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Abstract 

This thesis investigates the suitability of manganese silicate (MnSiO3) as a possible 

copper interconnect diffusion barrier layer on both a 5.4 nm thick thermally grown SiO2 

and a low dielectric constant carbon doped oxide (CDO), with the focus of 

understanding the barrier formation process. The self forming nature of this diffusion 

barrier layer resulting from the chemical interaction of deposited Mn with the insulating 

substrate has potential application in future generations of copper interconnect 

technologies as they are significantly thinner than the conventional deposited barrier 

layers. The principle technique used to study the interface chemistry resulting from the 

interaction of deposited manganese with the insulating substrates to form a MnSiO3 

layer was x-ray photoelectron spectroscopy (XPS). Transmission electron microscopy 

(TEM) measurements provided information on the structure of the barrier layers which 

could be correlated with the XPS results. Significant differences in the extent of the 

interface interaction which resulted in the formation of the MnSiO3 barrier layer were 

found to depend on whether the deposited Mn was partially oxidised. The studies 

performed on the 5.4 nm thermally grown SiO2 confirmed that the growth of the 

MnSiO3 resulted in a corresponding reduction in the SiO2 layer thickness. Interactions 

between residual metallic Mn and subsequently deposited copper layers were also 

investigated and showed that in order to reduce the width of the barrier layer, it was 

preferable that all the deposited Mn was fully incorporated into the silicate. TEM 

measurements were also used to investigate thicker thermally deposited Mn/Cu 

heterostructures on SiO2 which were subsequently annealed in order to study the 

diffusion interactions between copper and manganese. The formation of Mn silicate 

layers on low dielectric constant carbon doped oxide (CDO) was also investigated and 

compared with the formation characteristics on the thermally grown SiO2. 
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1 

 

Introduction 

This chapter serves as a brief introduction to the main topics covered in the thesis. The 

focus of this study is to investigate and characterise the chemical and structural 

properties of interface formation between manganese/copper films and various dielectric 

substrates. This will give an insight into the factors that could influence the potential 

use and integration of manganese silicate as a self-forming interconnect barrier layer into 

the next generation of high speed semiconductor devices. In this chapter, the 

history and importance of interconnects within the modern integrated 

circuit (IC) will be reviewed. The challenges facing the semiconductor 

industry in interconnect processing, and how new materials may be used to 

find solutions to these problems, are then discussed.  

1.1 Interconnect Overview 

Integrated circuit device fabrication can be divided into two main processing sections; 

front-end-of-line (FEOL) and back-end-of-line (BEOL). FEOL is concerned with the 

formation of individual logic devices (transistors, capacitors, resistors) patterned on a 

semiconducting substrate. After the final FEOL step, there are as many as ~1×109 

isolated transistors per microprocessor device. The back-end-of-line is concerned with 

connecting these devices together in a meaningful way. This process involves fabricating 

metal wires (interconnects) surrounded by insulating dielectric layers. The function of 

these interconnects is to distribute clock and other signals, and to provide 

power/ground connections, to the various circuit/system functions on the chip. Shown 
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Initially, titanium (Ti) was used as the barrier material because like aluminium, it was 

well understood and, because it is highly reactive it formed a good contact between the 

aluminium and the SiO2. This Ti barrier worked for a time but soon the interaction of 

the titanium with the aluminium became a problem as the Ti was used up in the 

formation of TiAl3 and the barrier properties of the film were lost. This problem was 

solved by the introduction of a further barrier layer of TiN on top of the initial Ti 

barrier. This titanium nitride layer was used because it was very unreactive and easy to 

form via the introduction of nitrogen during Ti deposition. This combination of 

aluminium interconnects, silicon dioxide insulators, and Ti/TiN barrier layers effectively 

solved the problem of interconnect contact reliability up to the 250nm technology node. 

However, in 1997, IBM announced the first copper based microchip; referring to the 

replacement of the aluminium interconnects with wires made from copper. This was 

hugely relevant as the idea of using copper as the interconnect material was something 

that had eluded chip manufacturers for decades [4].    

1.1.1 Why copper? 

Over the past two decades, the overall speed of integrated circuits has increased 

considerably. This increase has typically been made possible through advances in 

lithography processes in FEOL manufacturing making it possible to create smaller and 

smaller transistor channel lengths, allowing manufacturers to fit more devices on a 

single die. This increase in the number of features naturally improves performance, 

while also decreasing the gate switching delay due to the transistors being physically 

closer together on the chip. However, as the transistor gate delay decreases, other 

factors in the device begin to have a larger impact on speed. With gate miniaturisation, 

the interconnect delay increases due to increased wire density which results in smaller 

wires which carry less current, and have an increased electrical resistivity. This delay is 

due to both resistance of the conducting metal line, and the capacitance between 

adjacent lines surrounded by the dielectric. The product of the resistance and the 
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capacitance is known as the RC time constant and the intrinsic speed limit of the IC is 
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Figure 1.6: Typical multilayer interconnect stack illustrating the various capacitances to be 

accounted for when calculating the RC time constant.
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: Typical multilayer interconnect stack illustrating the various capacitances to be 

accounted for when calculating the RC time constant. 
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If it is assumed that the height of the interconnect is equal to the height of the dielectric 

layer (T=H) and that the spacing between adjacent interconnects is equal to the width 

of the interconnects (W=X=P/2), then the equation may be further simplified to 

 

 ���� = 2������� � 1��
+

4��
� 

 
(1.4)  

 

 This shows that the RC time constant and hence the overall chip delay can be reduced 

by either reducing the resistivity of the interconnect material, using a dielectric with a 

lower permittivity, or shortening the interconnect line lengths. The last of these three is 

not an option, as it is the increase in overall interconnect length due to miniaturisation 

which causes the increasing delay in the first place. The use of low-k dielectric materials 

as insulating layers reducing capacitance is viable, and will be discussed further at the 

end of this chapter. Still, the most favourable choice is the reduction of the interconnect 

resistivity by replacing the aluminium with a different material. 

However, considering that aluminium is already an excellent conductor somewhat limits 

the choice of replacement materials. Gold, silver and copper are some of the few metals 

which display a higher electrical conductivity. However, copper (Cu) proves to be the 

clear choice as both gold and silver are far too expensive for large scale integration. The 

electrical conductivity of copper is 5.9×107 S/m; roughly 1.5 times the conductivity of 

aluminium, resulting in the resistivity of copper (1.7µΩ/cm) being approximately 40% 

less than that of aluminium (2.7µΩ/cm) [8]. Hence, as the RC time constant is directly 

proportional to the resistivity, a ~40% decrease in overall delay can be achieved by using 

copper rather than aluminium. 

Added advantages to using copper include the fact that copper has twice the thermal 

conductivity of aluminium and offers higher reliability due to its higher melting point 
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(1085 vs. 660 °C for Al) making it significantly more resistant to electromigration. 

Electromigration can be defined as the process by which a metal conductor changes 

shape under the influence of the electric current flowing through it. In a circuit, if the 

electron current density is sufficiently high, an “electron wind” effect is created within 

the conductor. Although the size, mass and consequent momentum of an electron is 

very small compared to an atom, if enough electrons collide with an atom it will 

eventually move, especially if the atom is at the edge of a grain boundary and not held 

in place very tightly. As one atom is moved due to the electron bombardment the 

remaining current flowing through the line is pushed through a smaller area putting 

more pressure on the remaining atoms of the grain which are not so tightly bound. The 

result is that these atoms then also get pushed away. This may lead to decreased 

performance and a potential open circuit along the conducting line as shown in Figure 

1.7 

 

Figure 1.7: Effects of Electromigration on a metal track in an IC [9]. 

This proved to be another problem with aluminium interconnects of the past. As 

aluminum is a relatively light atom, the current density was enough to move the 

interconnect material causing unintended electrical connections known as hillocks within 
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the circuit and shorting the line. The old solution to this problem was the addition of 

titanium shunt layers which rerouted the current if a void did occur. In contrast to 

aluminium, copper atoms are strongly bound together [10], which accounts for it being 

far less likely to form hillocks when compared to Al.  

However, although copper possesses multiple advantages over aluminium in terms of 

interconnect performance, major challenges exist in terms of its implementation in 

semiconductor processing. As stated previously, chip manufacturers had long recognized 

the benefits in using copper, but the transition to it only occurred after solutions were 

found to various processing problems. The traditional subtractive aluminium 

interconnect process, consisting of photoresist masking and plasma etching could not be 

used as there were major difficulties in etching copper due to the fact that it requires 

much higher temperatures to form the volatile compounds used in the etching process. 

Also, unlike aluminium, copper could not be efficiently deposited via chemical vapour 

deposition. For these reasons industry needed to develop a completely new process in 

order to introduce copper into the microprocessor interconnects. The development of the 

damascene and dual-damascene processes allowed copper to be deposited on a pre-

patterned dielectric via electroplating eliminating the need for etching of copper.  

The remaining reason which initially prohibited the use of copper as an interconnect 

metal was its interaction with both silicon and the dielectric insulating materials used in 

back end processing. The next section will discuss this, and the increased importance of 

the diffusion barrier layers. 
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1.2 Research Motivation - The need for a new 

barrier material 

Despite the advantages of Cu, there exists a serious diffusion problem with copper if it 

is deposited directly on silicon (Si). Cu reacts with silicon and silicon dioxide at low 

temperatures [11] and is a fast diffuser in these materials due to its relatively high 

mobility. The diffusivity of Cu in Si ranges from 5×10-5 to 5×10-4cm2s-1 with activation 

energy Ea of about 1.0 eV for temperature range from 900 to 1300° C, while the 

diffusivity for Al ranges from 1×10-14 to 4×10-10cm2s-1  -with activation energy Ea of 

about 3.4 eV for the same temperature range. These high diffusion rates of elemental 

copper have required the further development of the physical barriers between dielectric 

and interconnect to prevent interdiffusion across the interface as Cu diffusion into the 

silicon will degrade device performance by introducing deep electronic levels into the Si 

band gap resulting in the reduction in minority carrier lifetime [12]. Furthermore, the 

formation of Cu-Si compounds affects the reverse leakage current of p-n junctions.  

A number of criteria must be met in the selection of a barrier material. The optimal 

barrier needs to limit copper diffusivity, be conformal, adhere to both copper and 

dielectric, exhibit resistance to mechanical stresses and most importantly have low 

resistivity. The barrier layers currently used to fulfil this function are composed of a 

Cu/Ta/TaN/SiO2 layered structure shown in Figure 1.8, as the Ti/TiN barrier layers 

used for Al are no longer effective as a barrier against copper due to the formation of a 

bulk alloy between the Cu and Ti. However, as device geometry continues its downward 

trend, there is a need to develop a scalable barrier layer technology alternative, to the 

Ta/TaN layers as they tend to have poor electrical conductivity and exhibit poor 

adhesion to the copper necessitating the use of a copper seed layer. Also, as device 

miniaturisation continues the thickness of the barrier region becomes more important. 

Too thick a barrier and the overall barrier metal/copper film will have a greater total 
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forming barrier layer involves the co-deposition of a copper/barrier 
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through oxygen exposure during anneal resulting in a barrier metal oxide at the top 

surface, thereby immobilizing it. It can then be subsequently removed from the top 

surface by either etch or by a chemo-mechanical polishing (CMP) step. Ideally, the 

barrier should not occupy any of the volume reserved for Cu forming what’s known as a 

zero-thickness barrier where the alloying material becomes completely incorporated into 

the dielectric. Hence, this method could also potentially solve the problem of uniform 

coverage of the sidewalls and trenches. 

Recent publications [14][15] have suggested manganese as a suitable alloying material  

as its diffusivity is faster than that of copper and Cu/Mn alloy compositions have been 

shown to be capable of forming effective barrier layers 3-4nm thick which meets the 

requirements of the 2009 ITRS target barrier layer thickness for the 24nm node.  

1.3.1 Why Use Manganese?  

For any potential alloying metal in copper the important properties for use as an 

interconnect barrier are barrier effectiveness, rapid migration to the interface on 

annealing, stable barrier formation, adhesion to the substrate and negligible impact on 

the resistivity of interconnect material after barrier formation. Manganese was chosen as 

a possible alloying element because of its ability to satisfy most of the criteria over other 

potential barrier elements such as Mg and Al which have been previously explored [16]. 

With regards to barrier formation, it is essential that the alloying element will form a 

stable oxide barrier at the interconnect/dielectric interface. However, this reaction must 

happen before any diffusion of copper into the bulk can occur.  The rate of atomic 

diffusion of Mn in Cu is faster than the self-diffusivity of Cu by an order of magnitude 

at 450 ° C meaning that Mn atoms are expected to migrate to the SiO2 interface before 

noticeable reaction occurs between Cu and Si or SiO2, fulfilling this criterion. 

Once the alloying element reaches the interface the driving force for stable compound 

formation can be assessed with the heat of formation and, more accurately, with the 
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standard free energy of oxide formation. It has previously been reported that when 

magnesium is used at an alloying element in copper it rapidly forms MgO at the 

dielectric interface due to its relatively high standard free energy, and this is 

accompanied by a reduction of SiO2 and freed Si atoms can then diffuse into the Cu 

layer increasing the resistivity of the copper [16]. Hence the standard free energy of 

oxide formation should be negative but not much larger than that of SiO2. The standard 

free energy parameter of Mn oxide however is slightly larger than that of SiO2, so that 

when manganese forms an oxide at the SiO2 interface the reduction reaction is not 

expected to be as thermodynamically favourable as is the case for Mg. The most 

favourable reaction would be the formation of a metal silicate, which would include the 

barrier metal and both silicon and oxygen addressing the problem of the freed Si atoms 

seen in oxide formation studies using Mg as the alloying metal.  

The third factor effecting the choice of barrier material is the adhesion between the 

interconnect and dielectric material. This is expected to become an important aspect in 

future technology nodes as Cu has poorer adhesion to SiO2 than Ta and TaN [13] 

effecting the reliability of the chip. Thus, enhancing the adhesion by means of a self-

forming diffusion layer is also an important issue. Moreover, the electromigration 

resistance was reported to be strongly related to the interfacial adhesion between the Cu 

interconnect and capping material. Therefore, the measurement of the adhesion of the 

interface between Cu and the dielectric is important in terms of electromigration as 

well. The adhesion of manganese to the SiO2/Cu interface is as yet unknown and will be 

explored in future investigations.   

Finally, as mentioned previously any increase of the resistivity of the interconnect 

material due to solute scattering should be minimized, because the performance is 

strongly related to the resistivity of the interconnect material. To ensure that the 

alloying material is completely expelled from the copper, the activity coefficient which is 

defined as a measure of chemical interaction between solute and solvent atoms in a solid 

solution alloy must be less than that of the interconnect material. The activity 
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coefficient (which is defined as the factor to account for deviations from ideal behaviour) 

of Mn in Cu is larger than 1, while that of Mg and Al in Cu is less than 1. This 

indicates that Mn can be easily expelled from Cu when a more favourable reaction can 

take place with an adjacent material, such as SiO2. In contrast, Mg and Al tend to 

remain in Cu because of their strong chemical interaction with Cu. If Mn is expelled 

completely from the original Cu–Mn alloy, interconnect resistivity can potentially be 

reduced to the level of pure Cu.  

All of these factors indicate that manganese is an ideal candidate for choice of alloying 

material with a view to simultaneous deposition of interconnect and barrier layer 

material, and the growth of a self forming barrier. Transmission electron microscopy 

(TEM) studies of deposited Cu/Mn alloys on SiO2 [14] have shown that thin (2-3 nm) 

Mn silicate layers formed at the dielectric interface act as effective barriers to Cu, O and 

H2O diffusion [14][17]. The work of Gordon et al [18] has reported promising electrical 

characteristics for Cu interconnects on Mn silicate using techniques such as sheet 

resistance and capacitance measurements [18][19]. However, studies using analysis 

techniques such as electron energy loss spectroscopy (EELS) and secondary ion mass 

spectroscopy (SIMS) have produced contradictory results relating to the chemical 

composition of the barrier layer. In particular, doubt remains over the presence of 

manganese oxide [20], Mn silicate [18] or both [21], within the Mn/SiO2 interfacial 

region. In their analysis of electron energy loss spectroscopy ( EELS) spectra, 

Koike et al. [14] first reported a Mn3+ valence state consistent with Mn2O3 being the 

main constituent of the barrier; while Abblet et al. [22] reported the valence state of 

Mn in the barrier as +2 by means of x-ray absorption near-edge spectroscopy and 

extended x-ray absorption fine structure, being mainly constituted of a mixture of 

MnO and MnSiO3. A possible reason for these inconsistencies is the reported electron 

screening interaction which occurs between metallic Mn and Cu atoms, which is known 

to affect the profile of EELS Mn-L3 spectra [21] and Mn photoemission [23] spectra 

taken from Mn/Cu alloys. In addition to this the ex-situ sample preparation methods 
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required for techniques such as EELS may result in the ambient oxidation of Mn [24], 

creating uncertainty as to whether the Mn oxide species are due to air exposure or due 

to the inherent chemical state within the barrier layer. 

The scope for this study deals predominantly with the initial growth and chemical 

characterisation of manganese thin films on silicon oxide based insulating substrates as 

little in-depth analysis of the interfacial chemistry of the individual layers has been 

previously published. Only after determining the interfacial chemistry of Mn films as a 

function of annealing temperature on SiO2 layers, were further studies of the analysis of 

sequentially deposited and co-deposited Mn/Cu barrier layers investigated. 

1.4 Alternative substrate materials (CDO)  

As previously discussed, the interconnect delay (RC time constant) in IC’s has started 

to dominate the overall delay and determine the intrinsic speed limit of the overall 

circuit. The replacement of the Al interconnect material by Cu reduces the resistivity 

(R), hence reducing the time constant.  

Nonetheless, there is an ever increasing interest in using low-κ materials defined as 

having a dielectric constant less than the SiO2 value of 3.9.The introduction of these 

materials provides another path of solving the RC delay problem by reducing the 

capacitance(C) of the interlayer dielectric. Carbon doped oxides (CDO) are a family of 

modified dielectric materials which can have k values as low as 2.5 depending on the 

percentage incorporation of carbon. In a CDO material, some of the Si-O bonds are 

replaced by Si-CH3 bonds. This results in the formation of less polar bonding which 

reduces the dielectric constant of the material. These substrates are studied in the final 

chapter of this thesis.  
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1.5 Thesis Layout and Organisation 

Chapter 2 presents the surface analysis techniques used in this study, along with the 

principles behind their operation. The primary technique used in this work was 

conventional X-ray photoelectron spectroscopy (XPS). Other techniques such as 

synchrotron based XPS, transmission electron microscopy (TEM) and atomic force 

microscopy (AFM) were also used and are described in detail. 

Chapter 3 describes the ultra high vacuum (UHV) systems used for these experiments, 

along with the thin film deposition and semiconductor surface cleaning techniques 

employed throughout the study. The deposition techniques used in this study include 

electron beam (e-beam) evaporation and thermal hot filament deposition which were 

used to deposit thin films of Mn and Cu. The curve fitting approach used for both 

synchrotron and conventional XPS spectra are also outlined in this chapter. 

Chapter 4 focuses on the suitability of Mn silicate as a potential diffusion barrier on 

SiO2. This investigation is divided into two separate sections consisting of the 

characterisation of the interfacial properties of Mn thin films on SiO2 and the role of 

oxygen in silicate formation. High resolution synchrotron based XPS studies show that 

Mn deposition onto SiO2 results in the formation of a Mn silicate interfacial region after 

thermal anneal. Further XPS studies indicate that the presence of oxygen is important 

in controlling the extent of this reaction. 

In Chapter 5 the introduction of copper into the barrier formation process is 

investigated.  Studies relating to the mobility of Mn and Cu in thicker films are 

explored using TEM. Further investigations using XPS indicate that both sequentially 

grown and co-deposited Mn/Cu films impacts on the formation of the silicate layers due 

to the presence of copper.  

Chapter  6  presents  an  initial  investigation  into  how  the replacement of the SiO2 

substrate with that of a low-k CDO dielectric impacts on the formation of the silicate 
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barrier layer at the Mn/CDO interfaces and how the interface reactions  can  be  

modified  and  potentially improved. Using conventional XPS the formation of both Mn 

silicate and Mn carbide is observed. Finally, methods to minimise/remove this carbide 

are explored.  

Chapter 7 draws together the main findings of this work and outlines some possible 

future directions which further studies could explore.  
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Experimental Techniques 

2.1 X-Ray Photoelectron Spectroscopy 

The principle analytical technique used in this study was x-ray Photoelectron 

Spectroscopy (XPS). XPS; also known as Electron Spectroscopy for Chemical Analysis 

(ESCA) is a highly surface sensitive analysis technique used to determine surface 

composition and chemical bonding of the top 5-10 nm of solid materials. Surface 

analysis by XPS is accomplished by irradiating a sample with mono-energetic soft x-

rays and analysing the kinetic energy of the electrons emitted from the material due to 

the photoelectric effect [1] as shown in Figure 2.1.  

 

Figure 2.1 Schematic showing photoemission of an electron from the oxygen 1s orbital 

Chapter 2  



 

24 

 

2.1.1 Principles of XPS 

The typical experimental set up for conventional XPS analysis is shown in Figure 2.2, 

consisting of an x-ray source, a grounded sample under analysis, electron collection lens, 

electron kinetic energy analyser and detection system, and an external computer system 

to display the detector output. 

 

 

Figure 2.2 A schematic diagram showing the experimental setup for conventional XPS 

The surface to be analysed is first placed in a vacuum environment and then 

irradiated with x-rays. The x-rays are produced by a twin anode x-ray source, 

which consists of a copper, water cooled anode target coated with a combination of 

aluminium and magnesium films which can be selected independently. Electrons 

from a hot tungsten filament are accelerated using a high voltage, ranging from 10 – 15 

kV, towards the water cooled Mg or Al anode. Upon striking the selected target, core 

holes are created, which when filled by an electron transition from a higher energy level 

can result in the emission of an x-ray. In the case of Mg or Al anodes, two distinct x-ray 

emission lines with photon energy 1253.6 eV (Mg Kα) or 1486.6 eV (Al KαW) are 
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produced, which are routinely used in XPS measurements. When an x-ray photon 

impinges upon an atom on the surface of the sample one of three events can occur; (1) 

the photon can pass through the atom without any interaction; (2) the photon can 

interact with the atom leading to partial energy loss leading to Compton scattering; and 

(3) the photon may be absorbed, transferring all of its energy to an atomic orbital 

electron, leading to the emission of that electron from the atom as shown previously in 

Figure 2.1. The third process forms the basis of XPS. These emitted electrons are 

subsequently separated according to kinetic energy (KE) using an electron energy 

analyser and counted using an electron detector similar to those shown schematically in 

Figure 2.2.  

The basic physics of the photoemission process is given by Einstein’s equation; 

 �	 = ℎ� −KE (2.1)  

 

where �	 is the binding energy of the electron in the atom with respect to the Fermi 

level, ℎ� is the energy of the photon from the x-ray source, and KE is the kinetic energy 

of the emitted photoelectron. Thus, the binding energy may be obtained by measuring 

the kinetic energy of the emitted electron, as the energy of the x-ray source is known. 

Given that every energy level of each element has a discrete binding energy, the 

elemental composition of a sample can be determined by comparing the measured 

binding energies to known spectra. 

At this point it is worth commenting on the measurement of the electron binding 

energy in relation to the XPS system. For gases, the binding energy of an electron 

in a given orbital is identical to the ionization energy of that electron [2]. In 

conducting solids however the influence of the surface is felt, and additional 

energy in the form of the sample workfunction is needed to remove the electron 

from the surface. Hence equation 2.1 becomes 
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 �	 = ℎ� − KE−Φ
 (2.2)  

 

where Φ
  is the sample material’s workfunction which is defined as the energy 

difference between the vacuum level and Fermi level (���
 − ��). However, once the 

sample and the spectrometer are in electrical contact, the Fermi level of the 

sample lines up with the Fermi level of the spectrometer by grounding both the 

sample and the spectrometer as shown in Figure 2.3.  

It is now clear from Figure 2.3 that the sum of the electron’s initial binding energy 

measured up to the Fermi level (��
�), and its kinetic energy after being emitted (����

� ), 

does not equal the photon energy of the impinging x-rays. 

 

 

Figure 2.3 Energy level diagram for the photoemission process showing a sample and 

spectrometer in electrical contact [3]. 
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Feldman and Mayer [3] explain how the measured kinetic energy value (����) may differ 

from the actual kinetic energy of the emitted electrons (����
� ). It has been shown that 

an electron passing from the sample to the spectrometer experiences a potential 

difference equal to the difference between the workfunction of the sample Φ�������� and 

that of the spectrometer(Φ���
). The measured kinetic value can therefore be defined by 

equation (2.3). 

 ���� = ����
� + (Φ� −Φ���
) (2.3)  

 

       

By substituting this into equation (2.2), the expression given in equation (2.4) can be 

found. 

 �	 = ℎ� − KE−Φ
��� (2.4)  

                                                                          

This equation allows the binding energy of an electron to be obtained once the x-ray 

photon energy and spectrometer workfunction values are known. Thus the measurement 

of �	 is shown to be independent of the sample workfunction, Φ�, but is dependent on 

the spectrometer work function, Φ
���. The spectrometer workfunction is commonly 

determined using a reference sample of known binding energy such as gold (4f = 83.98 

eV), with measured spectra being shifted to compensate for this value. The linearity of 

the binding energy scale may then be calibrated by adjusting the energy difference 

between two widely spaced spectral lines of known values (e.g., the 3p = 75 eV and 2p 

= 933 eV peaks of copper). 

 

 

 



 

2.1.2 Inelastic Mean Free Path and Sampling Depth

As illustrated in Figure 

from a sample area of approx

are counted in order to facilitate depth profiling which is discussed later in this chapter.

Figure 2

With regards to the penetration of the x

the typical penetration depth of a 1 KeV photon beam into solid matter is in the order 

of ~1µm, the escape depth of electrons at this energy is considerably smaller 

(approximately 10 nm). This difference is due to the fact that 

from within the sample

inelastic collisions with other atoms, which can occur within the solid before the photo

excited electrons emerge from the surface. The probability of such interactions can be 

statistically predicted based on the inelastic mean free path (IMFP) of the given 

material, which is dependent on the initial kinetic energy of the electron

of the material and is 

 

Inelastic Mean Free Path and Sampling Depth 

Figure 2.4 x-rays typically illuminate and cause emission of electrons 

from a sample area of approximately 1 cm2. However, only electrons from a 1mm

are counted in order to facilitate depth profiling which is discussed later in this chapter.

2.4 Diagram showing x-ray beam incident on sample 

With regards to the penetration of the x-ray beam, it is important to note that while 

the typical penetration depth of a 1 KeV photon beam into solid matter is in the order 

m, the escape depth of electrons at this energy is considerably smaller 

(approximately 10 nm). This difference is due to the fact that photoemitted electrons 

within the sample interact strongly with matter and may lose kinetic energy via 

llisions with other atoms, which can occur within the solid before the photo

excited electrons emerge from the surface. The probability of such interactions can be 

statistically predicted based on the inelastic mean free path (IMFP) of the given 

which is dependent on the initial kinetic energy of the electron

 represented by the universal mean free path curve in 
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rays typically illuminate and cause emission of electrons 

. However, only electrons from a 1mm2 area 

are counted in order to facilitate depth profiling which is discussed later in this chapter. 

 

ray beam incident on sample [2] 

ray beam, it is important to note that while 

the typical penetration depth of a 1 KeV photon beam into solid matter is in the order 

m, the escape depth of electrons at this energy is considerably smaller 

photoemitted electrons 

and may lose kinetic energy via 

llisions with other atoms, which can occur within the solid before the photo-

excited electrons emerge from the surface. The probability of such interactions can be 

statistically predicted based on the inelastic mean free path (IMFP) of the given 

which is dependent on the initial kinetic energy of the electron and the nature 

represented by the universal mean free path curve in Figure 2.5.  
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Figure 2.5 Universal mean free path (MFP) curve, showing a range of materials [4]. 

 

The IMFP is defined as the average distance (in nanometres) that an electron travels 

between successive inelastic collisions. The IMFP may be expressed as follows 

 ���� = exp(−
��) (2.5)  

 

Where P(d) is the probability of an electron travelling a distance d, through a solid 

without undergoing scattering; and � is the IMFP for the electrons of a given energy. 

Figure 2.6 illustrates that the likelihood of an electron escaping decays very rapidly and 

is essentially zero for a distance � > 5�.  



 

Figure 2.6 Graph showing probability of unscattered electron emission as a function of depth

  

By integrating under the curve it can be seen that virtually all uns

come from within  3� 

for 95% of detected unscattered electrons.

with the unscattered photoelectrons as

back to the original binding energy value. T

and intense photoemission peaks, such as those shown in 

energy of these peaks can be related to the elements present at the surface. Electrons 

emitted from the surface zone that have lost some energy due to inelastic interactions

emerge from the sample with 

spectrum. 

 

Graph showing probability of unscattered electron emission as a function of depth

egrating under the curve it can be seen that virtually all uns

 of the surface. This is known as the sampling depth and accounts 

for 95% of detected unscattered electrons. In an XPS experiment, we are only concerned

photoelectrons as they have kinetic energies which can be

al binding energy value. These unscattered electrons produce narrow 

and intense photoemission peaks, such as those shown in Figure 2

energy of these peaks can be related to the elements present at the surface. Electrons 

emitted from the surface zone that have lost some energy due to inelastic interactions

emerge from the sample with various kinetic energies, and add to the background of the 
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Graph showing probability of unscattered electron emission as a function of depth 

egrating under the curve it can be seen that virtually all unscattered electrons 

of the surface. This is known as the sampling depth and accounts 

In an XPS experiment, we are only concerned 

which can be related 

hese unscattered electrons produce narrow 

2.7, and the binding 

energy of these peaks can be related to the elements present at the surface. Electrons 

emitted from the surface zone that have lost some energy due to inelastic interactions 

add to the background of the 
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Figure 2.7: Diagram showing various electron emissions making up a typical photoemission 

peak. [2] 

It is for this reason that XPS is considered an extremely surface sensitive technique, as 

while the photoemission process may occur from as deep as the x-ray penetration depth, 

only electrons from near the sample surface and are detected. 

Upon escaping the sample surface electrons are focussed by a series of lenses, filtered 

according to kinetic energy using an energy analyzer and finally counted by an electron 

detector. The spectrometer is setup to scan across the different electron energies in 

order to count and store the number of detected electrons for a given energy for a given 

detection time. This data is then outputted to an external computer system. The details 

of the electron spectrometer used in this work are expanded upon in Chapter 3.  
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2.1.3 Spectral Features 

The spectra obtained from the spectrometer displays a plot of the number of electron 

counts per second as a function of the electron binding energy. As previously discussed 

the position on the kinetic energy scale equal to the x-ray excitation energy minus the 

spectrometer work function corresponds to a binding energy of 0 eV. It is for this reason 

that a binding energy scale with zero at that point and increasing to the left is 

commonly used. In typical XPS analysis of a sample, the first step generally is to 

undertake a broad energy survey scan from this 0 eV binding energy position to 

~1000 eV. Figure 2.8 shows the spectrum of a carbon doped silicon oxide 

sample. The photoemission process will cause electrons with specific energies 

related to the atomic core level binding energies to be emitted. Any electrons that 

have lost energy increase the level of the background at kinetic energies lower than 

the peak energy. The background is continuous because of the random nature of the 

loss processes. Any noise in the spectrum is due to the collection of single electrons 

randomly spaced in time.  

Rising above the background we can examine two distinct types of peaks. These are 

the photoemission peaks associated with core-level events and x-ray induced Auger 

lines. The most intense photoelectron lines are typically the narrowest lines 

observed in the spectra and are relatively symmetrical. However, metals exhibit 

considerable asymmetry due to coupling with conduction electrons. Auger lines are 

groups of lines caused by the transition of a core level electron to deeper lying empty 

energy level which results in the transfer of energy to another bound electron giving it 

sufficient kinetic energy to be emitted from the surface. These lines can be 

readily distinguished by changing the energy of the x-ray source as the kinetic 

energy of the Auger lines will remain the same due to the interaction being 

dependant on the energy separation of the core levels while the photoemission lines 

will shift by the energy difference between the Mg and Al x-ray sources. Tables of 



 

33 

 

measured and calculated binding energies for almost all elements are widely 

available to aid in the identification process. [5] [6] [7]     

 

Figure 2.8: Survey scan taken from a carbon doped oxide (CDO) surface. By analysing the 

binding energy positions of the photoemission peaks the elements Si, O and C can be 

identified. 

 

After identification of the relevant photoemission peaks from the survey scan, more 

detailed information may be obtained from high resolution narrow energy scans. 

An x-ray satellite as shown in Figure 2.9 is a feature that will be seen when using a 

non-monochromated x-ray source. The non-monochromatic source may excite the 

sample with x-ray components at higher energies. These low-intensity x-rays will 

produce minor photoemission peaks at approximately 10 eV higher kinetic energy than 

that of the primary peak. These features may be removed by the use of an x-ray 
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monochromator which uses quartz crystals to eliminate residual Bremsstrahlung and 

significantly narrows the peak width of the photoemission lines.    

 

Figure 2.9: Mg x-ray satellite observed in the Si 2p spectrum of CDO. 

Further features often seen within high-resolution scans are those of shake-up lines and 

multiplet-splitting. Shake-up satellites as shown in Figure 2.10, occur when 

photoelectrons lose energy through the promotion of valence electrons. While regarded 

as loss peaks, these satellites, in contrast to the inelastic scattering background have 

discrete energies because the energy loss is equivalent to a specific energy transition in 

the atom. 
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Figure 2.10: Examples of shake-up lines of the Cu 2p peak in copper compounds [7] 

Multiplet splitting occurs because electrons in an atom can create a vacancy in more 

than one way because of their spin, i.e. two energetically equivalent final states are 

possible. The coupling of an unpaired electron from a s-type orbital with other unpaired 

orbitals within the atom can create an ion which can result in an asymmetric 

photoelectron line with several components similar to the one shown in Figure 2.11. 

 

Figure 2.11: Multiplet splitting of the Mn 3s [7]. 
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2.1.4 Element Identification 

Standard XPS can be used to identify the presence of elements which are at atomic 

concentration levels greater than approximately 0.1 – 1 %. Elements are commonly 

identified by the presence of their strongest spectral feature, in the case of silicon this is 

the Si 2p peak at 99.3 eV seen in Figure 2.12. However, binding energy positions are not 

unique to specific elements and different peaks may often overlap within the spectrum 

i.e. the Ga 3p and Si 2p peaks at ~ 103 eV [8]. In this situation the presence of 

secondary core level features, such as the Si 2s, may be used to identify the elements. 

2.1.5 Chemical Shifts 

In addition to identifying the elements present on the surface, one of the most 

important aspects of XPS is the ability to distinguish between different chemical 

environments of the same element. This is possible because the binding energy of an 

electron within an atom depends on the bonding environment of that atom. Therefore, 

changes in chemical bonding can result in changes in the charge density around the 

atoms, which causes a “chemical shift” in the binding energy of the electrons which 

emerge from these atoms. This process is described in greater detail with reference to 

the silicon/silicon dioxide system, using the Si 2p spectrum in Figure 2.12.  
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Figure 2.12: Si 2p spectrum showing a 4 eV chemical shift between component peaks which 

indicates the presence of Si and SiO2. 

 

Figure 2.12 shows a Si 2p spectrum taken from a thin (~ 4 nm) SiO2 layer which was 

thermally grown on a Si (111) substrate. It can be seen that electrons excited from the 

Si substrate appear at a binding energy of ~ 99.3 eV, while those from the SiO2 over 

layer appear at a higher binding energy position, chemically shifted from the bulk by ~ 

4 eV. This is due to the different bonding environment present within the two chemical 

species. The covalent Si-Si bonding system seen within the Si bulk allows the valence 

electrons to be shared equally among each of the Si atoms involved in the bonding 

structure. However, the incorporation of O atoms, which have considerably greater 

electronegativity than Si, results in the transfer of electron density toward the O atoms. 

As such, Si-O bonds are more ionic and electrons which are excited from these silicon 

atoms are leaving an atom which has a slightly greater positive charge than those 
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within the Si bulk. The effect of this positive charge is to reduce the kinetic energy of 

the emitted electrons, which is apparent from the increased binding energy of the SiO2 

peak seen in Figure 2.12. As such, the relative electronegativity values of the elements 

within a sample can be used to identify chemical interactions. For example, the 

formation of a spectral component at the lower binding energy (LBE) side of the Si bulk 

peak indicates that Si atoms are bonded to an element with a lower electronegativity 

than that of Si, commonly seen in the form of a metal silicate as will be shown in 

Chapter 4 of this study. 

2.1.6 Quantification 

Semi-quantitative analysis of the relative concentration of different elements in a 

material can be achieved by comparing the intensity of the relevant core level peaks. 

However, there are a number of factors which must be taken into account in order to 

accurately quantify chemical composition using XPS peak intensities. This is analysed 

in further detail in reference to Mg 2p and O 1s spectra taken from an MgO thin film 

deposited on Si (111), shown in Figure 2.13. 
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Figure 2.13 O 1s and Mg 2p spectra taken from a 20 nm stoichiometric MgO thin film. 

In order to determine stoichiometry using the spectra in Figure 2.13 it must be assumed 

that the MgO film is chemically homogenous, as if the chemical composition 

perpendicular to the surface is non-uniform within the XPS sampling depth, no 

definitive elemental ratios can be extracted. The relative binding energies of the two 

peaks must also be taken into account given that electron IMFP is strongly dependant 

on kinetic energy. As such, it can be said that electrons emerging from the Mg 2p peak 

(BE W 50 eV, KE W 1200 eV) may emerge from a greater depth than O 1s electrons (BE W 

531 eV, KE W 720 eV). Further factors include the photo-ionisation cross-section of that 

specific core-level which is the probability that an electron of that core-level will be 

excited [9]. Finally there is the transmission function of the analyser which determines 

the relative sensitivity of the analyser to electrons of different kinetic energies. 
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Based on these criteria relative sensitivity factors (RSF) can be obtained for the core 

level peaks of each element, and using these RSF values, chemical composition can be 

analysed. Published RSF values are available from XPS reference manuals [7] and allow 

semi-quantitative analysis of chemical composition to be achieved. In reference to the 

spectra in Figure 2.13, the published RSF values of O 1s and Mg 2p are 0.711 and 0.129 

respectively [7]. Therefore, for stoichiometric MgO the integrated area of the O 1s peak 

should be ~ 5.5 times greater than that of the Mg 2p. This analysis is at best semi-

quantitative and the use of reference materials is common for more accurate 

quantification studies. In this study, quantitative analysis has been performed in an 

attempt to directly compare differently prepared samples, rather than for the purpose of 

extracting absolute values.  

 

2.1.7 Depth Profiling using ARXPS 

Although XPS is considered a highly surface sensitive technique, if we estimate that 

the sampling depth is 8 nm and consider that deposited thin films can be ~1 nm then 

the surface region detected by XPS could consist of multiple atomic layers. This is 

illustrated schematically in Figure 2.14. Each of these layers may have a different 

chemical composition and the XPS spectrum that we obtain is a convolution of these 

layers. 



 

Figure 2.14 Diagram showing convoluted signals from sampling depth 

Angular resolved XPS (ARXPS) allows non

for a thickness into the sample surface which is comparable to the sampling depth. 

Previous discussions relating to the emission of photoelectrons assume that they escape 

using the shortest path, which is that perpendicular to the sample surfac

the maximum sampling depth is achieved by aligning the sample so that the electrons 

which emerge normal to the surface are detected by the analyser. However, electrons 

emerging from shallower angles with respect to the surface may also be ana

rotating the sample relative to the analyser. This has the effect of reducing the actual 

sampling depth from which the photoemitted electrons emerge as is schematically 

shown in Figure 2.15. 

Figure 2.15

 

Diagram showing convoluted signals from sampling depth 

Angular resolved XPS (ARXPS) allows non-destructive depth profiling to 

for a thickness into the sample surface which is comparable to the sampling depth. 

Previous discussions relating to the emission of photoelectrons assume that they escape 

using the shortest path, which is that perpendicular to the sample surfac

the maximum sampling depth is achieved by aligning the sample so that the electrons 

which emerge normal to the surface are detected by the analyser. However, electrons 

emerging from shallower angles with respect to the surface may also be ana

rotating the sample relative to the analyser. This has the effect of reducing the actual 

sampling depth from which the photoemitted electrons emerge as is schematically 

 

15 Concept of ARXPS showing effective sampling depth
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Diagram showing convoluted signals from sampling depth [2] 

destructive depth profiling to be achieved 

for a thickness into the sample surface which is comparable to the sampling depth. 

Previous discussions relating to the emission of photoelectrons assume that they escape 

using the shortest path, which is that perpendicular to the sample surface. Therefore, 

the maximum sampling depth is achieved by aligning the sample so that the electrons 

which emerge normal to the surface are detected by the analyser. However, electrons 

emerging from shallower angles with respect to the surface may also be analysed by 

rotating the sample relative to the analyser. This has the effect of reducing the actual 

sampling depth from which the photoemitted electrons emerge as is schematically 

 

Concept of ARXPS showing effective sampling depth 
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It can be seen from Figure 2.15 that electrons emerging perpendicular to the surface 

have the same sampling depth as those emerging at the glancing angles i.e. 8 nm. 

However, in the rotated samples the perpendicular depth from which the electrons 

escape from the surface is considerably less than for normal emission. As such, core level 

spectra taken at an increased angle are more surface sensitive than those taken at 

normal emission. This is further evidenced by Si 2p spectra in Figure 2.16 which are 

taken from a SiO2 surface (~ 5 nm) at emission angles equal to 0 ° (normal emission) 

and 60 °. It can be clearly seen that the spectrum taken at 60 ° shows an increased 

intensity from the Si oxide overlayer. 

 

. 

Figure 2.16: Si 2p spectra taken from a 5.4 nm SiO2 layer on silicon showing the increased 

surface sensitivity using ARXPS. 
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2.1.8 Thickness Calculations 

XPS may be used to approximate the thickness of thin (less than approximately 10 nm) 

overlayers by comparing the intensity of core level peaks taken from the substrate and 

overlayer, respectively. 

XPS thickness calculations used in this study can be divided into two categories. The 

overlayer thickness can be estimated based on the suppression of the substrate peak by 

the presence of an overlayer. Alternatively, when the same element is present in 

distinguishably different chemical environments in the overlayer and substrate, the 

overlayer thickness calculations are simplified.  

For a sample of material A which forms a thin uniform layer of thickness d on a 

substrate of material S, the following equation can be written for the relative intensity 

of the substrate (IS) and overlayer (IA) XPS signals (assuming exponential attenuation 

of the overlayer) [10] [11]. 

 

 ����

=

��
� �1 − � ! " −���,�(cos#)$%

��
�� ! " −���,�(cos#)$  

 

The angle # in this equation is the emission angle of the excited electrons and is 

measured with respect to the surface normal. Factors ∞
AI and ∞

SI are peak intensities 

taken from samples of materials A and B of effectively infinite thickness. The 

parameters 
AA ,λ  and 

AS ,λ are the effective attenuation lengths of electrons emerging 

from the overlayer and the substrate respectively [12]. The effective attenuation length 

(EAL) is known to differ from the inelastic mean free path (IMFP) due to elastic-

scattering which causes the photoelectrons signal to decay in a non-exponential manner 

[13]. This variation from the IMFP value is dependent on the composition of the sample 

(2.6)  
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but, in general, changes in physical properties such as an increased density will result in 

a reduction of the EAL.  

For the case of SiO2 on Si, where the kinetic energy of the substrate and overlayer 

signals differ by approximately 4 eV the values 
AA ,λ  and 

AS ,λ  are approximately equal 

and can be replaced by a single term λ  [12], making d the subject of the expression 

equation 2.6 is found. 

 

 � = � cos# ln &1 +

� ����
��

� ����
��' (2.7)  

 

The ratio ∞

∞

A

S

I

I
  can be referred to as K [14] [12] [15] leaving; 

 

 � = � cos# ln "1 + ( �����

�$ (2.8)  

 

 

As stated previously, equation 2.7 relates only to situations where the kinetic energy of 

the substrate and overlayer peaks are comparable. In this study equation 2.7 was used 

to calculate the thickness of Si oxide overlayers on Si, with the parameter K being found 

experimentally using SiO2 and Si samples of effectively infinite thickness and a value for 

λ  found in the literature [12]. 

Thickness calculations based on this method can be achieved using software such as 

NIST Electron EAL Database [6]. 
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2.2 Synchrotron radiation photoemission 

spectroscopy 

2.2.1 Advantages over XPS 

The principle of synchrotron based photoemission (SRPS) is similar to that of 

conventional XPS, with the energy of emitted photoelectrons being analysed to 

determine the composition of a material. However, SRPS allows for considerably 

improved resolution and greater surface sensitivity than conventional XPS. 

Synchrotron radiation is characterised by: 

 

• High brightness and high intensity, many orders of magnitude more than that 

offered by X-rays produced in conventional X-ray tubes 

• High brilliance, exceeding other natural and artificial light sources by many 

orders of magnitude: 3rd generation sources typically have a brilliance greater 

than 1018 photons/s/mm2/mrad2/0.1%BW, where 0.1% BW denotes a 

bandwidth 10-3 ω centred on the frequency ω. 

• High collimation, i.e. small angular divergence of the beam 

• Low emittance, i.e. the product of source cross section and solid angle of 

emission is small 

• Widely tuneable in energy/wavelength by monochromatisation (sub eV up to 

the MeV range) 

• High level of polarization (linear or elliptical) 

• Pulsed light emission (pulse durations at or below one nanosecond, or a billionth 

of a second) 

 

 



 

2.2.2 Principles 

The layout of a typical synchrotron light source

accelerator, booster and storage rings and array of magnets is shown in 

Figure 2.17: Schematic diagram showing how an electron beam emits synchrotron radiation 

when accelerated around the curved sections of a storage ring.

 

A heated cathode produces free electrons which are pulled through the end of the gun 

by an electric field. The stream of electrons are fed into a linear accelerator (linac) 

where high energy microwaves and radiowaves split the stream into pulses and 

accelerate the beam to 9
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radio waves add more speed to the beam (approximately 99.998% of the speed of light) 

and ramps the energy of the electron stream to between 1.5 and 2.9 GeV which is 

enough energy to produce synchrotron light in the infrared to hard X-ray range. 

The booster ring then feeds electrons into a storage ring which is typically made up 

of a series of straight tube sections connected in a polygon arrangement. The ring 

is maintained under ultra-high vacuum, and the beam remains at a constant energy. 

Focusing magnets placed in the straight sections of the storage ring keep the electron 

beam small and well-defined as the more focussed the beam, the brighter the radiation. 

If undulators are placed in the straight sections they cause the electrons to oscillate and 

radiate energy before reaching the corner sections of the storage ring [16]. The radiation 

emitted by this undulation will generate a much more intense, coherent beam of light. 

Finally, bending magnets deviate the electrons by several degrees and allow the beam to 

negotiate the curved corners of the ring. The change in electron momentum which 

occurs at the curved corners of the ring results in the tangential emission of a broad 

spectral range of synchrotron radiation by the electrons. The radiation is then extracted 

for use in beamlines, for a variety of techniques. The use of monochromators allows 

specific photon energies to be selected allowing for high resolution spectroscopy and 

maximum surface sensitivity, as the appropriate photon energy may be selected for a 

particular core level to minimise the electron escape depth. 
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2.3 Transmission electron microscopy 

2.3.1 Principles of operation  

Considering the Rayleigh criterion, the maximum resolution δ, which can be obtained 

with a light microscope, is given by 

  

 ) =
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where λ is the wavelength of the photons that are being used to probe the sample, and 

µsinβ is defined as the numerical aperture (NA). It can therefore be seen that as the 

resolution is limited by the wavelength of the incident photons, and the maximum 

resolution for a microscope using visible light is approximately 160 nm. However, if 

wave/particle duality is considered, electrons can be considered to have both wave and 

particle properties with the wavelength λ  given by , 
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 where h is Planck’s constant, m and e are the mass and charge of the electron and V is 

the electron accelerating voltage. However, as the value of accelerating voltage used in 

electron microscopes is generally large, electrons can reach velocities comparable to 

speed of light and relativistic effects need to be taken into account. By replacing V with 

the relativistic accelerating voltage VC given by 
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where c is the speed of light, and m0 is the rest mass of the electron. These wave-like 

properties mean that a beam of high-energy electrons can be made to behave like an 

electromagnetic radiation beam and used to resolve features as small as 0.5 Å. This 

forms the basis for many modern microscopy techniques such as the scanning electron 

microscope (SEM) and transmission electron microscope (TEM), which is the technique 

used in this work.  

Transmission electron microscopy (TEM) is a microscopy technique whereby a beam of 

high-energy electrons is transmitted through an ultra thin specimen, interacting with 

the specimen as it passes through. An image is formed from the interaction of the 

electrons transmitted through the specimen which is magnified and focused onto an 

imaging device, such as a fluorescent screen, or detected by a sensor such as a CCD 

camera. In this way TEM can be considered analogous to an optical instrument as the 

layout of the focusing optics is similar. The typical setup of such a microscope is shown 

in Figure 2.18 
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Figure 2.18: Schematic of TEM 

Electrons are emitted from either a tungsten filament, or field emission gun and 

accelerated using high voltage (typically 80 kV to 200 kV) down the beam column, 

where the condenser lenses converge the electrons onto the specimen and control beam 

intensity and density. After interaction with the sample the electrons pass through the 

objective lens, which focuses the image. The intermediate lens is used to change between 

imaging modes and the projector lens provides final magnification before the electrons 

are detected by the combination of a fluorescent screen, photographic film and CCD 

camera. High vacuum is required within the system as the electron gun and all the 

electromagnetic lens focussing rely on a large mean free path. 

Proper sample preparation is of vital importance to provide useful images. 

specimens are required to be at most hundreds of nanometres thick, as samples 

thicknesses comparable to the mean free paths of the electrons used. These 
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thicknesses are achieved by a combination of mechanical grinding, ion milling and 

focused ion beam etching. 

Two modes of operation can be selected depending on the configuration of the lenses. If 

the focusing is set similarly to an optical microscope to form an image of the sample the 

microscope is said to be in contrast mode. Image contrast in TEM images can be 

obtained based on both the particle and wave properties of the electron. Electrons 

passing atoms of higher atomic number or thicker regions within the sample may not 

reach the detector due to absorption events. This will result in dark regions within the 

TEM image, allowing investigation of the structure and atomic composition of the 

sample. Within this mode images may be formed from the primary undeviated beam 

(bright-field) or from a diffracted beam satisfying the Bragg condition (dark-field). 

The second mode of operation is achieved by using the sample as a diffraction grating 

focussing the beam to form a diffraction pattern. This is known as diffraction contrast, 

which uses the Bragg scattering of electrons from crystalline regions within the sample. 

Scattering changes the angular distribution of the electrons, allowing them to be 

detected separately from unscattered electrons. As such, crystalline regions may be 

identified as bright regions within the image [17] and can be used to provide 

information regarding crystal structure, lattice parameter and structural defects. 

 

2.3.2 Energy Dispersive X-Ray Spectroscopy (EDX) 

EDX is a complementary analysis technique which can be incorporated into a TEM. 

Essentially it can be seen this analogous to x-ray production in an XPS source in that 

the incident TEM electron beam may excite an electron in an inner shell, ejecting it 

from the shell creating an electron hole as schematically illustrated in Figure 2.19. An 

electron from an outer, higher-energy shell then fills the hole, and the difference in 

energy between the higher-energy shell and the lower energy shell may be released in 

the form of an X-ray. 
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Figure 2.19: Concept of EDX 
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Electron Energy Loss Spectroscopy (EELS) 

Electron Energy Loss Spectroscopy (EELS) is a further useful technique which can be 

integrated into TEM. After interaction with the sample, some of the incident beam 

electrons will have lost a certain amount of energy due to inelastic interactions with the 

sample. These inelastic events include phonon vibrations, plasmon excitations and inner 

shell ionizations. EELS is similar to EDX in that it also provides information on 

chemical bonding. However, unlike EDX, EELS works well at low 

atomic numbers and provides better spatial resolution when compared with EDX
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amount of energy loss is measured with an electron spectrometer similar to the energy 

analyzer used in XPS and a plot of relative intensity vs. energy loss is plotted as shown 

in Figure 2.20. 

 
Figure 2.20: Typical EELS spectrum showing low loss and core loss regions 

 

The Zero Loss peak consists of elastic forward-scattered electrons which have lost no 

energy. The Plasmon Resonance peak is due to the collective response to the electron 

beam by all valence electrons. The ratio of plasmon peak intensity to zero-loss peak 

intensity may estimate the sample thickness. Of most interest is the region of high-

energy loss which contains core loss peaks. The peaks in this region are characteristic 

for each element and can provide chemical information. The fine structure of the peaks 

also contains information about the electronic structure (e.g. O peak in MnO is different 

than in NiO).  
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2.4 Atomic Force Microscopy 

Atomic force microscopy (AFM) or scanning force microscopy is a very high resolution 

surface imaging technique, used to obtain topographical information from a sample 

surface at near atomic resolution [2]. The main benefit of AFM over other more 

sensitive techniques such as scanning tunnelling microscopy (STM) is that AFM may be 

used on a broader range of samples, including insulators, and may also be used in air. In 

the simplest terms, AFM operates by placing an atomically sharp tip at the end of a 

cantilever in close proximity to a sample surface and measuring the resultant force 

acting on the tip.  

When two materials are brought into close proximity, inter-atomic forces are 

exerted between the two materials. AFM measures the magnitude of these forces, 

which include Van der Waals, electrostatic or magnetic forces, and uses them to 

determine characteristics of the surface being investigated [18]. 

The three modes of operation used for AFM are contact mode, tapping mode and non-

contact mode. Contact mode AFM operates by rastering a sharp tip (made either of 

silicon or Si3N4 attached to a low spring constant cantilever) across the sample. An 

extremely low force (~10-9N, interatomic force range) is maintained on the cantilever, 

thereby pushing the tip against the sample as it rasters across the sample surface and 

monitoring the changes in cantilever deflection. The force acting on the tip and the 

resulting cantilever deflection can be related using Hooke’s law; F = -kx, where k is the 

spring constant of the cantilever and x is the deflection. The value of k may range from 

0.01 N/m to 1.0 N/m, resulting in forces ranging from nN to µN for ambient AFM [18].  

The tip is brought to its operating position in two stages. Firstly, the user brings the tip 

to a height above the surface of approximately 1 mm, using an optical microscope 

system which is designed to focus on surface features at an image distance of 1 mm. 

The tip is then engaged using a piezoelectric motor which lowers the tip in increments 
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sample surface is then scanned by moving it under the tip using a piezoelectric scanner.

As the surface is moved beneath the tip the cantilever is deflected by forces exerted on 
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off the cantilever surface to a split photodiode, which detects the small cantilever 
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le surface is then scanned by moving it under the tip using a piezoelectric scanner.

As the surface is moved beneath the tip the cantilever is deflected by forces exerted on 

it by the surface. A laser beam aimed at the back of the cantilever–tip assembly r

off the cantilever surface to a split photodiode, which detects the small cantilever 

deflections. A feedback loop, shown schematically in Figure 2.21, maintains constant 

by moving the scanner in the z direction to maintain the setpoint 

deflection. Without this feedback loop the tip would “crash” into a sample with even 

small topographic features.  

Operational diagram for AFM which shows how tip deflections are measured 

using laser light reflected from the back surface of the tip 

 

By maintaining a constant tip-sample force the seperation between the tip and the 

sample is calculated. The distance the scanner moves in the z direction is stored relative 

to the special variation in the x-y plane to generate a topographical image of the sample 
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Using contact mode the surface may be scanned in two ways; either by keeping the tip 

position constant and monitoring the changes in cantilever reflection (constant height 

mode), or by maintaining a constant cantilever deflection by altering the position of the 

tip relative to the surface so as to keep a constant force between the two (constant 

force mode). The latter of these two is typically used when the initial state and 

smoothness of the surface is not known as it is not affected by the presence of 

contamination or rapid changes in the topography of the surface as is the case for 

constant height mode which can damage the tip. Constant height mode is only used 

when the surface is known to be relatively flat so as to avoid tip damage due to surface 

contamination or abrupt changes in topography. However, constant height mode can 

provide near atomic resolutions when the sample is known to be atomically clean 

and flat showing atomic corrugations and steps. 

Although operating in contact mode is useful, it suffers from a number of drawbacks 

that limit its use on a number of sample types. Crucially the constant downward force 

on the tip often damages many surfaces including silicon. However this problem can be 

overcome be the use of tapping mode AFM. In tapping mode, the AFM tip/cantilever 

oscillates at the sample surface while the tip is being scanned; thus, the tip lightly taps 

the surface while rastering and only touches the sample at the bottom of each 

oscillation. This prevents damage to the surface due to surface contamination and 

overcomes problems associated with friction, adhesion and electrostatic forces. Tapping 

mode imaging is implemented by oscillating the cantilever assembly at or near the 

cantilever's resonant frequency using a piezoelectric crystal. The piezo motion causes 

the cantilever to oscillate with a high amplitude (typically from 20 nm to 100 nm [18].) 

when the tip is not in contact with the surface. The frequency of oscillation is kept 

constant by altering the position of the tip relative to the surface, which is again 

monitored using the position of the deflected laser beam. Non-contact mode is 

commonly used for soft samples, such as biological material, where physical contact may 

damage the surface. In this mode the cantilever oscillates above the surface, slightly 
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beyond its resonant frequency. It operates by measuring the attractive Van der Waals 

forces which extend from 1 nm to 10 nm above the surface, altering the tip position in 

order to maintain constant oscillation frequency. 
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Experimental Details 

This chapter describes the ultra high vacuum (UHV) systems used for these 

experiments, along with the thin film deposition and surface cleaning techniques 

employed throughout the study.  

3.1  Ultra High Vacuum Systems 

In order to measure the kinetic energy of photoemitted electrons, with the minimum of 

error, XPS must be performed under ultra high vacuum (UHV) conditions. UHV is 

generally defined as the vacuum regime characterised by pressures lower than 10-9 mbar. 

At these pressures the mean free path of the remaining molecules in the system is of the 

range of kilometres hence any molecules inside the chamber will collide with the inner 

chamber components many times before colliding with each other.[1] This allows any 

photoemitted electrons from a sample surface to be counted by a closely placed electron 

spectrometer without experiencing any extra molecular collisions. Other reasons UHV 

conditions are necessary for surface science experiments relates to the operation of other 

equipment such as evaporators and mass spectrometers which require UHV in order to 

operate properly, and most importantly to minimise sample contamination.  

The surfaces of solids which are exposed to atmosphere are significantly more complex 

than clean, reconstructed or relaxed surfaces. On exposure to the atmosphere, atoms 

and molecules may adsorb on the sample surface destroying any well-ordered surface 

structure. The presence of this contaminant layer prohibits any controlled, systematic 

investigation of surface properties. To enable atomically clean surfaces for study, such 

surfaces need to be maintained in a contamination-free state. Hence, by working at 

Chapter 3  
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UHV a clean sample surface can be maintained for the duration of the experiment. A 

number of different UHV systems were used throughout the course of this work, each 

with particular measurement capabilities for the range of experiments undertaken.  

3.1.1 Surface Science Vacuum System 

The majority of work in this study was carried out on the dedicated surface science 

chamber shown in Figure 3.1; which included in-situ thin film deposition techniques and 

high temperature resistive heating capabilities of the substrate for annealing and surface 

cleaning purposes. The system consisted of two chambers; a small load lock with a 

base pressure of 10-7mbar which could hold up to three samples and a main chamber 

where a base pressure of better than 10-10 mbar was routinely achieved after a bakeout 

procedure with pumping carried out by a turbo molecular pump backed by a rotary 

roughing pump and a titanium sublimation pump. 

 

 

 

Figure 3.1 : UHV surface science chamber equipped with XPS, LEED, mass spectrometer, 

thermal gas cracker, e-beam and hot wire deposition capabilities 
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Samples were fixed to a sample stub, which could be heated in-situ up to 700 °C using 

resistive current heating. Sample temperatures up to 550 °C were measured by 

calibrating the heating stub using a thermocouple attached directly to the sample. A 

pyrometer was used to measure sample temperatures greater than 550 °C. The chamber 

is equipped with a dual anode X-ray source (Mg and Al) and a VG CLAM electron 

energy analyser with a triple channel electron multiplier as well as a four pocket mini 

e-beam evaporator and thermal evaporation sources for thin film deposition. A mass 

spectrometer was used as a residual gas analyser and a thermal gas cracker was also 

available for surface cleaning purposes. The system also contained low energy electron 

diffraction (LEED) optics which wasn’t used in these experiments.  
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3.1.2 Dedicated XPS Chamber 

The second XPS system shown in Figure 3.2 consisted of three vacuum chambers; a 

small load lock maintained at a pressure of 10-2 mbar for the introduction of multiple 

samples, a preparation chamber maintained at 10-7mbar for in-situ anneals up to 

500°C, and an analysis chamber with a base pressure of 10-10 mbar again equipped with 

a dual anode X-ray source (Mg and Al), and a VG CLAM electron energy analyser 

with a triple channeltron detector. 

 

Figure 3.2 : Dedicated XPS system with 3 vacuum chambers to allow for rapid sample 

introduction to UHV 

The chambers were pumped using diffusion pumps backed by rotary pumps. UHV 

conditions are achieved after a 12 hr bake at 150oC. The advantage of this system is 

that the three separate chambers, coupled with a sample holder stages within the load 

lock and analyser allows for rapid introduction of multiple ex-situ prepared 

samples to UHV conditions. The obvious disadvantage of the system is the lack of 

any in-situ deposition or sample cleaning techniques; meaning that deposited thin 

film samples were loaded after exposure to atmosphere. This system was used in 
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this work for the investigation of interdiffusion in thick copper/manganese films; 

this is presented in Chapter 5. 

3.1.3 Dedicated Deposition Chamber 

The system shown in Figure 3.3, was a dedicated Leybold Univex deposition chamber 

containing both hot filament and e-beam techniques allowing for sequential layer-by-

layer growth studies of two materials. Film thicknesses were measured using a water 

cooled quartz crystal deposition monitor which could be positioned in front of either 

evaporation source. The resolution of the monitor enabled the measurement of 

deposition rates as low as 0.1Å/s. 

 

Figure 3.3 : Dedicated Deposition Chamber 

This system allowed for the rapid introduction of multiple samples as UHV was not 

required for the depositions. Chamber pressures of <10-6 mbar were achieved after 3 

hour pump down by turbomolecular pump backed by a rotary pump. Samples could be 

attached to a large sample holder which allowed for the deposition of identical films on 



 

65 

 

a multiple number of substrates at the same time. This system was used to grow the 

copper/manganese thick films investigated in Chapter 5. 

3.1.4 Synchrotron based photoemission vacuum system 

The final vacuum system used was at the ASTRID Synchrotron in the University of 

Aarhus, Denmark, where the photoemission studies presented in Chapter 4 were 

performed using the SX700 beamline shown in Figure 3.4. 

 

Figure 3.4 : SX700 beamline at the ASTRID synchrotron in Aarhus, Denmark 

The ultrahigh vacuum system consists of a preparation chamber (5 × 10-10 mbar) and 

an analysis chamber held at 2 × 10-10 mbar. A schematic diagram of the Astrid 

synchrotron is shown in Figure 3.5. 
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Figure 3.5 : Diagram of the ASTRID synchrotron in Aarhus, Denmark. 

 

Photon energies from 30-700 eV can be selected allowing for core level, valence band 

and workfunction measurements to be taken at a range of surface sensitive energies. In 

the photoemission system, a single channeltron CLAM electron energy analyzer is used 

to detect the photoelectron signal. 
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XPS systems 

The mode of operation of the dual anode X-ray sources (Mg and Al) used in the two 

conventional XPS systems described above is graphically illustrated in 

 

Diagram showing the operation of a dual anode X-ray source 

ray source consists of a copper, water cooled anode target coated with t

of aluminium and magnesium that can be selected independently. The anode typically 

at voltages ranging from 10-15 keV. This is placed in line with a 

, which bombards the target with high energy electrons. The high electro

necessitates water cooling of the target due to the high levels of heat generated, which 

would be enough to evaporate or damage the metal thin films on the surface of the 

The electron beam generates a continuous Bremsstrahlung energy distribu

with a maximum intensity at the KαW transition energy which

transition of an electron from the unresolved Al or Mg 2p doublet to the 1

For the aluminium target this results in a peak energy of 1486.7 eV with a line width of 

0.85 eV and for the Mg target, the value is 1253.6 eV with line width of 0.7 eV. The line 
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ray sources (Mg and Al) used in the two 

conventional XPS systems described above is graphically illustrated in Figure 3.6. 

ray source [2] 

ray source consists of a copper, water cooled anode target coated with thin films 

The anode typically 

This is placed in line with a filament 

, which bombards the target with high energy electrons. The high electron flux 

necessitates water cooling of the target due to the high levels of heat generated, which 

would be enough to evaporate or damage the metal thin films on the surface of the 

The electron beam generates a continuous Bremsstrahlung energy distribution emission, 

hich results from the 

doublet to the 1s core level. 

For the aluminium target this results in a peak energy of 1486.7 eV with a line width of 

value is 1253.6 eV with line width of 0.7 eV. The line 
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width is a reflection of the doublet separation of the 2p peak and is a composite of the 

natural line widths of the 2p3/2 and 2p1/2 peaks. For Al 2p the doublet separation of the 

component peaks is 0.43 eV, contributing to a relatively broad overall line width. The 

doublet separation for the Mg 2p is significantly smaller than that of the Al 2p peak, 

producing the narrower overall line width. Some Bremshtralung radiation produced 

along with the x-ray signal is partially removed by placing an Al foil (~ 2 µm thick) at 

the exit aperture of the x-ray source, while radiation which is not removed adds to the 

background of the spectrum. 

The x-rays striking the sample surface result in the emission of photoelectrons, as 

described in Chapter 2. These photoelectrons are collected and focused into the electron 

energy analyser using an electrostatic electron lens. The acceptance angle of the lens 

depends on the analyser design. Increasing the acceptance angle would increase the 

overall electron yield it would result in a trade off between the total sampling area with 

an increased angle taking electrons from a wider surface area. This is especially critical 

for angular resolved XPS as it would result in electrons with different take off angles 

being collected creating discrepancies in the apparent electron escape depths. For angle 

resolved XPS, a small acceptance angle is preferred. The electrostatic lens is designed to 

generate an electric field which focuses the electrons to a focal point. This is typically 

carried out twice with the second focal point positioned at the entrance of the electron 

analyser in order to reduce the spread of the electrons due to the variation in the 

acceptance angle. 

Upon focusing the stream of electrons pass into the electron analyser and are separated 

according to their kinetic energy. The standard electron analyser is the hemispherical 

analyser as shown in Figure 3.7. This consists of two concentric hemispherical plates of 

radii R1 and R2 such that the mean radius between the two is R0. 

  



 

Figure 3.7 : Schematic of hemispherical analyser with R
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the mean distance between R1 and 

As the electrons enter the analyser after being focused by the lens with energy E0 = eV0, 

is the retardation voltage applied to the grid, the voltage applied to the two 
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and /� = 0.5(/�) and /� = (−1.33)/�.  

As a result the retarded electron velocity is maintained. Electrons with large energy 

variations from E0 will be lost to collisions with the hemispheres before they are able to 

transverse the full distance to the detector. 

The electrons which pass through the hemispherical analyser are detected at the end of 

the analyser by either hitting a channel plate which is able to determine the energy of 

the electrons depending on where they hit the plate, i.e. the deviation from the 

expected position for E0 along the plate, or by the use of a channeltron electron detector 

which, if there is only one, restricts the energy range around E0 to a smaller value and 

hence passes a reduced number of electrons compared to the channel plate as well as a 

slight decrease in resolution. The channel plate which is essentially made up of a series 

of multipliers orientated in parallel is schematically shown in Figure 3.8 as is a single 

channeltron detector. [5] 

The channeltron multipliers generally consist of a semiconductor glass tube with a 

funnel at the entrance to increase the acceptance angle of the electrons coming from the 

analyser with a length to diameter ratio of roughly 50. A potential difference of 2-4 kV 

is applied across the channeltron which causes an electron avalanche effect, with each 

successive collision releasing ever more electrons. In order to increase the number of 

collisions possible along the length of the tube as well as reduce ionic feedback 

generated in the collisions, the tube can be curved. The output of the multiplier is then 

measured as a pulse, providing an electron gain of 106 - 108 and potential count rates of 

greater than 106 counts per second (c.p.s.). Modern systems come equipped with multi-

channel detectors giving significant increases to the count rates and sensitivities 

possible. The output from the pulse counters is then fed into analysis software that is 

(3.3)  
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Figure 3.8 : Channeltron and channel plate consisting of a series of electron multipliers 

arranged in parallel 

3.2 Surface Preparation met

Three separate semiconductor substrate materials were used in this work. Most 

experiments were carried out on bo
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grown using a Semitool dry oxidation process in a Thermoco 9002 series furnace at 850 
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640nm thick amorphous SiO
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able to plot the (c.p.s) as a function of the electron binding energy. 

hanneltrons are used in the CLAM analysers used throughout this work.

: Channeltron and channel plate consisting of a series of electron multipliers 

Surface Preparation methods 

Three separate semiconductor substrate materials were used in this work. Most 

experiments were carried out on boron doped p-type Si(111) with a high quality 

thermally grown oxide 5.4nm thick as determined by TEM. These oxide layers were 

Semitool dry oxidation process in a Thermoco 9002 series furnace at 850 

°C in the Tyndall National Laboratory. The second substrate studied consisted of a 

640nm thick amorphous SiO2 layer on Si(011). The final substrate studied was a 

carbon doped oxide (CDO) ultra low-κW (ULK)

with a dielectric constant of 2.4, as determined by elipsometry. The CDO layers had a 

thickness of ~ 350 nm as determined by TEM, with an open porosity of 15 % 

and 30 % closed pore volume[6].  
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able to plot the (c.p.s) as a function of the electron binding energy. Multi-channel 

hanneltrons are used in the CLAM analysers used throughout this work. 

 

: Channeltron and channel plate consisting of a series of electron multipliers 

Three separate semiconductor substrate materials were used in this work. Most 

with a high quality 

thermally grown oxide 5.4nm thick as determined by TEM. These oxide layers were 

Semitool dry oxidation process in a Thermoco 9002 series furnace at 850 

°C in the Tyndall National Laboratory. The second substrate studied consisted of a 

on Si(011). The final substrate studied was a 

LK) dielectric material 

with a dielectric constant of 2.4, as determined by elipsometry. The CDO layers had a 

thickness of ~ 350 nm as determined by TEM, with an open porosity of 15 % - 16 % 
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3.2.1 Standard organic cleaning of semiconductor surfaces 

Prolonged exposure to ambient conditions results in the formation of predominantly 

carbon based impurities on the surface of semiconducting substrates. In this study the 

organic cleaning method used to remove these impurities before XPS studies consisted 

of successive 1 minute dips in acetone, methanol and isopropyl alcohol (IPA), with 

samples being subsequently dried in an N2 gas flow before being loaded into the vacuum 

vessel. This procedure was used to clean both SiO2 and CDO surfaces, however, it 

should be noted that as expected the XPS spectra taken in this study suggest that the 

procedure does not remove or alter the chemical composition of the oxide layers or the 

carbon content of the CDO.  

3.2.2 HCl etching of Manganese 

Manganese metal exposed to air results in the rapid formation of manganese oxide 

species on the surface. In some of the studies which will be discussed in the thesis, it 

was necessary to ensure the deposition of purely metallic manganese from the 

evaporation source. This was achieved by etching the manganese chips in dilute 

hydrochloric acid for 10 minutes to remove the surface oxides immediately prior to the 

manganese source being loaded into the UHV chamber. After loading, the UHV 

chamber was baked at 140 °C for 18 hours to remove water vapour and chamber 

contamination. 

3.2.3 TEM sample preparation 

TEM sample preparation is a complex procedure as the thickness of the samples 

investigated has to be comparable to the mean free path of the electrons which travel 

through the sample. The initial preparation step used in this work involved cutting two 

5 mm×2 mm sections of a sample, which are sandwiched between four pieces of support 

silicon using a heat activated epoxy before being mechanically ground to a thickness of 

~500 µm using a silicon carbide based abrasive. The sample is then polished using a 

liquid diamond based lubricant and mechanically ground again to a thickness of <100 
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µm before being placed in a dimple grinder which grinds the sample down to ~15 µm. 

Finally, the sample is ion milled until electron transparent and placed in a plasma 

cleaner where an oxygen plasma is used to reduce the surface carbon contamination 

immediately prior to it being loaded into the TEM. All TEM work shown in this thesis 

was carried out in the Materials Department in Oxford University. 

3.3 Deposition Techniques 

The ability to deposit high quality thin films is of critical importance to the creation of 

layered barrier structures. Two methods of thermal deposition were used to grow thin 

films throughout this work; electron beam deposition, and hot tungsten filament 

evaporation. The primary technique used to deposit manganese in this study was 

electron beam evaporation. Hot filament evaporation was also used to produce relatively 

thick manganese metal films which were grown in UHV and subsequently analysed 

using TEM. All copper films throughout the study were grown exclusively using 

electron beam evaporation.   

3.3.1 E-Beam Deposition: 

The primary metal deposition technique used in this work was electron beam (e-beam) 

deposition which is a physical vapour deposition (PVD) process where a high energy 

electron beam is focussed at a target anode containing a crucible with the evaporant. 

The e-beam heats the target which is then thermally deposited onto a sample situated 

in the line of sight of the anode. 

Two separate e-beam evaporators were used throughout this study. The primary system 

used was an Oxford Applied Research EGC04 mini e-beam evaporator four pocket 

source seen in Figure 3.9, which allowed for in-situ deposition and analysis of various 

thin films in the surface science UHV chamber described in section 3.1.1. The 

evaporator is equipped with four separate pockets and uses either solid target rods or 

evaporant filled crucibles that are held at a high potential of 2 kV with respect to the 
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rest of the evaporator. Electrons emitted from a neighbouring tungsten filament which 

is held at earth potential are accelerated towards the crucible by the electric field and 

result in heating. The emitted electron beam has a maximum current setting of 100mA, 

giving a total power of 200W which is sufficient to evaporate a wide range of metal 

sources.  

 

Figure 3.9 Diagram of the multi-pocket Oxford Applied Research EGC04 mini e-beam 

evaporator used in this study [7]. 

The evaporator is designed to detect the ionisation of target vapour which results in a 

measureable parameter and can be used as an indicator of the evaporation rate. Each 

pocket is shielded from contamination by neighbouring pockets through cross-

contamination shielding. The simultaneous evaporation of two or more materials is 

achievable as each pocket is equipped with its own dedicated filament. The high heat 

generated by the thermal heating requires the main turret to be water cooled. The 

growth of the thin films can be controlled either by external power supply, or via 

software control which allowed direct control of evaporation rates and real-time 

monitoring of all parameters. The software also allowed for evaporation from all 4 

pockets simultaneously, or from any selection of pockets.   

The second e-beam evaporator used was a Ferrotec EV-1-8 electron beam evaporator, 

housed within the dedicated deposition chamber which allowed the deposition of films 
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at a base pressure of ~ 1 × 10-6 mbar. Given that this system was not equipped with 

any analysis techniques and also that all films were exposed to air after deposition, this 

system was only used in the deposition of thick copper manganese film studies in 

Chapter 5. In this system, illustrated in Figure 3.10, an electron beam originating from 

a heated tungsten filament is accelerated with a voltage of up to 5 keV and focused 

directly onto the source material using a system of electro-magnets which bend the 

beam through an angle of ~ 270 ° preventing line of sight contamination of the source 

material from the tungsten filament. 

 

Figure 3.10:  Schematic diagram of e-beam deposition showing the generation of electrons 

which are accelerated towards the source material using high voltage and a system of electro 

magnets [8]. 

The size and direction of the electron beam is altered as required to achieve uniform 

heating of the source. The electron beam heats the target material placed in a crucible 

to a temperature where the target begins to evaporate and the sample is placed directly 

above the e-beam block. The localised nature of the electron beam on the material 

target allows much higher temperatures to be reached than with resistive heating 

meaning a greater range of materials, with higher melting points can be deposited. The 

metal vapours travel in straight lines from the source so the sample has to be placed 
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directly in front of the material source which is another reason for the placement of the 

tungsten filament away from the source. The target metal is placed in a crucible made 

of a high melting point material which is housed inside the e-beam block and again, due 

to the high temperature generated by the electron beam, the hearth, in which the 

crucible sits is water cooled to help dissipate the excess heat generated. The deposition 

rate, typically 0.01 nm/s, was monitored using a thin film thickness monitor which 

could be calibrated for each material used. 

3.3.2 Thermal/Hot Filament Evaporation 

The second deposition technique used was hot filament evaporation which is a direct 

method of depositing a thin film. The material to be deposited is placed in a tungsten 

basket as shown in Figure 3.11 which was resistively heated by a current up to the point 

where the material begins to evaporate.[9] High vacuum of better than 10-6 mbar is 

needed to prevent filament oxidation during the deposition process and to ensure 

metallic deposition from the evaporant. The basket heater itself is shielded from the rest 

of the chamber and other deposition sources to prevent cross contamination. Metal films 

can be evaporated from high purity (typically >99.9% purity) metal sources or metal 

oxides can be deposited by evaporating the metal in a background pressure of oxygen. 

Growth rates of < 0.1Å/s are achievable by careful control of the filament current 

allowing for good precision in terms of controlling the film thickness and >1 nm/s 

growth is easily achievable for thicker film growth.  
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Figure 3.11: Hot Filament Evaporation 

3.4 Spectral analysis of photoemission peaks 

Curve fitting of photoemission spectra is used to obtain information relating to both the 

elemental and chemical composition of the sample surface. It has been shown in 

Chapter 2 that it is often possible to identify elements using the binding energy position 

of the photoemission peaks. However, given that contributions from different chemical 

species within a core level spectrum tend not to be separated by more than 5 eV, these 

peaks are often unresolved within the spectrum.  

Therefore, in order to further analyse the various chemical states contained within the 

peak profile the spectrum must be fitted into a series of component peaks, each of which 

relating to a specific bonding environment. All curve fitting analysis presented in this 

study was carried as an iterative process using the AAnalyser software [10]. XPS core 

level spectra were curve fitted using Voigt profiles composed of Gaussian and Lorentzian 

line shapes in a 3:1 ratio and using a nonlinear Shirley-type background to account for 

the rise in the spectral background due to the emission of secondary electrons. 

To achieve an accurate curve fit it is important to obtain accurate fitting parameters as 

a starting point. An example of this is the Si 2p spectrum shown in Figure 3.12, which 

was acquired from an ultra-thin (~ 1 monolayer) Si oxide on a silicon surface using 

synchrotron radiation based XPS. It can be seen from Figure 3.12 that identification of 
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the individual oxidation states of silicon from the measured “raw” spectrum requires 

detailed curve fitting, as they are not immediately apparent in the spectrum. 

 

Figure 3.12 : Raw and curve fitted Si 2p spectra taken from an ultra-thin Si oxide layer using 

SRXPS. Curve fitting allows contributions from bulk Si (Sio) and each of the four silicon 

oxidation states to be identified. 

In this particular case for a thin silicon oxide, it is known that each component peak 

within the Si 2p spectrum is a doublet, with a spin-orbit splitting of 0.61 eV and an 

intensity ratio of 2:1 for the 2p 3/2 and 1/2 features. The full width half maximum 

(FWHM) of each component peak is a combination of both Lorentzian and Gaussian 

components. The Lorentzian width is related to the intrinsic lineshape due to the 

uncertainty principle, relating core-hole lifetime and the energy of the ejected electrons, 

and is independent of chemical composition. As such, for the spectra in Figure 3.12, the 

Lorentzian line width will be the same for each component. The Gaussian width is 

principally affected by instrumental broadening but may also depend on the chemically 



 

79 

 

homogeneity of a particular bonding state. As such, the Gaussian profile acts as a direct 

measure of the disorder within the local bonding environment, with more chemically 

disordered surfaces showing broader Gaussian peak widths. Himpsel et al. have reported 

a binding energy separation of ~0.9 eV between the Si bulk peak (Sio) and each of the 

four Si oxidation states [11], however variations of ± 0.2 eV have also been reported 

[12]. Therefore, these separation values were fixed only for the initial stages of analysis, 

before allowing a best fit to be obtained. The curve fitting parameters used in Figure 

3.12 are summarised in Table 3.1. 

 Position Gaussian 

FWHM 

Lorentzian 

FWHM 

Peak Area Spin-Orbit 

Splitting 

Sio 99.33 eV 0.33 eV 0.18 eV 43.9 % 0.61 eV* 

Si1+ 100.32 eV 0.45 eV 0.18 eV * 6.8 % 0.61 eV* 

Si2+ 101.15 eV 0.44 eV 0.18 eV * 4.4 % 0.61 eV* 

Si3+ 101.95 eV 0.79 eV 0.18 eV * 22.8 % 0.61 eV* 

Si4+ 102.90 eV 1.02 eV 0.18 eV * 22.1 % 0.61 eV* 

Table 3.1 : Peak fitting parameters relating to the Si 2p spectrum in figure 3.7, with * 

indicating a value which was fixed during the fitting process. 

These parameters are used throughout this study as the starting point for curve fitting 

Si 2p spectra obtained using SRXPS. While increases in the Gaussian width can be 

attributed to chemical disorder, excessively large widths often indicate the presence of 

another chemical state. This may necessitate the addition of further component peaks, 

which must be justified with reference to published results, electronegativity values or 

thermodynamic data. As instrumental broadening may greatly affect photoemission line 

widths, the parameters used for synchrotron studies may differ substantially from those 

used for spectra taken using standard XPS. It should be noted that curve fitted spectra 

presented throughout this study does not distinguish between the raw spectrum and the 

sum of the component peaks. As such, in situations where the sum overlays the raw 

spectrum it is taken to be a measure of the accuracy of the peak fit. 
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Curve fitted Si 2p spectra taken from a Si native oxide surface using standard XPS, and 

the relevant fitting parameters, are shown in Figure 3.13 and Table 3.2  It can be seen 

that only the Si4+ oxidation component is used for the curve fit in Figure 3.13. This is 

due to a combination of reduced resolution and decreased surface sensitivity of standard 

XPS compared to SRXPS. This is further evidenced by curve fitted Si 2p spectra taken 

from the same surface using both conventional and synchrotron based XPS (Figure 

3.14).

 

Figure 3.13 : Raw(top) and curve fitted(bottom) Si 2p spectra taken from a Si native oxide 

surface using conventional XPS. 

 

 Position Gaussian 

FWHM 

Lorentzian 

FWHM 

Peak Area Spin-Orbit 

Splitting 

Sio 99.30 eV 0.77 eV 0.30 eV 82.8 % 0.61 eV* 
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Si4+ 103.23 eV 1.28 eV 0.30 eV * 17.2 % 0.61 eV* 

Table 3.2 : Peak fitting parameters relating to the spectrum in figure 3.8. The reduced 

surface sensitivity of conventional XPS allows only the Si4+ oxidation state to be resolved. 

 

Figure 3.14 : Si 2p spectra taken from the same ultra-thin (~ 0.3 nm) Si oxide layer, using 

both synchrotron based and conventional XPS. Differences between the spectra clearly show 

the increased resolution and surface sensitivity achieved using SRXPS. 
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The parameters in Table 3.2 are again used throughout this study for Si 2p spectra 

taken using standard XPS.  Apart from the Si 2p, the main core level spectra analysed 

in this study using curve fitting are the O 1s, Mn 2p, and Cu 2p.  

3.5 TEM systems and image analysis 

Two separate TEM systems were used in this study. The majority of high resolution 

TEM, high angle annular dark field (HAADF), EELS, and energy dispersive x-ray 

spectroscopy ( EDX) in scanning-transmission electron microscopy (STEM) mode 

measurements were carried out on JEOL 2010FEG electron microscope similar to the 

one shown in Figure 3.15(a) based in Oxford University. High resolution EDX and 

EELS elemental maps were carried out using a Tecnai Osiris electron microscope shown 

in Figure 3.15(b). Both microscopes operated at 200 kV. Samples in cross section 

geometry XTEM were prepared by the conventional method of grinding and polishing 

followed by Ar+ milling in a Gatan precision ion polishing system (PIPS) until 

electron transparent as mentioned above. 

 

Figure 3.15 : a: JOEL 2010FEG Electron Microscope[13]; b: Tecnai Osiris Electron 

Microscope[14] 
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3.6 AFM image acquisition and interpretation 

The atomic force microscope used in this study was a Dimension 3100 SPM equipped 

with an acoustic and vibration isolation hood and an anti-vibration table as shown in 

Figure 3.16. AFM images presented in this study were acquired exclusively using 

tapping mode. 

 

 

Figure 3.16 : Dimension 3100 AFM 

WSxM free software [15] was used to process the images, allowing information such as 

surface roughness and feature height to be acquired. Root mean square (RMS) surface 

roughness values quoted in this study are average values taken from a minimum of 8 

sites across the sample surface. 

 

 



 

84 

 

3.7 References 

 

[1] J. C. Vickerman, Suface Analysis: The Principle Techniques, J. C. Vickerman, Ed. 

Wiley, 1997. 

[2] Twin anode x-ray source. [Online]. 

http://eapclu.iap.tuwien.ac.at/~werner/images/t_exp_pho.gif 

[3] D. ,. W. ,. O. Heddle, Electrostatic Lens Systems, 2nd ed. Taylor & Francis, 2000. 

[4] Electron Analyser. [Online]. 

http://eapclu.iap.tuwien.ac.at/~werner/images/t_exp_ana.gif 

[5] Channeltron and Channel Plate. [Online]. 

http://eapclu.iap.tuwien.ac.at/~werner/images/t_exp_cha.gif 

[6] I. Reid, Y. Zhang, A. DeMasi, G. Hughes, and K. E. Smith, Thin Solid Films, vol. 

516, no. 4851, 2008. 

[7] O. A. Research. OAR Electron beam evaporator. [Online]. 

http://www.oaresearch.co.uk/oaresearch/brochures/EGseries.pdf 

[8] B. Y. University. Electron beam evaporator. [Online]. 

http://www.cleanroom.byu.edu/metal.parts/gun.JPG 

[9] J. ,. S. Corneille, J. ,. W. He, and D. W. Goodman, Surf. Sci., vol. 306, p. 269, 

1994. 

[10] A. Herrera-Gomez. AAnalyser. [Online]. http://qro.cinvestav.mx/~aanalyser/ 

[11] F. ,. J. Himpsel, F. ,. R. McFreely, A. Taleb-Ibrahimi, J. ,. A. Yarmoff, and G. 



 

85 

 

Hollinger, Phys. Rev. B, vol. 38, p. 6084, 1988. 

[12] F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Taleb-Ibrahimi, Surface Science, 

vol. 463, pp. 102-108, 2000. 

[13] JOEL 2010FEG TEM. [Online]. 

http://www.campnano.org/web/uploads/picture/tem.png 

[14] Tecnai Osiris TEM. [Online]. 

http://cfnewsads.thomasnet.com/images/large/840/840932.jpg 

[15] Nanotec. WSxM Software. [Online]. 

http://www.nanotec.es/products/wsxm/index.php 

 

 

  

 

 

 

 

 

 

 

 

 



 

86 

 

4 Chapter 4  

Growth and Analysis of Mn 

Silicate films on SiO2 

4.1 Introduction 

Self forming Cu/Mn barrier layers have been proposed as a method of dispensing with 

the traditional sequential barrier deposition process by relying on the chemical 

interaction of the expelled Mn with the dielectric material to form an effective diffusion 

barrier layer [1,2]. The growth of Mn silicate based barrier layers through the deposition 

of metal Mn [3] and Mn/Cu alloys [1] on SiO2 substrates have both been the subject of 

considerable interest due to their reported effectiveness as a barrier to Cu migration and 

improved Cu adhesion properties compared to other barrier layer candidates [3,4]. 

Several transmission electron microscopy (TEM) studies have shown that thin (2-3 nm) 

Mn silicate layers act as effective barriers to Cu, O and H2O diffusion [3,1], while 

promising electrical characteristics have also been reported for Cu interconnects on Mn 

silicate using techniques such as sheet resistance and capacitance measurements [4,5].  

However, comparatively few studies have focused on the interfacial chemistry and 

thermal stability of the chemical bonding present at the Mn/SiO2 interface. In addition 

to this, studies using analysis techniques such as electron energy loss spectroscopy 

(EELS) and secondary ion mass spectroscopy (SIMS) have produced contradictory 

results relating to the chemical composition of the barrier layer. In particular, doubt 

remains over the presence of manganese oxide [6], Mn silicate [4] or both [7], within the 

Mn/SiO2 interfacial region. A possible reason for this inconsistency is the reported 
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electron screening interaction which occurs between metallic Mn and Cu atoms, which is 

known to affect the profile of EELS Mn-L3 spectra [7] and Mn photoemission [8] 

spectra taken from Mn/Cu alloys. This interaction is reported to affect EELS spectra 

such that the electronic state measured from Mn atoms in a Cu/Mn alloy is similar to 

that of Mn atoms in the barrier layer region [7]. Similarly, Mn photoemission spectra 

taken from Mn/Cu alloys exhibit a spectral component on the higher binding energy 

(HBE) side of the metallic Mn peak [8] which may be interpreted as indicating the 

presence of an oxidised Mn species. As such, it is extremely difficult to determine the 

chemical composition of the barrier layer region using EELS or photoemission spectra 

taken from device structures containing both Mn and Cu. In addition to this the ex-situ 

sample preparation methods required for techniques such as EELS may result in the 

ambient oxidation of Mn [9] or the incorporation of H2O into the films, creating 

uncertainty as to whether Mn oxide species are present due to air exposure or due to 

the inherent chemical interactions within the barrier layer. 

In this study in-situ analysis of Mn silicate growth is performed in the absence of Cu, in 

order to identify the key chemical interactions which lead to barrier layer formation. 

Synchrotron based photoelectron spectroscopy (SRPES) is used to investigate the 

chemical composition of barrier layers formed following the deposition of a thin metallic 

Mn layer onto a 5.4 nm thermally grown SiO2 film and subsequently annealed to high 

temperature. While numerous studies have focused on barrier growth using Mn/Cu 

alloys [1,6,7] it has recently been suggested that the deposition of Mn metal may be 

preferential to the use of alloys [3] as the presence of residual Mn impurities within Cu 

during thermal annealing restricts Cu grain growth, leading to an increase in the final 

resistance of the interconnect [4]. Therefore, it is suggested that investigations into the 

growth of barrier layers using metal Mn are not only subject to less inherent 

experimental uncertainty than Mn/Cu alloy studies, but may also be of significant 

technological relevance. 



 

88 

 

The following photoemission studies show that this growth method of the Mn silicate 

layer is self limiting at high temperature, with the maximum thickness of the silicate 

calculated to be approximately 2 nm, resulting in the presence of residual metallic Mn 

on the surface following annealing. Previous studies [5] have shown that unreacted 

metallic Mn remaining after barrier layer formation can diffuse to the surface of the 

deposited Cu interconnect during high temperature annealing and can be subsequently 

removed using an oxidation process. However, as mentioned previously the presence of 

Mn within Cu during thermal annealing restricts Cu grain growth, leading to an 

increase in the final resistance of the interconnect. Therefore, it would be preferable if 

the Mn silicate growth reaction could be controlled more accurately in order to 

determine the thickness of the MnSiO3 layer and prevent the presence of residual 

metallic Mn.  

Ablett et al [2] have previously discussed the factors which determine the initial stages 

of Mn silicate growth on silica based dielectrics. It was suggested that adsorbed water 

on dielectric surfaces leads to the presence of –OH groups, which interact with deposited 

Mn to form Mn oxide, with these Mn oxide species in turn reacting with silicon in the 

SiO2 to form MnSiO3. It has also been suggested that the absence of adsorbed water 

species on thermally grown SiO2 layers reduces Mn oxide formation, hence limiting the 

maximum thickness of Mn silicate layers which can be formed on the surface. However, 

the precise role of SiO2, metallic Mn and Mn oxide species within the Mn silicate 

formation process has not been investigated experimentally. Therefore, the focus of the 

second part of this study is to determine if the thickness of Mn silicate barrier layers 

grown on thermally grown SiO2 surfaces is limited by the presence of additional oxygen 

species, beyond that found within the SiO2 layer. 

The chemical interactions between metallic Mn, partially oxidized Mn and fully oxidized 

Mn thin films on thermally grown SiO2 were systematically investigated in-situ using 

conventional x-ray photoelectron spectroscopy (XPS). The formation of Mn oxide 

species on the surface of dielectric materials through the presence of surface –OH 
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groups, as described by Ablett et al [2], would be very difficult to control 

experimentally. Therefore, the experimental approach adopted in this study was to form 

partially oxidised and fully oxidised Mn thin films in UHV conditions through the 

evaporation of metallic Mn in a controlled oxygen background pressure. Also, given that 

barrier layer formation and XPS analysis was performed in-situ in the UHV analysis 

chamber, this allowed the role of both oxidised and metallic Mn species could be 

investigated without the complicating influence of air exposure oxidation effects. 

Following the completion of XPS analysis, a protective copper capping layer (20-30 nm) 

was deposited on selected samples before they were removed from vacuum and 

subsequently analysed by transmission electron microscopy (TEM), in order to 

accurately determine the thickness and uniformity of the silicate layers. 
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4.2 Experimental Procedure 

High quality thermally grown SiO2 layers on silicon substrates, were grown using the 

Semitool dry oxidation process in a Thermoco 9002 series furnace at 850 °C in the 

Tyndall National Laboratory. The XPS survey scan in Figure 4.1 displays 

photoemission peaks which originate from the silicon oxide, the silicon substrate and 

surface carbon contamination. 

 

 

 

Figure 4.1: XPS spectrum of the 5.4 nm SiO2 oxide on a silicon substrate 



 

 

 TEM thickness calculations

as shown in Figure 4.2
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Table 4.1: Average thickness values of SiO

 

TEM thickness calculations yielded an approximate SiO2 overlayer thickness of 5.4

2 and Table 4.1.  

Figure 4.2: TEM of 5.4nm thermally grown SiO2 

 

Thickness SiO2 (nm) Micrograph Thickness SiO

5.230 6 5.309

5.228 7 5.474

5.365 8 5.251

5.592 9 5.339

5.381 10 5.494

 Average 5.366

: Average thickness values of SiO2 overlayer from TEM measurements
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overlayer thickness of 5.4 nm 

 

Thickness SiO2 (nm) 

5.309 

5.474 

5.251 

5.339 

5.494 

5.366 

overlayer from TEM measurements 
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The thickness of the thermal oxide was chosen so that the Si substrate (Si°) and SiO2 

component peaks of the Si 2p core level profile could be observed throughout all 

experimental stages, allowing the extent of SiO2 to silicate conversion to be 

approximated using XPS curve fitting techniques as shown in the Si 2p spectrum in 

Figure 4.3.  The SiO2 surfaces were prepared using the standard degreasing procedure of 

successive dips in acetone, methanol and isopropyl alcohol (IPA) as described in 

Chapter 3, Section 2.1 before being loaded into the UHV deposition and analysis 

system. Samples were then degassed at ~ 200 °C for 2 hours, with the UHV chamber 

reaching a maximum pressure of 1 × 10-9 mbar during degassing. 

   

 

Figure 4.3: Si 2p spectra of 5.4nm SiO2 sample showing the Si substrate, and the 5.4nm SiO2 

overlayer 
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The SRPES experiments were carried out on the SX700 beamline at the Astrid 

synchrotron in the University of Aarhus described in Chapter 3, Section 1.4 in the ultra 

high vacuum (UHV) system maintained at < 1 x 10-10 mbar. The photon energies used 

to acquire the various core level spectra were; Si 2p (130 eV), O 1s (600 eV) and Mn 3p 

(197 eV). Metallic manganese (99.9 % purity) thin film deposition was performed at 

room temperature using the Oxford Applied Research EGC04 mini electron-beam 

evaporator, described in Chapter 3, Section 3.1, at a chamber pressure of 5 × 10-9 mbar. 

High temperature vacuum annealing studies were performed at pressures ≤ 5 × 10-9 

mbar, with samples being held at the target temperature for 60 minutes in agreement 

with similar studies performed by Gordon et al. [3] and Lee et al. [10]. Annealing 

temperatures between 350 °C and 500 °C were measured using a thermocouple attached 

directly to the sample. The core level spectra were curve fitted using Voigt profiles 

composed of Gaussian and Lorentzian line shapes in a 3:1 ratio and using a Shirley-type 

background. The full width at half maximum (FWHM) of the Si 2p SiO2 peak was 1.1 

eV, with sub-stoichiometric Si oxide, Mn silicide and Mn silicate component peaks in 

the range 0.8 eV to 1.1 eV. The metallic Mn component of the Mn 3p peak profile was 

curve fitted using an asymmetric doublet peak with a spin-orbit splitting value of 0.4 

eV. The FWHM of the metallic Mn component was acquired using the Mn 3p reference 

spectra taken from a thick (~ 10 nm) Mn film, which showed no evidence of O 1s or C 

1s core level features within the detection limit of SRPES (~ 0.1 %). All curve fitting 

analysis presented in this study was performed using AAnalyser and Win-Spec curve 

fitting software programs.  

The conventional XPS experiments were carried out in the dedicated surface science 

chamber described in Chapter 3, Section 1.1. The XPS analysis was carried out using a 

VG Microtech electron spectrometer at a base pressure of 1 × 10-9 mbar. The 

photoelectrons were excited with a conventional Mg KαW (hνW = 1253.6 eV) x-ray source 

similar to the one described in Chapter 3, Section 1.4.1 and an electron energy analyser 
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operating at a 20 eV pass energy, yielding an overall resolution of 1.2 eV. High 

temperature annealing studies were carried out in vacuum at a pressure of 5 × 10-9 

mbar, with samples kept at the target temperature for 60 minutes. Hydrochloric acid 

(HCl) etched Mn chips, with a purity of ~ 99.9 %, were used as a source material for 

the deposition of oxygen free metallic Mn thin films using electron beam evaporation. 

Metallic manganese thin film deposition was performed at elevated substrate 

temperature (150 °C) again using the Oxford Applied Research EGC04 mini electron-

beam evaporator, at a chamber pressure of 5 × 10-9 mbar. The deposition of both 

partially and fully oxidised Mn films was carried out by the controlled introduction of 

O2 gas into the UHV chamber during metallic Mn deposition. The XPS core level 

spectra were again curve fitted using Voigt profiles composed of Gaussian and 

Lorentzian line shapes in a 3:1 ratio and using a Shirley-type background. The full 

width at half maximum (FWHM) of the Si 2p bulk peak was 0.9 eV, with SiO2 and Mn 

silicate component peaks in the range 1.1 eV to 1.2 eV. The FWHM of the O 1s SiO2 

component was 1.2 eV with Mn silicate and Mn oxide peaks in the range of 1.2 eV to 

1.1 eV. 

It should be noted that curve fitting of the Mn 2p spectrum could not be performed 

given that XPS ghost peaks [11] emanating from the Mn 2p1/2 are present within the 

peak profile of the Mn 2p3/2 component. As such, only non-curve fitted Mn 2p spectra 

are included in the second part of the study. The Mn 2p spectra are primarily used to 

identify the presence of metallic Mn and oxidised Mn species on the sample surface as 

these component peaks are easily identified from the Mn 2p3/2 peak profile without 

curve fitting. However, Mn 2p spectra could not be used to conclusively identify the 

presence of differing oxidised Mn species such as Mn silicate and Mn oxide, therefore 

these chemical species are identified in this study using curve fitted O 1s and Si 2p 

spectra.  

High resolution transmission electron microscopy (HRTEM) studies were performed 

using a JEOL-JEM 3000 F and JEOL-JEM 4000EX electron microscopes operating at 
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300 and 400 kV, respectively. Samples in cross section geometry were prepared by the 

conventional method of grinding and polishing followed by Ar+ milling in a Gatan PIPS 

until electron transparent. The HRTEM micrographs were calibrated using the silicon 

(111) planes spacing as a reference. 
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4.3 Synchrotron radiation photoemission study of 

in-situ manganese silicate formation 

The curve fitted Mn 3p spectrum in Figure 4.4 taken after ~ 1.5 nm room temperature 

deposition of Mn shows the presence of a single asymmetric spectral component peak at 

a binding energy (B.E.) position of 47.1 eV, which has been attributed to metallic Mn 

in agreement with previous reports [12] and spectra acquired from the thick (> 10 nm) 

metallic Mn reference film. The presence of a single metallic peak suggests that the 

deposited Mn does not react with the SiO2 surface at room temperature. This is 

confirmed by the corresponding O 1s and Si 2p spectra taken after Mn deposition 

(Figure 4.5) which are also curve fitted using single spectral components.  

 

Figure 4.4:  Mn 3p (197 eV) spectra showing the self limiting growth of Mn silicate following 

high temperature annealing of metallic Mn on a thermally grown 5.4 nm SiO2 surface. The 

percentage thickness of metal Mn converted to Mn silicate is shown following each anneal. 
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It should be noted that the Si 2p spectrum taken from the SiO2 surface before Mn 

deposition shows the presence of a small component peak, separated from the SiO2 peak 

by 1.6 eV, which has been attributed to the Si 3+ surface oxidation state as previously 

reported [13]. 

A series of high temperature anneals between 350 °C and 500 °C were then performed 

on the sample. The curve fitted Mn 3p spectra in Figure 4.4 show that high 

temperature annealing results in the growth of an additional spectral component, 

separated from the metallic Mn peak by 3.6 eV on the higher binding energy side.  

The corresponding O 1s and Si 2p spectra in Figure 4.5 show the concurrent growth of 

additional spectral components following the 350 °C and 500 °C anneals, separated from 

the SiO2 substrate components by 1.4 eV and 1.3 eV, respectively. It should be noted 

that the 350 °C Si 2p spectrum also shows evidence for the growth of a small peak at a 

B.E. position of 98.4 eV, which has been attributed to Mn silicide in agreement with the 

relative electronegativity values of Si (1.90) O (3.44) and Mn (1.55). However, due to 

the low levels of silicide formation, a Mn silicide component could not be accurately 

included in the Mn 3p peak fit. The concurrent changes seen in the Si 2p, Mn 3p and O 

1s spectra following annealing suggests the formation of a single chemical species 

containing each of these elements. As such, the results are attributed to the growth of a 

thin (1 – 2 nm) Mn silicate interfacial region, in agreement with previous photoemission 

studies of metal silicate species [14,15]. Using the photo-ionisation cross section values 

published by Yeh et al. [16] the stoichiometry of this Mn silicate was calculated to be 

MnSi0.9O2.9. This value is consistent with that of MnSiO3, the silicate composition 

reported previously [7,2] in barrier layer studies. 
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Figure 4.5:  O 1s (600 eV) and Si 2p (130 eV) core level spectra corresponding to Figure 4.4 

after Mn deposition showing growth of Mn silicate following high temperature annealing. 

Spectra also show no evidence for the presence of Mn oxide at the Mn-SiO2 interface.  

 

As stated previously, the Mn 3p and O 1s spectra in Figure 4.4 and Figure 4.5 only 

show evidence for the growth of a single oxidised species following high temperature 

annealing, which has been attributed to Mn silicate. As such, there is no evidence for 

the formation of manganese oxide following Mn deposition on SiO2 and subsequent high 

temperature annealing. However, in addition to metal silicate formation, the growth of 

metal oxide species within the barrier layer region may also be of technological interest 

given that the reduction of SiO2 is reported to lead to the diffusion of Si into the Cu 

film, increasing interconnect resistance [17]. Given that there is a broad range of 

stoichiometry values reported for Mn oxide species, and that the Mn 3p components of 
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these oxide species fall in a broad binding energy range [18], it is difficult to rule out 

the presence of Mn oxide based solely on the energy position of the Mn 3p HBE spectral 

component in Figure 4.4. However, the reported B.E. range for the O 1s component of 

all stable Mn oxide species is between 529 eV - 530 eV [18], which offers further 

evidence that the O 1s component in Figure 4.5 which grows following annealing (532.1 

eV) is due to Mn silicate and not Mn oxide. Furthermore, the Mn 3p and O 1s spectra 

in Figure 4.4 and Figure 4.5 only show evidence for the growth of a single oxidised Mn 

species, which has been attributed to Mn silicate due to the concurrent changes seen in 

the Si 2p peak. However previous reports have shown that when both metal oxide and 

metal silicate species are present, they can be identified as separate spectral components 

within the relevant oxygen and metal photoemission peaks [15,19]. Therefore, it can be 

stated that there is no evidence for the formation of manganese oxide following Mn 

deposition on SiO2 and subsequent high temperature annealing. This result is in 

contrast to the findings of Otsuka et al. [7] and Chung et al. [6] who reported the 

presence of Mn oxide within the barrier layer region following Mn/Cu alloy deposition. 

Given that the Mn/Cu interactions mentioned previously complicate the interpretation 

of the interface chemistry [20,8], further studies need to be undertaken in order to 

understand interface formation in the presence of Cu.  However, based on the results of 

this work it can be said that Mn silicate barrier layers free from Mn oxide can be 

formed using metal Mn deposition. 

The absence of Mn oxide following Mn deposition onto SiO2 is in agreement with the 

proposed reaction mechanism of metals on SiO2 as described in previous studies [21,22]. 

Ndwandwe et al. [22] have investigated the interaction between SiO2 surfaces and a 

variety of metals, suggesting that metals can be classified as either reactive or non-

reactive on SiO2. It has been shown that the deposition of reactive metals commonly 

results in the concurrent formation of both metal-silicide and metal-oxide species [22], 

which can be subsequently converted to metal-silicate using high temperature annealing 

[14]. However, the suggested growth mode for some rare earth metals on SiO2 is the 
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direct formation of metal-silicate upon annealing, without the intermediate growth of 

metal oxide or metal silicide species [22]. Based upon thermodynamic data it has been 

suggested [22] that Mn has chemically reactive properties which lie between that of 

highly reactive species such as Mg, and un-reactive species such as Pd. The Si 2p 

spectra in Figure 4.5 are in agreement with this analysis as they show no evidence of 

Mn silicide growth upon Mn deposition and the growth of an extremely small Mn 

silicide peak following the 350 °C anneal, amounting to approximately 0.6 % of the total 

Si 2p spectral intensity. As such, it is suggested that the behavior of metallic Mn on 

SiO2 is closer to that of rare-earth metals such as Yb, resulting in the direct formation 

of Mn silicate without the appreciable growth of metal oxide or metal silicide species 

[22]. Therefore, the interaction of Mn with SiO2 may be preferable to that of other 

metal barrier layer candidates such as Mg and Al, which have been reported to release 

Si into the Cu film following the reduction of SiO2 to form metal oxide species [1,17]. 

In addition to investigating the chemical composition of the interface, it can also be 

inferred from the SRPES spectra that Mn silicate growth on SiO2 surfaces is self 

limiting at high temperature. The Mn 3p spectra in Figure 4.4 show that the 

subsequent vacuum anneals between 350 °C and 500 °C result in the growth of the Mn 

silicate peak, from 17 % to 31 % of the total spectral integrated intensity, suggesting 

that ~ 0.9 nm of Mn was converted to Mn silicate following the 500 °C anneal, with 

most of the deposited Mn remaining in a metallic state. However, a further 1 hour 

anneal at 500 °C has no effect on the interface chemistry which suggests that the 

growth of Mn silicate on thermally grown SiO2 is self limiting at this temperature, and 

estimated to be less than 2nm thick. This result is in agreement with the work of Ablett 

et al. [2] who reported that it is not possible to form Mn silicate layers thicker than 1 

nm on high quality thermally grown Si oxide films. 

A thin Cu film was subsequently deposited on the surface; however, as shown in the Mn 

3p spectra in Figure 4.6 it proved extremely difficult to interpret the results seen 

following Cu deposition, which also included changes to the Si 2p and O 1s spectra.  
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Figure 4.6: Change in profile of the Mn 3p core level spectrum following Cu deposition 

The reason for this difficulty is due to an inherent reaction which takes place between 

metallic Mn and metallic Cu, which was clearly shown from the Mn 2p spectra in 

Figure 4.7, taken from a separate experiment in which a thin (~ 2 nm) Cu film was 

deposited onto a thick (~ 20 nm) Mn layer. 
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Figure 4.7 Normalised Mn 2p spectra taken from a thick (~20 nm) Mn surface, using 

conventional XPS, show that interaction between metal Mn and Cu results in the growth of 

a spectral component at HBE with respect to the metal Mn peak. 

As conventional XPS spectra taken from the surface showed no evidence for O 1s or C 

1s peaks it can be clearly stated that the changes seen in Figure 4.7 are due to an 

interaction between the Mn and Cu metallic species. However, it should also be noted 

that Cu 2p spectra taken following deposition (not shown) are identical to those taken 

from Cu reference films and as such show no evidence for the presence of any Mn-Cu 

interaction. While the occurrence of this metallic interaction has been reported [23,8] 

some questions remain as to the exact nature of the interaction. It has been suggested 

in a number of reports [8,23] that the changes seen in Mn photoemission spectra are 

due to differing levels of electron screening experienced by Mn atoms as the Mn/Cu 

surface alloy forms. However, this proposal does not explain the changes seen in the Si 

2p and O 1s seen in experiments following Cu deposition. Alternatively, Koike et al [20] 

have reported that metallic Mn present within a Cu alloy becomes ionised, losing 



 

103 

 

electrons which are not transferred directly to the Cu, but instead migrate through the 

Mn silicate region creating a dipole charge across the barrier layer. The loss of electrons 

from metallic Mn directly explains the growth of the HBE component seen in Figure 

4.7, a spectral change which may be easily mistaken for the presence of oxidised Mn in 

thin film studies where oxidised species are present. As the electrons lost by the metallic 

Mn are not transferred directly to the Cu, this also explains why Cu 2p spectra taken 

from the surface show no evidence of chemical interaction. Also, the creation of a dipole 

field across the barrier layer region may cause surface band bending which can be used 

to explain the changes seen in the O 1s and Si 2p spectra, as previously reported for the 

Si/SiO2 system [24]. 
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4.4 Chemical and structural investigation of the role 

of Mn oxide in the formation of Mn silicate 

The above experiment was subsequently repeated using conventional XPS to further 

investigate the details of the chemical interactions and the effect of the controlled 

oxidation on the silicate formation process. The curve fitted O 1s and Si 2p core level 

spectra taken from the 5.4 nm thermal SiO2 surface are shown in Figure 4.8. . In this 

instance, because of the greater sampling depth of XPS over the synchrotron radiation 

photon energies used in the previous section, photoemitted electrons from the silicon 

substrate can be observed in the Si 2p core level spectra.  The corresponding Mn 

spectra taken following the deposition of a ~ 1 nm metallic Mn thin film onto the SiO2 

surface at elevated substrate temperature (150 °C) are also shown in Figure 4.9.  Curve 

fitting analysis shows small changes to the core levels profiles suggesting that Mn 

deposition resulted in the growth of small additional component peaks in both the O 1s 

and Si 2p spectra separated from the SiO2 components by 1.4 eV and 1.3 eV 

respectively. These peaks are attributed to the growth of the Mn silicate species 

MnSiO3, in agreement with the previous photoemission results. A series of high 

temperature vacuum anneals between 300 °C and 500 °C were then performed on the 

sample. 
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Figure 4.8 : Curve fitted O 1s and Si 2p spectra showing the growth of Mn silicate (MnSiO3) 

following the deposition of metallic Mn (~ 1 nm) onto SiO2 thermal oxide surface and 

subsequent UHV annealing. 

 

 The spectra in Figure 4.8 show evidence for further Mn silicate formation following 

these anneals, and this is supported by changes in the Mn 2p spectrum in Figure 4.9 

which show the growth of an oxidised Mn component peak on the higher binding energy 

(HBE) side of the metallic Mn peak [8]. 
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Figure 4.9 : Mn 2p spectra, corresponding to Figure 4.8, show the presence of residual 

metallic Mn on the surface following 500 °C annealing. This result suggests that the 

interaction of metallic Mn and SiO2 is self limiting at high temperature. 

 

 As before within the Mn 3p spectra, the presence of residual metallic Mn following the 

500 °C anneal suggest that the interaction of metallic Mn with SiO2 is self limiting at 

this temperature [2]. Rudimentary peak fitting (not shown) of the Mn 2p spectra in 

Figure 4.9 suggests that only ~0.5 nm of the deposited Mn film was converted to Mn 

silicate following the 500 °C anneal. This limited scale of Mn silicate growth can also be 

seen from the corresponding Si 2p spectrum which shows that only ~ 12 % of the SiO2 

component peak was converted to Mn silicate. The results shown in Figure 4.8 and 

Figure 4.9 again suggest that the thickness of manganese silicate barrier layers formed 
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through the deposition of purely metallic Mn is self limiting at high temperature. Based 

on photoemission thickness calculations [25] the limiting thickness of the MnSiO3 was 

calculated to be approximately 2 nm following the 500 °C vacuum anneal. In order to 

determine if the chemical reactivity of metallic Mn on SiO2 surfaces is limited by the 

presence of additional oxygen species, specifically in the form of Mn oxide, a partially 

oxidised Mn film was deposited onto the SiO2 surface and annealed to high temperature. 

 

Figure 4.10 shows Mn 2p spectra taken following the deposition of metallic Mn in an O2 

partial pressure of 5 × 10-8 mbar, leading to an O2 exposure of ~ 30 Langmuir (L) onto 

the SiO2 surface at elevated substrate temperature (150 °C). The Mn 2p spectrum 

clearly shows the presence of both metallic Mn and oxidised Mn spectral components, 

with curve fitting analysis suggesting a metallic Mn:oxidised Mn ratio of 5:1. Angular 

resolved Mn 2p spectra (not shown) indicate no evidence for depth segregation between 

the oxidised and metallic species, which suggests that the oxygen content is 

homogenously distributed throughout the deposited film. 
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Figure 4.10 : Mn 2p spectra taken following the deposition of partially oxidised Mn (~ 1 nm) 

onto SiO2 show the presence of both metallic Mn and oxidised Mn component peaks. Spectra 

taken following 400 °C annealing show the complete conversion of metallic Mn to Mn silicate. 

 

 While detailed chemical analysis of Mn species cannot be achieved by curve fitting the 

Mn 2p spectrum as mentioned previously, the curve fitted O 1s and Si 2p spectra in 

Figure 4.11 can be used to determine the chemical species present on the SiO2 surface 

following deposition of the partially oxidised Mn film. It can be seen from Figure 4.11 

that O 1s spectra show the presence of two additional component peaks on the lower 

binding energy (LBE) side of the SiO2 component following deposition. The peak at 

531.3 eV is again attributed to the presence of Mn silicate which formed upon 

deposition, which is confirmed by the growth of a Mn silicate component peak in the 

corresponding Si 2p spectrum at 102.6 eV (Figure 4.11).  
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Figure 4.11 : Curve fitted O 1s and Si 2p spectra corresponding to Figure 4.10. Spectra show 

the complete conversion of both metallic Mn and Mn oxide to form MnSiO3, resulting in 

higher levels of silicate growth than that seen in Figure 4.8 which indicates the increased 

reactivity of partially oxidised Mn films on SiO2. 

 

In addition to this, the O 1s spectrum also shows evidence for a third component peak 

at a binding energy position of 530.0 eV, which is attributed to the presence of Mn 

oxide in agreement with previous studies [18]. The formation of Mn oxide species 

following ~ 30 L O2 exposure is in agreement with the work of B. Lescop [26] who has 

shown that the oxidation of Mn can occur at oxygen exposure levels less than 20 L. 

Based on this analysis it is apparent that the chemical species present on the surface 

prior to high temperature annealing are metallic Mn, Mn oxide, Mn silicate and SiO2. 
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The sample was subsequently annealed to 400 °C in UHV and the corresponding 

photoemission spectra are also shown in Figure 4.10 and Figure 4.11. It can be seen 

from Figure 4.11 that annealing to 400 °C has resulted in considerable growth of Mn 

silicate, as evidenced by growth of the MnSiO3 component peaks in both the O 1s and 

Si 2p spectra. Curve fitting of the Si 2p spectrum following annealing suggests that 48 

% of the SiO2 component peak was converted to Mn silicate, which is a considerably 

larger value than that seen following the deposition of metallic Mn in Figure 4.9. XPS 

thickness calculations [25] suggest that the thickness of this silicate layer is ~ 3 nm. It is 

suggested that this increased thickness may be attributed to an increase in the chemical 

reactivity of the partially oxidised Mn species on SiO2, compared to that of the purely 

metallic Mn film. This increased chemical reactivity of the partially oxidised Mn film is 

also shown by the Mn 2p spectra in Figure 4.10 which show no evidence for the 

presence of any residual metallic Mn following 400 °C annealing, again in contrast to 

the results seen following the deposition of metallic Mn in Figure 4.9. 

 

Figure 4.12 shows TEM images taken from the 5.4 nm thermal SiO2 surface (5a), as well 

as images taken following the growth of barrier layers using partially oxidised Mn (5b) 

and metallic Mn (5c). The images are used to more accurately quantify the thickness of 

the barriers layers formed on both samples, and as such offer further evidence for the 

increased chemical reactivity of partially oxidised Mn. The TEM thickness values in 

Table 4.2 indicate that the thickness of the barrier layer formed using purely metallic 

Mn is ~1.7 nm (Figure 4.12c), while the Mn silicate layer formed using partially oxidised 

Mn is measured to be 2.6 nm (Figure 4.12b). It should be noted that the TEM 

thickness values shown in Table 4.2 are in close agreement with the corresponding 

values calculated using XPS, suggesting the photoemission calculations used in this 

study are accurate. It should also be noted that XPS thickness calculations suggest that 

the deposited thickness of Mn in both films was the same (~ 1 nm). Therefore, the 

increased thickness of the Mn silicate layer shown in Figure 4.12b is attributed to an 



 

increase in the chemical reactivity of the partially oxidised Mn film compared to that of 

the purely metallic Mn film.

Figure 4.12 : TEM images taken f

formed using partially oxidised Mn (5b) and the barrier layer formed using metallic Mn (5c). 

Images clearly show that the MnSiO

considerably thicker than formed using metallic Mn. It can also be seen that MnSiO

has resulted in a corresponding reduction in SiO

to MnSiO3 during barrier layer formation.

 

 

It should also be noted that while the partially 

oxidised Mn, the remaining oxygen required to form the fully oxidised MnSiO

must come from the conversion of SiO

were carried out in UHV. The conversion of SiO

 

increase in the chemical reactivity of the partially oxidised Mn film compared to that of 

the purely metallic Mn film. 

 

TEM images taken from the as grown SiO2 thermal oxide (5a), the barrier layer 

formed using partially oxidised Mn (5b) and the barrier layer formed using metallic Mn (5c). 

Images clearly show that the MnSiO3 layer formed using partially oxidised Mn is

an formed using metallic Mn. It can also be seen that MnSiO

has resulted in a corresponding reduction in SiO2 thickness, indicating the conversion of SiO

during barrier layer formation. 

It should also be noted that while the partially oxidised Mn film consisted of ~15 % 

oxidised Mn, the remaining oxygen required to form the fully oxidised MnSiO

must come from the conversion of SiO2 to Mn silicate, given that all experimental stages 

were carried out in UHV. The conversion of SiO2 to MnSiO3 during barrier layer growth 
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increase in the chemical reactivity of the partially oxidised Mn film compared to that of 

 

thermal oxide (5a), the barrier layer 

formed using partially oxidised Mn (5b) and the barrier layer formed using metallic Mn (5c). 

layer formed using partially oxidised Mn is 

an formed using metallic Mn. It can also be seen that MnSiO3 growth 

thickness, indicating the conversion of SiO2 

oxidised Mn film consisted of ~15 % 

oxidised Mn, the remaining oxygen required to form the fully oxidised MnSiO3 layer 

to Mn silicate, given that all experimental stages 

during barrier layer growth 
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is confirmed by the TEM images in Figure 4.12 which clearly show that the increased 

barrier layer thickness seen in Figure 4.12b results in a corresponding reduction in the 

thickness of the underlying SiO2. 

 

 SiO2 thickness (nm) Mn barrier layer 

thickness (nm) 

Thermally grown SiO2 

(5a) 

5.4 -- 

Partially oxidised Mn 

(5b) 

4.1 2.6 

Metallic Mn (5c) 4.5 1.7 

Table 4.2 : TEM thickness values corresponding to the images shown in Figure 4.12. 

 This observation is analogous to a comparable study by Copel et al [19] who 

investigated the interaction of La2O3 films on SiO2 surfaces and reported that the 

growth of La silicate through thermal annealing resulted in a corresponding reduction in 

SiO2 thickness. The reduction of SiO2 thickness during the conversion of SiO2 to MnSiO3 

is quantified in Table 4.2, with TEM thickness values suggesting that the presence of 

Mn oxide species within the partially oxidised film allowed for increased levels of SiO2 

conversion. Therefore, it is suggested that the presence of Mn oxide allows Mn silicate 

layers of increased thickness to be formed by facilitating the conversion of both SiO2 and 

Mn to MnSiO3. 

It should be noted that the shift to LBE seen in the SiO2 component of the Si 2p 

spectra in Figure 4.11 is attributed to the thinning of the SiO2 layer following Mn 

silicate growth. It has been shown by Iwata et al. [27] that the binding energy (B.E.) 

separation between the Si° and SiO2 components of the Si 2p profile may be increased 

as a function of increasing SiO2 thickness, due to the build up of surface electronic 

charge during the photoemission process. In agreement with this, curve fitting 
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techniques suggest that the Si° - SiO2 B.E. separation is reduced from an initial value of 

4.4 eV for the 5.4 nm SiO2 surface to 4.0 eV following the growth of Mn silicate and 

corresponding reduction in SiO2 thickness. The effects of surface charging are 

accommodated during the peak fitting process by linking the B.E. position of the Mn 

silicate component to that of the SiO2 component, using a B.E. separation of 1.4 eV in 

agreement with previous studies.  

Along with the conversion of metallic Mn, the O 1s spectra in Figure 4.11 also show 

evidence for the complete conversion of Mn oxide to Mn silicate following high 

temperature annealing. This result indicates that MnSiO3 layers free from metallic Mn 

and Mn oxide can be formed by the thermal annealing of partially oxidised Mn on SiO2 

surfaces. The conversion of Mn oxide to Mn silicate is in contrast to the finding of 

Gordon et al [3,4,28] who have suggested that Mn oxide is unreactive on SiO2 surfaces. 

However, the chemical reactivity of Mn oxide species within a metallic Mn matrix may 

be different to that of fully oxidised Mn oxide films. Therefore, a metal free Mn oxide 

layer, with a thickness of ~ 1 nm, was deposited in order to determine the chemical 

stability of fully oxidised Mn on SiO2. The fully oxidised Mn film was formed by 

evaporation of metallic Mn in an O2 oxygen background pressure of 1 × 10-7 mbar at 

elevated substrate temperature of 150 °C. A post deposition anneal at the same 

temperature and O2 background pressure was then performed leading to a total O2 

exposure of ~ 400 L. The Mn 2p spectrum taken following post-deposition annealing is 

shown in Figure 4.13 and displays no evidence for the presence of metallic Mn on the 

surface, showing that the film is fully oxidised. ’The corresponding O 1s spectrum in 

Figure 4.14 shows the presence of a Mn oxide component at a binding energy position of 

530.2 eV, which is close to that previously attributed to the Mn oxide species MnO [18]. 

Given the difficulty in curve fitting Mn 2p spectrum obtained using conventional non-

monochromated XPS, the exact stoichiometry of the Mn oxide species deposited in this 

study cannot be established. However, it can be clearly stated that the film is fully 

oxidised and free from metallic Mn. 
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A series of high temperature vacuum anneals between 300 °C and 500 °C were then 

performed on the sample. In agreement with the results of the partially oxidised Mn 

film, it can be seen from both the O 1s and Si 2p spectra in Figure 4.14 that high 

temperature annealing results in the conversion of Mn oxide to Mn silicate. Given that 

there is no evidence for the presence of metallic Mn on the surface of this sample, this 

experimental result shows that fully oxidised Mn can also be converted to  

Mn silicate following high temperature annealing on SiO2 surfaces. This result is in 

agreement with previous studies which have reported the conversion of metal oxide 

species to metal silicate during thermal annealing for other metals such as Mg [14] and 

La [19]. The scale of Mn silicate growth is again quantified using curve fitting 

techniques, with the Si 2p spectra in Figure 4.14 showing that 36 % of the SiO2 

component peak being converted to Mn silicate. It should be noted that the SiO2 

component of the Si 2p spectrum in Figure 4.14 does not show the same shift to LBE 

previously observed in Figure 4.11 following the reduction of SiO2 thickness, and the 

corresponding reduction of surface electronic charging effects. It is suggested that these 

charging effects were not reduced to the same extent in Figure 4.14, given that lower 

levels of SiO2 conversion to MnSiO3 were observed in this sample. Also, the presence of 

Mn oxide species, with comparatively high resistivity, on the SiO2 surface in Figure 4.14 

may have also increased the level of photoemission surface charging affects compared to 

that seen in Figure 4.11. 
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Figure 4.13 : Mn 2p spectrum following the deposition of a fully oxidised Mn film (~ 1 nm). 

Further experiments (not shown) involving the deposition of partially oxidised Mn films 

of greater thickness (>1.5 nm) were also carried out in order to determine if the 

deposited film thickness is also a limiting factor in Mn silicate growth. Spectra taken 

after 500 °C annealing showed evidence for greater levels of Mn silicate growth than 

that seen in Figure 4.10 and Figure 4.11, however there was also evidence for the 

presence of residual metallic Mn which had not been converted to Mn silicate at this 

temperature. Therefore, based on the results of this study it is suggested that even 

when sufficient levels of Mn oxide are present on the surface the thickness of Mn silicate 

layers formed on SiO2 is still self limiting at high temperature. 
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Figure 4.14 : Curve fitted O 1s and Si 2p spectra showing the conversion of Mn oxide to Mn 

silicate following high temperature UHV annealing. This result shows that the conversion of 

oxide to silicate species can occur for fully oxidised Mn films, in the absence of metallic Mn. 
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4.5 Chapter Conclusions 

In summary, in the absence of deposited Cu which serves to complicate the analysis of 

chemical composition data [7,8], it has been shown that vacuum annealing of metal Mn 

on thermally grown SiO2 between 350 °C and 500 °C results in the formation of a Mn 

silicate interfacial region with an approximate thickness of 2 nm. Using photo-ionisation 

cross section values the stoichiometry of the Mn silicate region was found to be 

consistent with MnSiO3 in agreement with previous studies. Curve fitted SRPES spectra 

suggest that Mn oxide is not present within the Mn/SiO2 interfacial region, in contrast 

to previous reports but in agreement with the reported reaction mechanism of metals on 

SiO2. Based on previous studies from the literature [1,17] it is suggested that the 

absence of both Mn oxide and Mn silicide from the barrier layer region may make Mn a 

more favourable candidate than other metals such as Mg and Al for the formation of Cu 

diffusion barrier layers. 

The second part of this study showed that the growth of the Mn silicate barrier layers 

on SiO2 surfaces is self limited by the availability of additional oxygen, beyond that 

which is present within the SiO2 layer. It has been shown that a ~ 1 nm metallic Mn 

film cannot be fully converted to Mn silicate following 500 °C annealing. As a result, 

Mn silicate layers with a thickness greater than ~1.7 nm cannot be formed following the 

deposition of purely metallic Mn and subsequent UHV annealing on a thermally grown 

SiO2 layer. It has also been shown that a partially oxidised Mn film of similar thickness 

(~ 1 nm), containing approximately 15 % Mn oxide, can be fully converted to form a 

Mn silicate layer of greater thickness (~2.6 nm) which is free from metallic Mn and Mn 

oxide. TEM images taken from these samples show that MnSiO3 growth causes a 

corresponding reduction in the SiO2 layer thickness. This result is attributed to the 

conversion of SiO2 to Mn silicate during UHV annealing and suggests that while the 

presence of Mn oxide is required to achieve full conversion of 1 nm Mn films to Mn 

silicate, the remaining oxygen required for silicate growth can be obtained from the SiO2 
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film. Therefore, only low levels of additional oxygen are required to increase film 

reactivity. This may be of relevance for the practical implementation of MnSiO3 barrier 

layer formation processes in device fabrication, given that the integration of excess 

oxygen into the Mn layer may decrease the reportedly high diffusivity of metallic Mn 

within Cu layers [2], one of the main factors which has led to the investigation of Mn 

based barriers layers for Cu interconnects. It has also been shown in this study that 

fully oxidised Mn films, free from metallic Mn, can be converted to Mn silicate using 

thermal annealing on SiO2 surfaces. Given that conformal deposition techniques such as 

ALD are more suited to the deposition of metal oxide species than contaminant free 

metallic films, the use of fully or partially oxidised Mn films may offer a route to 

integrate Mn silicate structures into ultrathin barrier layer formation. However, it 

should be noted that the chemical reactivity of Mn oxide films on SiO2 may depend 

greatly on factors such as oxide stoichiometry and film deposition method. 
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The effect of Cu on the chemical and 

structural composition of MnSiO3 barrier 

layers formed on SiO2 

5.1 Introduction 

As discussed in Chapter 1 copper has recently replaced aluminium as the metal of 

choice for interconnects in microelectronic devices, due to its lower resistivity and 

increased resistance to electromigration [1] [2] [3]. The requirement of a physical barrier 

isolating the interconnect and preventing both the diffusion of Cu into the insulating 

SiO2 based dielectric materials, and the diffusion of O and H2O into the Cu [3] has been 

known for some time. The chemical and physical composition of manganese silicate 

(MnSiO3) for use as the copper barrier layer has been investigated in Chapter 4 of this 

thesis. However, while the inherent chemical interactions between Mn and SiO2 have 

been investigated, it has not yet been conclusively determined if the presence of Cu at 

the Mn/SiO2 interface during barrier formation alters the chemical composition of the 

MnSiO3 layer.  

As also stated in Chapter 1, promising results have been obtained through the 

deposition of Mn/Cu alloys; forming MnSixOy barriers of 3–4 nm [4] [5]. However, TEM 

based investigations of these alloy based barriers have in some cases produced 

contradictory results with regards to the chemical composition of the layers. For 

example, when analyzing electron energy loss spectroscopy ( EELS) spectra, Koike et 

al. [7] first reported a Mn3+ valence state consistent with Mn2O3 being the main 

Chapter 5  
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constituent of the barrier; while Abblet et al. [8] reported the valence state of Mn in 

the barrier as +2 by means of x-ray absorption near-edge spectroscopy and extended 

x-ray absorption fine structure, being mainly constituted of a mixture of MnO and 

MnSiO3. Recently, Otsuka et al. [8] refined the previous work of Koike and reported a 

graded composition for the self-forming diffusion barrier, with a gradual increase in the 

valence state from +2 to +3, consistent with the presence of nanocrystalline MnO and 

amorphous MnSiO3 layers. These varying results could be partially due to the fact that 

the main efforts to date have been concentrated on investigating the Cu-Mn alloy 

interaction with the insulating substrate rather than the individual Cu and Mn 

elemental interactions. Therefore, the chemical interaction between pure metallic 

manganese and the SiO2 as a function of annealing temperature and between Cu and 

Mn layers could reveal important information on the nature of the interactions between 

these materials at the elevated temperatures used in barrier layer formation. 

 The focus of this chapter is to investigate the role of copper in barrier layer formation, 

both in the diffusion properties of Cu-Mn alloys and also the effect of copper on 

Mn/SiO2 interfacial chemistry. The chapter is divided into three sections which 

addresses various aspects of the introduction of copper into the Mn barrier system. The 

first section investigates the chemical and structural composition of thermally deposited 

Cu layers on the 5.4 nm SiO2 substrate used in the previous chapter both before and 

after anneal in order to determine the extent of interdiffusion of Cu across the interface 

caused by the thermal anneal. The second section investigates the interdiffusion of 

thermally evaporated Mn-Cu heterostructures, using both photoemission spectroscopy 

and a range of TEM techniques.  

Finally, the effect of copper on the chemical composition of the Mn/SiO2 barrier region 

is investigated in the last section of this chapter.  
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5.2 Experimental Details 

The substrates principally employed in this chapter were 5.4 nm SiO2 surfaces on 

silicon, identical to the samples used in the experiments described throughout Chapter 

4, which were again grown using the Semitool dry oxidation process in a Thermoco 9002 

series furnace at 850 °C. These SiO2 surfaces were prepared for experiments by using the 

standard degreasing procedure of successive dips in acetone, methanol and isopropyl 

alcohol (IPA) before being loaded into UHV. For the first part of the study, 

approximately 5 nm of pure Cu (99.99 %) was deposited on the 5.4 nm SiO2 dielectric 

layer using the Applied Research EGC04 mini electron-beam evaporator, at a chamber 

pressure of 1 × 10-8 mbar. XPS analysis was carried within the surface science system 

outlined in Chapter 3, Section 1.1. High temperature annealing studies were carried out 

in vacuum at a pressure of 1 × 10-8 mbar, with samples kept at the target temperature 

for 1 hour. Atomic Force Microscopy (AFM) analysis of both an as-deposited control 

sample and the annealed copper sample was performed in ambient conditions using the 

Digital Instruments Dimension 3100 AFM described in Chapter 3, Section 6. All AFM 

images were acquired using tapping mode and the surface roughness data was taken 

from at least ten different 2 µm × 2 µm areas of the surface.  

For the TEM section of the study, a series of bilayer samples consisting of 20 nm of 

metallic Cu deposited on 30 nm of metallic Mn layers were grown in the Leybold 

Univex deposition chamber at a vacuum pressure of 2×10-6 mbar. As the emphasis in 

this work was on characterising the interdiffusion between the two metal layers, the 

substrates employed were 640 nm of amorphous SiO2 on silicon. The samples were 

studied using XPS both as deposited, and after subsequent annealing under a vacuum 

of 10-8 mbar at 450 ° C for 2 hours. High resolution TEM, high angle annular dark 

field (HAADF), EELS, and energy dispersive x-ray spectroscopy (EDX) in scanning-

transmission electron microscopy (STEM) mode measurements were carried out on 

JEOL 2010FEG and Tecnai Osiris electron microscopes, similar to those described in 
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Chapter 3, both operating at 200 kV. Samples in cross section geometry (XTEM) 

were prepared by the conventional method of grinding and polishing followed by Ar+ 

milling in a Gatan PIPS until electron transparent. XPS analysis in the second section 

of the chapter was carried out using a VG Microtech electron spectrometer in the 

analysis chamber of the dedicated XPS system described in Chapter 3, Section 1.2 at a 

base pressure of 5 × 10-9 mbar. The photoelectrons were excited with a conventional Al 

Kα (hν = 1486.7 eV) x-ray source and an electron energy analyser operating at a 20 eV 

pass energy, yielding an overall resolution of 1.2 eV.  

All experiments in the final section of the chapter were carried out on the high quality 

5.4 nm thermally grown SiO2 layers. Analogous to the work described in Chapter 4, 

every stage of the experimental process; including thin film growth and analysis, were 

again performed entirely in-situ without removal from ultra high vacuum conditions. 

Samples were degassed at ~ 200 °C for 2 hours, with the UHV chamber reaching a 

maximum pressure of 5 × 10-9 mbar during degassing. It has been previously shown in 

Chapter 4, Section 4 that MnSiO3 layers with a thickness of ~3 nm can be formed on 

the SiO2 surface through the evaporation of metallic Mn in an O2 background pressure, 

forming partially oxidised Mn films on the SiO2. However, in order to prevent the 

unwanted oxidation of Cu during the deposition of MnOx/Cu alloys, all MnOx films 

deposited in this study were evaporated from a partially oxidised Mn source which did 

not require the addition of extra O2 to the UHV system during deposition. The 

deposition of both partially oxidised manganese and copper thin films were performed 

using the Oxford Applied Research EGC04 mini electron-beam evaporator, at a 

chamber pressure of 1 × 10-8 mbar. The deposition of partially oxidised Mn/Cu alloys 

was achieved by the simultaneous evaporation of partially MnOx and Cu from the e-

beam evaporator, at a deposition pressure of 1 × 10-8 mbar. XPS analysis was again 

carried out using the same VG Microtech electron spectrometer. High temperature 

annealing studies were carried out in vacuum at a pressure of 5 × 10-9 mbar, with 

samples kept at the target temperature for 60 minutes. 
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The XPS core level spectra were again curve fitted according to the parameters used in 

Chapter 4 of this thesis. 

Again, it should be noted that curve fitting of the Mn 2p spectrum could not be 

performed given that XPS ghost peaks [10] emanating from the Mn 2p1/2 are present 

within the peak profile of the Mn 2p3/2 component. As such, only non-curve fitted Mn 

2p spectra are included in this study. In agreement with the previous chapter the Mn 2p 

spectra shown in this study are primarily used to identify the presence of metallic Mn 

and oxidised Mn species on the sample surface, with O 1s and Si 2p spectra used to 

conclusively identify the presence of differing oxidised Mn species such as Mn silicate 

and Mn oxide. Furthermore, it should be noted that the behaviour of Mn atoms in a Cu 

alloy matrix has been reported to change the peak profile of the Mn 2p spectrum [11]. 

Given that the spectral component resulting from the interaction of metallic Mn and Cu 

has a similar binding energy position to that of oxidised Mn, Mn 2p spectra are not 

used for interfacial chemical analysis in situations where both metallic Mn and Cu are 

present of the surface. Electron energy loss spectroscopy (EELS) measurements in this 

final section were carried out on a JEOL 2010FEG electron microscope operating at 

200 kV. TEM samples were again prepared by the conventional method of grinding 

and polishing followed by Ar+ milling in a Gatan PIPS until electron transparent. 
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5.3 Characterisation of thermally deposited Cu 

layers on SiO2 

Figure 5.1 shows a survey spectrum (0-600 eV) taken following the room temperature 

deposition of ≈7 nm Cu on 5.4 nm SiO2 surface. The spectrum shows the expected 

copper core level peaks, with no evidence of O 1s or C 1s peaks to within the detection 

limit of conventional XPS (~0.1 %). The film is sufficiently thick to completely suppress 

the SiO2 substrate signal. The corresponding Cu 2p spectrum for this film shown in 

Figure 5.2 is identical to that taken from a 20 nm Cu reference sample, suggesting that 

the deposited copper film is in a purely metallic state.  

 

Figure 5.1: Survey spectra of 5 nm Cu film on SiO2 
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Figure 5.2: Corresponding Cu 2p spectra from 5 nm film on SiO2 showing no signs of 

oxidation. 

The complete lack of shake-up features characteristic of copper oxide [12], in the Cu 2p 

doublet shown in Figure 5.2 would indicate that the deposition resulted in no oxide 

formation. It is worth noting, that the position of the Cu 3p (75.3eV) is comparatively 

close to the Si 2p (99eV) which is relevant as it allows relative changes in the signal 

intensities to be observed after thermal annealing of the sample. 

The photoemission spectra in Figure 5.3 show the changes induced in the relative 

intensities of the copper and the substrate signals following a 500oC anneal.  The Si 2p 

spectrum which was fully attenuated following Cu deposition re-appears following the 

anneal. 
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Figure 5.3: Si 2p and Cu 3p spectra showing uncovering of silicon substrate 

 

This re-emergence can be explained either by the diffusion of Cu into the SiO2 and the 

silicon or by the formation of Cu islands which exposes or uncovers the underlying 

substrate. By comparing the intensities of the Cu and Si related peaks between normal 

emission and 60o off normal, as shown in Figure 5.4, there is little change in the relative 

intensity of the SiO2 and Cu 3p peaks while the silicon substrate signal has been 

suppressed. This change in intensities with takeoff angle is indicative of a layered 

structure with the Cu residing on top of the silicon oxide layer which is above the silicon 

substrate.   
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Figure 5.4: Comparison of Si 2p and Cu 3p relative intensities as a function of takeoff angle. 

It can be seen in Figure 5.4 that the off angle scans show little change in the relative 

intensity of the SiO2 and Cu 3p peaks. Therefore it can be suggested that the majority 

of the Si signal is not coming from SiO2 which is beneath Cu i.e. the majority of the Si 

signal is coming from uncovered SiO2 surface. It can also be seen that the Si bulk peak 

has been suppressed considerably off angle; however, the off angle scan shown in Figure 

5.5 which is taken from an ordinary 5.4 nm SiO2 surface shows that the suppression of 

the bulk peak is simply due to the presence of the oxide layer and not due to Cu. 
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Figure 5.5: Si 2p spectra showing no relative change in oxide and bulk silicon after cu dep. 

 

These results would suggest that following a 500 °C anneal areas of uncovered SiO2 are 

revealed, which leads to the re-emergence of the Si 2p peaks. The AFM images shown in 

Figure 5.6 are taken from the as deposited and 500 °C annealed samples. 



 

Figure 5.6 AFM images of annealed Cu sample indicating island formation. a: low 

magnification image of control sample, b: low magnification image of annealed sample, c: high 

magnification image of control sample, d: high magnification of annealed sample. 

 

 

Cu on Si control 

Cu 500 °C 

Table 3: RMS roughness values of annealed and control Cu samples

 

 

M images of annealed Cu sample indicating island formation. a: low 

magnification image of control sample, b: low magnification image of annealed sample, c: high 

magnification image of control sample, d: high magnification of annealed sample. 

RMS roughness Average 

roughness 

Max. roughness

0.8 nm 2.9 nm 6.6 nm

10.1 nm 20.4 nm 57.7 nm

: RMS roughness values of annealed and control Cu samples
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M images of annealed Cu sample indicating island formation. a: low 

magnification image of control sample, b: low magnification image of annealed sample, c: high 

magnification image of control sample, d: high magnification of annealed sample.  

Max. roughness 

6.6 nm 

57.7 nm 

: RMS roughness values of annealed and control Cu samples 
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The flatness of the control sample in Figure 5.6 (a) and (c); and the roughness of the 

annealed sample in Figure 5.6 (b) and (d) would suggest that the Cu is forming islands 

confirming the photoemission results.  

The spectra in Figure 5.5 show that after the 500 °C anneal there is a measurable 

increase in the binding energy separation between the bulk and oxide peaks. Given that 

Cu is reported to be un-reactive with SiO2 up to 800 °C [26] this change is attributed to 

a change in the oxide charging and not a chemical reaction between the Cu and SiO2. 

Also the Cu 3p spectra taken after 500 °C annealing is identical to that taken after Cu 

deposition so there’s no evidence that the Cu has chemically reacted with the SiO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.4 TEM study of interdiffusion in thermally 

evaporated Mn/Cu heterostructures on SiO

substrates

In order the investigate the inherent diffusion interactions between metallic Cu and Mn, 

a series of thick Cu/Mn samples, as described in the experimental section, we

prepared as shown schematically in 

times and temperatures before being analysed by both XPS and TEM. While the total 

thickness of the deposited films was significantly larger tha

evidence of interdiffusion was obtained from these measurements.

 

Figure 

 

Identical layered structure samples were then annealed 

at 450° C and analysed using both XPS and TEM.

Figure 5.8 it can be seen that the spectrum taken before anneals is characteristic of a 

 

study of interdiffusion in thermally 

evaporated Mn/Cu heterostructures on SiO

substrates 

In order the investigate the inherent diffusion interactions between metallic Cu and Mn, 

a series of thick Cu/Mn samples, as described in the experimental section, we

prepared as shown schematically in Figure 5.7 and individually annealed for

times and temperatures before being analysed by both XPS and TEM. While the total 

thickness of the deposited films was significantly larger than the XPS sampling depth, 

evidence of interdiffusion was obtained from these measurements. 

Figure 5.7: Schematic diagram of thick layered structure.

Identical layered structure samples were then annealed for 1 hour at 300° C and 2 hours 

at 450° C and analysed using both XPS and TEM. From the survey scan shown in 

it can be seen that the spectrum taken before anneals is characteristic of a 
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study of interdiffusion in thermally 

evaporated Mn/Cu heterostructures on SiO2 

In order the investigate the inherent diffusion interactions between metallic Cu and Mn, 

a series of thick Cu/Mn samples, as described in the experimental section, were 

and individually annealed for various 

times and temperatures before being analysed by both XPS and TEM. While the total 

n the XPS sampling depth, 

 

iagram of thick layered structure. 

for 1 hour at 300° C and 2 hours 

From the survey scan shown in 

it can be seen that the spectrum taken before anneals is characteristic of a 
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metallic copper film as expected for a 25 nm thick layer. However, after the first anneal 

the Mn 2p peak appears at 639 eV. It’s important to note that the position of the 

copper Auger lines overlap with the Mn 2p spectra, but after anneal the manganese 2p 

core level is clearly observed in the spectrum.  

 

 

Figure 5.8: XPS Survey scans of thick layered samples before and after anneals. 

 

The high-angle annular dark-field (HAADF) image in Figure 5.9 confirms this as a 

darker layer is clearly evident at the Cu surface. Since the difference in contrast in the 

images obtained with this technique is directly related to the difference in Z number of 

the elements that are present, these darker regions must contain an element or 

compound with an average Z number higher than that of Cu .  Hence, these dark 

regions are attributed to the manganese that has diffused through the copper layer to 

the surface. This TEM image was taken on a sample which had been annealed at 450° 
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C for 2 hours where the presence of manganese at the surface of the copper is most 

evident. The TEM measurements of the thickness of the layers was seen to change after 

anneal as the Mn layer decreased from ~40 nm to ~36 nm and the Cu layer was seen to 

increase from ~25nm to ~32 nm. This is worth noting as it suggests that despite the 

change in thickness of the individual layers the total amount of material deposited 

remained constant throughout the anneals. 

 

 

Figure 5.9: TEM image showing the outward diffusion of manganese after 450°C anneal 

 

The changes in the peak intensities in the narrow XPS scans of the Cu 2p and Mn 2p 

core levels for this sample shown in Figure 5.10 and Figure 5.11 respectively, are 

consistent with the migration of the manganese through the copper layer to the surface. 

The peak shape of the Mn 2p spectra indicates that the manganese is in an oxidised 

state. However, the precise oxidation state of the migrated manganese could not be 



 

determined due to the aforementioned difficulties in curve

However the EDX data for this sample indicated the manganese layer was mostly in the 

form of MnO, hence it is assumed that the mai

contrast, the copper spectra would indicate the presence of metallic copper as the Cu 2

peak profile appears identical to a reference spectrum from a pure metallic layer. 

 

Figure 5.10 : XPS scans

 

 

determined due to the aforementioned difficulties in curve-fitting the Mn 2

However the EDX data for this sample indicated the manganese layer was mostly in the 

form of MnO, hence it is assumed that the main peak is in the form of MnO. In 

contrast, the copper spectra would indicate the presence of metallic copper as the Cu 2

peak profile appears identical to a reference spectrum from a pure metallic layer. 

: XPS scans of the Mn 2p spectra showing the re-emergence of the Mn 2

after anneal 
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fitting the Mn 2p spectrum. 

However the EDX data for this sample indicated the manganese layer was mostly in the 

n peak is in the form of MnO. In 

contrast, the copper spectra would indicate the presence of metallic copper as the Cu 2p 

peak profile appears identical to a reference spectrum from a pure metallic layer.  

 

emergence of the Mn 2p peak 
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Figure 5.11: XPS Scans showing the decrease in intensity of the Cu 2p spectra after thermal 

anneal 

Again EDX spectra were taken for the various layers and interfaces in the structure and 

the results are shown in Table 4 and Figure 5.12. 

Layer %Mn %Cu %O 

SiO2 Interface 63.0 2.8 34.2 

Mn layer 56.3 0.5 43.2 

Cu layer 8.0 83.3 8.7 

Cu Surface 25.6 36.9 37.6 

Table 4: EDX elemental composition of layers and interfaces after anneal 
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Figure 5.12: EDX spectra of thick layers and interfaces 

  

The elemental data from EDX for the 450° C annealed sample concurs with the XPS 

scans and TEM images studied. The copper surface contains a large amount of 

manganese and oxygen which agrees with the Mn 2p oxide peak seen in the XPS scans. 

It’s interesting to note that a higher percentage of Mn is detected at the surface of the 

Cu layer than in the bulk of the film and that a higher percentage of Cu is observed at 

the interface than in the Mn layer. This would suggest that both the copper and 

manganese have the ability to migrate through the layers but only accumulate at the 

interface and the surface.  

The HAADF micrograph shown in Figure 5.13 shows an unexpected bright contrast in 

a region approximately 10 nm thick above the interface between the Mn layer and the 

SiO2. Since the difference in contrast in the images obtained with this technique is 

directly related to the difference in Z number of the elements that are present, these 



 

brighter regions must

higher than that of Mn.

Figure 5.13: HAADF micrograph of the Cu/Mn heterostructure showing an unexpected 

 

To confirm this, EELS

STEM mode with a nominal

every spectrum image

extracted signal map ob

analysis noise reduction,

account sample thickness e

peak. The same procedure

results are displayed in

 

regions must contain an element or compound with an 

Mn. 
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contrast at the interface Mn / SiO2 
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image therefore contains 104 spectra. Figure 5.14
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reduction, [13] considering a Hartree–Slater step function to

thickness effects and integrating the remaining signal
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represented by the thin area outlined at the SiO2/Mn interface. As expected, a 

relatively large amount of segregated Mn was found in the Cu layer.  

However, there is also a noticeable increase in the Cu signal in certain areas of the 

region close to the interface between the Mn and the dielectric, which is attributed to 

the migration of Cu toward the interface region during the annealing process. In 

addition, this diffused Cu appears to encapsulate areas where a higher Mn and lower O 

signals are observed in Figure 5.14(b) and Figure 5.14(d), respectively. The oxygen 

arises from the oxidation of the TEM sample as a consequence of exposure to 

environmental conditions and is more accentuated in the bulk of the Mn layer with the 

exception of these areas. This indicates that the Cu surrounding Mn clusters close to 

the interface is preventing this Mn from being as heavily oxidized as the rest of the 

layer on ambient exposure and, therefore, the metallic Mn signal intensity is higher. 

It is worth mentioning that no Cu trace is detected in the SiO2, which can be 

attributed to the formation and effectiveness of a dif fus ion barrier layer. 



 

Figure 5.14: EELS extracted signal maps for  
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, c Si K and  d  O K edges. 

of the different layers. 

the layers. These line 

the 2–3 nm thin layer 

 primarily composed 

results for self-forming 
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Figure 5.15: EDX integrated line scan of the heterostructure layer displaying the Cu, Si, Mn, 

and O signals. 

 

The nature of the chemical reactions at the Mn/SiO2 interface to form a diffusion 

barrier is now explored. EELS is accepted as a very powerful technique to evaluate the 

valence states of transition metals either in heterophase materials or in thin films. [14] 

It is known that manganese presents two characteristic EELS lines, L2 and L3, which 

are due to the transitions from 2p3/2 and 2p1/2 core states to unoccupied 3d states 

localized on the excited Mn ions. Rask et al. [15] showed for a series of manganese 

oxides that the (I)L3/ (I)L2 white line intensity ratio is characteristic of the 

oxidation state of the manganese ions, as the intensity ratio increases with decreasing 

oxidation state. Here, we have estimated the Mn peaks (I)L3/(I)L2 intensity ratio to 

investigate possible variations in the Mn valency in the different regions of the Mn 

layer using associated EELS elemental maps. First, due to the lack of available data in 

the literature for typical EELS spectra of metallic manganese reference spectra shown 

in Figure 5.16 were taken from a sample consisting of deposited Mn kept under vacuum 
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conditions of 1×10-9mbar during the whole process to avoid oxidation, and an average 

intensity ratio of 1.23±0.2 was calculated. For the valency of Mn in different oxides, 

we rely on the data from Schmidt et al. [14] which is tabulated in Table 5. While the 

air exposure makes it difficult to definitively identify the chemical state of the Mn at 

the Mn layer and Mn/SiO2 interface, it highlights the compositional changes in the 

film following annealing as is displayed in Figure 5.17. Different regions can be easily 

distinguished: a first one corresponding to the main bulk of the oxidized Mn layer 

where the L23 intensity ratio values range approximately from 1.8–2, i.e., an 

intermediate value between that of metallic Mn and those reported for the different 

oxides. This could be caused by the overlapping of the spectra arising from the metallic 

Mn sandwiched between the two thin layers of Mn surface oxide top and bottom of 

TEM sample. Second, some areas close to the Mn / SiO2 interface with a lower L23 

intensity ratio 1.2–1.5 that corresponds to the encapsulated Mn. 

 

 

 

Figure 5.16: L3 / L2 intensity EELS spectra taken from metallic Mn reference spectra. 
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Figure 5.17: Colour online  EELS L23  intensity ratio map of Mn and Mn / SiO2 interface 

indicating areas with different Mn valency values. 

 

Table 5: Intensity ratios of various Mn compounds[14].   

Phase  Mn MnCO3  MnO  Mn3O4  Mn2O3  MnO2  

Oxidation state  0  2+  2+  2+, 3+  3+  4+  

Intensity ratio 

(L3/L2)  

1.7  4.1  3.9  2.8  2.4  2.0  
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This corroborates the previous EELS and EDX observations showing that the less 

oxidized Mn regions appear to be encapsulated by Cu which diffused into the thick Mn 

film during annealing preventing those regions from being as oxidized as the rest of the 

layer and therefore it is mainly in a metallic state. Finally, a thin layer located at the 

Mn/SiO2 interface with a thickness of 2–3 nm shows a higher L23 intensity ratio of 2–

2.6 which, according to the values reported by Schmidt should correspond to a 

mixture of +2 and +3 valences of Mn, in agreement with previously reported results 

for self-forming diffusion barriers in Cu Mn / SiO2 structures. [9] [16] It is also worth 

mentioning that, since this is a method that applies to the determination of the 

oxidation state in Mn oxides, in those areas where this element is not present, such as 

SiO2, it fails and therefore the values displayed in this region can be ignored. 

While the diffusion of Mn in Cu in Cu(Mn) alloys have been widely reported in the 

literature, little published data exists regarding diffusion of Cu in Mn in thick layered 

structures. It is well known that Cu diffuses mainly through the grain boundaries into 

polycrystalline materials like Pb [17] or C–Mn steel [18] layers. Therefore, it is 

proposed that similar to copper diffusion in other metals, the polycrystalline nature of 

the Mn layer is the reason for the presence of Cu in this layer. The small average Mn 

and Cu grain sizes creates numerous paths for the migration of these elements into the 

neighbour layer and, therefore, the 450 ° C anneal of the Cu/Mn layered structure 

results in a number of Mn clusters fully or partially surrounded by a thin layer of Cu 

in the regions close to the interface, forming an non-homogeneous Mn(Cu) alloy 

heterostructure on the nanometer scale. In the same way, Mn atoms will diffuse into 

the Cu to form a non-homogeneous Cu(Mn) alloy in the upper layer. This can be 

mainly enhanced by the presence of residual amounts of oxygen contamination, [19] 

present during the deposition process and subsequent handling, to form MnO via the 

displacement reaction Cu2O+ Mn → 2MnO during the vacuum annealing. 

Equivalently, for the solute Cu in the Mn matrix lower layer, it is expected that Cu 

atoms will migrate to the Mn / SiO2 interface to form a more stable oxide. However, 
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there is no evidence of Cu in the SiO2 beyond this interfacial layer indicating its 

effectiveness at preventing interdiffusion. Given that the thickness of this interfacial 

region is below 3 nm even though it was formed in the presence of excess Mn, it 

suggests that the barrier formation process is self limiting at this temperature. This 

study shows that while the thick Mn film does not in itself prevent copper diffusion, 

the thin interfacial MnSiO3 region is effective at preventing Cu diffusion into the 

SiO2 substrate. 
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5.5 Photoemission Study of the effect of Cu on the 

chemical composition of MnSiO3 barrier layers 

formed on SiO2 

In order to study the interfacial chemistry and thermal stability of the chemical species 

present at the Cu/Mn/SiO2 interface, a series of Cu/Mn samples, as described in the 

experimental section, were prepared before being analysed by both XPS and TEM. 

Curve fitted O 1s and Si 2p core level spectra taken from the 5.4 nm thermal SiO2 

surface are shown in Figure 5.18. The corresponding spectra taken following the 

deposition of a ~ 1 nm partially oxidised Mn (MnOx) thin film onto the SiO2 surface at 

room temperature are also shown in Figure 5.18.  

 

Figure 5.18: Curve fitted O 1s and Si 2p spectra showing the growth of MnSiO3. 
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Curve fitting analysis shows small changes to the core level profiles suggesting that Mn 

deposition resulted in the growth of additional component peaks in both the O 1s and 

Si 2p spectra separated from the SiO2 components by 1.4 eV and 1.3 eV respectively. 

These peaks are attributed to the presence of the Mn silicate species, MnSiO3, in 

agreement with the previous photoemission results. 

 In addition to this, the O 1s spectrum also shows evidence for a third component peak 

at a binding energy position of 530.0 eV, which is attributed to the presence of Mn 

oxide in agreement with previous studies [20]. The corresponding Mn 2p spectrum in 

Figure 5.19 clearly shows the presence of both metallic Mn and oxidised Mn spectral 

components, with curve fitting analysis suggesting a metallic Mn:oxidised Mn ratio of 

5:1. Angular resolved Mn 2p spectra (not shown) indicate no evidence for spatial 

segregation between the oxidised and metallic species, which suggests that the oxygen 

content is homogenously distributed throughout the deposited film. Following deposition 

the sample was annealed to 400 °C in UHV, resulting in the growth of Mn silicate on 

the surface as evidenced by the growth of MnSiO3 component peaks in both the Si 2p 

and O 1s spectra. It should be noted that O 1s spectrum taken following annealing 

suggests the full conversion of Mn oxide to Mn silicate, in agreement with the previous 

results in Chapter 4. In addition to this, the corresponding Mn 2p spectrum in Figure 

5.19 also shows the full conversion of metallic Mn to MnSiO3, suggesting the formation 

of a MnSiO3 barrier layer free from both metallic Mn and Mn oxide. 
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Figure 5.19: Mn 2p spectra showing the full conversion of Mn metal to silicate and no 

chemical interaction after copper deposition or subsequent 400 C anneal. 

 As stated previously, the full conversion of metallic Mn to Mn silicate prior to Cu 

deposition is of significant importance as the interaction of metallic Mn and Cu [11] is 

known to alter the profile of the Mn 2p photoemission peak, complicating chemical 

analysis. Therefore, in the absence of metallic Mn, the Mn 2p core level was used to 

investigate the chemical interaction of MnSiO3 with a deposited Cu layer. 

A ~ 1 nm Cu thin film was deposited on the MnSiO3 surface at room temperature using 

electron beam evaporation, and subsequently annealed to 400 °C. Si 2p and O 1s 

spectra taken from the surface following annealing, in Figure 5.18, show no changes in 

peak profile suggesting that no chemical interaction occurred between the MnSiO3 

barrier layer and the deposited Cu film at 400 °C. The Mn 2p spectrum in Figure 5.19 

also shows no changes in peak profile following 400 °C annealing, which again suggests 

that there was no chemical interaction between the Cu and MnSiO3 layers. In addition 
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to this it should be noted that the Cu 2p spectrum taken from the surface following 400 

°C annealing (not shown) is identical to that taken before annealing, and showed no 

evidence for the presence of Cu oxide. This result is of significance given that one of the 

primary functions of the MnSiO3 barrier layer is to prevent the oxidation of the Cu 

interconnect during thermal annealing [2]. Furthermore, the work of Willis et al [21] has 

suggested that the formation of Cu oxide acts as an intermediate step in the diffusion 

mechanism of Cu through SiO2. Therefore, within the detection limits of conventional 

XPS it can be suggested that MnSiO3 acts as an effective barrier layer to copper 

migration following 400 °C annealing. However, it should be noted that conventional 

XPS is not the analysis technique best suited to investigate the effectiveness of MnSiO3 

as a barrier layer to the diffusion of Cu. Therefore, after the completion of XPS analysis 

a protective Cu capping (~ 10 nm) layer was deposited onto the surface, with the 

sample being removed from UHV and subsequently analysed using TEM related 

techniques. 

 

 

Figure 5.20: HRTEM micrograph of copper capped pre-formed silicate sample in cross 

section. 
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The HRTEM and low magnification TEM images shown in Figure 5.20 taken from the 

same sample as that was analysed using XPS in Figure 5.18 and Figure 5.19 show that 

all the layers are quite uniform and, with the exception of the Mn silicate/annealed Cu 

layer have sharp interfaces. The silicate and the annealed Cu layers appear to have an 

amorphous structure, while the extra copper capping layer seems polycrystalline. 

HAADF micrographs shown in Figure 5.21 show a layer approximately 1nm thick 

located between the silicate and the extra capping Cu with an unexpected dark 

contrast. High resolution EELS spectra using a 5 angstrom diameter probe shown in 

Figure 5.22 indicates that this dark layer corresponds to the thin annealed copper film 

and contains a certain amount of Mn and O, indicating that the silicate may be 

somewhat incorporated into the thin annealed copper layer.  

 

 

Figure 5.21: High resolution STEM-HAADF micrograph of the pre-formed silicate sample. 
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Figure 5.22: EELS spectra of the different layers indicating that the dark layer in the 

annealed copper film. 

The calculated thicknesses of the different layers, using the Si (111) planes in the HR-

STEM micrographs for calibration, are shown in Table 6. The incorporation of the SiO2 

into the manganese silicate layer is observed by the ≈25% thinning of the 5.4 nm SiO2 

substrate.  

 

Layer Thickness (nm) 

Extra Cu 24 

Annealed Cu 0.85 

Mn silicate 2.50 

SiO2 3.90 

Table 6: Thickness values of individual layers. 
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during barrier layer formation. This was achieved through the initial deposition of a ~ 1 

nm partially oxidised Mn film, followed by the deposition of a ~ 1 nm Cu film prior to 

annealing. This experiment allowed the inherent chemical interactions which occur at 

the MnOx/Cu interface to be investigated using a more simplistic experimental system 

than a MnOx/Cu alloy. 

 

Figure 5.24: Curve fitted O 1s and Si 2p spectra showing the formation of both Mn silicate 

and Mn oxide when the barrier is formed in the presence of copper. 

Figure 5.24 shows O 1s and Si 2p spectra taken from the 5.4 nm SiO2 surface before and 

after then deposition of a ~ 1 nm partially oxidised Mn film. In agreement with Figure 

5.18, spectra show evidence for the growth of MnSiO3 upon deposition and also show 

evidence for Mn oxide species within the partially oxidised Mn film. A ~ 1 nm Cu film 

was subsequently deposited on the surface, which resulted in no changes in the O 1s and 

Si 2p spectra, as seen in Figure 5.24. However, the corresponding Mn 2p spectra in 

Figure 5.25 show considerable changes in peak profile following Cu deposition, which are 

attributed to the previously mentioned interaction between metallic Mn and Cu [11]. A 



 

156 

 

series of high temperature vacuum anneals between 200 °C and 400 °C were then 

performed on the sample and the corresponding core level spectra are shown in Figure 

5.24 and Figure 5.25. The O 1s and Si 2p spectra taken following 200 °C show evidence 

for the growth of MnSiO3, in agreement with the results of Figure 5.18, as seen by the 

growth of component peaks at 531.3 eV and 102.6 eV respectively. However, the O 1s 

spectrum also shows evidence for the growth of Mn oxide on the surface following 200 

°C annealing, in contrast to results seen in Figure 5.18 of this study. Further evidenced 

for the growth of Mn oxide can also be seen from O 1s spectra taken following 

subsequent anneals to 250 °C and 300 °C. It can also be seen that further annealing to 

300 °C and 400 °C resulted in the conversion of these Mn oxide species to Mn silicate, 

as evidenced by the reduction of the Mn oxide component and concurrent growth in the 

Si 2p and O 1s MnSiO3 component peaks. The high levels of Mn oxide growth seen in 

Figure 5.25 are in contrast to results seen for MnSiO3 growth in the absence of Cu, 

indicating that the presence of Cu at the Mn/SiO2 interface alters the chemical 

composition of the barrier layer. It should also be noted that the profile of the Cu 2p 

spectra was unaltered following 400 °C annealing, suggesting that the chemical 

composition of the Cu layer was not changed during the formation of MnSiO3 and Mn 

oxide species.  
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Figure 5.25: Mn 2p spectra showing the Cu/Mn metal interaction when forming the silicate 

layer in the presence of copper. 

In order to further investigate how the presence Cu at the MnOx/SiO2 interface during 

MnSiO3 growth affects the chemical composition of the barrier layer, a ~2 nm alloy 

containing approximately 60 % partially oxidised Mn and 40 % Cu was deposited onto 

the 5.4 nm SiO2 surface. Angular resolved XPS measurements showed no evidence of 

spatial segregation between the Mn and Cu, which suggests that the alloy was 

homogenous. It should be noted that the Mn:Cu ratio used in this experiment was 

considerably more Mn rich than that used in previous publications [16]. However, in 

order to form a MnSiO3 layer of sufficient thickness to be easily investigated using 

conventional XPS then the thickness of deposited Mn could not be reduced below ~ 1 

nm. Furthermore, the low sampling depth and high surface sensitivity of XPS places an 

upper limit on the total alloy thickness which could be deposited without attenuating 

the underlying Si 2p and O 1s core level spectra. As such, it is suggested that while the 

Mn:Cu ratio used in this experiment is different to that used in previous publications, 
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the study still serves to highlight the inherent chemical interactions which occur 

between Mn/Cu alloys on SiO2 surfaces. 

Figure 5.26 shows O 1s and Si 2p spectra taken from the SiO2 surface before and after 

Mn/Cu alloy deposition. The spectra show evidence for the growth of Mn silicate upon 

alloy deposition, in agreement with results in Figure 5.18 and Figure 5.24, while the O 

1s spectrum again shows evidence for the presence of Mn oxide within the partially 

oxidised Mn film. Mn 2p spectra taken following alloy deposition are shown in Figure 

5.27. As stated previously, changes in the Mn 2p peak profile due to the interaction of 

metallic Mn and Cu complicate the analysis of the chemical state of Mn within the 

alloy. However, given that this interaction does not affect the peak profile of the Cu 2p 

core level [11] it can be stated that the Cu present within the alloy is in the form of un-

oxidised metallic Cu. 

 

Figure 5.26:  Curve fitted O1s and Si2p spectra showing deposition of Mn/Cu alloy and 

subsequent formation of Mn silicate and Mn oxide after anneal 
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A series of high temperature vacuum anneals between 200 °C and 400 °C were 

performed on the sample and the O 1s and Si 2p spectra taken from these anneals are 

shown in Figure 5.26. The O 1s and Si 2p spectra show evidence for the growth of 

MnSiO3 following 200 °C annealing. However, the O 1s spectrum again shows evidence 

for the growth of Mn oxide on the surface following annealing, in agreement with results 

seen in Figure 5.24. The spectra in Figure 5.26 also show that annealing to 250 °C 

results in further growth of Mn oxide within the barrier layer, while subsequent anneals 

to 300 °C and 400 °C result in the conversion of Mn oxide to MnSiO3 in agreement with 

the results of Figure 5.24. Based on the results of Figure 5.24 and Figure 5.26 it can be 

stated that the presence of Cu at the Mn/SiO2 interface during the formation of MnSiO3 

barrier layers leads to the growth of Mn oxide, a result which is not seen for barrier 

layers formed in the absence of Cu. 

While the results of this study suggest that the Mn oxide species formed on the surface 

can be converted to Mn silicate using thermal annealing, the work of Fredrick et al [22] 

has shown that the formation of metal oxide species through the reduction of SiO2 may 

result in the release of Si into the Cu overlayer, increasing the resistance of the 

interconnect. Therefore, the origin of the Mn oxide species may be of significance to the 

properties of the barrier layer. 
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Figure 5.27: Mn 2p spectra after alloy deposition and annealing show the reduction in 

metallic Mn and shift to HBE in the peak profile. The presence of residual metallic Mn 

prevents in depth analysis of the spectra.  

It is suggested that the two possible oxygen sources within the experimental set up are 

the SiO2 substrate and gaseous oxygen present within the UHV chamber during 

annealing. While all thermal anneals performed in this study were carried out at 

pressures W 5 × 10-9 mbar, the work of B. Lescop [23] has shown that the oxidation of 

Mn can occur within UHV conditions, at oxygen exposure levels less than 20 L. 

However, this growth method would necessitate the addition of extra oxygen to the 

surface, which would have lead to a corresponding attenuation of the Si 2p core level 

concurrent with the growth of Mn oxide species. Given that such an attenuation was 

not seen in this study it is suggested that Mn oxide species were not formed due to the 

presence of gaseous O2 within the UHV system. In addition to this, the presence of a Cu 

overlayer on the surface of the 1 nm Mn film in Figure 5.24 may have inhibited the 
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formation of Mn oxide through interaction with gaseous O2 within the UHV chamber. 

Therefore, it is suggested that the reduction of SiO2 is the primary source of Mn oxide 

growth, seen during the formation of MnSiO3 in the presence Cu. 

While the results of this study show that the presence of Cu at the MnOx/SiO2 interface 

changes the chemical composition of the barrier layer, the reasons for this are not fully 

understood. It has been suggested by Ablett et al [8] that the interaction of metallic Mn 

and Cu leads to the ionization of Mn, therefore it may be proposed that this ionization 

may lead to changes in the chemical reactivity of the Mn and may cause the formation 

of Mn oxide on the surface in Figure 5.24 and Figure 5.26. However, it should be noted 

that this has not been conclusively shown in this study. 

The differing chemical composition of Mn silicate barrier layers formed in the presence 

of Cu to those formed without Cu shown in this study is also in agreement with 

published results. While Koike et al [7] have reported the formation of a mixed Mn 

silicate and Mn oxide barrier layer following the deposition of a Mn/Cu alloy, Gordon et 

al [3] have reported the formation of a purely MnSiO3 layer following the deposition of 

Mn without Cu. 

The Mn 2p spectra in Figure 5.28 show a similar trend to that seen in Figure 5.19 and 

Figure 5.25, with a reduction of metallic Mn and shift to HBE which is indicative of 

both Mn silicate and Mn oxide growth. However, it should be noted that there is still 

evidence for the presence of residual metallic Mn following 350 °C annealing, which is in 

contrast to the previous results shown in Figure 5.19 and Figure 5.25. This discrepancy 

can be attributed to either the deposition of too much Mn, given the self limiting nature 

of the silicate reaction discussed previously in Chapter 4; or the diffusion of metallic Mn 

away from the interface, towards the surface of the alloy layer. 

Given that care was taken to ensure that all Mn deposition settings were kept consistent 

between all experiments it is thought unlikely that there was a great discrepancy 

between the amounts of Mn deposited in the samples corresponding to Figure 5.19 and 
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Figure 5.25. Evidence that metallic Mn may have diffused away from the interface and 

towards the surface of the film is shown by angular resolved Mn 2p spectra taken after 

350 °C annealing shown in Figure 5.28  which suggests that the residual metal Mn was 

more surface localised than the interfacial silicate. 

 

Figure 5.28: Normal emission and 60° off normal Mn 2p spectra showing that residual 

metallic Mn is surface localized with respect to the Mn silicate barrier layer. 

Regardless of the reasons for the presence of this residual metallic Mn, the interaction 

between Mn and Cu described earlier prevents in-depth analysis of the Mn 2p spectra. 

However, it is suggested that the O 1s and Si 2p spectra shown in Figures 5.24 and 5.26 

show sufficient evidence to suggest that both Mn silicate and Mn oxide species are 

formed following alloy deposition. This result is again in contrast to that seen following 

the initial deposition of Mn followed by high temperature annealing, before Cu 

deposition onto the preformed silicate layer. 
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5.6 Chapter Conclusions 

In summary, it has been shown that the thermal deposition of metallic Cu on SiO2 

substrates shows no evidence for chemical reaction upon deposition. The reappearance 

of SiO2 substrate signal upon vacuum anneal is shown using XPS. AFM analysis 

indicates that this reappearance is due to the formation of Cu islands highlighting the 

reported adhesion problem in copper interconnects [24] [25]. However, no chemical 

reaction is seen between the Cu and the substrate even after a series of thermal anneals. 

The second section of the chapter deals with the deposition of thick (30 nm) Mn/Cu 

heterostructures on SiO2, investigated by both XPS and TEM related techniques. XPS 

and low resolution TEM images show the migration of Mn atoms through the 30 nm 

copper layer to the surface of the sample. EELS and EDX maps indicate the occurrence 

of interdiffusion between the Mn and Cu layers, confirming that the Mn tends to 

diffuse toward the surface of  the  structure,  while  the  Cu  atoms  diffuse  toward  

the Mn / SiO2  interface surrounding clusters, where a higher content of metallic Mn is 

detected. EELS analysis indicates that the chemical composition of the 2–3 nm 

interfacial layer is primarily Mn in +2 and +3 oxidation states which is reported as 

being effective at preventing Cu diffusion into the dielectric layer [7]. 

The final section of the chapter deals with the introduction of Cu into the Mn 

silicate/SiO2 structures discussed in Chapter 4. The results of this study confirms that 

Mn silicate (MnSiO3) barrier layers, free from Mn oxide and metallic Mn, can be formed 

on SiO2 surfaces through the deposition of partially oxidised Mn (MnOx) from a 

partially oxidised Mn source without the presence of Cu. The chemical and thermal 

stability of Cu layers on MnSiO3 has also been investigated, with conventional XPS 

showing that subsequent deposition of Cu onto the preformed silicate surface showed no 

evidence of chemical interaction between Cu and MnSiO3 following 400 °C annealing. 

Spectra taken after Cu deposition and 300 °C annealing again showed no evidence for 

the formation of Mn oxide species. It has also been shown using EELS analysis that a 
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MnSiO3 layer with a thickness of ~ 3 nm acts as an effective barrier layer to Cu 

diffusion following 400 °C annealing. Separate experiments investigating the growth of 

barrier layers through the sequential deposition of MnOx and Cu layers and the 

deposition of MnOx/Cu alloys have also been performed. It has been shown that when 

Cu is present at the MnOx/SiO2 interface during MnSiO3 growth, Mn oxide species are 

also formed within the barrier. The presence of both Mn oxide and Mn silicate has been 

shown following the sequential deposition of Mn and Cu films prior to annealing, and 

has also been shown to occur following the co-deposition of a Mn / Cu alloy. Results 

indicate that Mn oxide species form due to the reduction of SiO2, which is reported to 

lead to the diffusion of Si into the Cu layer, increasing the resistivity of the interconnect 

[22].  It is suggested that growth of Mn oxide at the Cu/MnOx/SiO2 interface may be 

due to the ionization of Mn due to the interaction of metallic Mn and Cu [8], however, 

this has not been conclusively shown in this study. 

Based on these results it is suggested that the deposition and annealing sequence used 

during barrier layer formation has a large affect on the chemical composition of the 

barrier layer. In particular it is suggested that the presence of Cu within the interfacial 

region during silicate formation results in the formation of Mn oxide species. The 

reasons for this are not entirely clear, as Cu spectra taken from the surface show no 

evidence for the creation of Cu bonds to other chemical species, regardless of the 

deposition sequence used. However, it has been suggested in previous publications that 

the interaction between Cu and metallic Mn results in the ionisation of the metallic Mn 

layer. It is suggested that this ionisation may affect the chemical reactivity of the Mn 

layer, which in turn results in changes to the chemical composition of the barrier layers 

formed using deposition processes which involve the initial interaction of Cu and Mn 

prior to silicate formation. This proposed reaction mechanism is further supported by 

the fact that there is no observed interaction between Cu and Mn silicate in the absence 

of residual metallic Mn. 
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Growth and Analysis of Mn 

silicate barrier layers on carbon 

doped oxide surfaces 

6.1 Introduction 

While the majority of studies to date have focused on the formation of MnSiO3 barrier 

layers on SiO2 surfaces [1] [2], the growth of Mn based barrier layers on ultra low 

dielectric constant (ULK) materials has also been the subject of some interest [3] [4] [5] 

[6] [7]. The use of ULK interlayer dielectric materials in microelectronic devices acts to 

reduce the parasitic capacitance affects which are known to cause resistance-capacitance 

delay problems [8]. One of the ULK dielectric materials thought to be most compatible 

with modern device fabrication are carbon doped oxides (CDO) which are formed by 

replacing Si-O bonds in the SiO2 with the less polar Si-CH3 bond. The reduced polarity 

of this bonding structure and the introduction of voids within the CDO, schematically 

illustrated in Figure 6.1, acts to reduce the κ value of the substrate, with some low-κW 

CDO materials currently been investigated having reported dielectric constant values as 

low as 2.0 [9]. However, it has been shown that the low polarity Si-CH3 bond is 

considerably weaker than Si-O bonds, which can reduce the reliability of the material in 

the device processing steps used in microprocessor fabrication [7]. It has also been 

reported that a wide range of processing steps can cause the depletion of C from CDO 

dielectrics, resulting in an increase of dielectric constant [8]. However, comparatively few 
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studies have focused on the growth of self forming barrier layer materials on CDO 

surfaces, and its effect on the carbon content of the dielectric material. 

 

Figure 6.1: Schematic illustration of void formation within AuroraTM CDO 

This chapter presents an initial investigation into the growth and analysis of Mn barrier 

layers on these ultra low-κ CDO surfaces. The chapter is divided into two sections 

which focus on two separate aspects of the use of the low-κ substrate. The first section 

introduces the AuroraTM CDO used throughout the study and details the XPS study 

which investigated the chemical and structural properties of thermally deposited Cu 

thin films on the CDO substrate both before and after thermal anneal. These 

investigations, in contrast to the similar study on SiO2 in Chapter 5, shows evidence for 

the formation of copper oxide after anneal which may have a negative impact on the 

overall performance of the interconnect and indicate the increased importance of the 

barrier layer for low-κ materials. In the second section of this study the chemical 

interactions which occur between metallic Mn, partially oxidized Mn and fully oxidized 
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Mn thin films on CDO surfaces are systematically investigated.  In-situ XPS is used to 

determine how changes in the stoichiometry of the deposited Mn film can cause changes 

in the chemical composition of the barrier. Given the importance of retaining carbon 

within CDO dielectrics in order to maintain their low-κW value, this study focused on 

developing a barrier layer growth process which prevented the depletion of carbon from 

the CDO layer during MnSiO3 growth. Chapter 4 of this thesis showed that MnSiO3 

layers formed on thermally grown SiO2 surfaces are self-limited by the availability of 

additional oxygen, beyond that found within the dielectric layer. It was shown that the 

maximum thickness of MnSiO3 barrier layers formed on SiO2 surfaces following the 

deposition of metallic Mn was >2 nm, while MnSiO3 layers with a thickness of ~ 3nm 

could be formed following the deposition of partially oxidised and fully oxidised Mn 

layers. In this study in-situ XPS analysis is used to determine if the growth of MnSiO3 

barrier layers on CDO surfaces is similarly self-limited by the availability of Mn oxide 

species within the deposited layer. 
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6.2 Experimental Details. 

An AuroraTM CDO ULK dielectric material with a dielectric constant of 2.4, as 

determined by elipsometry, was used in this study. The CDO layers have a thickness of 

~ 350 nm as determined by transmission electron microscopy as illustrated in Figure 

6.2, with an open porosity of 15 % - 16 % and 30 % closed pore volume [10]. The CDO 

surfaces were prepared using a standard degreasing procedure of successive dips in 

acetone, methanol and isopropyl alcohol (IPA) before being loaded into an ultra high 

vacuum (UHV) deposition and analysis system. Ablett et al [5] have previously 

suggested that the growth of MnSiO3 surfaces on low-κW surfaces may be affected by the 

presence of adsorbed hydroxyl species, therefore, all samples were degassed prior to Mn 

deposition in order to remove residual water species adsorbed within the porous 

dielectric structure. Samples were degassed at ~ 200 °C for 2 hours, with the UHV 

chamber reaching a maximum pressure of 5 × 10-9 mbar during degassing. The XPS 

analysis was carried out in the vacuum system described in Chapter 3. High 

temperature annealing studies were carried out in vacuum at a pressure of 5 × 10-9 

mbar, with samples kept at the target temperature for 60 minutes. Room temperature 

e-beam evaporation of copper thin films was performed using a Cu source material of 

99.9 % purity, at a deposition pressure of 5 × 10-9 mbar. Hydrochloric acid (HCl) etched 

Mn chips, with a purity of ~ 99.9 %, were used as a source material for the deposition of 

oxygen free metallic Mn thin films using electron beam evaporation. Metallic manganese 

thin film deposition was performed at room temperature using the Oxford Applied 

Research EGC04 mini electron-beam evaporator, at a chamber pressure of 5 × 10-9 

mbar. The deposition of partially oxidised Mn films was carried out by the controlled 

introduction of O2 gas into the UHV chamber during metallic Mn deposition, resulting 

in an O2 partial pressure of 4 × 10-8 mbar. The XPS core level spectra were curve fitted 

using Voigt profiles composed of Gaussian and Lorentzian line shapes in a 3:1 ratio and 

using a Shirley-type background. The full width at half maximum (FWHM) of the Si 2p 

CDO substrate peak was 1.4 eV, with a Mn silicate component peak FWHM of 1.5 eV. 
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The FWHM of the O 1s CDO component was 1.5 eV with Mn silicate and Mn oxide 

peaks in the range of 1.4 eV to 1.6 eV. The FWHM of the C 1s CDO component was 

1.3 eV with a Mn carbide peak FWHM of 1.2 eV. 

Again, it should be noted that curve fitting of the Mn 2p spectrum could not be easily 

performed given that XPS ghost peaks [11] emanating from the Mn 2

within the peak profile of the Mn 2p3/2 component. As such, only non

spectra are included in this study. In agreement with previous Chapters, the Mn 2

spectra shown in this study are primarily used to identify the presence of metallic Mn 

and oxidised Mn species on the sample surface, with O 1s and Si 2

conclusively identify the presence of differing oxidised Mn species such as Mn silicate 

6.2: Low resolution TEM micrograph of AuroraTM 
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The FWHM of the O 1s CDO component was 1.5 eV with Mn silicate and Mn oxide 

HM of the C 1s CDO component was 

Again, it should be noted that curve fitting of the Mn 2p spectrum could not be easily 

emanating from the Mn 2p1/2 are present 

component. As such, only non-curve fitted Mn 

spectra are included in this study. In agreement with previous Chapters, the Mn 2p 

used to identify the presence of metallic Mn 

and Si 2p spectra used to 

conclusively identify the presence of differing oxidised Mn species such as Mn silicate 

 

 CDO 
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6.3 Chemical characterisation of thermally 

deposited Cu films on CDO 

Shown in Figure 6.3 is the survey spectrum (0-700 eV) of the CDO substrate taken 

immediately upon loading into the XPS system. The spectrum shows the expected Si 2p 

and O 1s core level peaks characteristic of a SiO2 substrate, but also the addition of an 

increased C 1s signal due to the Si-CH3 bonds within the substrate. Initial XPS 

chemical composition calculations [10] estimate the carbon content to be ~15%. No 

change is seen in the survey spectra upon 200 °C degassing indicating that the chemical 

composition of the substrate has not been significantly altered upon removal of any 

adsorbed species.      

 

Figure 6.3: XPS survey spectra of AuroraTM CDO substrate 
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Figure 6.4 shows normalised narrow scans of the Si 2p and O 1s spectra taken from a 

degassed CDO sample compared with the corresponding reference spectra taken from 

the 5.4 nm SiO2 substrate used throughout the previous studies in Chapter 4 and 5.  

 

Figure 6.4: Comparison of Si 2p and O 1s spectra taken from CDO substrate with spectra 

from 5.4 nm SiO2 

The Si 2p spectra confirms that, unlike the 5.4 nm SiO2 substrate, the CDO layer is too 

thick to see the silicon substrate making any Mn silicate thickness calculations used in 

Chapter 4 impossible. The slight increase in the FWHM of the Si 2p and O 1s spectra 

indicate that the CDO may be in a more complex chemical state than the SiO2. 

However, the peak positions and relative peak shape of both the Si 2p and O 1s spectra 

suggests that the CDO may be comparable to the 5.4 nm SiO2 substrate in terms on Mn 

silicate formation. 
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Approximately 2 nm of metallic Cu was subsequently deposited onto the CDO substrate 

at room temperature and annealed at 300 °C and 600 °C. The Cu 2p spectrum shown 

in Figure 6.5 indicates that the deposited copper film is in a purely metallic state and 

there has been no chemical reaction upon deposition. Following a 300oC anneal, an 

additional spectral component at HBE becomes evident which is attributed to copper 

oxide. The further growth of this additional component is seen following the 600 °C 

anneal. 

  

 

Figure 6.5: Curve fitted Cu 2p spectra showing the formation of a second chemical state after 

anneal 
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The corresponding O 1s spectra in Figure 6.6 confirms the growth of Cu oxide after 

anneal. It has been previously reported that it is this growth of Cu oxide, and the 

subsequent formation of Cu ions, which leads to diffusion of Cu into the interlayer 

dielectric [12]. Furthermore, the formation of the copper oxide may cause the chemical 

degradation of the CDO surface through breaking of weaker Si-O bonds which may 

increase the κ value of the CDO above that of SiO2 negating any advantages of using the 

low- κ and freeing up elemental silicon which may then diffuse into the interconnect 

material.   

 

  

 

Figure 6.6: Curve fitted O 1s spectra corresponding to Figure 6.5 confirming the growth of 

Cu oxide following thermal anneal 
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Figure 6.7: Increase in Si 2p signal due to uncovering of SiO2 substrate 

 

The XPS spectrum in Figure 6.7 shows the partial suppression of Si 2p signal suggesting 

that the copper film is less than 5 nm in thickness.  The 300 °C anneal results in the 

reappearance of the Si 2p spectrum and is again attributed to the uncovering of the 

CDO substrate due to island formation similar to the results shown in Chapter 5. These 

results further highlight the increased importance of an effective barrier layer between 

the interlayer dielectric and the interconnect in terms of preventing copper oxidation. 

The fact that in this CDO study it is possible to see direct evidence of the interaction of 

copper with the dielectric material, means that the effectiveness of the barrier layer at 

preventing this oxidation can be assessed. The next section of the chapter is concerned 

with the growth of the Mn silicate based barrier on the AuroraTM CDO. 
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6.4 Photoemission study of carbon depletion from 

ultra low-κκκκ CDO surfaces during the growth of 

Mn silicate barrier layers 

Curve fitted O 1s and Si 2p spectra taken from the carbon doped oxide (CDO) surface 

are shown in Figure 6.8. Given that the measured thickness of the CDO layer was 

approximately 350 nm, the Si substrate signal was not within the sampling depth of 

XPS. As such, the Si 2p spectrum is fitted with a single component peak at 103.5 eV, 

which is attributed to oxidised silicon within the CDO layer. The changes induced in 

these core level spectra following the deposition of ~ 1 nm of metallic Mn are also shown 

in Figure 6.8. Curve fitting analysis shows that the Si 2p spectrum is unchanged 

following deposition, suggesting that no Mn silicate growth occurred upon deposition in 

contrast to previous results seen on SiO2 surfaces. 

In agreement with this, the corresponding O 1s spectrum taken following Mn deposition 

shows no evidence for Mn silicate growth and is again fitted with a single component 

peak attributed to the CDO layer. It should also be noted that the full width at half 

maximum (FWHM) of the O 1s spectrum was reduced following Mn deposition, a result 

which may indicate the formation of a more chemically homogenous bonding 

environment for the oxygen on the CDO surface. Curve fitted C 1s spectra taken from 

the CDO surface before and after Mn deposition are shown in Figure 6.9. The C 1s 

spectrum taken following deposition clearly shows the growth of an additional 

component peak, separated from the CDO component by 2.3 eV on the lower binding 

energy side. This peak has been attributed to the formation of Mn-C bonds, in 

agreement with the relative electronegativity values of C (2.55), Si (1.90) and Mn 

(1.55). While the peak at 287.1 eV shows the presence of a new chemical species 

containing Mn-C bonds, it can be seen from the spectra in Figure 6.8 that there is no 
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evidence for the growth of additional component peaks in the O 1s or Si 2p spectra, 

with the only component peak present being that of the CDO substrate. 

 

 

 

Figure 6.8 : Curve fitted O 1s and Si 2p spectra taken following the deposition of ~1 nm 

metallic Mn on to the CDO surface and subsequent thermal annealing to 500 °C. 
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Figure 6.9 : Curve fitted C 1s spectra corresponding to Figure 6.8. The growth of an 

additional component peak following Mn deposition is attributed to the formation of a Mn 

carbide species. 

 Therefore, it can be concluded that no additional chemical species involving Mn-O or 

Mn-Si bonds have been formed following Mn deposition. As such it is suggested that the 

C-Mn based species identified in Figure 6.9 does not contain either O or Si. Therefore, 

the C 1s component peak at 282.1 eV is attributed to the formation of a manganese 

carbide species, due to the depletion of C from the CDO material. It should be noted 

that carbon is introduced into the CDO structure in the form of CH3 [8][10] and as such 

hydrogen may also be present with the Mn carbide species. However, given that XPS 

analysis cannot be used to identify the presence of hydrogen on the surface, the exact 

chemical composition of this C-Mn based species has not been determined in this study, 
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and is therefore referred to as Mn carbide. The Mn 2p spectrum taken from the surface 

following Mn deposition is shown in Figure 6.10. The asymmetric peak shape is 

indicative of metallic Mn, suggesting either that the Mn 2p spectrum is not sensitive to 

chemical changes between Mn-Mn and  Mn-C bonds, or alternatively that the scale of 

Mn carbide growth at the Mn/CDO interface was not large enough to impact on the 

overall profile of the Mn 2p spectrum. 

 

Figure 6.10 : Mn 2p spectra corresponding to Figures 6.8 and 6.9, show the presence of 

residual metallic Mn following 500 °C annealing suggesting that the interaction of Mn on 

CDO is self limiting. 

The sample was then annealed to 500 °C in UHV, with curve fitted O 1s and Si 2p 

spectra taken following the anneal shown in Figure 6.8. These spectra show the growth 
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of additional component peaks in both the O 1s and Si 2p core levels separated from 

the substrate component peaks by 1.6 eV and 1.1 eV, respectively and are attributed to 

the presence of the Mn silicate species MnSiO3, in agreement with previous 

photoemission results[5]. Curve fitting analysis of the Si 2p spectrum suggests that ~ 17 

% of the CDO component peak was converted to Mn silicate. 

The corresponding C 1s spectra in Figure 6.9 show an increase in the intensity of the 

Mn carbide peak following annealing, suggesting that the growth of MnSiO3 results in 

the concurrent depletion of C from the CDO lattice. It should also be noted that the 

corresponding Mn 2p spectrum in Figure 6.10 shows the presence of residual metallic 

Mn on the surface following 500 °C anneal, indicating that the growth of MnSiO3 on 

CDO is self limiting. Previous studies[5] have shown that the growth of MnSiO3 on SiO2 

surfaces is limited by the presence of additional oxygen, beyond that found within the 

SiO2 substrate, and that MnSiO3 barrier layers of increased thickness can be formed 

through the deposition of partially oxidised Mn layers (MnOx where x < 1) containing 

both metallic Mn and oxidised Mn species. In order to determine if the interaction of 

Mn with CDO surfaces is also self limited, the interaction of CDO with a partially 

oxidised Mn layer was also investigated. 

Figure 6.11 shows the O 1s and Si 2p spectra taken from the CDO surface before and 

after the deposition of a thin (~ 1 nm) MnOx layer. Curve fitting analysis indicates the 

growth of Mn silicate on the surface following MnOx deposition, as evidenced by the 

growth of additional component peaks at 102.3 eV and 531.4 eV within the Si 2p and O 

1s core levels respectively. The room temperature growth of Mn silicate is in contrast to 

results seen in Figure 6.8 and is attributed to the increased chemical reactivity of MnOx 

on CDO surfaces. In addition to this, the O 1s spectrum also shows evidence for a third 

component peak at a binding energy position of 530.0 eV, which is attributed to the 

presence of Mn oxide within the deposited MnOx film, in agreement with previous 

studies[12]. 
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Figure 6.11 : Curve fitted O 1s and Si 2p spectra taken following the deposition of ~1 nm 

partially oxidised Mn layer on CDO. Spectra taken following thermal annealing show 

increased levels of Mn silicate growth compared to Figure 6.8 and also show the conversion of 

Mn oxide to silicate. 

 

 The corresponding Mn 2p spectrum in Figure 6.12 clearly shows the presence of both 

metallic Mn and oxidised Mn spectral components, with rudimentary curve fitting 

analysis (not shown) suggesting a metallic Mn:oxidised Mn ratio of 2:1. Angular 

resolved Mn 2p spectra (not shown) indicate no evidence for spatial segregation between 

the oxidised and metallic species, which suggests that the oxygen content is 
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homogenously distributed throughout the deposited film. Curve fitted C 1s spectra 

taken from the surface and shown in Figure 6.13 show the growth of an additional 

component peak at 282.1 eV following MnOx deposition, which is again attributed to 

the growth of Mn carbide through the depletion of C from the CDO lattice. This result 

shows that Mn carbide will grow on the CDO surface following the deposition of either 

metallic Mn or partially oxidised Mn films. 

 

Figure 6.12 : Mn 2p spectra corresponding to Figure 6.11, show the presence of both oxidised 

Mn and metallic Mn within the deposited MnOx layer and the conversion of Mn to Mn 

silicate following annealing. 

 

A series of high temperature UHV anneals between 300 °C and 500 °C were then 

performed on the sample. The relevant O 1s and Si 2p spectra in Figure 6.11 show that 

annealing results in the formation of Mn silicate, in agreement with previous results. 

Spectra taken following 500 °C annealing also suggest the complete conversion of Mn 

oxide to Mn silicate, in agreement with previous findings on SiO2 surfaces[13]. 
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Figure 6.13 : Curve fitted C 1s spectra corresponding to Figures 6.11 and 6.12 show the 

formation of Mn carbide on the surface following annealing, indicating the formation of a 

mixed Mn silicate and Mn carbide barrier layer. 

 

 Curve fitting analysis of the Si 2p spectrum suggests that ~ 26 % of the CDO 

component peak was converted to Mn silicate, a value which is considerably larger than 

that seen following metallic Mn deposition in Figure 6.8. It is suggested that this 

increased thickness may be attributed to an increase in the chemical reactivity of the 

partially oxidised Mn species on CDO, compared to that of the purely metallic Mn film. 

However, the curve fitted C 1s spectra in Figure 6.13 clearly show that high 

temperature annealing of MnOx thin films on CDO also results in considerable growth 
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of the Mn carbide species, resulting in a mixed phase Mn silicate/Mn carbide barrier 

layer. Given that CH3 species are introduced into the CDO structure in order to reduce 

the dielectric constant of the layer [8], the depletion of C from the CDO during Mn 

carbide growth may result in an effective increase of the dielectric constant of the CDO, 

which is reported to have a detrimental effect on the switching speed of devices 

containing low-κW materials [8]. Therefore, it would be beneficial for the performance of 

the barrier layer device if the growth of Mn carbide species could be prevented during 

MnSiO3 barrier layer formation. Given that the results of Figure 6.8 and Figure 6.11 

suggest that Mn carbide growth is due to the interaction of metallic Mn and CDO, the 

formation of a MnSiO3 barrier layer through the use of fully oxidised Mn may prevent 

the depletion of C from the CDO lattice. Previous results in Chapter 4 have shown that 

fully oxidised Mn species may be converted into MnSiO3 on SiO2 surfaces without the 

presence of metallic Mn. In this study, MnOx films were deposited onto CDO surfaces 

and subsequently exposed to O2 in order to investigate the interaction of CDO surfaces 

with fully oxidised Mn. 

Figure 6.14 shows O 1s and Si 2p spectra taken before and after the deposition of ~ 1 

nm of MnOx on the CDO surface, while the corresponding C 1s and Mn 2p spectra are 

shown in Figure 6.16 and Figure 6.15, respectively. In agreement with the previous 

results of this study, the spectra in Figure 6.14, Figure 6.16 and Figure 6.15 show the 

presence of both metallic Mn and Mn oxide within the deposited film, along with clear 

evidence for the growth of MnSiO3 and Mn carbide on the CDO surface. 
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Figure 6.14 : O 1s and Si 2p spectra taken following the deposition of a ~1 nm MnOx 

followed by thermal annealing in an O2 partial pressure to form fully oxidised Mn. Spectra 

show the complete conversion of fully oxidised Mn to Mn silicate on the CDO surface 

following 500 °C annealing.  

 

 The sample was then annealed to 200 °C in an O2 partial pressure of 1 × 10-7 for 1 

hour, resulting in a total O2 exposure of 360 L. The curve fitted O 1s spectrum in 

Figure 6.14 shows considerable evidence for the growth of Mn oxide species following O2 

annealing, as evidenced by the growth of the component peak at 530.3 eV. While this 

binding energy position is close to that previously attributed to the Mn oxide species 

MnO [12], the difficulty in curve fitting Mn 2p spectra obtained using conventional non-

monochromated XPS, means that the exact stoichiometry of the Mn oxide species 

formed following O2 exposure cannot be established. 
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However, the corresponding Mn 2p spectra in Figure 6.15 show no evidence for the 

presence of metallic Mn, and as such it can be clearly stated that the film is fully 

oxidised and free from metallic Mn. Therefore the fully oxidised Mn species may be 

referred to as MnOy (where y ≥ 1). The complete conversion of metallic Mn to Mn 

oxide following an O2 exposure of 360 L is in agreement with the work of B. Lescop[14] 

who has shown that the oxidation of Mn can occur at oxygen exposure levels less than 

20 L, while experiments in Chapter 4 have suggested similar findings.  

 

 

Figure 6.15 : Mn 2p spectra show no evidence for the presence of metallic Mn or Mn carbide 

following O2 exposure. 

 



 

190 

 

Along with the full conversion of metallic Mn to Mn oxide, the C 1s spectra in Figure 

6.16 clearly show that O2 exposure resulted in the removal of Mn carbide from the CDO 

surface which is in contrast to results seen in Figure 6.13 where the continued growth of 

Mn carbide species was observed following successive anneals up to 500 °C. 

 

 

Figure 6.16 : Curve fitted C 1s spectra corresponding to Figure 6.14 show the removal of Mn 

carbide from the surface following oxygen exposure. Importantly there is no evidence for the 

regrowth of Mn carbide following high temperature annealing, suggesting that Mn carbide is 

not formed due to the interaction of fully oxidised Mn with CDO. 
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A series of high temperature UHV anneals were then performed on the sample, with 

XPS analysis being performed after each annealing treatment. Curve fitted O 1s and Si 

2p spectra in Figure 6.14 show the conversion of Mn oxide to Mn silicate, with O 1s 

spectra taken after the 500 °C anneal indicating that all Mn oxide species present on 

the surface were converted to MnSiO3. The conversion of fully oxidised Mn to MnSiO3 

on CDO surfaces is in agreement with previous results which have shown the growth of 

MnSiO3 barrier layers on SiO2 surfaces in the absence of metallic Mn. Crucially, it 

should be noted that C 1s spectra in Figure 6.16 show no evidence for the re-growth of 

Mn carbide species following high temperature annealing of fully oxidised Mn on CDO 

surfaces. This is in contrast to the results seen in Figure 6.9 and Figure 6.13 of this 

study and indicates that Mn carbide formation is due to the interaction of the metallic 

Mn with C groups within the CDO. Therefore, results suggest that MnSiO3 barrier 

layers free from Mn carbide, Mn oxide and metallic Mn can be formed on CDO surfaces 

through the initial deposition of MnOx, followed by the complete oxidation of metallic 

Mn through O2 exposure and subsequent annealing to 500 °C. It should be noted that 

curve fitting analysis of the Si 2p spectrum suggests that ~ 50 % of the CDO 

component peak was converted to Mn silicate, suggesting the formation of a thicker Mn 

silicate layer than that seen from the spectra in Figure 6.8 or Figure 6.11. XPS 

thickness calculations [15] suggest the thickness of the MnSiO3 layer was ~ 4.0 nm 

Given that peak fitting analysis [15] also indicates that the thickness of Mn deposited in 

all 3 experiments was approximately the same (~1 nm), it can be suggested that the 

increased MnSiO3 growth in Figure 6.14 was due to the absence of Mn carbide, allowing 

all the deposited Mn to contribute to the formation of the barrier layer. Therefore, 

results of this study indicate that when Mn carbide species are formed on the surface 

through interaction with metallic Mn results in both the depletion of C from the CDO 

surface and also a reduction in the effective thickness of the MnSiO3 barrier layer. 

As discussed in Chapter 5, the conversion of all metallic Mn to Mn silicate before Cu 

deposition is crucial due to the interaction between metallic Mn and Cu [17]. Hence, in 
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order to determine the effectiveness of the barrier layer at preventing Cu oxidation, a ~2 

nm Cu thin film was deposited on the fully converted MnSiO3 surface. The deposition 

was performed at room temperature using electron beam evaporation, and the sample 

was subsequently annealed to 500 °C. The Cu 2p spectra shown Figure 6.17 taken from 

the surface upon deposition is identical to that taken from the 20 nm Cu reference 

sample, suggesting that the deposited copper film is in a purely metallic state. There 

was no discernable change in peak profile suggesting that no chemical interaction 

occurred between the MnSiO3 barrier layer and the deposited Cu film. In addition to 

this, the Cu 2p spectra taken following 500 °C anneal shows no evidence for the 

presence of Cu oxide.  

 

 

Figure 6.17: Cu 2p spectra showing the prevention of copper oxide formation due to the 

presence of MnSiO3 layer. 
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This result is in contrast to the spectra shown in Figure 6.5 taken following the 

deposition of copper directly onto the CDO substrate in the absence of a barrier layer. 

Therefore, within the detection limits of conventional XPS it can be suggested that 

MnSiO3 acts as an effective barrier layer to out diffusion of oxygen from the dielectric 

following 500 °C annealing. As previously stated this may be of significance given that 

one of the primary functions of the MnSiO3 barrier layer is to prevent the oxidation of 

the Cu interconnect during thermal annealing [18]. Furthermore, the work of Willis et 

al [17] has suggested that the formation of Cu oxide acts as an intermediate step in the 

diffusion mechanism of Cu through SiO2. 
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6.5 Conclusions 

In the first section of this chapter it was shown that the deposition and subsequent 

thermal anneal of metallic Cu on CDO results in the formation of Cu islands on the 

surface, similar to previous experiments carried out on SiO2 which were described in 

Chapter 5. However, unlike experiments on SiO2, the growth of copper oxide is seen 

following thermal anneal which is attributed to the breaking of Si-O bonds which may 

lead to increase in dielectric constant of the CDO, and diffusion of Cu ions into the 

dielectric material causing decrease in performance within the device.  

In the second section of the study, the growth of Mn silicate barrier layers on ultra low-

κ carbon doped oxide (CDO) surfaces has been investigated through interaction with 

metallic Mn, partially oxidised Mn (MnOx where x < 1) and fully oxidised Mn (MnOy 

where y ≥ 1) films. The deposition studies of metallic Mn and MnOx layers have shown 

that the presence of metallic Mn on CDO surfaces results in the formation of Mn-C 

bonds. This result is attributed to the growth of a Mn carbide species on the surface, 

free from O and Si. Therefore it is suggested that the growth of Mn carbide may result 

in the depletion of C from the CDO surface, which is reported to cause an increase in 

the effective dielectric constant of the CDO layer. In a separate experiment a ~1 nm 

MnOx was deposited and subsequently exposed to 360 L of O2, resulting in the complete 

oxidation of metallic Mn and also the removal of Mn carbide species from the surface. 

High temperature UHV annealing studies have shown that this fully oxidised Mn film 

can be converted to form a MnSiO3 layer with a thickness of ~ 4.0 nm on the CDO 

surface, with no evidence of Mn carbide bond formation. In agreement with the 

previous results on SiO2 surfaces, XPS analysis has also shown that the growth of 

MnSiO3 on the CDO surfaces is limited by the presence of additional oxygen species, 

beyond that found within the CDO substrate.  
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Finally, as a simple test of barrier effectiveness it was shown that deposition of Cu on a 

pre-formed manganese silicate layer results in a film free of Cu oxide after 500 °C anneal 

suggesting effective barrier formation. 
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Conclusions and Future Work 

7.1 Conclusions 

In this study the use of Mn silicate as an interconnect barrier layer material in copper 

based microelectronic interconnect, has been investigated. While the main focus of the 

work has been the use of x-ray photoelectron spectroscopy to analyse the 

Mn/interlayer dielectric interface formation, other techniques such as TEM and AFM 

have also been employed. 

7.1.1 Mn silicate formation on SiO2  

In Chapter 4, synchrotron radiation photoelectron spectroscopy (SRPES) was used to 

investigate the in-situ formation of ultra thin Mn silicate layers on SiO2, which has 

relevance for copper diffusion barrier layers in microelectronic devices. High 

temperature vacuum annealing of metallic Mn (~ 1.5 nm) deposited on a 5.4 nm 

thermally grown SiO2 film resulted in the self limiting formation of a manganese 

silicate layer, the stoichiometry of which is consistent with the formation of MnSiO3. 

Curve fitted Mn 3p SRPES spectra showed no evidence for the presence of a 

manganese oxide phase at the Mn/SiO2 interface, in contrast to previous reports [1]. 

Subsequently, Mn silicate (MnSiO3) barrier layers were formed on thermally grown 

SiO2 using both metallic Mn and oxidized Mn films, in order to investigate the role of 

oxygen in determining the extent of the interaction between the deposited Mn and the 

SiO2 substrate. Using X-ray photoelectron spectroscopy (XPS) it has been shown that 

a metallic Mn film with an approximate thickness of 1 nm cannot be fully converted 

Chapter 7  
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to Mn silicate following vacuum annealing to 500 °C. Transmission electron 

microscopy (TEM) analysis suggests the maximum MnSiO3 layer thickness obtainable 

using metallic Mn is ~ 1.7 nm. In contrast, a ~ 1 nm partially oxidized Mn film can be 

fully converted to Mn silicate following thermal annealing to 400 °C, forming a 

MnSiO3 layer with a measured thickness of 2.6 nm. TEM analysis also clearly shows 

that MnSiO3 growth results in a corresponding reduction in the SiO2 layer thickness. 

It has also been shown that a fully oxidized Mn oxide thin film can be converted to 

Mn silicate, in the absence of metallic Mn. Based on these results it is suggested that 

the presence of Mn oxide species at the Mn/SiO2 interface facilitates the conversion of 

SiO2 to MnSiO3, in agreement with previously published studies [2]. 

7.1.2 The role of copper in Mn silicate formation 

In Chapter 5, the introduction of copper into the barrier layer stack was investigated 

using a variety of techniques. XPS and AFM analysis indicates that the high 

temperature vacuum annealing of metallic Cu (~ 7 nm) deposited on a 5.4 nm 

thermally grown SiO2 film results in the formation of Cu islands highlighting the 

adhesion problem inherent to copper interconnects [3] [4].  

In the second section of Chapter 5, Mn/Cu heterostructures were thermally 

evaporated onto SiO2 and subsequently annealed before being investigated by TEM 

related techniques in order to study the diffusion interactions which lead to barrier 

layer formation. Energy dispersive x-ray spectroscopy and electron energy loss 

spectroscopy provide evidence for the interdiffusion between the Mn and Cu layers 

following a 450 °C anneal, where the Mn diffuses toward the surface of the structure, 

while Cu diffuses toward the Mn/SiO2 but does not propagate into the dielectric. The 

chemical composition of the 2–3 nm interfacial layer is primarily a mixture of +2 and 

+3 Mn valences, in agreement with previously reported results [5]. 

Finally in this chapter, XPS was used to investigate the effect of copper on the 

chemical composition of barrier layers formed on SiO2 through the deposition of 
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partially oxidised Mn (MnOx), sequential layers of MnOx and Cu, and also through 

the deposition of MnOx/Cu alloys. It has been shown that Mn silicate (MnSiO3) 

barrier layers, free from Mn oxide and metallic Mn, can be formed on SiO2 surfaces 

through the deposition of MnOx and annealing to 400 °C. However, it has also been 

shown that when Cu is present at the MnOx/SiO2 interface during MnSiO3 growth, 

Mn oxide species are also formed within the barrier. The chemical stability of a ~ 1 

nm Cu film on MnSiO3 barrier layers was also investigated, with results suggesting 

that no chemical interaction occurs between Cu and MnSiO3 following 400 °C 

annealing. The barrier layer properties of MnSiO3 thin films have also been 

investigated using electron energy loss spectroscopy (EELS), with results suggesting 

that a MnSiO3 layer with thickness of ~ 3 nm acts as an effective barrier layer to Cu 

diffusion following 400 °C annealing. 

7.1.3 Mn silicate barrier formation on low-k dielectric layers 

The final studies in the thesis dealt with the growth of Mn silicate (MnSiO3) barrier 

layers on ultra low dielectric constant (ULK) carbon doped oxide (CDO) surfaces. 

High temperature vacuum annealing of metallic Cu (~ 2 nm) deposited on a 5.4 nm 

thermally grown SiO2 film resulted in the formation of copper oxide, attributed to the 

breaking of Si-O bonds which may lead to increase in dielectric constant of the CDO 

and the diffusion of Cu ions into the interlayer dielectric. 

 Mn silicate barriers were then grown on AuroraTM CDO samples, using both metallic 

Mn and oxidized Mn films, in order to determine the growth method best suited to 

preventing the depletion of carbon from the CDO surface. Using x-ray photoelectron 

spectroscopy (XPS) it has been shown that deposition of metallic Mn and partially 

oxidised Mn (MnOx where x < 1) films on CDO surfaces results in the formation of 

both MnSiO3 and a Mn carbide species within the barrier layer region. Analysis 

suggests that Mn carbide species are formed through the depletion of C from the 

CDO structure, which may increase the dielectric constant of the CDO. In a separate 
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experiment it was shown that the interaction of a fully oxidised Mn (MnOy where y ≥ 

1) layer on CDO resulted in the growth of a MnSiO3 barrier layer free from Mn 

carbide, metallic Mn and Mn oxide. These studies indicate that Mn carbide is only 

formed on CDO surface in the presence of metallic Mn and will not occur through the 

interaction of CDO with fully oxidised Mn layers. It has also been shown that the 

growth of MnSiO3 layers on CDO is self-limited by the availability of additional 

oxygen, beyond that found within the CDO layer, in agreement with the previous 

studies on SiO2 surfaces. Finally, it was shown that deposition of Cu on a pre-formed 

manganese silicate layer on the CDO substrate results in a film free of Cu oxide after 

500 °C anneal suggesting effective barrier formation. 
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7.2 Future Work 

The primary aspects arising from this study which require further investigation are 

outlined as follows. 

7.2.1 Further optimisation of the growth of Mn silicate 

In Chapter 4 the growth and characterisation of Mn silicate (MnSiO3) on SiO2 was 

outlined. The use of additional oxygen beyond that within the substrate was shown to 

assist in the growth of the silicate layer. However, further investigations into the 

optimisation of the MnSiO3 are worthy of additional study. A possible method of 

driving silicate formation which could be investigated would be the use of a controlled 

supply of oxygen during the barrier formation process. This may determine whether 

the thickness of the barrier layer may be increased above 3 nm. 

Also, while Chapter 5 discussed the introduction of copper into the barrier layer stack, 

further segregation studies into binary Cu/Mn alloys using TEM on thicker Cu/Mn 

layers are currently being pursued. 

7.2.2 Electrical Characterization of Mn silicate barrier layers 

The chemical and structural analysis techniques used in both Chapter 5 and Chapter 

6 suggest that ultra-thin Mn silicate layers act as an effective barrier to copper 

diffusion following thermal anneal. However, the ultimate effectiveness of copper 

diffusion barriers can only be fully determined using electrical characterisation in the 

presence of an applied electric field [2]. Previous publications have shown that 

capacitance-voltage (C-V) and current-voltage (I-V) sheet resistance measurements 

may be used to determine if the resistance of copper interconnects has been altered by 

the diffusion of Cu into the underlying dielectric layer [6]. 

Initial studies addressing this particular aspect may simply consist of electrical 

measurements to quantify the resistivity of thin Mn silicate barrier layers and of 
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blanket Mn/Cu alloy films. The four-point probe technique could be used with a view 

to monitoring any change in resistivity in the overlying alloy layer due to the 

migration and incorporation of the Mn from the alloy, to the dielectric interface after 

thermal anneal. 

Further electrical characterisation can then be carried through the fabrication of 

capacitor structures on various dielectric materials with differently formed barrier 

layers. C-V measurements may be employed in order to determine the barriers 

effectiveness at preventing copper diffusion both after thermal anneal and, upon 

application of electrical stress.  

7.2.3 Challenges relating to TEM analysis 

Throughout the course of this work various challenges arose with regards to the use of 

transmission electron microscopy (TEM) to study the barrier region in cross section. 

Both Chapter 4 and Chapter 5 successfully utilised TEM analysis of deposited Mn 

layers in the presence of copper, both as a capping layer in order to prevent oxidation, 

and as an integral part of the layered structure respectively. However, any TEM 

characterization of ultrathin Mn layers in the absence of the thick Cu capping layer 

proved to be especially difficult to analyse, as the thin metallic Mn layers have proven 

to be particularly radiation sensitive at high beam voltages used in high resolution 

imaging. It is suggested that the reason for this problem in the absence of a copper 

layer is due to the Cu acting as heat dissipation path for the electron beam. The 

possible solution suggested to solve this problem is the use of a lower voltage electron 

beam (80 kV) with a corresponding loss of signal and resolution. 

Another issue faced with regard to TEM analysis was encountered in the attempted 

characterization of Mn silicate barrier layers on the CDO substrates detailed in 

Chapter 6. In contrast to results on SiO2, Cu and Mn are difficult to detect on CDO 

substrates and no layered structure is visible. These results are in contradiction with 

XPS experiments which clearly indicate successful deposition of both Mn and Cu 
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layers. It is therefore suggested that this problem may be due to an adhesion problem 

between the metal layers and the CDO substrate. A possible solution to this problem 

may be the use of focussed ion beam (FIB) during TEM sample preparation. If this 

issue is addressed, the same methodology successfully used during barrier formation 

on SiO2 substrates may be applied for the TEM characterization of diffusion barriers 

on CDO substrates from thin Mn layers and Cu/Mn alloys. 

With regard to the basic diffusion processes which result in the formation of the 

barrier layers from alloy Mn/Cu composition layer, a heating stage in the 4000EX 

TEM microscope would allow the in-situ observation and TEM analysis of the 

formation of the barrier layer on both SiO2 and low-κ substrates. 

Finally, the utilisation of a scanning confocal electron microscope (SCEM) may allow 

the 3-dimensional characterization of the diffusion barrier layer structures. This 

technique is suitable for the 3D reconstruction of laterally extended objects, as 

opposed to conventional STEM tomography and is under development on the double 

aberration corrected microscope at Oxford University. 

7.2.4 Barrier formation on industrially relevant CDO 

Chapter 6 of the thesis dealt exclusively with the formation and chemical 

characterisation of Mn silicate barriers on a prototype ULK carbon doped oxide. 

However, if Mn silicate is to be used as the diffusion barrier in future devices then the 

interactions between Mn and other more industrially relevant CDO substrates must 

also be investigated. 

Using a similar methodology to that successfully employed on the Aurora™ 

substrates, further investigations into silicate formation on a more technologically 

relevant lower carbon content CDO are required to understand the impact of the 

presence of carbon on the nature of chemical interactions resulting in manganese 

silicate formation at the interface. Also, the controlled removal of any surface carbon in 
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order to prevent the growth of Mn carbide species may be achieved via an oxygen 

plasma treatment of the CDO surface before Mn deposition. 

Finally, further Mn deposition and barrier formation studies need be undertaken using 

a variety of industrially relevant CDO substrates such as porous CDO and porous 

CDO with pore sealants which present many material challenges. 

7.2.5 Alternative barrier layer materials 

While this thesis deals exclusively with the use of manganese as a barrier layer 

material, several other elements have attracted research attention within the field [7] 

[8] [9] [10]. For example, recent publications have suggested the use of ruthenium as 

another possible barrier candidate due to its excellent adhesion to the Cu layer, high 

thermal stability, and the ease of electrodeposition of copper on Ru [8]. Titanium has 

also been suggested due to its favourable adhesion properties and its marked 

improvement in resistivity over conventional Ta/TaN barrier layers [7].  

Future investigations into the use of these materials as barrier layer alternatives, both 

on their own, and as an alloying element in a barrier layer stack need be carried out 

using the same approach successfully applied in this study of the interactions of Mn 

with dielectric materials. 
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