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Abstract 

We present new approaches to prove universally and existentially quantified conjec- 

tures and to construct programs from the resulting proofs. These theorem proving 

and program construction techniques make use of the distillation algorithm to trans- 

form input conjectures into a normalised form which we call distilled form. The proof 

rules are applied to the resulting distilled program. Our theorem proving and pro- 

gram construction techniques have been implemented in a theorem prover which 

we call Poitin. We give an overview of the distillation algorithm, and then present 

the proof and program construction techniques implemented in Poitin. Our imple- 

mentation of the proof and program construction techniques used in Poitin is then 

presented. The soundness of the proof technique is shown with respect to a logical 

proof system using sequent calculus. We show that the constructed programs are 

correct with respect to their specification. 

The main contributions of this thesis can be summarised as follows. First, we 

present fully automatic, and efficient inductive theorem proving techniques. Second, 

we present a novel program construction technique to construct correct programs. 

Third, we have shown how automatic program transformation can be used in a 

novel way in an inductive theorem prover. Finally, the use of distillation to obtain 

a normal form of the input program reduces over-generalization and generation of 

non-theorems. We have implemented the theorem prover and demonstrated it on 

some examples. The use of distillation in the framework of Poitin has eased the 

automation of the proof and program construction techniques in a reduced search 

space to make it fully automatic and efficient. 
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Chapter 1 

Introduction 

1.1 Motivation 

The realization that a powerful theorem prover can provide a key component of many 

"intelligent machines" and the objective and creative attributes of mathematical 

reasoning made mathematicians and computer scientists interested in automated 

theorem proving. The dream of mechanizing mathematical reasoning with computer 

programs has been around since the early stages of electronic computers. 

Mathematical induction is a method to reason about mathematical and compu- 

tational objects containing repetition. Augustus De Morgan defined and introduced 

the term Mathematical Induction in his article Induction (Mathematics) which was 

published in the Penny Cyclopaedia [80]. Though the method of mathematical in- 

duction has been exploited in proofs for several centuries, this was the first formal 

definition. 

Using mathematical induction, by generating a finite number of cases from an 

input formula, the formula can be proved for an infinite number of cases. To prove 

a universally quantified conjecture, the premises of an induction consist of one or 

more base cases, and one or more step cases. For example, to prove a conjecture 

about natural numbers, in the base case, the conclusion of the induction rule will 

be proved for some initial value 0. In the step case, the conclusion is proved for 

Succ(n) assuming that the conjecture is true for a generic natural number n. In this 

way, the theorem is proved for an infinite number of successive values. 

To reason about mathematical objects like natural numbers, data structures like 

lists and trees, recursively defined functions, hardware verification and many more 

aspects in mathematics, properties to be proved are specified as universally and/or 



existentially quantified conjectures. In order to prove that a statement is t r u e  from 

some assumptions using the rules of inference, the proof system is provided with a 

rich knowledge of the domain, which constructs the relevant underlying theory. An 

automatic inductive theorem prover is used to prove these conjectures for an infinite 

number of successive values by performing base and step case proofs. 

Some examples of inductive provers using explicit induction rules are the Boyer- 

Moore theorem prover (NQTHM) [8, 91, ACL2 [62], INKA, AF2, QuodLibet, Oys- 

ter/CLAM [21] and IsaPlanner [37, 381. ACL2 is the re-implementation of NQTHM. 

We henceforth refer to the Boyer-Moore Theorem Prover as BMTP. RRL and SPIKE 

are implicit inductive theorem provers. Two examples of inductive theorem provers 

using program transformation techniques are Poitin [45] and Turchin's theorem 

prover [102]. Alan Bundy and his research group have developed knowledge-based 

theorem proving techniques rippling [13, 23, 15, 181 using explicit induction, and 

proof planning [13, 14, 521 for the automation of inductive reasoning. The details 

of the early and recent developments in automatic theorem proving can be found in 

the Bundy's survey paper [16]. 

Despite significant improvement in this area, automatic inductive reasoning cre- 

ates challenging problems in the search for inductive proofs of some conjectures. In 

explicit induction, an infinite number of induction rules can exist in inductive proofs, 

which cannot be pre-stored. An inductive proof may require an arbitrary lemma to 

be conjectured and proved to complete the proof, or may require generalization 

to be performed. The search for appropriate lemmas and performing appropriate 

generalizations may cause infinite branching points in the search space. The usual 

approach to proving existential theorems is also more problematic. 

Metacomputation 1102, 103, 421 is an alternative to formal logic to prove the 

truth or falsity of logical formulae. Metacomputa t ion  is the task of simulating, an- 

alyzing or transforming programs by means of other programs. In recent work 1451, 

Hamilton has presented a novel theorem proving technique using the distillation pro- 

gram transformation technique [45] to prove inductive theorems fully automatically. 

This technique is similar to that of Turchin's theorem proving technique [103, 1021 

in conjunction with the supercompiler [ lo l l .  We consider a proof system where 

a computer program is a model, and we conjecture that a model-based approach 

reduces the search space usually associated with the axiomatic approach, thus mak- 

ing it easier to automate. By specifying an input conjecture as a program, it is 

possible to transform this to a more efficient equivalent program using automatic 



program transformation techniques, and the proof can be completed on this trans- 

formed program without using any intermediate lemmas. Thus, automatic program 

transformation can be used to aid inductive theorem proving. 

We also propose the use of metacomputation-based formal methods, which lead 

to the development of computer programs from program specifications derived from 

existential theorems. The purpose of program transformation is to develop an equiv- 

alent but correct and efficient program by a sequence of manipulations using a set 

of transformation rules from a possibly inefficient input program. The method of 

program synthesis develops a correct and efficient executable program from an unex- 

ecutable specification describing the behaviour of the expected program, and ensures 

that the developed program meets its specification by verification. Hence, program 

synthesis can be seen as an extreme form of program transformation [85]. 

Program transformation is closely related to inductive theorem proving and pro- 

gram construction. This thesis sets out to use the distillation program transforma- 

tion technique to develop metacomputation-based inductive theorem proving and 

program construction methods. 

1.2 Aims of Thesis 

The aim of this thesis is to design and implement a fully automatic 

metacomputation-based inductive theorem prover which can be used to prove univer- 

sally and existentially quantified conjectures, and to construct programs from input 

program specifications. Poitin is written in Standard ML. To make the user of the 

theorem prover free from the burden of supplying explicit type annotations, we plan 

to implement the current version without any explicit use of type systems. We con- 

sider a higher order functional language with first order quantifiers. The language is 

typed using the Hindley-Milner polymorphic typing system [49, 79, 341. We assume 

programs in the language are well-typed. Though we do not include the Hindley- 

Milner polymorphic type checker within our current version, it is possible to include 

this type checker within our system. As we have explained in the previous section, 

the limitations of inductive inference are major obstacles in the automation of proof, 

which limit the power of a theorem prover. This is also problematic for automatic 

program construction. In this thesis, we tackle these problems by incorporating the 

distillation program transformation algorithm within the inductive theorem proving 

and program construction framework of Poitin. We construct a hierarchy of source 



to source transformations of the input conjectures and program specifications to 

facilitate metacomputation using additional rules for handling quantification. 

We extend the theorem proving technique of Poitin [45] to handle explicit univer- 

sal and existential quantifications to prove explicitly quantified inductive conjectures 

fully automatically. In [45], all free variables of the input conjectures are considered 

implicitly universally quantified, and therefore does not deal with explicit quantifi- 

cation. We have defined distillation rules for quantifiers and the proof rules for 

universal and existential quantifications. We have developed a program construc- 

tion method to construct correct, efficient and executable functional programs from 

the proofs of non-executable input specifications using program construction rules 

in Poitin. 

We present the distillation program transformation algorithm, which is used to 

transform the programs associated with the input conjectures and program spec- 

ifications to obtain output programs which are in normal form. Distillation has 

the effect of removing intermediate data structures from programs, which could 

otherwise cause proof failures. This makes the proof and program construction 

techniques free from the problem of conjecturing intermediate lemmas and reduces 

over-generalization. 

We then present proof techniques to prove inductive conjectures. We define 

distillation rules to deal with quantifiers at the meta-level, and proof rules for uni- 

versal and existential quantification. To prove an inductive conjecture, distillation 

is first applied to the input conjecture. The distilled program is then pre-processed 

to obtain a proof expression to which the proof rules are then applied. 

Finally, we present a constructive approach to constructing programs from in- 

put program specifications. The construction method performs a verification proof 

of the input specification to reject unsatisfiable specifications (i.e., specifications de- 

rived from non-theorems) to ensure that programs are constructed only from correct 

specifications. A distillation rule is defined to handle input specifications, and pro- 

gram construction rules are defined to construct programs from the resulting proof 

expression obtained. 

We have implemented our proposed methods for inductive theorem proving and 

program construction, and added them to the theorem prover Poitin. We demon- 

strate the theorem prover on a number of inductive conjectures, and program spec- 

ifications. 



1.3 Program Transformation 

Program transformation deals with the development of techniques and strategies 

which can be used to transform an inefficient program using a set of meaning preserv- 

ing rules guided by the application of strategies to obtain a more efficient equivalent 

program (faster execution and less storage requirements). 

There are two different approaches to program transformation: the algebraic 

approach and the operational approach. The algebraic approach uses axioms and 

theorems to rewrite expressions to obtain more efficient equivalent expressions. In 

this approach, a new theorem has to be invented to perform a new class of transfor- 

mations. 

The operational approach to program transformation uses a set of meaning pre- 

serving rules to obtain a more efficient equivalent program by generating new recur- 

sion equations. An example of this approach is the unfold/simplify/fold methodology 

of Burstall and Darlington [24]. Unfolding replaces a function call with the function 

body and folding replaces an expression which matches the function body with the 

corresponding function call. New recursive equations are generated by simplifying 

the old ones through the application of a set of meaning preserving rules. 

The use of intermediate data structures in functional programming makes pro- 

grams more readable, but this makes programs inefficient. Burstall and Darlington's 

transformation technique [24] has been extended to more powerful automatic trans- 

formation techniques such as deforestation [104, 1051, supercompilation [loll  and 

distillation [45, 461 to remove intermediate data structures. 

Distillation is more powerful than deforestation and supercompilation; some use- 

ful transformations cannot be performed by these techniques which can be performed 

by distillation [46]. Distillation can produce superlinear improvement in the runtime 

of programs, whereas other techniques can produce only linear improvement. In de- 

forestation and supercompilation, matching is performed on flat terms; functions are 

considered to match if they have the same names. Distillation allows matching of 

recursive terms where different recursive terms are considered to match if they have 

the same recursive structure even though they contain different function names. 

The operational approach of program transformation using distillation is used 

in this thesis to develop our metacomputation-based inductive theorem proving and 

program construction framework. 



1.4 Inductive Theorem Proving 

1.4.1 Mathematical Induction 

Mathematical induction uses induction rules to infer universal statements incremen- 

tally. To evaluate the various capabilities of different inductive theorem proving 

systems, two categories of problems are identified [51]: 

a V-quantified: The category which only uses the universal quantifier and do not 

include any synthesis problems. 

V3-quantified: The category which includes program synthesis problems that 

require proving existentially quantified formulas, and construction of existen- 

tial witnesses. 

Different types of induction can be used to deal with inductive proofs. Two 

approaches for constructing inductive proofs are explicit and implicit induction. 

Explicit induction techniques depend on a semantic ordering while implicit induction 

techniques rely on a syntactic ordering (the one which shows the termination of the 

definitions). 

Explicit Induction 

In explicit induction, induction rules are explicitly incorporated into proofs. One 

such rule is Peano induction for natural numbers (N) of the following form [17]: 

P(O), Vn : nat. (P(n)  + P(Succ(n))) 
Vn : nat.P(n) (1.1) 

In the application of the above induction rule in the proof of the conjecture 

Vn : nat .P(n)  where P is the property to be proved, P(0)  is called the base premise, 

Vn : nat . (P(n)  + P(Succ(n))) is the step premise, P ( n )  is called the induction 

hypothesis, P(Succ(n)) is the induction conclusion, n is the induction variable, and 

Succ(n) is the induction term. 

The one-step induction rule for lists is of the following form: 

A two-step induction rule for natural numbers is given by the following form: 

P(0) , P(Succ(0)) , Vn : nat. (P(n)  + P(Succ(Succ(n)))) 
Vn : nat.P(n) (1.3) 



The two-step induction rule (1.3) is structurally similar to the recursive definition 

of the even predicate which is given below. 

even(0) t) true 

even(Succ(0)) t) false 

even(Succ(Succ(n))) +, even(n) 

This shows the duality relationship between recursive definitions and the form 

of induction rules. This duality relationship allows us to construct new induction 

rules and also to select the proper induction rule to prove the properties of recur- 

sive functions. The success of an inductive proof mainly depends on the selection 

of the induction rule and the induction variable. Most of the inductive theorem 

proving techniques generate customised induction rules from the recursive defini- 

tions appearing in the conjecture to be proved. The recursion schema contributes 

to the corresponding induction schema; e.g., a 2 step recursion schema constructs 

a 2 step induction schema, the schema Succ(Succ(n)) of the even predicate builds 

the induction schema P(Succ(Succ(n))). The patterns in the left hand side of the 

base and recursive equations of the function are used to build the required induction 

schema. According to recursion analysis [8, 9, 15, 19, 971 (§2.3.1), the variable in 

the recursive argument position of a function appearing in a conjecture is selected as 

a potential induction variable. Induction is performed on the structural form of the 

finally selected induction variable using the induction rule suggested by recursion 

analysis. 

Example 1 

Consider the proof of the associativity of addition theorem about natural numbers 

given by conjecture (1) using the recursive definition of the + function using the 

standard rewriting technique [17]. 

'dx : nat.Vy : nat.Vz : nat.x + (y + Z) = (x + y) + z (1) 

The following rewrite rules (i) and (ii) derived from the recursive definition of + 
function, and (iii) derived from the replacement rule for Succ are used in the proof 

of conjecture (1) for the free data type nut [17]. 



O + Y + Y  (9 
Succ(x) + y + Succ(x + y) (ii) 
Succ(x) = Succ(y) + x = y (iii) 

We use the 1-step induction rule (1.1) for nut on x. In the base case, the 

conclusion is proved for x = 0 by the base case premise of the conclusion of rule 

(1.1). The application of the rewrite rule (i) to the base case results in the following 

proof step. 

t- 0 + (y + z) = (0 + y) + z (by base case premise of induction rule (1.1)) 

1 y + z = y + z  (by (i)) 

This can be proved by symbolic evaluation. 

In the step case, the conclusion is proved for x = Succ(x) by the step case 

premise of the conclusion of rule (1.1) assuming the conjecture (1) is true for some 

generic natural number x. Thus, x + (y + z) = (x + y) + z is the induction hypothesis. 

The application of the rewrite rules (ii) and (iii) to the induction conclusion results 

in the following proof steps. 

x + (y + z) = (x + y) + z t- Succ(x) + (y + z) = (Succ(x) + y) + z 

(by step case premise of induction rule (1.1)) 

t Succ(x + (y + z)) = (Succ(x + y)) + z (by (ii)) 

t- Succ(x + (y + z)) = Succ((x + y) + z) (by (ii)) 

k x + ( y + z )  = ( x + y ) + ~  (by (iii)) 

In this state of the proof, a complete copy of the induction hypothesis is found 

in the simplified induction conclusion, and the proof can be easily completed. 

Strong Fertilization 

Strong fertilization is a technique that uses the induction hypothesis to prove the 

induction conclusion. In the step case, a copy of the induction hypothesis is found 

embedded in the induction conclusion, which then can be replaced by the value true 

(T). Let R be the set of rewrite rules, Ind and I H  are the suggested induction rule 

and induction hypothesis respectively. Then, the application of strong fertilization 

in the step case proof can be represented as follows. 

Induction Hypothesis I -  Induction Conclusion 

tR E [Induction Hypothesis] 

~ I H  E[Tl 



E is the context which may be empty or a subterm which is a part of the 

simplified induction conclusion. 

We apply strong fertilization to the simplified induction conclusion in Example 

1 to prove it to be true using the induction hypothesis x + (y + z )  = (x + y) + z. 

This completes the step case proof successfully, which demonstrates that conjecture 

(1) is an inductive theorem. 

Weak Fertilization 

Sometimes the proof attempt gets stuck before obtaining a complete copy of the 

induction hypothesis embedded within the simplified induction conclusion, but a 

part of the induction hypothesis is found embedded within the simplified term. By 

replacing this part of the simplified induction conclusion with the opposite side of the 

induction hypothesis, a simplified goal can be obtained which can be proved easily 

in some cases. This fertilization technique is called weak jertilization [17]. This 

technique is applicable only when the conjecture and the hypothesis are expressed 

as equations, thus allowing the use of the hypothesis as a rewrite rule. In some 

cases, neither strong nor weak fertilization is applicable. In these cases, appropriate 

intermediate lemmas or generalization can help to complete the proof. 

Implicit Induction 

In the implicit induction approach, the induction scheme is not known beforehand. 

Examples of this approach include the cover set method [110, 1111, test  set method 

[6, 51, and rewriting induction method [84]. Each of these methods provides a 

set of terms or pairs(context,term) which is used to replace the induction variable 

depending on the context. This produces a set of new conjectures which can be 

further simplified by using smaller instances of the original conjecture called the 

induction hypothesis. The proof is completed when all newly generated conjectures 

are simplified into known inductive theorems. 

Descente Infinie 

Induction is a very commonly used technique for proving theorems, but it is less 

commonly used in the form of descente infinie, (re)discovered by Pierre de Fermat 

(1606-1665). In this method, for any proof of a conjecture, it is required to show 

for each assumed counterexample of the conjecture, the existence of another coun- 

terexample of the conjecture that is strictly smaller in some well-founded ordering. 



The resulting infinite sequence of "smaller" counter examples contradicts the well- 

founded order requirement, hence original counterexample is invalid. First, the proof 

is started with the initial conjecture, and it is simplified using case analysis. In the 

step case, the induction conclusion is simplified, and, every time it is searched for 

a current goal which is a similar but a different instance of the original conjecture. 

The original conjecture is then applied as the induction hypothesis to prove the in- 

duction conclusion. Finally, it is needed to show the well-founded ordering in which 

all the instances of the original conjecture that have been applied as the induction 

hypotheses are smaller than the original conjecture. 

For example, to prove a property P that is true of all natural numbers N, one 

may demonstrate that if P is not true of an arbitrary natural number n,  then it 

is not true for a smaller number m < n, which can be used to infer an infinite 

decreasing sequence of natural numbers. This can be explained by an inference rule 

of the following form [I I]: 

Vx : na t . ( lP (x )  + (3y : nat.y < x A l P ( y ) ) )  
Vx : nut. P (x )  (1.4) 

specific to nat where < is the reducing well-founded ordering. A formal framework 

has been presented by integrating induction in the form of descente infinie with 

deductive theorem proving system in [109]. 

1.4.2 Limitations of Inductive Inference 

Inductive theories are (i) usually incomplete [43], i.e., there exists true but unprov- 

able formulae and (ii) they do not admit cut elimination, so, arbitrary intermediate 

formulas may need to be proved and then used to prove the current conjecture [69]. 

These two problems introduce infinite branching into the search space. 

The cut rule is required to introduce intermediate lemmas and to perform gen- 

eralizations. Gentzen's cut rule for sequent calculus is of the following form: 

A , r F a  r t A  
r kn (1.5) 

The cut rule allows us to first prove A with the aid of A, and then eliminate A 

by proving it from r where A is the cut formula. In inductive proof, this cut formula 

is the generalized formula or lemma. The use of cut elimination in logical systems 

means that if a proposition has a proof which uses some intermediate proposition 

for that proof, then it has a direct proof with a series of proof rewriting which does 



not require any intermediate proposition. This was shown to be true by Gentzen 

for first order theories [39], but Kreisel has shown that it is not true for inductive 

theories [69]. See [15] for details. 

An unbounded number of induction rules are required to construct and apply 

dynamically, which cannot be pre-stored. Some common problems that arise in 

the search for an inductive proof are induction rule choice, speculating lemmas and 

identifying the need for and performing generalization. 

1.5 Program Synthesis 

Program synthesis deals with the systematic development of an executable program 

from an unexecutable specification describing the behaviour of the program to be 

constructed, and verifying that the constructed program satisfies the specification. 

Synthesis methods need to incorporate techniques which use a constructive approach 

to construct the unknown program/value. The main techniques for program syn- 

thesis are: 

1. Constructive synthesis 

2. Deductive synthesis 

3. Middle-out synthesis 

It is possible to construct recursively defined programs by proving a synthesis 

conjecture of the form b'x : r1 .3y : r2.spec(x, y), where x and y are the input and 

output variables respectively and spec is the formal relationship between x and y 

usually expressed in terms of predicates, relations, and functions. 

Constructive synthesis or proofs-as-programs in functional programming is based 

on the Curry-Howard isomorphism [50] in constructive type theory, e.g., Martin- 

Lof's constructive type theory [77]. The constructive type theories are logics for 

reasoning about functional programs. In the proofs-as-programs concept, the proof 

itself is considered as the program to be extracted. There is a one-to-one relationship 

between a constructive proof of an existence theorem and a program (a function) 

that computes witnesses of the existentially quantified variables. For example, a 

synthesis specification can be expressed in the following form in constructive type 

theory: 

f (x) : ALL x : nat.EX y : nat.(even(x)) t,   double(^) = x) 



The function f (x) can be constructed from the proof of the above specification. 

The constructed function satisfies the specification. The function f (x) will compute 

a witness for y for every x. 

Deductive synthesis can derive executable programs from high level specifica- 

tions by applying inference rules. This synthesis technique usually employs theorem 

proving to synthesise correct programs from specifications. 

The third approach (middle-out reasoning) allows undefined functions in the 

synthesis conjecture [68]. In order to extract the definition of the undefined function 

from the synthesis proof of this conjecture, definition-like subgoals are identified 

during the synthesis proof, and these are converted to program definitions. These 

definitions are then used to complete the proof, and to define the synthesised pro- 

gram. Higher-order unification is used to instantiate the undefined function. 

1.6 Program Transformation and Inductive Theorem 

Proving 

There is a close correspondence between program transformation and inductive the- 

orem proving. 

Recursion and induction can be regarded as duals. The induction in proof corre- 

sponds to the recursion in the program. The unfold/fold transformation technique 

can be used for inductive proof that does not use any explicit induction schema. 

The schema is constructed implicitly by unfolding the recursive definitions of the 

functions. This idea is analogous to the recursion analysis technique employed in 

the Boyer-Moore theorem prover [8]. The given function definitions are utilised to 

prove theorems about them. The recursion present in the definitions corresponds 

to the required induction. Unfolding accomplishes the base case and the induction 

step, and folding roughly corresponds to the application of the induction hypothesis 

[26, 451. 

The unfold/fold program transformation technique proposed by Burstall and 

Darlington [24] uses the associativity or commutat iv i ty  properties of functions as 

laws only when they can make a fold possible. In a diverged inductive proof attempt, 

the information obtained from the divergence pattern can be used to suggest lemmas 

which are used as rewrite rules to overcome this divergence. Usually, the subterm(s) 

of the rewritten conclusion is(are) used to identify lemmas based on some heuristics. 

After conjecturing the lemmas, the initial conjecture can be proved by applying the 



computing the task specified by that proposition. By controlling the proofs, we can 

improve the efficiency of programs extracted from the proof of existential theorems. 

"Proofs and programs are the same thing, and simplifying a proof corresponds to 

executing a program" [106]. 

1.7 Thesis Contributions 

This thesis mainly contributes to the fields of metacomputation-based inductive 

theorem proving and program construction. The primary objective of this thesis is 

to show how automatic program transformation can be used in a novel way in an 

inductive theorem prover. This thesis undertakes the theoretical study as well as the 

practical implementation of the intended inductive theorem proving and program 

construction techniques to deal with explicit quantification using the distillation 

program transformation algorithm. 

We define a higher order functional language with quantifiers to express input 

conjectures and program specifications. We explore the distillation program trans- 

formation algorithm, and apply this algorithm to some example programs. We show 

that the distillation algorithm terminates on all input programs, and that it is cor- 

rect. 

We present fully automatic, and efficient, inductive theorem proving techniques. 

We define distillation rules for universal and existential quantification to deal with 

quantifiers at the meta-level, and define proof rules for proof expressions. We show 

how the distilled form of the program associated with an input conjecture can be 

converted to proof expressions, and show how the proof rules can be used to prove 

them. One big advantage of these proof techniques is that no intermediate lemmas 

are required, which helps to avoid infinite branch points in the search space. The 

existential proof rules perform a pure existence proof of the existential conjecture 

without requiring the construction of any witness to obtain the truth value of the 

conjecture. The inclusion of the distillation algorithm within our proof techniques 

has reduced over-generalization and generation of non-theorems, and allows us to 

prove more theorems than Turchin's theorem prover. We show the soundness of our 

proof techniques with respect to a logical proof system using sequent calculus. 

We present a novel program construction method to construct executable pro- 

grams from input specifications derived from existential theorems. As far we know, 

this is the first time automatic program transformation is used in a program con- 



struction method. We define distillation rules to handle input specifications at  the 

meta-level, and program construction rules for proof expression obtained by dis- 

tillation of the program associated with an input specification. We show that the 

constructed program is correct with respect to the input specification. We give a 

proof of correctness of the program construction method. We also argue that as 

programs are constructed using distillation, they are likely to be more efficient than 

programs constructed using other techniques. 

We have implemented the distillation algorithm, the inductive theorem proving 

and program construction techniques and added them to the theorem prover Poitin. 

The use of distillation within the framework of Poitin has eased the automation of 

the proof and program construction techniques to make Poitin a fully automatic 

and efficient theorem prover. We have presented some results of the application of 

the Poitin theorem prover to inductive theorems and program specifications. The 

main outcome is that the proof techniques of Poitin can be used to prove inductive 

conjectures fully automatically without the need for conjecturing any intermediate 

lemmas. Our program construction techniques can be used to construct totally 

correct programs from input specifications. 

Finally, we give some suggestions for future research. 

1.8 An Overview of Poitin 

A diagrammatic overview of the processes realized in the theorem prover Poitin is 

shown in Figs 1.1 and 1.2. 

( Input conjecture I 
( Distillation 

Proof rules 

JPraofJ 
Figure 1.1: Theorem proving in Poitin 



For universally and existentially quantified conjectures, distillation is applied 

to the input conjecture to obtain a distilled form as shown in Fig. 1.1. A proof 

expression is obtained by pre-processing this distilled expression. The proof rules 

for universal and existential quantifications are then applied to this proof expression 

to obtain the truth value of the conjecture. 

Verification 

Distillation 

Program construction rules 

Constructed program I 

Figure 1.2: Program construction in Poitin 

For program construction, the input specification is verified to check whether it is 

satisfiable or not as shown in Fig. 1.2. If the specification is satisfiable, distillation is 

applied to the input specification to obtain a distilled form. A proof expression is ob- 

tained by pre-processing this distilled expression. Finally, the program construction 

rules are applied to the proof expression to construct a program. 

1.9 Structure of Thesis 

The rest of this thesis is structured as follows: 

Chapter 2: We survey the research carried out in the fields of inductive 

theorem proving and program synthesis. Also, we give an overview of the 

metacomputation-based inductive theorem proving technique using supercom- 

pilation. 

Chapter 3: We give an overview of the novel program transformation tech- 

nique distillation. We explore the details of the distillation algorithm and its 



termination proof. We show how distillation can be used to transform more 

complex input programs which cannot be transformed using supercompilation. 

a Chapter 4: We present proof techniques to prove universally and existentially 

quantified conjectures using the normalized program obtained with the distil- 

lation algorithm presented in Chapter 3. We also give a proof of the soundness 

of these rules. 

Chapter 5: We present program construction techniques for the construction 

of programs from input specifications using the normalized program obtained 

with the distillation algorithm presented in Chapter 3. We then show the 

correctness of the constructed programs with respect to their specification. 

a Chapter 6: We give an overview of the prototype version of Poitin which we 

have implemented using the distillation algorithm, proof and program con- 

struction techniques as presented in the previous chapters, and give some re- 

sults of applying this tool. 

a Chapter 7: We conclude our thesis, and give a summary of the work presented. 

Finally, we give suggestions for future research which can be carried out based 

on the work done so far. 



Chapter 2 

Background 

2.1 Introduction 

This chapter gives an overview of the research carried out in the fields of automatic 

program transformation, inductive theorem proving using explicit induction, pro- 

gram synthesis techniques, and metacomputation-based inductive theorem proving 

using automatic program transformation. We also discuss the limitations of in- 

ductive inference, and existing metacomputation-based inductive theorem proving 

techniques. 

2.2 Program Transformation 

In this section, we give a brief overview of Burstall and Darlington's program trans- 

formation technique and partial evaluation. We also present the supercompilation 

program transformation algorithm based on the presentation in [46] and [95]. 

2.2.1 Language 

In this section, we describe the syntax and semantics of the language which will 

be used throughout this thesis. The language is a simple higher order functional 

language as described in Fig. 2.1. 

The syntax of the language covers all possible forms of expression of a higher 

order functional language using variables, application, and abstraction. A program 

in the language is defined by an expression to be evaluated and a set of definitions 

of the functions exploited in the expression. All of the user defined functions must 

have unique names, and all of the variables in the function body must be bound to 
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Figure 2.1 : Higher order functional language 

the formal arguments of the function. Recursion is introduced at the top level using 

the where construct. The letrec expression is used in the language to allow local 

function definitions which may contain non-local variables. 

The language uses constructs to build and facilitate operations on algebraic data 

structures. An algebraic data type is constructed by combining other data types 

with the help of constructors. For example, the List type is a common example of 

algebraic data type with two constructors: Nil for empty list ([I) with no argument, 

and Cons (::) with two arguments for a non-empty list. 

List T = Nil I Cons T (List 7) 

Cons constructs a non-empty list by combining the head element of type T with 

the tail of the list. 

Each constructor has a fixed arity: Nil and Zero both have arity 0, Cons has 

arity 2, Succ has arity 1. Each constructor application must be saturated in order 

to construct a data structure. The truth values True and False are defined as 

constructors. 

Data structures are decomposed and operated on in the selector of a case ex- 

pression by pattern matching. Within case expressions of the form: 

case eo of pl  : el I . . . I pk : ek 

eo is called the selector, el . . . ek are called the branches, and pl  . . . pk are the patterns. 

The pattern variables of a case expression and A-abstraction argument variables are 



locally bound. Variables with the same name in an outer scope will no longer be in 

scope inside this binding. Within a case expression, patterns are distinct and mutu- 

ally exclusive. The selector expression eo is evaluated to head normal form to match 

with any of the patterns appearing in the alternative branches before selecting any 

of the branch expressions by pattern matching. 

The conditional if eo then el else e2 is represented using a case expression of 

the form case eo of T r u e  : el 1 False : e2. 

The case expression can also be used for decomposing compound data structures. 

For example, a case expression that decomposes a list data structure is of the form: 

case eo of N i l  : el I Cons  x x s  : ea. 

The language is typed using the Hindley-Milner polymorphic typing system [49, 

79, 341, which prevents the forming of any type incorrect expressions. We assume 

programs in the language are well-typed, and the recursive data types are defined as 

algebraic types. The operational semantics of the language is normal order reduction. 

An example of a program in the language is given below, which reverses the list 

x s .  The program consists of the expression reva x s  N i l  and uses the accumulative 

recursive definition of the reverse function. 

reva xs Nil 
where 

reva = Xxs.Xys. case xs of 

Nil : ys 

I Cons x xs' : reva xs' (Cons x ys) 

Figure 2.2: Example of a program 

2.2.2 Unfold/Fold Methodology (Burstall and Darlington) 

Burstall and Darlington's unfold/fold program transformation technique [24] is a 

semiautomatic transformation system, which requires user guidance for supplying 

eureka steps in transforming programs. In this transformation system, the following 

six transformation rules are used to transform an input program defined using first 

order recursion equations. 

1. Definition. This rule introduces new definitions ensuring that the left hand 

side of each new definition is not an instance of the left hand side of an existing 

definition. 



2. Instantiation. Introduce a substitution instance of an  existing definition. 

3. Unfolding. For any two definitions f vl . . . v,  = e and f' vi . . . vk = el, if e' 

contains an occurrence of f vl . . . v,, then this occurrence is replaced by e in 

f ' vi  . . . v; = e' [e l f  vl . . . v,] producing a new definition. 

4. Folding. For any two definitions f vl  . . . v,  = e and f' v i . .  . v; = el, if e' 

contains an occurrence of an instance of e,  then this occurrence is replaced 

by the corresponding instance of f v l  . . . v,  in f '  v i  . . . v; = e' [ f  vl  . . . v,le] 

producing a new definition. 

5. Abstraction. A where clause may be introduced to create a new definition 

from an existing definition f v l  . . . v,  = e by replacing sub-expressions with 

variables ensuring that the new variables do not exist in the source definition: 

f v1 . . . v ,  = e [ x l / e l , .  . . , x,/e,] where ( X I , .  . . , x n )  = ( e l , .  . , en) .  

6. Laws. The associativity or commutativity properties of the primitives are used 

to rewrite the right hand side of a definition to obtain a new definition. 

These rules ensure the partial correctness [65, 88, 901 of the derived program. 

Total correctness of the derived program is achieved by applying transformation 

strategies. Instantiation and unfolding do not alter efficiency in the transformed 

program. Folding at least preserves efficiency when the argument used in substitu- 

tion is lower in some well-founded ordering than that used in the input equation being 

transformed. Improvements is introduced by rewriting lemmas and using abstrac- 

tion. Burstall and Darlington have devised a simple strategy which leads to powerful 

transformations applicable to many example programs. This strategy includes the 

steps which are described by making any necessary definitions, instantiating, for 

each instantiation unfolding repeatedly, trying to apply laws and abstraction, then 

folding repeatedly. 

Consider the unfoldlfold transformation of the term reverse xs using the recur- 

sive definitions of reverse and append as given below 1241. 

1. reverse [] = [I given 

2 , r e v e r s e ( x : : x s ' )  = a p p e n d ( r e v e r s e x s ' ) ( x : : [ ] )  given 

3. append [I ys - - YS given 

4. append ( x  :: xs') ys = x :: (append xs' ys) given 

The associativity of append is given by the following equation: 



append (append xs ys) zs = append xs (append ys zs) 

A new function f is defined by generalizing (x :: 1) to ys. 

5. f xs ys = append (reverse xs) ys definition (eureka) 

6. f n Ys = ys instantiate and unfold 
7, f (x :: xs') ys = append (append (reverse xs') (x :: 1)) ys 

instantiate and unfold 

= f xs' (append (x :: 1) ys) associativity and fold 

8. reverse (x :: xs') = f xs' (x :: 0) fold 2 with 5 

The following program is obtained from the above transformation steps. 

reverse 1 = [I 
reverse (x :: xs') = f zs' (x :: 1) 

f U YS = ys 

f (X :: XS') ys = f xs' (append (x :: 1) ys) 

By using a Redefinition rule, we can obtain a more succinct program 

reverse xs = f xs 1. 

In their program improvement system [24], users were required to supply the 

new equations of any definitions, useful lemmas to use as rewrite rules, information 

about the associativity or commutativity of functions, and the properly instantiated 

definitions. 

2.2.3 Partial Evaluation 

Partial evaluation [56, 551 is a program optimization technique which transforms a 

given program distinguishing between static and dynamic data. It derives a residual 

program based on the static input data, and when the rest of the input, called 

dynamic data is provided, this residual program calculates the whole output as 

would the original program. 

For example, consider a source program p which needs two inputs in1 (static) 

and in2 (dynamic) for its evaluation. If the input data in1 is supplied, the partial 

evaluator will construct a program  pi,^. When the rest of the input in2 is supplied, it 

will produce the same result that would have been produced if in l ,  in2 were supplied 



together [55]. Thus, b] [inl,  in21 = binl] in2. A partial evaluator is a program 

specializer, where the specialization is done by performing those calculations that 

depend on static data, and generating code for those calculations that depend on 

dynamic data. 

Using the definition of append (52.2.2), the partial evaluation of the term 

append (append 1 xs) ys results in the term append xs ys where 1 is the static 

input. The partial evaluation of append (x :: xs) ys results in x :: (append xs ys) 

where the partially static input x :: xs consists of the dynamic input x and xs. 

2.2.4 Supercompilation 

Turchin's supercompiler [101, 1031 is a semantics-based program transformation 

technique defined for the Refal language. The supercompiler is more powerful than 

partial evaluation and deforestation, and it can lead to a very deep structural trans- 

formation of an input program. It supervises the operation of the whole input pro- 

gram, compiles it, and produces a faster program with the same semantic value. The 

supercompiler uses a set of transformation rules which preserve the functional mean- 

ing of the program to perform a step-by-step transformation of the input program. 

The positive supercompiler [94, 95, 421 is a newer version of Turchin's supercompiler 

in a functional language setting. 

Transformation Using Supercompilation 

A residual program is constructed by transforming an input program defined with 

an expression containing free variables and definitions of functions used in the ex- 

pression using supercompilation. The language for which supercompilation is to be 

performed is a simple higher-order functional language defined in $2.2.1. 

The supercompilation rules are defined by identifying the next reducible expres- 

sion (redex) within some evaluation context. An expression which cannot be broken 

down into a redex and a context is called an observable. 

Definition 2.2.1 Redexes, contexts and observables 

Redexes, contexts and observables are defined more formally by the grammar shown 

in Fig. 2.3, where red ranges over redexes, con ranges over contexts and obs ranges 

over observables. We use the notation con(e) to represent an expression which is 

broken down into an evaluation context con and the redex e. 



red ::= 

I 
1 
I 

con ::= 

I 
I 

obs ::= 

1 
I 

f 
(Xv.eo) el 

case (v el. .  . en) of pl : ei ( . . . I pk : ek 

case (c e l . .  . en) of pl : ei I . .  . I pk : e i  

() 
con e 

case con of p~ : el I - I pk : el, 
v el . . .  en 

c e l  ... en 

Xv.e 

Figure 2.3: Grammar of redexes, contexts and observables 

Lemma 2.2.2 Unique decomposition property 

For every expression e, either it must be an observable or it can be decomposed into 

a unique context con and a redex r such that e = con(r). 

Example 2 (Context and Redex) 

For a case expression case (f el . . . en) of pl : e', I . . . 1 pk : e;, the redex is f ,  and 

it must be unfolded to select the appropriate branch of the case expression. The 

context is case (() el . . . en) of pl : ei I . . . ( pk : e;. In a function application, 

f l  (fi x) y, the redex is f l  and the context is () (f2 x) y. So the function f l  must 

be unfolded. 

The central operation in supercompilation is driving. Supercompilation applies 

folding and/or generalization techniques to ensure the termination of driving. 

Driving 

Driving is achieved by normal order reduction of an input program, which may con- 

struct a potentially infinite process tree to represent all of the possible computations 

of the given expression of the input program. 

The rules for normal order reduction are defined by the map N from expres- 

sions to ordered sequences of expressions [el . . . en] as shown in Fig. 2.4. Within 



these rules, the notation e{vl := el,  . . . , vn := en) represents the simultaneous sub- 

stitutions of the sub-expressions e l , .  . . , en for the free occurrences of vl, . . . , v,, 

respectively, within e. 

N[v e l . .  . en] 4 = [el,. . . ,en] 

N[c el . . . en] 4 = [el,. . . ,en] 

N[Xv.e] 4 = [el 

NUcon(f )I 4 = lunfold(con(f)) $1 
NIIcon((Xv.eo) el)] 4 = [con(eo[e1/v])] 

Nl[con(case (v e l . .  .en) of pl  : e i l . .  . lpk : e i  )] $ 

= [v e l . .  . en, con(e:){v e l . .  . en := PI), . . . , con(ei){v el 

N[con(case (c el . . . en) of pl  : ei 1 . . . l pk  : el  )] 4 
= [con(eQ(vl := e l , .  . . ,vn := en))] 

where pi = c v l  . . . vn 

Figure 2.4: Normal order reduction rules 

The function unfold unfolds the function f in its argument expression con(f) as 

follows: 

unfold(con( f )) 4 = con(e) where f is defined by f = e, and (f, e) E 4 

The normal order reduction rules are mutually exclusive and together exhaustive 

by the unique decomposition property. In rule (N6), the pattern information in each 

of the case branches is propagated to the occurrences of the redex variable within 

the corresponding branch expression. This information propagation within the case 

expression is called unification-based information propagation [95]. 

Definition 2.2.3 (Process  t rees)  

A process tree is a directed acyclic graph where each node is labelled with an ex- 

pression, and all edges leaving a node are ordered. One node is chosen as the root 

of the tree, and the original expression is assigned to the root. 

If a node N is labelled with an expression e and N[[e] = [el, . . . , en], then N has 

n child nodes from left to right which are labelled with the expressions e l , .  . . ,en 

respectively. A process tree e + t l ,  . . . , tn is the tree with the root labelled e and n 

children which are the subtrees t l , .  . . , t n  respectively. Within a process tree t ,  for 



any node a, t ( a )  denotes the label of a .  The set of ancestors of a in t is denoted 

by anc(t, a), and t{a := t ')  denotes the tree obtained by replacing the subtree with 

root a in t by the tree t'. 

A process tree is constructed from the transformation of an expression e using 

the following rule: 

71.11 4 = e + T[el] 4 , .  . . , 7[en] 4 where N[e] 4 = [el,. . . ,en] (71)  

Thus, driving is achieved by the application of rule (T I ) ,  which constructs a 

process tree using normal order reduction and unification based information prop- 

agation. The continued application of rule (71)  may construct an infinite process 

tree. 

To construct a residual program, we need to construct a partial process tree 

during the application of rule (71) by creating repeat nodes within the process 

tree t at  the occurrence of an instance p of an ancestor a where t(P) contains a 

recursive call to a function f in the redex. A repeat node corresponds to the fold 

step during transformation. The motivation behind the creation of repeat nodes is 

that the continuous unfolding of a recursive function will lead to non-termination of 

the transformation process if folding is not performed. 

Definition 2.2.4 (Partial process trees) 

A partial process tree is a process tree which contains repeat node(s). A repeat node 

has a dashed edge to an ancestor within the process tree. 

Definition 2.2.5 (Instance) 

An expression e is an instance of another expression el, denoted by e' 4 e, if there 

is a substitution B such that elB = e where B gives the values for the unique free 

variables of el, and = represents the semantic equivalence between two expressions. 

During the construction of a process tree, if the current expression e is an instance 

of the label e' of an ancestor a, then a dashed edge e --+ a is created within the 

process tree representing the occurrence of a repeat node. This process is repeated 

for every occurrence of an instance of the label of an ancestor node, which leads to 

the construction of a partial process tree. Within a partial process tree t', if ,8 is the 

repeat node for a matching ancestor node a, then a is called the function node. The 

possibility of creating a repeat node is only checked when the redex of the current 

expression is a function. 



Example 3 

Consider the transformation of the following program using the driving rule ( 7 1 )  

with repeat nodes. 

append (append xs ys) zs 

where 

append = Xxs.Xys. case xs of 

Nil : ys 

I Cons x zs' : Cons x (append xs' ys) 

This constructs the partial process tree as shown in Fig. 2.5. 

Figure 2.5: Partial process tree for T[append (append xs ys) zs] 

2 7 



The partial process tree in Fig. 2.5 has been simplified for ease of presentation. 

A residual program is extracted from a partial process tree using a set of rules P 

which are defined in Fig. 2.6. Each of the function nodes to which the dashed edge 

points, corresponds to the initial call of a function, and each of the repeat nodes from 

which the dashed edge originates, corresponds to the recursive call of that function 

in the residual program. The body of the function is constructed from the labels of 

the intermediate nodes. 

p [ ( ~  el . en) + t l , .  . tn] = v (Putl]) . . . (Putn]) (P I )  

P[(c el . . . en) + t l ,  . . . , tn] = c (P[tl]) . . . (put,]) (P2) 
P[(Av.e) + t] = Av.(P[tj) (7'3) 

P[[a = (con(f)) -+ t] (P4) 
= le t rec f '  = Xul . . . vn.(P[t]) 

in f' vl . . . v,, if $3 E t .p --+ a and ,B - a{vl := e l , .  . . ,v, := en} 

= Put], otherwise 

PUP = (con( f )) --+ a] = f '  el . . . en (7'5) 
if ,B - a{vl := e l , .  . . ,vn := en} 

Pl[(con((Xv.eo) el)) -+ t] = Put] 0'6) 

P[(con(case (v el . .  .en) of pl : e i l . .  . I pn : e; )) + t o , .  . .  ,t,] (7'7) 

= case (?[to]) of PI : (P[tl]) 1 .  I Pn : (P[tn]) 

P[(con(case (c el . . . en) of pl : e i l . .  . I pn : ek ) )  + t] (P8) 
= Put] 

Figure 2.6: Rules for residual program construction in supercompilation 

Rule (Pl) processes a tree with root labelled with a variable application and 

n subtrees t l ,  . . . , t,. The result of this rule application is a variable application 

where the subtrees tl, . . . , t, are further processed to construct the arguments of the 

variable application. Similarly, rule (P2) processes a tree with root labelled with 

a constructor application with n subtrees t l , .  . . , t n  to construct the constructor 

application. Rule (P3) processes a tree with root labelled with a A-expression with 

a single subtree t. The body of this A-abstraction is obtained by processing the 

subtree t .  



In rule (P4), the root node a of the tree is labelled with an expression con( f )  

which contains the function f  in the redex, and the root is connected with the 

subtree t .  Two situations may arise in the application of rule (P4) to the current 

tree. If there exists a node ,B in t such that ,B --+ a and ,B is an instance of a, 

then the result of processing the current tree is to introduce a local function of 

the form of letrec f = eo in el in the residual program. The constructed letrec 

expression contains the definition of a new function f '  with an initial call f '  vl . . . vn 

where vl . . . vn are the variables in a which are instantiated to give P. The new 

function f '  is parameterised only by those free variables in the function node which 

are instantiated with different values in the repeat node(s) and hence change, so the 

defined local function may contain non-local variables. The definition of this new 

function is obtained by processing the subtree t .  If there is no repeat node for a, 

the result of processing the tree is given by the result of processing the subtree t. 

In rule (P5), a repeat node ,B containing an expression c o n ( f )  is processed, which 

has a dashed edge to an ancestor node a .  As the repeat node ,B is an instance of 

the function node a,  an appropriate recursive call to the function f '  (which was 

made at the occurrence of the function node a by rule (P4)) is introduced in the 

residual program. The parameters el . . . en in the recursive call to f '  correspond to 

the variables vl  . . . v,  of the original call to f  '. 
Rule (P6) processes a tree with root labelled with a A-application with a subtree 

t. An expression contributing to the residual program is constructed by processing 

the subtree t .  Rule (P7) processes a tree with root labelled with an expression 

containing a case expression in the redex where the selector of the case expression is 

a variable application u el . . . en. The root of the tree is connected with the subtrees 

t o , .  . . , tn from left to right. A case expression is constructed to contribute to the 

residual program where the selector variable application is given by processing the 

first subtree to, and the branch terms are constructed by processing the remaining 

subtrees t l ,  . . . , t ,  respectively. Rule (P8) processes a tree with root labelled with 

an expression containing a case expression in the redex where the selector of the 

case expression is a constructor application c el . . . en. An expression is constructed 

to contribute to the residual program by processing the single subtree t which is 

connected with the root. 

According to the folding scheme as described above, during the supercompila- 

tion of the term append (append xs ys) zs, the application of the residual program 

construction rules P to the constructed partial process tree in Fig. 2.5 introduces 



two new function definitions and their corresponding initial calls using two letrec 

expressions in the resulting residual program. The recursive function f 2 is intro- 

duced within the residual program for the function node labelled with append ys' zs 

(Fig. 2.5). The recursive function f 0 is introduced within the residual program for 

the function node labelled with append (append xs ys) zs (Fig. 2.5). The residual 

program which is extracted from the partial process tree in Fig. 2.5 resulting from 

the supercompilation of the term append (append xs ys) zs is shown in Fig. 2.7. 

letrec 

f 0 = Xxs. case xs of 

Nil : case ys of 

Nil : zs 
I Cons y ys' : Cons y ( letrec 

f 2  = Xys'. case ys' of 
Nil : zs 

I Cons y' ys" : Cons y1 (f2 ys") 

in f2 ys') 

I Cons x xs' : Cons z (fO xsl) 

in fO xs 

Figure 2.7: Constructed residual program from the partial process tree in Fig. 2.5 

Termination of Supercompilation 

It cannot be guaranteed that the transformation rules for supercompilation (so far 

as we have presented) will terminate even in the presence of folding for all input pro- 

grams. The user defined functions exploited in the input program to be transformed 

may have divergent properties. These divergent properties will prevent the creation 

of repeat nodes within the process tree, so folding cannot be accomplished. In this 

section, we show how one can obtain termination of supercompilation by performing 

generalization. 

To construct a partial process tree, generalization must be performed through 

the extraction of sub-expressions which cause successively larger expressions to be 

encountered during transformation. The divergence properties which are common 

in functional program transformations are identified in [25, 44, 94, 751. 

Example 4 (Obstructing function call) 

Consider the transformation of the expression reverse xs using the following naive 

definition of the list reversal function using the append function. 



reverse = Xxs. case xs of 

Nil : Nil 

I Cons x xs' : append (reverse xs') (Cons x Ni l )  

The transformation of the expression reverse xs encounters successively larger 

expressions 

reverse as, case (reverse xs') o f . .  ., case (case (reverse xs") o f . .  .) o f . .  . , . . . 
with an accumulating context. The call to reverse prevents the context from being 

reduced, so this function call is an obstructing function call. This will cause the 

non-termination of the transformation process. In supercompilation, the obstructing 

function call reverse xs' is extracted from its surrounding context and is transformed 

separately to avoid non-termination. 

A recursive call to a function f is an obstructing function call if it causes a 

successively larger context in each unfolding. 

Example 5 (Accumulating parameter) 

Consider the transformation of the program given in Fig. 2.2. The transformation of 

the expression reva xs Nil encounters successively larger expressions reva xs Nil ,  

reva xs' (Cons x Ni l ) ,  reva xs" (Cons x' (Cons x N i l ) )  . . . . In each unfolding, 

the recursive call to the reva function accumulates new output in its second para- 

meter generating a successively growing sub-expression in this parameter. So, the 

second parameter in the definition of reva is an accumulating parameter. In super- 

compilation, the accumulating parameter is therefore extracted automatically and 

is transformed separately to avoid non-termination. 

A parameter in a recursively defined function f is an accumulating parameter 

if f accumulates output in this parameter resulting in progressively larger sub- 

expressions in this position on each unfolding of f .  

Example 6 (Accumulating pattern) 

Consider the transformation of the following program. 

plus x x 

where 

plus = Xx.Xy.case x of 

Zero : y  

( succ x' : Succ (plus x' y )  



The transformation of this program encounters successively larger expressions 

plus x x, plus x1 (SUCC X I ) ,  plus x" (SUCC (SUCC x")), . . . . In each unfolding, the sec- 

ond parameter in the recursive call to the plus function accumulates a successively 

larger term by accumulating patterns. This pattern accumulation is caused by the 

unification-based information propagation used in supercompilation. This cannot 

be removed by rewriting as the plus function recurses over its first argument. In 

supercompilation, this problem is avoided by extracting the accumulating variable 

automatically and transforming it separately. 

The transformation of an input program may cause an infinite sequence of trans- 

formation steps even in the presence of folding, if any of the above non-termination 

properties exists within the program. In all of the above cases, each of the expres- 

sions in the divergent sequence embeds a previous expression in the sequence. So, 

we need to detect when the current expression becomes an embedding of a previous 

expression, and generalize accordingly. 

The form of embedding which is used to detect embedding and to perform gen- 

eralization is based on the homeomorphic embedding relation (<I) derived from the 

results of Higman and Kruskal [70, 481. The Higman and Kruskal theorem states 

that in an infinite sequence of terms to,  t l ,  . . ., there definitely exists numbers i ,  j 

such that i < j for which ti t j .  If ti i] tj, then the term ti is fully embedded in a 

larger term t j .  

Theorem 2.2.6 (Higman and Kruskal theorem) If F is  a finite set of function 

symbols, then any infinite sequence t l ,  t2 ,  ... of t erms  in the set T ( F )  of t erms  over 

F contains two terms  ti and tj, where i < j ,  such that ti t j .  

We extend the notion of homeomorphic embedding relation to all of the expres- 

sions of the higher order functional language described in $2.2.1. Homeomorphic 

embedding is also used in term rewrite systems [35], supercompilation [103], posi- 

tive supercompilation [95, 42, 461, and in distillation [45, 461 to obtain termination. 

Definition 2.2.7 (Well-quasi order) 

A well-quasi order on a set of elements S is a reflexive, transitive relation 5, such 

that for any infinite sequence of elements s l ,  s2,. . .from S there are numbers i, j 

with i < j and si 5,  sj. 

Based on this relation, in an infinite sequence of expressions el ,  e2,. . . which may 

be encountered during the transformation of an expression e, there definitely exists 



some terms ei, e j  with i < j and ei <Is ej. So, eventually, an embedding of ei is 

found in ej  and unfolding will not be continued indefinitely. Then generalization(s) 

followed by folding will help to obtain termination. 

A dynamic embedding detection algorithm based on the homeomorphic embed- 

ding relation is devised to monitor diverging sequences of terms during transfor- 

mation of the input program, and generalization is performed to avoid possible 

non-termination. Homeomorphic embedding is defined more formally as follows. 

Definition 2.2.8 (Homeomorphic embedding relation) 

Variable Diving Coupling 
32 E (1.. . n).e <I ei Vi E { I . .  .n}.ei a ei 

x a y  e a  el,... ,en) u (e l , .  . . , en) a u (ei, . . . , e;) 
For variables, a variable x is embedded within another variable y. Diving detects 

embedding of a sub-expression within a larger expression and coupling detects em- 

bedding of all the sub-expressions of two expressions which have the same top-level 

functor. In diving, an expression e is embedded within any of the sub-expressions 

el, . . . , en of a larger expression. In coupling, all of the sub-expressions el ,  . . . , en 

are embedded within the corresponding sub-expressions ei ,  . . . , e; where u is the 

common outermost functor of the two expressions. Some examples of homeomor- 

phic embedding and non-embedding are shown in Fig. 2.8 where e' is the previous 

expression and e is the current expression. 

e' <I e el $ e 

f l  x <I f 2  (fl x') f l  ( f 2  x) $ f l  x 

f i x  a fl (f2x1) f l  ( f 2  2) $ f2 (f l  X) 

f l  ( f 2  4 a fl (f2 (f2 2')) 

fl Y a fl ( f 2  (f2 Y)) 
1 a f l ( f 2 ~ ) ( f 2 2 )  - 

Figure 2.8: Examples and non-examples of homeomorphic embedding 

The form of embedding as shown by the example f l  x a f2 (fl XI)  in Fig. 2.8 

is called strict embedding (a) in [46]. This form of embedding is identified when 

a previous expression e' is found fully embedded in any of the argument ei of an 

expression of the form u(el, . . . , en). A real example of such an embedding is detected 

in the transformation of reverse zs in Example 4. 



We extend the notion of strict embedding to deal with the embedding of case 

expressions, where the selectors of the case expressions are embedded within each 

other. Thus, con(fl x) a con(f2 (fl x')). 

Generalization involves replacing sub-expressions with new variables. The ex- 

pression resulting from the generalization of an expression e is expressed with a let 

expression of the form let vl = e l , .  . . , vn = en in eg to permanently extract the 

sub-expressions e l , .  . . , en from e, which will be transformed separately. The oc- 

currences of the sub-expressions e l , .  . . , en within e are replaced with the variables 

vl, . . . , v, respectively. 

Definition 2.2.9 (Generalization) 

The generalization of two expressions e and e' is a triple (eg, 8, 8'), where 8 and 8' 

are the corresponding substitutions which are used to specialize eg back to e and el, 

respectively, such that e G e,8 and e' = eg8'. The substitutions 8 and 8' give the 

values of the sub-expressions extracted from the expressions e and el, respectively. 

There is a loss of knowledge about an expression due to the extraction of sub- 

expressions in generalization. The most specific generalization causes the least pos- 

sible loss of knowledge. Hence, the most specific generalization is performed in 

supercompilation. If there is more than one ancestor which is embedded within the 

current expression, then the closest ancestor is used to perform the most specific 

generalization. 

Definition 2.2.10 (Most specific generalization (msg)) 

The generalization (eg, 8, 0') of two expressions e and e' is the most specific 

generalization if for every other generalizations (e$, 8", 8"'), eg is an instance of e$. 

The most specific generalization of two expressions e and el, denoted by e n e l ,  

is computed by exhaustively applying the following rewrite rules to the initial triple 

(v, {v : = e) , {v : = el)) as given in [46]. 

(e, {v := 4(el , .  . . ,en))  u 0, {V := 4(ei , .  . . , e;)) U 8') 

4 
(e{v := 4(vl,. . . , v,)), {vl := e l , .  . . , vn := en) U 8, {vl := ei, . . . , v, := e;) U 8') 

(e, {vl := el, v2 := el) U 8, {vl := el', vz := el') U 8') 

4 
(e{vl := v2), {v2 := el) U 8, (212 := el') U 8') 



The first of these rewrite rules is applied to expressions where both of the expres- 

sions have the same outermost functor. This functor is made the outermost functor 

of the generalized expression. The second rule looks for the common sub-expressions 

within an expression, and replaces them with the same variable. The rewrite rules 

are repeatedly applied to the arguments of the functors to obtain the generalized 

expression, and the sets of extracted sub-expressions. Any two expressions el and 

e2 are strictly embedded if and only if el n e2 = con(v).  

Fig. 2.9 shows the most specific generalizations of the embedding examples 

of Fig. 2.8 which cover generalizations of obstructing function calls, accumulating 

patterns and accumulating parameters. 

e' e eg e 6' 

f l  x f 2  ( f l  X I )  v { v : = f 1  x }  { v : = f 2  ( f l  x ' ) )  

f l  x f l  ( f 2  x ' )  f l  v { v  := x }  { v  := f ,  XI}  

f l  ( f 2  5 )  f l  ( f 2  ( f 2  2')) f l  ( f 2  V )  { v  := x} { v  := f 2  2 ' )  

f l  Y f l  ( f 2  ( f 2  Y ) )  f l  v { v  := y}  { v  := f 2  ( f 2  Y)} 
f l X X  f 1 ( f 2 x 1 ) ( f 2 x ' )  f l V V  { v : = x )  { v : = f 2 x 1 )  

Figure 2.9: Examples of most specific generalization 

During supercompilation, if the current expression e is a strict embedding of a 

previously encountered expression e', then the current expression contains an ob- 

structing function call. In this case, the subtree rooted at e is replaced with the 

result of transforming the generalized form of e in which the obstructing function 

call is extracted. If e is a non-strict embedding of el, then the subtree rooted at el 

is replaced with the result of transforming the generalized form of e'. 

Generalization introduces let expressions into the partial process tree. The nor- 

mal order reduction rule and the residual program construction rule for the let 

expression are given by the rules (N8) and (739) as shown in Fig. 2.10. 

In rule ( P 9 ) ,  a tree rooted at a let expression with n + 1 subtrees is processed. 

The expressions obtained by processing the subtrees t l ,  . . . , t ,  are substituted for 

the variables vl , . . . , v,  within the expression obtained by processing the leftmost 

subtree to. 

The extract and abstract operations deal with the generalization of strict and 

non-strict embeddings of expressions respectively, within the process tree. 



Nulet vl = el,  . . . , vn = en i n  e,] r#~ = [eg, e l , .  . . , en] (N8) 

?[(let vl = el,  . . . , vn = en in  e,) + to,. . . , tn] (7'9) 

= (P[to]) { ~ l  := Pit1], . . ., vn := P[tn]} 

Figure 2.10: Rules for let  expression 

In a strict embedding e' Q e, the generalized form of e is obtained by extracting 

the obstructing function call from e using the extract operation. The extraction of 

an obstructing function call e' from an expression e, denoted by e' t e, is defined 

by applying the following rewrite rules to the initial triple (0, el, e). 

I I (con, f el . . . en, f el . . . ek) 

4 
(con, f el . . .  e,,unfold(fl ei . . .  ek)) 

4 
(con, f el . . . en, case eb of pl : eil . . . lpk : ek) 

4 
(case con of pl : e i l . .  . lpk : eL, f e l . .  .en,  e;) 

The generalized form of an expression e resulting from extracting an obstructing 

function call from it is constructed using the following extract operation: 

Definition 2.2.11 (Ext rac t  operat ion)  

extract(el, e) = let  v' = eh in  (e, {v := con(v')))9,, if match(ei, e;) 

= (eg {v := con(e;))) O,, otherwise 

where e' n e = (e,, {v := el) U 8,1, {v := e2) U 8,) 

el t e2 = (con, ei , e;) 

In the above extract function, el a e2 and Bet, 8, give other substitutions for 

most specific generalization of the expressions e' and e respectively, which do not 

involve obstructing function calls. 

If the current expression e is a non-strict embedding of a previously encountered 

expression el, then the generalized form of e' is obtained using the abstract 

operation. 



Definition 2.2.12 (Abstract operation) 

abstract(el, e) = let vl = el,  . . . , v, = en in eg 

where e' f l  e = (eg, {vl := el, . . . , v, := en), 8) 

If the partially constructed process tree t contains a node P = con(f) in which 

the redex is a function, supercompilation checks for the occurrence of a repeat node, 

or else applies unfolding or a generalization operation. The generalization operation 

introduces a generalization node within the process tree, which contains the gen- 

eralized form of an expression. To construct a partial process tree which contains 

repeat nodes and generalization nodes, supercompilation is more formally defined 

as shown in Fig. 2.11. 

T[P] 4 = if t (P) = con (f ) ('7-1) 
then if 3a E anc(t, P).t(a) 4 t(P) 

then t{p := t(P) --+ a)  

else if 3a E anc(t, P).t(a) t(P) 

then if t ( a )  a t(P) 

then t{p := T[extract(t(a), t(@))] 4) 
else t{a := T[abstract(t(a), t(@))] 4) 

else t{D := t(P) + T[unfold(t(P)) 4 )  
else t{P := t(P) + Tiel] 4 , .  . . ,Tien]  4) where h/[e] 4 = [el,. . . , en] 

Figure 2.11: Algorithm of supercompilation 

Example 7 (Generalization of accumulating parameter) 

The supercompilation of the expression reva xs Nil for the program given in Fig. 2.2 

encounters successively larger expressions reva xs Nil, reva xs' (Cons x Nil), 

reva xs" (Cons XI (Cons x Nil)), . . .. This will cause non-termination of the 

transformation process if generalization is not performed. 

We can see that reva xs' (Cons x Nil) is a non-strict embedding of reva xs Nil. 

So, the most specific generalization of reva xs Nil and reva xs' (Cons x Nil) is 

performed to achieve termination of the supercompilation process, which results in 

the triple (reva xs v, {v := Nil), {v := Cons x Nil)). 

Now, the subtree rooted at reva xs Nil is replaced with the result of transforming 

the generalized form let v = Nil in reva xs v. This results in the partial process 

tree which is shown in Fig. 2.12. 



let  v = Nil in reva xs v ( G I )  

case xs of \ 
\ 

I reva XS' (Cons x 21) (R1) I 

Nil : v 

I Cons x xs' : reva xs' (Cons x v )  

Figure 2.12: Partial process tree for Tbreva xs Nil] 

\ 
\ 
\ 

I I 

The partial process tree contains a generalization node ( G I ) ,  a function node 

( F l )  and a repeat node (R1). During the transformation of the function node ( F l ) ,  

the repeat node (R1) is created at the occurrence of the instance reva xs' (Cons x v )  

of the ancestor expression reva xs  v.  

The application of the residual program construction rules 'P to the partial 

process tree shown in Fig. 2.12 introduces a local function fO defined with a le- 

t r e c  expression and the following residual program is constructed from this partial 

process tree. 

letrec fO = Xxs.Xv.case xs of 

Nil : v 

I Cons x xs ' :  fO xs' (Cons x v )  

in fO xs Nil 

2.3 Inductive Theorem Proving 

The proofs of most inductive conjectures have a similar overall structure. To prove 

an inductive conjecture, one needs to select an induction schema, and an induction 

hypothesis for fertilization. The proofs of some conjectures may require intermediate 

lemmas, or a more generalized formula may need to be generated and proved to 

prove the original conjecture. Sometimes, the information obtained from failed proof 

attempts is used productively to give a successful proof of such conjectures. The 

selection of an induction variable, induction term and generation of the induction 

hypothesis are codified as a heuristic to incorporate an induction rule into a proof 



system that has a greater chance of success in finding successful proofs for inductive 

conjectures. Recursion analysis [8] is one such heuristic which is used in explicit 

inductive theorem provers. 

Logic provides a low-level explanation of a mathematical proof by showing the 

proof as a sequence of steps, but a high-level understanding is also needed to explain 

many common observations about the mathematical proofs to complement the low- 

level understanding. It is possible to capture the common structure in proofs by 

collecting similar proofs into families having similar structure [14]. For example, the 

common structures in theorems that require induction to prove them, are classified 

into one family. This common structure is then implemented as an induction heuris- 

tic, and is used to guide the proofs about such theorems. A proof plan represents 

the overall understanding of such a proof. 

2.3.1 Recursion Analysis 

Explicit inductive theorem provers use induction rules to prove inductive theorems. 

Boyer and Moore exploited the recursion-induction duality and implemented a the- 

orem prover using structural induction to prove theorems about recursive LISP 

functions by evaluation and fertilization using the induction hypothesis [7]. BMTP 

[8, 91 uses explicit induction rules to prove inductive theorems. Recursion analysis is 

the process of constructing an appropriate induction rule and suggesting the induc- 

tion variable(s) for a conjecture. Boyer and Moore invented recursion analysis [8] 

to use in BMTP. It was studied and extended by Stevens [97] and Walther [I081 for 

generalizing, combining and refining induction suggestions. We describe recursion 

analysis for the following conjecture using the recursive definition of even ($1.4.1) 

which is adopted from [15]: 

'dx : nat.'dy : nat.even(x) A even(y) ?r even(x + y) 

Recursion analysis works by recursion-induction duality. It analyses each of the 

recursive definitions of the conjecture to be proved to construct an induction 

rule. 

The preliminary analysis outputs n induction suggestions from a conjecture 

consisting of n recursive definitions. Each induction suggestion consists of 

an induction scheme corresponding to the recursion scheme of the function 

analysed and a potential induction variable. The base equations of each 

recursive definition generate the base premises of the induction rule, and the 



recursive equations generate the step premises. Thus, the following induction 

scheme is suggested for the even predicate. 

r k P(0) I? t P(Succ(0)) I?, n' : nat, P (n l )  k P(Succ(Succ(nl))) 
r , n :  nat  t P ( n )  

a BMTP [9] suggests induction based on a measure of the formal parameters of 

the recursive function appearing in the conjecture by inspecting which argu- 

ments are decreasing in the recursive call. The decreasing formal arguments of 

a function are called recursive arguments. This suggests all of the decreasing 

variables of the function definition as candidate induction variables. The non- 

variable arguments are excluded from the recursion analysis process to suggest 

induction even though the formal arguments are decreasing. 

a Once the induction suggestions are obtained, the system tries to merge them 

to accommodate all of the functions. Finally, a suitable induction is chosen 

for the conjecture by using various heuristics. 

The occurrence of a variable in the recursive argument position of a function is 

called unflawed, and the occurrence in the non-recursive argument position is called 

a Jawed occurrence. Only the universally quantified variables which have no flawed 

occurrences are selected as candidate induction variables. 

In the above conjecture, even recurses over its single argument in 2 steps, and + 
is a single-stepping recursively defined function (51.4.1) which recurses over its first 

argument x. The induction suggestions are summarised in Table 2.1. 

Induction variables Functions Schema Recursion term Status 

x even 2 step Succ(Succ(x)) unflawed 

Y even 2 step Succ(Succ(y)) flawed 

x + 1 step Succ(x) subsumed 

Table 2.1: Induction suggestions by recursion analysis 

In the raw induction suggestions, two different induction schemata: a 2-step 

and a 1-step schema are suggested for the variable x for the functions even and 

plus respectively. The 2-step schema subsumes the 1-step induction. As y has a 

flawed occurrence in the term x + y, the induction suggestion is cancelled (as un- 

flawed induction is available). The problem with the flawed occurrences is that if 



such occurrences are substituted in the induction term, these occurrences cannot 

be rewritten in the induction conclusion, which prevents the application of strong 

fertilization. So, recursion analysis suggests the 2-step induction rule and the in- 

duction variable x as the final induction suggestion for the above conjecture. Using 

the final induction suggestion, the base and step cases are formed from the input 

conjecture. The base and recursive equations of the functions are used as rewrite 

rules to rewrite these newly formed goals. 

If all of the available induction variables are flawed, recursion analysis suggests 

all of them as induction variables. In the cases where the required induction cannot 

be suggested from the recursion of the functions appearing in the conjecture, an 

extension of recursion analysis is developed to suggest appropriate induction as 

presented in [19]. Recursion analysis also does not perform well in the presence of 

existential variables [68]. 

2.3.2 Rippling 

Rippling [13, 15, 18, 231 is a powerful proof technique in guiding the search for 

an inductive proof using explicit induction. The rippling technique presented in 

[23] is static as the wave-rules are formed from the function definitions, lemmas, 

and equivalences. It uses meta-level annotations called wave-fronts to indicate the 

mismatch between the induction hypothesis and the induction conclusion in the step 

case. In the step case of an inductive proof, the induction conclusion differs from the 

induction hypothesis in the presence of constructors (i.e., induction terms) and wave- 

fronts. The wave-front represents the induction term, and the wave-hole represents 

the induction variable. For presentation purposes, we use boxes to represent wave- 

fronts, and underlines (-) to represent wave-holes. An annotated term is called 

a wave term. For example, even(doub1 e(l Succ(3) b) is an annotated wave term, 

which is the annotated induction conclusion for the conjecture even(double(n)). 

Within the annotated term, ISuee(,) is the wave-front and n is the wave-hole. 

We use the following terminologies to describe the rippling process. More formal 

definitions of these terminologies are available in 123, 18, 15, 851. 

Wave-fronts contain functions and arrows 4 to indicate the directions of 

movement. The f indicates the outward directed wavefront and 4 indicates the 

inward directed wavefront. Rewriting of the annotated induction conclusion using 

the wave-rules will move the wave-fronts in the indicated direction. 



Definition 2.3.1 (Skeleton) 

The parts of the annotated induction conclusion deleting the wave-fronts and their 

contents, but retaining the contents of the wave-holes are called the skeleton. This 

skeleton will be a renaming of the inductive hypothesis. 

For example, the deletion of the wave-front from the annotated induc- 

tion conclusion even(doub1 e(( Succ(n) 1)) will construct the skeleton even (doubl e(n)) . 
The wave-rules are annotated rewrite rules formed from the step cases of re- 

cursive function definitions, non-recursive definitions, lemmas and equivalences. 

The annotated wave rules are applied successively to rewrite the annotated in- 

duction conclusion while preserving the skeleton, so that a complete copy of the 

induction hypothesis is found embedded within the induction conclusion, which en- 

ables strong fertilization to be performed. A dynamic version of rippling has also 

been developed 1921. Rippling can also apply any of the techniques, such as weak 

fertilization, generalization of the current goal, or discovering lemmas to unblock 

rippling. Rippling has also been extended to handle existential variables for pro- 

gram synthesis in the work on middle-out reasoning [68] from synthesis conjectures 

expressed as existential theorems. 

Rippling is used to help select an appropriate form of induction for a conjecture 

to be proved. Various forms of rippling such as rippling-out, rippling-in, rippling- 

sideways and rippling-across have been embodied in the generalized ripple tactic as 

special cases to extend the range of theorems to be proved. All of these techniques 

are described in 1231. To give an account of how rippling works, we give an overview 

of the rippling-out technique. 

Rippling Out 

Rippling out is a heuristic control technique of step case proofs in mathematical 

induction. In the ripple-out technique, a tactic is used to manipulate the induction 

conclusion using wave-rules, so that a complete copy of the induction hypothesis 

is found embedded within the induction conclusion. Then, using the induction 

hypothesis, the induction conclusion is fertilized, which completes the step case 

proof. 

Consider the proof of the associativity of append for lists of natural numbers, 

which we adopted from [15]. In demonstrating the example, we use the syntax as 

presented in [15]. 



Vxs  : list(nat).Vys : list(nat).Vzs : list(nat).xs <> ( y s  <> 2s) = ( x s  <> ys) <> zs 

Ripple analysis suggests a 1-step list induction on x s .  The induction hypothesis 

is: t <> ( y s  <> z s )  = (t <> ys )  <> z s  where t is any list of type l i s t (na t ) .  

We skip the base case proof here as it is trivial. In the step case, the induction 

conclusion is: 

k [::f <> ( y s  <> 2s )  = ( p z h  <> y s )  <> 2s 

The following wave-rules are used in the step case proof. 

These wave-rules are annotated versions of the recursive definition of <> and 

the replacement rule for :: [15]. Applying wave-rules (2.1) and (2.2) to the annotated 

induction conclusion, we obtain the following proof steps in the step case. 

h :: t <> ( y s  <> xs )  

h :: ( t  <> ys) <> z s  

s<> zs)  = ( t  <> ys) <> zs 

Now, a complete copy of the induction hypothesis is embedded within the simpli- 

fied induction conclusion, and strong fertilization is performed to obtain h = h A T. 

This is simplified to T, which completes the step case proof. 

Ripple Analysis 

Ripple analysis is the rational reconstruction and extension of the heuristics used 

in recursion analysis as implemented in BMTP to select the induction variables 

and schemes [19]. Ripple analysis performs a one-level look-ahead into the rippling 

process to see what induction rules would permit the initial stage of rippling to take 



place [15]. It is observed that the flawed induction variables (as defined by recursion 

analysis) in some conjectures give rise to successful proofs, whereas the unflawed 

ones cause proof failures. 

Ripple analysis uses all of the available wave-rules to suggest induction variables 

and rules. The wave-fronts in these wave-rules suggest the form of induction. This 

allows the use of any function arguments as induction variables provided there is 

a wave-rule in which this argument contains a wave-front. Thus, ripple analysis 

can suggest an appropriate induction even if recursion analysis fails, which allows 

rippling to prove more theorems. 

Termination of Rippling 

The various forms of rippling direct and restrict the search for an inductive proof 

to avoid combinatorial explosion. Rippling moves the wave-front outwards until 

it is "beached". The proof of termination of rippling is based on a well-founded 

measure that decreases when outward directed wave-fronts move towards the root 

of a term, and inward directed wave-fronts move towards the leaves. A termination 

proof for rippling is given in [23, 3, 21. In verification and synthesis problems using 

meta-variables and existential quantifiers, rippling may not terminate [23]. 

Advantages of Rippling 

The main advantages of rippling compared to conventional rewritings are described 

as follows [15]: 

1. The application of the wave-rules to an annotated term based on wave anno- 

tations match is skeleton preserving, and this always terminates. 

2. Rippling provides a useful heuristic guidance in failed proof attempts by sug- 

gesting patches to a partial proof, which help in the selection of lemmas, in- 

duction rule choice and generalization. 

2.3.3 Proof Planning 

The rationale behind proof planning [13, 14, 521 is to guide an inductive theorem 

prover in the search for a proof leading to a probable success, and predicting probable 

failures by making use of explicit plans so that the proof process can be managed 

using different heuristics to obtain a successful proof. A proof plan is an outline or 



the specification of the strategy for controlling a whole proof, or a large part of a 

proof. 

Proof plans can provide a high-level understanding of a proof to ease the process 

of automatic reasoning. Proof plans are constructed to capture the common struc- 

ture in proofs by collecting similar proofs into families having similar structure. 

The search towards a successful inductive proof requires the application of vari- 

ous heuristics in an ordered sequence, for example, induction, symbolic evaluation, 

unfolding, ripple-out, fertilization etc. All of these heuristics can be implemented 

as programs called tactics which will control the application of the rewrite rules to 

control the search for a proof. 

A proof plan is a tree consisting of customised tactics based on the current 

theorem to be proved to direct the search for a proof, which is used to reason about 

the current conjecture, available methods to prove it, and to facilitate the flexible 

application of the plan. 

Components of a Proof Plan 

A proof plan consists of two parts: tactic and method. 

a Tactic: This is a procedure that applies a sequence of rules of inference at the 

object level. High-level tactics are defined by combining lower-level sub-tactics. 

a Method: The specification of a tactic is called a method. It is a frame contain- 

ing information about the preconditions for the attempted application of the 

tactic, and eflects of the successful application of the tactic. 

If the syntactic structure of an input formula matches the preconditions specified 

in the meta-logic of a method, the corresponding tactic will be applicable. 

Tactic Specifications 

A method expresses the specifications of a tactic with a list of slots in the frame. 

Fig. 2.13 lists the basic slots of a method specifying a tactic in general. Each of these 

slots contains a formula in the sorted meta-logic, and shows the syntactic properties 

of the input formula before and after the tactic application. 

Each tactic has its own method to specify itself. The details of the specifications 

of the tactics are beyond the scope of this thesis, and are explained in [13]. 



Slot name Description 

Name Specifies the name of the method and applicable argument 

lists 

Declarations A list of quantifiers, and sort declarations for meta-variables 

global to all the slots except the Tactic slot 

Input A schematic representation of the goal formula before tactic 

application 

Preconditions Conditions expressed in meta-logic, which must hold for the 

tactic to be applicable 

Output A schematic representation of the goal formula after tactic 

application 

Effects Properties written in meta-logic, which the output formula 

must satisfy after the application of the tactic 

Tactic A program which controls the application of the object-level 

rules of inference 

Figure 2.13: Slots of a method 

As an example, the specification for the induction tactic is given in Fig. 2.14 

[13]. The tactic slot gives the definition of a program, induction, which takes the 

input formula, and returns the output formula. Here, forms is the set of all for- 

mulae, wars is the set of all variables over natural numbers, BFm and SFm denote 

formulae formed in the base case, and formulae formed in the step case with proper 

replacements of universal variables (with constructors) in the input formula Fm. 

prim-rec-ind ('v'Y.Fm1, Y) is the application of primitive recursive induction to Fml 

with respect to Y, and replace-all (S, T, Exp) constructs an expression by replacing 

all occurrences of S with T in Exp. 

Use of Proof Plans 

A method is constructed to formalise a proof plan for the current conjecture to 

be proved corresponding to one of the top-level tactics. In the domain of inductive 

theorem proving, proof planning has been implemented in the Oyster-CLAM system 

[20], XCLAM [87] and IsaPlanner [37, 381. In the domain of program synthesis, 

some of the proof planning-based synthesis frameworks are syntheses of functional 

programs by Smaill and Green [91], syntheses of recursive programs by Armando, 

Smaill and Green [I], and middle-out synthesis by Kraan, Basin and Bundy [68]. 



Figure 2.14: Induction method 

Slot name Specificat ion 

Name Induction 

Declarations VX E vars, VFm E forms,  VBFm E forms,  

VSFm E forms 

Input VX.Fm 

Preconditions nil 

Output B F m  A VX(Fm + S F m )  

Effects B F m  = replace-all (X, 0, F m )  A 

S F m  = replace-all (X, Succ(X) , F m )  

Tactic induction(VY.Fm1) = prim-rec-ind(VY.Fm1, Y) 

Advantages 

r 

Proof planning extends the tactic-based theorem proving paradigm through the 

explicit representation of proof strategies which reduces the search control prob- 

lem. Some key benefits of the proof planning approach to the development of proof 

strategies are clarity, modularity, reliability, flexibility, re-usability, and increased 

automation. 

2.3.4 Proof Critics 

An inductive proof often fails because of improper use of induction, lacking appro- 

priate rewrite rules or failing to perform appropriate generalization. To learn from 

failed proof attempts, the standard patterns of proof failure and appropriate patches 

to the failed proof attempts are represented as critics. Several approaches to the 

productive use of proof failures in inductive proofs are described in [52, 53, 107, 541. 

These techniques study the divergence pattern of a failed proof attempt, and auto- 

matically suggest ways to recover from the failure leading to a successful proof. 

Use of Planning Critics 

Ireland has proposed an extension of proof plans by using proof critics to exploit 

partial success or failure in the search for an inductive proof [52]. A critic is a small 

program which identifies problems as well as providing solutions to the problems 

in a failed proof plan. Proof critics are used to capture patchable exceptions to a 

tactic and hence to the basic proof plan. Each critic is associated with a method. 



The failure or partial success of a method activates its associated critics, which is 

determined by the critic preconditions. 

In exploiting partial success in a failed proof plan, Ireland [52] analyses the 

success and failures of the preconditions to identify the causes of failure, for example, 

missing wave rule or missing sink etc. He then uses this information to propose 

proof critics to initiate the search for a lemma corresponding to the missing wave- 

rule or perform online generalization through the introduction of a sink by providing 

appropriate patches. 

The work of Ireland and Bundy [53] is based on the concept of proof critics in 

a proof planning framework. They have presented a novel architecture to automat- 

ically discover eureka steps like refining induction, missing lemmas, generalization 

etc. by systematic analysis of the failure of rippling by using corresponding critics. 

For example, the failure of the inductive proof of Vxs.reverse (as) = reversea (xs, Nil) 

(i.e., reversea is the accumulative version of reverse) because of a lack of proper gen- 

eralization during rippling can be captured as a critic. The solution provided by the 

patch associated with the critic is the generalization of the goal through the intro- 

duction of an accumulator variable into the original conjecture. Using the notion 

of proof critic, Ireland and Bundy have extended the proof critic mechanism for ac- 

cumulator generalization involving multiple sinks [54]. This technique is built upon 

the technique of patching proofs used in [53], but greatly extends its power. 

Divergence Critic 

The divergence critic [I071 is a computer program to monitor the construction of 

inductive proofs to identify diverging proof attempts. It identifies when and how 

the proof attempt is diverging by means of a difference matching procedure. The 

critic then proposes appropriate lemmas and generalizations that guide the proof 

successfully without divergence. In the SPIKE system [66], this critic has been 

implemented and a number of diverging theorems were proved successfully. 

While the proof process is continued, an accumulating term structure may ap- 

pear that causes the divergence. The difference matching technique identifies the 

accumulating term structure causing divergence. Difference matching and rippling 

are both used to propose lemmas that ripple out the accumulating term structure. 

Consider the proof of the following conjecture as illustrated in [107]. 



The following rewrite rules are used in the proof of the above conjecture. 

A 1-step induction for nut is applied on x .  The base case is trivial. In the step 

case, the induction hypothesis is, doubl e ( x )  = x + x ,  and the induction conclusion is, 

double(Succ(x)) = Succ(x) + Succ(x).  Rewriting of the induction conclusion using 

the above rewrite rules, and then fertilizing the left hand side using the induction 

hypothesis results in the proof term Succ(x + x )  = Succ(x) + x .  This equation 

cannot be simplified any further. So, the prover tries to apply another induction on 

x ,  which generates the following diverging sequence: 

Succ(x + x )  = Succ(x) + x 

Succ(Succ(x + 2 ) )  = Succ(Succ(x)) + x 

Succ(Succ(Succ(x + x ) ) )  = Succ(Succ(Succ(x)))  + x 

The cause of this divergence is the lack of the rewrite rule 

Succ(X)  + Y = Succ(X + Y )  

which is needed to remove the Succ function accumulating in the first argument 

position of + in the right hand side. The prover repeatedly performs an induction 

on x ,  but it is unable to simplify. This rewrite rule can be derived from the lemma 

V x  : nat.Vy : nat.Succ(x) + y = Succ(x + y). 

To recognize when a proof attempt is diverging, the critic looks for diverging 

patterns in the proof attempt. It first determines the sequence of equations which 

the prover tries to prove by repeated induction on x as shown above. The critic 

then tries to identify the accumulating and nested term structure which is causing 

divergence by difference matching [I071 of the successive equations of the divergence 

sequence. 

The divergence critic suggests the following wave rule: 

The annotated induction conclusion doubl e(lSuee(g)i) = + 
can be proved without divergence by using the above wave rule along with the wave 

rules that are obtained from the rewrite rules. 



There are some limitations to the divergence critic as pointed out in [107]. Iden- 

tifying divergence is undecidable in general. This critic may identify a divergence 

even if there is none at all, or even if it identifies a divergence correctly, it may not 

be able to suggest appropriate lemmas. 

2.4 Program Synthesis 

A program is often written with respect to a specification, and it is assumed that 

this program will satisfy the specification. Only a formal proof of correctness can 

guarantee that a program meets its specification. A program should be developed 

in such a way that it must behave according to the specification [99]. 

In this section, we present an overview of the research that has been under- 

taken in various program synthesis methods in functional and logic programming 

as declarative programs are easier to analyze and reason about. A survey of proof 

planning based synthesis methods is presented in [86].  A survey of existing work 

on constructive, deductive and inductive synthesis of logic programs is presented 

in [36]. 

2.4.1 Constructive Synthesis 

Classical logic, which is the standard foundation of mathematics, is based on truth 

functional semantics, and allows the law of the excluded middle (A V i A  = T) 

as an axiom. In this semantics, every proposition is either true or false. A proof 

of a proposition asserts the existence of an object without showing how it can be 

constructed. 

In constructive logic, the proof of a proposition has a computational content 

using constructive derivation. The law of the excluded middle is not valid in this 

logic, so, for a general proposition A, A V 1 A  is not provable. The pure existence 

proof of 3y.spec(y) in classical logic is replaced with a constructive proof which 

involves the construction of the object y and showing that the specification spec 

holds for y; the result is a pair (y,p). The proof of Vx.spec(x) is a function taking 

any object x to a proof of spec(x). The constructive proof of Vx.3y.spec(x, y) will 

construct a function f (x) which will compute the witness y in terms of x so that 

Vx.spec(x, f (x)). The function takes a as a value of x to compute a value f (a) 

which satisfies spec(a, f (a)). So, Vx.3y.spec(x, y) is the specification to construct 

the program f (x) which satisfies the specification. 



Types originate from programming languages and propositions from logic. Con- 

structive type theory, based primarily on the work of Martin-Lof [77], is simulta- 

neously a logic and a programming language in which propositions and types are 

analogous based on certain assumptions. The logicians Curry and Howard observed 

the correspondence between proofs and programs: propositions and types are duals 

forming the notion of propositions-as-types which is known as the Curry-Howard 

isomorphism [50, 331. The specification p : P means both that p is of type P and p 

is the proof of the proposition P. 

Curry-Howard isomorphism links typed lambda calculus and constructive logic. 

Using this isomorphism, proofs become terms of lambda calculus. Thus, each proof 

rule of constructive logic has a corresponding program formation rule. In addition to 

these rules, there are also induction rules for inductive data types. These rules are the 

basis of constructive type theory, i.e., a formal system where program development 

and verification are done hand-in-hand. The following are some rules of constructive 

type theory: 

I- A is a type 
AS 

x : A E I '  r , x :  A k e :  B 
t s : A  r l - x : A  (Hyp) r I- ( A s :  A).e: (A + B) (+ I )  

r t e l :  A*  B r k  e2: A r , ~ :  A I-p:  P 
r l- (el e2) : B (" E, F I- (Ax: A).e: (Vx: A) .P  

To synthesise a program p from the specification A + ( B  + A) for types A and 

B such that I- p : A + (B + A), the program is represented with a metavariable. 

The proof rules are applied to the specification from the conclusion to the premises 

of each rule [99, 41. The application of the rule + I twice to the specification results 

in the following steps: 

M is unified with Ax.Ml (x), and MI (x) is unified with Ay. M2(x, y). The application 

of Hyp unifies x :  A with M2(x, y) :  A, instantiating M2(x, y) to x which completes 

the proof. Substitutions result in the synthesised program Xx.Xy.x. 



2.4.2 Deductive Synthesis 

The purpose of deductive program synthesis is to derive an executable program from 

a high level specification by applying correct inference rules. 

Deductive Synthesis of Logic Programs 

Deductive synthesis can deduce logic programs from a specification using some pre- 

defined deduction rules [36]. In order to synthesise a correct program from a spec- 

ification, the deduction strategy involves theorem proving methods. The synthesis 

process starts with a pair (M,Q) where M is a set of axioms, containing the logic 

specification, and Q is the query for which a logic program will be deduced by correct 

inference rules from M. 
The work of Lau et al. for logic program synthesis in [71] is an unfold/fold based 

semi-automatic system. This approach provides a partially correct program. The 

specification is an iff formula, and M is a set of iff formulas. The iff formula is a 

definition. The method employs fold-unfold in a strictly top-down manner. To syn- 

thesise a recursive logic procedure from a given first-order logic specification (with 

definitions in normal form) with a given head of the procedure, head of the required 

implication and form of the required set of recursive calls, they start by defining an 

initial problem called folding problem involving Q. This folding problem is decom- 

posed into subproblems until the subproblems are easily solved. The subsolutions 

are then composed into a solution to the initial fold problem. Unfolding is performed 

only when it contributes to a fold. In this system, the initial fold problem corre- 

sponds to selecting the type of induction, initial unfolding corresponds to induction, 

and the final folding to fertilization. 

Deductive Synthesis of Functional Programs 

A deductive framework to synthesise functional programs using a derivation proof 

method from an input specification, describing the relation between the input and 

output of the desired program, is presented in [73, 741. The framework incorporates 

ideas from resolution and inductive theorem proving for both interactive and auto- 

matic implementation. They adopt classical logic, but restrict it to be constructive 

whenever necessary in a deductive-tableau proof system to extract programs from 

proofs. In this synthesis system, for a given specification of the form f ( a )  + find z 

such that spec(a, z ) ,  a theorem of the form (Va)(3z).spec(a, z) is proved to extract 



a program of the form f ( a )  + t [a]  that meets the specification. The proof is suf- 

ficiently constructive to indicate a computational method to find the output z in 

terms of input a. Thus, the system proves the existence, for any input, of an output 

that satisfies the specified conditions in a background theory. 

2.4.3 Middle-Out Synthesis 

Proof planning can help to guide the search at the meta-level of a synthesis proof by 

making a plan of the object level proof. Synthesis conjectures are expressed using 

existential variables to represent output values, and allow undefined functions in 

the conjecture. This makes the verification proof and synthesis process difficult as 

the required induction cannot be determined. Middle-out reasoning as a part of 

proof planning was first proposed in [22] to solve this problem by postponing the 

selection of induction scheme until late in the proof. Middle-out reasoning represents 

unknown terms that are to be synthesised by meta-variables. It  allows the meta- 

level representation of an object-level term and middle-out reasoning helps proof 

planning to proceed even though an object is not fully known. The meta-variables 

may not always be instantiated properly to correct programs. 

Middle-Out Reasoning in Functional Program Synthesis 

An application of middle-out reasoning with proof planning and rippling to synthe- 

sise functional programs in the context of the formula-as-types principle is presented 

in [91]. A recursive functional program can be synthesised from the inductive proof 

of a specification of the form Vinput.3output.spec(input, output) in constructive type 

theory derived from Constable's Nuprl [31]. A meta-variable is used to stand for 

the existential witness term so that it will be subsequently instantiated to an object 

level-term as the proof progresses. Proof planning is used for induction as the basis 

of the synthesis approach. Rippling is used to manipulate the goal so that an induc- 

tion hypothesis can be applied for fertilization in the step case. In [I], Armando et al. 

present an automatic technique for inductive synthesis of recursive functional pro- 

grams from non-executable input/output specifications of the form Vx.3y.spec(x, y).  

This technique uses proof plans [13] with some extensions and generalizations to 

guide the synthesis process. The work is based on Martin-Lof's constructive type 

theory [77] to achieve total correctness of the synthesised program. In their work us- 

ing middle-out reasoning, meta-variables are used to instantiate unknown programs, 

so the development of a program and its proof is done hand-in-hand. 



Middle-Out Reasoning in Logic Program Synthesis 

In [67] and [68], Kraan et al. extensively used middle-out reasoning to synthesise 

logic programs, and in the selection of an appropriate induction scheme. Synthesis 

is performed by planning the verification of a program while leaving the program 

unknown represented by a meta-variable. In this synthesis planning, the proof steps 

that depend on the program are postponed as long as possible to partially instantiate 

the program. The base case of the synthesis proof allows the instantiation of the 

base case of the program, and the step case of the program is obtained from the step 

case of the proof. 

Recursion analysis [9]/ripple analysis [15, 191 can find induction only if all of 

the functions are defined and required lemmas are available. For example, in the 

following conjecture, even is undefined. Recursion analysis or ripple analysis fails 

to determine the appropriate induction for this conjecture because the induction 

scheme may correspond to the recursion scheme of the undefined function. 

ALL x : nat . (even(x))  H ( E X  y : nat.y x Succ(Succ(Zero)) = x )  

However, middle-out reasoning [22] can find appropriate induction schemes in 

such cases. The selection of induction is postponed in the planning process, and 

a schematic step case is formed by replacing the potential induction variable with 

a constructor represented by a meta-variable applied to this potential induction 

variable in the induction conclusion. Rippling of the schematic step case fully in- 

stantiates the meta-variable with the appropriate induction type after fertilization 

has been performed. 

Kraan et al. identified the possibility of non-termination of the rewriting process 

in middle-out induction in the presence of meta-variables using rippling. They also 

identified that speculative rippling may lead to non-termination in failure branches. 

2.4.4 Inductive Synthesis 

Inductive synthesis uses artificial intelligence techniques to synthesise programs from 

incomplete information, such as examples, by means of inductive inference [36]. The 

purpose of inductive synthesis is to formulate general rules. Inductive inference is 

related to generalization, whereas deductive synthesis is related to specialisation. 

The inductive synthesis of logic programs starts with a logic specification ex- 

pressed with a set of examples, and an intended relation. The synthesised program 



must be consistent with respect to the specification, and must also cover the un- 

specified examples in the case of incomplete specification. 

The inductive synthesis methods are classified as traced-based approaches or 

model-based approaches. The trace-based approach uses folding, matching and gen- 

eralization to synthesise a generalized program containing loops and recursion. The 

trace-based approach has received much attention in the context of functional pro- 

gramming 1931. 

An inductive synthesis method to synthesise recursive functional program from 

input/output examples based on the recurrence-detection method of Summers 1981 

is presented in 1641. 

The model-based approach constructs a finite axiomatisation of a model of the 

examples. Plotkin's idea of least general generalization [82, 831 is the basis of most 

model-based approaches of logic program synthesis. 

2.5 Inductive Theorem Proving Using Program Trans- 

format ion 

Automatic program transformation techniques, such as supercompilation and distil- 

lation, are capable of metacomputation using rules and strategies in metalanguage. 

These techniques can be used in proving inductive theorems. Metacomputa t ion  is 

an alternative to formal logic in automated theorem proving. General propositions 

which require quantification, and proofs using mathematical induction, can be han- 

dled with metacomputation 1103, 42, 411. 

For a given program defined with a term and recursive definitions, it is possible 

to show that the given definitions satisfy the specification described by the term. In 

this section, we give an overview of the use of metacomputation to prove inductive 

theorems using program transformation techniques. 

2.5.1 Metacomputation 

Metacomputation is one level higher than ordinary computation, where programs are 

treated as data objects. For example, program specialization is a metacomputation 

task. The programs which have the capability to perform metacomputation are 

metaprograms. The application of a metaprogram M to a program prog is defined 

as < M prog >. 
A metasys t em is defined as a system which integrates, controls and processes 



other systems as objects. The step from an initial program prog to the application of 

a metaprogram M to an encoded form prog of prog is called a metasys tem transition. 

A multi-level metasystem hierarchy can be obtained by repeated use of metasystem 

transitions. A formal description of metacomputation and metasystem transitions 

is given in [42, 411. 

2.5.2 Partial Evaluation 

In [58], Julia has shown the development of proofs by structural induction about 

program transformations using partial evaluation. The parts of the transformation 

that depend on static data are unfolded, and those parts that depend on the dynamic 

data are residualized and simplified using the induction hypothesis. 

In [58], Julia has used a partial evaluator to automate inductive proof using 

Scheme. She proved the associativity of append theorem by case analysis on the 

input variable x s ,  and simplifying the corresponding base and step cases using the 

definition of the append function with the help of a partial evaluator. 

append (append x s  y s )  zs = append x s  (append y s  xs) 

In the base case proof of the above theorem, the static value [] and in the step 

case proof, the partially static value x :: x s  where both x and x s  are dynamic, were 

used to construct the corresponding cases based on the structure of xs. The sub- 

goals resulting from the substitutions were simplified using Consel's partial evaluator 

Schism. Schism does not unfold an application if all of the arguments are dynamic. 

The details of this proof system is given in [58]. 

2.5.3 Supercompilation 

Metacomputation provides an alternative method of automated theorem proving us- 

ing formal logic. In this paradigm, the computation process can be fully mechanized 

using unfold-fold based program transformation. The ability of the supercompiler 

[loll to perform a deep transformation of the function definitions can be used in the- 

orem proving. To prove that a certain property P holds for all values of x expressed 

by the logical formula V x . P ( x ) ,  we can transform the original definition of P ( x )  

to T r u e  using supercompilation. The use of supercompilation in theorem proving 

presented in this section is based on the work in [102, 81, 94, 42, 411. 



Proving Logical Formulae Using Metasystem Transitions in Conjunction 

with Supercompilation 

Logical formulae which are universally and existentially quantified require, com- 

putationally, a metasystem transition. Let ALL and EX be two functions which 

use the supercompiler to prove universally and existentially quantified conjectures 

respectively. 

To prove a universally quantified formula Vx.prog(x), the following metacompu- 

tation takes place. If the supercompiler constructs a function where all of the exit 

points are Rue, it outputs Rue. Otherwise, it outputs I. 

True, Vx.prog(x) i s  proven < ALL prog(x) >= 
I, Unproved 

To prove an existentially quantified formula 3x.prog(x), the following metacom- 

put ation takes place. The function EX constructs a potentially infinite process tree 

by driving prog using the breadth-first principle. If it finds any R u e  exit point, it 

outputs True. Otherwise, it continually searches until it is stopped. 

True, 3x.prog(x) is proven 
< EX prog(x) >= 

is  stopped, Unproved 

To prove a conjecture Vx.3~.  f x y, the following metasystem transition scheme 

is constructed. 

< ALL . . . . . . . . . . . . . . > 
< E X  . . . .  x . . . .  > 

< f  @ Y >  

In the above scheme, the function EX performs driving of f x y where x is free. 

Then, the function ALL applies supercompilation on the resulting term obtained. 

Example 8 

Consider the proof of the associativity of plus theorem for natural numbers. 

ALL x.ALL y.ALL z.eqnum (plus (plus x y) z )  (plus x (plus y 2)) (8.1) 

The following definition of the function eqnum and the definition of plus as 

defined in $2.2.4 are used to prove the above conjecture. 



eqnum = Xx.Xy. case x of 

Zero : case y of 

Zero : Due 

I Succ y' : False 

I Succ x' : case y of 

Zero : False 

( SUCC y' : eqnurn x' y' 

The supercompiler transforms the body of conjecture (8.1) to obtain the following 

program. 

letrec 

fO = Ax, case x of 
Zero : case y of 

Zero : case z of 

Zero : R u e  

I Succ z' : letrec 

fl = Az'. case z' of 
Zero : D u e  

I Succ z" : fl z" 

in fl z' 

1 Succ y' : letrec 

fl = Xv'. case y' of 
Zero : case z of 

Zero : D u e  
I Succ z' : letrec 

f2 = Xz'. case z' of 

Zero : D u e  
I Succ z" : f2 z" 

in f2 z' 

( Succ y" : fl y" 

in fl y' 

I Succ x' : fO 2' 

in fO x 

By inspecting the above term, we see that all of the exit points from the term 

are True. Turchin requires that all of these functions are total, and thus guaranteed 

to terminate. Supercompilation recognizes that the above term is transformable to 

True. This proves the associativity of plus theorem. 

2.6 Use of Lemmas and Generalization Techniques 

In this section, we discuss how the concept of cut elimination relates to proof and 

program transformation techniques. Also, we briefly consider the use of intermediate 



lemmas and generalization in inductive proofs. 

2.6.1 Cut Elimination 

The inability to generate and prove a well-founded ordering for the non-trivial recur- 

sive data types, and the inability to generate new induction rules based on that or- 

der by computer programs, limits the power of automatic inductive theorem provers. 

The cut rule is therefore required to propose intermediate lemmas and for the gener- 

alization of conjectures ($1.4.2). Gentzen's original formalisation of sequent calculus 

contains the cut rule (Cut(1) in Fig. 2.15). 

Despite strong arguments in favour of the fact that inductive theories do not 

admit cut elimination, some research demonstrates cut elimination (cut-free proof) 

in the presence of induction in first order intuitionistic logic [76, 78, 1001 and also 

in classical logic [lo, 12, 111. Some research [45, 103, 1021 in the field of inductive 

theorem proving in functional programming using metacomputation techniques has 

been carried out that does not make use of any explicit intermediate lemmas, whereas 

some other existing inductive proof techniques need to use explicit lemmas in such 

proofs. 

Simon Marlow's research [75] draws a relationship between the ideas of program 

deforestation and cut elimination. The goal of deforestation is to eliminate the 

intermediate data structures by reducing it to a normal form. Marlow reformulates 

first order deforestation making it similar to the formulation of cut elimination, and 

combined it with the non-recursive cut elimination algorithm. Marlow uses let to 

represent those data structures that will not be removed by deforestation, and cu t  

to represent eliminable data structures. The term form corresponding to the cut 

rule of logic is the cut construct (Cut (2)). 

r , A t a  r k A c u t ( l )  r t - t :  A r , ~ :  A F U :  B 
r k a  I ' F c u t  x = t  in u :  B 

Cut (2) 

Figure 2.15: Cut rule (Cut(1)) and the cut construct (Cut(2)) 

In [30], Cockett argued that Wadler's deforestation technique [I041 and 

Burstall/Darlington's unfold/fold transformation [24] are necessarily shadows of an 

underlying cut elimination procedure, and should be more generally recognized as 

proof techniques. 



2.6.2 Use of Lemmas and Generalization in Induction 

Various heuristics are used to suggest intermediate lemmas and for generalization. 

Rippling [23] uses rich heuristics to conjecture lemmas to design new wave rules to 

unblock rippling, and to generalize goals so that wave rules apply. 

Use of Lemmas in Inductive Proof 

To explain the use of intermediate lemmas in inductive proof, we consider the in- 

ductive proof of the commutativity of addition theorem given by the following con- 

jecture using standard rewriting techniques. The rewrite rules of 51.4.1 are used in 

this proof. 

A L L  x : nat .ALL y : na t . x  + y = y + x 

Both of the variables x and y are universally quantified. The variable x has 

one unflawed and one flawed occurrence, and the variable y also has one unfiawed 

and one Pawed occurrence. Recursion analysis suggests both of them as induction 

variables. However, we use x as the induction variable in this case. We perform a 

1-step induction on x. The induction hypothesis is: x + y = y + x. The base case is 

simplified as follows. 

k 0 + y = y + 0 (by base case premise of induction rule (1.1)) 

k y = y + O  (by rewrite rule (i)) 

To prove the subgoal y = y + 0, we perform 1-step induction on y. We assume 

the induction hypothesis y = y + 0. In the base case, 0 = 0 + 0, which is simplified 

to 0 = 0  by rewrite rule (i). In the step case, the induction conclusion is constructed 

and it is simplified as follows. 

y = y + 0 k Succ(y) = Succ(y) + 0 (by step case premise of 

induction rule (1. I))  

t Succ(y) = Succ(y + 0) (by rewrite rule (ii)) 

k y = y + O  (by rewrite rule (iii)) 

Now, the simplified induction conclusion contains a complete copy of the in- 

duction hypothesis. So, strong fertilization can be performed. This simplifies the 

step case proof of the subgoal y  = y + 0 to T. The simplification of the induction 

conclusion for the original conjecture proceeds as follows. 



x + y = y + x I- Succ(x) + y = y + Succ(x) (by step case premise of 

induction rule (1.1)) 

I- Succ(x + y) = y + Succ(x) (by rewrite rule (ii)) 

The proof is stuck at this point. No further rewriting of this partially simplified 

induction conclusion is possible. This unsolved goal does not suggest any general- 

ization. To simplify this, we need the following rewrite rule: 

y + Succ(x) = Succ(y + x) (iv) 

The right hand side of Succ(x + y) = y + Succ(x) suggests a lemma of the form 

Vy : nat.Vx : nat.y + Succ(x) = Succ(y + x). This lemma is used to derive the 

above rewrite rule which is used to simplify the unsolved goal. Before using this 

rewrite rule, we prove the lemma Vy : nat.Vx : nat.y + Succ(x) = Succ(y + x). 

Recursion analysis suggests a 1-step induction on y. The induction hypothesis is: 

y + Succ(x) = Succ(y + x). The base case is simplified as follows. 

t- 0 + SUCC(X) = Succ(0 + x) (by base case premise of induction rule (1.1)) 

k Succ(x) = Succ(x) (by rewrite rule (i)) 

k x = x  (by rewrite rule (iii)) 

In the step case, the induction conclusion is constructed and it is simplified using 

the rewrite rules (ii) and (iii) as follows. 

y + Succ(x) = Succ(y + x) I- Succ(y) + Succ(x) = Succ(Succ(y) + x) 

k Succ(y + Succ(x)) = SUCC(SUCC(~ + x)) 

k y + Succ(x) = Succ(y + 2) 
Now, the simplified induction conclusion contains a complete copy of the induc- 

tion hypothesis. So, strong fertilization is performed. This simplifies the step case 

proof of the lemma to T. Now, we complete the remaining step case proof of the 

commutativity of addition theorem using the new rewrite rule with the existing set 

of rewrite rules. 

x + y = y + x t Succ(x + y) = y + Succ(x) 

k Succ(x + y) = Succ(y + x) (by rewrite rule (iv)) 

I- x + y = y + x  (by rewrite rule (iii)) 

Now, the induction conclusion contains a complete copy of the induction hy- 

pothesis. By performing strong fertilization, this is simplified to T. This proves the 

theorem. 



Generalization in Inductive Proof 

The need for generalization of a goal is also a consequence of the failure of cut elim- 

ination in inductive theories. To see how generalization helps to achieve a successful 

proof in a diverged proof attempt, consider the proof of the following conjecture 

which is a variant of the associativity of <> theorem using standard rewriting tech- 

niques. We adopt this example from [15]. 

Vxs : l i s t ( ~ ) . x s  <> ( x s  <> xs )  = ( x s  <> xs)  <> xs 

We consider only the step case proof using the following rewrite rules. 

( H : : T ) < > L + H : : ( T < > L )  (i) 

X l : : X 2 = Y l : : Y 2 + X l = Y l A X 2 = Y 2  (ii) 

Recursion analysis suggests a 1-step list induction rule (1.2) on xs ,  though the 

3rd, 5th and 6th occurrences of xs are flawed. The induction hypothesis is: 

In the step case proof, the simplification of the induction conclusion proceeds as 

follows: 

t- ( h  :: t )  <> ( ( h  :: t )  <> ( h  :: t ) )  = ( ( h  :: t )  <> ( h  :: t ) )  <> ( h  :: t )  

t h  :: ( t  <> ( h  :: ( t  <> ( h  :: t ) ) ) )  = ( h  :: (t <> ( h  :: t ) ) )  <> ( h  :: t )  

No further simplification is possible, which causes the proof procedure to fail. 

Only generalizing apart of the 2nd, 3rd, 5th and 6th positions of the original con- 

jecture by introducing a new universally quantified variable ys can help the proof 

to go through. This will generate the new conjecture as given below. 

Vxs : l i s t (~ ) .Vys  : l i s t ( ~ ) . x s  <> (ys  <> ys) = ( x s  <> ys) <> ys 

Now, recursion analysis will suggest a 1-step list induction on xs,  but this time 

it is unflawed, as both of its occurrences are in the recursive argument position of 

the function <>. The above generalized conjecture can be proved successfully using 

strong fertilization. 



2.7 Conclusion 

In this chapter, we have presented the background research on the state of the art 

work in the areas of program transformation, automatic inductive theorem proving 

techniques and strategies, program synthesis, and metacomputation based theorem 

proving using program transformation. We have discussed the limitations of induc- 

tive inference and the use of the cut rule to introduce intermediate lemmas and 

to perform appropriate generalizations while preventing over-generalization, which 

may cause infinite branching points into the search space. 

Burstall and Darlington's unfold/fold program transformation technique is a 

semiautomatic user-guided transformation system. They use associativity or com- 

mutativity properties of primitives as laws when folding is possible to generate ef- 

ficient programs. Supercompilation is more powerful than partial evaluation and 

deforestation. Supercompilation is a fully deterministic transformation algorithm. 

Over-generalization occurs a lot in supercompilation. The unification-based infor- 

mation propagation in supercompilation makes it appropriate for metacomputation- 

based inductive theorem proving. 

Among the various inductive proof techniques, rippling is a powerful knowledge- 

based theorem proving technique using explicit induction. Rippling provides a useful 

heuristic guidance in failed proof attempts in the selection of lemmas, induction rule 

choice and generalization. Ripple analysis can suggest an appropriate induction even 

if Boyer and Moore's recursion analysis fails, which allows rippling to prove more 

theorems. In middle-out synthesis, a meta-variable is instantiated to unknown pro- 

gram when the proof is completed. The rewriting process may not always terminate 

in middle-out induction in the presence of meta-variables using rippling. 

Metacomputation provides an alternative to inductive theorem proving using 

explicit induction. Turchin has shown the use of metasystem transition in theorem 

proving using supercompilation. This technique has not been studied in depth to 

prove existential theorems and in the construction of programs involving different 

data types. The power of a metacomputation-based theorem prover largely depends 

on the program transformation technique incorporated in its proof technique. To 

tackle the challenging problem of removing intermediate structures from programs 

more naturally, the transformation technique must be equipped with strong heuris- 

tics. In Chapter 3, we present the more powerful distillation program transformation 

algorithm [45, 461 for higher order functional programs which can be used for this 

purpose. 



Chapter 3 

Distillation 

3.1 Introduction 

In this chapter, we describe the distillation program transformation technique. Dis- 

tillation [45, 461 is a powerful program transformation algorithm to remove interme- 

diate data structures from higher order functional programs. 

Distillation is more powerful than supercompilation; supercompilation can pro- 

duce only a linear improvement in run-time performance of programs [loll ,  while 

distillation can produce superlinear improvement. In supercompilation, matching is 

performed on flat expressions only; functions are considered to match only if they 

have the same name. In distillation algorithm, matching is also performed on re- 

cursive expressions, which are considered to match if they have the same recursive 

structure even though they may contain different function names. 

Many of the expressions which are extracted using generalization in supercom- 

pilation may actually be intermediate within the resulting generalized expression, 

but will not be transformed away. This will result in an over-generalized expression, 

which is not desirable. In distillation, if an expression has been generalized, then 

this generalization is undone and the extracted sub-expressions are substituted back 

into the expression resulting from the transformation of the remaining generalized 

expression. The resulting residual program is further transformed to try and remove 

these intermediate structures. 

Two different versions of distillation have been proposed by Hamilton. The first 

version [45] is implemented in the framework of the theorem prover Poitin [45]. In 

[45], Hamilton defined the distillation algorithm with a set of 9 transformation rules, 

and has shown its use in inductive theorem proving [45]. 



The version of distillation presented in [46] constructs partial process trees by 

transforming input programs, and constructs residual programs from the resulting 

partial process trees. We present the distillation transformation technique based on 

the presentation in [46]. 

3.2 Program Transformation Using Distillation 

In this section, we give an overview of the distillation algorithm. The language for 

which the transformations are to be performed is a simple higher order functional 

language as described in 52.2.1. 

In our presentation of the distillation algorithm, unlike in [46], we do not sep- 

arately transform the sub-expressions extracted using generalization. The residual 

program therefore contains these extracted sub-expressions in their original form. 

In addition, unlike in [46], rather than constructing a local function using a letrec 

expression from a cycle in the partial process tree, the resulting recursive expres- 

sion is constructed using new Node/Repeat constructs. The construct Node 

f: e [(Repeat f: el)/v] is equivalent to letrec f = Xul . .  . vn.e[(f el . . . e,)/v] in 

f V. . . . vn where {vl . . . v,) = fv(e). 

3.2.1 Folding and Generalization 

Folding is performed when the current expression is an instance of a previously 

encountered expression. In supercompilation, matching is performed on flat terms; 

functions are matched if they have the same name. In distillation, matching is also 

performed on recursive terms; different functions are matched if their corresponding 

recursive definitions also match. If any expression containing a function call or a 

function node in the redex is an instance of a previously encountered expression 

within the partially constructed process tree, then a repeat node is created at the 

occurrence of the current expression. In the case of a successful match for expressions 

containing a function call or a function node in the redex, the original occurrence of 

the expression is replaced by a Node construct, and the re-occurrence is replaced 

by a corresponding Repeat construct. 

A Node expression is the process tree representation of a recursive function, 

and hence it is further transformed in the hope of finding a match with a further 

Node expression. A local function is defined using a letrec expression only when 

the matched expressions are of Node type. In transforming a letrec expression, a 



local function is defined using a letrec expression in the residual program from the 

resulting subtree rooted at a function node a! with a function call in the redex and 

a repeat node which points to the function node. 

Generalization is performed to ensure termination if the current expression is 

an embedding of a previously encountered expression. To perform generalization, 

sub-expressions are extracted from expressions as described in 92.2.4. Special guid- 

ance is needed to control the whole generalization process during transformation. 

In 52.2.4, we have defined two types of embedding: strict and non-strict. If there 

is a strict embedding, the current (embedding) expression is generalized, whereas, 

the previous (embedded) expression is generalized if there is a non-strict embed- 

ding. We extend this non-strict homeomorphic embedding relation and the most 

specific generalization to Node and letrec expressions. In supercompilation, the 

extracted sub-expressions are not transformed away, and therefore the constructed 

residual program contains these intermediate structures. In distillation, the residual 

program constructed from supercompilation is further transformed to try to remove 

these intermediate structures. The extraction of sub-expressions as a result of gen- 

eralization is only made permanent in distillation when the embedding of a recursive 

expression is encountered. Thus, generalization will be performed at most twice for 

each expression; once when the redex is a function and once when the redex is a 

recursive expression. 

3.2.2 Construction of Partial Process Trees 

The output of distillation is a partial process tree from which a residual program can 

be constructed. The distillation algorithm is defined by the rule shown in Fig. 3.1. 

The normal order reduction rules JV are defined in Fig. 2.4. The residual program 

construction rules P (excluding rules (P4) and (7'5)) as defined in Fig. 2.6 are used 

along with the rules of $3.2.3. In this rule, the nodes which contain a function call, 

function node, repeat node, let or a letrec expression in the redex, are handled 

differently than the nodes which do not. 

If the current node p contains an expression in which the redex is a function, 

and this expression is an instance of an expression within an ancestor node a, then 

a repeat node is created. A residual program is constructed from the tree rooted 

at a and this residual program is further transformed to construct a new partial 

process tree. The sub-tree rooted at a is replaced with this partial process tree. If 

the expression contained in the current node P is a strict embedding of an expres- 



T[P] 4 = if t ( P )  = c o n ( f )  ( 7 1 )  
then if 3 a  E anc( t ,p ) . t (a )  I. t ( P )  

t h e n  t { p  := t ( P )  --+ a ) { a  := T[P[a]]  4 )  

else if 3 a  E anc(t ,  P).t(a) t ( P )  
then if t(a) a t ( P )  

then  t { p  := T [ P [ T [ e x t r a c t ( t ( a ) ,  t ( P ) ) ]  +]] 4 )  

else t { a  := T[P[T[abstract(t(a),t(P))] 4 )  

else t {P := t ( P )  + T [ u n f  o ld( t (P))  $1 4 )  

else if t ( P )  = Node f: e 

t h e n  if 3 a  E anc(t ,  P).t(a) 4 t ( P )  

then t { p  := t ( P )  --+ a )  

else if 3 a  E anc(t ,  P).t(a) t ( P )  
then  t { a  := T([abstract(t(a),  t ( P ) ) ]  4 )  

else t { p  := t ( P )  + T [ e ]  4 )  

else if t ( P )  = Repeat  f: e 

then  t{P := T [ e ]  4 )  

else if t ( P )  = con(1etrec f = eo in e j )  

then  t {P  := t ( P )  -, ef -, T[unf o ld (e f )  (4  U { f ,  eo))] 4 )  

else if t ( P )  = let v l  = e l , .  . . , vn = en in  eg 

t h e n  t { p  := t ( P )  + T [ e g ]  4 )  

else t {@ := t ( P )  + T [ e l ]  4,. . . , T [ e n ]  4 )  

where M[t(P)]  4 = [e l ,  . . . , en] 

Figure 3.1: Distillation algorithm 

sion within an ancestor node a, generalization is performed as described in 52.2.4 

using the extract operation. The resulting generalized expression is transformed to 

construct a partial process tree from which a residual program is constructed. The 

extracted sub-expression is substituted back into this program, which is then fur- 

ther transformed to construct a new partial process tree. This partial process tree is 

used to replace the sub-tree rooted at P. If the expression contained in the current 

node p is a non-strict embedding of an expression within an ancestor node a, most 

specific generalization is performed. The generalized form of the expression within 

the node a is obtained using the abstract operation. This generalized expression 

is transformed to construct a partial process tree from which a residual program is 



constructed. The extracted sub-expressions are substituted back into this program, 

which is then further transformed to construct a new partial process tree which is 

used to replace the sub-tree rooted at a .  

If the expression within the current node ,B contains an expression Node  f: e in 

the redex, which is an instance of an expression within an ancestor node a, then a 

repeat node is created. If the current expression is a homeomorphic embedding of 

an expression within an ancestor node a,  most specific generalization is performed. 

However, in this case, generalization is permanent. The partial process tree obtained 

by transforming the resulting generalized expression is used to replace the sub-tree 

rooted at a. Otherwise, the sub-expression e is further transformed. 

If the expression within the current node /3 contains an  expression Repea t  f: e 

in the redex, then the sub-expression e is further transformed. 

If the expression within the current node ,8 contains a le t rec expression in the 

redex, then the function definition is added to 4, and the unfolded function call is 

further transformed. The resulting sub-tree is added to the sub-tree rooted at P 
with the function call as the descendant. 

If the current node ,B contains a let  expression let  vl = e l , .  . . , v, = en in eg, 

then the remaining generalized expression eg is transformed. The resulting sub-tree 

is added to the sub-tree rooted at ,B. 

For any other expression e, the expressions obtained by normal order reduction 

of the expression e are transformed separately, and added as children to the sub-tree 

rooted at e. 

3.2.3 Rules for Residual Program Construction 

The following rules for program construction are re-defined. 

P[a = (con(!)) + t] (P4) 

= Node  f :  (PItl)), if 3P E t.P --+ a and P = a{vl := e l , .  . . , v, := en} 

= p[t], otherwise 

Pup = (con(!)) --+ a] = Repea t  f :  (con(!)) (p5) 

where ,B 5 a{vl := e l , .  . . , v, := en} 

P[(let vl = el,  . . . , v, = en in eg) += t] (7'9) 
= (P[t]) {vl := e l , .  . . , vn := en) 



Rule (P4) processes a tree rooted at a which contains an expression with a 

function in the redex and a sub-tree t .  If there exists a node ,B within the sub-tree 

t such that ,B is an instance of a, then the result of processing the current tree is 

Node  f :  e where e is the expression obtained from the sub-tree t ,  and f is a new 

name for this local definition. Otherwise, the residual program is constructed from 

the sub-tree t. 

In rule (P5),  a repeat node ,B containing an expression in which the redex is a 

function is processed, which has a matching function node a. The result of processing 

the current tree is Repea t  f :  e where f is the function which was introduced for 

the function node and e is the current expression. 

In rule (P9), a tree rooted at a let expression is processed. The sub-expressions 

el ,  . . . , en are substituted for the variables vl, . . . , v, within the expression obtained 

by processing the child sub-tree. 

The partial process tree constructed by distillation may contain Node  expres- 

sions within its nodes. Therefore, in addition to the residual program construction 

rules defined in s2.2.4, the following rules are used to deal with these expressions 

within the partial process tree. 

P[a = (Node  f: e) + t] (p10) 

= letrec f = Xul.. . Vn.P[t] 

in f vl . . . v,, if 3P E t.,B --+ a and p a{vl := el , .  . . , v, := en > 
= Pit], otherwise 

P[,B = (Node  f: e) --+ a] 

= f el . . .  en 

where ,B - a{vl := el ,  . . . , v, := en) 

Rule (P10) processes a tree rooted at a which contains an expression Node  

f: e with sub-tree t. If there exists a node ,B within the sub-tree t such that ,B is 

an instance of a, then the result of processing the current tree is to introduce a 

local function definition into the residual program. The body of the new function 

is constructed from the sub-tree t. Otherwise, no local function is defined, and the 

residual program is constructed from the sub-tree t .  

In rule (Pll), a repeat node p containing an expression Node  f: e is processed, 

which is an instance of an ancestor node a .  In this case, an appropriate recursive 

call to the function f introduced for the ancestor node a is added to the residual 

program. 



The partial process tree constructed by distillation may contain letrec expres- 

sions within its nodes. The following program construction rules are defined to deal 

with these expressions within the partial process tree. 

P [ a  = (con(1etrec f = eo in f e l . .  . en))  + p + t ]  (p12)  
= letrec f '  = Xvl . . . vn.P[t] 

in f '  vl . . . v,, if 3Pf E t .Pf  --+ ,8 and P f  - P{vl := e i ,  . . . , v, := ek) 

= P [ t ] ,  otherwise 

PIP = ( c o n ( f ) )  --+ a] (7'13) 
I = f '  ei . . . en, if ,8 E a{vl := ei,  . . . , v, := ek)  and 

3a' E anc(t, a )  . t(al) = con(1etrec f = eo in f el . . . en) 

Rule (P12) processes a tree rooted at a which contains an expression 

con(1etrec f = eo in f e l . .  . en) with a descendant ,8 and sub-tree t .  If there 

exists a node p' within the sub-tree t such that p' is an instance of p ,  then the re- 

sult of processing the current tree is to introduce a local function definition into the 

residual program. The body of the new function f '  is constructed from the sub-tree 

t. Otherwise, no local function is defined, and the residual program is constructed 

from the sub-tree t. 

In rule (P13), a repeat node /3 containing an expression con( f )  is processed, 

which is an instance of an ancestor node a and the ancestor of a is a letrec expres- 

sion. In this case, an appropriate recursive call to the function f '  introduced for the 

ancestor node a is added to the residual program. 

3.3 Examples 

In this section, we give several examples to show how distillation can be used 

to transform input programs. In the examples, we use simplified partial process 

trees from which nodes which contain expressions of the form con((Xv.eo) e l )  and 

con(case ( c  el . . . en) of . . .) have been omitted for simplicity. We also rename pat- 

tern variables during the transformation of a case expression with a variable in the 

redex. 

Within the partial process trees shown in the following examples, we represent 

some of the leaf nodes with expressions of the form rue] where e is the expression to 

be transformed. We do this to refer to the transformation of an identical expression 

of e that has already been performed. 



The following example does not require any generalization to complete the trans- 

formation, but all other examples require generalization. Examples of accumulating 

patterns, accumulating parameters and obstructing function calls are shown in Ap- 

pendix A.1. Fig. 3.2 shows some of the function definitions which are used along with 

the definitions of the functions append, reverse, plus and eqnum as defined in the 

examples 3, 4, 6 and 8 respectively of Chapter 2 to  transform the input expressions. 

even = Ax. c a s e  x of 

Zero : True 

I Succ x' : c a s e  x' of 

Zero : False 

( Succ x'' : even x" 

doublea = A x . A y . c a s e  x of 

Zero : y 

1 Succ x' : doublea x' (Succ (Succ y ) )  

leg = Ax.Ay, c a s e  x of 
Zero : c a s e  y of 

Zero : Due 

I Succ y' : Due 

I Succ x' : c a s e  y of 

Zero : False 

( SUCC y' : leg x' y' 

Figure 3.2: Function definitions 

Example 9 

Consider the transformation of the following expression (9.1) about natural numbers. 

leq x (plus x y) (9.1) 

During the transformation of expression (9.1), the partial process tree shown in 

Fig. 3.3 is constructed. Within this partial process tree, expression (9.2) is encoun- 

tered, which is an instance of expression (9.1). A repeat node is therefore created 

at the occurrence of expression (9.2). 

leq x' (plus x' y) (9.2) 



case (Succ(p1us x' y)) of . . . 
case y of . . . 

leg x' (plus x' y) 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
1 
\ 

case (plus Zero y) of . . . I  1 case (plus (Succ x') y) of . . . I 

1 
\ 
I 
I 

Figure 3.3: Partial process tree (1) for T[leq x (plus x y)] 

case (case Zero of . . .) of . . . 

Expression (9.3) is constructed from the partial process tree shown in Fig. 3.3. 

(case (Succ x') of . . .) of . . . I 
I 

Node fO: case x of (9.3) 
Zero : case y of 

Zero : True 

( Succ y' : True 

I Succ x' : Repeat fO: leq x' (plus x' y) 

1 I 

Expression (9.3) is further transformed, which results in the partial process tree 

shown in Fig. 3.4. Expression (9.4) is constructed from the partial process tree 

shown in Fig. 3.4. 

case x of (9-4) 

Zero : case y of 

Zero : True 

I Succ y' : Due 

( Succ x' : Node fl: case x' of 

Zero : case y of 

Zero : D u e  

I Succ y' : True 

I Succ x" : Repeat fl: leq x" (plus x" y) 



1 case y of . . . ( 

1 T r u e  1 

\ 
I 

case (plus (Succ x") y )  of . . . I 
I case (plus Z e r o  y)  of . . . I 

J I 
case (case ( S u c c  x") of . . .) of . . . 1 I 

/ case (case Z e r o  of . . .) of . . . / 

1 leg xtl (plus x" y )  I case y of . . . 1 

Figure 3.4: Partial process tree (2) for Ti l eg  x (plus x y ) ]  

We obtain expression (9.5) from the sub-tree rooted at leq x' (plus x' y )  within 

Fig. 3.4. 

Node fl: case x' of (9.5) 

Zero : case y of 

Zero : True 

I Succ y' : True 

( Succ x" : Repeat fl: leg x" (plus x" y )  

Expression (9.5) is an instance of expression (9.3).  A repeat node is therefore 

created at the occurrence of expression (9.5).  This results in the partial process tree 

which is shown in Fig. 3.5. 

We therefore construct the residual program shown in Fig. 3.6 from the partial 

process tree shown in Fig. 3.5. 



Node fO: case x of . . . 
\ 
\ 
\ 
\ 

case x of . . . \ \ 
\ 
\ 
1 

I 

case y of . . . 

Figure 3.5: Partial process tree (3) for T[[ leq  x (plus x y)] 

letrec f 0 = Ax. case x of 

Zero : case y of 

Zero : T r u e  

( Succ y' : True 

( Succ x' : f0 x' 

in fO x 

Figure 3.6: Residual program for T[ l eq  x (plus x y)] 

3.4 Termination of the Distillation Algorithm 

In this section, we give the proof that distillation algorithm always terminates. This 

proof of termination is based on the language-independent framework for proving 

termination of abstract program transformers in [96] in the metric space of trees. 

For a transformer to fit into the framework for termination of abstract trans- 

formers [96], it is sufficient to ensure that: 

1. in the sequence of trees produced by transformation, for any depth d, there 

must be some point from which every two consecutive trees are identical down 

to depth d. 

2. only finite trees are produced. 

We can prove the first property by induction on the depth of the trees produced by 

virtue of the fact that the algorithm does one of the following: 



adds new leaves to a tree which makes consecutive trees identical at an in- 

creasing depth. 

replaces a sub-tree with a node whose label is a let expression. Each node 

can be generalized at most twice in this way: once when the label is a flat 

expression, and once when the label is a recursive expression. 

The second property is ensured by the fact that in every process tree: 

the node that contains a let expression has children which are sub-expressions 

of the let expression. So, within a path which consists only of let expressions, 

the size of the nodes strictly decreases. 

a all other nodes are not allowed to homeomorphically embed an ancestor. 

Now, we give the details of the termination proof of distillation based on the 

termination proof of an abstract program transformer in the metric space of trees 

as presented in [96]. We recommend the interested readers to see [96] for the details 

of an abstract program transformer and metric space of trees. 

We consider an abstract program transformer M on a set E .  Let t be a tree over 

E. The elements of dom(t) are called nodes of t. The empty string E is the root, 

and for any node a in t ,  the nodes ai of t (if any) are the children of a and a is 

the parent of these nodes. leaf(t) denotes the set of all leafs in t. Also, t is finite, if 

dom(t) is finite and t is singleton if dom(t) = {E). Two expressions el and e2 are 

incommensurable, el e2, if el n e2 is a variable. 

T,(E) is the set of all trees over E and T(E)  is the set of all finite trees over E. 

Let EH(V) be the set of expressions over symbols H and variables V. 

An abstract program transformer on E is a map M : T(E) + T(E) .  No more 

transformation steps will happen when M(t)  = t. M on E terminates on t E T(E)  

if ~ ~ ( t )  = ~ ~ + l ( t )  for some i E N (for f : A + A, f '(a) = a, fisl(a) = f i(f (a))). 

M on E terminates if M terminates on all singletons t E T(E) .  

Let M : T(E)  + T ( E )  be an abstract program transformer on E and p : 

T,(E) + IB be a predicate. M maintains p if, for every singleton t E T(E) and 

i E N, p ( ~ i ( t ) )  = 1. A predicate p : T,(E) + B is finitary if ~ ( t )  = 0 for all 

infinite t E T,(E). An abstract program transformer M on E is Cauchy if, for 

every singleton t E T, (E)  , the sequence t ,  M (t), M 2  (t), . . . is a Cauchy sequence. 

Let M : T ( E )  + T ( E )  maintain predicate p : T,(E) + B. If 



1. M is Cauchy, and 

2. p is finitary and continuous, 

then M terminates. 

The condition that M be Cauchy guarantees that only finitely many general- 

ization steps will happen at a given node, and the condition that p be finitary and 

continuous guarantees that only finitely many unfolding steps will be used to expand 

the transformation tree. An abstract program transformer is Cauchy if it always ei- 

ther adds some new children to a leaf node by unfolding, or replaces a subtree by a 

new tree whose root label is strictly smaller than the label of the root of the former 

subtree by generalize operation. 

Now, we prove that distillation MD terminates. We do this by proving that MD 

is Cauchy and that MD maintains a finitary, continuous predicate. We first prove 

that MD is Cauchy by using the following proposition: 

Proposition 3.4.1 

Let (E, 5)  be a well-founded quasi order and M : T (E) + T (E) an abstract program 

transformer such that, for all t, M(t)  = t{y := t') for some y, t' where 

1. y E leaf(t) and t(y) = t ' ( ~ )  (unfold); or 

2. t(y) > t ' ( ~ )  (generalize). 

then MD is Cauchy. 

The following shows that a Cauchy transformer terminates if it never introduces 

a node whose label is larger than an ancestor's label with respect to some well-quasi 

order. 

Proposition 3.4.2 

Let (E, 5)  be a well-quasi order. Then a finitary predicate p : T,(E) + B, 

0 if 3a,  a i p  E dom(t) : t ( a )  5 t (a@) 
PO> = 

1 otherwise 

is finitary and continuous. 

The following shows that a Cauchy transformer terminates if it never introduces 

a node whose label is not smaller than its immediate ancestor's label with respect 

to some well-founded quasi order. 



Proposition 3.4.3 

Let (E, 5)  be a well-founded quasi order. Then a finitary predicate p : T,(E) + B, 

(1 otherwise 

is finitary and continuous. 

MD always either unfolds of an expression or replaces a subtree by a new leaf 

whose label is strictly smaller than the expression in the root of the former subtree. 

Proposition 3.4.4 

MD is Cauchy. 

Proof. We define the relation > on the set C of let expressions by: 

let v i  = e i , .  . . , v k  = e& in e + let vl = e l , .  . . ,vn = en in e u m = 0 & n >_ 0 

where > is a well-founded quasi order. 

We show that for any t E T ( L ) ,  MD( t )  = t { y  := t '} where for some y E dom(t) 

and t' E T,(C), either y E leaf(t) and t ( y )  = t l (&) ,  or t ( y )  + tl(&). We proceed by 

case analysis of the operation performed by MD. 

1. M D ( t )  = 7 ( y )  = t { y  := t ' ) ,  where y E leaf(t) and, for the expressions 

e l , .  . . ,en, t' = t ( y )  + e l , .  . . , en. Then t ( y )  = t l (&) .  

2. M D ( t )  = abstract(t(y), t (a) )  = t { y  := let vl = e l ,  . . . , vn = en in e +), where 

a E anc(t, y ) ,  t ( a )  # t ( y ) ,  t ( a ) ,  t ( y )  E E are both non-trivial, t ( a )  5. t ( y ) ,  

e = t ( a ) n t ( y ) ,  and t ( y )  = e{vl := e l , . . . , v n  := en). Then, e = t(a) and 

t ( y )  = t (a){v l  := el ,... ,vn := en), but t ( y )  # t ( a ) ,  so n > 0. Thus, t ( y )  > 
let vl = e l , .  . . , v, = en in e = tl(&). 

3. MD (t)  = abstract(t(y), t ( P ) )  = t { y  := let vl = e l ,  . . . , vn = en in e +), where 

y E anc(t, P ) ,  t ( P ) ,  t ( y )  are both non-trivial, t ( y )  $- t (P ) ,  e = t ( y )  Il t ( P ) ,  

and t ( y )  = e{vl := e l , .  . . , vn := en). Then, t ( y )  # e, but t ( y )  = e{vl := 

e l , .  . . , v, := en), so n > 0. Thus, t ( y )  t let vl = e l , .  . . , v, = en in e = t l (&) .  

4. M D ( t )  = extract( t (a) , t (y))  = t { y  := let v = eo in e(v)  +}, where a E 

anc(t, y ) ,  t (a) ,  t ( P )  are non-trivial, t ( a )  9 t ( y ) ,  t ( a )  t) t ( y ) ,  and also t ( y )  = 

e(eo).  Here n > 0: if n = 0, then t ( y )  = e ( ) ,  but then t(a) tt, t ( P ) .  Thus, 

t ( y )  = e(eo) + let v = eo in e(v)  = t1(&).  



This concludes the proof. 

Proposi t ion 3.4.5 

MD maintains a finitary, continuous predicate. 

Proof.  We define S[m] : E -+ N by 

21 

c el ... en 

Xv.e 

f 
eo el 

case eo of pl : el I ... I pk : ek 

let v l  = el ,  . . . , v, = en i n  eo 

le trec f = eo i n  el 

Node  f: e 

Repea t  f: e 

We define 1 : 13 + & by 

l(1et v l  = e l ,  . . . , vn = en in  eo) = eo{vl := e l , .  . . , vn := e,) for n 2 0. 

We define 2 on L by: 

c 7 el S[l(e)] > sgl(el)] or, s[l(e)] = S[i(el)] & i(e) 2 i(tl) 

We consider is a well-founded quasi order. Consider the predicate q : T,(!) + 
B defined by q( t )  = p(tO) where p : T, (!) + B is defined by: 

0 if 30, a$ E dom(t) : t (a) ,  t(aiP) are non-trivial & t ( a )  g t (aiP) 

0 if 30, a i  E dom(t) : t(cu), t (a i)  are non-trivial & t (a)  t (ai)  

1 otherwise 

The sets of non-trivial and trivial expressions constitute a partition of 13. Also, 

9 is a well-quasi order on the set of non-trivial expressions (i.e., on all of E) and 

E is a well-founded quasi order on the set of trivial expressions (i.e., on all of L). 
It follows by proposition 3.4.6 that p is finitary and continuous, and by proposition 

3.4.7 that q is also finitary and continuous. 

The following shows that one can combine well-quasi orders and well-founded 

quasi orders in a partition. 



Proposition 3.4.6 

Let (El, E2) be a partition of E and let be a well-quasi order on El and s2 be 

a well-founded quasi order on E2. Then p : Tw (E) + B, 

0 if 3a ,  a i p  E dom(t) : t(a),  t(aiP) E El & t ( a )  51 t(aiP) 

0 if 3a, a i  E dom(t) : t (a ) ,  t(ai)  E E2 & t ( a )  #2 t(ai)  

1 otherwise 

is finitary and continuous. 

The following shows that it suffices to apply a finitary and continuous predicate 

to the interior part of a tree. For t E T,(E), we define the interior to E Tw(E) o f t  

by: 

dom(tO) = (dom(t) \ leaf(t)) U { E }  

tO(y) = t(y) for all y E dom(tO) 

Proposition 3.4.7 

Let p : T,(E) + B be finitary and continuous. Then also the map q : T,(E) + B 
defined by q(t) = p(tO) is finitary and continuous. 

Now, one can replace in the proposition e0 by any continuous map which maps 

infinite trees to infinite trees. 

It  remains to show that MD maintains q, i.e., that q ( ~ h ( t o ) )  = 1 for any 

singleton to E T,(C). Given any t E T,(C) and p E dom(t), we say that ,B is good 

in t if the following conditions both hold: 

(i) t(P) non-trivial & p 6 leaf(t) + b'a E anc(t, p) \ {p )  : t(a) non-trivial 

* t ( a>  $ t(P) 
(ii) p = ai & t (a)  trivial + t (a)  7 t(P) 

We say that t is good if all P E dom(t) are good in t. 

We see that q(t) = 1 if t is good (the converse does not hold). It therefore suffices 

to show for any singleton to E T,(L) that M;(to) is good for all i. We proceed by 

induction on i. 

For i = 0, (i)-(ii) are both satisfied since to consists of a single leaf. For i > 0, 

we split into cases according to  the operation performed by MD on ~;- l ( to) .  



Before considering these cases, by the definition of goodness, if t E T,(C) is good, 

y E dom(t), and t' E T,(L), then t{y := t') is good too, provided 76 is good in 

t{y := t') for all 6 E dom(tl). 

Let t = ~ L - l ( t ~ ) .  

1. MD(t) = 7 ( y )  = t{y := t'), where y E leaf(t), t' = t(y) + e l , .  . . , en ,  and 

{el, .  . . ,en)  = {e I t(y) + e). We show that y, 71, .  . . , y n  are good in MD(t). 

To see that y is good in MD(t), if t(y) is non-trivial, then the algorithm ensures 

that condition (i) is satisfied. Condition (ii) follows from the induction hypoth- 

esis. To see that yi is good in MD(t), condition (i) is satisfied. Moreover, when 

C + e and C is trivial, C I e, so condition (ii) holds as well. 

2. MD(t) = abstract(t(y), t(cu)) = t{y := le t  vl = el , .  . . , v, = e, in  e +), where 

a E anc(t, y),  t ( a )  # t(y), t (a ) ,  t(y) E & are both non-trivial, t (a )  I. t(y),  

e = t (a )  n t(y),  and t(y) = e{vl := e l , .  . . , vn := en). 

We show that y is good in MD(t). Condition (i) holds, and (ii) follows from 

the induction hypothesis and l(t(y)) = l(1et vl = e l , .  . . , vn = en in e). 

The remaining two cases are similar to the preceding case. 

3.5 Correctness of Distillation Algorithm 

The transformation of a program is correct if the extensional meaning of the original 

program is preserved in the transformed program. The proof of correctness of the 

distillation algorithm is given in [46]. We give an outline of this proof here. To 

prove that the distillation algorithm produces programs which are equivalent to the 

original programs, the improvement theorem of Sands [89, 901 is used. In order 

to prove the correctness of the distillation algorithm, we first prove the following 

lemma. 

L e m m a  3.5.1 (Efficiency) 

The distillation algorithm produces programs which are no less efficient than the 

original. 

Proof (Sketch). To prove that the distillation algorithm does not result in 

a loss of efficiency, a measure of the cost of expressions related to the operational 



semantics of the language is used. This measure indicates the number of reduction 

steps required to reduce an expression to normal form. In [89, 901, the one-step 

reduction relation for a call-by-name semantics is denoted by H, and a closed 

expression e is said to converge to weak head normal form w denoted by e l). w, 

if and only if e ++* w, where e* denotes the transitive closure of e .  For any 

expression e ,  C [ e ]  Un w denotes that a closed expression e converges to weak head 

normal form w in n reduction steps, if e en w where en denotes a sequence of n 

reductions. 

The following notion of improvement is defined in [89, 901 for a call-by-name 

semantics as follows. 

Definition 3.5.2 (Improvement) A n  expression e is improved b y  e', denoted b y  

e e' if, for all contexts C such that C [ e ]  and C [ e l ]  are closed, if C[e] U n ,  C[e l ]  Urn 
and m < n. 

This notion of improvement was used to prove that there is no efficiency loss 

with respect to a call-by-name semantics resulting from supercompilation in [89]. 

In order to prove this for the new rules of distillation for transforming nodes which 

contain recursive expressions, we need to show that each new function call which 

is introduced by transformation comes together with an unfolding step in the body 

of that function definition. To ensure this, after first encountering a node which 

contains a Node expression, the function is unfolded. When a node with a matching 

Node expression is subsequently encountered, folding is performed, but an unfolding 

step will have been performed in the body of the constructed function. 

The following lemma is required to prove the correctness of the distillation algo- 

rithm. 

Lemma 3.5.3 (Correctness) 

The distillation algorithm produces programs which are equivalent to the original. 

Proof (Sketch). The proof of correctness of the distillation algorithm fol- 

lows the work of Sands [89, 901, which makes use of an improvement theorem. The 

improvement theorem states that if a transformation repeatedly applies a set of 

transformation rules to a program, where each transformation step is equivalence 

preserving, then a transformation which replaces a program e by el is totally correct 

if e is improved by el. The equivalence of each transformation step can be proved 



with respect to the operational semantics of the language. The improvement of the 

expression e by e' follows immediately from the preservation of efficiency in the 

distillation algorithm (Lemma 3.5.1). 

3.6 Distilled Form 

Distillation transforms an input program to a normal  form which we call distilled 

form as shown in Fig. 3.7. As we can see, in distilled form, all functions are tail 

recursive. 

d t  := v d t l . .  . dt ,  

1 c dt l  . . . dt ,  

1 Xv.dt 

1 case v of pl : dt;  I . .  . 1 pk : dtk 

1 let v = dto in dt l  

I letrec f = Awl . . . v,.dt in f vl . 
I f d t l  . . . dt ,  

Figure 3.7: Distilled form 

3.7 Conclusion 

In this chapter, we have given an overview of the distillation program transforma- 

tion algorithm. We have given several examples to demonstrate the application of 

distillation to transform input programs to output programs which are in distilled 

form. We have shown how distillation can be used to cope with different non- 

termination problems caused by accumulating patterns, accumulating parameters, 

and obstructing function calls. Distillation is more powerful than existing program 

transformation algorithms such as supercompilation and partial evaluation. These 

previous algorithms can produce only a linear speedup in programs, whereas distil- 

lation can produce a superlinear speedup. For example, it is possible to transform 

the naive quadratic reverse function into the linear accumulating version. This extra 

power is obtained through the use of more powerful matching prior to folding. In 

previous techniques, matching is performed on flat terms only; functions are con- 

sidered to match only if they have the same name. In distillation, matching is also 



applied to r~cursive terms, so different functions are considered to match if their 

corresponding recursive definitions also match. Distillation is guaranteed to terrni- 

natc and constructs a distilled output program with the same semantic meaning 

as the input program while preserving efficiency. These features make distillation 

algorit hrn applicable to inductive theorem proving and program construction, which 
we present in Chapter 4 and Chapter 5. 



Chapter 4 

Theorem Proving in Poitin 

4.1 Introduction 

In this chapter, we present our inductive theorem proving techniques, and show how 

the Poitin theorem prover [45] can be extended to handle explicit quantification to 

prove universally and existentially quantified conjectures. In the previous chapter, 

we have given an overview of the distillation program transformation algorithm [46], 

and have shown how distillation can be used to transform input programs to a 

normal form called distilled form. In order to use distillation within the theorem 

prover Poitin, distillation is applied to the input conjecture. The inductive proof 

rules are then applied to the resulting distilled expression to prove it. The distillation 

rules are therefore extended to handle explicit quantification. We present proof rules 

for universal and existential quantification to prove inductive conjectures. 

The proof of a universally quantified conjecture in Poitin does not require any 

intermediate lemmas. The usual approach to proving existential theorems is to con- 

structively find the witness, and then show that this witness satisfies the required 

inductive property. This requires the use of higher order unification, which is in gen- 

eral undecidable. We present an alternative approach to prove inductive existential 

conjectures, which gives a pure existence proof of the conjecture. An earlier version 

of the work presented in this chapter can be found in [47, 61, 601. 

4.2 Pre-Processing Phase 

In order to use the distillation algorithm within our inductive theorem prover Poitin, 

we apply distillation to the input conjecture. The result of this transformation will 



be a boolean expression which is in distilled form as described in $3.6. A further pre- 

processing phase is applied to the resulting distilled expression before being passed 

on to the theorem prover. In this phase, the distilled program obtained from the 

input conjecture is processed to obtain a proof expression (Fig. 4.3 of $4.3). This 

phase performs the following tasks: 

adds all free variables appearing within the body of a local function defined 

using a letrec expression as parameters to the function definition, so that no 

variable remains free within the body of the local function. 

removes the non-terminating functions and replaces them with I. 

removes all let expressions and replaces them with I. 

Definition 4.2.1 (Decreasing parameter) A parameter is decreasing from value 

e to  e', denoted by e' E e ,  if e' is a sub-component of e .  

Definition 4.2.2 (Non-Decreasing parameter) A parameter is non-decreasing 

from value e to el, denoted by  e' J e, if e e e' or e = e'. 

If all of the parameters in the recursive call(s) of a function are non-decreasing, 

then the function is potentially non-terminating, so the recursive call is replaced by 

I. A non-terminating function loops infinitely, which will never terminate. If at 

least one of the parameters in a recursive call of the function is decreasing, then 

the recursive call remains. Otherwise, the recursive call of the function is unfolded. 

As the let expressions contain intermediate data structures, our proof rules cannot 

prove them. So, all let expressions are removed by the pre-processing phase. 

The original distillation algorithm as presented in the previous chapter is there- 

fore extended to include a second pass to perform the pre-processing tasks as de- 

scribed above. The pre-processing phase R as defined in Fig. 4.1 is applied to the 

term resulting from distillation. Within these rules, the set p contains the initial 

calls of functions, and 4 is the function variable environment. 

4.3 Explicit Quantification in Poitin 

In this section, we extend the Poitin theorem prover to handle explicit quantification. 

To facilitate explicit quantification, two first-order quantifiers are added to the higher 

order functional language defined in $2.2.1 as shown in Fig. 4.2. 



R [ v  el - . en] P 4 = v (RUel] P 4) . - (Rue,] P 4)  
RUc el . . - en] P 4 = c (Rue11 P 4) . . . (Rue,] P 4) 
Rucase v of pl : el I . . . I pn : en] p 4 

= case v of P I  : (Rue11 p 4) I . . . I pn : (Ruen] p 4) 
R[ le t  vl = e l ,  . . . ,  vn =en in eg] p 4 = I 
R[letrec f = Xul.. .vn.eo in f v l . .  .vn] p 4 

= letrec f = Xul . . . vn vi . . . vi.eb in f vl . . . vn vi . . . v i  

where 

eb = R6e0] (P u { f  v l .  - . vn)) (4 u {f eo)) 

{v; . . . ~ i )  = f v(Xvl . . . vn .eo) 

R[ f  el - . . en] P 4 
= I, if 3( f  vl . . .vn)  E p.Vi E ( 1  

= f e l . .  . en vl . . . vk, if 3( f vl . . . v,) E p.3i E (1  

= Rue] p 4 , otherwise 

where 

4 ( f )  = Xvl . . . vn.e 

{vl . . . v k )  = f v ( X V ~  . . . ~ n . e )  

Figure 4.1: Distillation pre-processing rules 

e ::= ALL v . e universally quantified expression 

I EX v. e existentially quantified expression 

Figure 4.2: Form of input conjecture 

The input conjectures can be entered into the system in any of the quantified 

forms of expressions as shown in Fig. 4.2. The body of the quantified expression 

can be any expression in the language. 

The grammar of redexes is extended as follows to handle quantified expressions. 

red ::= f 

I (Xv.eo) el 

I case(ve1 . . .  e , )o fp l  : ei I...Ipk : ei  

I case (c  e l . .  . en) of pl : ei 1 . .  . ( pk : e i  

I ALL vl . . . vn.e 

I E X v l  ... vn.e 



We define a set of rules A for handling universal quantifiers, and a set of rules 

E for handling existential quantifiers. A proof expression can be obtained by pre- 

processing the distilled form of expression described in 53.6. For proof expressions 

which are to be proved using these inductive proof rules, the output from applying 

these proof rules will be either T r u e  if the input conjecture is true, or else I which 

provides no information about the input conjecture. Within the proof expression, 

all free variables will be first order and the result type of the proof expression will 

be boolean. The proof expressions must therefore satisfy the form as shown in Fig. 

4.3. 

bdt := v 

1 T r u e  

1 False 

I 1  
I case v of pl : bdtl ( . . . 1 pk : bdtk 

1 letrec f = Xul . . . v,.bdt in f vl . . . v,  

I f bdtl . . . bdt, 

Figure 4.3: Form of proof expressions 

The proof rules A and E will only be applied to expressions which are already 

in the form as shown in Fig. 4.3. The transformation rules 7 for distillation are 

extended to be able to handle explicit quantification as shown in Fig. 4.4. 

The distillation rules 7 2  and 7 3  for quantifiers guide the whole proof process 

for two types of explicit quantifications: ALL and EX. This meta-level guidance 

essentially constructs a hierarchy of transformations which resembles metasystem 

transitions [103, 421. 

Within the rules 7 2  and 7 3 ,  the parameter p represents the set of the previously 

encountered expressions, and 4 is the set of function definitions used within the 

current expression. 

Rule ( 7 2 )  handles universally quantified expressions of the form c(ALL 

vl . . . v,.e) where the context c() may be empty. The sub-expression e is trans- 

formed first using distillation (the quantified variables vl . . . v ,  are treated as free 

variables). The proof rules A which are described in 54.4.1, are then applied to 

the resulting distilled expression. The set {vl  . . . v,} of the universally quantified 



7 [ c ( A L L  vl . . . vn.e)] p 4 = T[c(e1')] p 4 (72) 
where 

el = 7uen 0 4 
e" = A[el]  {) {vl . . . v,) 

T[c(EX vl . . . vn.e)] p 4 = 7[c(e1l )]  p 4 
where 

el = n e n  0 4 
el1 = &[el] {} {vl . . . vn)  

Figure 4.4: Distillation rules for quantifiers 

variables is passed as a parameter in the application of A. Finally, the expression 

obtained from the application of A is transformed within the context (i.e., c(e f l ) )  

using 7. 
An existentially quantified expression c(EX vl . . . v,.e) is handled by rule (73) 

in a similar way. The sub-expression e  is transformed first using the distillation rules 

7. The proof rules & which are described in 54.4.2, are then applied to the resulting 

expression. The set {vl . . . v,) of the existentially quantified variables is passed as 

a parameter in the application of &. The expression obtained from the application 

of & is then transformed within the context using 7. 
The distillation rules ( 7 2 )  and (73) can handle input conjectures containing 

quantifiers at any level of nesting. If a conjecture contains a number of nested 

quantifiers of different types (ALL and E X ) ,  then the proof rules will be applied to 

the innermost quantified expression first. 

4.4 Inductive Theorem Proving in Poitin 

In this section, we formally present the proof rules A and & for universal and exis- 

tential quantification, which are used in Poitin to prove inductive conjectures. 

4.4.1 Proving Universally Quantified Conjectures 

The rules for proving universally quantified conjectures are defined by Ale] p 4 as 

shown in Fig. 4.5, where the expression e  is in the form of proof expressions shown 



in Fig. 4.3, the parameter p is the set of previously encountered function calls and 

4 is the set of universally quantified variables. 

For a universally quantified expression ALL vl . . . v,.e, the transformation rules 

7 for distillation are first of all applied to the sub-expression e. Pre-processing is 

applied to the resulting expression to obtain a proof expression. The function calls 

within this proof expression are all potential inductive hypotheses. At least one of 

the parameters in the recursive call(s) of a function must be decreasing, and if all 

of the variables in the recursive call are universally quantified, then the inductive 

hypothesis can be applied, and the value Due returned. Rule (736) in Fig. 4.1 tests 

whether a function call is an instance of a previous function call, and ensures that at 

least one of the parameters decreases in the recursive call within the resulting proof 

expression. The truth value of the conjecture is given by the final value obtained by 

applying the proof rules to the proof expression. 

The proof rules A can be explained as follows. In rule (A l ) ,  a variable v is 

encountered, which must be a Boolean. If v is universally quantified (i.e., v is 

contained in $), then the undefined value I is returned as v cannot always be 

True. If v is not universally quantified (i.e., v is not contained in $), then it is free, 

so v remains unchanged. In rule (A2), if the boolean value True is encountered, 

we simply return it. In rule (A3), if the boolean value False is encountered, the 

undefined value I is returned. In rule (A4), the undefined value I is encountered, 

which is returned unchanged. Rule (A5) deals with a case expression, where the 

redex is a variable v. If v is universally quantified (i.e., v is contained in $), then we 

try to prove the expression for all possible values of v within the expression. The 

different values of v are the patterns within the branches of the case expression. 

A case split is therefore performed in which the expression is separately proved for 

all values of v, and the conjunction of the resulting values is further transformed 

using distillation (7). The different values of the expression for different values of 

v are the corresponding branches. The pattern variables are the sub-components 

of the universally quantified variable v, so they will also be universally quantified. 

Before applying the proof rules to each branch, the corresponding pattern variables 

are therefore added to 4. This rule simplifies the case expression by universal 

variable elimination from the selector. If v is not universally quantified (i.e., v is not 

contained in 4), then it is free, so it remains within the expression. The proof rules 

are then applied to the branches of the case expression. 

In rule (A6), a letrec expression is encountered. If all of the variables vl . . . v, in 



A1[4 P 4 = 1, i f v ~ 4  
= v, otherwise 

Afcase v of pl : es ( .. . ( p, : en] p 4 (A51 
= TI[(A[ellj (P (4 U { ~ t  r . . . ~ ~ r c ~ ) ) ] )  A . . A 

(J1IenD IP (#u(vnt  -..unk,)>))J () (1, if 4 
= case .u of pi : (Al[er] p d) I . . . I p,, : (J4[en] p 41, otherwise 

where 

Auletrec f = Xur.. .v,.eo in f vl . . . V I ~ ]  p 4 (A61 
= JCeeB C P U { ~  u~...un)) 4, if{u l . . .v,)  ~4 
= letrec f = Xai . . . v ~ . ( A l [ e o ~  { p  u {f v l  . . . vn)) #) in f u; . . . v6, 

otherwise 

where 

( v i  . . .uL) = ( v l . .  .I+') \ 4 

A U  el . en1 P 4 
= True, if {wt . . .vn) G 4 
= (f vi . . . vk) [el /vl . . . en/vn], otherwi~e 

where 

( j  WI ..+?)n) ~ . ( , f  v ~ . . * u n )  5 If el ...GI 
I (v: . . h vk) = (01 . 7 ~fi.1 \ '$ 

Figure 4.5: Proof rules Tor universal quantification 



the function application f vl . . . v, within the expression are universally quantified, 

and therefore contained in 4, then the function application f vl . . . v, is an inductive 

hypothesis. Since at least one of the variables vl . . . v, must be decreasing and it is 

also universally quantified, this variable can be used as an induction variable during 

the proof of this expression. The proof rules are applied to the unfolded function 

call until the recursive call to function f is encountered. This recursive call is the re- 

occurrence of the inductive hypothesis f vl . . . v,. Strong fertilization can therefore 

be performed at this point by applying the inductive hypothesis. The expression 

resulting from the application of the proof rules to the body of the letrec expression 

is returned. If any of the variables vl . . . v, in the function application f vl . . . v, 
are not contained in 4, then the function application contains free variables, and the 

inductive hypothesis cannot be applied at this point. The function f is therefore 

redefined in terms of these free variables with a letrec expression using the result of 

applying the proof rules A to the unfolded function call. The function application 

f vl . . . v, is added to the environment p before applying the proof rules A to the 

body eo. 

Rule (d7)  searches for the potential application of an inductive hypothesis. 

If there exists a function application f vl . . . v, in p such that the recursive call 

f el . . . en is an instance of f vl . . . v,, and all of the variables in the initial function 

application f vl . . . v, are universally quantified (i.e., they are all contained in 4), 
then the inductive hypothesis is applied, and the value True returned. This corre- 

sponds to strong fertilization. At least one of the parameters within the application 

f el . . . en must be decreasing, which is ensured by the pre-processing phase. If, on 

the other hand, the function application f vl . . . v, contains free variables (i.e., not 

contained in #), then strong fertilization cannot be performed. The recursive call 

f el . . . en is therefore simplified to be defined over the arguments corresponding to 

these free variables. 

Example 10 

Consider the following conjecture (10.1) which states the commutativity of plus the- 

orem for natural numbers. 

ALL x.ALL y.eqnum (plus x y )  (plus y x) (10.1) 

The proof of conjecture (10.1) is guided by distillation rule (72)  (Fig. 4.4). Rule 

(72)  applies distillation to expression (10.2). 



eqnum (plus x y )  ('plus y x) (10.2) 

The transformation of expression (10.2) using distillation is shown in Example 

17 in Appendix A.1. Rule (7'2) then applies the proof rules A for universal 

quantification to the proof expression resulting from the preprocessing of the 

distilled form of expression (10.2) as shown below. 

Auletrec f0 = Xx.Xy.case 3 of 

Zero : case y of 

Zero : True 

I SUCC y' : letrec f1 = Xy'. case y' of 

Zero : Due 

1 succ y" : f1 yt' 

in f1 y" 

I Succ x' : case y of 

Zem : letrec fl = As'. case a' of 

ZeTQ : n w e  

I SUCC 2" : j1 5" 

in j1 z' 

1 Succ yf : f0 si yf 

in 10 YD 0 Is, MI 

The proof using the rules A proceeds as shown below. 
= A[case a of 

Zero : case y of 

Zero : T h e  

[ Succ y' : letrec f1 = Xy'. case y' of 

Zero : T h e  

I SUCC y" : ff ?jff 

in fl y' 

I Succ a' : case y of 

Zero : letrec f1 = Ax'. case x' of 

Zero : True 

I Succ x" : f1 x" 

in f1 x' 

I succ Y' : f0 2' Y'] {fO x Y )  {x, Y) 



= Tl[(stl[case y of 
Zem : me 

1 Succ ~ 7 '  : letrec 11 = Ay'. case y' of 

zcro : T h e  

I Succ y" : fl y" 

in f1 v'] {fo s 3) {xtvl) 
A (Al[case 3 of 

Zero : letrec fl = Ax'. case s' of 

Zero : h e  

1 succ xtl : fl xtt 

in x' 

I sacc Y' : f O  a' Y']  IfQ x 31 { r t ' , l ~ , x ~ ) > l  (1 0 

= n(T[(A[True]l (10 x y) (x, 71)) A (A[ letrec fl = A?)'. case 9' of 

Zero : Z h e  

I SUCC -y'' : fl 

in fl ~ ' 1  (fo x 3) Ixlv,v')))ll {I 0 
A (Allcase y of 

Zem : letrec ff = Ax'. case x' of 

Zero : 2 h ~ e  

I Succ 2" : Jl z" 

in jl x' 

I Succ Y' :fd x' y l l  CfO x Y) ix,31s'l)ll 0 0 
(by A51 

= T[(T[True A (A[case y ' o f  

Zero : T h e  

I L&'cc Y1' : fl Y"1 0-0 x Y9f1  zl') {x, Y9 ~ ' 1 ) I i  O 0) 
A (Al[case y  of 

Zero : letrec fl = Ax1. case x' of 
Zero : T h e  

1 Succ x" : s" 

in fl a' 

I S~LCC !I1:fQ st ~ r j l  (10 x YI {X,Y,X'))I C )  0 
C ~ Y  A2,A6) 



= 71[(T&T~ue A (Tl[(A[fiue]l {fQ x gr,fl 3') {x, 3, yt) l  

A IJVI vfq {fo 5 %~,f-l Y'S { ~ , ~ , 7 3 1 ~ ~ ~ ) ) 1  0 011 El 0 1  
/\ (d[[case gr of 

Zero : letrec fl = As" case x' of 

Zem :True 

I Succ z" :ff x" 

in f-l xt 

I sacc yf : f0 x' 3'1 (f0 5 3) (Z,Y, xl)>II I) 0 
(by A51 

= T[(T[Trlhe A (T[True A (AIEfl y f l ]  {fo x ~ , f l  Y') { x , ~ ,  Y', y N ) ) I  0 (IEIl 
/\ (Atcase g, of 

Zero : letrec ff = Ax'. case x' of 

Zero : ? h e  

) Succ st' : Jl x" 

in fl x' 

I succ Y' : t o  x1 u '  If0 x Y) ( ~ 7 3 ,  ~'1331 {TO 
(by A21 

= n(TI[True A (7BTrue A True1 0 0)B 0 0)  (by .A71 
A (A[case y of 

Zero : letrec f1 = AxCcase sf of 

Zero : True 

I SUCC 5" : ff 5" 

in fJ x' 

I succ 31 ::fo {JO x ZY) ( x , Y , x ~ I ) ~  o o 

= T[(T[True ATrue] {) {)) A (A[case y of 
Zero : letrec 

fi = Xx1.case x' of 

Zero : True 

I Succ zN : fi xl' 

in f l  x' 

I s?.lcc Y' :fa 3' yln {fO x Y )  {x,Y,xll)n 00 
(by 7197') 



= T[True A (Aucase y of (by 71,P) 
Zero : letrec f l  = Ax'. case a' of 

Zero : D u e  

( Succ 2'' : f1 x" 

in f1 x' 

I succ Y' : f0 2' Y'I if0 x Y) {x,Y,xl)>n 0 0 
= T[True A (T[(A[ letrec f1 = Ax'. case x' of 

Zero :True 

I succ x" : f l  x" 

in f1 x'l {fO x Y )  {~ ,Y,X' ) )  

A ( A m  x' Y'D if0 x Y )  (2, Y?x', Y1)>ll 0 o>n 0 0 
(by A51 

= T[True A ('T[(A[case x' of (by A6) 

Zero : Due 

I succ XII : f i   XI^ {fo x y, f i  XI) {x, 9, XI)) 

A ( A W  2' Y'II {fo x Y )  {x,Y,x'?Y'))~ 0 0 ) l  0 0 

= T[True A (T[(T[(A[True] {f 0 x y, f 1 x') {x, y, XI)) (by A51 

A (A[f 1 x"] {f 0 x Y, f 1 x') {x, Y, x', x"))] 0 0) 
A ( A W  a' Y'B {fO x Y )  { x ? Y ,  xl?Y')>II 0 0 ) 1  0 0 

= T[True A (T[(T[True A True] {) {)) 

A (AVO x' Y'D if0 x Y )  { X , Y ~ ~ ' , Y ' ) > I I  0 {))I 0 0 (by A27A7) 

= T[True A (TUTrue A (AVO x' Y'B if0 x YI {X,Y,X',Y'I>II 0 {)>I 0 0 
(by 71 ,P)  

= T[True A (T[True A True] {) {))] {) {) (by A7) 

= T[True A True] {) {) (by T1,P) 
= True (by T1,p)  

We obtain the truth value True by simplifying conjecture (10.1) as required. 

This completes the proof of the commutativity of plus theorem for natural numbers. 

The proof of this conjecture is particularly troublesome for most inductive theorem 

provers. The proof of the commutativity theorem is given in $2.6.2 using 1-step 

induction for nat on the induction variable x considering x as the primary induction 

variable. Recursion analysis/ripple analysis suggest both of the variables x and y 

as induction variables even though both of them have unflawed as well as flawed 



occurrences. No unflawed induction variable is available. Multiple induction vari- 

ables complicate the preconditions of the method for induction strategy of a proof 

planning-based theorem prover, e.g., CLAM [14]. In this case, no choice of induc- 

tion variable fully meets the preconditions. The generation of the induction rule 

and the control loop for induction and rewriting of the induction conclusion with 

multiple induction variables become more complicated for non-proof planning-based 

inductive theorem provers. 

4.4.2 Proving Existentially Quantified Conjectures 

The rules for proving existentially quantified conjectures are defined with a set of 

rules & by &[el p q5 as shown in Fig. 4.6, where the expression e is in the form of proof 

expressions shown in Fig. 4.3, the parameter p is the set of previously encountered 

function calls and the environment q5 is the set of existentially quantified variables 

appearing within the conjecture. 

The proof rules & can be explained as follows. In rule (El),  a variable v is 

encountered, which must be a Boolean. If v is existentially quantified (i.e., v is 

contained in q5), then True is returned as the value of v can be True. If v is not 

existentially quantified, then it is free, so we return it unchanged. In rule (&2), if the 

boolean value True is encountered, we simply return it. In rule (&3), if the boolean 

value False is encountered, the undefined value I is returned. 

In rule (&4), the undefined value I is encountered, which is returned unchanged. 

Rule ( E 5 )  deals with a case expression, where the redex is a variable v. If v is 

existentially quantified (i.e., v is contained in $), then we try to find some value of v 

for which the expression can be proved True. The different values of v which are used 

to prove the expression are the patterns within the branches of the case expression. 

A case split is therefore performed in which the expression is separately proved 

for each value of v. The disjunction of the resulting values is further transformed 

using distillation (7). The different values of the expression for different values of 

v are the corresponding branches. The pattern variables are the sub-components of 

the existentially quantified variable v, so they will also be existentially quantified. 

Before applying the proof rules to each branch, the corresponding pattern variables 

are therefore added to 4. This rule simplifies the case expression by existential 

variable elimination from the selector. If v is not existentially quantified (i.e., v is 

not contained in q5), then it is free, so it remains within the expression. The proof 

rules are then applied to the branches of the case expression. 



E[v] p 4 = True, i f v ~ 4  
= 'u, otherwise 

&[True] p 4 = True (E21 

where 

Enletrec f = Xvl ... u,.eo in f vl ... v,] p 4 
= &Be01 ( P U  {f v l - .  -vn>> 4, if {v1 ... vn) & 4 
= Ietrec j = Xvi . . . v;.(E[eo]l (p  U { f v l  . . . v,)) #) in f v i  . . . vL, 

otherwise 

E[f el -en] P 4 
= I, if { v ~  . . . vn} 4 
= ( f  V: . . . v L )  [el/vl  . . . en/vn], otherwise 

where 

(f vl ...urn) Ep.(f ~1 ... vn) 4 (f el ... en) 

{v; ... v i ) = { v  l...vn}\$ 

Figure 4.6: Proof rulw for existential quantification 



Rule (E6)  deals with a letrec expression. If all of the variables vl . . . v, in the 

function application f vl . . . v, within the expression are existentially quantified 

(i.e., vl . . . vn are contained in +), then the function application f vl . . . v, does not 

contain any free variables. In this case, the function definition is removed, and the 

result of applying the proof rules to the unfolded function call is returned. If any 

of the variables vl . . . v, in the function application f vl . . . v, are not contained in 

4, then the function application contains free variables. The function f is therefore 

redefined in terms of these free variables with a letrec expression using the result 

of applying the proof rules & to the body of the function. The function application 

f vl . . . v, is added to the environment p before applying the proof rules & to the 

body eo. 

In rule (&7), a recursive function call f el . . . en is encountered. If there exists a 

function application f vl . . . v, in p such that the recursive call f el . . . en is an in- 

stance of f  vl . . . v,, and all of the variables vl . . . v, are existentially quantified (i.e., 

they are all contained in +), the value I is returned as the search space associated 

with the existential variables vl . . . v, is exhausted. If, on the other hand, the func- 

tion application f vl . . . v, contains free variables (i.e., not contained in $), then the 

recursive call f el . . . en is simplified to be defined over the arguments corresponding 

to these free variables. 

Example 11 

Consider the proof of the following conjecture (11.1) about natural numbers, which 

states that for every value of x, there exists a y such that x is even if and only if the 

double of y equals x. We adopted this example from [68] rearranging the existential 

quantifier for our purposes. 

ALL %.EX y.iff (even x) (eqnum (double y) x) (11.1) 

The proof process is guided by distillation rules (72)  and (73)  (Fig. 4.4) when 

conjecture (1 1.1) is input to the theorem prover Poitin. The existential proof rules & 

will be applied to the innermost existential quantifier first by rule (73)  to conjecture 

(11.1). Rule (73)  applies distillation to expression (1 1.2). 

iff (even x) (eqnum (double y) x) (11.2) 

The transformation of expression (11.2) using distillation is shown in Example 

18 in Appendix A.1. The distilled expression has been converted to a proof expres- 

sion by adding the free variables within the function body as parameters in the local 



function by pre-processing. Rule (73)  applies the proof rules E for existential quan- 

tification to the proof expression obtained by pre-processing the distilled expression 

resulting from the transformation of expression (1 1.2). 

E[ letrec fO = Xz.Xy. case x of (by 7 3 )  
Zero : case y of 

Zero : Due 

I Succ y' : False 

I Succ x' : case x' of 

Zero : case y of 

Zero : Due 

I Succ y' : True 

I Succ x" : f0 2" y 

info x YI 0 {Y) 

The function application fO x y within the letrec expression contains the free 

variable x (universally quantified in the outer scope) and an existential variable y. 

The function f0 will be redefined with the result of applying the proof rules E to 

the body of the function by rule E6. The original function call fO x y is simplified 

to f0 x by removing the existential variable y during the application of rule E6. 

The application of the proof rules & to the unfolded function call proceeds as shown 

below. 

letrec fO = Xx.E[case x of (by f6) 
Zero : case y of 

Zero : l?we 

I Succ y' : False 

I Succ x' : case x' of 

Zero : case y of 

Zero : Due 

I Succ y' : Due 

I Succ x" : fO x" y] {fO x y) {y) 



= letrec fO = Ax. case s of 
Zen, : E[case y of 

Zero : Due 

I Succ y1 : False] Ufl x y} {y) 

I Suce x' : &[case s' of 

e m  : case y of 

Zero : T h e  

I Succ : T h e  

I SUGC xf f  : fO 2" yJI (fO 2 8 )  {y} 

= letrec 

j0 = Ax. case a: of 
Zero : 71CC&I[%el] if0 x Y) 1~11 

lEEFalse1 If0 x Y)  {Y, yf)1B 0 0 
I SUCC x' : &[case xt of 

e m  : case y of 

Zem : D u e  

I Succ y' : T h e  

I Succ x" : f0 xrl y] (f0 x y) {y) 

in j0 x- 

= letrec 

fO = Ax.case s of 
Zero : 7[Due  V I] {) {) 

I Succ s f  : Eucase a;' of 
Zero : case y of 

Zero : Due 

I SUCC y' : Due 

I Succ xu : fO xN y] {fO x y) {y) 



= letrec fO = Ax. case x of 

Zero : True 

I SUCC x1 : case xr of 

Zem :&l[caseyof 

Zero : Due 

1 Succ y 5  :en {fO x y) {y) 

1 Succ 2" : EafD 2" 31 {fO x y} (y) 

= letrec f0 = Ax. case x of 

Zero : l h ~ e  

I Succ s' : Sase st of 

Zero : T h e  

I Succ xtl : EafO x" p] {fU x y )  (41) 

in fO s 

(by C5F2,&2,(71,P) 1 

The recursive function application jO st' y contains the free variable s". The 

function application is simplified to define in terms of the free variable x" hy remov- 

ing t,he existential variable y by rule E7. This results in the fallowing expression. 

letrec fO = Ax. case z of 

Zero : True 

I Succ s' : case z' of 

Zero : T h e  

I Succ xu : +fO a" 

in jO x 

The proof rules A fm universal cluantiiication are now applied to  this expression, 

During thc application of the rules A, the universally quantified variable z within 

expression (11 -1) is pssed ns a singleton set of univcrsdly quantified variables (x), 

The proof of the above expression proceeds as shown below. 



A[ letrec fO = Ax. case x of 

Zero : True 

I Succ x1 : case x' of 

Zero : Due  

I Succ x" : f0 x" 

= A[case x of 

Zero : True 

I SUCC x' : case x' of 

Zero : True 

I succ x" : f0 x"] {fO X )  {x) 

= T[(A[True] {fO x) {x)) A (AIcase x' of 

Zero :True 

I Succ x" : f0 xl'] {fO x) {x,xl))] {) {) 

(by A51 
= T[True A (T[(A[True] {fO x) {x,xl)) 

A ( ~ u f o  xu] {fo 2) {x,xl, xrl))n o o)n o {I 
(by 4 - 4 5 )  

= TUTrue A (TiTrue A ( 4 f O  ~ ' ~ 1  If0 xz) {x, xl, X'~)>I 0 {>>I 0 0 (by .A2> 

= T[True A (TlTrue A True] {) {))I {) {) (by A71 
= T[True A True] {) {) (by 7177') 
= True (by T1,p)  

We obtain the truth value True  by simplifying conjecture (11.1) as required. 

This completes the proof of conjecture (11.1) and demonstrates that it is a theorem. 

4.5 Soundness of Proof Techniques 

In order to show that our proof rules are sound, we need to show that for every 

conjecture which is found to be True in our proof rules, there is a corresponding 

logical proof of the conjecture. To facilitate this, we define sequent calculus rules for 

the proof expression obtained from the distilled form of input conjecture as shown 

in Fig. 4.7. 



I? F e[x] ,A 
r k ALL v.e [v Jx] ,  A 

(ALL-IE) 

r,eo[el] I- A 
I?, ALL v,eo [v/el] I- A 

(ALLL) 

r I- ea[e~l ,A 
I' I- EX v.eo[n /el], A 

(EX-R) 

J?,e[z] I- A 
I?, EX u.e [u/x] l- A 

(EX-L) 

r , v = p ~  I- e l , A  ... r , v = p k  'E- ek,A 
J? t- case s) of pr : el  I . . . I pk : ek? A (Case> 

Figurc 4.7: Sequent caIculus rules for language 



In these rules, the (Id) rule and the quantifier rules are standard sequent calculus 

rules for first order logic by Gentzen. The rest of the rules are defined for some of 

the expressions in our language. In this formulation, there is no need for a cut rule 

as all the intermediate structures in the input program will have been eliminated. 

The (Id) rule states that from the assumption A, one can deduce A. The (True- 

R) rule states that from the assumption r, one can deduce True  and A. The 

(False-L) rule states that from the assumption False and I?, one can deduce A. The 

(ALL-R) rule states that ALL v.e[v/x] holds only if e[x] is true (i.e., x must not 

be free within I?, e[v/x]  or A). The (ALL-L) rule states that if one knows that 

ALL v.eo [v /e l ]  is true, then it can be proved for any term el (i.e., eo[el]).  The 

(EX-R) rule states that E X  v.eo[v/el] holds only if eo[el] is true for any term el. 

The (EX-L) rule states that if one knows that E X  v.e[v/x] is true, then it can be 

proved for any value x (i.e., x must not be free within I?, e[v /x]  or A). The (Ind) 

rule states that the expression letrec f = Xul . . . vn.eo in f vl . . . v, holds only if 

one can deduce eo from the assumptions r and f vl . . . v,. The (Case) rule states 

that the expression case v of pl : el I . . . I pk : e k  holds only if one can deduce 

e l , .  . . , ek from the assumptions I?, and pl, . . . , p k  as the different values of v. The 

(IndHyp) rule states that if one knows that ALL vl . . . v,. f vl . . . v, is true, then 

one can deduce f el . . . en. 

Theorem 4.5.1 (Soundness of proof rules) The proof rules A and & are sound 

with respect to the sequent calculus rules defined in Fig. 4.7. 

Proof. (Theorem 4.5.1) 

The proof of this theorem follows immediately from lemmata 4.5.2 and 4.5.3. 

Lemma 4.5.2 (Soundness of universal proof rules) 

A[e] p { v l . .  . v n )  = True + p k ALL v l . .  .v,.e 

Lemma 4.5.3 (Soundness of existential proof rules) 

&[el p {vl . . . v,) = True  + p k E X  vl . . . v,.e 

Proof. (Lemma 4.5.2) 

The proof of this is by recursion induction on the proof rules A. 



Base Cases 

Case for Rule A1: 
If a, E 4: 
A[v] p = I # T w e  

In this case, the proof expression is equivalent to  ALL v . ~ ,  for which there 

is no mrrcsponding sequent cdcuIus proof. 

If .er @ 4, then u is free. 

d[v]p# = v # True 

Case for Rule d2: 
d[TrueJ p 4 = True 

Thc corresponding sequent calculus proof fragment is as follows: 

Case for Rule A3: 

ACFaEse]] p t$ = 1 # True 

As the expression is False, there is no corresponding sequent dculus proof. 

Case for Rule A4: 

A[I] p 6 = l # True 

As the expression is undefined, there is no corresponding sequent calculus 

proof. 

Case for Rule A7: 
If (vl . . . w,) 2 4, then there must exist on inductive hypothesis of the form 

1 ? U l . . . W , p  

A[f e l . .  .en] p 4 = True 



The corresponding sequent calculus proof fragment is as follows: 

I?, ALL ~ 1 . .  . vn. f 211.. . vn k f e l . .  . en (IndHyp) 

If {vl . . . v,) 4, then the function call remains. 

A[f el . . . en] p 4 = f V:  . . . V L  # True 

Inductive cases 

Case for Ru le  A5: 

By the inductive hypothesis: 

Vi E {I . .  . k).A[eil) p {vl . . . v,) = True  + p 1 ALL v l . .  .v,.ei 

If v E 4, then the proof expression is equivalent to 

ALL v.case v o f  pl : el I . . . I pk : ek 

The corresponding sequent calculus proof fragment is as follows: 

r , v  =p l  1 el . . .  I',v =pk k ek 
(Case)  

r k c a s e v  o f p l  : el I ... Ipk : ek 
I' k ALL v.case v o f  pl : el [ . . . I pk : ek 

(ALL-R) 

If v @ 4, then v remains in the resulting term, and the proof rules are further 

applied to the branches el . . . ek of the case term. 

A[case v o f  pl : ell . . . I pk : ek] p 4 
= case v o f  pl : (A[e l ]  p 4)  I . . . I pk : (Alek]  p 4) # True  

Case for Ru le  A6: 

By the inductive hypothesis: 

A[[eo] p {vl . . . v,) = True  + k ALL vl . . . v,.eo 

If {vl . . . v,) C_ 4, then the body of the function eo is further transformed. 

Auletrec f = Xvl . . . v,.eo i n  f vl . . . v,] p 4 = A[eo] p 4 



The corresponding sequent calculus proof fragment is as follows: 

I', f v ... vn I- eo 

I' k letrec f = Xul . .  . v,.eo in f vl . . . v, (Indl 

If { V ?  . . . w,) p $, then the definition of the function remains, and the body eo is 

further transformed: 

ADetrec f = Awl . . . vn.eg in f v l  . . . p 4 
= letrec f = Xur -. . vk.{A[eo] p 4)  in f vr . . . vk # True 

where (wl . . . vk) = (vl . . . .u,) \ 4. 

Proof. (Lemma 4.5.3) 

The proof of this is by recursion induction on the proof rules E .  

Base Cases 

Case for Rule El: 
If v E 4: 
E[u] p # = True 

In this case, the proof expression js equivalent to EX v,v, The corresponding 

sequent calculus proof fragment is as follows: 

r I- True 
( True-R) 

(EX-RE 
I? I- EX v.7~ 

If v 4, then v is free. 

E[v] p 4 = v # T r u e  

Case for Rule E2: 

E[True] p 4 = T r u e  

The corresponding sequent calculus proof fragment is as follows: 

(True-R) I' b True 



Case for Rule E3: 

&[False] p 4 = L f True 

As the expression is False, therc is no corresponding sequent; caIculus proof. 

Case for Rule E4: 

E l i ]  p 4 = 1 # True 

As the expression is undefined, there is no corresponding sequent calculus 

proof. 

Case for Rule E7: 

If (.vl . . . v,) 4, then the search space of the existentid variables has been 

cxhausted and therc is no corresponding sequent calculus proof, 

E l f  el . . . en] p 4 = I # True 

If ( v l  . . .v,) 4, then the function caIl remains. 

E[f el ... en] p q5 = f v{ ... uk #True 

Inductive cases 

Case for Rule E5: 

By the inductive hypothesis: 

Vi E {I ... k).E[ei] p {vl ...* lm) = True 3 p t- EX VI ...vnv,,ei 

If v E 4, then the proof expression is equivalent to 

EX v.case v of pl ; el I . . . I pk : ek 

Thc corresponding sequent calculus proof fragment is a& follows: 

I' t -e l ,  ..., ek 

l? tEX.u.caseu ofpl  : el 1 ... I p k  : ek 
(EX-R) 



If v 4 4, then v remains in the resulting term, and the proof rules are further 

applied to the branches el . . . ek of the case term. 

&[case v of pl : el ( . . . I pk : ek] p $ 
= case v of pl : (&[el] p 4) I . . . I pk : (&[ek] p 4) # True  

Case for RuIe &6: 

By the inductive hypothesis: 

&[eon p {vl . . . v,) = True  + F E X  v l . .  . v,.eo 

If {vl . . . v,) 4, then the body of the function eo is further transformed. 

&[letrec f = Xul . . . vn.eo in f vl . . . v,] p q5 = &[eo] p 4 

The corresponding sequent calculus proof fragment is as follows: 

r,f v l . . . v n  t- eo 

r t letrec f = Xul . . . v,.eo in f vl . . . v, (Indl 

If {vl . . . v,) $ 4, then the definition of the function remains, and the body eo is 

further transformed: 

&[letrec f = Xul.. . v,.eo in f vl . . . vn] p 4 
= letrec f = Xul.. . vk.(&[eol) p 4) in f vl . . . vk # True  

where {vl . . . v k )  = {vl . . . v,} \ 4. 

4.6 Completeness 

Neil D. Jones has shown that a function f is computable by a cons-free first-order 

functional program if and only iff  is in PTIME (polynomial time) [57]. By analogy, 

our proof techniques can prove the inductive conjectures which can be defined with 

cons-free programs without using any intermediate lemmas. This cons-free program 

corresponds to program without any intermediate data structures. Therefore, our 

theorem prover should be able to prove any conjecture which is in PTIME, so long 

as it has been expressed in this cons-free form. We therefore argue that Poitin is 

complete for conjectures which belong to PTIME. 



4.7 Conclusion 

In this chapter, we have presented a novel approach to prove inductive conjectures 

which contain universal and existential quantification using the program transfor- 

mation algorithm distillation [46]. We have extended the distillation rules to handle 

explicit quantification. A form of proof expressions has been defined to which these 

proof rules can be applied. We have formally presented the proof rules A for uni- 

versal quantification and the proof rules E for existential quantification, and have 

shown how these proof rules can be used to prove inductive conjectures. These 

proof techniques do not require any intermediate lemmas. The existential theorem 

proving technique presented in this chapter gives a pure existence proof, which is an 

alternative to the usual constructive approach using higher order unification. The 

soundness of the proof techniques has been shown with respect to  a logical proof 

system using the sequent calculus. 

We have implemented the theorem proving technique presented in this chapter, 

and added it to the theorem prover Poitin. In Chapter 5, we present the program 

construction technique used in Poitin to construct correct programs from input 

specifications. 



Chapter 5 

Program Construction in Poitin 

5.1 Introduction 

In this chapter, we present a novel program construction method to construct correct 

programs from input program specifications. The programs are generated from 

the proofs of existential theorems in the theorem prover Poitin. The constructed 

program essentially computes the existential witness of the existential theorem. 

In our program construction method, distillation is first applied to the input 

specification. Rules for program construction are then applied to the resulting dis- 

tilled expression to construct a program. We present the program construction rules, 

and then give some examples to show how these rules can be used to construct cor- 

rect programs. We also prove that the programs constructed using our technique 

are totally correct. Some of the work presented in this chapter can be found in [59].  

5.2 Form of Input Specification 

To facilitate program construction in Poitin, a first-order quantifier ANY is added 

to the higher order functional language defined in 52.2.1 as shown in Fig. 5.1. 

e ::= ANYv:7 . e  ANY-quantified expression 

Figure 5.1: Form of input specification for program construction 

The sub-expression e of the specification may contain free variables which are 



implicitly universally quantified. The existential variable within the input specifica- 

tion is quantified with the ANY quantifier. The grammar of redexes is extended as 

follows to handle ANY-quantified expressions. 

red ::= f 

I (Xv.eo) el 

1 case (v el . . . en) of pl : ei  I . .  . I pk : ek 

I case (c e l . .  . en) of pl : ei ( . . . I pk : e', 

I ALLvl . . .  vn.e 

( E X v l  . . .  vn.e 

I ANY v :  7.e 

We define a set of rules C to deal with ANY-quantified expressions. The rules 

C for program construction will only be applied to the expressions which are in the 

form of proof expressions as shown in Fig. 4.3 (54.3). 

5.3 Construction of Program in Poitin 

The construction of a program in Poitin involves: i) writing a specification of the 

form ANY v : 7.spec(xl . . . x,, v), which expresses the input/output relation for 

which the program is to be constructed ii) construction of a program from the 

specification using the rules C. Within the specification, v is the output variable 

of type 7; spec is the relation between the input and output data expressed using 

predicates, functions and implication; and xl . . . x, are the implicitly universally 

quantified input variables. 

In the following sections, we present the distillation rule, the program construc- 

tion steps and the program construction rules for the construction of a program from 

an input specification. 

5.3.1 Distillation Rule for Program Construction 

The transformation rules 7 for distillation are extended to be able to handle ANY- 

quantified expression as shown in Fig. 5.2. The application of this rule to an input 

specification results in the construction of a recursive functional program which 

computes the existential witness. Within rule 7 4 ,  the parameter p represents the 

set of previously encountered expressions, and q5 is the set of function definitions used 

within the current expression. In transforming an expression of the form c(ANY v : 



~ . e ) ,  the sub-expression e is transformed first using distillation (the ANY-quantified 

variable v is free within e). An empty set {} is passed to 7, which indicates that the 

initial set of previously encountered expressions is empty. The rules C for program 

construction are then applied to the proof expression obtained by pre-processing 

(54.2) of the resulting distilled expression. The ANY-quantified variable v is passed 

as the variable under construction to the object level program construction rules 

C. In addition, the set of implicitly universally quantified variables is passed as a 

parameter in the application of C. Finally, the program obtained by applying the 

program construction rules C is transformed within the context (i.e., c(el')) using 7 
to give the output program. 

7[c(ANY v : ~ . e ) ]  p 4 = 7[c(ett)Jj p 4 ( 7 4 )  
where 

e' = 'n.1 0 4 
eft = CBetII uvn 0 (f+) \ {v)) 

Figure 5.2: Distillation rule for program construction 

5.3.2 Precondition and Postcondition Analysis 

The input specification for program construction can be expressed in any of the 

following forms: 

i) ANYv:7 . e  No precondition 

ii) ANY v : .r.pre + post Precondition with implication 

Specifications which satisfy form (i) do not contain any precondition within the 

conjecture. For example, the conjecture 

ANY y : nat.(eqnum x Zero) V (eqnum x (Succ y)) 

satisfies this form. The program constructed from this specification can be used to 

compute an output for each value of the input variable x. Specifications which satisfy 

form (ii) contain a precondition and postcondition. The precondition specifies the 

properties of the input variables; this corresponds to the computationally irrelevant 

part of the specification as defined in [32]. The postcondition specifies the value of 

the output in relation to the input variables; this corresponds to the computationally 

relevant part of the specification as defined in [32]. We construct programs solely 



from the computationally relevant part of the specification (i.e., the postcondition). 

The programs which we construct may return I, but this will only be for values of 

the input variables which do not satisfy the precondition. The precondition of the 

specification is therefore replaced by True in our approach so that it can be trans- 

formed away and programs are then constructed from the resulting postcondition. 

As an example, the specification ANY y : nat.(even x) + (eqnum (double y)  x) 

has the precondition (even x) and the postcondition (eqnum (double y )  x). In our 

approach, we construct a program from the postcondition (eqnum (double y)  x). 

This program may return I. However, if we also show that the existential con- 

jecture ALL x.EX y.(even x) + (eqnum (double y) x) is True, then we know that 

the original specification is satisfiable, and that the constructed program will only 

return I for values of the input variable x which do not satisfy the precondition 

(even x).  

5.3.3 Construction Process 

Program construction from an input specification in Poitin is guided by the steps as 

described in Fig. 5.3. These program construction steps ensure the construction of 

programs which are correct with respect to the input specification. 

5.3.4 Program Construction Rules C 

The program construction rules for an ANY-quantified specification are defined with 

a set of rules C by Cue] [el] p 4 as shown in Figs 5.4 and 5.5, where the expression e 

is the proof expression obtained from the postcondition of the specification. el is the 

existential witness which may be a variable v or a constructor application c el . . . en. 

The environment p is the set of the previously encountered function calls, and 4 is 

the set of implicitly universally quantified variables. 

The rules C for program construction can be explained as follows. In rule (Cl), a 

variable v is encountered which must be a Boolean, and the existential witness is also 

a variable. If v is universally quantified (and therefore in 4) ,  then the undefined value 

I is returned as the value of v cannot always be True. Otherwise, v is implicitly 

existentially quantified and must be the existential witness, so the value True is 

returned as the only possible value of this witness. In rule (C2), we encounter a 

variable v where the constructor application c e l . .  . e, is the existential witness. If v 

is universally quantified (and therefore in 4) , then the value I is returned as the value 

of v cannot always be True. Otherwise, v is implicitly existentially quantified, so the 



1. Construct an existential conjecture from the program construction specifica- 

tion. Let ANY v : 7.e be the input program specification. Then, the resulting 

existential conjecture will be ALL vl . . . vn.EX v.e where vl . . . vn are the im- 

plicitly universally quantified variables in e. 

2. Construct a proof of this existential conjecture using Poitin to verify that the 

input specification is satisfiable. 

3. If the conjecture is proved, then follow step 4. Otherwise, return I (i.e., the 

input specification is not satisfiable). 

4. For input specifications satisfying form (i) (§5.3.2), construct a program from 

the input specification. For input specifications satisfying form (ii), follow step 

5. 

5. Construct an existential conjecture using the precondition within the input 

specification by existentially quantifying all of the free variables within the 

precondition. 

6. If the proof of the existential conjecture is True, then construct a new program 

specification by replacing the precondition with True within the original spec- 

ification. Construct a program from this new specification. Otherwise, return 

I. 

Figure 5.3: Program construction steps 

arguments el . . . en are further constructed separately and the existential witness is 

given by the application of the constructor c to these constructed arguments. 

In rule (C3), we encounter the value T r u e  where the existential witness is a 

variable. The existential witness is constructed using a non-recursive constructor 

of the existential witness type. In rule (C4), we encounter the value T r u e  where 

the constructor application c el . . . en is the existential witness. The arguments 

e l . .  . en are further constructed separately and the existential witness is given by 

the application of the constructor c to these constructed arguments. In rule (C5), 

we encounter the value False. In this case, there is no existential witness, so the 

undefined value I is returned. In rule (C6), the undefined value I is encountered. 

The existential witness for this expression is therefore also I. 

In rule (C7), we encounter a case expression where the redex must be a variable 



= True ,  otherwise 

C[v] [c el . . . en] p 4 = I ,  i f v ~ +  

= c (C[v] fell] p 4)  . . . (C[v] [en] p +) ,  otherwise (C2) 

C[Truel] [v] p 4 = C[True] [ ~ i  O i l  . . . viki] P 4 
where v is of type T = cl 7 1 1 . .  . 71k ,  1 . .  . 1 cm ~ ~ 1 . .  . Tmk,  

and 3i E { I . .  . m ) . ~  @ {ril . . . q k i )  

C[case v of pl : ell ... Ipn : en] [e] p 4 (C7) 

= case v of Pl  : (C[ell] [e] P $1)  1 . .  . I Pn : (C[[en] [e] p 4 n ) ,  if v E 4 
= Tf(CUelIl Uebl /vII P 4)  U . - (C[en] Ue[pn/v]] p 4)]  {) {), otherwise 

where 

$i = $ U f v ( ~ i )  

C[letrec f = Xul . . . vn.eo in f vl . . . vn] [v] p 4 
= letrec f = Xvi . . . vi.eb in f vi  . . . v i ,  if 3x E {vl . . . vn).x E 4 
- - eb, otherwise 

where 

eb = c[eo] [v] ( P  U { f  v l .  . vn)) 4 
{ v ; .  . . V L )  = {vl . . . 21,) n 4 

Culetrec f = Xul.. . vn.eo in f vl . . . vn] [C e l . .  . ek] p 4 
= c (Culetrec f = Xul.. . vn.e0 in f vl . . . vn] [el] p 4 ) .  . . 

(Culetrec f = Xvl . . . vn.eo in f vl . . . vn] [ek] p $ ) ,  
if 3% E {vl . . . vn).x E 4 

= C[eo] [C el . ek] ( P  U { f  vl - . vn)) 4, otherwise 

Figure 5.4: Program construction rules C 



C[f el . . . en] [[v] p + = f V: . . . vL[el/vl . . . en/vn], (ClO) 
if 3x E {el . . . en).x E q5 

= I, otherwise 

where (f vl . . . v,) E p.(f vl . . . v,) I. (f el . . . en) 

{v: . . . vL)  = {v1 . . . v,) n 4 

C[f el . . .  en] [C ei . . .  e;] p + 
= c (CUf el - . en] [e:] P 4) . . (C[f el . . . en] [e;] P +), 

if 3% E {el . . . en).x E + 
= I, otherwise 

Figure 5.5: Program construction rules C (Continued) 

as the expression is in distilled form. If v is universally quantified (and therefore in 

+), then it remains within the expression. The program construction rules are then 

further applied to the branches of the case expression. Before transforming each 

branch, the corresponding pattern variables are added to + as they are also implic- 

itly universally quantified. If v is implicitly existentially quantified (and therefore 

not contained in +), existential witnesses are constructed for each of the branches 

separately. These witnesses will be constructed using the corresponding patterns 

which give the value of the redex within the branch. The existential witness for 

the overall expression is then given by the least upper bound (u) of these existential 

witnesses for each branch. 

In rule (C8), we encounter a letrec expression where the existential witness is 

a variable. If at least one of the variables vl . . . vn within the function application 

f vl . . . v, is universally quantified (and therefore in +), then the function definition 

is simplified to be defined over these universally quantified variables. The program 

construction rules are then further applied to the body of the function. If the 

function application does not contain any universally quantified variables, then all 

of the variables within the expression are implicitly existentially quantified. In this 

case, the function definition is removed, and the program construction rules are then 

further applied to the unfolded function call. The function application f vl . . . vn 

is added to the environment p before applying the program construction rules to 

the body of the function. In rule (C9), we encounter a letrec expression where the 

constructor application c el . . . ek is the existential witness. If at least one of the 



variables vl . . . v, within the function application f vl . . . vn is universally quantified 

(and therefore in q5), then each of the arguments el . . . er, is further constructed 

separately and the existential witness is given by the application of the constructor 

c to these constructed arguments. If the function application f vl . . . vn does not 

contain any universally quantified variables, then the program construction rules are 

applied to the function body to give the existential witness. The function application 

f vl . . . vn is added to the environment p before applying the program construction 

rules to the function body. 

In rule (ClO), we encounter a recursive function call f el . . . en where the exis- 

tential witness is a variable. If there is a function application f vl . . . vn in p such 

that the recursive call f el.. . en is an instance of f vl . . . v,, and at least one of 

the arguments el . . . en in the recursive call is a universally quantified variable (and 

therefore in q5), then the function application is simplified to be defined over the 

arguments of the recursive call corresponding to the universally quantified variables 

within the initial function application f vl . . . v,. If, on the other hand, the function 

application does not contain any universal variables, then all of the variables are 

implicitly existentially quantified, so the undefined value I is returned as the search 

space of these existential variables has been exhausted. In rule (Cl l ) ,  we encounter 

a recursive function call f el . . . en where the constructor application c ei . . . ei is 

the existential witness. If at least one of the arguments el . . . en in the recursive call 

is a universally quantified variable (and therefore in q5), then each of the arguments 

ei . . . ek is constructed separately and the existential witness is given by the appli- 

cation of the constructor c to these constructed arguments. If, on the other hand, 

the recursive call does not contain any universal variables, then the undefined value 

I is returned. 

5.4 Examples 

In this section, we give two examples of program construction to demonstrate how 

the rules C can be used in the construction of programs. 

Example 12 

Consider the input specification (12.1), which requires the construction of a natural 

number y such that for every natural number x, either the double of y is equal to x,  

or the successor of the double of y is equal to x. For even values of x, the constructed 



program should compute the value of y as half of x .  For odd values of x ,  the value 

of y should be computed as half of the predecessor of x. 

A N Y  y : nat.or (eqnum (double y )  x )  (eqnum (Succ (double y ) )  x )  (12.1) 

The program construction from specification (12.1) is guided by the construction 

steps as shown in Fig. 5.3. Step 1 generates a theorem proving conjecture stating 

the satisfiability of specification (12.1), which is given by expression (12.2). 

ALL  x.EX y.or (eqnum (double y )  x )  (eqnum (Succ (double y ) )  x )  (12.2) 

The function eqnum is defined in 52.5.3 and double is defined in Appendix A.1. 

These definitions are used with the following definitions of the functions or and lub 

(u- least upper bound- in this case for natural numbers). 

or = Xx.Xy.case x of 

D u e  : True 

( False : y 

lub = Xx.Xy.case x of 

Zero  : Zero  

1 Succ x' : Succ x' 

I1 : Y  

Poitin proves conjecture (12.2)- the details of this proof are not given here. 

This ensures that specification (12.1) is satisfiable. Rule ( 7 4 )  (Fig. 5.2) therefore 

applies the rules C to the proof expression obtained by pre-processing the distilled 

expression resulting from the transformation of expression (12.1) as shown below. 

C[ letrec fO = Xy.Xx.case y of (by 7 4 )  
Zero : case x of 

Zero : T r u e  

I SUCC x' : case x' of 

Zero : T h e  

I Succ xu : False 

I Succ y' : case x of 

Zero : False 

1 Succ x' : case x' of 

Zero : False 

( Succ x" : f0 y' x" 



During the application of thc rules C in the above term, rule C8 simplifies thc 

letrec expression. The function application fO g/ x is simplified to be defined 

over thc universaI1y quantified variable x as f 0 a: wh~re  the implicitly existentially 

quantified variable y is removed. The application of the da C to the unfolded 

function call proceeds az shown below. 

let rec 

fO = Xs.C[[case y of 

Zero .o case x of 

Zero : h e  

1 SUCC x r :  case xK of 

Zem : T h e  

1, Succ XI' : Fake 

1 Sum PJ' : case z of 

Zem : False 

[ Succ x' : case st of 
Zero : False 

I Szdcc x" : jo y' st'! [g] (f0 y x) (2) 
in fO z 

= letrec (by C73 

f O  = hx.n[C[case x of 
Zero : n u e  

I SUCC x' : case x' of 

Zero : P u e  

( Succ x" : False] [Zero] {fO y 3) {x}) 

U (CI case x of 
Zero :False 

( Succ z' : case x' of 

Zero : False 

I sacc x" : f0 y' x"] [Succ y'] {fO y x }  { x ) ) ]  {} {} 



= letrec 

f0 = Ax.T[(case a of 

&?TO : ~ [ X T U ~ ]  [ Z ~ T O ] ~  { f 0 X) (x) 

I SUCC x1 : C[case st of 

Zero : Due 

I Succ x" : Fabe] [ Z e ~ o ]  {fU y $1 (x, x')) 

U (CIcase x of 

Zero : False 

I Succ x' : case xi of 

Zero : False 

I Succ xu : fO ~"'q [SUCC Y'] {fO 8, x )  {s))] {) {) 

in f0 x 

= letrec (by C41C7) 

jU  = Xs.T[(case a of 

Zero : Zero 

1 SUCC x1 : case x1 of 

Zero :C[True]EQZero] {fO g x } { x , x r )  

I Succ xt' : C[False] [Zero] {fO y x) ( x ,  x', xu)) 

u (C[  case s of 

Zero : Fake 

I Succ x' : case x1 of 

Zem ro Fube 

I SUE : 10 gr [SUCC 3" {(fo $1 { X I ) ~  {) o 



(by C4,C5,C7,C5,C7,C5) = letrec 

f V  = X%.T[(case s of 

Zero : Zero 

I Succ x' : case st of 

Zero .o Zero 
1 succ xi' : I ) 

U (case x of 

Zem : 1 

I Succ x' : case x' of 

Zem : I 

1 Succ 2" : 

cvo yt s t f ~  ~succ  {fo s) { x , x ~ ,  X # ) ) I  {I {I 

= letrec 

fO = Xx.TI[(case x of 

Zero : Zwe 

I SUCC x' : case 5' of 

Zem : Z e r o  

I Succ x'" : l 1 
U ( case x of 

Zero : I 

I SUCC x' : case x' of 

Zero : I 
1 S~LCC 2" : 

SUCC ICIIFO 91' xl'n n8'1 {fO ?/ $1 {a ,  xl,x'"l)l 0 C) 



= letrec 

f O  = Ax.T[(case x of 

Zero : Zero 

1 Succ x' : case x' of 

Zero : Zero 

1 Succ x" : 1 ) 

U (case x of 

Zero : I 

I Succ x' : case x' of 

Zero :I 

I Succ x" : Succ ( f O  a"))] {} {} 
in f0 x 

= letrec f 0 = Ax. case x of 

Zero : Zero 

1 Succ x' : case x' of 

Zero : Zero 

I Succ x" : Succ (f0 x") 

in fO x 

This program is further transformed using distillation, which results in the same 

output program. The constructed program computes an output for each value of 

the input variable x. The constructed program is totally correct, and it satisfies the 

input specification as required. 

Example 13 

Consider the following program specification (13.1), which requires the construction 

of a natural number x such that for every value of the natural numbers x and y, if 

x < y, then the sum of x and x is equal to y. 

ANY x : nat.implies (less x y )  (eqnum (plus x x )  y )  (13.1) 

In step 1 of the construction process (Fig. 5.3), the following existential conjec- 

ture is generated from specification (13.1). 

ALL %.ALL y.EX x.implies (less x y )  (eqnum (plus x z )  y )  (13.2) 



The functions eqnum and plus used within the specification have the same defi- 

nitions as given in Chapter 2. The functions implies and less are defined as follows. 

implies = Xx.Xy. case x of 

Due : y 

I False : D u e  

less = Xx.Xy. case x of 

Zero : case y of 

Zero : False 

I Succ y' : D u e  

( Succ x' : case y of 

Zero :False 

I Succ y' : less x' y' 

Poitin proves conjecture (13.2)- the details of this proof are not given here. 

Specification (13.1) is therefore a satisfiable program specification, which is of form 

(ii) as defined in s5.3.2. The existential conjecture EX x.EX y .less x y is constructed 

from the precondition less x y of specification (13.1) according to step 5 of the 

construction process (Fig. 5.3). Poitin proves this conjecture. A new specification 

is therefore constructed by replacing the precondition less x y with Due in step 6 

of the construction process, which results in the following expression (13.3). 

implies (True)  (eqnum (plus x z )  y) (13.3) 

Rule (74) applies the program construction rules C to the proof expression ob- 

tained from the distilled expression resulting from the transformation of expression 

(13.3) as shown below. 



ClZetrec 
fO = Xx.Xz.Xg. case e of 

e m  : case e of 
Zem : caw y of 

Zero : P u s  

I sum v' : Wlsc 
I S ~ t m  x' : case y of 

Zero : False 
I Sum y' : letrec 

JP = A4'.Xy1. case a' bF 

Zero : case y' of 

Zero : W e  

1 Srrcc y" : False 
I Stim r" : m e  y' of 

Zero : Pd8e 

1 Succ y" : I1 2" y" 

I Sam x' : case y of 

Zero : Fdae 
I &IEC vJ : to  X' J y' 

h f a  ~2 11 131 { I  { x , v )  

The details of the construction stcps is out of scope because of larger expression 

size, Finally, we obtain the following program by applying the program construction 

rules C. 

letrec 
fQ = Xs.Xy. case x of 

Zero : case 3 of 

Zen, : Zero 

I Sacc yt : SVLCC ( letrec 
f 1 = Xy'. case y' of 

Zem : zero 

I Succ ?I" : succ (fl y") 

in fl g r )  

I Succ x' : case of 

Zero : L 

1 SUCC 3' : fO xh' 
info z 8 

The constructed program computes the existential witness x as a function of 

the univcrsdly quantified mriablm x and y. For s 5 y, it returns y - x ;  and for 



x > y, it returns I (Bottom). The constructed program therefore satisfies the input 

specification. 

5.5 Proof of Correctness 

The program construction method of Poitin constructs executable functional pro- 

grams from input specifications. The construction method extracts a program from 

the proof of the input specification. 

In order to prove that for every program specification which is found to be 

satisfiable, the programs constructed by our program construction rules are correct 

with respect to original specifications, we need to show the following: 

1. Cbost]  [el p {vl . . . vn)  = e[el /v i ,  . . . , ek/vL] 

+ T [ A L L  vl . . . vn.post[el/vk, . . . , ek/vL]] {) {) = True  

2. (a) for specifications of the form A N Y  v : r.pre + post: 

Cbost] [el p {vl . . . v,) = I 

A T I A L L  vl . . . v,.EX v.pre + post] {) {) = True  

+ T [ A L L  vl . . .  v,.pre] {) {) = I 
(b) for specifications of the form A N Y  v : r.post: 

Cbost]  [e] p {vl . . . v,) = I 

+ T I A L L  vl . . . v,.EX v.post] {) {) = I 

In order to prove the correctness of the constructed program using the program 

construction rules C from specifications of the form A N Y  v :  post, we need to 

show (1) and 2(b), and from specifications of the form ANY v : .r.pre +- post, we 

need to show (1) and 2(a). 

Proof. 

The proof of this is by recursion induction on the proof rules C. 

Base Cases 

Case for Rule C1: 

If v E 0: 
C[v] [v'] p {Vl . . . v,) =I 



2. (a) ?'-[ALL v l .  . . vn.EX vl.vi] {) {) = I (by (Al))  
T I A L L  vl . . . v,.EX vl.pre +- vi] {) {) = True  (by assumption) 

+- T [ A L L  vl . . .  v,.EX vl.pre] {) {) = I 

( b )  T I A L L  ~ 1 . .  . v,.EX vl.vi] {) {) = I (by (4) 

If v $! 4: 
1. C[v] [v] p {vl . . . v,) = v[True/v]  

T I A L L  vl . . . v n . ~ [ T r u e / ~ ] ]  {) {) = True  (by ( A 2 ) )  

Case for Rule C2: 

If u E 4: 
C[v] [C el . . . en] p {vl . . . v,) =I 
2. (a) T [ A L L  vl . . . v,.EX vl.vi] {) {) = I (by (w) 

T I A L L  vl . . . v,.EX v l . ~ r e  + vi] {) {) = True  (by assumption) 

+ T I A L L  vl . . .  v,.EX vl.pre] {) {) = I 

(b )  T I A L L  v ~ . . . v ~ . E X  vl.vi] {) {) = I (by (4) 

If v $i 4: 
1. C[vi] [C e l . .  . en] p {vl . . . v,) = c el . . . e,[True/v; . . . Truelvk] (by ( C l ) )  

T [ A L L  vl . . . v,.v:[True/vi . . . True lv i ] ]  {) {} = True  (by ( A 2 ) )  

Case for Rule C3: 
1. C[True] [v] p {vl . . . vn)  = v[(ci V i l  . . . viki)/v] 

T I A L L  vl . . . vn.True[(ci vil . . . viki) /v]]  {) {) = True  (by (4) 

Case for Rule C4: 
1. C[True] [c el . . . en] p {vl . . . v,} = (c  el . . . e,)[e;/v;. . . eL/vk] 

T I A L L  vl . . . v,.True[e',/ui. . . ei /vb]]  {) {) = True  (by 

Case for Rule C5: 

C[False] [e] p {vl  . . . v,) =I 
2. (a)  T [ A L L  v l . .  . v,.EX v.False] {) {) = I (by (&3)) 

T [ A L L  vl . . . v,.EX v.pre + False] {) {) = True  (by assumption) 

+ T [ A L L  v l . .  .v,.EX v.pre] {) {) = I 

( b )  T I A L L  vl . . . v,.EX v.False] {) {) = I (by ( f 3 ) )  



Case for Rule C6: 

C [ I ]  [e] p {vl . . . v,) =I 
2. (a)  T [ A L L v l  ... v n . E X v . l ]  {) {) = I (by (E4)) 

T[ [ALL  vl . . . v,.EX v.pre + I ]  {) {) = True  (by assumption) 

+ T I A L L  vl . . .  v,.EX v.pre] {) {) = I 

( b )  T [ A L L  vl . . . v,.EX v .  I ]  {) {} = I (by (84 ) )  

Case for Rule C10: 

If 3x E { e l . .  . em).x E {ul . . . v,): 
1. C [ f  el . . .  em] [v] p { v  l . . . v n } = v [ f  ei ... eklv] 

T [ A L L  vl . . . v,.(f vl . . . vm[f e', . . . eklv])]  {) {} = True  (by ( A 7 ) )  

If $x E { e l . .  . em).x E {vl . . . v,): 

CV el . . . em] [v] p {vl . . . v,) =I 

2. (a)  T [ E X  vi . . . v i .  f el . . . em] {) {) = I (by (E7) )  
T [ E X  vi . . . vi.pre + f vl . . . vm] {) {) = True  (by assumption) 

+ T I E X  vi . . . v ; .~re]  {) {) = I 

(b )  T [ E X  vi . . . u;. f e l . .  . em] {) {) = I (by (87 ) )  

Case for Rule C11: 

If 3x E {el . . . em).x E {vl . . . v,): 
1. C [ f  el . . . em] [C ei . . . e;] p {vl . . . v,) = ( c  ei . . . ei)[ey/vi .  . . eilv;] 

T I A L L  vl . . . vn.(f el . . . em[ey/vi .  . . ei lv;])]  {} {) = True  (by (A7) )  

If ax E { e l . .  . em).x E {vl . . . v,): 

CV e l . .  .em] [C ei . . . ei] p {vl . . .v,) =I 

2. (a )  T [ E X  v i  . . . v;. f el . . . em] {) {} = I (by (87) )  

T [ E X  v i  . . . vi.pre =+ f el . . . em] {) {) = True  (by assumption) 

+ T [ E X  vi . . . vi.pre] {) {} = I 

(b )  T [ E X  vi . . . v;. f e l . .  . em] {) {) = I (by (E7)) 



Inductive cases 

Case for Rule  C7: 

If v E 4: 
Cucase v o f  pl : el I . . . I p, : en] [e] p q5 

= case v o f  pi : (Cl[el] [e] p 41) 1 . . . I pn : (Cuen] 1.1 p 4 n )  

By the inductive hypothesis, Qi E ( 1  . . . n}:  

1. C[ei] Be] p {vl . . . vn} = e[e:/v; . . . eklv;] 

+ T I A L L  vl . . . v,.ei[e',/v; . . . ei /v;]]  {} {} = True  

2. (a) C[ei] [e] p ( ~ 1 . .  . vn) = I 

A T I A L L  v l . .  .v,.EX v.pre + ei] {) {) = True  

+ TUALL vl . . . v,.prel) {} {} = I 
( b )  T I A L L  vl ... v,.EX v.ei] {} {} = I 

If 3i E (1 . . . n}.C[ei] I[e] p 4 #I, then by the inductive hypothesis: 

1. C[ei] [e] p {vl . . . v,} = e[ei/v; . . . e;/vk] 

+ T I A L L  vl . . . v,.ei[ei/vi . . . e;/vi]]  {} {} = True  

2. (a) TUALL v l . .  . v,.EX v.pre * case v o f  pl : el I . . . 1 p, : en] {} {} 
= True  (by assumption) 

+ TUALL vl . . . v,.EX v.pre] {) {} = I 

(b )  TUALL vl . . . v,.EX v.case v o f  pl : el I . . . I p, : en] {) {} = I 

(by assumption) 

Case for Ru le  C8: 

If 3x E {vl . . . v,}.x E {v; . . . v i } :  

Culetrec f = Awl . . . v,.eo i n  f vl . . . v,] [v] p {v; . . . v i }  

= letrec f = Avy . . . vi.eb i n  f vy . . . v i  



where 

eb = C[eo] [v] ( p  U { f vl . . . v,)) {vi . . . v;) 

By the inductive hypothesis: 

1. C[eo] [e] p {vi  . . . vk)  = e[ey/vy . . . eE/v[] 

+ T I A L L  vi . . . vk.eo[ey/vy. . . ei/vL]] {) {) = True  

2. (a) C[[eolJ [el p {v; . . . v;) = I 

A T I A L L  vi . . . v;.EX v.pre + eon {) {} = True  

+ T [ A L L  vi . . . vk.pre] {) {) = I 

( b )  C[eo] [[el p {vi . . . vk} = I 
+ T [ A L L  vi . . . v;.EX v.eo] {) {) = I 

If $x E {vl . . . vm).x E {v'l . . . vk): 

Culetrec f = Xul.. . vm.eo in f vl . . . urn] [v] p {vi  . . .vk)  = eb 

where 

eb = C[eo] [v] ( p  U { f  vl . . . v,)) {vi  . . . v;) 

By the inductive hypothesis: 

1. C[eo] [e] p {vi  . . . vk)  = e[ey/vy . . . e i / v [ ]  

+ T I A L L  vi . . . v6.eo[ey/vy. . . eE/vL]] {) {) = True  

2. (a)  Cueo] [el p {vi . . . vk)  = I 
A T I A L L  v; . . . v;.EX v.pre + eon {) {} = True 

+ T I A L L  v i .  . . ~ L . ~ r e ]  {) {) = I 

( b )  Cueo] [e] p {vi . . . vk) = I 

+ T I A L L  V: . . . vk.EX v.eo] {) {) = I 

Case for Rule C9: 

If 32 E { v l . .  vm).x E { ~ i  . . .  v;}: 

Culetrec f = Xul . . . vm.eo in f vl . . . vm] [C ei . . . el.] p {vi . . . vk} 

= (c  ei . . . ei)[(C[letrec f = Xul . . . vm.eo in f vl . . . urn] [el] p {v: . . . v k ) / v ~ ) ]  

By the inductive hypothesis, Qi E (1.. - 1 ) :  
1. Culetrec f = Xul.. . vm.eo in f vl . . . vm] [e/] p {vi . . . v;) = e[ey/vy..  . e;/vL] 

+ T I A L L  vi . . . v;.letrec f = Xul . . . v,.eo in f vl . . . v,[ey/vy . . . eg/v;]] {) {} 

= True 



By the inductive hypothesis: Vi  E ( 1 . .  . I ) :  

1. Cl[eo] [ei] p {vi . . . vh) = e[ey/vy . . . e t / v i ]  

+- T I A L L  vi . . . v;.eo[ey/vy. . . e i / v i ] ]  {) {) = True  

2. (a) C[eo] [ei] p {v', . . . v;) = I 

A T I A L L  v ; .  . .&.EX v.pre + eon {) {) = True  

+- T [ A L L  v ; . .  .v;.pre] {) {) = I 

(b) C[eo] [ei] p {v: . . . vk )  = I 

+ T [ A L L  v', . . .v;.EX v.eol) {) {) = I 

5.6 Conclusion 

In this chapter, a novel program construction method has been presented which 

can be used to construct correct programs from input specifications. We have 

extended our language and distillation rules to handle input specifications with 

ANY-quantification. Unsatisfiable specifications are rejected during the construc- 

tion process if we are unable to prove the existential conjectures generated from the 

input specification. We have then shown how a correct program can be constructed 

by removing the precondition from the input specification. 

We have formally defined the program construction rules C which can be used 

to construct programs from specifications. The application of these rules has been 

demonstrated with two examples. The constructed program is executable in the 

source language. The examples show that the constructed programs are efficient 

and correct with respect to the input specifications. We have implemented this 

program construction technique and added it to the theorem prover Poitin. 



Chapter 6 

Implementation and Results 

6.1 Introduction 

In this chapter, we briefly overview the implementation of the theorem prover Poitin, 

and present some results of our research. The theorem prover is implemented using 

the functional programming language Standard ML of New Jersey v110.60. The 

strong type system of Standard ML allows the definition of appropriate data types 

to represent input conjectures and specifications as data objects of these types. 

The implementation of the Poitin theorem prover consists of three main modules: 

Toplevel, ATP and D i s t i l l .  The Toplevel module implements the main interface 

to the theorem prover, which consists of several menu options. The ATP module 

implements the data types to express input conjectures and program specifications, 

and implements functions that operate on these expressions. The module D i s t i l l  

is the main module of the theorem prover, which implements the distillation rules 

for quantification, program transformation, and the proof and program construction 

rules. 

6.2 Poitin: a Prototype Version 

In this section, we present the data types and main functions of each module of 

the theorem prover. The Toplevel module and the distillation program trans- 

former were implemented jointly by myself and my supervisor Geoff Hamilton. I 

have improved the implementation of the embedding detection algorithm and the 

generalization techniques of distillation. In addition, I have implemented the pre- 

processing phase, the distillation rules for quantifiers, the universal and existential 



proof rules, the program construction steps, and the program construction rules. 

6.2.1 Module Toplevel 

The Toplevel module consists of the function toplevel which implements the in- 

terface to the Poitin theorem prover. The function toplevel has the following 

signature. 

val toplevel: unit -> unit 

On execution of the function toplevel in the SML prompt, the following prompt 

appears to interact with the Poitin theorem prover: 

POT> 

The available commands at this prompt are: load, save, distill, step, 

show, showprog, graph, help and quit. One may learn about these commands 

by using the help command. The input conjecture or program specification is stored 

with function definitions as a program defined in the language in a .pot file, and can 

be loaded using the command load f i 2 ename . To prove or construct programs, the 

command distill is used, and the output can be viewed using the command show. 

Using the step command, one can switch to step mode distillation after loading the 

input file. 

6.2.2 Module ATP 

The module ATP defines the data type t as shown in Fig. 6.1 to represent any ex- 

pression in the higher order functional language described in 52.2.1, input conjecture 

to be proved and input specification for program construction. Some of the main 

functions of this module which operate on the expressions defined using the data 

type t are listed in Fig. 6.2. 

The function inForm parses the expressions defined in the higher order functional 

language, the operands of the infix operators +, t), A, V, and the operands of the 

quantifiers ALL, EX and ANY. The function readTerm returns an expression of data 

type t by processing a string consisting of an expression of data type t. For example, 

the conjecture ALL x.EX y.(even x) t) (eqnum (double y )  x) is processed by the 

function readTerm to give the following: 

ALL (IIXII ,EX (lly" , ~ p p l y  (Apply (Fun l 1  iff l 1  ,Apply(Free "even" ,Free "x")), 

~ ~ ~ l ~ ( ~ ~ ~ l ~ ( F ~ e e  lIeqnuml1, Apply (Free I1double" ,Free "y")) Free "x") ) ) ) 



datatype t = 

t 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Free of string 

Bound of int 

Fun of string 

Let of string * t * t 
Letrec of string * t * t 
Abs of string * t 
Con of string * t list 
Apply of t * t 
Case of t * (string * string list * t) list 
Node of string * t * (string * t) list 
Repeat of string * t * (string * t) list 
ALL of string * t 
EX of string * t 
ANY of string * t * t 

Figure 6.1: Data type of ATP module 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

val 

freevars: t -> string list 

abstract: int -> string -> t -> t 
shift: int -> int -> t -> t 
subst: int -> t -> t -> t 
inst: t StringDict.t -> t -> t 
rename: string list -> string -> string 

absList: string list * t -> t 
alllist: string list * t -> t 

exlist: string list * t -> t 
anylist: (string * t) list * t -> t 
inForm: ATPParsing.token list -> t * ATPParsing.token list 
outTerm: t -> Pretty.t 
readTerm: string -> t 
rdInput: string -> (t * (string * t) list) 
outTree : t -> Pretty. t 

Figure 6.2: Functions of ATP module 



The input specification ANY z : nat.(less x y) + (eqnum (plus x z) y) is 

processed by the function readTerm to give the following: 

ANY (llzll ,Nat "nat" ,Apply(Apply(Fun "implies" ,~ppl~(~pply(~ree "less", 

Free "x") ,Free "y") ) ,Apply (Apply (Free "eqnum" , ~pply (~pply(Free "plus", 
Free "xfl) ,Free "z")) ,Free "y") ) ) 

The function rdInput converts a string consisting of an  expression of data type 

t with function definitions in the form of a program to a pair consisting of an  

expression and a list of function definitions. For example, the program 

append xs ys 

where 

append = Xxs.Xys. case xs of 

Nil : ys 

I Cons x xs' : Cons x (append xs' ys); 

is processed by the function rdInput to give the following: 

(Apply (Apply(Fun "append" ,Free "xs") ,Free "ys") , [("append", ~ b s  ("xs" , 
Abs ("ys" ,Case (Free "xs" , [("Nil" , [I ,Free "ys") , (llCons'l, [Free "x" , 
Free "xs'"] , Con("Cons" , [Free "xll, Apply(App1y (Fun "append" ,Free "xs'") , 
Free "ys">l>>I)>>>l> 

6.2.3 Module Distill 

The module Distill consists of six main functions: distill, passl, pass2, 

forall, exist and constructany. 

The function distill implements the distillation rule 71 using the function 

pass1 to implement the distillation program transformation algorithm as defined in 

53.2, the pre-processing phase as described in Chapter 4 using the function pass2, 

rule 7 2  for universal quantification and rule 7 3  for existential quantification as de- 

fined in Chapter 4, and rule 7 4  for ANY-quantification as defined in Chapter 5. 

The implementation of rule 7 4  includes the implementation of the program con- 

struction steps as described in 55.3.3. A verification proof of the input specification 

is performed before the application of rule 7 4 .  As the input specification contains a 

precondition, a new specification is constructed by removing the precondition. The 



functions f o r a l l ,  e x i s t  and constructany implement the proof rules A, E ,  and 

the program construction rules C, which are discussed in 56.2.4 and 56.2.5, respec- 

t ively. 

The d i s t i l l  function has the form dis t i l l  s [[el) p 4, where s is the step mode 

indicator, and e is the input expression to which the distillation rules will be applied. 

The parameter p represents the set of previously encountered expressions, and 4 
represents the set of function definitions used within the expression e. The function 

d i s t i l l  has the following signature. 

v a l  d i s t i l l  : boo1 -> ATP.t * ( s t r i n g  * ATP.t) l i s t  -> ATP.t 

The first argument of this function is a SML boolean value: t r u e  or f a l s e ,  

which indicates whether the s t e p  mode is on or off. The second argument is a 

pair of an ATP term of type t and a set of function definitions. Each function 

definition consists of a function name and the function body. The outcome of this 

function for an input conjecture may be True or Bottom. For an input specification 

with ANY-quantification, the outcome is a program which computes the existential 

witness. If the input expression does not contain any sort of quantification, the 

d i s t i l l  function transforms the input program to an equivalent and efficient output 

program. 

The function pass1 implements the distillation algorithm as defined by rule 

7 1  while the function pas s2 reconstructs the residual program resulting from the 

function pas s l  by performing the pre-processing tasks ($4.2). 

The function pas s l  implements the normal order reduction rules N as described 

in 52.2.4. This function implements the reduction rules, which decompose the first 

argument to this function into a unique context  and a redex based on the unique 

decomposition property. The function f indMatch tries to find a match of its sec- 

ond argument with any of the expressions of type t within the matrix in the first 

argument. The functions f indembed, f inddive and f indcouple implement the 

homeomorphic  embedding detection algorithm to detect whether any of the expres- 

sions of type t within the matrix in the second argument is embedded within the 

expression in the third argument or not. The function e x t r a c t  performs generaliza- 

tion of an obstructing function call in the case of strict embedding, and the function 

generalise performs the m o s t  specific generalization if the embedding is non-strict .  

The unfold function implements the unfolding operation of a function call. 

The construct  function implements the residual program construction rules P 

as described in $2.2.4 and 53.2.3. We recall Example 9 of Chapter 3; one of the 



expressions which was encountered in demonstrating the example is used to explain 

the use of the construct function as shown below. 

construct 1 Node fO: 

case x of 
Zero : case y of 

Zero : Rue  

I Succ y' : True 

I Succ x' : Repeat fO: Node fl: case x' of 
Zero : case y of 

Zero : Due 

( Succ y' : Due 

( SUCC X" : Repeat fl: leg x" (plus XI' y) 

The construct function returns the following residual program. 

letrec f 0 = Ax. case x of 

Zero : case y of 

Zero : T r u e  

1 Succ y ' :  True 

I Succ x' : f0 x' 

6.2.4 Implementation of the Proof Rules A and & 

The function f oral1 implements the proof rules A for universal quantification, and 

the function exist implements the proof rules & for existential quantification. These 

functions are invoked by the function distill to prove input conjectures. 

The function f orall has the form f orall [el p 4, where e is the proof expression 

to which the proof rules will be applied and the parameter p is the set of the previ- 

ously encountered function calls, and 4 is the set of universally quantified variables. 

The function forall has the following signature: 

val forall : ATP.t -> ATP.t list -> string list -> 
ATP.t * ATP.t list * string list 

The outcome of this function is a simplified proof expression, a set of function 

calls and a set of universally quantified variables. 

The function exist has the form exist [el p 4, where e is the proof expression to 

which the proof rules will be applied and the parameter p is the set of the previously 



encountered function calls, and 4 is the set of existentially quantified variables. The 

function exist has the following signature. 

val exist : ATP.t -> ATP.t list -> string list -> 

ATP.t * ATP.t list * string list 

The outcome of this function is a simplified proof expression, a set of function 

calls and a set of existentially quantified variables. 

6.2.5 Implementation of the Program Construction Rules C 

The function constructany implements the proof rules C which perform the con- 

structive proof of a distilled expression. The function constructany has the form 

constructany [el [el] T p 4. This function is invoked by the function distill to 

construct a program from the proof expression obtained from an input specification. 

The function constructany has the following signature. 

val constructany : ATP.t -> ATP.t -> ATP.t -> ATP.t list -> 
string list -> ATP.t * ATP.t list * string list 

The first argument of the function constructany is a proof expression e of type 

t to which the constructive proof rules C will be applied. The second argument e' 

is the current existential witness and the third argument T is the existential witness 

type. The parameter p is the set of the previously encountered function calls, and Q, 

is the set of universally quantified variables within e. The outcome of this function 

is the simplified constructed program, a set of function calls and a set of universally 

quantified variables. 

6.3 Results 

We have applied the theorem prover Poitin to a large number of inductive theo- 

rems and program specifications. Poitin can prove these theorems without using 

any intermediate lemmas by performing only generalization, whereas some other in- 

ductive theorem provers require lemmas and generalizations to prove some of these 

theorems. Some of the conjectures listed in Table 6.1 were proved by SPIKE 1661 

using a divergence critic [107], NQTHM [8, 91, ACL2 [63], CLAM [21, 231 using 

rippling, and Periwinkle [68] by proposing lemmas or performing generalizations. 



No. Conjecture 

ALL x.ALL y.eqnum (plus x y )  (plus y x )  

ALL x.eqnum (plus x (Succ x ) )  (Succ (plus x x ) )  

ALL x.ALL y.ALL z.eqnum (plus (plus x y) z )  

(plus x (plus Y 2 ) )  

ALL x.eqnum (plus (plus x x )  x )  (plus x (plus x a ) )  

ALL x.eqnum (gcd x x )  x 

ALL x.ALL y.eqnum (sub (plus x y )  x) y 

ALL x.ALL y.eqnum (plus x (Succ y ) )  (Succ (plus x y ) )  

ALL x.even (plus x x )  

ALL x.even (doublea x Zero) 

ALL x.ALL y.((even x )  A (even y ) )  + (even (plus x y)) 

ALL x.(eqbool (even x )  (True) )  -+ 
(eqbool (odd x )  (False)) 

ALL %.EX y.(even x )  +, (eqnum (double y)  x )  

ALL x.EX y.(even x )  H 

(eqnum (mult y (Succ (Succ Zero) ) )  x )  

ALL x.ALL y.EX z.(less x y )  + (eqnum (plus x z )  y )  

ALL xs.ALL ys.eqnum (length (append xs ys))  

(length (append ys xs))  

ALL xs.ALL ys.eqnurn (length (append xs ys))  

(plus (length xs) (length ys))  

ALL xs.ALL ys.ALL zs.eqlist (append x s  (append ys 2 s ) )  

(append (append x s  ys)  z s )  

ALL xs.ALL ys.(even (length (append x s  y s ) ) )  t, 

(even (length (append ys x s ) ) )  

T i m e  

( in  Seconds) 

0.0094 

0.0016 

Table 6.1: Some conjectures proved in Poitin 



Poitin can prove all of these conjectures fully automatically without requiring 

any intermediate lemmas. Conjectures 3 ,  6 ,  7, 16 and 17 do not require any general- 

ization to be performed. All other conjectures require generalization to be performed 

during distillation. The times listed to prove the conjectures are given by the aver- 

age of 10 runs for each conjecture on an Intel Pentium 4 P C  with 2.40 GHz and 512 

MB RAM. As these times are very low, the results are encouraging. The proof of 

conjecture 1 is troublesome for a lot of inductive theorem provers. This conjecture 

has two unJ-Eawed induction variables, which make the proof complicated for explicit 

inductive provers as discussed in Example 10 (s4.4.1).  Poitin proves this conjecture 

by generalization of accumulating patterns during distillation. Conjecture 2 is also 

difficult to prove using previous proof techniques. SPIKE diverges in an attempt to 

prove conjecture 8. Divergence critic takes 5.4 seconds to suggest a lemma to prove 

this conjecture. The proof of conjecture 9 in the explicit induction method involves 

the introduction of a new universally quantified variable in place of the accumulat- 

ing parameter [45, 541, which over-generalizes the conjecture by generating the new 

conjecture ALL x.ALL y.even (doublea x y ) .  Poitin has also been successfully used 

in proving existential theorems (e.g., conjectures 12, 13 and 14 in Table 6.1).  SPIKE 

fails to prove conjectures 15 and 16. The divergence critic avoids the divergence by 

proposing two lemmas in each case in 3.6 and 7.2 seconds respectively. Poitin proves 

conjecture 15 by generalization of accumulating patterns during distillation. 

The following Table 6.2 shows some universally quantified conjectures which 

cannot currently be proved in Poitin. The function definitions in Fig. 6.3 were used 

along with the definitions of the functions eqnum, double, plus, length, eqlist, reva, 

append and reverse as defined in the previous chapters. 

Among these conjectures, conjecture 3 states the commutativity of multiplica- 

tion and conjecture 5 uses a mutually recursive function. The distillation of most of 

these conjectures suffers from non-termination due to successively growing patterns 

or the existence of more than one of the three different forms of non-termination. 

For example, the transformation of conjectures 3 ,  7 and 8 encounters the occurrence 

of both accumulating patterns and obstructing function calls. In the current ver- 

sion of Poitin, we consider only one form of embedding of two expressions: strict  

or non-strict ,  and the corresponding generalization. The distillation of conjecture 

6 encounters the embedding of both accumulating patterns and accumulating para- 

meters. The distillation of all other conjectures suffers from non-termination due to 

successively growing patterns because of unification-based information propagation. 



No. 

1. 

2. 

3. 

4. 

Conjecture 

ALL x.eqnum (double x )  (plus x x) 

ALL x.eqnum (half (plus x x ) )  x 

ALL x.ALL y.eqnum (mult x y )  (mult y x )  

ALL x.ALL y.ALL z.ALL u.ALL w.eqnum (plus x (plus y (plus x 

(plus u w ) ) ) )  (plus w (plus x (plus y (plus z u ) ) ) )  

ALL xs.leq (length (evenlist xs) )  (length xs) 

ALL xs.ALL ys.eqlist (reva xs ys) (append (reverse xs) ys) 

ALL xs.eqlist (rotate (length xs) xs) xs 

ALL xs.eqlist (reverse (reverse xs))  xs 

ALL xs.eqnum (length (append xs as))  (double (length xs ) )  

Table 6.2: Some of Poitin's failures 

half = Xx.case x o f  
Zero : Zero 

( Succ x' : case x' o f  

Zero : Zero 

I SUCC X I '  : SUCC (half x") 

mult = Xx.Xy.casexof 

Zero : Zero 

I Succ x' : plus y (mult x' y )  

evenlist = Xxs. case xs o f  
Nil : Nil 

I Cons x XS' : oddlist xs' 

oddlist = Xxs. case xs o f  
Nil : Nil 

I Cons x xs' : Cons x (evenlist xs') 

rotate = Xx.Xys. case x o f  

Zero : y s  

I Succ x' : case ys o f  

Nil : Nil 
I Cons y ~ s '  : rotate x' (append ys' (Cons y Ni l ) )  

Figure 6.3: Some function definitions for failed proofs 



Table 6.3 shows how SPIKE using the divergence critic [I071 and rippling [23, 171 

deals with these conjectures. The symbol - indicates that the proof example could 

not be found using the indicated method. 

No. SPIKE (Divergence Critic) Rippling 

Proved 

J 
J 
X 

J 
X 

J 
J 
J 
J 

Lemma required 

J 
d 
X 

J 
X 

J 
J 
J 
J 

Proved Lemma required 

Table 6.3: Conjectures of Table 6.2 proved by SPIKE using divergence critic and 

rippling 

Poitin has been used to construct programs from input specifications. The con- 

structed programs are efficient and correct with respect to the input specifications. 

In Table 6.4, some input specifications are listed, which were used to construct pro- 

grams. The constructed programs from these specifications are shown in Fig. 6.4. 

No. Specification Time (in Seconds) 

1. ANY y : nat.(even x) + (eqnum (double y) x) 0.0095 

2. ANY y : nat.(even x) + 
(eqnum (mult y (Succ (Succ Zero))) x) 0.0031 

3. ANY y : nat.(eqnum (double y) x) V 

(eqnum (Succ (double y))  x) 0.0031 

4. ANY x : nat.(less x y) + (eqnum (plus x z )  y) 0.0047 

5. ANY y : nat.(eqnum x (Zero)) V (eqnum x (Succ y)) 0.0046 

6. ANY y : nat.eqnum y (plus x (Succ Zero)) 0.0046 

Table 6.4: Some specifications for program construction 



Figure 6.4: Constructed programs for specifications of Table 6.4 

Specification No. 
P 

1. 

2. 

Constructed Program 

letrec fO = Ax. case x of 

Zero : 0 

1 Succ x' : case x' of 

Zero : I 
I Succ x" : succ (f0 8'') 

letrec fO = Ax. case x of 

Zero : O  

I Succ x' : case x' of 

Zero :I 
( succ XI' : Succ (f0 x") 

in fO x 

3. 

1 
4. 

5 .  

6. 

letrec fO = Xx.case x of 

Zero : 0 

I Succ x' : case x' of 

Zero : 0 

I Succ x" : Succ (f0 XI') 

in fO x 

As shown in Example 13 of 55.4 

case x of 

Zero : 0 

( Succ x' : letrec fO = Ax'. case x' of 

Zero : 0 

I Succ x" : Succ (f0 2") 

in fO x' 

letrec fO = Ax. case x of 

Zero : 1 

I Succ 2' : Succ (f0 2') 

in fO x 



In Fig. 6.4, the programs constructed from the specifications are totally correct. 

The results show that some difficult theorems about natural numbers and lists 

were proved by Poitin. Only the definitions of logical connectives A ,  V, +, t, etc. 

are provided as built-in functions. In theory, Poitin should be able to prove any 

conjectures about functions which are defined over inductive types such as sets, 

integers, rationals, trees, etc. 

6.4 Conclusion 

In this chapter, we have presented the implementation of the automatic theorem 

prover Poitin. The implementation includes four top-level distillation rules, induc- 

tive theorem proving rules, and program construction rules. The four top-level 

distillation rules control the functioning of the theorem prover. Rule 7 1  implements 

the distillation program transformer, which is at  the heart of the theorem prover. 

Rules 7 2  and 7 3  implement the inductive theorem prover, and rule 7 4  implements 

the program construction method. The implementation of rule 7 4  includes the im- 

plementation of the program construction steps as described in $5.3.3. In rule 7 4 ,  

a verification proof of the input specification is performed before each application 

of this rule, so that incorrect specifications are rejected in the construction process. 

The construction process removes the precondition part from the input specification 

by generating a new specification for program construction. This ensures that only 

correct programs are constructed in Poitin. 

We have presented some results of the application of the Poitin theorem prover 

to inductive theorems and program specifications. The results are encouraging, 

although some straightforward conjectures cannot be proved using the current im- 

plementation of Poitin. The main outcome is that the proof techniques of Poitin 

can be used to prove inductive conjectures fully automatically without the need 

for conjecturing any intermediate lemmas, whereas most inductive theorem provers 

require intermediate lemmas to prove these conjectures. Poitin also reduces over- 

generalization and generation of non-theorems. Our program construction tech- 

niques can be used to construct totally correct programs from input specifications. 

The future development plans for the theorem prover include the implementation of 

a graphical user interface, and improving the performance of the theorem prover. 



Chapter 7 

Conclusion and Future Work 

In this thesis, we have shown how automatic program transformation can be used 

in a novel way in metacomputation-based inductive theorem proving and program 

construction methods. The work presented in this thesis is an extension of the theo- 

rem prover Poitin to handle explicit quantification. Our inductive proof technique is 

an alternative to standard inductive proof methods using induction rules in explicit 

induction. The theorem proving and program construction techniques of Poitin do 

not require any intermediate lemmas, and therefore remove the need for a search in 

a vast collection of lemmas which is required in the axiomatic approach. The associ- 

ated search space is very small and is restricted to the set of expressions encountered 

during distillation, which constitute the set of inductive hypotheses. 

The program associated with an input conjecture or program specification can be 

transformed with distillation to an equivalent and efficient output program which is 

in a normal form called distilled form. The distilled expression can then be simplified 

to a proof expression, which is used in theorem proving and program construction. 

Proof rules for universal and existential quantification were defined to prove these 

proof expressions. The existential proof rules perform pure existence proof of a proof 

expression. To construct a program from an input program specification, a construc- 

tive proof method has been presented. The constructed program is executable in 

the source language, and can compute the unknown values as specified by the input 

specification. We have proved that the constructed program will be correct with 

respect to the input specification. 

To conclude the thesis, we first summarise the work presented in previous chap- 

ters, and then give some directions for future research. 



7.1 Summary of Thesis 

In this section, we summarise the main chapters of the thesis. 

7.1.1 Background 

In Chapter 2, we briefly surveyed the state of the art in the areas of program 

transformation, inductive theorem proving techniques and strategies using explicit 

induction, e.g. rippling, and program synthesis methods. A higher order functional 

language was defined which is used throughout the thesis. The higher order for- 

mulation of the supercompilation algorithm was given based on the presentation in 

[46]. We reviewed the recursion analysis technique used in the Boyer-Moore Theo- 

rem Prover to show how the required induction scheme for an inductive proof can 

be constructed from the recursive definitions of functions used within the inductive 

conjecture. We reviewed Turchin's metacomputation-based inductive theorem prov- 

ing technique to prove logical formulas using supercompilation. We also showed the 

relationship of cut elimination to the removal of intermediate data structures from 

programs. 

7.1.2 Distillation 

In Chapter 3, an overview of the distillation algorithm was given based on the pre- 

sentation in [46]. It  was shown how the supercompilation algorithm can be extended 

to develop the more powerful distillation algorithm. The distillation algorithm was 

devised with the aim to remove intermediate data structures from higher order 

functional programs. The unification-based information propagation and the more 

powerful matching technique adopted in distillation have made this algorithm very 

suited to the metacomputation-based inductive theorem prover Poitin. The trans- 

formation rules for distillation were presented, and generalization methods were 

described based on homeomorphic embedding to ensure on-line termination. The 

distilled form of expressions resulting from distillation was also defined. The proof 

of termination of the distillation algorithm was given based on the termination proof 

of a language independent framework of an abstract program transformer [96], and 

the correctness proof was given based on the improvement theorem of Sands [89, 901. 



7.1.3 Theorem Proving in Poitin 

In Chapter 4, the inductive theorem proving techniques of Poitin were presented. 

The language and the distillation rules were extended to deal with explicit quantifi- 

cation. Two distillation rules were defined for universal and existential quantification 

to deal with quantifiers at the meta-level, and two sets of object level proof rules 

have been formalised to prove proof expressions which contain universal and existen- 

tial variables. A set of potential inductive hypotheses is maintained during universal 

proof. An inductive hypothesis is only applied if a recursive function call is an in- 

stance of the inductive hypothesis, and at least one of the universally quantified 

variables in this application is decreasing. The existential proof rules use a pure 

existence proof technique. The great advantage of the proof techniques of Poitin is 

that these techniques do not require any intermediate lemmas, and therefore help to 

reduce the search required in an inductive proof. The soundness of the proof rules 

was shown with respect to a logical proof system using sequent calculus. 

7.1.4 Program Construction in Poitin 

In Chapter 5, a constructive proof method was presented to construct a higher or- 

der functional program from an input program specification. The language and the 

distillation rules were extended to handle ANY-quantified input specifications. A 

distillation rule was defined for ANY quantification, and constructive proof rules 

were defined for program construction from proof expressions. The program con- 

struction process was described, which includes a verification proof of the input 

specification to reject unsatisfiable specifications, so that programs are constructed 

only from satisfiable specifications. As the input specification contains a precondi- 

tion, a new specification is generated by removing this precondition as it does not 

help to define the output data. A proof of correctness of the construction method 

was also given. 

7.1.5 Implementation and Results 

In Chapter 6, the prototype implementation of the theorem prover Poitin was pre- 

sented. The distillation program transformer, distillation rules for the quantifiers 

ALL, EX and ANY, the proof rules and the program construction rules were im- 

plemented using Standard ML, and added to Poitin. The prototype of Poitin is an  

integrated environment for inductive theorem proving and program construction us- 



ing higher order functional programs. Some results of the application of the theorem 

prover to inductive theorems and program specifications were presented. The results 

are encouraging although some straightforward conjectures cannot be proved using 

the current implementation of the theorem prover. Poitin proved these theorems 

fully automatically without requiring any intermediate lemmas, whereas the most 

inductive theorem provers require intermediate lemmas to prove some of these the- 

orems. We proved that the programs constructed from the program specifications 

will be correct with respect to the specifications. 

7.2 Research Contributions 

This thesis mainly contributes to the fields of metacomputation-based inductive the- 

orem proving and program construction. We have developed an inductive theorem 

proving and program construction framework to deal with explicit quantification. 

This framework can be used in conjunction with many existing program transfor- 

mation algorithms. We have chosen to use distillation as it is the most powerful 

program transformation algorithm currently available. 

Our work is a significant improvement over the theorem proving technique of 

Poitin [45] using distillation. In [45], all free variables of the input conjectures are 

considered implicitly universally quantified, and there is no explicit quantification. 

The theorem prover is not capable of any program construction from specifications. 

We have extended the theorem proving technique of Poitin to handle explicit univer- 

sal and existential quantifications to prove explicitly quantified inductive conjectures 

fully automatically. We have defined distillation rules for quantifiers and the proof 

rules for universal and existential quantifications. We have developed a program con- 

struction method to construct correct, efficient and executable functional programs 

from the proofs of non-executable input specifications using program construction 

rules. 

Our inductive proof method does not require any intermediate lemmas, which 

helps to avoid infinite branch points in the search space. The existential proof rules 

perform a pure existence proof of the existential conjecture without requiring to 

construct any witness. This is an alternative to the usual constructive approach 

to prove existential theorems using higher order unification. The inclusion of the 

distillation program transformation algorithm within the inductive theorem proving 

techniques has reduced over-generalization and generation of non-theorems. The 



soundness of the proof techniques was shown with respect to a logical proof system 

using sequent calculus. 

We have formalised a program construction method to construct programs from 

input specifications. The constructed program is correct with respect to the in- 

put specification, and executable in the source language. Though the programs 

developed in this method are still limited to small problems, it can help to reduce 

the burden of a programmer to some extent by automating the process of writing 

programs. This is the only method we know of which constructs programs from 

specifications fully automatically. The proof of correctness of the program construc- 

tion method was also given. We also argue that the programs which are constructed 

using our techniques are likely to be more efficient than those which are generated 

by other constructive methods, as they are generated using distillation which has 

the main aim of making programs more efficient. 

The theorem proving and program construction techniques have been imple- 

mented and added to the theorem prover Poitin. The use of distillation within 

the framework of Poitin has eased the automation of the inductive proof and pro- 

gram construction techniques to make Poitin a fully automatic and efficient theorem 

prover. 

7.3 Future Work 

There are many directions for future research that may arise from this thesis, which 

are described below. 

7.3.1 Distillation 

Distillation algorithm is at the heart of the theorem prover Poitin, and the range 

of inductive theorems that can be proved by Poitin depends on the power of distil- 

lation. Special techniques are needed to deal with conjectures involving functions 

defined with mutual recursion. For example, expression 1 is one such example where 

the function evenlist is mutually defined with another recursive function oddlist. 

Work is under way to develop techniques to transform some difficult expressions as 

shown below to obtain proof expressions which can be used in proving the respective 

theorems. 



1. leg (length (evenlist x s ) )  (length xs)  

2, eqnum (double x )  (plus x x )  

3. eqnum (mult x y )  (mult y x )  

4. eqnum (length xs)  (length (reverse x s ) )  

5. eqlist (reverse (reverse xs ) )  xs 

The transformation of expression 1 encounters successively larger sub-expressions 

in the second occurrence of xa due to accumulating patterns. The transformation 

of expression 2 suffers from accumulating patterns, which cannot be solved with the 

current generalization technique. One possible solution to this problem is extend- 

ing Poitin to be able to allow the use of intermediate lemmas where such failures 

are detected. The transformation of expressions 3-5 encounters the occurrence of 

both accumulating patterns and obstructing function calls as discussed in $6.3. One 

possible solution to this problem is to ignore the embedding of accumulating pat- 

terns, and performing generalization of obstructing function calls, which are under 

investigation. We are working to extend the power of distillation. 

The distillation algorithm has already been implemented. The future develop- 

ment includes a re-implementation in its own input language which will allow the 

transformer to be self-applicable. Distillation algorithm will also be incorporated 

into a full programming language, which will allow a lot of powerful optimisations 

to be performed on programs in the language, and will also allow the verification of 

properties about these programs using Poitin. 

7.3.2 Inductive Theorem Proving 

Poitin can prove a wide range of inductive theorems. As the functions within the 

output residual programs obtained with distillation are parameterised with all of the 

unique free variables appearing in a recursive expression in the pre-processing phase, 

the recursive call to this function may contain non-decreasing variables. One major 

problem is caused by the substitution of patterns for these non-decreasing variables 

during proof rule application on some existential conjectures. We are working to 

resolve this problem. The conjectures below suffer from this problem. 

EX y.ALL x.(even x )  +, (eqnum (double y )  x )  

ALL x.ALL y.EX q.EX r.(neq x Zero)  -+ ( (eqnum (plus (mul t  q x )  r )  y) A 

(less r x)) 



To solve this problem, we propose a single set of proof rules for both universal 

and existential quantifications by merging the two sets of separate proof rules A and 

E. The distillation rules 7 2  and 7 3  for quantifiers and the proof rules must include 

parameters for the current quantification scope, universal and existential variables. 

Even though the results for our theorem proving techniques may appear some- 

what disappointing, the main reason for these disappointing results is the perfor- 

mance of distillation. This is because Poitin can be used to try and prove only those 

conjectures which can be distilled successfully. The distillation algorithm can be 

improved to solve the problems as described in $7.3.1. We have however developed 

a framework for the proof of quantified conjectures using program transformation. 

Thus, any future improvements to the program transformation algorithm distillation 

will also feed in to the theorem proving to make improvements in this area too. 

7.3.3 Program Verification 

The inductive proof techniques can be used in program verification. To prove a 

property P about a program, P is expressed as an input conjecture in the form of a 

program in the language. The theorem proving techniques can then be used to prove 

P. An application of inductive proof rules in program verification can be found in 

[471 

7.3.4 Program Construction 

The program construction method presented in Chapter 5 can deal with input speci- 

fications that contain an existential variable which is ANY-quantified. The construc- 

tive proof of the input specification results in a program which is a function that 

computes the witness. One possible extension to this method is to deal with input 

specifications that contain multiple existential variables which are ANY-quantified. 

For each existential variable, the constructive proof will be performed separately 

to construct a function to compute the witness. Thus, the extended program con- 

struction method will construct n separate functions to compute n witnesses. This 

method is applicable if the existential variables are independent of each other within 

the specification where each witness can be computed only in terms of the input 

variables using the program construction rules. An alternative method to handle 

multiple existential variables is shown below. 



T [ c ( A N Y  e : r.el)] p 4 = 7[c(e1")]  p q5 

where 

el1 = 7 [ e 1 ]  {} 4 
e"' = CUel11 Uel 0 ( f  v (e l )  \ f ~ ( 4 )  

In the specification, e is the existential witness, which is a constructor applied 

to the existential variables contained in the expression el. A separate function will 

be constructed for each existential variable. 

The results for our program construction technique may also appear somewhat 

disappointing. The main reason for these disappointing results is again the per- 

formance of distillation. We have however developed a framework for the program 

construction using program transformation. Thus, any future improvements to the 

program transformation algorithm distillation will also feed in to the program con- 

struction to make improvements in this area too. 

7.3.5 Implementation 

The future development of the theorem prover includes the implementation of a 

graphical user interface. Refinement of the implementation of the distillation algo- 

rithm is also in progress to enhance its power. The generalization technique could 

also be extended and implemented to deal with generalizations of expressions in- 

volving multiple embeddings of obstructing function calls, accumulating patterns 

and accumulating parameters at the same time as proposed in 37.3.1. A possible 

solution to the non-termination problem due to pattern substitution during proof 

as proposed in 57.3.2 will also be implemented, and added to  the theorem prover. 
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Appendix A 

Distillation 

A.1 Examples 

A. 1.1 Accumulating Patterns 

In the following example, we demonstrate how distillation avoids the non- 

termination problem due to accumulating patterns. 

Example 14 

Consider the transformation of expression (14.1). 

even (plus x x) (14.1) 

During this transformation, we encounter expression (14.2) which is a 

non-strict embedding of expression (14.1). 

even (plus x" (Succ (Succ x")))  (14.2) 

Further transformation of expression (14.2) will cause non-termination because 

of successively larger expressions and folding cannot be performed. The most 

specific generalization of these two expressions is therefore performed to achieve 

termination of the distillation process, which results in the following triple: 

(even (plus x v ) ,  {v := x), {v  := Succ (Succ x") ) )  

The generalized form of expression (14.1) is given by expression (14.3). 

let v = x in even (plus x v )  



The sub-tree rooted at expression (14.1) is replaced with the result of trans- 

forming expression (14.3). The transformation of expression (14.3) results in the 

partial process tree which is shown in Fig. A. 1. We obtain expression (14.4) from 

the sub-tree rooted at even v" within the partial process tree shown in Fig. A.1. 

Node a: case v" of (14.4) 

Zero : True 

( SUCC v"' : case v"' of 

Zero : False 

1 SUCC v"" : Repeat f2: even v"" 

Expression (14.4) is further transformed, which results in the partial process tree 

shown in Fig. A.2. We obtain expression (14.5) from the sub-tree rooted at even v"" 

within the partial process tree shown in Fig. A.2. 

Node f3: case v"" of (14.5) 

Zero : D u e  

I SUCC v""' : case u""' of 

Zero : False 

1 Succ v""" : Repeat f3: even v""" 

Expression (14.5) is an instance of expression (14.4). A repeat node is therefore 

created at the occurrence of expression (14.5). This results in the partial process 

tree which is shown in Fig. A.3. The residual program given by expression (14.6) is 

constructed from the partial process tree shown in Fig. A.3. 

letrec f 2 = Xu". case v" of 

Zero : True 

I SUCC v"' : case v"' of 

Zero : False 

I Succ vllll : f2 vllll 

In a similar way, we obtain the residual program given by expression (14.7) from 

the sub-tree rooted at even v' within the partial process tree shown in Fig. A.1. 



let v = x in even (plus  x v )  
1 

even (plus x v )  + - - ---. \ -. 

I case (case x of . . .) of . . . I 

case v" of . . . wp 
I 
I 

I 
I 

1 
I 

Succ v"" / , Fais ;TzerO , \ ,,/; 
even v"' 

Figure A.l:  Partial process tree (1) for TIeven  (plus x x ) ]  



I Node f2: case v" of . . . I  
1 

case v" of . . . a+/+ Vl l  = era dl = S ~ C C  vttl 

case v"' of . . . 

case v""' of . . . 

/ 
/ 

/ 

Figure A.2: Partial process tree (2) for 7[even  (plus  x x ) ]  

I Node f2: case v" of . . . j, 
1 

-- 
- 2 2  . . 

I case v" of . . . I  

case v"' of . . . I 
1 
I 
I 

e6 C v"" \ / 
/ 

l ~ o d e  f3: case v"' of . . .I 

Figure A.3: Partial process tree (3)  for Tueven (plus  x x ) ]  



letrec f 3 = Xv'. case PI' of 

Zero : T h e  
I Succ vt' : case 4s" of 

Zero : FaEse 

( SUE vtt' : f3 et"' 

in f3 vt 

We obtain exprasion (14.8) from the sub-tree rooted at even (plus x u )  within 

the partial process tree shown in Fig. A.1. 

Node fD: case x of 

Zero : case v of 
Zem : h e  

1 Succ v' : case v' of 
Zew : Fdse 

( SUCC V" : letrec 
f 2 = Xv". case v" of 

Zem : T h e  
I Succ v"' : case wfP' of 

Zero : False 
) Sum u"" : f2 21"" 

in f2 atJ 

1 SUCC x' : case x' of 
Zero : case v of 

Zero : Fabe 
1 S ~ c c  v\ letrec 

f3 = Xvt.case n' of 

Zero : True 
1 Succ v" : case v" of 

Zero :False 

1 S~LCC u"' : f3 0"' 

in f3 v' 
I Succ x" : Repeat fD: even (plus x" v) 

The transformation of expression (14.8) proceeds as shewn in the partial process 

tree of Pig. A.4. 



I Node fO: case x of . . . I  
I 

letrec f 2 = . . . in f2 v" 

\ 
I 

Figure A.4: Partial process tree (4) for T [ e v e n  (plus x x)] 



We construct residual programs given by the expressions (14.9) and (14.10) from 

the sub-trees rooted at f 2  v'' and f 3 TI' respectively within the partid process tree 

shown in Fig. A.4. 

letrec f 1 = Xu". case v" of (14.9) 

Zero : T h e  

I SUCC v'" : case v."' of 
Zero : Fahe 

I Succ vtrtr : f1 v ~ ' ' ~  

in fl ur' 

letrec f E = Xv'. case v' of 

Zero : Due 
1 SUCC O" : case v" of 

Zem : Fabe 

1 Succ u"' : fl v" 

The transformation of expression (14.11) within the partial process tree shown 

in Fig. A.4 is performed in a similar way to that of the expression even (plus x v )  

in the partial process tree shown in Fig. A.1. 

even (plus x" v )  (14.11) 

During this transformation, mpression (14.12) is encountered which is an 

instance oF expression (14.11). A repeat node is therefore created at the occurrence 

of expression (14,12$. 

even (plus a"" v )  (14.12) 

The transformation of expression (14.11) therefore results in expression (14.13). 



Node fl: 
case xu of 
Zero : case e of 

Zem : W e  
I Sum v r  : case v r  of 

Zero : Jihise 

1 SUCC vi' : letrec 
f 3 = A d t .  case er" of 

Zero : %LE 

1 SUCC v"' : case v " k f  

Zero : False 

I Succ vi"' : f3 v"" 

in f3 w N  

1 S~LCC xtti : case r"' of 

Zem : case st of 

Zero : Fake 
1 Succ v' : letrec 

f 4 = Xv'. case v' of 

Zero : Due 

I Succ v" : case u" of 
Zero : Fake 

( Succ pr"' : f4 Y"' 

in f4 v' 

1 Sum x"" : Repeat fl: even (plus xF"' v )  

Expression (14.13) is an instance of expression (14.8). A repeat node is therefore 

created at the occurrence of expression (14.13). This results in the partial process 

tree shown in Fig. A.5. We construct the residual program given by expression 

(14.14) from the partial process tree shown in Fig. A.5. 



Figure A.5: Partial process tree ( 5 )  for Tueven (plus x x)] 



letrec 

f 0 = kc. case x of 
Zem : case v of 

Zero : f i e  

1 Smc v' : ease v' of 

Zero : False 

( Succ v" : letrec 

fl  = Xul'.case vtl of 
Zero : f i e  

SUCC v"' : case w'" of 

Zero .o Fabe 

I SBCC 0""" : fl er"" 

in fl v" 

1 Szrcc x' : case x1 of 

Zero : case u of 

Zero : False 
Svcc v' : Ietree 

j1 = Au'. case v1 of 

Zera : %e 

( SMC v" : case w'' of 

Zem : Fabe 
1 succ vtt' : fl o"' 

13y substituting back the extracted variable x for the variable v within expres- 

sion (14.14), wc obtain the residual program given by expression (14.15) from the 

transformation of expression (14.3). 



letrec 

f 0 = Ax1. case xE of 

Zero : case s of 

Z m  : h e  

I Sum ~ r '  : case v' of 

Zem : False 
1 SUCC V" : letrec 

f 1 = Xv". case v" af 

Zcm : T h ~ e  

) SUCC v"' : case a"' of 

Zero : False 
I Succ v"" : jl wtrl' 

in fl vtE 

I SUCC x' : case 5' of 

Zero : case x of 

Zero : Felse 

I Succ v' : Ietrec 

f 1 = Xu'. case v' of 

Zero : :i? 

I SUCC O" : case v" of 

Zem : Fabe 

I sxcc v"' : fl 0'" 

The partial process tree shown in Fig. A.6 is obtained by transforming expression 

(14.15). We construct the residual program shown in Fig. A.7 fi-om the partial 

process tree of Fig. A.6. 



>ej-ofk&c 

x = Zero 
1 

case x' o f  . . . I 
I 
/ 

/ 
/ 

case (Zero) o f  . . . I 
1 True 1 

Figure A.6: Partial process tree ( 6 )  for Tueven (plus x x)] 
- - - 

letrec f 0 = Ax. case x o f  

Zero :True 

( SUCC x' : case x' o f  

Zero : True 

I succ 2'' : f0 2" 

in fO x 

Figure A.7: Residual program for Tieven (plus x x)] 

A. 1.2 Accumulating Parameters 

In the following example, we demonstrate how distillation avoids the non- 

termination problem due to accumulating parameters. 

Example 15 

Consider the transformation of expression (15.1) using the accumulating version of 

the double function given by doublea as shown in Fig. 3.2. This example is adopted 

from [45]. 

even (doublea x Zero) (15.1) 



We obtain expression (15.2) by unfolding the function even within the input 

expression (15.1). 

case (doublea x Zero) of 

Zero : T r u e  

I SUCC 2' : case x' of 

Zem : False 

1 Sacc x" : even sf' 

After a few further steps, we encounter expression (15,3) which is a non-strict 

homeomorphic embedding of expression (15.2). 

case (doublea x' (Succ (Sum Zero))) of 

Zero : T h e  

1 SUCC x1 : case z' of 
Zero : False 

1 Succ xrf : even x" 

The most spccific generalization of the expressions (15.2) and (15.3) is therefore 

performed. The generalized form of expression (15.2) is giwn by the following 

expression (1 5.4). 

let v = Zero 

in case (do.tablca x z) of 
Zero : True 

I SUCC 9' : case x' of 

Z e ~ u  ; Fahe 

1 Succ 2" ; CTh5,n xtt 

The remaining generalized expression is given by expression (15.5). 

case (doublea x v )  of 

Zero : Due 

I Succ X I  : case X I  of 

Zero : False 

1 SUCC xl' : even x" 

The sub-tree rooted at expression (15.2) is replaced with the result of transform- 

ing expression (15.4), which results in the partial process tree shown in Fig. A.8. 



let v = Z e r o  in case (doublea x v )  of . . . 
I 

case (doublea x v )  of . . . -. 
\ 
\ + \ 

\ 1 case (case x of . . .) of . . .I \ 
\ 

case (doublea x' (Succ  (Succ v)))  of . . . 

. . 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

Figure A.8: Partial process tree ( 1 )  for T [ e v e n  (doublea x Z e r o ) ]  

Within this partial process tree, the expression even v"" is encountered which 

is an instance of the expression even v". A repeat node is therefore created at the 

occurrence of expression even v"". We obtain expression (15.6) from the sub-tree 

rooted at even  v" within the partial process tree shown in Fig. A.8. 

Node f2: case v" of (15.6) 

Zero : T r u e  

I Succ v"' : case v"' of 

Zero : False 

I Succ v"" : Repeat f2: even v"" 

Expression (15.6) is further transformed. The details of this transformation are 

shown in the previous example. During the transformation of expression (15.6),  we 



encounter expression (15.7) 

Node f3: case v"" of 

Zero : True 

( Succ v""' : case v""' of 

Zero : False 

1 SUCC vllllll : Repeat f3: even v""" 

Expression (15.7) is an instance of expression (15.6). So, a repeat node is created 

at the occurrence of expression (15.7). This results in the partial process tree shown 

in Fig. A.9. 

- 
5 

% 

case v" of . . , x \ 
\ -. 

\ 
\ 
\ 
\ 

Figure A.9: Partial process tree (2) for Tueven (doublea x Zero)] 

The residual program given by expression (15.8) is constructed from the partial 

process tree shown in Fig. A.9. 

letrec f 2 = Xv". case v" of 

Zero : True 

I Succ v"' : case v"' of 

Zero : False 

I Succ v"" : f2 v"" 

in f2 v" 

Within the partial process tree shown in Fig. A.8, expression (15.9) is encoun- 

tered, which is an instance of expression (15.5). A repeat node is therefore created 

at the occurrence of expression (15.9). 



case (doublm x' (SUCC (STLCC v ) ) )  of 

Zero : T w e  

1 Succ x i  : case 2' of 

Zen, : False 

1 Succ x" : even z" 

Wc obtain expression (15.10) from t,he partial process trees shown in Fig. A.8 

and A.9. 

Node fl: case s of 
Zero : case of 

Zero : T h e  
1 SUCC er' : case Y' af 

Zero : Ftlbe 

2 SUCC u" : letrec 
f 2 = Xv". case u*' of 

Zero : f i e  

1 SPLCC us'\ case e'" of 

Zero : Fabe 

1 smcc v'"~ : f2 vfl"" 

in 12 w" 

1 Succ x' : Repeat fl: case (doabbeca x' (S?jcc (Szsce v ) ) )  of 

Zero : E w e  
( Succ x' : case x' af 

Zem : Fakc 
I SUCC x" : even x" 

(15.10) 

Expression (15.10) is further transformed. This results in the partial process 

tree shown in Fig, A.10. Within this partial process tree (Fig. A.10), expression 

(15.11) is encountered which is an instance of the expression (15.9). A repeat node 

is therefore created at the occurrence of expression (15.11). 

case (doubleu x" (Succ (Succ (Succ (Succ v))))) of (15.11) 

Zero : Due 

( Succ x' : case x' of 

Zero :False 

I SUCC xli : even 3'' 



I Node fl: case x of . . .] 
I + I case x of . . .] 

case (doublea x' (Succ (Succ v ) ) )  o 
! 

/ 
/ 

/ 
/ 

case (case x' of . . .) of . . . / 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

se (doublea x" (Succ (Succ (Succ (SUCC v ) ) ) ) )  of . . . 

I 
I 
I 

ero ,rtr ,, 1 

False f2 v"" 

Figure A.lO: Partial process tree (3) for 7 [ e v e n  (doublea x Zero)]  



Expression (15.12) is therefore constructed from the sub-tree rooted at expres- 

sion (15.9) within the partial process tree shown in Fig. A.10. 

Node f2: case x' of 

Zero : letrec f 3  = Xu. case v of 

Zero : True 

( SUCC V' : case v' of 

Zero : False 

I Succ v" : f3 v" 

in f3 u 

I Succ x" : Repeat f2: case (doublea x" (Succ (Succ (Succ (Succ v))))) of 

Zero : True 

) Succ x' : case x' of 

Zero : False 

I SUCC x" : even x" 

(15.12) 

Expression (15.12) is further transformed. During this transformation, the 

partial process tree as shown in Fig. A.ll  is constructed. We obtain expression 

(15.13) from the sub-tree rooted at expression (15.11) within the partial process 

tree shown in Fig. A.ll .  

Node f3: (15.13) 

case x" of 

Zero : letrec f 5 = Xu. case v of 

Zero : True 

I SUCC v' : case v' of 

Zero : False 

1 Succ v" : f5 v" 

in f5 u 

I Succ x"' : Repeat f3: case (doublea x"' (Succ (Succ (Succ (Succ (Succ (Succ v))))))) of 

Zero :True  

I SUCC x' : case x' of 

Zero : False 

I Succ x" : even x" 

The labels f2 and f3 of the Node expressions (15.6) and (15.7) are reused in 

defining the labels of the Node expressions (15.12) and (15.13). The transformation 

of expression (15.5) results in expression (15.10). The partial process tree resulting 

from the transformation of expression (15.10) is used to replace the subtree rooted 



at expression (15.5) in Fig. A.8. So, the reuse of labels does not cause any inconsis- 

tency as the transformation of expression (15.5) and expression (15.10) involves two 

separate passes. The function node at the root is labelled with a smaller natural 

number preceded with the character f, whereas the labels in the subtrees are defined 

with increasing values in each pass. 

Expression (15.13) is an instance of expression (15.12). A repeat node is therefore 

created at the occurrence of expression (15.13). This results in the partial process 

tree shown in Fig. A.12. 

] Node f2: case x' of . . . ) 
I 

I letrec f 3 = . . . in f3 u I 
1 I 

\ 
\ 
\ 
\ x' = Succ 
\ 
\ 
\ 

I case (doublea XI' (Succ (Succ (Succ (Succ u ) ) ) ) )  of . . . k - ,. 
J 0 

0  

0  
0 I case (case x" of . . .) of . . . ( C 0  

+ /' 

case (doublea xu' (Succ (Succ (Succ (Succ (Succ (Succ v)))]))) of . . . 

Figure A.ll: Partial process tree (4) for 'TBeven (doubaea x Zero)]] 



I  ode fa: case z' of . . . - N 

it \ 
\ 

M I / 

I~petrec  f 3 = . - .  in f3 v] I l ~ o d e  f3: case st' of . . .I 
Figure A.12: Partial process tree ( 5 )  for T[even (doublett x ~ e r a j ]  

We construct expression (15.14) from the partid process tree shown in Fig. A. 12. 

letrec f 2 = As'. case z' of 
Zero : letrec f 3 = Xu. case v of 

Zero : E w e  

I Succ v' : case u' of 
Zero : False 

I Succ u " :  f3 v" 

i n p  u 

1 Succ 2" : f2 x" 

in f2 x' 

From all of the above transformation of the original expression, w(? obtain the 

following exp~ession (15.15). 



case x of 
Zero : case w of 

Zero : T h e  

I SUCC vt  : case v' o f  

Zew ul Falae 

1 SUCC V" : tetrec j 2  = Xu". case v N  of 

Zero : l h e  

( SUCC v"' : case w"' of 

Zen, : Fabe 
I SUCC vtf" : f2 v'IE' 

in f2 v" 
( Sesce x' : Ietree f 2 = AxF. case x' of 

Zero : letrec f 3 = Xu. ease v of 

Xem : True 

( Succ v' : case v' of 

Zero : Fabe 

I stlcc w" : p utf 

The extracted sub-expression Zero is substituted back in to  expression (15,15) 

for the variable v ,  which results in expression (15.16). 



case x of 

Zero : case Zero of 
Zen, E 7 h e  

1 SUCC v' : case ~r' of 

Zero : Pulse 
I Svcc P" : letrec f2 = Xv". case pit' OF 

Zerm : f i e  
( S ~ c c  u'" : case u"' of 

Zero : False 
I S26cc ?I"" : f2 tif'' 

in fZ st' 
I Smc x' : letrec f 2 = Xz'. case xhof 

Zero : Ietree f3 = Xu, case v of 

Z m  : me 
I SUCC v' : case v'cif  

Zem : False 
1 Succ a" : j3 v" 

Expression (15.1a) is further transformed which r w l t s  in the partid process 

tree shown in Fig, A.13. 



pk-1 I letrec f2 = . . . in f2 x' I 
1 

\ 
\ 
\ 

I 

letrec f3 = . . . in f3 Zero 

f3 Zero a 
case Zero of . . . I 

Figure A.13: Partial process tree (6) for 7[even  (doublea x Zero)] 

The residual program shown in Fig. A.14 is constructed from the partial process 

tree shown in Fig. A.13. 

case x of 

Zero : True 

1 Succ x' : letrec fl = Ax'. case x' of 

Zero : True 

I Succ x" : fl I" 

in fl x' 

Figure A.14: Residual program for T[[even (doublea x Zero)] 

A.1.3 Obstructing Function Calls 

In the following example, we demonstrate how distillation performs generalization of 

an obstructing function call to obtain a successful transformation. An obstructing 

function call is detected when the current expression is a strict embedding of a 

previously encountered expression. In this case, the obstructing function call is 

extracted from the embedding expression. 



Example 16 

Consider the transformation of the following expression (16.1) using disl;illatim. 

append (.reverse x$) ys (16.1) 

Aftcr a, coupIe of steps, we obtain expression (16.2). 

case (mverse m) of 

Nil : ys 

1 Cons z as' : Cons x (append x d  ys) 

We encounter cxpression (16.3) during further transformation of expression (16.2). 

case (append (mverse xs') (Cons r Nil))  of (16,3) 

Nil : ys 

1 Cons x x d  : Gun9 x (append xs' ys) 

Expression (16.3) is a strict embedding of expression (16.2). The embedded 
sub-expression is therefore extracted from cxpression (16.3) to give thc generalized 

expression (16.4). 

Iet v = reveme xs' (16.4) 

in case (case v of 

Nl : Cons x Nil 

I Cow x' zs' : Cona z' (append xs' Cons x N i l ) ) )  of 

Nil : ys 

1 Cons x xst : Cons s ( ~ p p e n d  xs' ys) 

Thc sub-trce rooted at expression (16.3) is replaced with the result of transform- 

ing expression (16.4). The transformation proceeds as shown in Fig. A.15, 



append (reverse xs) ys G 
(case (reverse x s )  of . . .I 

I let v = reverse xs' in case (case v of . . .) of . . .] 

% 

case (append v' (Cons x N i l ) )  of . . . 
I + 

(case (case v' of . . .) of . .A 

Cons 

\ 

, 1 Cons v' (append (append v" (Cons x N i l ) )  ys) I 

I append (append v" (Cons x Nil) )  ys I 

Figure A.15: Partial process tree (1)  for Tiappend (reverse xs) ysJl 



The following residual program (16.5) is constructed from the sub-tree rooted 

at append (append v' (Cons  x N i l ) )  ys. 

Node fO: case v' o f  

Nil : Cons x ys 

I Cons v' v" : Cons v' (Repeat  fO : append (append v" (Cons x N i l ) )  ys) 

(16.5) 

This program is further transformed. On further transformation of the repeat 

node, we obtain the following expression (16.6): 

Node fl: case v" o f  

Nil : Cons x ys 

( Cons v" v"' : Cons v" (Repeat fl : append (append v"' (Cons x Nil)) ys) 

(16.6) 

We can see that expression (16.6) is an instance of expression (16.5). A repeat 

node is created at the occurrence of expression (16.6). This results in the partial 

process tree shown in Fig. A.16. 

----_ -. . 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 

v" (Cons  x Nil))  ys) ( I I 

/ 
/ 

: case vl' of . . . I  
Figure A.16: Partial process tree (2) for 7[append  (reverse xs) ys] 

This partial process sub-tree replaces the sub-tree which was rooted at 

append (append v' (Cons  x Ni l ) )  ys in the previous partial process tree shown in 

Fig. A.15. The following residual program (16.7) is generated from the partial 

process sub-tree shown in Fig. A.16. 

letrec f 0 = Xv'. case v' of 

Nil : Cons x ys 

I Cons v' v" : Cons v' ( f 0  v") 

in f O  v' 



The transformation of the original generalized expression therefore results in the 

followjng residual program (16.8): 

case v of (16.8') 

Nil : Cons 3 ys 

1 Cons v v1 : Cons v (letrec f 0 = Xvl.case vt of 

Nil : Cons s ys 

I Cons .vt v" ; Cons a" dfO u") 
in f0 v') 

After substituting the extract~d subexpression reverse zal for u, we obtain the 

followjng expression (16.9): 

case (reverse xs') of (16.9) 

Nil : Cons x ys 

I Cons v u' : Cons v (letrec fO = XwE.case v h f  

Nil : Cons a: ys 

1 Cons v' w" : Cons uJ (fO w") 

in fO v ' )  

After further transformation, we obtain the fallowing expression (16.10): 

case (append (reverse xs"} (Cons X I  Ni l ) )  of (16.10) 

Nib : Cons x p 

I Cons w v' : C O ~ S  v (letrec f 0 = Xvt.case v' o f  

Nil : Coons x ys 

I Cons v' wrt : Cons 21' (JO v") 

in fO v ' )  

We can see that exprewion (16.10) is a shict emheclding of expression (16.9). 

The embedded sub-expression is therefore axtracted from expression (1 6.10) to give 

the generalized expression (16.11). 



let v = reverse xs" 

in case (case v of 

Nil : Cms x' Nil 

1 Cons x xsl : Cons x (append m' (Cons st Ni l ) ) )  of 

Nil : Cons x gs 

1 Cans v u' : Cans w (letrec f0 = Xvt.case v' of 
Nil : Cons x grs 

1 Cons v 1  v" : COTIS vt (JI u") 

in fO v') 

The following residual program (16.12) is generated from the transformation of 

the above gcnerdized expression. 

case v of 

Nil : Cons x' ( C o w  x ys) 

I Cons v w' : Cons v ( letrec f 2 = Xv'. case Y' of 

Nil : Cons a' (Cons x ys) 
1 Cons u' v" : Cons v' (f2 v") 

in f2 v') 

(16.12) 

After substituting the ext,racted sub-expression reverse zsf' for v, we obtain the 

foElowing expression (1 6.13) : 

case (reverse xs") of 

Nil : Cons sf (Cons x ys) 

1 Cons v v' : Colas 'W ( letrec f 2 = XvJ. case v' of 
Nil : Cons x' (Cons x ys) 

1 Cons v' v" : Cons v' (f2 v") 

in f2 v') 

(16.13) 

Expression (16.13) is an instance of expression (16.9). A repeat node is therefore 

created at the occurrence of expression (16.13). The following residual program 

(16.14) is constructed from the transformation of expression (16.9). 



Node fO: 

case as' of 

Nil : Cons x ys 

( Cons x' xs" : Repeat f0: 

case (reverse xs") of 

Nil : Cons x' (Cons x ys) 

I Cons v v' : Cons v (letrec 

fO = Xv'. case v' of 

Nil : Cons x' (Cons x ys) 

I Cons v' v" : Cons v' ( f O  v") 

in f0 v')  

Expression (16.14) is further transformed. On further transformation of the 

repeat node, we obtain expression (16.15). 

Node f l :  

case xs" of 

Nil : Cons x' (Cons x ys) 

I Cons x" xs"' : Repeat fl: 
case (reverse xs"') of 

Nil : Cons x" (Cons x' (Cons x ys) )  

1 Cons v v' : Cons v (letrec 

f 0 = Xu'. case v' of 

Nil : Cons x" (Cons x' (Cons x ys))  

I Cons v' v" : Cons v' ( f O  v") 

in fO v ')  

Expression (16.15) is an instance of expression (16.14). A repeat node is created 

at the occurrence of expression (16.15). This results in the partial process tree shown 

in Fig. A.17. 

Node fO: case xs' of . . . 
+---\\,, 

--q- ,-, 
Node fl: case xs" of . . . 

Figure A.17: Partial process tree (3) for Tuappend (reverse xs)  ys] 



The following residual program shown in Fig. A.18 is eventually constructed 

from the partial process tree shown in Figs A.15 and A.17. 

case xs of 

Nil : ys 

I Cons x xs' : letrec fO = Xxs'.Ax.Xys.case xs' of 

Nil : Cons x ys 

I Cons x' xs" : fO xs" x' (Cons x ys) 

in fO XS' x ys 

Figure A.18: Residual program for Tbappend (reverse xs) ys] 

This program does not create any intermediate structures. This transformation 

demonstrates the significant improvement in program transformation using distilla- 

tion over other transformation techniques. 

A. 1.4 Examples for Theorem Proving 

We give some examples using distilIation algorithm to transform input expressions, 

which can then be used to prove the respective theorems. 

Fig. A.19 shows some of the function definitions which are used with the defin- 

itions of the functions eqnum, plus of Chapter 2 and the definition of the function 

even of Chapter 3 to transform the input expressions. 

i f f  = Xx.Xy.case x of 
Due : y 

I False : case y of 

Due : False 

( False : True 

double = Ax. case x of 

Zero : Zero 

I Succ x' : SUCC (SUCC (double x')) 

Figure A. 19: Function definitions 



In these examples, if a partial process tree does not fit into a single page, we 

refer to the subtree to be connected by labelling the root node as m. 
Example 17 

Consider the transformation of the following expression (17.1). In this example, 

we do not give the partial process trees constructed during the transformation. 

Expression (17.1) states the commutativity of plus theorem for natural numbers. 

eqnum (plus x y) (plus y x )  (17.1) 

Expression (17.2) is obtained by unfolding the function eqnum within expression 

(17.1). 

case (plus x y) of 

Zero : case (plus y x )  of 

Zero :True 

1 Succ y' : False 

I Succ x' : case (plus y x )  of 

Zero : False 

( SUCC y' : eqnum x' y' 

During the transformation of expression (17.2), expression (17.3) is encountered. 

eqnum (plus x' (Succ y')) (plus y' (Succ x ' ) )  (17.3) 

Expression (17.3) is a non-strict homeomorphic embedding of expression (17.1). 

The most specific generalization of the expressions (17.1) and (17.3) is therefore 

performed. We obtain expression (1  7.4) from the generalization of expression (17.1). 

let v = y, v' = x in eqnum (plus x u )  (plus y v') (17.4) 

By transforming expression (17.4), we obtain the residual program which is 

shown in Fig. A.20. 

Example 18 

Consider the transformation of the following expression (18.1). 

ifl (even x) (eqnum (double y )  x )  (18.1) 

We obtain expression (18.2) by unfolding ifl within expression (18.1). 



letrec fO = Xx.Xy. case x of 

Zero : case y of 
Zero : True 

( Succ g' : letrec f 1 = Ay'. case y' of 

Zero : f i e  
I Sacc 3" : ff y" 

in fJ g' 

I Sam I' : case of 

Zem : letrec f 1 = Ax'. ease x' of 

Zem : %e 

I SUCC 5" : fl XI' 

in f1 x' 

1 Succ v' : f0 x' u' 
in fO x g 

Figure A.20: Residual program for ~ c q w u m  (pbua x y] (plus y s)] 

case (even x )  of (18.2) 

True : qnum ((double y) s 

I False : case (eqnum (double y) s) of 
? h e  : False 

1 False : T h e  

After a few steps, we encounter expression (18.3) which is a non-strict homeo- 

morphic embedding of expression (18.2). 

case (even x") of (18.3) 

True : epum (double y) ( S ~ C C  (SUCC dt))  
I &be : case (eqnum (double 11) (Succ (Succ d'))) of 

l7ue : Fabe 

( False : True 

The most specific generalization of the expressions (18&2) and 118.3) is therefore 

performed. The generalization of expression (18.2) results in the expression (18.4). 



let u = x in case (even x)  of 

True : eqnum (double y )  u 

I False : case (eqnum (double y )  u )  of 

D u e  : False 

I False : D u e  

The subtree rooted at expression (18.2) is replaced with the result of transforming 

the generalized form of expression (18.2). The transformation of expression (18.4) 

proceeds as shown in Fig. A.21. 

We obtain expression (18.5) from the subtree rooted at eqnum (double y )  u 

within the partial process tree shown in Fig. A.21. 

Node f2: case y of 

Zero : case u of 

Zero : True 

1 Succ u' : False 

( Succ y' : case u of 

Zero : False 

( Succ u' : case u' of 

Zero : False 

I Succ u" : Repeat f2: eqnum (double y') v" 

(18.5) 

Expression (18.5) is further transformed which results in the partial process tree 

shown in Fig. A.22. 

During this transformation, the transformation of expression (18.6) within the 

partial process tree shown in Fig. A.22 is performed in a similar way to that of the 

expression eqnum (double y) u within the partial process tree shown in Fig. A.21. 

eqnum (double y') u" (18.6) 

During the transformation of expression (18.6), expression (18.7) is encountered 

which is an instance of expression (18.6). A repeat node is therefore created at the 

occurrence of expression (18.7). 

eqnum (double y") u"" 



let v = x in case (even x) of 
Due : eqnum (double y) v 

I False : case (eqnum (double y) v )  of 

True : False 

I False : True 
I 

I 
\ 
I 
I 
I ) case (case x' of . . .) of . . .I I 

eqnum (double y) v d + 
I case (double y) of . . . I  

I - ' I  
I 

m<=,Lo xL Succ s" , / 
\ 
\ 
\ 
\ case (even x") of . . . 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 
I  
I  

I  
I  

eqnum (Succ (double y')) v' 
/ ! 

case v' of . . , I 
/ 

/ 

eqnum (double y') V" 

Figure A.21: Partial process tree ( 1 )  for T[iff (even x )  (eqnum (double y )  x ) ]  



Node f2: case y of . . .I 
I 

case y of . . . r--l 
W - L y  y = ero Y1 , 

r 1 eqnum (double y') V" - - -- 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 
I 
I 
I 
I 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
/ 

case (Succ (double y")) of . . . 
1 

I 
I 

\I\ eqnum (double y") v"" 

Figure A.22: Partial process tree (2)  for 7 [ i f  (even x )  (eqnum (double y) x)] 



We obtain expression (18.8)  from the subtree rooted at eqnum (double y') v" 

within the partial process tree shown in Fig. A.22. 

Node f3: case y' of 

Zero : case v" of 

Zero : True 

1 Succ v"' : False 

1 Succ y" : case v" of 

Zero : False 

I SUCC v"' : case v"' of 

Zero : False 

1 Succ v"" : Repeat f3: eqnum (double y") v"" 

(18.8)  

Expression (18.8)  is an instance of expression (18.5) .  A repeat node is therefore 

created at the occurrence of expression (18 .8) .  This results in the partial process 

tree shown in Fig. A.23. 

Figure A.23: Partial process tree ( 3 )  for Tiiff (even x )  (eqnum (double y )  x ) ]  

The residual program given by expression (18.9)  is constructed from the partial 

process tree shown in Fig. A.23. 



letrec f 2 = Xg.Xv. case y of 

Zero : case v of 

Zero : f i e  
1 Succ u' : False 

1 Succ y' : case v of 

Zero : Fate 

( SUGC 'u' : case v' of 

Zem : False 

1 Succ 0" : f% y' v" 

in f.2 y v 

As shown in Fig. A.21, at terminal m, expression (18.10) is encountered. 

case (eqmm (double 8 )  u )  of 

T h e  : Fabe 

1 False : True 

The partial process tree shown in Fig, A.24 is obtained by transforming expression 

(18+10). 

During the transformation of expression (18.10), expression (18.11) is encoun- 

tered which is an instance of expression (18.10). A repeat node is therefore creatcd 

at the occurrence of expression (18.11), 

case (qnuna (double y') u") of 

! h e  : Fabe 

) False : l h s e  

We obtain expressian (18.12) from the partial process krec shown in Fig. A.24. 



4 

case (eqnum (double y) v) of I " e  : "se, I----- -. 
1 False : h e  -. 

\ 
\ 
\ 
\ 

\ 
1 
\ 
\ 
1 
I 
1 

case (case v of . . .) of . . . case (case v of . . .) of . . . I 
1 
I 
1 
t 
I 
I 

I 
I 

I 

case (case (Succ (double I y')) of . . .) of . . . 

I.- rT;i,- , \ ,//' , 
case eqnum (double y') V" of . . . 

Figure A.24: Partial process tree (4) for T[ig (even x) (eqnum (double y) x)] (Cont. 

of Fig. A.21) 



Node f2: 

case y of 

Zero : case u of 

Zero : False 

1 Succ u' : True 

1 Succ y' : case u of 

Zero : True 

( Succ u' : case u' of 

Zero : True 

I Succ u" : Repeat f2: case (eqnum (double y') u") of 

True : False 

I False : True 

Expression (18.12) is further transformed. The transformation proceeds as shown 

in Fig. A.25. 

I t ode f2: case y of . . . ( 
4 

I case w of . . . I  

case u of . . . R case u of . . . d-rLucc v' 

.I ITruel I ""St: " U1 

u' = z&o u' 4 Succ u" 

Tucase (eqnum (double y') u") of 

True : False 

I False : D u e ]  

Figure A.25: Partial process tree (5) for T[i# (even x )  (eqnum (double y)  x ) ]  



During this transformation, the transformation sf expression (18.13) is perform4 

in a similar way to that of expression (18.10) as shown in Fig. A.24. 

case (eqnum (double y') v") of (18.13) 

l h s e  : Fabe 

1 False : 2 h e  

During the transformation of expression (18.131, expression (18.14) is encoun- 

tered, which is an instance of expression (18.13). A repeat node is therefore created 

st the occurrence of expression (18.14). 

case (eqnum (dodde y " b v " " )  of 

l h e  : False 

( False : h e  

Tho transformation of the expression (18.13) therefore results in the following 

exprmsion (18.15). 

Node f3: (18.15) 

case qlt of 
Zero : case v" of 

Zero : False 

I Succ v"' : W e  

( Succ y" : case u" of 

Zero : *e 

I SUCC v" : case wl" of 

Zero : Due 

1 SUGC vnrr : Repeat f3: case (eqnurn (double 9") v"") of 

rlrt le : False 

1 False : T h e  

Now, expression (18.15) is an instance of expression (18.12). A repeat node is 

therefore created at the occurrence of expression (18.15). This results in the partial 

process tree which is shown in Fig. A.26. 



Node f2: case y of . . . 
-9- 

- %  --. 
\ 
\ 
\ 
\ '.. '. 

\ 
\ 
\ 
\ 
\ 
I 
\ 

Figure A.26: Partial procezs tree ( 6 )  for T[i# (even x )  (egnum (dozrblc y) x)] 

From the partial process tree shown in Pig. A.26, the residual program givcn by 

expression (18.16) is constructed. 

letrec f 2 = Ay.X.v. case y of (18.16) 

Zero : case v of 

Zem : False 

t Succ v' : h e  

1 Succ y' : case v of 

Zero : Due 

I Succ er' : case v' of 

Zem : P u e  

I Succ TI1' : f2 p1 vt' 

in f2 y u 

Thus, the above transformation results in expression (18.17). 



Node fl: 

case x of 

Zero : Ietrec 

j 2  - Xy.Xw.case 3 of 

Zem : case w of 

Zen, : P a e  

1 Sum u' : False 

I Succ yt : case v of 

Zero : False 

I SUCC V? case v' of 
Zero : False 

I sacc v" : f2 1~"'~ 

in f,? y 'U 

1 SUCC 2' : case x' of 
Zero : letrec 

f 2 = Ay.Xv. case y of 
Zem : case u of 

Zero : False 

I Succ v' : f i e  

1 Succ yP : case of 

Zem : T h e  

I Sum u' : case er' of 

Zero ::e 

I Succ vl" : f2 y' u" 

inf2 8 v 

( Succ a" : Repeat fl: case (even XI" of 
Due : eqnum (double y )  v 

1 False : case (eqnum (double y) v )  of 

T h e  : False 

1 False : T h e  

Expression (18.17) is further transformed. We skip the details of this transfor- 

mation. The residual program given by expression (18.18) is constructed from this 

transformat ion. 



Ietrec 
f f  = Xx,case x of 

Zem : letrec 

f2 = Xy.Xv. case y of 
Zero : case w of 

Zero : h e  

1 Succ v' : False 

I SUCC g' : case w of 

Zem : False 
1 Sum V' : case ptE of 

Zero : Fahe 

1 SUCG O" : f2 yF dl 
in j.9 gr v 

1 SUCC x' : case x' of 

Zew : letrec 

f2 = Xy.Xu.case $r of 

Zero : case v of 
Zem : False 

1 Succ v' : hr: 

I SUCC y' : case v of 

Zem : T h e  
I Sacc v' : case u' of 

Z m  : T h e  
1 SUCC v" : f2 y' v" 

By substituting back the extracted variable z for v within expression (18.18), and 

by transforming the expression resulting from the substitution, the partial process 

tree shown in Fig. A.27 is obtained. 

From this partial process tree, we construct the residual program shown in 

Fig. A.28. 



(letrec f2 = . . . in f2 y (Succ(Zero))  I 
I, 

,& &] k*' 
y = ero y = Sqcc y' 

Figure A.27: Partial process tree (7) for T[i# (even x )  (eqnum (double y )  x ) ]  

letrec fl = Ax. case x of 

Zero : case y of 

Zero : True 

1 Succ y' : False 

( Succ x' : case x' of 

Zero : case y of 

Zero : D u e  

( Succ y' : Due 

1 Succ 2" : fl x" 

in fl x 

Figure A.28: Residual program for T[iff (even x )  (eqnum (double y )  x ) ]  



Appendix B 

Theorem Proving in Poitin 

B.1 Example 

Example 19 

Consider the following conjecture (19. I), which states that the length of appending 

two lists is cqud to the addition of their individual lengths. 

ALL zs.ALL ys.eqnum (length (append xs gs)) ( p b s  (length zs) (length ys)) 

(19.1) 

The following definition of the function length is used along with the defi- 

nitions of append, eqnuna and plus as defined in Chapter 2. 

length = hxs.case xs of 

Nil : Zero 

I Oons x xs' : SUCC (length 2s') 

The proof of conjecture (19.1) is guided by distillation rule ( 7 2 )  (Fig. 4.4). Rule 

( 7 2 )  applies distillation to expression (19.2). 

eqnum (length (append xs ys)) (plus (length xs) (length ys))  (19.2) 

Applying distillation to expression (19.2), we obtain the following distilled ex- 

pression (19.3). 



letrec 

f0 = Xxs. case xs of 
Nil : case y$ of 

Nil : f i e  

( Cons g 3s' : Ietrec 

f1 = Xyd. case yar of 
Nil : True 

[ Cans y' y5" : fl ~8'' 

The proof of the. corresponding proof expression obtained by pre-processing ex- 

pression (19.3) proceeds as shown below. 

Auletrec 

fO = Xzs.Xys.case xs of 
Nil : case ys of 

Nil : fiue 

( Cons y ys' : letrec 

f1 = Xys'. case ys' of 
Nil : True 

I Cons y' ys" : fl ys" 

in fl ys' 

( Cons x xsl : fO xs' ys 

in f0 $3 ysn 0 {XS,YS} 



= Aicase xs of 

Nil : case ys of 

Nil : True 

I Cons y ys' : le t rec  fl = Xys'. case ys' of 

Nil : True 

( Cons y' ys" : f1 ys" 

in f1 ys' 

I Cons x xs' : fO xs' ys] {fO xs ys) {xs, ys) 

(by A61 
= T[(A[case ys of 

Nil : True 

( Cons y ys' : le t rec  f l  = Xys'. case ys' of 

Nil : True 

I Cons y' ys" : f l  ys" 

in f l  Y ~ ' I  {fO xs ysl  {xs, ys)) 

A (AllfO xs' YS] {fO xs YS) {xs,ys, x,xs'))ll 0 0 
(by A51 

= TU(TU(AUT~U~II i f0  xs Y ~ I  {xs, Y ~ I )  (by A51 
A (A[ le t rec  f1 = Xys'. case ys' of 

Nil : True 

I Cons y' ys" : f1 ys" 

in f l  ys'] {fO xs ys) {xs, Ys, Y,  ys')>ll 0 0)  
A (AVO xs' ysll {fO xs ys) {xs,ys,x, xs'>>] 0 0 

= T[(T[True A (A([case ys' of 

Nil : Due  

I Cons Y' ys" : f l  ys"1 if0 ys,f1 ys') {xs, YS, Y ,  ys'))ll 00) 
A (ADO xs' YS] {fo 3s YS) {xs,~s,x,xs'))R 0 0 (by A2,A6) 

= T[(T[True A (T[(A[True] {fO xs ys, fl ys') {xs, ys, y, ys')) 

A ( ~ 1  YSIIIJ {fo xs ~ s , f 1  Y ~ I I  {xs, Y ~ , Y , Y ~ ~ , Y ~ , Y ~ ~ I ) I  o o)n o o) 
A (ADO xs' ysn if0 xs ys) {xs, Y s ,  x,  xs'))] 0 0 (by A5) 

= T[(T[True A (T[True A True] {) {I)] {) {)) 
A (AVO xs' YS] {fo xs YS) {xs, YS, 2, xs'))ll 0 0 (by A2,A7) 

= T[(T[True A True] {) {)) A (AVO xs' ys] {fO xs ys) {xs, ys, x,  xs'))] {) {) 

(by 7197') 



= T i T r u e  A (AVO xs' ys] {fO xs ys) { x s , y s , x , x s ' ) ) ]  {) {) (by TI,?) 
= T i T r u e  A True]  {) {) (by "47) 
= True  (by 

We obtain the truth value True  as required. This completes the proof of conjec- 

ture (I), and demonstrates that it is a theorem. 




