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Accelerated Source-Sweep Analysis using a
Reduced-Order Model Approach
Patrick Bradley, Conor Brennan, Marissa Condon, and Marie Mullen.

Abstract—This paper is concerned with the development of a
model-order reduction (MOR) approach for the acceleration of
a source-sweep analysis using the volume electric field integral
equation (EFIE) formulation. In particular, we address the
prohibitive computational burden associated with the repeated
solution of the two-dimensional electromagnetic wave scattering
problem for source-sweep analysis. The method described within
is a variant of the Krylov subspace approach to MOR, that
captures at an early stage of the iteration the essential features
of the original system. As such these approaches are capable
of creating very accurate low-order models. Numerical examples
are provided that demonstrate the speed-up achieved by utilising
these MOR approaches when compared against a method of
moments (MoM) solution accelerated by use of the Fast Fourier
Transform (FFT).

I. INTRODUCTION

THE solution of electromagnetic wave scattering prob-
lems, from inhomogeneous bodies of arbitrary shape,

is of fundamental importance in numerous fields such as
geoscience exploration [1] and medical imaging [2]. For such
problems, it is common to require the repeated solution of
the electromagnetic wave scattering problem for a variety of
source locations and types. This is of particular importance in
the reconstruction of unknown material parameters in inverse
problems and as such is a critical step in the optimisation
process [3].

Typically, the relevant integral equation (IE) is discretised
using the MoM and results in a series of dense linear equa-
tions. The computational burden associated with the repeated
solution of the full-wave scattering problem at each source
location is severe, especially for large scatterers. Different
strategies are used to accelerate the solutions of these linear
systems. Considerable progress has been made in incorporat-
ing sparsification or acceleration techniques [4] and precondi-
tioners into iterative methods which permit expedited solutions
of the scattering problem. The CG-FFT solution in particular
is often applied in situations where the unknowns are arranged
on a regular grid.

An alternative approach is to develop approximate solutions
to expedite the solution of EM scattering problems. Several
approximations of the integral equation formulation are dis-
cussed in literature, including the Born approximations [5]
and the family of Krylov subspace model order reduction
techniques [6]. Although the Born approximation has been
shown to efficiently simulate the EM response of dielectric
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bodies, these techniques are restricted to problems of relatively
low frequencies and low contrast [5].

Krylov subspace approaches such as the Arnoldi algo-
rithm [7]–[11] can produce very accurate low-order models
since the essential features of the original system are captured
at an early stage of the iteration. A set of vectors that span
the Krylov subspace are used to construct the reduced order
matrix model. By imposing an orthogonality relation among
the vectors, linear independence can be maintained1 and so
high-order approximations can be constructed.

In this work, we modify the Arnoldi MOR procedure, in-
troduced in [7], to efficiently perform scattering computations
over a wide range of source locations for objects of vary-
ing inhomogeneity. We consider a two-dimensional dielectric
object characterised by permittivity ε (r) and permeability µ
for a TMz configuration. A time dependence of exp (ωt) is
assumed and suppressed in what follows. The corresponding
integral equation can be expressed in terms of the unknown
scattered field Es

z (r) and total field Ez (r) [13]

Es
z (r) =



4

∫

V

H
(2)
0 (kb |r− r′|)O (r′)Ez (r′) dv′ (1)

where O (r′) is the object function at point r′ given by

O (r′) = k2 (r′)− k2
b . (2)

The background wave number is given by kb while k (r′)
is the wave number at a point in the scatterer. H

(2)
0 is the zero

order Hankel function of the second kind. Using m pulse basis
functions and Dirac-Delta testing functions [13], Equation 1
is discretised by employing the MoM2, which results in the
following matrix equation

(I + GA)x = b (3)

where b is the incident field vector at the centre of each
basis domain, I is an m × m identity matrix and G is
an m × m matrix containing coupling information between
the basis functions. A is an m × m diagonal matrix whose
diagonal elements contain the contrast at the centre of each
basis domain

ζmm =
ε(r′m)

εb
− 1. (4)

We note that for large scatterers Equation 3 cannot be solved
by direct matrix inversion.

1Note that due to finite precision computation loss of orthogonality between
the computed vectors can occur in practical applications [6], [8], [12].

2Note that other basis and testing functions are possible without affecting
the applicability of what follows.
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II. THE ARNOLDI ITERATION
The Arnoldi algorithm is an orthogonal projection method

that iteratively builds an orthonormal basis for the Krylov
subspace Kq [8]

Kq (G,u1) = span{u1,Gu1, · · · ,Gq−1u1} (5)

for G generated by the vector u1. This algorithm generates a
Hessenberg reduction

Hq = UH
q GUq (6)

where Hq is an upper Hessenberg matrix [8]. Note that the
subscript q is used to denote a q × q matrix, where q ¿ m,
the order of the MoM matrix. The columns of

Uq = [u1,u2, · · · ,uq] (7)

are derived iteratively using the Arnoldi process in Table I [8].
un are termed the Arnoldi vectors and they define an or-
thonormal basis for the Krylov subspace Kq (G,u1). The
Arnoldi procedure can be essentially viewed as a modified
Gram-Schmidt process for building an orthogonal basis for the
Krylov space Kq (G,u1). The unit vectors un are mutually
orthogonal and have the property that the columns of the
generated Uq matrix span the Krylov subspace Kq . Critically,
the Arnoldi iteration can be stopped part-way, leaving a partial
reduction to Hessenberg form that is exploited to provide a
reduced order model (ROM) for Equation 3.

It should be noted that the choice of start vector u1 is critical
in the early extraction of eigenvalue information of G. As
such, one should attempt to construct a start vector that is
dominant in the eigenvector directions of interest. In theory,
wn (line 9 Table I) will vanish if u1 is a linear combination
of q eigenvectors of G. In the absence of superior information
we choose the initial incident field as the start vector u1.
Indeed it has been shown experientially that a random vector
is a reasonable choice [8], [14]. In the context of a source
sweep analysis, our choice of start vector has no bearing on
the accuracy of the approximation at other source locations.
We do not discuss practical error controls in this paper but
instead direct the reader to [6], [8], [14], where the topic is
presented in detail. Suffice to say, that these techniques are
applicable in what follows.

III. METHODOLOGY

In a source sweep analysis, the computation of the scattered
fields from an inhomogeneous body requires independently
solving

x = (I + GA)−1 b (8)

for each step in source location. The Arnoldi algorithm
produces a ROM by iteratively computing the Hessenberg
reduction

Hq = UH
q GUq. (9)

After q steps of the Arnoldi algorithm, an approximation xq ,
to x, can be made in terms of the q basis vectors

x ≈ xq =
q∑

n=1

unαn = Uqaq (10)

TABLE I
ARNOLDI - MODIFIED GRAM-SCHMIDT ALGORITHM WITH

RE-ORTHOGONALISATION (MGSR).

Input: Matrix G, number of steps q

and orthogonalisation parameter η = 1/
√

2,
u1 = b/‖b‖2
for n = 1, . . . , q

wn = Gun

vn = ‖wn‖2
for i = 1, . . . , n

yi,n = uH
i wn

wn = wn − uiyi,n

end i
if ‖wn‖2 < η ∗ vn

for i = 1, . . . , n
hi,n = uT

i wn

wn = wn − uihi,n

end i
hn,n = hn,n + yn,n

endif
hn+1,n = ‖wn‖2
if hn+1,n = 0 Quit
un+1 = wn/hn+1,n

end n.
H = h (1 : q, :)

where aq = [α1 α2 · · · αq]
T is a vector of expansion

coefficients for the Arnoldi basis vectors un that span the
Krylov subspace. The residual rq that corresponds to this
approximation is introduced as

rq = b− (Im + GA)xq. (11)

To find the optimal approximate solution, xq is constrained
to ensure that xq minimises the residual rq . Specifically, the
residual vector is constrained to be orthogonal to the q linearly
independent vectors uq . This is known as the orthogonal
residual property, or a Galerkin condition

rq ⊥ Kq or UH
q rq = 0. (12)

The residual rq is minimised when the residual vector is
orthogonal to the space Kq . This requires substituting Equa-
tion 10 into Equation 11

rq = b− (I + GA)Uqaq (13)

and performing a Galerkin test, to give

UH
q rq = UH

q (b− (I + GA)Uqaq) (14)

= UH
q b− (

Iq + UH
q GAUq

)
aq (15)

≈ UH
q b− (

Iq + UH
q GUqUH

q AUq

)
aq (16)

= UH
q b−

(
Iq + HqÃq×q

)
aq (17)

where

Ãq = UH
q AUq. (18)

As a result of setting

aq =
(
Iq + HqÃq

)−1

UH
q b (19)

the residual has been minimised as

UH
q rq = UH

q b

−
(
I + HqÃq

)(
Iq + HqÃq

)−1

UH
q b = 0(20)
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yielding the following ROM for the total field

x ≈ xq = Uq

(
Iq + HqÃq

)−1

UH
q b. (21)

The key advantage is that once the Krylov matrix Uq has
been generated and stored the matrix Iq + HqÃq can be
rapidly created and stored, along with its inverse permitting
the solution for multiple right hand side vectors, even in the
case of large scatterers as typically q ¿ m.

It should be noted that the step from Equation 15 to
Equation 16 is, in general, approximate. It is exact only if the
range R (Uq) of Uq is an invariant subspace of A. However,
due to the independence of the columns of Uq imposed by
the re-orthogonalisation process, this step can be shown to be
a very reasonable approximation. As prescribed in [8], if the
columns of Uq are independent and the norm of the residual
matrix

R = AUq −UqSq (22)

has been minimised for some choice of Sq , then the columns
of Uq define an approximate subspace. The selection of
Sq = UH

q AUq = Ãq results in the norm of the residual
being minimised

min‖AUq −UqSq‖2 = ‖ (
I−UqUH

q

)
AUq‖2. (23)

Thus, Equation 16 becomes a valid approximation with the
property that, as q → m, a better approximation is procured.

IV. RESULTS

In this section, the monostatic radar cross section (RCS)
is calculated from various geometries for a variety of source
locations with a fixed contrast profile. The numerical perfor-
mance of the reduced order model, generated using the Arnoldi
algorithm, is compared against a MOM solution using an FFT-
accelerated solver.

A. Case Study I

We initially consider a homogeneous cylinder embedded in
free space. It is centred at the origin with radius r = 0.6λ and
discretised using m = 370 cells. The structure is illuminated
by a transverse magnetic (TMz) wave emanating from a line
source located at (10 cos φ, 10 sin φ) where φ varies in the
range 0 : 2π at increments of 8◦. The assumed frequency is
f = 300 MHz and the cylinder contrast is fixed at ζ = 1.5
(εr = 2.5).

Figure 1 depicts the monostatic RCS obtained from the
MoM and the modified Gram-Schmidt algorithm with re-
orthogonalisation (MGSR) technique presented in this paper,
for q = 30, representing a 92% reduction in system size.
The MGSR technique achieves an RCS average error (AE)
of 0.12dB over the entire source range, while yielding a RCS
maximum error (ME) of 0.72dB.
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MoM m = 370
MGSR q = 30

Fig. 1. Case Study I: Monostatic RCS from an homogeneous circle with
constant contrast and varying source location.

B. Case Study II

We now consider an inhomogeneous layered scatterer with
square cross section centred at the origin, with side length
l = 3λ embedded in free space. We assume the square to be
composed of four equally sized slices each with width wi =
0.75λ and height hi = 3λ. The number of basis functions used
is m = 3030 with fixed contrast values of ζ1 = 4, ζ2 = 3,
ζ3 = 2 and ζ4 = 1.1. The monostatic RCS is again computed
for the same range of line source locations as before.

The MGSR technique achieves an impressive reduction in
system size while yielding an acceptable AE over the entire
source range. This is highlighted in Figure 2, which compares
RCS obtained from the MoM and the MGSR technique for
q = 455 representing a 85% reduction in system size. A
complete CPU time analysis associated with the solution
of the RCS for the FFT-accelerated MoM, and MGSR for
ns = 45 samples is given in Table II. Within this table tu is
representative of the time3 taken to generate the Krylov Uq

matrix. Similarly, ti refers to the time taken to generate the
initial Ãq , tg refers to the time taken to generate the FFT
component of G, and tb refers to the time needed to generate
b. ts is the average time taken to solve the monostatic RCS at
each source location using CGNE or CGNE-FFT accordingly.
ni = number of iterations taken by the solver in order to
reach the tolerance 10−5. tt is the total time taken to generate
and solve case study problem and pr = ROM size reduction
expressed in %. These simulations were run on a 3.00 GHz
Xeon CPU processor with 3.00 GB of RAM at 2.99 GHz
and the MoM solution is solved using the Conjugate Gradient
Normal Equation method accelerated with the Fast Fourier
Transform (CGNE-FFT). The CGNE-FFT can reduce the cost
of matrix vector multiplications from O (

m2
)

operations per
iteration to O (mlog2m) operations.

It is evident from Table II, that the MGSR algorithm can
significantly decrease the computational expense associated

3All times discussed in the paper are equal to CPU time in seconds
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MoM m = 3030
MGSR q = 455

Fig. 2. Case Study II: Monostatic RCS from an inhomogeneous square with
constant contrast and varying source location.

with the direct solution for each source location in a source
sweep analysis. The main computational cost of this approach
is incurred in generating the Krylov matrix Uq and the initial
contrast profile matrix Ãq . Note that these computations can
also be accelerated using the FFT and, once generated, the
Uq and Ãq matrices can be reused in subsequent simulations
involving independent source locations. From Table II, it is
clear that considerable savings in CPU time can be achieved
in a source sweep analysis by utilising the MGSR method. For
a 85% reduction in system size (q = 455) using the MGSR
method, the associated AE and ME’s are 0.26 and 1.46dB
respectively over the entire source range. While errors of ME =
2.73dB and AE = 0.38dB are observed for a 90% reduction. It
is also shown in Table II, that for 45 source locations (ns = 45)
the ROM obtained using the MGSR technique is 21.3 times
faster in producing a solution for the RCS, than the CGNE-
FFT method applied to the MoM matrix system. Note that
the CGNE method was used to compute the unknown field in
Equation 21 rather than direct inversion, in order to generate
a conservative comparison.

V. CONCLUSION

We have presented a new method for accelerating source
sweep analysis based on an extension of the Arnoldi MOR
approach. Notably, we have shown that the Arnoldi algorithm
can produce accurate low-order approximations for a relatively
low computational cost. Using case studies, we demonstrated
that the Arnoldi technique can produce a significant reduc-
tion in the system size while still resulting in an accurate
approximation over a wide source range. In addition we have
demonstrated the computational saving achieved by using
MOR techniques in the solution of scattering problems, when
compared to techniques which are based on solving the MoM
system using FFT-accelerated iterative solvers.

TABLE II
CPU TIME ANALYSIS FOR CASE STUDY II.

Legend
Technique

MoM (CGNE-FFT) Arnoldi MGSR (CGNE)

Order m = 3030 q = 303 q = 455

ns 45 45 45

tu(s) - 54.26 104.5

ti(s) - 14.06 21.84

tg(s) 0.28 0.28 0.28

tb(s) 0.11 0.11 0.11

ts(s) 65.29 0.125 0.25

ni 1131 11 12

tt(s) 2938.44 74.34 137.98

pr(%) - 90 85

ME(dB) - 2.73 1.46

AE(dB) - 0.38 0.26

Speed-up - 39.53 21.3
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