1	DISCRETE VS. FUNCTIONAL BASED DATA TO ANALYZE COUNTERMOVEMENT
2	JUMP PERFORMANCE
3	
4	Chris Richter ^{1, 2} , Noel E. O'Connor ¹ , Kieran Moran ²
5	¹ CLARTIY: Centre for Sensor Web Technologies, Dublin, Ireland,
6	² Dublin City University, Dublin, Ireland.
7 8	Email: mr.chris.richter@gmail.com
9	While discrete point analysis (DPA) (e.g. peak power) is by far the most common
10	method of analyzing movement data, it may have significant limitations because it
11	ignores the vast majority of a signal's data. In response, there has been a small but
12	growing use of methods, such as functional data analysis (FDA), which allow an
13	investigation of the underlying structure of the continuous signal and may therefore
14	provide a more powerful analysis. However, a direct comparison between DPA and
15	FDA has not been previously reported. PURPOSE: To directly compare DPA and
16	FDA for the identification of performance determining factors for the
17	countermovement jump (CMJ). METHODS: Twenty-five male participants performed
18	15 CMJs, and the highest jump was selected for further analysis. Joint and whole
19	body kinematic and kinetic measures were determined using position data (Vicon,
20	250 Hz) and force plate data (AMTI, 1000Hz). Participants were divided into good
21	(n=10) and poor (n=10) groups based on jump height. A t-test (α = 0.05) was
22	performed on the timing and magnitude of key variables (DPA) and functional derived
23	points (FDA) during the propulsion phase to examine differences between the
24	groups. RESULTS : Both techniques found differences (p<0.05) in knee angular peak
25	velocity, CoM peak velocity, CoM peak power and CoM work done. However, the
26	FDA alone found significant higher (p<0.05) ankle moment (79 - 83%, peak at 67%),
27	ankle power (54 - 67%, peak at 81%), knee angular velocity (28 - 100%), CoM
28	velocity (56 - 100%), CoM power (49 $-$ 91%) and a delay in CoM position (10 $-$ 90%)
29	and CoM velocity (10 - 60%) for the good performance group. Finally, the DPA alone
30	found differences in ankle peak moment, ankle peak power and hip peak angular
31	velocity. CONCLUSIONS: In contrast to FDA, DPA found three events which were
32	not detected by FDA. However, only FDA was able to identify important differences in
33	phases of the CMJ and explains differences between good and poor performance
34	better than DPA. Finally, the ability to examine data with continuous techniques
35	appears to provide a deeper insight into human movement than DPA.