
Dependency Analysis in Ontology-driven

Content-based Systems

Yalemisew M. Abgaz1, Muhammad Javed2, Claus Pahl3

Centre for Next Generation Localization (CNGL),
School of Computing, Dublin City University, Dublin 9, Ireland

{yabgaz1|mjaved2|cpahl3}@computing.dcu.ie

Abstract. Ontology-driven content-based systems are content-based sys-
tems (ODCBS) that are built to provide a better access to information
by semantically annotating the content using ontologies. Such systems
contain ontology layer, annotation layer and content layer. These layers
contain semantically interrelated and interdependent entities. Thus, a
change in one layer causes many unseen and undesired changes and im-
pacts that propagate to other entities. Before any change is implemented
in the ODCBS, it is crucial to understand the impacts of the change on
other ODCBS entities. However, without getting these dependent enti-
ties, to which the change propagates, it is difficult to understand and
analyze the impacts of the requested changes. In this paper we formally
identify and define relevant dependencies, formalizing them and present
a dependency analysis algorithm. The output of the dependency analy-
sis serves as an essential input for change impact analysis process that
ensures the desired evolution of the ODCBS.
Keywords: Dependency analysis, Change impact analysis, Content-
based systems, Ontology-driven content-based systems.

1 Introduction

Ontology-driven content-based systems are content-based information systems
that are built to provide a better access to information for both humans and
machines by semantically enriching the content using ontologies. In such systems,
using semantic annotation, the ontologies provide rich semantics to the content
at hand [1][2][3]. To achieve this purpose, we proposed a layered framework [4]
which contains the ontology, the annotation and the content layers. A continual
change of entities in the layers causes the ODCBS to evolve dynamically [5].

Changes in ODCBS are complex as a result of the interdependence of the
entities at different layers, the nature of the changes and the semantics involved
in ODCBS. When an entity changes, the change propagates to other entities
resulting intermediate changes to other dependent entities [6]. The propagation
is towards the dependent entities of the changing entity. Because the interdepen-
dence between entities in the layers involves semantics, identifying the dependent
entities is an arduous and complex and time consuming task. It is aggravated by
the evolution strategies [7] which require further analysis on the nature of the
dependencies within and across the layers [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Understanding these dependencies and their nature is crucial for analyzing
the impacts of changes in the ODCBS. A systematic and careful analysis for
identifying dependent entities and analyzing the propagation of impacts to de-
pendent entities is of vital importance in the evolution process [7][6]. Some key
features of our approach are:

– providing the theoretical foundation for dependency analysis in ontology-
driven content-bases systems.

– identifying the crucial and relevant dependencies that exist within and among
the layers of the ODCBS. These dependencies are used to generate change
operations [8] and to analyze impacts of change operations in ODCBS.

– providing formal definition of the identified relevant dependencies.
– providing algorithms to identify dependent entities for further analysis.

This research benefits us in different ways. It will serve as a vital input for
generating change operations for different evolution strategies. It also serves as
an input for change impact analysis process. It facilitates the visibility of the
affected entities, improves the integrity of the ODCBS and makes the evolution
process smooth and predictable.

This paper is organized as follows: Section 2 gives an overview of ODCBSs, its
layered architecture and its graph based representation. In section 3, we present
dependencies in ODCBS, their types and selected algorithms to identify depen-
dent entities. Section 4 focuses on evaluation using empirical studies. Related
work is given in section 5 and conclusion and future work in section 6.

2 Overview of Ontology-Driven Content-Based Systems

We represent an ODCBS using graph-based formalism. Graphs are selected for
their known efficiency and similarity to ontology taxonomy. A full discussion of
the ODCBS architecture is found in [4].

An ODCBS is represented as graph G = Go ∪ Ga ∪ Cont where: Go is the
ontology graph, Ga is the annotation graph and Cont is the content set.

An ontology O is represented by a direct labelled graph Go = (No, Eo)
where: No = {no1, no2, . . . , nom} is a finite set of labelled nodes that represent
classes, data properties, object properties etc. Eo = {eo1, eo2 . . . , eom} is a fi-
nite set of labelled edges and eoi = (n1, α, n2) where: n1 and n2 are members
of No and the label of an edge represented by α = {subclassOf, intersectionOf,
minCardinality, maxCardinality...}. The labels may indicate the relationship (de-
pendency) between the nodes. A content represented by Cont can be viewed as
a set of documents D = {d1, d2, d3....dn} where: di represents a single document
or part of a document which can be mapped to nodes in the annotation graph.
An annotation Anot is represented by a direct labelled graph Ga = (Na, Ea)
where: Na and Ea are finite set of labelled nodes and edges respectively. An edge
Ea = (na1, αa, na2) where na1 ∈ {Cont} as a subject, na2 ∈ {Cont} ∪ {O} as
an object and αa ∈ {O} as a predicate. The graph-based representation of an
ODCBS is presented in (Fig. 1)and serves as a running example.

Fig. 1. Graph-based representation of sample ODCBS layered architecture

The type of a node is given by a function type(n) that maps the node to its
type (class, instance, data property, object property...). The label of any edge
e = (n1, α, n2), which is α , is a string given by a function label(e). All the edges
of a node n are given by a function edges(n). It returns all the edges as (n, α,m)
where n is the target node and m is any node linked to n via α.

3 Dependency in ODCBSs

Characterization, representation and analysis of dependencies within and among
the ontology, the annotation and the content layers is subtle and crucial aspect to
perform impact analysis [9]. Using an empirical study [10] we discovered different
types of dependencies that exist between entities within and among the layers.

Dependency is defined as a relationship between entities where the entities
are related to each other by a given relation. Given a dependency between two
entities (A and B) in the ODCBS, represented as Dep(A,B), A is the dependent
entity and B is the antecedent entity and there is a relationship that relates A to
B. Dependency can be unidirectional or bidirectional. Dependency Analysis

is a process of identifying the dependent entities of s given entity.

3.1 Dependency within Layers

In this section, we present the dependencies we identified in each layers of the
ODCBS. The following list includes only frequently observed and useful depen-
dencies and is not an exhaustive list.

1. Concept-Concept Dependency: Given two class nodes ci and cj ∈ Go, ci
is dependent on cj represented by dep(ci, cj), if there exist an edge ei =

(n1, α, n2) ∈ Go such that (n1 = ci)∧(n2 = cj)∧(label(ei) = “subClassOf”)∧
(type(n1) = type(n2) = “class”). Concept-concept dependency is transitive.
For example, there is a concept-concept dependency between Activity and
Archive. Archive depends on Activity because it is a subClass Of Activity.

2. Concept-Axiom Dependency: Given an axiom edge a1 and a concept
node c1 ∈ Go, a1 is dependent on c1 represented by dep(a1, c1), if there exist
an edge ei = (n1, α, n2) ∈ Go such that (n1 = c1) ∨ (n2 = c1) ∧ type(n1) =
type(n2) = “class”. For example, if we take the concept Activity there are
three dependent subClassOf edges and one dependent rdfs:range edge.

3. Concept-Restriction Dependency : Given a restriction r1 and a concept
node c1 ∈ Go, r1 is dependent on c1 represented by dep(r1, c1) if there exist
an edge ei = (n1, α, n2) = r1 ∈ Go such that (n2 = c1)∧ type(n2) = “class”.
For example, if we have a restriction (isAbout, allValuesFrom, Activity), this
specific restriction is dependent on the concept Activity.

4. Property-Property Dependency: Given two property nodes p1, p2 ∈
Go, p1 is dependent on p2 represented by dep(p1, p2) if there exist an edge
ei = (n1, α, n2) ∈ Go such that (n1 = p1) ∧ (n2 = p2) ∧ (label(ei) =
“subPropertyOf”)∧type(n1) = type(n2) = “property”. Here property refers
to both data property and object property.

5. Property-Axiom Dependency: Given an axiom edge a1 and a property
node p1 ∈ Go, a1 is dependent on p1 represented by dep(a1, p1) if there exist
an edge ei = (n1, α, n2) = a1 ∈ Go such that (n1 = p1) ∧ type(n1) =
type(n2) = “property”.

6. Property-Restriction Dependency: Given a restriction edge r1 and a
property node p1 ∈ Go, r1 is dependent on p1 represented by dep(r1, p1)
if there exist an edge ei = (n1, α, n2) ∈ Go such that (n1 = p1) ∨ (n2 =
p2) ∧ type(n1) = type(n2) = “property”.

7. Axiom-Concept Dependency: Given an axiom edge a1 and a concept
node c1 ∈ Go, c1 is dependent on a1 represented by dep(c1, a1) if there
exist an edge ei = (n1, α, n2) ∈ Go such that (n1 = c1) ∧ (label(ei) =
“subClassOf”) ∧ (type(n1) = “class”).

3.2 Dependency across Layers

We also observed entities in one layer depending on entities in another layer.
These dependencies are treated separately and are discussed below.

Content-annotation dependency. An annotation ai in the annotation
layer is dependent on di in the content layer, represented by dep(ai, di), if there
exist an edge ea = {nai, αa, naj} ∈ Ga such that (nai = di) ∨ (naj = di). This
means ai is dependent on document di if the document is used as a subject or
an object of the annotation triple.

Ontology-annotation dependency. The relevant dependencies between
entities in the annotation and the ontology layer are presented below.

1. Concept-Instance Dependency: Given an instance node i1 and a concept
node C1 ∈ G, i1 is dependent on C1 represented by dep(i1, C1) if there exist

an edge ei = (n1, α, n2) ∈ G such that (n1 = i1) ∧ (n2 = C1) ∧ (label(ei) =
“InstanceOf”)∧ type(n1) = “Instance”∧ type(n2) = “class”. For example,
the instance CNGL : id19221955.xml is dependent on the conceptHelp file

due to (CNGL : id− 19221956.xml, instanceOf,Help file).
2. Property-Instance property Dependency: Given an instance property

node ip1 and a property node p1 ∈ G, ip1 is dependent on p1 represented by
dep(ip1, p1) if there exist an edge ei = (n1, α, n2) ∈ G such that (label(ei) =
p)∧type(n1) = “instance”∨type(n2) = “instance”. For example, in (CNGL :
id19221956.xml, cngl:hasTitle, How to delete Mails) the instance property
cngl:hasTitle is dependent on the property hasTitle in the ontology layer.

3. Axiom-Instance Dependency: Given an instance node i1 and an axiom
edge a1 ∈ G, i1 is dependent on a1 represented by dep(i1, a1) if there exist an
edge ei = (n1, α, n2) ∈ G such that (n1 = i1)∧ (label(ei) = “instanceOf”)∧
(type(i1) = “Instance”).

3.3 Types of Dependencies and Dependency Determination

Direct Dependency/Indirect Dependency. Direct dependency is the de-
pendency that exist between two adjacent nodes(n1, n2). This means, there is an
edge ei = (n1, α, n2). Indirect dependency is a dependency of a node on another
by a transitive or intermediate relationship. There exist a set of intermediate
edges (n1, α, nx)(nx, α, ny)...(nz, α, n2) that link the two nodes.

Algorithm 1 getDirectDependentClasses(G,c)

1: Input: Graph G, Class node c

2: Output: direct dependent classes=d

3: d← ∅
4: if the node c exists in G then

5: for each edge ei = (m,α, c) directed to c do

6: if label(ei) = “subClassOf” ∧ type(m) = “class” then

7: add m to d

8: end if

9: end for

10: end if

11: return d

A node is considered as dependent node only when it satisfies one or more
of the dependencies defined in section 3.1 and 3.2. Algorithm 1 identifies direct
dependent entities and it focuses only on class nodes. However, it is implemented
for all node types. To get both direct and transitive dependent entities, we
expand algorithm 1 to include the transitive dependent entities. Algorithm 2
identifies all direct and transitive dependencies.

Total Dependency/Partial Dependency. Total dependency refers to a
dependency when a target node depends only on a single node (articulation

node). That means, there is no other entity that gives meaning to the target
entity except the antecedent. Algorithm 3 returns all total dependent classes.

Given two nodes n1, n2 ∈ G , n1 is totally dependent on n2 represented by
Tdep(n1, n2) if and only if, ∃(dep(n1, n2)) ∧ 6 ∃(dep(n1, n3)), where (n2 6= n3).
Partial dependency refers to a dependency when the existence of a node depends
on more than one node. Two nodes n1 and n2 ∈ G, are partially dependent
represented by Pdep(n1, n2) if and only if, ∃dep(n1, n2) ∧ ∃dep(n1, n3), where
(n2 6= n3). We can reuse algorithm 3 to return the partial dependent classes.

Algorithm 2 getAllDependentClasses(G,c)

1: Input : Graph G, Class node c

2: Output: all dependent classes=d

3: d← ∅
4: Queue Q

5: if the node c exists in G then

6: DirectDep ← getDirectDependentClasses(G,c)
7: for each concept ci in DirectDep do

8: Q.push(ci)
9: if ci not in d then

10: add ci to d

11: end if

12: end for

13: while Q is not empty do

14: Temp = Q.peek()
15: getAllDependentClasses(G,Temp)
16: Q.remove()
17: end while

18: end if

19: return d

Total and partial dependency plays a major role in determining the impacts
of a change operation. If a class is totally dependent on the changing class, that
class is affected by the change. It becomes orphan concept. But, if that class is
partially dependent, the deletion of the class causes only semantic impact. The
change makes the partial class neither orphan nor cyclic.

Direct total and partial dependent entities. Direct total dependent en-
tities are entities that are the result of the intersection between total dependent
and direct dependent entities. The intersection of the results of algorithm 1 and
algorithm 3 gives us the direct total dependent entities. Direct partial dependent
entities are entities that are both directly dependent but which are partially de-
pendent entities. These entities play a major role in the impact analysis process.

Limitation of the algorithm. The limitation of the dependency analysis
algorithm is related to complex class expressions. The algorithm that separates
the partial and total dependencies in such expressions is not fully covered and
the algorithm only identifies such expressions as total dependent expressions.

Algorithm 3 getTotalDependentClass(G,c)

1: Input : Graph G, Class node c

2: Output: all total dependent classes=d

3: d← ∅, contained=true
4: Set depCls=∅ ,totalDepCls=∅ ,partialDepCls=∅, super=∅
5: depCls← getAllDependentClasses(G,c)
6: for each concept ci in depCls do
7: if count(getSuperClasses(ci)=1 then

8: super ← getSuperClasses(G, ci)
9: if super not in partialDepcls then
10: add ci to totalDepCls
11: end if

12: else

13: super ← getSuperClasses(G, ci)
14: contained=true
15: for each sc in super do
16: if sc not in depCls then
17: contained=false
18: end if

19: end for

20: end if

21: if contained=true then

22: add ci to totalDepCls
23: else

24: add ci to partialDepCls
25: end if

26: end for

27: return totalDepCls

4 Evaluation

We used the empirical study [10] to evaluate the completeness, accuracy, the
adequacy, the transferability and the practical applicability of the solution. The
evaluation uses a content-based system built for software help management sys-
tem to semantically enrich software help files. We used frequent change oper-
ations which are used to evolve the ODCBS. For each change, we conducted
dependency analysis manually and using the proposed method separately. A
comparative result of the dependency analysis conducted for one selected change
operation, delete concept (Activity), is presented in table 1. The operation deletes
a concept “Activity”, but the change propagates to other dependent entities.

The result shows that the proposed method is accurate in that it identified
all the dependent entities identified by the manual method. It further identifies
entities that are not identified by the manual analysis too. This is mainly at-
tributed to dependent axioms that the manual analysis overlooked or failed to
recognize. A similar result is observed in the other selected change operations
however, due to space constraint we do not present all of them here.

The solution applied in other domain (university administration) shows a
fairly similar result to the results in table 1. It identifies all the dependent entities

that are manually identified and more axioms than the manual method. This
shows that the dependency analysis is adequate and transferable to other similar
domains. The algorithm gives us a complete list of all the dependent entities

Table 1. Comparison of the manual and automatic method

Entity Automatic Manual

Total Dependent Direct Dependent All Dependent All Dependent

Concepts 5 2 6 6

Axioms 14 5 14 9

Instances 1 2 2 2

Properties 0 0 0 0

that are identified manually. This makes it complete and guarantees to return
all dependent entities. The algorithm can be customized to find dependency to a
certain level of depth, which makes it suitable for n-level cascading which seeks
dependent entities of a given entity within n node distance.

We can use these entities to analyze change propagation, and to identify
impacts of a change operation in different evolution strategies. This allows the
users to see which entities are affected, how and why they are affected.

5 Related Work

A closely related work is given by [11]. They conducted a study on validating data
instances against ontology evolution to evaluate the validity of data instances.
In their research they identify 5 dependencies and two independencies to detect
implicit semantic changes and generating semantic views. Our work focuses on
dependency analysis to identify all affected entities using the current version and
the change operations before they are permanently implemented in the ODCBS.

A related work [12] from a software domain conducted analysis and visu-
alization of behavioural dependencies in UML model. They defined structural
and behavioural dependencies, direct and transitive dependences to analyze how
one entity depends on another. Their work focuses on identifying and measur-
ing dependencies in UML models. An interesting work done by [13] focuses on
dependency analysis using conceptual graphs. Even if the work is more concep-
tual, it has interesting similarity to our work. They identified dependent and
antecedent entities, and further identify impact as an attribute of dependency.

6 Conclusion and Future Work

In this work, we identified relevant dependencies within and across ODCBS
layers. We formalized each of the dependencies using graph based formalization.
We further developed algorithm that identifies these dependencies which will be
used as an input for other phases of ODCBS evolution. The proposed method
identifies the relevant dependent entities and the nature of the dependency.

This work is one phase of the bigger change impact analysis research we are
conducting for ODCBS systems. The output of this phase will be used as an input

for change operation generation, and further for change impact analysis process.
It will be used for analysing optimal implementation of change operations, and
change operation orchestration. Our future work will be applying the results of
the dependency analysis process for change impact analysis.
Acknowledgment. This material is based upon works supported by the Science
Foundation Ireland under Grant No. 07/CE/I1142 as part of the Centre for Next
Generation Localisation (www.cngl.ie) at Dublin City University (DCU).

References

1. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition 5(2) (1993) 199–220

2. Reeve, L., Han, H.: Survey of semantic annotation platforms. In: SAC ’05: Pro-
ceedings of the 2005 ACM symposium on Applied computing. (2005) 1634–1638

3. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management:requirements and
survey of the state of the art. Web Semantics: Science, Services and Agents on
World Wide Web. 4(1) (2006) 14–28

4. Abgaz, Y., Javed, M., Pahl, C.: A framework for change impact analysis of
ontology-driven content-based systems. In: On the Move to Meaningful Internet
Systems: OTM 2011 Workshops. Lecture Notes in Computer Science. (2011)

5. Gruhn, V., Pahl, C., Wever, M.: Data model evolution as basis of business process
management. In: Proceedings of the 14th International Conference on Object-
Oriented and Entity-Relationship Modelling. OOER ’95, London, UK, Springer-
Verlag (1995) 270–281

6. Plessers, P., De Troyer, O., Casteleyn, S.: Understanding ontology evolution: A
change detection approach. Web Semantics: Science, Services and Agents on the
World Wide Web. 5(1) (2007) 39–49

7. Stojanovic, L.: Methods and tools for ontology evolution. PhD thesis, University
of Karlsruhe (2004)

8. Javed, M., Abgaz, Y., Pahl, C.: A pattern-based framework of change operators for
ontology evolution. In: On the Move to Meaningful Internet Systems: OTM 2009
Workshops. Volume 5872 of Lecture Notes in Computer Science. (2009) 544–553

9. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change
impact analysis of java programs. SIGPLAN Not. 39 (October 2004) 432–448

10. Abgaz, Y., Javed, M., Pahl, C.: Empirical analysis of impacts of instance-driven
changes in ontologies. In: On the Move to Meaningful Internet Systems: OTM
2010 Workshops. Lecture Notes in Computer Science. (2010)

11. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology
evolution over the semantic web. Information and Software Technology. 51(1)
(2009) 83–97

12. Garousi, V., Briand, L., Labiche, Y.: Analysis and visualization of behavioral
dependencies among distributed objects based on uml models. In Nierstrasz, O.,
Whittle, J., Harel, D., Reggio, G., eds.: Model Driven Engineering Languages and
Systems. Volume 4199 of Lecture Notes in Computer Science. (2006) 365–379

13. Cox, L., Harry, D., Skipper, D., Delugach, H.S.: Dependency analysis using concep-
tual graphs. In: In Proceedings of the 9th International Conference on Conceptual
Structures, ICCS 2001, Springer (2001)

