

Magnetic ionogels for fluid handling in microfluidic devices

Bartosz Ziółkowski

brought to you by TCORE

1. The need for stimuli responsive materials

2. Ionogels as scaffolds for stimulus responsive materials

3. Magnetic ionogels

4. Future work

5. Conclusions

Page 2 of 23

1. The need for stimuli responsive materials

Hazardous substances in Europe's fresh and marine waters — An overview EEA (European Environment Agency) Technical report No 8/2011

ATWARM

(Advanced Technologies for WAter Resource Management)

Project 3.7

Next generation autonomous analytical platforms for remote environmental monitoring:

Microfluidic platforms incorporating stimulus responsive materials for water quality

Page 4 of 23

Stimuli responsive materials

- Materials that change their properties (shape, volume, colour, stiffness, conductivity etc.)
- Stimuli includes:
 - Light
 - Electric current
 - Heat
 - Magnetic field
 - Presence of certain chemicals
- Potential for use as valves and pumps in analytical fluidic chips

Page 6 of 23

[1] M.-A. Nouze, J. L. Bideau, P. Gaveau, S. Bellayer and A. Vioux, *Chem. Mater.*, 2006, **18**, 3931-3936.
[2] T. Ueki and M. Watanabe, *Macromolecules*, 2008, **41**, 3739-3749.

Page 7 of 23

1. The need for stimuli responsive materials

The combination of ionogels & stimuli responive materials

Benito-Lopez, F. et al. Lab on a Chip 2010, 10, 195.

Page 8 of 23

Page 9 of 23

2. Ionogels as scaffolds for stimulus responsive materials

[P_{6,6,6,14}][DCA] - pNIPAM ionogels:

- Do not dry out completely remain flexible
- Do not leach in water hydrophobic IL contained
- Retain pNIPAM's LCST properties

Page 10 of 23

Tuning the flexibility of ionogels with IL anions

National Centre for Sensor Research

Page 11 of 23

2. Ionogels as scaffolds for stimulus responsive materials

Curing characteristics of ionogels with different IL anions

Page 12 of 23

Another non-invasive stimulus Magnetic field

Page 13 of 23

Linking the inorganic Fe₃O₄ with the ionogel network

Page 15 of 23

3. Magnetic ionogels: Preliminary results – the particles

TEM picture of the magnetic nanoparticles coated with MPTMS (left) & ATMS (right)

Table 1. Dynamic light scattering analysis of functionalised nanoparticles. Their sizes and size distributions.

	MPTMS@F ₃ O ₄	ATMS@Fe ₃ O ₄
DLS intensity peak [nm]	261	172
PDI [nm]	108	70

Page 16 of 23

3. Magnetic ionogels: Preliminary results – Ionogels

[P6,6,6,14][DCA] - pNIPAM ionogels polymerised with:

Left: bare Fe_3O_4 Middle: MPTMS coated Fe_3O_4 Right: ATMS coated Fe_3O_4

(20%wt in all)

Page 17 of 23

EDX analysis

 $[P_{6,6,6,14}][DCA]$ - pNIPAM ionogel polymerised with bare Fe_3O_4 Left: 25%Fe, 14%P Right: 1%Fe, 27%P

Bare particles phase-separate in the final material

Page 18 of 23

EDX analysis

 $[P_{6,6,6,14}][DCA] - pNIPAM ionogel polymerised with ATMS coated Fe_{3}O_{4}$ Left: 25%Fe, 14%P Right: 36%Fe, 6%P

Coated particles do not phase separate

Page 19 of 23

Preliminary results – magnetic actuation of the polymer

Universitäx

Porsdam

- Optimisation of the organosilicon coating process of magnetite
- Mechanical analysis (rheometry) to determine the copolymerisation of particles
- Magnetic analysis of ionogels to determine their susceptibility to magnetic fields
- Integrating this composite material into microfluidic manifolds and demonstrating a working valve and a working pump

Water resource management needs new technologies for water monitoring

- Smart stimulus responsive materials can revolutionise sampling and analysis
- Ionogels functional polymeric sponges filled with a non-volatile IL
- Photo-actuated ionogels can work as low-power microfluidic valves
 - ILs impact the ionogel's curing and stiffness

Universit

- Magnetic field is another very attractive, non-invasive actuation method
- \bigcirc
- - Increased compatibility between the polymer and the particles
 - Reversible bending in non-uniform magnetic fields achieved

Acknowledgements

Dr. Kevin Fraser Dr. Robert Byrne Dr. Fernando Benito-Lopez Prof. Dermot Diamond Katrin Bleek Dr. Christina Günter Prof. Andreas Taubert

Colleagues from the NCSR and Uni-Potsdam

- German Research Council DFG grant TA571/9-1.
- FP7 ATWARM grant (Marie Curie ITN, No. 238273).

Thank you for attention!

NOITO

MARIE CURIE

PROGRAMME

ATWARM