Customisable Transformation-Driven Evolution for Service Architectures

Aakash Ahmad
Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University
Dublin, Ireland
ahmad.aakash@computing.dcu.ie

Abstract—Service-based architectures have now become
commonplace, creating the need to address their system-
atic maintenance and evolution. We propose to enable
transformation-driven evolution for service architectures in a
semi-automated fashion. In contrast to the existing solutions
like service wrapping, migration or run-time adaptation etc.,
the proposal supports primitive and customisable architectural
transformations to support an incremental evolution for service
architectures. An empirical approach is adopted to investigate
the extent to which the architecture evolution tasks (i.e. mod-
eling, transformation and refinement) can be automated and
validated in context to the central hypothesis for architecture-
centric software evolution. Based on the initial results, we plan
to proceed toward modeling and automating the architectural
evolution in a formal way.

Keywords-Software Architectures; Architecture Reconstruc-
tion and Evolution; Evolution of SOA;

. INTRODUCTION

Service-Oriented Architecture (SOA) is considered to be
a business centric, architectural approach for designing and
developing distributed, enterprise systems. The established
theory and practices on such service-based software pri-
marily focuses the design or development efforts, often
overlooking the requirements and complexities for SOA
maintenance and evolution [1]. However, as service systems
are developed and deployed the ultimate challenge lies in
accommodating the changing requirements to prolong the
productive life and economic value for existing software.

Based on the proposed life cycle of an SOA, the taxonomy
of service-oriented software research in [1] prioritises the
current and future research agendas, explicitly highlighting
the needs for SOA evolution. In contrast, the current ef-
forts like [2]* concentrate on legacy wrapping or migration
towards service software thus faling short of supporting
an explicit evolution within SOAs. Alternatively, the work
proposed in [3], [4] enables dynamic design and evolution
for service orchestrations to facilitate the runtime adaptation
for (web services in) service-based architectures.

Based on a review of related work, it is apparent that
rigorous processes, frameworks and engineering methods etc

1Also tools as Visual Studio (http:/www.microsoft.com/visualstudiol)
and Eclipse Webtools (http://www.eclipse.org/webtools/).

Claus Pahl
Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University
Dublin, Ireland
cpahl @computing.dcu.ie

are lacking in the existing efforts to support a coherent,
stepwise evolution for service architectures. Nevertheless,
this is helpful in identifying the problem and justifying
the needs for the proposed solution, i.e. how to enable
customisable, transformation-driven evolution for service
architectures in an automated fashion. Therefore, we aim
a improving the existing efforts like [4], [2] etc., by sup-
porting an incremental evolution of SOA elements through
transformation at different abstraction (meta, architecture,
architecture style) levels using:

- An operational layering with a focus on operation and
execution (what and how to change) consisting of basic
transformation operators and patterns. Pattern notions allow
to categorise the composed transformations by their impact
on source and target architecture elements.

- A user-defined customisable layer focusing on design
aspects (why to evolve) allows rule-based declarative spec-
ification of transformation goals to generate service-based
architecture. SOA-specific styles are applied to refine the
transformed architecture to support style-based evolution.

It is vital to preserve structural and semantic constraints
of SOA elements at al layers to maintain an overal target
architecture integrity. With a coherent architecture evolution
framework, we can systematically address the (structural and
behavioural) evolution issues for SOAs semi-automatically.

This paper is organised as follows. A review of the related
work is summarised in Section Il that helps in outlining the
research questionsin Section I11. Research methodology and
proposed solution are presented in section 1V; followed by
the results to date in Section V. The paper concludes with a
summary of research validation and action plans.

Il. RELATED WORK

We aim for a practical applicability of the final solution.
Therefore, it is of central importance to investigate the state
of the art (wherever possible) both from an industrial and
an academic perspective. We generally classified the review
into four different areas comprising of i) service based
software reuse (wrapping, migration, transformation etc.),
ii) software design and architecture evolution, iii) dynamic
(web) services adaptation and iv) formal architectural trans-
formations. In the following, we identify the shortcomings

along the possihilities to exploit the existing efforts to devise
a systematic solution to SOA evolution issues.

In context to SOA development, the current industrial
solutions are often driven by their commercial values (like
ROI, time to market, competitive advantages etc.), rather
than offering sustainable, generalised solution for architec-
ture evolution challenges. For example, the recent generation
of Eclipse and Visual Studio support legacy wrapping with a
service layer supporting an ad-hoc (service-oriented) legacy
reuse, also referred as service facade in [7]. In such solu-
tions, the problem is strengthened with false assumptions
that after modification the system will remain relatively
stable not eventually replaced thus posing contradictions to
the evolutionary nature of software.

In the context of architectural evolution, the Software
Architecture Evolution Model (SAEV) [8] provides a guide-
line to enable the evolution of (component and connector
based) architectures at different abstraction (meta, archi-
tecture, application) levels. In contrast, the work in [2]
supports the automation of architectural migration towards
an SOA using graph transformation rules over a model
of the annotated source code in a formal way. However,
these solutions are limited because these are assumed to be
deployed for internal integration/operation, where there is
still some control over deployed services when compared to
heterogeneous, distributed services architectures.

One of the recent initiatives include UML4SOA [3] that
defines a high-level domain specific language for modeling
and transforming web service orchestrations to support the
dynamic service composition. Also, in contrast to dynamic
service adaptation [4], we limit our approach to a declarative
(user-defined) composition of atomic services to include the
composed services in service architectures asin [9].

Thediscussion aboveis helpful in outlining the limitations
aong with the challenges and potential in supporting the
architecture-centric evolution for SOAs. It is worth men-
tioning here the recent series of workshops focusing on
the research agendas for Maintenance and Evolution of
SOA (MESOA) [1]. These primarily aim at identifying and
addressing the fundamental problems for SOA evolution by
pinpointing the research needs as: . . . community wide efforts
are required to develop processes, frameworks, transition
patterns etc; to support systematic maintenance and explicit
evolution for potentially distributed service architectures. ...

Central Hypothesis: In an attempt to redlise this po-
tential, we formulate the central research hypothesis, i.e.
the application of architectural transformations while pre-
serving its integral constraints could support a dependable
architecture-centric software evolution.

A layered evolution comprising of i) primitive trans-
formations that can develop the foundation for ii) user-
defined rules supporting customisable architecture evolution
at different abstractions. It is vital to preserve the structural
and semantic properties of SOA elements at al levels to

ensure dependability (correctness) of the target architecture.

I11. RESEARCH QUESTIONS

In context to the identified limitations and the central
hypothesis for architecture evolution, the primary question
to focus the central research ideas is:

How to enable customisable, architecture-centric evolu-
tion for service software in a (semi-) automated way?

It triggers the following sub-questions:

RQL1 - How to enable service-based software evolution in
an semi-automated way?

(Allow automated transformations at different abstraction
(meta, architecture) levels [8] with appropriate user inter-
vention to guide the evolution tasks.)

RQ2 - How to enable customisable (architecture-centric)
software evolution?

(Allow layered evolution by composing primitive (meta-
level) transformations into user defined (architecture-level)
transformations and refinement.)

RQ3 - What degree of formalism is required to support
the modeling, transformations and (correctness) verifications
for the target architecture?

(Allow graph-theoretical modeling, transformation and
verification of target architecture as highlighted in [2])

Objectives: Thefirst two sub-questions (RQ1, RQ2) focus
on the ‘how’ (to evolve) perspectives in context to the
Lehman's Laws for Software Evolution that corresponds
to the application of engineering methodologies to enable
software evolution. The later sub-question (RQ3) emphasises
the need for a formal approach to execute and verify the
evolution tasks ensuring target architecture validity. Based
on these questions we outline the project objectives as:

1) Automation: The aim is to alow the automation of
primitive and customisable architecture transformations with
appropriate user (architect’s) intervention.

2) Dependability: A formal approach can achieve the nec-
essary dependability that allow software architects to trust
automated transformations for target architecture integrity.

IV. METHODOLOGY AND PROPOSED SOLUTION

We propose to devel op an applicable solution to SOA evo-
lution issues, following an empirical approach with Canoni-
cal Action Research (CAR) methodology [10]. Within CAR
we followed and dightly adjusted the Cyclica Process
Model (CPM) consisted of: i) Diagnosing, ii) Planning and
Intervention followed by iii) Evaluation and Reflection.

Architecture Evolution Cycle: To set a redistic scope
for the proposal, we focus on developing three activities
collectively referred as the evolution cycle for service archi-
tectures, presented in Figure 1 and are explained below.

The evolution cycle is partialy inspired by the SOA-
Migration Horseshoe [11] that represents a generic process
model for migrating legacy software towards an SOA. Our
proposal in Figure 1, however is restricted to architectural

Modeling

Transformation | 5 a i
target target

ion Cycle v

specify : apply

Figure 1. Evolution Cycle for Service Architectures

modelling (compared to the enterprise modelling in SOA-
Migration Horseshoe). This restriction is necessary to set
and achieve redlistic goas i.e to model and transform
architectural entities rather than the entire enterprise model.
In addition to the steps proposed in the migration horseshoe
we propose to refine the transformed design to mitigate the
counter-productive transformation effects for a robust target
architecture. Furthermore, we rely on existing literature
like [12] (and the reverse engineering stepsin) [2] for source
architecture extraction instead of accommodating the extrac-
tion task implicitly in the evolution cycle. Also, we propose
to support the user input (customisable transformations and
style based refinement) into the evolution process that is
lacking in the horseshoe model.

A. Modeling

Instead of solely focusing on the globa (architectural)
view of the system asin [2], we propose to transform the ar-
chitectural elements at different abstraction levels namely at
the meta, architecture and architecture-style level supporting
layered evolution, often overlooked in the existing solutions.

B. Transformation

The am is to support a transformation driven evolution
for service architectures by means of i) primitive (pattern
based) and ii) customisable (user defined rule based) trans-
formations to instantiate service-oriented architecture. The
combination of modeling and transformation is exploited
in [13] to solve the architecture evolution problem by
utilising the Model Driven Engineering (MDE) techniques.
Instead, we focus on developing an evolution framework
that enables customisable, automated transformations and
refinement with an appropriate user intervention in the pro-
cess. However, we believe that the proposed solution has the
required flexibility (thanks to its underlying metamodel(s))
to accommodate it as an MDE based solution, if required.

C. Refinement

While executing pattern based transformation we observed
some counter productive architectural transformations (we
refer to them as transformation anti-patterns) that need to be
identified and minimised for and optimised target architec-
ture. Therefore, style-based refinement not only minimises

the inherited flaws into the transformed architecture but
aso supports a robust and extensible architecture that better
meets target specifications with enforced stylistic constraints.

V. RESULTS AND CONTRIBUTION

At the time of writing, we concentrate on initial sub-
questions (RQ1, RQ2) that focus on enabling the transfor-
mation of source service architecture elements at different
abstraction levels toward the target architecture. In this
context, we have developed a coherent service architecture
evolution framework presented in Figure 2 that realises the
evolution tasks illustrated in Figure 1. Preliminary results
for this work are validated and accepted as a peer-reviewed
conference publication [14], that are summarised below:

c
Refinement

A . Style-based Architecture
A aPPYY| 31 4: le-| Refinemen
A Style-based Refinement _
5 > _essTlo
: | ol L
o o s 1O
2 (Service Inventory Model) - ——— |
E * ___Target Service Architecture ___refijement of
%] Architecture Elements 2
3 L3: Transformation Rules =
3 Ea) 5 Y<3
v ‘I P— H p }‘_" ‘ Srv, 3H srv, H
V specify ntegrate ompose g
f Service Architecture Design ,',,sé,,ce of
3
? il \
L2: Transformation Patterns Minimal i
1 1

/
N

ries ee
o : L1: Transformation Uperanrs

compoge cpmpose Association| | Composition

Metamodel

Source I
Artefacts
T

a) Transformation Layers b) Modeling Views

Figure 2. Layered Service Architecture Evolution Framework

Modeling: A metamodel (based on UML 2.0) has been
developed to model the fundamental SOA elements (atomic
and composite services) with enforced structural constraints
for the target architecture integrity. It serves as a foundation
for automated transformation at upper layers.

Transformation: The transformation layers (L1, L2, L3)
are developed and preliminary validated to enable primi-
tive and customisable SOA transformations. Transformation
patterns are vital in classifying and reusing the re-currant
architectural changes during primitive transformations.

Refinement: It mainly corresponds to future work that
aims at applying the service architecture styles/patterns to
refine the transformed architecture. The benefit for such
refinement is to optimise the transformed architecture fol-
lowing certain configurations with enforced stylistic con-
straints. Currently, we focus on service inventory model
detailed in [7]. However, the work proposed in [15] present
an architecture style ontology as a modeling language that
serves as a guideline to formally apply more conventional
(pipe and filter, hub and spoke etc) styles into target SOA.

VI. VALIDATION AND ACTION PLAN

We follow a step-wise approach to evaluate the individual
research tasks and their sub-tasks that determine the valid-
ity of the overall work. We extend and utilise (wherever

possible) the technologies and literature like (CAR [10],
SAAM [16], UML 2.0 etc.) to evaluate the central hypothesis
for architecture-centric software evolution as:

- Scenario-Based Validation: Currently, we focus on elec-
tronic payment system evol ution cases studies to validate the
applicability of the proposed architecture evolution frame-
work. Based on the metamodel transformation we have
been successful in validating the primitive transformations
(operators when composed into transformation patterns i.e
L1 and L2) using ATL? model to model transformations.
An overal validation (including L3 to generate the trans-
formed architecture) must be performed using SAAM [16]
to evaluate hypothesis for architectural transformations.

- Prototype Evaluation: Once we achieve theintermediate
results (i.e user-defined transformation rules at L3) we plan
to develop a prototypical transformation engine to validate
the customisable, automated transformations. The tool and
the generated data shall form the basis for the practitioners
(software engineers and architects) for a survey and usability
based analysis to evaluate the effectiveness and applicability
of the proposed solution in an industrial context.

A high-level validation plan of the research tasks in con-
text to their individual evaluation in presented in Figure 3.

Evolution Task | Sub-task
Modeling Metamodel
Architecture

Technique Status Evaluation

UML 20 Complete | Structural Constraints
Pattern-based Transformation | In progress | SAAM [16]
Transformation | Primitive Operators and Patterns Complete | M2M (XML)
Customisable Declarative Rules [9] Future Work | SAAM

Stile Application Service Inventory Patterns [7] | Future Work | Architectural Scenarios, SAAM

Refinement

Figure 3. The Validation Plan w.r.t Evolution Tasks and their Evaluation

Action Plans: in an overall context are summarised as:

- An investigation of ontology-based architecture rep-
resentation approaches, based on [6], [5] for architecture
description and [15] for pattern modelling, as the basis of
architectural evolution.

- A forma graph-based transformation, based on the
ontol ogy-based architecture representation, of source service
architectures towards the target architecture that comprises
the primary future work (RQ3), guided by [2].

- A significant challenge lies with semi-automated declar-
ative composition (of service orchestration and choreogra-
phy) included in target SOA, as presented in [9].

- An interesting identification is the emergence of trans-
formation anti-patterns resulting from counter-productive
pattern-based transformations. We strive for the identifica-
tion of these anti-patterns and their resolution (refinement)
that isvital to achievetarget SOA with desired specifications.

ACKNOWLEDGEMENT

This work is supported, in part by Science Foundation
Ireland through grant 03/CE2/1303_1 to Lero - The lrish
Software Engineering Research Centre (www.lero.i€).

2Atlas Transformation Language (ATL). http://www.eclipse.org/atl/

REFERENCES

[1] G. Lewis, D. Smith, N. Chapin, and K. Kontogiannis,
“MESOA 2009: 3rd International Workshop on Maintenance
and Evolution of Service-Oriented Systems,” |EEE Interna-
tional Conference on Software Maintenance, 2009.

[2] R.Heckel, R. Correia, C. Matos, M. El-Ramly, G.Koutsoukos,
and L. Andrade, “Architectural Transformations. From
Legacy to Three-Tier and Services,” in Software Evolution.
Springer Verlag, 2008, pp. 139-170.

[3] P. Mayer, A. Schroeder, and N. Koch, “MDD4SOA: Model-
Driven Service Orchestration,” in 12th |EEE Intl Conference
on Enterprise Distributed Object Computing, 2008.

[4] H. Verjusand F. Pourraz, “A Forma Framework For Building,
Checking And Evolving Service Oriented Architectures,” in
European Conference on Web Services. |EEE, 2007.

[5] C. Pahl, “Layered Ontological Modelling for Web Service-
oriented Model-Driven Architecture”, European Conference
on Model-Driven Architecture - Foundations and Applications
ECMDA 2005, LNCS 3748, Pages 88-102, 2005.

[6] C. Pahl, “Semantic Model-Driven Architecting of Service-
based Software Systems,” Information and Software Technol-
ogy, vol. 49, no. 8, pp. 838-850, 2007.

[7] T. Erl, SOA Design Patterns. Prentice Hall, 20009.

[8] N. Sadou, D. Tamzalit, and M. Oussalah, “How to Manage

Uniformly Software Architecture at Different Abstraction
Levels” in 24th Intl Conf on Conceptual Modeling, 2005.

[9] S. Ponnekanti and A. F. , “Sword: A Developer Toolkit for
Web Service Composition,” in 11th International World Wide
Web Conference, 2002.

[10] R. Davison, M. Martinsons, and N. Kock, “Principles of
Canonical Action Research,” Information Systems Journal,
vol. 14, no. 1, pp. 55-86, 2004.

[11] A. Winter and J. Ziemann, “Model-based Migration to
Service-oriented Architectures,” in International Workshop on
SOA Maintenance and Evolution, 2007.

[12] C. Matos, “Service Extraction from Legacy Systems,” in 4th
International Conference on Graph Transformations, 2008.

[13] B. Graaf, “Model-Driven Evolution of Software Architec-
tures” in Ph.D. Thesis, Delft University of Technology, 2007.

[14] A. Ahmad and C. Pahl, “Pettern-based Customisable Trans-
formations for Style-based Service Architecture Evolution,” in
Intl Conf on Next Generation Web Services Practises, 2010.

[15] C. Pahl, S. Giesecke, and W. Hasselbring, “Ontology-based
Modelling of Architectural Styles,” Information and Software
Technology, vol. 51, no. 12, pp. 17391749, 2009.

[16] R. Kazman, G. Abowd, L. Bass, and P. Clements, “ Scenario-
Based Analysis of Software Architecture,” in IEEE Software,
1996.

