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Abstract 

This study investigated the effects of high speed laser surface modification on 316L 

stainless steel and Ti-6Al-4V for biomedical implants application. Laser processing was 

carried out in an inert argon environment using a 1.5 kW CO2 laser. Parameters 

investigated in this work included irradiance, residence time, pulse width and sample 

pre-treatments. Surface topology, microstructure and melt pool depth were characterised 

using the scanning electron microscope. White light interferometry and stylus 

profilometry were used to determine the surface roughness. X-ray diffractometry was 

used to investigate the crystallinity and phase transformation induced by the laser 

treatment. Micro-hardness was measured using a Vickers micro-hardness indentation 

apparatus. Wear behaviour was investigated using a pin on disk apparatus. Corrosion 

behaviour was evaluated using a potentiostat and an electrochemical cell set-up 

simulating human body conditions. Biocompatibility of the samples was investigated in 

vitro by monitoring NIH/3T3 fibroblast and MC3T3-E1 osteoblast cell growth via MTT 

and Hoechst DNA assays.  

A strong correlation between irradiance, residence time, depth of processing and 

roughness was established in 316L. High depth of altered microstructure and increased 

roughness were linked to higher levels of both irradiance and residence times. At fixed 

energy density, increase in residence time resulted in growth of the melt pool. In the 

melted region, a uniform composition in microstructure with fewer impurities was 

observed. In Ti-6Al-4V alloy, laser treatment resulted in crack-free layers, twenty to 

fifty microns thick. With increase in both irradiance and residence time, surface 

roughness was found to decrease while melt pool depth increased. A martensite 

structure formed on the laser treated region producing acicular αTi nested within the 

aged βTi matrix. The βTi phase volume fraction was reduced by up to 19%. 

Microhardness increased up to 760 HV0.05 which represented a 67% increase compared 

to the bulk material. A homogenous chemical composition of the alloying elements was 

achieved in laser modified regions. Much lower levels of wear were noted in laser 

treated samples compared to untreated samples. Stable passive polarisation behaviour 

and reduction in corrosion rates was noted in treated samples ranging between 86 and 

239 nm yr
-1

 compared to 108 nm yr
-1

 for untreated samples and 309 nm yr
-1

 for grit 

blast samples. Direct contact assays showed that laser treated samples had improved 

cytotoxicity properties compared to their untreated counterparts. 
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  Chapter 1

Introduction 

1.1 Overview 

Average life expectancy of humans in the developed world has seen a huge increase due 

to ever improving availability of medical facilities. Human joints, especially in aged 

persons, are prone to degenerative and inflammatory diseases that result in pain and 

stiffness of joints [1]. Approximately 90% of the population over the age of 40 suffer 

some degree of degenerative joint disease [2]. One in four hundred people receive hip 

replacement surgeries in Ireland and more than 250,000 hip replacements surgeries 

occur annually in the USA [3-5]. The demand of total hip arthroplasty is estimated to 

grow to 572,000 in USA alone by the year 2030 [3]. Approximately 10 to 20% of hip 

replacement surgeries that occur are replacements of failed implants [6]. Operation 

success rate has significantly increased but the lifespan of the implant after operation is 

still lower than required. Typical implant life times of ten years are common leading to 

the same patient having to go through the same procedure several times in their life [5, 

6]. This presents a low quality of life and proves to be costly for both the patient and the 

state [7]. Developing affordable and improved lifelong biomaterial and manufacturing 

technology remains a challenge for material engineers; which is the present focus of this 

study. 

The most common reasons for revision of hip replacement, according to the Canadian 

Joint Replacement Registry (CJRR) in 2004, were loosening of implants, osteolysis, 

implant wear and infection [8]. Causes of implant failure are interrelated; loosening of 

implants is mainly due to infection of surrounding tissue which is caused by release of 

ions and accumulation of tiny particles due to wear and corrosion of the implant [6, 9]. 

The interaction between the implant material and surrounding physiological 

environment is of high importance. Unsatisfactory interaction may lead to either failure 

of the implant to function as it was intended, or have an adverse effect on the patient 

resulting in the rejection of the implant by the surrounding tissue, or both [10]. 

To combat the mechanical degradation leading to early removal of the implant, thus 

extending the life of the implant, laser surface modification was investigated, as 

presented in this thesis, to improve the microstructure, tribological, wear, corrosion and 

biocompatibility properties of 316L stainless steel and Ti-6Al-4V. In this context, the 
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work was mainly focused on high speed laser processing for application on the femoral 

stem and the prosthetic hip bearing head. For biomedical implants different properties 

are required at different locations of the implant which needs to be manufactured at 

reasonably high manufacturing rates. This is the case for the three parts of a typical hip 

replacement, namely, the femoral stem, the femoral head and the acetabular cup. All 

three components require different properties in order to have a good functional 

prosthesis [11]. 

Manufacturing of implants involves a range of factors that are governed by regulatory 

requirements, patient needs, durability cost, dimensions and weight of implants. The 

current manufacturing techniques for hip implants do not allow for custom designing 

for specific patient needs with a rapid turnaround; instead surgeons are forced to adapt 

existing designs to fit the patients’ requirements [12]. An imperative need exists for 

functionally graded hip implants representing a better balance of properties via novel 

high speed laser processing techniques. Even though the work presented mainly focuses 

on hip replacements, the processing technique can be applied to a wide range of 

biomedical implants where improved wear and corrosion resistance are necessary. 

Figure 1-1 highlights different implants in which this technology could be applied.  

 

Figure 1-1: Metallic implants that can be improved  

via laser surface modification [13, 14]. 
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1.2 Statement of Investigation 

Laser surface modification plays a dual role: minimizing the release of metal ions by 

making the surface harder, wear and corrosive resistant, as well as making the surface 

more bioactive and stimulating bone growth due to improvement in wettability and 

lower local surface energies [15]. The aim of this study was to provide for improved 

performance characteristics of biomedical implants thus improving the quality of life of 

their recipients. This study investigated the effects of high speed laser surface 

modification of two common biomedical alloys i.e. 316L Stainless Steel and Ti-6Al-4V. 

The objective was to improve the hardness, wear resistance, corrosion behaviour, and 

bio-compatibility, by transforming the surface microstructure through high speed laser 

treatment.  

Laser melting of material to improve their scope of application has widely been 

investigated for several applications including aerospace, automotive parts and tooling. 

Although this process has been applied to industrial engineering components and alloys, 

very few investigations have been carried out for biomedical implants. The focus of this 

study is on biomedical implants, particularly hip replacements. Previous studies on laser 

processing of biomedical alloys have concentrated on combinations of lower irradiances 

and higher residence times than are currently possible with newer laser systems [16-20]. 

Previous work has demonstrated that higher irradiances and lower residence times 

provide enhanced microstructure and corrosion properties [18, 19, 21]. Most studies of 

laser modification of biomedical alloys presented in the literature are based on low 

speed laser processing and use of alloying elements (e.g. laser nitriding) to improve the 

material properties. 

The present study is not limited to the aforementioned processing parameters. The work 

presented in this thesis provides new insights into the laser surface modification of 

biomedical alloys. The thesis explores the results of both tried and tested methods as 

well as marshalling enhanced techniques for modifying biomedical alloys. The current 

work is separated from other studies due to extensive study of: 

i. High speed laser treatment 

ii. High power densities 

iii. Extremely low exposure times 

iv. Use of cylindrical samples 

v. Micrometre laser spot size resulting 

in high power densities 

vi. Hip replacement application 

vii. Pulsed laser treatment  

viii. Unalloyed laser treatment 

ix. Creation of crack free surfaces 

x. Characterisation including  

biological interactions 
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1.3 Thesis Outline 

The thesis has been laid out in a progressive manner that initially introduces the reader 

to the problem at hand. Background knowledge relating to the subject is then presented, 

followed by the material and methods used in the work. The results from the study are 

the elucidated followed by discussions and conclusions. The contents of each chapter 

are highlighted below: 

Chapter 2 – The aim of the chapter is to introduce the reader to the several subjects the 

thesis encompasses. The chapter reviews the necessary background theory of hip 

replacements, surface engineering, biomaterial and the reasons behind the choice of 

material and processes used in this research. Chapter 2 also reveals previous work 

carried out in this field, highlighting the short-comings that need improvements and 

further study. The chapter focuses on the various laser surface modification techniques 

implemented in literature. The chapter also elucidates a survey of processing parameters 

previously implemented and their effects on surface properties. 

Chapter 3 – The chapter aims on revealing the materials and methods used, and allow 

for experimental repeatability by readers. The chapter outlines the material preparation, 

procedures and design of experiments implemented in this research. 

Chapter 4 – The chapter disseminates results obtained from laser surface melting of 

316L stainless steel. The results are split into two sections Design of Experiments 1 and 

2. Each section analyses the resulting microstructure, meltpool profile, roughness, 

hardness and chemical composition induced by laser surface modification. 

Chapter 5 – Results obtained from laser surface melting of Ti-6Al-4V are elucidated in 

this chapter. The main focus of this research study was on Ti-6Al-4V; therefore each 

section thoroughly investigates the effects of laser surface melting on microstructure, 

melt profile, roughness, hardness, phase transformation, chemical composition, wear, 

corrosion, wettability, cell attachment and cytotoxicity. 

Chapter 6 – The chapter discusses the findings of Ti-6Al-4V results presented in 

chapter 5. 

Chapter 7 – This chapter presents an overall discussion of the study and concludes by 

highlighting the most important findings and recommendations for future research 

work. 
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  Chapter 2

Literature Review 

2.1 Hip Replacement Prosthesis 

Total hip replacement (THR) is one of the most commonly performed orthopaedic 

procedures and has been shown to improve functional status and relieve the pain often 

associated with osteoarthritis, rheumatoid arthritis and traumatic arthritis [7, 22, 23]. 

Figure 2-1 highlights the anatomy of a hip with a typical prosthetic inserted. 

 

 

1. Pelvis 

2. Acetabulum with uncemented prosthesis 

3. Prosthetic femoral head 

4. Neck of femoral prosthesis 

5. Femoral prosthesis within the femur 

Figure 2-1: Hip anatomy with prosthetic implant inserted [24]. 

The hip replacement prosthesis is made up of two main parts, the femoral and 

acetabular components. Earlier hip replacements were made of single-piece femoral and 

acetabular components. Current implant models have adapted the modular design that 

has a separate femoral head. Having separate components allow surgeons to adjust for 

variable leg sizes/offset and also gives them material choice options. The modern 

acetabular component also has two components the metal shell and inner liner which 

can be made of either metal or polymer. Surface modification in this research targets the 

metallic femoral head and stem component, see Figure 2-2. Each region of the femoral 

component has different functions and thus different material properties requirements. 
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Figure 2-2: A typical femoral component of a THR indicating necessary requirements. 

2.1.1 Femoral head 

Femoral head is the part of the femoral component that interfaces with the acetabular 

cup. The modern femoral head has increased in diameter compared to previous deigns, 

typically >38 mm, to increase stability and reduce risks of dislocation [25, 26]. The 

femoral head is typically made of metal. The main requirements of the femoral head 

component include: extremely low roughness, high hardness, high wear and corrosion 

resistant, and non-cytotoxic of released ions/debris.  

The femoral head has to have extremely low average roughness (Ra), typically less than 

26 nm [27, 28]. Low roughness in bearing surfaces is necessary as it reduces the wear 

rate of the surface. High hardness also plays a part in increasing the surfaces wear 

resistance subsequently minimising metal ion release. Aseptic loosening usually occurs 

when wear particles form at the bearing surfaces of the implant due to friction at the 

joint, which induces biological responses and causes osteolysis. These wear particles are 

composed of microscopic grains of bearing material. Wear resistance of the modified 

layer will be assessed to highlight effects of laser melting. Another crucial property is 

that the metal ions released should be non-toxic. Cytotoxicity of released metallic ions 

can affect the surrounding tissue thus leading to the loosening of the implant. Other 

necessary properties crucial in bearing surfaces include: good fracture toughness, yield 

strength and density. These properties are not the focus of this study since conventional 

biomedical alloys used in this research meet the minimum requirements and these 

properties are insignificant contributing factors to the majority of implant removals. 

Femoral head (bearing surface) 

 Polished to reduce wear 

 Must be wear and corrosive resistant 

 High hardness strength and toughness 

Femoral stem (attaching surface) 

 Rough/coated to stimulate bone growth 

 Wear and corrosive resistant 

 Biocompatible and non-cytotoxic 
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2.1.2 Femoral stem 

The femoral stem is part of the prosthesis that fits into the femur (thigh bone). Bone is 

firstly removed from the femur and shaped to fit the dimensions of the stem. The 

fixation can either be cemented or cementless. Cementless implants are used in younger, 

more active, patients while cemented implants are used for older patients where there 

will be less post-operative activity or in cases of reduced bone density. Cemented 

fixations commonly use acrylic cements while cement-less fixations are held in place by 

friction and aid of surface coatings that simulate bone-to-implant bonding. The stem is 

made of metallic alloys mainly titanium based, cobalt chrome alloys and 316L stainless 

steel [29]. 

The main requirements for femoral stems include: excellent osseointegration, high wear 

and corrosion resistance. Osseointegration refers to the direct structural and functional 

connection between living bone and the surface of a load-bearing artificial implant 

without intervening connective tissue. The implant material has to permit bone cells to 

attach and proliferate on the surface without imposing cytotoxic risks. This required that 

the laser treated surface be tested for its ability to permit cells to attach and proliferate. 

Wear accelerated by corrosion also plays a part in the mechanical degradation. This type 

of corrosive degradation can progress little by little for many years on the surface of 

material attaching to the surrounding tissue [13]. Thus, the factors inducing corrosion in 

implants should be examined to improve corrosion resistance of femoral bearing 

surfaces. Other properties necessary in femoral stem requirements include: low elastic 

modulus (close to bone in order to prevent stress shielding), high strength, good fatigue 

resistance and good fracture toughness. 

2.2 Conventional Biomaterials Used in Hip Replacements 

The three main types of material currently being used in hip replacement components 

are ceramics, polymers and metals [30, 31]. Applications of non-metallic biomaterial in 

load bearing systems are limited to some extent due to their inferior mechanical 

properties such as lower fracture toughness in the case of ceramics and lower strength in 

the case of polymers. 

Ceramics are used in bearing surfaces primarily due to their superior wear resistance 

that reduces metal ion release compared to metal alternatives. Ceramics also possess 

high hardness, good biocompatibility, excellent corrosion resistance properties and are 

less difficult to process compared to other material types. The most popular biomedical 

ceramics are alumina (Al2O3) and zirconia (ZrO2) [31, 32]. Alumina is the most 
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common orthopaedic ceramic, usually used in femoral heads in hip replacements and 

wear plates for knee replacements [33]. The main concern related to ceramic implants is 

the limited lifetime due to their inferior fracture toughness and mechanical integrity 

brought about by their brittle nature [31]. This has been evidenced in 2001, by the recall 

of thousands of ceramic femoral heads by their manufacturer -St. Gobain Desmarquest 

[34]. Salts like hydroxyapatite (HA) can be crystallised from calcium phosphate and 

since the mineral phase of bone and teeth closely resemble HA, it has high 

biocompatibility properties. The properties and use of HA as a biomaterial are well 

established and documented [35]. The major drawback of this HA is its poor 

mechanical properties. Its fracture toughness (KIC) is less than 1.2 MPa m
0.5

. On the 

other hand, the fracture toughness of human bone ranges from 2 to 12 MPa m
0.5

. 

Therefore, the application of HA is limited to low load bearing applications, coatings, or 

porous implants [36]. 

Polymers are used as bone biomaterial due to their high corrosion resistance and 

biocompatibility properties. The use of these polymers in total hip replacements is 

restricted due to their insufficient mechanical properties [33]. The most common 

polymers used in orthopaedics include polytetrafluoroethylene (PTFE), polyethylene 

(PE), ultra-high molecular weight polyethylene (UHMWPE) and acrylic. PTFE 

polymers were largely used as acetabular cups in THR until a discovery of their poor 

wear resistance and distortion characteristics. PTFE acetabular cups have since been 

discontinued. PE has widely been used on metallic bearing surfaces in knee and hip 

total joint replacement. However, polyethylene cups created debris due to wear of 

interfacial adhesion between tissues and the implant. This debris is attacked by the 

immune system causing bone loss. Studies have revealed that although polyethylene is 

biologically inert as a whole, microscopic particles released due to wear have a toxic 

effect that may lead to osteolysis if realised in large amounts. This may also lead to 

loosening of the implant. Osteolysis is mainly triggered by polyethylene wear particles 

in the size range of 0.2±0.1 mm which are phagocytosed by macrophages leading to the 

release of inflammatory mediators, or cytokines, which act upon other cells and also 

lead to bone resorption [31, 37, 38]. Since their discovery, polymers made of lactic acid 

became more popular in the medical field due to their high stable structure leading to 

biodegradability. 

The aforementioned concerns with ceramics and polymers have renewed an interest in 

metal-on-metal bearing surfaces on implants, particularly on large contact areas [39, 

40]. Tipper et al. revealed that metal wear particles isolated were an order of magnitude 
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smaller than polyethylene particles. Up to 100-fold more particles were produced per 

unit volume of wear compared to polyethylene [41]. Lower wear rates are critical in 

extending the life of the implant; especially in orthopaedics since most of the revision 

surgeries are now due to wear and loosening of the implants. The primary focus was on 

metals for this study due to: 

i. Concerns with ceramics and polymers, primarily reduced lifetime in ceramics 

and high ion release in polymers. 

ii. Metals can be used in both the femoral head and stem. 

iii. The most successful material combinations for total artificial hip joint 

replacements have been ultra-high molecular weight polyethylene (UHMWPE) 

sliding against metallic counterfaces. 

iv. Laser surface modification of metallic alloys is less complicated and highly 

repeatable compared to laser surface modification of polymers or ceramics. 

v. Surface modification of metals produce more significant microstructural changes 

compared to those seen for polymer and ceramic materials. 

2.3 Metallic Biomaterials 

Some of the desirable properties required in hip replacement include, high 

biocompatibility, excellent mechanical properties like hardness, static and fatigue 

strength, thermal conductivity, low friction and mechanical shock resistance. Metallic 

implants all share these properties making them the most used material type for joint 

replacements [29, 32]. Metals also provide high X-ray imaging visibility which is 

crucial during inspection. Tribological properties like wear and corrosion resistance also 

play a crucial part in joint replacement. The major drawback in metallic implants is that 

electrochemical reactions take place on metallic surfaces in the human body. Metals are 

known to corrode in contact with body fluid environments. Most cells cannot 

metabolise the corroded particles therefore giving rise to harmful infection to the body. 

Improved tribological properties reduce toxic ions from being released in vivo. 

Contamination of ions released from joint replacements is still a major issue that needs 

to be resolved for metallic biomaterials.  

When designing biomedical implants two main categories of properties should be taken 

into consideration; surface properties that affect bio integration and also the bulk 

properties that meet the mechanical requirements. Figure 2-3 shows properties of an 

ideal hard tissue replacement biomaterial. It is considerably difficult to obtain a material 

that can achieve both mechanical and biological property requirements. 
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Figure 2-3: Properties of an ideal hard tissue replacement biomaterial [2] 

The three most dominant metals used in joint replacements are AISI 316L stainless 

steel, cobalt-chrome alloys (Co-Cr) and titanium alloys (Ti-6Al-4V) [29, 31]. A 

comparison of properties of 316L stainless steel, Co-Cr, Ti-6Al-4V alloys and cortical 

bone are listed in Table 2-1. There has also been recent interest in magnesium to be 

used as an orthopaedic biomaterial due to its light weight and mechanical properties 

which are similar to natural bone structure [42]. Magnesium was not examined in this 

work. One drawback of magnesium is its biodegradability nature which makes it 

impractical in load bearing systems. Co based alloys were also not studied in this work. 

One problem that has occurred with Co based alloys is their release of toxic ions which 

recently instigated a recall of the DePuy ASR ® hip replacements [43]. 

Table 2-1: A comparison of the properties of orthopaedic metals to cortical bone [2, 29] 

 316L SS Co-Cr-Mo Ti-6Al-4V Cortical bone 

Modulus of elasticity (GPa) 190 240 110 10 – 16 

Bending strength (MPa) 485 825 900 120 

Hardness (GPa) 235 430 325 - 

Ductility  40 10 12 0 - 2 

2.3.1 316L stainless steel  

Type 302 was the first stainless steel to be used for implant fabrication but was later 

replaced by 316 stainless steel which contains a small percentage of molybdenum for 

improved corrosion resistance. In 1950, 316 stainless steel was further improved by 

reducing the carbon content to a maximum of 0.03 % from 0.08 % to reduce the risk of 

intergranular corrosion attacks [32]. This became known as 316L stainless steel, where 

the “L” stands for low carbon content. Additional molybdenum also enhances corrosion 

pitting in vivo. 316L stainless steel has become the most popular stainless steel used for 

In vitro property: 

a) Non-cytotoxic 

b) Cell adhesion (fibroblast) 

c) Heamocompatibility 

 

Property 

requirements for 

ideal hard tissue 

replacement 
Biological interface 

Bone apposition 

Controlled degradability 

 

E-modulus ≈ 30-80 GPa, 

depending on application. 

Density ≈ 3-4 gm/cc 

Fracture toughness > 3 MPa  

Fracture strength: > 200 MPa 

Hardness: > 4GPa 

Mechanical Properties Biological Properties 
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biomedical implants due to its improved corrosion resistance properties. The American 

Society of Testing Materials (ASTM) also recommends this type of steel in implant 

fabrication [32]. Nickel content in 316L is set at maximum of 17 to 20%. This 

composition is suitable for stabilising the austenitic phase at room temperature and also 

enhance the corrosion resistance. However, large ratios of Ni: Cr concentrations were 

also found to impose allergic infections to the host body [44]. The minimum amount 

required for maintaining the austenitic phase is 10% Ni. Small amounts of silicon are 

present in the steel composition.  Silicon increases the hardness of ferrite, oxidation 

resistance and is an effective deoxidizer. Even with the detailed compositions, it should 

be noted that 316L steel may corrode under certain circumstances in a highly stressed 

and oxygen depleted region. It is therefore crucial to modify the surface of the metal to 

improve the wear resistance, corrosion resistance and fatigue strength of 316L steel 

[32]. 

Figure 2-4 shows the microstructure of 316L stainless steel containing about 0.1 % C by 

weight, alloyed with iron. The steel has two major constituents, which are ferrite and 

pearlite. The light coloured region of the microstructure is the ferrite. The dark regions 

are the pearlite and the grain boundaries between the ferrite grains are visibly clear. 

Pearlite is made up from a fine mixture of ferrite and iron carbide, which can be seen as 

a "wormy" texture [45]. Pearlite is hard and it gives the steel strength. The ferrite is soft 

and it gives the steel ductility and toughness. If the amount of carbon in the steel is 

increased, this increases the amount of pearlite in the steel. This has the effect of 

increasing the strength, but it also decreases the ductility and toughness [46]. 

 

Figure 2-4: 316L stainless steel microstructure containing low carbon content [45]. 
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Small spots within the ferrite grains, visible in Figure 2-4, are inclusions or impurities 

such as oxides and sulphides. The properties of the steel depend upon the 

microstructure. Decreasing the size of the grains improves the strength and decreasing 

the amount of pearlite, increases the ductility and the toughness of the steel [45]. 

Phase diagram: Some mechanical properties of 316L stainless steel are a function of its 

microstructures, and consequently, its thermal history. Phase diagrams are crucial in 

understanding the melting and crystallisation of the alloy. Phases in an alloy can be 

described as homogeneous portions that have uniform physical and chemical 

characteristics [47]. In the case of 316L a binary alloy (Iron-Carbon) phase diagram is 

used to describe the characteristic phase transformations. Figure 2-5 show the iron rich 

portion of the Fe-C phase diagram. Only 0.02% C is present in 316L stainless steel 

therefore only the area along the left vertical axis is considered. 

 

Figure 2-5: The iron-carbon binary phase diagram [47]. 

There are two crystal structure transformations that occur in iron before melting. Stable 

ferrite (α iron) with a BCC crystal structure exists at room temperature. At 

approximately 912 °C, a polymorphic transformation occurs; ferrite becomes an FCC 

austenite (γ iron). At 1394 °C, the austenite reverts to a BCC ferrite (δ iron) structure. 
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The structure is similar to that of α iron except that it is stable at high temperatures. 

When alloyed just with carbon the austenite phase is known to be unstable at 

temperatures below 727 °C. Addition of alloying elements, i.e. in 316L stainless steel, 

stabilised the structure at lower temperatures. Melting finally occurs at approximately 

1538 °C. In iron alloys like 316L SS, carbon is an interstitial impurity which forms solid 

solutions with α and δ ferrites as well as the austenite. Carbon in iron alloys 

significantly influences the mechanical properties of ferrite regardless of the small 

weight percentage (0.2%). The ferrite phases are known to be relatively soft. 

Mechanically, cementite is very hard and brittle, steels with the presence of cementite 

increase in strength.  

It should be noted that addition of other alloying elements (Cr, Ni, Ti, etc.) brings about 

changes in the Fe-C phase diagram. Alloying elements alter the temperature of the 

eutectoid reaction and the relative fraction of pearlite and the pro-eutectoid phase that 

form. The phase transformation shown in Figure 2-5 assumes extremely slow cooling 

rates. Heat treatment for improved hardness properties is extremely difficult at such low 

cooling rates. Laser melting on the other hand can produce extremely high cooling rates, 

10
6
 K/s can be easily achieved. Utilising such high cooling rates to low carbon steels 

can render them amenable to heat treatment. High quenching prevents low temperature 

phase transformations from occurring by only providing a narrow window of time in 

which the reaction is both thermodynamically favourable and kinetically accessible. 

This can allow for reduced crystallinity thereby increasing the mechanical properties 

like hardness and wear resistance. Introducing a martensite structure radically improves 

the steels hardness, this is achieved by rapidly cooling it through the eutectoid point at 

which the austenite is unstable. 

Ion Release: The presence of nickel and chromium in 316L brings about ion release 

which is dangerous for the human body. 316L tends to release Ni ions that provoke 

allergies in some patients [48]. It has been proven that metal ion releases alter cellular 

protein and energy production therefore causing functional deficiencies in the 

macrophage’s ability to direct inflammatory response [49]. To reduce the nickel and 

chromium release some biomedical implant manufactures coat the stainless steel with 

polyamides but these coatings present sites for platelet adhesion and the polymer is 

degraded by wear. It is also possible to oxidise the stainless steel by means of ion 

implantation which has shown better results compared to polyamides coating. However, 

the oxygen is incorporated to a very low depth from the stainless steel surface because 

of the low solubility and difficulty of this chemical reaction with the chromium. This 
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provokes a slight decrease of the ion release [48]. Recent reports have found that oxide 

formation plays a crucial role in ion release of metallic implants. Oxide films formed on 

metallic implants protect the surface from ion release [50, 51]. Hanawa noted that low 

concentrations of dissolved oxygen, the presence of inorganic ions, and the presence of 

protein cells, accelerate the metal ion release. Formation and regeneration of the oxide 

directly control the release rate. 

Heat Treatability: Alloying provides the basis for the heat treatability of steel. While 

iron is the balance element in steel, carbon is the most important alloying element in 

terms of its strengthening effect on iron. The main challenge of laser modifying 

stainless steel for increased hardness is a well-known characteristic that the stainless 

steel does not harden through conventional heat treatment. Since CO2 laser irradiation 

can be considered as a heat source, hypothetically, the same factors affecting heat 

treatability may also apply. However the study of CO2 irradiation is still carried out 

since the exposure time and corresponding melt cooling rate is extremely rapid. One of 

the pre-requisites for hardening through heat treatment is sufficient carbon and alloy 

content, since diffusion rate is based on the differential of concentration. If there is 

sufficient carbon then the steel can be directly hardened through heat treatment, 

typically more than 0.25% C [52, 53], otherwise the surface of the work-piece has to be 

carbon enriched using some diffusion hardening treatment techniques. The carburising 

process occurs by exposing the work-piece to a carbon rich atmosphere at an elevated 

temperature thus allowing diffusion to transfer the carbon atoms into the steel [46]. 

2.3.2 Ti-6Al-4V 

Titanium and its alloys have been used as implant material for various medical 

applications for more than 30 years. Titanium and its alloys are favourable to 

orthopaedic implants due to their high specific strength and fatigue resistance, excellent 

biocompatibility properties, and good corrosion resistance [54-56]. Titanium and its 

alloys are considered the most corrosion resistant of the implant metals presently 

employed, see Figure 2-6. The most widely used titanium alloy is the α+β alloy, Ti-6Al-

4V, because of its high strength and low content of interstitial elements. A relatively 

new α+β alloy, Ti-13Nb-13Zr, uses niobium as β-phase stabiliser, and exhibits an 

interesting low elastic modulus [12]. 



 

2-15 

 

 

Figure 2-6: Metallic materials used in implants and their susceptibility to corrosion [57]. 

The interaction between titanium and body tissues, which allow osseointegration in 

contact with bone, is greatly advantageous over other metallic biomaterials. High 

biocompatibility and corrosion resistance is mainly credited to the ability of titanium to 

develop an oxide layer in contact with body fluids. Several authors have demonstrated 

the high biocompatibility properties of titanium and its alloys [31, 58, 59]. Another 

advantage of titanium is the non-ferromagnetic properties that allow for safe 

examination with magnetic resonance imaging thus making them useful as long term 

implants. Importantly the lower Young’s modulus of titanium alloys compared to steel 

and Co-Cr alloys more closely matches that of bone thus reducing the effects of stress 

shielding. 

A disadvantage of Ti-6Al-4V use arises from the wear and corrosion related release of 

harmful products including aluminium which is related to neurotoxin effects and 

vanadium which is cytotoxic [60, 61]. Release of vanadium ions by the way of passive 

dissolution or another process involving wear can cause discoloration of the 

surrounding tissue or an inflammatory reaction causing pain and even leading to 

loosening owing to osteolysis [62]. Corrosion fatigue triggered by body fluids is another 

factor limiting use of titanium for biomedical implants [63]. Titanium’s corrosive 

resistance properties are credited to a tenacious oxide layer that forms on the surface of 

the metal. Improving the corrosion properties can be done by thickening the oxide, 
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nitriding and laser remelting. Ti-Al-V alloys exhibit very good corrosion resistance, but 

are subject to fretting and wear. Particles of the alloy have been found in surrounding 

tissue; rather than precipitated corrosion products due to uniform or localised corrosion 

[10, 64-66]. 

A common way of fabricating coatings on Ti substrate is plasma spraying of 

hydroxyapatite (HA). However, the long term stability of the plasma spray coated HA is 

currently limited due to occasional failure at the interface between coatings and 

substrate. In addition, the formation of amorphous calcium phosphate phase reduces the 

crystallinity and changes the chemical composition in the coatings. Modification of 

microstructure or composition of the alloy through conventional nitriding techniques 

has already been explored and is known to improve hardness of the material [67]. 

However, this process requires high treatment temperatures and extensive hours of 

processing. Ion implementation is another alternative process. Only a few micrometres 

of microstructure can be altered by this process and long processing times are required 

even for relatively small specimen sizes thus detracting from this option. Oxide 

thickening and nitriding methods have resulted in hard and brittle surface which cracks 

and flakes off easily when force is applied. These drawbacks bring about interest in 

using laser surface modification techniques as an alternative to achieve the improved 

tribological properties. 

Phase diagram: Like most alloys, Ti-6Al-4V mechanical properties of depend on its 

microstructures, and consequently, its thermal history. To show the changes in 

microstructure with temperature variation a Titanium-Aluminum phase diagram is used, 

see Figure 2-7. The binary phase diagram shows the expected phases at equilibrium for 

different combinations of aluminium content In the Ti-Al phase diagram there are two 

allotropic forms of solid titanium: HCP αTi which is stable at room temperature and up 

to 882 °C and BCC βTi which is stable from 882 °C to the melting temperature. In Ti-

6Al-4V, the alloying elements aluminum and vanadium are alpha and beta phase 

stabilisers, respectively. Aluminium is the only common metal that raises the beta 

transus temperature. The metal is miscible in both alpha and beta phase. Vanadium is a 

beta stabiliser that is completely miscible with βTi. Only 6% Al is present in Ti-6Al-4V 

therefore Ti3Al and other phases are not taken into account. It should be noted that the 

phase transformation shown in Figure 2-7 is only for slow cooling rates. Laser melting 

on the other hand can produce extremely high cooling rates therefore the phase diagram 

does not full highlight the resulting phases. 
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Figure 2-7: The titanium-aluminium binary phase diagram [68, 69]. 

Selection of Ti-6Al-4V: Titanium alloys usually have three microstructure categories: α, 

α+β and β alloys. Ti-6Al-4V falls under the α+β category and is mostly widely used due 

to the range of microstructural features that can be achieved via thermo mechanical and 

heat treatments [70, 71]. The α phase is a low temperature phase with a hexagonal 

closed packed (HCP) structure and the β phase is a high temperature phase with a body 

centred cubic (BCC) structure. Heating effects such as occur in weldments, casting and 

laser remelting, of the first eleven alloys listed in Table 2-2, generally result in 

properties (e.g. wear and corrosion) which are similar to the untreated counterparts. This 

is because these alloys contain so little alloy content and second phase that metallurgical 

instability and thermal effects are not significant [72]. Ti-6Al-4V was specifically 

chosen out of the remaining alloys due to its laser heat treatability and well known 

biocompatibility properties. 
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Table 2-2: Various commercial titanium alloys [72]. 

Common Alloy 

Designation 

Nominal Composition, wt% ASTM 

Grade 

Alloy Type 

Grade 1 unalloyed titanium 1 α 

Grade 2 unalloyed titanium 2 α 

Grade 3 unalloyed titanium 3 α 

Grade 4 unalloyed titanium 4 α 

Ti-Pd Ti-0.15Pd 07-Nov α 

Ti-0.05-Pd Ti-0.05Pd 16/17 α 

Ti-Ru Ti-0.1Ru 26/27 α 

Grade 12 Ti-0.3Mo-0.8Ni 12 near α 

Ti-3-2.5 Ti-3Al-2.5V 9 near α 

Ti-3-2.5-Pd Ti-3Al-2.5V-0.05Pd 18 near α 

Ti-3-2.5-Ru Ti-3Al-2.5V-0.1Ru 28 near α 

Ti-6-4 Ti-6Al-4V 5 α+β 

Ti-6-4-ELI Ti-6Al-4V(0.13% O max) 23 α+β 

Ti-6-4-Ru Ti-6Al-4V-0.1Ru (0.13% O max) 29 α+β 

Ti-5-2.5 Ti-5Al-2Sn - α 

Ti-8-1-1 Ti-8Al-1VMo - near α 

Ti-6-2-4-2 Ti-6Al-2Sn-4Zr-2Mo - near α 

Ti-550 Ti-4Al-2Sn-4Mo-0.5Si - α+β 

SP-700 Ti-4.5Al-3V-2Fe-2Mo - α+β 

Ti-6-6-2 Ti-6Al-6V-2Sn-0.6Fe-0.6Cu - α+β 

Ti-6-2-4-6 Ti-6Al-2Sn-4Zr-6Mo - α+β 

Ti-6-22-22 Ti-6Al-2Sn-2Zr-2Cr-2Mo-0.15Si - α+β 

Ti-10-2-3 Ti-10V-2Fe-3Al - near β 

Ti-15-3-3-3 Ti-15V-3Sn-3Cr-3Al - β 

Beta-21S Ti-15Mo-2.7Nb-3Al-0.2Si 21 β 

Ti-3-8-6-44 (Ti Beta-C
TM

) Ti-3Al-8V-6Cr-4Zr-4Mo 19 β 

Ti-13-11-3 Ti-3Al-13V-11Cr - β 

Conventionally pure metals solidify at a single temperature. Alloys on the other hand 

solidify over a temperature range during which they are in the semi-solid state. 

Solidification, from the liquid, proceeds from nucleation to solid growth to a fully 

solidified metal. All industrially important alloys, when solidified from a molten state 

under certain conditions, form dendrites. The size, shape, and orientation of the 

dendrites help determine the mechanical and tribological properties of the metal. 

Solidification in alloys is important in laser surface modification as the nature in which 

the melt pool solidifies influences the resultant alloy’s properties. 

The first stage of solidification is nucleation. Spontaneous nucleation, known as 

homogeneous nucleation, may occur when an alloy is cooled rapidly to a temperature 

well below its equilibrium freezing temperature. Due to the moderate cooling rates 

experienced in most metal solidification processes, a large enough under-cooling for 

homogeneous nucleation does not normally occur. Instead, solidification commonly 
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commences by heterogeneous nucleation in which preferential nucleation sites are 

irregularities such as cracks on mould walls and solid impurities in the molten metal 

[73, 74]. However laser surface modification involves a beam of radiation that is 

focused and has short duration energy input. This establishes a steep thermal gradient 

between the liquid pool and the relatively cold substrate underneath, which acts as a 

heat sink. The thermal gradient of great magnitude coupled with the conduction mode 

of heat transfer can establish a cooling rate as high as 10
11

 K/s. Owing to this high 

cooling rate (almost always >10
3
 K/s), the surface freezes with a non-equilibrium 

microstructure [36, 75]. The rapid cooling rates achieved through laser surface 

engineering also open up the possibility of amorphisation, which is known for many 

metals to have improved wear and corrosion properties. 

In general, laser surface melting which induces extremely high cooling rates, due to low 

volume melt pools and rapid workpiece movement results in a finer grain size and a 

larger number of grains per unit volume. This is desirable within the solidified metal as 

the larger grain boundary surface area effectively blocks the slip of crystal structure 

defects, resulting in better mechanical and tribological properties. An empirical 

relationship between grain size and yield stress (σy) was formalised mathematically by 

Hall and Petch [76], see Equation (1) 

σy = σi + kgdg 
-0.5

 (1) 

where σi represents the overall resistance of the crystal lattice to dislocation movement 

(constant for a particular metal), k measures the relative hardening contribution of the 

grain boundaries (constant for given metal), and dg is the grain diameter. 

2.4 Surface Engineering 

Biomedical implants not only rely on their bulk material properties but also on surface 

characteristics. For example, wear activities that occur depend on the implants surface 

properties, contact area and the environment in which they operate. Enhancement of the 

surface characteristics increases lifespan of the implant. Surface engineering techniques 

are suitable for biomedical implants as only the surface is hardened thus the inner 

substrate remains softer for improved fatigue results. Most commonly practised 

conventional surface engineering techniques like galvanising, diffusion coating and 

nitriding have several disadvantages including [77-80]: 

i. Long processing time, 

ii. High energy and material consumption, 
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iii. Poor precision and flexibility, 

iv. Lack in scope of automation, 

v. Requirement of complex heat treatment schedules, and 

vi. Easy deformation of work-piece being treated. 

Another popular technique, thermal spray coating, has drawbacks mainly due to limited 

bond strength between the coating and substrate and the subsequent lifetime of coating 

[31]. These issues arise mainly due to low coating density, non-uniform coating 

thickness and mismatch of coefficient of thermal expansion [81]. Surface engineering 

methods based on application of electron, ion and laser beams are free from such 

limitations. Laser treatment is more advantageous compared to electron and ion beam 

based processing because electron and ion beams cause the [80]: 

i. Rapid deceleration of high energy electrons generates X-rays which is a 

possible health hazard, and  

ii. Requirement of an expensive ionisation chamber delivery system and ultra-

high vacuum level 

Laser treatment can be free of the aforementioned short-comings. Laser surface 

modification provides precise control over the morphology of processed area and has 

the ability to process complex parts and specific areas of the component without 

affecting the bulk material. Due to the need of high irradiance and low residence times, 

only high power lasers (typically Nd:YAG and CO2) can be used for metallic surface 

modification [82]. 

2.5 Corrosion 

Corrosion of human body metallic implants is critical because it can adversely affect 

biocompatibility and mechanical integrity [83]. The question “Does laser surface 

modification of this biomedical alloy have an effect on its corrosion properties?” is one 

that material engineers need to ask when considering the use of this process with a 

specific alloy for use within the human body. A brief background is discussed in this 

section covering the effects of corrosion and methods used to assess rates of corrosion. 

The human body is a harsh environment for implants due to its high oxygen 

concentration, saline electrolyte conditions of pH 7.15 to 7.35 (it decreases down to 5.2 

during an inflammation reaction [84]) and a temperature of about 37 °C. Chloride 

solutions are known to be aggressive and corrosive to metals, however, ionic 

composition and protein concentration in body fluids complicate the nascent 
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understanding of biomedical corrosion even further. Variations in alloy compositions 

can lead to subtle differences in mechanical, physical, or electrochemical properties. 

However, these differences are minor compared with the potential variability caused by 

differences in fabrication methodology, heat treatment, cold working, and surface 

finishing, where surface treatments are particularly important for corrosion and wear 

properties [10].  

The typical types of corrosion that occur in metallic implants are pitting, crevice, 

galvanic, intergranular, stress-corrosion cracking, corrosion fatigue, and fretting 

corrosion. Surface modification of implants, is considered to be the best solution to 

combat corrosion and to enhance the life span of the implants and longevity of the 

human beings. Tribocorrosion studies are gaining importance in relation to toxicity 

because of the influence of friction or fretting on the local depassivation and release of 

metallic ions [85]. To replicate the real environment as closely as possible, implants 

should be tested in vivo in animal experimentation; but the possibility of monitoring 

electrochemical processes is limited and very complex [57]. In vitro, titanium has been 

proved to have high stability and corrosion resistance [54, 86, 87]. However, there are 

studies that still show metal release and corrosion in vivo, thus requiring surface 

modification of the implant material [88, 89]. 

To accelerate corrosion processes, electrochemical tests are used to directly amplify the 

impact of corrosion processes. This is possible since electrochemical tests use some 

fundamental model of the electrode kinetics associated with corrosion processes to 

quantify corrosion rates. To maintain reproducibility and minimize variables, simulated 

body fluids that contain some combination of amino acids, proteins and ions at the 

proper temperature and pH are often used, simply due to the complexity and often non-

well controlled nature of the vivo system, and the inherent difficulty of reproducing that 

system in the laboratory. This approach is known to yield significant results compared 

to in vivo testing [10]. There are two types of methods used in electrochemical testing. 

These are polarisation and electrochemical impendence spectroscopy (EIS). Polarisation 

measures susceptibility to localized corrosion for corrosion resistant materials. EIS can 

be used to follow actively corroding systems like degradable surfaces. Electrochemical 

corrosion testing also allows for monitoring of the release of toxic ions in the body, 

which is another major issue long before failure occurs [57]. 

It is worth noting that, body fluid consists of inorganic ions (Na
+
, Cl

-
, Ca

2+
, HxPO4 n- 

etc.), therefore the simulated body fluids (SBF) need to be carefully considered. The 

concentration of oxygen depends on the part of body: in the intercellular fluid and 
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arterial blood, it is 1/80 and ¼ respectively. It is two thirds of these values under 

ambient conditions. The kind of cell in the surrounding tissue depends on the part of 

body and varies as time proceeds after implantation. In corrosion testing metallic 

biomaterials are typically evaluated in saline, phosphate buffer saline solution, 

simulated body fluid containing only inorganic ions, and medium with and without the 

addition of serum [13]. Because the type of cells used changes the environment and 

secrete various chemical that have an effect on the corrosion processes, using the 

appropriate SBF is therefore important. 

Pitting corrosion: is a localized form of corrosion by which cavities or "holes" are 

produced in the material. Pitting is considered to be more dangerous than uniform 

corrosion damage because it is more difficult to detect, predict and design against. 

Pitting corrosion of the laser treated material can be compared to the untreated by 

calculating the corrosion rate derived from potentio-dynamic polarisation studies. 

Potentiodynamic polarization is a technique where the potential of the electrode is 

varied at a selected rate by application of a current through the electrolyte. Polarization 

methods involve changing the potential of the working electrode and monitoring the 

current which is produced as a function of time or potential. The three main polarisation 

methods are anodic, cathodic and cyclic polarisation.  

i. Anodic: involves changing the potential in the anode causing the working 

electrode to become the anode and causing electrons to be withdrawn from it 

ii. Cathodic: the working electrode becomes more negative and electrons are 

added to the surface 

iii. Cyclic: both anodic and cathodic polarisations are performed in a cyclic 

manner.  

2.6 Wettability Characteristics 

Events leading to integration of the implant into the bone, which in turn determine the 

performance of the device, take place largely at the tissue-implant interface [90]. The 

ability to promote bone cell anchorage, attachment, spreading and growth is a key factor 

for a successful biomaterial in orthopaedics. It is important that the interface between 

the implant and host tissues do not induce any deleterious effects such as chronic 

inflammatory response or formation of unusual tissue. It is therefore crucial to design 

biomaterials used in implants with the best surface properties that can encourage ideal 

bio-integration. The wetting of a surface to a liquid and the spreading of the liquid are 

very important aspects in surface engineering for biomedical implants.  
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Wettability is the ability of the liquid to spread on a solid surface. Surface energy and 

wetting characteristics can be used as a measure for biocompatibility [91, 92]. Wetting 

measurements are only sensitive to the upper 0.5 nm or so of the surface. Measuring 

surface energies at the interface is crucial for biomedical implants as these energies 

drive important processes such as adsorption and adhesion. When a drop is placed on a 

solid surface under gravity, it has a tendency to spread. Once the cohesion (internal 

forces) of the liquid, the gravity forces and the capillary forces (related to the surface 

tension) are in thermodynamic balance, the equilibrium state is reached and the specific 

contact angle, θ, between the solid surface and the liquid can be measured. The triple 

interface formed between solid, liquid and gas will move in response to the forces 

arising from the three interfacial tensions until an equilibrium position is established 

[93]. Contact angle, θ, is the angle between the solid surface and the tangent of the 

liquid surface, see Figure 2-8. Spreading of the liquid over a solid depends on the 

components of the interfacial tension and is given by Young’s Equation (2). 

                (2) 

where ϒ are the surface tension coefficients of solid, gas and liquid interfaces. This 

theoretical relation is true for smooth and homogeneous solid surface; it does not have 

practical application for rough surfaces. 

 

Figure 2-8: Contact angle (Θ) of a liquid (L) on a solid (S). γLV, is the interfacial energy 

of liquid–vapour interface; γSL, is the interfacial energy of the solid–liquid interface; and  

γSV, is the interfacial energy of the solid–vapour interface [94]. 

The present techniques used to alter a material’s wettability characteristics are often 

complex and difficult to control. Lasers offer high control capability and flexibility. 
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There are numerous publications demonstrating the practicability of employing lasers 

for surface wettability modification [15, 90, 92]. 

Hydrophilic surfaces have good affinity for water and therefore have strong adhesive 

forces, high surface energies and low contact angles. On the other hand hydrophobic 

surfaces are made up of non-polar groups and have large contact angles. Figure 2-9 

demonstrates hydrophilic and hydrophobic surfaces. Measurements of contact angle are 

thus used to gain qualitative information about the chemical nature of the surface. 

Wetting can be determined from the equilibrium contact angle. If θ < 90°, the liquid is 

said to wet the solid and a zero contact angle is known as complete or perfect wetting. 

  

Figure 2-9: Super hydrophilic and super hydrophobic contact angles [95]. 
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2.7 Biocompatibility  

Biocompatibility is the fundamental requirement for choosing a metallic implant 

material; the material has to exhibit nontoxic properties to the surrounding biological 

system. Hip implant biocompatibility problems are most often caused by toxins that 

leach out of the implant material into the surrounding tissues and body fluids. The main 

cause of osteolysis in hip replacements is the release of ions due to metal on metal wear 

in bearing surfaces. To identify and quantitate specific leachable moieties, analytical 

extraction studies are carried out. Extracts are obtained from the material and prepared 

under exaggerated conditions of time and temperature in order to allow a margin of 

safety over normal physiological conditions.  

The tissue culture assays examine the toxicity or irritancy potential of materials at a 

cellular level through the use of isolated cells in vitro. The most important factor in 

testing toxicity is the dose of chemicals delivered to each individual cell [31]. There are 

three ways of performing the cytotoxicity test, namely: direct contact, agar diffusion and 

elution methods. With all three assays the outcome is measured by observing changes in 

the morphology of the cells. The main difference between the assays is the way the cells 

are exposed to the material being tested. 

Direct contact: - This assay involves placing a piece of test material directly onto 

growing culture medium. The cells are incubated at normal body conditions and 

subsequently stained with a cytochemical stain such as haematoxylin blue. Dead cells 

lose their adherence to the culture plate while live cells adhere and are stained by the 

cyto-chemical stain. Therefore toxicity is evaluated by the absence of stained cells on 

the specimen. A disadvantage of this assay is that it is suited for low density materials. 

Agar diffusion: - This method involves placing a contact thickness of agar over the 

culture cells. The test material is then placed on top of the agar layer and subsequently 

incubated at normal body conditions. The agar mixture usually contains a die that 

allows for visualisation of the live healthy cells while dead cells cannot absorb the die 

and therefore remains colourless allowing for toxicity evaluation. Agar diffusion is also 

suitable for high density materials.  

Elution: This method uses extracting media and extraction conditions to test material 

according to actual conditions or to exaggerated conditions. An extract of material is 

usually prepared using sodium chloride or serum free culture medium. The extract is 

placed on a prepared layer of cells and the toxicity is evaluated after incubation at 

normal body conditions. Live and dead cells are distinguished by using histochemical or 
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vital stains thus evaluating the toxicity levels. Table 2-3 lists the advantages and 

disadvantages of these cell culture methods [96]. 

Table 2-3: Advantages and disadvantages of the cell culture methods [96]. 

 Advantages Diadvantages 

Direct contact 

Eliminate extraction preparation 

zone of diffusion. 

Target cell contact material. 

Can extend exposure time by adding 

fresh media. 

Cellular trauma if material moves 

Cellular trauma with dense material 

Decreased cell population with 

highly soluble toxicants 

Agar diffusion 

Eliminate extraction preparation 

zone of diffusion. 

Better concentration gradient of 

toxicant. 

Can test one side of a material 

independent of material density. 

Require flat surfaces 

Solubility of toxicants in agar 

Risk of thermal shock when 

preparing agars overlay 

Limited exposure time 

Risk of absorbing water from agar 

Elusion 

Separation extraction from testing  

Extended exposure time. 

Choice of extract condition. 

Choice of solvents. 

Additional time and steps 
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2.8 Laser Surface Modification 

Laser material processing can be divided into three major classes, namely heating, 

melting and vaporisation. These three classes are determined by power density 

(irradiance) and exposure/interaction time (residence time) as shown by the chart in 

Figure 2-10. Within these classes there are various processes that can be achieved 

through careful selection of the irradiance and residence time. 

 

 

Figure 2-10: Classification of different laser processing techniques [80]. 

This study focuses on the high power density melting regime which requires substantial 

amount of energy to be induced at a very short period of time to trigger microstructure 

and phase transformation. High laser power levels and reliability are crucial, thus 

making CO2 and Nd–YAG lasers the only practical solutions for this type of process 

[80]. Since the focus of this study was within the melting regime, some of the processes 

within this class i.e. glazing, alloying and cladding will be discussed in more detail. 

2.8.1 Laser Glazing 

To date it is well known that decreasing grain sizes into the nanoscale increases 

strength, hardness and tribological properties of both metals and ceramics [2]. An 

amorphous structure has no grains and is known to increase hardness and surface 

properties through elimination of crystalline anisotropy and inter-crystalline defects 

[80]. The term ‘glazing’ refers to the process of being able to make ‘glassy’, to make a 

solid without any crystalline structure [97]. Laser glazing occurs when a beam of 
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sufficient intensity, to create a molten state, is scanned rapidly across a solid. Extremely 

rapid cooling caused by conduction of heat into the bulk material and shallow processed 

area result in major microstructural alteration i.e. freezing of the atoms in a random state 

before they can form crystals. These microstructural changes enable laser glazing to 

produce higher compressive strength, hardness, wear and corrosion resistance properties 

[98]. 

However, laser glazing and the parameters required to produce such a state of 

processing is difficult to distinguish as various authors throughout literature define the 

process differently [97, 99-102]. With the various formats of irradiance and exposure 

time figures presented in literature, it is very difficult to predict a priory the precise 

conditions which promote the formation of glazed surfaces [80, 97, 99, 103]. Figure 

2-11 highlights some of the irradiance versus irradiance time graphs as published by 

different authors. 

 

Figure 2-11: Comparison of perceived glazing process parameters in literature [97, 99]. 

Mahank defined the glazing as a melting process used for surface modification in which 

a thin layer of substrate or coating is melted to remove surface roughness or porosity 

[99]. The author associated the process with a combination of irradiance ranging 

between 2.5 – 7000 kW/cm
2
 and beam interaction time between 0.001 – 10 s. DiMelfi 

et al. [104] used laser glazing to reduce the friction coefficient of rail steel with 

treatments producing up to 100 µm deep glazed surfaces. In their study, a pulsed 1.6 

kW Nd:YAG laser with a 1.06 µm wavelength and 0.2 mm spot size was used. The 1.06 

µm wavelength was particularly used because it eliminates the need for an absorptive 

coating for rail steel. Two beam shapes were exploited, circular and elliptical, with an 

average of 1 kW power being used for each pass. Nitrogen was used as an assist gas 

during their experiments. The laser glazing treatment used on the steel produced micro 
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hardness values of up to 1072 HV, 257% higher than the typical untreated steel. Static 

friction experiments proved that a reduction in friction coefficient of approximately 

40% occurred which corresponded with a calculated reduction in the crack propagation 

rate of 79%. A drawback noted from DiMelfi’s study was that the X-ray diffraction 

scans showed full crystallinity of the glazed layer, therefore the study was inconclusive 

regarding the nature of the glazed layer [104]. In this respect, it can be seen that the 

term laser glazing used in the literature does not generally correspond with the 

production of amorphous material but rather represents a process which uses high 

power density and low surface interaction times.  

Laser glazing typically occurs with a partially focused beam incident on a sample 

moving at high speed, for example, with the sample on a rotating turntable. Speeds of 

several meters per second can be readily achieved. Cases in which such glass structures 

have been confirmed in metals are often of a eutectic composition, such as for the Fe-C-

Si-B and Pd-Cu-Si alloys. However not all eutectic alloys will produce glassy 

structures. Pre-treatment to homogenise the microstructure prior to the glazing pass 

have been used to achieve glassy structures [97]. Most of the confirmed laser glazing 

cases that highlight the presence of amorphous structure are for ceramics [100, 101, 

105]. Ceramics are known to radically reduce in grain size by applying appropriate heat 

treatment regimes therefore validating the possibility of achieving a glazed surface [31]. 

Laser glazing also has the potential to seal heat checks formed on the surface of alloys 

and relax surface stresses [106]. 

Due to the vague definition of laser glazing process in literature, the process parameters 

used in this research can be termed as being within the glazing range. If laser glazing is 

defined by the processing maps given in [80, 97, 99] then the processing parameters 

used in this study are within the glazing umbrella. However, for clarification purposes 

the process used in this study is defined as being laser melting or laser surface 

modification. 

Amorphisation of the metal surface was not sought as a primary goal in this study 

mainly due to the following: 

i. Readily amorphised alloys require compositions, that allow rapid quenching, 

that are not present in biomedical alloys [107-111]. Including these elements 

would change the biocompatibility properties thus making the material usable 

within the body. 

ii. Uncertainty of laser glazing in titanium alloys [110]. Laser glazing of titanium 

alloys is mentioned in two publications Malakondaiah et al. [112] and Ready et 
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al. [97]. However, as discussed in DiMelfi’s study [104], Malakondaiah et al. 

did not prove the amorphous structure by means of XRD or otherwise. Ready et 

al. [97], refers to creation of α martensite as laser glazing. The process of 

creating α martensite was achieved in this study and several other [17, 113, 114] 

and has been proven to be a crystalline structure. 

iii. Metallic glasses are known to be brittle therefore limiting their performance in 

load bearing applications like hip replacement application [115]. 

iv. The area of laser surface modification of biomedical alloy already presents a 

significant large scope for optimisation and investigation. 

2.8.2 Laser Surface Alloying 

Laser surface alloying (LSA) is a surface modification technique which utilises high 

power density available from focused laser sources to melt, externally added, alloying 

elements and the underlying substrate [116, 117]. The process is similar to laser melting 

except that extraneous alloying elements are added to the melt pool, thus changing the 

chemical composition of the surface. The bulk of research carried out on surface 

modification of titanium alloys have been focused on laser alloying. There are two main 

ways used to deposit the alloying element namely: co-deposition and pre-deposition. 

Co-deposition involves direct deposition of the alloying element during laser irradiation. 

The alloying element is deposited mainly in the form of gas [118, 119], powder [120, 

121] or wire [122]. Co-deposition of the alloying element is considered the most 

attractive as it involves a single step processing. This method also offers the significant 

advantage of real time control, over pre-deposition where the alloying element is 

deposited prior to laser irradiation. Gas deposition has been the main technique used for 

laser alloying of biomedical alloys. In previous studies laser nitriding of titanium alloys 

has been thoroughly studied [123-127]. The attractiveness of LSA as compared to 

alternative coating techniques is mainly due to rapid quenching from liquid phase which 

allows formation of extended solid solutions and novel metastable phases with superior 

mechanical and chemical properties. 

Up to 500 µm thicknesses of titanium nitride (TiN) layers have been reported, with 

increased hardness as well as erosion and wear resistance [128]. Laser nitriding of 

titanium alloys is typically conducted with either Nd:YAG or CO2 continuous lasers 

operating at power densities between 10
8 

and 10
11

 W/m
2
 with typical cooling rates of 

between 10
3
 and 10

5
 K/s [124, 129]. The type of gas is also known to affect the 

resulting surface roughness, nitrogen gas results in higher average surface roughness 
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compared to a mixture of nitrogen and argon. Considerable roughness is desired in the 

stem of biomedical hip implants because it improves the bone bonding capabilities 

[130]. The thickness of the processed region greatly depends on nitrogen pressure 

intensity. Smooth processing is attributed to nitrogen pressures above atmospheric 

pressure, however, an increase in nitrogen pressure also results in reduced thickness due 

to the cooling effect imposed by the higher pressures. Continuous wave laser processing 

of energy density, beam diameter, scanning velocity and nitrogen pressure of 5×10
4
 

W/cm
2
, 3 mm, 6 mm/s and 0.4 MPa respectively, easily forms a fine titanium nitrate 

(TiN) compound [131]. 

TiN is extremely hard and is known to be used to improve the substrate's surface 

properties. It hardens and protect surfaces, its non-toxic properties allow for it to be 

used for medical implants as it meets the FDA requirements [132]. To produce the TiN, 

experiments have to be conducted in a nitrogen atmosphere. Ageing treatments increase 

hardness and distribute the TiN uniformly on the treated areas [113]. In laser nitriding, 

up to five fold increases in hardness have been reported on Ti-6Al-4V alloy surface 

compared to substrates of approximately 350 HV [113, 124, 133, 134]. TiN coatings are 

most popular for corrosion resistance in machine tooling, with lifetime improvement 

being increased by a factor of three or more [132, 135]. Formation of α-Ti was observed 

in the heat affected zone (HAZ) with hardness values averaging 450 HV.  

Jiang et al. also investigated the hardness and wear resistance of laser treated Ti-6Al-4V 

alloy with a 3.3 kW continuous laser [136]. The authors reported an increase in both 

parameters and related improvements to laser beam scanning rate. A lower beam scan 

speed resulted in laser surface alloyed composite coating having a higher volume 

fraction of TiN reinforcement due to the longer gaseous nitrogen and liquid interaction 

time. Gyorgy et al. found the presence of TiN in Ti-6Al-4V alloys treated using a 

pulsed Nd:YAG laser in a controlled nitrogen atmosphere [137]. The process of laser 

nitriding can be achieved through the use of either pure nitrogen or a mixture with argon 

or helium. The best wear resistance properties were observed by laser melting in pure 

nitrogen followed by a mixture with argon. Pulsed laser systems allow for high 

repetition rates to be achieved subsequently improving the depth of the processed layer 

[138]. Improved cavitation erosion resistance was also observed and compared to 

untreated samples [139]. 

The main problems still associated with this process are the formation of cracks due to 

high cooling rates and lack of reproducibility. Cracks have been associated with the 

laser scanning speed and nitrogen gas parameters [139]. Investigations carried out by 
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Mridha et al. demonstrated a reduction in number of cracks as the laser scanning speed 

increased [140]. The study also established that nitriding in dilute gas environments 

nitrogen-helium and nitrogen-argon produced a significant reduction of cracks. The 

surface hardness after glazing was dependent on the nitrogen concentration in the 

mixture and was seen to increase with increasing nitrogen content. Formation of less 

dendritic TiN was cited as a contributing factor to lower crack formation. Preheat 

treatment through laser glazing under argon prior to nitriding produced a more uniform 

depth of treatment and reduced cracking effects [127]. In addition to production of 

cracks, laser alloying also introduces foreign alloying elements therefore achieving 

homogeneity and repeatability is very difficult. Homogeneity and repeatability are 

crucial in achieving a quality implant and therefore crucial in the biomedical industry. 

2.8.3 Laser Surface Cladding 

Laser surface cladding (LSC) is a melting process where there is fusion of a substrate 

material with a material of different metallurgical properties. Laser cladding is similar 

to laser surface alloying except the dilution by the substrate is kept at a minimum. 

Normally, processes involving less than 10% dilution are referred to as cladding while 

those with dilutions exceeding 10% are termed as alloying [117]. The cladding process 

offers optimum bonding, great flexibility, low distortion, and low thermal load on the 

work piece together with little need for post cladding treatment [97]. Ni-based alloys are 

the most commonly used material for cladding titanium and its alloys. Ni-based alloys 

are often used due to their good high temperature wear and corrosion resistance 

properties and they are easier to bond to the substrate than other materials [141-143]. 

However, nickel based alloys do not offer good biocompatibility properties due to the 

toxicity of nickel within body environments [44]. 

High hardness coating up to 1000 HV with excellent wear resistance and very low load 

sensitivity properties can be obtained by laser cladding [144]. One of the early works on 

improvements of wear and oxidation properties of titanium was carried out by Hirose et 

al. [145]. They investigated the effects of laser cladding aluminides on CpTi. More 

work on cladding of titanium has been carried out by Guo et al. [146] and Pu et al. 

[147]. Cracking was found in all the laser modified specimens, this raised a cause of 

concern for this laser treatment. Harness levels up to 600 HV have been achieved 

through the formation of TiC, TiB and TiB2 via laser cladding [148]. Recently studies 

on the cladding of Ti-6Al-4V by cobalt to improve corrosion resistance were carried out 

by Majumdar et al. [149]. A significant improvement in microhardness was achieved at 

the interfacial region. Uniform corrosion resistance increases along the graded 
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interfaces were noted, but the pitting corrosion resistance marginally deteriorated. In 

this case, the direct laser clad Co layer showed a better biocompatibility than that of as-

received Ti–6Al–4V sample. 

The main drawback of cladding is that it often produces uncontrollable cracks, which 

result from the very high cooling rate of the melted pool. The process also has poor 

reproducibility. This is due to the complexity in dissolving the material uniformly in the 

melted pool. In an effort to achieve improved coating composition laser cladding uses a 

lower power density, around 10
2
 kW/mm

2
 compared to 10

3 
to 10

4
 kW/mm

2
 for laser 

surface melting. This lower power density not only reduces the relative extent of 

distortion, but also ensures a closer control of the dilution. Laser cladding is also costly 

compared to other laser processing techniques [97, 117].  

2.8.4 Laser Shock Hardening 

There are other laser processing techniques that modify the surface structure like laser 

shock hardening (LSH). The principle of LSH is to use a high intensity laser and 

suitable overlays to generate high pressure shock waves on the surface of the treated 

material. When a material is irradiated with a Q switched pulse laser, operated at power 

density greater than 0.1 GW/cm
2
, a shock wave can be generated on the surface. Surface 

of the treated material can be coated with a black paint before LSH as a laser energy 

absorbing layer. The workpiece is usually covered with a transparent layer (for example 

water or glass). When the laser beam strikes the coated sample, the black paint, due to 

absorption of laser beam energy, is heated and instantaneously vaporized. The vapour 

absorbs the remaining laser beam radiation and produces plasma. The rapidly expanding 

plasma creates a high surface pressure, which propagates into material as a shock wave. 

The shock wave can induce compressive residual stress that penetrates beneath the 

surface and strengthens the surface of the treated material. This effect may induce 

microstructural changes, cause a high increase in dislocation density, influence 

roughness surface of the material as well as introduce a compressive residual stresses 

into the treated surface of the material [150, 151]. The effects of such a process would 

not greatly influence the crucial wear and corrosion properties needed in a biomedical 

implant. Although LSH improves the wear and corrosion properties, the improvements 

are insignificant compared to other laser surface modification techniques. It is because 

of this reason that LSH was not implemented in this study. 
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2.8.5 Laser Surface Melting 

The process used in this research can be best described as laser surface melting. In this 

process the alloy surface is laser melted and rapidly re-solidified without any direct 

addition of other material elements to modify the chemical composition of the surface. 

Vaporization is avoided during this laser treatment and the molten pool solidifies 

rapidly. There is a sequence of events which initiate when the laser beam contacts the 

surface. Firstly, the near surface region rapidly reaches the melting point and then a 

liquid/solid interface starts to move through the alloy. Diffusion of elements follows 

within this liquid phase. At this point the laser pulse is nearly terminated while the 

surface has remained below the vaporization temperature. At this stage the maximum 

melt depth has been attained, inter-diffusion continues, the re-solidified interface 

velocity is momentarily zero. The interface then rapidly moves back to the surface from 

the region of maximum melt depth. Inter-diffusion continues in the liquid, but the re-

solidified metal behind the liquid/solid interface cools so rapidly that solid state 

diffusion is negligible compared to that expected from an equilibrium phase diagram. 

Finally, re-solidification is completed and a surface modified layer has been created. 

Due to the relatively small depth of the melted zone (10 to 1000 micrometres), very 

high quench rates are achieved, in the range of 10
3
 to 10

6
 K/s, resulting in non-

equilibrium martensitic microstructure [152]. The re-solidified alloy has a titanium 

oxide film on the surface, which confers good hardness, wear and corrosion resistance. 

Due to the extremely high thermal gradients, residual stresses can develop which may 

result in distortion of the work-piece. These effects can be overcome by applying a low 

powered surface heating procedure following the laser melting process [152]. 

The advantages of laser melting in surface modification of biomedical implants include: 

i. No foreign material is used that might cause early or stress forced failure. 

ii. Elimination of alien species eliminates the complex material dispensing 

procedure therefore allowing for homogenous surface treatment.  

iii. Less parameters are used, therefore, compared to other laser surface 

modification techniques, the results are repeatability which is crucial in 

biomedical industries. 

iv. Less material and energy are required compared to other laser modification 

techniques resulting in a cheaper process. 

v. Superior corrosion properties result compared to nitriding or cladding [17, 153]. 

vi. Superior biocompatibility can result due to elimination of foreign elements. 

vii. Crack-free modification easily created compared to laser nitriding and cladding. 
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2.9 Parameters Affecting Laser Surface Modification 

The main process variables in the laser surface modification operation are: laser power, 

beam diameter, beam configuration, work-piece velocity, substrate condition 

(roughness, temperature and absorptivity), alloy composition and thermophysical 

properties of the work-piece [80]. In order to obtain the required properties it is crucial 

that the selected interaction time and power density allow the material to undergo the 

desired degree of heating and phase transition. Power density (irradiance) input largely 

determines the maximum temperature attained. Duration of interaction (residence time) 

largely determines the reaction among the phases and the cooling rates. Interfacial 

properties are also strongly attributed to the temperature encountered during treatment 

[36]. The control of these laser processing parameters in this study is important to 

achieve repeatability and optimum microstructure changes on the surface. It should be 

noted that the parameter selection process is complex. For instance, it would be more 

convenient to quantify different laser processing using a singular parameter like energy 

density (J/mm
2
) determined from power density multiplied by time. However, this 

would not define the true outcome of each individual processing parameter as it is the 

specific combination of power and time (rather than their product) which determines the 

resulting thermal and material effect. 

2.9.1 Material Properties 

To achieve any level of hardening in alloys, certain types of microstructure are 

favourable. For example, in steel microstructures a fine pearlitic structure and small 

grain sizes typically provide optimal conditions for laser processing [154-156]. If the 

structure was made up of coarse graphite with large grains of ferrous alloys it would not 

respond as well to laser hardening, preventing the complete transformation from the 

austenitic phase to the martensitic phase. The final hardness of the steel is directly 

related to the quantity of residual austenite or martensite formed during laser hardening. 

Steel alloys can be heat treated down to greater depths than plain carbon steel due to 

their lower thermal conductivity. Research to date suggests that laser treating is the best 

method at inducing the formation of retained martensite due to the extremely low 

quenching times [157]. Laser hardening has also been found to produce surface residual 

compressive stresses which can minimise crack growth leading to higher fatigue limits 

and better wear resistance. Ti-6Al-4V is preferred over other titanium alloys due to its 

laser treatability characteristic [70, 71]. 



 

2-36 

 

Metals are known to reflect the infrared irradiation of the CO2 laser at its 10.6 µm 

wavelength. Surface modification techniques such as sandblasting, machining, etching, 

anodising and coating are known to improve the absorption of metals [80]. Absorption 

of the CO2 laser beam greatly affects the thermal cycles and peak temperature therefore 

all heat transfer calculations on laser material processing require knowledge of the 

beam’s absorptivity. The absorption of infrared radiation by metals largely depends on 

conductive absorption by free electrons and therefore the absorptivity can be calculated 

from the knowledge of the electrical resistivity of the substrate. Arata et al. 

demonstrated that the absorptivity of various polished metallic surfaces is a linear 

function of the square root of the electrical resistivity of the respective metals [158]. Ti-

6Al-4V absorption is estimated to be approximately 0.42 or 42% [16].  

Metals absorptivity to incident laser irradiation depends on the following parameters: 

Wavelength: At shorter wavelength, more energetic photons can be absorbed by a 

greater number of bound electrons and so the reflectivity falls at shorter wavelengths 

and absorptivity of the surface increases as shown in Figure 2-12. Generally, laser 

energy is absorbed by metals better when it is of a short wavelength rather than a long 

wavelength. The absorptivity of (0.694 µm) ruby lasers, for example is over 15% 

greater than absorptivity of (10.6 µm) CO2 lasers for irradiated mechanically polished 

321 stainless steel at 294 K [159]. 

 

Figure 2-12: Absorption of laser radiation wavelength by metals [160]. 

Effects of angle of incidence: At certain angles the surface electrons may be constrained 

from vibrating since to do so would involve leaving the surrounding surface. Thus if the 

electric vector is in the plane of incidence, the vibration of the electron is inclined to 
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interfere with the surface and absorption is thus high. There is a particular angle, the 

“Brewster” angle, at which the angle of reflection is at right angles to the angle of 

refraction. When this occurs it is impossible for the electric vector in the plane of 

incident to be refracted [161]. Effects of high angle absorption and multiple reflections 

due to the angle of incidence are illustrated in Figure 2-13. 

Surface roughness: Absorbance of CO2 irradiation by steel surfaces is known to be 

dependent on surface roughness [99, 158, 162]. Roughness has a large effect on 

absorption due to the multiple reflections in the undulations, see Figure 2-13. There may 

also be some stimulated absorption due to beam interference with sideways reflected 

beams. Provided the roughness is less than the beam wavelength, the radiation will not 

suffer these events and hence will perceive the surface as flat [161]. 

 

Figure 2-13: Effects of angle of incidence and roughness on laser reflectivity [162]. 

Temperature: Clean surfaces of all metals and alloys at room temperature are known to 

be highly reflective to the infrared radiation of CO2 laser thus causing a problem in the 

transfer of energy onto the surface of the metal [80]. As the temperature of the structure 

rises there will be an increase in the phonon population causing more phonon-electron 

energy exchanges. Thus the electrons are more likely to interact with the structure rather 

than oscillate and re-radiate. There is thus a fall in the reflectivity and an increase in the 

absorptivity with a rise in temperature. 

Surface Films: The reflectivity is essentially a surface phenomenon and so surface films 

may have a large effect. The absorption variation for CO2 radiation by the surface oxide 

films at different thickness is shown in Figure 2-14. 
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Figure 2-14: Effect of oxide thickness on absorption of a CO2 laser irradiation [162]. 

2.9.2 Laser Operating Modes 

Both continuous wave (CW) and pulsed mode (PM) lasers may be employed for surface 

modification. In contrast to the continuous wave operation, a pulsed beam offers several 

challenges owing to the higher number of operating variables and the complexity of 

optimising the process parameters. For a given melt profile, surface characteristics and 

other aspects including economy, the operating parameters such as pulse energy, pulse 

width, pulsing frequency, scan rate etc. have to be chosen. This calls for an excellent 

knowledge of the influence of operating parameters on melt profile and an in depth 

understanding of its effect on structure and properties [163]. Compared with continuous 

wave lasers, the high peak power of a single pulse produced by a pulsed laser can 

readily induce higher absorptivity in metals. Short duration times of pulsed lasers mean 

short heating times which therefore contribute to higher cooling rates, subsequent grain 

refinement, and the formation of non-equilibrium phases [164]. Since pulsed lasers 

allow for adjustments of various pulse parameters, they can provide a flexible 

processing window that can be tailored to suit certain microstructures and materials 

[164]. CW operation on the other hand can offer higher depths of processing compared 

to PM as previously seen for example in 316L stainless steel [165].  

There have been very few comparative studies examining the effects of laser operational 

mode on microstructure in the literature. Samant et al. studied the use of CW and PM 

for the surface modification of alumina ceramics [166]. The two processing conditions 

generated two different grain structures. The grains showed facets for CW mode of laser 

operation while they were non-faceted for PM mode. The author observed much higher 

cooling rates for PM (two orders of magnitude) compared to the cooling rates from the 
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CW laser processing. PM also created deeper melts depths due to higher energy 

densities being supplied for shorter periods of time, thus melting more material than 

CW where smaller energy densities were supplied for a longer periods of time. Thus the 

melt depth was shown to be a function of the input energy and the time for which it was 

supplied (residence time) without much direct bearing on the under cooling. Under 

cooling in this case is defined conventionally as being the difference between the 

melting point of the material and the temperature at which the temperature derivative 

with respect to time is zero. 

2.9.3 Laser Power and Irradiance 

The average power of the laser beam, whether it is operating in the continuous mode 

(CW) or pulsed mode (PM), affects the nature and scale of the resultant structures [167]. 

The use of pulsed power allows two more variables to be considered, namely, pulse 

repetition frequency (PRF) and percentage overlap. Penetration of the laser beam is a 

function of power. However, high power settings result in vaporisation and material 

ejection [161]. The power density or irradiance of a laser beam is determined by the 

power of the laser beam used and the diameter of its focal spot (spot size). Also known 

as the laser intensity, irradiance is given by: 

  
 

   
 
  (3) 

where, I is the irradiance (W/mm
2
), P is power (W), and w0 is the radius of the spot size. 

Figure 2-15 illustrates the laser beam profile depending on the focusing. Most of studies 

in the literature focus the beam either below or above the surface to achieve larger beam 

diameters than the focused spot size and hence give the power density required [16, 110, 

153, 168, 169].  

The focused spot size, D, for a Gaussian beam shown in Figure 2-15, can be calculated 

to a good approximation using Equation (4) [170]: 

     
  

   
 (4) 

where d is the beam diameter at the lens inlet, f is the focal length of the lens, and 2wo is 

the spot diameter at the focus, see Figure 2-15. 

The optimal diameter of the beam which contains almost 86 % of the total laser power 

is defined by 1/e
2
 of the peak intensity. A CO2 laser that functions in TEM00 mode 

produces a Gaussian shaped spot as illustrated in Figure 2-16 (a). Generally, the 

intensity along with the material properties gives an indication of the expected rise in 
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temperature in the focal region and consequently indicates the melting intensity of the 

material [171]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-15: Geometry and intensity of the Gaussian laser beam [172]. 

 

 

Figure 2-16: Laser beam modes illustrating (a) TEMoo and (b) TEM01 modes [97]. 

(a) (b) 
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2.9.4 Sample Speed and Residence Time 

The speed of the sample and laser beam spot size is crucial in determining the residence 

time. Residence time can be defined as the amount of time the laser beam is in contact 

with material. For pulsed mode, residence time encompasses the duty cycle, tangential 

speed of the sample and beam diameter. This time is equivalent of exposure time for 

continuous mode lasers and can be calculated as follows [166]: 

  
        

 
 (5) 

Where R is the residence time (s), τ is the pulse width, Ds is the diameter of the spot 

size, PRF is the pulse repetition frequency and υ is the sample scan speed. 

When continuous mode is used the pulse width and repetition frequency are ignored in 

this calculation since the duty cycle is 100% and duty cycle is given be the product of 

pulse width and PRF. 

2.9.5 Overlap percentage 

Overlap is the ratio of the distance between two consecutive laser spots and the diameter 

of the spot. A homogeneous structure is achieved in pulsed laser beams by using 

controlled overlap. Overlap percentage is typically calculated as: 

  (  
  

        
)           (6) 

where O is the overlap percentage, Lp is the length being processed, Ds is the diameter 

of the spot size and N is the number of spots within length Lp. 

 

Figure 2-17: Schematic diagram representing 50% spot overlap. 



 

2-42 

 

The best results for laser processing of Ti-6Al-4V were found from 50% overlap [152, 

173]. Other works found that 30% and 35% overlap produced satisfactory surfaces 

[174]. Overlapping has a large effect on heat build-up on the workpiece, resulting in 

preheating before subsequent tracks [175]. It is therefore crucial that the overlap 

percentage is careful chosen to address these issues. 

2.9.6 Pulse Energy density 

Energy density is the power per unit time per unit area delivered by a single laser pulse 

at the focal spot. Energy density is a more accurate parameter to compare the effect of a 

laser beam with varying pulse durations. Energy density is the product of irradiance and 

residence time and can be calculated as follows: 

       (7) 

where, Ef is the energy density (J/mm
2
), I is the irradiance (W/mm

2
) and R is the 

residence time (s). 

2.10 Effects of Laser Surface Melting on Stainless Steel Properties 

Steels that can be heat treated are typically of high carbon content [97]. AISI 316L 

stainless steel is extremely difficult to heat treat for hardness due to its low carbon 

content. Carbon enrichment methods have to be implemented before heat treatment 

operations. Laroudie et al. published a study on laser surface alloying of 316L stainless 

steel to improve the hardness of the 316L steel surface [176]. The process consists of 

melting the surface of the base alloy with known amounts of pre-deposited materials. In 

particular, the two routes presented were (i) the formation of iron-chromium carbides by 

carbon and SiC incorporation, and (ii) the incorporation of submicron particles of TiC 

and precipitation of titanium carbides. Surface alloying was carried out on polished 

samples using a 300 W continuous wave Nd:YAG laser with argon as a shielding gas to 

prevent oxidation. A circular spot of 950 µm in diameter resulting in a maximum power 

density of 4.11 W/m
2
 was implemented in their research. The quality of the coating was 

noted through high hardness, reduced cracks, and improved homogeneity throughout 

the sample. SiC alloying micro hardness measurements revealed mean values of 

between 500 and 600 HV in the melted area and with absence of cracks on the surface. 

Carbon alloying produced microstructures leading to an average micro hardness of 400 

HV. TiC submicron particles alloying produced crack-free, but a heterogeneous surface 

with a slight increase in micro hardness to about 280 HV. Micro hardness of the surface 

alloy ranged between 350 HV and 700 HV for Ti + SiC alloying. Laurodie et al. thereby 
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showed that 316L austenitic stainless steel can be hardened by laser surface alloying 

[176]. 

The average surface roughness depends on pulse width and pulse period for pulsing 

mode lasers. Pinkerton and Li obtained rougher surfaces using low pulse periods of 20 

ms compared to higher pulse periods of 80 ms [165]. High duty cycles were found to 

produce rougher surfaces due to longer irradiation times. Pulsing mode was found to 

produce better roughness properties compared to continuous mode. Average surface 

roughness Ra of as low as 0.07 μm were achieved with a larger spotsize of 1.7 μm and 

lower irradiance of 198 W/mm
2
. 

Corrosion in 316L can take many forms; the most common identified forms are 

intergranular, pitting, fretting and crevice corrosion. More than 30 years ago, 

heterogeneous intergranular distribution of carbon was observed in surgical grade 316 

to result in intergranular corrosion due to the formation of chromium carbides. This 

resulted in a demand for low carbon content alloys in surgical specifications. The 

introduction of austenitic stainless steel with carbon content, lower than 0.03%, saw a 

reduction in the risk of corrosion attacks of this form. Pitting is the most common form 

of corrosion arising from the breakdown of the passivating oxide film, which can be 

enhanced by the presence of proteins in the tissue fluid and serum [10]. Corrosion 

products due to fretting on 316L immersed in extracellular tissue fluid were found to be 

oxides containing chromic chloride and potassium dichromate as well as variable 

amounts of calcium, chloride, and phosphorous, with nickel and manganese being 

absent, indicating preferential release of these metal ions into the surrounding solution. 

These results indicate that for 316L implant surfaces, nickel and manganese are 

depleted in the oxide film and that the surface oxide composition changes to mostly 

chromium and iron oxide with a small percentage of molybdenum oxide in the human 

body. 316L is highly susceptible to crevice corrosion attack as compared to the other 

implant alloys. Corrosion has been identified on bone plates and screws made of 316L 

at the interface between the screw heads and the countersink [177]. In cases where there 

are galvanic couples arising from the combination of dissimilar metals, such as 316L 

stainless steel and the Co-Cr-M alloy or Ti-6Al-4V alloy, the stainless steel will be 

attacked (galvanic corrosion) therefore these combinations should be avoided. There 

continues to be a debate as to whether stress corrosion cracking takes place in 316L in 

the body. While fractures of this alloy have been found to exhibit the classical stress 

corrosion cracking appearance, in other cases it has been determined that intergranular 

corrosion had weakened the device, thus influencing the fracture. 
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Laser melting of sensitised 316L stainless steel showed significantly increased 

resistance to pitting. This increase was attributed to the elimination of the more reactive 

heterogeneous microstructure by laser melting [178]. Studies on retrieved implants 

show that more than 90% of the failures of 316L stainless steel implants are due to 

pitting and crevice corrosion attack [179]. Hansen et al. [10] suggested that this fact 

alone deems that a better material be used for even temporary implant devices.  

Passivation and pitting-resistance properties were also seen to be enhanced with 

increase in δ-ferrite content in Laser Surface Modified (LSM) samples [180]. 

Possibilities of improving intergranular corrosion (IGC) and intergranular stress 

corrosion cracking (IGSCC) resistance were successfully investigated by melting the 

surface of nitrogen containing 316L stainless steel using a CW CO2 laser [181]. The 

main cause of IGC and IGSCC is formation of M23C6 carbides along the grains 

subsequently leading to depletion of chromium adjacent to these carbides, a process 

referred to as sensitisation. When sensitised microstructure is exposed to corrosive 

solution IGC and IGCC can occur. By using a CW CO2 laser, sensitised microstructure 

can be eliminated. A CO2 laser at 5 kW with a traverse speed of 20 mm/s was used in 

the reported work [177]. Depending upon the temperature profiles, cooling rate, and 

interaction time, continuous M23C6 carbides present in the sensitized specimen 

dissolved. At the interface between the heat-affected zone and the unmelted zone, 

globular particles of M23C6 were discontinuously distributed. Alloy depletion around 

these particles was discontinuous, thus failure due to IGC or IGSCC was seen to be less 

likely [181]. 

2.11 Effects of Laser Surface Melting on Ti-6Al-4V Properties 

Laser surface modification of Ti-6Al-4V has been widely investigated in the literature. 

The bulk of modification techniques carried out are laser nitriding. This section of the 

thesis focuses on the technique examined in the authors work and presented later in this 

thesis, laser surface melting, where an inert gas is used to avoid alloying. Table 2-4 

shows the laser processing parameters from the literature for unalloyed laser melting of 

Ti-6Al-4V. 
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Table 2-4: Processing parameters previously presented in the literature for the laser 

surface modification of Ti-6Al-4V. 

Ref Laser Interpreted parameters 

 Type Power Speed Overlap *Irradiance *Residence Time 

 (W) (mm/s) % (kW/mm
2
) (ms) 

[17] Diode 600-800 1 - 6 25 0.114 583 

[182] Nd:YAG 150 6 - 16.7 20 - 50 - - 

[168] Nd:YAG 500 - 1000 2.5 – 4.2 - 2 190 

[153] Excimer 200 16.7 - .254 59 

[16] Nd:YAG 800-1500 25 15 0.01 140 

[163] Nd:YAG  400 5-25 - 5.6 12 

*Highest irradiance/residence time attained 

2.11.1 Microstructure 

A very common result of irradiation with a scanning beam is single phase 

microstructure that looks featureless through an optical microscope. This single phase 

occurs when various constituents in the solid have dissolved with rapid solidification 

thwarting segregation of the various alloying elements into high and low concentration 

regions. Laser surface melting typically produces a fine α martensite structure with a 

layer of various films, TiO, TiO2 and Ti2O3, which have excellent wear and corrosion 

resistance [20, 183]. The mentioned transformation is the most common in α+β titanium 

alloys during cooling from very high temperatures (>1660 ºC). Since the cooling rates 

of the laser melt pool during solidification is extremely high (10
4
 to 10

10
 K/s), complete 

transformation of α + β to acicular α (transformed β) is reasonable. The creation of 

acicular α-Ti is found to result from these very high cooling rates [16]. 

As bought/received Ti-6Al-4V (grade 5) consists of a mixture of α and β-Ti. The 

relative volume fraction of β-Ti is usually lower than that of α-Ti. Laser surface melting 

is known to lead to an increased volume fraction of acicular α martensite and a 

decreased volume fraction of the β phase in the microstructure [16, 17]. Reduction in 

volume fraction of β-Ti following melting is attributed to the stabilisation of acicular 

martensite in the structure during rapid quenching. This fine, acicular martensite has a 

hexagonal closed packed structure and possesses a high hardness but relatively low 

ductility and toughness [184, 185]. Acicular martensite structure enhances the materials 

wear and corrosion resistance. A decrease in β phase in the microstructure is known to 

improve corrosion properties since pitting attacks mainly target the β phase [71]. 



 

2-46 

 

Laser surface melting has a significant effect on grain structure of Ti-6Al-4V. Extreme 

cooling rates resulting from low residence time reduce the grain size and grain sizes 

have been found to increase with distance from the surface of the treated zone [97]. 

Generally the heat affected zone has a large grain structure compared to the melted zone 

[174]. Singh et al. reported grain growth from 65 µm to 89 µm for an increase in laser 

power from 800 to 1500 W [16]. This grain growth was associated with high 

temperatures which produced larger melt pools and subsequently a slower cool rate. 

Some reports have reported defects on laser melted surfaces [182]. Defects, especially 

cracks have been seen to result from lack of use of an inert assist gas. Ossowska et al. in 

particular used air in their laser melting technique thus producing large cracks on the 

melted surface [182]. The formation of surface cracks is likely to be due to extensive 

oxidation of titanium as it is irradiated in atmospheric air [153]. When argon gas has 

been used at a sufficient flow rate, laser surface melting has been shown to produce 

crack-free surfaces [17, 153].  

2.11.2 Melt Profile 

The depth of processing can influence the service life and final application of the 

component. In coating technology the depth of coating is a very important factor as 

thicker coatings have a chance to delaminate while thinner coatings have a short 

lifetime. The same applies for the laser processed surface where an average layer 

thickness of between 40 µm and 60 µm has been reported to be ideal [2]. Meltpool 

profile depends on various laser processing parameters including laser spot size, power 

and scan speed. Variation of scan speed and power has previously been used to analyse 

their effects on melt layer depth profile. However considering irradiance and residence 

time solely does not give a complete representation of all factors affecting the meltpool 

profile. The product of these two parameters (energy density) assists in gaining further 

understanding of the influences on melt pool depth profile. When the process 

parameters where analysed individually, treated zone depth and width was found to 

decrease with increasing scan rate for Ti6Al-4V [136, 163]. This phenomenon was 

concluded to be a result of a reduced interaction time between the target and the laser 

beam. In samples treated in pulsed mode the width and depth of the treated zone 

increased linearly with increasing pulsing frequency. This was attributed to the 

increased average power deposited with increasing frequency. Kumar found that melt 

pool width and depth increased with increasing pulse energy [163]. The treated depth 

increased from 0.15 mm to 0.75 mm and the treated width increased from 0.85 mm to 

2.35 mm for an increase in pulse energy from 2 to 12 J, see Figure 2-18. As the pulse 
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energy increases both the average and peak power increases, increasing the treated zone 

dimensions. 

 

Figure 2-18: Variations of treated zone width and depth with increasing pulse energy 

 for fixed values of pulse width (5 ms), frequency (30 Hz) and scan rate [163]. 

A mathematical model was developed for the 3-D melt-pool geometry and single-

crystalline melt-pool solidification in laser surface melting [186-188]. The models relate 

power and scan speed to meltpool depth and width. The model was found to match the 

effects mentioned earlier. The model was also found to be in good agreement between 

the predicted and experimentally observed microstructures. Chan et al. also created a 

thermal model to show the effects of conduction and convection on depth and width of 

the meltpool [189]. It was found that the physics of the process can change from 

conduction dominated to convection dominated for large melt pools. This was noted to 

change the pool geometry dramatically, resulting in up to a 150% increase in the aspect 

ratio (width/depth) as compared to the case with only pure conduction taken into 

account. The study done by Chan also highlighted the crucial role of overlap on 

meltpool dimensions and the need to consider it as a parameter. The temperature 

distributions and molten flow within the meltpool were further detailed by Bamberger 

[190]. 

2.11.3 Roughness 

Effects of laser surface modification of roughness have received little interest in the 

literature mainly because many applications require a finishing surface machining 
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operation before service. Roughness greatly depends on the variation of irradiance and 

residence time. Very smooth surfaces have been previously reported in the literature 

[152]. Surface roughness usually arises from the ridges and periodic structure caused by 

the laser pulsing and the movement of the sample during laser treatment. Laser melting 

produces smooth flat islands, surrounded by a wave-like micro-relief. Surface rippling 

or roughness of laser modified Ti-6A-4V is dependent on the viscosity of the melt. 

Morton et al. concluded that waviness is a function of the convectional flow of the melt 

surface and also further noted that it is influenced by the percentage overlap [173]. 

Energy density also plays a crucial role in the resultant roughness. Li et al. showed that 

increased energy density and number of pulses resulted in higher roughness [191]. 

Roughness has a major effect on cell attachment onto the surface. 

2.11.4 Hardness  

Hardness can be described as the measure of the resistance of a material to plastic 

deformation and is dependent on the chemical composition and microstructure of the 

alloy. Hardenability on the other hand is the depth to which the alloy can be hardened 

during a heat treatment such as quenching. The microstructure, in this case, is dependent 

on the severity of quenching. Achieving a rapid cooling rate with laser should produce 

reduced grain size and improve hardness properties. Hardness has a significant 

influence on the wear properties of a material a fact which has resulted in a significant 

amount of research on this point [152, 192]. 

Singh et al. reported an increase in hardness from 254 HV in an untreated sample up to 

297 HV from laser modified surfaces [16]. Other reports in literature have recorded 

micro-hardness improvements up to 510 HV [17, 182]. Typically, hardness reduces 

with distance from the surface. The heat affected region has lower hardness values 

compared to the melted region [193]. Investigations by Biswas et al. revealed that 

uniform hardness can be obtained within the melted region. This study showed a 490 

HV hardness that was consistent throughout the 350 μm treated region [17]. The 

hardness then dropped to 260 HV within the untreated bulk alloy. The improvement in 

micro-hardness of the melt zone was attributed to refinement of microstructure and 

formation of acicular martensite during rapid quenching. The hardness of laser surface-

treated Ti–6Al–4V decreased with increase in laser power [16]. This is in accordance 

with the well-known Hall–Petch relation that defines the increase in hardness with 

decreased grain size [116, 194].  
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Various reports have been published showing the decrease of hardness with increase in 

scan speed [152, 193, 195]. However, from the literature on laser nitrided samples, the 

same result cannot be guaranteed as with laser melted samples. Hamad et al. extensively 

studied the effects of laser nitriding on Ti-6Al-4V and noticed a bell shaped relation 

between hardness and scan speed [125]. Initially as scan speed increased the hardness 

increased. Conversely, at very high speed, with laser nitriding, the hardness reduced for 

further increases in scan speed. It is worth noting that laser nitriding tends to have high 

hardness compared to laser melting in argon [16, 17]. This is due to the formation of the 

hard TiN alloyed layer on the nitride surface.  

2.11.5 Wear Properties 

Titanium alloys are known to have poor fretting fatigue resistance and poor tribological 

properties. Mathematical models have shown that metals with low theoretical tensile 

and shear strengths exhibit higher coefficients of friction than higher strength materials. 

Ti-6Al-4V has a hexagonal close packed structure and has relatively low theoretical 

tensile and shear strength. Consequently, it is expected that it will have high coefficient 

of friction (μ) values, which is the case for titanium sliding against titanium in air is μ = 

6 [196]. Lower strength materials also show greater material transfer to non-material 

counter-faces, than higher strength materials. The great affinity of titanium for oxygen 

leads to the formation of oxide which is transferred and adheres to non-metallic 

materials, such as polymers, resulting in severe adhesive wear. Surface modification is 

therefore required to increase near surface strength, thereby reducing μ and lowering the 

tendency for transfer of material and adhesive wear [197]. 

Yerramareddy and Bahadur were among the first to study both sliding wear and 

abrasive wear of titanium alloys following laser surface modification [138]. They 

assessed the wear following surface melting in an argon atmosphere with nitriding and 

nickel alloying. Sliding wear tests were undertaken using a block-on-ring configuration 

in dry conditions, with the titanium alloy sliding against a tool steel. The steady state 

wear rate decreased from 40×10
-4

 mm
3
/m to 0.8 x 10

-4
 mm

3
/N m after Ni alloying, to 

0.5×10
-4

 mm
3
/N m after surface melting, and to the lowest wear rate of 0.3×10

-4
 mm

3
/N 

m, following laser nitriding. The as-received value of μ was reduced from 0.62 to 0.43 

for all the laser treated specimens. The study showed that laser surface melting can be 

used to enhance the wear properties of Ti-6Al-4V.  

Biswas et al. [198] and Singh et al. [16] laser treated Ti-6Al-4V to improved wear and 

corrosion properties for bio-implant applications.  Generally the wear rate increased 

with an increase in power. Singh et al. attributed the reduction in wear rate of treated 
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samples to the modifications in microstructure, hardness, grain size and alteration of the 

electrochemical response of the modified surface. 

2.11.6 Corrosion Resistance 

Ti-6Al-4V is considered to be highly corrosive resistant. However, corrosion can still 

occur especially when the passivation layer is damaged by fretting of a loosened 

implant and/or a change in pH value occurs due to wounds or infection [199]. Gilbert, et 

al. reported that approximately 16% to 35% of 148 retrieved total hip implants showed 

signs of moderate to severe corrosive attack in the head-neck taper connection [200]. 

Improvements in corrosion potential and primary potential for pit formation compared 

to the as-received Ti-6Al-4V have been observed in the literature [17]. Biswas et al. 

[17] and Yue et al. [153] reported better corrosion properties in laser melting surfaces 

compared laser nitrided surfaces. Corrosion potential values for laser surface modified 

sample shifts significantly towards the nobler direction after treatment. Shifting of the 

corrosion potential was attributed to formation of acicular martensite and a reduction in 

βTi volume phase. Unlike the untreated specimen, LSM samples were not seen to 

passivate over the current range of 10
-6

 to 10
-5

 A/cm
2
 [16, 17, 153, 168]. Pitting 

potentials reduced in laser melted samples compared to the untreated samples [16]. 

Singh et al. reported pitting potentials of 2.4 V and <1.8 V in laser treated and untreated 

samples, respectively [16]. However, when the laser treated samples were polished the 

pitting potential was greater than 2.4 V and highest corrosion resistance was noted from 

processing at 800 W. 

Re-distribution of alloying elements within the treated titanium alloys improved pitting 

corrosion resistance. Geetha et al. found improved corrosion resistance of laser nitrided 

samples in a simulated body environment using potentio-dynamic polarisation [130]. 

These results also indicated pitting potential increase by 200 mV for the laser treated 

surface. Studies carried out using excimer lasers showed significant increase in pitting 

potential of the Ti alloy when the material was treated in argon gas [18]. Up to a seven-

fold reduction in corrosion current was obtained when the material was treated in 

nitrogen gas. The improvements were credited to the reduction of the solute partitioning 

effect of detrimental aluminium segregation from α phase [18]. 

Zaveri et al. studied treated Ti–6Al–4V alloy with pulsed-wave Nd:YAG laser under 

various conditions to obtain a surface oxide layer for improved corrosion resistance 

[168]. Corrosion resistance studies were carried out in three different simulated bio-

fluids (SBFs), namely, NaCl solution, Hank’s solution, and Cigada solution. Tafel 

analysis showed that the laser-treated Ti–6Al–4V were more corrosion resistant than the 
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bare specimens in any of the above SBFs [168]. Langlade et al. used a Nd:YAG laser to 

study the oxidising Ti-6Al-4V [20]. Stratified layers giving different coloured films 

were related to oxide thicknesses and oxide compositions. It was noted that titanium 

oxides may exhibit a solid lubricant effect, while the oxygen dissolved in the titanium 

matrix had a hardening effect.  

The reduced pitting corrosion provided by surface melting is possibly because of partial 

suppression of β phase formation in the microstructure and the change in morphology 

from granular to acicular [17, 153]. Yue et al. attributed corrosion enhancement to the 

presence of the transformed Ti martensitic structure in the laser-modified layer [153]. 

The poor corrosion resistance of untreated Ti–6Al–4V can also be attributed to the local 

enrichment of aluminium (α stabilizer) and the formation of a galvanic cell between the 

two different phases α and β. Partitioning of aluminium from α-phase during 

electrochemical corrosion is the primary mechanism of degradation of the aluminium 

containing Ti-alloys, whereas, acicular α in laser treated Ti-6Al-4V lacks this portioning 

effect [16]. 

2.11.7 Interfacial and Biocompatibility Properties 

Bandyopadhyay et al. has shown that the laser processing does not have a negative 

effect of inherent biocompatibility of the materials used to fabricate the structures [114]. 

Laser surface modification produces minimal contamination compared to conventional 

surface modification techniques, thus it can help improve osseointegration [90, 201, 

202]. The highest implant stability can be achieved by complete osseointegration of a 

large implant surface. 

Several publications have shown that roughness and wettability produced by laser 

modification plays a vital role in biocompatibility properties [202-207]. Hao et al. 

showed that improved surface roughness, surface oxygen content and surface energy 

generated by laser treatment accounted for the better wettability characteristics of the 

material and enhancement of the adhesion with the biological liquids used. Although 

surface roughness played a role on the osteoblast response, the authors reported that 

wettability characteristics were the chief mechanism governing the osteoblast response 

[207]. 

An investigation of initial cell spreading and adhesion on longitudinally and 

transversally oriented micro-grooves produced by the laser irradiation of Ti-6Al-4V 

surfaces was carried out by J. Chen et al. [208]. Samples were polished and laser 

treated. Human osteosarcoma (HOS) cells, common bone cancer cells, were cultured at 

periods ranging from 15 minutes to 24 hours with immuno-fluorescence staining of 
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adhered proteins (actin and vinculin) being used to study the spreading and adhesion of 

the cells. Enzymatic detachment tests were carried out to quantify the adhesion of cells. 

Results of the experiment showed that cell spreading and adhesion were enhanced by 

the longitudinally and transversally oriented micro-grooves. Contact guidance was 

found to promote cell adhesion due to the increase in interactions between the focal 

adhesions and the patterned extra-cellular matrix (ECM) proteins on the laser micro-

grooved surfaces [208]. 

Grizon et al. found that rougher titanium implants have stronger bone response 

compared to smoother implants after a long term implantation [407]. A study conducted 

by Wennerberg et al. reported the optimal surface for biomedical implants shows wave 

structures with an average wavelength of 11.6 µm and height deviations of 1.4 µm [201, 

209]. The structure of the surface of titanium implants dictates the success for the 

subsequent healing process. It is primarily the microscopic structure of the implant 

surface that is responsible for bone apposition to the implant [201]. Surface treatment of 

implant material has been proven to influence the attachment of cells [202, 210-213]. 

2.12 Study Focus and Objectives 

The vast majority of laser surface modifications for improved Ti-6Al-4V found in 

literature are on the topic of laser surface nitriding. Nitriding is an alloying process 

which has limited applications in bio-implants due to non-homogeneity of the surface 

properties, crack development on the surface and difficulty in reproducibility. Laser 

surface melting has a great potential as it is does not suffer from the same limitations as 

alternate processes. For bio-implants, laser surface melting provides (relative to other 

processes) very low contamination, easy elimination of cracks, and the ability to easily 

achieve uniform and repeatable surface properties. However, the limited laser melting 

studies conducted in previous work have mainly focused on low scan speeds and the use 

of a large spot-size for the laser treatments. These previous works therefore have been 

restricted to high residence times and low irradiance, which in essence produce lower 

cooling rates than would be required to achieve finer surface structures with enhanced 

properties. None of the work reviewed in the literature followed a design of experiments 

approach so it is difficult to gain a full understanding of the process even within the 

parameter ranges that have been investigated to date. Studies reviewed in the literature 

only relate processing parameters to one individual response without cross-relating 

between multiple measured properties achieved by laser melting. This makes process 

mapping considerable challenging. 
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In this work, design of experiments was used to provide a detailed understanding of the 

effects of processing parameters on resulting surface properties. This work presents a 

comprehensive study of high speed laser surface melting of commercially available 

316L stainless steel and Ti-6Al-4V for biomedical applications. The work in particular 

investigates the possibility of implementing extremely high irradiance and low 

residence times in order to improve the alloys’ microstructure, tribological and 

biocompatibility properties. The aims can be summarised as follows: 

i. Implementing design of experiments to study the effects of CO2 laser processing 

parameters on surface properties relating to biomedical applications 

ii. Investigate in particular the use of high irradiances and low residence times with a 

view to producing a surface which has a combination of properties required for 

biomedical implants, including a surface which is chemically homogenous, has 

low corrosion potential, low wear, high hardness, high degree of biocompatibility, 

good melt pool depth, roughness appropriate for various biomedical applications, 

and a low induced surface stress. 

iii. To provide a laser treatment process to enhance the life time of a currently used 

biomaterials to avoid the need for new biomaterial development as well as process 

development. 

iv. Microstructure analysis – study of the resulting topography and cross-sectional 

microstructures induced by laser treatment. 

v. Meltpool profile – characterising the melt pool profile induced by laser treatment. 

vi. Roughness – study of effects of laser process parameters on roughness. 

vii. Hardness analysis – investigate the effects of laser processing on hardness and 

resulting hardness distributions within the treated surface. 

viii. X-ray diffraction analysis – phase distribution in treated samples and effects of 

irradiance and residence time on residual strain/stress. 

ix. Chemical composition analysis – variation in chemical elements within the treated 

samples. 

x. Wear – investigating the wear mechanism in laser treated samples and difference 

compared to untreated samples. 

xi. Corrosion resistance – study the corrosion behaviour and rates of the untreated 

and treated samples. 

xii. Biocompatibility – In this study, screening tests were used to test biocompatibility 

of the laser treated samples. Since the material being used for this research is 
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already being used for hip replacement implants the biocompatibility tests were 

used to evaluate the performance of the laser treated alloys relative to the 

untreated alloy. In this research the biocompatibility of the material was 

investigated using analytical chemistry (in vitro) techniques [31]. 
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  Chapter 3

Materials and Methods 

This chapter covers the materials and methods used in this research. This chapter 

presents details on the experimental work carried out and necessary information to 

replicate the work as needed. The majority of methods were similar for both sets of 

materials i.e. 316L stainless steel and Ti-6Al-4V. The sections in this chapter, therefore, 

refer to both sets of materials unless otherwise stated. 

3.1 Sample Preparation 

In order to achieve very low exposure times, high sample speeds needed to be 

implemented. Previous studies have shown that extreme temperature gradients can be 

attained by using rotating cylindrical samples at high speeds [97]. For 316L stainless 

steel, the work-pieces used in this work were cylindrical sections 120 mm long and 10 

mm in diameter. The composition of the as-received AISI 316L austenitic stainless 

steel, is given in Table 3-1. The material was manufactured and supplied by Acciaierie 

Valbruna Stainless Steel Supplier, Italy (see Appendix A). 

Table 3-1: Elemental chemical composition of AISI 316L stainless steel (weight %). 

Element Cr Ni Mo Mn Si Co N S P C Fe 

wt% 16.82 10.14 2.03 1.51 0.55 0.08 0.061 0.03 0.03 0.02 Bal. 

Cylindrical samples were not used for testing Ti-6Al-4V as this would have made it 

very difficult to perform the required wear, corrosion, XRD and biocompatibility 

testing. Flat samples were used for laser surface modification of Ti-6Al-4V; work-

pieces were 120 mm long, 20 mm wide and 4 mm thick. The as-received Ti-6Al-4V 

was previously annealed at 704°C for 2 hours and subsequently ground using a centre-

less grinder tool by the supplier, Super Alloys International Limited - Milton Keynes 

UK (see Appendix A). Composition of the as-received alloy is listed in Table 3-2. 

Table 3-2: Elemental chemical composition of Ti-6Al-4V (weight %). 

Element C Si Fe O V Al Ti 

wt% 0.14 0.01 0.16 0.17 3.97 6.36 Bal. 

The terms work-piece, sample and specimen which are used in this thesis are defined as 

illustrated in Figure 3-1. 
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Figure 3-1: Illustration of the Ti-6Al-4V work-piece,  

specimen and sample, as used in this thesis. 

3.1.1 Surface Pre-treatments 

316L stainless steel work-pieces were machined and in some cases etched prior to laser 

treatment, to improve the CO2 laser wavelength absorption. Chemical etching was 

carried out by immersing the work-pieces in glyceregia for 10 minutes before laser 

treatment. Glyceregia is a chemical etchant made up of 10 ml HNO3, 20-50 ml HCl and 

30 ml glycerol. Etchant preparation and application was carried out under fume hood 

ventilation. Glyceregia reacts with 316L stainless steel, darkening the metal for better 

10.6 μm wavelength absorption. Roughening is another well-known technique for 

improving laser wavelength absorption as explained in section 2.9.1. Roughening of 

316L SS samples was achieved by machining the surface using a Computer Numerical 

Controlled (CNC) turning machine to produce 2.90 ± 0.2 μm average surface 

roughness. Ti-6Al-4V samples were grit blasted before treatment. Parameters of grit 

blasting procedure are outlined in Table 3-3. 

Table 3-3: Grit blasting parameters used for Ti-6Al-4V samples. 

Machinery Distance Pressure Angle Type of Particles Shape Size  

Guyson F 

1400® 

100 mm 

 

8 bar ~45° Soda lime  

glass* 

Spherical 

and smooth 

106-212 

µm 

*Chemically inert Honite® Grade 13 [214] 

There are two main reasons for grit blasting the samples: 

i. Grit blasting removes surface contaminants from the titanium workpiece. 

Imperfections on the surface are eliminated when small inert particles are 

launched at high velocities. Eliminating imperfections is also desirable in laser 

processing for even surface processing. 

2
0
 m

m
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ii. Grit blasting is also known to improve absorption of the CO2 laser by creating a 

non-reflective surface [75, 162]. 

 

After grit blasting the work-piece still had tightly adhering particles embedded onto the 

surfaces. These contaminants were composed of insoluble particles loosely attached and 

held in place by ionic or cohesive forces. These particles needed only be displaced 

sufficiently to break the attractive forces in order to be removed. All work-pieces were 

ultrasonically cleaned for 10 minutes in filtered clean de-ionised water. This ultrasonic 

cleaning is less aggressive cleaning, compared to other chemical cleaning methods, 

which therefore does not affect the composition of the substrate [215]. 

3.2 Laser Instrumentation and Experimental Set-up 

Laser treatment of the samples was carried out using a, Rofin DC015 slab CO2 laser. 

This CO2 laser system was utilised in this study due to its versatility, high unsaturated 

gain and mostly high-power output capabilities [161, 216]. The laser has a maximum 

power output of 1.5 kW in the far infrared region (10.6 µm wavelength). Both pulsing 

mode and continuous wave laser operation were implemented, depending on the DOE. 

All experiments were carried out with the laser beam focused on the work-piece surface 

providing a Gaussian laser spot size of 90 μm. Minimal laser beam spot size was used 

for high cooling rates during processing. Table 3-4 gives a summary of the CO2 laser 

system implemented in this investigation. 

Table 3-4: CO2 laser system specifications used in this work. 

Laser system specifications 

Active medium Carbon Dioxide 

Output wavelength 10.6 µm 

Peak power capacity 1.5 kW 

Operation mode Pulsed/Continuous 

PRF range 2 – 5000 Hz 

Pulse width range 26 µs – 125 ms 

Laser beam specification 

Spatial mode TEM00 

Beam quality factor, K >0.9 

Beam propagation parameter, M
2
 1.11 
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Argon was used as an assist gas with three crucial functions in laser surface melting: 

i. Shielding the melt pool thus avoiding oxidation during laser processing 

ii. Preventing small ablated particles from back-spattering into the nozzle and 

possibly damaging the laser optics 

iii. Aids the cooling process thus allowing for even higher cooling rates  

 

The laser was controlled from the main Rofin laser control unit provided. The main unit 

facilitates control of laser beam peak power, duty cycle, and pulse repetition frequency. 

Figure 3-2 shows the CO2 laser system used in this study.  

 

Figure 3-2: Rofin CO2 laser system and gas pumping unit, showing  

the processing of a cylindrical sample 10 mm in diameter. 

The control console shown in Figure 3-2 was used to position the stage, control the 

table motion during processing and gas delivery through the nozzle. The laser came 

equipped with a MTI 0505 Scientific Motion System (positioning stage). This motion 

system, shown in Figure 3-2, consisted of a machining table that provided XY cutting 

area of 50 × 50 cm. The motion resolution provided via the optical rotary encoders was 

1.25 µm. The XY positioning speed was controllable from 1 to 5000 mm/min, and the 

acceleration at the beginning of the motion could be as high as 2 m/s
2
. The laser beam 

was focused onto the moving samples via a 127 mm (5 inch) focal-length lens which 

was part of the nozzle assembly. The nozzle assembly was guided by vertical linear 

variable displacement transducers (LVDT) which provided 150 mm of vertical height or 

focal position adjustment capability [170]. 
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3.2.1 Laser Processing of Cylindrical Work-pieces 

Cylindrical work-pieces, 10 mm in diameter, were rotated using a DC motor attached to 

the positioning stage. The DC motor was capable of reaching speeds up to 2500 rpm. 

Figure 3-3 shows a schematic of the laser modification process. The laser beam was 

kept perpendicular to the work-piece during laser irradiation to maximise the 

absorbance and ensure uniform conditions for processing [99]. Tangential and linear 

velocities were varied using the control console depending on the pulse repetition 

frequency being used. The tangential and linear velocities also determined the resultant 

laser spot overlap. The calculation method used for overlap percentage determination is 

detailed in section 2.9.5. Specimens of 10 mm length along the bar were processes with 

different processing parameters according to the DOEs for subsequent characterisation 

as outlined below. 

 

Figure 3-3: Schematic of the laser processing set-up for a cylindrical sample. 

Spot diameter (z) on the sample surface could be controlled through setting the sample 

distance from focal plane of the Gaussian beam. Equation (8) was used to calculate the 

focus distance, see section 2.9.3 for more details.  

       [  (
   

    
 
)
 

]

 
 ⁄

 (8) 

where the beam radius along the propagation line, w(z) was 45 µm, initial beam radius 

at the focus, wo was 45 µm, and the wavelength of the CO2 laser, λ is 10.6 µm. All 

experiments were conducted with the laser beam focused on the surface of the work-

piece. 
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3.2.2 Laser Processing of Planar Work-pieces 

Laser processing of planar samples was performed in a raster scan fashion. Figure 3-4 

shows the cross sectional side view of the equipment and the planar view of the raster 

scan path for the laser treatment process. The starting and ending points for each run 

were carefully chosen to allow the laser to accelerate to constant velocity before the 

laser beam interacted with the sample surface; more details on this are available in 

Appendix B. Specimens of 15 mm length along the flat workpiece and 20 mm width 

across workpiece were processed according to the DOE for subsequent characterisation 

as outlined below. 

 

 

 

 

 

 

Figure 3-4: Schematic of the (a) cross sectional side view of the equipment and (b) the 

planar view of the raster scan path for the laser treatment process. 

3.3 Metallography 

The material microstructure can be thought of as its fingerprint and is directly related to 

the material properties and performance. In order to study the material microstructure a 

series of surface preparation techniques have to be done. The necessary surface 

preparation processes are detailed in the following sections.  

3.3.1 Sectioning of the Work-piece 

Sectioning was performed using the Delta AbrasiMet ® abrasive cutter. A SiC cut-off 

wheel at 3800 rpm, in continuous flowing coolant, was used to avoid deformation and 

overheating during sectioning. 

3.3.2 Mounting of the Sectioned Sample 

Samples were encapsulated or mounted to protect the sample material and also to 

produce a uniform dimensionally stable size for subsequent automatic grinding and 

20 mm

55 mm
E

n
d

 r
u

n

Laser spot

Work-piece

Laser Path

(a) (b) 
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polishing operations. Compression hot mounting was implemented in this study. 

Bakelite™ thermoset phenolic mounting material was used in a SimpliMet® 2000 

mounting press. Thermosetting phenolic mounting material was chosen because once 

set it remains rigid even when subjected to heat. Curing was carried out at 180 °C for 8 

minutes. The encapsulated samples were then cooled for 4 minutes. 

3.3.3 Grinding and Polishing of the Mounted Sample 

During the metallographic preparation of the treated region, damage can be induced to 

the sample. Sectioning of the specimen can cause localized cracking. As a result, the 

plane of evaluation must be at a point beyond this induced damage. This initial step, 

designed to quickly remove material, is referred to as planar grinding. The samples were 

ground on successive grades of silicon carbide paper using water to keep the specimen 

cool and flush away loose particles of metal and abrasive. Final polishing was carried 

out using a microcloth and alumina or diamond suspension. Both grinding and polishing 

were done using Buehler Motopol® 2000 automatic grinder/polisher machine. Table 

3-5 highlights the grinding and polishing parameter used for both 316L SS and Ti-6Al-

4V. 

3.3.4 Etching 

In order to reveal information such as grain boundaries and phases of the material, the 

samples where chemically etched. Grinding and polishing produces a highly deformed, 

thin layer on the surface which is removed chemically during etching. Etchants attack 

the surface with preference for those sites with the highest energy, leading to surface 

relief which allows different crystal orientations, grain boundaries, precipitates, phases 

and defects to be distinguished in reflective light. 316L stainless steel was etched by 

exposing the surface to be characterised in glyceregia for approximately 1 minute [217]. 

The higher HCl content in glyceregia reduces pitting tendency, attacks σ phase and 

outlines carbides. Glyceregia was always used while fresh and discarded when it turned 

orange in colour. Micro-etching of Ti-6Al-4V was carried out by immersion in Kroll’s 

reagent for one and a half minutes. Composition of the etchant being: 92 ml distilled 

water H2O, 6 ml nitric acid HNO3, and 2ml hydrofluoric acid HF [218].  
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Table 3-5: Grinding and polishing parameters for 316L SS and Ti-6Al-4V [219] 

Process Surface Abrasive Lubri-

cation 

Time 

(min) 

Base 

Speed 

(rpm) 

Head 

speed/ 

direction 

Force 

(N) 

316L SS 

Planar 

grinding 

SiC 

 

240-, 600- 

1200-grit  

H2O Until 

Plane 

200 120/ 

Comp.
*
 

5 

Sample 

integrity 

Ultra Pad 6 um  

Diamond  

suspension 

- 4 150 120/ 

Comp. 

5 

Acetate Silk 1 um  

Diamond  

suspension 

- 4 150 120/ 

Comp. 

5 

Final 

polish 

Chemomet 0.0 5 um 

Alumina 

suspension 

- 2 150 60/ 

Comp. 

5 

Ti-6Al-4V 

Planar 

grinding 

SiC 

 

320-grit 

(P400) 

H2O Until 

Plane 

240 - 300 60/ Contra 20 

 

Sample 

integrity 

UltraPol™ 

PSA 

Silk Cloth 

9 um  

Diamond  

suspension 

- 10 120 -150 60/ 

Contra 

20 

Final 

polish 

MicroCloth® 

or Veltex 

cloths 

0.0 6 um 

Alumina 

suspension 

- 10 120 -150 60/ 

Contra 

20 

*Comp. = Complementary (platen and specimen holder both rotate in the same direction while contra is in the 

opposite direction) 

3.4 Design of Experiments (DOE) 

A DOE approach was taken in this study in order to systematically evaluate the effects 

of processing parameters on resultant surface properties. Design Expert 8, DOE 

software, was implemented in this research. The software was supplied by State Ease 

and has several statistical tools that allow for:  

i. Screening of designs to identify vital factors (processing parameters). 

ii. Discovering the best combination of factors. 

iii. Creating models and response surfaces from the factors. 

iv. Statistical analysis of resulting models. 

v. Graphically displaying the models. 

Design Expert® was used for the analysis of variance (ANOVA) to test the adequacy of 

the developed models. The statistical significance of the model and each term in the 

regression equation was examined using the sequential F-test, and other adequacy 

measures (i.e. R
2
, Adj- R

2
, and Pred.R

2
) to obtain the best fit. From the statistical 
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models created by Design Expert, the F-values are indications of a factor’s influence, 

higher F-values signify that the factor is of greater influence. Low p-values less than 

0.05 indicate that the model is significant. A p-value of 0.05 indicates 95% confidence 

of the model. The R-squared value is a measure of the amount of variation around the 

mean explained by the model. The closer it is to 1 the less variance there is around the 

mean. The adjusted R-squared value is a measure of the amount of variation around the 

mean adjusted for the number of terms in the model. The adjusted R-squared value 

should be in reasonable agreement with the predicted R-squared value. The Adeq 

Precision value measures the signal to noise ratio. A higher ratio is desirable, and for the 

terms used in this study, a ratio greater than 4 is desirable.  

3.4.1  316L Stainless Steel 

Three DOEs were implemented for 316L stainless steel, however, only the last two are 

presented in the results section. The preliminary (screening) DOE is presented in the 

Appendix C. This initial DOE was a full three level factorial design (3
3
). This model 

was chosen as it gave a more comprehensive analysis of all parameter interactions. The 

results from this pilot run were used to determine the parameters that had the most 

influence on the surface properties. 

Design of Experiments 1 

After the initial DOE, the two main parameters that had a pronounced effect on the 

surface properties were found to be residence time and irradiance. From the pilot DOE 

it was decided to further investigate the parameters using a 5
2
 DOE. This DOE was 

named DOE 1. Two factors irradiance and residence time were varied for five levels 

from 78.6 to 235.8 kW/mm
2
 and 49.6 to 165.3 μs respectively. These parameters 

correspond to energy densities from 3.93 to 39.3 J/mm
2
. Table 3-6 summarises the 

parameters used. The following parameters were kept at these specified constant levels 

throughout the laser treatment: 

i. Cylindrical sample diameter, 10 mm 

ii. Laser beam spot size, 90 μm 

iii. Assist gas, Argon at 200 kPa 

iv. Overlap, 0% 

v. Surface tangential speed, 272 mm/s 

vi. PRF, 3000 Hz 

vii. Table speed, 46.8 mm/min 
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Table 3-6: DOE 1 processing parameters for 316L stainless steel. 

ID 
Peak 

Power 

Duty 

Cycle 

Average 

Power 
Irradiance 

Residence 

Time 

Energy 

Density 

Est 

Temp. 

 (W) % (kW) (kW/mm
2
) (μs) (J/mm

2
) (°C) 

1 500 

15 

75 78.6 

49.6 

3.93 483 

2 800 120 125.8 6.29 773 

3 1000 150 157.2 7.86 967 

4 1300 195 204.4 10.22 1260 

5 1500 225 235.8 11.79 1450 

6 500 

20 

100 78.6 

66.1 

5.24 644 

7 800 160 125.8 8.38 1031 

8 1000 200 157.2 10.48 1289 

9 1300 260 204.4 13.62 1676 

10 1500 300 235.8 15.72 1933 

11 500 

25 

125 78.6 

82.6 

6.55 806 

12 800 200 125.8 10.48 1289 

13 1000 250 157.2 13.10 1611 

14 1300 325 204.4 17.03 2094 

15 1500 375 235.8 19.65 2417 

16 500 

30 

150 78.6 

99.2 

7.86 967 

17 800 240 125.8 12.58 1547 

18 1000 300 157.2 15.72 1933 

19 1300 390 204.4 20.43 2513 

20 1500 450 235.8 23.58 2900 

21 500 

50 

250 78.6 

165.3 

13.10 1611 

22 800 400 125.8 20.96 2578 

23 1000 500 157.2 26.20 3222 

24 1300 650 204.4 34.06 4189 

25 1500 750 235.8 39.30 4833 

The laser beam spotsize was kept constant at the lowest permissible diameter of 90 μm 

as lower spotsize would result in higher cooling rates. The cylindrical sample diameter 

and overlap were kept constant at optimised levels from previous studies that showed 

smoother surface properties at these levels [102]. The surface tangential speed, PRF and 

assist gas pressures were derived from the preliminary DOE. Surface temperatures were 

predicted using Equation 12 [97, 220]. 
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(9) 

where A is the absorption coefficient, P the laser power (W), k the thermal conductivity 

(W/m∙K), Vb the scan speed (m/s), t the residence time (s) , t1 the heating time (s), t0 the 

time necessary for heat to diffuse over a distance equal to the laser beam radius on the 

workpiece surface (s), t0 = Rb
2
/4α, α is the thermal diffusivity (m

2
/s), z is the coordinate 

perpendicular to the treated surface, and z0 is the distance over which heat can diffuse 

during the laser beam interaction time.  

The thermophysical properties and absorption coefficients used in Equation 12 are 

given in Table 3-7. The majority of the absorbance data presently available considers 

only polished and roughened alloys rather than the commercially available (unpolished) 

alloys. Absorption coefficient of 316L stainless steel was set at 0.35 [99]. This 

absorption coefficient value corresponds to 96.5% reflectivity of highly polished and 

roughened samples for a CO2 laser wavelength of 10.6 µm. It should be noted that 

Equation 12 was created for continuous mode so it is only expected to give an 

indication of the actual relative changes in temperature between samples but not the 

absolute values of temperature. 

Table 3-7: Thermophysical properties of 316L stainless steel [221]. 

Density 
Specific Heat 

Capacity 

Liquidus 

Temp. 

Thermal 

conductivity 

Thermal 

Diffusion 

Absorption 

coefficient 

7970 kg/m
3
 500 J/kg °C 1400 °C 21.4 W/°C m 5.37 x10

-6
 m

2
/s 0.35 

 

Design of Experiments 2 

To more fully comprehend the effects of irradiance, residence time and pre-treatments a 

new DOE, termed DOE 2, was implemented. The parameters of DOE 2 are summarised 

in Table 3-8. These parameters were carefully chosen so that they just barely melt the 

surface. These laser parameters were selected based on the previous DOE experiments 

and the thermal prediction model. The energy density was set at two levels, pulse width 

at two levels and three techniques were used for surface pre-treatments. The as-received 

(non pre-treated) surface was also processed with the DOE 2 parameters for 

benchmarking purposes. This resulted in 20 experimental conditions/samples being 

investigated. The machined pre-treatment consisted of machining ridges with an 
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average roughness of approximately 3 µm. As the overlap was set to 0 % for DOE 2, the 

residence time was equivalent to the pulse width.  

Table 3-8: Laser processing parameters implemented in the fractional DOE.  

Run* 
Peak Power 

(W) 

Duty Cycle 

(%) 

Irradiance  

(kW/mm
2
) 

Residence Time 

(µs) 

Energy density 

(J/mm
2
) 

1 1000 20 157 67 10.48 

2 800 25 126 83 10.48 

3 400 50 63 167 10.48 

4 700 30 110 100 11.00 

5 1400 15 220 50 11.00 

*Each run was repeated using three surface pre-treatments etched; machined; machined+etched 

3.4.2 Ti-6Al-4V 

Design of Experiments 1: Planar samples 

Experiments with Ti-6Al-4V were conducted with flat samples as opposed to the 

cylindrical samples used for the 316L processing. A 3
2
 design of experiment was 

implemented. The two factors chosen were irradiance and residence, each time varied at 

three levels. The laser was used in continuous mode to irradiate the workpiece at three 

levels of irradiance: 15.72, 20.43 and 26.72 kW/mm
2
 and three levels of residence time: 

1.08, 1.44 and 2.16 ms, see Table 3-9.  

Table 3-9: DOE 1 processing parameters for Ti-6Al-4V 

ID 
Average  

Power 

Sample  

Speed 
Irradiance 

Residence  

Time 

Energy  

Density 

 (W) (mm/s) (kW/mm
2
) (ms) (J/mm

2
) 

LSM 1 100 

41.2 

15.72 

2.16 

34 

LSM 2 130 20.44 44 

LSM 3 170 26.72 58 

LSM 4 100 

62.5 

15.72 

1.44 

23 

LSM 5 130 20.44 29 

LSM 6 170 26.72 38 

LSM 7 100 

83.3 

15.72 

1.08 

17 

LSM 8 130 20.44 22 

LSM 9 170 26.72 29 

The laser beam was focused on the work-piece surface providing a Gaussian laser spot 

size of 90 μm. Since a continuous beam was used, pulse frequency and pulse width 

were not taken into account for residence time calculation, see section 2.9.4 for more 
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details. Low workpiece velocity compared to 316L samples subsequently resulted in 

much lower residence times. Due to the continuous nature of the beam the power is 

expressed as average power as opposed to peak power for Ti-6Al-4V. Irradiation was 

carried out using a raster scan with a partial overlap of 30% in order to provide for 

microstructural and compositional homogeneity. Argon at a pressure of 200 kPa was 

used as an assist gas to avoid oxidation. The laser beam was kept perpendicular to the 

workpiece during laser irradiation to maximise absorbance and ensure uniform 

conditions for processing. 

3.5 Microstructural Analysis  

The influence of the process parameters on the microstructure of the modified surface 

topology and cross section were studied using optical and scanning electron microscopy 

(SEM). Microstructure analysis was used to enable characterisation of the following: 

i. Pits and cracks 

ii. Grain structure and sizes 

iii. Gas-, shrinkage-, and interfacial-voids 

iv. Inclusions 

A Reichart Me F2 Universal optical microscope was used for bright field examination 

of polished metallographic specimens. The microscope was equipped with Buehler 

Omnimet Enterprise, a software driven tool that allows for the quantitative analysis of 

the sample image. A Carl-Zeiss EVO-LS15 scanning electron microscope, shown in 

Figure 3-5, integrated with SmartSEM software was used for both morphological and 

microstructure analysis.  

  

Figure 3-5: Carl-Zeiss EVO-LS15 SEM and its components (a) exterior and (b) interior. 

Micrographs obtained from secondary electrons were primarily used for morphological 

analysis, while the backscatter detector images from the SEM were used to reveal 

microstructure features. The dependence of the backscatter yield with atomic number 

formed a basis for differentiating between different phases, thus providing an ideal 

starting point for further microanalysis. All images were captured at a high accelerating 

(a) (b) 
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voltages (20 kV) and high contrast to reveal the grain structure. Cross sectional views 

were prepared by sectioning the sample perpendicular to the longitudinal axis. The 

‘analyse particles’ option in Image J (version 1.45), image analysis open software, was 

used to determine the grain size. The software uses Fret’s diameter technique, which 

measures the grain size by the greatest distance between two parallel lines touching 

opposite sides of the grain [222].  

3.6 Melt Pool Profile Measurement 

Analysis of the meltpool width and depth was performed from images obtained by the 

optical microscope and SEM. Average meltpool depth was determined with the 

software, Image J. An average depth for the laser modified surface was taken from at 

least ten measurements for statistical analysis. 

3.7 Roughness Measurements 

Roughness was calculated from a 2D profile. The surface profile was scanned with a 

stylus profilometer, Civil Instruments TR200, with a stylus tip radius of 2 µm. The 

surface mean roughness (Ra) measurements were derived from a given evaluation 

sampling and evaluation length. Figure 3-6 defines the evaluation and sampling lengths. 

 

Figure 3-6: Sampling and evaluation lengths of a measured surface profile. 

Once the surface profile was measured, waviness was eliminated with a Gaussian filter. 

The choice for a good cut-off length over which to measure the roughness is important. 

The cut off is a filter designed to measure only small irregularities with a spacing less 

than a given value of wavelength. Sampling length is always numerically equal to cut-

off and the relationship between the cut off and an evaluation length is given by 

Equation (10): 

   
 

 
    

(10) 

where λc is the cut off length and ln is the evaluation length 
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Sampling and evaluation lengths used were 0.8 mm and 4 mm respectively. The 

roughness was measured according to ISO 4287/4288. A table of the recommended cut-

off lengths is shown in Appendix D. 

3.8 Micro-hardness Measurements 

A Leitz mini-load tester was used to perform the microhardness measurements of all 

samples. Vickers microhardness tests were carried out using a set load of 500 mN and 

an indentation time of 30 s. The measurements were taken from the cross-sectional 

surface that had been polished to a finish of 0.05 μm. Vickers microhardness was 

calculated by measuring the diagonal length (d1) of square indentations. Five 

measurements were taken from the middle of the modified layer, unless otherwise 

stated. Measurements were taken according to the ISO 14577 standard. The indents 

were kept at least three diameters (indentation diameter) away from a free surface or 

interface and at least five diameters, of the largest indent, from each other to avoid 

interference [223]. 

3.9 XRD Analysis 

X-ray diffraction patterns of the samples were recorded using a Bruker D8 XRD system 

with Cu Kα (λ = 1.5405 Å) radiation. The test set-up is schematically shown in Figure 

3-7. Samples were cleaned with acetone and rinsed with deionised water prior to 

analysis.  

 

Figure 3-7: Schematic and image of XRD set-up [47]. 
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A fixed detector slit size of 0.2 mm wide and 12 mm long was used for all samples. A z 

scan was used to position samples at correct heights on the z drive prior to XRD 

measurement. Locked coupled scans were performed at a rate of 5 sec/step, with 0.01 

step increments, varying the diffraction angle between 20 and 120°. Each scan took 13 

hours and 47 minutes to complete. The diffraction patterns produced were plotted with 

intensity against 2 theta angles, and used for phase transformation and crystallinity 

analysis. Ti-6Al-4V is not included in the Joint Committee on Powder Diffraction 

Standards (JCPDS) database. Therefore, miller indices and phase determination were 

derived from the hexagonal α-Ti pattern (JCPDS file #44-1294) and the cubic β-Ti 

pattern (JCPDS file #44-1288). Strain and residual stress calculation induced by laser 

treatment can be calculated by using the variation in interplanar spacing, derived from 

shifting of the diffraction peaks, [224]. 

3.10 Chemical Composition Analysis 

Element analysis and chemical characterisation were performed with an energy 

dispersive x-ray spectrometer (EDS). The Inca X-Act and Microanalysis suit, Oxford 

Instruments, integrated in the SEM was used, see Figure 3-5. The instrument is capable 

of analysing composition of sample areas down to 2 µm to be analysed on conductive 

samples with a relative accuracy of +/- 2%. The volume analysed, in which the primary 

electrons interact with the sample is generally characterized as pear/onion shaped region 

as seen in Figure 3-8 (a).  

The geometry and volume of this shape is dependent on the average sample atomic 

number and electron beam accelerating voltage. The accelerating voltage used in the 

electron column influences both the spatial resolution of the x-ray signal and the 

efficiency with which characteristic x-rays are excited from the sample atoms. Higher 

voltages produce higher energy electrons, which penetrate more deeply into the sample 

and spread more widely than low-energy electrons. The result is degradation in 

resolution on the one hand, but more efficient excitation on the other. The relationship 

between the accelerating voltage, density and spatial resolution is given in Figure 3-8 

(b). The red dashed line in Figure 3-8 (b) indicates the conditions use for analysis of the 

Ti-6Al-4V samples in this work. 
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Figure 3-8: (a) Schematic depiction of the variation of interaction volume shape with 

average sample atomic number (Z) and electron beam accelerating voltage (E0); and (b) 

chart for calculating x-ray spatial resolution from the accelerating voltage [225]. 

 

3.11 Wear Testing 

Tribological evaluation of the modified surface was obtained using a pin on disk 

tribometer (ball on disc configuration); according to ASTM wear testing standard G-99. 

The apparatus used a pin pressing against the disk (sample) at a specified load. Amount 

of wear was determined by measuring appropriate linear dimensions of the wear track 

of the specimen after the test. The wear track shape was characterised using the SEM 

and dimension measured using the white light interferometry, Veeco’s Wyko NT110 

optical profiling system. The continuous recording of wear data was obtained using a 

LVDT to characterise the formation of the track. The continuous wear depth data alone 

cannot be used to fully characterise the wear properties due to the complicated effects of 

wear debris and transfer film present in the contact gap and the low, but significant, 

vibrations of the mechanism. A schematic of the pin-on-disk wear tester is shown in 

Figure 3-9. The Ti-6Al-4V samples were polished to within 0.2 µm average roughness 

to avoid excessive damage of the wear of the testing pin. Wear tests were carried out by 

sliding a 5 mm commercial zirconia pin against the polished samples at a constant speed 

of 18.9 mm/s with an applied load of 5 N. 

(a) (b) 
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Figure 3-9: Schematic of the (a) pin on disc apparatus used and (b) typical wear track 

The full list of testing parameters used for wear testing is shown in Table 3-10. Sliding 

distance was varied by adjusting the number of revolutions completed by the wear pin. 

All samples were cleaned with acetone in an ultrasonic bath, and dried prior to testing 

and measuring. 

Table 3-10: Wear testing parameters 

Sample/Disc material Ti-6Al-4V Applied load 5 N 

Pin material Zirconia (ZrO2) Atmosphere Air 

Pin diameter 5 mm Test solution Hanks solution 

Speed 18.9 mm/s Temperature  Ambient 

Radius of wear track 1.5 mm Sliding distance 20 and 150 m 

Specific wear rate determines the wear behaviour of the Ti-6Al-4V with respect to 

sliding distance, contact pressure, velocity, temperature and test solution used. The 

specific wear rate for all samples was calculated using Equation (11). The amount of 

wear was determined using two methods. The first method evaluated the volume loss by 

measuring the mass of the sample before and after wear experiments by means of a 

precision balance (Avery Berkel’s FA215DT) with 0.00001 g resolution, via Equation 

(12). The second method evaluated the volume loss by characterising the worn track 

dimensions using white light interferometry, via Equation (13). The optical micrographs 

of the wear track were further evaluated using the SEM. 

  

(a) (b) 



 

3-73 

 

                              
                    

                                  
 (11) 

                  
         

       
      (12) 

                                            (13) 

where r is radius of the pin from the central rotation axis of the sample and A is the 

cross-sectional area of the wear track obtained using the white light interferometer. 

3.11.1 Reasons for parameter choice 

Zirconia was chosen as it has high strength, hardness (>1200 HV), stability in 

physiological environments and is widely used as a head and socket material for hip 

replacements. The Ti-6Al-4V sample rotational speed of 120 rpm was chosen to obtain 

a linear tangential sample velocity of 18.9 mm/s which is approximately the mean 

sliding velocity for femoral heads of 28 mm diameter [27, 226]. A 5 N load was chosen 

for the normal load applied to the pin during testing. The reasoning for choosing 5 N as 

the load for wear testing is discussed in Appendix E. 

3.11.2 Wear Testing Procedure 

1. Specimen were cleaned and dried prior to testing and measuring using acetone. 

2.  The sample dimensions were measured and weighed to the nearest 2.5 µm and 

0.00001 g respectively. 

3. The disk was then inserted to the holding device, ±1º perpendicular to the axis of 

rotation to maintain the necessary surface conditions. 

4. The load (5 N) was added directly onto the pin. 

5. The revolution counter was set to zero. 

6. The test was then run with the pin in contact with the specimen. The test was not 

interrupted or restarted until the set number of revolutions was reached for the 

corresponding test distance. 

7. The wear material removal characteristics were investigated using the SEM. 

8. The samples were then removed and cleaned. 

9. The wear track dimensions and weight were then measured. 

3.12 Corrosion Testing 

To accelerate the corrosion process, electrochemical tests were used to directly amplify 

the impact of corrosion processes. This was possible since electrochemical tests use a 

fundamental model of the electrode kinetics associated with corrosion processes to 
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quantify corrosion rates [227]. Two types of electrochemical testing were employed. 

The first method was the corrosion measurement at the free corrosion potential (open 

circuit potential) in order to follow the active corrosion. The second was polarisation 

which measured susceptibility to localized corrosion for corrosion resistant materials. 

Prior to electrochemical testing, specimens were machined into square samples of 10 

mm × 10 mm (+/- 1 mm) subsequent to laser treatment. The precise sample dimensions 

were measured prior to each test to 0.01 mm resolution and these measurements were 

input into the software before each test. The samples were embedded in epoxy resin 

exposing 1 cm
2
 of the sample surface to the electrolyte. All samples were ultrasonically 

cleaned in acetone and rinsed using deionised water. A polarisation test cell with the 

following inserts was used: test, auxiliary and reference electrodes; luggin capillary; and 

thermometer, see schematic in Figure 3-10. Potentiodynamic polarisation was carried 

out using an ACM Gillac® potentiostat scanning unit. The potentiostat was capable of 

maintaining an electrode potential within 1 mV of a pre-set value. The auxiliary 

electrode supplied the current to the working electrode (test specimen) in order to 

polarise it. The potential between the specimen and the reference electrode was 

monitored in the test. 

 

 

Figure 3-10: Schematic diagram of polarisation cell used in the experiments [228] 

Figure 3-11 shows the experimental set-up used to monitor the electrochemical 

corrosion. A saturated calomel electrode and a platinum electrode were utilised as the 

reference and auxiliary electrode respectively. 
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Figure 3-11: Schematic of instrumentation setup for 

 electrochemical polarisation experiments. 

To simulate body conditions a 0.9% NaCl and Hank’s solution at 37±1°C was used as 

the electrolyte; see Table 3-11 for the experimental parameters.  

Table 3-11: Corrosion experimental parameters 

Tests 1. Open Circuit Potential (OCP) 

2. Potentodynamic scan (PDS) - Tafel analysis 

Simulated Body Fluid 

(SBF) 

1. NaCl Solution 

2. Hanks Solution 

Experiments carried out in aerated conditions 

pH 7 

Temp 37°C 

Electrodes Reference: Saturated Calomel Electrode 

Counter : platinum 

Open circuit voltage 

sampling time 

1 - 2 hours or until the corrosion potential (Ecorr) changed no 

more than 2 mV over a 5 min period (OCP) 

Potential range -250 to 3000 mV at 0.5 mV/s 

Exposed Area 10 mm
2
 

Open Circuit Potential (OCP) was measured in aerated conditions in each sample for 

one hour before potentiodynamic scans were started. After one hour the OCP stabilised 

and the potentiodynamic scans were started at 250 mV below OCP, at a rate of 0.5 mV 

s
-1

. The results were analysed in terms of geometric surface area. Tafel extrapolation 

analysis was used to determine quantitative assessment of corrosion. Corrosion rate was 

determined by Equation (14): 
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   (mm/y) (14) 

where icor is the corrosion current density (μA cm
-2

), K is a constant of 3.27×10
-3

 mm g 

(μA cm yr)
-1

, EW is the equivalent weight (11.768 g equiv.
-1

), and ρ is the density (4.42 

g/cm
3
). 

3.12.1 Corrosion Testing Procedure 

Sample Preparation 

1. The specimens to be used for corrosion testing were marked with a unique 

designation during preparation.  

2. Dimensions of the sample were recorded. 

3. Samples were cleaned with acetone and dried before mounting. 

4. Silver paste was applied to attach an insulted wire to the opposite of the tested 

area sample and secured to the sample using tape. A requisite resistivity of less 

than 1 Ω was kept for all samples. 

5. Samples were cold mounted using epoxy and allowed to set for at least 6 hours. 

6. For comparison purposes the control samples were polished. Grinding was 

accomplished using 320 grit SiC paper and polishing was conducted using 9 µm 

diamond suspension and followed by 0.06 µm alumina solution. 

7. The surface structure was analysed under SEM or optical microscopy for 

existing defects before corrosion testing. 

Apparatus Set-up 

8. The prepared NaCl/Hank’s solution was poured into a clean polarisation cell. 

9. The temperature of the solution was raised to 37 ºC using a controlled water 

bath. 

10. Components of the test cell were placed into the cell. The sample was then 

mounted on the electrode holder. Degreasing was carried out using acetone and 

rinsing using distilled water, just before immersion. 

11. The working electrode was transferred to the cell and the salt bridge adjusted so 

that the probe tip was about 2 mm away from the surface of the specimen. 

Corrosion Testing 

12. Before each polarisation scan was initiated, the corrosion sample was allowed to 

stabilise in the electrolyte for either 1 hour or until the corrosion potential, Ecorr, 

changed by no more than 2 mV over a 5 min period. 

13. Cyclic sweep scan was carried out at a sweep rate of 0.5 mV/s -  
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Post-test 

14. Ultrasonic cleaning was carried out in reagent water to remove loose products. 

15. Assessment of corrosion damage: microscopical examination for dealloying, 

exfoliation, cracking or intergranular attack by metallographic examination. 

16. Data analysis involved OCP variation with time analysis and comparison of 

polarisation curves. 

3.13 Contact Angle Analysis 

The wetting characteristics of the surfaces were evaluated by measuring the contact 

angle between the surface and deionised water droplets, based on the standard sessile 

drop test. The contact angles, θ, of deionised water on the untreated and laser treated Ti-

6Al-4V was determined in atmospheric conditions using a sessile drop measuring 

machine (goniometer). FTÅ 200 angstrom equipment was used for this which comprised 

of a monochrome camera and a motor actuated 10 ml syringe, see Figure 3-12. To avoid 

contamination, all samples being tested were cleaned with acetone in an ultrasonic bath 

for 30 mins, rinsed with deionised water several time and allowed to dry for at least 30 

minutes. A wait period of 30 seconds was used before each θ measurement was taken. 

Dedicated software was used to calculate the wetting angles. Three measurements taken 

at different positions were averaged to get the final contact angle value for each sample. 

The mean value for the angle from both sides of each drop was used. 

 

 

Figure 3-12: FTA 200 angstrom sessile drop measuring machine [229]. 
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3.14 Biocompatibility Analysis 

The biocompatibility work carried out in this research is split into two sections: (i) cell 

attachment and proliferation, and (ii) cytotoxicity analysis. The methods taken for each 

section are detailed in sections 3.14.1 and 3.14.2 respectively.  

3.14.1 Cell Attachment and Proliferation 

Cell culture 

MC3T3 pre-osteoblastic cells were cultured in T175 flasks (Sarstedt) in standard media 

(α-MEM media (BioSera) supplemented with 10% fetal bovine serum (BioSera), 2% 

penicillin/streptomycin (Sigma Aldrich), and 1% L-glutamate (Sigma Aldrich)). Cells 

were passaged using trypsin-EDTA to detach the cells after several washes with sterile 

Phosphate Buffered Saline (PBS). The cells were incubated for 3 minutes then media 

added to deactivate trypsin. The solution was then placed in a centrifuge and processed 

at 1200 rpm for 5 minutes. The mixture of trypsin and media was then pipetted out and 

the resulting pellet re-suspended and split among T175 flasks. Media was then added to 

the flasks and the flasks were placed in incubators at 37° C and 5% CO2. Media was 

refreshed every 3 days. 

Seeding cells 

Media was removed from the flasks and the cells rinsed several times with PBS. Cells 

were detached from the flasks using trypsin-EDTA solution and then incubated for 3 

minutes. Media was added to deactivate the trypsin. The resulting solution was then 

placed in the centrifuge at 1200 rpm for 5 minutes to separate the cells and the solution. 

The mixture of trypsin and media was then pipetted out and the pellet re-suspended in 

10 ml of media. Cells were then counted using a haemocytometer several times and the 

average used to calculate the total amount of cells in the solution. The media was again 

removed and the pellet then re-suspended to yield a cell suspension containing 2.5 x 10
5
 

cells per 20 µl. The titanium samples were warmed in the incubator in 24 well plates 

and then seeded with 20 µl of the pre-defined cellular solution on each of the treated 

surfaces. The samples were incubated for 15 minutes with 1 ml of media at 37°C and 

5% CO2. 

Evaluating cell attachment 

At 2 hrs, the cells were removed using trypsin-EDTA solution, and digested using 

papain solution to expose the DNA. Hoechst dye binds to DNA (hence the exposure of 

DNA required) and fluoresces, resulting in higher levels of fluorescence with higher 
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amounts of DNA. Cell number was quantified using a Hoechst 33258 DNA assay. 

Measurements were made using a fluorescence spectrophotometer (Varioskan Flash, 

Thermo Scientific) (excitation: 355 nm; emission: 460 nm) and readings were converted 

to cell numbers using a standard curve. Cell attachment was quantified using the results 

from the Hoechst 33258 DNA assay. 

Evaluating metabolic activity 

10% alamarBlue® solution (Invitrogen, UK) was made using α-MEM media (BioSera) 

and alamarBlue® dye. AlamarBlue is a compound that is reduced in cells and this 

reduction results in a colour change of the solution, thereby indicating the cell metabolic 

activity. The samples were then removed from the media and placed in 24 well plates 

with 1 ml of 10% alamarBlue® solution in each well. The samples were then incubated 

at 37°C and 5% CO2 for 4 hours. They were then transferred back to 24 well plates with 

1 ml of media in each well, and the alamarBlue® solution pipetted out in 100 µl 

triplicate on 96 well plates and read with a spectrophotometer at 540 and 620 nm 

absorbance. This process was repeated at 24 and 96 hours and 7 days to assess cell 

metabolism. 

Evaluating cell number 

At 3 days and 7 days, the cells were removed using trypsin-EDTA solution, and 

digested using papain solution to expose the DNA. Cell number was quantified using a 

Hoechst 33258 DNA assay. Measurements were made using a fluorescence 

spectrophotometer (Varioskan Flash, Thermo Scientific) and readings were converted to 

cell numbers using a standard curve. Cell number was quantified, again using the results 

from the Hoechst 33258 DNA assay. 

Statistical Analysis 

One way repeated analysis of variance (ANOVA) followed by Holm-Sidak multiple 

comparisons were performed on both sets to compare data. T-tests were also used to 

compare the treated and untreated samples. Error is reported as standard deviation and is 

represented on figures, and significance noted for cases with probability, p < 0.05. 

3.14.2 Cytotoxicity 

Cytotoxicity tests were performed in accordance with ISO 10993-5 (2009) guidelines 

and included the direct contact, the indirect contact and elution tests with MTT as an 

endpoint. 
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Cell culture 

The in vitro cytotoxicity assessment of the titanium samples was performed on the 

mouse embryo fibroblast (NIH/3T3) cell line. All culture and manipulation of cells was 

performed within a class 11 laminar flow unit in a dedicated cell culture laboratory. To 

ensure an adequate level of sterility, aseptic technique was strictly adhered to in 

accordance with ISO 10993 standards. Tissue culture plasticware was utilised at all 

times while incubators and laminar flow units were periodically cleaned with 70% 

ethanol to reduce the risk of contamination. In accordance with American Type Culture 

Collection (ATCC) recommendations for cell type media selection, 200 ml volumes of 

media, were aseptically prepared in 75 cm
2
 culture flasks. Table 3-12 outlines the 

preparation of NIH/3T3 complete culture medium. Complete media was stored at 4°C 

for no more than 14 days. Media was heated to 37°C prior to use. 

Cryovials of NIH/3T3 cells were removed from liquid nitrogen (-196°C) storage and 

disinfected with 70% ethanol. Cells were placed in a 37°C water bath to thaw. Cells 

were added to 10 ml of pre-warmed medium in sterile 25 ml universals and spun at 

1500 rpm for 5 min in a bench top centrifuge (Mistral 1000, MSE Ltd.). Cell pellets 

were re-suspended in 1 ml of complete medium. Cell suspensions were subsequently 

pipetted into 25 cm
2
 culture flasks and cultured in a humidified atmosphere of 5% CO2: 

95% air at 37°C until subconfluent. 

Table 3-12: Composition of NIH/3T3 complete culture medium. 

Constituent Volume/200 ml 

Dulbecco's Modified Eagles Medium (DMEM) 178 

Fetal Calf Serum (FCS) 20 

Penicillin-Streptomycin 1 

Amphotericin B 1 

Upon reaching 80% confluency, anchorage dependant cells were detached from the 

growth substratum. Media was aspirated off, under the laminar flow unit, cells were 

washed with sterile PBS and 2 ml of 0.25% trypsin-ethylenediamine tetra-acetic acid 

(EDTA) was added in order to facilitate cell removal. Cell culture flasks were incubated 

at 37º C for 5 mins. The degree of detachment was then assessed under an inverted light 

microscope. In order to deactivate the trypsin upon complete cellular detachment, 2 ml 

fresh media was added. Cell suspensions were aseptically removed to a sterile universal 

and centrifuged at 1500 rpm for 5 mins. The supernatant was discarded and the cell 

pellet was re-suspended in 1 ml of complete medium. If required, a cell count was 
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performed; otherwise the re-suspended cell pellet was split equally between two cell 

culture flasks and incubated at 37°C in a humidified CO2 incubator. 

A volume of 0.1 ml of cell suspension was transferred to a sterile eppendorf tube along 

with 0.15 ml PBS and 0.25 ml of 0.45% trypan blue. The suspension was inverted 

several times to allow for even distribution of cells. 10 µl of cells were loaded onto a 

Neubauer haemocytometer (previously washed with 70% ethanol) and covered with a 

glass cover-slip. All viable cells were counted in five 1 mm
2
 squares (see shaded 

regions in Figure 3-13), viewed under an inverted light microscope at 200x 

magnification. 

 

Figure 3-13: Haemocytometer viewed at 200x magnification [230] 

The count was repeated three times for accuracy and the number of cells per ml
 
of 

suspension was calculated, Equation (15). 

                
                                                      

                             
 (15) 

Cytotoxicity Assessment 

Cytotoxic effects on cell growth and viability were determined by the MTT assay. This 

assay determines the ability of viable cells to convert the soluble tetrazolium salt (MTT) 

into a purple formazan precipitate which can be quantified spectrophotometrically. The 

conversion of the tetrazolium ring to the formazan product is maintained by the 

mitochondrial enzyme succinate dehydrogenase and the cofactors nicotinamide adenine 
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dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH). The 

amount of formazan produced is directly proportional to the number of viable cells. Ti-

6Al-4V samples tested were insoluble, hence suitable for all three types of cytotoxicity 

test outlined in ISO 10993-5 (2009). 

Prior to biocompatibility testing, the titanium samples were prepared to obtain 

reproducible and valid samples for testing. The risk of microbial contamination was 

reduced by briefly submerging the samples in 70% ethanol solution. Removal of 

residual ethanol was facilitated by evaporation under aseptic conditions and UV –

irradiating at 263 nm for 10 mins. Sample eluate was prepared by immersion of samples 

in culture media for 7 days followed by preparation of serial dilutions. A 1% solution of 

Triton
®
X-100 was prepared fresh on the day of use by adding 100 μl of Triton

®
X-100 to 

9.9 ml of fresh complete medium in a sterile universal.  The solution was mixed, 

shaking by hand, and used immediately. 

Direct contact assay (MTT endpoint)/ Agarose overlay 

An MTT stock solution (5 mg/ml) was made by dissolving 50 mg MTT salt in 10 ml of 

sterile PBS. The solution was filtered through a 0.22 μm Polyethersulfone (PES) 

membrane filter, kept in the dark, refrigerated at <4°C and discarded after 21 days. 

NIH/3T3 cells were seeded at 500,000 cells ml
-1

 in 60 mm tissue culture plates and 

incubated at 37°C until confluent. Sterile laser treated and untreated Ti-6Al-4V samples 

were placed in the centre of confluent cultures covering approximately 10% of the 

growth area and incubated for a further 24 h at 37°C. Following careful removal of 

samples with sterile tweezers, and cell incubation in MTT medium (0.5 mg/ml) for 4 h, 

morphology and viability was qualitatively assessed under an inverted light microscope 

and toxicity graded as outlined in Table 3-13 (ISO 10993-5, 2009).   

Table 3-13: Reactivity grades for direct and indirect (agarose overlay) contact assays -

adapted from ISO 10993-5 (2009). 

Grade Reactivity Description of reactivity zone 

0 None No detectable zone around or under specimen 

1 Slight Some malformed or degenerated cells under specimen 

2 Mild Zone limited to area under specimen 

3 Moderate Zone extends up to 1.0 cm beyond specimen 

4 Severe Zone extends greater than 1.0 cm beyond specimen 

but does not involve entire dish/well 
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For quantitative assessment 4 ml of fresh culture media supplemented with 0.5 mg/ml 

MTT, was added to each well and incubated for a further 4 h at 37°C. The MTT media 

was carefully aspirated off and 4 ml of Dimethyl Sulfoxide (DMSO) was added to each 

well to aid in solubilisation of the crystals. Plates were shaken for 15 s and incubated at 

room temperature for 10 min prior to recording optical densities at 540 nm, with cell 

viabilities calculated as a percentage of untreated control cells ± the standard error of 

the mean (SEM) using Equation (16): 

                   
                               

                                 
     (16) 

Elution test (MTT endpoint) 

NIH/3T3 cells were seeded at 10,000 cells per 100 μl of media in 96 well microtitre 

plates and incubated in a humidified atmosphere of 5% CO2: 95% air at 37°C until the 

desired degree of confluency was obtained. Subsequently cultures were exposed to pre-

warmed test media containing 100-0% eluate from Ti-6Al-4V samples or 1% Triton
®
X-

100 positive control for a further 24 h at 37°C. Following removal of test media cells 

were washed with 100 µl of warm sterile PBS. 100 µl fresh culture media supplemented 

with 0.5 mg/ml MTT was added to each well and plates were incubated for a further 4 h 

at 37°C. The MTT media was carefully aspirated off and 100 μl of DMSO was added to 

each well to aid in solubilisation of the crystals. Plates were shaken for 15 s and 

incubated at room temperature for 10 min prior to recording optical densities at 540 nm. 

Cell viabilities were calculated as a percentage of untreated control cells ± the standard 

error of the mean using Equation (15). 
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 : 316L Stainless Steel Chapter 4

Results & Discussions 

4.1 Design of Experiments 1 

This DOE was especially designed to study the effects of irradiance and residence time 

on 316L stainless steel after reviewing of literature and preliminary results, see 

Appendix C. 

4.1.1 Morphology and Microstructure Analysis 

Figure 4-1 shows SEM images the (a) planar and (b) cross-sectional microstructure 

prior to laser surface modification. The as-received surface, Figure 4-1 (a), showed an 

uneven topology with significantly large scratches and cracks. The cross sectional 

micrographs, Figure 4-1 (b) and (c), clearly show the phases present in 316L stainless 

steel. Small pores are visible as dark spots on the BSE micrographs. These are likely to 

be caused by the pull out of inclusions in the steel during grinding and polishing. 

   

Figure 4-1: Microstructure of as-received 316L stainless steel (a) morphology 

 structure, and the cross-sectional microstructure obtained via (b) secondary  

electron (SE) detector and (c) back scatter electron (BSE) detector. 

To demonstrate the effects of laser processing parameters on the morphology and cross-

sectional microstructure three levels of energy density have been selected, 5.24, 10.48 

and 20.96 J/mm
2
. These three levels are important as they illustrate three different 

stages that result from energy density variations. Surface morphology and cross-

sectional microstructure of the laser processed 316L stainless steel are presented in 

Figure 4-2 and Figure 4-3 respectively. Figure 4-2 illustrates the surface melting 

induced by the laser treatment at increasing energy density from (a) to (c). The surface 

(a) (c) (b) 
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temperature directly under the surface was estimated, using Equation (9) to be 

approximately 1190, 2001 and 3111 K for the samples in Figure 4-2/Figure 4-3 (a), (b) 

and (c) respectively.  

   

Figure 4-2: Effects of energy density on surface melting  

(a) 5.24 J/mm
2
, (b) 10.48 J/mm

2
 and (c) 20.96 J/mm

2
. 

   

Figure 4-3: Back scatter SEM images of transverse cross sectional microstructure 

corresponding to processed surface shown in Figure 4-2 (a), (b) and (c). 

Sample rotation parameters were set to produce 0% overlapping of the melt pool as 

represented in Figure 4-2 (a) and Figure 4-3 (a). At 5.24 J/mm
2
, Figure 4-2 (a) and 

Figure 4-3 (a), laser marking features are visible. The low energy density only produces 

localized melting effects. This is more evident in Figure 4-3 (a) which shows less than 

20 µm depth of processing in the cross sectional microstructure. No significant grain 

structure changes are visible in Figure 4-3 (a). 

At 10.48 J/mm
2
, Figure 4-2 (b) and Figure 4-3 (b) illustrate homogenised melting with 

increased depth of processing. Using the spotsize diameter of 90 μm created on the 

surface of the material, the work-piece velocity and PRF were adjusted to create an 

overlap of 0%. However overlapping of the meltpool was visible at energy densities of 

10.48 J/mm
2
. This overlapping effect is due to the production of melt pools wider than 

the original spot size and subsequent flow due to the fast rotation of the specimen. High 

(a) 

(a) 

(c) (b) 

(b) (c) 
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sample surface speed (272 mm/s) and the beam’s Gaussian profile are believed to also 

contribute to the overlapping effect. The effects of the Gaussian beam and distribution 

of power density are explained in detail in section 6.1.1. The grain structure of samples 

laser treated at 10.48 J/mm
2
 changed direction at the substrate laser treated interface. 

The grain structure re-orientation is clearly highlighted in Figure 4-4. The phenomenon 

was visible in all samples laser treated at energy densities greater than 9 J/mm
2
. 

Tangential force produced by the rotation of the sample is attributed to the grain 

direction re-orientation. Even though the residence time was very low, the cooling rates 

were still not high enough to significantly impact the grain sizes. There was no 

significant grain size changes observed in the sample laser treated at 10.48 J/mm
2
. 

Unchanged grain sizes could possibly be also due to the high carbon content of 316L 

stainless steel that also restricts hardening of the material through heat treatment. 

 

Figure 4-4: Grain structure re-orientation in samples laser  

treated at energy densities greater than 9 J/mm
2
. 

Figure 4-2 (c) and Figure 4-3 (c) depict the surface and cross-section microstructure at 

an energy density approximately 4 times larger than Figure 4-2 (a) at 20.96 J/mm
2
 with 

surface temperatures approximated at 3111 K. An increased depth of processing is 

observed, while other regions showed some ablation due this higher irradiance values. 

Grain size and orientation alteration are also visible. The overlapping boundaries visible 

at high energy density, 20.96 J/mm
2
, can be seen in Figure 4-2 (c) as layers representing 

different isotherms. Figure 4-5 shows the variation in microstructure at different points 

within the laser treated region. 

Grain structure re-orientation 
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Figure 4-5: (a) Microstructure variation in samples treated at 20.96 J/mm
2
 and close up 

view of specific regions (b), (c) and (d). 

Figure 4-5 (b) shows the interface between the untreated and LSM regions highlighting 

grain structure re-orientation and transition of the grain structure from the typical 

austenite grain structure into a lamellar structure. The lamellar morphology created at 

this interface in the LSM region resembles the grain structure after diffusion-less 

transformation as presented in the ASM Handbook Vol. 9 [231]. These martensitic 

microstructures are produced by rapid quenching of the austenitic parent phase. The 

austenitic phase is not retained due to the uninterrupted rapid cooling which prevents 

austenitic decomposition into ferrite and pearlite via diffusional processes. The substrate 

(a) 

(b) (c) (d) 

(d) 

(c) 

(b) 
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acts as a heat sink thus assisting with achieving the rapid solidification necessary for 

formation of this structure.  

Figure 4-5 (c) shows the transition from lamellar structures to nodular structures. The 

nodular structure, shown in Figure 4-5 (d), is prevalent near the surface. This structure 

has not previously been identified in literature. However, it is postulated that the 

transition is caused by the high cooling rates and thermal gradient induced by a 

combination of high irradiance and low residence times. Such thermal gradients produce 

variant phases from the typical austenite structure within the untreated region.  

4.1.2 Melt Pool Size Analysis 

Figure 4-6 shows the effects of residence time on the depth of processing at irradiance 

values for the three irradiances 79, 157 and 236 kW/mm
2
. All DOE meltpool depth 

results are shown in Appendix F. Augmentation in melt pool depth is closely linear for 

increasing residence time for all irradiance values. High residence times result in 

increased interaction of laser beam and surface of the material thus increasing exposure 

time and melting pool depth size. Low levels of irradiance (79 kW/mm
2
) and residence 

time (50 µs) produced the minimum melt pool depth of 10 µm. The maximum melt pool 

depth of 95 µm was produced with combination of high levels of both residence time 

(100 µs) and irradiance (23.6 kW/mm
2
). 

 

Figure 4-6: Effects of residence time and irradiance and on melt pool depth. 
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To illustrate the effects of irradiance and residence time on the depth of processing and 

roughness, energy density was fixed at 13.1 J/mm
2
 with two different combinations of 

irradiance and residence time. The resulting micrographs are shown in Figure 4-7. A 

combination of low irradiance (79 kW/mm
2
) and high residence time (167 µs) produced 

a melt pool depth of 115 μm. The depth was approximately double that of a 

combination of high irradiance (157 kW/mm
2
) and low residence time (83 µs) which 

produced a depth of 57 μm, see Figure 4-7. An observation of the aforementioned 

results show that residence time has a greater effect on depth of processing compared to 

irradiance. The results prove that depth of processing cannot be related to a product 

value (energy density) of irradiance and residence time. Independent values of both 

parameters have to be considered in order to understand the output depth of processing. 

In order to have a microstructure with low grain sizes (improved hardness), very high 

cooling rates are required. The cooling rates can only be obtained at very low exposure 

time with extremely high irradiance. Using the minimum permissible residence time 

from the system of 27 μs, an irradiance of over 1500 W would be required which is over 

the limit of the laser unit used in the presented research. One way to increase the energy 

input is to improve the laser absorbance of the stainless steel surface as only 3.5% 

absorption was estimated using the surface temperature prediction Equation (9) per the 

literature [99]. 

  

Figure 4-7: Backscatter SEM cross section micrographs of samples processed using the 

 same energy density (13.1 J/mm
2
) with: (a) low irradiance (79 kW/mm

2
) and  

high residence time (167 µs); (b) high irradiance (157 kW/mm
2
)  

and low residence time (83 µs). 

(a) (b) 
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4.1.3 Roughness Analysis 

The average roughness of untreated stainless steel was measured to be 1.96 ± 0.26 µm. 

Figure 4-8 illustrates the roughness results obtained at various levels of irradiance and 

residence times. The roughness increases as the irradiance increases for all given 

residence times. At low irradiance (79 kW/mm
2
), varying residence time does not have 

a significant effect on roughness. There is no significant increase in roughness at low 

residence times since no melting occurs at minimum exposure times. At low exposure 

times the laser beam is in contact with the beam for a very short period of time therefore 

extremely high laser powers are required to induce melting on the surface. Low 

exposure times have roughness values comparable to the untreated steel due to the 

aforementioned effects. The roughness values obtained in this study give a good 

indication of the melting status of the parameters used in the experiment. 

Figure 4-8: Relationship between average surface roughness  

and irradiance at varying residence times. 

An increase in the laser beam residence time results in elevated surface temperatures. 

The characteristic of such a treatment is increased roughness due to ablation occurring 

on the surface. The highest residence time implemented in the experiments conducted 

(167 μs) resulted in high roughness. This residence time produced an average roughness 

of 13.8 µm when coupled with the lowest irradiance of 79 kW/mm
2
. At a residence time 

of 167 μs, and for irradiances higher than 79 kW/mm
2
 the profilometer was unable to 
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detect resulting high sample roughness due to extensive ablation. Figure 4-9 illustrates 

the effect of low irradiance and high residence time on the surface roughness.  

 

Figure 4-9: Sample treated at low irradiance (79 kW/mm
2
) and high residence  

time (167 μs) illustrating effects of high densities on surface roughness. 

Figure 4-9 shows the typical, channel-like, ablation features that are induced at high 

energy densities. A strong correlation is also visible between roughness and energy 

density used in the experiment regardless to the residence time; see Figure 4-10. The 

first three points (bottom left) on the graph were results from samples in which no 

melting occurred due to the low energy density. A linear increase in roughness is 

observed with higher energy densities. 

 

Figure 4-10: Relationship between average surface roughness and energy density for 

laser processing of 316L with DOE 1. 
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4.2 Design of Experiments 2 

Two energy densities (10.48 and 11 J/mm
2
) which provided the most homogenous 

melting of the surface were especially studied in this DOE. While keeping the energy 

densities at 10.48 and 11 J/mm
2
, irradiance and residence times were varied in order to 

study their effects. All design points were processed on as-received, machined, etched, 

and machined+etched work-pieces to study the effects of surface pre-treatments. 

4.2.1 Microstructure Analysis 

Prior to DOE 2, energy densities ranging between 5 and 25 J/mm
2
 were examined. 

Figure 4-11 shows the result of processing at 5 J/mm
2
. Figure 4-12 shows the result 

from processing at 25 J/mm
2
.  

  

Figure 4-11: Influence of low energy density 5 J/mm
2
 on melting of surface  

(a) surface topology and ( b) cross sectional microstructure 

  

Figure 4-12: Influence of high energy density 25 J/mm
2
 on melting of surface  

(a) surface topology and b) cross sectional microstructure 

The processing parameters of these results are not within the DOE 2 set of processing 

parameters, however are included here to illustrate process parameter space boundaries 

(a) (b) 

(a) (b) 
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for the laser processing of 316L. The low energy density in this case resulted in 

insufficient surface melting. The laser spot shapes produced are attributed to the 

Gaussian characteristics of the laser beam and very small volumes of surface metal 

melting. Negligible overlap occurred due to relatively small amount of melting 

occurring thus the characteristic of the set spot size is visible. There is no significant 

change in microstructure as can be seen in Figure 4-11 (b). 

Increasing the pulse energy to 15 J/mm
2
 produced ablation on the surface of the steel as 

shown in Figure 4-12 (a). The ablation can easily be noticed through the formation of 

distorted channel-like features on the steel. Figure 4-12 (b) shows the corresponding 

microstructural effects and material removal on the steel surface. Overlapping of the 

individual molten volumes is visible and this is attributed to high irradiance producing 

melting pools larger than the set laser beam surface spot diameter. 

The rest of the results in this section correspond to DOE 2 set parameters. The 

topography of the samples laser modified using an energy density (10.48 J/mm
2
) but 

with different peak powers and residence times are shown in Figure 4-13. Figure 4-13 

(a) shows the treated surface at an irradiance of 157.2 kW/mm
2
 and 67 µs residence 

time. Figure 4-13 (b) shows the surfaces processed at an irradiance and residence time 

of 62.9 kW/mm
2
 and 167 µs respectively.  

  

Figure 4-13: Effects of processing parameters at a fixed energy density (10.48 J/mm
2
): 

(a) high irradiance (157 kW/mm
2
) and low residence time (67 µs); 

(b) low irradiance (62.9 kW/mm
2
) and high residence time (167 µs). 

Figure 4-14 (a) and (b) shows the cross sectional views corresponding to Figure 4-13 (a) 

and (b). Lower exposure times produced less surface melting and hence a smoother 

surface morphology. The morphology exhibited in Figure 4-13 (a) and Figure 4-13 (b) 

show an enlarged melted phase due to higher exposure times resulting from the higher 

(a) (b) 
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pulse width durations. This is evident from the melt pool depth and roughness results 

shown in Table 4-1. 

  

Figure 4-14: (a) and (b) BSE micrographs of transverse cross sectional microstructure 

corresponding to processed surface shown in Figure 4-13 (a) and (b) respectively. 

Glyceregia etchant revealed carbide formation and inclusions within the stainless steel 

microstructure. The small dark spots visible within the microstructure in Figure 4-14 (a) 

and (b) resemble carbides and other inclusions in the steel. However these inclusions are 

nearly eliminated within the laser processed regions. Creation of a chemically uniform 

and defect free surface is useful as it can lead to increased wear resistant surfaces [45]. 

Table 4-1: Melt pool depth and roughness measurements from DOE 2 for 316L. 

Residence 

Time 

Energy 

Density 

Irradiance 
As-received Machined 

Machined and 

Etched 

(µs) (J/mm
2
) 

 

(kW/mm
2
) 

Depth 

(µm) 

Ra 

(µm) 

Depth 

(µm) 

Ra 

(µm) 

Depth 

(µm) 

Ra 

(µm) 

50 11.00 220 38 4.00 48 3.35 43 2.23 

67 10.48 157 42 2.14 44 2.40 51 3.35 

83 10.48 126 51 2.42 53 2.79 60 2.79 

100 11.00 110 59 6.90 77 7.13 84 4.01 

167 10.48 62.9 72 3.63 86 3.38 91 3.38 

4.2.2 Effects of pre-treatments and residence time on meltpool depth 

Figure 4-15 shows the effects of residence time, machining and etching on the modified 

layer depth. Meltpool depth increased with increased residence time for all sample 

conditions. A steeper increase was noted between 50 and 100 μs. The small increase in 

meltpool depth at 160 μm was due to the low irradiance of 62.9 kW/mm
2
 used for the 

(a) (b) 
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sample processed at this point. Etched samples did not improve the meltpool depth thus 

indicating that it had the least impact on improving CO2 laser absorption of 316L 

stainless steel. Machined and etched samples showed the highest meltpool depths. 

Machining of samples had a greater effect on meltpool depth compared to etching. 

There were no significant effects of pre-treatments on roughness, see Appendix F. 

 

Figure 4-15: Effects of pre-treatments and residence time on meltpool depth. 

4.2.3 Microhardness 

The average hardness of untreated 316L stainless steel was measured from the sectioned 

samples to be 250 HV. Figure 4-16 shows the effects of laser surface melting on 

microhardness. The dotted line represents the hardness of untreated samples. Some 

samples showed slight increase in hardness. Although a significant increase in hardness 

was identifiable for specific laser processing conditions, the level of increase was small 

and for most samples no strong relationship was present from the effects of laser 

processing parameters on resultant microhardness. In order to have significant increase 

in hardness within the steel, time is needed for the carbon content to diffuse to allow the 

transformation from austenite to martensite to occur [97]. When insufficient time is 

provide due to rapid heating and cooling or when insufficient carbon content is present 

to aid the driving of the diffusion process, then little hardening effect would be expected 

to occur. Both of these situations were present in this case due to the rapid laser 

processing and the low carbon content in 316L material respectively.  
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Figure 4-16: Effects of laser processing on 316L hardness  

compared to as received material hardness. 

 

Due to the aforementioned phenomena, 316L stainless steel was not conducive to laser 

hardening. Laser surface hardening of 316L could be achieved via extreme quenching 

methods that induce formation of either a quasi-crystalline or an amorphous structure 

[232]. An amorphous structure can be achieved on the surface of the material by 

freezing the molten surface atoms in a random state through extremely rapid quenching 

techniques. A possible quenching technique that could be implemented to achieve this is 

by conducting cryogenic laser surface melting. The laser surface melting in this case 

would be conducted with a cryogenic coolant used to assist in quenching the surface. 

4.2.4 EDS Analysis 

The chemical composition of untreated and laser treated regions were analysed using 

energy dispersive x-ray spectroscopy (EDS). Figure 4-17 shows the cross-sectional 

microstructure highlighting the point of analysis and the corresponding EDS spectrum 

of the bulk material. Figure 4-18 shows the microstructure, point of analysis, and EDS 

spectrum of the laser treated region. Table 4-2 shows that there was no significant 

difference in chemical composition of the various elements constituting 316L stainless 

steel. Regardless of the high cooling rates implemented in this study the XRD analysis 

did not show any phase transformation. 
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Figure 4-17: Micrograph and EDS spectrum of the bulk 316L material. 

  

Figure 4-18: Micrograph and EDS spectrum of the laser melted 316L stainless steel. 

Table 4-2: Chemical composition of elements in 316L stainless steel  

measured using the energy dispersive x-ray spectroscopy. 

Bulk Material Laser modified region 

Element (K level) Weight% Element (K level) Weight% 

C  3.06 C  4.16 

Si  0.69 Si  0.68 

Cr  17.10 Cr  16.89 

Mn  1.51 Mn 1.58 

Fe K 65.43 Fe K 64.47 

Co K 0.23 Co K 0.28 

Ni K 9.68 Ni K 9.43 

Mo L 2.29 Mo L 2.51 
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4.3 Summary 

This chapter presented results for the laser surface modification of 316L stainless steel. 

In particular, the effects of the laser surface modification processing conditions on 

meltpool profile, microstructure, roughness, hardness, and chemical composition were 

presented. It was found the surface could be melted and solidified in a controlled 

manner by control of the laser processing parameters. Novel microstructures have been 

obtained which were not previously reported in the literature. Laser surface 

modification also reduced asperities and eliminated cracks and inclusions within the 

treated region. An increase in hardness was achieved for some of the laser processing 

conditions relative to the untreated surface. However, the level of this increase was 

typically not high and no correlation was evident between the range of processing 

parameters investigated and the hardness results. Meltpool depths were found to 

increase for increased residence time and for machined as well as machined and etched 

surfaces. 

Reduced irradiance and higher residence times resulted in lower surface roughness 

values. While reduced roughness and increased melt pool depths could be seen as 

beneficial for biomedical implants, other physical properties of the surface also need to 

be considered, in particular, the levels of hardness. The lack of significant phase 

transformation and chemical composition changes of the microstructure for the 

processing parameters investigated would indicate that the possibility of significant 

improvements of hardness and necessary tribological properties would not be great for 

this alloy. This indicates that an alternate process that alters the material structure in a 

different manner would be required if laser surface modification was to be successful 

for increasing the hardness and life span for 316L hip implants. One possible method of 

achieving this would be to create an amorphous structure on the surface of this implant 

material. Amophous structures are known to have excellent hardness, wear and 

corrision peoperties. Such a structure could potentially be achieved by cryogenic laser 

surface treatment.   
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  Chapter 5

Results: Ti-6Al-4V 

This chapter presents results for high speed laser melted Ti-6Al-4V. The results include 

microstructure analysis, meltpool profile, roughness, microhardness, phase and 

chemical composition, wear and corrosion resistance, wettability and biocompatibility 

properties. Compared to 316L stainless steel results presented in Chapter 4, much more 

detailed characterisations were carried out on Ti-6Al-4V samples. 

5.1. Metallography 

The results presented in this section are mainly microscopic analysis of the physical 

structure of the Ti-6Al-4V before and after laser melting. Surface topography results 

represent the plan view analysis while the cross-section views were obtain after a 

transverse sectioning and etching to highlight phase structure. 

5.1.1 Surface Topography 

Figure 5-1 presents the plan view of the (a) as-received and (b) grit blasted Ti-6Al-4V. 

There were no visible voids, inclusions, pits or cracks on the surface of as-received 

samples.  

  

Figure 5-1: SEM micrographs showing the plane view of  

(a) as-received and (b) grit blasted Ti-6Al-4V 

Figure 5-2 to Figure 5-4 presents the topographical characteristics of the laser melted 

region, highlighting the repetitive processing tracks created due to rapid solidification.  

(a) (b) 
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Figure 5-2: Back scatter detector (BSE) surface morphology images of laser  

surface modified Ti-6Al-4V at a constant residence time of 1.08 ms and  

three levels of irradiance (a) 15.72, (b) 20.4 and (c) 26.7 kW/mm
2
. 

  

Figure 5-3: Back scatter detector (BSE) surface morphology images of laser  

surface modified Ti-6Al-4V at a constant residence time of 1.44 ms and  

three levels of irradiance (a) 15.72, (b) 20.4 and (c) 26.7 kW/mm
2
. 

  

Figure 5-4: Back scatter detector (BSE) surface morphology images of laser  

surface modified Ti-6Al-4V at a constant residence time of 2.16 ms and  

three levels of irradiance (a) 15.72, (b) 20.4 and (c) 26.7 kW/mm
2
.
  

(a) (b) 

(c) (a) 

(a) (b) (c) 

(b) 

(c) 
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Figure 5-2 shows the morphological structure at the lowest residence time of 1.08 ms 

and three levels of irradiance (15.72, 20.4 and 26.7 kW/mm
2
). Increase in irradiance 

produced a smoother treated region with a more homogeneous melting regime. A 

similar trend with increased irradiance was observed for samples processed at higher 

residence times of 1.44 ms (Figure 5-3) and 2.16 ms (Figure 5-4). 

Evolution of roughness and rippling effect on the treated surface confirms that the 

surface was heated to a liquid phase as seen in Figure 5-5. No evidence of ablation is 

visible on all treated sample due to the careful selection of the laser processing 

parameters. Grain structure formation is also visible on all topographic micrographs. 

Figure 5-5 shows the typical grain distribution on laser melted topography. The grains 

are not homogeneous in size and vary within the treated zone. In Figure 5-5 the 

dimension of the grains varied from as low as 5 μm to 30 μm. It was not possible to 

quantitatively determine from these images an average the grain size within a particular 

treated sample. However, the grains generally increased in size and became more visible 

with increasing irradiance and residence time. The largest grains are visible in Figure 

5-4 (c) where the highest irradiance of 26.7 kW/mm
2
 and residence time of 2.16 ms was 

applied. 

 

Figure 5-5: Grain distribution on the surface of a sample laser melted at an 

 irradiance of 26 kW/mm
2
 and a residence time of 2.16 ms, imaged in BSE mode. 

5.1.2 Cross-sectional microstructure 

Figure 5-6 shows the etched cross-sectional microstructure images of the as-received 

Ti-6Al-4V taken using an optical microscopes, see Figure 5-6 (a), and back scatter 

electron detector (BSE), see Figure 5-6 (b). The as-received microstructure consists of a 

fully lamellar microstructure consisting of colonies of alternating laths of α and β phase 

Small grains 

Large grains 

Rippling 
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as depicted by both the optical and electron microscope in Figure 5-6 (a) and (b) 

respectively. Optical microscopy shows the α phase as light regions on the micrograph 

while the β phase are darker regions. BSE micrographs on the other hand show the 

opposite, with the α phase as dark regions while the lighter regions depict the β phase. 

To enhance contrast and image clarity a yellow filter was used to take the pictures 

shown in Figure 5-6 (a) and Figure 5-7 (b). 

  

Figure 5-6: Cross-sectional micrographs of the as-received Ti-6Al-4V  

obtained via (a) optical microscopy and (b) BSE. 

High speed laser treatment resulted in the creation of a crack-free modified layer 

ranging from 20 to 50 μm thick with very different microstructures compared to the 

bulk alloy. Figure 5-7 reveals a typical crack-free cross sectional microstructure of the 

laser melted Ti-6Al-4V highlighting also the phase transformation in the modified layer. 

Following high speed laser melting, the fully lamellar α+β microstructure re-crystallised 

to form a martensite structure with an acicular αTi phase. The extent of the phase 

transformation is detailed in later sections of the thesis. 

  

Figure 5-7: Cross sectional BSE micrograph of laser modified Ti-6Al-4V 

obtained via (a) optical microscopy and (b) BSE. 

(a) 

(b) (a) 

(b) 
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Figure 5-8 to Figure 5-10 highlight the effects of irradiance and residence time on the 

cross sectional microstructure of the laser surface modified Ti-6Al-4V. The samples 

treated at higher irradiances showed a smoother surface finish compared to the samples 

treated at lower irradiance which had a more wavy surface type. This is particularly 

noticeable in Figure 5-8 shows a clear increase in depth of processing as the residence 

time increased. This trend is generally the same at the higher irradiance values in Figure 

5-9 and Figure 5-10. More uniform meltpool depths were also created at higher 

irradiance values and for higher residence times. A relatively homogeneous treated 

meltpool depth was found in the micrographs for the sample at the highest irradiance of 

26.72 kW/mm
2
.  
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Figure 5-8: Back scatter detector (BSE) surface morphology images of laser surface 

modified Ti-6Al-4V at a constant level of irradiance 15.72 kW/mm
2
 and three  

levels of irradiance of residence time of (a) 1.08 (b) 1.44 and (c) 2.16 ms. 

 

Figure 5-9: Back scatter detector (BSE) surface morphology images of laser surface 

modified Ti-6Al-4V at a constant level of irradiance 20.4 kW/mm
2
 and three  

levels of irradiance of residence time of (a) 1.08 (b) 1.44 and (c) 2.16 ms. 

  

Figure 5-10: Back scatter detector (BSE) surface morphology images of laser surface 

modified Ti-6Al-4V at a constant level of irradiance 26.72 kW/mm
2
 and three  

levels of irradiance of residence time of (a) 1.08 (b) 1.44 and (c) 2.16 ms. 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 
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5.2 Meltpool Profile 

Figure 5-8 to Figure 5-10 qualitatively highlighted the changes in microstructure, 

roughness and meltpool depth of the laser modified regions. These micrographs show 

that irradiance has an effect on the thickness uniformity of the melted area. Figure 5-11 

compares the effects of the lowest and highest irradiance, 15.72 and 26.72 kW/mm
2
 

respectively, on the meltpool depth. As the irradiance increased, a more homogeneous 

meltpool depth with fewer discontinuities was observed. Increase in both irradiance and 

residence times resulted in an increase in meltpool depth which is quantitatively 

presented in Figure 5-11.  

 

Figure 5-11: Effects of laser irradiance and residence time  

on meltpool depth for the Ti-6Al-4V samples. 

The graph shows the error bars constructed using a 95% confidence t-test from a 

population of ten samples for each design point. The table in Appendix G presents the 

design points and results obtained from the tests. Figure 5-12 shows a 3D graph 

simultaneously displaying the effects of irradiance and residence on meltpool depth. 

The 3D graph was generated, in Design Expert®, using two factor interactions model 

(2FI). Table 5-1 shows the analysis of variance table generated by the model. The high 

model F-value of 23.23 implied the model was significant. A p-value of 0.002 

suggested that there is a low chance the F-value could occur due to noise. The predicted 

R
2
 of 0.879 is in reasonable agreement with the adjusted R

2 
of 0.893. There is only 

0.014 difference in the R
2
 values, this is significantly smaller than the threshold of 0.2. 
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High R
2
 values suggest there is a statistical significant interaction between the factors. 

The resulting meltpool depth can be modelled by the final equation given in Table 5-1.  

 

Figure 5-12: Effects of laser irradiance and residence time  

on meltpool depth for the Ti-6Al-4V samples. 

Table 5-1: Analysis for variance (ANOVA) table for meltpool depth – 2FI model. 

Source Sum of Squares Mean Square F Value p-value 

Model 502.786 167.595 23.268 0.0023 

A-Irradiance 135.375 135.375 18.795 0.0075 

B-Residence Time 366.601 366.601 50.898 0.0008 

AB 0.81 0.81 0.112 0.7510 

Residual 36.013 7.202   

Cor Total 538.8 
 

 
 Final equation obtained from the model: 

R-Squared 0.933 Microhardness = 

-3.93448 

+0.61818 × Irradiance 

+11.26016 × Residence Time 

+0.15152 × Irradiance × Residence Time 

Adj R-Squared 0.893 

Pred R-Squared 0.879 

Adeq Precision 14.047 

The ANOVA results show that meltpool depth was affected by both irradiance (A) and 

residence time (B). Residence time had the most significant effect on the meltpool depth 
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followed by irradiance as highlighted by the F-values 50.898 and 18.795 respectively. 

The interaction of the factors irradiance and residence time (AB) showed the F-values 

values highlighting its low significance in resultant meltpool depths. The low effect of 

the interaction modelled by the 2FI model is further confirmed from the coded factors, 

Equation (17). The coded factors model equation was derived from the experimental 

design’s low and high coded levels (-1 and 1). 

                                              (17) 

The predicted meltpool depth values were plotted against the experimental values in 

Figure 5-13. Meltpool depth values after laser surface treatment were found to be highly 

predictable, as the values are closely positioned to the best-fit line. The adequate 

precision, which measures the signal to noise ratio, was found to be 14.047. As this ratio 

is greater than 4, this indicates an adequate signal, meaning that the model can be used 

to navigate the design space.  

 

Figure 5-13: A graph of the actual meltpool depth versus the predicted values. 
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5.3 Roughness 

Qualitative analyses of the micrographs in section 5.1 implicitly highlighted smoother 

surfaces with increased irradiance and residence time. Profilometry measurements 

showed average roughness of the grit blasted alloy was 0.56 ± 0.1 µm. Laser surface 

melting subsequently produced average roughness values between 1.39 µm and 2.73 

µm. Figure 5-14 highlights the effects of irradiance and residence time on roughness. 

Roughness was found to decrease with increase of irradiance and residence time. The 

graph shows the error bars constructed using a 95% confidence t-test from a population 

of five samples for each design point. The table in Appendix H lists the design points 

and results obtained from the tests. 

 

Figure 5-14: Effects of irradiance and residence time on  

average roughness of the Ti-6Al-4V samples. 

Figure 5-15 presents the effects of irradiance and residence time in a response surface 

plot. Increase in both irradiance and residence time resulted in low average roughness 

values. The 3D graph was generated using a quadratic model. Table 5-2 shows the 

analysis of variance (ANOVA) results generated by the model. The Model F-value of 

544.86 implied the model was significant. A p-value of 0.0001 suggested that there is a 

low chance the F-value could occur due to noise in this model. The predicted R
2
 of 

0.989 is in reasonable agreement with the adjusted R
2 

of 0.997. High R
2
 values suggest 

there is a statistical significance between the factors and average roughness subsequent 

to laser surface melting.  
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Figure 5-15: Effects of irradiance and residence time on  

average roughness of the Ti-6Al-4V samples. 

Table 5-2: Analysis for variance (ANOVA) table for roughness – quadratic model. 

Source Sum of Squares Mean Square F Value p-value 

Model 1.672515 0.334503 544.8589 0.0001 

A-Irradiance 1.185482 1.185482 1930.985 < 0.0001 

B-Residence Time 0.18375 0.18375 299.3032 0.0004 

AB 0.1936 0.1936 315.3475 0.0004 

A
2
 0.107803 0.107803 175.5957 0.0009 

B
2
 0.001881 0.001881 3.063707 0.1784 

Residual 0.001842 0.000614 
  

Cor Total 1.674357 
 

  Final equation obtained from the model: 

R-Squared 0.998 Roughness = 

+ 10.14118 

- 0.52654 × Irradiance 

- 2.23667 × Residence time 

+ 0.074074 × Irradiance ×Residence time 

+ 7.67493 × 10
-3

 × Irradiance
2
 

+ 0.10517 × Residence time2 

Adj R-Squared 0.997 

Pred R-Squared 0.989 

Adeq Precision 65.692 

The ANOVA table showed p-values less than 0.05 for all model terms except high order 

residence time (B
2
). Such low p-values highlight the significance of such these factors 

and their interactions. The F values from the ANOVA table can be used to rank the 

influence of factors/interactions on the resultant average roughness. In this case, 
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irradiance (A) was found to be the most influencial with the highest F value of 

(1930.985). Interaction AB had the second influence followed by residence time (B) and 

A
2
 respectively. B

2
 had the least influence as expected with the lowest F-value of just 

3.063 – A>>AB>B>A
2
>>B

2
. The average roughness can therefore be modelled by the 

final equation produced by the model given in Table 5-2. The coded factors model is 

presented by Equation (18) again highlighting the influence of each term on the model.  

                                                      (18) 

Average roughness values after laser surface treatment was found to be highly 

predictable according to the model as seen in Figure 5-16. All roughness values lie on 

the best-fit line of the predicted results. The adequate precision ratio was found to be 

65.692 which is significantly higher that the threshold of 4. This means that the model 

had very little noise , therefore it can be used to navigate the design space. 

 

Figure 5-16: A graph of the actual roughness versus the predicted values. 
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5.4 Microhardness 

The average cross-sectional microhardness of untreated as-received Ti-6Al-4V was 

measured to be 459 HV. Figure 5-17 highlights the effect of laser processing parameters 

on the resulting microhardness. The 3D surface response plot illustrates microhardness 

distribution with respect to irradiance and residence time. Laser surface modified 

samples showed a hardness increase up to 767 HV. This hardness increase was 67% 

higher than as-received Ti-6Al-4V. The highest microhardness of 767 HV was achieved 

at the highest level of irradiance (26.72 kW/mm
2
) and lowest residence time (1.08 ms). 

 

 

Figure 5-17: Effects of irradiance and residence time on microharness. 

The 3D graph was generated using a two factor interaction model. Table 5-3 shows the 

analyses of variance generated by the model. The p-value of 0.0198 indicates that the 

model is significant with a 98% confidence that a high model F-value of 8.719 could be 

due to noise. The adequate precision was found to be 9.21 indicating an adequate signal. 

This means that the model can be used to navigate the design space. Resulting 

microhardness can be modelled by the final equation produced by the model given in 

Table 5-3. Order of factor influence on microhardness can be established through 

Sample 9 
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analysis of the F-values magnitude as follows: AB>B>A. The final equation in terms of 

the coded factor further confirms the influence of the factors, see Equation (19). 

Table 5-3: Analysis for variance (ANOVA) table for microhardness – 2FI model 

Source Sum of Squares Mean Square F Value p-value 

Model 14700.39 4900.13 8.719 0.0198 

A-Irradiance 1849.06 1849.06 3.290 0.1294 

B-Residence Time 6424.89 6424.89 11.432 0.0196 

AB 6426.42 6426.42 11.435 0.0196 

Residual 2809.93 561.98   

Cor Total 17510.32 
 

 
 Final equation obtained from the model: 

R-Squared 0.84 Microhardness = 

+238.0962 

+25.055 × Irradiance 

+225.7819 × Residence Time 

-13.4958 × Irradiance × Residence Time 

Adj R-Squared 0.74 

Pred R-Squared 0.46 

Adeq Precision 9.21 

                                                (19) 

Figure 5-18 shows a graph of the actual microhardness versus the predicted values.  

 

Figure 5-18: A graph of the actual microhardness versus the predicted values. 
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Microhardness values obtained experimentally lie relatively close to the best-fit line 

highlighting the adequacy of the model. The slight scatter visible for all design points 

can be due to the measurement errors due to due to micro-indent placement. Using 

improved microhardness measurement tools, i.e. nano-indentation, can aid in improving 

the prediction of the processing parameter effects. The graph also assisted in detecting 

values that are not easily predicted by the model. There is some moderate scatter for 

samples treated at high residence times as shown by the graph. Samples treated at high 

residence times value should therefore be approached cautiously if the model is used for 

microhardness predictions. 

Processing parameters producing the most improved hardness (sample 9; 26.72 

kW/mm
2
 and 1.08 ms) were used to illustrate the change in hardness with respect to 

distance from the surface, see Figure 5-19. Figure 5-19 simultaneously illustrates the 

microstructure variation as the distance from the surface increases. Within the laser 

modified region the microhardness was consistently high and dropped at the substrate-

laser treated interface. Microhardness values decreased as the distance from the surfaces 

increased. 

 

Figure 5-19: Microhardness of laser surface modified Ti-6Al-4V  

with respect to depth from the surface for sample 9. 
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5.5 Phase and Chemical Composition Characterisation 

5.5.1 X-ray diffraction 

X-ray diffraction analysis was used to evaluate the phase transformation and 

crystallinity changes of Ti-6Al-4V subsequent to laser surface melting. Figure 5-20 

demonstrates the x-ray diffraction pattern of untreated Ti-6Al-4V. Figure 5-20 confirms 

the presents of the α+β phase observed by the cross-sectional micrographs in section 

5.1.2. Table 5-4 lists the major peaks that were indexed between braggs angle (2-theta) 

of 20 and 100 degrees. Untreated Ti-6Al-4V is comprised of; the majority α-Ti (100), 

(101), (102), (110), (112), (201) and (104) at 35.4°, 40.2°, 53.1°, 63.2° and 70.8° 

respectively; and the minority β-Ti (110) and (211) at 38.4° and 76.5° respectively. The 

results were found to be in good agreement with reported XRD scans in literature [233]. 

 

Figure 5-20: X-ray diffraction pattern of untreated Ti-6Al-4V. 
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Table 5-4: X-ray diffraction data for untreated Ti-6Al-4V. 

2θ d Intensity 
hkl-α hkl-β 

(°) Å Max) I/I1(%) 

35.407 2.53314 79.8 34.6 100  

38.576 2.33198 124 53.9 
 

110 

39.375 2.28652 51.1 22.2 - - 

40.471 2.22705 230 100 101  

53.309 1.71709 96.8 42 102  

63.577 1.46226 56.1 24.4 110  

71.02 1.32617 140 60.7 
 

211 

76.86 1.23931 64.6 28.1 112  

78.11 1.22257 40.5 17.6 201  

93.146 1.06065 40.7 17.6 10  

Figure 5-21 show the x-ray diffraction scans of untreated and laser surface modified 

samples. A reduction in the β-Ti phase is evident in all treated samples. The α-Ti at the 

2θ value of 39.375° visible in untreated samples is not visible in any LSM XRD scans.  
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Figure 5-21: XRD pattern of untreated and LSM samples. 
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Untreated Ti-6Al-4V was calculated to contain 28.6% β-Ti, assuming that the remaining 

composition is the α phase that means 71.4 % of the material is made up of α-Ti. Figure 

5-22 highlights the change in β-Ti phase composition at various levels of irradiance and 

residence time. Within the treated samples, β-Ti phase was highest at the lowest 

irradiance and residence time, 15.72 kW/mm
2
 and 1.08 ms respectively. At the lowest 

residence time (1.08 ms) β-Ti volume fraction decreased with increase in irradiance. At 

the highest residence time (2.16 ms), β-Ti volume fraction slightly increased with 

increase in irradiance. 

 

Figure 5-22: Effects of irradiance and residence time on the β-Ti phase. 

The 3D graph was generated, in Design Expert®, using two factor interactions model 

(2FI). Table 5-5 shows the analyses of variance generated by the model. The Model F-

value of 17.5 implied the model was significant. A p-value of 0.0044 suggested that 

there is was a low chance the F-value could occur due to noise. High R
2
 values suggest 

there is a statistical significant interaction between the factors. The adequate precision 

was found to be 12.73 indicating an adequate signal. This means that the model can be 

used to navigate the design space. Resulting beta Ti phase volume fraction can be 

modelled by the final equation produced by the model given in Table 5-5. Order of 

factor influence on microhardness can be established through analysis of the F-values 

magnitude as follows: A>AB>B. The final equation in terms of the coded factor further 

confirms the influence of the factors, see Equation (20). 
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Table 5-5: Analysis for variance (ANOVA) table for βTi volume fraction– 2FI model 

Source Sum of Squares Mean Square F Value p-value 

Model 11.342 3.781 17.500 0.0044 

A-Irradiance 6.689 6.689 30.964 0.0026 

B-Residence Time 1.244 1.244 5.761 0.0616 

AB 3.408 3.408 15.776 0.0106 

Residual 1.080 0.216   

Cor Total 12.423 
 

 
 Final equation obtained from the model: 

R-Squared 0.913 Ti beta phase volume fraction (%) = 

+ 37.870 

- 0.695 × Irradiance 

- 7.438 × Residence Time 

+ 0.310 × Irradiance × Residence Time 

Adj R-Squared 0.860 

Pred R-Squared 0.584 

Adeq Precision 12.773 

                                                 (20) 

β-Ti phase volume fraction values after laser surface treatment was found to be highly 

predictable according to the model as seen in Figure 5-23. All design points are 

positioned close to the best-fit line of the predicted results.  

 

 

Figure 5-23: A graph of the actual βTi volume fraction versus the predicted values. 
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5.5.2 Topographic chemical composition analysis 

A comparison of energy dispersive x-ray spectroscopy (EDS) quantitative results was 

initially carried out to find the most accurate method of analysing the chemical 

composition of the surface. Figure 5-24 shows the two types of scans used (a) area scan 

and (b) grid scan. 

  

Figure 5-24: EDS analysis of the Ti-6Al-4V topographic surface  

(a) area scan and (b) point analysis. 

Both methods resulted in relatively similar chemical compositions as illustrated by the 

weight percentage of the composition in Figure 5-25. The results also suggest a 

homogeneous chemical composition throughout the surface of the material.  

 

Figure 5-25: Elemental composition using different scan methods and processing times. 
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Figure 5-26: Grid scan micrographs of (a) untreated and (b) grit blasted Ti-6Al-4V. 

Figure 5-26 shows the micrographs highlighting the scan area for untreated and grit 

blasted samples. Figure 5-27 to Figure 5-29 shows the EDS spectrum obtained from the 

untreated, grit blasted and LSM samples. The untreated sample spectrum in Figure 5-27 

shows the typical Ti, Al and V elements at the expected electron voltages. However, 

unexpected minute traces of silicon were observed in grit blasted and some laser treated 

spectrums, Figure 5-28 and Figure 5-29 respectively. These traces are attributed to the 

grit blasting process undertaken prior to laser treatment. The chemical composition 

analysis shows that laser treatment does not result in significant changes in elemental 

chemical composition of the topography. No evidence of other foreign element 

contamination was found in the treated zones. 

  

(a) (b) 
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Figure 5-27: EDS spectrum of untreated Ti-6Al-4V. 

 

Figure 5-28: EDS spectrum of grit blasted Ti-6Al-4V. 

 

Figure 5-29: EDS spectrum of LSM Ti-6Al-4V. 
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5.5.3 Cross-sectional chemical composition analysis 

A cross-sectional EDS analysis of the laser surface modified samples was carried out at 

the points as shown in Figure 5-30. Eight spectrum points were analysed beginning at 8 

μm from the surface of the material. All points were separated by 8 μm thus giving an 

analysis range of 64 μm covering both the untreated and laser melted regions.  

 

Figure 5-30: Typical EDS analyses of the cross-sectional microstructure  

perpendicular to the direction of the beam 

Figure 5-31 shows variation in weight percent of the Ti element for sample 3, 6 and 9 as 

the distance from the surface is increased.  

 

Figure 5-31: EDS analysis of titanium composition distribution in samples 3, 6 and 9. 
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The graph simultaneous highlight changes in microstructure of a typical laser surface 

modified sample at the corresponding distances. Within the laser treated region, the 

titanium element composition is uniform at approximately 90% compared to the 

relatively non-homogenous titanium distribution within the bulk alloy. The same trend 

was found for the aluminium alloying elements, see Figure 5-32. The actual cross-

sectional micrographs of each sample are given in Appendix I. 

 

Figure 5-32: EDS analysis of aluminium composition distribution in samples 3, 6 and 9 

5.6 Wear Resistance 

Initial tests were carried out to distinguish the depth of wear tracks at specific sliding 

distances. Figure 5-33 shows the relationship between wear track depth and sliding 

distances of Ti-6Al-4V, characterised via white light interferometry. The wear depth of 

Ti-6Al-4V was found to increase linearly from 11 to 57 μm when the distance travelled 

by the pin (sliding distance) was varied between 9.7 and 150 m respectively. The 

coefficient of determination (R
2
) of 0.9966 shows a good fit, representing a good 

relationship between the depth of wear track and distance travelled by the pin. Two 

sliding distances, 20 and 150 m, were selected for the remaining study of laser 

processing parameters influence on the wear characteristics. Figure 5-34 shows 3D wear 

profiles, of (a) untreated (UT) sample wear tested for 150 m, (b) laser surface modified 

(LSM) sample wear tested for 150 m and (c) laser surface modified (LSM) samples 

wear tested for 20 m. The images were obtained via white light interferometry. 
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Figure 5-33: Relationship of wear track and distance travelled by the pin. 

Untreated wear track profile Figure 5-34 (a), show slightly larger depth and width 

compared to the LSM profile Figure 5-34 (b). 3D profiles of laser modified samples 

Figure 5-34 (b) and Figure 5-34 (c) highlight a similar wear track characteristic of ridge 

formation on the bottom of the tracks. Untreated samples show different wear tracks, 

highlighting shallower ridge formation on the floor of the wear tacks. These 

characteristics are the initial evidence indicative of different wear mechanisms between 

untreated and laser treated samples. 

 

Figure 5-34: 3D wear track profile of (a) untreated Ti-6Al-4V tested for 150 m,  

(b) LSM Ti-6Al-4V tested for 150 m and (a) LSM Ti-6Al-4V tested for 20 m  

5.6.1 Wear Track Micrographs 

Figure 5-35 shows the wear track morphology of untreated samples tested for 20 m. 

Figure 5-35 (b) and Figure 5-35 (c) show magnified micrographs highlighting evidence 

of abrasive and adhesive wear mechanisms. The wear track of untreated Ti-6Al-4V is 

R² = 0.9966 

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120 140 160

D
ep

th
 o

f 
 w

ea
r 

tr
ac

k
 (
μ

m
) 

Sliding distance (m) 



 

5-125 

 

smeared with plastically deformed wear particles. Mass loss detected in the samples was 

due to disintegration of the wear debris. Figure 5-36 shows the wear track morphology 

of a typical LSM sample tested for 20 m. The morphology shows a smoother surface 

with no evidence of smeared wear particles. 

 

 

 

Figure 5-35: Micrographs of untreated Ti-6Al-4V at various  

magnifications, samples tested for 20 m. 

 

 

 

Figure 5-36: Micrographs of LSM 3 (26.72kW/mm
2
 and 2.16 ms)  

at various magnifications, samples tested for 20 m. 
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Figure 5-37 shows that the wear mechanisms involved for untreated samples tested for 

150 m were similar to those observed for samples tested for 20 m. However, LSM 

samples tested for 150 m also showed worn surfaces due to minor deformation wear 

mechanism visible in Figure 5-38. Deformation wear mechanism was not observed for 

samples treated at 20 m. 

 

 

 
Figure 5-37: Micrographs of untreated Ti-6Al-4V at  

various magnifications, samples tested for 150 m. 

 

 

 

Figure 5-38: Micrographs of LSM 3 (26.72 kW/mm
2
 and 2.16 ms) 

at various magnifications, samples tested for 150 m. 
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5.6.2 Effects of Laser Processing Parameters on Specific Wear rate 

Figure 5-39 shows the specific wear rate of untreated (UT) and laser modified (LSM) 

samples tested for 20 and 150 m.  

 

Figure 5-39: Specific wear rates of Ti-6Al-4V at two sliding distances of 20 and 150 m. 

When wear testing was conducted for 150 m, specific wear rate of the untreated samples 

were found to be closely similar to that of the treated samples. No correlation was 

observed between processing parameters and specific wear rate. However, a strong 

correlation was found between the specific wear rate and laser modified melt pool 

depths. Figure 5-40 highlights a linear relationship, R
2
 value of 0.7, where samples with 

higher melt-pool depth produced the least wear.  

 

Figure 5-40: Relationship of specific wear rate and melt-pool depth  

for samples tested for 150 m. 
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This evidence suggested that the wear track being produced was significantly larger 

than the melt-pool sizes therefore the tested wear rates combined with the substrate. 

Samples tested for 20 m showed a relationship between laser processing parameters and 

the specific wear rate. Figure 5-41 highlights the effects of irradiance time and residence 

time on specific wear rate for samples tested for 20 m. Increase in both irradiance and 

residence time resulted in higher specific wear rates.  

 

Figure 5-41: Effects of laser processing parameters on  

specific wear rate over 20 m sliding distance. 

The lowest wear rate of 504 ×10
-6

 mm
3
/N·m (17% less than untreated samples) was 

produced with the minimal irradiance and residence time of 15.7 kW/mm
2
 and 1.08 ms 

respectively. The 3D graph was generated using a two factor interaction model. Table 

5-6 shows the analyses of variance generated by the model. The Model F-value of 62.82 

implies the model is significant. A p-value of 0.0002 suggests that there is a low chance 

the F-value could occur due to noise. The Predicted R
2
 of 0.974 is in reasonable 

agreement with the Adjusted R
2 

of 0.9586. High R
2
 values suggest there is a statistical 

significant interaction between the factors. Resulting specific wear rate can be modelled 

by the final equation produced by the model given in Table 5-6. Order of factor 

influence on microhardness can be established through analysis of the F-values 

magnitude as follows: A>>B>>AB. The final equation in terms of the coded factor 

further confirms the influence of the factors, see Equation (21). 
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Table 5-6: Analysis for variance (ANOVA) table for specific wear rate – 2FI model 

Source Sum of Squares Mean Square F Value p-value 

Model 18726.17 6242.055 62.819 0.0002 

A-Irradiance 16363.66 16363.66 164.683 < 0.0001 

B-Residence Time 2347.49 2347.49 23.625 0.0046 

AB 15.015 15.015 0.151 0.7135 

Residual 496.821 99.36   

Cor Total 19222.99 : 

 
 Final equation obtained from the model 

R-Squared 0.974 Specific Wear Rate 20m = 

+331.32746 

+8.43833× Irradiance 

+22.78662 × Residence Time 

+0.65236× Irradiance × Residence Time 

Adj R-Squared 0.958 

Pred R-Squared 0.832 

Adeq Precision 21.669 

                                                     (21) 

The outcome of wear treated samples has a high predictability factor as presented in 

Figure 5-42. The specific wear rates values obtained experimentally are positioned close 

to the best-fit line highlighting the adequacy of the model.  

 

Figure 5-42: Actual specific wear rate values versus the predicted response values 
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5.7 Corrosion Resistance 

Figure 5-43 shows the typical recorded variations of rest potential with time for as-

received, grit blasted and LSM 3, 6 and 9 which corresponds to samples treated at the 

highest irradiance (26.72 kW/mm
2
) and decreasing residence time (2.16, 1.44 and 1.08 

ms respectively).  

 

Figure 5-43: OCP variation with time of immersion for as-received, grit blasted  

and LSM 3,6 and 9 samples during immersion in 0.9 % NaCl at 37°C. 

All samples showed potentials moving towards the noble direction signifying improved 

passivity with increased time. Compared to the laser surface modified (LSM) samples 

that showed a slow shift in the more noble direction throughout; the untreated samples 

show a steep increase during the first 1200 seconds. The steep increase indicates the 

rapid formation of an oxide film on the surface acting as a barrier for metal dissolution 

thus reducing corrosion rate. Attainment of a steady open circuit potential (OCP) 

indicates the existence of a steady oxide film. The OCP recorded for the grit blasted 

sample was the highest at -264 mV, the as received was next at -350 mV and the laser 

modified samples obtained lower OCP values less than -362 mV. Increase in residence 

time produced lower OCP samples laser treated at 26.72 kW/mm
2
. Effects of lower 

irradiances 15.72 and 20.43 kW/mm
2
 on OCP is illustrated by Figure 5-44 and Figure 

5-45 respectively. 
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Figure 5-44: OCP variation with time of immersion for as-received, grit blasted  

and LSM 1,4 and 7 samples during immersion in 0.9 % NaCl at 37°C. 

 

 

Figure 5-45: OCP variation with time of immersion for as-received, grit blasted  

and LSM 2,5 and 8 samples during immersion in 0.9 % NaCl at 37°C. 
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Figure 5-46 shows the potentiodynamic polarisation curve of untreated and selected 

laser surface modified (LSM) samples swept back before reaching 1000 mV(SCE). The 

polarisation curves are broadly similar except for the current density variation with 

increase in potential. In untreated samples (i.e. grit blasted and as-received samples) a 

monotonic increase of the potential above about 120 mVSCE was observed, indicative of 

film/alloy dissolution. The anodic polarisation behaviour of the laser surface modified 

Ti-6Al-4V samples suggests that a different film type formed on these surfaces 

compared to the untreated sample surfaces. For laser treated samples a steady current 

density is maintained with increase in potential. The anodic Tafel slopes of the as 

received and grit blasted samples (βa = 345 to 346 mV dec.
-1

) were higher compared to 

the LSM samples 4 and 2 (βa = 225 to 281 mV dec.
-1

), see Figure 5-46.  

 

Figure 5-46: Polarisation curves of As-received, grit blasted, LSM 4 and  

LSM 7 Ti-6Al-4V samples in 0.9% NaCl at 37°C. 
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Figure 5-47 shows the potentiodynamic polarisation curve of untreated and laser surface 

melted Ti-6Al-4V where the upscan reached the breakdown potential. Low Tafel slopes 

in LSM samples are clearly visible. The monotonic increase of untreated samples 

intersects LSM samples at approximately 1000 mV(SCE). LSM sample show a stable 

current density resembling a superior stable passive film compared to untreated 

samples. Both laser treated and untreated samples showed localised corrosion 

characteristics, illustrated in Figure 5-47 as the rapid increase in current density at a 

high potentials. In this case the localised corrosion was found to be pitting corrosion. 

 

Figure 5-47: potentiodynamic polarisation curves of an untreated 

 and laser treated Ti-6Al-4V 

Localised corrosion in the form of pitting is clearly shown for both the untreated and 

LSM 8 in Figure 5-48. The pit size and shape of the LSM and as-received samples are 

different highlighting different surface properties on both set of samples. Figure 5-48 (c) 

shows the appearance of the laser-treated surface layer on the pit. A smoother pitting 
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surface is produced on the laser modified layer. No pitting was observed in any of these 

samples kept below 1000 mVSCE, indicating the existence of stable passive protective 

films up to approximtely1300mVSCE. 

  

 

Figure 5-48: Localised corrosion of (a) as-received Ti-6Al-4V, (b) LSM 8  

and (c) magnified view of sub-section from (b). 

Tafel analysis results obtained using Tafel rulers of the ACM Sequencer software are 

tabulated in Table 5-7. The corrosion current densities (icorr) were found to be between 

10 and 28 nA cm
-2

. Samples treated at the lowest residence 1.08 and highest irradiance 

26.72 kW/mm
2
 showed the lowest average corrosion rate of 86 nm yr

-1
. At a constant 

residence time of 1.08 ms (lowest residence time implemented), irradiances of 15.72, 

(a) (b) 

 

(c) 

Laser modified layer 
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20.44 and 26.72 kW mm
-2

 produced decreasing corrosion rates of 239, 188 and 86 nm 

yr
-1

.  

Table 5-7: Tafel analysis results of untreated and LSM Ti-6Al-4V in 0.9% NaCl. 

Sample ID 
βa 

(mV/dec.) 

βc 

(mV/dec.) 

icorr 

(nA /cm
2
) 

Corr. Rate 

(nm yr
-1

) 

As-received 345±4 146±9 12.45 108±8 

Grit blasted 346±13 139±3 35.4 309±23 

LSM 1 288.11 158.27333 50.66 441±20 

LSM 2 193.57 169.26667 28.84 251±16 

LSM 3 139.02667 91.55 23.24 202±17 

LSM 4 281.23 243.39333 12.27 106±17 

LSM 5 199.19667 179.87333 19.04 165±23 

LSM 6 217.83 191.66667 14.9 129±10 

LSM 7 225±4 179±13 27.48 239±21 

LSM 8 207±4 187±5 21.6 188±8 

LSM 9 231±2 179±11 10.0 86±5 

 

5.8 Surface Wettability 

The final shape taken by a drop of water when it is brought in contact with the flat Ti-

6Al-4V depends upon the relative magnitudes of the molecular forces that exist within 

the liquid (cohesive) and between the liquid and the solid (adhesive). The result of this 

effect is θ, the angle at which the liquid subtends to the solid. Figure 5-49 shows the 

typical contact angles of polished and grit blasted Ti-6Al-4V prior to laser treatment.  

   

Figure 5-49: Typical contact angles of (a) polished and (b) grit blasted Ti-6Al-4V. 

(a) (b) 
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The average contact angles of as-received and polished Ti-6Al-4V were 71.3 ±2.5° and 

73.9 ±3.7° respectively. The measured contact angle values for as-received and polished 

samples were within 3°. Grit blasting produced a lower contact angle of 60.6 ±1.1°. 

5.8.1 Contact Angles of Unpolished Samples 

Subsequent to laser surface modification the average contact angle dropped to a range 

between approximately 24° and 61° depending on the processing conditions. Optical 

micrographs of the sessile drops placed on the laser treated surface are shown in Figure 

5-50 to Figure 5-52. The optical micrographs also illustrate the effects of irradiance and 

residence time on contact angles. At the lowest residence time 15.7 kW/mm
2
 the contact 

angle reduced with increase in residence time, see Figure 5-50.  

   

Figure 5-50: Images of contact angles on laser surface modified Ti-6Al-4V at a constant 

irradiance of 15.72kW/mm
2 

and three levels of residence time (a) 1.08, 1.44 and 2.16ms  

   

Figure 5-51: Images of contact angles on laser surface modified Ti-6Al-4V at a constant 

irradiance of 20.43kW/mm
2 

and three levels of residence time (a) 1.08, 1.44 and 2.16ms  

   

Figure 5-52: Images of contact angles on laser surface modified Ti-6Al-4V at a constant 

irradiance of 26.72kW/mm
2 

and three levels of residence time (a) 1.08, 1.44 and 2.16ms 

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 



 

5-137 

 

Figure 5-53 shows effects of processing parameters on contact angles. A line 

representing the contact angle of untreated samples was included to highlight reduction 

in contact angles induced by laser surface melting. At low residence time (1.08 ms), 

contact angle decreases with increase in irradiance. This opposite happens at high 

residence times (2.16 ms) where contact angles increase with increase in irradiance. At 

the mid-range residence time (1.44 ms), the contact angle does not vary significantly. 

The effect can easily be viewed by the contour plot presented in Figure 5-54. 

 

Figure 5-53: Effects of irradiance and residence time on contact angle. 

 

Figure 5-54: Contour plot highlighting the effects of irradiance  

and residence time on measured contact angles. 
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The contour plot was generated using a quadratic model. Table 5-8 shows the analysis 

of variance generated by the model. The high Model F-value of 49.348 implied the 

model was significant. A p-value of 0.0044 suggested that there was a low chance such 

a high F-value could occur due to noise. The predicted R
2
 of 0.968 is in reasonable 

agreement with the adjusted R
2 

of 0.86. High R
2
 values suggest there is a statistical 

significance between the factors and average contact angles subsequent to laser surface 

melting. Contact angles of unpolished samples can be modelled by the final equation 

produced by the model given in Table 5-8. Order of factor influence on contact angles 

can be established through analysis of the F-values magnitude as follows: 

AB>>A
2
>>B

2
>A>B. The final equation in terms of the coded factor further confirms 

the influence of the factors, see Equation (22). 

Table 5-8: Analysis for variance (ANOVA) table for contact angles 

 of unpolished samples - quadratic model 

Source Sum of Squares Mean Square F Value p-value 

Model 1315.486 263.097 49.348 0.0044 

A-Irradiance 3.3450 3.345 0.627 0.4862 

B-Residence Time 0.115 0.115 0.0217 0.8922 

AB 1139.288 1139.288 213.694 0.0007 

A
2
 158.301 158.301 29.692 0.0121 

B
2
 14.436 14.4363 2.707 0.1984 

Residual 15.994 5.331 
  

Cor Total 1331.48 
 

  Final equation obtained from the model: 

R-Squared 0.988 Contact angles of unpolished sample (°)= 

+ 379.649 

+ 21.551× Irradiance 

- 150.175 × Residence time 

+ 5.683 × Irradiance ×Residence time 

+ 0.294 × Irradiance
2
 

+ 9.214 × Residence time
2
 

Adj R-Squared 0.968 

Pred R-Squared 0.866 

Adeq Precision 
18.696 

                          

                                     

(22) 

Measured contact angles after laser surface treatment was found to be highly predictable 

according to the model as seen in Figure 5-55. All design points are positioned close to 

the best-fit line of the predicted results. The adequate precision was found to be 18.696 
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indicating an adequate signal. This means that the model can be used to navigate the 

design space. 

 

Figure 5-55: A graph of the actual contact angles of unpolished  

laser treated samples versus the predicted values. 

The highest contact angles (approximately 58° and 61°) corresponded to points with the 

lowest and highest energy density, approximately 17 and 58 J/mm
2
. This evidence 

suggests a relationship between contact angle and energy density. Figure 5-56 shows the 

relationship between energy density and contact angle measurements.  

 

Figure 5-56: Relationship between energy density and contact angles 
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The R
2
 value of 0.826 indicates that the second order polynomial relationship between 

the parameters is significant. A saddle point was observed at mid-range energy 

densities, where the lowest contact angles were measured. 

5.8.2 Contact Angle of Polished Samples 

Figure 5-57 shows the effects of processing parameters on contact angles measure from 

samples polished subsequent to laser modification. A saddle shape relationship 

highlighting stationary values at the mid-range residence time was observed. The graph 

shows a different relationship of effects of processing parameters on contact angles 

compared to the unpolished samples thus further suggesting significance of roughness 

in contact angle measurements. The contour plot was produced using Design Expert via 

a quadratic model. Table 5-9 shows the analyses variance generated by the model. The 

model F-value of 15.86 implies the model is significant with a 0.0228 chance that this 

model F value is due to noise. The predicted R
2
 of 0.7 is above the minimum threshold 

and the difference between the adjusted R
2
 is also within the minium require 0.2. High 

R
2
 values suggest there is a statical significant interaction between the factors. This 

interaction can be modelled by the final equation produced by the model given in Table 

5-9.  

 

 

 

Figure 5-57: Effects of contact angle Irradiance and residence time on  

contact angles of polished samples. 
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Table 5-9: Analysis for variance (ANOVA) table for contact angles 

 of polished samples - quadratic model 

Source Sum of Squares Mean Square F Value p-value 

Model 269.037 53.807 15.867 0.0228 

A-Irradiance 11.454 11.454 3.377 0.1634 

B-Residence Time 9.685 9.685 2.856 0.1896 

AB 7.049 7.049 2.078 0.2450 

A
2
 5.137 5.137 1.515 0.3061 

B
2
 235.710 235.710 69.509 0.0036 

Residual 10.173 3.391   

Cor Total 279.210 
 

 
 Final equation obtained from the model: 

R-Squared 0.963 Contact Angle (polished )= 

+171.80192 

- 1.77578× Irradiance 

-113.4916× Residence Time 

-0.44697 × Irradiance × Residence Time 

+0.052987 × Irradiance
2
 

+37.22946 × Residence Time
2
 

Adj R-Squared 0.902 

Pred R-Squared 0.701 

Adeq Precision 9.243 

Order of factor influence on contact angles can be established through analysis of the F-

values magnitude as follows: B
2
>>A>B>AB>A

2
. The final equation in terms of the 

coded factor further confirms the influence of the factors, see Equation (23). 

                        

                                        

(23) 

5.9 Biocompatibility 

5.9.1 Cell Attachment and Metabolic Activity 

Figure 5-58 demonstrates the percentage cell attachment of each group with the error 

bars indicating the standard deviation between groups. One way ANOVA showed that 

there was no significant difference in cell attachment. This is due to large variation 

between several groups, illustrated by the error bars in Figure 5-58.  
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Figure 5-58: Cellular attachment at 2 hours shown as a  

percentage of the number of cells originally seeded.  

Figure 5-59 shows the relationship between cell attachment and measured contact 

angles. The graph shows that cell attachment percentage generally decreased with an 

increase in measured contact angles. 

 

Figure 5-59: Relationship between contact angle of  

unpolished LSM samples and cell attachment 

However, roughness did not have any effects on cell attachment percentage. Figure 5-60 

demonstrates that cell attachment is independent of roughness values. 
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Figure 5-60: Effects of roughness on cell attachment 

Figure 5-61 demonstrates the varying levels of proliferation for different samples. One 

way ANOVA for each set of data demonstrates that there is no significant difference 

between cell proliferation on laser treated samples.  

 

Figure 5-61: Metabolic activity at 24 hr, 96 hr, and 7 days * (p<0.05).  

However, the difference between the control (untreated sample) and the laser treated 

samples was significant (P<0.05). This demonstrates that there was more cell metabolic 

activity on the laser treated samples and less on the untreated control Ti-6Al-4V 

samples. Further t-tests showed that there was a significant difference between the 

untreated control and the treated samples at all-time points, see Figure 5-62. 
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Figure 5-62: Metabolic activity shown as percent reduction. 

Figure 5-63 shows the differences in cell number on day 3 and day 7. One way ANOVA 

for day 3 and day 7 showed that the difference between cell number was not 

significantly different on day 3, while cell number was significantly higher for all 

treated samples compared to the untreated controls on day 7 (p<0.1). The difference 

between the treated samples themselves on day 7 was not significant. 

 

Figure 5-63: Cell number as measured on day 3 and day 7 * (p<0.1). 
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5.9.2 Cytotoxicity 

Direct contact  

The results for the MTT viability assessment of NIH/3T3 fibroblast cells following 24 

hour exposure to Ti-6A-l4V samples are shown in Figure 5-64. Each column is the 

mean of three separate experiments where n = 3 ± SEM, (* denotes a significant 

difference from the control *= p<0.05). A high degree of reproducibility was achieved 

as indicated by the relatively small error bars. In general, all samples produced a 

significant decrease in viability. Samples 6-9 showed a slight but significant (p < 0.05) 

inhibition of formazan production while the untreated sample, reduced the viability 

values below 50% at 24 h exposure. The results clearly indicate that the treatment 

(laser) had an impact on the cytotoxic potential of the tested samples. In contrast to 

results obtained from untreated samples, treated samples showed only slight cytotoxic 

behaviour.  

 

Figure 5-64: Effect of Ti-6Al-4V samples in direct contact with NIH/3T3 fibroblasts for 

24 hr using the MTT cell viability assay as a measure of toxicity. 

Leachate/Elusion test 

Figure 5-65 shows the effect of various concentrations of untreated and laser melted Ti-

6Al-4V samples in contact with NIH/3T3 fibroblasts for 24 hr using the MTT cell 

viability assay as a measure of toxicity. Each data point is the mean of three separate 

experiments where n=18 ± SEM, (* denotes a significant difference from the control *= 

p<0.05).  

* 

* * 
* 

0

20

40

60

80

100

120

Control Untreated LSM 6 LSM 7 LSM 8 LSM 9

V
ia

b
il

it
y
 (

%
 c

o
n
tr

o
l)

 



 

5-146 

 

 

Figure 5-65: Effect of various concentrations of Ti-6Al-4V sample extract 

 in contact with NIH/3T3 fibroblasts for 24 hr using the  

MTT cell viability assay as a measure of toxicity.  
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  Chapter 6

Discussion: Ti-Al-4V 

6.1 Metallography Analysis 

6.1.1 Surface Melting and Morphological Features 

Laser surface melting produced a typical melting morphology with no voids, inclusions, 

pits or cracks. Exclusion of such asperities was crucial to establish a consistent and 

analogous laser treatment of the samples. This also suggested that a non-contaminated 

laser melting could be achieved at these processing conditions. Processing parameters 

used in this study were carefully chosen so that energy densities do not exceed levels 

that induce ablation of surface material. Appendix J highlights preliminary tests where 

high energy densities were implemented resulting in material ejection from the surface. 

From the preliminary studies, it was established that energy densities greater than 67 

J/mm
2
 resulted in ablation. At this energy level sample sparking while laser processing 

began to occur.  

The BSE topographic micrographs from the final DOE (Figure 5-2 to Figure 5-10) 

showed no evidence of ablation of the surface. Lack of ejected material or channel-like 

features in the BSE images can be evidenced as absence of ablation on the surface. 

Instead, the surface is melted and rapidly solidifies due to high speed processing. 

Roughness and ripple-like features visible on the surface of the treated zone is evidence 

that the material reached a liquid phase. A schematic representation of the formation of 

the rippling effect is shown in Figure 6-1.  

 

Figure 6-1: Schematic of the laser melted pool perpendicular 

 to the direction of laser beam movement [97]. 

1. Stagnation flow region 

2. Free surface boundary layer 

3. Cooled corner region 

4. Solid-liquid interface 

5. Isothermal inviscid core 
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When the surface is laser melted an immediate depression is formed directly underneath 

the beam due to liquid movement. Absorbed energy by the surface is altered by the 

alteration in focal distance and the newly formed liquid phase. This lead to a uniform 

distribution of surface temperature and altered the driving force. When the depression 

diminished the reverse occurred thus causing the cyclic nature made obvious in the 

ripples characterising laser melting. 

The width of the tracks, deduced from the ripple-like features, is representative of the 

laser beam spot size of 90 µm. However, the set overlap of 30% is inadvertently larger, 

construed to be approximately 50% in all the treated samples. The beam is skewed 

towards the direction of the linear displacement therefore resulting in a slightly higher 

overlap than the set 30%. Another effect of this phenomenon can be due to the Gaussian 

nature of the laser beam and the beam quality of TEM00. TEM Gaussian beam drops 

from the centre forming a bell shaped curve, resembling a normal distribution. The 

effects of the beam effect can be demonstrated by Figure 6-2. Diameter of such laser 

beam qualities is defined by the distance at which the irradiance is 1/e
2
 of the maximum 

peak irradiance, as illustrated by Figure 6-2 [234]. This means that only 86.5% of the 

total laser beam power lies within this region since 1/e
2
 is 0.135. The remainder of this 

energy outside this point is regarded as insignificant to impact the material thus 

resulting in the reduced overlap percentage. 

 

 

Figure 6-2: Irradiance of the TEM mode as a function 

 of distance across the laser beam [234]. 
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The dimensions of grains observed on the laser processed surface tend to increase with 

increase in irradiance. This behaviour is related to the low cooling rates induced by high 

power densities. When the surface is treated at high power density, a much larger 

instantaneous maximum temperature could be attained thus producing a larger molten 

volume which took longer to cool therefore produced larger grain sizes compared to 

samples treated at low power densities. The instantaneous maximum temperature could 

be calculated using thermal heat energy Equation (9) [16]. 

6.1.2 Cross-sectional microstructure 

Laser treatment transformed the regular lamellar α+β phase of Ti-6Al-4V into one that 

consists of acicular α structures. The transformation resulted in a martensite structure 

that is significantly different from the substrate. The unetched modified region is 

brighter than the substrate under an optical microscope and when etched the true nature 

of the transformation is demonstrated again in Figure 6-3. 

 

 

 

Figure 6-3: (a) Cross sectional BSE micrograph of laser modified Ti-6Al-4V,  

(b) laser modified layer and (c) substrate microstructure. 

Unlike other surface modification techniques that have three distinct regions: modified 

region, heat affected zone and the bulk alloy; this type of laser treatment does not show 

a discernible heat affected zone which is prevalent in other laser treatment processes in 

literature [169]. Formation of this structure was due to the rapid solidification which 
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thwarted the segregation of the various alloying elements into high and low 

concentration. Another advantageous trait from the newly formed surface compared to 

other studies in literature is the absence of cracks [195]. The exclusion of cracks and the 

lack of a heat affected zone, from the experimental conditions examined in this work, 

indicate a surface modification technique that can be successfully applied and is well 

adjacent to the bulk metal. Crack elimination is attributed to the high speed processing, 

low residence times and corresponding assist gas parameters. These processing 

characteristics ensure minimal thermal stress is exerted on the surface thus avoiding 

crack development. Excellent bonding was observed in the modified layers processed in 

this work which is typical of laser surface processing [169]. 
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6.2 Meltpool Depth Analysis 

Meltpool depth is crucial in contact components since the depth of the modified layer is 

related to the lifetime of the component. Homogeneous, deep and well bonded surface 

treatments are the optimal requirements for bio-implants. Etching the surface revealed 

that laser surface modification varied between 20 and 50 μm. BSE micrographs were 

qualitatively used to analyse meltpool depths. The qualitative analyses showed an 

increase in depth at higher irradiance and residence times. The cross sectional analysis 

showed a smoother surface finish on the surface treated at high irradiance compared to 

those treated at lower irradiances which were rather wavy. This effect is due to thorough 

melting regime and ideal power densities matching the prescribed overlap. At low 

irradiance, the beam profile becomes more perceptible in the microstructure. High 

irradiances resulted in a more homogenous meltpool depth much superior to the 

meltpool depth produced at low irradiances. Homogeneous treated meltpool depths are 

preferred in most surface engineering applications. A homogeneous meltpool depth is 

desirable in bioimplants since uniformity of mechanical properties is attained 

throughout the implant. This eliminates preferential damages of weak (low depth) 

points on the newly modified surface. Uniformity in meltpool depths created at high 

irradiance and residence times are also attributed to thorough melting regime 

phenomenon. 

Figure 5-9 and Figure 5-10 also highlights that there is no significant change in depth of 

processing between samples irradiated at 20.4 and 26.72 kW/mm
2
; this is due to 

insignificant difference in energy densities, 22 and 29 J/mm
2
 respectively. However, the 

significance can be easily demonstrated for samples treated at irradiances of 15.72 and 

26.72 kW/mm
2
 as seen in Figure 5-11; this is due to a higher difference in energy 

density. The effect of energy density on meltpool depth is further illustrated by Figure 

6-4. The meltpool profile not only depends on energy density but also on the laser beam 

profile used which was TEM00 (Gaussian), thermal conductivity, microstructure, 

absorption mechanisms and convection of the liquid phase meltpool. Energy density 

absorbed by the alloy controls the melt pool depth and thus the volume of the molten 

alloy [152]. 
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Figure 6-4: Effects of energy density on meltpool depth. 

As the irradiance increased, a more homogeneous meltpool depth with fewer 

discontinuities was observed. However, lower meltpool depths (between 20 and 50 μm) 

were obtained in this experiment compared to other laser surface modification studies 

[16, 169]. Lower meltpool depths are attributed to extremely low exposure time used in 

these experiments. Lower meltpool depths can be advantageous due to their 

corresponding lower induced thermal stress thus eliminating formation of cracks on the 

surface. 

6.3 Roughness Analysis  

Function of bioimplants greatly depends on the surface rugosity. Roughness of laser 

surface modified layers has received very little attention in literature mainly due to the 

fact that various applications require machining of the surface before service. The 

bearing component of the hip implant require polishing (i.e. to reduce friction) while the 

stem require rougher surfaces (i.e. greater than 3 μm, for improved cell adhesion). It is 

therefore vital that the resulting roughness can be predicted prior to surface engineering. 

A combination of low residence time and low irradiance produced the highest 

roughness due to a more unevenly melted surface produced by the lower energy density. 

Note that the energy density is the product of irradiance and residence time. Figure 6-5 
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shows a power regression line highlighting the relationship between roughness and 

energy density. 

 

 

Figure 6-5: Relationship between energy density and roughness. 

Effects of irradiance and residence time on surface roughness inferred from Figure 5-2 

to Figure 5-4 and Figure 5-14 suggest improved homogeneity and smoothness of the 

surface with an increase in both irradiance and residence time. However, it should 

strongly be noted that this analogy applies to this collection of processing parameters, 

where melting occurs without necessitating ablation. Once ablation initiate, at energy 

densities over 67 J/mm
2
, an increase in entropy occurs forcing the smooth nature of the 

surface to collapse. Preliminary experimental design studies found that a further 

increase in irradiance (>26.72 kW/mm
2
) at high residence times (>2.16 ms) would 

result in ablation thus an associated rise in roughness, see Appendix J. At lower energy 

densities that facilitate melting; the smooth surface is replaced by waviness of partially 

melted regions. The processing parameters used in this study were fully optimised to 

take advantage of the region where the Ti-6Al-4V “just melts (flux)” thus aiding 

extremely rapid solidification rates. The decrease in roughness is mainly attributed to a 

more homogenous melting produced at high irradiance thus producing smoother 

surfaces. Roughness variation thus depends on energy density. In this experiment an 

energy density of approximately 29 J/mm
2
 (samples 9) produced preeminent 

homogeneity with the lowest roughness. Development of ridges/ripples, explained in 

section 6.1.1, is the another cause of roughness evolution in laser surface modified 
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regions. The waviness observed in low energy density samples is a function of the 

convectional flow of the melt influenced by the percentage overlap [173].  

6.4 Microhardness 

Hardness of the material plays a crucial role in the overall wear resistance of the 

material. Ti-6Al-4V among biomedical alloys is known to have relatively low hardness. 

By determining the effects which processing parameters have on hardness a process 

map can be developed in order to predict outcome hardness after laser treatment and 

also to aid future researchers. All laser melted samples produced hardness values greater 

than the untreated samples. Increase of hardness in laser treated samples is attributed to 

microstructure refinement, which is depended on the thermal gradient developed and 

extremely high cooling rates. Thermal gradient controls the extent of plastic 

deformation and cooling rates controls the nature and extent of non-equilibrium phases, 

acicular martensite formation [163]. The fine, acicular martensite has a hexagonal 

closed packed structure and possesses a high hardness but relatively low ductility and 

toughness [184, 185]. 

The highest microhardness was obtained at the highest level of irradiance (26.72 

kW/mm
2
) and the lowest residence time (1.08 ms). The combination of these 

parameters gave optimal conditions for hardness improvement since irradiance 

increases target temperature producing steeper gradients. Similarly low irradiance times 

(high scanning rates) increase cooling rate thus encouraging transformation into the 

non-equilibrium phase produced. Hardness relationship with processing parameters 

obtained in this study is in good agreement with studies in literature [163]. However, 

the absolute microhardness values recorded cannot be compared to all literature results 

due to variation in load and loading times implemented. Increase in hardness at low 

residence time can also be related to the low grain sizes observed in topography images 

in section 5.1.1. This explanation is in accordance to the Hall-Petch theory which relates 

increase of hardness and yield strength to reduced grain size [194].  

An analysis of hardness distribution with increase in distance from the surface revealed 

a relatively uniform hardness within the treated region which rapidly reduced at the 

treated-substrate interface. Uniformly high hardness levels throughout the laser 

modified region iterate the superiority of the modified regions compared to the bulk 

alloy. High hardness and uniformity of the modified layer is crucial in biomedical Ti-

6Al-4V alloys as it has a significant influence on wear resistance properties [152, 192]. 
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Improved hardness can therefore be beneficial on the femoral head (bearing region) of 

the hip prosthesis. 

6.5 Phase Transformation and Chemical Analysis 

6.5.1 X-ray Diffraction Analysis 

Backscatter images of the laser treated surfaces provided an ideal starting point for 

further phase microanalysis by highlighting presence of two phases. The micrographs 

visually presented the alternating laths of α and β phase present in as-received Ti-6Al-

4V. Presence of such phases was confirmed by the XRD patterns obtained using the X-

ray diffractometer. The relative volume fraction of β-Ti was lower than that of α-Ti. The 

characterised Ti-6Al-4V alloy consisted of 28% β phase and the remaining 72% was the 

α phase. Subsequent to laser processing, the α-Ti phase was transformed into an acicular 

structure. The microstructure of the treated Ti-6Al-4V revealed that the transformed 

acicular α-Ti was nested within the aged β matrix. Figure 6-6 is used to properly 

demonstrate the microstructure and phase transformation within the alloy. Laser 

treatment also resulted in detection of a new peak, at 29.4°, not observed in untreated 

samples. The peak is believed to have been induced by phase transformation of the 

surface. This peak in essence represents the articular phase induced within the 

martensite structure. 

 

 

 

Figure 6-6: BSE microstructural images of (a) untreated and (b) laser treated Ti-6Al-4V; 

and (c) x-ray diffraction pattern of untreated and laser treated Ti-6Al-4V. 

A reduction in volume fraction of β-Ti up to 19% following laser melting was 

measured. Reduction in volume fraction of β-Ti phase can also be related to the energy 

density. Figure 6-7 demonstrates that β -Ti volume fraction tends to diminish as the 

(b)
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energy density increases. A dotted line representing the volume fraction of untreated 

sample was imposed on the data to highlight the reduction of the phase within treated 

samples. Acicular martensite structure also enhances the materials wear and corrosion 

resistance. 

 

Figure 6-7: Effects of energy density on the volume fraction of the β-Ti phase. 

The phase structure transformation from the typical α + β structure into a fine martensite 

structure was due to the low residence times used in the experiments which resulted in 

high cooling rates. Such high cooling rates force formation of different composition 

phases but allow very little time for diffusion to produce those phases’ equilibrium 

compositions [184]. A decrease in β phase in the microstructure is known to improve 

corrosion properties since pitting attacks mainly target the β phase [71]. The volume 

fraction of the phases is depended on the laser treatment cooling rates. Samples treated 

at the lowest residence time of 1.08 ms exhibited the lowest β-Ti due to relatively higher 

cooling rates. The reduction of volume fraction of β-Ti following melting is also 

attributed to the stabilisation of acicular martensite in the structure during rapid 

quenching [17]. When the extreme cooling rates were utilised, the microstructure that 

was single β phase transformed to α phase either by nucleation and growth or α’ 

martensite, which has a HCP crystal structure [71].  

The shift in diffraction peaks to a new 2θ position within the laser treated samples, in 

Figure 6-6 (c), depicts a uniform microstrain within the structure [235]. Laser treatment 

of Ti-6Al-4V induced uniform strain generated over relatively large distances, thus 
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changing the lattice plane spacings in the constituent grains from a stress free value to a 

new value corresponding to the magnitude of stress applied. Micro-strain is induced 

within the melted zone of the surface treated Ti-6Al-4V samples mainly due to a very 

high thermal gradient developed and the related quench stress built thereafter. 

6.5.2 Chemical Composition 

The two types of scans, area and grid, used for chemical composition analysis produced 

similar results. This highlighted that the topographic chemical composition was 

homogeneous. Uniform distribution of chemical elements was also observed on the 

cross-sectional analysis of laser modified samples. Uniform element distribution in the 

modified region could be due to high speed of convection stream providing intensive 

stirring of the elements inside the molten pool as well as the high cooling rates 

prohibiting sufficient time for elemental diffusion and segregation typical under slower 

cooling conditions. Re-distribution of alloying elements within the treated titanium 

alloys is also known to improve pitting corrosion resistance due to preferential 

corrosion attack prevention [130]. 
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6.6 Wear Resistance 

A linear relationship, R
2
=0.9966, between depth wear tracks and distance travelled by 

the pin suggest good repeatability thus suggesting accurate predictions of wear depth to 

be derived from known sliding distances. There was no correlation between laser 

processing parameters and specific wear rates for samples wear tested for 150 m. This 

was due to the high depth of wear tracks which infringed the substrate and in some 

cases completely wore the laser modified region. This meant part of substrate material 

was included in the analysis of specific wear rate thus there was no relationship between 

processing parameters and specific wear rate. The ratio of the worn substrate and laser 

modified region was different for all samples and this further impacted the statistical 

significance. Results from samples tested for 20 m provided an improved insight of the 

effects of laser processing parameters on specific wear rate. An improved wear rate was 

achieved by LSM samples. The lowest irradiance (15.72 kW/mm
2
) and residence time 

(1.08 ms) produced the most improved wear rate. Reduction in wear rate of treated 

samples is attributed to phase transformation inducing martensite microstructure, 

improved hardness properties and alteration of electrochemical responses of the 

material. Samples treated with the minimal residence time and irradiance produced 

highest cooling rates associated with the transformation thus resulting in the lowest 

wear rates. For the processing parameters used in this study, energy density greatly 

influence the resultant specific wear rates. Figure 6-8 shows a good relationship 

between specific wear rate and energy density. Specific wear rate increased with 

increased energy density. The highest energy density of 57.7 J/mm
2
 produced the 

highest wear rate of 654×10
-6

 mm
3
/N·m. 

 

 

Figure 6-8: Effects of energy density on specific wear rate. 
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Evidence of both abrasive and adhesion wear mechanisms were visible in untreated 

samples. Abrasive wear produced micro-cutting features visible on the floor of the wear 

tracks. Smearing of wear particles on the bottom surface of the wear track was extensive 

in untreated samples. Higher mass losses observed in untreated samples could also be 

attributed to micro-fragmentation of the particles adhering to the surface from 

subsequent sliding of the pin. Micro-cracking is believed to assist the fragmentation 

allowing for wieldier disintegration. Micro-cracking develops due to thermal and 

corrosion fatigue brought about by frictional forces of the zirconia pin and the Ti-6Al-

4V sample [16]. The evidence from the SEM images also suggests a form of scuffing 

wear that is associated with local solid-state welding between rubbing surfaces. 

Scuffing occurs when the boundary lubricant films breakdown due to high friction 

generated by the rubbing surfaces. Other studies have also attributed features found in 

untreated wear tracks to be due mild tribochemical wear during sliding caused by 

tribooxidation and chemical reactions between Ti-6Al-4V, Zirconia and the 

physiological solution [236-239]. The continuous wear process constantly exposes a 

fresh surface thus accelerating the tribochemical reactions [239]. 

Plastic deformation of worn particles was not observed in LSM samples; where abrasive 

micro-cutting was the prominent wear mechanism. LSM samples produced a smoother 

and shiny worn track where grooves and scratches were clearly seen. The surface of 

worn tracks of LSM samples appear to be polished compared to the untreated 

counterparts. The aforementioned characteristics of the worn tracks are due to a harder 

surface created during rapid quenching of the laser modified surfaces. LSM samples 

show high resistance to scuffing due to a tenacious boundary lubricant film formed on 

the surface. The formed film is crucial in maintaining a stable boundary in the 

contacting area, conferring to low friction. Laser surface melting effectively results in 

low adhesion between contacting surfaces thus reducing frictional forces and wear 

[240]. 
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6.7 Corrosion Resistance 

The open circuit measurement produced a steady increase in potential with time. This 

indicates that there was steady growth of TiO2 passive films on the surface of the 

samples, known as spontaneous passivity, and as expected according to the Ti-H2O 

Pourbaix diagram [241]. The thickness of the spontaneously formed protective oxide on 

the surface at open circuit conditions is expected to be within the range of 1 to 4 nm for 

a buffered aqueous solution at 23
o
C [242]. Okazaki et al. and Ask et al. have previously 

noted from chemical composition analysis of the oxide films formed on Ti-6Al-4V that 

they are predominantly composed of TiO2 (rutile) containing small amounts of TiO and 

Ti2O3 near the metal-oxide interface [243, 244]. 

Untreated Ti-6Al-4V alloys had lower current densities at low potential scans. However 

at high potentials, displayed in Figure 6-9, the as-received samples do not reach stable 

passivity and therefore the current density continues to rise with increase in potential 

and converge with LSM samples at 1000 mVSCE. 

 

Figure 6-9: Polarisation curves of as-received, LSM 7 and  

LSM 8 Ti-6Al-4V in 0.9% NaCl at 37°C. 
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These characteristics displayed by the potentiodynamic scans reveals that the LSM 

samples have more stable passivity and continue to maintain a constant protective film 

with increase in potential. LSM samples resemble highly passive corrosive behaviour 

found in pure Titanium [87]. In Figure 6-9, the potential for LSM 7 was increased up to 

only 1000 mVSCE and then swept back to illustrate the influence that termination 

potential have on electrochemical behaviour. When the potential was reversed at 1000 

mVSCE before reaching the breakdown potential, a high repassivation potential is noted 

showing that the protective passive film remains. At the potential upscan of 1350 

mVSCE and 1460 mVSCE (breakdown potential, Eb), a transition occurs for both LSM 

and untreated samples. The transition invokes three separate stages, a rapid increase in 

current density (stage 1) followed by a decrease (stage 2) then another increase (stage 3) 

initiates and remains high for the rest of the scan. The transition is caused by the 

crystallisation and/or formation of new phases from the existing amorphous TiO2 which 

slows the localised corrosion until at higher potentials [245]. Stage 2 could indicate 

some kind of salt film deposition which slows the localised corrosion until at higher 

potentials, where it accelerates markedly. Stage 3 transition behaviour signifies 

localised corrosion. 

The lower Tafel slopes (i.e. higher current density rate) in the LSM samples is attributed 

to rougher surfaces in compared to untreated samples. This subsequently results in a 

thinner oxide films in these samples due to the slower formation of the oxide film on the 

laser treated surfaces or the formation of TiO2 and Ti2O3 [246, 247]. At 130 mV (1.5 

µA/ cm
2
) and 340 mV (2.8 µA/cm

2
) the current density reaches a steady state for LSM 7 

and LSM 4 respectively. This passive current density is higher than that normally 

reported for titanium polarised in saline solutions, but this is connected with the higher 

scan rates used in this study compared to potentiostatic or slow scan rates of 0.167mVs 

normally employed [87]. For potentials beyond these points, the current densities 

recorded are associated with steady passive films already formed on the LSM samples. 

On the other hand, the passive films can be seen (lower slope values) to be still forming 

on the untreated samples at these higher potentials. The stable current densities for the 

LSM samples indicate that the stable oxide layer prevents further current density 

increases for increased potential. All samples showed similar response on the reverse 

sweep. As the potential decreased there was a marked decrease in current until a new 

steady state formed around 250 mV SCE. The reverse sweep anodic Tafel slopes are 

similar to those in the forward sweep direction, indicative of the same activation 

controlled oxidation process. 
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The lowest corrosion rate of 86 nm/yr
 
was found in the laser surface modified sample. 

An increase in irradiance produced a decrease in corrosion rates at the lowest residence 

time of 1.08 ms. LSM samples had a more compact and stable passive film compared to 

the untreated sample. The difference behaviour between the polarisation curves is 

mainly attributed to the change in microstructure instigated by rapid melting and 

solidification of the laser melted region in LSM samples and its effect on the passive 

film formed on the alloy’s surface. Thus the three main factors that contributed to the 

change in corrosion behaviour for LSM samples are: the martensite structure formation, 

βTi phase reduction and homogeneity in elemental chemical composition.  

Calculation of current density was done using sample geometric area without taking 

into account the rugosity on the surface. Therefore, high corrosion rates in some laser 

treated samples are due to slightly higher roughness in LSM sample. 

6.8 Surface Wettability Analysis 

Contact angle analysis plays a crucial part in cell adhesion in bio-implants [248]. 

Hydrophilicity means the fluid can wet the surface corresponding to higher surface 

adhesion. All laser treated samples exhibited lower contact angles (hydrophilic) 

compared to untreated sample thus suggesting improved cell adhesion and proliferation 

properties. Wetting characteristics also influence the interaction characteristics of the 

treated surfaces with the corrosive species [249]. The main factors that affect the 

wetting characteristics of a surface are its composition, the content of oxygen, the 

surface morphology, surface energy and the temperature [250]. However, laser surface 

treatment by melting does not significantly change the composition and oxygen content, 

compared with the untreated surface thus roughness becomes the main factor 

influencing wetting properties (contact angles). The results agree to numerous 

publications that detail the effects of roughness on wetting characteristics [251-253]. 

6.8.1 Effects of roughness on contact angle 

Figure 6-10 graphs the relationship between contact angles and roughness. A second 

order polynomial with a R
2
 value of 0.416 was achieved. This initial result hints infers 

that the relationship between the two responses is present but not significant. However 

when the outlier is ignored the R
2
 value becomes 0.8415, see Figure 6-11. This indicates 

that roughness influence the resultant contact angles.  
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Figure 6-10: Relationship between contact angle and roughness of the LSM samples. 

 

 

Figure 6-11: Relationship between contact angle and roughness without the outlier. 

The effects of processing parameters on contact angles, independent of roughness, were 

further explored by polishing laser surface modified sample. Polishing was carried out 

using 1200 grit SiC paper, with water as a lubricant. Figure 6-12 shows the contact 

angles of unpolished and polished laser surface modified samples. All polished samples 

produced higher average contact angles (64.7±1.9°) compared to the unpolished samples 
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(38.7±3.5°). However, the contact angles are still relatively low compared to the 

polished as received sample. The lowest contact angle recorded was 54.5±1.4° obtained 

at a mid-range energy density of 29.4 J/mm
2
. Contact angles of all polished samples 

showed relatively low deviation from the mean value thus suggesting more homogenous 

contact angle values in polished laser surface modified samples. The relatively non 

uniformity of the wetting characteristics of unpolished LSM samples is due to the 

inhomogeneous morphology produced by laser surface modification. 

 

 

Figure 6-12: Contact angles of polished and unpolished samples, where AR 

 is as-received, GB is grit blasted and 1-9 are laser modified samples. 

6.9 Biocompatibility 

There was no difference in initial cell attachment between the samples. Laser surface 

melting did not adversely affect the initial cell attachment. The roughness difference in 

previous publications that showed differences in cell attachment were much larger, 

which may explain the lack of a significant difference between cell attachment of 

relatively similar roughness values [254]. The surface area of the samples, which was 

constant across all the samples, may have restricted the number of cells that can attach 

to the surface (approximately 30%). The cells, unable to have contact with the surface 

of the sample, were possibly subsequently washed away when media was added. 

Metabolic activity was significantly higher for all the treated samples compared to the 

untreated controls at all time points. However, there was not a significant difference 
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between the treated samples. This may have been due to the narrow range of Ra values 

of the treated samples (1.32-2.72 µm). At this range the roughness may be high enough 

that the cells grow in roughly the same manner on the surface.  The higher metabolic 

activity may be due to the higher bioactivity of the treated surfaces [90]. 

There was no significant difference in cell number at day 3, but there were higher 

numbers of cells at day 7 for all treated samples compared to the untreated controls. At 

day 3, the slight differences in surface properties may not have led to significantly 

different rates of cell mitosis, but metabolic activity was higher. The difference in both 

cell number and metabolism is shown on day 7, where both cell metabolism and cell 

number were significantly higher. Cell number increased at a higher rate for treated 

samples, and this was visible at day 7. As the differences between the properties of the 

treated samples are not large enough to show significant differences in cell metabolism 

and proliferation, further studies may need to be performed to evaluate cell metabolism 

and proliferation over a longer time frame (i.e. greater than 7 days).  

Direct contact analysis showed improved cytotoxicity behaviour in laser treated sample 

compared to the untreated ones. Elusion test results showed that all samples produced a 

dose dependant decrease in viability. High extract concentrations resulted in up to 20% 

inhibition of formazan production while low concentrations exerted only slight 

cytotoxic behaviour. Overall the viability of the NIH/3T3 monolayer did not 

significantly vary from the untreated control monolayer indicating that minimal loss of 

viability following treatment with extracts prepared from samples 6-8. On the other 

hand, the highest tested concentration of extracts obtained from sample 9 and untreated 

samples induced a slight but significant (p < 0.05) loss in cell viability which became 

more pronounced with an increase in concentration indicating the presence of leachates. 

The results from the biocompatibility analysis are encouraging, showing that laser 

melted Ti-6Al-4V can potentially be used for bioimplants. 
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  Chapter 7

Conclusions 

7. 1  316 Stainless steel 

High speed laser surface melting was successful achieved for 316L stainless steel. The 

novel processing parameters used in the reseach (Irradiance up to 235 kW/mm
2
 and 

residence times as low as 50 μs) produced extremely high cooling rates and high 

thermal gradients capable of eliminating asperities, cracks and inclusions within the 

treated region. The reseach successfully process mapped the melting regimes induced 

by high speed laser processing. In DOE 1, at low energy densities of 5.24 J/mm
2
, 

localised melting became visible. Low depth of processing was observed with no 

physical change in grain structure detected. Medium energy density of 10.48 J/mm
2
 

produced uniform melting on the surface. In this case, melt pool depth reached 

approximately 60 μm with visible overlapping induced by increased melting areas 

larger than the laser spot size and the rotational nature of the laser treatment process. 

High levels of energy density, exceeding 20.96 J/mm
2
 were characteristic of high 

meltpol depths (up to 130 μm) and also evidence of ablation became visible on the 

surface. At such high energy density transformation of the microstructure grain size and 

orientation and was observed, however this tranformation did not impact chemical 

composition, crystallinity and hardness significantly. On the other hand, a clear 

correlation between the process parameters (irradiance and residance time) and melt 

pool depth and surface roughness was noted. As these input parameters were increased, 

both melt pool depth and roughness increased in a linear fashion.  

A similar level of influence of these input parameters on the melt pool depth and surface 

roughness was found. In particular within DOE 1, going from the low level of 

irradiance (79 kW/mm
2
) to the high level (246 kW/mm

2
) at 100 µs residance time 

resulted in a 52 µm increase in melt pool depth and a 10.5 µm increase in surface 

roughness. The lowest roughness from this DOE was noted at 1 µm for a irradance of 

79 kW/mm
2 

and a residance time of 50 µs. Further studies using the surface temperature 

prediction model for 316L stainlees steel revealed that this can be used to aid prediction 

of the energy density required to melt the surface of the steel.  

In DOE 2, at fixed energy densities melt pool depth was largely influenced by surface 

pre-treatment conditions, irradiance and residence time. An average increase in melt 
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pool depth of 40 µm was noted from inceasing residence time from the lowest (50 µs) to 

the highest level (167 µs). Etching of the surface prior to laser treatment produced the 

least effect on melt-pool depth, while machining produced the most pronounced effect. 

Depth increases of 34, 38 and 43 µm were noted for increased irradiance from the 

highest level to the lowest level (from 63 to 220 kW/mm
2
) for the as received, machined 

and machined and etched surfaces respectively. At fixed energy densities, the highest 

melt-pool depth (91 μm) was achieved for machined+etched surfaces laser melted at 

lowest irradiance (63 kW/mm
2
) and highest residence time (167 μs). From this analysis 

on laser processing of 316L, it is clear that at fixed energy density, that a combination 

of low to mid levels of irradiance (such as 63, 79 and 127 kW/mm
2
) and low to mid 

levels of residence time (such as 50 μs, 67 and 83 μs) could produce the sought 

combination of homogeneous melting regime with moderate melt-pool depth (10 to 51 

µm) and low roughness (1 to 2.79 µm). 

The main contribution of the reseach study on 316L stainless steel for biomedical 

applications was creation of a process map that could be used to determine surface 

properties (i.e. roughness and meltpool depth) through variation of irradiance and 

residence time.  

7.2 Ti-6Al-4V 

High speed laser melting was implemented on Ti-6A-4V in an inert argon environment 

which resulted in a well bonded 20 to 50 μm meltpool free of cracks, inclusion, voids 

and surface asperities. BSE micrographs and XRD results confirmed that the typical 

α+β microstructure in Ti-6Al-4V was transformed into a martensite structure 

characterised by acicular α embedded in the β matrix due to high cooling rates 

experienced. Meltpool depth was found to increase with increase in both irradiance and 

residence time. The study found that the resulting meltpool depth can be estimated from 

energy density with reasonable accuracy. Higher irradiance levels were found to provide 

for a more uniform depth of processing which reached a maximum of 50 µm. The high 

speed laser treatment resulted in an average roughness ranging from 1.39 to 2.73 μm. 

Roughness in laser melting was influenced by the beam profile and ripple effects due to 

convection and absorption mechanism of the molten metal. A relationship between 

irradiance and residence time for roughness was observed, whereby roughness 

decreased with an increase in irradiance and residence time, see Figure 5-14. Roughness 

characteristics were closely related to the melting energy density. 
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X-Ray diffraction results demonstrated an increase of α phase and corresponding 

decrease of the βTi phase in Ti-6Al-4V subsequent to laser treatment. The analysis 

showed that the lowest beta phase was achieved at the lowest residence time and highest 

irradiance. This point resembles the highest cooling rates and steepest cooling gradients 

due to extreme nature of residence time and irradiance. Topographic and cross-sectional 

EDS analysis revealed homogeneous elemental composition in all laser treated samples 

due to redistribution of elements as a result of rapid solidification. This phenomenon is 

widely regarded as beneficial as it eliminates preferential corrosion attacks. 

Unlike 316L stainless steel, microhardness examination revealed improved 

microhardness in all laser treated Ti-6Al-4V. Highest irradiance (26.7kW/mm
2
) and the 

lowest residence time (1.08 ms) resulted in a 67% increase in microhardness (767 HV) 

compared to the untreated region (459 HV). The associated low residence time and 

rapid cooling rates allowed for novel and apparently useful wear and corrosion 

properties to be achieved. Laser surface modified samples showed improved wear 

characteristics compared to untreated samples. Within the laser surface modified 

samples, low irradiance (15.7 kW/mm
2
) and residence time (1.08 ms) produced the least 

specific wear rate of 504 ×10
-6

 mm
3
/N·m. Specific wear rate increased with increase in 

both irradiance and residence time. A strong relationship between energy density and 

specific wear rate was observed, whereby specific wear rate increased with increases in 

energy density. Both adhesive and abrasion wear mechanisms were driving forces in 

material removal from the untreated samples. Micro-cracking, micro-fragmentation and 

scuffing were all features involved in mass loss of untreated samples. Laser modified 

samples showed smoother wear tracks with no evidence of plastically deformed debris 

embedded on the wear track surfaces as was apparent for the untreated samples. 

Microstructure transformation from the typical α+β Ti-6Al-4V to improved martensite 

structure due to rapid quenching induced by high speed laser melting which explains the 

improved wear characteristics noted. 

Electrochemical polarisation tests revealed different oxide films formed on the untreated 

and LSM samples. LSM samples had a more compact and stable passive film compared 

to the untreated sample. A three stage transition was observed starting at breakdown 

potential for untreated and LSM samples. The transition indicated crystallisation and/or 

formation of new phases from amorphous TiO2 and a salt film deposition which slows 

the localised corrosion until at higher potentials. The lowest corrosion rate according to 

comparison of Tafel slopes, which was observed at the lowest irradiance (15.72 

kW/mm
2
) and lowest residence time (1.08 ms) was found to be 86 nm/yr. An increase in 
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irradiance produced a decrease in corrosion rates at the lowest residence time of 1.08 

ms. Pitting was observed in both untreated and laser modified samples with a more 

uniform pitting occurring in the treated regions. 

High speed laser melting produced hydrophilic surfaces compared to the untreated 

samples. Contact angles as low as 23° was measured on the laser treated sample, 

compared to 72° on the untreated sample. The lowest contact angles (23°) were found at 

the mid energy density (30 J/mm
2
). Contact angle was found to be independent of 

irradiance but strongly dependent on residence time in a non-linear fashion, see Figure 

5-56. Roughness was also found to effect wettability in a non-linear fashion. The 

unpolished laser treated sample produced lower contact angles compared to their 

polished counterparts. There was no significant difference in cell attachment and 

metabolic activity between untreated and laser treated samples. Direct contact tests 

showed improved cytotoxicity in laser modified samples. The results proved that the 

high speed laser treatments used in this work can potentially be used for bioimplants 

application. This work established that Ti-6Al -4V could be successfully treated by high 

speed laser for surface modification. The laser treatments resulted in an improved 

asperity free surface with a martensitic microstructure which contained reduced β-Ti 

phase. These treatments were shown to be capable of producing improvements in 

micro-hardness, chemical composition, surface wettability, biocompatibility, wear and 

corrosion resistance which are all beneficial factors for biomedical implants. 

7.3 Future Work 

Further detailed advanced characterisation of the surface could be carried out to study 

the microstruture transformation process during laser surface modification and its 

effects on biocompatibility properties. Such characterisation techqniques that could be 

used include nano-indentation, transmission electron microscopy, electrochemical 

impedance spectroscopy, and in vivo biocompatibility testing. Future work should also 

study high speed laser processing of biomedical alloys for the possibility of achieving 

semi-crystalline, quasi-crystalline or even an amorphous microstructure. Amophous 

structures are known to have excellent wear and corrision peoperties. Such a structure 

could potentially be achieved by cryogenic laser surface treatment. A system could be 

deviced that simalteneously laser melts the surface while enabling rapidly quenching to 

create such an amophous layer on the surface. Another crucial area that could be studied 

is development of polishing techniques that could be used to produce the required 

surface finish of approximately 25 nm for hip replacement bearings.  
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A. Material Certificates from the Suppliers 

316L stainless steel produced by Acciaierie 
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Ti-6Al-4V supplied by Supper Alloys  
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B. Linear stage displacement of laser stage  

A high speed camera was set up to determine the acceleration and velocity of the X and 

Y direction of the laser stage. Figure B-1 graphs the velocities of all runs, plotted 

against their respective displacements. The data was derived from the high-speed 

footage by tracking a particular point from frame to frame. In this case the left edge of 

the white line that was positioned on the moving table. The high-speed footage was 

processed using a LabVIEW VI, please see screen shot as in Figure B-2 The graph 

represented the 8 degree polynomial trend line that was fitted to the raw displacement 

data to smooth out the 'blockiness' associated with the camera's pixel resolution 

(displacement accuracy was +/- 0.806 mm and +/- 0.693 mm for the 320 mm run and 

the 115 mm run respectively). The polynomial trend line had an excellent fit for the raw 

displacement data. This polynomial was then differentiated to obtain the velocity. The 

graph clearly show that at the highest velocity a lead way of approximately 55 mm 

needs to be accounted for to achieve uniform velocities during laser processing. 

 

Figure B-1: Velocity profile of laser table in the Y direction 
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Figure B-2: LabVIEW data acquisition of frames from the high speed camera  
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C. Preliminary DOE for 316L 

Design of experiments 

A 3
3
 DOE was implemented. Three processing parameters were varied at three levels 

irradiance (10.5, 23.9 and 38.2 kW/mm
2
) residence time (265, 382 and 478 μs) and 

overlap (0, 10 and 30%), see Table C-1. 

Table C-1: Processing parameter for the initial DOE. 

ID Peak Power Irradiance Tangential Speed Residence Time Overlap 

 (W) (kW/mm
2
) (mm/s) μs (%) 

1 330 10.5 

419 265 

0 

2 750 23.9 

3 1200 38.2 

4 330 10.5 

524 382 5 750 23.9 

6 1200 38.2 

7 330 10.5 

754 478 8 750 23.9 

9 1200 38.2 

10 330 10.5 

419 265 

10 

11 750 23.9 

12 1200 38.2 

13 330 10.5 

524 382 14 750 23.9 

15 1200 38.2 

16 330 10.5 

754 478 17 750 23.9 

18 1200 38.2 

19 330 10.5 

419 265 

30 

20 750 23.9 

21 1200 38.2 

22 330 10.5 

524 382 23 750 23.9 

24 1200 38.2 

25 330 10.5 

754 478 26 750 23.9 

27 1200 38.2 
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Preliminary DOE Results 

  

Figure C-1: Optical micrographs of as received 316L Stainless Steel  

(a) SE image and (b) optical micrograph. 

Low irradiance  

  

Figure C-2: Optical micrographs processed at low irradiance 10.5 kW/mm
2
 

   

Figure C-3: Optical micrographs of cross-sectional view of 316L SS  

corresponding to Figure C-2. 

(a) (b)

(b)(a)

(a) (b)
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At low irradiance marking effect were observed. The pulse energy was too low to 

penetrate the surface. Only localised surface melting occurred. The overlap was set at 

10% but inform the micrograph no evidence of overlap were visible these images. This 

was may be due to two reasons. First reason was may be the speed of rotation was not 

constant due to the drill used as rotational mechanism. The other reason was due to the 

beam intensity. CO2 laser do not have perfect Gaussian beam. Power intensity was 

concentrated on the middle section of the beam. This could be verified by measurements 

taken using the SEM. The diameter of the spot seems to be ~ 150 µ but the laser was set 

to output a 200 µ diameter beam. 

High Irradiance 

  

  

Figure C-4: Optical micrograph of samples processed at high irradiance  

(38.2 kW/mm
2
) at various magnifications. 

As compared to samples processed at low irradiance, the surface of the samples 

processed at high irradiance had full melting effect. The surfaces in Figure C-4 showed 

a rougher morphology attributed to low cooling rates. Cracks were not visible due to the 

melting and re-solidification. At a higher irradiance u can clearly observe the melt 

(a) (b) 

(a) (b) 
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pools. Significant grain structure change is observed but due to low cooling rates and 

high exposure times the surface had lower hardness compared to substrate 

 

 

Figure C-5: Effects of irradiance and residence time on roughness 

 

Figure C-6: Effect of overlap on roughness 

The DOE showed that the overlap had no real effect on the surface roughness or any 

other measured properties for that matter. This was attributed to the rotational 

mechanism and Gaussian beam discussed. The contour plot verified that the least 

roughness was observed at low irradiance. This was due to low structure change. Low 
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irradiance did not produce melting. Therefore it was be insignificant for this study. High 

irradiance proved to produce excessive energy with the melting producing uneven 

surfaces. 

 

Figure C-7: Effects of low irradiance and high irradiance on microhardness 

Figure C-8 to figure C-13 present EDS analysis of a laser treated samples.  

 

 

Figure C-8: Micrograph of spectrum 1. 

150

200

250

300

0 50 100 150 200 250

M
ic

ro
h
ar

d
n
es

s 
(H

V
) 

Distance from Surface (µm) 

Low Irradiance



 

XVII 

 

 

Figure C-9: Spectrum 1 analysis of the slag. 

 

Figure C-10: Micrograph of spectrum 2 of laser treated region 

 

Figure C-11: Spectrum 1 analysis of the slag – laser treated region 
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Figure C-12: Micrograph of spectrum 3 - untreated region 

 

Figure C-13: Spectrum 3 analysis of untreated region 
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Table C-2: Comparison of Spectrums 1, 2 and 3 

 Untreated region Laser treated region Slag 

C K 15.52 18.39 71.10 

O K 2.22 11.18 10.35 

Al K 0.17 - 0.20 

Si K 0.61 0.46 0.54 

S K 0.60 0.48 0.90 

Cr K 14.67 12.79 2.88 

Mn K 1.31 0.97 0.27 

Fe K 56.65 48.08 8.58 

Ni K 8.10 6.97 0.98 

Cu K - 0.49 0.20 

Br L 0.18 0.18  

Ra M -0.04 0.02  

Na K   1.02 

Mg K   0.12 

P K   0.21 

Cl K   1.20 

K K   0.80 

Ca K   0.66 
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D. Recommended cut-off lengths for roughness measurements 

Table D-1: ISO 4288 recommended cut-off lengths for roughness measurements 

Non-Periodic Profile  
Periodic 

Profiles  

Measuring conditions according to 

DIN EN ISO 4288 and DIN EN ISO 

3274  

Grinding, honing, lapping, 

eroding ↓ or ↓  

Turning, 

milling, 

planing  

λC=cutoff filter  

λC / ln=Cut off / Evaluation Length  

Rtip=Maximum radius of the stylus  

ln=Evaluation length  

l=Sampling length  

Rz (μm) Ra (μm) RSm (mm) 
λC 

(mm) 

ln 

(mm) 

λC / 

ln 

l 

(mm) 

Rtip 

(μm) 

>0.025 to 0.1  >0.006 to 0.02  >0.013 to 0.04  0.08  0.4  0.2  0.08  2  

>0.1 to 0.5  >0.02 to 0.1  >0.04 to 0.13  0.25  1.25  0.2  0.25  2  

>0.5 to 10  >0.1 to 2  >0.13 to 0.4  0.8  4  0.2  0.8  2*  

>10 to 50  >2 to 10  >0.4 to 1.3  2.5  12.5  0.2  2.5  5  

>50 to 200  >10 to 80  >1.3 to 4  8  40  0.2  8  10  
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E. Calculation of load for pin on disk wear testing 

 

Figure E-1: Diagram highlight weight distribution for humans  

sourced from Wolfram Alpha 

Assuming three times the mass of human body to be 210 kg = 2060 N 

Average femoral head diameter = 28 mm 

Wear testing ball diameter = 5 mm 

Contact area of femoral head (hemi-spherical surface area) = 2π × r
2
 = 392π 

Contact area of wear testing ball (since disk is flat) = π × r
2
 = π × 1

2
 = π 

(Approx. 1mm diameter contact area was assessed from examination of scaled 

engineering drawings, see Figure E2 below) 

In order to get a reasonable value for the load that should be used in the wear test, the 

ratio of the contact area of contact between the pin and disk divided by the contact area 

of the femoral head was multiplied by expected load during running which is known to 

be three times body weight and is calculated above as 2060 N. 

                                 
 

    
                          (24) 
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Figure E-2: Illustration of pin on disk contact point. 
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F. Additional Results for 316L stainless steel DOE 

 

Figure F-1: Effects of irradiance and residence time on meltpool depth 

Effects of pre-treatments on roughness 

An analysis of the effects of laser processing parameters on average roughness of the 

sample was carried out. Figure F-2 (a) shows the roughness produced by the laser 

irradiation when the sample had been subjected to different pre-treatments. 

 

Figure F-2: Effects of surface pre-treatment and power 
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Figure F-3: Effects of (a) surface pre-treatment and power; 

 (b) pulse width on roughness 

Pre-treated samples produced higher roughness measurements, up to 14 µm mainly due 

to the machining done prior to laser processing. Low roughness results below 600W 

were caused by insufficient melting of the surface. Resulting roughness of the samples 

can be correlated to the pulse width as shown in Figure F-2 (b). Figure F-2 (b) shows an 

increase in roughness as the pulse width is increased. Increase in pulse width periods 

results in longer interaction between laser and surface of material. This intensifies 

melting of the surface and delays the cooling rate consequently resulting in rougher 

steel surfaces. 
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G. Meltpool Data 

 

Table G-1: Raw data for meltpool measurements for Ti-6Al-4V DOE 1 

Parameter Units Data 

DOE ID  1 4 7 2 5 8 3 6 9 

Residence 

Time 
ms 2.16 1.44 1.08 2.16 1.44 1.08 2.16 1.44 1.08 

Irradiance kW/mm
2
 15.72 20.43 26.72 

 M
el

tp
o

o
l 

D
ep

th
  

(μm) 

35 20 19 40 29 29 49 36 20 

31 31 17 37 28 29 44 39 28 

35 39 22 36 35 24 44 35 27 

30 25 26 38 35 27 49 33 26 

33 22 20 44 39 25 55 28 35 

41 25 26 35 39 24 50 31 32 

43 21 24 49 45 25 41 28 33 

27 22 15 50 38 28 39 30 34 

40 21 19 40 34 27 42 44 27 

43 20 18 39 41 23 48 39 29 

Mean (μm) 35.80 24.60 20.60 40.80 36.30 26.1 46.10 34.30 29.10 

StdDev (μm) 5.69 6.06 3.78 5.22 5.23 2.09 4.91 5.29 4.53 

Error % 0.159 0.246 0.183 0.128 0.144 0.083 0.106 0.154 0.156 

Confidence % 95 

t-value  2.262157 

Lower 

Error 
 4.07 4.33 2.70 3.74 3.74 2.14 3.51 3.79 3.24 

Upper 

Error 
 4.07 4.33 2.70 3.74 3.74 2.14 3.51 3.79 3.24 
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H. Roughness Data 

Table H-1: Raw data for average roughness measurements for Ti-6Al-4V DOE 1 

Parameter Units Data 

DOE ID  1 2 3 4 5 9 7 8 9 

Irradiance kW/mm
2
 15.72 20.43 26.72 15.72 20.43 26.72 15.72 20.43 26.72 

Residence 

Time 
ms 2.16 1.44 1.08 

A
v

er
a

g
e 

R
o

u
g

h
n

es
s 

(μm) 

2 2 2 2 2 1 2.7 1.7 1.3 

2 1 1 2 2 2 2.5 1.9 1.2 

2 1.6 1.4 2.2 1.6 1.4 2.9 1.8 1.4 

1.8 1.5 1.6 2.3 1.5 1.4 2.6 1.7 1.5 

2.2 1.5 1.4 2.4 1.7 1.6 2.9 2 1.5 

Mean (μm) 1.93 1.50 1.47 2.30 1.60 1.43 2.73 1.83 1.39 

StdDev (μm) 0.17 0.07 0.11 0.10 0.07 0.11 0.18 0.13 0.13 

Error % 0.09 0.05 0.07 0.04 0.04 0.08 0.07 0.07 0.09 

Confidence % 95 

Critical T  2.776445 

Lower 

Error 
 0.208 0.088 0.136 0.124 0.088 0.142 0.222 0.162 0.162 

Upper 

Error 
 0.208 0.088 0.136 0.124 0.088 0.142 0.222 0.162 0.162 
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I. Energy Dispersive X-ray Spectroscopy Raw Data 

Table I-1: Elemental composition using two different  

scan methods and processing times 

Spectrum Ti Al V Si Total 

      

Area scan _ process time 

6 

89.35 6.03 4.06 0.56 100.00 

Area scan _ process time 

1 

89.42 5.98 4.06 0.54 100.00 

(1,1) 89.92 5.46 4.18 0.44 100.00 

(2,1) 90.30 5.48 4.22  100.00 

(3,1) 89.13 6.39 3.91 0.57 100.00 

(4,1) 89.36 6.03 4.28 0.33 100.00 

(5,1) 88.34 6.86 4.31 0.49 100.00 

(1,2) 89.93 5.38 4.10 0.60 100.00 

(2,2) 89.88 5.50 4.13 0.48 100.00 

(3,2) 89.58 6.28 4.14  100.00 

(4,2) 89.52 6.01 4.10 0.37 100.00 

(5,2) 87.85 7.31 4.34 0.50 100.00 

(1,3) 89.30 6.09 4.08 0.52 100.00 

(2,3) 89.20 5.27 4.52 1.01 100.00 

(3,3) 89.59 6.18 4.23  100.00 

(4,3) 89.90 5.66 4.14 0.30 100.00 

(5,3) 88.88 6.34 4.18 0.59 100.00 

(1,4) 87.50 7.74 3.83 0.93 100.00 

(2,4) 89.22 5.86 4.07 0.85 100.00 

(3,4) 89.06 6.42 4.12 0.40 100.00 

(4,4) 89.13 6.29 4.14 0.43 100.00 

(5,4) 89.75 5.47 4.28 0.50 100.00 

(1,5) 88.51 6.43 4.03 1.03 100.00 

(2,5) 89.57 5.74 4.21 0.47 100.00 

(3,5) 89.06 6.49 4.05 0.41 100.00 

(4,5) 88.75 6.65 4.25 0.35 100.00 

(5,5) 90.10 5.07 4.20 0.62 100.00 

Max. 90.30 7.74 4.52 1.03  

Min. 87.50 5.07 3.83 0.30  
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Cross-sectional Analysis 

Sample 1 

 

Spectrum Ti Al V C Si Total 

       
1 80.38 5.49 3.53 10.23 0.38 100.00 

2 84.76 4.87 4.23 5.65 0.50 100.00 

3 86.80 5.33 3.41 4.46  100.00 

4 84.14 4.59 5.81 5.45  100.00 

5 80.39 4.39 7.79 7.43  100.00 

6 84.71 5.00 3.97 6.32  100.00 

7 86.21 4.94 3.32 5.53  100.00 

8 86.22 5.11 3.75 4.92  100.00 

Max. 86.80 5.49 7.79 10.23 0.50  
Min. 80.38 4.39 3.32 4.46 0.38  

 

Sample 2 

 



 

XXIX 

 

Spectrum Ti Al V Si Ca Total 

       
1 89.71 5.67 4.09 0.27 0.27 100.00 

2 90.33 5.52 3.85 0.30  100.00 

3 90.02 5.68 4.07 0.23  100.00 

4 89.77 5.71 4.28 0.23  100.00 

5 91.12 6.09 2.79   100.00 

6 88.65 5.23 6.12   100.00 

7 89.74 5.47 4.79   100.00 

8 90.13 5.69 4.18   100.00 

Max. 91.12 6.09 6.12 0.30 0.27  
Min. 88.65 5.23 2.79 0.23 0.27  

 
Sample 3 

 

Spectrum Ti Al V Si Ca Total 

       
1 89.74 5.62 4.10 0.27 0.27 100 

2 89.98 5.77 4.01 0.24  100 

3 90.25 5.74 4.01   100 

4 89.90 5.74 4.10 0.26  100 

5 90.19 5.70 4.12   100 

6 88.07 4.94 6.68   100 

7 88.82 5.51 5.67   100 

8 90.43 5.62 3.95   100 

Max. 90.43 5.77 6.68 0.27 0.27  
Min. 88.07 4.94 3.95 0.24 0.27  
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Sample 4 

 

Spectrum Ti Al V Si Ca Fe Total 

        

1 89.46 5.94 3.99 0.34 0.28  100.00 

2 89.58 5.97 4.09 0.35   100.00 

3 89.78 5.87 4.03 0.31   100.00 

4 90.16 6.57 2.96 0.31   100.00 

5 87.59 5.79 6.31   0.31 100.00 

6 91.01 6.36 2.63    100.00 

7 90.96 6.29 2.76    100.00 

8 85.65 5.35 8.33   0.66 100.00 

Max. 91.01 6.57 8.33 0.35 0.28 0.66  

Min. 85.65 5.35 2.63 0.31 0.28 0.31  
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Sample 5 

 

Spectrum Ti Al V Si Ca Fe Total 
        
1 89.62 5.89 3.90 0.32 0.27  100.00 

2 89.90 5.75 3.99 0.36   100.00 

3 89.61 5.87 4.15 0.38   100.00 

4 89.79 5.90 4.00 0.32   100.00 

5 88.89 5.33 5.50   0.28 100.00 

6 90.50 6.02 3.48    100.00 

7 87.46 5.20 7.06   0.27 100.00 

8 90.25 5.87 3.89    100.00 

Max. 90.50 6.02 7.06 0.38 0.27 0.28  
Min. 87.46 5.20 3.48 0.32 0.27 0.27  

 

Sample 6 

 

9/9/2010 5:56:13 PM 
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Spectrum Ti Al V Ca C Fe Total 
        

1 90.10 5.58 4.10 0.21   100.00 

2 90.25 5.60 4.15    100.00 

3 90.09 5.66 4.25    100.00 

4 90.24 5.63 4.14    100.00 

5 89.30 5.38 3.55  1.77  100.00 

6 87.12 4.86 7.61   0.40 100.00 

7 91.21 6.03 2.77    100.00 

8 90.90 5.56 3.55    100.00 

Max. 91.21 6.03 7.61 0.21 1.77 0.40  
Min. 87.12 4.86 2.77 0.21 1.77 0.40  

 
Sample 7 

 

Spectrum Ti Al V Si Ca Fe Total 
        

1 89.76 5.56 3.98 0.34 0.35  100.00 

2 89.75 5.62 4.26 0.36   100.00 

3 89.79 5.72 4.11 0.37   100.00 

4 91.04 5.84 3.12    100.00 

5 90.23 5.59 4.18    100.00 

6 87.74 4.81 7.00   0.44 100.00 

7 90.27 6.00 3.73    100.00 

8 91.20 6.22 2.58    100.00 

Max. 91.20 6.22 7.00 0.37 0.35 0.44  
Min. 87.74 4.81 2.58 0.34 0.35 0.44  

 

06/09/2010 14:14:33 

06/09/2010 14:16:18 

06/09/2010 14:18:56 06/09/2010 14:22:33 
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Sample 8 

 

Spectrum Ti Al V Si Ca Pt Total 

        

1 89.34 6.11 3.98 0.34 0.23  100.00 

2 89.61 5.99 4.04 0.37   100.00 

3 89.64 6.22 4.13   0.01 100.00 

4 90.36 6.27 3.36   0.01 100.00 

5 90.80 6.07 3.13    100.00 

6 90.00 5.88 4.12    100.00 

7 89.47 6.65 3.82   0.06 100.00 

8 90.83 6.43 2.74    100.00 

Max. 90.83 6.65 4.13 0.37 0.23 0.06  

Min. 89.34 5.88 2.74 0.34 0.23 0.01  

 

Sample 9 
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Spectrum Ti Al V C Si Total 

       

1 88.32 5.38 4.01 1.98 0.31 100 

2 90.12 5.57 3.93  0.39 100 

3 90.09 5.64 3.99  0.28 100 

4 90.27 5.55 4.18   100 

5 89.83 5.75 4.42   100 

6 90.51 6.07 3.42   100 

7 90.78 5.94 3.28   100 

8 89.14 5.93 2.96 1.97  100 

Max. 90.78 6.07 4.42 1.98 0.39  

Min. 88.32 5.38 2.96 1.97 0.28  
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J. Ablation Effects 

The images below highlight ablation of Ti-6Al-4V caused by extremely high energy 

densities.  

  

Figure J-1: Ablation at an energy density of 1.6 kJ/mm
2
 

 

Figure J-2: Ablation at an energy density of 772 J/mm
2
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K. Raw Data Material Properties Measured for Ti-6Al-4V 

 

Table K-1: Mean melt-pool depth value (μm) 

Melt-pool 

Depth 

(μm) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 20.6 26.1 29.1 

1.44 24.9 36.3 34.3 

2.16 35.80 40.8 46.1 

 

 

Table K-2: Mean roughness (μm) 

Roughness 

(μm) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 2.733 1.833 1.390 

1.44 2.300 1.600 1.433 

2.16 1.933 1.500 1.467 

 

 

Table K-3: Mean microhardness (HV) 

Hardness 

(HV) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 647.67 685.67 767.00 

1.44 666.00 681.00 693.33 

2.16 674.00 597.33 633.33 
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Table K-4: Mean β-Ti volume fraction (%) 

β-Ti Volume 

Fraction (%) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 24.139 22.132 18.974 

1.44 23.010 21.632 21.486 

2.16 21.258 21.470 20.698 

 

 

Table K-5: Mean specific wear rate (mm/N∙m) for samples tested for 20 m. 

Wear rate 

(x10-6 mm/N∙m) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 504.44 548.24 607.48 

1.44 512.11 564.83 611.62 

2.16 543.61 580.83 654.40 

 

 

Table K-6: Mean specific wear rate (mm/N∙m) for samples tested for 150 m. 

Wear rate 

(x10-6 mm/N∙m) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 571.13 644.14 668.15 

1.44 725.16 586.13 630.14 

2.16 616.14 620.14 574.13 
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Table K-7: Mean corrosion rate nm/yr. 

Corrosion Rate 

(nm/yr) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 239.42 188.35 86.618 

1.44 106.89 165.88 289.39 

2.16 441.31 101.09 202.45- 

 

 

Table K-8: Mean contact angles (°) of unpolished samples. 

Contact Angles 

unpolished 

(°) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 58.29 32.19 27.94 

1.44 40.43 32.24 38.11 

2.16 24.09 33.93 61.24 

 

 

Table K-9: Mean contact angles (°) of polished samples. 

Contact Angles 

polished 

(°) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 70.24 68.87 69.86 

1.44 60.14 54.52 57.93 

2.16 69.67 67.71 63.97 
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Table K-10: Mean cell attachment (%). 

Cell Attachment 

(%) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 15.69 27.77 23.79 

1.44 27.05 22.82 20.45 

2.16 21.25 24.40 24.89 

 

 

Table K-11: Mean cell numbers after 3 days. 

Cell Numbers 

Day 3 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 138.6E+3 106.7E+3 175.8E+3 

1.44 127.3E+3 167.3E+3 148.5E+3 

2.16 101.7E+3 151.4E+3 144.1E+3 

 

 

Table K-12: Mean cell numbers after 7 days. 

Cell Numbers 

Day 7 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 199.4E+3 217.9E+3 256.9E+3 

1.44 272.9E+3 202.2E+3 223.2E+3 

2.16 222.0E+3 261.1E+3 221.0E+3 

 

 



 

XL 

 

Table K-13: Mean metabolic activity at 24 hrs. 

Metabolic 

Activity 24 hrs 

(%reduction) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 24.65 30.03 28.15 

1.44 31.48 32.14 29.74 

2.16 27.65 28.08 27.33 

 

 

Table K-14: Mean metabolic activity at 96 hrs. 

Metabolic 

Activity 96 hrs 

(%reduction) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 24.64 27.20 26.58 

1.44 26.78 26.56 27.70 

2.16 23.99 25.55 30.98 

 

 

Table K-15: Mean metabolic activity at 7 days. 

Metabolic 

Activity 7 days 

(%reduction) 

Irradiance (kW/mm
2
) 

15.72 20.43 26.72 

R
es

id
en

ce
 

T
im

e 
(m

s)
 1.08 44.50 44.38 45.56 

1.44 46.46 45.35 44.36 

2.16 42.79 45.25 46.01 

 

 


