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Abstract—The correct general form of relativistic transformation
equations for the three-vector force is derived without using four-
vectors, via the relativistic Newton’s second law. The four-vector
approach to the problem is also presented. The derivations extend
or rectify previous derivations.

1. INTRODUCTION

Jefimenko [1] shows that the Lorentz force expression fL = q(E+u×B)
transforms with respect to the standard Lorentz transformation

x′ = γV (x− V t), y′ = y, z′ = z, t′ = γV

(
t− V x/c2

)
, (1)

where γV = (1− V 2/c2)−1/2, according to equations

f ′Lx =
fLx − (V/c2)fL · u

1− V ux/c2
,

f ′Ly =
fLy

γV (1− V ux/c2)
, f ′Lz =

fLz

γV (1− V ux/c2)
,

(2)

where f ′L = q(E′ + u′ ×B′). (In this paper the unprimed and primed
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quantities refer to inertial frames Σ and Σ′, respectively; the frames
are in the standard configuration, Σ′ moves relative to Σ with speed
V in the positive direction of their common x, x′-axes.) Since the
time derivative of the relativistic momentum of a particle with time-
independent mass m transforms in the same way [2],

dp′x/dt′ =
dpx/dt− (V/c2)(dp/dt) · u

1− V ux/c2
,

dp′y/dt′ =
dpy/dt

γV (1− V ux/c2)
, dp′z/dt′ =

dpz/dt

γV (1− V ux/c2)
,

(3)

where p = mu/
√

1− u2/c2, p′ = mu′/
√

1− u′2/c2, the author thus
shows that the well known relativistic equation of motion of a charged
particle in the presence of electric and magnetic fields in the laboratory
frame (reference frame Σ)

d

dt

(
mu√

1− u2/c2

)
= q(E + u×B), (4)

is covariant with respect to the Lorentz transformation (1), i.e., as a
purely mathematical fact, Equation (4) implies Equation (5)

d

dt′

(
mu′√

1− u′2/c2

)
= q(E′ + u′ ×B′), (5)

and vice versa. (Planck [3] was the first to derive and recognize
the relativistic equation of motion (4), introducing tacitly the
assumption that m is time-independent in his argument. The
same tacit assumption is found in the corresponding Einstein’s 1905
argument [7].)

It seems that Reference [1] bridges a gap in teaching relativistic
electrodynamics. Namely, in many textbooks dealing with the special
theory of relativity, the fact that fL = q(E + u×B) transforms in the
same way as dp/dt with m = const is taken (almost always tacitly) as
axiomatic, and used, e.g., for deriving electric and magnetic fields of a
uniformly moving charge from Coulomb’s law. (Deriving electric and
magnetic fields of a point charge in uniform motion appears to be a
recurrent topic (cf, e.g., [4–6]). However, the validity of Equation (2)
is far from being self-evident. Another didactic virtue of [1] is that it
clearly reveals that the transformation law of the Lorentz force fL is
determined by the laws of transformation of the quantities composing
it, q, E, u and B. True, deriving the transformations of E and
B without use of four-tensors, following Einstein’s original crooked
path [7, 8], from the condition that the so-called source-free Maxwell’s
equations ∇ × E = −∂B/∂t, ∇ · B = 0 obey the principle of special
relativity, is a real tour de force.
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Jefimenko’s argument in [1] implies that any relativistic three-
vector force transforms according to equations of the form (2). It
appears, however, that the concept of relativistic force has a broader
connotation, including forces that involve a time-dependent mass of a
particle on which the forces act [9–15]. Thus equations of the form (2)
do not express transformation formulae for the relativistic three-vector
force (henceforth, “relativistic force”) in the general case. On the other
hand, formulae that are occasionally presented in the literature as the
general form of relativistic force transformation equations [11, 14] are
not correct, since the transformation law of a relativistic force generally
is not determined by time dependence of the mass of a particle.

In this paper the correct general form of relativistic force
transformation equations, apparently not found in the literature, is
derived in simple and direct ways. In Section 2, a derivation of the
transformation formulae without use of four-vectors, via the relativistic
Newton’s second law, is given. In Section 3 the four-vector approach
to the problem is presented, expressing the transformation formulae
in the language of four-vectors. Since relativistic force transformation
equations are closely related with a variety of basic concepts, we believe
that the present paper could be helpful for teaching special relativity
and relativistic electrodynamics. Despite ramified applications of
relativistic electrodynamics (cf, e.g., [16–20]), it seems that some of
its basic concepts still need clarification.

2. GENERAL FORCE TRANSFORMATIONS WITHOUT
FOUR-VECTORS

Our derivation follows, mutatis mutandis, a simple argument presented
by French [2].

The relativistic momentum p and energy E of a particle relative
to the Σ frame, are defined by

p = muγu, E = mc2γu, (6)

where m is the mass of the particle, u is its instantaneous velocity, and
γu = (1 − u2/c2)−1/2; the corresponding Σ′ quantities are defined in
the same way

p′ = mu′γu′ , E′ = mc2γu′ . (7)
Since the x component of p′ transforms as [2]

p′x = γV (px − V E/c2), (8)
a simple calculation reveals that the time derivative of p′x transforms
as

dp′x/dt′ =
dpx/dt− (V/c2)dE/dt

1− V ux/c2
, (9)



Derivations of transformation equations 1149

all with respect to the Lorentz transformation (1). From the “right-
angled triangle identity”

E2 = c2p2 + m2c4, (10)
using equation p/E = u/c2, it follows that

dE/dt = (dp/dt) · u + (c2/γu)dm/dt. (11)
(Contrary to the tacit assumption made in [2], we assume that m
is in the general case a time dependent Lorentz invariant quantity.)
Introducing the “proper” time τ elapsed at the particle, dτ = dt/γu,
Equation (11) can be recast as

dE/dt = (dp/dt) · u + (1/γ2
u)c2dm/dτ. (12)

Equations (9) and (12) imply

dp′x/dt′ =
dpx/dt− (V/c2)[(dp/dt) · u + (1/γ2

u)c2dm/dτ ]
1− V ux/c2

. (13)

Now the correct relativistic generalization of Newton’s second law
reads

dp/dt = f , (14)

where three-vector f is a relativistic (Newtonian) force, representing a
physical agent which determines the time derivative of the momentum
of a particle on which it acts according to Equation (14). On the other
hand, the principle of relativity requires that equation of the same form
and content

dp′/dt′ = f ′, (15)

applies in the Σ′ frame. From the transformation law (13) and
Equations (14) and (15) it follows that

f ′x =
fx − (V/c2)[f · u + (1/γ2

u)c2dm/dτ ]
1− V ux/c2

. (16)

While Equation (16) is occasionally presented in the literature as
transformation equation for the x component of f ′ [11, 14], actually
this is not so. Namely, despite appearances, transformation equations
for a relativistic force exist on their own, regardless of the validity
of Equations (14) or (15). True, Equations (14) and (15) are used
as scaffolding in the present derivation, but when the construction
is over the scaffolding should be removed (in the same way as the
“rest”, “relativistic”, “longitudinal” and “transverse” masses should be
removed from special relativity [21]). A little reflection reveals, taking
into account that expression c2dm/dτ appearing in Equation (16) is
Lorentz invariant, that the correct transformation equation for f ′x must
have the form

f ′x =
fx − (V/c2)(f · u + χ/γ2

u)
1− V ux/c2

, (17)
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where χ is a Lorentz invariant quantity. For a given relativistic force
f , according to the principle of relativity, f ′ depends on Σ′-quantities
in the same way as f depends on the corresponding Σ-quantities, so χ
can be ascertained by directly transforming the quantities composing
the force f ′. Thus, somewhat surprisingly, expression for f carries
information on both f ′ and χ.

Transformation equations for the y and z components of f ′ are
obtained in the same way but much more simply. Since p′y = py,
p′z = pz, one gets

dp′y/dt′ =
dpy/dt

γV (1− V ux/c2)
, dp′z/dt′ =

dpz/dt

γV (1− V ux/c2)
, (18)

and thus, using Equations (14) and (15),

f ′y =
fy

γV (1− V ux/c2)
, f ′z =

fz

γV (1− V ux/c2)
. (19)

Equations (17) and (19) are the correct relativistic force transformation
equations valid in the general case.

As a by-product of the preceding analysis it follows that
Equation (14) and equation that determines the “proper” time
derivative of the mass of a particle on which the relativistic force f
acts

c2dm/dτ = χ, (20)

imply Equation (15), since transformation Equations (13), (18), (17)
and (19) apply. Thus only Equations (14) and (20) taken together are
Lorentz covariant equations of motion of a particle under the action of
the force f .

It is not difficult to find transformation equation for f ′ in the
case when the Σ′ frame moves with an arbitrary constant velocity
V = (Vx, Vy, Vz) relative to the Σ frame, and the corresponding
coordinate axes are still parallel. (The problem of how to define parallel
axes in that case is discussed, e.g., in [9, 22].) The transformation
equation reads

f ′ =
f/γV − (V/c2){f · u + χ/γ2

u − [1− (1/γV )](f ·V)c2/V 2}
1−V · u/c2

, (21)

As an example, consider the Lorentz force fL = q(E + u × B).
Comparing the first Equation (2) and Equation (17), it follows that
for the Lorentz force the corresponding scalar χ vanishes identically.
Then, supposing that the Lorentz force is the only force acting on
a charged particle in the electromagnetic field, Equation (20) implies
that m is constant, consistent with Planck’s assumption tacitly made
in [3]. As another example, consider a three-force f = −(g/γu)∇Φ,



Derivations of transformation equations 1151

where a Lorentz scalar g plays the same role as does charge in
electromagnetism, and Φ = Φ(r, t) is a Lorentz scalar field; f
represents the relativistic force arising in the scalar meson theory of
the nucleus [10, 12–14]. A simple calculation reveals that f ′ transforms
according to Equations (17) and (19), with χ = gdΦ/dτ . (In the
calculation, equations γu′ = γuγV (1 − V ux/c2) [2] and dΦ/dt =
∂Φ/∂t + (∇Φ) · u are used.) Then Equations (14) and (20) imply
that the mass of a particle which moves in the field Φ is given by

m = mFF + gΦ/c2, (22)

where mFF is the field-free mass of the particle [12, 13].

3. THE FOUR-VECTOR APPROACH

For the sake of completeness, in this Section a formal derivation of
transformation Equations (17) and (19) via four-vectors is presented,
revealing their four-vector content.

Contravariant components of the four-momentum of a particle Pα

and its four-velocity Uα are given by equations

Pα = mUα, Uα = γu(c,u), (23)

which implies
Pα = (E/c,p). (24)

(We use the diagonal metric tensor with elements g00 = 1, g11 = g22 =
g33 = −1.)

The four-vector equation of motion of a particle under the action
of a four-force with contravariant components Fα = (F 0,F) is

dPα/dτ = Fα. (25)

Since dτ = dt/γu, introducing f ≡ F/γu, Equation (25) can be
written in the form

dE/dt = F 0c/γu, dp/dt = f . (26)

Thus f is a relativistic force. Transformation equations for the
Cartesian components of f ′ ≡ F′/γu′ then follow from the well known
transformation equations for F ′α

F ′x =γV (F x − βF 0), F ′y =F y, F ′z =F z, F ′0 =γV (F 0 − βF x), (27)

where β = V/c, and for γu′

γu′ = γuγV (1− V ux/c2). (28)
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(Equation (28) follows directly from U
′0 = γV (U0 − βUx).) Thus one

gets that f ′x transforms according to equation

f ′x =
fx − (V/c2)F 0c/γu

1− V ux/c2
, (29)

whereas f ′y and f ′z transform according to Equation (19).
By using identity F 0 ≡ F ·u/c+FαUα/γuc, Equation (29) can be

recast as

f ′x =
fx − (V/c2)(f · u + FαUα/γ2

u)
1− V ux/c2

, (30)

which coincides with Equation (17), revealing the four-vector content
of the Lorentz invariant χ.

(By the way, the preceding considerations imply that if any three-
vector g transforms with respect to the Lorentz transformation (1)
according to equations

g′x =
gx − (V/c2)(g · u + ξ/γ2

u)
1− V ux/c2

,

g′y =
gy

γV (1− V ux/c2)
, g′z =

gz

γV (1− V ux/c2)
,

where ξ is a Lorentz invariant, then g uniquely determines a four-vector
with contravariant components Gα = (γug · u/c + ξ/γuc, γug).)

Note that Equation (25), using identities UαUα ≡ c2 and
(dUα/dτ)Uα ≡ 0, implies

c2dm/dτ = FαUα, (31)

and consequently

mdUα/dτ = Fα − UαF δUδ/c2, (32)

and vice versa: Equations (31) and (32) imply Equation (25). Thus
Equation (25) is tantamount to Equations (31) and (32).

From the preceding considerations it is clear that two kinds of four-
forces are possible, depending on whether FαUα vanishes identically
or not. Simple four-force for which FαUα ≡ 0 appears in the literature
as the Minkowski force [23], or driving force [9], or pure force [14].

For the convenience of the reader, recall that contravariant
components of the four-force Fα

L corresponding to the Lorentz force
fL = q(E + u×B) can be expressed as

Fα
L = qFαβUβ, (33)

where Fαβ are contravariant components of the electromagnetic
field tensor defined by equations Fαβ = −F βα, (F 01, F 02, F 03) =
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(−1/c)(Ex, Ey, Ez), (F 32, F 13, F 21) = (Bx, By, Bz). Thus identity
Fα

L Uα ≡ 0 is a direct consequence of the fact that Fαβ is
antisymmetric. (The four-force corresponding to the other relativistic
force f = −(g/γu)∇Φ discussed above (the “impure” one) has covariant
components Fα = ∂Φ/∂xα.)

As can be seen, our above argument reveals that Planck’s tacit
assumption that the mass of a charged particle that moves in the
electromagnetic field is constant [3] is tantamount to assuming that
the Minkowski force (33) is the only four-force acting on the particle
in the field, i.e., there is no additional “impure” one term (involving
also the radiation reaction force).

4. CONCLUSIONS

We have presented simple and direct derivations of relativistic
transformation equations for the three-vector force, which generalize
or correct previous derivations [1, 2, 14]. Our argument is free
from unnecessary assumptions or confusion between distinct concepts,
providing another illustration of the importance of Ockham’s razor
in relativistic considerations [24, 25]. As such it might be helpful for
teaching relativistic electrodynamics and special relativity.
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