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ABSTRACT

The ever increasing availability of high speed Internet access has led
to a leap in technologies that support real-time realistic interaction
between humans in online virtual environments. In the context of
this work, we wish to realise the vision of an online dance studio
where a dance class is to be provided by an expert dance teacher
and to be delivered to online students via the web. In this paper we
study some of the technical issues that need to be addressed in this
challenging scenario. In particular, we describe an automatic dance
analysis tool that would be used to evaluate a student’s performance
and provide him/her with meaningful feedback to aid improvement.

Index Terms— Human activity analysis, dance analysis, multi-
modal processing, interactive environments.

1. INTRODUCTION

In this paper, we describe techniques for the automatic analysis of
dance performances in view of the development of tutoring tools for
online dance tutorial sessions. Unlike traditional gaming scenarios,
when the motion of a user must be kept in synchronisation with a
pre-recorded avatar that is displayed on the screen, the technique de-
scribed in this paper targets online interactive scenarios where dance
choreographies can be set, altered, practiced and refined by users. In
such a scenario, a dance teacher is free to illustrate to online users
choreography steps of their choice. After viewing the sequence at
a later date, a student can attempt to mimic the steps, and obtain
feedback from the system to help refine his/her dance moves. At
any time, the teacher can alter the choreography or introduce extra
steps when they receive notification that the student has reached a
certain level of competency. As such, there is real online interaction
between users.

Although it can be considered as a special instance of human ac-
tivity analysis [1], dance performance analysis entails specific chal-
lenges owing to its artistic nature, which comprises complex cultural
and cognitive dimensions, such as aesthetics and expressiveness [2].
Moreover, (for most dance styles) the analysis of a dancer’s move-
ments cannot be abstracted from the related music, as the steps and
movements of the choreography are expected to be responses to par-
ticular musical events. This makes the evaluation of a dance per-
formance a difficult problem that can benefit from multimodal ap-
proaches.

We find in literature some contributions dealing with this prob-
lematic. They distinguish from the proposed approach by two main
aspects, namely the purpose of the dance analysis and the nature
of the analysed signals. Most contributions consider dance analy-
sis from an archiving and retrieving point of view (see e.g., [3, 4]).
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The required information can thus be very different. As an exam-
ple, in [3], the authors propose a method to convert a dance mo-
tion to symbolic descriptions (called “primitive motions”), in order
to make easier its reconstruction. Our purpose is more ambitious.
It postulates that we are able to extract informations susceptible to
help dance students and assess their performances with regard to the
teacher’s one. The analysed signals are mostly made up of motion
informations (kinematic sensors or video signals) sometimes helped
by musical signals, namely the dance musics. In [5], only kinematic
sensors are used to estimate the rhythm of the motion. A refine-
ment of this method is proposed in [3] based on the consideration
of musical rhythm. Music and video are jointly analysed in [6] to
extract periodicities in the dance movements; the method combines
then movement tracking and extraction of beat markers. Here, we
make use of different signals, namely inertial measurements, Kinect
depth maps and audio signals.

We consider the 3DLife ACM Multimedia Grand Challenge
2011 dataset [7] which consists of 15 multimodal recordings of
Salsa dancers performing between 2 to 5 fixed choreographies, cap-
tured by a variety of sensors. Each multimodal recording contains
multi-channel audio, synchronised video from multiple viewpoints,
Wireless Inertial Measurement Unit (WIMU) sensor data, Microsoft
Kinect depth maps and original music excerpts. In addition, the data
corpus provides ground truth dancer reference ratings, as graded by
expert dance teachers. In this work, our main aim is to automatically
produce scores that are consistent with these reference ratings.

The rest of the paper is organised as follows: Section 2 provides
both a high level overview of the approach and a description of the
individual components. A student’s dance recital is evaluated using
two distinct quantitative scores; the first assesses the student’s chore-
ography, as described in Section 3; while the second metric focuses
on providing feedback with respect to the students timing, as out-
lined in Section 4. Quantitative evaluation of the proposed scoring
techniques are provided in Section 5. Finally, Section 6 provides
conclusions and plans for future work.

2. SYSTEM OVERVIEW

A system flow chart of the overall system is presented in Figure 1.
A dance “Score”, used to assess an overall dance recital, is based on
both choreography and timing metrics. In this work, Kinect sensors
are used to acquire a “choreography” dance rating. This metric eval-
uates both the quality of bodily movements and the accuracy in that
the student dancer achieves in executing the predefined dance steps.
The second metric, “timing” is obtained using combined WIMU and
audio data streams and assesses the dancers ability to keep in step
with the dance teacher. Synchronisation between these two “tim-
ing” modalities are achieved by maximising the cross-correlation
between specific WIMU and audio features around the hand-clap
event that occurs at the beginning of each recording in the data cor-
pus [8]. With respect to both scores, an assessment of a student’s
dance recital is realised by a comparison of their performance to that

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310627?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. System overview.

of the dance teacher, which is assumed to be the gold standard per-
formance.

3. CHOREOGRAPHY ANALYSIS

The “Choreography” rating is acquired using tracked dancer 3D
skeletons. The skeletal movements of the student and teacher are
temporally aligned and their body joints are compared to reveal an
underlying score on how well their performances match. Body joints
from 3D skeletons are detected and tracked in this work by utilis-
ing the OpenNI SDK (http://www.openni.org) and Kinect
depth-maps. The API provides the ability to track 17 skeletal joints
positions (Head, Neck, Torso, Collar bones, Shoulders, Elbows,
Wrists, Hips, Knees and Feet) for each video frame, along with the
corresponding tracking confidence level.

A limiting feature of the OpenNI skeleton tracking is that it re-
quires user calibration beforehand. This is achieved by having the
user stand in a specific pose for several seconds while an individual
skeleton is calibrated for the user. In a real world context, however
it is not assured that a dancer will perform this calibration pose cor-
rectly, for the required time or may not perform it at all. To overcome
this limitation, pre-computed custom calibration data was used by
manually sourcing and calibrating persons with body characteristics
similar to each dancer in the dataset. This tailored calibration data
resulted in robust skeletal tracking and consequently accuracy of the
automatic evaluation methods.

3.1. Vector signals encoding

Let the position of the j-th joint at the time instance t (as produced by
the skeleton tracking module) be denoted as: [Xj(t), Yj(t), Zj(t)]

T,
j = 1, 2, . . . , J. The instantaneous velocities of the joints, denoted
as [V xj(t), V yj(t), V zj(t)]

T, are calculated from the convolution
of the discrete-time input position data with a 1st order Derivative
of Gaussian (DOG) kernel, in order to account for the noise on the
input data.

By applying appropriate vector-signal and 3D-data analysis
techniques it is possible to (a) register/align two dancers with respect
to time and (b) to infer quantitative information about the “similar-
ity” of their dances. In order to simplify the simultaneous processing
of the three coordinate variables X , Y and Z, we make use of quater-
nions [9]. Quaternion theory constitutes a generalization of com-
plex numbers theory, where we have three imaginary units i, j and
k and instead of a scalar imaginary part, a 3-D “vector” imaginary
part is considered. For the necessary theory, the reader is referred
to [9]. We use “pure” quaternions (i.e. quaternions with zero real
part) to encode the position and velocity of each joint during time,
as quaternionic signals: pj(t) = i ·Xj(t)+ j ·Yj(t)+k ·Zj(t), and
vj(t) = i · V xj(t) + j · V yj(t) + k · V zj(t).

3.2. Dancer alignment

Given two separate dancing sequences to compare, it is improbable
that they both have the same number of frames. In addition, the
time-instance at which the tracking module detects the dancer and
starts tracking is unlikely the same for all dancing sequences. There-
fore, an appropriate preprocessing step is initially taken, which (a)
removes all frames before the dancer is detected, and (b) appropri-
ately pads the shortest of the two sequences.

Alignment of dancers is achieved by finding the time-
lag that maximizes the quaternionic cross-covariance [9] of
each joint’s position signal vector. More specifically, the lag
τmax which maximizes the following function: Ctotal(τ) =∣∣∣∑j

∑
t Pref(j, t) · Peval(j, t− τ)

∣∣∣, constitutes the estimate of the
time-shift between the dancing sequences to compare. In this equa-
tion, P(j, t) = [p1(t), p2(t), . . . , pJ(t)]

T is a quaternionic array
with the j-th row containing the 3D position of the j-th joint dur-
ing time. The superscripts “ref” and “eval” refer to the reference
and evaluated dancing sequence, respectively. The overline denotes
quaternion conjugate. An example of aligned signals is illustrated in
the upper diagram of figure 2.

3.3. Choreography Score calculation

Initially, a score for each joint is calculated by considering the mod-
ulus of the Quaternionic Correlation Coefficient (QCC) for each pair

of joint position signals: S1,j =
|
∑

t pref
j (t)·peval

j (t)|√∑
t |pref

j (t)|2·
√∑

t |peval
j (t)|2

. A to-

tal score S1 is computed as a weighted mean of the separate joint
scores, i.e.: S1 =

∑
j wj ·S1,j∑

j wj
. The weights could be either heuristi-

cally selected, based on the significance of each joint in the dancing
performance, or automatically calculated using a global optimiza-
tion, realizing training with a subset of the ground-truth ratings. For
the presented experiments, the weights were selected equal to unity.

Using a similar methodology, an overall score S2 is extracted
based on the velocities of the joints vj(t), instead of their positions.

Finally, considering a different approach, the velocities of the
joints are considered as 3D motion (flow) vectors. Inspired by the
relevant 2D optical flow literature [10], a third score is produced
by considering the normalized 3D velocity vectors in homogeneous

coordinates (we drop t for simplicity): s(vj) =
[V xj ,V yj ,V zj ,1]

T

√
|vj |2+1

.

The flow angular error between s(vref
j ) and s(veval

j ) is defined as the
cosine arc of their inner product. A normalized score metric, S3 ∈
[0, 1], is obtained using: S3,j = 1

2

(
s
(
vref
j

)
· s

(
veval
j

)T
+ 1

)
.

For each frame t, the median along j is used to calculate an all-
joints score S3(t). The median is utilised in this fashion in order to
reject statistical outliers. A total score S3 for the whole choreogra-
phy is then given as the median along t.

The three scores S1, S2 and S3 are combined with the use of
appropriate weights (set equal to unity for the results in this paper),
in order to obtain the final overall choreography score presented.

Instantaneous scores: The approach described so far produces
a score for the whole dancing sequence. Instantaneous scores can
be calculated by applying the relevant methodologies within a time-
sliding window, around each time instant. Additionally, the method-
ologies can be applied considering different subsets of body joints,
in order to extract scores for different body parts and highlight the
defects/differences of the student’s with the teacher’s performance.
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Fig. 2. Upper row: The Z-position of Anne-Sophie-k’s right knee
in choreographies c2-t1 and c2-t2. The signals are almost identi-
cal. Bottom row: The corresponding signals, comparing an amateur
dancer with Anne-Sophie-k. The signals differ significantly, result-
ing in to a low score.

4. DANCER’S “TIMING” ANALYSIS

The quality of a dancer’s movements “timing” is assessed by control-
ling whether the dance steps are executed at the correct time instants
as given by the time-coded choreography-ground-truth [7]. We first
explain how we detect the steps and classify them into right or left-
foot steps. Then we describe the procedure followed to get a “musi-
cal timing” rating.

Step detection exploits both the audio and WIMU modalities
that are first processed independently one from another before a
heuristic fusion approach is used to reach a decision regarding step
segmentation and classification.

4.1. Audio processing

Step impacts are detected using the signals captured by the onfloor
piezoelectric transducers (audio channels 1, 2, 17 and 18). The im-
pacts are located by:
i) first, extracting onset detection functions fc(t) from every sig-
nal, where c is a channel number (c ∈ {1, 2, 17, 18} or c ∈
{8, 19, 20, 21, 22, 23, 24}), and t is a time index;
ii) then forming feature vectors xt which are, at every time instant t,
merely the concatenation of the coefficients of every onset detection
function, that is xt = [f1(t), f2(t), f17(t), f18(t)];
iii) applying a one-class Support Vector Machine (SVM) [11] to
those feature vectors (as a way of achieving a fusion of the onset
detection functions) and taking the SVM output values which are
below a negative threshold to be indicators of step impact instants.

The use of single-class SVMs is motivated by the fact that they
are able to detect extreme points [11] of the feature vector sequence
that are to be mapped with step impacts. These extreme points are
found by looking at the sign of the SVM prediction values that are
then negative.

Figure 3 shows the result of the automatic step impact detec-
tion on the recording referenced as bertrand c1 t1, along with
ground-truth annotations. It can be seen that the approach success-
fully detects all steps on this example. The errors are often false
alarms due to situations where “double-impact” steps occur, that is
when a dancer’s foot slowly enters in contact with the floor, typically
with a heel impact occurring before a toe impact.

4.2. WIMU processing

WIMU based step detection is performed using the accelerometer
signals of the ankle sensors (devices 5 and 6). As with the clap event,
a large energy burst will occur on all three axes when the foot strikes
the floor. However, the force of the impact can vary greatly, and the
natural motion of the dancer’s feet introduces noisy accelerations in
the step detection process. In order to filter the signal, all three axes
are combined and high passed to remove any acceleration values
that are not the result of vibration. The signal is then normalized
and integrated as described in [12] giving the probabilities of step
impacts.

4.3. Decision fusion and step classification

Figure 3 illustrates the way in which audio-based and WIMU-based
detectors play complementary roles in spotting the dancers steps.
The audio output allows us to locate the steps with a high temporal
accuracy (thanks to a higher sampling frequency), while the WIMU
output serves as a validation for the step occurrences thus detected,
with the potential of eliminating possible false detections, as has
been observed in other examples. This is achieved by dropping all
step candidates (detected using the audio) for which the WIMU de-
tection functions are always below a threshold (fixed to 0.1) in a
0.1-s width window around those candidates.

Further, by pairing the peaks of the WIMU and audio detection
functions (that are closest in time), we straightforwardly obtain a
classification of steps detected into left or right-foot steps, given that
the mapping between the devices and the feet is known.

13 14 15 16 17 18 19 20 21 22

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 3. Step detection results on recording Bertrand c1 t1. Neg-
ative SVM decision values across time (in green) along with detected
steps (dashed blue), WIMU-based detection functions (in red and or-
ange respectively for the left and right feet), and ground-truth anno-
tations in black.

5. EXPERIMENTAL VALIDATION

5.1. Dancer’s choreography score

Scores S1 and S2 are correlation-based. Therefore, they constitute
a “similarity” measure of the “dance signals” being compared. For
example, the signals in the upper diagram of figure 2 are almost iden-
tical, revealing that the two dances of Anne-Sophie-k are very simi-
lar. Therefore, the corresponding scores are very high. On the other
hand, the signals in the bottom row of figure 2 have significant dif-
ferences (resulting into a low score), since the amateur dancer does
not reproduce accurately the choreography. According to our exper-
iments, score S3 also presents a similar behavior. Assuming that the



ground-truth ratings for the reference dance are “excellent”, it is es-
sential to consider that the automatically extracted scores reflect the
“Choreography” performance, namely the body movement quality /
accuracy in executing a specific sequence of dance steps. In order
to demonstrate the above fact, we consider a simple simulation sce-
nario which assumes that the dancer stops dancing at a specific time
instance, he/she remains almost still for a small “dead” time interval
and finally continues dancing. The greater the dead time interval is,
the lower the “choreography” rating will be.

5.2. Dancer’s timing score

This score characterises the overall timing precision of the dancer
with reference to the ideal step timing, relative to the musical tim-
ing, that is provided in the time-coded ground-truth annotation of
the choreographies. Such a characterisation cannot be done without
accounting for the fact that across the performance, a dancer who
would be out of musical synchronisation at a certain point might still
be able to re-synchronise their selves, hence end-up receiving a high
overall timing rating. Therefore the scores are computed as follows.

First, we match every expected step sr (given in the ground-
truth) with the closest automatically detected step sd. If it is ob-
served (after step classification) that the latter has been executed by
the correct foot (again with reference to the ground-truth), and its
time distance to the reference step sr is smaller than the musical
beat duration (also given in the music annotation files), then it is reg-
istered in the set of correct steps Sc; otherwise it is ignored. Next,
two intermediate scores are computed: the first is the arithmetic
mean of the time-differences between set Sc steps and their near-
est ground-truth counterparts; the second is the fraction of correctly
executed steps relative to the total number of ground-truth steps ex-
pected. These two intermediate scores are normalised to lie in the
range [0, 5], and the final “timing” score is obtained by computing
their mean. This strategy has been found successful as will be seen
in the next Section.

5.3. Experimental results

The presented methodologies produce meaningful results, in the fol-
lowing sense: 1) Considering Bertand or Anne-Sophie-k (the pro-
fessional dancers) in two different captures for the same dance, the
calculated scores are high. This is essential, since the dance of a pro-
fessional dancer is almost identical in two different captures and 2)
The ranking of the students does not deviate significantly from the
ground-truth ranking.

Selected experimental results (for choreographies c2 and c3)
are presented in Table 1, where the overall scores are given in
the columns “Ch-Score” and “MT-GT” (normalized in the range
[0,5]). The dance recordings identified as Bertand c2 t2, and
Bertand c3 t1 were considered as the reference recordings for
computing the choreography rating. In the same table the ground-
truth ratings assigned to the dancers are presented (columns “Ch-
GT” and “MT-GT”). It should be noticed that the ranking of the
students based on the calculated scores are in accordance with the
ranking based on the ground-truth.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a framework which allows for automatic
dance analysis and evaluation, and can be used by both a teacher
to evaluate a student’s performance and a student as a source of

Table 1. Ground-truth and extracted scores, where Ch-GT and MT-
GT stand for “Choreography” and “Musical timing” Ground-truths
respectively.

Dancing Ch-GT Ch-Score MT-GT MT-Score
jacky c2 t1 5 4.3 3 3.4

thomas c2 t2 5 4.1 4 4.3
habib c2 t1 4 3.9 5 4.7
jacky c3 t2 4 3.8 3 3.1

thomas c3 t1 2 3.2 2 3.6
habib c3 t1 2 1.8 4 3.9

meaningful feedback. In future work, we aim at providing an on-
line 3D visualization tool allowing for the temporal aligned dance
movements of the teacher and the students, along with the associ-
ated evaluation scores, in a virtual 3D gaming environment.
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