TransBooster: Black Box Optimisation of Machine Translation Systems

Bart Mellebeek
BA., MSc.
A dissertation submitted in partial fulfilment of the requirements for the award of
Doctor of Philosophy
to the
DCU
Dublin City University
School of Computing
Supervisors: Prof. Andy Way
Prof. Josef van Genabith

July 2007
!

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor of Philosophy is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work

Date
July 2007

Contents

Abstract vi
Acknowledgements vii
List of Tables viii
List of Figures xii
1 Introduction 1
2 MT by Recursive Sentence Decomposition: Rationale 5
21 Introduction 5
2.2 Approaches to MT Potential and Limitations 6
2.3 TransBooster: Basics 13
24 Related Research 20
2.5 Summary 23
3 Methodology: Baseline MT Systems, Development Phases, Evaluation 24
3.1 Introduction 24
3.2 Baseline MT Systems 24
3.3 Development Phases 26
3.4 Evaluation 27
3.4.1 Evaluation Metrics 27
3.4 1.1 BLEU 28
3.4.1.2 NIST 30
3.41 .3 GTM 32
3.4.1.4 Statistical Significance 34
341.5 Manual Evaluation 34
3.4.2 Experimental Set-up 35
3.5 Summary 37
4 TransBooster Architecture: Outline 39
4.1 Introduction 39
4.2 Outline 39
4.2.1 Flattening Penn-II Trees into TransBooster Trees 40
42.2 Finding the Pivot 42
4.2.3 Locating Satellites 43
4.24 Skeletons and Substitution Variables 44
4.2.5 Translating Satellites: Context 47
4.2.6 Recursion 50
4.2.7 A Worked Example 51
43 Substitution Variables 54
4.31 Introduction 54
4.3.2 Early vs. Late MT Access 54
4.3.3 Static vs. Dynamic Substıtution Variables 55
4.3.4 Effects of SSV Schemata on Translation Quality 56
4.3 4.1 SSVs 57
43.4.2 Experimental Setup 58
4.3.4.3 Results 62
4.3.4.4 Analysis 64
4.3.5 Conclusion 66
4.4 Summary 66
5 TransBooster Architecture: Technical Details 68
5.1 Introduction 68
5.2 TransBooster Mark I 68
5.21 Identifying Heads 69
5.22 Constructing Pivots 71
5.2 2.1 Constructing Pivots. Default Tree Flattening 73
5.2.2.2 Constructing pivots: Extended Tree Flattening 74
523 Arguments vs. Adjuncts 76
5.2.4 Substitution Varıables: Static vs Dynamıc 78
5.2.4.1 Identifying Optimal Substitution Variables 79
5.2.5 Context: Static vs Dynamic 81
5.2.6 Chunks and their Translation 85
52.7 Safety Measures 90
5.2.8 Algorithm 91
52 8.1 Worked Example 91
5.3 TransBooster Mark II 95
531 Mark I vs Mark II 96
5.3.2 Algorithm 98
5.4 Summary 100
6 Experimental Results and Analysis 101
61 Intıoduction 101
6.2 Results for Rule-based MT 101
6.2.1 Experimental setup 101
6.2.2 Experiments with TransBooster Mark I 102
6.2.2.1 Automatic evaluation 103
6.2 2.2 Manual Evaluation 105
6.2.2.3 Analysis 109
6.2.2.4 The impact of parser-based input 111
62.3 Experiments with TransBooster Mark II 116
6.2.4 TransBooster and Rule-based MT: conclusion 117
6.3 Results for Data-driven MT 117
63.1 TransBooster and SMT 118
63.1.1 Experimental setup 118
6.3.1.2 Results 120
63.13 Analysis 122
6.3.2 TransBooster and EBMT 124
6.3.2.1 Marker-based EBMT 124
6.3.2.2 Experimental setup 125
6.3.2.3 Results 126
6.3.2.4 Analysis 127
6.4 Summary 128
7 TransBooster as an MEMT interface 130
7.1 Introduction 130
72 Multi-engine Machine Translation 131
7.2.1 Introduction 131
7.2.2 Previous Approaches to MEMT 132
7.3 TransBooster as an MEMT interface 135
7.3.1 Algorithm. Overview 135
7.3.2 Algorıthm: Details 136
7.3.3 A Worked Example 139
7.4 Experimental Results and Analysis 143
7.4.1 Experimental Setup 143
74.2 Results 144
74.21 Human parse-annotated input 145
7.4.2.2 Input parsed by (Charniak, 2000) 147
7.4.2.3 Input parsed by (Bikel, 2002) 149
7.5 Summary 150
8 Conclusions 151
81 Future Work 153
Appendices 154
A Tags and Phrase Labels in the Penn-II Treebank 155
B Extended Pivot Selection per Category 157
C ARG/ADJ distinction heuristics 160
D Static Substitution Variables per Category 164
E Static Context Templates per Category 171
F Implementation: Class Diagram 177
Bibliography 180

Abstract

Machine Translation (MT) systems tend to underperform when faced with long, linguistically complex sentences. Rule-based systems often trade a broad but shallow linguistic coverage for a deep, fine-grained analysis since hand-crafting rules based on detalled linguistic analyses is time-consuming, error-prone and expensive. Most data-driven systems lack the necessary syntactic knowledge to effectively deal with non-local grammatical phenomena. Therefore, both rule-based and data-driven MT systems are better at handling short, simple sentences than linguistically complex ones

This thesis proposes a new and modular approach to help MT systems improve their output quality by reducing the number of complexities in the input. Instead of trying to reinvent the wheel by proposing yet another approach to MT, we build on the strengths of existing MT paradigms whle trying to remedy their shortcomings as much as possible. We do this by developing TransBooster, a wrapper technology that reduces the complexity of the MT input by a recursive decomposition algorithm which produces simple input chunks that are spoon-fed to a baseline MT system TransBooster is not an MT system itself: it does not perform automatic translation, but operates on top of an existing MT system, guiding it through the input and trying to help the baseline system to improve the quality of its own translations through automatic complexity reduction.

In this dissertation, we outline the motivation behind TransBooster, explain its development in depth and investigate its impact on the three most important paradigms in the field Rule-based, Example-based and Statistical MT. In addition, we use the TransBooster architecture as a promising alternative to current Multr-Engine MT techniques. We evaluate TransBooster on the language parr Englsh \rightarrow Spanish with a combination of automatic and manual evaluation metrics, providing a rigorous analysis of the potential and shortcomings of our approach.

Acknowledgements

There are many people who helped me with this thesis during the past four years First and foremost, my supervisors Josef van Genabith and Andy Way Without Josef, TransBooster wouldn't exist. He was the first person to bring up the possibility of recursive complexity reduction for Machine Translation and with his sharp ideas and guidance, he has been an excellent mentor throughout the course of this Ph.D. Andy's expertise, his constant encouragement and reassurance have been extremely important in helping me to keep on going. Thanks again for guiding me through those final months, Andy.

I am grateful to my examiners Mary Hearne and Paul Bennett, whose feedback has helped me to deliver a better dissertation.

Parts of this research was presented at various conferences EAMT05, MT Summit X, IWCL06, EAMT06 and AMTA06 Thanks to the reviewers for ther insightful comments that led to improvements.

Thanks also to the staff and postgraduate students at the National Centre for Language Technology and the School of Computing at DCU. Special thanks to Grzegorz, Djamé and Nicolas for their friendship, support and for the good times.

Finally, I would like to mention the names of the people who participated in the manual evaluation of the experimental results: Eva Martínez, Grzegorz (again), Roser Morante, Marta Carulla, Mireia Bartels, Marına Sánchez, Rocío del Pozo and Laura Calvelo.

Thanks to all of you.

List of Tables

31 Extract from the instructions for the translation of the test set. 36
4.1 Substitution Variables for NP-type constituents 57
4.2 Subcategorisable syntactic functions in LFG. 59
4.3 The 10 most frequent verbal subcategorisation frames in the Penn Treebank, in descending frequency and excluding subcategorisation frames contaning only sub- jects 59
4.4 A test set contaming a reference sentence and 5 test sentences for a particular frame-lemma pair. $l=$ number of arguments to left of pivot, $r=$ number of arguments to right of pivot, $1 \leq \imath \leq 5$. 60
45 A test set containing a reference sentence and 5 test sentences for the frame-lemma pair include([subj,obj]) 60
46 Counts for the 10 most frequent subcategorisation frames 61
47 Results of SSV replacement on translation quality for LogoMedıa 63
4.8 Results of SSV replacement on translation quality for Systran 63
49 Results of SSV replacement on translation quality for SDL 64
4.10 Results of SSV replacement on translation quality for PromT 64
4.11 Translation of the test set for the frame-lemma pair strap (lobj,subj]) by Logomedia 65
4.12 Translation of the test set for the frame-lemma par face([obj,subj]) by Logomedia 65
5.1 Tree Head Table - the list of head-finding rules based on (Magerman, 1995) 70
5.2 Some examples of satellite chunks and their DSVs. 80
5.3 Chunks in module Chunk and therr default context retrieval 86
6.1 TransBooster program parameters, their defintion and the pages in the thesis where they are explained. 102
6.2 Optimal parameter settings per baseline MT system. 103
6.3 TransBooster results on the 800 -sentence test set with optimal parameters 103
6.4 TransBooster results on the three 600-sentence test sets with optimal parameters 104
6.5 Impact of parameter p_Pı $\overline{\mathrm{v}}^{\mathrm{v}}$ tCheck on the results-m Table 63 105
66 Proportion of sentences per MT engine (in the optimal setting) in which the back- off procedure is invoked" at the root node. Invoking back-off at the root will disable " 'decomposition for the entire'sentence,', 'so' that the "entire mput is translated as 'is' by the baselne MT, system 106
6.7 Percentages of different words between TransBooster and the baseline systems on the 800 -sentence test set. Figures are provided for the entire test set and for those sentences for which the back-off procedure was invoked P is explained in Formula 61 106
68 Number of TransBooster output sentences that are different from the baseline MT sys̈tem's output. 107
6:9 Comparative results of the manual evaluation of TransBooster vs. LogoMedia,Sÿstran"and SDL on 200 different output sentences. $\mathrm{B}^{*} \doteq$ better, $\mathrm{S}=$ sımılar, W:108
- 8^{4}108
$6.11^{1 "}$ Examples of each" of the four areas of TransBoster improvements: lexical"selection, word'ordeı, agreement, homograph resolution 111
612 Examples of sentences in which a correct complexity reduction leads to worse translation. 112 2
$6.14^{\prime \prime}$ Trans ${ }^{2}$ 113

- 2000) 115

6.16 TransBooster results on the three 600-sentence tē̈t sets, parsed with (Bikel, 2002)

6.16 TransBooster results on the three 600-sentence tē̈t sets, parsed with (Bikel, 2002)

6.16 TransBooster results on the three 600-sentence tē̈t sets, parsed with (Bikel, 2002) 115 115 115

6.17 TransBooster Mark II results on the 800 -sentence test set.

6.17 TransBooster Mark II results on the 800 -sentence test set.

6.17 TransBooster Mark II results on the 800 -sentence test set. 116 116 116
6-18 Optmal parameter settnges for the TransBooster-Pharaôh interface.
6-18 Optmal parameter settnges for the TransBooster-Pharaôh interface.
6-18 Optmal parameter settnges for the TransBooster-Pharaôh interface. ${ }^{1} 19$ ${ }^{1} 19$ ${ }^{1} 19$
613 TransBooster results on 800 -sentence test set, parsed with (Charniak, 2000)"
613 TransBooster results on 800 -sentence test set, parsed with (Charniak, 2000)" 113 113

6.19 TransBooster vs Pharaoh: Resuilts on the 800 -sentence test set of Europarl 120
6.20 TransBooster vs. Pharaoh Results on the 800 -sentence test set of the WSJ 120
6.21 Comparative results of the manual evaluation of TransBooster vs Pharaoh $\mathrm{B}=$ better, $S=$ similär, $W=$ worse: 122
6.22 Extrapolation of the manual evaluation results in Table 621 for the entire $800-$ sentence test set. $\mathrm{B}=$ better, $\mathrm{S}=$ similar, $\mathrm{W}=$ worse 122
623 Examples of improvements over Pharaoh: word order and lexical selection. 123
624 TransBooster vs 'EBMT. Results on the 800 -sentence test set of Europarl 127
6.25 TransBooster vs. EBMT.' Results on the 800 -sentence test set of the WSJ 127
626 Examples of improvements over'the EBMT baseline. word order and lexical selection 128
7.1 Example sentence (20). result of $\mathrm{TB}_{M E I}$ vs , baseline MT engınes. 142
7.2 Result of $\mathrm{TB}_{M E I}$ vs. baselme. MT engines on the example, sentence 'Imperial Corp, based in San Diego, is the parent of Imperial Savings \& Loan.' 142
73 'Result of $\mathrm{TB}_{\mathrm{MEI}}$ vs basëline MT^{\prime} engnes'on the example sentence ' ${ }^{\prime} \mathrm{Mr}$: Pierce sald Elcotel should realize 'a minmum' of $\$ 10$ of recurring net earnings for each machne each month.'
7.4 Resuults of the three baseline MT systems on the 800 -sentencé test'set: absolutescores (cf Table 63in Chapter 6) on page 101)14 ?
$75 \mathrm{~TB}_{M E I}$ vs $\mathrm{TB}_{\text {SEI }}$ absolute scores for human parse-annotated mput - 146
7.6 TB $\mathrm{TB}_{\text {MEI }}$ vs. $\mathrm{TB}_{\text {SEI }}$ añd baselne systems: relative scores for human parse-annotatedinput146
7.7. TB SEI vs baselme'systems relatıve scores for human parse-annotated input 147
7.8 Relative contrıbütion of each of the selection heuristics for the results in Table 7.5. "147$7.9 \mathrm{~TB}_{M E I^{\prime}}$ and" $\mathrm{TB}_{\mathrm{B}_{S E I}}$ ábsoluterscores for input parsed by (Charniak, 2000)148
$7.10 \mathrm{~TB}_{M E I}^{\prime}{ }^{\prime}$ vs' ${ }^{1} \mathrm{~TB}_{S E I}$ and baselline' systems:' relative 'scores "for input,"parsed" by 148°
7.1-1 Relative coñtribution of each of the selecton heurıstics for the results in Table ${ }^{\prime \prime} 7.9$ 148
 149
2002)149
7.14 Relative contribution of each of the selection heuristics for the results in Table 7.12.150
A. 1 Tag labels in the Penn-II Treebank 156
A 2 Phrase labels in the Pern-II Treebank. 156
B. 1 Nr of rule types (covering 85% of rule tokens) and basic extended pivot treatment for non-terminal nodes in the Penn-II Treebank Parentheses indicate optional categories. 159
C 1 ARG/ADJ distinction heuristics per category, mdependent of the mother node. 161
C. 2 ARG/ADJ distinction heuristscs per category, dependent of the mother node. 163
D. 1 Statıc Substitution Varıables per Category. 170
E. 1 Statıc Context Templates per Category. 176
F 1 Language-dependent vs. Language-independent Elements in TransBooster. 179

List of Figures

2.1 The Vauquois M'T triangle 7
2.2 Wu's 3-D model space for MT 11
2.3 Trajectory of historical development of RBMT, SMT and EBMT systems, respec- tively represented by triangles, dots and squares, according to ($\mathrm{Wu}, 2005$). 12
2.4 TransBooster interfacing with baseline MT system. 13
2.5 TransBooster in Wu's 3-D model space for MT The arrows represent the fact that TransBooster can be interfaced with all types of baselne MT systems. 20
3.1 Bitext grid sllustrating the relationship between an example candidate translation and its corresponding reference translation. Each bullet or 'hit' indicates a word contaned in both the candidate and reference texts. 32
3.2 Bitext representıng two different candidate texts for the same reference text The MMS in Equation 3.7 rewards the better word order in candidate text (b) by weighting each contiguous sequence of matchng woids by their length, which is indicated by the greater surface of shaded area in (b). 34
3.3 A section of the web page for translators to construct the gold standard reference translations. 37
4.1 Flattening a Penn-II tree into a TransBooster tree. $1=$ number of satellites to left of pivot. $r=$ number of satellites to right of pivot. 41
4.2 Penn-II tree representation of 'The chairman, a long-time rival of Bill Gates, likes fast and confidential deals ' 41
4.3 Flattened TransBooster tree obtained from Penn-II structure in Figure 42 41
4.4 Penn-II tree representation of 'mıght have to buy a large quantity of sugar' 42
45 Penn-II tree representation of 'close to the utility industry.' 43
46 The recursive nature of the TransBooster decomposition. each satellite chunk $S A T_{2}$ is decomposed until only optimal chunks reman. 51
4.7 Penn-II tree representation of 'Imperial Corp, based in San Diego, is the parent of Imperial Savings \& Loan.' 52
4.8 TransBooster tree representation "of (47). 52
51 Basic tree flattening 1-7 are arbitrary non-terminal categories A-L are lexical items. Node 3 is the head of node 1 ' Node' 4 is the head of node 3 . The resulting flattened tree on the right-hand side is the input to TransBooster's decomposition module. 74
5.2 Extended tree flattenmg 1-7 are arbitrary non-termmal categories A-L are lexacal tems Node 3 is the head of node 1. Node 4 is the head of node 3. 75
53 Penn-II tree representation of 'we were coming down into therr canal.' 76
5.4 Penn-II tree representation of 'Indıvidual investors have turnēd away from the stock market ' 77.
5.5. Parse tree sepresentation of 'The charman, a long-time rival of Bill Gates, likes fast ${ }^{2}$, '82'
56 Parse tree representation of node "STPC=1 in (61) 8
5.7 The backend of the TránsBoostè Engine. 85
5.8. The (in theory) never-ending cycle of dynamic context template translations 88
5.9 The three stages in a TransBooster run. 89
510 The standard TransBoóster 'algonithm ($\left.\mathrm{TB}_{\mathrm{MarkI}}\right)^{\prime}$ in pseudo-code 91
5.11 Traǹs Booster tree representation of (67) ! 92
5.12 Inpút Chunk © into decomposition âlgorithm of TBMarkII 96
5.13 Thè.simplified TransBooster algorithm, ($\mathrm{TB}_{\text {MarkII }}$) in pseudo-code. 99
6.1 The humàn parse-annotated structure of the chunk 'a Belgian pretending to be Ital-:1an' in the Penn-II Treebank.${ }_{n} 114$
6.2 The parser outpuit of (Bıkel, 2002), of the chunk 'a Belgian pretending to be Italan' 114
7.1 An example Englısh sentence and its tränslation from five different MT systems,from (Bangalore, et àl, ${ }^{\prime} 2001$)133

7.2 Lattice representation of the example sentence in Figure 7 1, from (Bangalore et al, 2001) 134
7.3 A flow chart of the entire MEMT system, with Ci the $\imath^{t h}$ input chunk ($1 \leq \imath \leq M$), Ej the $j^{\text {th }}$ MT engine ($1 \leq \jmath \leq N$) and Ci_j the translation of Ci by Ej. 136
7.4 Output of example sentence (20) by the three baseline MT engines LogoMedia, Systran and SDL 139
75 Decomposition of Input. 141
7.6 Selection of best output chunk. The optimal combination follows the arcs in bold. 141
F. 1 Implementation of TransBooster Application (Java version J2SE 5.0): class diagram. 177

Chapter 1

Introduction

Machine Translation (MT) has been an active area of research in Artificial Intelligence (AI) since the 1950s. Over the years, initial overinflated expectations ('the productron of fully automatic high-quality translations in an unrestricted domain') have been scaled down due to the complexity of modeling the human translation process. In recent years, the quality achieved by MT systems is sufficient to make MT commercially viable, not as a substitute for the human translator, but as a possibly useful time-saving component of a translation process that involves other important components (such as translation memories, on-line dictionaries, termınology management systems and human post-editing).

Most of the existing commercial MT systems are implemented based on the rulebased transfer paradıgm (RBMT) The main theoretical limitation of this paradigm is that transfer rules alone are not sufficient to replace the real-world knowledge that humans use to perform translation (Bar-Hillel, 1960). In addition, hand-crafting rules based on detailed linguistic analyses is time-consuming, error-prone and expensive. Therefore, commercial RBMT systems tend to trade a broad but shallow linguistic coverage for a deep, fine-grained analysis. As a consequence, most existing commercial MT systems do not perform to the best of their abilities: they are more successful in translating short, simple sentences than long and complex ones The longer the input sentence, the more likely the MT system will be led astray by the lexical, syntactic and semantic complexities in the source and target languages. When MT systems fail to produce a complete analysis of the input, their recovery strategies for rendering a translation often result in 'word
salad'
In this dissertation, we investigate whether it is possible to help MT systems improve their translations by reducing the number of complexities in the input Instead of trying to reinvent the wheel by proposing yet another approach to MT, we build on the strengths of existing MT paradigms while trying to remedy their shortcomings as much as possible. We do this by developing TransBooster, a wrapper technology that reduces the complexity of the MT input by a recursive decomposition process which produces simple input chunks that are spoon-fed to a baselıne MT system. In other words, the objective of TransBooster is to enhance the quality of existing current MT technology through a divide-and-conquer approach. We verify whether the reduction in complexity provided by TransBooster is sufficient to achieve this goal

This thesis is not about the development of an MT system. It describes the theory behind and the deployment of a wrapper technology to be used on top of existing MT systems. This is a new area of research in MT with little related previous publications. Thurmair (1992) and Gerber and Hovy (1998) experimented with simılar ideas, as we will explain in Chapter 2, but to the best of our knowledge, this is the first large-scale attempt to improve MT output through automatic complexity reduction.

In order to test the possible advantages of recursive sentence decomposition for a particular MT system, it would have been possible to design an application for that particular MT system by using the knowledge of its internal workings. Instead, we chose to treat the MT systems that were interfaced to TransBooster as 'black boxes'. This has the advantage that the TransBooster technology can be used on top of all sorts of different MT systems, regardless of their implementation or of the MT paradigm that they adhere to.

During the development of TransBooster, human parse-annotated sentences of the Penn-II Treebank (Marcus et al., 1994) were used as input. The results obtained on this 'perfectly annotated' input constitute a theoretical upper bound for the improvements that are possible for unannotated text, which has to be parsed automatically as a necessary step prior to decomposition. Once the TransBooster algorithm was finalised, we performed experiments with the output of two state-of-the-art statistıcal parsers ((Charniak, 2000) and (Bikel, 2002)). Current state-of-the-art probabilistic parsing technology is capable of
providing tree-based precision \& recall scores of around 90% and dependency-based scores of around 80% The experiments conducted will show whether the possible advantages through complexity reduction outweigh the inevitable errors and noise introduced by even the best available parsers.

Although the majority of thé commercially available' MT systems are (still) rule-based, most of the current research in MT is corpus-based, with Statistical Machine Translation (SMT) and Example-Based Machine Translation (EBMT), being the predominant research paradigms. Since most of the currently available data-driven systems āe not able to efficiently deal with non-local syntactic phenomena, long and syntactically complex sentences pose a significant challenge to both, SMT and EBMT. Therefore, after experimenting, with TransBooster on top of three RBMT systems, we investıgate the effects of TransBooster's complexity reduction on a phrase-based SMT system and a marker-based EBMT system.

In addition, given that TransBooster is independent of the internal working of its client "MT systems, it is possible to interface it simultaneously, with several MT engines. In Chapter '7̄ we' explain' how we adapted TTransBooster as' a Mülti-Engıne, Machine, Translation"(MEMT) intèrface and analyse"its performáace. ${ }^{\text {n }}$,

This thesis is structured as follows:

Chapter 2 explains the rationalé of recursıve sentence decomposition for: MT and'compares the' TransBóoster approach to other MT paradigms.

Chapter 3 introduces the baseline $\mathrm{MT} \dot{\mathrm{T}}_{\text {systems }}$ used throughout this dissertation and explains how the performance of TrarisBooster is measured.
'Chapter 4 contains a general outline of the TransBooster 'architecture.
Chapter 5 describes' in depth the "concepts introduced iñ Chapter 4 and explains the

Chapter 6 analyses the experingentall results of the $\operatorname{TransBoaster~output~iñ~comparison~}$ ". with the baséline Morin systems that were iñtroduced in Chapter 3

Chäpter 7. examiñes the use of TransBooster as an MEMT intêrface.

Chapter 8 concludes and outlines possible areas of future research.

The research presented in this dissertation was published in several peer-reviewed Conference Proceedings. (Mellebeek et al, 2005a) and (Mellebeek et al , 2005b) present the basics of the TransBooster architecture and show its performance with respect to rulebased MT. Subsequently, TransBooster was adapted for integration with data-driven MT systems, the results of which are published in (Mellebeek et al , 2006a) for SMT and (Owczarzak et al., 2006) ${ }^{1}$ for EBMT. (Armstrong et al , 2006) contains more information on how the baselne system for the EBMT experiments was constructed. Finally, (Mellebeek et al., 2006b) analyses the use of TransBooster as an MEMT interface.

[^0]
Chapter 2

MT by Recursive Sentence

Decomposition: Rationale

2.1 Introduction

Fully Automatıc High-Quality Machıne Translation (FAHQMT) in an unrestricted domain is considered an AI-complete problem ${ }^{1}$ by many researchers (Trujillo, 1999), since solving this problem seems to require the equivalent of human intelligence. Instead of pursuing the futile quest for this 'holy grail', contemporary research in Machine Translation (MT) focuses on trying to make MT useful rather than perfect.

If we are allowed to omit one of the three above-mentioned requirements ('fullyautomatic', 'high quality', 'unrestricted domain'), then it is uncontroversial to assert that useful MT systems have already been achieved

1. FAHQMT systems have been developed for restructed domains such as weather reports (Chandioux, 1976; Chandioux and Grimaila, 1996) and heavy equipment manuals (Nyberg and Mitamura, 1992) amongst others.
2. High-quality MT in unrestricted domains is feasible if the MT system is 'arded' by human post-editing (Krings, 2001). Also, the use of controlled language (Bernth and Gdaniec, 2001; O'Brien, 2003), designed to eliminate the maximum amount of ambiguities in the input, can lead to a significantly improved MT output. The use

[^1]of controlled language-for internal documentation is common practice nowadays in many major companies (e"g. SiEméEns (Lehrndorfer and Schachtl, 1998) or Ford (Rychtyckyj, 2002) to mention only"a few).
3. Fully-automatic MT in an unrestricted domain rarely produces high quality output, as one can easily verify when using one of the many on-line MT engines that populate the World Wide Web. Nevertheless, a less-than-perfect translation can be sufficient for a user interested in the overall gist of the contents of the source text

TransBooster is situated m this third domain: it was initially designed to 1 mprove the output of fully-automatic wide-coverage MT systems. In this chapter, we motivate the rationale behind TransBooster. Section 2.2 contains a brief analysis of the potential and limitations of the most'important approaches to MT. In Section 2.3, we explain" how TransBooster can help MT systems improve their own'output' by reducing the compléxity "of thé input We"also situate our approách with respect to the other approaches to MT in the three-dimensional MT model space of (Wù 2005) Finally, in Section 2.4', we "añalyse the similarities/differences of TransBonoster with previously published related"résearch.

2.2 Approachés to MT: Pốtential and Limitatiỏns

Approaches to MT are usually categorised as either rule-based (RBMT) or corpus-based (CBMT):"RBMT systems emplōy rules hand-crafted by "humans to perform translation, whereàs CBMT systems' use machine learning techniques to induce translation knowledge from 'bulingual aligned corporas ${ }_{\varepsilon}^{2}$. Up' until' the mid 1980s, the vast majority of MT research/production" was rule-based "The followngethree-RBMT approaches are commonly' distınguished ${ }^{2}$,"depending on the degree of abstraction of their iñtermediate representation

Direct RBMT Direct MTָ'systeensilack any kind of intermediatestages in the transiation
. process. After a limitéd morphologıcạl analysis of thé source langūage (SL)' sentencé,

[^2]6

Figure 2.1: The Vauquors MT triangle.
a translation for each SL word is selected in a bilingual dictionary and a certain local reordering in target might take place. Many of the early MT systems were based on this approach.

Potential:

- relatively easy to implement.

Limitations:

- severe limitations in ambiguity resolution and correct word order generation.
- limited scalability: for n languages, $n(n-1)$ different entire systems have to be implemented.

Transfer-based RBMT Transfer-based MT systems relate source and target language (TL) at the level of syntax. An analysis module produces the intermediate syntactic representation, a transfer module finds a corresponding syntactic structure in the TL and a generation module generates a TL output. Transfer-based MT was the most popular research paradigm until the late 1980s. Most of the currently available commercial MT systems were designed based on this approach (e.g. METAL (Bennett and Slocum, 1985) or Systran (Senellart et al., 2001) to mention only a few). Potential.

- improved ambiguity resolution and treatment of syntactic phenomena, especially for closely related languages
- improved scalability with respect to Direct RBMT: for n languages, n analysis and generation modules and $n(n-1)$ transfer modules have to be implemented.

Limitations:

- lack of coverage: grammars designed on crude heuristics and tested on toy sentences, limited lexica.
- coverage expansion is problematic and could lead to an increase in ambiguty, since new rules might interfere with old ones. Danger of over-analysis and over-generation.
- a huge amount of rules and extensive lexica are time-consuming to build and error-prone.
- the task is much more difficult and less successful where the intermediate structural representations differ to any great degree between SL and TL.

Interlingua-based RBMT Interlingua systems try to incorporate a unversal meaning representation which renders a language-dependent transfer phase unnecessary, using only an analysis phase into and a generation phase from this language-mdependent interlingua to produce correct translations. The problem of finding an adequate meaning representation for all languages is closely related to knowledge-representation problems in classical AI, one of the major difficulties in the field. Research in interlingua MT was popular during the 1980s and early 1990s (e.g. ROSETTA (Landsbergen, 1989), KBMT (Goodman and Nirenburg, 1991), Pangloss (Frederking et al., 1993)), but has now largely been abandoned due to the complexity of the task.

Potential:

- in theory, the solution to MT, since real-world knowledge appears to be a prerequisite for FAHQMT (Bar-Hillel, 1960).
- perfect scalability for n languages, n analysis and generation modules have to be implemented.

Limitations:

- not feasible in practice due to the difficulty of the knowledge representation problem.

During the 1980s, a number of factors led to a resurgence of interest in empirical techniques in Natural Language Processing (NLP): (i) the symbolic, rule-based approach had proven insufficient to provide high-quality solutions for most NLP problems, (ii) the emergence of computers with sufficient speed and memory to handle large amounts of data, and (iii) the availability of large-scale machine-readable corpora.

In MT, the two exponents of the empirical or corpus-based approach are Statistical MT (SMT) and Example-Based MT (EBMT).

Statistical MT (SMT) SMT uses bilingual aligned corpora and probability models of translation to estimate the most likely language output sentence e, given a foreign input sentence f, or in other words $\operatorname{argmax} P(e \mid f)$. In the early word-based IBM models (Brown et al., 1993), this probability was estimated by decomposing $\operatorname{argmax} P(e \mid f)$, as an instance of the noisy-channel approach, into two sources of information, a translation model $P(f \mid e)$ and a language model $P(e)$:

$$
\begin{equation*}
\operatorname{argmax} P(e \mid f)=\operatorname{argmax} P(e) P(f \mid e) \tag{2.1}
\end{equation*}
$$

Later SMT research improved the performance of the early SMT attempts by incorporating phrases or sequences of words into the models in a variety of ways ((Yamada and Knight, 2001; Och and Ney, 2002; Marcu and Wong, 2002; Koehn et al., 2003; Chiang, 2005) to mention only a few). At this moment, SMT is the dominant research area in Machine Translation.

Potential:

- minimal human effort, easy to build.
- elegant way to deal with idioms and local ambiguities, both lexical and structural.
- robust.

Limitations:

- domain specificity: highly dependent on training corpus.
- the need for large amounts of traming data.
- syntactically limited: only local syntactic phenomena can be dealt with.

Example-based MT (EBMT) Machine Translation by analogy. The SL sentence is split up into a number of chunks, which are matched against fragments in a bilingual aligned corpus After identifying the corresponding translation fragments in target, these are recombined into the appropriate target text: EBMF started with (Nagaon 1984) but research did not take off untul the late 1980s Nowadays, it is the second most important research paradigm in the field, after SMT. Cf. (Carl and Way, 2003) for an overview of recent approaches in EBMT.

Potential and Limitations-

- similar to SMT limitations. EBMT system's generally do not require as much trạinng data as SMTY systems but "rely on deéper linguiistic informatioñ;' which might not be trivial to "extráct

Few MT systems are 'pure' implementations ofone of the above-mentioned approaches.
 for modern RBMT systems to incorporate a certain amountrof statisticial techniques for .word-sense disambiguation or the translation of idioms. Certan typesof SMF systems try to incorporate linguistic knowledgent, their models (Yamada-and Knight, 2001; ;Charniak et al ; 2003; Burbank et al., 2005; Chiang, 2005). Also, it is not uncommon for EBMT systems to use technıques specific to the STMT community (Groves and Way, 2005; Menezes' and Qurk, 2

Heated debates over whether a particular system is SMT, EBMT or RBMT at its core are not uncommọn int the MT"community. "Such discussions are sometimes motivated by rather subjective criteria, and dònot contribute to a better understanding of the similarities

 The three axest inc the MT model' space, ${ }^{t}$ as represented in Figure 2.2 , correspond to the

Figure 2.2: Wu's 3-D model space for MT.
formal dichotomies of (1) compositional vs. lexical, (ii) statıstical vs. logical, and (iii) example-based vs schema-based

The COMPOSITIONAL VS. LEXICAL axis measures the level of compositionality in the bilingual transfer rules of an MT system: compositional transfer rules declaratively describe how larger chunks can be translated by recursively composing smaller translated chunks, whereas lexical transfer rules directly translate lexical items into their target equivalents. The statistical vs. logical axis represents the extent to which mathematical statistics and probability are used in the MT system The EXAMPLE-BASED vs. SCHEMA-BASED axis indicates whether translation is performed based on a large library of examples or on abstract schemata.

Wu (2005) plots the trajectory of the historical development of a number of MT approaches in the 3-D model space, an adaptation of which is presented in Figure 2.3. In this figure, RBMT systems are repiesented by triangles, SMT systems by circles and EBMT systems by squares. The evolution in RBMT systems moves from highly compositional and logical systems (Locke and Booth, 1955) to slightly more lexical systems (Chandioux, 1976; Maas, 1987), incorporating more statistics along the way (Senellart et al., 2001). SMT systems move from the word-based IBM models (Brown et al , 1993) towards more compositional and example-based models (Wu and Wong, 1998; Yamada and Knight, 2001; Och and Ney, 2002) EMBT systems evolve from pure analogy-based systems (Nagao, 1984, Lepage, 2005) to more lexical template-driven systems, with certain approaches

Figure 2.3: Trajectory of historical development of RBMT, SMT and EBMT systems, respectively represented by triangles, dots and squares, according to ($\mathrm{Wu}, 2005$).
incorporating more statistics (Groves and Way, 2005, Menezes and Quirk, 2005). ${ }^{3}$ At the end of Section 2 3, we indicate where TransBooster is situated in this model space

The basic idea of TransBooster emerged after analysing common flaws of fully-automatic wide-coverage MT systems, such as the many on-line MT systems that populate the World Wide Web, most of which are rule-based. Since a detailed linguistic analysis of translation input is potentially costly, both in terms of development and processing time, and because of the importance of robustness for commercial MT, wide-coverage MT systems tend to trade a broad but shallow linguistic coverage for a deep, fine-grained analysis. As a consequence, most existing commercial MT systems are more successful in translating short, simple sentences than long and complex ones. The longer the input sentence, the more likely the MT system will be led astray by the lexical, syntactic and semantic complexities in the source and target languages.

If a method can be found to reduce the number of complexities in an input sentence before sending the input to an MT system, the same MT system should be able to improve

[^3]the quality of its output since a reduction in complexity, in theory at any rate, relieves some of the burden on its analysis, transfer and generation modules, which are often lamited to analysing local phenomena. In this thesis, we present the design, development and deployment of an application that achieves this desired complexity reduction by recursive sentence decomposition. TransBooster breaks down input sentences into smaller, syntactically simpler chunks and embeds these chunks in short context templates that mimic the context of the original sentence. TransBooster then spoonfeeds the resulting chunks to the MT system, one by one, and uses their translation to compose an output sentence.

2.3 TransBooster: Basics

TransBooster acts as a wrapper technology application • it operates on top of an existing 'baseline' MT system, guiding its translation, as is shown in Figure 2.4. TransBooster splits an input sentence S into N chunks $C_{1} \ldots C_{N}$, sends these chunks for translation to the baseline MT system and forms the output S^{\prime} by recomposing the recovered translatrons $C_{1}^{\prime} \ldots C_{N}^{\prime}$.

Figure 2.4: TransBooster interfacing with baseline MT system

Throughout the entire process, the baseline MT system is treated as a black box and does all the translation itself. In other words, TransBooster tries to enhance the MT system's own possibilities through a divide-and-conquer approach by reducing the syntactic complexity of the input.

The fact that TransBooster does not presuppose any knowledge of the internal workings
of the baseline system used, makes $1 t$, possible to interface the program with implementations of any of the different MT architectures outlined in Section 2 2. In Chapter 6, we present an analysis of the application of TransBooster on top of three widely-used commercial rule-based systems, as well as the results of interfacing our approach with an in-house. constructed phrase-based SMT system. In Chapter 7, we describe how TransBooster can be interfaced with multıple MT engines simultaneously in a multi-engine $M \bar{T}$ architecture.

The following examples lllustrate the rationale behind TransBooster, namely that complexity reduction through sentence decomposition can lead to improved translations."

Example 1

Compare the translations (English \rightarrow Spanish) by a human translator and the MT system developed by SDL International ${ }^{4}$ of the example sentence in,(1)
(1) Source

Human translator
SDL
'His stubbbornness has, in fact, created problems where they didñ't exist ' 'De,hecho, su terquedad hacreado problemas donde antes, "no' existían'"
'Su' terquedad tiene, de hecho, los problemas̃ creados donde ellos no 'existieron."'

In this example, the fact that the auxiliary 'has' and the main verb 'created' are separated by the adverbial phrase 'In fact' causes the MT̃ systêm to wrongly, nter prêt 'has' as the main verb and 'created' as a past participle modifier, generating the erroneous translations 'tıene' and 'creados':

Nonetheless, the $\mathrm{MT}^{\text {system }}$ is able to correctly translate the shorter strings in (2) These strings contain decomposed parts of the input sentence (included in square brackets $[\ldots]$), embedded-in a suitable context- As.will-be explained-in detail in Chapters 4 and 5 , the presence of context templates mumicking the original context in which the component strings occurred is necessary to ensure a correct translation.

[^4](2) a '[His stubbornness] is nice.' \rightarrow ' $[$ Su terquedad] es agradable.'
b. 'The man [has created] cars' \rightarrow 'El hombre [ha creado] coches'
c '[In fact], the man is sleeping' \rightarrow '[De hecho], el hombre duerme.'
d. 'The man has seen [problems where they didn't exist]' \rightarrow ' El hombre ha visto [1os problemas donde ellos no existieron].

The recomposition of the translations the component strings results in (3).
(3) 'Su terquedad, de hecho, ha creado los problemas donde edlos' no existieron'.

This recomposed trianslation is better than the original-output produced for the complete input string by the same MT system in (1), since the removal of the ambiguity caused by the adverbial phrase 'in fact' helps the system to recognıse 'has created' as a verbal unit, allowing its generation module to output the correct 'hia creado', just like the human translation.

Example 2

Compare the translations (English \rightarrow German) by a human translator and the MT system Systran 5 "of the example sentence in (4):
(4) "Source-
Human translator
'The chairman, a long-time rival of Bill Gates, likes fast' and confideñtıal deals
"Der Vorsitzender, eiñ langfristıger Ruvale von Bill Gates, magischinelle und vertrauliche Abkōnmen ${ }^{\text {an }}$ '
'Der Vorsitzende, em langfristiger Rivale ${ }^{\text {mit } v o n ~ B i l l ~ G a t e s, ~}$ Gleiche fasten und vertrauliche' Abikommen.'

The problem in the output produced "by "Systran resides in a"wrong homograph resolution of 'likes' and 'fast' ('likes'is interreted ans anoun instead as a verb, and 'fast' receives a' vêt bal interpretation instead of the correct nominal one). Although the MT output is many respects similar to the human translation, the misinterpretation of on two items in the soburce sentence renders thẹ result unintelligible As in the previous example, breakng up the orignal string ing simpler parts" in" (5) force the "MT system to improve its interpretation of the wrongly 'ideñtified parts.

[^5]$$
15
$$
(5) a. '[The chairman, a long-tıme rival of Bill Gates,] is sleeping.' \rightarrow '[Der Vorsitzende, em langfristıger Rivale von Bill Gates,] schlaft'
b 'The man [lıkes] dogs' \rightarrow 'Der Mann [mag] Hunde.'
c. 'The man sees [fast and confidential deals] ' \rightarrow 'Der Mann sieht [die schnellen und vertraulichen Abkommen]. ${ }^{16}$

The recomposition of the component parts in (6) results in a signnficantly improved translation with respect to the oniginal translation produced by the MT system in (4), due to the fact that the complexity reduction by decomposition helps the $\mathrm{M}^{\prime} \mathrm{T}$ system analyse 'likes' as a verb and 'fast' as an adjective, leading to the improved translations of 'mag' and 'schnellen', respectively.
(6) Der Vorsitzende, ein langfristiger Rivale von Bill Gates, mag die schnellen und vertraulichen Abkommen

It is not true that complexity reduction through sentence decomposition will automatically lead to improvements in all cases. Care must be taken to split a complex input sentence at the appropriate boundaries and to embed the decomposed chunks in a context that preserves enough simlarities with the original to avoid mistranslations. In addition, even a perfect decomposition coupled with a correct context embedding will not automatically lead to improvements: if the baseline MT system does not contain alternatives for a given lexical 1tem, an improved analysis or homograph resolution will not lead to a different translation for that item The following examples demonstrate the need for caution when changing the original structure of the input sentence.

Example 3

Compare the translations (Enghsh \rightarrow Spanish) by a human translator and Systran of the example sentence in (7):

[^6]
Abstract

(7)

Source 'The nurses, nervous about ther new job, handed the surgeon the wrong instruments.' Human translator 'Las enfermeras, nerviosas por su nuevo trabajo, dieron los instrumentos incorrectos al cirujano.' Systran 'Las enfermeras', nerviosas sobre su nuevo trabajo, dieron a crrujano los instrumentos incorrectos.'

In this case, the output produced by 'Systran is a quite accurate and well-formed translation of the original, apart from a few minor details (the generation of the preposition 'sobre' instead of the correct 'por',' ${ }^{\prime \prime}$ the omission of the 'article 'el' which' leads to 'the' erroneous 'a cirujano' instead of the correct 'al cirujano'). A possible decomposition into smaller chunks could lead to (8):
(8) a. '[The nurses] are sleeping.' \rightarrow [LLas enfermeras] están durmiendo'
b 'The man, [nervous about their new, fobs].' \rightarrow 'El hombre, [nervioso sobre sus nuevos trabajos] '
c. \quad 'SUBJ ${ }^{7}$ [handed] OBJ2 ${ }^{\text {OBJI.' } \rightarrow \text { 'SUBJ [dio] OBJ2 OBJ1.' }}$
d ! I see [the surgeon] ', \rightarrow 'Veo [a cirujanol.'
e. 'I see [the wrong 'nstruments]' \rightarrow 'Veo flos instriumentos incorréctos]

This leads topithe recomposed trặnslation in (9)
'Las enfermeras, nervioso sōbre sus nuevos trabajos, dio a crrujano los instrumentos' incorrectos'.

In this case, the output of the recomposed translation is worse than the orignall translation of the entire input string in in (r), since the subject-verb agreement betweens The nürses' and 'handed', as well as the head-modufier agréement between 'nurses' and"‘nèrvous', iss"'missing; leading to erroneous translations of 'dio' and 'nervoso'. The reason for this deterioration is the selection of too basic a placeholder for the substitution of the NP 'The nurrses', as' well as the use of a deficient context ('The man'), for the same NP.

Example 4

Compare the trañslations (English \Rightarrow Germañ) by a human translator and the MTT system
LogoMedia ${ }^{8}$ of the example sentence in (10).

[^7]（10）Source
Human translator
LogoMedia＇
＇The actusused＂pleaded guilty to the corruption charges．＇
＇Die Angeklagten bekannten sich zu den Korrup－
toonsworwürfen schuldig．＇
＇＂Die Angeklagtent bekannten sich schuldig zu den Korrup－
tionsanklagen．＇

As in the prevous example，the output produced by the MT system is quite acceptable．
The only minor errors＂are a slightly＇awkwardr word，order and the fact that＇corruption＇ charges＇is translated as the correct but rather infrequent＇Korruptionsanklagen＇instead of the more usual＇Korruptionsvorwüfen＇．Nevertheless，the＇MT output would achiéve a high score when measured for accuracy and fiuency

A possible decomposition into smaller chunks could lead to（11）：
（11）a＇［The accused］are sleeping．＂＂＇\rightarrow＂［Die＇Angeklagten］＇schlafen＇
b．＇The men［pleaded］．＇\rightarrow＇Die Manner［plädierten］．＇
c．＇I am［gigulty tô the corruption＇chargès］$\rightarrow \rightarrow$＇Ich bin［zu den Korrû̉ptıonsgebuhren schuldgg］．＇

This leads to the recomposed translation in（12）：

The main reảson why this translation is considerably worse than ther orinal output
decomposition, whıle, at the same time, trying to minımise the amount of noise produced by the algorithm.

The working of TransBooster is explained in detail in Chapters 4 and 5. The following is a brief resume of its working

> TransBooster decomposes an input sentence into optimal chunks by using a recursive algorithm that starts at the top-level node of the syntactic parse tree representing the input string and examines each node as it traverses the tree. The produced chunks are embedded in context templates which are at the same time sophisticated enough to to yield a correct translation of the embedded chunks, and simple enough to send as simple an input as possible to the MT engine. While keeping track of the position of the translation of the chunks in target, TransBooster retrieves the translations of the embedded chunks produced by the baseline MT engine and recombines the output chunks to produce the final result, which we expect to be of higher quality than the automatic translation of the original, complete and complex input sentence.

We mentioned in Section 2.2 that we would situate TransBooster in the 3-D MT Model Space of (Wu, 2005). TransBooster is a hypercompositional, logical and schemabased approach to MT that can be interfaced with any type of MT system, using the MT system as if it were an internal dictionary, as is graphically presented in Figure 2.5. TransBooster does not, to any extent, rely on a library of examples at run-time: therefore it is graphically located at the very start of the X-axis. Although TransBooster itself does not use statistical models for decomposition or recomposition, its input is produced by state-of-the-art statistical parsers: therefore we situate it in the middle of the Z-axis. Given that the compositionality of TransBooster is at the core of its workings and since it was designed to be primarily interfaced with MT systems that are already compositional in nature, we define it as hypercompositional and situate it at the extreme end of the Y-axıs.

Figure 25 TransBooster in Wu's 3-D model space for MT The arrows represent the fact that TransBooster can be interfaced with all types of baseline MT systems.

2.4 Related Research

During the early 1990s, research took place at the Unıversity of Leuven (Belgium) and Siemens-Nixdorf Ltd. to try to improve METAL (Adriaens and Caeyers, 1990; Thurmair, 1992), a commercial rule-based system, by manual sentence decomposition. Researchers were faced with the problem that, since most of the rules comprising the modules in METAL were designed based on simple toy sentences, the quality of the system sharply decreased when faced with longer sentences in a real-world scenario. Therefore, when testing the performance of METAL for the translation of legal texts at the Belgian Ministry of the Interior (Deprez et al., 1994), it was decided to incorporate a manual sentence decomposition module to reduce the original complexity of the sentences and boost the overall quality of the output The decomposition module was named 'Tarzan', since it was designed with simplicity and robustness as main guidelines. In a pre-processing step,
long input sentences ${ }^{9}$ were manually decomposed into smaller chunks, some of which were substituted by placeholders. The placeholders indicate a certain syntacto-semantic class that was recognised by the METAL engine during the subsequent translation of the chunks.

For example, s1 would be the placeholder for a noun phrase with semantic type ' + human', $s 0$ for a noun phrase with semantic type '-human', $a a$ for an adverbial complement, etc. With this technique, antecedents, subjects, direct objects and adverbial or prepositional complements could be split off in order to create shorter translation units. As an example, the sentence 'Dans une réunion qui a duré trois heures, le directeur de la division a accepté les propositions des employés' would be decomposed as indicated in (13):
(13) 'Dans une réunion' ($=$ 'ın a meeting')
' $s 0$ quı a duré 3 heures,' ($=s 0$ which lasted for three hours)
' $a a$ le directeur de la division a accepté $s O^{\prime}$ ($=$ ' $a a$ the manager of the division accepted so)'
'les propositions des employés ' ($=$ 'the employees' proposals')

Experiments were conducted for the language pairs Dutch \rightarrow French and French \rightarrow Dutch. Although no concrete results on the overall influence of Tarzan on the performance of METAL were published, two of the main researchers in the project ${ }^{10}$ affirmed, when contacted in 2006, that the use of Tarzan was able to improve the performance of METAL to a certain extent, especially when long input sentences proved too complicated for the MT engıne's analysis module to be correctly interpreted.

Both Tarzan and TransBooster are attempts to improve the overall translation quality of complex sentences by sentence decomposition. However, there are a number of significant differences between both approaches:

1. The decomposition by TransBooster is fully automatic, whereas in Tarzan, each input sentence is chunked manually as a pre-processing step.
2. In Tarzan, constituents are substituted by a code which is internally recognised by METAL's translation modules. In TransBooster, constituents are replaced by
[^8]Substitution Variables that have to be translated by a baselne MT system. In other words, TransBooster is independent of the baselne MT system used while Tarzan was implemented specifically to be interfaced with the METAL engine.

In the late 1990s, a collaboration between the University of Southern California and Systran Ltd resulted in an experiment with a sentence-splitting algorithm to reduce the complexity of long input sentences for a Japanese \rightarrow English MT system (Gerber and Hovy, 1998) Based on the assumption that shorter sentences are easier to translate due to the fact that they contain fewer ambiguities, a Sentence Splitter module was developed to decompose certain input sentences at the clause level This module was inserted into the translation pipeline of Systran, midway in the analysis process. Japanese input sentences were split into smaller units if the following conditions were met:

1. The original sentence is a minımum of 20 words long
2. A continuatıve or infinitive form verb phrase is found followed by a comma or a clause conjunction is found.
3. The verb phrase is not functioning as an adverbial/extended particle.
4. The resulting sentences will be at least 7 words long.

In the case of a sentence split, some resulting paits were modified by adding a replacement subject to ensure that they made up a complete, new sentence. The splitting process is demonstrated in example (14), glossed from Japanese:
(14) Origmal input: 'In the future, increase of the super distance aeronautical transport which centers on between the continents can be considered for certain, can expect to 21 century beginnıng demand for $500-1000$ supersonic transport planes with 300 seats.' Split mput. 'In the future, increase of the super distance aeronautical transport which centers on between the continents can be considered for certain. You can expect to 21 century beginning demand for $500-1000$ supersonic transport planes with 300 seats.'

The results of two experiments in which human evaluators were asked to judge the readability of translations generated from both split and unsplit input did not suggest that the use of the Sentence Splatter module significantly improved the original unsplit output, or, to quote from the authors: 'It is not unreasonable to suspect that splutting
sentences does not, for the current qualty of Systran J-E output, make much difference in understandability' (Gerber and Hovy, 1998). They cite as possible reasons for this unexpected result. (i) the set-up of the testing procedure, (ii) possible flaws in the selection of sentence-splitting points, and (iii) the relatively low overall output quality of the baseline system.

The Sentence Splitter module significantly differs from TransBooster in a number of important aspects-

1. The Sentence Splitter module was plugged into the analysis phase of a specific commercial MT system (Systran), whereas, in our approach, the entire commercial MT system is interfaced to TransBooster with the sole purpose of returning translations from input chunks. The analysis of the original sentence, the decomposition into optimal input chunks and the recomposition of its translations are done by TransBooster itself
2. The Sentence Splitter module only focuses on splitting sentences at clause level.
3. Unlike in TransBooster, the decomposition of the Sentence Splutter module is not recursive: it stops as soon as the algorithm has identified possible clause boundaries

Note that TransBooster was concerved independently from both Tarzan and Sentence Splitter The ıdea behind TransBooster orıginated prior to learning about the exıstence of the research mentioned in this section.

2.5 Summary

In this chapter, we have motivated the rationale behind TransBooster. After giving a brief overview of the most important MT paradigms, we explained the basic idea underlymg our approach, namely that a recursive complexity reduction at the input side can lead baselne MT systems to improve on their own output. We compared the TransBooster approach to other MT paradigms by situating it in the three-dimensional MT model space of (Wu, 2005) Finally, we compared our approach to relevant related research.

Chapter 3

Methodology: Baseline MT

Systems, Development Phases,

Evaluation

3.1 Introduction

In this chapter, we outline the methodology used throughout the rest of this dissertation. In Section 3.2, we briefly describe the baseline MT systems that were interfaced with TransBooster. We provide more information on the format of the input into the decomposition algorithm in Section 3.3. Finally, in Section 3.4, we explain how the performance of TransBooster is evaluated.

3.2 Baseline MT Systems

The idea of TransBooster originated after analysing common flaws of freely available, online MT systems, most of which are rule-based. Therefore, as a first obvious choice, we decided to interface TransBooster to several commercial rule-based systems: LogoMedia, Systran and SDL. These systems were selected based on their relevance on the translation market (Hutchins et al , 2006), their overall quality and the availability of the language pair that we required for testing (Englsh \rightarrow Spanish). We initially experimented with a
fourth on-line MT system, PromT ${ }^{\mathbf{1}}$, but decided not to proceed with this system in a later stage of the project in order to scale down the experiments to a manageable size.

Initial translations were performed by accessing the systems on-line. Since all systems restrict the size of input files for on-line processing, each time a translation was needed, it was necessary to split the input into a number of smaller files, upload the files onto a web server, access the translation engines with a script executing WGET ${ }^{2}$ in batch-mode and assemble the output. In order to speed up this process and to avoid occasional failures of the on-line engines, we acquired academic licences for the in-house use of LogoMedia and Systran It was not possible to acqure the engine of SDL , so we continued with accessing the SDL engine on-line.

Despite the fact that most commercial wide-coverage MT systems are rule-based at present, it is interesting to verify the effect of a TransBooster approach on top of CBMT systems as well, since most MT research today is corpus-based. Some of the major difficulties that data-driven MT systems face (e.g. word order issues, mability to capture long-distance dependencies) relate to their lack of syntactic knowledge. Since SMT and EBMT are the two major exponents of the data-driven approach to MT, we examme in Chapter 6 whether the syntactically-driven decomposition algorithm of TransBooster is able to improve the output of an SMT and an EBMT system.

The baseline SMT system that we used is an m-house constructed phrase-based SMT system (English \rightarrow Spanish) using the Giza ++ alignment tool (Och and Ney, 2003), the SRI Language Modeling Toolkit (Stolcke, 2002) and the Pharaoh decoder (Koehn, 2004). The system was trained on data from the English-Spanish training section of the Europarl corpus (Koehn, 2005). More detalled information on the construction of the SMT system is provided in Chapter 6.

The baseline EBMT system that we used is the NCLT's ${ }^{3}$ marker-based MATrEx system (Armstrong et al, 2006). More information about this system will be provided during the discussion of the experimental setup for the EBMT evaluation in Chapter 6.

The core components of TransBooster are language-pair independent, on the condition

[^9]that the input is parsed into a structure similar to the one used in the Penn-II Treebank. ${ }^{4}$ Only a limited number of modules in the program rely on language-specific material. ${ }^{5}$ However, for evaluation purposes, a specific language-pair had to be selected. We chose to evaluate our system on the language pair English \rightarrow Spanısh since (i) this commercially relevant language pair is implemented by most on-line MT systems, (11) a large amount of training data (Koehn, 2005) is available for the construction of CBMT systems, and (in) the developer is famıliar with both languages.

3.3 Development Phases

In the first phase of the project, we used as input data to TransBooster an existing treebank resource, the Wall Street Journal (WSJ) section of the Penn-II Treebank (Marcus et al., 1994), containing about $1,000,000$ words and 50,000 trees/sentences. The Penn Treebank is the largest available human parse-annotated corpus of English, and has been used as the standard test and training material for statistical parsing of English. Since the linguistic structure of the sentences in the Penn Treebank has been constructed/revised by human annotators, it is considered to be near perfect. In other words, using the parse-annotated Penn-II sentences as input data is equivalent to using a hypothetical TransBooster system with a 'perfect' analysis module that does not introduce any noise. Therefore, the results that we obtan for these 'perfectly annotated' sentences will yield a theoretical upper bound for the improvements that are possible with our approach based on automatically parsing new unannotated text.

In the second phase of the project, we experımented with a number of existing parsing methods to analyse previously unseen sentences. The resulting analysis serves as input to the decomposition algorithm developed during the first development phase Since the output format of most state-of-the-art statistical parsers differs only slightly from the Penn Treebank annotation, the main structure of the decomposition algorithm remains valid.

The main research question here is to find out whether the best possible parser-based

[^10]analyses are good enough for TransBooster to improve translation scores with respect to the baseline systems. Or, in other words, is the TransBooster architecture resistant to the inevitable errors and noise introduced by even the best available parsers? Current state-of-the-art probabilistic parsing technology is capable of providing tree-based precision \& recall scores of around 90%. We conducted experiments with (Charniak, 2000) and (Bikel, 2002), the results of which are analysed in Chapter 6.

3.4 Evaluation

In this section, we explain how the performance of TransBooster is evaluated. First, we briefly analyse the automatic evaluation metrics that will be used and explain our manual evaluation standards. We then motivate the characteristics of our test set and outline how it was constructed

3.4.1 Evaluation Metrics

During the past few years, the use of automatic evaluation metrics has become widespread in the MT community Unlike traditional manual evaluations, usually based on a combination of accuracy and fluency (White and Connell, 1994; Hovy, 1999), automatic evaluation metrics are fast, cheap and provide an objective framework for comparison Led by the success of the Word Error Rate metric in the evaluation of speech recognition systems, MT researchers have come up with a plethora of automatic, string-matching based, evaluation metrics in their own field: WER (Word Error Rate) (Nießen et al., 2000), RED (Akiba et al., 2001), BLEU (Papineni et al., 2002), NIST (Doddington, 2002), PER (Position independent Word Error Rate) (Leusch et al., 2003), GTM (Turian et al , 2003), the metric by (Babych and Hartley, 2004), ROUGE (Lin and Och, 2004a), METEOR (Banerjee and Lavie, 2005). All previously cited metrics have in common that they evaluate the output of an MT system against a number of reference translations, based on the rationale that the more similar an MT output is to an expert reference translation, the better it is. The indıvidual metrics differ in the algorithms used to compute the similarity score.

Although the outcome of an automatic evaluation metric is meaningless in itself ${ }^{6}$

[^11]and n-gram-based metıics have been shown to favour SMT systems over rule-based ones (Callison-Burch et al., 2006), automatic evaluation metrics are useful for MT development and comparative evaluations between MT systems of the same kind. ${ }^{7}$ Even though very few researchers nowadays question the usefulness of automatic MT metrics, especially for the day-to-day development of MT systems, automatic metrics are not, and were never designed to be, a substatute for human assessment of translation quality. The developers of BLEU, one of the earliest and best known metrics in the field, state:
'We present this method as an automated understudy to skilled human judges which substitutes for them when there is need for quick or frequent evaluations.' (Papineni et al., 2002)

Therefore, it remains indispensable to evaluate the output quality of TransBooster using human judges.

In what follows, we briefly describe the three (widely-used) automatic evaluation metrics that are used in this dissertation and explain our standards for human evaluation

3.4.1.1 BLEU

The BLEU ${ }^{8}$ metric (Papineni et al., 2002) compares MT output with expert reference translations in terms of n-gram statistics. The metric calculates the geometric average of a clipped unıgram to 4 -gram precision and applies a length penalty for translations that are too short. The detalls of the metric are shown in equation 31 .

As an example ${ }^{9}$, consider the candidate MT output ${ }^{10}$ in (15):
(15) 'It is a guide to action which ensures that the military always obeys the commands of the party.'

[^12]\[

$$
\begin{gather*}
B L E U=\exp \left(\sum_{n=1}^{N} w_{n} \log \left(p_{n}\right)-B P\right) \tag{31}\\
\text { where } p_{n}=\frac{\sum_{i}\left(\begin{array}{l}
\text { the number of } n \text {-grams in sentence } 1, \text { in the translation being evaluated, } \\
\text { with a matching reference co-occurrence in sentence } 1
\end{array}\right.}{\sum_{i}\binom{\text { the number of } n \text {-grams in sentence } 1, \text { in the }}{\text { translation being evaluated }}} \\
w_{n}=N^{-1} \\
N=4 \\
B P=m a x\left(\frac{L_{r e f}^{*}}{L_{s y s}}-1,0\right) \\
L_{r e f}^{*}=\text { the number of words in the reference translation that is closest in length } \\
\text { to the translation begin scored } \\
L_{s y s}=\text { the number of words in the translation being scored }
\end{gather*}
$$
\]

We will calculate the BLEU score of (15) against the three human reference translations in (16):
(16) a. 'It is a guide to action that ensures that the military will forever heed Party commands.'
b. 'It is the guiding principle which guarantees the military forces always being under the command of the Party.'
c. 'It is the practical guide for the army always to heed the directions of the party'

Of the 18 unigrams present in the candidate sentence (15), 17 are found in one or more of the reference translations. Therefore $p_{1}=\frac{17}{18}$. Likewise, we find that for bigrams, $p_{2}=\frac{10}{17}$, for trigrams, $p_{3}=\frac{7}{16}$ and for 4-grams, $p_{4}=\frac{4}{15}$. Also, $L_{\text {sys }}=L_{\text {ref }}^{*}=18 \rightarrow B P=$ $\max \left(\frac{L_{\text {ref }}^{*}}{L_{s y s}}-1,0\right)=0$. Therefore

$$
\begin{aligned}
B L E U & =\exp \left(\sum_{n=1}^{N} w_{n} \log \left(p_{n}\right)\right) \\
& =\exp \left(\frac{\log \left(\frac{17}{18}\right)+\log \left(\frac{10}{17}\right)+\log \left(\frac{7}{16}\right)+\log \left(\frac{4}{15}\right)}{4}\right) \\
& =0.5045
\end{aligned}
$$

It is important to mention that the n-gram precision score of a given candidate translation is clipped to the maximum of n-gram occurrences in any single reference translation to avoid overinflated n-gram scores, as is shown in (17):

In (17), the candidate translation would obtain a non-clipped unigram precision of $7 / 7$. By not allowing more n-gram matches than the maximum number of n-gram occurrences in a reference translation, this precision is modified to a much more reasonable unigram precision of $2 / 7$ for this improbable translation.

Candidate translations which are too short are penalised by subtracting a brevity penalty $B P=\max \left(\frac{L_{\text {ref }}^{*}}{L_{s y s}}-1,0\right)$ from the clipped precision count. In (18), we see a candidate sentence in which $\sum_{n=1}^{N} w_{n} \log \left(p_{n}\right)=0$ due to a clipped unigram to 4-gram precision of 100%. Without taking the brevity penalty of $\max \left(\frac{13}{4}-1,0\right)=2.25$ into account, the BLEU score of the candidate sentence would be a 'perfect' score of $\exp (0)=1$ The use of the brevity penalty reduces this number to a much more reasonable $\exp (-2.25)=0.0056$.

Cand- This is an example.
Ref1: This is an example of the use of the brevity penalty in BLEU
As with human judgements, scores for individual sentences can vary from judge to judge, so evaluation is normally performed on a reasonably large test set. ${ }^{11}$ Since standard BLEU calculates a geometric average of unigram to 4 -gram precision, a sentence without any 4-gram match with the reference translations, will not contribute to the overall score of the test set, despite possible successful unigram to trigram matches in the sentence. Therefore, BLEU is known to correlate better with human evaluations of fuency than of accuracy (Lin and Och, 2004b).

3.4.1.2 NIST

The NIST ${ }^{12}$ metric (Doddington, 2002) is a variant of BLEU which uses an arithmetic average instead of a geometric average of n-gram counts, weights more heavily those n grams that are more informative and uses an improved sentence length penalty. Details of the NIST metric are shown in equation 3.2.

[^13]\[

$$
\begin{aligned}
& \text { where Info(} \left.w_{1}, w_{n}\right)=\log _{2}\left(\frac{\text { the \# of occurrences of } w_{1}}{\left.\frac{w_{n-1}}{\text { the } \# \text { of occurrences of } w_{1} \ldots w_{n}}\right)}\right. \\
& B P=\exp \left(\beta \log ^{2}\left[\operatorname{man}\left(\frac{L_{\text {sys }}}{\overline{L_{r e f}}}, 1\right)\right]\right) \\
& \beta=\mathrm{a} \text { factor to make } \mathrm{BP}=05 \text { when the \# of words in the system output is } \frac{2}{3} \text { of the average } \\
& \text { \# of words in the reference translation } \\
& N=5 \\
& \bar{L}_{r e f}=\text { the average number of words in a reference translation, averaged over } \\
& \text { all reference translations } \\
& L_{s_{y s}}=\text { the number of words in the translation beng scored }
\end{aligned}
$$
\]

The informativeness of an n-gram is expressed by its information gain $\operatorname{Info}\left(w_{1} \ldots w_{n}\right)$, which is higher for n-grams that occur less frequently. For example, consider the imaginary one-sentence corpus in (19)

> 'The white man in the white truck followed the white rabbit in San Francisco'.

The information gain of a collocation as 'San Francisco' with respect to the unigram 'San' is Info(San Francisco) $=\log _{2}\left(\frac{1}{1}\right)=0$, since 'San' and 'Francisco' always co-occur in the corpus. The information gain of the bigram 'white rabbit' is Info(white rabbit) $=$ $\log _{2}\left(\frac{3}{1}\right)=158$. Therefore, a match in a reference translation of the more informative (or less likely) bigram 'white rabbit' will contribute more to the overall NIST score than a match of the less informative (or more likely) bigram 'San Francisco'. A downside to this approach is that certain valuable higher order n-gram matches will not contribute to the NIST score if therr information gain is zero, which is not unlikely. Zhang et al. (2004) show that 80% of the NIST score for a typical MT system comes from unigram matches, the main reason being that the information gain of lower-order n-grams is typically higher than the information gain of higher-order n-grams. Therefore, NIST is known to correlate better with human evaluatoons of accuracy than of fluency.

Figure 3.1: Bitext grid illustratıng the relatıonship between an example canddate translation and its corresponding reference translation Each bullet or 'hit' indicates a word contained in both the candidate and reference texts

3.4.1.3 GTM

The General Text Matcher (GTM ${ }^{13}$) metric (Turian et al., 2003) was developed to express MT evaluation in terms of the standard measures of precision and recall, which according to the authors, are more intuitive than BLEU or NIST. For a given set of candidate items C and a set of reference items R, precision and recall are defined in (3 3) and (3.4) respectively:

$$
\begin{gather*}
\operatorname{precision}(C \mid R)=\frac{|C \cap R|}{|C|} \tag{3.3}\\
\operatorname{recall}(C \mid R)=\frac{|C \cap R|}{|R|} \tag{3.4}
\end{gather*}
$$

The precision/recall of a translation with respect to a reference translation can be graphically represented as a bitext grid as in Figure 31, in which each bullet or 'hit' represents a word in common between the reference translation on the X -axis and the candidate translation on the Y-axis. In order to avoid double counting ${ }^{14}$, (Turian et al., 2003) replace the concept of a 'hit' by a 'match', defined as the subset of hits in the grid, such that no two hits are in the same row or column. In Figure 31, matches are represented by hits in a shaded area They then define the precision/recall of in terms of

[^14]the Maximum Match Size (MMS) between candidate and reference texts
\[

$$
\begin{align*}
\operatorname{precision}(C \mid R) & =\frac{M M S(C, R)}{|C|} \tag{3.5}\\
\operatorname{recall}(C \mid R) & =\frac{M M S(C, R)}{|R|} \tag{3.6}
\end{align*}
$$
\]

As an example, the MMS for the grid in Figure 3.1 is 8 (calculated by summing the sizes for the individual smaller matchings of 1,4 and 3 , as indicated by the shaded areas in the grid), the length of the candidate text is 8 and the length of the reference text is 9 , so precision in this case is $8 / 8=1.0$, whereas recall is $8 / 9=0.89$.

In order to reward correct word order in addition to individual matches, contiguous sequences of matching words ('runs') are weighted according to their length, so that the MMS between candidate and reference texts is redefined as in (3.7):

$$
\begin{equation*}
M M S=\sqrt{\sum_{r u n s} l e n g t h(r u n)^{2}} \tag{3.7}
\end{equation*}
$$

After identifying the runs (hits occurring diagonally adjacent in the grid running parallel to the mann diagonal) and corresponding aligned blocks of the two candidate texts, as indicated by the shaded areas in Figures 3.2(a) and 3.2(b), we can use the formula in equation 3.7 to calculate the MMS for each candidate text and their corresponding precision and recall scores. Looking at Figure 3.2, the MMS for the candidate in Figure 3.2(a) is $\sqrt{1^{2}+4^{2}+1^{2}+1^{2}+1^{2}} \approx 4.5$ and $\sqrt{1^{2}+4^{2}+3^{2}} \approx 4.9$ for the candidate in Figure 3.2(b), giving Figure 3.2 (a) precision of $4.5 / 8=05625$ and recall of $4.5 / 9=0.5$, whereas Figure 3.2 (b) scores a higher precision of $4.9 / 8=0.6125$ and higher recall of $4.9 / 9=0.5445$, reflecting the higher qualty of this particular candidate text.

The GTM metric can easily be extended to multiple reference translations by concatenating the various reference texts into a single grid with minor adaptations (Turian et al., 2003). The final GTM score is expressed as the harmonic mean or F-score (van Rijsbergen, 1979) of precision (P) and recall (R) in equation 3.8:

Figure 3.2: Bitext representing two different candidate texts for the same reference text. The MMS in Equation 37 rewards the better word order in candidate text (b) by weighting each contiguous sequence of matching words by their length, which is indicated by the greater surface of shaded area in (b)

$$
\begin{equation*}
G T M=\frac{2 P R}{P+R} \tag{3.8}
\end{equation*}
$$

3.4.1.4 Statistical Significance

The statistical significance of the results mentioned in this thesis that were obtained by the prevıously mentioned metrics was established in each case in a 95% confidence interval using bootstrap resampling on 2000 resampled test sets (Davison and Hinkley, 1997). In cases where the obtained results were found not to be statistically significant, an explanation is provided. If no explicit mention of statistical significance testing is made, the results are statistically significant.

3.4.1.5 Manual Evaluation

In a recent study on manual and automatic evaluation of Machine Translation (Koehn and Monz, 2006), the suggestion was made to replace the traditional absolute human evaluations ${ }^{15}$ by a relative, ranked evaluation for comparative purposes. This is motivated by the fact that it is often difficult for human judges to adhere to the same criteria while evaluatmg a test suite and that, on an absolute scale (e.g. 1-5), they tend to choose the 'safe' middle value (e.g. 3), neglecting smaller but still important differences between translations. Since we are interested in the performance of TransBooster with respect to

[^15]the individual baseline systems, we decided to use this new comparative, relatrve evaluation method. Therefore, when conducting the evaluations reported in Chapters 6 and 7, the human judges were asked to select, for each sentence pair <TransBooster output - Baseline $M T$ output $>$, the better translation (if any), both in terms of accuracy and fluency.

3.4.2 Experimental Set-up

In order to evaluate the output quality produced by TransBooster, we constructed an 800 -sentence test set (with sentence length between 1 and 54 words, ave. 19.75 words) from Section 23 of the Penn-II Treebank. This test set is composed of the 700 sentences in the PARC-700 dependency bank (King et al., 2003), the 105 sentences in the DCU-105 dependency bank (Cahill et al , 2004) and 17 sentences, randomly selected from Section 23 of the Penn-II Treebank to make up for overlapping sentences in the PARC-700 and DCU-105. We preferred to join 2 previously existing test sets over constructing an entirely new set because of the wide acceptance and usage of these test sets in the dependency parsing community.

In order to construct a set of gold standard human reference translations for the automatic MT evaluation metrics, we had the 800 -sentence test set translated into Spanish by 4 native translators who had graduated from the School of Applied Language and Intercultural Studies (SALIS) at Dublin City University. All 4 translators were presented with 200 input sentences, randomly selected from the test set. We had previously translated each of these sentences by one out of 4 MT engines (LogoMedia, Systran, SDL and PromT), in a random order. This MT output was also presented to the translators. The translators were asked to use (parts of) the MT output if considered useful and to evaluate the quality of the Machine Translation by giving each sentence a score between 5 (very useful) and 1 (useless), as is shown in Table 3.1.

Although most human evaluations of Machine Translation involve computing an average between two scores, one score measuring the quality of the target language sentence (fluency), the other measuring the semantic similarity between output and input (accuracy) (Hovy et al., 2002), we chose to use only one score so as not to burden the translators

Score	Meaning	Criteria
5	very useful	'I copied the entire translation and made minor changes.'
4	useful	'I found most elements in the translation useful
3	neutral	'I found some elements in the translation useful.'
2	not really useful	'I found few elements in the translation useful.'
1	useless	'I found nothing or almost nothing in the translation useful.'

Table 3.1: Extract from the instructions for the translation of the test set.
and dıstract them from their main task (to produce a perfect translation of the input sentence, with or without the help of MT). The score we used roughly measures the required amount of post-editing, which is a practical measure of quality and includes both concepts of accuracy and fluency. Although the main goal was to obtain 'perfect' human translations of the test set, the MT evaluation also gave us an mitial idea of the strength of the different MT engines.

To ensure that all translators would perform this task in a coherent fashion and to facilitate the retrieval of the results, we bult an interactive web page that the participants could access at any time to do the translations and review/modify their input if necessary Part of this web page is displayed in Figure 3.3.

Given that, in many cases, several correct translations exist for a source language sentence, it is preferable to provide automatic MT evaluation metrics with more than one reference translation. In (Zhang and Vogel, 2004), the authors investigate the effect of increasing the number of reference translations on the precision of several automatic MT evaluation metrics. As is to be expected, they find that a higher number of reference translations results in a narrower confidence interval, i.e. it increases the precision of the metrics. They also investigate the effect of increasing the testing data size on the precision of the metrics. Interestingly, they find that adding an additional reference translation compensates for the effects of removing $10-15 \%$ of the testing data on the confidence interval. Therefore, although both increasing the size of the testing data as well as using more reference translations increases the precision of the evaluation metrics, it seems more cost-effective to use more test sentences than to increase the number of reference translations.

In other words, the confidence interval of the evaluation metrics narrows down more

Figure 3.3. A section of the web page for translators to construct the gold standard reference translations.
by using 800 test sentences with one reference translation, than, for example, 200 test sentences with four reference translations. This explains why, faced with the question whether to maximise either the test data size or the number of reference translations given a fixed budget for translations, we chose the first alternative. Moreover, the use of a larger test set allows us to evaluate a larger variety of syntactic phenomena.

3.5 Summary

In this chapter, we have introduced the baseline MT systems used in this thesis and have explained how we will evaluate the performance of TransBooster with respect to these systems. The baseline systems are three widely-used commercial RBMT systems, one in-house constructed SMT system, and one research-oriented EBMT system. The
performance of TransBooster will be measured on an 800 -sentence test set extracted from Section 23 of the Penn-II Treebank, based on three standard automatic evaluation metrics and a comparative manual evaluation

Chapter 4

TransBooster Architecture:

Outline

4.1 Introduction

This chapter introduces the concepts necessary to understand the technical details of TransBooster, which are explained in depth in Chapter 5. There are two main sections in this chapter. Section 4.2 contains an outline of the TransBooster architecture and Illustrates the application of parts of the algorithm on several example sentences. In Section 4.3, we introduce the concept of Substıtutzon Variables and report the results of a preliminary experiment conducted to determine the suitability of various Substitution Varıable schemata

4.2 Outline

This section contains an outline of the basic TransBooster architecture and introduces the associated terminology that will be used throughout the rest of this dissertation.

TransBooster takes as input a Penn Treebank-like syntactic analysis. In a first step, the input tree is flattened for further processing (Section 4.21). This is done by chunking the input tree into a proot (Section 4.2.2) and a number of satellate chunks (Section 4.2.3). In the next step, the satellite chunks are substituted with simple replacement strings that reduce the complexity of the original input (Section 42.4). This simplified string is sent
to the baseline MT engine for translation, which renders the translation of the pivot and the location of the satellites in target. If the identified satellite chunks are deemed simple enough for translation, they are embedded in a context template mimicking the original context and translated by the baselme MT system (Section 4.2.5). The entire process is recursively applied to each chunk considered too complex for direct translation (Section 4.26). In a final step, after the entire input string has been decomposed into N chunks $C_{1} \ldots C_{N}$ and all chunks have been translated in simplified contexts, the output is formed by recombining the chunk translations

We will illustrate each stage in the process with the example sentence in (20):
(20) 'The chairman, a long-tıme rival of Bill Gates, likes fast and confidential deals.'

The translation (English \rightarrow Spanish) of (20) by Systran is (21):
(21) 'El presidente, rival de largo plazo de Bill Gates, gustos ayuna y los repartos confidenciales.'

In (21), the MT system erroneously analyses the verb 'likes' as a noun (\rightarrow 'gustos') and identifies the adjective 'fast' as a verb (\rightarrow 'ayuna'), which renders the output unintelligıble. In the following sections, we will demonstrate how TransBooster can help the baseline MT system improve its own output translation.

4.2.1 Flattening Penn-II Trees into TransBooster Trees

In order to prepare an input sentence for processing with TransBooster, the Penn-II-style tree for that string is flattened into a simpler structure consisting of a pivot and a number of satellites. The pivot of an input constituent consists of the grammatical head of the constituent but can optionally contain additional lexical items in cases where we consider it necessary to treat the head and the additional items as a single unit for safe translation (cf. Section 422). Basically, the pivot is the part of the input string that has to remain unaltered during the decomposition process. The expression satellites is an umbrella term for the pivot's argument and adjunct constituents.

After flattening the input tree into a TransBooster tree, we obtain the structure in Figure 4.1. This structure is the input to the decomposition algorithm.

Figure 4.1. Flattening a Penn-II tree into a TransBooster tree. $1=$ number of satellites to left of pivot $r=$ number of satellites to right of pivot.

As an example, consider the Penn-II tree in Figure 4.2. After finding the pivot 'likes' (cf. Section 4.2 2) and locating the satellites 'the chairman, a long-time rival of Bill Gates' and 'fast and confidential deals' (cf. Section 4.2.3), we obtain the flattened structure in (22), graphically represented in Figure 4.3.

Figure 4.2• Penn-II tree representation of 'The charman, a long-tıme rival of Bill Gates, likes fast and confidential deals,
(22) [The charman, a long-time rival of Bill Gates $]_{S A T_{1}}[1 \mathrm{kes}]_{p v v o t}$ [fast and confidential deals $]_{S A T_{2}}$

Figure 4.3: Flattened TransBooster tree obtained from Penn-II structure in Figure 42

4.2.2 Finding the Pivot

In order to identify the pivot of the input chunk, we first compute the chunk's head. We use the head-finding rules of (Cahill, 2004), which are an adaptation of the headlexicalised grammar annotation scheme of (Magerman, 1995) and (Collins, 1999). These rules identify the head of a constituent by traversing the list of its daughter nodes from left to right (head-initial) or right to left (head-final) and tiy to match each daughter node to a previously established list of head candidates ${ }^{1}$

The pivot of a local tree is often identical to the string formed by the terminal nodes dominated by its head, but in certain cases, in addition to the head, some of its rightmost neighbours are included, where we consider it too dangerous to translate either part out of context. An example is the use of auxiliaries, as in Figure 4.4. Here the pivot extracted by TransBooster is 'might have to buy'.

Figure 4.4. Penn-II tree representation of 'might have to buy a large quantity of sugar '

Another example is an ADJP whose head dominates a PP, as in Figure 4.5. Here the pivot established is 'close to'

[^16]

Figure 4.5• Penn-II tree representation of 'close to the utility industry'

4.2.3 Locating Satellites

We have explaned how the strings submitted to the MT system are comprised of pivots and satelltes, the latter being an umbrella term for arguments and adjuncts. In this thesis, we broaden the traditional notion of the term 'argument' to those nodes that are required for the correct (or, at any rate, safe) translation of the string dominated by the parent node. The distinction between arguments and adjuncts is essential, since nodes labelled as adjuncts can be safely omitted in the SL string that we submit to the baseline MT system (Cf. Section 4.2.4 for more details).

For example, in (20), the strings 'the chairman, a long-time rival of Bill Gates' and 'fast and confidential deals' are arguments of the pivot 'likes' since neither of the strings can be left out in the SL string submitted to the baseline MT system to ensure a correct translation of the pivot 'llkes'. One of the strings that TransBooster will construct for this purpose is 'The charrman likes deals'. On the other hand, when treating 'the chairman, a long-time rival of Bill Gates', the apposition 'a long-time rival of Bill Gates' can be safely left out in the string submitted to the MT system. The omission of adjuncts is a simple and safe method to reduce the complexity of the SL candidate strings. Additional strategies for reducing the complexity of a sentence involve substituting simpler but syntactically sımilar elements for chunks (Cf. Section 4.2.4 for more details).

Our procedure for argument/adjunct location is based on the argument/adjunct-finding heuristics in the algorithm used by Hockenmaier (2003) to transform the phrase-structure trees in the Penn Treebank into a corpus of CCG derivations and is explaned in more detail in Section 5.2.3.

4.2.4 Skeletons and Substitution Variables

Once the original input tree has been flattened into a TransBooster tree and the pivot and satellites have been identified, in a next step the satellites are substituted with simple replacement strings that reduce the complexity of the original input. We will refer to these replacement strings as Substitution Variables (SVs), which are treated in detail in Section 43 . The objectives of SVs are twofold:

1. They reduce the complexity of the original satellites, which can lead to an improved translation of the pivot.
2. They are used to track the location of the translation of the satellites in target.

By replacing the satellites in Figure 4.1 with their SVs, we obtain (23):

$$
\begin{align*}
& {\left[S V_{S A T_{1}}\right] \quad \cdot\left[S V_{S A T_{l}}\right] \text { plvot }\left[S V_{S A T_{l+1}}\right] \ldots\left[S V_{S A T_{i+r}}\right]} \tag{23}\\
& \text { where } S V_{S A T_{2}} \text { is the simpler string substituting } S A T_{i}(1 \leq i \leq l+r)
\end{align*}
$$

TransBooster sends the simplified string (23) to the baseline MT system, which produces the output in (24):

$$
\begin{equation*}
\left[S V_{S A T_{1}}^{\prime}\right] \ldots\left[S V_{S A T_{t}}^{\prime}\right] p v v o t^{\prime}\left[S V_{S A T_{l+1}}^{\prime}\right] \ldots\left[S V_{S A T_{t+r}}^{\prime}\right] \tag{24}
\end{equation*}
$$

Alternatively, some permutation of the elements in (24) may be derıved, as the position of the translation $S V_{S A T_{2}}^{\prime}$ does not necessarily have to be identical to the position of $S V_{S A T_{2}}$ in the source. If the translation of each of the SVs is known in advance, the string in (24) can be used (i) to extract the translation of the pivot pivot', and (11) to determine the position of the translation of the satellites $S A T_{2}$ in target.

It is important to stress the difference between SVs for arguments and adjuncts. Leaving out adjunct satellites in (23) will not affect the translation of the rest of that sentence, while argument satellites must always appear linked to their head and sister arguments.

The translations in (25) illustrate the fact that the argument structure of a pivot has to be kept intact at all times to retrieve the correct translation of the pivot. All input chunks are translated by LogoMedia from English \rightarrow Spanish.
(25) a. 'The man relies on the woman' \rightarrow 'El hombre depende de la mujer'.
b 'The man relies' \rightarrow 'Los hombre relies'.
c 'on the woman' \rightarrow 'sobre la mujer'.
d 'The man relies' + 'on the woman' \rightarrow 'Los hombre relies sobre la mujer'.

In (25), the original translation of 'The man relies on the woman' is correct: The omission of the argument 'on the womān' leäds to a nonsensical translẫtion of 'The' man' relies' (\rightarrow 'Los hombre relies'), in which 'reles' ' is treated as an unknown' wh'd by LogoMedia and the article 'the' ss erroneously translated in plural. The example shows that it is essential to keep the head's entire argument structure list intact when simplifying a sentence.

Since adjuncts have no influence on the translation of the pivot, the goal of adjunct SVs is only to track the translation of the adjunct in target, while argument SVs are used $_{4}$ (i) to embed the pivot, in a simplified context which can lead to an improvement in the translation of the pivot, and (ii), to track the location of the translated arguments in target. Subsequently, the formularin (23) has to be refined to account for the differences between argument'SVs and adjunct SVs!

By replacing the argument satélites in Figure 4.1 with their SVs and léaving out the adjuncts, we obtain (26)

$$
\begin{equation*}
\left[S V_{A R G_{1}}\right] \cdot\left[S V_{A R G_{l}}\right] p z v o t=\left[S V_{A R G_{l+1}}\right], \ldots\left[V_{A R G_{l+r}}\right] \tag{26}
\end{equation*}
$$

where $S V_{A R G_{2}}$ is, the simpler string substituting $A R G_{2}(1 \leq \imath \leq l+r)$.
We will' refer to" (26) as the argument skeleton'. TransBooster sends the argument skeleton to the baseline MT system, which produces the output in (27), or some permutation of it:

Since the translation of the argument SVs can be determmed in adyance, the translation of the argument sỉkeleton, namely (27), will yield (i) the translation of the pivot in (26) as pivot', and (iii) the location of the 'translation of the arguments in target, ,SV $V_{A R G_{2}}^{\prime}$.

In order to track the ločation' of the translation of the adjuncts' in target, we add the adjunct. SVs one by one to 'the 'argument' skeleton'in (26). . $^{\text {c }}$ For ' N 'different' adjuncts in
the input string, this will yield N different strings, which are schematically represented in (28):

We will refer to these N different strings as 'adjunct skeletons. As with the argument skeleton, TransBooster sends each of the N adjunct skeletons to the baseline MT system and, based on the already known translation of $S V_{A D J_{g}}$, tries to establish the location of each of the adjuncts in target.

Argument Skeleton: 'example

By replacing the argưment satellites, 'The chairman, a long-time rival of Bill Gateș' and ‘fast and confidential deals' by the argüment SVs 'The chairman' añ́d "deals" in the fatit
 ment skeleton in (29):
(29) 'The chairman likes deals.'

We retrieve the translation of the pıot by submitting this skeleton to the baselne ${ }^{2} \mathrm{MT}$ system"and subtracting the known translations" of the SVs. ${ }^{2}$ For example, the translation" of (29) from English \rightarrow Spanish by Systran is (30):
(30) 'El presidénte-tıene gưsto de repartos.'

If we subtract the known translations 'El presidente' and 'repartos', we obtain the trans-

 original translation produced by Systran in (21) on page 40. The reason for this improvement is that the reduction in syñactic complexity has undone the deficient homograph

[^17]resolution of the word 'likes' by the baseline MT system's analysis module in the original, full sentence; where in (20) on page 40, it was wrongly analysed as a noun, in the simpler string (29), the analysis module is able to correctly identify it as a verb.

Adjunct Skeleton: example

In order to track the position of the adjunct 'a long-time rival of Bill Gates' in target, we substitute the chunk with the SV 'a rival', which is inserted in the argument skeleton in (29), leading to (31)
(31) 'The charman, a rival, likes deals.'

The translation of (31) from Englısh \rightarrow Spanish by Systran is (32):
(32) 'El presidente, rival, tiene gusto de repartos.'

Since we know the translation of the argument skeleton (30) and have previously defined the translation of the SV 'a rival', it is possible to determine the location of the translation of the SV, which will render the location of the adjunct chunk 'a long-time rival of Bill Gates' in target.

4.2.5 Translating Satellites: Context

Our approach is based on the idea that by reducing the complexity of the original context, the baseline MT system is more likely to produce a better translation of the input chunk C_{\imath} than if it were left intact in the original sentence, which contains more lexical, syntactic and semantic ambiguties. In other words, we try to improve on the translation C_{\imath}^{\prime} of chunk C_{2} by the baseline MT engine through input simplification.

While simplifying the original sentence structure, it is important not to translate individual chunks out of context, since this is likely to produce a deficient output due to inappropriate lexical selection and boundary friction. Boundary friction is a well-known phenomenon in EBMT where the recombination of several partial translations, extracted from a bitext corpus, can give rise to conflicting grammatical information in the output. For example, if in (33), the translation for 'man' is simply replaced with the translation
for 'woman' in the example sentence 'Ce vieil homme est mort.', the erroneous 'Ce viell femme est mort.', would be produced (Somers, 2003).

```
That old man has died ~ Ce vieil homme est mort
man ~ homme.
woman. \approx femme.
That old woman has died \(\rightarrow\) *'Ce veeil femme est mort.
```

The correct translation of 'That old woman has died' $1 s^{\prime}$ 'Cette vieille femme est morte', in which the determiner 'ce', the adjective 'vieil' and the past participle 'mort' acqure the feminine gender ('cette', 'vieille', 'morte') through agreement with 'femme'.

The example illustrates the importance of ensuring that each chunk is translated in a simple context that, as much as possple, mimics the original, while at the same time reducing the overall size and complexities of the original input... After embeddng the candidate chunk into the context, the entire string is submitted tothe baseliné, MT system, as shown in (34)

If we can determine the translation of the context template beforenand, it trivial to extract $C_{2}^{\prime 2}$ fromin the output string:

We make ûse of two different "rypes "of context templates." "The first "type is a' at Statec Contextt têmplàte. a" previously 'established templatê, "the translation' of which is knồn in advance."The second type is a " Dýnamic' "Context template: a reduced version of the

Static Context templatês mimic the syntactic chacteristics of the original context, but contann"different words than the onnes used in the "original senteñee Gonsider the' example sentençerines (35):

If the chunk 'any mpact on us' is trānslāted (Ënglish \rightarrow Spanishi) by LogoMedia out of context, as is shown in (36), the MT'system misanalyses 'mpact' as a verb, which leads to the erroneous trañslation *'ninguno tieneé un impacto sobrè nosộtros' ($=$ 'nobody has
any impact on us'). If, on the contrary, we insert the chunk into a simple static context template that mimics the direct object position of the chunk ('The man is not eating'), LogoMedia produces the correct translation 'ningún impacto sobre nosotros', even if the context template in this case does not share any semantic characteristics of the original.
(36) a. 'any impact on us.' \rightarrow *'nınguno tiene un impacto sobre nosotros.'
b '[The man is not eating] any impact on us.' \rightarrow 'El hombre no está comiendo nungún impacto sobre nosotros'

While this method is effective for simple cases, as shown above, it is easy to see that successful translation retrieval with template insertion relies heavily on lexical information in the source language. Changing the original context excessively might split idiomatic contructions or undo agreement links in source and lead to erroneous translations instead of improvements In addition, if the MT system relies on semantic information in order to generate translations, simple syntactic insertion templates might not be sufficient to ensure a correct translation. Therefore, a more robust alternative to Static Context templates is to maintain the translation candidate chunk embedded in a simplified form of its original context, which we will refer to as a Dynamic Context or a Minimal Sufficient Context. A Dynamic Context is sufficient for correct translation because its syntactic and semantic content is sufficient to ensure a correct translation of the candidate chunk. It is mmimal because all redundant elements (adjuncts) have been removed.

In (37), the input chunk 'fast and confidential deals' is embedded in the Dynamic Context '[The chairman likes] C_{C} ', which is a simplification of the original 'The chairman, a long-tıme rival of Bill Gates, likes'. This reduction in complexity helps Systran (English \rightarrow Spanish) to improve the translation of the input chunk from the erroneous 'ayuna y los repartos confidenciales' to the correct 'repartos rápidos y confidenciales'.
(37) The chairman, a long-time rival of Bill Gates, likes [fast and confidential deals] \rightarrow ' El presidente, rival de largo plazo de Bill Gates, gustos [ayuna y los repartos confidenciales].'
[The charrman likes $]_{C}$ [fast and confidential deals] $\rightarrow\left[\mathrm{El}\right.$ presidente tiene gusto de] ${ }_{C}^{\prime}$ [repartos rápidos y confidenciales].

We have seen in (30) on page 46 that the reduction in syntactic complexity by SV
substitution helps to improve the translation of the pivot. Here, the reduction in syntactic complexity of the original context helps to improve the translation of the satellites.

The trade-off in using the more similar Dynamic Contexts instead of predefined Static Context templates is that, contrary to the use of Static Context templates, the retrieval of the translated candidate chunk is no longer trivial, since we do not know the translation of the Dynamic Context in advance. It is possible, however, as we will show in Section 5.25 , to retrieve the translation of the candidate chunk with a high degree of certainty in most cases by translating the Dynamic Context template at run-time.

4.2.6 Recursion

The TransBooster decomposition algorithm starts at the root node of the flattened Penn-II syntactic annotation tree representing the input string and examines each satellite chunk $S A T_{i}$. If $S A T_{2}$ is deemed simple enough for translation, it is embedded in a simplified context as described in Section 4.2.5 and sent off to the baseline MT system for translation. If $S A T_{2}$ is deemed too complex for translation, the TransBooster procedure is recursively applied to $S A T_{2}$, i e. the satellite chunk itself is decomposed into a pivot and satellites, which in turn are examined for translatability In other words, TransBooster recursively decomposes the original input string into a number of optimal chunks, each of which is translated in a simplified context The recursive nature of the decomposition procedure is graphically represented in Figure 4.6.

The conditions to determine the translatability of a candidate chunk depend on the number of lexical items contained in the chunk (cf. Section 5.2.6) and the MT system used It was determined empirically, for each different baseline MT system, by tuning the program parameter p_ChunkLength, as will be further explained during the discussion of experımental results in Chapter 6. After recursively decomposing the input sentence into a number of optimal chunks and sending these chunks to the baseline MT engine in a reduced context, the output sentence is formed by combining the retrieved chunk translations. This recombination is possible since we have kept track of the relative position of each chunk with respect to its pivot by using SVs as described in Section 4.2.4.

Figure 4:6: The recursive nature of the TransBooster decomposition. each satellite chunk $S A T_{i}$ is decomposed until only optimal chunks remain.

4.2.7 A Worked Example

In this section, we will illustrate the entire TransBooster process on the Penn-II sentence $\operatorname{in}^{(38)}{ }^{\prime}$
'Imperral Corp., based in San Diego, is the parent of Imperiall Savings \& Loan
The "baseline MT system is LógoMedia, the language par English \rightarrow Spanish. "The output.'of thé" example 'sentence by thè baseline system is "displayed"in (39).

There are two major problems in this translation (1) 'based' is erroneously translated as 'Fundar' ($=$ 'to found'), and (ii) 'ser' ($=$ 'to be') "is not conjugated.

The input to the decomposition algorithm is the Penn-II tree in Figure 4.7:

Step 1

The algorithm finds the pivot 'is' and the satellites. 'Imperial Corp, based in San Diego, and 'the parent of Imperial Savings \& Loan'. "This leads to the flattened structure in Figure 4.8:
 and 'the boy' respectively) and sends the argument skeleton in (40) to the baseline $\mathrm{MT}^{\text {² }}$ engme. Since we know the translation of the SVs ('John' and 'el nino'), it is possible to

Figure 47 • Penn-II tree representation of 'Imperial Corp, based in San Diego, is the parent of Imperial Savings \& Loan ${ }^{\text {, }}$

Figure 4.8: TransBooster tree representation of (4.7).
"extract the translation of the pivot ('es') and locate the position of the argument satellites in target.
(40) '[John] is [the boy] ${ }^{\prime} \rightarrow{ }^{\prime}[\mathrm{John}]$ es [el niño] ${ }^{\prime}$

Step 2

Next, the first satellite ('Inperial Corp., 'based in San Diego') is submitted to the decomposition algorithín' which finds the pivot 'Imperial Corp.' and adjunct satellite 'based in San Diego' Since the presence of the adjunct is not required for a safe translation of the pivot, the argument skeleton consists; only MT system translates as "Imperial Corp. ${ }^{\prime \prime}$. In order to find the location of the trañslation
 which leads to the adjunct skeleton in (41). From the translation of this skeleton we deduce the position of the adjunct in target

Step 3

The algorithm now investigates the adjunct chunk 'based in San Diego' and decides that it is simple enough for translation. Since it is necessary to embed the chunk in a context that mimics the original, the chunk is preceded, by a proper noun template 'John', the translation of which is known in advance. This leads to the string in (42), which is translated by the baseline MT system. From the output, we deduce the translation of the chunk: 'ubicado en San Diego'.
'John, based in San Dıego.' \rightarrow 'John, ubicado en San Dıego'

Step 4

After the first argument satellite in Figure 4:7 has been decomposed and translated, the algorithm focuses on the second satellite ('the parent, of Imperial Savings \& Loan')', which is decomposed into the proot 'the parent of and the argument satellite 'Imperial Savings \& Loan'. Note that the pivot in this case is more comprehensive than the grammatical head of the NP 'the parent of Imperial Savings \& Loan'. The reason for this $1 s$ that we want to prevent the preposition 'of' from 'being translated separately from' its head 'the parent' due to the idiomaticity of preposition translation. Țhe'argument satellite 'Imperial Savings \& Loan' is substituted by the SV 'the swimmers', which leads to the argument skeleton' in (43): 'From the translătion, we 'extract'the translation of the pivot ('el padre de') and the location of the argument 'Imperial Savings \& Loan' in target.
(43) 'the parent of the swimmers' \rightarrow 'el padre de los nadadores'

Step-5

The last remaining chunk ('Imperial Savings \& Loan') is judged to be ready for translation It is embedded in a Static Context template ñmicking thề orignnal context and sent tó the baseline MT engine for translation From the translation in (44), we extract 'Savings \& Loan imperial' as the translation of the last chunk.
(44) 'The house of Imperiấl Savings \& Loan' \rightarrow, 'La casa de Savings \& Loan mperıăl:;

Step 6

After all chunks have been translated, the algorithm, in a final step, composes the output by stitching together the obtained translations in the target locations found by the SV translations. This leads to the final output in (45).
'Imperial Corp, ubzcado en San Diego, es el padre de Savings \& Loan imperial '

The translation in (45) improves on the original translation of the baseline MT system in (39). The main reason for the improvement is the fact that the reduction in syntactic complexity forces the baseline MT system to conjugate the verb 'to be' ('es' instead of 'ser') and to improve its translation for 'based' from the erroneous 'Fundar' to the correct 'ubicado'.

4.3 Substitution Variables

4.3.1 Introduction

In Section '4.2 4, we introduced the concept of Substitution "Variablès (SVs). SVs are replacement strings for the satellites in Figure $_{i n} 1$ on page 41 . They reduce the complexity of the original satellites, which can lead to an imprōved trānslation of the pivot They are also used to track the location of the trànslation' of the satellites in target
's, In this section, we describe SVs more in depth'. We disçuss two different types of SVs (Státuć SVs ánd Dýnamuc SVs) and describe how their translation can be retrieved. We describe an experiment conducted to determine the optimal Static SV for nominal chunks and discuss the results.

4.3.2 Early vs. Late MT Access

There are two ways to determine the translation of a Substitution Variable $S V_{S A \bar{T}_{2}}$.

1. Early MT áccess: M trânsilato before a TransBooster cycle. (Z is the number of all possible translations of $S_{n} V_{S A} A T_{2}$ by the baseline $\mathrm{MT}_{\text {s }}$ system)
2. Late MT access: a possible translation $\left\{S V_{S A T_{2}}^{\}}\right\}$with $1 \leq \jmath \leq Z$ is determined during a TransBooster cycle, at run-time.

Since the baseline MT system is treated as a black box, it is not possible to determine all Z possible translations that the baseline system could generate for $S V_{S A T_{2}}$. It is possible, however, to find the M most likely translations by having $S V_{S A T_{2}}$ translated in a number of straightforward contexts. For example, a baseline MT system might generate 3 different translations for the SV 'the boy': 'el chico', 'el muchacho' and 'el niño'. In addition, in the case where this SV occurs in direct object position, the MT system wall conflate the obligatory preposition ' a ' with the previously found translations in Spanish. ${ }^{3}$ Therefore, although it is not feasible to determme with absolute certainty all Z possible translations of the Substitution Variable 'the boy', in this case we compose a list of $M=6$ likely candidates \{'el chico', 'al chıco','el muchacho','al muchacho', 'el niño','al niño'\} before a TransBooster run.

In the case of early MT access, we try to match each of the M candidate translations $S V_{S A T_{i}}^{\rho}(1 \leq j \leq M \leq Z)$ of each of the substitution variables $S V_{S A T_{\imath}}$ against the string in (24). In the case of late MT access, we try to match the only candidate translation $S V_{S A T_{\imath}}^{J}(1 \leq \jmath \leq Z)$ of each of the substitution variables $S V_{S A T_{\imath}}$ against the string in (24) on page 44:
(27) $\left[S V_{S A T_{l}}^{\prime}\right] \ldots\left[S V_{S A T_{l}}^{\prime}\right] p v v o t^{\prime}\left[S V_{S A T_{l+1}}^{\prime}\right] \ldots\left[S V_{S A T_{l+r}}^{\prime}\right]$

In the latter case, $S V_{S A T_{\imath}}^{\jmath}$ is the translation by the baseline MT system of $S V_{S A T_{\imath}}$ in isolation, obtained during a TransBooster cycle.

4.3.3 Static vs. Dynamic Substitution Variables

The optimal SV to replace $S A T_{2}$ is a string which reduces the complexity of $S A T_{2}$ but shares its essential syntactic and lexico-semantic characteristics. An SV that does not reduce the complexity of the original sentence enough will be less likely to lead to an improvement of the translation of the pivot. On the other hand, a reduction in complexity can only help to improve the translation quality if essential syntactic and semantic similarity with the original constituent is maintained; an SV that differs too much from the

[^18]original could lead the analysis modules of rule-based baseline MT system astray, which might give rise to a distorted translation.

Therefore, the first obvious candidate to replace $S A T_{2}$ is the string obtained by reducing $S A T_{\imath}$ to its head, optionally accompanied by a determiner. We will refer to this type of substitution variable as a Dynamuc Substitutzon Varıable (DSV). For example, the DSV for the constituent 'the chairman, a long-time rival of Bill Gates' is 'the chairman'. Since DSVs can only be obtaned during the execution of the algorithm, the translation of these placeholders can only be obtained through late MT access.

Apart from the use of DSVs, it is equally possible to substitute the satellites with a predefined string, the translation of which can be determined by early MT access, before the execution of the TransBooster program Unlike DSVs, which depend on the lexical content of the constituent they substitute for, these strings are predefined and can replace an entire class of constituents. We will refer to them as a Statıc Substutution Variables (SSVs). For example, an SSV for the constituent 'the chairman, a long-time rival of Bill Gates' could be 'the man'. Unlike in the case of DSVs, there does not exist a one-to-one mapping between an SSV and the constituent it substitutes for. In other words, multiple suitable SSVs might be considered for the same constituent.

There exists a trade-off between accuracy and retrievability in the choice between SSVs and DSVs. SSVs, in princıple, are easy to track in target since their possible translations can be determined before the actual execution of the algorithm (early MT access). However, they might distort the translation of the skeleton due to a lack of syntactic or semantic similarity with the argument they substitute for. DSVs, on the contrary, are expected to lead to a more accurate translation of the skeleton but are harder to locate in target since their translation has to be determined at run-time (late MT access).

4.3.4 Effects of SSV Schemata on Translation Quality

The experiment outlined in this section was performed at the very start of the TransBooster project. Its objective was to measure the quality of 5 different SSV schemata for the TransBooster approach of satellite replacement. The two main questions we wanted to address are the following:

1. Is it possible to rely solely on SSVs for safe satellite substitution?
2. What are the best SSVs for each of the baseline MT systems involved?

4.3.4.1 SSVs

We expermmented with five different SSV schemata, ranging from non-word strings to placeholders syntactically similar to the original constituents. In the experiment we focused on the replacement of NP arguments in a verbal context Table 4.1 contains a description of each SSV schema and illustrates its use by substituting the arguments 'The man, a long-time rival of Bill Gates' and 'fast and confidential deals' in example sentence (20) on page 40.

SSV schema	Description / Example
Non-word strıngs	Strings not present in the lexicon of the baseline MT system, no syntactic/semantic resemblance to original. $\mathrm{e} g$ 'SUBJ1 lıkes OBJ1,
Non-word strings with determiner	Non-word strings preceded by determiner. e.g. 'The SUBJ1 lukes the OBJ1.'
Acronyms	Sometimes present in the lexicon of the baseline MT engine, no syntactic/semantic resemblance to original eg 'IBM lakes CD.'
Proper nouns	Sometimes present in the lexicon of the baseline MT engine, no syntactic/semantic resemblance to original. e.g. 'Mary llkes John.'
Controlled heads	Always present in the lexicon of the baseline MT engine, syntactic resemblance to original. e.g. 'The man lukes the woman.'

Table 4.1: Substitution Variables for NP-type constituents

The SSVs in Table 4.1 are ranked from simple non-word strings to more complex controlled heads. Non-word strings, with or without determiners, are not present in the dictionaries of baseline rule-based MT systems and are therefore treated as unknown words. Since they are usually left untranslated, they are very easy to track in target. Like non-word strings, acronyms and proper nouns do not bear any semantic similarity to the constituent they substitute, but they might be present in the baseline MT lexicon. Therefore they are more likely to be correctly analysed by the MT's analysis module. This increases the probability of a correct translation of the pivot. The translation of both acronyms and proper nouns by the baseline MT system can be easily deduced by
early MT access. Finally, controlled heads are SVs that mimic the syntactic structure of the constituent they substitute for. Of all SSVs, they are the ones that bear the closest syntactic resemblance to the original constituents and therefore are, in theory, the SSVs less likely to distort the translation of the pivot. As in the case of acronyms and proper nouns, their translation is obtamed by early MT access.

4.3.4.2 Experimental Setup

In order to test the effect of the SSV schemata in Table 4.1 on the translation of the pivot and the location of the translation of the satellites in target, we constructed a corpus of test sentences based on the most frequent verbal subcategorisation frames in the Penn-II Treebank. A subcategorisation frame specifies the arguments that a predicate must take in order to form a complete grammatical construction. The subcategorisation frames we used were extracted automatically (O'Donovan, 2006) from a version of the Penn-II Treebank enhanced with LFG (Lexical Functional Grammar) f-structure information (Burke, 2006).

Summarised very briefly, LFG is a unification-based grammar introduced by Kaplan and Bresnan (1982) that minimally contans two levels of representation: c (onstituent)structure and f (unctional)-structure C -structure represents language-specific syntactic surface information in the form of CFG trees. F-structure uses recursive attribute-value feature structures to encode abstiact syntactic information about predicate-argumentmodifier relations and certan morphosyntactic properties such as tense, aspect and case. O'Donovan (2006) used the version of the Penn-II treebank which had previously been enhanced by Burke (2006) with 'functional annotations'4 to automatically derive subcategorisation frames for all predicates in the Treebank. For example, the subcategorisation frame of the predicate 'use' in the sentence 'He uses an example to illustrate the concept' is shown in (46):
use([subj,obj,xcomp])

Table 4.2 contains the most important syntactic functions that can occur in LFG f-structures. As we will further explain below, we used the most frequent verbal subcategorisation frames thus derived to construct a corpus of test sentences for the experiment.

[^19]The subcategorisable grammatical functions that can occur in a LFG semantic form are listed in Table 4.2 together with a brief description

Grammatical Function	Description
SUBJ	Subject
OBJ	Drect Object
OBJ2	Indirect Object
OBL	Oblique Argument
COMP	Closed Verbal Complement (containing own subject)
XCOMP	Open Verbal Complement (not contaning own subject)
PART	Particle
POSS	Possessive

Table 4.2: Subcategorisable syntactic functions in LFG.

We reduced the 577 different verbal subcategorisation frame types occurring in the Penn-II treebank to 38 frame types by conflating all prepositions and particles. From the resulting 38 frame types, we extracted the 10 most frequent types. Subcategorisation frames containing only subjects were ignored, as they provided the least room for simplification. Table 43 contains the 10 most frequent subcategorisation frames.

Subcat. frame	Voice	Occurrences
subj_obj	actıve	39881
subj_xcomp	actıve	14577
subj_obl	actıve	8234
subj_obj_obl	actıve	7092
subj_comp	active	5796
subj_obl	passive	3062
subj_xcomp	passive	2049
subJ_obj_xcomp	active	1697
subj_part_obj	actıve	1674
subj_obj_comp	active	458

Table 4.3: The 10 most frequent verbal subcategorisation frames in the Penn Treebank, in descending frequency and excluding subcategorisation frames containing only subjects

For each of the subcat frame types in Table 4.3, verb lemmas corresponding to the frame were extracted from the treebank. For each frame-lemma parr, two sets of 6 sentences were constructed: one with the predicate in the simple past, the other with the predicate in the future. We chose to generate verb forms in the simple past and future tense to minimise the possibility of noun-verb misanalyses by the baseline MT engines. The sentences in
(47) and (48), translated from English \rightarrow Spanish by Systran, are examples in which verbs in the simple present are misanalysed as nouns, making the output unintelligible, whereas the simple past and future tense give acceptable results.
(47) a. 'The rider spurs the horse.' \rightarrow *'Los estímulos del jinete el caballo '(literal backtranslation $=$ 'The stimuln of the rider the horse ')
b. 'The rider will spur the horse.' \rightarrow ' El Jınete estimulará el caballo'
(48) a. 'The explanation prods the student to think' \rightarrow *'Los golpecitos de la explucación el estudiante a pensar.'(literal backtranslation = 'The punches of the explanation the student to think.')
b. 'The explanation prodded the student to think.' \rightarrow 'La explıcación pinchó a estudıante para pensar.'

Each set contained a reference sentence with dummy arguments and 5 test sentences in which the argument slots were replaced by one of the 5 different SSV schemata in Table 41 , as is shown in Table 4.4.

| 1 | Reference | $\left[A R G_{1}\right] \ldots\left[A R G_{l}\right]$ | pivot | $\left[A R G_{l+1}\right] .\left[A R G_{l+r}\right]$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $2-6$ | SSV substitutions | $\left[S V_{A R G_{1}}^{2}\right] .\left[S V_{A R G_{l}}^{2}\right]$ | pivot | $\left[S V_{A R G_{l+1}}^{2}\right] \ldots\left[S V_{A R G_{l+r}}^{2}\right]$ |

Table 4.4: A test set containing a reference sentence and 5 test sentences for a particular frame-lemma pair $l=$ number of arguments to left of pivot, $\mathrm{r}=$ number of arguments to right of pivot, $1 \leq i \leq 5$.

For example, for the frame-lemma pair unclude ([subj,obj]), two sets of 6 sentences were constructed, one in the simple past, the other in the future tense Table 45 contains one of those sets the reference sentence 'The woman included the man' and 5 test sentences in the simple past obtained after replacing the arguments of the original predicate by the SSV schemata.

	SSV schema	Generated sentence	
1	Reference	The woman included the man.	
2	Non-word strings	SUBJ1	included OBJ1.
3	Non-word strings with det	The SUBJ1 included the OBJ1.	
4	Acronyms	IBM	included CD.
5	Proper nouns	Mary	included John.
6	Controlled heads	The cat	included the skunk.

Table 4.5: A test set containıng a reference sentence and 5 test sentences for the frame-lemma pair include([subj,ob]]).

The two main goals of the experiment were:

1. to compare the translation of the pivot in the test sentences to the translation of the pivot in the reference sentence.
2. to compare the position of the translation of the $\mathrm{SSVs}_{1}\left(S V_{A R G_{3}}^{2}\right)$ in the test sentences against the position of the translation of the original arguments $\left(A R G_{j}\right)(1 \leq j \leq$ $l+r)$.

Table 4.6 contains the number of sentences selected per frame, as determined by verb lemmas attested for the frame in the Penn-II Treebank. The verb forms were extracted directly from the Penn-II treebank, which explains the different numbeıs for sentences in past and future tense for the same frame:

Subcat. Frame	Voice	Tense	Sentènce	cted
subj_obj_comp	active	future	96	
subj.comp	active	futu	292	
subj_objoobl	active "	futu	1347	
subj_obj-part	active "	futu	403	
subj-obj	active	futur	1613	
subjoobjucomp	actuve	future	325	
.subj_obil ${ }^{\text {c }}$	'activés	futurie ${ }^{\text {e }}$: $1280{ }^{\prime}$	
subj_xcomp	active	utur	3	
subj_obj_comp . ${ }_{\text {- }}$	active	past	93	
\% subj comp. .		pa	280	
subjoobjebl	active	pa	1252	
subj_obj-part	actı	past	376	
subj_obj	ac	past.	1271.,	
subj-objexcomp		past ra_{0}	303	
ṡubj_obl =	active	pas	1244	
subj_xcomp	active	past	401	
\%subjoobly	passive ${ }^{\text {a }}$	future	863	
subj-x comp	- passive	future	212	
subjiobl	passive	past	-863	
subjexcomp	passivive	past	212.	
Topren			13118	

Table 4.6 Counts for the 10 most frequent subcategorisation frames.

By filling the arguments slots, in the 13118 templates (cf. Table 4:6) with one dummy variable and the ssy schata, we obtaned a test corpus of $78,708^{\prime}$ sentences. These sentences were translated from English into Spanish by the 4 baselıne RBMT sysstems that we introduced in Chapter 3: Systran, LogoMedia, PromT and 'SDL. Sincee we did'
not possess in-house versions of the above mentioned MT systems at the time of the experiment, we had to rely on their free on-line versions, which put a size restriction on the input files We therefore decided to split the test corpus into a number of smaller files, with a maxımum size of 64 Kb each. These files were uploaded onto a web server and translated by executing a script that retrieves the MT output of the test files by using WGET. Translating the test corpus of 78,708 sentences by 4 MT engines resulted in a total of 314,832 translated sentences to be evaluated.

The translation of a test sentence was deemed successful if the following two conditions were satisfied•

1. The translation of the pivot in the test sentence is identical to the translation of the pivot in the reference sentence.
2. The translated SSVs $\left(S V_{A R G_{3}}^{2}\right)$ are in the same position with respect to the pivot as the translated original arguments $\left(A R G_{j}\right)$

For each of the four MT systems, a list of possible translations of the SSVs was obtained (early MT access) We then used a string comparison script to automatically check the 314,832 translations obtained for the quality of the pivot and for correctness of the location of the arguments in the target language

4.3.4.3 Results

Tables 4.7 to 4.10 contain the results of successful SSV replacement for LogoMedia, Systran, SDL and PromT respectively. The first column (worst frame) in each table contains the success rate of the SSV replacement for the worst performing subcategorisation frame. For example, the worst frame success rate for the 'proper noun' SSV in Table 4.7 is 75.31%. This means that substituting the arguments with 'proper noun' SSVs leads to 75.31% successful sentences for the worst frame of the 20 different subcategorisation frames in Table 46 The second column (best frame) contains the success rate of the SSV replacement for the best performing subcategorisation frame. The third column (average) contains the weighted average of the SSV replacement over all 20 subcategorisation frames, where the weight of a subcategorisation frame equals the number of sentences selected per frame in
the Penn-II Treebank, or average $=\frac{\sum_{2=1}^{20} w_{2} x_{2}}{\sum_{2=1}^{20} x_{2}}$ with x_{2} the success rate for subcategorisation frame i and w_{2} the number of sentences selected for frame 2 . For example, the average success rate for the 'proper noun' SSV in Table 4.7 is 9526%. This means that substituting the arguments with 'proper noun' SSVs leads, on average, to 95.26% successful sentences by taking a weighted average over all 20 different subcategorisation frames in Table 46

The first row in each table (optimal combination) contains the success rate of the best SSV replacement per subcategorisation frame, i.e. the replacement by the SSV candidate that achieved the highest score for the individual subcategorisation frame in question. For example, the average success rate for the 'optimal combination' in Table 4.7 is 95.50% This means that substituting the arguments with the best possible SSV schema per frame leads, on average, to 95.50% successful sentences by taking a weighted average over all 20 different subcategorisation frames in Table 4.6.

The subsequent rows contain the scores for the argument replacement of all subcat frames by the same SSV.

SSV	worst frame success (\%)	best frame success (\%)	average success (\%)
Optımal combination	7531	100.00	95.50
Proper nouns	7531	100.00	95.26
Non-word strings with det	5.56	90.71	7112
Non-word strings	4.29	9250	69.69
Controlled heads	545	9071	70.50
Acronyms	5.56	88.21	6675

Table 4.7: Results of SSV replacement on translation quality for LogoMedia

SSV	worst frame success (\%)	best frame success (\%)	average success (\%)
Optımal combination	8609	10000	97.22
Proper nouns	5429	100.00	93.34
Controlled heads	406	10000	81.03
Non-word strings with det	3.77	99.66	79.24
Acronyms	10.85	99.32	7635
Non-word strıngs	406	9897	73.03

Table 4.8: Results of SSV replacement on translation quality for Systran

SSV	worst frame success (\%)	best frame success (\%)	average success (\%)
Optimal combination	425	10000	84.12
Non-word strings with det	2.83	100.00	83.88
Controlled heads	2.83	100.00	8368
Non-word strings	2.83	100.00	8214
Proper nouns	425	10000	8202
Acronyms	2.83	10000	81.41

Table 4 9: Results of SSV replacement on translation quality for SDL

SSV	worst frame success (\%)	best frame success (\%)	average success (\%)
Optimal combmation	9734	100.00	9916
Proper nouns	97.21	100.00	9870
Acronyms	40.40	9974	92.24
Controlled heads	603	99.66	7976
Non-word strings with det	498	99.75	7844
Non-word strings	4.87	99.32	76.87

Table 4.10: Results of SSV replacement on translation quality for PromT

4.3.4.4 Analysis

Two different SSV replacement strategies might be considered:

1. Best overall SSV replacement. The replacement schema shown to work best over the totality of the test corpus for a particular MT engine is appled to all sentences, irrespective of the subcategorisation frame of its verb.
2. Best individual SSV replacement. The replacement schema applied to a sentence is the one shown to work best for the particular subcategorisation frame of the predicate of that sentence

For LogoMedia, Systran and PromT, the best overall SSV replacement scores are achieved by the proper noun SSV schema, with average scores of $95.26 \%, 93.34 \%$ and 98.70% respectively. This result can be explained by the fact that the chosen proper noun SSVs are semantically more similar to the constituent they substitute for than the other SSV candidates. For instance, in Table 4.5 the SSV 'Mary' resembles the original constituent 'The woman' more than other SSVs such as 'SUBJ1', 'IBM' or 'The cat'. Substituting arguments with semantically different SSVs can easily lead to a distortion in the translation of the pivot, as is shown in Tables 4.11 and 4.12.

Source	Target
The woman strapped the man	La mujer azotó al hombre
The SUBJ1 strapped the OBJ1	El SUBJ1 ató con correa el OBJ1
SUBJ1 strapped OBJ1	SUBJ1 OBJ1 corto de dinero
IBM strapped CD	IBM ató con correa CD
Mary strapped John	Mary azotó a John
The cat strapped the skunk :	El gato ato con correa a la mofeta

Table 4.11: Translation of the test set for the frame-lemma pair strap([obj, subj]) by Logomedıa

In Table 4.11, the pivot is translated as 'azotar' (= 'to whip') for the 'proper noun' SSV. In the case of acronyms, controlled heads and non-word strings' with determiner, the pivot is translated as the idiom 'atar con correa' ($=$ 'to put on a lead') The use of non-word strings without determiners leads to an erroneous homograph resolution of 'strapped', which is translated-as an adjective ('corto de dinero' = 'not rich').

Source	Tărget -
The wöman will face the man	Ta mujer ${ }^{\text {c }}$ se encontrará cara a cara con el hombrea
The SUBJ1 will face the OBJ1	
SUBJ1 will face OBXJ1	SUUBJI mirará haciá OBJ1
IBM will face CD	IBM enfrentará CD.
Mary will face John	
The cat will face the skunk	El gato mirărá haciă la mofetä.

Table 4, 12 Translation of the test sed for the frame-lenma parr face (lobj, subj]) " by Logomedia ",
 face') for the proper noun SSV In the case of controlled heads and non-word strings with and without ${ }^{2}$ determıer, the pivot is translated as, 'mirar "hacia' ($=$ 'to look to'). The use of acronyms leads to a pivot translation of 'enfrentar' (= 'to confront').

För SDLs, the'bestoverall'SSV replacements'core for is achieved by the 'non'-word'string with determiner' SSVischema, with an av̂erage scôre of 83.88% The variation between the
 for the other MT systems (cf. Tables 4.7-4.10). This cân be explained by the fact that the SDL engine is probably less contextensitive than the others ${ }^{1} \mathrm{e}$ e it relies less one the semantic properties of the arguments than the other MT systems to select a translation of the pivot.

Also, the overall resuits for SDL were significantly lower than for the other MT engines. This is caused by the fact that SDL often relies on the mediopassive voice in Spanish, a grammatical construction which subsumes the meanings of both the middle voice and the passive voice Spanish, apart from the traditional periphrastic passive construction, can express the passive and middle voice with a synthetic construction in which the syntactically active verb, accompanied by a reflexive pronoun, has a semantically passive character. ${ }^{5}$

The average scores for the best individual SSV replacement ('optimal combination' in Tables 4.7 to 4.10) range between 84.12% for SDL to 99.16% for PromT. However, even this optimal selectron obtans rather low scores for certain frames: the scores for the worst performing frames vary between 425% for SDL to 97.34% for PromT.

Taking into account the simplified nature of the sentences and the fact that we extracted verb forms in the simple past and future tense to minimise the possibility of verb-noun ambigurties, it is to be expected that these scores would be lower in a realworld environment Therefore, it is not true that constituents can be safely replaced with SSVs for any frame. A reasonable implementation of the replacement algorithm would involve a replacement schema in which the SVs maintain the maximum syntactic and lexico-semantic similarity with the original constituent they substitute for.

4.3.5 Conclusion

The experiment in Section 4.3 .4 shows that it is not possible to rely solely on SSVs for a safe satellite substitution. We will, therefore, opt for a backoff schema in which we first attempt to substitute satellite chunks with DSVs, the translation of which is determined by late MT access, and fall back on SSVs in case the DSV substitution is not successful.

4.4 Summary

This chapter introduces the concepts necessary to understand the technical details of TransBooster, which are presented in Chapter 5. In the first part of this chapter, we explained the basics of the decomposition algorithm and illustrated its working with several

[^20]examples. In the second part, we expanded on the concept of Substitution Variables and reported the results of a preliminary experiment conducted to determine the suitability of varıous Static Substitution Variable schemata.

Chapter 5

TransBooster Architecture:

Technical Details

5.1 Introduction

In this chapter, we expand on the concepts introduced in Chapter 4 and treat the different components of the TransBooster architecture in detail In the first part (Section 5.2: TransBooster Mark I), we explain the standard TransBooster algorithm. The second part (Section 5.3: TransBooster Mark II) contains an outline of an alternative, simplified TransBooster strategy

5.2 TransBooster Mark I

This part is structured as follows: we fisst focus on head identification (Section 5 2.1), the construction of pivots (Section 522) and the distinction between arguments and adjuncts (Section 523) We provide an in-depth description of how the Substitution Variables introduced in the previous chapter are constructed (Section 5 2.4) and explain how context templates are constructed and used (Section 525). We then examine the back-end of the TransBooster engine (Section 5.2.6) and present the safety measures that have been put in place to prevent erroneous decomposition (Section 52.7). Finally, we provide a summary of the algorithm (Section 5.28) and illustrate its working with an example.

5.2.1 Identifying Heads

As outlined in Section 4.2 .2 on page 42, the first step in determining the pivot of a constituent is the identification of its head. We use the head-finding rules of (Cahill, 2004), which are an adaptation of the head-lexicalised grammar annotation scheme of (Magerman, 1995) and (Collins, 1999) The rules are displayed in Table 5.1. The first column contains the constituents of which we want to determine the head. The second column indicates the direction in which the children of the constituent will be scanned. The third column contains a list of candidate head categorles for each constituent.

The head-findmg function proceeds as follows: for each candidate head category X in the third column, starting with the first category, scan the children of the constituent from left to right (head-intial constituents) or right to left (head-final constituents). The first child that matches category X is the head node. If no child matches any category in the list, the first child, in the case of head-initial constituents, or the last child, in the case of head-final constituents, is considered to be the head.

Asterisks (${ }^{* * * *)}$ indicate the beginning of a list of categories that, if possible, should not be chosen as the head of the constituent. If a child is found whose category differs from those occurring after the asterisks, that child is considered to be the head. If all children match one of the categories after the asterisks, choose the leftmost or rightmost child according to the search direction. For categories without any values (-), choose the leftmost or rıghtmost child according to the search direction.

The head of an NP node is determined by a separate set of rules. The first child encountered whose category label begins with N in a right-to-left scan is the head, if the following two conditions are met: (i) the category label does not contain a Penn-II functional tag, and (in) If the category label is NP, it must not be preceded by punctuation. If no category is found, the algorithm relies on the information in Table 51 to determine the head of the NP.

In the case of a coordinated node N^{1}, the default head finding procedure as explained

[^21]in this section is overridden If two phrasal constituents of the same category are coordinated, the first CC-labelled constituent (the coordination word) found while scanning the children from left to right is assigned to be the head During the tree-flattening procedure, the CC node is analysed as the pivot of the chunk and the two coordinating constituents are analysed as adjuncts, since they are not necessary for a safe translation of the CC. Both coordinated constituents are subject to recursive decomposition in a later stage. In all other cases ((i) N contains more than two coordinated constituents, (ii) N contains two coordinated phrasal constituents of a different category, or (iii) in addition to CC, N contains at least one lexical item), N is not decomposed further but sent as a single unit to the baseline MT system for translation.

Constituent	Direction	Candidates
ADJP	Right	\% QP JJ VBN VBG ADJP \$ JJR JJS DT FW IN **** RBR
		RBS RB
ADVP	Left	RBR RB RBS FW ADVP CD **** JJR JJS JJ NP
CONJP	Left	CC RB IN
FRAG	Left	-
INTJ	Right	-
LST	Left	LS:
NAC	Right	NN NNS NNP NNPS NP NAC EX \$ CD QP PRP VBG JJ
		JJS JJR ADJP FW
NP	Right	EX \$ CD QP PRP VBG JJ JJS JJR ADJP DT FW RB SYM
		PRP\$ **** PRN POS
PP	Left	IN TO FW
PRN	Left	-
PRT	left	RP
QP	Right	\$\% CD NCD QP JJ JJR JJS DT
RRC	Left	VP NP ADVP ADJP PP
S	Rıght	TO VP SBAR ADJP UCP NP PP-PRD ADJP-PRD NP-PRD
SBAR	Right	IN S SQ SINV SBAR FRAG X
SBARQ	Right	SQ S SINV SBARQ FRAG X
SINV	Right	MD IN VBZ VBD VBP VB AUX VP S SINV ADJP NP
SQ	Rıght	MD VBZ VBD VBP VB AUX VP SQ
UCP	Left	CC S **** ADVP RB PRN
VP	Left	MD VBD VBN VBZ VB VBG VBP POS AUX AUXG VP
		TO ADJP JJ NP
WHADJP	Right	JJ ADJP
WHADVP	Left	WRB
WHNP	Right	NN NNS NNP NNPS NP WDT WP WP\$ WHADJP WHPP
WHPP	Left	WHNP
X	Left	-

Table 5.1: Tree Head Table - the list of head-finding rules based on (Magerman, 1995)

5.2.2 Constructing Pivots

We have provided an introduction to pivots in sections 4.2 .1 and 4.2.2 on pages 40 and 42. The main goal of identifying a pıvot for each input chunk is to obtain the part of the input string that has to remain intact during the decomposition process. We achieve this by extending the chunk's nucleus (cf. Section 5.2.1) with necessary lexical information (adjacent terminal strings) to (i) capture possible idiomatic constructions, and (ii) avoid substituting arguments with a limited lexical scope.

An example ${ }^{2}$ of an idiomatic construction is shown in (49):
(49) 'close to the border' \rightarrow 'cerca de la frontera'.
'close' \rightarrow *'ciérrese'.
'to the border' \rightarrow 'a la frontera'.
In (49), the translation of the head 'close' of the ADJP 'close to the border' in isolation leads to the deficient translation 'ciérrese' (= reflexive imperative of the verb 'to close'). In order to obtain the correct translation 'cerca de', the preposition 'to' has to be adjacent to the head 'close' in the pivot string sent to the MT engine. This can be achieved in two different ways:

1. Include the necessary lexical material (e.g. 'to') in the pivot.
2. Include the necessary lexical material (e.g. 'to') in the argument skeleton.

In (49), the first option would lead to a decomposition of the input string into the pivot 'close to' and NP argument 'the border'. The second option would lead to the pivot 'close' and PP argument 'to the border'. ${ }^{3}$ Although both options lead to the correct translation 'cerca de la frontera', option 1 is preferable to option 2, because the amount of variations of possible translations for an NP SSV is usually less than for a PP SSV, due to the highly idiomatic character of prepositions. In other words, the total number of possible translations Z (cf. Section 4.3 .2 on page 54) is usually higher for a PP than for

[^22]an NP since the translation of the head of the PP, the preposition, depends heavly on the preceding context Therefore, it is more difficult, both in the case of early MT access as in the case of late MT access, to successfully determine the translation of the argument SSV in the case of a PP SSV than in the case of an NP SSV. Accordingly, even though it is not strictly necessary to include additional lexical material in the pivot, we find it preferable to extend the pivot with a limited amount of idiomatic lexıcal items than to have to account for a large number of SSV translations.

The second case in which we choose to extend the pivot with adjacent lexical information 15 to avoid having to substitute arguments with a limited lexical scope. If, in Figure 4.1 on page 41, an argument satellite containng only a few words is adjacent to the pivot, the SSV replacement of this satellite is unlikely to lead to a simplification of the input due to the syntactic simplicity of the original constıtuent. On the contrary, since the possibility of a deficient translation of the pivot due to semantic differences with the original can never be ruled out, an SSV replacement in these cases is likely to do more harm than good. Therefore, argument satellites adjacent to the head and dominating fewer leaf nodes than a predefined threshold N are included in the pivot The optimal value of the threshold N depends on the baseline MT system used and was empirically established by tuning the program parameter p_PıvotAttach, as will be further explained during the discussion of experimental results in Chapter 6. For example, the best results for baseline MT system LogoMedia were achieved with $N=2$. As an example, consider the sentence in (50):
(50) '[Traders $]_{A R G_{1}}[\text { said }]_{\text {pwot }}$ [most of their major institutional investors, on the other hand, sat tight $]_{A R G_{2}}$ ' \rightarrow '[Traders said] $]_{\text {pvot }}$ [most of their major institutional investors, on the other hand, sat tight $]_{A R G_{2}}{ }^{\prime}$.

Substituting the first argument 'Traders' with an SV would not improve the syntactic complexity of the sentence. It could only lead to a possible distortion of the translation of the pivot 'sard'. Therefore, it is included in the pivot.

Like satellite chunks, the pivot is a translatable chunk, provided it is embedded in a sufficient context. However, contrary to satellites, which are embedded in a context template, the context for the pivot is provided by SVs, thereby simplifying the original arguments.

The identification of the pivot makes it possible to flatten the original Penn-II-style tree into a simpler structure consisting only of the pivot and satellites (cf. Figure 4.3 on page 41). In this simpler structure, the pivot is the point of reference with respect to which we will calculate the posstion of the translation of the satellites in target. Given a Penn-II-style tree, we use two different strategies to construct the pivot. In a first step, the syntactic characterıstics of the constituent are matched against one of the patterns designed to take into account idiomatic constructions and arguments with a limited lexical scope (cf Section 5.2.2.2). If no match is found, in a second step a default generic pivot finding procedure is used (cf. Section 5221).

5.2.2.1 Constructing Pivots: Default Tree Flattening

The default pivot finding procedure is independent of the syntactic properties of the input chunk. It only takes into account the lexical coverage of the input chunk's head nodes along the tree's head projection line. The procedure starts at the root node of the input chunk, recursively traverses the tree and, at each step, examines the local head node N . If N dominates $\leq L$ leaf nodes, the node N and its yield is taken to be the pivot. If, on the other hand, the head node N contains too many leaf nodes ($>L$), the procedure considers the head node N^{\prime} immediately dominated by N along the constituent's head projection line, to be a pıvot candidate, and so on, until a head with L words or less in its coverage is found. L is a parameter that allows us to experiment with varying maximum pivot lengths. The optımal value of L depends on the baseline MT system used and was determined empirically by tuning the program parameter p_PivotLength. ${ }^{4}$

As an example, consider Figure 5.1. The pivot finding procedure starts at node 1, the node representing the input chunk 'A ... L'. Node 3, the head of node 1 , dominates 11 lexical items (B \ldots). Since this number is greater than the threshold $L=4$, the procedure examines node 4 , the head of node 3 . Node 4 dominates only $1(\leq L)$ lexical item, namely ' B '. Therefore ' B ' is the pivot of ' $A \ldots$ '. Nodes 2 and 5 are the pivot's satellites The resulting flattened tree structure will serve as input to TransBooster's

[^23]decomposition module. ${ }^{5}$

Figure 51 Basic tree flattening. 1-7 are arbitrary non-terminal categories. AL are lexical items. Node 3 is the head of node 1 . Node 4 is the head of node 3. The resulting flattened tree on the right-hand side is the input to TransBooster's decomposition module.

5.2.2.2 Constructing pivots: Extended Tree Flattening

Contrary to the default tree flattening procedure, the extended tree flattening strategy takes into account the syntactic characteristics of the input chunks. It tries to match these characteristics against a number of previously determined syntactic templates. The goal of the templates is to cover most of the cases in which it is preferable to extend the pivot with additional lexıcal materıal to account for idiomatic constructions and specific syntactic phenomena, as explained at the start of Section 5.2 2. If none of the templates matches the syntactic environment of the input chunk, its tree is flattened by using the default tree flattening procedure.

As an example, consider Figure 5.2. The left-hand side tree is identical to the left-hand side tree in Figure 5.1. In this case, the specific syntactic configuration in the tree matches a predefined template, which for example expands the pivot with its first adjacent nonempty node to its right. As a consequence, ' C ', the lexical coverage of node 6 , is attached to the pivot ' B ', leading to pivot ' BC ' and a different tree flattening.

The pivot templates were constructed based on a manual analysis of the most frequent occurrences of non-terminal expansions in the training section of the Penn-II Treebank. For this analysis, we relied on the treebank grammar used by (Cahill, 2004), which was constructed following (Charniak, 1996). A treebank grammar is a context-free grammar (CFG) created by reading off the production rules directly from hand-parsed sentences

[^24]

Figure 52 Extended tree flattenıng 1-7 are arbitrary non-terminal categories. A-L are lexical items. Node 3 is the head of node 1. Node 4 is the head of node 3 .
in a treebank. In the case of (Cahill, 2004), the CFG was constructed based on the training section of the Penn-II treebank (sections 01-22), with empty productions and trace information removed and all Penn-II functional mformation tags attached to CFG categories stripped

Since it is not possible to manually analyse all 17,034 rule types in the treebank-based CFG, we chose to investigate the most frequent rules that account for 85% of rule tokens per non-terminal. Given that it is not useful to subject chunks with a limited lexical range to decomposition, we excluded the rules dominating an average of fewer than 4 leaf nodes. This figure is related to the optimal value of the parameter p_ChunkLength, introduced on page 50^{6} After these reductions, 554 rule types remained for analysis. The rules were analysed by examining the corresponding rule-token dominated sub-trees in the treebank. Two different tools were found useful for this analysis: TGREP (Pito, 1993) and the DCU Treebank Tool Suite (TTS) ${ }^{7}$ (Cahill and van Genabith, 2002). TGREP is a well-known Unix-based tool that allows parse-annotated tree searches in the same spirit as GREP. TTS is a web-based treebank inspection tool developed at DCU with extended functionality for PCFG parsing. TGREP supports searches of arbitrary tree fragments and depth, whereas TTS is easy to use and displays the results graphically.

After inspecting individual instances of each relevant rule type, we derived specific coding guidelines Appendix B contains a list of the main extended pivot treatment procedures for non-terminal nodes in the Penn-II Treebank. Each rule is illustrated with an example.

[^25]
5.2.3 Arguments vs. Adjuncts

As pointed out in Section 4.2.3 on page 43, we broaden the traditional notion of the term 'argument' to those nodes that are essential for the correct translation of the parent node. Nodes labeled as adjuncts can be safely omtted in the string sent to the baseline MT system to obtain the translation of the pivot. Omitting redundant material in the orignal string is a first obvious way to simphfy the input. However, caution must be taken not to omit certain lexical items that, despite being classified as adjuncts in a certain grammatical framework, are nevertheless essential to guarantee a correct translation of the pivot.

For example, consider the Penn-II sentence in Figure 5.3. If, in Figure 5.3, the directional ADVP 'down' and PP 'into their canal' are labelled as adjuncts, the translation of the resulting argument skeleton 'We were coming' would lead to the erroneous pivot translation *'viniendo' ('coming from somewhere') instead of the correct 'bajando' ('coming/going down'), as is represented in (51).

Figure 5.3: Penn-II tree representation of 'we were coming down into their canal.'
(51) 'We were coming down into their canal.' \rightarrow 'Estabamos bajando en su canal'. 'We were coming' \rightarrow 'Estabamos viniendo'.

Likewise, consider the Penn-II sentence in Figure 5.4:
If, in Flgure 5.4, the directional ADVP 'away from the stock market' is labelled as an adjunct, the translation of the resulting argument skeleton 'Individual investors have

Figure 5.4: Penn-II tree representation of 'Individual investors have turned away from the stock market ${ }^{\text {, }}$
turned' would lead to the erroneous pivot translation *'han doblado' ('have turned') instead of the correct 'se han alejado' ('have turned away'), as is shown in (52):
(52) 'Individual investors have turned away from the stock market' \rightarrow 'Los inversores particulares se han alejado del mercado de valores '
'Individual investors have turned' \rightarrow 'Los inversores particulares han doblado'.

Therefore, the argument-adjunct distinction of a specific grammatical framework can only serve as a basis to distinguish between 'pıot arguments', essential nodes for the correct translation of the pivot, and 'pivot adjuncts' (redundant material) among satellites A thorough investigation of the most frequent phenomena is necessary to avoid errors as shown in (51) and (52).

In the first phase of determining argument-adjunct distanction guidelines for nodelabelling by TransBooster, we relied on information provided in (Hockenmaier, 2003). In this work, the author presents the creation of training data and the development of probability models for statistical parsing of English with Combinatory Categorial Grammar (CCG, (Steedman, 1996, 2000)). CCG is a lexicalist, constraint-based grammatical theory m which categories are the bulding blocks of the grammar Words are associated with very specific categories which define their syntactic behavour. In order to obtain training data for CCG parsing, Hockenmaier (2003) had to transform the phrase-structure
trees in the Penn Treebank into a corpus of CCG derivations. In the Penn Treebank, the complement-adjunct distinction is not marked explicitly, as is clearly stated in (Marcus et al , 1994):
> "After many attempts to find a relable test to distingursh between arguments and adjuncts, we have abandoned structurally marking this difference. Instead, we now label a small set of clearly distinguishable roles, building upon syntactic distinctions only when the semantic intuitions are clear cut."

In the implementational details of the transformation from Penn Treebank to CCGbank in (Hockenmaier, 2003), however, clear guidelines are provided to distinguish arguments from adjuncts, based on heuristic procedures which rely on the label of a node and its parent.

In the second phase of our argument-adjunct distinction procedure, we refined the distinction criteria obtamed during the first phase by manually inspecting the most frequent rule-types accounting for 85% of rule token expansions per non-terminal in the Penn Treebank. For an explanation on how the 85% part of rule tokens were selected, cf Section 52 2.2. Appendix C contains an overview of the ARG-ADJ distinction heuristics used in this dissertation.

Satellites that have not received an explicit argument/adjunct label based on the CCG heuristics or after the above-mentioned refinement phase, are assigned a label by default The best experimental results were obtained by labeling all remaining satellites as adjuncts.

5.2.4 Substitution Variables: Static vs Dynamic

After flattening the original input tree into a TransBooster tree, argument and adjunct skeletons are obtained by replacing the relevant satellites by SVs, as explained in Section 4.2.4 on page 44. The translation of these simplified syntactic structures makes it possible to extract the translation of the pivot and locate the position of the satellites in target As described in Section 4.3 on page 54, SVs can be static (SSVs) or dynamic (DSVs). In this section we will focus on the implementation of both SV types.

The experiments reported in Section 4.3 .4 show that syntactic and/or lexico-semantic differences between SSVs and the constituent they replace can lead to an erroneous trans-
lation of the plvot or a wrong placement of the satellites in target. Therefore, as a first choice, we substitute the satellites with DSVs, the translations of which are obtained through late MT access. DSVs have the advantage that they share a maximal syntactic and lexico-semantic similarity with the satellites, but their retrieval in target is non-trivial, as their translation is not known in advance. This substitution leads to a dynamic argument skeleton and a number of dynamıc adjunct skeletons. As a fall-back, the satellites are also substituted with appropriate SSVs, leading to a static argument skeleton and a number of static adjunct skeletons. ${ }^{8}$ SSVs have the advantage that they are relatively easy to track in target but their syntactic/lexico-semantic divergence with the original satellites mıght trigger translation errors, as shown in Section 4.3.4.

The retrieval of the translation of the pivot and the location of the satellites in target works as follows In a first attempt, the DSV translations are matched against the translation of the dynamic skeletons. If a match is found for each of the DSV translations, the pivot is extracted and the position of the satellite translations is stored in memory. If there is a mismatch between one of the DSV translations and the translated skeleton, a second attempt is made by matching each of the previously established SSV translations against the translation of the static skeleton. Only in case this second attempt is unsuccessful, the entire pivot extraction and satellite locatıon procedure fails (cf. 52.7 for more details on what happens in case no pivot can be extracted).

Instead of relying solely on DSVs or SSVs, using this back-off mechanism permits us to combine the strength of the DSV's accuracy with the SSV's retrievability In the following section we will explain in more detail how DSVs and SSVs are generated.

5.2.4.1 Identifying Optimal Substitution Variables

The DSV of a constituent consists of the constituent's head and its simplified arguments. In other words, a constituent's DSV is the string remaining after the recursive removal of all adjuncts in the tree representation of the constituent. Removing the adjuncts leads in many cases to a considerable simplification of the original. At the same time, the presence of the head and its simplified arguments ensures a sufficient lexico-semantic resemblance

[^26]to the original, which should avoid wrong pivot translations and erroneous satellite placements in target Table 52 contans a number of example chunks and their extracted DSVs.

Satellite	\rightarrow	DSV
'the stock selling pressure'	\rightarrow	'the pressure'
'Wall Street professionals, including computer-guided program traders'	\rightarrow	' $\mathrm{professionals'}$
'the trading halt in the S\&P 500 pit in Chicago'	\rightarrow	'the halt'
'1ts remaining seven aircraft'	\rightarrow	'its arrcraft'
'that once did business ás Merrill Lynch Commercial Real	\rightarrow	'thatidid' business'
Estate' -- \quad -		
'the potential to be so'	\rightarrow	'the poteñtial'
'the weekend preceding Black Monday in 1987'	\rightarrow	'the weekend'

Table 5 2: Some examples of satellite chunks and their DSVs.

The SSV of 'a constituent is a simple string' that, at best, shares certain syntactic characteristıcs with the substituted constituent. The outcome of the experiment in Section 4.3.4 showed that, 'eventin a simplified environment, the syntactic̣ and lexıco-semantıc differences between a range of SSVs and the orıgnal constituents can lead to distortions. \therefore in the translation of the pivot and the placement of the satellites in target Therefore, it = 15 important to choose an SSV that îs as simlar as possible to the original: Since trying
 involve an effort that goes beyond the scope of this work, we try to maximise the syntactic similarities between both.

In order to find out in which syntactic environment substitutable non-terminalṣ need a specific SSV, we analysed the 554 most frequent rule, typer mentioned in Section 5.2.2.2 which cover 85% of the rule-tokens per non-terminal in sections 01-22 of the Penn Treebank. The result of this analysis is summarised in Appendix D. Each substitutable non-terminal is provided with adefalt SSV and, if necessary, several additional SSVs depending on the syntactic environment of the non-terminal. The appendix̃ illustrates the SSV substitution with an example sentence for each category-environment SSV sequence.
 but lexically different strings are available. ${ }^{2}$ The reason to provide SSV alternatives for

[^27]each specific category-environment sequence is to ensure correct SSV retrieval in target in the case of multiple replacement instances of the same type of satellite. If, after the pivot and satellites have been identified, multıple satellites of the same type and in an identical syntactic environment are substituted by the same SSV in a skeleton, it is not possible to locate the position of the satellites in target, given that it is highly probable that the baseline MT system will produce the same translation for identical SSV strings in the skeleton. In other words, if in (24) on page 44, $S V_{S A T_{2}}^{\prime}=S V_{S A T_{3}}^{\prime}(1 \leq i, j \leq l+r)$, a correct retrieval of the placement of $S A T_{\imath}{ }^{\prime}$ and $S A T_{j}{ }^{\prime}$ is not guaranteed.

5.2.5 Context: Static vs Dynamic

In Section 4.2 .5 on page 47 , we emphasised the risks of translating individual satellites out of context. Therefore, prior to being sent to the baseline MT system for translation, a satellite is embedded in a context template. This template can be static or dynamic. As is the case for Substitution Variables, the translation of dynamic context templates is determined at run-time by late MT access, while static context templates are previously translated by early MT access.

The exact nature of the dynamic context of a satellite depends on whether the satellite is an argument or an adjunct. The context for an argument satellite $A R G_{X}$ is constructed based on the dynamic argument skeleton of its mother node. Given that adjuncts are not required for the correct translation of ther governing node or its arguments, they can be safely omitted. Since we are interested in the translation of $A R G_{X}$, we do not substitute it in the dynamic skeleton of its mother (53), resulting in (54). In order to retrieve the translation of $A R G_{X}$, a second string is constructed, consisting of the same dynamic skeleton as before, but with $A R G_{X}$ substituted with its SSV, as shown in (55).

$$
\text { where } D S V_{A R G_{i}} \text { is the dynamic Substitution Variable for } A R G_{2}(1 \leq \imath \leq l+r)
$$

$$
\begin{equation*}
\left[D S V_{A R G_{1}}\right] \ldots\left[D S V_{A R G_{l}}\right] \text { pivot }\left[D S V_{A R G_{l+1}}\right] \ldots\left[D S V_{A R G_{l+r}}\right] \tag{53}
\end{equation*}
$$

$$
\begin{align*}
& {\left[D S V_{A R G_{1}}\right] \ldots A R G_{X} \ldots\left[D S V_{A R G_{l}}\right] \text { pivot }\left[D S V_{A R G_{l+1}}\right] \ldots\left[D S V_{A R G_{l+r}}\right]} \tag{54}\\
& {\left[D S V_{A R G_{1}}\right] \ldots S S V_{A R G_{X}} \ldots\left[D S V_{A R G_{l}}\right] \operatorname{pivot}\left[D S V_{A R G_{l+1}}\right] \ldots\left[D S V_{A R G_{l+r}}\right]} \tag{55}
\end{align*}
$$

(53) and (54) can be represented in a simplified manner as (56) and (57), respectively.

$$
\begin{align*}
& A R G_{X}[\text { dynamic context }] \rightarrow A R G_{X}^{\prime}[\text { dynamic context' }] \tag{56}\\
& S S V_{A R G_{X}}[\text { dynamic context }] \rightarrow S S V_{A R G_{X}}^{\prime}[\text { dynamic context' }] \tag{57}
\end{align*}
$$

After sending (57) to the baselme MT system, we subtract the previously known translation $S S V_{A R G_{X}}^{\prime}$ from the resulting string. This results in the translation of the dynamic context [dynamic context ${ }^{\prime}$]. By subtracting [dynamic context'] from the translation of the string in (56), we obtain $A R G_{X}^{\prime}$, the translation of $A R G_{X}$.

As an example, consider the sentence in Figure 4.2 on page 41, repeated below for reasons of clarıty

Figure 5.5: Parse tree representation of 'The chairman, a long-time rival of Bill Gates, likes fast and confidential deals'

In order to retrieve the translation of the argument 'fast and confidential deals', it is embedded in the dynamic argument skeleton of its mother node, which leads to (58):
(58) [The chairman likes] $]_{\text {context }}$ fast and confidential deals. \rightarrow El presidente tiene gusto de repartos rápidos y confidenciales

We retrieve the translation of the dynamic context template 'The man hkes' by translating the same dynamic argument skeleton, but this time containing the argument's SSV, as shown in (59):
[The chairman likes] ${ }_{\text {context }}[\text { cars }]_{S S V} . \rightarrow{ }^{\text {'El }}$ presidente thene gusto de coches.'
The translation of the SSV 'cars' ($=$ 'coches') has been previously determined by early MT access. After subtracting this string from the translation of (59), we find the translation of 'The charman likes', namely 'El presidente tiene gusto de'. By subtracting
'El presidente tiene gusto de' from the translation of (58), we obtain the translation of the argument 'fast and confidential deals', namely 'repartos rápidos y confidenciales'.

The construction of the dynamic context of an adjunct satellite $A D J_{X}$ and the retrieval of its translation works slightly different. First, we insert $A D J_{X}$ in the dynamic skeleton of its mother node (53), which leads to the string in (60):

$$
\begin{equation*}
\left[D S V_{A R G_{1}}\right] \ldots A D J_{X} \ldots\left[D S V_{A R G_{l}}\right] \operatorname{pivot}\left[D S V_{A R G_{l+1}}\right] \ldots\left[D S V_{A R G_{l+r}}\right] \tag{60}
\end{equation*}
$$

The translation of $A D J_{X}$ is obtained by retrieving the difference between the translations of (53) and (60).

As an example, consider the sentence in (61):
(61) 'Our long suit is our proven ability to operate power plants, he said.'
(S (S-TPC-1 (NP-SBJ (PRP\$ Our) (JJ long) (NN surt)) (VP (VBZ is) (NP-PRD (PRP\$ our) (JJ proven) (NN ablity) (S (NP-SBJ (-NONE *)) (VP (TO to) (VP (VB operate) (NP (NN power) (NNS plants))))))) (, , (NP-SBJ (PRP he)) (VP (VBD said) (SBAR (-NONE-0) (S $(-$ NONE- *T*-1 $)$)) ())

After recursively traversing the tree starting from the root node, the TransBooster algorithm arrives at the node $S-T P C-1$, which is graphically represented in Figure 5.6.

Figure 5.6: Parse tree representation of node S-TPC-1 in (61).

In order to retrieve the translation of the adjunct 'to operate power plants', it is embedded in the dynamic argument skeleton of its mother node 'NP-PRD', dominating
the lexical items 'our proven ability to operate power plants'. ${ }^{10}$ Since this node does not contain any arguments, its argument skeleton consists of the pivot in isolation, represented in (62):
(62) 'our proven ability ' \rightarrow 'nuestra habilidad demostrada.'

After inserting the adjunct into the skeleton, we obtain (63):
[our proven ability] context to operate power plants
\rightarrow '[nuestra habilidad demostrada] $]_{\text {context }}$ de operar centrales hidroeléctricas'

By retrieving the difference between the the translations of (62) and (63), we obtain the translation of the adjunct, namely 'de operar centrales hidroeléctricas'.

Static context templates were determined by analysing the 554 most frequent rule types mentioned in Section 5.2 .2 .2 , covering 85% of the rule-tokens per non-terminal in sections $01-22$ of the Penn Treebank. The result of this analysis is summarised in Appendix E. Each non-terminal is provided with a default context and, if necessary, several additional static context templates depending on the syntactic environment of the non-terminal. The appendix illustrates the static context insertion with an example sentence for each category-environment-context sequence.

The default treatment is to embed chunks first in a dynamic context and try to extract the translation of the chunk, as described above. In case this fails, an attempt is made to extract the the chunk's translation from a static context If both dynamic and static context extraction fail, the chunk is translated in isolation. Note that the default backoff from Dynamac Context \rightarrow Static Context \rightarrow Zero Context can be modified depending on the specific characteristics of each chunk. For example, subject NPs need not be inserted in a context template for correct translation retrieval from English \rightarrow Spanish.

[^28]
5.2.6 Chunks and their Translation

In this section, we will discuss the back-end of the TransBooster engine, which is comprised of two modules that interact with the baseline MT system. The module Translation sends all strings generated by TransBooster to the MT system and retrieves their translations. The module Chunk ensures that all chunks to be translated are embedded in an adequate context, if necessary, and passes the generated strings on to Translation. After the MT system is accessed and the module Translation has retrieved the translations of the strings, Chunk extracts the chunk translations and passes them on to other modules in the TransBooster engine, which recompose the final output. This interaction is schematically represented in Figure 57

Figure 5.7: The back-end of the TransBooster Engine.

Chunk is a module containing data structures for all possible context-enhanced sourcetarget pairs for the chunks to be sent to Translation. Translation is a module that interacts directly with the baseline MT engine by sending strings and retrieving their translations. Since all chunks are retrieved at run-time, this translation retrieval refers to late MT access. This contrasts with early MT access, in which chunks - in practice only SSVs are translated prior to processing input by TransBooster (cf. Section 4.3.2 on page 54).

In Section 42 on page 39, the notion of 'chunks' was introduced as being the different parts that the input sentence was being decomposed into. In this section, we interpret 'chunk' in a broader sense: the term comprises every single item that needs to be translated in order for the algorithm to operate successfully. These items are included in Table 5.3

We will now discuss how the different types of chunks in Table 5.3 are stored and explain the default context retrieval procedure for each individual type:

Type of chunk	Default Context Retrieval
Satellites	Dynamic \rightarrow Static \rightarrow none
Pivots	none
Substitution Variables	none
Argument Skeletons	Dynamic \rightarrow Static \rightarrow none
Adjunct Skeletons	Dynamic \rightarrow Static \rightarrow none

Table 5.3: Chunks in module Chunk and their default context retrieval

Satellites Satellites are the typical chunks as introduced in Section 4.2. In most cases, it is essential to embed them in some sort of context to ensure correct translation (cf. Section 5.2.5). The data structure Chunk stores the satellites, retrieves their static context and constructs all necessary material for dynamic context extraction. It sends the satellite chunks to Translation in three different contexts: (i) in a null context (isolation), (il) in a static context, and (iii) in a dynamic context. After retrieving the necessary translations, it attempts to extract the satellite translation from the Dynamic and Static Context translations, respectively, as explained in Section 525 . In case both extractions fail, Chunk selects the translation of the satellite in isolation.

Pivots The translation of a pivot is obtaned by extracting SV translations from the translation of the Argument Skeleton. The SVs provide the necessary context for the pivot. However, in case no pivot can be extracted from the translation of the Argument Skeleton, we want to maintain the option of retrieving the translation of the pivot in isolation. This is the reason why pivots are also sent as individual strings to the Translation module. In practice, retrieving the translation of pivots in isolation in case of an unsuccessful pivot extraction attempt does not lead to improvements, as might be expected. ${ }^{11}$ Therefore a failed pivot extraction attempt will lead to aborting the entire decomposition process.

Substitution Variables Late MT access for Substitution Variables. both SSVs and DSVs are sent to the module Translation in isolation. As commented in Section 432 , late MT access is the only suitable manner to retrieve the translation of a DSV. It might seem strange, though, that we are also translating SSVs at run-

[^29]time. We do this as a safety measure: although a list of possible translations for SSVs has been determined beforehand and stored in the data structure Substatutzon (which is included in the class diagram of the TransBooster application in Appendix F), the additional SSV translation obtained at run-time will be added to this list If it is not already present. This technique also provides TransBooster with some 'self-calibration' to possible changes in the embedded baseline MT system.

Argument Skeletons Like proper satellites, argument skeletons are chunks that need to be embedded in a sufficient context. Therefore they receive the same treatment as satellites.

Adjunct Skeletons Like proper satellites, adjunct skeletons are chunks that need be embedded in a sufficient context. Therefore they receive the same treatment as satellites.

There are several reasons why certain chunks are translated in a zero context:

1. There is no need for additional context, e g. in the case of a smple subject NP for English \rightarrow Spanish.

2 The translation of a chunk in a zero context is the last level in the default backoff procedure (Dynamic Context \rightarrow Static Context \rightarrow Zero Context).
3. The chunk is used to retrieve the translation of another chunk by string subtraction. For example, the translation of a DSV is extracted from the translation of a dynamic pivot skeleton to retrieve the translation of the pivot. If the DSV were to be embedded in a context, we would somehow have to know the translation of this context as well. The only way this can be achieved is (i) by using a predefined static context (early MT access), or (ii) by translating this context at run-time (late MT access), which implies that we are simply transferring the problem to a different level, as is shown in Figure 5.8 In other words, in the case of dynamic substitutions with late MT access, at some point it is necessary to rely on the translation of an item out of context

Figure 5.8: The (in theory) never-ending cycle of dynamic context template translations.

One of the essential points in the algorithm is how to determine whether a satellite chunk is ready for translation. Decomposing the input string into very small chunks has the advantage of maxımal syntactic simplification, but overall translation might not improve due to context issues. On the other hand, a limited decomposition in larger chunks will not suffer that much from context deterioration but will lead to less syntactic simplefication. Due to the average time needed for an experiment-evaluation cycle, ${ }^{12}$ it is not possible to determine a different cut-off threshold for each different category in each different syntactic setting. In the current implementation, we maintain the same cut-off point N for all types of satellite chunks. This cut-off point depends on the number of lexical tems that the node representation of the chunk dominates. If the node dominates fewer or the same number of lexical items than the threshold N, it is translated in its entirety, embedded in a context template if necessary. If the node dominates more than N lexical items, it is subjected to decomposition. The threshold N is one of the program's parameters: its optimal value depends on the baseline MT system used and was established empirically, for each different baselne MT system, by tuning the program parameter p_ChunkLength, as will be further explained during the discussion of experimental results in Chapter 6.

In the algorithm presented in Section 528 , the baseline MT system is accessed at several different stages during the decomposition of each individual sentence. This is a simplified representation of what really happens. Sending a string to the MT system, executing the translation and retrieving the translated output consumes a certain amount of time, depending on the length of the string, the system used and the interface to TransBooster. Given that the decomposition of one single sentence can easily lead to hundreds of different strings (satellites, pivots, SVs and skeletons) to be translated, in practice, continuous MT access would be too tıme-consuming. Therefore, the TransBooster algorithm is split into three different parts, as is graphically represented in Figure 5.9:

[^30]1. Decomposition: all sentences in the input file are decomposed. All resulting different individual chunks are written to a data file.
2. Translation the data file is translated by the baseline MT system.

3 Recomposition: the translations of all chunks are retrieved and the output sentences are composed

Figure 5.9: The three stages in a TransBooster run.

This way, the MT system is only accessed once per TransBooster run. The module Translation contains data structures that ensure that no duplicate strings are translated. The module also performs a number of necessary pre-processing steps on the strings that are being sent to the MT engine. For example, each candidate string for translation must commence with a capital letter and end with a dot. Failure to do so might result in a distorted translation, as is shown in the examples (64) and (65):
(64) "The man is sleepıng," says Mr. Zurkuhlen. \rightarrow "El hombre está durmiendo", el Sr. Zurkuhlen dice
"The man is sleeping," says Mr Zurkuhlen \rightarrow *"El hombre está durmiendo", decir al Sr. Zurkuhlen
(65) 'I'm not going to worry about the dog.' \rightarrow 'No voy a preocuparme por el perro.' 'i'm not going to worry about the dog.' \rightarrow *'I no va para preocuparse por el perro.'

Seemingly trivial details like the ones in (64) and (65) can lead to important changes in
translation quality. In (64), the translation of the second sentence contains an uninflected form of the main verb ('decir') in the wrong place. In (65), the output is incomprehensible due to a mımicked subject (' i '), a wrong inflection of the main verb ('va') and an erroneous preposition ('para'). The module also performs certain operations regarding punctuation and whitespace that might have been distorted during the building of a skeleton or after inserting a chunk into its context.

5.2.7 Safety Measures

During the decomposition of a chunk, a number of problems can arise that cause the decomposition process to abort. If such problems occur, it is always possible, as a back-off measure, to translate the chunk in its entrrety. The main two problems that trigger this back-off measure are the following:

1. The translation of an SV is not found in the translated skeleton. This occurs if both the retrieval of DSVs and SSVs in the translated skeletons is unsuccessful. In this case, it is impossible to extract the translation of the pivot.
2. If the pivot is retrieved via SSV substitution, we verify the presence of the extracted pivot translation in the translation of the dynamic argument skeleton. Since the dynamic argument skeleton shares more syntactic/lexico-semantic similarities with the orignal, a mismatch might indicate an erroneous translation of the pivot in the static argument skeleton. In this case, we deem the extracted pivot translation unreliable

If it was impossible to extract a translation of the pivot or if the extracted pivot is considered unreliable, there are two back-off alternatives:

1. Abort the decomposition process and translate the entire node as an indivisible unit.
2. Translate the pivot in isolation and continue the decomposition process.

Although both choices exist as a program parameter ${ }^{13}$, experiments (reported in Chapter 6) show that the first back-off alternative yields much better results, which is to be expected.

[^31]
5.2.8 Algorithm

Figure 5.10 shows the standard TransBooster algorithm ($\mathrm{TB}_{\mathrm{MarkI}}$) in pseudo-code. The operation of the algorithm is illustrated with a simple example.

```
Input = parsed sentence,
S = Tree data structure of Input;
Recursive head/arg/adj annotation of nodes S;
QUEUE = {S};
While (QUEUE not empty) {
    Node N = shift QUEUE;
    If (N OK for translation) {
        translate N (in context);
    }
    else {
        flatten N into TransBooster tree;
            - find pıvot N;
            - find satellites N;
            find SVs for all satellites;
            build skeletons;
            translate SVs;
            translate skeletons;
            find translation pivot;
            if (translation pivot not OK) (
                    translate N (in context);
                    break;
            }
            track location satellites in target;
            add all satellites to QUEUE;
    }
}
Recompose(S) where
Recompose(N) {
    for (all satellıtes of N) {
        sort all satellite SVs and pivot with respect to
        their position in target;
        if (satellite OK for translation) {
                replace SV satellite with translation satellıte;
            }
            else {
                recompose satellite;
            }
    }
}
```

Figure 5.10: The standard TransBooster algorithm ($\mathrm{TB}_{\mathrm{MarkI}}$) in pseudo-code

5.2.8.1 Worked Example

In this section, we illustrate the standard TransBooster algorithm ($\mathrm{TB}_{\mathrm{MarkI}}$) on the PennII sentence 'One week later, Leonard H. Roberts, president and chief executive officer of

Arby's, was fired in a dispute with Mr. Posner'. The baseline MT system is LogoMedia, the language parr English \rightarrow Spanish. The output of the example sentence by the baseline system is shown in (66):
'Uno semana después, Leonard H Roberts, presidente y funcionario en jefe ejecutivo de Arby's, fue disparado en una disputa con el Sr Posner.'

The main problem in this translation is that LogoMedia's transfer module has erroneously selected'‘fired' \rightarrow 'dis"́parado' $(=$ 'shot') instead of thè' correct 'fired' \rightarrow 'despedido' ($=$ 'sacked').

The input to the decomposition algorithm is (67)
(67) (TOP (S (ADVP-TMP (NP (CD One)' (NN week)) (RB-later)) (, ,) (NP-SBJ-1 (NP (NNP Leonard) (NNP H) (NNP Roberts)) (, , (NP (NP (NP (NN president)) (CC and) (NP (JJ chief) (JJ
 (VBN fired) (NP (-NONE- *-1)) (PP-LOC (IN in) (NP (NP (DT a) (NN dispute)) (PP (IN with)

Step 1

 H Roberts, president and chief executive officer of Arby's] $]_{A R G}$ and [in a duspute with Mr. Posner ${ }_{A D J}$. This leads, to the flatened structure in Figure $5.111^{\prime \prime}$

TransBooster replaces the argument satêlite by the BSV 'Leonard Hoberts' and sends the argumént skeleton in (68) to the bâseline MT engine since werfave determined the translation of the DSV 'Leonard 'Hoberts' at runtime, it is possible to extract the 'translation of the pivot' (fue despedido') and locate, the position of the'argument"satellite
in target
(68) '[Leonard H. Roberts] [was fired].' \rightarrow '[Leonard H Roberts] [fue despedido] '

Note that the simplified syntactic structure of the argument skeleton in (68) already leads the baseline MT system to correctly translate 'fired' as 'despedido'.

Next, two adjunct skeletons are constructed, one for ADJ1 'One week later,' and one for ADJ2 'in a dispute with Mr. Posner', by inserting the DSVs for both adjuncts, one by one, in the argument skeleton.
(69) '[One week later, $]_{A D J}$ [Leonard H. Roberts] [was fired] ' \rightarrow '[Uno semana después, $]_{A D J}^{\prime}$ [Leonard H Roberts] [fue despedido] '
'[Leonard H Roberts] [was fired] [in a dispute] $]_{A D J .}$ ' \rightarrow '[Leonard H Roberts] [fue despedıdo] [en una disputa] ${ }_{A D J}$,'

From the translation of both adjunct skeletons in (69), we deduce the position of the adjuncts in target. After this first step, we have found the translation of the pivot and have determined the location of all satellites in target.

Step 2

In a second step, the algorithm meestigates the first satellite ('One week later'), and decides that it is simple enough for translation, since it contans fewer than the optimal threshold N lexical items ${ }^{14}$ Before sending the satellite to the baseline MT system for translation, it is embedded in a dynamic context as explained in Section 5.2.5. This leads to the string in (70):
(70) '[One week later,] [Leonard H Roberts] ${ }_{D S V_{A R G 1}}$ [was fired] $]_{p z v o t .}$ ' \rightarrow '[Uno semana después,] [Leonard H Roberts] $]_{D S V_{A R G}}^{\prime}$ [fue despedido] ${ }_{p i v o t}^{\prime}$.'

Since we have already found the translation of the pivot ('fue despedido') and since the translation of the DSV 'Leonard H. Roberts' was determined by late MT access, it is possible to deduce 'Uno semana después' as the translation of the satellite 'One week later' from (70).

[^32]
Step 3

Assume, for the sake of simplicity, that the second satellite, ('Leonard H. Roberts, president and chief executive officer of Arby's') is considered ready for translation Like the fixst satellite, it is embedded in a dynamic context. Since 'Leonard H Roberts, president and chief executive officer of Arby's' is the only argument, its dynamic context consists exclusively of the pivot, as is shown in (71):
'Leonard H Roberts, president and chief executive officer of Arby's' [was fired] ${ }_{\text {puot }}$.'
\rightarrow Leonard H Roberts, presidente y funcionario en jefe ejecutivo de Arby's, [fue disparado $]_{p \text { peot }}^{\prime}$.

Note that in this string, the pivot once again obtains the erroneous translation 'fue disparado' Since the the previously established pivot translation 'fue despedido' cannot be found in the translation of (71), the retrieval of the translation of the second satellite farls. Therefore, we back off to the construction of the static "context, as is shown in (72).
(72) -. 'Leonard H Roberts, president and chief executive officer of Arby's', [is sleeping. |cöntext. . \rightarrow Leonard H Roberts, presidente y funconario en jefé cjecutivo de Arbys, está durmendo $]_{\text {context }}^{\prime}$

This time, the string "está durmiendo', prevously established by early MT' actess, is found in the translation of (72). By string subtraction, we obtain the translation of the second" satelite "Leonard'H Roberts, presidente y funcionario en jefe ejecutivo de Arby's."

Step 4

The last satellite, 'in a dispute with Mr. Posner', contains 6 lexical items. Snce this
 to further decomposition ${ }^{15}$ Let's assume, in order to keep this example decomposition
 translation It is then embedded in a dynamic context template and sent to the baseline MT system for 'translation, as' 15 'shồwn in (73);

[^33]'[Leonard H Roberts] $]_{D S V_{A R G 1}}$ [was fired] $]_{\text {pvot }}$ [in a dispute with Mr. Posner.]' \rightarrow '[Leonard H Roberts] $]_{D S V_{A R G 1}}$ [fue despedido] ${ }_{p z v o t}$ [en una disputa con el Sr. Posner.]'

Since we have already found the "translation of the pıot ('fue despedıdo') and since the translation of the DSV 'Leonard H Roberts' was determmed by late MT access, it is possible to deduce 'en una disputa con el Sr. Posner' as the translation of the satellite 'in a dispute with Mr. Posner' from (73)

Step 5

After all satellites have been decomposed and translated, the algorithm, in a final step, composes the output by stitching together the obtained translations in the target locations found by the SV translations After step 1, we found the relative ordering of satellites around the pivot as shown in (74):

$$
\begin{equation*}
\left[\mathrm{SV}_{A D J 1}^{\prime}\right]\left[\mathrm{SV}_{A R G 1}^{\prime}\right] \cdot[\mathrm{pivot}]\left[\mathrm{SV}_{A D J 2}^{\prime}\right] \tag{74}
\end{equation*}
$$

By placing the translations of the satellites in their correct slot, we obtan the final result in (75):
"Uno semana después, Leonard"H Roberts, presidente y funcionạio en jefe ejecutivo de Arby's, fue despedido en una dısputa coń el Sr. Posner.'

The result in (75) improves on the original translation of the baselne MT system in (66), since the reduction of syntactic complexity forced the baseline MT system to correctly translate 'fired' as 'despedido' instead of the erroneous'"disparado'.

5.3 Trañōooster Mârk II

A precondition for the algorithm in Section 5.2 .8 to function correctly $1 s$ that the transla-
 translation of the pivot pivot ${ }^{\prime}$ is treated' as an indivisible unit with respect to which the placement of the satéllites in target is calculated:
$\left[S V_{A R G_{1}}\right] .\left[S V_{A R G_{l}}\right] \operatorname{pvoot}\left[S V_{A R G_{l+1}}\right] \ldots\left[S V_{A R G_{l+r}}\right] \rightarrow$
$\left[S V_{A R G_{1}}^{\prime}\right] \quad\left[S V_{A R G_{l}}^{\prime}\right] \operatorname{pivot}^{\prime}\left[S V_{A R G_{l+1}}^{\prime}\right] \ldots\left[S V_{A R G_{l+n}}^{\prime}\right]$
where $S V_{A R G_{\imath}}$ is the simpler string substituting $A R G_{\imath}(1 \leq \imath \leq l+r)$.
This approach would lead to problems in sentences in which the translation of the pivot is split in two or more parts, as is illustrated in (77), translated from English into German by LogoMedia:
(77) [The man] $]_{S V_{A R G_{1}}}$ [has eaten $]_{p v v o t}[\text { an apple }]_{S V_{A R G_{2}}} . \rightarrow[\text { Der Mann] }]_{S V_{A R G_{1}}^{\prime}}[\text { hat }]_{p z v o t_{1}}^{\prime}$ [einen Apfell] ${ }_{S V_{A R G_{2}}}^{\prime}$ [gegessen] $]_{\text {pvvot }_{2}}^{\prime}$.

In the construction in (77), typical of most Germanic languages, the pivot [has eaten] ${ }_{\text {prvot }}$ is split in two parts in target ([hat $)_{p v o t_{1}}^{\prime}$ and [gegessen] ${ }_{p v v o t_{2}}^{\prime}$), which makes it impossible to determine the location of the translation of the satellites according to the algorithm in Section 5.2.8. In order to be able to handle cases with a split pivot translation, we implemented an alternative, simplified version of the $\mathrm{TB}_{\text {MarkI }}$ algorithm, relying solely on string replacements of satellite SVs in target.

5.3.1 Mark I vs. Mark II

The flattening of the input tree into a TransBooster tree with one pivot and several satellite nodes proceeds in the same manner as explained in Section 4.2.1 on page 40, resulting in the construction represented in Figure 5 12:

Figure 5.12: Input Chunk S into decomposition algorithm of $\mathrm{TB}_{\text {MarkII }}$

Instead of working with two substitution skeletons, one for arguments and one for adjuncts (cf Section 4.24 on page 44), only one skeleton is constructed, in which a number of satellites are substituted. The exact nature of the satellites to be substituted is determined before a TransBooster run by setting parameters regarding its syntactic category and the number of its leaf nodes. The other satellites remain unchanged in
the skeleton. For example, in (78), SAT_{1} and SAT_{l+r} are substituted by their SV. The remainder of the skeleton consists of the pivot and the original coverage of the other satellites.

$$
\begin{equation*}
\left[S V_{S A T_{1}}\right] \ldots\left[S A T_{l}\right] \text { pivot }\left[S A T_{l+1}\right] \ldots\left[S V_{S A T_{l+r}}\right] \tag{78}
\end{equation*}
$$

The string in (78) is sent to the baseline MT engine, leading to the translation in (79):

$$
\begin{equation*}
\mathrm{XXX}\left[S V_{S A T_{1}}^{\prime}\right] \mathrm{YYY}\left[S V_{S A T_{++}}^{\prime}\right] \mathrm{ZZZ} \tag{79}
\end{equation*}
$$

where XXX, YYY and ZZZ are sequences of strings comprising the translation of the pivot and the satellites that have not been substituted.

As an example, consider the sentence in (80):
'Her friend David, whose parents kept reminding him he was unwanted, slept on a narrow bed wedged into her parents' bedroom, as though he were a temporary visitor.'

In a scenario in which we want to substitute only NP and PP satellites with a lexical coverage greater than 4 words by an SSV, the flattened TransBooster tree in (81) would lead to the skeleton in (82):
(81) '[Her friend David, whose parents kept reminding him he was unwanted, $]_{A R G 1}[\text { slept }]_{\text {prvot }}$ [on a narrow bed wedged mto her parents' bedroom, $]_{A D J 1}$ [as though he were a temporary visitor $]_{A D J 2}$,
(82) '[The boy $]_{S S V_{A R G 1}}$ slept [in the house $]_{S S V_{A D J 1}}$ as though he were a temporary visitor.

The string in (82) is a real-world example of (78). The translation of this string by the baseline MT system is (83), which is an example of (79).
(83) '[El niño $]_{S S V_{A R G 1}}$ durmió [en la casa $]_{S S V_{A D J 1}}$ como si era una visita temporal.'

If the substituted satellites SAT_{1} and SAT_{l+r} are deemed simple enough for translation, they are embedded in a simplified context as described in Section 4.2.5 and sent to the baseline MT system for translation. If the substituted satellites SAT_{1} and SAT_{l+r} are deemed too complex for translation, the entire procedure is recursively applied to the satellites, i e. the satellite chunks themselves are decomposed into a pivot and satellites, which in turn are examined for translatability.

Let us suppose, for the sake of simplicity, that [Her friend David, whose parents kept reminding him he was unwanted, $]_{A R G 1}$ and [on a narrow bed wedged into her parents' bedroom, $]_{A D J 1}$ in (81) are considered ready for translation. By embedding both satellites in a static context and sending the resulting strings to the baselme MT system, we obtain the translations in (84).
(84) [Her friend David, whose parents kept reminding hum he was unwanted, $]_{A R G 1}$ [is sleeping. $]_{\text {context }} \rightarrow$ [Su amıgo David, cuyos padres guardaron recordarlo que era no deseado, $]_{A R G 1}^{\prime}[\text { está durmiendo. }]_{c o n t e x t}^{\prime}$

The man is sleeping] $]_{\text {context }}$ [on a narrow bed wedged into her parents' bedroom, $]_{A D J 1}$ $\rightarrow[\mathrm{El} \text { hombre está durmiendo }]_{\text {context }}^{\prime}$ [en una cama angosta calzada en el dormitorio de sus padres. $]_{A D J 1}^{\prime}$

Since we have established the translation of the SVs $\left[S V_{S A T_{1}}^{\prime}\right.$] and $\left[S V_{S A T_{l+r}}^{\prime}\right.$], either by early or by late MT access, we obtain the final result by replacing the translations of the SVs by the translations of the corresponding satellites in (79). In our example, we replace $[\mathrm{El} \text { nıño }]_{S S V_{A R G 1}^{\prime}}^{\prime}$ and [en la casa $]_{S S V_{A D J 1}^{\prime}}$ in (83) by [Su amıgo David, cuyos padres guardaron recordarlo que era no deseado, $]_{A R G 1}^{\prime}$ and [en una cama angosta calzada en el dormitorio de sus padres. $]_{A D J 1}^{\prime}$ respectively, leading to the final result in (85):
(85) [Su amıgo David, cuyos padres guardaron recordarlo que era no deseado, $]_{A R G 1}{ }^{\prime}$ durmió [en una cama angosta calzada en el dormitorio de sus padres.] ${ }_{A D J 1}$ como si era una visita temporal.'

Note that, contrary to the algorithm in $\mathrm{TB}_{\text {MarkI }}$, we do not explicitly distinguish between arguments and adjuncts, the reason being that recomposition in $\mathrm{TB}_{\text {MarkII }}$ relies only on string replacement and does not compose the output by placing the translations of the satellites in their appropriate target location with respect to the translation of the pivot, as is done in $\mathrm{TB}_{\text {MarkII }}$.

5.3.2 Algorithm

Figure 5.13 shows the sımplified TransBooster algorithm ($\mathrm{TB}_{\mathrm{MarkII}}$) in pseudo-code. The main differences between the original $\mathrm{TB}_{\text {MarkI }}$ algorithm in Figure 510 on page 91 and the simplified $\mathrm{TB}_{\text {MarkII }}$ algorithm in Figure 5.13 are:

```
Input = parsed sentence;
S = Tree data structure of Input;
Recursıve head/arg/adj annotation of nodes s;
QUEUE = {s};
While (QUEUE not empty) {
    Node N = shift QUEUE;
    If (N OK for translation) {
            translate N (in context);
    }
    else {
        flatten N into TransBooster tree;
            - Find pivot N;
            - find satellites N;
            substitute certain satellites;
            select candidates for recursion
            from substituted satellites;
            add candıdates to QUEUE;
    }
}
Recompose(S) where
Recompose (N) {
for (all substituted satellites of N) {
            if (satellite OK for translation) {
                replace SV satellite in translation skeleton
                with translation satellite;
            }
            else {
                recompose satellite,
        }
    }
}
```

Figure 5 13: The simplfied TransBooster algorithm ($\mathrm{TB}_{\text {MarkII }}$) in pseudocode.

1. Where $\mathrm{TB}_{\text {MarkI }}$ makes a distinction between argument and adjunct skeletons, $\mathrm{TB}_{\text {MarkII }}$ only uses one type of skeleton in which all satellites are replaced by their SVs.
2. During a run of $\mathrm{TB}_{\text {MarkII }}$, it is possible to determine which satellites are substituted and which are recursed into in a subsequent run. In $\mathrm{TB}_{\text {MarkI }}$, all satellites are substituted and all substıtuted satellites dominating a certain number of leaf nodes are candidates for recursion.
3. Recomposition in $\mathrm{TB}_{\text {MarkII }}$ is based on string replacement in the translated skeleton. Recomposition in $\mathrm{TB}_{\text {MarkI }}$ is performed by 'stitching together' the retrieved translations of all satellites around the translation of the pivot.

The advantages of $\mathrm{TB}_{\text {MarkII }}$ over $\mathrm{TB}_{\text {MarkI }}$ are: (i) $\mathrm{TB}_{\text {MarkII }}$ is able to deal with split pivots in target, and (ii) in $\mathrm{TB}_{\text {MarkII }}$, it is possible to specify exactly which satellites are to be substituted, whereas in $\mathrm{TB}_{\text {MarkI }}$, all satellites that contain more that a certain number of leaf nodes are substituted. Unlıke $\mathrm{TB}_{\text {MarkI }}$, the simplified string insertion algorithm of $\mathrm{TB}_{\text {MarkII }}$ does not need a full syntactic parse as input, but only requires the correct identification of the substitutable constituents . Therefore, it ${ }^{2}$ is possible to use partial parsing or chunking to produce the input for $\mathrm{TB}_{\text {MarkII }}$, which could be an interesting alternative for input language for which no highoquality full parsers have been developed. The disadvantage of $\mathrm{TB}_{\text {MarkII }}$ with respect to $\mathrm{TB}_{\text {MarkI }}$ is that skeletons in $\mathrm{TB}_{\text {MarkII }}$ necessarily have to contain both arguments and adjuncts. Therefore, $\mathrm{TB}_{\text {MarkII }}$ provides less room for syntactic complexity reduction than $\mathrm{TB}_{\text {MarkI }}$.

5.4 Summary

This chapter contams the technical details of the 'TransBooster architecture We have explained both the standard TransBooster algorithm (Section 5.2 TransBooster Mark I) and the simplified TransBooster strategy (Section 53° TransBooster Mark İ), illustrating eảch concept, with one or more examples.

In general, TransBoooster tackles the complexity reduction problem by̆ (1) replacing complex constituents with simple substitution'variablẹs, (in) omitting adjuncts in argument s̊keletons (only for $\mathrm{TB}_{\mathrm{MarkI}}$), and (iii) sendıng only short, simple chunks for translation to the baseline MT systems

In the next chapter, we will analyse the experimental results of TransBöoster interfaced with three RBMT systems and two däta-driven systēms.

Chapter 6

Experimental Results and Analysis

6.1 Introduction

In this chapter we present and analyse the results of the TransBooster architecture interfaced with the baselme systems introduced in Chapter 3 Section 6.2 contains results on the RBMT systems LogoMedia, Systran and SDL. In Section 6 3, we analyse the results of TransBooster interfaced with two data-driven MT systems: a phrase-based SMT system and a marker-based EBMT system.

6.2 Results for Rule-based MT

6.2.1 Experimental setup

This section contains an analysis of the results of TransBooster interfaced with the three rule-based systems used in this thesis. We first explain TransBooster's program parameters and present automatic evaluation results of TransBooster Mark I with optimal parameter settings on the pre-parsed 800 -sentence test set described in Chapter 3. We argue that automatic evaluation metrics alone might not be sensitive enough to accurately measure the performance of TransBooster and include a manual evaluation on 200 sentences, randomly selected from the test set, for each of the baseline systems. We explain the most important areas of improvement with a number of examples and analyse why some sentences receive a worse translation despite a correct complexity reduction. We then investigate
the impact of parser-based input on the algorithm by parsing the 800 -sentence test set with (Charniak, 2000) and (Bikel, 2002). Finally, we analyse the results of the alternative, simplified TransBooster architecture ($\mathrm{TB}_{\text {MarkII }}$) presented in the previous chapter.

6.2.2 Experiments with TransBooster Mark I

TransBooster has five different program parameters, which were explained in previous chapters and are summarised in Table 6.1. Table 6.2 contains the optimal parameter settings per baselne MT engine These are the settings that were used to produce the automatic evaluation results reported in the following section.

Name	Value	Definition	Pages
p-ChunkLength	positive integer	Recursion threshold. Its value is the minimal number of lexical items that a node has to contan in order to be elıgible for decomposition (cf. Section 5.2.6)	50, 88, 93
p-PivotLength	positive integer	Threshold of pivot length Its value is the maximal number of lexical items that a pivot can contain, of constructed by Default Tree Flattening (cf. Section 5221).	73
p_PlvotAttach	positive integer	Its value is the maximal number of leaf nodes that a satellte, adjacent to the pivot, can contain in order to be included in the pivot (cf. Section 5.22)	72
p-P1votCheck	boolean	If true, verify the presence of the extracted pivot in the translation of the Dynamic Argument Skeleton and abort decomposition if not found. (cf. Section 5 2.7).	86, 90
p.SatDefault	string	If 'arg', the default assignment of a satellite is argument. Else it is adjunct. Argument-adjunct distinction based on CCG-induced rules takes preference over the default assıgnment (cf. Section 5.2 3)	78

Table 6 1: TransBooster program parameters, therr defintion and the pages in the thesis where they are explained

Name	LogoMedia	Systran	SDL
p_ChunkLength	5	4	5
p_PrvotLength	4	4	4
p_PivotAttach	2	3	2
P_PrvotCheck	true	true	true
p_SatDefault	'adj'	'adj'	'adj'

Table 6.2: Optımal parameter settings per baseline MT system.

6.2.2.1 Automatic evaluation

Table 6.3 contains the results for the optimal settings on the Penn-II Treebank 800 -sentence test set TransBooster improves between $0.7 \%-1.7 \%$ relative BLEU score, $0.5 \%-1.0 \%$ NIST score and $01 \%-0.5 \%$ GTM score, depending on the baseline MT system used. ${ }^{1}$

	BLEU	NIST	GTM
LogoMedıa	03140	7.3272	05627
TransBooster	0.3188	7.3709	0.5658
Percent of Baseline	101.5%	1005%	100.5%
Systran	03003	7.1674	05553
TransBooster	0.3024	7.2142	05582
Percent of Baseline	1007%	100.6%	100.5%
SDL	0.3039	7.2735	0.5657
TransBooster	0.3093	7.3490	0.5663
Percent of Baseline	$\mathbf{1 0 1 7 \%}$	101.0%	100.1%

Table 6.3 TransBooster results on the 800 -sentence test set with optimal parameters.

When carrying out the experiments, we realised that the reference translations for the 800 -sentence test set were slightly biased towards the baseline MT systems, since the translators who produced the reference set were presented the output of one of the baseline systems, in random order, and were asked to use parts of the MT output if they considered it useful, as was explained in Section 3.4.2. Given that four different baseline MT systems were used for $1 / 4$ of the entire test set (200 sentences), it would seem natural that the translations of each set of 200 sentences would contain a slight bias towards the baseline MT system used. To test this hypothesis, we removed the 200 possibly biased

[^34]sentences for LogoMedia, Systran and SDL from the original 800 -sentence test set, thus producing three 'unbiased' 600 -sentence reference test sets, one for each of the different baseline MT systems. For example, the 'unbiased' 600 -sentence test set for LogoMedia was constructed by removing the 200 sentences that were translated by LogoMedia from the original 800 -sentence test set that was presented to the translators.

	BLEU	NIST	GTM
LogoMedıa	0.2830	6.8555	05391
TransBooster	0.2907	6.9082	0.5442
Percent of Baseline	1027%	100.7%	1009%
Systran	02708	67244	05368
TransBooster	0.2745	6.7816	0.5399
Percent of Baseline	101.4%	1008%	100.6%
SDL	0.2823	6.8917	0.5473
TransBooster	0.2904	6.9878	0.5496
Percent of Baselne	1028%	1014%	100.4%

Table 6.4 TransBooster results on the three 600-sentence test sets with optimal parameters.

Table 6.4 contains the results of TransBooster on the three 'unbiased' 600 -sentence test sets. In comparison with Table 6.3, the relative BLEU scores increase from 101.5% to 102.7% for LogoMedia, from 100.7% to 101.4% for Systran and from 101.7% to 1028% for SDL NIST scores increase from 100.5% to 100.7% for LogoMedia, from 100.6% to 100.8% for Systran and from 101.0% to 101.4% for SDL. GTM scores increase from 100.5% to 100.9% for LogoMedia, from 100.5% to 100.6% for Systran and from 100.1% to 1004% for SDL.

In Section 52.7 on page 90, we explained the safety measure that enables TransBooster to have an input chunk translated m its entirety instead of proceeding with decomposition when there is an indication that something has gone wrong in the decomposition process. This back-off measure can be activated by setting the parameter p_PavotCheck Table 6.5 shows the impact on the scores in Table 6.3 of the deactivation of p-PivotCheck.

The results in Table 6.5 clearly show that the back-off procedure has a positive impact on the scores The size of this impact depends on the baseline MT system used. Backing off is more beneficial in the case of Systran and LogoMedia than it is for SDL. Since

	p_PIvotCheck	"BLEU	NIST	GTM
TB LogoMedia	true	0.3188	7.3709	0.5658
TB LogoMedia	false	0.3144	7.3049	0.5619
false vs. true		98.6%	991%	993
TB Systran	-true	0.3024	72142	05582
TB Systran	false	02934	7.1303	05534
false vs. true			97%	98.8%
TB SDL	true	0.3093	7.3490	0.1%
TB SDL \quad false	false	0.3089	7.3408.	0.5662
false vs. true		99.9%	999%	999%

Table 6 5: Impact of parameter p.PıvotCheck on the results in Table 6.3
we do not have access to the internal workings of the baseline MT systems, we can only make a calculated guess to why this is the case. It is likely that the SDL engine is less context-sensitive than the other two RBMT systems, i.e either its lexicon contáins fewer alternative translations or its analysis module produces parses with less variation than Systran and LogoMedia.

6.2.2.2 Manual Evaluation

Automatic evaluation measures are useful to compare MT systems of the same MTM paradigm when a lärge enough evaluation corpus is available (Callison-Burch et al ,2006): 解 As pointed out in Section $3: 4.1$ on page 27 , automatic metrics are not, and were never designed to be, a substutute for human assessment of translation quality. Moreover, simé all three automatic evaluation methods that we used are based on string-based sumilarity metrics, one can ask the question whether they are sensitive enough to adequately capture the differences between two relatively, similar MT outputs.

TransBooster ultimately relies on the output translations produced by a baseline MT system Therefore, although it is certainly possible for TransBooster to help the system improve its own translations (as has been shown in the numerous examples in this thesis), in rare cases the output of TransBooster and the baseline MT system will be radically different. In addition, the necessary back-off measures will lead TransBooster in a numtber of cases to suspend decomposition at the root node, in which cases TransBooster will produce exactly the same translation ás the baseline MT system. Table 6 contans the

settings as reported in Table 6.2) for the 800 -sentence test set In these cases (23.6% for LogoMedia, 294% for Systran and 20.4% for SDL), the input sentence is translated in its entirety by the baseline MT system.

	LogoMedia	Systran	SDL
Absolute Nr	189	235	163
$\%$ of 800 -sentence test set	23.6%	29.4%	20.4%

Table 66 Proportion of sentences per MT engine (in the optimal setting) in which the back-off procedure is invoked at the root node. Invoking back-off at the root will disable decomposition for the entire sentence, so that the entire input is translated as $\imath s$ by the baseline MT system.

Table 67 shows the percentages of lexical differences between the output of TransBooster and the baseline MT system for all 800 sentences in the test corpus and for the non-backed-off sentences (cf Table 66), i.e. the sentences in which the TransBooster decomposition algorithm was invoked. The figures in Table 6.7 only represent lexical differences and do not take word order into account: they were calculated by considering each TransBooster and baseline MT output sentence as a bag of words, as is shown in equation (6.1):

$$
\begin{equation*}
P=\frac{\# \text { words in TB output with no exact match in baselne MT output }}{\# \text { words } 1 \mathrm{~TB} \text { output }} \times 100 \tag{61}
\end{equation*}
$$

	LogoMedia	Systran	SDL
P for non-backed-off sentences	4.84%	541%	4.26%
P for all sentences	376%	373%	3.42%

Table 6.7: Percentages of different words between TransBooster and the baseline systems on the 800 -sentence test set. Figures are provided for the entire test set and for those sentences for which the back-off procedure was invoked. P is explained in Formula 6.1.

The figures in Table 6.7 show that invoking TransBooster, on average, will not radically change the lexical structure of the original output produced by the baselne MT system. Over the entire 800 -sentence test corpus, TransBooster produces 3.76% lexical differences
compared to the output of LogoMedia, 3.73% compared to Systran and 3.42% compared to SDL. Since these differences are not very pronounced, it would be prudent to corroborate the automatic evaluation scores with a manual evaluation.

The test set for the manual evaluation was constructed by randomly selecting 200 sentences out of the pool of sentences for which TransBooster produced a result different from the original baseline MT output. Table 6.8 contains the number of sentences for which the TransBooster decomposition procedure produced a result different from the baseline MT output. For LogoMedia, Systran and SDL, this pool contains 325,368 and 367 sentences respectively This means that for LogoMedia, Systran and SDL, TransBooster produced the same result as the baseline MT system in 475, 432 and 433 sentences respectively, either because the backoff procedure was invoked at the root node or because the actual TransBooster decomposition dıd not lead the baseline MT systems to change their onginal translation. We chose to select sentences for manual evaluation exclusively from the pool of different sentences of Table 6.8 in order to maximise the coverage of the manual evaluation, since it is straightforward to extrapolate the manual evaluation results on 200 sentences to approximate a manual evaluation of the entire 800 -sentence test set by taking into account the amount of sentences for which TransBooster produced the same result as the baseline MT systems, as we will explain below.

	LogoMedia	Systran	SDL
Nr. of different sentences	325	368	367
$\%$ of 800-sentence test set	40.6%	46.0%	459%

Table 6.8: Number of TransBooster output sentences that are different from the baseline MT system's output.

The resulting 600 evaluation units (3×200 different TransBooster vs. baseline MT outputs) were randomly distributed between eight native Spanish linguistic experts with previous experience in MT. The experts were asked to produce a comparative evaluation by selecting, for each evaluation unit they were presented ${ }^{2}$, the better translation (if any), both in terms of accuracy and fluency. We explained the rationale for this testing procedure in Section 3.4.1.5. Tables 6.9 and 610 show the results of the manual evaluation.

[^35]| | TB vs LogoMedia | | TB vs. Systran | | | TB vs SDL | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | B | S | W | B | S | W | B | S | W |
| Fluency $\%$ | 3650 | 38.50 | 2500 | 27.00 | 4800 | 2500 | 40.50 | 36.00 | 2350 |
| Accuracy $\%$ | 27.50 | 4850 | 24.00 | 2600 | 47.00 | 27.00 | 38.00 | 4050 | 21.50 |

Table 69 . Comparative results of the manual evaluation of TransBooster vs LogoMedia, Systran and SDL on 200 different output sentences B $=$ better, $\mathrm{S}=$ simılar, $\mathrm{W}=$ worse.

The results reported in Table 69 relate exclusively to the three 200-sentence test sets, each of which contained only sentences for which TransBooster and the baseline MT systems produced a different output. In order to estimate manual evaluation scores on the entire 800 -sentence test set, we extrapolated these scores by taking into account the number of sentences for which TransBooster and the baselme systems produced an identical output ${ }^{3}$ and by scaling the scores in Table 6.9 based on a 200 -item test set to the total amount of different sentences as reported in Table 6.8.

	TB vs. LogoMedia			TB vs. Systran				TB vs. SDL		
	B	S	W	B	S	W	B	S	W	
Fluency \%	1487	7488	10.25	1237	7613	11.50	1862	7063	10.75	
Accuracy \%	11.12	79.13	975	12.00	75.63	1237	1737	7275	9.88	

Table 6.10: Extrapolation of the manual evaluation results in Table 69 for the entire 800 -sentence test set. $\mathrm{B}=$ better, $\mathrm{S}=$ simular, $\mathrm{W}=$ worse

The results in Table 6.10 are an estimate of the manual evaluation on the entire 800 sentence test set. Overall, evaluators considered TransBooster to outperform LogoMedia and SDL both on fluency (14.87% better vs. 1025% worse for LogoMedia, 18.62% better vs. 10.75% worse for SDL) and accuracy (11.12% better vs. 9.75% worse for LogoMedia, 17.37% better vs. 9.88% worse for SDL). For Systran, the manual evaluations show a similar proportion of improved/worse translations, both for accuracy as for fluency.

In general, the differences between the better and worse percentages are slightly larger for fluency than for accuracy. In other words, fluency improves (a little bit) more than accuracy This could be explained by the fact that the linguistic expert evaluators were

[^36]asked to give a comparative evaluation of the sentence pairs Whle only a single lexical change or a slightly different word order can be sufficient to make a target sentence more fluent, this difference might not be sufficient to make the target sentence semantically more simılar to the original This might even be more so in the case of relatively poor baseline MT output. Given the highly specialised nature of the test sentences ${ }^{4}$, widecoverage RBMT systems like the ones used in the experiments are not likely to produce an output with a high degree of accuracy and fluency without specific lexical tuning to the subdomain being translated (Hutchms and Somers, 1992).

In the following section, we will analyse the type of phenomena that TransBooster improves on and explain why some sentences receive a translation which is worse than the original baseline output.

6.2.2.3 Analysis

By breaking down a complex input sentence into a number of simpler chunks and spoonfeeding them to the baseline MT system, TransBooster can help a baseline MT system mprove its own output. All observed improvements are due to TransBooster's complexity reduction, which allows the baseline MT system's analysis, transfer and generation modules to operate at optimal strength.

At the surface level, improvements can be divided into four different classes (i) better target language lexical selection; (ii) better source language homograph resolution; (iii) improved agreement; (iv) improved word order. The first class of improvements ('better target language lexical selection') corresponds to an improved treatment of polysemy: the same source word has different translations depending on the lexico-semantic context that the word was used in. For example, the word 'wood' can refer to the substance under the bark of a tree (in Spanish 'madera') or to a geographical area with many trees (in Spanish 'bosque'). The second class of improvements corresponds to a better treatment of homography in the source language. Homographs are different words that happen to share the same spelling. For examples, the word 'bark' as the sound of a dog (in Spanish 'ladrido') is completely unrelated to the word 'bark' as the covering of a tree (in Spanish

[^37]'corteza'). The third class ('correct inflection of the target word') and fourth class ('correct word order') are also due to the reduced complexity of the input chunks.

Although it is difficult to measure the exact weight of each of these four categories on the overall improvements, a manual analysis of the improvements showed that approximately 35% of the improvement was due to better target language lexıcal selection, 35% to improved word order in target, 20% to better source language homograph resolution and 10% to improved agreement. Table 6.11 contains a number of example sentences that illustrate each of the four above-mentioned improvements.

Original	On days hke Friday, that means they must buy shares from sellers when no one else is willing to.
Systran	El días tener gusto de viernes, ese los medıos que deben comprar partes de vendedores cuando mingunos otros están dispuestos a
TransBooster	En días como viernes, eso sıgnfica que deben comprar partes de vendedores cuando mingunos otros están dispuestos a
Analysis	Homōgraph resolution: 'like' analysed as spreposition (correct, 'comón') instead of as verb (erroneous 'tener gusto' de')' + 'means' correctly analysed as verb (correct 'significa') instead of as noun (erroneous 'los medios').
Origıal	This month, however, Businessland warned mestors that results for its first quarter ended Sept. 30 hadn't met expectations.
LogoMedıa	Este mes, sin embargo, Businessland advirtıó que los inversionstas a quienes los resultados por su prımer trimestre terminaron 30 de sep no hubieran cubierto las expectativas.
TransBooster	Este mes, sin embargo, Businessland advirtió a inversionistas que los resultados por su primer trimestre terminado 30 de sep no haban satisfecho las expectativas
Analysis	Lexical selection' 'TransBooster, improves the translation' of, 'met' 'by Lo'goMedia ('cubierto') to the better 'satisfecho' Homograph resolution;' ' 'that', is, correctly 'analysed as a complementiser' (, (que') instead of as a relative pronoun, ('a 'quienes'). Improved analysis: 'ended' is correctly interpreted as a complement past'participle' ('terminado') instead' of as a man verb ('terminaron').
Origmal	A Flemısh game show has as its host a Belgian pretending to be Italian
SDL	Un programa concurso Flamenco tiene como su anfitrión que un fingir belga ser italiano
TransBooster	Un programa concurso Flamenco tiene como su anfitrión a un belga fingiendo para ser italiano
Analysis	Improved analysis' 'pretendng' ${ }^{-}$s' correctly inflected, in the output produced by TransBooster ('finglendo') instead of the "pure'mfinitive form ('fingir')' produced by
	LogoMedıa. Word order • better word order in output' TransBooster
Orignal	"It's terrffic for advertisers to know the reader will be paying more," said Michael Drexler, national media director at Bozell Inc. ad agency.

Contrnued on next page

LogoMedıa	"Es excelente que anunciantes saber que el lector estar pagando mayor cantıdad", Michael Drexler director de medios de comunıcación nacional en Bozell Inc dijo Agencia de publicidad
TransBooster	"Es excelente que anunciantes sepan que el lector estará pagando mayor cantıdad," dijo Michael Drexler, drector de medros de comumicacin nacional en Bozell Inc. Agencia de publicidad
Analysıs	Inflection,' correct' inflection of érroneous' 'saber' (LogoMedıa) ${ }^{-} \rightarrow$ 'sepan' ' (Trañs-' Booster) and of the' erroneous' 'estar' (LogoMedna) \rightarrow 'estará' (TränsBoostēr).' Word Order" better 'word order in' output TransBooster (placement of 'dijo' ($=$ 'said')) which makes the TransBooster output much mōre fluent than LogoMedia,
Orıginal	For his sixth novel, Mr Friedman tried to resuscitate the protagonst of his 1972 work, "About Harry Towns"
LogoMedia	Para su sexta novela, el Sr Frıedman trató de resucitar al protagonısta de su 1972 trabajo, "Sobre Harry pueblos"
TransBooster	obra, "Sobre Harry pueblos"
Analysis	Lexical sélection' 'work' is correctly translated as 'obra' ('artistic work') instead off

Table 6.11. Examples of each of the four areas of TransBooster improvements. lexical selection, word order, agreement, homograph resolution

Complexity reduction, even when correctly executed, does not necessarnly lead to improvements. If the MT systems needs the entire syntactic structure of the original sentence, meluding adjuncts, to correctly generate the output, or if it relies on certain lexico-semantic information in omitted adjuncts for lexical selection, translations might worsen, as is shown by the examples in Table 6.12.

6.2.2.4 The impact of parser-based input

The results in Section 6.2 .2 were obtamed by using the 800 -sentence Penn-II human parseannotated sentences. If TransBooster is to be used as a wrapper application on top of an MT system in a real-world application, unseen input will have to be parsed into a Penn-II-like structure in a step previous to the TransBooster decomposition. Obvious candidates for the front-end parsing are current state-of-the art statistical parsers such as (Charniak, 2000) and (Bikel, 2002). ${ }^{5}$ Both parsers employ history-based, generative, lexicalised models and achieve results of almost 90% labelled f -score when tested on the trees in Section 23 of the Penn-II Treebank.

In order to quantify the impact of the use of parsing technology on the advantages

[^38]| Orıginal
 SDL
 TransBooster
 Analysis | A bus is the data highway withn a computer
 Un bus es la autopista de datos dentro de una computadora.
 Un autobús es la autopista de datos dentro de una computadora.
 The reduced complexity of the argument'skeleton 'A bus is the highway' leads the baseline, MT system' to translate 'bus' ' erroneously a's 'autobús' instead of 'the correct 'bus' (= 'busbar' in' a"computer')", SDL nieeds 'the presence' of '"data ihighway, tor 'computer' to co correctly tránslate 'bu's' |
| :---: | :---: |
| Origmal
 LogoMedıa
 TransBooster
 Analysis | One doubter is George Krug, a chemical-industry analyst at Oppenheimer \& Co and a bear on plastics stocks
 Un escéptico es George Krug, un analista químico - industria en Oppenhemer \& Co. y un bajista sobre acciones de plásticos
 Un escéptico es George Krug, un químico - analista industrial en Oppenhemer \& Co y un oso sobre acciones de plásticos
 At a certain point during the 'TransBooster decomposition, the string 'a bear on plas, tics stocks' is sent to the baselne MT system for translation" The lack of additional financial vocabulary leads LogoMedıa to translate 'bear' literally as 'oso' ($==$ 'bear' as a mammal) instead of the correct 'bajista' ($=$ 'bear' as a type of mnestor), |
| Original
 Systran
 TransBooster
 Analysis | In an unusual move, several funds moved to calm investors with recordings on therr toll-free phone lines
 En un movimiento anormal, algunos fondos cambiaban de lugar a la calma inversionistas con grabaciones sobre sus líneas de teléfonos de número gratuito
 En un movimento inusual, varios fondos movidos a los inversiomstas tranquilos con las grabaciones en sus líneas telefóncas gratis
 At a certann point durmg'the' TransBooster decomposition, the string' 'several funds, "moved to calm investors.' Is sent to the baseline' MT system for' translation.' Despitel the fact that this ' is a" correct, smplification of the orıg 'mal,"'more complex sentence," Systran translates 'move'd' e'rroneously' as a past participle modifier "'movidós') in-", stead of as the main verb of the original sentence ('cambiaban de lugar')', |

Table 6.12 Examples of sentences in which a correct complexity reduction leads to worse translation.
gained from TransBooster's complexity reduction, we repeated exactly the same experiments as reported in Section 62.2 .1, but instead of using the human parse-annotated structures of the Penn-II Treebank as input to our algorithm, we used the parser output of (Charniak, 2000) and (Bikel, 2002). Tables 6.13 and 6.14 show the results of this experiment.

When comparing the results in Tables 6.13 and 6.14 to the results in Table 6.3, we observe that the relative performance of TransBooster with respect to the baseline systems drops between $1.3-1.8 \%$ BLEU score, 0.7% NIST score and $0.4-06 \%$ GTM score when using (Charniak, 2000) and between $1.5-1.7 \%$ BLEU score, $05-0.6 \%$ NIST score and $0.6-1.0 \%$ GTM score when using (Bikel, 2002).

	BLEU	NIST	GTM
LogoMedia	03140	73272	05627
TransBooster	0.3140	7.3145	0.5632
Percent of Baseline	100.0%	998%	1000%
Systran	0.3003	7.1674	0.5553
TransBooster	02987	7.1643	0.5547
Percent of Baseline	99.4%	999%	99.9%
SDL	0.3039	72735	05657
TransBooster	03035	7.2974	05642
Percent of Baseline	99.9%	100.3%	997%

Table 6.13: TransBooster results on 800 -sentence test set, parsed with (Charniak, 2000)

	BLEU	NIST	GTM
LogoMedia	0.3140	7.3272	0.5627
TransBooster	0.3141	7.3203	05601
Percent of Baseline	1000%	99.9%	99.5%
Systran	0.3003	71674	0.5553
TransBooster	02973	7.1720	05542
Percent of Baseline	99.0%	100.0%	998%
SDL	03039	7.2735	0.5657
TransBooster	03044	7.3076	0.5620
Percent of Baseline	100.2%	100.5%	99.3%

Table 6 14. TransBooster results on 800 -sentence test set, parsed with (Bikel, 2002)

This decrease in performance is caused by the inevitable noise introduced by the use of statistical parsers. Despite f-score figures of both (Charniak, 2000) and (Bikel, 2002) of almost 90%, the mislabelling of one single constituent by the parser can be sufficient to lead to an erroneous TransBooster decomposition, which might cause wrong chunk translations by the baseline systems.

For example, consider the parses of the chunk 'a Belgian pretending to be Italian' in Figures 61 and 6.2. The selected chunk is part of the evaluation sentence 'A Flemish game show has as its host a Belgian pretending to be Italian' in Table 6.11, in which TransBooster's improvements over the baseline translation by SDL are explaned.

Apart from the differences between Figures 6.1 and 6.2, the parser output of (Bikel, 2002) is exactly the same as the human parse-annotated Penn-II version of the whole sentence. On this sıngle sentence, (Bikel, 2002) achieves labelled bracketing precision/recall figures of 80% and 66.67% repectively. If instead of the human-parse annotated version of

Figure 61 The human parse-annotated structure of the chunk 'a Belgian pretending to be Italian' in the Penn-II Treebank

Figure 62 . The parser output of (Bikel, 2002) of the chunk 'a Belgian pretendıng to be Italan'
the sentence, the parser output of (Bikel, 2002) is provided as input into the decomposition algorithm, TransBooster produces the result in (86):
(86) 'Un programa concurso Flamenco tiene como su anfitión un fingir belga para ser italano.'

This time, the result in (86) is not substantially better than the output produced by SDL. The main reason for this is the parser's erroneous analysis of 'a Belgian pretending' as an $N P$, which leads the decomposition algorithm to send the entire chunk to SDL, leading to the nonsensical translation *'un fingir belga'.

As explaned in Section 6.2.2.1, the reference set of human translations contains a slight bias towards the baseline MT systems Therefore, we decided to repeat the experiment on the same three unblased 600-sentence test sets of Section 6.2.2.1. Tables 6.15 and 616 contain the results of this experiment.

	BLEU	NIST	GTM
LogoMedıa	0.2830	6.8555	05391
TransBooster	02861	6.8602	0.5422
Percent of Baseline	101.1%	100.1%	$\mathbf{1 0 0 . 6 \%}$
Systran	0.2708	6.7244	0.5368
TransBooster	02722	6.7500	0.5385
Percent of Baseline	1005%	100.4%	100.3%
SDL	02823	68917	05473
TransBooster	0.2848	6.9389	0.5477
Percent of Baseline	100.9%	100.7%	1000%

Table 6 15: TransBooster results on the three 600 -sentence test sets, parsed with (Charniak, 2000)

	BLEU	NIST	GTM
LogoMedia	0.2830	6.8555	0.5391
TransBooster	0.2848	6.8529	0.5379
Percent of Baseline	1006%	999%	998%
Systran	0.2708	6.7244	0.5368
TransBooster	02696	67409	05365
Percent of Baseline	99.6%	100.2%	99.9%
SDL	0.2823	6.8917	0.5473
TransBooster	0.2855	69527	0.5456
Percent of Baseline	101.1%	100.9%	99.7%

Table 616 TransBooster results on the three 600 -sentence test sets, parsed with (Bikel, 2002)

When comparing the results in Tables 6.15 and 6.16 to the results in Table 6.4, we observe that the relative performance of TransBooster with respect to the baseline systems drops between 0.9-1 9\% BLEU score, 0.4-0.7\% NIST score and 0.3-0.4\% GTM score when using (Charniak, 2000) and between 1.7-2.1\% BLEU score, $0.5-0.8 \%$ NIST score and $0.7-$ 1.1\% GTM score when using (Bikel, 2002).

Overall, parsing with (Charniak, 2000) gives a slightly better result than parsing with (Bikel, 2002) The results in Table 6.15 show that, when parsing the input with (Charniak, 2000), the advantages achieved by the TransBooster's complexity reduction are sufficient to outdo the decrease in performance induced by the parser errors.

6.2.3 Experiments with TransBooster Mark II

All the previously reported results in this chapter refer to the main TransBooster architecture ($\mathrm{TB}_{\text {MarkI }}$). As explained in Section 5.3 on page 95 , an alternatıve, simplified algorithm ($\mathrm{TB}_{\text {MarkII }}$) was implemented, mainly in order to handle split pivots. The main difference between both approaches is that $\mathrm{TB}_{\text {MarkII }}$ relies solely on string replacements of satellite SVs in target rather than recursively stitching together chunk translations in target, as is the case for $\mathrm{TB}_{\text {MarkI }}$.

During development, we noticed that evaluation scores for $\mathrm{TB}_{\text {MarkII }}$ consistently lagged behind $\mathrm{TB}_{\text {Markr }}$. This was mainly due to two factors: (i) the main advantage of $\mathrm{TB}_{\text {MarkII }}$ over $\mathrm{TB}_{\text {MarkI }}$ is that $\mathrm{TB}_{\text {MarkII }}$ is able to treat split pivots, a phenomenon common in most Germanc languages. Since we perform our experments on English \rightarrow Spanish, this advantage is not visible; (ii) the algorithm in $\mathrm{TB}_{\text {MarkII }}$ does not allow for adjunct constituents to be omitted in the skeletons sent to the baseline MT systems. Therefore, for the language pair English \rightarrow Spanish, the use of $\mathrm{TB}_{\text {MarkII }}$ leads to less complexity reduction than $\mathrm{TB}_{\text {MarkI }}$.

Although $\mathrm{TB}_{\text {MarkII }}$ was not developed to the same extent as $\mathrm{TB}_{\text {MarkI }}$, we have included the latest automatic evaluation scores of $\mathrm{TB}_{\text {MarkII }}$ with respect to the three baseline RBMT systems in Table 6.17. As is clear from these results, $\mathrm{TB}_{\text {MarkII }}$ is not able to outperform the baseline MT systems.

	BLEU	NIST	GTM
LogoMedia	0.3140	73272	05627
TransBooster	03100	7.2862	0.5591
Percent of Baseline	987%	994%	99.4%
Systran	0.3003	7.1674	0.5553
TransBooster	02967	7.1560	05548
Percent of Baseline	98.8%	99.8%	99.9%
SDL	0.3039	7.2735	0.5657
TransBooster	0.3021	7.2653	0.5636
Percent of Basehne	99.4%	99.9%	99.6%

Table 6.17: TransBooster Mark II results on the 800 -sentence test set.

6.2.4 TransBooster and Rule-based MT: conclusion

In Section 6.2, we have seen that the output produced by TransBooster shares many characteristics of the baseline MT output, but improves on lexical selection, homograph resolution, word order and agreement features. Most of the improvements are triggered by complexity reduction of the input. Most of the cases in which TransBooster causes the deterioration of the original output are due to context distortion.

Of the three baseline RBMT systems used, TransBooster outperforms two systems (SDL and LogoMedia) and achieves similar results compared to the third one (Systran), both in terms of automatic evaluation and of manual evaluation results. One should be careful not to draw definite conclusions about the quality of an MT system based on relative TransBooster scores alone For example, that fact that TransBooster achieves only comparable results with respect to Systran, while it clearly outperforms the two other RBMT systems, might lead one to conclude that Systran is the better of the three RBMT systems for the language pair used for evaluation. This conclusion is not correct. According to the automatic evaluation scores in Table 6.3 and based on our own experience with the produced MT output, the better system of the three was LogoMedia The main reason why TransBooster achieved better relative scores vs. LogoMedia than vs. Systran is that most of the development was done based on output produced by LogoMedia.

The complexity reduction offered by TransBooster can only lead to an improved RBMT output if the baseline system possesses a transfer lexicon that contains translation alternatives to account for homography and polysemy phenomena. When such a lexicon is coupled to a shallow analysis module, as is the case for most commercial RBMT systems, TransBooster has the potential to improve the original translation quality.

6.3 Results for Data-driven MT

In Section 6.2, we showed results of TransBooster interfaced with three commercial widecoverage RBMT systems. This section contains experimental results of TransBooster interfaced with two data-driven MT systems, representing the two most important datadriven MT research paradigms at the moment. SMT and EBMT,

6.3.1 TransBooster and SMT

6.3.1.1 Experimental setup

The baseline MT system for our experiments ${ }^{6}$ was a phrase-based SMT system (English \rightarrow Spanish) that we constructed using the Giza++ alignment tool (Och and Ney, 2003) ${ }^{7}$, the SRI Language Modelng Toolkit(Stolcke, 2002) ${ }^{8}$ and the Pharaoh decoder (Koehn, 2004) ${ }^{9}$. We used an interpolated tri-gram language model with Kneser-Ney discounting (Kneser and Ney, 1995). Since the SMT system was constructed with the Pharaoh decoder, we will refer to the entire SMT system as Pharaor in the rest of this section.

The data used to train the system was taken from the English-Spanish section of the Europarl corpus (Koehn, 2005). From this data, 501K sentence pairs were randomly extracted from the designated training section of the corpus and lowercased. Sentence length was limited to a maximum of 40 words for both Spanish and English, with sentence pairs having a maximum relative sentence length ratio of 1.5. From this data we used the method of (Och and Ney, 2003) to extract phrase correspondences from GIZA++ word alıgnments.

Following this method, word alignment is performed in both source-target and targetsource directions. These uni-directional alignments are then combined and the intersection is taken. These highly confident word alignments are then extended by iteratively adding adjacent alignments present in the union of the unidirectional allgnments. In a final step, alignments are added that occur in the union, where both the source and target words are unaligned. Source-target phrase pairs can then be extracted based on these alignments, with probabilities estimated from relative frequencies For our experiments phrase length was limited to 6 words.

For testing purposes two sets of data were used, each consisting of 800 English sentences. The first set was randomly extracted from section 23 of the WSJ section of the Penn-II Treebank; the second set consists of randomly extracted sentences from the test

[^39]section of the Europarl corpus, which had been parsed with (Bikel, 2002). ${ }^{10}$
We decided to use two different sets of test data instead of one because we are faced with two 'out-of-domain' phenomena that have an influence on the scores, one affecting the TransBooster algorithm, the other the phrase-based SMT system. On the one hand, the TransBooster decomposition algorithm performs better on 'perfectly' parse-annotated sentences from the Penn Treebank than on the output produced by a statistical parser such as (Bikel, 2002), which introduces a certain amount of noise. On the other hand, Pharaoh was tramed on data from the Europarl corpus, so it performs much better on translating Europarl data than out-of-domain Wall Street Journal text.

Parameter	Value
p-ChunkLength	13
p-PIvotLength	4
p-PivotAttach	3
p-PivotCheck	true
p_SatDefault	'adj'

Table 6 18: Optimal parameter settings for the TransBooster-Pharaoh interface

Table 618 contains the optimal parameter settings for the TransBooster-Pharaoh interface. The main difference with the optimal settings in Table 6.2 is the value of p_ChunkLength. For TransBooster-Pharaoh, only chunks containing more than 13 lexical items are subjected to the decomposition process. The fact that the optimal value of p_ChunkLength is 13 for the SMT system compared to 4 and 5 for the RBMT systems ${ }^{11}$ might reflect the fact that SMT systems are better at handling local phenomena, at constituent level, than at global reordering issues, which require more syntactic knowledge.

[^40]
6.3.1.2 Results

Automatic Evaluation Table 6.19 contains a comparison between TransBooster and Pharaoh on the Europarl test set. TransBooster improves on Pharaoh with a statistically significant relative improvement of 3.3% in BLEU and 0.6% in NIST score. Surprisingly, the GTM score obtaned by TransBooster is 0.4% lower than Pharaoh's results. This is most probably due to an issue with punctuation. Contrary to BLEU/NIST, which treat punctuation marks as separate tokens, GTM does not distinguish punctuation marks as separate tokens. Since TransBooster joins the end-of-sentence punctuation mark to the final letter of the output in a post-processing step, this can lead to a number of mismatches in the case of a fully tokensed reference translation and an evaluation metric that does not use tokenisation as a preprocessing step. After removing punctuation in both reference and output translations, we observed a rise of the relative GTM scores from 99.6% to 100.1%

	BLEU	NIST	GTM
Pharaoh	01986	5.8393	05439
TransBooster	0.2052	5.8766	0.5419
Percent of Baseline	103.3%	100.6%	99.6%

Table 6.19: TransBooster vs Pharaoh Results on the 800 -sentence test set of Europarl

For the same reasons mentioned before in Section 6.2.2.2, it is necessary to corroborate these automatic evaluation scores with a manual evaluation, which we will extend on in the following section.

	BLEU	NIST	GTM
Pharaoh	0.1343	51432	05054
TransBooster	0.1379	51259	0.4954
Percent of Baseline	102.7%	99.7%	98%

Table 6.20. TransBooster vs. Pharaoh: Results on the 800 -sentence test set of the WSJ

The comparison between TransBooster and Pharaoh on the Wall Street Journal test set is shown in Table 6.20. As with Europarl, TransBooster improves on Pharaoh according
to the BLEU metric, but falls slightly, short of Pharaoh's NIST and GTM scores. In contrast to the scores on the Europarl corpus, these results are not statistically significant according to a resampling test (on 2000 resampled test sets) with the toolkit described in Zhang and Vogel (2004) ${ }^{12}$ Although the input to TransBooster in this case are near to perfect human parse-annotated sentences, we are not able to report statistically significant improvements over Pharaoh This can be explained by the fact that the performance of phrase-based SMT systems on out-of-domain text is very poor (items are left untranslated, et".) as is described in (Koehn, 2005) and indicated by the much lower absolute test.scores of Table 620 in comparison to table 6.19. In other words, in this case it is more difficult for 'TransBooster to help the SMT system to improve on its own output through syntactic guidance.

Manual Evaluation With the optimal'settings shown in Table 6.18, TransBooster produced a result different from Pharaoh for 185 sentences ($=23.12 \%$) in the 800 -sentence Europarl- test set. The reason for' this high' back-off percentager is⿱ 'the fact that' the optimal results are produced by only decomposing chunks that dominate 13 or more leaf nodes

The 185 sentences were randomly distributed between the same eight lingustic experts mentioned earler who were asked to evaluate the sentences followng the criteria outlined in Section 6.2.2 2 Table 6.21, contains the results of the manual evaluation. These'results were extrapolated to the entire 800 -sentence test set by taking into account the $615^{\prime \prime}$ sentences for-which. TransBooster and Pharaoh produced an identical output. The results of this extrapolation âre shown" in Table 6.22. Overall, evaluators considered TransBooster to outperform Pharaoh both on fluency (10.13% better vs. 3.5% worse) and accuracy ($10.88 \% \%^{\circ}$ better vs. 3.0% worse

Surprisingly, when comparing these results in to the results in Tables 69 and 610 ,
 systems. "This can be explained by the fact that'the baseline ${ }^{\prime \prime}$ SMT' system that we constructed operates whthout aný êxplıcit syntactic 'knowledge and benefits more from"TransBooster,s syntactice gurdance than RBMTV systems. In addition, one should take into' account that since PHARAOHA is melely a 'vamlla' baseline phrase-based SMT system, its

[^41]overall output quality is significantly lower than the output of the RBMT systems, as can be deduced from comparing the SMT scores in Tables 6.19 and 6.20 to the RBMT scores in Table 6.3, which might make it easier to improve on than the better performing RBMT systems.

	TB vs. Pharaoh		
	B	S	W
Fluency	43.8%	41.0%	15.2%
Accuracy	470%	40.0%	13.0%

Table 6.21. Comparative results of the manual evaluation of TransBooster vs. Pharaoh. $\mathrm{B}=$ better, $\mathrm{S}=$ similar, $\mathrm{W}=$ worse.

	TB vs Pharaoh		
	B	S	W
Fluency	10.13%	86.37%	35%
Accuracy	1088%	86.12%	3.0%

Table 6.22: Extrapolation of the manual evaluation results in Table 6.21 for the entire 800 -sentence test set. $\mathrm{B}=$ better, $\mathrm{S}=$ similar, $\mathrm{W}=$ worse.

In the next section, we analyse the differences between the output translations of Pharaoh and TransBooster, and provide a number of example translations.

6.3.1.3 Analysis

The majority of improvements (70\%) by invoking the TransBooster method on Pharaoh are caused by a better word order. This is because it is syntactic knowledge and not a linguistically limited language model that guides the placement of the translation of the decomposed input chunks. Moreover, smaller input chunks, as produced by TransBooster and translated in a minimal context, are more likely to receive correct internal ordering from the SMT language model.

The remaining 30% of improvements resulted from a better lexical selection. This is caused not only by shortening the input, but mainly by TransBooster being able to separate the input sentences at points of least cohesion, namely, at major constituent boundaries. It is plausible to assume that probability links between the major constituents are weaker than inside them, due to data sparseness, so translating a phrase in the context of only the

Table 6.23: Examples of improvements over Pharaoh word order and lexical selection.
heads of neighbouring constituents might actually help. Table 6.23 illustrates the main types of improvements with a number of examples.

6.3.2 TransBooster and EBMT

The experiments reported in this section were mainly carried out by my colleagues K . Owczarzak and D. Groves in preparation for (Owczarzak et al., 2006) at the 7th Biennial Conference of the Association for Machıne Translation in the Americas. They are included in this dissertation because they are based on the TransBooster technology and complement the SMT experiments in Section 6.3 .1 with an insight into the performance of TransBooster on an EBMT baseline system. ${ }^{13}$

6.3.2.1 Marker-based EBMT

The baseline EBMT system used in the experiments is the NCLT's marker-based MATrEx system (Armstrong et al., 2006). Marker-based EBMT is an approach to EBMT which uses a set of closed-class words to segment aligned source and target sentences and to derive an additional set of lexical and phrasal resources. This approach is based on the 'Marker Hypothesis' (Green, 1979), a unıversal psycholinguistic constraint which posits that languages are 'marked' for syntactic structure at surface level by a closed set of specific lexemes and morphemes. In a preprocessing stage, the source-target aligned sentences are segmented at each new occurrence of a marker word (e.g. determiners, quantifiers, conjunctions etc).

In order to describe this resource creation in more detail, consider the English-Spanish example in (87):
(87) 'You click on the red button to view the effect of the selection.' \rightarrow 'Usted chquea en el botón rojo para ver el efecto de la selección,

The first stage involves automatically tagging each closed-class word in (87) with its marker tag, as in (88):
(88) '<PRON> You click $<$ PREP $>$ on $<$ DET $>$ the red button $<$ PREP $>$ to view $<$ DET $>$ the effect $<$ PREP $>$ of $<$ DET $>$ the selection' \rightarrow '<PRON $>$ Usted cliquea $<$ PREP> en $<$ DET $>$ el botón rojo <PREP> para ver <DET> el efecto $<$ PREP $>$ de <DET> la selección.'

Taking into account marker tag information (label, and relative sentence position), and

[^42]lexical similarity (via mutual information), the marker chunks in (5) are automatically generated from the marker-tagged strings in (88):
(89) a You click <PREP>: <PRON> Usted cliquea
b <PREP> on the red button <PREP> en el botón rojo
c. <PREP> to view : <PREP> para ver
d. <DET> the effect <DET> el efecto
e. <PREP> of the selection <PREP> de la selección

The marker set used in the experiments consisted of determiners, prepositions, conjunctions, personal pronouns, possessive pronouns, quantifiers and wh-adverbs, following (Gough and Way, 2004; Gough, 2005).

6.3.2.2 Experimental setup

The baseline EBMT system made use of the Marker-Based methods described in Section 6.3.2.1 to extract the chunk-level lexicon For English, information from the CELEX database ${ }^{14}$ was used to create a list of marker words used during segmentation and alignment The marker word list for Spanish was created by merging two stop-word lists generously supphed by colleagues at the Polytechnic University of Catalunya (UPC) and the University of Barcelona (UB).

After chunking, the resulting source and target marker chunks were aligned using a best-first dynamic programming algorithm, employing chunk position, word probability, marker tag and cognate information to determine sub-sentential links between sentence pairs.

In addition to these chunk algenments, statistical techniques were used to extract a high quality word-level lexicon (which in turn was used during the chunk alignment process). Following the refined alignment method of Och and Ney (2003), the GIZA ++ statistical word algnment tool was used to perform source-target and target-source word alignment. The resulting 'refined' word alignment set was then passed along with the chunk database to the same system decoder as was used for the SMT experiments (Pharaoh, (Koehn, 2004)). Since Pharaoh was used as the decoder, the MaTrEx system is more an 'example-

[^43]based SMT system' (in terms of the terminology of (Groves and Way, 2005, 2006)) than a 'pure' EBMT system as in (Gough and Way, 2004; Gough, 2005).

The EBMT system was trained on a subsection of the English-Spanish section of the Europarl Corpus The corpus was filtered based on sentence length (maximum sentence length set at 40 words for Spanish and English) and relative sentence length ratio (a relative sentence length ratio of 15 was used), resulting in 958 K English-Spanish sentence pairs.

The experiments reported in the next section are based the same testing procedure as the one employed for the SMT experiments, as we explained in Section 6.3.1.1 on page 118. Two test sets were used, each consisting of 800 English sentences. The first set was randomly extracted from Section 23 of of the WSJ section of the Penn-II Treebank. The second set contained randomly extracted sentences from the test section of the Europarl corpus, previously parsed with (Bikel, 2002) The reason for using two different test sets for the EBMT experiments is to account for the same two 'out-of-domain' phenomena that we explained in Section 6.3.1.1.

6.3.2.3 Results

Automatic Evaluation Tables 6.24 and 6.25 contain the automatic evaluation results of TransBooster vs. the EBMT system on the Europarl and test sets respectively. The evaluation was conducted after removing punctuation from the reference and translated texts, and, in the case of the Europarl test set, after removing 59 sentences containing hyphenated compounds that were incorrectly parsed by (Bikel, 2002), thereby omitting a number of sentence-level errors introduced by the parser which could have a negative impact on the TransBooster scores

On the Europarl test set, TransBooster improves on the EBMT baseline system with 1.0% relative BLEU score and 0.2% relative NIST score. On the WSJ test set, TransBooster achieves relative improvements of 3.8% BLEU score and 0.5% NIST score.

Manual Evaluation In order to corroborate the automatic evaluation scores, 100 sentences were randomly extracted from the Europarl test set. Their baseline translation was compared with that assisted by TransBooster by a human judge with near-native Span-

	BLEU	NIST
EBMT	0.2111	5.9243
TransBooster	0.2134	59342
Percent of Baselne	101%	1002%

Table 6 24: TransBooster vs EBMT•Results on the 800 -sentence test set of Europarl

	BLEU	NIST
EBMT	0.1098	49081
TransBooster	01140	49321
Percent of Baseline	1038%	1005%

Table 6.25: TransBooster vs. EBMT Results on the 800 -sentence test set of the WSJ
ish proficiency according to the same manual evaluation guidelines used throughout this dissertation and explained in Section 3.4.1.5 According to the evaluation, out of the 100 sentences, TransBooster improved the fluency of the translation in 55% of the cases, and the accuracy of translation in 53% of the cases

6.3.2.4 Analysis

Many of the improvements by TransBooster are caused by a better word order in target. Similarly to what we saw in the evaluation on the Pharaoh baseline SMT system in Section 6.3.1.3, the syntactic guidance of TransBooster helps the baselne EBMT system to overcome some of its syntactic limitations.

The other man factor contributing to TransBooster's improvements is a better lexical selection by the baselne MT system. This can be explained by the fact that the matching procedure of the baseline EBM'T system works better when it operates on the previously chunked input presented by TransBooster than when it is confronted with long input strings which are more likely to be wrongly segmentated by the baseline system. In other words, TransBooster does an important part of input segmentation for the EBMT system and makes sure that the translated chunks are assembled correctly. Table 6.26 illustrates the main types of improvements with a number of examples
$\left.\begin{array}{|l|l|}\hline \text { Orıgal } \\ \text { EBMT } & \begin{array}{l}\text { women have decided that they wish to work, that they wish to make their work } \\ \text { compatible with therr famly life } \\ \text { hemos decidido su deseo de trabajar, su deseo de hacer su trabajo compatible con su } \\ \text { vida famlar, empresarias }\end{array} \\ \text { mujeres han deciddo su deseo de trabajar, su deseo de hacer su trabajo compatible }\end{array}\right\}$

Table 6.26: Examples of improvements over the EBMT baseline: word order and lexical selection.

6.4 Summary

In this chapter, we have analysed the experimental results of TransBooster interfaced with three commercial rule-based systems and two data-driven systems.

For the parse-annotated Penn-II 800-sentence test set, both automatic evaluation and manual evaluation show that TransBooster outperforms two of the three RBMT systems
(SDL and LogoMedia) and achieves similar results compared to the third system (Systran). When parsing the test set with (Charniak, 2000) and (Bikel, 2002), performance drops slightly, as expected, but the gains made by TransBooster's complexity reduction are strong enough to resist the noise introduced by (Charniak, 2000) when evaluated on the unbiased 600 -sentence test sets. The complexity reduction leads the baseline systems to improve on lexical selection (35\%), word order (35\%), homograph resolution (20\%) and agreement (10%)

When interfaced with a phrase-based SMT system, both automatic and manual evaluation scores on a 800 -sentence test set extracted from the Europarl corpus clearly show that TransBooster outperforms the SMT system. The additional syntactic guidance of TransBooster leads the SMT system to improve on both word order (70\%) and lexical selection (30\%). Similar improvements can be seen when TransBooster is interfaced with a marker-based EBMT baseline system.

Overall, both automatic evaluation scores as manual evaluation results seem to indicate that data-driven MT benefits more from the TransBooster technology than RBMT. There are two possible explanations for this: (i) data-driven MT systems benefit more from TransBooster's syntactic guidance than rule-based systems, and (ii) the baseline datadriven systems were possibly easier to improve on than the more performant rule-based systems used in the experiments.

The results presented in this chapter quantify the effect that TransBooster has on various sangle baselne MT systems. In the next chapter, we will investigate whether it is possible to adapt the TransBooster algorithm so it can take advantage of the combined strength of multrple MT systems simultaneously.

Chapter 7

TransBooster as an MEMT

interface

7.1 Introduction

In this chapter, we present a novel approach to combining the outputs of multiple MT engines into a consensus translation. In contrast to previous Multi-Engine Machine Translation (MEMT) techniques, we do not rely on word allgnments of output hypotheses, but prepare the input sentence for multi-engine processing. We do this by using TransBooster's recursive decomposition algorithm to produce simple chunks as input to the MT engines. A consensus translation is produced by combining the best chunk translations, selected through majority voting, a trigram language model score and a confidence score assigned to each MT engine.

The chapter is organısed as follows: in Section 7.2, we provide a brief introduction to MEMT and present an overview of the most relevant current MEMT techniques. We explain our approach in Section 7.3 and demonstrate it with a worked example. Section 7.4 contans the description, results and analysis of our experiments. Finally, we summarise our findings in Section 7.5.

When comparing the behaviour of TransBooster as an MEMT interface to TransBooster as a wrapper technology on top of an individual MT engine, we will use $\mathrm{TB}_{M E I}$ (TransBooster as an MEMT interface) when referring to the former and TB SEI $^{\text {(Trans- }}$

Booster as a single engine interface) when referring to the latter, for purposes of simplicity.

7.2 Multi-engine Machine Translation

7.2.1 Introduction

Multi-Engine Machine Translation (MEMT) is an approach in which multiple MT systems are used simultaneously to produce a consensus translation for the same input text. The assumption underlying MEMT is that the errors committed by one system are independent of the errors committed by other systems. Therefore, by using smart combination techniques on the different MT outputs, it should be possible to select the best parts of each MT system and produce an output which is at least as good as the best of the individual MT outputs.

MEMT is a term coined by Frederking and Nrenburg (1994), who were the first to apply the idea of a multi-engine approach in Natural Language Processing to MT. Researchers in other areas of language technology such as Speech Recognition (Fiscus, 1997), Text Categorısation (Larkey and Croft, 1996) and POS Tagging (Roth and Zelenko, 1998) have also experimented with multi-system approaches. Since then, several researchers in the MT community have come up with different techniques to calculate consensus translations from multiple MT engines, the most important of which are further explained in Section 7.2.2.

An important difference between the multi-engine approach for clear classification tasks such as POS tagging or Text Categorisation and MT is that, in MEMT, the unit for comparison between the different engines is not given a priorl. Therefore, a crucial step in all previously proposed MEMT techniques is the inferring of the units for comparison by aligning the outputs of the different MT systems. All previous MEMT approaches share one important characteristic they translate the entire input sentence as $\imath s$ and operate on the resulting target language sentences to calculate a consensus output. Their man difference lies in the method they use to compute word alignments between the multiple output sentences.

The use of TransBooster as an interface to MEMT is based on a different idea: the
decomposition of each input sentence into optimal chunks by TransBooster can equally be considered as the inferring of the units of comparison for MEMT. In other words, the main novelty of this approach resides in the fact that, in contrast to previous MEMT techniques, we do not rely on word alignments of output hypotheses, but prepare the input sentence directly for multi-engine processing.

7.2.2 Previous Approaches to MEMT

The first MEMT system was produced by Frederking and Nirenburg (1994). They combined the output sentences of three different MT engines, all developed in house: (i) a knowledge-based MT (KBMT) system, the mainline Pangloss engine (Frederking et al., 1993), (ii) an example-based MT (EBMT) system (Nırenburg et al., 1993) and (iii) a simple lexical transfer MT system, based on some of the PANGLOSS modules and extended with a machine-readable dictıonary (Collins Spanish \rightarrow English) and a number of other resources. In order to calculate a consensus translation, the authors rely on their knowledge of the inner workings of the engines. They collect sub-sentential chunks of all three engines in a chart data structure, use internal KBMT and EBMT scores ${ }^{1}$ to assign a value to each of the chunks and employ a recursive divide-and-conquer procedure to produce the optimal combination of the available chunks by exhaustively comparing all possible combinations of the avarlable chunks. The results of this MEMT system were used in a translator's workstation (TWS) (Cohen et al., 1993), through which a translator either approved the system's output or modified it.

Since the MEMT design of (Frederking and Nirenburg, 1994) is based on the specific internal structure of each of the component engines, the scoring mechanism would have to be redesigned if a new MT engine were to be added. In (Nomoto, 2004), by contrast, the MT engines are treated as black boxes. A number of statistical confidence models are used to select the best output string at sentence level. The confidence models Nomoto (2004) proposes come in two varieties: fluency-based language models (FLMs), which rely on the likelhood of a translation hypothesis in the target language, and alignment-based models (ALMs), which use the IBM translation models (Brown et al., 1993), that measure

[^44]how farthful a translation is to its source text. A confidence score indicating the reliability of each individual engine is introduced by biasing the FLMs and ALMs through Support Vector Regression, modifying the scores produced by the language models in such a way that they more accurately reflect the result of an automatic evaluation of the MT systems on a test corpus.

Contrary to (Frederking and Nirenburg, 1994) and (Nomoto, 2004), all other approaches to MEMT rely on word alignment techniques in the translation hypotheses to infer the units for comparison between the MT systems. Bangalore et al. (2001) produce alignments between the different MT hypotheses using 'progressive multiple alıgnment', a popular heuristic solution to multiple alignment in biological sequencing literature (Feng and Doolittle, 1987) based on edit distance (Levenshtein, 1965). For example, the five different MT outputs in Figure 7.1 are aligned into a lattice structure as represented in Figure 7.2. ${ }^{2}$ For each aligned unit, a winner is calculated by selecting the majority translation, or, in cases where there are segments without a clear majority, by using an n-gram language model based on a 58,000 sentence corpus.

English	'gıve me drıving directions please to middletown area'
MT1	'déme direcciones impulsoras por favor a área de mıddle- town
MT2	'déme dıreccıones por favor a área'
MT3	'déme direcciones conductores por favor al área middletown.'
MT4	'déme las direcciones que conducen satisfacen al área de mid- dletown.'
MT5	'déme que las dırecciones tend en cia a gradan al área de middletown

Figure 7.1: An example Enghsh sentence and its translation from five dufferent MT systems, from (Bangalore et al , 2001)

The model used by Bangalore et al. (2001) reles on edit distance, which only focuses on insertions, deletions and substitutions. Therefore, this model is not able to correctly align translation hypotheses with a significantly different word order Jayaraman and Lavie (2005) try to overcome this problem by introducing a more versatile word alignment algorithm that can deal with non-monotone alignments. Alignments in their approach are

[^45]

Figure 7.2. Lattice representation of the example sentence in Figure 7 1, from (Bangalore et al, 2001)
produced based on explicit word matches (including morphological variants of the same word and ignoring case) between the various hypotheses, even if the relative location of these matches in the respective hypotheses is very different. A consensus from the MT outputs is calculated by a decoding algorithm that uses the produced alignments, a trigiam language model and a confidence score specific to each MT engine.

Another approach to produce a consensus translation from different MT systems was developed by van Zaanen and Somers (2005). Their system, named Democrat, is a 'plug-and-play' MEMT architecture that relies solely on a simple edit distance-based alignment of the translation hypotheses and does not use additional heuristics to compute the consensus translation Democrat employs an alignment method similar to the one used by Bangalore et al (2001), but van Zaanen and Somers (2005) explicitly avord the use of language models or other heuristics that need previous training to ensure that the outputs of different MT engines for all languages can be immediately plugged into ther system Democrat does not always outperform the best individual MT system, but its 'plug-andplay' characteristics make it an option for general users who cannot make up their mind as to which MT system to use and are arming for a workable 'average' translation.

A different way to align translation hypotheses is to use well-established SMT alıgnment techniques, as in (Matusov et al., 2006), where pairwise word alignments in an entire corpus are used instead of sentence-level alignments. The approach used is similar to the rover approach of Fiscus (1997) for combining speech recognition hypotheses. Matusov et al. (2006) consider all possible alignments by iteratively selecting each of the hypothesis translations as a 'correct' one and align all other translations with respect to this 'correct' hypothesis. The actual alignment is performed in analogy to the training procedure in

SMT, the main difference being that the two sentences that have to be aligned are in the same language. The probabilities of word alignments are calculated based on a test corpus of translations generated by each of the systems. Therefore, the decision on how to align two translations of a sentence takes the whole document context into account. From the obtained alignments, the authors construct a confusion network similar to the approach of Bangalore et al (2001), and derive the best consensus hypothesis by using global system probabılities and other statistical models.

7.3 TransBooster as an MEMT interface

All the MEMT approaches explained in the previous section tackle the problem of how to select or combine the outputs of various MT systems in different ways, but all conclude that combining the outputs, in most cases, results in a better translation than any of the individual contributing outputs. As Frederking and Nirenburg (1994) put it: 'Three for more] heads are better than one'. To date, to the best of our knowledge, all previous MEMT proposals that seek to produce a consensus between several MT outputs operate on MT output for complete input sentences.

In the research presented in this chapter, we pursue a different approach: we use the TransBooster decomposition algorithm to split the input string into syntactically meaningful chunks, select the optimal chunk translation from a collection of three MT systems using a number of simple heuristics and rely on TransBooster to recompose the translated chunks in output Therefore, in contrast to most previous MEMT approaches, the technique we present does not rely on word alignments of target language sentences, but prepares the input sentence for multi-engine processing on the input side,

7.3.1 Algorithm: Overview

Given N different MT engines $\left(E_{1} \ldots E_{N}\right)$, the proposed method recursively decomposes an input sentence S into M syntactically meaningful chunks $C_{1} \ldots C_{M}$. Each chunk C_{z} ($1 \leq \imath \leq M$) is embedded in a minimal necessary context and translated by all MT engines. For each chunk C_{\imath}, the translated output candidates $C_{\imath}^{1}-C_{\imath}^{N}$ are retrieved and a. winner $C_{i}^{\text {best }}$ is calculated based on (i) majority voting, (ii) a language model traned on
a large target language corpus and (iii) a confidence score assigned to each MT engine. In a final step, the output sentence S^{\prime} is composed by assembling all $C_{2}^{b e s t}(1 \leq i \leq M)$ in their correct target position. A flow chart representing the entire MEMT architecture can be found in Figure 73.

Figure 7.3: A flow chart of the enture MEMT system, with Cl_{1} the $i^{\text {th }}$ input chunk $(1 \leq \imath \leq M)$, E_{j} the $j^{\text {th }} \mathrm{MT}$ engine $(1 \leq j \leq N)$ and $\mathrm{C}_{1-\mathrm{j}}$ the translation of Cl_{1} by Ej .

The decomposition into chunks, the tracking of the output chunks in target and the final composition of the output are based on the TransBooster architecture as explained in Chapters 4 and 5.

7.3.2 Algorithm: Details

The algorithm consists of three major parts: (i) decomposition, (ii) selection, and (ini) composition.

In the first part ('decomposition'), parallel to what was explained in Chapters 4 and 5, TransBooster decomposes the input S into a number of optimal chunks, embeds these cluunks into a context and sends them for translation to each of the N different MT engines $\left(E_{1} . E_{N}\right)$. As before, the input into the algorithm is a Penn Treebank-like syntactic analysis of the input sentence S. In Section 7.4, we report experiments on human parseannotated sentences (the Penn-II Treebank) and on the output of two state-of-the-art statistical parsers (Charniak, 2000; Bikel, 2002).

In the second part ('selection'), the best translation $C_{\imath}^{\text {best }}$ for each input chunk C_{\imath} is selected based on the following three heuristics: (i) majority voting, (ii) a language model trained on a large target language corpus, and (iii) a confidence score assigned to each MT engine.

1 Majority Voting. Since identical translations by different MT systems are a good indicator of the relative quality of the candidate translations $C_{2}^{1}-C_{2}^{N}$, the translation that was produced by the highest number of MT engines is considered to be the best. For example, in the case of MEMT with 5 different MT systems ($M T_{1}-M T_{5}$), if the list of produced translations for chunk C_{\imath} is $\left\{C_{\imath}^{1}={ }^{\prime} \mathrm{a}^{\prime}, C_{\imath}^{2}={ }^{\prime} \mathrm{b}\right.$ ', $C_{\imath}^{3}={ }^{\prime} \mathrm{c}^{\prime}, C_{\imath}^{4}=$ ' a ', $C_{\imath}^{5}=$ ' d '\}, then the output string ' a ' is selected as the best translation since it was produced by two MT systems ($M T_{1}$ and $M T_{4}$), while the other systems produced the mutually distinct translations $C_{\imath}^{2}, C_{\imath}^{3}$ and C_{i}^{5}. If no winner is found at this stage, i.e. if the highest number of identical translations is not unique, the second heuristic (Language Model Score) is used to select the best translation between the remaining candidates.

2 Language Model Score. For each produced chunk translation, a Language Model score is assigned by a standard trigram language model trained on 177 M words of target language text, comprising the entire traming section of the Spanish Europarl Corpus (131M words) (Koehn, 2005), augmented with a corpus of the Spanish newspaper 'La Vanguardia'3 (46M words). This score is an approximation of the likelihood of the hypothesis translation in the target language and therefore rewards fluency. The Language Model was trained with modified Kneser-Ney smoothing

[^46](Kneser and Ney, 1995) using the SRI Language Modeling Toolkit (Stolcke, 2002). In the case where Majority Voting produces more than 1 candidate translation, the translation among the selected candidates with the best language model score is considered to be the best. For example, in the case of MEMT with 5 different MT systems ($M T_{1}-M T_{5}$), if the outcome of the Majority Voting procedure leads to $C_{\imath}^{1}=C_{\imath}^{4}$ and $C_{\imath}^{2}=C_{\imath}^{5}$, the translation with the highest Language Model score will be selected as the best translation.
3. Confidence Score. In the rare cases that no winner is found by either of the previous two heuristics, the best translation is the one produced by the MT engine that obtained the highest BLEU score on the entire test corpus. In the experiments reported in this chapter, this system is LogoMedia (cf. Table 7.4 in Section 7.4.2).

The relative contribution of each of the three above-mentioned heuristics to the MEMT output will be explained during the discussion of the experimental results in Section 7.4.2

In the third part ('composition'), the best translations $C_{2}^{b e s t}$ for each input chunk C_{2} found by one of the three previously mentioned heuristics, are combined to form the output translation S^{\prime}. The composition process is essentially the same as explained in Chapters 4 and 5 , namely by recursively substituting the retrieved translation of the constituents for the translated SVs in the skeletons. However, since we are operating with multiple MT engines simultaneously, two additional constraints have to be taken into account:

1 In case the baselne MT engines use a different reordering of SVs in a particular skeleton, we select the reordering of the MT engine that obtained the highest BLEU score on the entire test corpus (in our case, LogoMedia).
2. If safety measures (cf. Section 5.2.7) demand that a particular MT engine back off from decomposing a chunk and translate the entire chunk as is, then the other MT engines will also operate on the level of the same chunk, even if further decomposition is allowed by them. In other words, the overall granularity of the decomposition, for each chunk, is limited by the MT engine with the lowest degree of granularity. For example, if chunk C_{\imath} is decomposed into a pivot and satellites during decomposition, but the safety measures for baseline MT engine $E_{j}(1 \leq j \leq N)$ do not allow it to
carry out this decomposition (e.g one of the SV translations is not found in the skeleton translated by E_{j}), then chunk C_{\imath} will be the highest level of granularity for all remaining MT engines $\left(E_{1} \ldots E_{\jmath-1}, E_{\jmath+1} \ldots E_{N}\right)$, even if further decomposition is allowed by them.

7.3.3 A Worked Example

In this section, we will illustrate the use of TransBooster as an MEMT interface to the three baselne RBMT engines that we have been using throughout this dissertation (LogoMedia, Systran and SDL) on example sentence (20) from Section 4.2 on page 40. The output of the example sentence by the baseline systems is displayed in Figure 7.4.

Original	'The chairman, a long-time rival of Bill Gates, likes fast and confidential deals.' LogoMedia
'Al presıdente, un rival de mucho tiempo de Bill Gates, les	
gustan $\underline{\text { los los tratos rpidos y confidenciales.' }}$	

Figure 7 4: Output of example sentence (20) by the three baseline MT engines: LogoMedia, Systran and SDL

The major problems in the translation by LogoMedia are• (i) the wrong number of the pronoun 'les' (correct is 'le'), and (ii) the duplication of the article 'los'. Systran erroneously analyses the verb 'likes' as a noun (\rightarrow 'gustos') and identifies the adjective 'fast' wrongly as a verb (\rightarrow 'ayuna'), which renders the output unintelligible. The translation of SDL, by contrast, is acceptable. In what follows, we will explain how TransBooster acts as an MEMT interface, composing selected chunk translations of the individual systems to form the output.

The parse tree of the example sentence in Figure 4.2 on page 41 is used as input to the decomposition module. In a first step, the pivot, arguments and adjuncts are calculated, as in (90):
[The charrman, a long-time rival of Bill Gates, $]_{A R G 1}[\text { likes] }]_{p v o t}$ [fast and confidential deals $]_{A R G 2}$

In a second step, the arguments are replaced by syntactically simpler SVs, as in (91):
(91) [The chairman $]_{S V_{A R G 1}}[\text { likes }]_{p u v o t}[\text { deals }]_{S V_{A R G 2}}$.

The resulting string is translated by each of the three baseline MT engines. For example, the translation produced by Systran is that in (92):

El presidente tiene gusto de repartos.
As explaned in previous chapters, this translation allows us (i) to extract the translation of the pivot, and (ii) to determine the location of the translated arguments. This is possible because we determine the translations of the Substitution Varıables ('the chairman', 'deals') at runtime. If these translations are not found in (92), we replace the arguments by previously defined SSVs. For example, in (90), we replace 'The chairman, a long-time rival of Bill Gates' by 'The man' and 'fast and confidential deals' by 'cars'. In case the translations of the SSVs are not found (92), we interrupt the decomposition and have the entire input string (20) translated by the MT engine.

We now apply the procedure recursively to the identified chunks 'The chairman, a long-time rival of Bill Gates' and 'fast and confidential deals'.

Since the chunk 'fast and confidential deals' contains fewer words than a previously set threshold, ${ }^{4}$ it is considered ready to be translated by the MT engines As explained in Section 52.5 , the chunk has to be embedded in an appropriate context. Again, we can determine the context dynamically ('The chairman likes') or use a static predefined context template ('The man is eating'), mimicking a direct object context for an NP. ${ }^{5}$
(93) shows how the chunk 'fast and confidential deals' is embedded in a Dynamic Context.
$[\text { The chairman likes] }]_{\text {DynamzContext }}[\text { fast and confidential deals] }]_{A R G 2}$
This string is sent to the MT engines for translation. For example, the translation produced by Systran is (94):

[^47] El presidente tıene gusto de repartos rápidos y confidenciales.

Like DSVs, the translations of Dynamic Contexts are determined at run-time. If we find the translation of the Dynamic Context in (94), it is easy to deduce the translation of the chunk 'fast and confidential deals'. If, on the contrary, the translation of the Dynamic Context is not found in (94), we back off to a previously defined Static Context template (e.g. 'The man sees'). In case the translation of this context is not found either, we back off to translating the input chunk 'fast and confidential deals' without context.

Since the remaining chunk 'The chairman, a long-time rival of Bill Gates' contains more words than the previously set threshold ${ }^{4}$, it is judged too complex for direct translation. The decomposition and translation procedure is now recursively applied to this chunk: it is decomposed into smaller chunks, which may or may not be suited for direct translation, and so forth.

Figure 7.5: Decomposition of Input.

Figure 76 Selection of best output chunk. The optimal combination follows the arcs in bold.

The recursive decomposition algorithm splits the initial input string into a number of optımal chunks, which are translated by all MT engines as described above. A simple graph representation of the full decomposition of the input sentence is shown in Figure 7.5. The recovered translations with logprob language model scores are shown in Figure 7.6. From these, the best translations (in bold) are selected as described in Section 7.3.2. The MEMT combination in Table 7.1 outperforms the outputs produced by Systran and LogoMedia and is similar in quality to the output produced by SDL. Note that our approach is not limited to a blind combination of previously produced output chunks. In

Orıginal	The chairman, a long-time rival of Bill Gates, likes fast and con- fidential deals
LogoMedıa	Al presidente, un rival de mucho tiempo de Bill Gates, les gustan Systran SDL
El presidente, rival de largo plazo de Bill Gates, gustos ayuna y los repartos confidenclales. El presidente, un rival antiguo de Bill Gates, quiere los tratos rápıdos y confidenciales.	
MEMT	El presidente, un rival antiguo de Bill Gates, quiere repartos rápidos y confidenciales

Table 7 1: Example sentence (20): result of $\mathrm{TB}_{M E I}$ vs. baseline MT engines.
the case of Systran, the complexity reduction of the input leads the system to improve on its own translation. In the complete translation (Table 7.1), Systran erroneously analyses the verb 'likes' as a noun (\rightarrow 'gustos') and identifies the adjective 'fast' as a verb (\rightarrow 'ayuna'). By contrast, examples (93) and (94) show that submitting the chunk 'fast and confidential deals' in a simplified context improves the translation of the adjective 'fast' from the erroneous 'ayuna' in the original translation of the entire sentence by Systran to the correct 'rápıdos'. Also, the translation of the verb 'likes' improves to 'tiene gustos de', which can only contribute to a better overall MEMT score.

Tables 72 and 73 contain two more examples that show the benefits of our approach.

Orıginal	'Imperial Corp, based in San Diego, is the parent of Imperial Savings \& Loan.'
LogoMedia	'Imperial Corp., Fundar en San Diego, ser el padre de Savmgs \& Loan imperial'
Systran	'Imperial Corp, basada en San Diego, es el padre de ahorros mperiales y del préstamo.'
SDL	'Imperial S.a, basado en San Diego, es el padre de Ahorros Imperiales \& el Préstamo.'
$\mathrm{TB}_{\text {MEI }}$	Imperial Corp., basada en San Diego, es el padre de Savings \& Loan imperial.

Table 7.2: Result of $\mathrm{TB}_{M E I}$ vs. baseline MT engines on the example sentence 'Imperial Corp, based in San Diego, is the parent of Imperial Savings \& Loan.'

In Table 7.2 the major problems in the translation by LogoMedia are: (i) 'based' is erroneously translated as 'Fundar' = 'to found', and (ii) 'ser' $=$ 'to be' is not conjugated. Both Systran and SDL correctly conjugate the verb 'ser' \rightarrow 'es' and select the correct
verb lemma 'basar' as translation of 'based'. However, instead of leaving the proper name ('Imperial Savings \& Loan') untranslated, as in the case of LogoMedia, they translate each word composing the name separately, which results in which results in awkward results ('ahorros imperiales y del préstamo' and 'Ahorros Imperiales \& el Préstamo' respectively). The MEMT output improves on each of the baseline systems by combining the best translated chunks.

Original	Mr. Prerce said Elcotel should realize a minimum of $\$ 10$ of recurring net earnings for each machine each month
LogoMedia	El Sr Pierce dijo que Elcotel debe ganar a minımum of $\$ 10$ de ganancias netas se repitiendo para cada máquina todos los meses
Systran	Sr. Elcotel dicho Plerce debe realizar un mínimo de $\$ 10$ de las ganancias netas que se repiten para cada máquina cada mes.
SDL	Sr Perfora dijo que Elcotel debe darse cuenta de un mínimo de $\$ 10$ de ganancias netas periódicas para cada máquina cada mes
$\mathrm{TB}_{\text {MEI }}$	El Sr Pierce dijo Elcotel debe realizar un mínimo de $\$ 10$ de las gananclas netas que se repiten para cada máquina cada mes.

Table 7.3: Result of $\mathrm{TB}_{M E I}$ vs. baseline MT engines on the example sentence 'Mr. Plerce said Elcotel should realize a minimum of $\$ 10$ of recurring net earnings for each machine each month.'

In the translation of the example sentence in Table 7.3, LogoMedia leaves 'a minimum of untranslated and uses a grammatically incorrect gerund 'se repitiendo'. Systran switches the target positions of 'Pierce' and 'Elcotel', which severely distorts the accuracy of the translation. SDL interprets 'Pierce' as a verb 'Perfora', which makes the translation unintelligible. The MEMT combination, however, combines the best parts of each engine and is both accurate and relatively fluent.

7.4 Experimental Results and Analysis

7.4.1 Experimental Setup

To test the performance of TransBooster as an MEMT interface, we rely on the three standard automatic evaluation metrics (BLEU, NIST and GTM) described in Section 34.1 on page 27. The translated gold-standard test set against which the scores are calculated is the same 800 -sentence test set as introduced in Section 3.4 .2 and used in

Chapter 6

We experımented with three different syntactic analyses of the test set as input to our algorithm:

1. The origmal human parse-annotated Penn-II Treebank structures.
2. The output parses of the test set by (Charniak, 2000).
3. The output parses of the test set by (Bikel, 2002).

In each of these three cases, our algorithm decomposes the input into chunks and combines the chunk outputs of the MT engines as described in Section 7.3.2. As in the previous chapter, we are not merely interested in the absolute scores of the MEMT algorithm, but we also want to measure the impact on the results of the necessarily 'imperfect' parser output of (Charniak, 2000) and (Bikel, 2002) with respect to the 'perfect' human parse-annotated sentences of the Penn Treebank.

In addition to comparing the MEMT output to the three baseline MT systems, we also compute evaluation scores for the output of TransBooster interfaced with only one of baselne systems at each time $\left(\mathrm{TB}_{S E I}\right)$. This allows us to measure the impact of the effect on the scores of the multi-engine approach versus the possible individual score enhancements of TransBooster.

For practical reasons, contrary to the evaluations in Chapter 6, we have refrained from performing a detailed manual analysis of the output, given the many different system combinations and outputs involved.

7.4.2 Results

Table 7.4 contans the automatic evaluation scores for the three baseline MT systems aganst which we will compare the $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{S E I}$ scores in the following sections.

At the end of each of the following three sections (Section 7.4.2.1: 'Human parseannotated mput', Section 7.4.2.2: 'Input parsed by (Charniak, 2000)', and Section 7.4.2.3: 'Input parsed by (Bikel, 2002)') we will explain the relative contribution of the different chunk selection heuristics to the overall MEMT score. While performing the experiments, we noticed that comparable chunk translations with a different lexical contents never

	BLEU	NIST	GTM
LogoMedia	0.3140	73272	05627
Systran	0.3003	7.1674	0.5553
SDL	0.3039	7.2735	05657

Table 7.4: Results of the three baseline MT systems on the 800 -sentence test set: absolute scores (cf. Table 63 in Chapter 6) on page 101).
received the same Language Model score. Therefore, in practice, the confidence score heuristic was never used. In order to verify the impact of this last heuristic on the test results, we decided to select the chunk with the best Language Model score only if the difference between the best and second best Language Model scores was smaller than a predefined threshold p_LMDıfference. After experimenting with p_LMDıfference $=$ $10,5,2,1$, and 0 , we found that the optimal results were produced for p_LMDifference $=0$. Therefore, in each of the three following sections, only the Majority Voting and Language Model scores were used to select the optimal chunk.

7.4.2.1 Human parse-annotated input

Table 7.5 contains the absolute scores of $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{S E I}$ for the human parse-annotated version of the 800 -sentence test set. Although we obtained the $\mathrm{TB}_{S E I}$ scores by applying exactly the same procedure as followed in Chapter 6, the $\mathrm{TB}_{S E I}$ results in this chapter slightly differ from the ones reported in the previous one. The reason for this difference is that, while the scores reported in Chapter 6 correspond to the latest optimal version of the algorithm, $\mathrm{TB}_{M E I}$ was implemented on a previous, intermediate version of the TransBooster algorithm. This slight difference in absolute scores is not an inconvenience, since the central research question of this chapter is to find out whether TransBooster has potential as an interface to MEMT. In other words, in this analysis, we are mainly interested in the relative scores of $\mathrm{TB}_{M E I}$ vs. $\mathrm{TB}_{S E I}$ and each of the baseline MT systems, which are reported in Table $76 \mathrm{~TB}_{\text {MEI }}$ improves relative to the baseline MT engines by between $59 \%-10.7 \%$ BLEU score, $5.2 \%-7.5 \%$ NIST score and $2.8 \%-4.8 \%$ GTM score. The relative improvements of $\mathrm{TB}_{M E I}$ with respect to $\mathrm{TB}_{S E I}$ are $5.3 \%-10.9 \%$ BLEU score, $5.0 \%-7.2 \%$ NIST score and $3.3 \%-4.8 \%$ GTM score.

The $\mathrm{TB}_{M E I}$ results can be explained by a combination of two different factors:

	BLEU	NIST	GTM
TB MEMT	03326	7.7119	0.5821
TB LogoMedıa	0.3157	7.3383	0.5623
TB Systran	0.2998	71910	0.5553
TB SDL	0.3049	7.3169	05635

Table 7.5: $\mathrm{TB}_{M E I}$ vs $\mathrm{TB}_{S E I}$: absolute scores for human parse-annotated input

	BLEU(\%)	NIST (\%)	GTM(\%)
LogoMedıa	105.9	105.2	1034
TB LogoMedia	105.3	105.0	1035
Systran	110.7	107.5	1048
TB Systran	110.9	1072	1048
SDL	109.4	106.0	102.8
TB SDL	109.0	1053	1033

Table 7.6: $\mathrm{TB}_{\text {MEI }}$ vs. $\mathrm{TB}_{\text {SEI }}$ and baseline systems: relative scores for human parse-annotated input.

1. $\mathrm{TB}_{\text {MEI }}$ improves thanks to the benefits of a multi-engine approach to MT, in which the selection procedure (cf. Section 7.3.2) eliminates bad chunk translations. This is a characteristic shared by all MEMT approaches. In terms of a general MEMT architecture, the main novelty of our approach is that $\mathrm{TB}_{M E I}$ prepares the input sentence for multi-engine processing from the input side, unlike all other previous MEMT approaches.
2. $\mathrm{TB}_{M E I}$ improves thanks to the benefits of the recursive decomposition characteristics of TransBooster. In other words, the decomposition of the input sentence into syntactically simpler chunks allows the individual MT systems to improve on their own translations.

In order to obtain a more accurate idea of the relative contribution of each of these factors to the overall improvements, it is important to analyse the differences between $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{S E I}$. Table 7.7 contains the relative results of $\mathrm{TB}_{S E I}$ vs. the three baseline MT systems

The fact that the relative results of $\mathrm{TB}_{S E I}$ in Table 7.7 are significantly lower than the relative results of $\mathrm{TB}_{M E I}$ in Table 7.6 seems to indicate that the most important contribution to the success of $\mathrm{TB}_{M E I}$ comes from the general benefits of a multi-engine

	BLEU(\%)	NIST (\%)	GTM(\%)
LogoMedia	100.5	1001	999
Systran	99.8	1003	100
SDL	100.3	100.6	99.6

Table 7.7: $\mathrm{TB}_{S E I}$ vs. baseline systems relative scores for human parseannotated input.
approach to MT , rather than the recursive decomposition characteristics of TransBooster. This observation does not, however, weaken the finding that TransBooster can be used as a valid MEMT interface, as is clearly shown by the results in Table 7.6. It merely indicates that it is mainly the chunking component of TransBooster, rather than its potential to help an MT system improve its own translations, which leads to the overall improvements.

The figures in Table 78 show the relative contribution of each of the different chunk selection heuristics to the overall MEMT score for the pre-parsed Penn-II input On the entire 800 -sentence test set, 5258 different chunk comparisons were performed In 64.7% of the cases, the optimal chunk was selected using Majority Voting. In the remaining 35.3% of the comparisons, the best chunk was selected relying on the Language Model score. Since the optimal results were obtained with p_LMDifference $=0$ (cf. explanation on page 145), the MT confidence score was never used.

Selection heuristic	Nr. comparisons	$\%$
Majority Votıng	3404	64.7
Language Model	1854	35.3
Confidence Score	0	0
Total	5258	100

Table 7 8: Relative contribution of each of the selection heuristics for the results in Table 7.5

7.4.2.2 Input parsed by (Charniak, 2000)

Table 7.9 contains the absolute scores of $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{S E I}$ for the output of (Charniak, 2000) on the 800 -sentence test set. Table 7.10 contains the relative scores of ${ }^{T} \mathrm{~B}_{\text {MEI }}$ vs. $\mathrm{TB}_{\text {SEI }}$ and each of the baseline MT systems, on the output of (Charniak, 2000) on the 800 -sentence test set.
$\mathrm{TB}_{\text {MEI }}$ improves relative to the baseline MT engines between $2.7 \%-73 \%$ for BLEU , $3.8 \%-6.1 \%$ for NIST and $16 \%-3.6 \%$ for GTM. The relative improvements of $\mathrm{TB}_{M E I}$ with respect to $\mathrm{TB}_{\text {SEI }}$ are $3.7 \%-8.7 \%$ BLEU score, $4.4 \%-6.5 \%$ NIST score and $2.4 \%-4.1 \%$ GTM score.

	BLEU	NIST	GTM
TB MEMT	03225	7.6080	05753
TB LogoMedia	03108	72860	0.5604
TB Systran	02966	7.1393	0.5524
TB SDL	0.3004	7.2842	05615

Table 7.9 $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{\text {SEI }}$. absolute scores for input parsed by (Charniak, 2000)

	BLEU(\%)	NIST(\%)	GTM(\%)
LogoMedia	1027	103.8	102.2
TB LogoMedia	103.7	104.4	102.6
Systran	107.3	106.1	103.6
TB Systran	108.7	1065	104.1
SDL	1061	104.5	101.6
TB SDL	107.3	104.4	102.4

Table 7.10: $\mathrm{TB}_{M E I}$ vs $\mathrm{TB}_{S E I}$ and baseline systems' relative scores for input parsed by (Charniak, 2000)

The figures in Table 7.11 show the relative contribution of each of the different chunk selection heuristics to the overall MEMT score for the pre-parsed Penn-II input. On the entire 800 -sentence test set, 5223 different chunk comparisons were performed In 65.1% of the cases, the optimal chunk was selected using Majority Voting. In the remaining 34.9% of the comparisons, the best chunk was selected relying on the Language Model score Since the optimal results were obtained with p_LMDifference $=0$ (cf. explanation on page 145), the MT confidence score was never used.

Selection heuristic	Nr chunks	$\%$
Majority Voting	3402	65.1
Language Model	1821	349
Confidence Score	0	0
Total	5223	100

Table 7.11: Relative contribution of each of the selection heuristics for the results in Table 7.9.

7.4.2.3 Input parsed by (Bikel, 2002)

Table 7.12 contans the absolute scores of $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{\text {SEI }}$ for the output of (Bikel, 2002) on the 800 -sentence test set. Table 7.13 contains the relative scores of $\mathrm{TB}_{M E I}$ vs. $\mathrm{TB}_{\text {SEI }}$ and each of the baselne MT systems, on the output of (Bıkel, 2002) on the 800 -sentence test set.
$\mathrm{TB}_{M E I}$ improves relative to the baseline MT engines between $2.3 \%-7.0 \%$ for BLEU, $3.8 \%-6.1 \%$ for NIST and $17 \%-3.6 \%$ for GTM. The relative improvements of $\mathrm{TB}_{\text {MEI }}$ with respect to $\mathrm{TB}_{\text {SEI }}$ are $2.9 \%-8.8 \%$ BLEU score, $4.1 \%-6.3 \%$ NIST score and $2.5 \%-4.2 \%$ GTM score.

The figures in Table 7.14 show the relative contribution of each of the different chunk selection heuristics to the overall MEMT score for the pre-parsed Penn-II input. On the entire 800 -sentence test set, 5178 different chunk comparisons were performed. In 63.7% of the cases, the optimal chunk was selected using Majority Voting. In the remaining 36.3% of the comparisons, the best chunk was selected relying on the Language Model score. Since the optimal results were obtained with p_LMDifference $=0$ (cf. explanation on page 145), the MT confidence score was never used.

	BLEU	NIST	GTM
TB MEMT	0.3215	7.6079	05758
TB LogoMedia	0.3122	73032	05589
TB Systran	02953	7.1517	0.5521
TB SDL	0.3006	7.2891	05614

Table 7.12. $\mathrm{TB}_{M E I}$ and $\mathrm{TB}_{S E I}$: absolute scores for input parsed by (Bikel, 2002)

	BLEU(\%)	NIST(\%)	GTM(\%)
LogoMedıa	102.3	1038	102.3
TB LogoMedia	1029	104.1	103.0
Systran	107.0	106.1	103.6
TB Systran	108.8	1063	104.2
SDL	105.7	104.5	101.7
TB SDL	106.9	104.3	102.5

Table 7.13: $\mathrm{TB}_{M E I}$ vs $\mathrm{TB}_{S E I}$ and basehne systems: relative scores for input parsed by (Bikel, 2002)

Selection heuristic	Nr chunks	$\%$
Majority Voting	3299	637
Language Model	1879	36.3
Confidence Score	0	0
Total	5178	100

Table 7 14: Relative contribution of each of the selection heuristics for the results in Table 7.12.

As expected, the scores based on parser-based output are slightly lower than the scores based on human parse-annotated sentences, with minimal differences between scores produced on output of (Charniak, 2000) and (Bikel, 2002). Even so, the overall scores of $\mathrm{TB}_{M E I}$ on parser output outperform both the baseline systems and $\mathrm{TB}_{S E I}$ with fairly large (statistically significant) margins, making $\mathrm{TB}_{M E I}$ an interesting alternative to previous developed MEMT approaches

7.5 Summary

In this chapter, we have explained how TransBooster, extended with a selection procedure based on majority voting, a language model score and a confidence score assigned to each baseline MT engine, can be used as a successful interface to Multi-Engine Machine Translation. The main noveltes of our approach are the following: (1) the input sentence is prepared for multi-engine processing, in contrast to previous proposals in this area, which exclusively rely on target (sub-)sentence combination, (ii) TransBooster's decomposition algorithm has the potential to help the individual baseline MT engines improve on their own individual contributions to the MEMT output. We reported statistically significant relative improvements of over 10% BLEU score in experiments (English \rightarrow Spanish) carried out on an 800 -sentence test set extracted from the Penn-II Treebank. We explained that the main factor underlying these improvements is the appropriateness to MEMT of TransBooster's recursive chunking of the input.

Chapter 8

Conclusions

TransBooster is a novel approach designed to improve the translation quality of MT systems. TransBooster is not an MT engine itself: it acts on top of an already existing baseline MT system as a wrapper application It simplifies complex input sentences by a recursive decomposition algorithm that transforms the original input into shorter chunks, which pose less challenges to the underlying MT system. This complexity reduction enables the baseline MT system to do what we think it does best, namely process a concise, syntactically simple skeleton with a reasonable expectation of a good translation. TransBooster guides the baseline system through the entire translation process by spoon-feeding it simple chunks and composing the output with the retrieved chunk translations.

In this thesis, we first introduced the rationale for recursive sentence decomposition in MT and compared the TransBooster approach to other MT paradigms. After reporting our initial experiments to determine the best form of Static Substitution Variables, we explained the developed TransBooster architecture in depth. We also reported on the development of a parallel, simpler TransBooster architecture ($\mathrm{TB}_{\text {MarkII }}$) and explaned the differences between the original $\mathrm{TB}_{\text {MarkI }}$ algorithm and $\mathrm{TB}_{\text {MarkII }}$. We analysed the performance of TransBooster on three RBMT systems, one SMT system and one EBMT system using both automatic and manual evaluation measures Finally, we investigated the possibility of using TransBooster as an MEMT interface.

The main findings of the research presented in this dissertation are the following:

- The TransBooster technology has the potential to improve on both rule-based and
data-driven MT systems
- The improvements induced by TransBooster are triggered by complexity reduction of the input.
- Most of the cases in which TransBooster deteriorates the original output are due to context distortion.
- The possible improvements depend on the baseline MT system used. The output produced by TransBooster shares many characteristics of the baseline output, but improves on lexical selection, homograph resolution, word order and agreement features.
- When evaluated on an 800 -sentence test set randomly extracted from Section 23 of the Penn-II Treebank, TransBooster outperforms two of the three baseline RBMT systems (SDL and LogoMedia) and achieves similar results compared to the third system (Systran), both in terms of automatic evaluation as of manual evaluation results.
- The nolse introduced by the use of state-of-the-art statistical parsers ((Charnıak, 2000) and (Bikel, 2002)) has an expected negative impact on the improvements gained by complexity reduction. Despite a slight reduction in translation quality, the use of TransBooster on RBMT systems still leads to a modest increase in performance when (Charniak, 2000) is used as front-end parser.
- The improvements achieved by TransBooster on data-driven MT systems (both SMT and EBMT) seem to be more pronounced than the improvements on rule-based MT systems. There are two possible explanations for this• (i) data-driven MT systems benefit more from TransBooster's syntactic guidance than rule-based systems, and (ii) the baseline data-driven systems were possibly easier to improve on than the more performant rule-based systems used in the experiments.
- For the language pair used for evaluation purposes (English \rightarrow Spanish), $\mathrm{TB}_{\text {MarkI }}$ achieves better results than $\mathrm{TB}_{\text {MarkII }}$. This is due to (i) the larger scope of com-
plexity reduction of the $\mathrm{TB}_{\text {MarkI }}$ implementation, and (ii) the fact that the capacity of $\mathrm{TB}_{\text {MarkII }}$ to handle split pivots in target is not visible in Romance languages.
- TransBooster was successfully adapted as an MEMT interface, with reported relative improvements of up to 10% BLEU score over the baseline MT systems. These improvements are caused by the fact that TransBooster's chunking algorithm effectively prepares the mput sentence for multi-engine processing.

8.1 Future Work

There are a number of ways to extend the research presented in this dissertation:
The Static Substitution Variable (SSV) of a constituent is a simple string that, at best, shares certain syntactic characteristics with the substituted constituent. The outcome of the experiment in Section 4.3 .4 showed that, even in a simplified environment, the syntactic and lexico-semantic differences between a range of SSVs and the original constıtuents can lead to distortions in the translation of the pivot and the placement of the satellites in target Therefore, it is important to choose an SSV that is as similar as possible to the original. An avenue for further research could include optimising the SSVs used in this thesis (cf. Appendix D) by using information contained in ontologies combined with intelligent semantıc similarity measures.

Another possibility to improve the output quality of TransBooster is the incorporation of named-entity recognition in the decomposition algorithm. In the current implementation, we use a simple heuristic based on the information provided by the Penn-II tags for proper nouns ($N N P$ and $N N P S$) to decide when to keep an NP constituent from being translated, but we hypothesise that more sophisticated disambiguation methods will lead to further improvements in translation quality.

When using TransBooster as an MEMT interface, it would be interesting to see whether a word graph-based MEMT consensus at the level of the output chunks has the potential of improving our approach. Instead of simply selecting the best output chunk based on the described heuristics (cf. Section 7.3.2), an existing MEMT approach could be used to form a word-graph consensus translation at chunk level. Other avenues for further MEMT
research include replacing the similarity measure used in the selection procedure by an Edit Distance metric and experimenting with a variety of language models, similar to Nomoto (2004) In addition, one would expect an optimal MEMT system to contain baseline systems of different MT paradigms, so that the MEMT system can take advantage of the strengths of each individual approach Accordingly, it would be interesting to experiment with TransBooster MEMT as a combination of RBMT, SMT and EBMT baseline systems.

Appendix A

Tags and Phrase Labels in the Penn-II Treebank

Tag Label	Tag Description
CC	Coordinating Conjunction
CD	Cardinal Number
DT	Determiner
EX	Existential there
FW	Foreign Word
IN	Preposition or subordinating conjunction
JJ	Adjective
JJR	Adjective, comparative
JJS	Adjective, superlative
LS	List item marker
MD	Modal
NN	Noun, singular
NNS	Noun, plural
NNP	Proper noun, singular
NNPS	Proper noun, plural
PDT	Predeterminer
POS	Possessive ending
PRP	Personal Pronoun
PRP\$	Possessive Pronoun
RB	Adverb
RBR	Adverb, comparative
RBS	Adverb, superlative
RP	Particle
SYM	Symbol
TO	to
UH	Interjection
VB	Verb, base form
VBD	Verb, past tense
VBG	Verb, present participle

Tag Label	Tag Description
VBN	Verb, past participle
VBP	Verb, non-3rd person singular present
VBZ	Verb, 3rd person singular present
WDT	WH-determiner
WP	WH-pronoun
WP\$	Possessive WH-pronoun
WRB	WH-adverb

Table A.1: Tag labels in the Penn-II Treebank.

Phrase Label	Phrase Description
ADJP	Adjectival Phrase
ADVP	Adverbial Phrase
CONJP	Conjunction Phrase
FRAG	Fragment
INTJ	Interjection
LST	List marker
NAC	Not a constituent
NP	Noun phrase
NX	N-bar (head of NP)
PP	Prepositional Phrase
PRN	Parenthetical
PRT	Particle
QP	Quantifier Phrase
RRC	Reduced relative clause
S	Declarative main clause
SBAR	Suborinate clause
SBARQ	Direct question
SINV	Inverted declarative sentence
SQ	Inverted yes/no question
UCP	Unlike Coordinated Phrase
VP	Verb Phrase
WHADJP	WH-adj phrase
WHADVP	WH-adv phrase
WHNP	WH-noun phrase
WHPP	WH-prep phrase
X	Unknown, uncertain or unbracketable

Table A 2: Phrase labels in the Penn-II Treebank.

Appendix B

Extended Pivot Selection per Category

CAT	Types	Basic Extended Pivot Treatment
ADJP	10	pivot $=(\mathrm{RB})+$ head + (IN/TO)
		Examples. ADJP $=$ 'able to transfer money from the new funds' \rightarrow pivot $=$ 'able to' ADJP $=$ 'still capable of serving on the bench' \rightarrow pivot $=$ 'still capable of' ADJP $=$ 'blg enough for one consultant to describe it as clunky' \rightarrow plvot $=$ 'big enough for'
ADVP	1	pivot = head + (IN)
		Examples' ADVP $=$ 'up from Wednesday's Tokyo close of 14308 yen' \rightarrow pivot $=$ 'up from' ADVP $=$ 'down from 945% a week earler' \rightarrow pivot $=$ 'down from'
CONJP	0	too small for decomposition.
		Examples: CONJP = 'as well as'
FRAG	138	no clear pattern \rightarrow default pivot selection.
INTJ	0	too small for decomposition
		Examples. INTJ = 'so long'
LST	1	too small for decomposition
NAC	2	too small for decomposition
		Examples NAC = 'Unıversity of Vermont'
NP	27	Default treatment NP: if head of NP is non-terminal, pivot $=$ $(\mathrm{DT})+$ head + (IN). If head of NP is a terminal node, pivot $=$ left-to-right concatenation of all children up to head.
		Examples $\mathrm{NP}=$ 'any research on smokers of the Kent cigarettes' \rightarrow pivot $=$ 'any research on'

Continued on next page

CAT	Types	Basic Extended Pivot Treatment

Contrnued on next page

CAT	Types	Basic Extended Pivot Treatment
		Examples $S=$ 'A P\&G spokeswoman confirmed that shipments to Phoenix started late last month ' \rightarrow pivot $=$ 'confirmed that' $S=$ 'Indeed, a random check Friday didn't seem to indicate that the strike was having much of an effect on other arrlne operations' \rightarrow pivot $=$ 'didn't seem to indicate that'
$\overline{\text { SBARQ }}$	30	Do not decompose: limited amount of occurrences (241 sentences in sections 01-22 of Penn Treebank)
SINV	21	\rightarrow S
		Examples SINV = ' "We braced for a panic," sald one top floor trader' \rightarrow pivot $=$ 'said' SINV $=$ 'Hardest hit are what he calls "secondary" sites that primarily serve neighborhood residents \rightarrow pivot $=$ 'Hardest hit are'
SQ	77	Do not decompose: pivot difficult to extract due to inversion and limited amount of occurrences (405 sentences in sections 01-22 of Penn Treebank)
UCP	106	coordınation \rightarrow pivot $=\mathrm{CC}$
		Examples UCP $=$ 'the largest maker of personal computer software and generally considered an industry bellwether' \rightarrow prot $=$ 'and'
VP	72	Recursive pivot determination. Basics: string together verbal lexical categories ('MD','VBD','VBP','‘VBZ','VBN', 'VBG','VB'), including certain intermediate nodes (e.g. ADVP, ADJ-PRD, RP). If VBN or VBG preceded by 1 other node, include this node, regardless of length. Attach 'TO' where necessary. (cf examples of sentential categories)
WHADJP	0	too small for decomposition WHADJP = 'how many'
WHADVP	0	too small for decomposition WHADVP = 'when'
WHNP	0	too small for decomposition WHNP $=$ 'which'
WHPP	0	too small for decomposition WHPP $=$ 'of which'
X	20	Do not decompose: no clear pattern

Table B.1: Nr. of rule types (covering 85% of rule tokens) and basic extended pivot treatment for non-terminal nodes in the Penn-II Treebank Parentheses indicate optional categories

Appendix C

ARG/ADJ distinction heuristics

Remarks concerning the information contained in Tables C. 1 and C.2:

- The ARG/ADJ distinction heuristics are based on (Hockenmaier, 2003) and a manual inspection of the most frequent rule-types accounting for 85% of rule token expansions per non-terminal in the Penn Treebank, as is explained in Section 5.2.3.
- Nodes that have been assigned 'head' during the previous head-finding procedure are not taken into account for ARG/ADJ assignment.
- For each node N , all children are scanned from left to right. For each child C , the following three different strategies are considered:

1. If C conforms to the description in Table C.1, Section A, then assign the corresponding ARG/ADJ distinction and move on to the next child. If not, go to step 2.
2. If C conforms to the description in Table C.1, Section B, then assign the corresponding ARG/ADJ distinction and move on to the next child. If not, go to step 3.
3. If C conforms to the description in Table C.2, then assign the corresponding ARG/ADJ distinction and move on to the next child. If not, assign the default p_SatDefault and move on to the next child. Note that in Table C.2, the column entitled 'mother' refers to node N , and the column entitled 'CAT' refers to the chuld node C.

- $\mathrm{X} \rightarrow \mathrm{A} \mathrm{B} \quad \mathrm{X}$ expands into A and B
$\mathrm{X}<\mathrm{A} \quad \mathrm{X}$ dominates A
$\mathrm{X} \rightarrow(\mathrm{A}<\mathrm{B}) \mathrm{C} \quad \mathrm{X}$ expands into A and C . A dominates B .

CAT	TAG	ARG/ADJ	Comments
CD		adj	unless when preceded by $\$$, in which case CD is arg, as in (QP (\$ \$) (CD 16) (CD million)).

Contrnued on next page

CAT	TAG	ARG/ADJ	Comments
CONJP		arg	Note that CONJPs in the Penn Treebank tend to dominate a limited amount of lexical items, as in 'rather than' or 'as well as'.
PRN		adj	
PRT		arg	
QP		adj	unless when preceded by $\$$, in which case QP is arg, as in (NP (\$ \$) (QP (26 CD) (million CD)) (-NONE- *U*))
RRC		adj	
SINV		arg	
WHADJP		arg	
WHADVP		arg	
WHNP		arg	
WHPP		arg	
X		arg	
Section B			
	ADV	adj	
	BNF	adj	
	CLR	arg	
	DIR	adj	PP-DIR and ADVP-DIR under VP are classified as arg.
	LOC	adj	
	MNR	adj	
	NAC	adj	
	PRD	arg	
	PRP	adj	
	TMP	adj	PP-TMP under ADJP are classified as arg.
	TPC	arg	

Table C.1; ARG/ADJ distinction heuristics per category, independent of the mother node.

Mother	CAT	ARG/ADJ	Comments
ADJP	NP	arg	
	PP	arg	if ADJP \rightarrow ADJP PP
	PP	arg	if ADJP \rightarrow VBN PP
	PP	adj	default
	S	arg	
	SBAR	arg	SBAR $=$ adj if introduced by 'than', 'as' or 'so'.
	default	p_SatDefault	
ADVP	NP	arg	
	PP	adj	if left of head
	PP	adj	if head $=$ 'than'
	PP	arg	default

Mother	CAT	ARG/ADJ	Comments
	$\begin{aligned} & \text { SBAR } \\ & \text { SBAR } \\ & \text { SBAR } \\ & \text { default } \end{aligned}$	adj adj arg p_SatDefault	if preceded by comma if head = 'than', 'as', 'so', 'before' or 'which'. default
CONJP			not relevant since node is translated in entirety.
FRAG			not relevant since node is translated in entirety.
NP	JJ ADJP NNP NNPS NP PP PP PP PP S S SBAR default	adj adj \arg \arg \arg \arg adj \arg adj \arg adj adj p_SatDefault	except a list of 'determiner-like' JJs as 'many', 'much', 'more', ... if head NP $=$ NNP or NNPS, otherwise adj. if head NP $=$ NNP or NNPS, otherwise adj. unless apposition, in which case adj. $N P \rightarrow N P$ PP (arg) PP (adj) $N P \rightarrow N P, P P$ for a number of lexical cases such as 'a lot of', 'a kind of', 'a type of', ... default. $N P \rightarrow D T$ NN S default.
NX	$\begin{gathered} \overline{\mathrm{PP}} \\ \text { default } \end{gathered}$	$\begin{gathered} \text { adj } \\ \text { p_SatDefault } \end{gathered}$	
NAC			not relevant since node is translated in entirety
PP	ADVP ADJP NP S PP default	adj \arg \arg \arg arg p_SatDefault	
PRN			not relevant since node is translated in entirety
S	$\begin{gathered} \text { ADVP } \\ \text { NP } \\ \text { PP } \\ \text { RB } \\ \text { RB } \\ \text { S } \\ \text { SBAR } \\ \text { default } \end{gathered}$	adj \arg adj arg adj arg adj p_SatDefault	if negation. default
SQ	$\begin{gathered} \text { VP } \\ \text { default } \end{gathered}$	$\begin{gathered} \text { arg } \\ \text { p_SatDefault } \end{gathered}$	
SBAR	$\begin{aligned} & \text { ADVP } \\ & \text { NN } \end{aligned}$	$\begin{aligned} & \mathrm{adj} \\ & \arg \\ & \hline \end{aligned}$	

Contınued on next page

Mother	CAT	ARG/ADJ	Comments
	S SBARQ SINV SQ VP RB RB default	arg \arg \arg \arg \arg \arg adj p_SatDefault	if negation. otherwise.
VP	ADJP NP NP PP PP PP S S SQ SBAR SBAR SBARQ XP default	arg adj arg adj arg p_SatDefault adj arg arg adj arg \arg arg p-SatDefault	if apposition. default if PP-EXT. if first node $=\mathrm{VBN}$ default. $V P \rightarrow S, S$ (adj). default if preceded by comma and first child $=$ WHNP, ADVP, RB or IN ('on' or 'with'). default.
WHNP			not relevant since node is translated in entirety.
WHADJP			not relevant since node is translated in entirety.
WHADVP			not relevant since node is translated in entirety.
WHPP			not relevant since node is translated in entirety.
X			not relevant since node is translated in entirety.
Default		p_SatDefault	

Table C.2: ARG/ADJ distinction heuristics per category, dependent of the mother node

Appendix D

Static Substitution Variables per Category

Remarks concerning the information contained in Table D.1:

- The table contains an exhaustive overview of how SSVs are generated for all possible satellites, even if certain types of satellite replacements do not (often) occur in practice due to pivot extensions For example, despite the fact that a preposition is often attached to the preceding verb during the formation of the verbal pivot, a general treatment for PP substitution has been implemented. Substitutions like these are triggered in case an error occurs in the pivot extension procedure and have been included for reasons of completeness. Extremely rare cases are marked with a footnote.
- Examples mark the SSV substitution of the satellite category instance (displayed inside []SSV). Certain examples contain lexical items outside the syntactic environment treated for reasons of clarity.
- For each SSV displayed in this table, three syntactically similar but lexically different strings are available (cf. Section 5.2.4.1). These alternative strings are not included in the table so as not to clutter the general overview.
- $\mathrm{X} \rightarrow$ A B $\quad \mathrm{X}$ expands into A and B
$\mathrm{X}<\mathrm{A} \quad \mathrm{X}$ dominates A
$\mathrm{X} \rightarrow(\mathrm{A}<\mathrm{B}) \mathrm{C} \quad \mathrm{X}$ expands into A and C. A dominates B .

CAT	TAG	Environment SSV
ADJP	-	
ADVP	-	default 'quickly' 'The slowdown is taking hold [a lot more quickly and devastatingly than anyone had expected]' \rightarrow 'The slowdown is taking hold [quickly] ${ }_{S S V}$ '

Contrnued on next page

CAT	TAG	Environment SSV
NP	EXT EXT EXT -	```head contains \% ' \(10 \%\) ' 'surged [4 26 , or about \(094 \%\)]' \(\rightarrow\) 'surged [\(10 \%]_{S S V}\) ' head \(=\mathrm{NN} \quad\) 'a lot' 'rose [a surprisingly moderate \(0.2 \%\)]' \(\rightarrow\) 'rose [a lot \(]_{S S V}\) ' head \(=\) NNS \(\quad\) ' 10 metres' 'drop [an additional 25 feet]' \(\rightarrow\) 'drop [10 metres] \({ }_{\text {SSV }}\) ' PP-LOC < NP (head \(=\) 'Chicago' NNP/NNPS) 'm [Arizona, Cahforma, Lousiana and Maryland]' \(\rightarrow\) 'm [Chicago]sSV \({ }^{\prime}\) PP-LOC \(<\) NP 'the house' 'in [an expensive high rise bulding]' \(\rightarrow\) 'm [the house \(]_{S S V}\) ' PP-TMP \(<\) NP (head \(=\) '10 minutes' NNS) 'during [the first nne months of the year]' \(\rightarrow\) 'during [10 minutes] \({ }^{\text {SSV }}\) ' PP-TMP < NP 'tomorrow' 'untıl [March, April or even May]' \(\rightarrow\) 'untı1 [tomorrow]sSV' head \(=\mathrm{PRP} \quad\) mimic \(\mathrm{PRP}^{a}\) \({ }^{[}[\mathrm{He}]\) ' \(\rightarrow\) ' \([\mathrm{He}]_{S S V}\) ' head \(=\) NN, det. article 'the boy' '[The young, short-term American employee]' \(\rightarrow\) '[The boy \(]_{S S V}{ }^{\prime}\) head \(=N N\), indet. article 'a cat' '[A major U S producer and seller]' \(\rightarrow\) '[A cat] \(]_{S S V}\) ' head \(=\) NN, mass noun \(\quad\) 'sugar' '[Some MCI. Communications Corp stock]' \(\rightarrow\) '[Sugar]ssV' head \(=\) NN (default) 'the boy' '[Even the official Indianapols 500 announcer]' \(\rightarrow\) '[The boy] \({ }_{S S V}\) ' head \(=\) NNS 'the swimmers' '[The other two outside bidders]' \(\rightarrow\) '[The swimmers] \({ }_{S S V}\) ' head \(=\) NNP 'John' '[The French film maker Claude Chabrol]' \(\rightarrow\) '[John] \(]_{S S V}\) ' head \(=\) NNPS \(\quad\) 'John and Alex' '[Peter D. Hart Research Associates]' \(\rightarrow\) '[John and Alex] \({ }_{S S V}\) ' head \(=\) JJS 'most' '[Most soybean and soybean-meal contracts]' \(\rightarrow\) '[Most] \(]_{S V V}\) ' head \(=\mathrm{DT} \quad\) mimic \(\mathrm{DT}^{b}\) '[That]' \(\rightarrow\) '[That \(]_{S S V}\) '```
PP	DTV DIR DIR	head = IN \quad 'to the man''an approach to offer [not only to Califormans, but to all Americans]'$\rightarrow \rightarrow$ 'an approach to offer [to the man] ${ }_{S S V}$ 'head = IN ('to')'fled [to Canada or some other sanctuary]' \rightarrow 'fled [to London] ${ }_{S S V}$ ' head $=$ IN ('from') 'from London'

Continued on next page

[^48]| CAT | TAG | Environment SSV |
| :---: | :---: | :---: |
| | LOC
 MNR
 TMP
 -
 -
 -
 -
 -
 - | 'Oil production [from Australa's Bass Straight Fields]' \rightarrow 'Oil production [from London]ssV'
 head $=$ IN \quad 'in the house'
 '[in the rapidly growing field of bio-analytical instrumentation]' \rightarrow '[in the house] SSV $^{\prime}$
 head $=$ IN \quad 'with an apple'
 '[with large and expensive page bonuses]' \rightarrow '[with an apple] $]_{S S V}$ '
 head $=\mathrm{IN} \quad$ 'after the meeting'
 '[after a loss to the Kansas City Chiefs yesterday]' \rightarrow '[after the meetmg] ${ }_{S S V}{ }^{\prime}$
 head $=$ IN \quad mimic preposition ${ }^{a}$
 '[before entering restaurants, department stores and sports centres]' \rightarrow '[before the holiday $]_{S S V}$ '
 head $=$ VBG ('including') 'including the dog'
 '[mcluding perhaps someone of your own staff]' \rightarrow '[including the $\operatorname{dog}_{s s V^{\prime}}$
 head $=$ VBG ('according') 'according to the woman'
 '[according to government figures released Wednesday]' \rightarrow '[according to the woman] ${ }_{S S V}$ '
 head $=$ VBG ('following') 'following the meeting'
 'following the June 4 massacre in Beying, which caused a sharp drop
 in Hong Kong prices' \rightarrow '[following the meeting] ${ }_{S S V}$ '
 head $=$ VBG ('excluding') 'excluding the dog'
 '[excluding the hard-hit crty of Los Gatos]' \rightarrow '[excluding the dog]sSV' head $=$ VBG ('depending') 'depending on the meeting'
 '[depending on the composition of the management team and the nature of its strategic plans]' \rightarrow '[depending on the meeting] ${ }_{S S V}$ '
 '[to the troubled company's equity holders]' \rightarrow '[to the $\operatorname{dog}]_{S S V}$ ' |
| PRN | - | |
| UCP | - | default replace UCP by SSV of first node 'to be [in violation of Article II, and thus vord and severable]' \rightarrow 'to be [in the house] ${ }^{\text {SSV }}$ ' |
| S | TPC NOM ADV | 'The man is sleeping'
 '[The total of 18 deaths from malignant mesthelioma, lung cancer and asbestosis was far higher than expected], the researchers said.' \rightarrow '[The man is sleeping $]_{S S V}$, the researchers said '
 'sleeping'
 'before anyone heard of [asbestos having any questionable properties]'
 \rightarrow 'before anyone heard of [sleeping] $s S V$ '
 head $=$ VBG
 'working in the garden'
 'standing around [deciding who would fly in what balloon and in what order]' \rightarrow 'standing around [working in the garden]SSV' |

Continued on next page
${ }^{a}$ The prepositions for PPs with more than 100 token occurrences in sections 01-22 of the Penn Treebank are mimicked.

CAT	TAG	Environment SSV
	ADV	head $=$ VBN \quad 'founded in 1900'
		'[Filmed in lovely black and white by Bill Dill], the New York streets' \rightarrow '[Founded in 1900] $]_{S S V}$, the New York streets'
	PRP	- 'to sleep'
		'resigned last year [to seek, unsuccessfully, a seat in Canada's parhament]' \rightarrow 'resigned last year [to sleep] ${ }_{s s V}$ ' head $=$ VBG \quad 'working in the garden'
	CLR	'launched a surt, [seeking the withdrawal of Dunkin's poison pill rights and employee stock ownership plans]' \rightarrow 'launched a suit, [working in the garden $]_{S S V}$ '
	CLR	'to sleep' 'paid [to stand up at a Japanese plate]' \rightarrow 'pard [to sleep] ${ }^{S S V}$ '
	PRD	- 'a man'
		'The result has been [to seriously impair the rights of others unconnected with their dispute]' \rightarrow 'The result has been [a man $]_{S S V}$ '
	HLN	'The man is sleeping' 'Applause for "Sometimes Talk is the Best Medicine]" ' \rightarrow 'Applause for "[The man is sleeping]ssv",
	CLF	- 'It is the man'
		'[It is these 645,000 tons that are in question for this crop year], explained Judith Ganes' \rightarrow '[It is the man] $]_{S S V}$, explamed Judith Ganes'
	TTL	'The man is sleeping' 'In reference to your Oct. 9 page-one article, "[Barbara Bush earns even higher ratings than the president,]" it is $\quad \rightarrow$ 'In reference to your Oct 9 page-one article, "[The man is sleeping,] ${ }_{s s v}$ " it is ...'
	MNR	- 'working in the garden'
		'He earns his living [playing the double bass in classical music ensembles]' \rightarrow 'He earns his hivng [working in the garden] ${ }_{S S V}$ ' 'to sleep'
	SBJ	'[To suggest that a 10% drop in ozone by the middle of the next century would be negligible] is irresponsible and shortsıghted.' \rightarrow '[To sleep] $]_{S V}$ is irresponsible and shortsighted '
	TMP	- 'starting in 1990'
		'[Beginning in the first year of medical school], students learn' \rightarrow '[startmg in 1990] SSV $^{\prime}$, students learn $\mathrm{S} \rightarrow$ NP-SBJ TO 'the boy to sleep'
		'causing [the index to declne for three consecutive months]' \rightarrow 'causing [the boy to sleep] ${ }_{\text {SSV }}$ ' head $=\mathrm{TO}$ 'to sleep'
	-	'Longer maturities are thought [to indicate declining interest rates because they permit portfolio managers to mantan relatively higher rates]' \rightarrow 'Longer maturities are thought [to sleep] ${ }_{S S V}$ '
	-	$\mathrm{S} \rightarrow$ NP-SBJ VBG 'the boy working in the garden' 'T've had [a lot of people trying to sell me services to find out how big it $1 \mathrm{~s}_{1}$ ' \rightarrow 'I've had [the boy working in the garden] ${ }_{\text {SSV }}$ ' head $=\mathrm{VBG}$ 'working in the garden'
	-	'The stock, [having lost nearly a quarter of its value sunce Sept. 1], closed at $\$ 34.375$ share' \rightarrow 'The stock, [working in the garden] $]_{S S V}$ closed at $\$ 34375$ share'

Continued on next page

[^49]| CAT | TAG | Environment SSV |
| :---: | :---: | :---: |
| | - - - - - - - - - - - | VP < (SBAR < (IN than)) 'than the man'
 'put a greater emphasis on quality [than they do in the U S]' \rightarrow 'put a greater emphasis on quality [than the man] ${ }_{\text {SSV }}$ '
 $\mathrm{VP}<(\mathrm{SBAR}<(\mathrm{IN}$ as $)) \quad$ 'as the man'
 'oppose fundmg [as does president Bush]' \rightarrow 'oppose fundıng [as the man] ${ }_{\text {SSV }}{ }^{\prime}$
 $\mathrm{VP}<(\mathrm{SBAR}<(\mathrm{IN}$ what)) 'what the man found'
 'The commissioner knows [what will happen down the road, in three to six months]' \rightarrow 'The commissioner knows [what the man found] ${ }_{S S V}$ '
 $\mathrm{NP}<(\mathrm{SBAR}<(\mathrm{TO}$ to $)) \quad$ 'to sleep'
 'legislation [to protect fore1gn movie producers]' \rightarrow 'legislation [to sleep].SSV'
 NP $<($ SBAR $<($ IN where $)) \quad$ 'where the man is sleeping'
 'the office [where employees are assigned lunch partners]' \rightarrow 'the office [where the man is sleeping] ${ }_{S S V}$ '
 VP $<$ SBAR (default)
 'that is/are sleeping'
 'the brokerage company [that once did business as Merrill Lynch Commercial Real Estate]' \rightarrow 'the brokerage company [that is sleeping]SSV'
 ADJP \leftarrow JJ (SBAR $<$ 'how the man is/was sleeping'
 WHNP)
 'not sure [how many weapons they have in their arsenals]' \rightarrow 'not sure [how the man is sleeping]sSV'
 ADJP < SBAR (default) 'that the man is/was sleeping'
 'stunned [that despite the bald-faced nature of her actions, she became something of a local martyr]' \rightarrow 'stunned [that the man was sleeping] ${ }_{S S V}{ }^{\prime}$
 $\mathrm{PP} \rightarrow$ IN SBAR 'whether the man $1 \mathrm{~s} /$ was sleeping'
 'dıvided over [whether the United Nations Population Fund will receive any portion of these appropriations]' \rightarrow 'divided over [whether the man 1s/was sleeping] ${ }_{S S V}$ '
 default
 'that the man is sleeping' |
| VP^{a} | - - - - - - - - | $\mathrm{NP}<\mathrm{VP}$ 'made in China'
 'an exotic playground, [peopled mannly by Jewish eccentrics and the occasınal Catholic]' \rightarrow 'an exotic playground, [made in Chinal $]_{S S}$ '
 VP $<$ VP (head $=$ TO) 'sleep'
 'eager to [bring attention to the problem]' \rightarrow 'eager to [sleep] ${ }_{S S V}$ '
 $\mathrm{VP}<\mathrm{VP}($ head $=\mathrm{VB}) \quad$ 'sleep'
 'the authority to [seize U.S. fugitives overseas without the permission of foreign governments]' \rightarrow 'the authority to [sleep]sSV'
 VP < VP (head $=$ VBG) 'sleeping'
 'the company had been [steadily lowerng its accident rate and picking up trade-group safety awards]' \rightarrow 'the company had been [sleeping] ${ }_{S S V}$ '
 $\mathrm{VP}<\mathrm{VP}($ head $=\mathrm{VBN})$ 'paid'
 'the effect has been [sct up and shot down by different professors]' \rightarrow 'the effect has been [pard] ssv'
 VP < VP (head = VBZ) 'is sleeping'
 'The company [is operating under Chapter 11 of the federal Bankruptcy Code] \rightarrow 'The company [1s sleeping]ssv' |

Continued on next page

[^50]| CAT | TAG | Environment SSV |
| :---: | :---: | :---: |
| | - | $\begin{array}{\|ll} \hline \mathrm{VP}<\mathrm{VP} \text { (head }=\mathrm{VBP}) & \text { 'eat an apple' } \\ \text { '' } \rightarrow \text { '[eat an apple] } & \\ \mathrm{VP}<\mathrm{VP}(\text { head }=\mathrm{VBD}) & \text { 'slept } ' \end{array}$
 'The president has not [said before that the country wants half the debt forgiven]' \rightarrow 'The president has not [slept $]_{\text {SSV }}$ ' |
| WHADJP | - - - | WHNP < WHADJP (SG) 'how much'\quad '[how much credıbility and experience]' \rightarrow ' how much $]_{S S V}$ 'WHNP < WHADJP (PL) 'how many''[how many company mall rooms]' \rightarrow '[how many] $]_{S S V}$ '
 default 'how much' |
| WHADVP | - | default '[precisely when and where]' \rightarrow '[when $]_{S S V}$ ' |
| WHPP | - | default 'in which' No occurrences |
| default | - | default 'SAT1'-'SAT9'a 'The man, a long-time rival of Bill Gates, likes fast and confidential deals' \rightarrow '[SAT1 $]_{\text {SSV }}$ likes $[\text { SAT } 2]_{\text {SSV }}$ ' |

[^51]Table D. 1 Static Substıtution Variables per Category.

Appendix E

Static Context Templates per Category

Remarks concernıng the information contained in Table E.1:

- For a specific satellite category, all occurrences in a syntactic environment that is not contaned in the table do not require embedding in a static context template, unless otherwise specified by the word 'default' in the column Environment. In the latter case, all occurrences in a syntactic environment that is not contamed in the table conform to the context specified in the row containng 'default'.
- The table contains an exhaustive overview of how static context templates are generated for all possible satellites, even if certain types of satellites do not (often) occur in practice due to pivot extensions. For example, despite the fact that a preposition is often attached to the preceding verb during the formation of the verbal pivot, a general treatment for PP embedding has been implemented. Template insertions like these are triggered in case an error occurs in the pivot extension procedure and have been included for reasons of completeness. Extremely rare cases are marked with a footnote.
- Examples contain the satellite to be substituted (displayed inside [] ${ }_{S A T}$), the original context and the new context (displayed inside [$]_{C}$).
- $\mathrm{X} \rightarrow \mathrm{A} \mathrm{B} \quad \mathrm{X}$ expands into A and B
$\mathrm{X}<\mathrm{A} \quad \mathrm{X}$ dominates A
$\mathrm{X} \rightarrow(\mathrm{A}<\mathrm{B}) \mathrm{C} \quad \mathrm{X}$ expands into A and $\mathrm{C} . \mathrm{A}$ dominates B .

CAT	TAG	Environment	Context
ADJP	-	NP < ADJP	$\mathrm{NP}_{\text {rep }}{ }^{\text {a }}$
	-	default	'[it seems
		' "progressive and agreeable seems] ${ }_{C}$ [far m plined instruct	s once calle disciplined agreeable

Contrnued on next page

[^52]

Continued on next page

[^53]| CAT | TAG | Environment Context |
| :---: | :---: | :---: |
| | - - - - - - | PP \rightarrow JJ IN NP
 '[such as] $]_{C}$ NP'
 'sales rose 5% amıd good growth in selected areas such as [banks and trading companies $]_{N P}{ }^{\prime} \rightarrow$ '[such as $]_{C}$ [banks and trading companies] $]_{N P}$ '
 PP \rightarrow IN IN NP
 '[because of $]_{C}$ NP'
 'that meludes all the gas consumed in Ontario and Quebec, along with [the bulk of Canadian gas exports] $]_{N P} \rightarrow$ '[because of $]_{C}$ [the bulk of Canadıan gas exports] ${ }_{N P}$ '
 PP < NP (default)
 '[the man dances with] $]_{C}$ NP'
 'the strike was having much of an effect on [other arrline operations] $]_{N P}$ '
 \rightarrow '[the man dances with] ${ }_{C}$ [other arlme operations $]_{N P}$ '
 $\mathrm{NP} \rightarrow \mathrm{NP}, \mathrm{NP}($, $)$
 '[the man, $]_{C} \mathrm{NP}$ '
 '. according to Brooke T. Mossman, [a professor in pathology] ${ }_{N P}$ ' \rightarrow '[the man, $]_{C}$ [a professor in pathology] ${ }_{N P}$ '
 $\mathrm{VP}<\mathrm{NP}$ $\begin{aligned} & \text { if } N P=\text { DOBJ ' 'the man is (not) } \\ & \text { eating }]_{C} \\ & \text { if } N P=\text { predicative: zero context } \end{aligned}$
 'last month, the company's stock funds have averaged [a staggering gain of $25 \%]_{N P} \rightarrow$ '[the man is eating] C [a staggering gain of $\left.25 \%\right]_{N P}$ ' 'after the voting debacle in parliament, I certainly wouldn't expect [an immediate resolution to anything] $]_{N P}$ ' \rightarrow '[the man is not eating] ${ }_{C}$ [an immediate resolution to anything $]_{N P}$ '
 '[Mr. Vinken is] [chairman of Elsevier N V] ${ }_{N P}$ ' $\left.\rightarrow{ }^{\text {' }}\right]_{c}$ [charrman of Elsevier N V. INP' $^{\prime}$ |
| PP | TMP | all
 '[the man sings a song] $C_{C} \mathrm{PP}$ '
 'compound yields assume reinvestment of dividends and that the current yeld continues [for a year] $]_{P P} \rightarrow$ '[the man sings a song] $]_{C}$ [for a year $]_{P P}{ }^{\prime}$
 $\mathrm{NP} \rightarrow \mathrm{NP}, \mathrm{PP} \quad$ '[the man, $]_{C} \mathrm{PP}$ '
 'but a takeover battle opens up the possibility of a bidding war,] [with all that impleses $]_{P P}$ ' \rightarrow '[the man, $]_{C}$ [with all that implies $]_{P P}$ '
 $\mathrm{NP}<\mathrm{PP}$
 $\mathrm{NP}_{\text {rep }}{ }^{a}$
 $\mathrm{VP}<\mathrm{PP} \quad$ '[the man is sleeping $]_{C} \mathrm{PP}$ '
 'Pierre Vinken, 61 years old, will join the board [as a nonexecutive director] P_{P} ' \rightarrow '[the man is sleeping] ${ }_{C}$ [as a nonexecutive director] ${ }_{P P}$ ' $\mathrm{S}<\mathrm{PP}$
 ' PP [the man is sleeping $]_{C}$ '
 '[m the new position $]_{P P}$ he will oversee Mazda's US sales, service, parts and marketing operations' \rightarrow '[in the new position] $P_{P P}$ [the man is sleeping ${ }_{C}$ ' |
| PRN | - | NP $<$ PRN context $=\mathrm{NP}_{\text {rep }}{ }^{a}$
 $\mathrm{~S}<\mathrm{NP}$ PRN context $=\mathrm{NP}_{\text {rep }}{ }^{a}$ |
| QP | - | $\mathrm{NP}<\mathrm{QP} \quad$ 'QP [men] $]^{\prime}$
 '[no fewer than 24] $]_{Q P}$ country funds have been launched or registered with regulators' \rightarrow '[no fewer than 24] QPP [men] ${ }_{C}$ ' |
| RRC | - | NP (head plural) < RRC '[the men, $]_{C}$ RRC'
 'together with the 3.6 million shares [controlled by management directors $_{R R C} \ldots$ '.. \rightarrow the men, $]_{C}$ [controlled by management directors] ${ }^{\text {RRC }}$ '
 NP (head singular) $<$ RRC '[the man, $]_{C}$ RRC'
 - "He makes snap judgements," says Kiyotaka Korl, [the art gallery's manager and Mr Morishita's secretary $]_{R R C} \rightarrow$ ' $[\text { the man, }]_{C}$ [the art gallery's manager and Mr Morishita's secretary] $]_{R R C}$ ' |

Continued on next page

[^54]| CAT | TAG | Environment Context |
| :---: | :---: | :---: |
| S | NOM ADV ADV | all 'S [is good] ${ }_{C}$ '
 'a Commonwealth Edison spokesman said that [tracking down the two million customers] $]_{\mathcal{S}}$ would be an admınıstrative nıghtmare' \rightarrow '[tracking down the two milhon customers] s [1s good] C^{\prime}
 S before comma
 ' $\mathrm{S}[$ [, the man is sleeping] C '
 "[standing on a shaded hill] $]_{S}$, the school has educated many of South Carolina's best and bightest' \rightarrow '[standing on a shaded hill] $]_{S}[$, the man is sleeping ${ }_{c}{ }^{\prime}$
 S after comma '[the man is sleeping, $]_{C} \mathrm{~S}$ '
 'prior to his term, a teacher bled to death in the halls, [stabbed by a student $]_{S}$ ' \rightarrow 'the man is sleeping, $]_{C}$ [stabbed by a student $]_{S}$ '
 $\mathrm{PP} \rightarrow$ IN S
 Context $=$ original preposition (IN)
 'spending on private construction was off 26%, with [no sector showing strength $]_{S} \rightarrow$ '[with $]_{C}$ [no sector showing strength] $]_{S}$ |
| SBAR | ADV TMP | $\mathrm{VP}<\mathrm{SBAR}$ '[the man is/was sleeping] $]_{C}$ SBAR' 'moreover, there have been no orders for the Cray-3 so far [though the company is talking with several prospects] $s_{B A R}$ ' \rightarrow 'the man is sleeping] ${ }_{C}$ [though the company is talking with several prospects] $S_{S A R}$ ' VP < SBAR
 '[the man is/was sleeping $]_{C}$ SBAR'
 'exports in October stood at $\$ 5.29$ billion, a mere 07% increase from a year earher, [whle mports increased sharply] SBAR \rightarrow '[the man was sleeping] ${ }_{C}$ ' [while imports increased sharply] ${ }_{S B A R}$
 $\mathrm{VP}<\mathrm{SBAR}$ (direct speech) '[the man says/said] $]_{C}$ SBAR'
 'after the meeting, a Boeing spokeswoman sand [a delivery date for the planes is still being worked out $S_{S B A R} \rightarrow$ '[the man said] C [a delivery date for the planes is still being worked out $]_{S B A R}$,
 $\mathrm{S}<\mathrm{SBAR}$
 'SBAR [, the man is sleeping] ${ }_{C}$ '
 '[as word of the crime spree has spread] $]_{S B A R}$ [, many agents have started changing their open-door policies]' \rightarrow '[as word of the crime spree has spread] ${ }_{S B A R}$ [, the man is sleeping. $]_{C}$ '
 $\mathrm{NP}<(\mathrm{SBAR} \ll \mathrm{TO}) \quad$ '[the man is writing a book] $]_{C}$ SBAR'
 'Seoul also has instituted effective procedures [to and these teams] ${ }_{S_{B A R}}$ '
 \rightarrow '[the man is writing a book]C [to ald these teams] SBAR $^{\prime}$
 $\mathrm{NP}<\mathrm{SBAR}$
 $\mathrm{NP}_{\text {rep }}$
 ADJP $<$ (SBAR $!<$ that $) \quad$ '[the man knows that] $]_{C}$ SBAR'
 ' Mr Rey has been very careful since then to make sure [his moves are welcome] $]_{S B A R} \rightarrow$ '[the man knows that $]_{C}$ [his moves are welcome] SBAR $^{\prime}$
 ADJP $<(\mathrm{SBAR}<$ that $)$
 '[the man knows] ${ }_{C}$ SBAR'
 'this picture is about a middle-aged son who makes sure [that his delayed bond with his father will last] SBAR $^{\prime} \rightarrow$ ' the man knows] $]_{C}$ [that his delayed bond with his father will last $]_{S B A R}$ '
 PP \rightarrow IN SBAR
 '[the man knows] $]_{C}$ SBAR'
 'depending on [how far down you gol sBAR , it may be difficult to pay off that debt' \rightarrow 'the man knows] $]_{C}$ [how far down you gol SBAAR $^{\prime}$ |
| VP | TPC | all VP [is good] C
 '[contributing to the market's reserved stance] ${ }_{V P}$ was the release later in the day of news data on the health of the U S economy' \rightarrow '[contributing to the market's reserved stance] V_{P} [is good] $]_{C}$ ' |

Contznued on next page

CAT	TAG	Environment Context
	- - -	
$\mathrm{NP}_{r e p}$	-	$\mathrm{X}<\mathrm{NP}($ head $=\mathrm{NN}) \mathrm{Y} \quad$ '[the car - a car - sugar $]_{C} \mathrm{Y}^{; 6}$ 'it recesved approval to sell [the first foldable slicone lens] $]_{N P}$ [avarlable for cataract surgery] $]_{A D J P '} \rightarrow$ '[the car] $]_{C}$ [available for cataract surgery) ${ }_{A D J P}{ }^{\prime}$

Continued on next page

[^55]

Appendix F

Implementation: Class Diagram

Figure F.1: Implementation of TransBooster Application (Java version J2SE 5.0) class diagram.

BoosterMain reads in the user options and starts the program execution.
Booster reads input data from a text file and coordinates the execution of the algorithm.
Parameters reads parameters from a text file and passes them on to Booster.
InputBooster converts a Penn-II Treebank tree into a collection of TransBooster Nodes or (TNodes).

TNode is a data structure representing a TransBooster Node and executes the main decomposition/recomposition algorithms at node level.

Identity contains information about TNode (head, adjunct or argument) and indicates its position in source and target

CatInfo contains the orıgınal Penn-II Treebank mformation for each TNode
Coverage produces several forms of lexical coverage of a TNode.
StringTools contains a number of useful String manıpulating methods specific to TransBooster.

Annotator annotates each non-head TNode with argument/adjunct information
HeadFinder finds the head of a TNode.
PivotFinder finds the pivot of a TNode.
Substitution selects and stores static and dynamic Substitution Variables for satellites.
Context embeds a satellite in a static and dynamic context template.
Chunk is a data structure that stores pivot skeletons and satellites embedded in static/dynamic context templates Chunk extracts the translation of each pivot/satellite from the translations of the embedded strings and passes the extracted translation to TNode

Translation interfaces Chunk with the baseline MT engine.
Table F. 1 provides additional information about the amount of language-dependent code in the classes Note that the vast majority of the language-dependent code is related to the source language, not to the target language. Only a limited number of methods regardıng string retrieval in target are target language dependent. Column Class contains each of the relevant classes in the application. Column Degree specifies the degree to which the class is language-dependent ('none', 'low', 'medium' or 'high'). Column Comments contains further information on the language-dependent elements in each class.

Class	Degree	Comments
BoosterMain	none	Language independent.
Parameters	none	Language independent.
Booster	none	Language independent

Continued on next page

Class	Degree	Comments
InputBooster	low	Input $=$ Penn-II tree. Source languages \neq English have to be parsed into Penn-like tree structures.
TNode	low	The main code for decomposition/recomposition is not language specific but depends on the correct identification and posterior processing of pivots, satellites and their SVs.
Annotator	high	The distinction between arguments and adjuncts is input language specific.
HeadFinder	high	Head-finding rules are input language specific.
Identity	none	Language independent.
CatInfo	none	Language independent.
Coverage	none	Language independent.
StringTools	medium	Most of the string manipulation methods in this class are language specific.
PivotFinder	high	The finding of a correct pivot is input language specific
Substitution	hıgh	SSVs and DSVs are input language specific.
Chunk	none	This class reles on a correct identification of translation chunks and their contexts. The code itself is language independent.
Context Translation	high none	Static and Dynamic contexts are highly language specific. Language independent.

Table F.1: $\begin{aligned} & \text { Language-dependent vs Language-independent Elements in Trans- } \\ & \text { Booster }\end{aligned}$

Bibliography

Adriaens, G. and Caeyers, H. (1990). Het Automatisch Vertaalsysteem METAL: van Onderzoek tot Commercieel Produkt. Ingénıeur 6 Industrıe, pages 281-288.

Akıba, Y., Imamura, K., and Sumita, E. (2001). Using Multiple Edit Distances to Automatically Rank Machine Translation Output. In Machıne Translation Summıt VIII, pages 15-20, Santiago de Compostela, Spain.

Armstrong, S, Flanagan, M., Graham, Y., Groves, D., Mellebeek, B., Morrissey, S., Stroppa, N., and Way, A. (2006). MaTrEx: Machine Translation Using Examples. In TC-STAR OpenLab on Speech Translation, Trento, Italy. http://www.nclt.dcu.ie/ mt/publications_06.html.

Babych, B. and Hartley, A. (2004). Extending BLEU MT Evaluation Method with Frequency Weighting. In Proceedrngs of the 42th Annual Meeting of the Assocıation for Computational Linguistics (ACL), Barcelona, Spain.

Banerjee, S and Lavie, A. (2005). METEOR: An Automatic Metric for MT Evaluation with Improved Correlation with Human Judgements. In Proceedings of Workshop on Intrinsıc and Extrinsic Evaluation Measures for MT and/or Summarzzation at the 43 th Annual Meeting of the Association for Computational Linguıstıcs (ACL), pages 65-72, Ann Arbor, MI.

Bangalore, S., Bordel, G., and Riccardi, G. (2001). Computing Consensus Translation from Multıple Machine Translation Systems. In Proceedings of IEEE Workshop on Automatic Speech Recognatzon and Understanding, pages 351-354, Trento, Italy.

Bar-Hillel, Y. (1960). A Demonstration of the Nonfeasibility of Fully Automatic High Quality Translation. Advances in Computers, 1:158-163. Appendix III

Bennett, W. and Slocum, J. (1985). The LRC Machıne Translation System. Computational Lengurstzcs, 11:111-121.

Bernth, A. and Gdaniec, C. (2001). MTranslatability. Machene Translatoon, 16(3):175218.

Bikel, D. M. (2002). Design of a Multi-lingual, 'Parallel-processing Statistical Parsing' Engine In Proceedings of the Human Language Technology Conference (HLT), pages 24-27, San Diego, CA.

Brown, P.' F., Pletra, 'S. D., Pietra, V. D., and Mercer, R. (1993) The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Ľngurstıcs, pages 263-311.

Brown, R. D. (1996) Example-Based Machine Translation in the Pangloss System. In'Pro-

Burbank, A., Carpuat, M., Clark, S, Dreyer, M., Fox, P, Grovès, D.; , Hall, K., Hëarrine;, M., Melamed, D., Shen, Y., Way, A., Wellington, B , and Wu, D. (2005). Final Rểport of the Johns Hopkins Summer Workshop on "Statistical Machine Translation by Parsing. In JHU Workshop-2005, Baltimore, MD.

Burke, M (2006). Automatıc Treebank Annotation for the Acquzsition of LFG, Resources. PhD thesıs, School of Computing, Dublin City University, Dublin, Ireland.

Cahill, A. (2004). Paršing with Autōmatzcally Acquired, Wide-coverage, Robust, Proba-
 Dublin, Ireland.

Cahill, A , Burke, 'M., O'Donovan, Rv, van Genabith, J., and Way; A. (2004), LongDistance Dependency Resolution in Automatically Acquired Wide-coverage PCFG-
based LFG Approximations. In Proceedings of the $42 n d$ Annual Meeting of the Assoczation for Computational Linguistıcs (ACL), pages 319-326, "Barcelona, Spain.

Cahıll, A. and van Genabith, J (2002) TTS - a Treebank Tool. In The Third International Conference on Languagé Resources and Evaluation (LREC), pages 1712-1717, Las Palmas de Gran Canarıa, Spain. http://reseařch. computing. dcùine/~acahılı/tts/.

Callison-Burch, C., Osborne, M., and Koehn, P. (2006). Re-evaluating the Role of Bleu in Machine Transläation Research." In"Proceedings of "the 11th Conference of the European, Chapter of the Associatıon for Computâtional Linguzstıcs (EACL), pages 249-256, Trento, Italy.

Carl, M and Way, A. (2003). Recent Advances in Example-Based Machine Translation. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Chandioux, J. (1976). MÉTÉO: Un systême Opérationel poư la Traduction Aútomatique , des Bulletins Météorologıques, Destinés, au, Grand Publıc. ${ }^{\text {M META, }} 21$ 127-133
 of the Second Biennial Conference of the Assocıatıon for Machine Translation n^{5} 'the Amerıcas (AMTA), pages 206-211, Montreal, Canada

Charmak, E. (1996). Tree-Bank Grammars. In Proceedings of the Thrteenth National . Conférence 'on Artıficual Intellıg้encè (AAAI), pages 1031-1036, Menlo. Pärk, 'CA."

Charnak, E. (2000) $\cdot_{\cdot n}$ A Maximúm Entropy Inspired'Parser. In Proceedıngs of the First Annual Meeting of the North American Chapter of the Association for Computational Linguıstıcs (NAACL), pages 132-139, Seattlë, WA.

Charniak, E., K_night, K , and Yamada, K (2003). Syntax-based Language Models for
 Orleans̃, LO

Chiang, D (200\%). A Hierarchical, Phrase-based Model for Statistical Machine Translation. In Proceedings of the 43 rd Annual Meeting of the A'ssocıation for Computational 'Linguistıcs, pages 263-270, Ann Arbor, Mi.

Cohen, A , Cousseau, P., Frederking, R., Grannes, D., Khanna, S., McNelly, C., Nirenburg, S., Shell, P., and Waeltermann, D. (1993). Translator's WorkStation User Document Technical report, Center for Machine Translation, Carnegie Mellon University, Pittsburgh, PA.

Collins, M. (1999). Head-driven Statistıcal Models for Natural Language Parsing. PhD thesis, University of Pennsylvania, Philadelphia, PA

Davison, A. and Hinkley, D. (1997). Bootstrap Methods and their Applıcation. Cambridge University Press, Cambridge, UK.

Deprez, F., Adriaens, G., Depoortere, B., and de Braekeleer, G. (1994). Experiences with Metal at the Belgian Ministry of the Interior. META. Journal de traducteurs/Translators' Journal. Numéro Spécıal, La Traductıon et L'Interprétatıon dans la Belgıque Multtlıngue, 39(1):206-212.

Doddington, G. (2002). Automatic Evaluation of MT Quality Using n-gram Co-occurrence Statistics. In Proceedings of Human Language Technology Conference, pages 128-132, San Diego, CA.

Feng, D. and Doolittle, R. (1987). Progressive Sequence Alignment as a Prerequisite to Correct Phylogenetic Trees Journal of Molecular Evolution, 25•351-360.

Fiscus, J. (1997). A Post-processing System to Yield Reduced Word Error Rates: Recognizer Output Voting Error Reduction (ROVER). In Proceedings of IEEE Workshop on Automatıc Speech Recognatzon and Understanding, pages 238-245, Santa Barbara, CA

Frederking, R., Cohen, A., Cousseau, P., Grannes, D , and Nirenburg, S. (1993). The Pangloss Mark I MAT System. In Proceedings of the 6th Conference of the European Chapter of the Association for Computational Linguzstics (EACL), pages 468-468, Utrecht, The Netherlands.

Frederking, R. and Nirenburg, S. (1994) Three Heads are Better than One. In Proceedings of the Fourth Conference on Applied Natural Language Processing (ANLP), pages 95100, Stuttgart, Germany.

Gerber, L. and Hovy, E. (1998). Improving Translation Quality by Manipulating Sentence Length. In Proceedings of the 3rd Biennial Conference of the Association for Machine Translation in the Americas (AMTA), pages 448-460, Langhorne, PA.

Goodman, K. and Nirenburg, S. (1991). The KBMT Project: a Case Study in Knowledgebased Machine Translation. Morgan Kaufman, San Mateo, CA.

Gough, N. (2005). Example-based Machine Translation Using the Marker Hypothesis. PhD thesis, School of Computing, Dublin City University, Dublin, Ireland.

Gough, N. and Way, A. (2004). Robust Large-Scale EBMT with Marker-Based Segmentation. In Proceedings of the 10th International Conference on Theoretical and Methodological Issues in Machine Translation (TMI), pages 95-104, Baltimore, MD.

Green, T. (1979). The Necessity of Syntax Markers. Two Experiments with Artificial Languages. Journal of Verbal Learning and Behavior, 18:481-496.

Groves, D. and Way, A. (2005). Hybrid Example Based SMT: the Best of Both Worlds. In Workshop on Building and Using Parallel Texts at the 43 rd Annual Meeting of the Association for Computational Linguistics (ACL), pages 183-190, Ann Arbor, MI.

Groves, D. and Way, A. (2006). Hybridity in MT: Experiments on the Europarl Corpus. In Proceedings of the 11th Conference of the European Association for Machine Translation, pages 115-124, Oslo, Norway.

Hockenmaier, J. (2003). Data and models for Statistical Parsing with Combinatory Categorial Grammar. PhD thesis, University of Edinburgh, Edinburgh, UK.

Hovy, E. (1999). Toward Finely Differentiated Evaluation Metrics for Machine Translation. EAGLES Handbook, EAGLES Advisory Group. Pisa, Copenhagen, Geneva.

Hovy, E., King, M., and Popescu-Belis, A. (2002). An Introduction to MT Evaluation. In Handbook Workshop 'Machine Translation Evaluation: Human Evaluators Meet Automated Metrics' at the Third International Conference on Language Resources and Evaluation (LREC), pages 1-7, Las Palmas de Gran Canaria, Spain.

Hutchins, J., Hartmann, W., and Ito, E. (2006). Compendıum of Translation Software Techmical report, European Association for Machine Translation (EAMT), http:// www. eamt. org/compendium.htm1.

Hutchins, W and Somers, H. (1992). An Introduction to Machine Translation. Academic Press Ltd

Jayaraman, S. and Lavie, A. (2005). Multi-Engine Machine Translation Guided by Explicit Word Matching. In Proceedings of the 10th Conference of the European Association for Machine Translation (EAMT), pages 143-152, Budapest, Hungary.

Kaplan, R. and Bresnan, J (1982). Lexical Functional Grammar, a Formal System for Grammatical Representation. In Bresnan, J., editor, The Mental Representation of Grammatıcal Relatıons, pages 173-281. MIT Press, Cambridge, MA.

King, T. H., Crouch, R., Riezler, S., Dalrymple, M., and Kaplan, R. M. (2003) The PARC 700 Dependency Bank. In Proceedings of the 4 th Internatıonal Workshop on Linguistıcally Interpreted Corpora, held at the 10 th Conference of the European Chapter of the Association for Computational Linguzstics (EACL), pages 1-8, Budapest, Hungary

Kneser, R and Ney, H. (1995). Improved Backing-off for m-gram Language Modeling. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, volume 1, pages 181-184, Detroit, MI.

Koehn, P (2004). Pharaoh: A Beam Search Decoder for Phrase-Based Statıstıcal Machine Translation Models. In Proceedings of the 6th Biennial Conference of the Association for Machine Translation in the Americas (AMTA), pages 115-124, Georgetown University, Washington DC.

Koehn, P. (2005). Europarl: a Parallel Corpus for Evaluation of Machine Translation In Machine Translation Summıt X, pages 79-86, Phuket, Thailand.

Koehn, P. and Monz, C. (2006). Manual and Automatic Evaluation of Machine Translation between European Languages In Proceedings on the Workshop on Statistıcal Machine Translation at the joint Conference Human Language Technology - North American

Chapter of the Assoczation for Computational Linguzstıcs (HLT-NAACL), pages 102121, New York, NY.

Koehn, P, Och, F , and Marcu, D. (2003). Statistical Phrase-based Translation. In Proceedings of the joint Conference Human Language Technology - North American Chapter of the Association for Computational Linguıstics (HLT-NAACL), pages 127133, Edmonton, Canada.

Krıngs, H. (2001). Repairing Texts. Empirical Investigations of Machine Translatıon PostEdutıng Processes. Kent State Unıversity Press, Kent, OH

Landsbergen, J. (1989). The Rosetta Project. In Machine Translation Summit II, pages 82-87, Munıch, Germany.

Larkey, L and Croft, B. (1996). Combining Classifiers in Text Categorization. In Proceedings of the 19th Annual Internatıonal Conference on Research and Development in Informatzon Retrieval (SIGIR), pages 289-297, Zurich, Switzerland.

Lehrndorfer, A. and Schachtl, S. (1998). TR09 Controlled Siemens Documentary German and TopTrans In TC Forum, number 3.

Lepage, Y. (2005). The Purest Ever Built EBMT System: no Variables, no Templates, no Training, Examples, just Examples, only Examples. In Proceedings of Second Workshop on Example-Based Machine Translation at Machine Translation Summıt X, pages 8190, Phuket, Thailand.

Leusch, G., Ueffing, N., and Ney, H. (2003). A Novel String-to-String Distance Measure with Applications to Machine Translation Evaluation. In Machine Translation Summit $I X$, pages 240-247, New Orleans, LO.

Levenshten (1965). Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Doklady Akademıı Nauk SSR, 163(4), pages 845-848.

Li, A. (2005). Results of the 2005 NIST Machıne Translation Evaluation. Technical report.
Lin, C. and Och, F. (2004a). Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics. In Proceedings of the 42nd

Annual Meetrng of the Association for Computational Lingurstıcs (ACL), pages 605-612, Barcelona, Spain.

Lin, C. and Och, F. (2004b). Orange: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation. In Proceedings of the 20th International Conference on Computational Linguistıcs (COLING), pages 501-507, Geneva, Switzerland.

Locke, W. and Booth, A. (1955). Machine Translatzon of Languages. MIT Press, Cambridge, MA.

Maas, H (1987). The MT System SUSY. In King, M., editor, Machine Translation Today: the state-of-the-art, pages 209-246. Edinburgh University Press, Edinburgh, UK.

Magerman, D. (1995). Statistıcal Decision-Tree Models for Parsing. In Proceedings of the 33 rd Annual Meeting of the Assoczation for Computational Lingurstics (ACL), pages 276-283, Cambridge, MA.

Marcu, D and Wong, W. (2002) A Phrase-based, Joint Probability Model for Statistical Machine Translation. In Proceedings of the 2002 Conference on Empurical Methods in Natural Language Processing (EMNLP), pages 133-139.

Marcus, M., Kim, G., Marcinkiewicz, M., Macintyre, R., Bies, A., Fergusoñ, M., Katz, K., and Schasberger, B. (1994). The Penn Treebank: Annotating Predicate Argument Structure. In Proceedings of the ARPA Human Language Technology Workshop, pages 114-119, Plainsboro, NJ

Matusov, E., Ueffing, N., and Ney, H. (2006). Computing Consensus Translation from Multiple Machine Translation Systems using Enhanced Hypotheses Alignment. In 11th Conference of the European Chapter of the Association for Computatzonal Linguistics (EACL), pages 33-40, Trento, Italy.

Mellebeek, B., Khasin, A., van Genabith, J., and Way, A. (2005a). TransBooster Boosting the Performance of Wide-coverage Machine Translation Systems. In Proceedings of the 10th Annual Conference of the European Association for Machine Translation (EAMT), pages 189-197, Budapest, Hungary.

Mellebeek, B., Khasin, A., Owczarzak, K., van Genabith, J., and Way, A. (2005b). Improving Online Machine Translation Systems. In Machine Translatıon Summıt X, pages 290-297, Phuket, Thailand.

Mellebeek, B, Owczarzak, K, Groves, D., van Genabith, J, and Way, A. (2006a) A Syntactic Skeleton'for Statistıcal Machine Trañslatıon. In Proceedrngs of the 11th Annual Conference of the European Association'for Machiñe Translation' (EAMT), pages 195202, Oslo, Norway.

Mellebeek, B., Owczarzak, K., van Genabith, J., and Way, A. (2006b). Multi-Engine Machıne Translation by Recursive Sentence Decomposition. In Proceedings "of the 7th Brennual Conference of the Association for Machine Translation in the Americas (AMTA), pages 110-118, Boston, MA.

Menezes, A. and Quirk, C (2005). Dependency Treelet Translation: the Convergence of Statistical and Example-Based Machine Translation. In Proceedings of Second Workshop
 108, Phuket, Thailand.

 shop on Data-drwen Machine Translatzon on conjunctoon wuth the 39th Añanual Mèetıng of the Association for Computational Lingunstics (ACL), pages 1-8, Toulouse, France.

Nagao, M (1984) A Framework of a Mechanical Translation between Japanese and English by Analogy Principle. In Elithorn, A. and Banerji, R., editors, Artificial and Human Intellogencè, pages $173-180$. North-Holland, Amsterdam, The Netherlands.

Neßen, S., Och, ", Leusch, 'G:, and Ney, H. (2000). An Evaluation Tool'for Machine

 Greece.

Nirenburg, S., Domashnev, C., and Grannes, D. (1993). Two Approaches, Matching in Example-Based Machine Translation. In Proceedıngs of the 5th Internatıonal Confereñe
on Theoretıcal and Methodologıcal Issues in Machıne Translation (TMI), pages 47-57, Kyoto, Japan.

Nomoto, T. (2004). Multi-Engine Machine Translation with Voted Language Model In Proceedings of the $42 n d$ Annual Meeting of the Association for Computational Linguzstucs (ACL), pages 494-501, Barcelona, Spain.

Nyberg, E. and Mitamura, T. (1992). The KANT System: Fast, Accurate, High-quality Translation in Practical Domains In Proceedings of the 15th Internatzonal Conference on Computational Linguıstıcs (COLING), pages 1069-1073, Nantes, France.

O'Brien, S. (2003) Controlling Controlled English an Analysis of Several Controlled Language Rule Sets. In 8th Internatıonal Workshop of the European Assocıation for Machine Translation, Dublin, Ireland.

Och, F. and Ney, H. (2002). Discriminative Training and Maximum-Entropy Models for Statistical Machine Translation. In Proceedings of the 40 th Annual Meeting of the Assocıation for Computational Linguzstıcs (ACL), pages 295-302, Philadelphia, PA.

Och, F. and Ney, H. (2003). A Systematic Comparison of Various Statistical Alignment Models. Computational Linguzstıcs, 29:19-51.

O'Donovan, R (2006). Large Scale Multilingual Lexical Extractzon. PhD thesis, School of Computing, Dublin City University, Dublin, Ireland

Owczarzak, K., Mellebeek, B., Groves, D., van Genabith, J., and Way, A. (2006). Wrapper Syntax for Example-based Machine Translation. In Proceedings of the 7th Biennial Conference of the Association for Machine Translation on the Americas (AMTA), pages 148-155, Boston, MA

Papineni, K., Roukos, S , Ward, T., and Zhu, W. (2002). BLEU: a Method for Automatic Evaluation of Machine Translation. In Proceedings of the 40 th Annual Meeting of the Association for Computatzonal Linguzstıcs (ACL), pages 311-318, Philadelphia, PA.

Pito, R. (1993) Documentation for tgrep. Technical report, LDC, University of Pennsylva-
nia, Philadelphia, PA. http://www.ldc.upenn.edu/ldc/onlıne/treebank/README. long.

Roth, D. and Zelenko, D (1998) Part-of-speech Tagging Using a Network of Linear Separators In Proceedings of the 17 th International Conference on Computational Linguistics (COLING) and 36th Annual Meeting of the Association for Computational Languistzcs (ACL), pages 1136-1142, Montreal, Canada

Rychtyckyj, N. (2002). An Assessment of Machine Translation for Vehicle Assembly Process Planning at Ford Motor Company In Proceedings of the 5th Biennıal Conference of the Association for Machine Translation in the Americas (AMTA)• From Research to Real Users, pages 207-215, Tiburon, CA.

Senellart, J., Dlenes, P., and Váradi, T. (2001). New Generation SYSTRAN Translation System. In Machine Translation Summit VIII, pages 311-316, Santiago de Compostela, Spain

Somers, H. (2003). An Overview of EBMT. In Carl, M. and Way, A., editors, Recent Advances in Example-based Machine Translatıon, pages 3-57. Kluwer Academic Publishers, Dordrecht, The Netherlands

Steedman, M. (1996) Surface Structure and Interpretation. MIT Press, Cambridge, MA.
Steedman, M. (2000). The Syntactıc Process. MIT Press, Cambridge, MA.
Stolcke, A. (2002). SRILM - an Extensible Language Modeling Toolkit. In Proceedings of the International Conference on Spoken Language Processing, pages 901-904, Denver, CO.

Thurmair, G. (1992). METAL: Computer Integrated Translation. Technical report, Siemens-Nıxdorf, Munich, Germany. Internal METAL documentation.

Trujillo, A. (1999). Translatıon Engınes: Technıques for Machine Translation SpringerVerlag, London, UK.

Turian, J., Shen, L., and Melamed, D. (2003). Evaluation of Machine Translation and its Evaluation. In Machine Translation Summıt IX, pages 386-393, New Orleans, LO.
van Rijsbergen, C. (1979). Information Retrueval. Butterworths, London, UK.
van Zaanen, M. and Somers, H (2005). DEMOCRAT: Deciding between Multiple Outputs Created by Automatic Translation. In Machine Translatıon Summıt X, pages 173-180, Phuket, Tharland.

White, J. and Connell, T. O. (1994). The ARPA MT Evaluation Methodologies: Evolution, Lessons and Future Approaches In Proceedings of the First Conference of the Associatıon for Machine Translation in the Americas (AMTA), pages 193-205, Columbia, MD.

Wu, D. (2005). MT Model Space: Statistical vs. Compositional vs. Example-Based Machine Translation. Machine Translation, (19):213-227.

Wu, D and Wong, H (1998) Machine Translation with a Stochastic Grammatical Channel. In Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International Conference on Computational Linguıstıcs (ACLCOLING), pages 1408-1415, Montreal, Canada.

Xia, F. and McCord, M. (2004). Improving a Statistical MT System with Automatically Learned Rewrite Patterns. In Proceedings of the 20th International Conference on Computational Lingurstics (COLING), pages 508-514, Geneva, Switzerland.

Yamada, K. and Knıght, K. (2001). A Syntax-based Statistical Translatıon Model. In Proceedrngs of the 39th Annual Meeting of the Association for Computational Lingurstics, pages 523-530, Toulouse, France.

Zhang, Y and Vogel, S. (2004). Measuring Confidence Intervals for the Machine Translation Evaluation Metrics. In Proceedings of the 10th Conference on Theoretical and Methodologıcal Issues in Machine Translation (TMI), pages 85-94, Baltımore, MD.

Zhang, Y, Vogel, S., and Waibel, A. (2004). Interpreting BLEU/NIST Scores: How much improvement do we need to have a better system? In Proceedings of the Fourth Internatıonal Conference on Language Resources and Evaluation (LREC), pages 20512054, Lisbon, Portugal.

[^0]: ${ }^{1}$ Although most of the experimental work for this paper was carried out by my colleague K Owczarzak, the background algorithms and design are largely my own work.

[^1]: ${ }^{1}$ A problem is defined as AI-complete if its solution requres a solution to every major problem in AI.

[^2]: ${ }^{2}$ We abstract away from, the fact that for each of the three approaches, the 'rüles' could be automatically induced from corpora mstead of hand-coded by experts (e g. (Mene wes and Ěchardson, 2001; Xia and McCord, 2004)), which would place them effectively, n the CBMT paradıg̀ In thē rest of this work, we will interpret these approaches as $\mathrm{S}^{\prime \prime} \mathrm{RBM}^{4}$

[^3]: ${ }^{3} \mathrm{Cf}$. (Wu, 2005) for the full details

[^4]: ${ }^{4}$ http //www freetranslation!com, ${ }^{\text {s. }}$

[^5]: ${ }^{5} \mathrm{http} / / /$ www systransoft com

[^6]: ${ }^{6}$ On the differences 'schnellen/schnelle' and 'vertraulichen/vertrauliche' when comparing this example to (4) German adjectives receive the weak inflection -en in the accusative plural case after the definite article 'die', as occurs in this example. When no article is used, as is shown the human translation of (4), they recerve the strong inflection -e. Both constructions are correct

[^7]: ${ }^{7}$ SUBJ, OBJI and $\overrightarrow{\mathrm{O} B J 2}$ are non-word string Śubstitution Variables, which will bê further explained in Chapter 4 on page ${ }^{4} 57$
 ${ }^{8} \mathrm{http} / /$ www lec com

[^8]: ${ }^{9}$ There $1 s$ no data avalable as to the exact number of words that an mput sentence had to contain in order to be elıgible for decomposition.
 ${ }^{10}$ Geert Adrıaens and Filip Deprez.

[^9]: ${ }^{1}$ http.//www e-promt com
 ${ }^{2}$ WGET is a free software package for retrieving files using HTTP, HTTPS and FTP. http ///www gnu.org/software/wget
 ${ }^{3}$ National Centre for Language Technology, Dublin City University.

[^10]: ${ }^{4}$ Current state-of-the-art Penn-II trained probabılıstıc parsers (Collins, 1999; Charniak, 2000, Bıkel, 2002) produce this type of output structure
 ${ }^{5} \mathrm{Cf}$ Table F 1 in Appendix F for an overview of language-dependent vs. language-independent elements in TransBooster

[^11]: ${ }^{6}$ That is, an absolute BLEU score of 023 , for example, without information on the set of reference

[^12]: translations or the type of MT system used, is not informative about the output quality of the system
 ${ }^{7}$ Automatic evaluation metrics have been shown to correlate with human judgements when statistical MT systems are compared (Doddington, 2002; Li, 2005).
 ${ }^{8}$ In this dissertation, we used BLEU version 11a.
 ${ }^{9}$ Most of the examples in this section are adapted from (Papineni et al , 2002)
 ${ }^{10}$ The source language is not relevant for evaluation purposes

[^13]: ${ }^{11}$ BLEU scores of less than 200 sentences are rarely published.
 ${ }^{12}$ In this dissertation, we used NIST version 11a

[^14]: ${ }^{13}$ In this dissertation, we used GTM version 12
 ${ }^{14}$ For example, there are two hits for block A, but only one is relevant to calculate precision/recall.

[^15]: ${ }^{15}$ Output sentences are usually graded for accuracy and fluency on an absolute scale, for example, from 1 (very poor) to 5 (perfect).

[^16]: ${ }^{1}$ The head-finding rules are explained in more detall in Section 5.21 on page 69

[^17]: ${ }^{2} \mathrm{cf}$ Section 43.2 on'page 54 on how to determme the translation of SVs in advance

[^18]: ${ }^{3}$ This is a basic Spanısh grammar rule' 'I see the boy $=$ Veo al('a + el') chico/muchacho/niño.'

[^19]: ${ }^{4}$ Linking information between c and f-structures that is present on the c -structure nodes.

[^20]: ${ }^{5} \mathrm{Eg} \quad$ 'El piso es vendido' (periphrastıc) vs 'El piso se vende' (synthetıc)

[^21]: ${ }^{1}$ Note that the constituent CONJP in Table 5.1 refers to multi-word conjunctions dominating a limited amount of lexical items (e.g. 'as well as', 'rather than', 'not to mention' etc). CONJP constituents are never subject to recursion In the Penn Treebank, coordinated phrases of the same syntactic category X are jomed under a mother node X. Coordinated phrases of a different syntactic category are jomed under the mother node UCP ('Unlike Coordinated Phrase')

[^22]: ${ }^{2}$ All examples in this chapter were translated from English \rightarrow Spanish by LogoMedia.
 ${ }^{3}$ The ADJP 'close to the border' does not contam enough lexical material to be eligible for decomposition in a real-world TransBooster scenario, as is further explaned in Section 526 We included this short example here for purposes of clarity. It is easy to see, however, how the constituent could be extended with modifiers (e g. 'close to the dangerous border that separates Paraguay from Bolivia') in which case it would be subjected to decomposition

[^23]: ${ }^{4}$ The best BLEU, NIST and GTM scores were achieved with $L=4$ for all tree baseline MT systems Cf Section 622 on page 102

[^24]: ${ }^{5}$ Note that pivot finding and tree flattening are recursively applied to satellites (here nodes 2 and 5)

[^25]: ${ }^{6}$ All TransBooster program parameters are summarised in Section 622
 ${ }^{7}$ http $/ /$ www computing dcu.ie/~acahill/tts/

[^26]: ${ }^{8} \mathrm{Cf}$ Section 4.24 on page 44 for a schematic representation of argument/adjunct skeletons

[^27]: ${ }^{9}$ These are not included in the appendix (e g. for SSV 'the boy', the alternatives are 'the king', 'the teacher' and 'the student')

[^28]: ${ }^{10}$ Note that the decomposition algorithm does not rely on trace information in the gold-standard PennII trees since this sort of detaled lingustic information is not avalable in the output of most statistical parsers Penn-II functional information tags (e.g -SBJ, -TPC, etc) are used in the argument-adjunct distinction heuristics (cf. Appendıx C), SSV selection rules (cf. Appendix D) and in the construction of Statıc Context Templates (cf. Appendix E).

[^29]: ${ }^{11}$ Experimental results related to the program parameter p - P_{1} votCheck are provided in Chapter 6

[^30]: ${ }^{12}$ Depending on the MT system used, between $25-35$ minutes per experiment-evaluation cycle

[^31]: ${ }^{13}$ Parameter p_PıvotCheck, as will be further explained in Chapter 6

[^32]: ${ }^{14} N$ was determined empirically for each baseline MT system by tuning parameter p_ChunkLength In the case of LogoMedia, optimal results were obtained with $N=5$

[^33]: ${ }^{15}$ Pivot $=$ 'in'. ARG $=$ 'a dispute with Mr Posner'

[^34]: ${ }^{1}$ The statistical significance of these results, and the other results in this chapter, was established in a 95% confidence interval by using the BLEU/NIST resampling toolkit described in (Zhang and Vogel, 2004) http //projectıle.ıs.cs cmu edu/research/public/tools/bootStrap/tutorial.htm

[^35]: ${ }^{2}$ evaluation unt $=<$ TransBooster output vs. Baselne MT output $>$

[^36]: ${ }^{3}$ For LogoMedia. 475 sentences, for Systran 432 sentences, for SDL 433 sentences, cf. Table 6.8.

[^37]: ${ }^{4}$ All sentences were selected from Section 23 of the Wall Street Journal section of the Penn-II Treebank, which contains material extracted from business-related press articles.

[^38]: ${ }^{5}$ (Bikel, 2002) is a Java implementation emulating (Collins, 1999) Model 2.

[^39]: ${ }^{6}$ The experiments in this section were carried out in collaboration with my colleagues K Owczarzak and D. Groves.
 ${ }^{7}$ http //www fjoch com/GIZA ++ .html
 ${ }^{8}$ http $/ /$ www speech sri com/projects/srilm
 ${ }^{9}$ http.//www 1 si edu/licensed-sw/pharaoh/

[^40]: ${ }^{10}$ Contrary to the RBMT experiments reported in section 6.2 , we did not use (Charniak, 2000) to parse the input. There are two reasons for this. (1) the goal of this chapter is to evaluate the performance of TransBooster on the main current MT architectures, not to use it as a task-based evaluation platform for parsing technology, (n) due to the extended average time required for a single TransBooster-Pharaoh run (approximately 60 min for translating 800 sentences), we discarded development with (Charniak, 2000) after initially obtaming better results with (Bıkel, 2002).
 ${ }^{11}$ p_ChunkLength $=4$ (Systran) and p_ChunkLength $=5$ (LogoMedia and SDL) gives optimal results for the RBMT systems.

[^41]: ${ }^{12}$ http $/ /$ projectıle.is cs.cmu edu/research/públuc/tools/boótStrap/tutortal.htm ${ }^{\circ}$:

[^42]: ${ }^{13} \mathrm{My}$ direct contributions to this section are (1) the development of the TransBooster application, (ii) a contribution to the development of the EBMT baseline system, and (ni) the analysis of the results.

[^43]: ${ }^{14}$ http //www ru,nl/celex/

[^44]: ${ }^{1}$ Until the publication of (Brown, 1996), the quality of the EBMT system was so poor that it hardly ever contributed to the Pangloss MEMT engine

[^45]: ${ }^{2}$ These examples were adapted from (Bangalore et al , 2001)

[^46]: ${ }^{3}$ http //www.vanguardıa es

[^47]: ${ }^{4}$ All MEMT experiments were performed with p_ChunkLength $=5$. Cf. Section 62.2 for more informatron
 ${ }^{5}$ Cf. Appendix E for more detaled information

[^48]: ${ }^{a}$ Personal pronouns are left intact in cases in which they are not included in the pivot
 ${ }^{b}$ Determiners are left intact in cases in which they are not included in the pivot

[^49]: ${ }^{4}$ Tense depends on tense of main clause.

[^50]: ${ }^{a}$ 'VP $<$ VP' SSV replacements rarely occur in practice due to verbal pivot extensions.

[^51]: ${ }^{a}$ Backoff to non-word strings if SSV is not selected in a particular syntactic environment or if all alternatives for the same category-envmronment pair have been used.

[^52]: ${ }^{a}$ For $\mathrm{NP}_{\text {rep }}$ consult end of Table

[^53]: ${ }^{a}$ A context for PRPs is meaningless due to the fact that in the vast majority of cases, PRPs are not exphcitly expressed in Spanish (zero-subject language).

[^54]: ${ }^{a}$ For $\mathrm{NP}_{\text {rep }}$ consult end of Table

[^55]: ${ }^{a}$ Backoff code in case verbal pivot handling fails.
 ${ }^{b}$ Mımic definite article, indefinite article, mass noun environment.

