is

an instance of a, then the result of processing the current tree is to introduce a

local function definition into the residual program. The body of the new function

is constructed from the sub-tree t. Otherwise, no local function is defined, and the

residual program is constructed from the sub-tree t .

In rule (Pll), a repeat node p containing an expression Node f: e is processed,

which is an instance of an ancestor node a . In this case, an appropriate recursive

call to the function f introduced for the ancestor node a is added to the residual

program.

The partial process tree constructed by distillation may contain letrec expres-

sions within its nodes. The following program construction rules are defined to deal

with these expressions within the partial process tree.

P [a = (con(1etrec f = eo in f e l . . . en)) + p + t] (p12)
= letrec f ' = Xvl . . . vn.P[t]

in f ' vl . . . v,, if 3Pf E t .Pf --+ ,8 and P f - P{vl := e i , . . . , v, := ek)

= P [t] , otherwise

PIP = (c o n (f)) --+ a] (7'13)
I = f ' ei . . . en, if ,8 E a{vl := ei, . . . , v, := ek) and

3a' E anc(t, a) . t(al) = con(1etrec f = eo in f el . . . en)

Rule (P12) processes a tree rooted at a which contains an expression

con(1etrec f = eo in f e l . . . en) with a descendant ,8 and sub-tree t . If there

exists a node p' within the sub-tree t such that p' is an instance of p , then the re-

sult of processing the current tree is to introduce a local function definition into the

residual program. The body of the new function f ' is constructed from the sub-tree

t. Otherwise, no local function is defined, and the residual program is constructed

from the sub-tree t.

In rule (P13), a repeat node /3 containing an expression con(f) is processed,

which is an instance of an ancestor node a and the ancestor of a is a letrec expres-

sion. In this case, an appropriate recursive call to the function f ' introduced for the

ancestor node a is added to the residual program.

3.3 Examples

In this section, we give several examples to show how distillation can be used

to transform input programs. In the examples, we use simplified partial process

trees from which nodes which contain expressions of the form con((Xv.eo) e l) and

con(case (c el . . . en) of . . .) have been omitted for simplicity. We also rename pat-

tern variables during the transformation of a case expression with a variable in the

redex.

Within the partial process trees shown in the following examples, we represent

some of the leaf nodes with expressions of the form rue] where e is the expression to

be transformed. We do this to refer to the transformation of an identical expression

of e that has already been performed.

The following example does not require any generalization to complete the trans-

formation, but all other examples require generalization. Examples of accumulating

patterns, accumulating parameters and obstructing function calls are shown in Ap-

pendix A.1. Fig. 3.2 shows some of the function definitions which are used along with

the definitions of the functions append, reverse, plus and eqnum as defined in the

examples 3, 4, 6 and 8 respectively of Chapter 2 to transform the input expressions.

even = Ax. c a s e x of

Zero : True

I Succ x' : c a s e x' of

Zero : False

(Succ x'' : even x"

doublea = A x . A y . c a s e x of

Zero : y

1 Succ x' : doublea x' (Succ (Succ y))

leg = Ax.Ay, c a s e x of
Zero : c a s e y of

Zero : Due

I Succ y' : Due

I Succ x' : c a s e y of

Zero : False

(SUCC y' : leg x' y'

Figure 3.2: Function definitions

Example 9

Consider the transformation of the following expression (9.1) about natural numbers.

leq x (plus x y) (9.1)

During the transformation of expression (9.1), the partial process tree shown in

Fig. 3.3 is constructed. Within this partial process tree, expression (9.2) is encoun-

tered, which is an instance of expression (9.1). A repeat node is therefore created

at the occurrence of expression (9.2).

leq x' (plus x' y) (9.2)

case (Succ(p1us x' y)) of . . .
case y of . . .

leg x' (plus x' y)

\
\
\
\
\
\
\
1
\

case (plus Zero y) of . . . I 1 case (plus (Succ x') y) of . . . I

1
\
I
I

Figure 3.3: Partial process tree (1) for T[leq x (plus x y)]

case (case Zero of . . .) of . . .

Expression (9.3) is constructed from the partial process tree shown in Fig. 3.3.

(case (Succ x') of . . .) of . . . I
I

Node fO: case x of (9.3)
Zero : case y of

Zero : True

(Succ y' : True

I Succ x' : Repeat fO: leq x' (plus x' y)

1 I

Expression (9.3) is further transformed, which results in the partial process tree

shown in Fig. 3.4. Expression (9.4) is constructed from the partial process tree

shown in Fig. 3.4.

case x of (9-4)

Zero : case y of

Zero : True

I Succ y' : Due

(Succ x' : Node fl: case x' of

Zero : case y of

Zero : D u e

I Succ y' : True

I Succ x" : Repeat fl: leq x" (plus x" y)

1 case y of . . . (

1 T r u e 1

\
I

case (plus (Succ x") y) of . . . I
I case (plus Z e r o y) of . . . I

J I
case (case (S u c c x") of . . .) of . . . 1 I

/ case (case Z e r o of . . .) of . . . /

1 leg xtl (plus x" y) I case y of . . . 1

Figure 3.4: Partial process tree (2) for Ti l eg x (plus x y)]

We obtain expression (9.5) from the sub-tree rooted at leq x' (plus x' y) within

Fig. 3.4.

Node fl: case x' of (9.5)

Zero : case y of

Zero : True

I Succ y' : True

(Succ x" : Repeat fl: leg x" (plus x" y)

Expression (9.5) is an instance of expression (9.3). A repeat node is therefore

created at the occurrence of expression (9.5). This results in the partial process tree

which is shown in Fig. 3.5.

We therefore construct the residual program shown in Fig. 3.6 from the partial

process tree shown in Fig. 3.5.

Node fO: case x of . . .
\
\
\
\

case x of . . . \ \
\
\
1

I

case y of . . .

Figure 3.5: Partial process tree (3) for T[[leq x (plus x y)]

letrec f 0 = Ax. case x of

Zero : case y of

Zero : T r u e

(Succ y' : True

(Succ x' : f0 x'

in fO x

Figure 3.6: Residual program for T[l eq x (plus x y)]

3.4 Termination of the Distillation Algorithm

In this section, we give the proof that distillation algorithm always terminates. This

proof of termination is based on the language-independent framework for proving

termination of abstract program transformers in [96] in the metric space of trees.

For a transformer to fit into the framework for termination of abstract trans-

formers [96], it is sufficient to ensure that:

1. in the sequence of trees produced by transformation, for any depth d, there

must be some point from which every two consecutive trees are identical down

to depth d.

2. only finite trees are produced.

We can prove the first property by induction on the depth of the trees produced by

virtue of the fact that the algorithm does one of the following:

adds new leaves to a tree which makes consecutive trees identical at an in-

creasing depth.

replaces a sub-tree with a node whose label is a let expression. Each node

can be generalized at most twice in this way: once when the label is a flat

expression, and once when the label is a recursive expression.

The second property is ensured by the fact that in every process tree:

the node that contains a let expression has children which are sub-expressions

of the let expression. So, within a path which consists only of let expressions,

the size of the nodes strictly decreases.

a all other nodes are not allowed to homeomorphically embed an ancestor.

Now, we give the details of the termination proof of distillation based on the

termination proof of an abstract program transformer in the metric space of trees

as presented in [96]. We recommend the interested readers to see [96] for the details

of an abstract program transformer and metric space of trees.

We consider an abstract program transformer M on a set E . Let t be a tree over

E. The elements of dom(t) are called nodes of t. The empty string E is the root,

and for any node a in t , the nodes ai of t (if any) are the children of a and a is

the parent of these nodes. leaf(t) denotes the set of all leafs in t. Also, t is finite, if

dom(t) is finite and t is singleton if dom(t) = {E). Two expressions el and e2 are

incommensurable, el e2, if el n e2 is a variable.

T,(E) is the set of all trees over E and T(E) is the set of all finite trees over E.

Let EH(V) be the set of expressions over symbols H and variables V.

An abstract program transformer on E is a map M : T(E) + T(E) . No more

transformation steps will happen when M(t) = t. M on E terminates on t E T(E)

if ~ ~ (t) = ~ ~ + l (t) for some i E N (for f : A + A, f '(a) = a, fisl(a) = f i(f (a))).

M on E terminates if M terminates on all singletons t E T(E) .

Let M : T(E) + T (E) be an abstract program transformer on E and p :

T,(E) + IB be a predicate. M maintains p if, for every singleton t E T(E) and

i E N, p (~ i (t)) = 1. A predicate p : T,(E) + B is finitary if ~ (t) = 0 for all

infinite t E T,(E). An abstract program transformer M on E is Cauchy if, for

every singleton t E T, (E) , the sequence t , M (t), M 2 (t), . . . is a Cauchy sequence.

Let M : T (E) + T (E) maintain predicate p : T,(E) + B. If

1. M is Cauchy, and

2. p is finitary and continuous,

then M terminates.

The condition that M be Cauchy guarantees that only finitely many general-

ization steps will happen at a given node, and the condition that p be finitary and

continuous guarantees that only finitely many unfolding steps will be used to expand

the transformation tree. An abstract program transformer is Cauchy if it always ei-

ther adds some new children to a leaf node by unfolding, or replaces a subtree by a

new tree whose root label is strictly smaller than the label of the root of the former

subtree by generalize operation.

Now, we prove that distillation MD terminates. We do this by proving that MD

is Cauchy and that MD maintains a finitary, continuous predicate. We first prove

that MD is Cauchy by using the following proposition:

Proposition 3.4.1

Let (E, 5) be a well-founded quasi order and M : T (E) + T (E) an abstract program

transformer such that, for all t, M(t) = t{y := t') for some y, t' where

1. y E leaf(t) and t(y) = t ' (~) (unfold); or

2. t(y) > t ' (~) (generalize).

then MD is Cauchy.

The following shows that a Cauchy transformer terminates if it never introduces

a node whose label is larger than an ancestor's label with respect to some well-quasi

order.

Proposition 3.4.2

Let (E, 5) be a well-quasi order. Then a finitary predicate p : T,(E) + B,

0 if 3a, a i p E dom(t) : t (a) 5 t (a@)
PO> =

1 otherwise

is finitary and continuous.

The following shows that a Cauchy transformer terminates if it never introduces

a node whose label is not smaller than its immediate ancestor's label with respect

to some well-founded quasi order.

Proposition 3.4.3

Let (E, 5) be a well-founded quasi order. Then a finitary predicate p : T,(E) + B,

(1 otherwise

is finitary and continuous.

MD always either unfolds of an expression or replaces a subtree by a new leaf

whose label is strictly smaller than the expression in the root of the former subtree.

Proposition 3.4.4

MD is Cauchy.

Proof. We define the relation > on the set C of let expressions by:

let v i = e i , . . . , v k = e& in e + let vl = e l , . . . ,vn = en in e u m = 0 & n >_ 0

where > is a well-founded quasi order.

We show that for any t E T (L) , MD(t) = t { y := t '} where for some y E dom(t)

and t' E T,(C), either y E leaf(t) and t (y) = t l (&) , or t (y) + tl(&). We proceed by

case analysis of the operation performed by MD.

1. M D (t) = 7 (y) = t { y := t ') , where y E leaf(t) and, for the expressions

e l , . . . ,en, t' = t (y) + e l , . . . , en. Then t (y) = t l (&) .

2. M D (t) = abstract(t(y), t (a)) = t { y := let vl = e l , . . . , vn = en in e +), where

a E anc(t, y) , t (a) # t (y) , t (a) , t (y) E E are both non-trivial, t (a) 5. t (y) ,

e = t (a) n t (y) , and t (y) = e{vl := e l , . . . , v n := en). Then, e = t(a) and

t (y) = t (a){v l := el ,... ,vn := en), but t (y) # t (a) , so n > 0. Thus, t (y) >
let vl = e l , . . . , v, = en in e = tl(&).

3. MD (t) = abstract(t(y), t (P)) = t { y := let vl = e l , . . . , vn = en in e +), where

y E anc(t, P) , t (P) , t (y) are both non-trivial, t (y) $- t (P) , e = t (y) Il t (P) ,

and t (y) = e{vl := e l , . . . , vn := en). Then, t (y) # e, but t (y) = e{vl :=

e l , . . . , v, := en), so n > 0. Thus, t (y) t let vl = e l , . . . , v, = en in e = t l (&) .

4. M D (t) = extract(t (a) , t (y)) = t { y := let v = eo in e(v) +}, where a E

anc(t, y) , t (a) , t (P) are non-trivial, t (a) 9 t (y) , t (a) t) t (y) , and also t (y) =

e(eo). Here n > 0: if n = 0, then t (y) = e () , but then t(a) tt, t (P) . Thus,

t (y) = e(eo) + let v = eo in e(v) = t1(&).

This concludes the proof.

Proposi t ion 3.4.5

MD maintains a finitary, continuous predicate.

Proof. We define S[m] : E -+ N by

21

c el ... en

Xv.e

f
eo el

case eo of pl : el I ... I pk : ek

let v l = el , . . . , v, = en i n eo

le trec f = eo i n el

Node f: e

Repea t f: e

We define 1 : 13 + & by

l(1et v l = e l , . . . , vn = en in eo) = eo{vl := e l , . . . , vn := e,) for n 2 0.

We define 2 on L by:

c 7 el S[l(e)] > sgl(el)] or, s[l(e)] = S[i(el)] & i(e) 2 i(tl)

We consider is a well-founded quasi order. Consider the predicate q : T,(!) +
B defined by q(t) = p(tO) where p : T, (!) + B is defined by:

0 if 30, a$ E dom(t) : t (a) , t(aiP) are non-trivial & t (a) g t (aiP)

0 if 30, a i E dom(t) : t(cu), t (a i) are non-trivial & t (a) t (ai)

1 otherwise

The sets of non-trivial and trivial expressions constitute a partition of 13. Also,

9 is a well-quasi order on the set of non-trivial expressions (i.e., on all of E) and

E is a well-founded quasi order on the set of trivial expressions (i.e., on all of L).
It follows by proposition 3.4.6 that p is finitary and continuous, and by proposition

3.4.7 that q is also finitary and continuous.

The following shows that one can combine well-quasi orders and well-founded

quasi orders in a partition.

Proposition 3.4.6

Let (El, E2) be a partition of E and let be a well-quasi order on El and s2 be

a well-founded quasi order on E2. Then p : Tw (E) + B,

0 if 3a , a i p E dom(t) : t(a), t(aiP) E El & t (a) 51 t(aiP)

0 if 3a, a i E dom(t) : t (a) , t(ai) E E2 & t (a) #2 t(ai)

1 otherwise

is finitary and continuous.

The following shows that it suffices to apply a finitary and continuous predicate

to the interior part of a tree. For t E T,(E), we define the interior to E Tw(E) o f t

by:

dom(tO) = (dom(t) \ leaf(t)) U { E }

tO(y) = t(y) for all y E dom(tO)

Proposition 3.4.7

Let p : T,(E) + B be finitary and continuous. Then also the map q : T,(E) + B
defined by q(t) = p(tO) is finitary and continuous.

Now, one can replace in the proposition e0 by any continuous map which maps

infinite trees to infinite trees.

It remains to show that MD maintains q, i.e., that q (~ h (t o)) = 1 for any

singleton to E T,(C). Given any t E T,(C) and p E dom(t), we say that ,B is good

in t if the following conditions both hold:

(i) t(P) non-trivial & p 6 leaf(t) + b'a E anc(t, p) \ {p) : t(a) non-trivial

* t (a> $ t(P)
(ii) p = ai & t (a) trivial + t (a) 7 t(P)

We say that t is good if all P E dom(t) are good in t.

We see that q(t) = 1 if t is good (the converse does not hold). It therefore suffices

to show for any singleton to E T,(L) that M;(to) is good for all i. We proceed by

induction on i.

For i = 0, (i)-(ii) are both satisfied since to consists of a single leaf. For i > 0,

we split into cases according to the operation performed by MD on ~;- l (to) .

Before considering these cases, by the definition of goodness, if t E T,(C) is good,

y E dom(t), and t' E T,(L), then t{y := t') is good too, provided 76 is good in

t{y := t') for all 6 E dom(tl).

Let t = ~ L - l (t ~) .

1. MD(t) = 7 (y) = t{y := t'), where y E leaf(t), t' = t(y) + e l , . . . , en , and

{el, . . . ,en) = {e I t(y) + e). We show that y, 71, . . . , y n are good in MD(t).

To see that y is good in MD(t), if t(y) is non-trivial, then the algorithm ensures

that condition (i) is satisfied. Condition (ii) follows from the induction hypoth-

esis. To see that yi is good in MD(t), condition (i) is satisfied. Moreover, when

C + e and C is trivial, C I e, so condition (ii) holds as well.

2. MD(t) = abstract(t(y), t(cu)) = t{y := le t vl = el , . . . , v, = e, in e +), where

a E anc(t, y), t (a) # t(y), t (a) , t(y) E & are both non-trivial, t (a) I. t(y),

e = t (a) n t(y), and t(y) = e{vl := e l , . . . , vn := en).

We show that y is good in MD(t). Condition (i) holds, and (ii) follows from

the induction hypothesis and l(t(y)) = l(1et vl = e l , . . . , vn = en in e).

The remaining two cases are similar to the preceding case.

3.5 Correctness of Distillation Algorithm

The transformation of a program is correct if the extensional meaning of the original

program is preserved in the transformed program. The proof of correctness of the

distillation algorithm is given in [46]. We give an outline of this proof here. To

prove that the distillation algorithm produces programs which are equivalent to the

original programs, the improvement theorem of Sands [89, 901 is used. In order

to prove the correctness of the distillation algorithm, we first prove the following

lemma.

L e m m a 3.5.1 (Efficiency)

The distillation algorithm produces programs which are no less efficient than the

original.

Proof (Sketch). To prove that the distillation algorithm does not result in

a loss of efficiency, a measure of the cost of expressions related to the operational

semantics of the language is used. This measure indicates the number of reduction

steps required to reduce an expression to normal form. In [89, 901, the one-step

reduction relation for a call-by-name semantics is denoted by H, and a closed

expression e is said to converge to weak head normal form w denoted by e l). w,

if and only if e ++* w, where e* denotes the transitive closure of e . For any

expression e , C [e] Un w denotes that a closed expression e converges to weak head

normal form w in n reduction steps, if e en w where en denotes a sequence of n

reductions.

The following notion of improvement is defined in [89, 901 for a call-by-name

semantics as follows.

Definition 3.5.2 (Improvement) A n expression e is improved b y e', denoted b y

e e' if, for all contexts C such that C [e] and C [e l] are closed, if C[e] U n , C[e l] Urn
and m < n.

This notion of improvement was used to prove that there is no efficiency loss

with respect to a call-by-name semantics resulting from supercompilation in [89].

In order to prove this for the new rules of distillation for transforming nodes which

contain recursive expressions, we need to show that each new function call which

is introduced by transformation comes together with an unfolding step in the body

of that function definition. To ensure this, after first encountering a node which

contains a Node expression, the function is unfolded. When a node with a matching

Node expression is subsequently encountered, folding is performed, but an unfolding

step will have been performed in the body of the constructed function.

The following lemma is required to prove the correctness of the distillation algo-

rithm.

Lemma 3.5.3 (Correctness)

The distillation algorithm produces programs which are equivalent to the original.

Proof (Sketch). The proof of correctness of the distillation algorithm fol-

lows the work of Sands [89, 901, which makes use of an improvement theorem. The

improvement theorem states that if a transformation repeatedly applies a set of

transformation rules to a program, where each transformation step is equivalence

preserving, then a transformation which replaces a program e by el is totally correct

if e is improved by el. The equivalence of each transformation step can be proved

with respect to the operational semantics of the language. The improvement of the

expression e by e' follows immediately from the preservation of efficiency in the

distillation algorithm (Lemma 3.5.1).

3.6 Distilled Form

Distillation transforms an input program to a normal form which we call distilled

form as shown in Fig. 3.7. As we can see, in distilled form, all functions are tail

recursive.

d t := v d t l . . . dt ,

1 c dt l . . . dt ,

1 Xv.dt

1 case v of pl : dt; I . . . 1 pk : dtk

1 let v = dto in dt l

I letrec f = Awl . . . v,.dt in f vl .
I f d t l . . . dt ,

Figure 3.7: Distilled form

3.7 Conclusion

In this chapter, we have given an overview of the distillation program transforma-

tion algorithm. We have given several examples to demonstrate the application of

distillation to transform input programs to output programs which are in distilled

form. We have shown how distillation can be used to cope with different non-

termination problems caused by accumulating patterns, accumulating parameters,

and obstructing function calls. Distillation is more powerful than existing program

transformation algorithms such as supercompilation and partial evaluation. These

previous algorithms can produce only a linear speedup in programs, whereas distil-

lation can produce a superlinear speedup. For example, it is possible to transform

the naive quadratic reverse function into the linear accumulating version. This extra

power is obtained through the use of more powerful matching prior to folding. In

previous techniques, matching is performed on flat terms only; functions are con-

sidered to match only if they have the same name. In distillation, matching is also

applied to r~cursive terms, so different functions are considered to match if their

corresponding recursive definitions also match. Distillation is guaranteed to terrni-

natc and constructs a distilled output program with the same semantic meaning

as the input program while preserving efficiency. These features make distillation

algorit hrn applicable to inductive theorem proving and program construction, which
we present in Chapter 4 and Chapter 5.

Chapter 4

Theorem Proving in Poitin

4.1 Introduction

In this chapter, we present our inductive theorem proving techniques, and show how

the Poitin theorem prover [45] can be extended to handle explicit quantification to

prove universally and existentially quantified conjectures. In the previous chapter,

we have given an overview of the distillation program transformation algorithm [46],

and have shown how distillation can be used to transform input programs to a

normal form called distilled form. In order to use distillation within the theorem

prover Poitin, distillation is applied to the input conjecture. The inductive proof

rules are then applied to the resulting distilled expression to prove it. The distillation

rules are therefore extended to handle explicit quantification. We present proof rules

for universal and existential quantification to prove inductive conjectures.

The proof of a universally quantified conjecture in Poitin does not require any

intermediate lemmas. The usual approach to proving existential theorems is to con-

structively find the witness, and then show that this witness satisfies the required

inductive property. This requires the use of higher order unification, which is in gen-

eral undecidable. We present an alternative approach to prove inductive existential

conjectures, which gives a pure existence proof of the conjecture. An earlier version

of the work presented in this chapter can be found in [47, 61, 601.

4.2 Pre-Processing Phase

In order to use the distillation algorithm within our inductive theorem prover Poitin,

we apply distillation to the input conjecture. The result of this transformation will

be a boolean expression which is in distilled form as described in $3.6. A further pre-

processing phase is applied to the resulting distilled expression before being passed

on to the theorem prover. In this phase, the distilled program obtained from the

input conjecture is processed to obtain a proof expression (Fig. 4.3 of $4.3). This

phase performs the following tasks:

adds all free variables appearing within the body of a local function defined

using a letrec expression as parameters to the function definition, so that no

variable remains free within the body of the local function.

removes the non-terminating functions and replaces them with I.

removes all let expressions and replaces them with I.

Definition 4.2.1 (Decreasing parameter) A parameter is decreasing from value

e to e', denoted by e' E e , if e' is a sub-component of e .

Definition 4.2.2 (Non-Decreasing parameter) A parameter is non-decreasing

from value e to el, denoted by e' J e, if e e e' or e = e'.

If all of the parameters in the recursive call(s) of a function are non-decreasing,

then the function is potentially non-terminating, so the recursive call is replaced by

I. A non-terminating function loops infinitely, which will never terminate. If at

least one of the parameters in a recursive call of the function is decreasing, then

the recursive call remains. Otherwise, the recursive call of the function is unfolded.

As the let expressions contain intermediate data structures, our proof rules cannot

prove them. So, all let expressions are removed by the pre-processing phase.

The original distillation algorithm as presented in the previous chapter is there-

fore extended to include a second pass to perform the pre-processing tasks as de-

scribed above. The pre-processing phase R as defined in Fig. 4.1 is applied to the

term resulting from distillation. Within these rules, the set p contains the initial

calls of functions, and 4 is the function variable environment.

4.3 Explicit Quantification in Poitin

In this section, we extend the Poitin theorem prover to handle explicit quantification.

To facilitate explicit quantification, two first-order quantifiers are added to the higher

order functional language defined in $2.2.1 as shown in Fig. 4.2.

R [v el - . en] P 4 = v (RUel] P 4) . - (Rue,] P 4)
RUc el . . - en] P 4 = c (Rue11 P 4) . . . (Rue,] P 4)
Rucase v of pl : el I . . . I pn : en] p 4

= case v of P I : (Rue11 p 4) I . . . I pn : (Ruen] p 4)
R[le t vl = e l , . . . , vn =en in eg] p 4 = I
R[letrec f = Xul.. .vn.eo in f v l . . .vn] p 4

= letrec f = Xul . . . vn vi . . . vi.eb in f vl . . . vn vi . . . v i

where

eb = R6e0] (P u { f v l . - . vn)) (4 u {f eo))

{v; . . . ~ i) = f v(Xvl . . . vn .eo)

R[f el - . . en] P 4
= I, if 3(f vl . . .vn) E p.Vi E (1

= f e l . . . en vl . . . vk, if 3(f vl . . . v,) E p.3i E (1

= Rue] p 4 , otherwise

where

4 (f) = Xvl . . . vn.e

{vl . . . v k) = f v (X V ~ . . . ~ n . e)

Figure 4.1: Distillation pre-processing rules

e ::= ALL v . e universally quantified expression

I EX v. e existentially quantified expression

Figure 4.2: Form of input conjecture

The input conjectures can be entered into the system in any of the quantified

forms of expressions as shown in Fig. 4.2. The body of the quantified expression

can be any expression in the language.

The grammar of redexes is extended as follows to handle quantified expressions.

red ::= f

I (Xv.eo) el

I case(ve1 . . . e ,)o fp l : ei I...Ipk : ei

I case (c e l . . . en) of pl : ei 1 . . . (pk : e i

I ALL vl . . . vn.e

I E X v l ... vn.e

We define a set of rules A for handling universal quantifiers, and a set of rules

E for handling existential quantifiers. A proof expression can be obtained by pre-

processing the distilled form of expression described in 53.6. For proof expressions

which are to be proved using these inductive proof rules, the output from applying

these proof rules will be either T r u e if the input conjecture is true, or else I which

provides no information about the input conjecture. Within the proof expression,

all free variables will be first order and the result type of the proof expression will

be boolean. The proof expressions must therefore satisfy the form as shown in Fig.

4.3.

bdt := v

1 T r u e

1 False

I 1
I case v of pl : bdtl (. . . 1 pk : bdtk

1 letrec f = Xul . . . v,.bdt in f vl . . . v,

I f bdtl . . . bdt,

Figure 4.3: Form of proof expressions

The proof rules A and E will only be applied to expressions which are already

in the form as shown in Fig. 4.3. The transformation rules 7 for distillation are

extended to be able to handle explicit quantification as shown in Fig. 4.4.

The distillation rules 7 2 and 7 3 for quantifiers guide the whole proof process

for two types of explicit quantifications: ALL and EX. This meta-level guidance

essentially constructs a hierarchy of transformations which resembles metasystem

transitions [103, 421.

Within the rules 7 2 and 7 3 , the parameter p represents the set of the previously

encountered expressions, and 4 is the set of function definitions used within the

current expression.

Rule (7 2) handles universally quantified expressions of the form c(ALL

vl . . . v,.e) where the context c() may be empty. The sub-expression e is trans-

formed first using distillation (the quantified variables vl . . . v , are treated as free

variables). The proof rules A which are described in 54.4.1, are then applied to

the resulting distilled expression. The set {vl . . . v,} of the universally quantified

7 [c (A L L vl . . . vn.e)] p 4 = T[c(e1')] p 4 (72)
where

el = 7uen 0 4
e" = A[el] {) {vl . . . v,)

T[c(EX vl . . . vn.e)] p 4 = 7[c(e1l)] p 4
where

el = n e n 0 4
el1 = &[el] {} {vl . . . vn)

Figure 4.4: Distillation rules for quantifiers

variables is passed as a parameter in the application of A. Finally, the expression

obtained from the application of A is transformed within the context (i.e., c(e f l))

using 7.
An existentially quantified expression c(EX vl . . . v,.e) is handled by rule (73)

in a similar way. The sub-expression e is transformed first using the distillation rules

7. The proof rules & which are described in 54.4.2, are then applied to the resulting

expression. The set {vl . . . v,) of the existentially quantified variables is passed as

a parameter in the application of &. The expression obtained from the application

of & is then transformed within the context using 7.
The distillation rules (7 2) and (73) can handle input conjectures containing

quantifiers at any level of nesting. If a conjecture contains a number of nested

quantifiers of different types (ALL and E X) , then the proof rules will be applied to

the innermost quantified expression first.

4.4 Inductive Theorem Proving in Poitin

In this section, we formally present the proof rules A and & for universal and exis-

tential quantification, which are used in Poitin to prove inductive conjectures.

4.4.1 Proving Universally Quantified Conjectures

The rules for proving universally quantified conjectures are defined by Ale] p 4 as

shown in Fig. 4.5, where the expression e is in the form of proof expressions shown

in Fig. 4.3, the parameter p is the set of previously encountered function calls and

4 is the set of universally quantified variables.

For a universally quantified expression ALL vl . . . v,.e, the transformation rules

7 for distillation are first of all applied to the sub-expression e. Pre-processing is

applied to the resulting expression to obtain a proof expression. The function calls

within this proof expression are all potential inductive hypotheses. At least one of

the parameters in the recursive call(s) of a function must be decreasing, and if all

of the variables in the recursive call are universally quantified, then the inductive

hypothesis can be applied, and the value Due returned. Rule (736) in Fig. 4.1 tests

whether a function call is an instance of a previous function call, and ensures that at

least one of the parameters decreases in the recursive call within the resulting proof

expression. The truth value of the conjecture is given by the final value obtained by

applying the proof rules to the proof expression.

The proof rules A can be explained as follows. In rule (A l) , a variable v is

encountered, which must be a Boolean. If v is universally quantified (i.e., v is

contained in $), then the undefined value I is returned as v cannot always be

True. If v is not universally quantified (i.e., v is not contained in $), then it is free,

so v remains unchanged. In rule (A2), if the boolean value True is encountered,

we simply return it. In rule (A3), if the boolean value False is encountered, the

undefined value I is returned. In rule (A4), the undefined value I is encountered,

which is returned unchanged. Rule (A5) deals with a case expression, where the

redex is a variable v. If v is universally quantified (i.e., v is contained in $), then we

try to prove the expression for all possible values of v within the expression. The

different values of v are the patterns within the branches of the case expression.

A case split is therefore performed in which the expression is separately proved for

all values of v, and the conjunction of the resulting values is further transformed

using distillation (7). The different values of the expression for different values of

v are the corresponding branches. The pattern variables are the sub-components

of the universally quantified variable v, so they will also be universally quantified.

Before applying the proof rules to each branch, the corresponding pattern variables

are therefore added to 4. This rule simplifies the case expression by universal

variable elimination from the selector. If v is not universally quantified (i.e., v is not

contained in 4), then it is free, so it remains within the expression. The proof rules

are then applied to the branches of the case expression.

In rule (A6), a letrec expression is encountered. If all of the variables vl . . . v, in

A1[4 P 4 = 1, i f v ~ 4
= v, otherwise

Afcase v of pl : es (.. . (p, : en] p 4 (A51
= TI[(A[ellj (P (4 U { ~ t r . . . ~ ~ r c ~))]) A . . A

(J1IenD IP (#u(vnt -..unk,)>))J () (1, if 4
= case .u of pi : (Al[er] p d) I . . . I p,, : (J4[en] p 41, otherwise

where

Auletrec f = Xur.. .v,.eo in f vl . . . V I ~] p 4 (A61
= JCeeB C P U { ~ u~...un)) 4, if{u l . . .v,) ~4
= letrec f = Xai . . . v ~ . (A l [e o ~ { p u {f v l . . . vn)) #) in f u; . . . v6,

otherwise

where

(v i . . .uL) = (v l . . .I+') \ 4

A U el . en1 P 4
= True, if {wt . . .vn) G 4
= (f vi . . . vk) [el /vl . . . en/vn], otherwi~e

where

(j WI ..+?)n) ~ . (, f v ~ . . * u n) 5 If el ...GI
I (v: . . h vk) = (01 . 7 ~fi.1 \ '$

Figure 4.5: Proof rules Tor universal quantification

the function application f vl . . . v, within the expression are universally quantified,

and therefore contained in 4, then the function application f vl . . . v, is an inductive

hypothesis. Since at least one of the variables vl . . . v, must be decreasing and it is

also universally quantified, this variable can be used as an induction variable during

the proof of this expression. The proof rules are applied to the unfolded function

call until the recursive call to function f is encountered. This recursive call is the re-

occurrence of the inductive hypothesis f vl . . . v,. Strong fertilization can therefore

be performed at this point by applying the inductive hypothesis. The expression

resulting from the application of the proof rules to the body of the letrec expression

is returned. If any of the variables vl . . . v, in the function application f vl . . . v,
are not contained in 4, then the function application contains free variables, and the

inductive hypothesis cannot be applied at this point. The function f is therefore

redefined in terms of these free variables with a letrec expression using the result of

applying the proof rules A to the unfolded function call. The function application

f vl . . . v, is added to the environment p before applying the proof rules A to the

body eo.

Rule (d7) searches for the potential application of an inductive hypothesis.

If there exists a function application f vl . . . v, in p such that the recursive call

f el . . . en is an instance of f vl . . . v,, and all of the variables in the initial function

application f vl . . . v, are universally quantified (i.e., they are all contained in 4),
then the inductive hypothesis is applied, and the value True returned. This corre-

sponds to strong fertilization. At least one of the parameters within the application

f el . . . en must be decreasing, which is ensured by the pre-processing phase. If, on

the other hand, the function application f vl . . . v, contains free variables (i.e., not

contained in #), then strong fertilization cannot be performed. The recursive call

f el . . . en is therefore simplified to be defined over the arguments corresponding to

these free variables.

Example 10

Consider the following conjecture (10.1) which states the commutativity of plus the-

orem for natural numbers.

ALL x.ALL y.eqnum (plus x y) (plus y x) (10.1)

The proof of conjecture (10.1) is guided by distillation rule (72) (Fig. 4.4). Rule

(72) applies distillation to expression (10.2).

eqnum (plus x y) ('plus y x) (10.2)

The transformation of expression (10.2) using distillation is shown in Example

17 in Appendix A.1. Rule (7'2) then applies the proof rules A for universal

quantification to the proof expression resulting from the preprocessing of the

distilled form of expression (10.2) as shown below.

Auletrec f0 = Xx.Xy.case 3 of

Zero : case y of

Zero : True

I SUCC y' : letrec f1 = Xy'. case y' of

Zero : Due

1 succ y" : f1 yt'

in f1 y"

I Succ x' : case y of

Zem : letrec fl = As'. case a' of

ZeTQ : n w e

I SUCC 2" : j1 5"

in j1 z'

1 Succ yf : f0 si yf

in 10 YD 0 Is, MI

The proof using the rules A proceeds as shown below.
= A[case a of

Zero : case y of

Zero : T h e

[Succ y' : letrec f1 = Xy'. case y' of

Zero : T h e

I SUCC y" : ff ?jff

in fl y'

I Succ a' : case y of

Zero : letrec f1 = Ax'. case x' of

Zero : True

I Succ x" : f1 x"

in f1 x'

I succ Y' : f0 2' Y'] {fO x Y) {x, Y)

= Tl[(stl[case y of
Zem : me

1 Succ ~ 7 ' : letrec 11 = Ay'. case y' of

zcro : T h e

I Succ y" : fl y"

in f1 v'] {fo s 3) {xtvl)
A (Al[case 3 of

Zero : letrec fl = Ax'. case s' of

Zero : h e

1 succ xtl : fl xtt

in x'

I sacc Y' : f O a' Y'] IfQ x 31 { r t ' , l ~ , x ~) > l (1 0

= n(T[(A[True]l (10 x y) (x, 71)) A (A[letrec fl = A?)'. case 9' of

Zero : Z h e

I SUCC -y'' : fl

in fl ~ ' 1 (fo x 3) Ixlv,v')))ll {I 0
A (Allcase y of

Zem : letrec ff = Ax'. case x' of

Zero : 2 h ~ e

I Succ 2" : Jl z"

in jl x'

I Succ Y' :fd x' y l l CfO x Y) ix,31s'l)ll 0 0
(by A51

= T[(T[True A (A[case y ' o f

Zero : T h e

I L&'cc Y1' : fl Y"1 0-0 x Y9f1 zl') {x, Y9 ~ ' 1) I i O 0)
A (Al[case y of

Zero : letrec fl = Ax1. case x' of
Zero : T h e

1 Succ x" : s"

in fl a'

I S~LCC !I1:fQ st ~ r j l (10 x YI {X,Y,X'))I C) 0
C ~ Y A2,A6)

= 71[(T&T~ue A (Tl[(A[fiue]l {fQ x gr,fl 3') {x, 3, yt) l

A IJVI vfq {fo 5 %~,f-l Y'S { ~ , ~ , 7 3 1 ~ ~ ~)) 1 0 011 El 0 1
/\ (d[[case gr of

Zero : letrec fl = As" case x' of

Zem :True

I Succ z" :ff x"

in f-l xt

I sacc yf : f0 x' 3'1 (f0 5 3) (Z,Y, xl)>II I) 0
(by A51

= T[(T[Trlhe A (T[True A (AIEfl y f l] {fo x ~ , f l Y') { x , ~ , Y', y N)) I 0 (IEIl
/\ (Atcase g, of

Zero : letrec ff = Ax'. case x' of

Zero : ? h e

) Succ st' : Jl x"

in fl x'

I succ Y' : t o x1 u ' If0 x Y) (~ 7 3 , ~'1331 {TO
(by A21

= n(TI[True A (7BTrue A True1 0 0)B 0 0) (by .A71
A (A[case y of

Zero : letrec f1 = AxCcase sf of

Zero : True

I SUCC 5" : ff 5"

in fJ x'

I succ 31 ::fo {JO x ZY) (x , Y , x ~ I) ~ o o

= T[(T[True ATrue] {) {)) A (A[case y of
Zero : letrec

fi = Xx1.case x' of

Zero : True

I Succ zN : fi xl'

in f l x'

I s?.lcc Y' :fa 3' yln {fO x Y) {x,Y,xll)n 00
(by 7197')

= T[True A (Aucase y of (by 71,P)
Zero : letrec f l = Ax'. case a' of

Zero : D u e

(Succ 2'' : f1 x"

in f1 x'

I succ Y' : f0 2' Y'I if0 x Y) {x,Y,xl)>n 0 0
= T[True A (T[(A[letrec f1 = Ax'. case x' of

Zero :True

I succ x" : f l x"

in f1 x'l {fO x Y) {~ ,Y,X'))

A (A m x' Y'D if0 x Y) (2, Y?x', Y1)>ll 0 o>n 0 0
(by A51

= T[True A ('T[(A[case x' of (by A6)

Zero : Due

I succ XII : f i XI^ {fo x y, f i XI) {x, 9, XI))

A (A W 2' Y'II {fo x Y) {x,Y,x'?Y'))~ 0 0) l 0 0

= T[True A (T[(T[(A[True] {f 0 x y, f 1 x') {x, y, XI)) (by A51

A (A[f 1 x"] {f 0 x Y, f 1 x') {x, Y, x', x"))] 0 0)
A (A W a' Y'B {fO x Y) { x ? Y , xl?Y')>II 0 0) 1 0 0

= T[True A (T[(T[True A True] {) {))

A (AVO x' Y'D if0 x Y) { X , Y ~ ~ ' , Y ') > I I 0 {))I 0 0 (by A27A7)

= T[True A (TUTrue A (AVO x' Y'B if0 x YI {X,Y,X',Y'I>II 0 {)>I 0 0
(by 71 ,P)

= T[True A (T[True A True] {) {))] {) {) (by A7)

= T[True A True] {) {) (by T1,P)
= True (by T1,p)

We obtain the truth value True by simplifying conjecture (10.1) as required.

This completes the proof of the commutativity of plus theorem for natural numbers.

The proof of this conjecture is particularly troublesome for most inductive theorem

provers. The proof of the commutativity theorem is given in $2.6.2 using 1-step

induction for nat on the induction variable x considering x as the primary induction

variable. Recursion analysis/ripple analysis suggest both of the variables x and y

as induction variables even though both of them have unflawed as well as flawed

occurrences. No unflawed induction variable is available. Multiple induction vari-

ables complicate the preconditions of the method for induction strategy of a proof

planning-based theorem prover, e.g., CLAM [14]. In this case, no choice of induc-

tion variable fully meets the preconditions. The generation of the induction rule

and the control loop for induction and rewriting of the induction conclusion with

multiple induction variables become more complicated for non-proof planning-based

inductive theorem provers.

4.4.2 Proving Existentially Quantified Conjectures

The rules for proving existentially quantified conjectures are defined with a set of

rules & by &[el p q5 as shown in Fig. 4.6, where the expression e is in the form of proof

expressions shown in Fig. 4.3, the parameter p is the set of previously encountered

function calls and the environment q5 is the set of existentially quantified variables

appearing within the conjecture.

The proof rules & can be explained as follows. In rule (El), a variable v is

encountered, which must be a Boolean. If v is existentially quantified (i.e., v is

contained in q5), then True is returned as the value of v can be True. If v is not

existentially quantified, then it is free, so we return it unchanged. In rule (&2), if the

boolean value True is encountered, we simply return it. In rule (&3), if the boolean

value False is encountered, the undefined value I is returned.

In rule (&4), the undefined value I is encountered, which is returned unchanged.

Rule (E 5) deals with a case expression, where the redex is a variable v. If v is

existentially quantified (i.e., v is contained in $), then we try to find some value of v

for which the expression can be proved True. The different values of v which are used

to prove the expression are the patterns within the branches of the case expression.

A case split is therefore performed in which the expression is separately proved

for each value of v. The disjunction of the resulting values is further transformed

using distillation (7). The different values of the expression for different values of

v are the corresponding branches. The pattern variables are the sub-components of

the existentially quantified variable v, so they will also be existentially quantified.

Before applying the proof rules to each branch, the corresponding pattern variables

are therefore added to 4. This rule simplifies the case expression by existential

variable elimination from the selector. If v is not existentially quantified (i.e., v is

not contained in q5), then it is free, so it remains within the expression. The proof

rules are then applied to the branches of the case expression.

E[v] p 4 = True, i f v ~ 4
= 'u, otherwise

&[True] p 4 = True (E21

where

Enletrec f = Xvl ... u,.eo in f vl ... v,] p 4
= &Be01 (P U {f v l - . -vn>> 4, if {v1 ... vn) & 4
= Ietrec j = Xvi . . . v;.(E[eo]l (p U { f v l . . . v,)) #) in f v i . . . vL,

otherwise

E[f el -en] P 4
= I, if { v ~ . . . vn} 4
= (f V: . . . v L) [el/vl . . . en/vn], otherwise

where

(f vl ...urn) Ep.(f ~1 ... vn) 4 (f el ... en)

{v; ... v i) = { v l...vn}\$

Figure 4.6: Proof rulw for existential quantification

Rule (E6) deals with a letrec expression. If all of the variables vl . . . v, in the

function application f vl . . . v, within the expression are existentially quantified

(i.e., vl . . . vn are contained in +), then the function application f vl . . . v, does not

contain any free variables. In this case, the function definition is removed, and the

result of applying the proof rules to the unfolded function call is returned. If any

of the variables vl . . . v, in the function application f vl . . . v, are not contained in

4, then the function application contains free variables. The function f is therefore

redefined in terms of these free variables with a letrec expression using the result

of applying the proof rules & to the body of the function. The function application

f vl . . . v, is added to the environment p before applying the proof rules & to the

body eo.

In rule (&7), a recursive function call f el . . . en is encountered. If there exists a

function application f vl . . . v, in p such that the recursive call f el . . . en is an in-

stance of f vl . . . v,, and all of the variables vl . . . v, are existentially quantified (i.e.,

they are all contained in +), the value I is returned as the search space associated

with the existential variables vl . . . v, is exhausted. If, on the other hand, the func-

tion application f vl . . . v, contains free variables (i.e., not contained in $), then the

recursive call f el . . . en is simplified to be defined over the arguments corresponding

to these free variables.

Example 11

Consider the proof of the following conjecture (11.1) about natural numbers, which

states that for every value of x, there exists a y such that x is even if and only if the

double of y equals x. We adopted this example from [68] rearranging the existential

quantifier for our purposes.

ALL %.EX y.iff (even x) (eqnum (double y) x) (11.1)

The proof process is guided by distillation rules (72) and (73) (Fig. 4.4) when

conjecture (1 1.1) is input to the theorem prover Poitin. The existential proof rules &

will be applied to the innermost existential quantifier first by rule (73) to conjecture

(11.1). Rule (73) applies distillation to expression (1 1.2).

iff (even x) (eqnum (double y) x) (11.2)

The transformation of expression (11.2) using distillation is shown in Example

18 in Appendix A.1. The distilled expression has been converted to a proof expres-

sion by adding the free variables within the function body as parameters in the local

function by pre-processing. Rule (73) applies the proof rules E for existential quan-

tification to the proof expression obtained by pre-processing the distilled expression

resulting from the transformation of expression (1 1.2).

E[letrec fO = Xz.Xy. case x of (by 7 3)
Zero : case y of

Zero : Due

I Succ y' : False

I Succ x' : case x' of

Zero : case y of

Zero : Due

I Succ y' : True

I Succ x" : f0 2" y

info x YI 0 {Y)

The function application fO x y within the letrec expression contains the free

variable x (universally quantified in the outer scope) and an existential variable y.

The function f0 will be redefined with the result of applying the proof rules E to

the body of the function by rule E6. The original function call fO x y is simplified

to f0 x by removing the existential variable y during the application of rule E6.

The application of the proof rules & to the unfolded function call proceeds as shown

below.

letrec fO = Xx.E[case x of (by f6)
Zero : case y of

Zero : l?we

I Succ y' : False

I Succ x' : case x' of

Zero : case y of

Zero : Due

I Succ y' : Due

I Succ x" : fO x" y] {fO x y) {y)

= letrec fO = Ax. case s of
Zen, : E[case y of

Zero : Due

I Succ y1 : False] Ufl x y} {y)

I Suce x' : &[case s' of

e m : case y of

Zero : T h e

I Succ : T h e

I SUGC xf f : fO 2" yJI (fO 2 8) {y}

= letrec

j0 = Ax. case a: of
Zero : 71CC&I[%el] if0 x Y) 1~11

lEEFalse1 If0 x Y) {Y, yf)1B 0 0
I SUCC x' : &[case xt of

e m : case y of

Zem : D u e

I Succ y' : T h e

I Succ x" : f0 xrl y] (f0 x y) {y)

in j0 x-

= letrec

fO = Ax.case s of
Zero : 7[Due V I] {) {)

I Succ s f : Eucase a;' of
Zero : case y of

Zero : Due

I SUCC y' : Due

I Succ xu : fO xN y] {fO x y) {y)

= letrec fO = Ax. case x of

Zero : True

I SUCC x1 : case xr of

Zem :&l[caseyof

Zero : Due

1 Succ y 5 :en {fO x y) {y)

1 Succ 2" : EafD 2" 31 {fO x y} (y)

= letrec f0 = Ax. case x of

Zero : l h ~ e

I Succ s' : Sase st of

Zero : T h e

I Succ xtl : EafO x" p] {fU x y) (41)

in fO s

(by C5F2,&2,(71,P) 1

The recursive function application jO st' y contains the free variable s". The

function application is simplified to define in terms of the free variable x" hy remov-

ing t,he existential variable y by rule E7. This results in the fallowing expression.

letrec fO = Ax. case z of

Zero : True

I Succ s' : case z' of

Zero : T h e

I Succ xu : +fO a"

in jO x

The proof rules A fm universal cluantiiication are now applied to this expression,

During thc application of the rules A, the universally quantified variable z within

expression (11 -1) is pssed ns a singleton set of univcrsdly quantified variables (x),

The proof of the above expression proceeds as shown below.

A[letrec fO = Ax. case x of

Zero : True

I Succ x1 : case x' of

Zero : Due

I Succ x" : f0 x"

= A[case x of

Zero : True

I SUCC x' : case x' of

Zero : True

I succ x" : f0 x"] {fO X) {x)

= T[(A[True] {fO x) {x)) A (AIcase x' of

Zero :True

I Succ x" : f0 xl'] {fO x) {x,xl))] {) {)

(by A51
= T[True A (T[(A[True] {fO x) {x,xl))

A (~ u f o xu] {fo 2) {x,xl, xrl))n o o)n o {I
(by 4 - 4 5)

= TUTrue A (TiTrue A (4 f O ~ ' ~ 1 If0 xz) {x, xl, X'~)>I 0 {>>I 0 0 (by .A2>

= T[True A (TlTrue A True] {) {))I {) {) (by A71
= T[True A True] {) {) (by 7177')
= True (by T1,p)

We obtain the truth value True by simplifying conjecture (11.1) as required.

This completes the proof of conjecture (11.1) and demonstrates that it is a theorem.

4.5 Soundness of Proof Techniques

In order to show that our proof rules are sound, we need to show that for every

conjecture which is found to be True in our proof rules, there is a corresponding

logical proof of the conjecture. To facilitate this, we define sequent calculus rules for

the proof expression obtained from the distilled form of input conjecture as shown

in Fig. 4.7.

I? F e[x] ,A
r k ALL v.e [v Jx] , A

(ALL-IE)

r,eo[el] I- A
I?, ALL v,eo [v/el] I- A

(ALLL)

r I- ea[e~l ,A
I' I- EX v.eo[n /el], A

(EX-R)

J?,e[z] I- A
I?, EX u.e [u/x] l- A

(EX-L)

r , v = p ~ I- e l , A ... r , v = p k 'E- ek,A
J? t- case s) of pr : el I . . . I pk : ek? A (Case>

Figurc 4.7: Sequent caIculus rules for language

In these rules, the (Id) rule and the quantifier rules are standard sequent calculus

rules for first order logic by Gentzen. The rest of the rules are defined for some of

the expressions in our language. In this formulation, there is no need for a cut rule

as all the intermediate structures in the input program will have been eliminated.

The (Id) rule states that from the assumption A, one can deduce A. The (True-

R) rule states that from the assumption r, one can deduce True and A. The

(False-L) rule states that from the assumption False and I?, one can deduce A. The

(ALL-R) rule states that ALL v.e[v/x] holds only if e[x] is true (i.e., x must not

be free within I?, e[v/x] or A). The (ALL-L) rule states that if one knows that

ALL v.eo [v /e l] is true, then it can be proved for any term el (i.e., eo[el]). The

(EX-R) rule states that E X v.eo[v/el] holds only if eo[el] is true for any term el.

The (EX-L) rule states that if one knows that E X v.e[v/x] is true, then it can be

proved for any value x (i.e., x must not be free within I?, e[v /x] or A). The (Ind)

rule states that the expression letrec f = Xul . . . vn.eo in f vl . . . v, holds only if

one can deduce eo from the assumptions r and f vl . . . v,. The (Case) rule states

that the expression case v of pl : el I . . . I pk : e k holds only if one can deduce

e l , . . . , ek from the assumptions I?, and pl, . . . , p k as the different values of v. The

(IndHyp) rule states that if one knows that ALL vl . . . v,. f vl . . . v, is true, then

one can deduce f el . . . en.

Theorem 4.5.1 (Soundness of proof rules) The proof rules A and & are sound

with respect to the sequent calculus rules defined in Fig. 4.7.

Proof. (Theorem 4.5.1)

The proof of this theorem follows immediately from lemmata 4.5.2 and 4.5.3.

Lemma 4.5.2 (Soundness of universal proof rules)

A[e] p { v l . . . v n) = True + p k ALL v l . . .v,.e

Lemma 4.5.3 (Soundness of existential proof rules)

&[el p {vl . . . v,) = True + p k E X vl . . . v,.e

Proof. (Lemma 4.5.2)

The proof of this is by recursion induction on the proof rules A.

Base Cases

Case for Rule A1:
If a, E 4:
A[v] p = I # T w e

In this case, the proof expression is equivalent to ALL v . ~ , for which there

is no mrrcsponding sequent cdcuIus proof.

If .er @ 4, then u is free.

d[v]p# = v # True

Case for Rule d2:
d[TrueJ p 4 = True

Thc corresponding sequent calculus proof fragment is as follows:

Case for Rule A3:

ACFaEse]] p t$ = 1 # True

As the expression is False, there is no corresponding sequent dculus proof.

Case for Rule A4:

A[I] p 6 = l # True

As the expression is undefined, there is no corresponding sequent calculus

proof.

Case for Rule A7:
If (vl . . . w,) 2 4, then there must exist on inductive hypothesis of the form

1 ? U l . . . W , p

A[f e l . . .en] p 4 = True

The corresponding sequent calculus proof fragment is as follows:

I?, ALL ~ 1 . . . vn. f 211.. . vn k f e l . . . en (IndHyp)

If {vl . . . v,) 4, then the function call remains.

A[f el . . . en] p 4 = f V: . . . V L # True

Inductive cases

Case for Ru le A5:

By the inductive hypothesis:

Vi E {I . . . k).A[eil) p {vl . . . v,) = True + p 1 ALL v l . . .v,.ei

If v E 4, then the proof expression is equivalent to

ALL v.case v o f pl : el I . . . I pk : ek

The corresponding sequent calculus proof fragment is as follows:

r , v =p l 1 el . . . I',v =pk k ek
(Case)

r k c a s e v o f p l : el I ... Ipk : ek
I' k ALL v.case v o f pl : el [. . . I pk : ek

(ALL-R)

If v @ 4, then v remains in the resulting term, and the proof rules are further

applied to the branches el . . . ek of the case term.

A[case v o f pl : ell . . . I pk : ek] p 4
= case v o f pl : (A[e l] p 4) I . . . I pk : (Alek] p 4) # True

Case for Ru le A6:

By the inductive hypothesis:

A[[eo] p {vl . . . v,) = True + k ALL vl . . . v,.eo

If {vl . . . v,) C_ 4, then the body of the function eo is further transformed.

Auletrec f = Xvl . . . v,.eo i n f vl . . . v,] p 4 = A[eo] p 4

The corresponding sequent calculus proof fragment is as follows:

I', f v ... vn I- eo

I' k letrec f = Xul . . . v,.eo in f vl . . . v, (Indl

If { V ? . . . w,) p $, then the definition of the function remains, and the body eo is

further transformed:

ADetrec f = Awl . . . vn.eg in f v l . . . p 4
= letrec f = Xur -. . vk.{A[eo] p 4) in f vr . . . vk # True

where (wl . . . vk) = (vlu,) \ 4.

Proof. (Lemma 4.5.3)

The proof of this is by recursion induction on the proof rules E .

Base Cases

Case for Rule El:
If v E 4:
E[u] p # = True

In this case, the proof expression js equivalent to EX v,v, The corresponding

sequent calculus proof fragment is as follows:

r I- True
(True-R)

(EX-RE
I? I- EX v.7~

If v 4, then v is free.

E[v] p 4 = v # T r u e

Case for Rule E2:

E[True] p 4 = T r u e

The corresponding sequent calculus proof fragment is as follows:

(True-R) I' b True

Case for Rule E3:

&[False] p 4 = L f True

As the expression is False, therc is no corresponding sequent; caIculus proof.

Case for Rule E4:

E l i] p 4 = 1 # True

As the expression is undefined, there is no corresponding sequent calculus

proof.

Case for Rule E7:

If (.vl . . . v,) 4, then the search space of the existentid variables has been

cxhausted and therc is no corresponding sequent calculus proof,

E l f el . . . en] p 4 = I # True

If (v l . . .v,) 4, then the function caIl remains.

E[f el ... en] p q5 = f v{ ... uk #True

Inductive cases

Case for Rule E5:

By the inductive hypothesis:

Vi E {I ... k).E[ei] p {vl ...* lm) = True 3 p t- EX VI ...vnv,,ei

If v E 4, then the proof expression is equivalent to

EX v.case v of pl ; el I . . . I pk : ek

Thc corresponding sequent calculus proof fragment is a& follows:

I' t -e l , ..., ek

l? tEX.u.caseu ofpl : el 1 ... I p k : ek
(EX-R)

If v 4 4, then v remains in the resulting term, and the proof rules are further

applied to the branches el . . . ek of the case term.

&[case v of pl : el (. . . I pk : ek] p $
= case v of pl : (&[el] p 4) I . . . I pk : (&[ek] p 4) # True

Case for RuIe &6:

By the inductive hypothesis:

&[eon p {vl . . . v,) = True + F E X v l . . . v,.eo

If {vl . . . v,) 4, then the body of the function eo is further transformed.

&[letrec f = Xul . . . vn.eo in f vl . . . v,] p q5 = &[eo] p 4

The corresponding sequent calculus proof fragment is as follows:

r,f v l . . . v n t- eo

r t letrec f = Xul . . . v,.eo in f vl . . . v, (Indl

If {vl . . . v,) $ 4, then the definition of the function remains, and the body eo is

further transformed:

&[letrec f = Xul.. . v,.eo in f vl . . . vn] p 4
= letrec f = Xul.. . vk.(&[eol) p 4) in f vl . . . vk # True

where {vl . . . v k) = {vl . . . v,} \ 4.

4.6 Completeness

Neil D. Jones has shown that a function f is computable by a cons-free first-order

functional program if and only iff is in PTIME (polynomial time) [57]. By analogy,

our proof techniques can prove the inductive conjectures which can be defined with

cons-free programs without using any intermediate lemmas. This cons-free program

corresponds to program without any intermediate data structures. Therefore, our

theorem prover should be able to prove any conjecture which is in PTIME, so long

as it has been expressed in this cons-free form. We therefore argue that Poitin is

complete for conjectures which belong to PTIME.

4.7 Conclusion

In this chapter, we have presented a novel approach to prove inductive conjectures

which contain universal and existential quantification using the program transfor-

mation algorithm distillation [46]. We have extended the distillation rules to handle

explicit quantification. A form of proof expressions has been defined to which these

proof rules can be applied. We have formally presented the proof rules A for uni-

versal quantification and the proof rules E for existential quantification, and have

shown how these proof rules can be used to prove inductive conjectures. These

proof techniques do not require any intermediate lemmas. The existential theorem

proving technique presented in this chapter gives a pure existence proof, which is an

alternative to the usual constructive approach using higher order unification. The

soundness of the proof techniques has been shown with respect to a logical proof

system using the sequent calculus.

We have implemented the theorem proving technique presented in this chapter,

and added it to the theorem prover Poitin. In Chapter 5, we present the program

construction technique used in Poitin to construct correct programs from input

specifications.

Chapter 5

Program Construction in Poitin

5.1 Introduction

In this chapter, we present a novel program construction method to construct correct

programs from input program specifications. The programs are generated from

the proofs of existential theorems in the theorem prover Poitin. The constructed

program essentially computes the existential witness of the existential theorem.

In our program construction method, distillation is first applied to the input

specification. Rules for program construction are then applied to the resulting dis-

tilled expression to construct a program. We present the program construction rules,

and then give some examples to show how these rules can be used to construct cor-

rect programs. We also prove that the programs constructed using our technique

are totally correct. Some of the work presented in this chapter can be found in [59].

5.2 Form of Input Specification

To facilitate program construction in Poitin, a first-order quantifier ANY is added

to the higher order functional language defined in 52.2.1 as shown in Fig. 5.1.

e ::= ANYv:7 . e ANY-quantified expression

Figure 5.1: Form of input specification for program construction

The sub-expression e of the specification may contain free variables which are

implicitly universally quantified. The existential variable within the input specifica-

tion is quantified with the ANY quantifier. The grammar of redexes is extended as

follows to handle ANY-quantified expressions.

red ::= f

I (Xv.eo) el

1 case (v el . . . en) of pl : ei I . . . I pk : ek

I case (c e l . . . en) of pl : ei (. . . I pk : e',

I ALLvl . . . vn.e

(E X v l . . . vn.e

I ANY v : 7.e

We define a set of rules C to deal with ANY-quantified expressions. The rules

C for program construction will only be applied to the expressions which are in the

form of proof expressions as shown in Fig. 4.3 (54.3).

5.3 Construction of Program in Poitin

The construction of a program in Poitin involves: i) writing a specification of the

form ANY v : 7.spec(xl . . . x,, v), which expresses the input/output relation for

which the program is to be constructed ii) construction of a program from the

specification using the rules C. Within the specification, v is the output variable

of type 7; spec is the relation between the input and output data expressed using

predicates, functions and implication; and xl . . . x, are the implicitly universally

quantified input variables.

In the following sections, we present the distillation rule, the program construc-

tion steps and the program construction rules for the construction of a program from

an input specification.

5.3.1 Distillation Rule for Program Construction

The transformation rules 7 for distillation are extended to be able to handle ANY-

quantified expression as shown in Fig. 5.2. The application of this rule to an input

specification results in the construction of a recursive functional program which

computes the existential witness. Within rule 7 4 , the parameter p represents the

set of previously encountered expressions, and q5 is the set of function definitions used

within the current expression. In transforming an expression of the form c(ANY v :

~ . e) , the sub-expression e is transformed first using distillation (the ANY-quantified

variable v is free within e). An empty set {} is passed to 7, which indicates that the

initial set of previously encountered expressions is empty. The rules C for program

construction are then applied to the proof expression obtained by pre-processing

(54.2) of the resulting distilled expression. The ANY-quantified variable v is passed

as the variable under construction to the object level program construction rules

C. In addition, the set of implicitly universally quantified variables is passed as a

parameter in the application of C. Finally, the program obtained by applying the

program construction rules C is transformed within the context (i.e., c(el')) using 7
to give the output program.

7[c(ANY v : ~ . e)] p 4 = 7[c(ett)Jj p 4 (7 4)
where

e' = 'n.1 0 4
eft = CBetII uvn 0 (f+) \ {v))

Figure 5.2: Distillation rule for program construction

5.3.2 Precondition and Postcondition Analysis

The input specification for program construction can be expressed in any of the

following forms:

i) ANYv:7 . e No precondition

ii) ANY v : .r.pre + post Precondition with implication

Specifications which satisfy form (i) do not contain any precondition within the

conjecture. For example, the conjecture

ANY y : nat.(eqnum x Zero) V (eqnum x (Succ y))

satisfies this form. The program constructed from this specification can be used to

compute an output for each value of the input variable x. Specifications which satisfy

form (ii) contain a precondition and postcondition. The precondition specifies the

properties of the input variables; this corresponds to the computationally irrelevant

part of the specification as defined in [32]. The postcondition specifies the value of

the output in relation to the input variables; this corresponds to the computationally

relevant part of the specification as defined in [32]. We construct programs solely

from the computationally relevant part of the specification (i.e., the postcondition).

The programs which we construct may return I, but this will only be for values of

the input variables which do not satisfy the precondition. The precondition of the

specification is therefore replaced by True in our approach so that it can be trans-

formed away and programs are then constructed from the resulting postcondition.

As an example, the specification ANY y : nat.(even x) + (eqnum (double y) x)

has the precondition (even x) and the postcondition (eqnum (double y) x). In our

approach, we construct a program from the postcondition (eqnum (double y) x).

This program may return I. However, if we also show that the existential con-

jecture ALL x.EX y.(even x) + (eqnum (double y) x) is True, then we know that

the original specification is satisfiable, and that the constructed program will only

return I for values of the input variable x which do not satisfy the precondition

(even x).

5.3.3 Construction Process

Program construction from an input specification in Poitin is guided by the steps as

described in Fig. 5.3. These program construction steps ensure the construction of

programs which are correct with respect to the input specification.

5.3.4 Program Construction Rules C

The program construction rules for an ANY-quantified specification are defined with

a set of rules C by Cue] [el] p 4 as shown in Figs 5.4 and 5.5, where the expression e

is the proof expression obtained from the postcondition of the specification. el is the

existential witness which may be a variable v or a constructor application c el . . . en.

The environment p is the set of the previously encountered function calls, and 4 is

the set of implicitly universally quantified variables.

The rules C for program construction can be explained as follows. In rule (Cl), a

variable v is encountered which must be a Boolean, and the existential witness is also

a variable. If v is universally quantified (and therefore in 4) , then the undefined value

I is returned as the value of v cannot always be True. Otherwise, v is implicitly

existentially quantified and must be the existential witness, so the value True is

returned as the only possible value of this witness. In rule (C2), we encounter a

variable v where the constructor application c e l . . . e, is the existential witness. If v

is universally quantified (and therefore in 4) , then the value I is returned as the value

of v cannot always be True. Otherwise, v is implicitly existentially quantified, so the

1. Construct an existential conjecture from the program construction specifica-

tion. Let ANY v : 7.e be the input program specification. Then, the resulting

existential conjecture will be ALL vl . . . vn.EX v.e where vl . . . vn are the im-

plicitly universally quantified variables in e.

2. Construct a proof of this existential conjecture using Poitin to verify that the

input specification is satisfiable.

3. If the conjecture is proved, then follow step 4. Otherwise, return I (i.e., the

input specification is not satisfiable).

4. For input specifications satisfying form (i) (§5.3.2), construct a program from

the input specification. For input specifications satisfying form (ii), follow step

5.

5. Construct an existential conjecture using the precondition within the input

specification by existentially quantifying all of the free variables within the

precondition.

6. If the proof of the existential conjecture is True, then construct a new program

specification by replacing the precondition with True within the original spec-

ification. Construct a program from this new specification. Otherwise, return

I.

Figure 5.3: Program construction steps

arguments el . . . en are further constructed separately and the existential witness is

given by the application of the constructor c to these constructed arguments.

In rule (C3), we encounter the value T r u e where the existential witness is a

variable. The existential witness is constructed using a non-recursive constructor

of the existential witness type. In rule (C4), we encounter the value T r u e where

the constructor application c el . . . en is the existential witness. The arguments

e l . . . en are further constructed separately and the existential witness is given by

the application of the constructor c to these constructed arguments. In rule (C5),

we encounter the value False. In this case, there is no existential witness, so the

undefined value I is returned. In rule (C6), the undefined value I is encountered.

The existential witness for this expression is therefore also I.

In rule (C7), we encounter a case expression where the redex must be a variable

= True , otherwise

C[v] [c el . . . en] p 4 = I , i f v ~ +

= c (C[v] fell] p 4) . . . (C[v] [en] p +) , otherwise (C2)

C[Truel] [v] p 4 = C[True] [~ i O i l . . . viki] P 4
where v is of type T = cl 7 1 1 . . . 71k , 1 . . . 1 cm ~ ~ 1 . . . Tmk,

and 3i E { I . . . m) . ~ @ {ril . . . q k i)

C[case v of pl : ell ... Ipn : en] [e] p 4 (C7)

= case v of Pl : (C[ell] [e] P $1) 1 . . . I Pn : (C[[en] [e] p 4 n) , if v E 4
= Tf(CUelIl Uebl /vII P 4) U . - (C[en] Ue[pn/v]] p 4)] {) {), otherwise

where

$i = $ U f v (~ i)

C[letrec f = Xul . . . vn.eo in f vl . . . vn] [v] p 4
= letrec f = Xvi . . . vi.eb in f vi . . . v i , if 3x E {vl . . . vn).x E 4
- - eb, otherwise

where

eb = c[eo] [v] (P U { f v l . . vn)) 4
{ v ; . . . V L) = {vl . . . 21,) n 4

Culetrec f = Xul.. . vn.eo in f vl . . . vn] [C e l . . . ek] p 4
= c (Culetrec f = Xul.. . vn.e0 in f vl . . . vn] [el] p 4) . . .

(Culetrec f = Xvl . . . vn.eo in f vl . . . vn] [ek] p $) ,
if 3% E {vl . . . vn).x E 4

= C[eo] [C el . ek] (P U { f vl - . vn)) 4, otherwise

Figure 5.4: Program construction rules C

C[f el . . . en] [[v] p + = f V: . . . vL[el/vl . . . en/vn], (ClO)
if 3x E {el . . . en).x E q5

= I, otherwise

where (f vl . . . v,) E p.(f vl . . . v,) I. (f el . . . en)

{v: . . . vL) = {v1 . . . v,) n 4

C[f el . . . en] [C ei . . . e;] p +
= c (CUf el - . en] [e:] P 4) . . (C[f el . . . en] [e;] P +),

if 3% E {el . . . en).x E +
= I, otherwise

Figure 5.5: Program construction rules C (Continued)

as the expression is in distilled form. If v is universally quantified (and therefore in

+), then it remains within the expression. The program construction rules are then

further applied to the branches of the case expression. Before transforming each

branch, the corresponding pattern variables are added to + as they are also implic-

itly universally quantified. If v is implicitly existentially quantified (and therefore

not contained in +), existential witnesses are constructed for each of the branches

separately. These witnesses will be constructed using the corresponding patterns

which give the value of the redex within the branch. The existential witness for

the overall expression is then given by the least upper bound (u) of these existential

witnesses for each branch.

In rule (C8), we encounter a letrec expression where the existential witness is

a variable. If at least one of the variables vl . . . vn within the function application

f vl . . . v, is universally quantified (and therefore in +), then the function definition

is simplified to be defined over these universally quantified variables. The program

construction rules are then further applied to the body of the function. If the

function application does not contain any universally quantified variables, then all

of the variables within the expression are implicitly existentially quantified. In this

case, the function definition is removed, and the program construction rules are then

further applied to the unfolded function call. The function application f vl . . . vn

is added to the environment p before applying the program construction rules to

the body of the function. In rule (C9), we encounter a letrec expression where the

constructor application c el . . . ek is the existential witness. If at least one of the

variables vl . . . v, within the function application f vl . . . vn is universally quantified

(and therefore in q5), then each of the arguments el . . . er, is further constructed

separately and the existential witness is given by the application of the constructor

c to these constructed arguments. If the function application f vl . . . vn does not

contain any universally quantified variables, then the program construction rules are

applied to the function body to give the existential witness. The function application

f vl . . . vn is added to the environment p before applying the program construction

rules to the function body.

In rule (ClO), we encounter a recursive function call f el . . . en where the exis-

tential witness is a variable. If there is a function application f vl . . . vn in p such

that the recursive call f el.. . en is an instance of f vl . . . v,, and at least one of

the arguments el . . . en in the recursive call is a universally quantified variable (and

therefore in q5), then the function application is simplified to be defined over the

arguments of the recursive call corresponding to the universally quantified variables

within the initial function application f vl . . . v,. If, on the other hand, the function

application does not contain any universal variables, then all of the variables are

implicitly existentially quantified, so the undefined value I is returned as the search

space of these existential variables has been exhausted. In rule (Cl l) , we encounter

a recursive function call f el . . . en where the constructor application c ei . . . ei is

the existential witness. If at least one of the arguments el . . . en in the recursive call

is a universally quantified variable (and therefore in q5), then each of the arguments

ei . . . ek is constructed separately and the existential witness is given by the appli-

cation of the constructor c to these constructed arguments. If, on the other hand,

the recursive call does not contain any universal variables, then the undefined value

I is returned.

5.4 Examples

In this section, we give two examples of program construction to demonstrate how

the rules C can be used in the construction of programs.

Example 12

Consider the input specification (12.1), which requires the construction of a natural

number y such that for every natural number x, either the double of y is equal to x,

or the successor of the double of y is equal to x. For even values of x, the constructed

program should compute the value of y as half of x . For odd values of x , the value

of y should be computed as half of the predecessor of x.

A N Y y : nat.or (eqnum (double y) x) (eqnum (Succ (double y)) x) (12.1)

The program construction from specification (12.1) is guided by the construction

steps as shown in Fig. 5.3. Step 1 generates a theorem proving conjecture stating

the satisfiability of specification (12.1), which is given by expression (12.2).

ALL x.EX y.or (eqnum (double y) x) (eqnum (Succ (double y)) x) (12.2)

The function eqnum is defined in 52.5.3 and double is defined in Appendix A.1.

These definitions are used with the following definitions of the functions or and lub

(u- least upper bound- in this case for natural numbers).

or = Xx.Xy.case x of

D u e : True

(False : y

lub = Xx.Xy.case x of

Zero : Zero

1 Succ x' : Succ x'

I1 : Y

Poitin proves conjecture (12.2)- the details of this proof are not given here.

This ensures that specification (12.1) is satisfiable. Rule (7 4) (Fig. 5.2) therefore

applies the rules C to the proof expression obtained by pre-processing the distilled

expression resulting from the transformation of expression (12.1) as shown below.

C[letrec fO = Xy.Xx.case y of (by 7 4)
Zero : case x of

Zero : T r u e

I SUCC x' : case x' of

Zero : T h e

I Succ xu : False

I Succ y' : case x of

Zero : False

1 Succ x' : case x' of

Zero : False

(Succ x" : f0 y' x"

During the application of thc rules C in the above term, rule C8 simplifies thc

letrec expression. The function application fO g/ x is simplified to be defined

over thc universaI1y quantified variable x as f 0 a: wh~re the implicitly existentially

quantified variable y is removed. The application of the da C to the unfolded

function call proceeds az shown below.

let rec

fO = Xs.C[[case y of

Zero .o case x of

Zero : h e

1 SUCC x r : case xK of

Zem : T h e

1, Succ XI' : Fake

1 Sum PJ' : case z of

Zem : False

[Succ x' : case st of
Zero : False

I Szdcc x" : jo y' st'! [g] (f0 y x) (2)
in fO z

= letrec (by C73

f O = hx.n[C[case x of
Zero : n u e

I SUCC x' : case x' of

Zero : P u e

(Succ x" : False] [Zero] {fO y 3) {x})

U (CI case x of
Zero :False

(Succ z' : case x' of

Zero : False

I sacc x" : f0 y' x"] [Succ y'] {fO y x } { x))] {} {}

= letrec

f0 = Ax.T[(case a of

&?TO : ~ [X T U ~] [Z ~ T O] ~ { f 0 X) (x)

I SUCC x1 : C[case st of

Zero : Due

I Succ x" : Fabe] [Z e ~ o] {fU y $1 (x, x'))

U (CIcase x of

Zero : False

I Succ x' : case xi of

Zero : False

I Succ xu : fO ~"'q [SUCC Y'] {fO 8, x) {s))] {) {)

in f0 x

= letrec (by C41C7)

jU = Xs.T[(case a of

Zero : Zero

1 SUCC x1 : case x1 of

Zero :C[True]EQZero] {fO g x } { x , x r)

I Succ xt' : C[False] [Zero] {fO y x) (x , x', xu))

u (C[case s of

Zero : Fake

I Succ x' : case x1 of

Zem ro Fube

I SUE : 10 gr [SUCC 3" {(fo $1 { X I) ~ {) o

(by C4,C5,C7,C5,C7,C5) = letrec

f V = X%.T[(case s of

Zero : Zero

I Succ x' : case st of

Zero .o Zero
1 succ xi' : I)

U (case x of

Zem : 1

I Succ x' : case x' of

Zem : I

1 Succ 2" :

cvo yt s t f ~ ~succ {fo s) { x , x ~ , X #)) I {I {I

= letrec

fO = Xx.TI[(case x of

Zero : Zwe

I SUCC x' : case 5' of

Zem : Z e r o

I Succ x'" : l 1
U (case x of

Zero : I

I SUCC x' : case x' of

Zero : I
1 S~LCC 2" :

SUCC ICIIFO 91' xl'n n8'1 {fO ?/ $1 {a , xl,x'"l)l 0 C)

= letrec

f O = Ax.T[(case x of

Zero : Zero

1 Succ x' : case x' of

Zero : Zero

1 Succ x" : 1)

U (case x of

Zero : I

I Succ x' : case x' of

Zero :I

I Succ x" : Succ (f O a"))] {} {}
in f0 x

= letrec f 0 = Ax. case x of

Zero : Zero

1 Succ x' : case x' of

Zero : Zero

I Succ x" : Succ (f0 x")

in fO x

This program is further transformed using distillation, which results in the same

output program. The constructed program computes an output for each value of

the input variable x. The constructed program is totally correct, and it satisfies the

input specification as required.

Example 13

Consider the following program specification (13.1), which requires the construction

of a natural number x such that for every value of the natural numbers x and y, if

x < y, then the sum of x and x is equal to y.

ANY x : nat.implies (less x y) (eqnum (plus x x) y) (13.1)

In step 1 of the construction process (Fig. 5.3), the following existential conjec-

ture is generated from specification (13.1).

ALL %.ALL y.EX x.implies (less x y) (eqnum (plus x z) y) (13.2)

The functions eqnum and plus used within the specification have the same defi-

nitions as given in Chapter 2. The functions implies and less are defined as follows.

implies = Xx.Xy. case x of

Due : y

I False : D u e

less = Xx.Xy. case x of

Zero : case y of

Zero : False

I Succ y' : D u e

(Succ x' : case y of

Zero :False

I Succ y' : less x' y'

Poitin proves conjecture (13.2)- the details of this proof are not given here.

Specification (13.1) is therefore a satisfiable program specification, which is of form

(ii) as defined in s5.3.2. The existential conjecture EX x.EX y .less x y is constructed

from the precondition less x y of specification (13.1) according to step 5 of the

construction process (Fig. 5.3). Poitin proves this conjecture. A new specification

is therefore constructed by replacing the precondition less x y with Due in step 6

of the construction process, which results in the following expression (13.3).

implies (True) (eqnum (plus x z) y) (13.3)

Rule (74) applies the program construction rules C to the proof expression ob-

tained from the distilled expression resulting from the transformation of expression

(13.3) as shown below.

ClZetrec
fO = Xx.Xz.Xg. case e of

e m : case e of
Zem : caw y of

Zero : P u s

I sum v' : Wlsc
I S ~ t m x' : case y of

Zero : False
I Sum y' : letrec

JP = A4'.Xy1. case a' bF

Zero : case y' of

Zero : W e

1 Srrcc y" : False
I Stim r" : m e y' of

Zero : Pd8e

1 Succ y" : I1 2" y"

I Sam x' : case y of

Zero : Fdae
I &IEC vJ : to X' J y'

h f a ~2 11 131 { I { x , v)

The details of the construction stcps is out of scope because of larger expression

size, Finally, we obtain the following program by applying the program construction

rules C.

letrec
fQ = Xs.Xy. case x of

Zero : case 3 of

Zen, : Zero

I Sacc yt : SVLCC (letrec
f 1 = Xy'. case y' of

Zem : zero

I Succ ?I" : succ (fl y")

in fl g r)

I Succ x' : case of

Zero : L

1 SUCC 3' : fO xh'
info z 8

The constructed program computes the existential witness x as a function of

the univcrsdly quantified mriablm x and y. For s 5 y, it returns y - x ; and for

x > y, it returns I (Bottom). The constructed program therefore satisfies the input

specification.

5.5 Proof of Correctness

The program construction method of Poitin constructs executable functional pro-

grams from input specifications. The construction method extracts a program from

the proof of the input specification.

In order to prove that for every program specification which is found to be

satisfiable, the programs constructed by our program construction rules are correct

with respect to original specifications, we need to show the following:

1. Cbost] [el p {vl . . . vn) = e[el /v i , . . . , ek/vL]

+ T [A L L vl . . . vn.post[el/vk, . . . , ek/vL]] {) {) = True

2. (a) for specifications of the form A N Y v : r.pre + post:

Cbost] [el p {vl . . . v,) = I

A T I A L L vl . . . v,.EX v.pre + post] {) {) = True

+ T [A L L vl . . . v,.pre] {) {) = I
(b) for specifications of the form A N Y v : r.post:

Cbost] [e] p {vl . . . v,) = I

+ T I A L L vl . . . v,.EX v.post] {) {) = I

In order to prove the correctness of the constructed program using the program

construction rules C from specifications of the form A N Y v : post, we need to

show (1) and 2(b), and from specifications of the form ANY v : .r.pre +- post, we

need to show (1) and 2(a).

Proof.

The proof of this is by recursion induction on the proof rules C.

Base Cases

Case for Rule C1:

If v E 0:
C[v] [v'] p {Vl . . . v,) =I

2. (a) ?'-[ALL v l . . . vn.EX vl.vi] {) {) = I (by (Al))
T I A L L vl . . . v,.EX vl.pre +- vi] {) {) = True (by assumption)

+- T [A L L vl . . . v,.EX vl.pre] {) {) = I

(b) T I A L L ~ 1 . . . v,.EX vl.vi] {) {) = I (by (4)

If v $! 4:
1. C[v] [v] p {vl . . . v,) = v[True/v]

T I A L L vl . . . v n . ~ [T r u e / ~]] {) {) = True (by (A 2))

Case for Rule C2:

If u E 4:
C[v] [C el . . . en] p {vl . . . v,) =I
2. (a) T [A L L vl . . . v,.EX vl.vi] {) {) = I (by (w)

T I A L L vl . . . v,.EX v l . ~ r e + vi] {) {) = True (by assumption)

+ T I A L L vl . . . v,.EX vl.pre] {) {) = I

(b) T I A L L v ~ . . . v ~ . E X vl.vi] {) {) = I (by (4)

If v $i 4:
1. C[vi] [C e l . . . en] p {vl . . . v,) = c el . . . e,[True/v; . . . Truelvk] (by (C l))

T [A L L vl . . . v,.v:[True/vi . . . True lv i]] {) {} = True (by (A 2))

Case for Rule C3:
1. C[True] [v] p {vl . . . vn) = v[(ci V i l . . . viki)/v]

T I A L L vl . . . vn.True[(ci vil . . . viki) /v]] {) {) = True (by (4)

Case for Rule C4:
1. C[True] [c el . . . en] p {vl . . . v,} = (c el . . . e,)[e;/v;. . . eL/vk]

T I A L L vl . . . v,.True[e',/ui. . . ei /vb]] {) {) = True (by

Case for Rule C5:

C[False] [e] p {vl . . . v,) =I
2. (a) T [A L L v l . . . v,.EX v.False] {) {) = I (by (&3))

T [A L L vl . . . v,.EX v.pre + False] {) {) = True (by assumption)

+ T [A L L v l . . .v,.EX v.pre] {) {) = I

(b) T I A L L vl . . . v,.EX v.False] {) {) = I (by (f 3))

Case for Rule C6:

C [I] [e] p {vl . . . v,) =I
2. (a) T [A L L v l ... v n . E X v . l] {) {) = I (by (E4))

T[[ALL vl . . . v,.EX v.pre + I] {) {) = True (by assumption)

+ T I A L L vl . . . v,.EX v.pre] {) {) = I

(b) T [A L L vl . . . v,.EX v . I] {) {} = I (by (84))

Case for Rule C10:

If 3x E { e l . . . em).x E {ul . . . v,):
1. C [f el . . . em] [v] p { v l . . . v n } = v [f ei ... eklv]

T [A L L vl . . . v,.(f vl . . . vm[f e', . . . eklv])] {) {} = True (by (A 7))

If $x E { e l . . . em).x E {vl . . . v,):

CV el . . . em] [v] p {vl . . . v,) =I

2. (a) T [E X vi . . . v i . f el . . . em] {) {) = I (by (E7))
T [E X vi . . . vi.pre + f vl . . . vm] {) {) = True (by assumption)

+ T I E X vi . . . v ; .~re] {) {) = I

(b) T [E X vi . . . u;. f e l . . . em] {) {) = I (by (87))

Case for Rule C11:

If 3x E {el . . . em).x E {vl . . . v,):
1. C [f el . . . em] [C ei . . . e;] p {vl . . . v,) = (c ei . . . ei)[ey/vi . . . eilv;]

T I A L L vl . . . vn.(f el . . . em[ey/vi . . . ei lv;])] {} {) = True (by (A7))

If ax E { e l . . . em).x E {vl . . . v,):

CV e l . . .em] [C ei . . . ei] p {vl . . .v,) =I

2. (a) T [E X v i . . . v;. f el . . . em] {) {} = I (by (87))

T [E X v i . . . vi.pre =+ f el . . . em] {) {) = True (by assumption)

+ T [E X vi . . . vi.pre] {) {} = I

(b) T [E X vi . . . v;. f e l . . . em] {) {) = I (by (E7))

Inductive cases

Case for Rule C7:

If v E 4:
Cucase v o f pl : el I . . . I p, : en] [e] p q5

= case v o f pi : (Cl[el] [e] p 41) 1 . . . I pn : (Cuen] 1.1 p 4 n)

By the inductive hypothesis, Qi E (1 . . . n}:

1. C[ei] Be] p {vl . . . vn} = e[e:/v; . . . eklv;]

+ T I A L L vl . . . v,.ei[e',/v; . . . ei /v;]] {} {} = True

2. (a) C[ei] [e] p (~ 1 . . . vn) = I

A T I A L L v l . . .v,.EX v.pre + ei] {) {) = True

+ TUALL vl . . . v,.prel) {} {} = I
(b) T I A L L vl ... v,.EX v.ei] {} {} = I

If 3i E (1 . . . n}.C[ei] I[e] p 4 #I, then by the inductive hypothesis:

1. C[ei] [e] p {vl . . . v,} = e[ei/v; . . . e;/vk]

+ T I A L L vl . . . v,.ei[ei/vi . . . e;/vi]] {} {} = True

2. (a) TUALL v l . . . v,.EX v.pre * case v o f pl : el I . . . 1 p, : en] {} {}
= True (by assumption)

+ TUALL vl . . . v,.EX v.pre] {) {} = I

(b) TUALL vl . . . v,.EX v.case v o f pl : el I . . . I p, : en] {) {} = I

(by assumption)

Case for Ru le C8:

If 3x E {vl . . . v,}.x E {v; . . . v i } :

Culetrec f = Awl . . . v,.eo i n f vl . . . v,] [v] p {v; . . . v i }

= letrec f = Avy . . . vi.eb i n f vy . . . v i

where

eb = C[eo] [v] (p U { f vl . . . v,)) {vi . . . v;)

By the inductive hypothesis:

1. C[eo] [e] p {vi . . . vk) = e[ey/vy . . . eE/v[]

+ T I A L L vi . . . vk.eo[ey/vy. . . ei/vL]] {) {) = True

2. (a) C[[eolJ [el p {v; . . . v;) = I

A T I A L L vi . . . v;.EX v.pre + eon {) {} = True

+ T [A L L vi . . . vk.pre] {) {) = I

(b) C[eo] [[el p {vi . . . vk} = I
+ T [A L L vi . . . v;.EX v.eo] {) {) = I

If $x E {vl . . . vm).x E {v'l . . . vk):

Culetrec f = Xul.. . vm.eo in f vl . . . urn] [v] p {vi . . .vk) = eb

where

eb = C[eo] [v] (p U { f vl . . . v,)) {vi . . . v;)

By the inductive hypothesis:

1. C[eo] [e] p {vi . . . vk) = e[ey/vy . . . e i / v []

+ T I A L L vi . . . v6.eo[ey/vy. . . eE/vL]] {) {) = True

2. (a) Cueo] [el p {vi . . . vk) = I
A T I A L L v; . . . v;.EX v.pre + eon {) {} = True

+ T I A L L v i . . . ~ L . ~ r e] {) {) = I

(b) Cueo] [e] p {vi . . . vk) = I

+ T I A L L V: . . . vk.EX v.eo] {) {) = I

Case for Rule C9:

If 32 E { v l . . vm).x E { ~ i . . . v;}:

Culetrec f = Xul . . . vm.eo in f vl . . . vm] [C ei . . . el.] p {vi . . . vk}

= (c ei . . . ei)[(C[letrec f = Xul . . . vm.eo in f vl . . . urn] [el] p {v: . . . v k) / v ~)]

By the inductive hypothesis, Qi E (1.. - 1) :
1. Culetrec f = Xul.. . vm.eo in f vl . . . vm] [e/] p {vi . . . v;) = e[ey/vy.. . e;/vL]

+ T I A L L vi . . . v;.letrec f = Xul . . . v,.eo in f vl . . . v,[ey/vy . . . eg/v;]] {) {}

= True

By the inductive hypothesis: Vi E (1 . . . I) :

1. Cl[eo] [ei] p {vi . . . vh) = e[ey/vy . . . e t / v i]

+- T I A L L vi . . . v;.eo[ey/vy. . . e i / v i]] {) {) = True

2. (a) C[eo] [ei] p {v', . . . v;) = I

A T I A L L v ; . . .&.EX v.pre + eon {) {) = True

+- T [A L L v ; . . .v;.pre] {) {) = I

(b) C[eo] [ei] p {v: . . . vk) = I

+ T [A L L v', . . .v;.EX v.eol) {) {) = I

5.6 Conclusion

In this chapter, a novel program construction method has been presented which

can be used to construct correct programs from input specifications. We have

extended our language and distillation rules to handle input specifications with

ANY-quantification. Unsatisfiable specifications are rejected during the construc-

tion process if we are unable to prove the existential conjectures generated from the

input specification. We have then shown how a correct program can be constructed

by removing the precondition from the input specification.

We have formally defined the program construction rules C which can be used

to construct programs from specifications. The application of these rules has been

demonstrated with two examples. The constructed program is executable in the

source language. The examples show that the constructed programs are efficient

and correct with respect to the input specifications. We have implemented this

program construction technique and added it to the theorem prover Poitin.

Chapter 6

Implementation and Results

6.1 Introduction

In this chapter, we briefly overview the implementation of the theorem prover Poitin,

and present some results of our research. The theorem prover is implemented using

the functional programming language Standard ML of New Jersey v110.60. The

strong type system of Standard ML allows the definition of appropriate data types

to represent input conjectures and specifications as data objects of these types.

The implementation of the Poitin theorem prover consists of three main modules:

Toplevel, ATP and D i s t i l l . The Toplevel module implements the main interface

to the theorem prover, which consists of several menu options. The ATP module

implements the data types to express input conjectures and program specifications,

and implements functions that operate on these expressions. The module D i s t i l l

is the main module of the theorem prover, which implements the distillation rules

for quantification, program transformation, and the proof and program construction

rules.

6.2 Poitin: a Prototype Version

In this section, we present the data types and main functions of each module of

the theorem prover. The Toplevel module and the distillation program trans-

former were implemented jointly by myself and my supervisor Geoff Hamilton. I

have improved the implementation of the embedding detection algorithm and the

generalization techniques of distillation. In addition, I have implemented the pre-

processing phase, the distillation rules for quantifiers, the universal and existential

proof rules, the program construction steps, and the program construction rules.

6.2.1 Module Toplevel

The Toplevel module consists of the function toplevel which implements the in-

terface to the Poitin theorem prover. The function toplevel has the following

signature.

val toplevel: unit -> unit

On execution of the function toplevel in the SML prompt, the following prompt

appears to interact with the Poitin theorem prover:

POT>

The available commands at this prompt are: load, save, distill, step,

show, showprog, graph, help and quit. One may learn about these commands

by using the help command. The input conjecture or program specification is stored

with function definitions as a program defined in the language in a .pot file, and can

be loaded using the command load f i 2 ename . To prove or construct programs, the

command distill is used, and the output can be viewed using the command show.

Using the step command, one can switch to step mode distillation after loading the

input file.

6.2.2 Module ATP

The module ATP defines the data type t as shown in Fig. 6.1 to represent any ex-

pression in the higher order functional language described in 52.2.1, input conjecture

to be proved and input specification for program construction. Some of the main

functions of this module which operate on the expressions defined using the data

type t are listed in Fig. 6.2.

The function inForm parses the expressions defined in the higher order functional

language, the operands of the infix operators +, t), A, V, and the operands of the

quantifiers ALL, EX and ANY. The function readTerm returns an expression of data

type t by processing a string consisting of an expression of data type t. For example,

the conjecture ALL x.EX y.(even x) t) (eqnum (double y) x) is processed by the

function readTerm to give the following:

ALL (IIXII ,EX (lly" , ~ p p l y (Apply (Fun l 1 iff l 1 ,Apply(Free "even" ,Free "x")),

~ ~ ~ l ~ (~ ~ ~ l ~ (F ~ e e lIeqnuml1, Apply (Free I1double" ,Free "y")) Free "x"))))

datatype t =

t
I
I
1
I
I
I
I
I
I
I
I
I

Free of string

Bound of int

Fun of string

Let of string * t * t
Letrec of string * t * t
Abs of string * t
Con of string * t list
Apply of t * t
Case of t * (string * string list * t) list
Node of string * t * (string * t) list
Repeat of string * t * (string * t) list
ALL of string * t
EX of string * t
ANY of string * t * t

Figure 6.1: Data type of ATP module

val

val

val

val

val

val

val

val

val

val

val

val

val

val

val

freevars: t -> string list

abstract: int -> string -> t -> t
shift: int -> int -> t -> t
subst: int -> t -> t -> t
inst: t StringDict.t -> t -> t
rename: string list -> string -> string

absList: string list * t -> t
alllist: string list * t -> t

exlist: string list * t -> t
anylist: (string * t) list * t -> t
inForm: ATPParsing.token list -> t * ATPParsing.token list
outTerm: t -> Pretty.t
readTerm: string -> t
rdInput: string -> (t * (string * t) list)
outTree : t -> Pretty. t

Figure 6.2: Functions of ATP module

The input specification ANY z : nat.(less x y) + (eqnum (plus x z) y) is

processed by the function readTerm to give the following:

ANY (llzll ,Nat "nat" ,Apply(Apply(Fun "implies" ,~ppl~(~pply(~ree "less",

Free "x") ,Free "y")) ,Apply (Apply (Free "eqnum" , ~pply (~pply(Free "plus",
Free "xfl) ,Free "z")) ,Free "y")))

The function rdInput converts a string consisting of an expression of data type

t with function definitions in the form of a program to a pair consisting of an

expression and a list of function definitions. For example, the program

append xs ys

where

append = Xxs.Xys. case xs of

Nil : ys

I Cons x xs' : Cons x (append xs' ys);

is processed by the function rdInput to give the following:

(Apply (Apply(Fun "append" ,Free "xs") ,Free "ys") , [("append", ~ b s ("xs" ,
Abs ("ys" ,Case (Free "xs" , [("Nil" , [I ,Free "ys") , (llCons'l, [Free "x" ,
Free "xs'"] , Con("Cons" , [Free "xll, Apply(App1y (Fun "append" ,Free "xs'") ,
Free "ys">l>>I)>>>l>

6.2.3 Module Distill

The module Distill consists of six main functions: distill, passl, pass2,

forall, exist and constructany.

The function distill implements the distillation rule 71 using the function

pass1 to implement the distillation program transformation algorithm as defined in

53.2, the pre-processing phase as described in Chapter 4 using the function pass2,

rule 7 2 for universal quantification and rule 7 3 for existential quantification as de-

fined in Chapter 4, and rule 7 4 for ANY-quantification as defined in Chapter 5.

The implementation of rule 7 4 includes the implementation of the program con-

struction steps as described in 55.3.3. A verification proof of the input specification

is performed before the application of rule 7 4 . As the input specification contains a

precondition, a new specification is constructed by removing the precondition. The

functions f o r a l l , e x i s t and constructany implement the proof rules A, E , and

the program construction rules C, which are discussed in 56.2.4 and 56.2.5, respec-

t ively.

The d i s t i l l function has the form dis t i l l s [[el) p 4, where s is the step mode

indicator, and e is the input expression to which the distillation rules will be applied.

The parameter p represents the set of previously encountered expressions, and 4
represents the set of function definitions used within the expression e. The function

d i s t i l l has the following signature.

v a l d i s t i l l : boo1 -> ATP.t * (s t r i n g * ATP.t) l i s t -> ATP.t

The first argument of this function is a SML boolean value: t r u e or f a l s e ,

which indicates whether the s t e p mode is on or off. The second argument is a

pair of an ATP term of type t and a set of function definitions. Each function

definition consists of a function name and the function body. The outcome of this

function for an input conjecture may be True or Bottom. For an input specification

with ANY-quantification, the outcome is a program which computes the existential

witness. If the input expression does not contain any sort of quantification, the

d i s t i l l function transforms the input program to an equivalent and efficient output

program.

The function pass1 implements the distillation algorithm as defined by rule

7 1 while the function pas s2 reconstructs the residual program resulting from the

function pas s l by performing the pre-processing tasks ($4.2).

The function pas s l implements the normal order reduction rules N as described

in 52.2.4. This function implements the reduction rules, which decompose the first

argument to this function into a unique context and a redex based on the unique

decomposition property. The function f indMatch tries to find a match of its sec-

ond argument with any of the expressions of type t within the matrix in the first

argument. The functions f indembed, f inddive and f indcouple implement the

homeomorphic embedding detection algorithm to detect whether any of the expres-

sions of type t within the matrix in the second argument is embedded within the

expression in the third argument or not. The function e x t r a c t performs generaliza-

tion of an obstructing function call in the case of strict embedding, and the function

generalise performs the m o s t specific generalization if the embedding is non-strict .

The unfold function implements the unfolding operation of a function call.

The construct function implements the residual program construction rules P

as described in $2.2.4 and 53.2.3. We recall Example 9 of Chapter 3; one of the

expressions which was encountered in demonstrating the example is used to explain

the use of the construct function as shown below.

construct 1 Node fO:

case x of
Zero : case y of

Zero : Rue

I Succ y' : True

I Succ x' : Repeat fO: Node fl: case x' of
Zero : case y of

Zero : Due

(Succ y' : Due

(SUCC X" : Repeat fl: leg x" (plus XI' y)

The construct function returns the following residual program.

letrec f 0 = Ax. case x of

Zero : case y of

Zero : T r u e

1 Succ y ' : True

I Succ x' : f0 x'

6.2.4 Implementation of the Proof Rules A and &

The function f oral1 implements the proof rules A for universal quantification, and

the function exist implements the proof rules & for existential quantification. These

functions are invoked by the function distill to prove input conjectures.

The function f orall has the form f orall [el p 4, where e is the proof expression

to which the proof rules will be applied and the parameter p is the set of the previ-

ously encountered function calls, and 4 is the set of universally quantified variables.

The function forall has the following signature:

val forall : ATP.t -> ATP.t list -> string list ->
ATP.t * ATP.t list * string list

The outcome of this function is a simplified proof expression, a set of function

calls and a set of universally quantified variables.

The function exist has the form exist [el p 4, where e is the proof expression to

which the proof rules will be applied and the parameter p is the set of the previously

encountered function calls, and 4 is the set of existentially quantified variables. The

function exist has the following signature.

val exist : ATP.t -> ATP.t list -> string list ->

ATP.t * ATP.t list * string list

The outcome of this function is a simplified proof expression, a set of function

calls and a set of existentially quantified variables.

6.2.5 Implementation of the Program Construction Rules C

The function constructany implements the proof rules C which perform the con-

structive proof of a distilled expression. The function constructany has the form

constructany [el [el] T p 4. This function is invoked by the function distill to

construct a program from the proof expression obtained from an input specification.

The function constructany has the following signature.

val constructany : ATP.t -> ATP.t -> ATP.t -> ATP.t list ->
string list -> ATP.t * ATP.t list * string list

The first argument of the function constructany is a proof expression e of type

t to which the constructive proof rules C will be applied. The second argument e'

is the current existential witness and the third argument T is the existential witness

type. The parameter p is the set of the previously encountered function calls, and Q,

is the set of universally quantified variables within e. The outcome of this function

is the simplified constructed program, a set of function calls and a set of universally

quantified variables.

6.3 Results

We have applied the theorem prover Poitin to a large number of inductive theo-

rems and program specifications. Poitin can prove these theorems without using

any intermediate lemmas by performing only generalization, whereas some other in-

ductive theorem provers require lemmas and generalizations to prove some of these

theorems. Some of the conjectures listed in Table 6.1 were proved by SPIKE 1661

using a divergence critic [107], NQTHM [8, 91, ACL2 [63], CLAM [21, 231 using

rippling, and Periwinkle [68] by proposing lemmas or performing generalizations.

No. Conjecture

ALL x.ALL y.eqnum (plus x y) (plus y x)

ALL x.eqnum (plus x (Succ x)) (Succ (plus x x))

ALL x.ALL y.ALL z.eqnum (plus (plus x y) z)

(plus x (plus Y 2))

ALL x.eqnum (plus (plus x x) x) (plus x (plus x a))

ALL x.eqnum (gcd x x) x

ALL x.ALL y.eqnum (sub (plus x y) x) y

ALL x.ALL y.eqnum (plus x (Succ y)) (Succ (plus x y))

ALL x.even (plus x x)

ALL x.even (doublea x Zero)

ALL x.ALL y.((even x) A (even y)) + (even (plus x y))

ALL x.(eqbool (even x) (True)) -+
(eqbool (odd x) (False))

ALL %.EX y.(even x) +, (eqnum (double y) x)

ALL x.EX y.(even x) H

(eqnum (mult y (Succ (Succ Zero))) x)

ALL x.ALL y.EX z.(less x y) + (eqnum (plus x z) y)

ALL xs.ALL ys.eqnum (length (append xs ys))

(length (append ys xs))

ALL xs.ALL ys.eqnurn (length (append xs ys))

(plus (length xs) (length ys))

ALL xs.ALL ys.ALL zs.eqlist (append x s (append ys 2 s))

(append (append x s ys) z s)

ALL xs.ALL ys.(even (length (append x s y s))) t,

(even (length (append ys x s)))

T i m e

(in Seconds)

0.0094

0.0016

Table 6.1: Some conjectures proved in Poitin

Poitin can prove all of these conjectures fully automatically without requiring

any intermediate lemmas. Conjectures 3 , 6 , 7, 16 and 17 do not require any general-

ization to be performed. All other conjectures require generalization to be performed

during distillation. The times listed to prove the conjectures are given by the aver-

age of 10 runs for each conjecture on an Intel Pentium 4 P C with 2.40 GHz and 512

MB RAM. As these times are very low, the results are encouraging. The proof of

conjecture 1 is troublesome for a lot of inductive theorem provers. This conjecture

has two unJ-Eawed induction variables, which make the proof complicated for explicit

inductive provers as discussed in Example 10 (s4.4.1). Poitin proves this conjecture

by generalization of accumulating patterns during distillation. Conjecture 2 is also

difficult to prove using previous proof techniques. SPIKE diverges in an attempt to

prove conjecture 8. Divergence critic takes 5.4 seconds to suggest a lemma to prove

this conjecture. The proof of conjecture 9 in the explicit induction method involves

the introduction of a new universally quantified variable in place of the accumulat-

ing parameter [45, 541, which over-generalizes the conjecture by generating the new

conjecture ALL x.ALL y.even (doublea x y) . Poitin has also been successfully used

in proving existential theorems (e.g., conjectures 12, 13 and 14 in Table 6.1). SPIKE

fails to prove conjectures 15 and 16. The divergence critic avoids the divergence by

proposing two lemmas in each case in 3.6 and 7.2 seconds respectively. Poitin proves

conjecture 15 by generalization of accumulating patterns during distillation.

The following Table 6.2 shows some universally quantified conjectures which

cannot currently be proved in Poitin. The function definitions in Fig. 6.3 were used

along with the definitions of the functions eqnum, double, plus, length, eqlist, reva,

append and reverse as defined in the previous chapters.

Among these conjectures, conjecture 3 states the commutativity of multiplica-

tion and conjecture 5 uses a mutually recursive function. The distillation of most of

these conjectures suffers from non-termination due to successively growing patterns

or the existence of more than one of the three different forms of non-termination.

For example, the transformation of conjectures 3 , 7 and 8 encounters the occurrence

of both accumulating patterns and obstructing function calls. In the current ver-

sion of Poitin, we consider only one form of embedding of two expressions: strict

or non-strict , and the corresponding generalization. The distillation of conjecture

6 encounters the embedding of both accumulating patterns and accumulating para-

meters. The distillation of all other conjectures suffers from non-termination due to

successively growing patterns because of unification-based information propagation.

No.

1.

2.

3.

4.

Conjecture

ALL x.eqnum (double x) (plus x x)

ALL x.eqnum (half (plus x x)) x

ALL x.ALL y.eqnum (mult x y) (mult y x)

ALL x.ALL y.ALL z.ALL u.ALL w.eqnum (plus x (plus y (plus x

(plus u w)))) (plus w (plus x (plus y (plus z u))))

ALL xs.leq (length (evenlist xs)) (length xs)

ALL xs.ALL ys.eqlist (reva xs ys) (append (reverse xs) ys)

ALL xs.eqlist (rotate (length xs) xs) xs

ALL xs.eqlist (reverse (reverse xs)) xs

ALL xs.eqnum (length (append xs as)) (double (length xs))

Table 6.2: Some of Poitin's failures

half = Xx.case x o f
Zero : Zero

(Succ x' : case x' o f

Zero : Zero

I SUCC X I ' : SUCC (half x")

mult = Xx.Xy.casexof

Zero : Zero

I Succ x' : plus y (mult x' y)

evenlist = Xxs. case xs o f
Nil : Nil

I Cons x XS' : oddlist xs'

oddlist = Xxs. case xs o f
Nil : Nil

I Cons x xs' : Cons x (evenlist xs')

rotate = Xx.Xys. case x o f

Zero : y s

I Succ x' : case ys o f

Nil : Nil
I Cons y ~ s ' : rotate x' (append ys' (Cons y Ni l))

Figure 6.3: Some function definitions for failed proofs

Table 6.3 shows how SPIKE using the divergence critic [I071 and rippling [23, 171

deals with these conjectures. The symbol - indicates that the proof example could

not be found using the indicated method.

No. SPIKE (Divergence Critic) Rippling

Proved

J
J
X

J
X

J
J
J
J

Lemma required

J
d
X

J
X

J
J
J
J

Proved Lemma required

Table 6.3: Conjectures of Table 6.2 proved by SPIKE using divergence critic and

rippling

Poitin has been used to construct programs from input specifications. The con-

structed programs are efficient and correct with respect to the input specifications.

In Table 6.4, some input specifications are listed, which were used to construct pro-

grams. The constructed programs from these specifications are shown in Fig. 6.4.

No. Specification Time (in Seconds)

1. ANY y : nat.(even x) + (eqnum (double y) x) 0.0095

2. ANY y : nat.(even x) +
(eqnum (mult y (Succ (Succ Zero))) x) 0.0031

3. ANY y : nat.(eqnum (double y) x) V

(eqnum (Succ (double y)) x) 0.0031

4. ANY x : nat.(less x y) + (eqnum (plus x z) y) 0.0047

5. ANY y : nat.(eqnum x (Zero)) V (eqnum x (Succ y)) 0.0046

6. ANY y : nat.eqnum y (plus x (Succ Zero)) 0.0046

Table 6.4: Some specifications for program construction

Figure 6.4: Constructed programs for specifications of Table 6.4

Specification No.
P

1.

2.

Constructed Program

letrec fO = Ax. case x of

Zero : 0

1 Succ x' : case x' of

Zero : I
I Succ x" : succ (f0 8'')

letrec fO = Ax. case x of

Zero : O

I Succ x' : case x' of

Zero :I
(succ XI' : Succ (f0 x")

in fO x

3.

1
4.

5 .

6.

letrec fO = Xx.case x of

Zero : 0

I Succ x' : case x' of

Zero : 0

I Succ x" : Succ (f0 XI')

in fO x

As shown in Example 13 of 55.4

case x of

Zero : 0

(Succ x' : letrec fO = Ax'. case x' of

Zero : 0

I Succ x" : Succ (f0 2")

in fO x'

letrec fO = Ax. case x of

Zero : 1

I Succ 2' : Succ (f0 2')

in fO x

In Fig. 6.4, the programs constructed from the specifications are totally correct.

The results show that some difficult theorems about natural numbers and lists

were proved by Poitin. Only the definitions of logical connectives A , V, +, t, etc.

are provided as built-in functions. In theory, Poitin should be able to prove any

conjectures about functions which are defined over inductive types such as sets,

integers, rationals, trees, etc.

6.4 Conclusion

In this chapter, we have presented the implementation of the automatic theorem

prover Poitin. The implementation includes four top-level distillation rules, induc-

tive theorem proving rules, and program construction rules. The four top-level

distillation rules control the functioning of the theorem prover. Rule 7 1 implements

the distillation program transformer, which is at the heart of the theorem prover.

Rules 7 2 and 7 3 implement the inductive theorem prover, and rule 7 4 implements

the program construction method. The implementation of rule 7 4 includes the im-

plementation of the program construction steps as described in $5.3.3. In rule 7 4 ,

a verification proof of the input specification is performed before each application

of this rule, so that incorrect specifications are rejected in the construction process.

The construction process removes the precondition part from the input specification

by generating a new specification for program construction. This ensures that only

correct programs are constructed in Poitin.

We have presented some results of the application of the Poitin theorem prover

to inductive theorems and program specifications. The results are encouraging,

although some straightforward conjectures cannot be proved using the current im-

plementation of Poitin. The main outcome is that the proof techniques of Poitin

can be used to prove inductive conjectures fully automatically without the need

for conjecturing any intermediate lemmas, whereas most inductive theorem provers

require intermediate lemmas to prove these conjectures. Poitin also reduces over-

generalization and generation of non-theorems. Our program construction tech-

niques can be used to construct totally correct programs from input specifications.

The future development plans for the theorem prover include the implementation of

a graphical user interface, and improving the performance of the theorem prover.

Chapter 7

Conclusion and Future Work

In this thesis, we have shown how automatic program transformation can be used

in a novel way in metacomputation-based inductive theorem proving and program

construction methods. The work presented in this thesis is an extension of the theo-

rem prover Poitin to handle explicit quantification. Our inductive proof technique is

an alternative to standard inductive proof methods using induction rules in explicit

induction. The theorem proving and program construction techniques of Poitin do

not require any intermediate lemmas, and therefore remove the need for a search in

a vast collection of lemmas which is required in the axiomatic approach. The associ-

ated search space is very small and is restricted to the set of expressions encountered

during distillation, which constitute the set of inductive hypotheses.

The program associated with an input conjecture or program specification can be

transformed with distillation to an equivalent and efficient output program which is

in a normal form called distilled form. The distilled expression can then be simplified

to a proof expression, which is used in theorem proving and program construction.

Proof rules for universal and existential quantification were defined to prove these

proof expressions. The existential proof rules perform pure existence proof of a proof

expression. To construct a program from an input program specification, a construc-

tive proof method has been presented. The constructed program is executable in

the source language, and can compute the unknown values as specified by the input

specification. We have proved that the constructed program will be correct with

respect to the input specification.

To conclude the thesis, we first summarise the work presented in previous chap-

ters, and then give some directions for future research.

7.1 Summary of Thesis

In this section, we summarise the main chapters of the thesis.

7.1.1 Background

In Chapter 2, we briefly surveyed the state of the art in the areas of program

transformation, inductive theorem proving techniques and strategies using explicit

induction, e.g. rippling, and program synthesis methods. A higher order functional

language was defined which is used throughout the thesis. The higher order for-

mulation of the supercompilation algorithm was given based on the presentation in

[46]. We reviewed the recursion analysis technique used in the Boyer-Moore Theo-

rem Prover to show how the required induction scheme for an inductive proof can

be constructed from the recursive definitions of functions used within the inductive

conjecture. We reviewed Turchin's metacomputation-based inductive theorem prov-

ing technique to prove logical formulas using supercompilation. We also showed the

relationship of cut elimination to the removal of intermediate data structures from

programs.

7.1.2 Distillation

In Chapter 3, an overview of the distillation algorithm was given based on the pre-

sentation in [46]. It was shown how the supercompilation algorithm can be extended

to develop the more powerful distillation algorithm. The distillation algorithm was

devised with the aim to remove intermediate data structures from higher order

functional programs. The unification-based information propagation and the more

powerful matching technique adopted in distillation have made this algorithm very

suited to the metacomputation-based inductive theorem prover Poitin. The trans-

formation rules for distillation were presented, and generalization methods were

described based on homeomorphic embedding to ensure on-line termination. The

distilled form of expressions resulting from distillation was also defined. The proof

of termination of the distillation algorithm was given based on the termination proof

of a language independent framework of an abstract program transformer [96], and

the correctness proof was given based on the improvement theorem of Sands [89, 901.

7.1.3 Theorem Proving in Poitin

In Chapter 4, the inductive theorem proving techniques of Poitin were presented.

The language and the distillation rules were extended to deal with explicit quantifi-

cation. Two distillation rules were defined for universal and existential quantification

to deal with quantifiers at the meta-level, and two sets of object level proof rules

have been formalised to prove proof expressions which contain universal and existen-

tial variables. A set of potential inductive hypotheses is maintained during universal

proof. An inductive hypothesis is only applied if a recursive function call is an in-

stance of the inductive hypothesis, and at least one of the universally quantified

variables in this application is decreasing. The existential proof rules use a pure

existence proof technique. The great advantage of the proof techniques of Poitin is

that these techniques do not require any intermediate lemmas, and therefore help to

reduce the search required in an inductive proof. The soundness of the proof rules

was shown with respect to a logical proof system using sequent calculus.

7.1.4 Program Construction in Poitin

In Chapter 5, a constructive proof method was presented to construct a higher or-

der functional program from an input program specification. The language and the

distillation rules were extended to handle ANY-quantified input specifications. A

distillation rule was defined for ANY quantification, and constructive proof rules

were defined for program construction from proof expressions. The program con-

struction process was described, which includes a verification proof of the input

specification to reject unsatisfiable specifications, so that programs are constructed

only from satisfiable specifications. As the input specification contains a precondi-

tion, a new specification is generated by removing this precondition as it does not

help to define the output data. A proof of correctness of the construction method

was also given.

7.1.5 Implementation and Results

In Chapter 6, the prototype implementation of the theorem prover Poitin was pre-

sented. The distillation program transformer, distillation rules for the quantifiers

ALL, EX and ANY, the proof rules and the program construction rules were im-

plemented using Standard ML, and added to Poitin. The prototype of Poitin is an

integrated environment for inductive theorem proving and program construction us-

ing higher order functional programs. Some results of the application of the theorem

prover to inductive theorems and program specifications were presented. The results

are encouraging although some straightforward conjectures cannot be proved using

the current implementation of the theorem prover. Poitin proved these theorems

fully automatically without requiring any intermediate lemmas, whereas the most

inductive theorem provers require intermediate lemmas to prove some of these the-

orems. We proved that the programs constructed from the program specifications

will be correct with respect to the specifications.

7.2 Research Contributions

This thesis mainly contributes to the fields of metacomputation-based inductive the-

orem proving and program construction. We have developed an inductive theorem

proving and program construction framework to deal with explicit quantification.

This framework can be used in conjunction with many existing program transfor-

mation algorithms. We have chosen to use distillation as it is the most powerful

program transformation algorithm currently available.

Our work is a significant improvement over the theorem proving technique of

Poitin [45] using distillation. In [45], all free variables of the input conjectures are

considered implicitly universally quantified, and there is no explicit quantification.

The theorem prover is not capable of any program construction from specifications.

We have extended the theorem proving technique of Poitin to handle explicit univer-

sal and existential quantifications to prove explicitly quantified inductive conjectures

fully automatically. We have defined distillation rules for quantifiers and the proof

rules for universal and existential quantifications. We have developed a program con-

struction method to construct correct, efficient and executable functional programs

from the proofs of non-executable input specifications using program construction

rules.

Our inductive proof method does not require any intermediate lemmas, which

helps to avoid infinite branch points in the search space. The existential proof rules

perform a pure existence proof of the existential conjecture without requiring to

construct any witness. This is an alternative to the usual constructive approach

to prove existential theorems using higher order unification. The inclusion of the

distillation program transformation algorithm within the inductive theorem proving

techniques has reduced over-generalization and generation of non-theorems. The

soundness of the proof techniques was shown with respect to a logical proof system

using sequent calculus.

We have formalised a program construction method to construct programs from

input specifications. The constructed program is correct with respect to the in-

put specification, and executable in the source language. Though the programs

developed in this method are still limited to small problems, it can help to reduce

the burden of a programmer to some extent by automating the process of writing

programs. This is the only method we know of which constructs programs from

specifications fully automatically. The proof of correctness of the program construc-

tion method was also given. We also argue that the programs which are constructed

using our techniques are likely to be more efficient than those which are generated

by other constructive methods, as they are generated using distillation which has

the main aim of making programs more efficient.

The theorem proving and program construction techniques have been imple-

mented and added to the theorem prover Poitin. The use of distillation within

the framework of Poitin has eased the automation of the inductive proof and pro-

gram construction techniques to make Poitin a fully automatic and efficient theorem

prover.

7.3 Future Work

There are many directions for future research that may arise from this thesis, which

are described below.

7.3.1 Distillation

Distillation algorithm is at the heart of the theorem prover Poitin, and the range

of inductive theorems that can be proved by Poitin depends on the power of distil-

lation. Special techniques are needed to deal with conjectures involving functions

defined with mutual recursion. For example, expression 1 is one such example where

the function evenlist is mutually defined with another recursive function oddlist.

Work is under way to develop techniques to transform some difficult expressions as

shown below to obtain proof expressions which can be used in proving the respective

theorems.

1. leg (length (evenlist x s)) (length xs)

2, eqnum (double x) (plus x x)

3. eqnum (mult x y) (mult y x)

4. eqnum (length xs) (length (reverse x s))

5. eqlist (reverse (reverse xs)) xs

The transformation of expression 1 encounters successively larger sub-expressions

in the second occurrence of xa due to accumulating patterns. The transformation

of expression 2 suffers from accumulating patterns, which cannot be solved with the

current generalization technique. One possible solution to this problem is extend-

ing Poitin to be able to allow the use of intermediate lemmas where such failures

are detected. The transformation of expressions 3-5 encounters the occurrence of

both accumulating patterns and obstructing function calls as discussed in $6.3. One

possible solution to this problem is to ignore the embedding of accumulating pat-

terns, and performing generalization of obstructing function calls, which are under

investigation. We are working to extend the power of distillation.

The distillation algorithm has already been implemented. The future develop-

ment includes a re-implementation in its own input language which will allow the

transformer to be self-applicable. Distillation algorithm will also be incorporated

into a full programming language, which will allow a lot of powerful optimisations

to be performed on programs in the language, and will also allow the verification of

properties about these programs using Poitin.

7.3.2 Inductive Theorem Proving

Poitin can prove a wide range of inductive theorems. As the functions within the

output residual programs obtained with distillation are parameterised with all of the

unique free variables appearing in a recursive expression in the pre-processing phase,

the recursive call to this function may contain non-decreasing variables. One major

problem is caused by the substitution of patterns for these non-decreasing variables

during proof rule application on some existential conjectures. We are working to

resolve this problem. The conjectures below suffer from this problem.

EX y.ALL x.(even x) +, (eqnum (double y) x)

ALL x.ALL y.EX q.EX r.(neq x Zero) -+ ((eqnum (plus (mul t q x) r) y) A

(less r x))

To solve this problem, we propose a single set of proof rules for both universal

and existential quantifications by merging the two sets of separate proof rules A and

E. The distillation rules 7 2 and 7 3 for quantifiers and the proof rules must include

parameters for the current quantification scope, universal and existential variables.

Even though the results for our theorem proving techniques may appear some-

what disappointing, the main reason for these disappointing results is the perfor-

mance of distillation. This is because Poitin can be used to try and prove only those

conjectures which can be distilled successfully. The distillation algorithm can be

improved to solve the problems as described in $7.3.1. We have however developed

a framework for the proof of quantified conjectures using program transformation.

Thus, any future improvements to the program transformation algorithm distillation

will also feed in to the theorem proving to make improvements in this area too.

7.3.3 Program Verification

The inductive proof techniques can be used in program verification. To prove a

property P about a program, P is expressed as an input conjecture in the form of a

program in the language. The theorem proving techniques can then be used to prove

P. An application of inductive proof rules in program verification can be found in

[471

7.3.4 Program Construction

The program construction method presented in Chapter 5 can deal with input speci-

fications that contain an existential variable which is ANY-quantified. The construc-

tive proof of the input specification results in a program which is a function that

computes the witness. One possible extension to this method is to deal with input

specifications that contain multiple existential variables which are ANY-quantified.

For each existential variable, the constructive proof will be performed separately

to construct a function to compute the witness. Thus, the extended program con-

struction method will construct n separate functions to compute n witnesses. This

method is applicable if the existential variables are independent of each other within

the specification where each witness can be computed only in terms of the input

variables using the program construction rules. An alternative method to handle

multiple existential variables is shown below.

T [c (A N Y e : r.el)] p 4 = 7[c(e1")] p q5

where

el1 = 7 [e 1] {} 4
e"' = CUel11 Uel 0 (f v (e l) \ f ~ (4)

In the specification, e is the existential witness, which is a constructor applied

to the existential variables contained in the expression el. A separate function will

be constructed for each existential variable.

The results for our program construction technique may also appear somewhat

disappointing. The main reason for these disappointing results is again the per-

formance of distillation. We have however developed a framework for the program

construction using program transformation. Thus, any future improvements to the

program transformation algorithm distillation will also feed in to the program con-

struction to make improvements in this area too.

7.3.5 Implementation

The future development of the theorem prover includes the implementation of a

graphical user interface. Refinement of the implementation of the distillation algo-

rithm is also in progress to enhance its power. The generalization technique could

also be extended and implemented to deal with generalizations of expressions in-

volving multiple embeddings of obstructing function calls, accumulating patterns

and accumulating parameters at the same time as proposed in 37.3.1. A possible

solution to the non-termination problem due to pattern substitution during proof

as proposed in 57.3.2 will also be implemented, and added to the theorem prover.

Bibliography

[I] A. Armando, A. Smaill, and I. Green. Automatic synthesis of recursive pro-

grams: The proof-planning paradigm. In 12th IEEE International Automated

Software Engineering Conference, IEEE Computer Society, 1997.

121 D. Basin and T. Walsh. Annotated rewriting in inductive theorem proving.

Technical report, Max-Planck-Institute fiir Informatik, 1994.

[3] D. Basin and T. Walsh. A calculus for and termination of rippling. Journal

of Automated Reasoning, 16(1-2), 1996.

[4] David Basin, Yves Deville, Pierre Flenner, Andreas Hamfelt, and J ~ r g e n Fis-

cher Nilsson. Synthesis of programs in computational logic. In Program De-

velopment in Computational Logic, Lecture Notes in' Computer Science LNCS

3049, Springer, pages 30-65, 2004.

[5] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical

induction. Journal of Logic and Computation, 5:631-668, 1995.

[6] A. Bouhoula and M. Rusinowitch. Implicit induction in conditional theories.

Journal of Automated Reasoning, 1995.

[7] R. S. Boyer and J. S. Moore. Proving theorems about lisp functions. Journal

of the ACM (JACM), ACM Press New York, NY, 22, 1975.

[8] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press, ACM

monograph series, 1979.

[9] R. S. Boyer and J. S. Moore. A Computational Logic Handbook, volume 23.

Academic Press, Perspectives in Computing, 1988.

[lo] James Brotherston. Cyclic-proofs for first-order logic with inductive defini-

tions. In Automated Reasoning with Analytic Tableaux and Related Methods:

Proceedings of TABLEAUX 2005, volume 3702 of Lecture Notes in Artificial

Intelligence, pages 78-92. Springer-Verlag, 2005.

[ll] James Brotherston. Sequent calculus proof systems for inductive definitions.

PhD thesis, Laboratory for Foundations of Computer Science, School of Infor-

matics, University of Edinburgh, 2006.

[12] James Brotherston and Alex Simpson. Complete sequent calculi for induc-

tion and infinite descent. In Proceedings of the Twenty-Second Annual IEEE

Symposium on Logic in Computer Science (LICS 2007), pages 51-62, 2007.

[13] Alan Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk

and R. Oberbeek, editors, 9th Conference on Automated Deduction, CADE-9,

volume 310 of Lecture Notes in Computer Science, pages 111-120. Springer-

Verlag, 1988.

[14] Alan Bundy. A science of reasoning. Computational Logic: Essays in Honor

of Alan Robinson, MIT Press, pages 178-198, 1991.

[15] Alan Bundy. The automation of proof by mathematical induction. Elsevier

Science B. V., 1995.

[16] Alan Bundy. A survey of automated deduction. Artificial Intelligence Today.

Recent Trends and Developments, 1999.

[17] Alan Bundy. Handbook of Automated Reasoning, volume I. Elsevier Science

B.V., Amsterdam, 2001.

[18] Alan Bundy, David Basin, Dieter Hutter, and Andrew Ireland. Rippling: Meta-

level Guidance for Mathematical Reasoning. Cambridge University Press, 2005.

[I91 Alan Bundy, F. V. Harmelen, J. Hesketh, A. Smaill, and A. Stevens. A ra-

tional reconstruction and extension of recursion analysis. In N. S. Sridharan,

editor, Proceedings of the Eleventh International Joint Conference on Artificial

Intelligence, pages 359-365. Morgan Kaufmann, 1989.

[20] Alan Bundy, Frank Van Harmelen, Jane Hesketh, and Alan Smaill. Experi-

ments with proof plans for induction. Journal of Automated Reasoning, 7:303-

324, 1991.

[21] Alan Bundy, Frank Van Harmelen, Christian Horn, and Alan Smaill. The

Oyster-Clam system. In M. E. Stickel, editor, Proceedings of the 10th Interna-

tional Conference on Automated Deduction, pages 647-648. Springer-Verlag,

1990.

[22] Alan Bundy, A. Smaill, and J. Hesketh. Turning eureka steps into calculations

in automatic program synthesis. In S. L. H. Clarke, editor, Proceedings of

UKIT, pages 111-120. Springer-Verlag: London, 1990.

[23] Alan Bundy, Andrew Stevens, Frank Van Harmelen, Andrew Ireland, and

Alan Smaill. Rippling: A heuristic for guiding inductive proofs. A I Journal,

62:185-253, 1993.

[24] R. M. Burstall and J. Darlington. A transformation system for developing

recursive programs. Journal of the ACM, 24:44-67, 1977.

[25] Wei-Ngan Chin. Automatic Methods for Program Transformation. PhD thesis,

Imperial College, University of London, October 1990.

[26] A. R. Choudhury. Induction proofs by program transformations. Technical

report, School of Computing, National University of Singapore, 2003.

[27] A. Church. A set of postulates for the foundation of logic (1). Annals of

Mathematics, 33:346-366, 1932.

1281 A. Church. A set of postulates for the foundation of logic (2). Annals of

Mathematics, 345439-864, 1933.

1291 A. Church. A formulation of the simple theory of types. The journal of

symbolic logic, 5:56-68, 1940.

[30] J. Robin B. Cockett. Deforestation, program transformation and cut-

elimination. Electronics Notes in Theoretical Computer Science, 44(1):88-127,

2001.

[31] R. L. Constable, S. F. Allen, and H. M Bromley. Implementing Mathematics

with the Nuprl Prooj Development System. Prentice Hall, 1986.

1321 Luis Cruz-Filipe and Bas Spitters. Program extraction from large proof de-

velopments. Lecture Notes in Computer Science, 2758:205-220, 2003.

[33] Haskell B. Curry and Robert Feys. Combinatory logic. I, 1958. North-Holland.

[34] L. Damas and R. Milner. Principal type schemes for functional programs.

In Proceedings of the Ninth ACM Symposium on Principles of Programming

Languages, pages 207-212, 1982.

[35] N. Dershowitz and J. P. Jouannaud. Rewrite systems. In Jan van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, pages 244-320.

Elsevier, 1992.

[36] Yves Deville and Kung-Kiu Lau. Logic program synthesis. The Journal

of Logic Programming, Elsevier Science Publishing Co., Inc., 19-20:321-350,

1994.

[37] L. Dixon and J. D. Fleuriot. IsaPlanner: A prototype proof planner in isabelle.

In Proceedings of CADE'OS, LNCS, pages 279-283, 2003.

[38] L. Dixon and J . D. Fleuriot. Higher order rippling in IsaPlanner. In Theorem

proving in higher order logics 2004 (TPHOLJs2004), volume 3223 of LNCS,

pages 83-98. Springer, 2004.

[39] G. Gentzen. Investigations into logical deduction (1934). In M. E. Szabo,

editor, The Collected Works of Gerhard Gentzen, North-Holland Publishing

Company, 1969, pages 68-131.

[40] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge

Tracts in Theoretical Computer Science 7, Cambridge University press, 1993.

[41] Robert Gluck. Towards multiple self application. In PEPM ' I : Proceedings

of the 1991 ACM SIGPLAN symposium on Partial evaluation and semantics-

based program manipulation, pages 309-320. ACM Press, New Haven, Con-

necticut, United States, 1991.

[42] Robert Gluck and Morten Heine Sgrensen. A roadmap to metacomputation by

supercompilation. In Oliver Danvy, Robert Gliick, and Peter Thiemann, edi-

tors, Selected papers of the International Seminar- Partial Evaluation, volume

1110 of Lecture Notes in Computer Science, pages 137-160. Springer-Verlag,

1996.

[43] K. Godel. ber formal unentscheidbare Stze der Principia Mathematica. 1931.

[44] G. W. Hamilton. Compile Time Optimisation of Store Usage in Lazy Func-

tional Programs. PhD thesis, Department of Computing Science and Mathe-

matics, University of Stirling, U.K., October 1993.

[45] G. W. Hamilton. Poitin: Distilling theorems from conjectures. Electronic

Notes in Theoretical Computer Science, 151(1):143-160, 2006.

1461 G. W. Hamilton. Distillation: Extracting the essence of programs. In Proceed-

ings of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

Based Program Manipulation, pages 61-70. 2007.

[47] G. W. Hamilton. Distilling programs for verification. In Proceedings of the

6th International Worlcshop on Compiler Optimization meets Compiler Veri-

fication, ETAPS 2007, pages 21-35. 2007.

[48] G. Higman. Ordering by divisibility in abstract algebras. Proc. London Math.

SOC., (3):2:326-336, 1972.

1491 R. Hindley. The principal type scheme of an object in combinatory logic.

Trans. Am. Math. Soc., 146, 1969.

[50] W. A. Howard. The formulae-as-types notion of construction. To: H. B.

Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages

479-490, 1980.

[51] D. Hutter and Alan Bundy. The design of the CADE-16 inductive theorem

prover contest.

[52] A. Ireland. The use of planning critics in mechanizing inductive proofs. In

A. Voronkov, editor, International Conference on Logic Programming and Au-

tomated Reasoning - LPAR992, volume 624 of Lecture Notes in Artificial In-

telligence, pages 178-189. Springer-Verlag, 1992.

[53] A. Ireland and Alan Bundy. Productive use of failure in inductive proof.

Journal of Automated Reasoning on Inductive Proof, special edition, 16(1-

2):79-111, 1996.

[54] A. Ireland and Alan Bundy. Automatic verification of functions with accumu-

lating parameters. Journal of Functional Programming, 9:225-245, 1999.

[55] N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys

(CSUR), 28:480-503, 1996.

[56] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice Hall International, 1993.

[57] Neil D. Jones. The expressive power of higher-order-types or life without

CONS. Journal of Functional Programming, 11:55-94, 2001.

[58] L. Julia. Proofs by structural induction using partial evaluation. In Proceedings

of the 1993 ACM SIGPLAN symposium on Partial evaluation and semantics-

based program manipulation, pages 155-166, 1993.

[59] H. Kabir and G. W. Hamilton. Constructing programs from metasystem tran-

sition proofs, 2007. School of Computing, Dublin City University, Working

Paper CA-0207.

[60] H. Kabir and G. W. Hamilton. Extending Poitin to handle explicit quantifica-

tion. In Silvio Ranise, editor, Proceedings of the 6th International Workshop

on First-Order Theorem Proving FTP 2007, pages 20-34, 2007.

[61] H. Kabir and G. W. Hamilton. Extending Poitin to handle explicit quantifiers,

2007. School of Computing, Dublin City University, Working Paper CA-0107.

[62] M. Kaufmann and J. S. Moore. An industrial strength theorem prover for

a logic based on common LISP. IEEE transactions on software engineering,

23(4):203-213, 1997.

[63] Matt Kaufmann, Panagiotis Manolios, and J. Strother Moore. Computer-

Aided Reasoning- An Approach. Kluwer Academic Publishers, 2000.

[64] Emanuel Kitzelmann, Ute Schmid, Martin ~ u h l ~ f o r d t , and Fritz Wysotzki.

Inductive synthesis of functional programs. Lecture Notes in Computer Sci-

ence, 2385:26-37, 2002.

[65] L. Kott. About a transformation system: A theoretical study. In Proceedings

of the 3rd Symposium on Programming, pages 232-267, 1978.

[66] E. Kounalis, A. Bouhoula, and M. Rusinowitch. SPIKE: An automatic the-

orem prover. In Proceedings of LPAR'92, Lecture Notes in Artificial Intelli-

gence, volume 624. Springer-Verlag, 1992.

[67] Ina Kraan, David Basin, and Alan Bundy. Logic program synthesis via proof

planning. LOPSTAR-92, pages 1-14, 1992.

[68] Ina Kraan, David Basin, and Alan Bundy. Middle-out reasoning for synthesis

and induction. Journal of Automated Reasoning, 16(1-2):113-145, 1996.

[69] G. Kreisel. Mathematical logic. In T. L. Satty, editor, Lectures in Modern

Mathematics, volume 111, pages 95-195. John Wiley, New York, 1965.

[70] J.B. Kruskal. The theory of well-quasi-ordering: A frequently discovered con-

cept. Journal of Combinatorial Theory, A(13):297-305, 1972.

[71] K. K. Lau and S. D. Prestwich. Top-down synthesis of recursive logic proce-

dures from first-order logic specifications. In Proceedings of the ICLP, pages

667-684. Springer, 1990.

[72] P. Madden, Alan Bundy, and A. Smaill. Recursive program optimization

through inductive synthesis proof transformation. Journal of Automated Rea-

soning, 22:65-115, 1999.

[73] Zohar Manna and Richard Waldinger. A deductive approach to program

synthesis. ACM Dansactions on Programming Languages and Systems

(TOPLAS), 2:90-121, 1980.

[74] Zohar Manna and Richard Waldinger. Fundamentals of deductive program

synthesis, 1992. Manuscript, Computer Science Department, Stanford Uni-

versity.

[75] S. Marlow. Deforestation for Higher-Order Functional Programs. PhD thesis,

University of Glasgow, September 1995.

[76] P. Martin-Lof. Haupstatz for the intuitionistic theory of iterated inductive

definitions. In J . E. Fenstad, editor, Proceeding of the Second Scandinavian

Logic Symposium, pages 179-216. North-Holland, 1971.

1771 P. Martin-Lof. Constructive mathematics and computer programming. In 6th

International Congress for Logic, Methodology, and Philosophy of Science,

1979, volume VI, pages 153-175. North-Holland, 1982.

[78] R. McDowell and D. Miller. Cut-elimination for a logic with definitions and

induction. Theoretical Computer Science, 232:91-119, 2000.

[79] R. Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Science, 17:29-60, 1978.

[80] Augustus De Morgan. Induction (mathematics). In Penny Cyclopaedia, vol-

ume XII, pages 465-466. The Society for the Diffusion of Useful Knowledge,

Charles Knight & Co., 1838.

[81] R. M. Nirenberg, D. V. Turchin, and V. F. Turchin. Experiments with a

supercompiler. In Proceedings of the 1982 ACM symposium on LISP and

functional programming, Conference on LISP and Functional Programming,

Pittsburgh, Pennsylvania, United States, pages 47 - 55, 1982.

[82] Gordon D. Plotkin. A note on inductive generalization. Machine Intelligence

5, pages 153-163, 1970.

[83] Gordon D. Plotkin. A further note on inductive generalization. Machine

Intelligence 6, pages 101-124, 1971.

1841 Uday S. Reddy. Term rewriting induction. In Proceedings of the tenth inter-

national conference on Automated deduction, pages 162-177. Springer-Verlag,

New York, 1990.

[85] J. D. C. Richardson. The Use of Proof Plans for Transformation of Functional

Programs by Changes of Data Type. PhD thesis, Department of Artificial

Intelligence, University of Edinburgh, January 1996.

[86] J. D. C. Richardson. Proof planning and program synthesis: a survey. Amer-

ican Association for Artificial Intelligence, 2002.

[87] J. D. C. Richardson, A. Smaill, and I. Green. System description: proof-

planning in higher-order logic with Lambda-Clam. In C. Kirchner and

H. Kirchner, editors, 15th International Conference on Automated Deduction,

volume 1421 of Lecture Notes in Artificial Intelligence, pages 129-133. Lindau,

Germany, 1998.

[88] D. Sands. Total correctness and improvement in the transformation of func-

tional programs. Technical report, DIKU, University of Copenhagen, Den-

mark, 1994.

[89] D. Sands. Proving the correctness of recursion-based automatic program trans-

formations. Theoretical Computer Science, 1-2(167):193-233, 1996.

[go] D. Sands. Total correctness by local improvement in the transformation of

functional programs. ACM Transactions on Programming Languages and Sys-

tems, 18(2):175-234, March 1996.

[91] A. Smaill and I. Green. Automating the synthesis of functional programs, 1995.

Research paper 777, Dept. of Artificial Intelligence, University of Edinburgh.

[92] A. Smaill and I. Green. Higher-order annotated terms for proof search. In

Proceedings of the International Conference on Theorem Proving in Higher

order Logics, pages 399-413, 1996.

[93] D. R. Smith. The synthesis of lisp programs from examples. Automatic program

construction techniques, chapter 15, pages 307-324, 1984.

[94] M. H. Sorensen. Turchin's Supercompiler Revisited. 1994. Master's Thesis,

University of Copenhagen, Denmark.

[95] Morten H. Smrensen and Robert Gliick. An algorithm of generalization in

positive supercompilation. In Logic Programming: Proceedings of the 1995

International Symposium, pages 465-479, 1995.

[96] Morten Heine Sorensen. Convergence of program transformers in the metric

space of trees. Lecture Notes in Computer Science, 1422:315-337, 1998.

[97] A. Stevens. A rational reconstruction of Boyer and Moore's technique for

constructing induction formulas. In Proceedings of European Conference on

Artificial Intelligence (ECAI-88), pages 565-570, 1988.

[98] Philip D. Summers. A methodology for lisp program construction from exam-

ples. Journal of the ACM, 24:161-175, 1977.

[99] Simon Thompson. Type Theory and Functional Programming. Addison-Wesley

Publishing Company, 1991.

[loo] A. Tiu. A Logical Framework For Reasoning About Logical Specifications. PhD

thesis, Pane State University, 2004.

[lol l V. F. Turchin. The concept of a supercompiler. ACM Transaction on Pro-

gramming Languages and Systems, 8:292-325, 1986.

[I021 Valentin F. Turchin. The use of metasystem transition in theorem proving

and program optimization. In Proceedings of the 7th Colloquium on Automata,

Languages and Programming, volume 85 of Lecture Notes in Computer Science,

pages 645 - 657. Springer-Verlag, 1980.

[I031 Valentin F. Turchin. Metacomputation: Metasystem transitions plus super-

compilation. In Dagstuhl Seminar on Partial Evaluation, pages 481 - 509,

1996.

[I041 P. Wadler. Deforestation: Transforming programs to eliminate trees. In Eu-

ropean Symposium on Programming, ESOP '88, volume 300 of Lecture Notes

in Computer Science, pages 344-358. Nancy, France, 1988.

[I051 P. Wadler. Deforestation: Transforming programs to eliminate trees. Theo-

retical Computer Science, 73:231-248, 1990.

[I061 Philip Wadler. Proofs are programs: 19th century logic and 21st century

computing. Dr Dobbs Journal. Special Supplement on Software in the 21st

century, December 2000.

[I071 T. Walsh. A divergence critic for inductive proof. Journal of Artificial Intel-

ligence Research, 4:209-235, 1996.

[I081 C. Walther. Mechanising mathematical induction, Handbook of Logic in Ar-

tificial Intelligence and Logic programming. Oxford University Press, Oxford,

1992.

[log] C. P. Wirth. Descente infinie + deduction. Logic Journal of the IGPL, 12(1):1-

96, 2004. Oxford University Press.

[I101 H. Zhang. Reduction, superposition and induction: Automated reasoning in an

equational logic. PhD thesis, Rensselaer Polytechnic Institute, Schenectady,

New York, 1988.

[I l l] H. Zhang, D. Kapur, and M. S. Krishnamoorthy. A mechanizable induction

principle for equational specifications. In Proceedings of the 9th International

Conference on Automated Deduction, Lecture Notes In Computer Science,

volume 310, pages 162 - 181. Springer-Verlag, London, UK, 1988.

Appendix A

Distillation

A.1 Examples

A. 1.1 Accumulating Patterns

In the following example, we demonstrate how distillation avoids the non-

termination problem due to accumulating patterns.

Example 14

Consider the transformation of expression (14.1).

even (plus x x) (14.1)

During this transformation, we encounter expression (14.2) which is a

non-strict embedding of expression (14.1).

even (plus x" (Succ (Succ x"))) (14.2)

Further transformation of expression (14.2) will cause non-termination because

of successively larger expressions and folding cannot be performed. The most

specific generalization of these two expressions is therefore performed to achieve

termination of the distillation process, which results in the following triple:

(even (plus x v) , {v := x), {v := Succ (Succ x")))

The generalized form of expression (14.1) is given by expression (14.3).

let v = x in even (plus x v)

The sub-tree rooted at expression (14.1) is replaced with the result of trans-

forming expression (14.3). The transformation of expression (14.3) results in the

partial process tree which is shown in Fig. A. 1. We obtain expression (14.4) from

the sub-tree rooted at even v" within the partial process tree shown in Fig. A.1.

Node a: case v" of (14.4)

Zero : True

(SUCC v"' : case v"' of

Zero : False

1 SUCC v"" : Repeat f2: even v""

Expression (14.4) is further transformed, which results in the partial process tree

shown in Fig. A.2. We obtain expression (14.5) from the sub-tree rooted at even v""

within the partial process tree shown in Fig. A.2.

Node f3: case v"" of (14.5)

Zero : D u e

I SUCC v""' : case u""' of

Zero : False

1 Succ v""" : Repeat f3: even v"""

Expression (14.5) is an instance of expression (14.4). A repeat node is therefore

created at the occurrence of expression (14.5). This results in the partial process

tree which is shown in Fig. A.3. The residual program given by expression (14.6) is

constructed from the partial process tree shown in Fig. A.3.

letrec f 2 = Xu". case v" of

Zero : True

I SUCC v"' : case v"' of

Zero : False

I Succ vllll : f2 vllll

In a similar way, we obtain the residual program given by expression (14.7) from

the sub-tree rooted at even v' within the partial process tree shown in Fig. A.1.

let v = x in even (plus x v)
1

even (plus x v) + - - ---. \ -.

I case (case x of . . .) of . . . I

case v" of . . . wp
I
I

I
I

1
I

Succ v"" / , Fais ;TzerO , \ ,,/;
even v"'

Figure A.l: Partial process tree (1) for TIeven (plus x x)]

I Node f2: case v" of . . . I
1

case v" of . . . a+/+ Vl l = era dl = S ~ C C vttl

case v"' of . . .

case v""' of . . .

/
/

/

Figure A.2: Partial process tree (2) for 7[even (plus x x)]

I Node f2: case v" of . . . j,
1

--
- 2 2 . .

I case v" of . . . I

case v"' of . . . I
1
I
I

e6 C v"" \ /
/

l ~ o d e f3: case v"' of . . .I

Figure A.3: Partial process tree (3) for Tueven (plus x x)]

letrec f 3 = Xv'. case PI' of

Zero : T h e
I Succ vt' : case 4s" of

Zero : FaEse

(SUE vtt' : f3 et"'

in f3 vt

We obtain exprasion (14.8) from the sub-tree rooted at even (plus x u) within

the partial process tree shown in Fig. A.1.

Node fD: case x of

Zero : case v of
Zem : h e

1 Succ v' : case v' of
Zew : Fdse

(SUCC V" : letrec
f 2 = Xv". case v" of

Zem : T h e
I Succ v"' : case wfP' of

Zero : False
) Sum u"" : f2 21""

in f2 atJ

1 SUCC x' : case x' of
Zero : case v of

Zero : Fabe
1 S ~ c c v\ letrec

f3 = Xvt.case n' of

Zero : True
1 Succ v" : case v" of

Zero :False

1 S~LCC u"' : f3 0"'

in f3 v'
I Succ x" : Repeat fD: even (plus x" v)

The transformation of expression (14.8) proceeds as shewn in the partial process

tree of Pig. A.4.

I Node fO: case x of . . . I
I

letrec f 2 = . . . in f2 v"

\
I

Figure A.4: Partial process tree (4) for T [e v e n (plus x x)]

We construct residual programs given by the expressions (14.9) and (14.10) from

the sub-trees rooted at f 2 v'' and f 3 TI' respectively within the partid process tree

shown in Fig. A.4.

letrec f 1 = Xu". case v" of (14.9)

Zero : T h e

I SUCC v'" : case v."' of
Zero : Fahe

I Succ vtrtr : f1 v ~ ' ' ~

in fl ur'

letrec f E = Xv'. case v' of

Zero : Due
1 SUCC O" : case v" of

Zem : Fabe

1 Succ u"' : fl v"

The transformation of expression (14.11) within the partial process tree shown

in Fig. A.4 is performed in a similar way to that of the expression even (plus x v)

in the partial process tree shown in Fig. A.1.

even (plus x" v) (14.11)

During this transformation, mpression (14.12) is encountered which is an

instance oF expression (14.11). A repeat node is therefore created at the occurrence

of expression (14,12$.

even (plus a"" v) (14.12)

The transformation of expression (14.11) therefore results in expression (14.13).

Node fl:
case xu of
Zero : case e of

Zem : W e
I Sum v r : case v r of

Zero : Jihise

1 SUCC vi' : letrec
f 3 = A d t . case er" of

Zero : %LE

1 SUCC v"' : case v " k f

Zero : False

I Succ vi"' : f3 v""

in f3 w N

1 S~LCC xtti : case r"' of

Zem : case st of

Zero : Fake
1 Succ v' : letrec

f 4 = Xv'. case v' of

Zero : Due

I Succ v" : case u" of
Zero : Fake

(Succ pr"' : f4 Y"'

in f4 v'

1 Sum x"" : Repeat fl: even (plus xF"' v)

Expression (14.13) is an instance of expression (14.8). A repeat node is therefore

created at the occurrence of expression (14.13). This results in the partial process

tree shown in Fig. A.5. We construct the residual program given by expression

(14.14) from the partial process tree shown in Fig. A.5.

Figure A.5: Partial process tree (5) for Tueven (plus x x)]

letrec

f 0 = kc. case x of
Zem : case v of

Zero : f i e

1 Smc v' : ease v' of

Zero : False

(Succ v" : letrec

fl = Xul'.case vtl of
Zero : f i e

SUCC v"' : case w'" of

Zero .o Fabe

I SBCC 0""" : fl er""

in fl v"

1 Szrcc x' : case x1 of

Zero : case u of

Zero : False
Svcc v' : Ietree

j1 = Au'. case v1 of

Zera : %e

(SMC v" : case w'' of

Zem : Fabe
1 succ vtt' : fl o"'

13y substituting back the extracted variable x for the variable v within expres-

sion (14.14), wc obtain the residual program given by expression (14.15) from the

transformation of expression (14.3).

letrec

f 0 = Ax1. case xE of

Zero : case s of

Z m : h e

I Sum ~ r ' : case v' of

Zem : False
1 SUCC V" : letrec

f 1 = Xv". case v" af

Zcm : T h ~ e

) SUCC v"' : case a"' of

Zero : False
I Succ v"" : jl wtrl'

in fl vtE

I SUCC x' : case 5' of

Zero : case x of

Zero : Felse

I Succ v' : Ietrec

f 1 = Xu'. case v' of

Zero : :i?

I SUCC O" : case v" of

Zem : Fabe

I sxcc v"' : fl 0'"

The partial process tree shown in Fig. A.6 is obtained by transforming expression

(14.15). We construct the residual program shown in Fig. A.7 fi-om the partial

process tree of Fig. A.6.

>ej-ofk&c

x = Zero
1

case x' o f . . . I
I
/

/
/

case (Zero) o f . . . I
1 True 1

Figure A.6: Partial process tree (6) for Tueven (plus x x)]
- - -

letrec f 0 = Ax. case x o f

Zero :True

(SUCC x' : case x' o f

Zero : True

I succ 2'' : f0 2"

in fO x

Figure A.7: Residual program for Tieven (plus x x)]

A. 1.2 Accumulating Parameters

In the following example, we demonstrate how distillation avoids the non-

termination problem due to accumulating parameters.

Example 15

Consider the transformation of expression (15.1) using the accumulating version of

the double function given by doublea as shown in Fig. 3.2. This example is adopted

from [45].

even (doublea x Zero) (15.1)

We obtain expression (15.2) by unfolding the function even within the input

expression (15.1).

case (doublea x Zero) of

Zero : T r u e

I SUCC 2' : case x' of

Zem : False

1 Sacc x" : even sf'

After a few further steps, we encounter expression (15,3) which is a non-strict

homeomorphic embedding of expression (15.2).

case (doublea x' (Succ (Sum Zero))) of

Zero : T h e

1 SUCC x1 : case z' of
Zero : False

1 Succ xrf : even x"

The most spccific generalization of the expressions (15.2) and (15.3) is therefore

performed. The generalized form of expression (15.2) is giwn by the following

expression (1 5.4).

let v = Zero

in case (do.tablca x z) of
Zero : True

I SUCC 9' : case x' of

Z e ~ u ; Fahe

1 Succ 2" ; CTh5,n xtt

The remaining generalized expression is given by expression (15.5).

case (doublea x v) of

Zero : Due

I Succ X I : case X I of

Zero : False

1 SUCC xl' : even x"

The sub-tree rooted at expression (15.2) is replaced with the result of transform-

ing expression (15.4), which results in the partial process tree shown in Fig. A.8.

let v = Z e r o in case (doublea x v) of . . .
I

case (doublea x v) of . . . -.
\
\ + \

\ 1 case (case x of . . .) of . . .I \
\

case (doublea x' (Succ (Succ v))) of . . .

. .
\
\
\
\
\
\
\
\
\
\

Figure A.8: Partial process tree (1) for T [e v e n (doublea x Z e r o)]

Within this partial process tree, the expression even v"" is encountered which

is an instance of the expression even v". A repeat node is therefore created at the

occurrence of expression even v"". We obtain expression (15.6) from the sub-tree

rooted at even v" within the partial process tree shown in Fig. A.8.

Node f2: case v" of (15.6)

Zero : T r u e

I Succ v"' : case v"' of

Zero : False

I Succ v"" : Repeat f2: even v""

Expression (15.6) is further transformed. The details of this transformation are

shown in the previous example. During the transformation of expression (15.6), we

encounter expression (15.7)

Node f3: case v"" of

Zero : True

(Succ v""' : case v""' of

Zero : False

1 SUCC vllllll : Repeat f3: even v"""

Expression (15.7) is an instance of expression (15.6). So, a repeat node is created

at the occurrence of expression (15.7). This results in the partial process tree shown

in Fig. A.9.

-
5

%

case v" of . . , x \
\ -.

\
\
\
\

Figure A.9: Partial process tree (2) for Tueven (doublea x Zero)]

The residual program given by expression (15.8) is constructed from the partial

process tree shown in Fig. A.9.

letrec f 2 = Xv". case v" of

Zero : True

I Succ v"' : case v"' of

Zero : False

I Succ v"" : f2 v""

in f2 v"

Within the partial process tree shown in Fig. A.8, expression (15.9) is encoun-

tered, which is an instance of expression (15.5). A repeat node is therefore created

at the occurrence of expression (15.9).

case (doublm x' (SUCC (STLCC v))) of

Zero : T w e

1 Succ x i : case 2' of

Zen, : False

1 Succ x" : even z"

Wc obtain expression (15.10) from t,he partial process trees shown in Fig. A.8

and A.9.

Node fl: case s of
Zero : case of

Zero : T h e
1 SUCC er' : case Y' af

Zero : Ftlbe

2 SUCC u" : letrec
f 2 = Xv". case u*' of

Zero : f i e

1 SPLCC us'\ case e'" of

Zero : Fabe

1 smcc v'"~ : f2 vfl""

in 12 w"

1 Succ x' : Repeat fl: case (doabbeca x' (S?jcc (Szsce v))) of

Zero : E w e
(Succ x' : case x' af

Zem : Fakc
I SUCC x" : even x"

(15.10)

Expression (15.10) is further transformed. This results in the partial process

tree shown in Fig, A.10. Within this partial process tree (Fig. A.10), expression

(15.11) is encountered which is an instance of the expression (15.9). A repeat node

is therefore created at the occurrence of expression (15.11).

case (doubleu x" (Succ (Succ (Succ (Succ v))))) of (15.11)

Zero : Due

(Succ x' : case x' of

Zero :False

I SUCC xli : even 3''

I Node fl: case x of . . .]
I + I case x of . . .]

case (doublea x' (Succ (Succ v))) o
!

/
/

/
/

case (case x' of . . .) of . . . /
/

/
/

/
/

/

/
/

/
/

se (doublea x" (Succ (Succ (Succ (SUCC v))))) of . . .

I
I
I

ero ,rtr ,, 1

False f2 v""

Figure A.lO: Partial process tree (3) for 7 [e v e n (doublea x Zero)]

Expression (15.12) is therefore constructed from the sub-tree rooted at expres-

sion (15.9) within the partial process tree shown in Fig. A.10.

Node f2: case x' of

Zero : letrec f 3 = Xu. case v of

Zero : True

(SUCC V' : case v' of

Zero : False

I Succ v" : f3 v"

in f3 u

I Succ x" : Repeat f2: case (doublea x" (Succ (Succ (Succ (Succ v))))) of

Zero : True

) Succ x' : case x' of

Zero : False

I SUCC x" : even x"

(15.12)

Expression (15.12) is further transformed. During this transformation, the

partial process tree as shown in Fig. A.ll is constructed. We obtain expression

(15.13) from the sub-tree rooted at expression (15.11) within the partial process

tree shown in Fig. A.ll .

Node f3: (15.13)

case x" of

Zero : letrec f 5 = Xu. case v of

Zero : True

I SUCC v' : case v' of

Zero : False

1 Succ v" : f5 v"

in f5 u

I Succ x"' : Repeat f3: case (doublea x"' (Succ (Succ (Succ (Succ (Succ (Succ v))))))) of

Zero :True

I SUCC x' : case x' of

Zero : False

I Succ x" : even x"

The labels f2 and f3 of the Node expressions (15.6) and (15.7) are reused in

defining the labels of the Node expressions (15.12) and (15.13). The transformation

of expression (15.5) results in expression (15.10). The partial process tree resulting

from the transformation of expression (15.10) is used to replace the subtree rooted

at expression (15.5) in Fig. A.8. So, the reuse of labels does not cause any inconsis-

tency as the transformation of expression (15.5) and expression (15.10) involves two

separate passes. The function node at the root is labelled with a smaller natural

number preceded with the character f, whereas the labels in the subtrees are defined

with increasing values in each pass.

Expression (15.13) is an instance of expression (15.12). A repeat node is therefore

created at the occurrence of expression (15.13). This results in the partial process

tree shown in Fig. A.12.

] Node f2: case x' of . . .)
I

I letrec f 3 = . . . in f3 u I
1 I

\
\
\
\ x' = Succ
\
\
\

I case (doublea XI' (Succ (Succ (Succ (Succ u))))) of . . . k - ,.
J 0

0

0
0 I case (case x" of . . .) of . . . (C 0

+ /'

case (doublea xu' (Succ (Succ (Succ (Succ (Succ (Succ v)))]))) of . . .

Figure A.ll: Partial process tree (4) for 'TBeven (doubaea x Zero)]]

I ode fa: case z' of . . . - N

it \
\

M I /

I~petrec f 3 = . - . in f3 v] I l ~ o d e f3: case st' of . . .I
Figure A.12: Partial process tree (5) for T[even (doublett x ~ e r a j]

We construct expression (15.14) from the partid process tree shown in Fig. A. 12.

letrec f 2 = As'. case z' of
Zero : letrec f 3 = Xu. case v of

Zero : E w e

I Succ v' : case u' of
Zero : False

I Succ u " : f3 v"

i n p u

1 Succ 2" : f2 x"

in f2 x'

From all of the above transformation of the original expression, w(? obtain the

following exp~ession (15.15).

case x of
Zero : case w of

Zero : T h e

I SUCC vt : case v' o f

Zew ul Falae

1 SUCC V" : tetrec j 2 = Xu". case v N of

Zero : l h e

(SUCC v"' : case w"' of

Zen, : Fabe
I SUCC vtf" : f2 v'IE'

in f2 v"
(Sesce x' : Ietree f 2 = AxF. case x' of

Zero : letrec f 3 = Xu. ease v of

Xem : True

(Succ v' : case v' of

Zero : Fabe

I stlcc w" : p utf

The extracted sub-expression Zero is substituted back in to expression (15,15)

for the variable v , which results in expression (15.16).

case x of

Zero : case Zero of
Zen, E 7 h e

1 SUCC v' : case ~r' of

Zero : Pulse
I Svcc P" : letrec f2 = Xv". case pit' OF

Zerm : f i e
(S ~ c c u'" : case u"' of

Zero : False
I S26cc ?I"" : f2 tif''

in fZ st'
I Smc x' : letrec f 2 = Xz'. case xhof

Zero : Ietree f3 = Xu, case v of

Z m : me
I SUCC v' : case v'cif

Zem : False
1 Succ a" : j3 v"

Expression (15.1a) is further transformed which r w l t s in the partid process

tree shown in Fig, A.13.

pk-1 I letrec f2 = . . . in f2 x' I
1

\
\
\

I

letrec f3 = . . . in f3 Zero

f3 Zero a
case Zero of . . . I

Figure A.13: Partial process tree (6) for 7[even (doublea x Zero)]

The residual program shown in Fig. A.14 is constructed from the partial process

tree shown in Fig. A.13.

case x of

Zero : True

1 Succ x' : letrec fl = Ax'. case x' of

Zero : True

I Succ x" : fl I"

in fl x'

Figure A.14: Residual program for T[[even (doublea x Zero)]

A.1.3 Obstructing Function Calls

In the following example, we demonstrate how distillation performs generalization of

an obstructing function call to obtain a successful transformation. An obstructing

function call is detected when the current expression is a strict embedding of a

previously encountered expression. In this case, the obstructing function call is

extracted from the embedding expression.

Example 16

Consider the transformation of the following expression (16.1) using disl;illatim.

append (.reverse x$) ys (16.1)

Aftcr a, coupIe of steps, we obtain expression (16.2).

case (mverse m) of

Nil : ys

1 Cons z as' : Cons x (append x d ys)

We encounter cxpression (16.3) during further transformation of expression (16.2).

case (append (mverse xs') (Cons r Nil)) of (16,3)

Nil : ys

1 Cons x x d : Gun9 x (append xs' ys)

Expression (16.3) is a strict embedding of expression (16.2). The embedded
sub-expression is therefore extracted from cxpression (16.3) to give thc generalized

expression (16.4).

Iet v = reveme xs' (16.4)

in case (case v of

Nl : Cons x Nil

I Cow x' zs' : Cona z' (append xs' Cons x N i l))) of

Nil : ys

1 Cons x xst : Cons s (~ p p e n d xs' ys)

Thc sub-trce rooted at expression (16.3) is replaced with the result of transform-

ing expression (16.4). The transformation proceeds as shown in Fig. A.15,

append (reverse xs) ys G
(case (reverse x s) of . . .I

I let v = reverse xs' in case (case v of . . .) of . . .]

%

case (append v' (Cons x N i l)) of . . .
I +

(case (case v' of . . .) of . .A

Cons

\

, 1 Cons v' (append (append v" (Cons x N i l)) ys) I

I append (append v" (Cons x Nil)) ys I

Figure A.15: Partial process tree (1) for Tiappend (reverse xs) ysJl

The following residual program (16.5) is constructed from the sub-tree rooted

at append (append v' (Cons x N i l)) ys.

Node fO: case v' o f

Nil : Cons x ys

I Cons v' v" : Cons v' (Repeat fO : append (append v" (Cons x N i l)) ys)

(16.5)

This program is further transformed. On further transformation of the repeat

node, we obtain the following expression (16.6):

Node fl: case v" o f

Nil : Cons x ys

(Cons v" v"' : Cons v" (Repeat fl : append (append v"' (Cons x Nil)) ys)

(16.6)

We can see that expression (16.6) is an instance of expression (16.5). A repeat

node is created at the occurrence of expression (16.6). This results in the partial

process tree shown in Fig. A.16.

----_ -. .
\
\
\
\
\
\
\
\
\
I

v" (Cons x Nil)) ys) (I I

/
/

: case vl' of . . . I
Figure A.16: Partial process tree (2) for 7[append (reverse xs) ys]

This partial process sub-tree replaces the sub-tree which was rooted at

append (append v' (Cons x Ni l)) ys in the previous partial process tree shown in

Fig. A.15. The following residual program (16.7) is generated from the partial

process sub-tree shown in Fig. A.16.

letrec f 0 = Xv'. case v' of

Nil : Cons x ys

I Cons v' v" : Cons v' (f 0 v")

in f O v'

The transformation of the original generalized expression therefore results in the

followjng residual program (16.8):

case v of (16.8')

Nil : Cons 3 ys

1 Cons v v1 : Cons v (letrec f 0 = Xvl.case vt of

Nil : Cons s ys

I Cons .vt v" ; Cons a" dfO u")
in f0 v')

After substituting the extract~d subexpression reverse zal for u, we obtain the

followjng expression (16.9):

case (reverse xs') of (16.9)

Nil : Cons x ys

I Cons v u' : Cons v (letrec fO = XwE.case v h f

Nil : Cons a: ys

1 Cons v' w" : Cons uJ (fO w")

in fO v ')

After further transformation, we obtain the fallowing expression (16.10):

case (append (reverse xs"} (Cons X I Ni l)) of (16.10)

Nib : Cons x p

I Cons w v' : C O ~ S v (letrec f 0 = Xvt.case v' o f

Nil : Coons x ys

I Cons v' wrt : Cons 21' (JO v")

in fO v ')

We can see that exprewion (16.10) is a shict emheclding of expression (16.9).

The embedded sub-expression is therefore axtracted from expression (1 6.10) to give

the generalized expression (16.11).

let v = reverse xs"

in case (case v of

Nil : Cms x' Nil

1 Cons x xsl : Cons x (append m' (Cons st Ni l))) of

Nil : Cons x gs

1 Cans v u' : Cans w (letrec f0 = Xvt.case v' of
Nil : Cons x grs

1 Cons v 1 v" : COTIS vt (JI u")

in fO v')

The following residual program (16.12) is generated from the transformation of

the above gcnerdized expression.

case v of

Nil : Cons x' (C o w x ys)

I Cons v w' : Cons v (letrec f 2 = Xv'. case Y' of

Nil : Cons a' (Cons x ys)
1 Cons u' v" : Cons v' (f2 v")

in f2 v')

(16.12)

After substituting the ext,racted sub-expression reverse zsf' for v, we obtain the

foElowing expression (1 6.13) :

case (reverse xs") of

Nil : Cons sf (Cons x ys)

1 Cons v v' : Colas 'W (letrec f 2 = XvJ. case v' of
Nil : Cons x' (Cons x ys)

1 Cons v' v" : Cons v' (f2 v")

in f2 v')

(16.13)

Expression (16.13) is an instance of expression (16.9). A repeat node is therefore

created at the occurrence of expression (16.13). The following residual program

(16.14) is constructed from the transformation of expression (16.9).

Node fO:

case as' of

Nil : Cons x ys

(Cons x' xs" : Repeat f0:

case (reverse xs") of

Nil : Cons x' (Cons x ys)

I Cons v v' : Cons v (letrec

fO = Xv'. case v' of

Nil : Cons x' (Cons x ys)

I Cons v' v" : Cons v' (f O v")

in f0 v')

Expression (16.14) is further transformed. On further transformation of the

repeat node, we obtain expression (16.15).

Node f l :

case xs" of

Nil : Cons x' (Cons x ys)

I Cons x" xs"' : Repeat fl:
case (reverse xs"') of

Nil : Cons x" (Cons x' (Cons x ys))

1 Cons v v' : Cons v (letrec

f 0 = Xu'. case v' of

Nil : Cons x" (Cons x' (Cons x ys))

I Cons v' v" : Cons v' (f O v")

in fO v ')

Expression (16.15) is an instance of expression (16.14). A repeat node is created

at the occurrence of expression (16.15). This results in the partial process tree shown

in Fig. A.17.

Node fO: case xs' of . . .
+---\\,,

--q- ,-,
Node fl: case xs" of . . .

Figure A.17: Partial process tree (3) for Tuappend (reverse xs) ys]

The following residual program shown in Fig. A.18 is eventually constructed

from the partial process tree shown in Figs A.15 and A.17.

case xs of

Nil : ys

I Cons x xs' : letrec fO = Xxs'.Ax.Xys.case xs' of

Nil : Cons x ys

I Cons x' xs" : fO xs" x' (Cons x ys)

in fO XS' x ys

Figure A.18: Residual program for Tbappend (reverse xs) ys]

This program does not create any intermediate structures. This transformation

demonstrates the significant improvement in program transformation using distilla-

tion over other transformation techniques.

A. 1.4 Examples for Theorem Proving

We give some examples using distilIation algorithm to transform input expressions,

which can then be used to prove the respective theorems.

Fig. A.19 shows some of the function definitions which are used with the defin-

itions of the functions eqnum, plus of Chapter 2 and the definition of the function

even of Chapter 3 to transform the input expressions.

i f f = Xx.Xy.case x of
Due : y

I False : case y of

Due : False

(False : True

double = Ax. case x of

Zero : Zero

I Succ x' : SUCC (SUCC (double x'))

Figure A. 19: Function definitions

In these examples, if a partial process tree does not fit into a single page, we

refer to the subtree to be connected by labelling the root node as m.
Example 17

Consider the transformation of the following expression (17.1). In this example,

we do not give the partial process trees constructed during the transformation.

Expression (17.1) states the commutativity of plus theorem for natural numbers.

eqnum (plus x y) (plus y x) (17.1)

Expression (17.2) is obtained by unfolding the function eqnum within expression

(17.1).

case (plus x y) of

Zero : case (plus y x) of

Zero :True

1 Succ y' : False

I Succ x' : case (plus y x) of

Zero : False

(SUCC y' : eqnum x' y'

During the transformation of expression (17.2), expression (17.3) is encountered.

eqnum (plus x' (Succ y')) (plus y' (Succ x ')) (17.3)

Expression (17.3) is a non-strict homeomorphic embedding of expression (17.1).

The most specific generalization of the expressions (17.1) and (17.3) is therefore

performed. We obtain expression (1 7.4) from the generalization of expression (17.1).

let v = y, v' = x in eqnum (plus x u) (plus y v') (17.4)

By transforming expression (17.4), we obtain the residual program which is

shown in Fig. A.20.

Example 18

Consider the transformation of the following expression (18.1).

ifl (even x) (eqnum (double y) x) (18.1)

We obtain expression (18.2) by unfolding ifl within expression (18.1).

letrec fO = Xx.Xy. case x of

Zero : case y of
Zero : True

(Succ g' : letrec f 1 = Ay'. case y' of

Zero : f i e
I Sacc 3" : ff y"

in fJ g'

I Sam I' : case of

Zem : letrec f 1 = Ax'. ease x' of

Zem : %e

I SUCC 5" : fl XI'

in f1 x'

1 Succ v' : f0 x' u'
in fO x g

Figure A.20: Residual program for ~ c q w u m (pbua x y] (plus y s)]

case (even x) of (18.2)

True : qnum ((double y) s

I False : case (eqnum (double y) s) of
? h e : False

1 False : T h e

After a few steps, we encounter expression (18.3) which is a non-strict homeo-

morphic embedding of expression (18.2).

case (even x") of (18.3)

True : epum (double y) (S ~ C C (SUCC dt))
I &be : case (eqnum (double 11) (Succ (Succ d'))) of

l7ue : Fabe

(False : True

The most specific generalization of the expressions (18&2) and 118.3) is therefore

performed. The generalization of expression (18.2) results in the expression (18.4).

let u = x in case (even x) of

True : eqnum (double y) u

I False : case (eqnum (double y) u) of

D u e : False

I False : D u e

The subtree rooted at expression (18.2) is replaced with the result of transforming

the generalized form of expression (18.2). The transformation of expression (18.4)

proceeds as shown in Fig. A.21.

We obtain expression (18.5) from the subtree rooted at eqnum (double y) u

within the partial process tree shown in Fig. A.21.

Node f2: case y of

Zero : case u of

Zero : True

1 Succ u' : False

(Succ y' : case u of

Zero : False

(Succ u' : case u' of

Zero : False

I Succ u" : Repeat f2: eqnum (double y') v"

(18.5)

Expression (18.5) is further transformed which results in the partial process tree

shown in Fig. A.22.

During this transformation, the transformation of expression (18.6) within the

partial process tree shown in Fig. A.22 is performed in a similar way to that of the

expression eqnum (double y) u within the partial process tree shown in Fig. A.21.

eqnum (double y') u" (18.6)

During the transformation of expression (18.6), expression (18.7) is encountered

which is an instance of expression (18.6). A repeat node is therefore created at the

occurrence of expression (18.7).

eqnum (double y") u""

let v = x in case (even x) of
Due : eqnum (double y) v

I False : case (eqnum (double y) v) of

True : False

I False : True
I

I
\
I
I
I) case (case x' of . . .) of . . .I I

eqnum (double y) v d +
I case (double y) of . . . I

I - ' I
I

m<=,Lo xL Succ s" , /
\
\
\
\ case (even x") of . . .

\
\
\
\
\
\
\
\
\
\
I
I
I
I
I
I
I
I
I

I
I

eqnum (Succ (double y')) v'
/ !

case v' of . . , I
/

/

eqnum (double y') V"

Figure A.21: Partial process tree (1) for T[iff (even x) (eqnum (double y) x)]

Node f2: case y of . . .I
I

case y of . . . r--l
W - L y y = ero Y1 ,

r 1 eqnum (double y') V" - - --
\
\
\
\
\
\
\
\
\
\
I
I
I
I
I
I
I

I
I

I
I

I
I

I
I

I
I

I
/

case (Succ (double y")) of . . .
1

I
I

\I\ eqnum (double y") v""

Figure A.22: Partial process tree (2) for 7 [i f (even x) (eqnum (double y) x)]

We obtain expression (18.8) from the subtree rooted at eqnum (double y') v"

within the partial process tree shown in Fig. A.22.

Node f3: case y' of

Zero : case v" of

Zero : True

1 Succ v"' : False

1 Succ y" : case v" of

Zero : False

I SUCC v"' : case v"' of

Zero : False

1 Succ v"" : Repeat f3: eqnum (double y") v""

(18.8)

Expression (18.8) is an instance of expression (18.5) . A repeat node is therefore

created at the occurrence of expression (18 .8) . This results in the partial process

tree shown in Fig. A.23.

Figure A.23: Partial process tree (3) for Tiiff (even x) (eqnum (double y) x)]

The residual program given by expression (18.9) is constructed from the partial

process tree shown in Fig. A.23.

letrec f 2 = Xg.Xv. case y of

Zero : case v of

Zero : f i e
1 Succ u' : False

1 Succ y' : case v of

Zero : Fate

(SUGC 'u' : case v' of

Zem : False

1 Succ 0" : f% y' v"

in f.2 y v

As shown in Fig. A.21, at terminal m, expression (18.10) is encountered.

case (eqmm (double 8) u) of

T h e : Fabe

1 False : True

The partial process tree shown in Fig, A.24 is obtained by transforming expression

(18+10).

During the transformation of expression (18.10), expression (18.11) is encoun-

tered which is an instance of expression (18.10). A repeat node is therefore creatcd

at the occurrence of expression (18.11),

case (qnuna (double y') u") of

! h e : Fabe

) False : l h s e

We obtain expressian (18.12) from the partial process krec shown in Fig. A.24.

4

case (eqnum (double y) v) of I " e : "se, I----- -.
1 False : h e -.

\
\
\
\

\
1
\
\
1
I
1

case (case v of . . .) of . . . case (case v of . . .) of . . . I
1
I
1
t
I
I

I
I

I

case (case (Succ (double I y')) of . . .) of . . .

I.- rT;i,- , \ ,//' ,
case eqnum (double y') V" of . . .

Figure A.24: Partial process tree (4) for T[ig (even x) (eqnum (double y) x)] (Cont.

of Fig. A.21)

Node f2:

case y of

Zero : case u of

Zero : False

1 Succ u' : True

1 Succ y' : case u of

Zero : True

(Succ u' : case u' of

Zero : True

I Succ u" : Repeat f2: case (eqnum (double y') u") of

True : False

I False : True

Expression (18.12) is further transformed. The transformation proceeds as shown

in Fig. A.25.

I t ode f2: case y of . . . (
4

I case w of . . . I

case u of . . . R case u of . . . d-rLucc v'

.I ITruel I ""St: " U1

u' = z&o u' 4 Succ u"

Tucase (eqnum (double y') u") of

True : False

I False : D u e]

Figure A.25: Partial process tree (5) for T[i# (even x) (eqnum (double y) x)]

During this transformation, the transformation sf expression (18.13) is perform4

in a similar way to that of expression (18.10) as shown in Fig. A.24.

case (eqnum (double y') v") of (18.13)

l h s e : Fabe

1 False : 2 h e

During the transformation of expression (18.131, expression (18.14) is encoun-

tered, which is an instance of expression (18.13). A repeat node is therefore created

st the occurrence of expression (18.14).

case (eqnum (dodde y " b v " ") of

l h e : False

(False : h e

Tho transformation of the expression (18.13) therefore results in the following

exprmsion (18.15).

Node f3: (18.15)

case qlt of
Zero : case v" of

Zero : False

I Succ v"' : W e

(Succ y" : case u" of

Zero : *e

I SUCC v" : case wl" of

Zero : Due

1 SUGC vnrr : Repeat f3: case (eqnurn (double 9") v"") of

rlrt le : False

1 False : T h e

Now, expression (18.15) is an instance of expression (18.12). A repeat node is

therefore created at the occurrence of expression (18.15). This results in the partial

process tree which is shown in Fig. A.26.

Node f2: case y of . . .
-9-

- % --.
\
\
\
\ '.. '.

\
\
\
\
\
I
\

Figure A.26: Partial procezs tree (6) for T[i# (even x) (egnum (dozrblc y) x)]

From the partial process tree shown in Pig. A.26, the residual program givcn by

expression (18.16) is constructed.

letrec f 2 = Ay.X.v. case y of (18.16)

Zero : case v of

Zem : False

t Succ v' : h e

1 Succ y' : case v of

Zero : Due

I Succ er' : case v' of

Zem : P u e

I Succ TI1' : f2 p1 vt'

in f2 y u

Thus, the above transformation results in expression (18.17).

Node fl:

case x of

Zero : Ietrec

j 2 - Xy.Xw.case 3 of

Zem : case w of

Zen, : P a e

1 Sum u' : False

I Succ yt : case v of

Zero : False

I SUCC V? case v' of
Zero : False

I sacc v" : f2 1~"'~

in f,? y 'U

1 SUCC 2' : case x' of
Zero : letrec

f 2 = Ay.Xv. case y of
Zem : case u of

Zero : False

I Succ v' : f i e

1 Succ yP : case of

Zem : T h e

I Sum u' : case er' of

Zero ::e

I Succ vl" : f2 y' u"

inf2 8 v

(Succ a" : Repeat fl: case (even XI" of
Due : eqnum (double y) v

1 False : case (eqnum (double y) v) of

T h e : False

1 False : T h e

Expression (18.17) is further transformed. We skip the details of this transfor-

mation. The residual program given by expression (18.18) is constructed from this

transformat ion.

Ietrec
f f = Xx,case x of

Zem : letrec

f2 = Xy.Xv. case y of
Zero : case w of

Zero : h e

1 Succ v' : False

I SUCC g' : case w of

Zem : False
1 Sum V' : case ptE of

Zero : Fahe

1 SUCG O" : f2 yF dl
in j.9 gr v

1 SUCC x' : case x' of

Zew : letrec

f2 = Xy.Xu.case $r of

Zero : case v of
Zem : False

1 Succ v' : hr:

I SUCC y' : case v of

Zem : T h e
I Sacc v' : case u' of

Z m : T h e
1 SUCC v" : f2 y' v"

By substituting back the extracted variable z for v within expression (18.18), and

by transforming the expression resulting from the substitution, the partial process

tree shown in Fig. A.27 is obtained.

From this partial process tree, we construct the residual program shown in

Fig. A.28.

(letrec f2 = . . . in f2 y (Succ(Zero)) I
I,

,& &] k*'
y = ero y = Sqcc y'

Figure A.27: Partial process tree (7) for T[i# (even x) (eqnum (double y) x)]

letrec fl = Ax. case x of

Zero : case y of

Zero : True

1 Succ y' : False

(Succ x' : case x' of

Zero : case y of

Zero : D u e

(Succ y' : Due

1 Succ 2" : fl x"

in fl x

Figure A.28: Residual program for T[iff (even x) (eqnum (double y) x)]

Appendix B

Theorem Proving in Poitin

B.1 Example

Example 19

Consider the following conjecture (19. I), which states that the length of appending

two lists is cqud to the addition of their individual lengths.

ALL zs.ALL ys.eqnum (length (append xs gs)) (p b s (length zs) (length ys))

(19.1)

The following definition of the function length is used along with the defi-

nitions of append, eqnuna and plus as defined in Chapter 2.

length = hxs.case xs of

Nil : Zero

I Oons x xs' : SUCC (length 2s')

The proof of conjecture (19.1) is guided by distillation rule (7 2) (Fig. 4.4). Rule

(7 2) applies distillation to expression (19.2).

eqnum (length (append xs ys)) (plus (length xs) (length ys)) (19.2)

Applying distillation to expression (19.2), we obtain the following distilled ex-

pression (19.3).

letrec

f0 = Xxs. case xs of
Nil : case y$ of

Nil : f i e

(Cons g 3s' : Ietrec

f1 = Xyd. case yar of
Nil : True

[Cans y' y5" : fl ~8''

The proof of the. corresponding proof expression obtained by pre-processing ex-

pression (19.3) proceeds as shown below.

Auletrec

fO = Xzs.Xys.case xs of
Nil : case ys of

Nil : fiue

(Cons y ys' : letrec

f1 = Xys'. case ys' of
Nil : True

I Cons y' ys" : fl ys"

in fl ys'

(Cons x xsl : fO xs' ys

in f0 $3 ysn 0 {XS,YS}

= Aicase xs of

Nil : case ys of

Nil : True

I Cons y ys' : le t rec fl = Xys'. case ys' of

Nil : True

(Cons y' ys" : f1 ys"

in f1 ys'

I Cons x xs' : fO xs' ys] {fO xs ys) {xs, ys)

(by A61
= T[(A[case ys of

Nil : True

(Cons y ys' : le t rec f l = Xys'. case ys' of

Nil : True

I Cons y' ys" : f l ys"

in f l Y ~ ' I {fO xs ysl {xs, ys))

A (AllfO xs' YS] {fO xs YS) {xs,ys, x,xs'))ll 0 0
(by A51

= TU(TU(AUT~U~II i f0 xs Y ~ I {xs, Y ~ I) (by A51
A (A[le t rec f1 = Xys'. case ys' of

Nil : True

I Cons y' ys" : f1 ys"

in f l ys'] {fO xs ys) {xs, Ys, Y, ys')>ll 0 0)
A (AVO xs' ysll {fO xs ys) {xs,ys,x, xs'>>] 0 0

= T[(T[True A (A([case ys' of

Nil : Due

I Cons Y' ys" : f l ys"1 if0 ys,f1 ys') {xs, YS, Y , ys'))ll 00)
A (ADO xs' YS] {fo 3s YS) {xs,~s,x,xs'))R 0 0 (by A2,A6)

= T[(T[True A (T[(A[True] {fO xs ys, fl ys') {xs, ys, y, ys'))

A (~ 1 YSIIIJ {fo xs ~ s , f 1 Y ~ I I {xs, Y ~ , Y , Y ~ ~ , Y ~ , Y ~ ~ I) I o o)n o o)
A (ADO xs' ysn if0 xs ys) {xs, Y s , x, xs'))] 0 0 (by A5)

= T[(T[True A (T[True A True] {) {I)] {) {))
A (AVO xs' YS] {fo xs YS) {xs, YS, 2, xs'))ll 0 0 (by A2,A7)

= T[(T[True A True] {) {)) A (AVO xs' ys] {fO xs ys) {xs, ys, x, xs'))] {) {)

(by 7197')

= T i T r u e A (AVO xs' ys] {fO xs ys) { x s , y s , x , x s '))] {) {) (by TI,?)
= T i T r u e A True] {) {) (by "47)
= True (by

We obtain the truth value True as required. This completes the proof of conjec-

ture (I), and demonstrates that it is a theorem.

