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Abstract 

Mathematical Transfer by Chemistry Undergraduate Students 

This thesis reports on a study of the transfer of mathematical knowledge by 

undergraduate chemistry students. Transfer in this research refers to the students’ ability 

to use mathematical concepts, previously experienced within a mathematics course, 

within chemistry contexts. A pilot study was undertaken with a sample of second-year 

undergraduate chemistry students in order to determine their ability to transfer 

mathematical knowledge from a mathematics context to a chemistry context. The results 

showed that, while certain students could transfer (i.e., answer mathematical items 

correctly in a mathematics context and then in a chemistry context), many students were 

unable to transfer due to insufficient mathematical knowledge.   

These results motivated the main study, in which students’ ability to transfer 

mathematical concepts was investigated and analysed in two respects. These were the 

degree to which transfer was present, and the degree to which a particular characteristic, 

namely students’ ability to correctly explain their mathematical reasoning, underpinned 

successful transfer. It was found that students who evidenced an ability to explain their 

reasoning in a mathematics context associated with transfer.  

An intervention programme was designed which focused on the development of student 

understanding of mathematical concepts, both in terms of symbolic actions and linking 

these symbolic actions with mathematical referents/objects. This intervention 

programme was informed by current mathematics-educational theories. The evaluation 

of the intervention programme involved determining students’ mathematical 

understanding, their ability to transfer, and their opinions as to its usefulness. While the 

majority of the students found the intervention programme beneficial, students’ 

competency in respect of linking mathematical actions with referents/objects varied 

over the different concepts studied. Students’ ability to transfer also varied from one 

concept to another. 

The systematic process adopted in this study, of both determining students’ ability to 

transfer and the factors influencing transfer, and using this information together with 

mathematics-educational theories in developing intervention programmes, is applicable 

to transfer studies across other disciplines. 
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Introduction 

Anecdotal evidence suggests that chemistry undergraduate students struggle with 

mathematics in a chemistry context; books that present mathematics in a chemistry 

context implicitly highlight this [1, 2, 3, 4]. While these books are good in their own 

right, they do not attempt to answer why chemistry undergraduate students possess 

mathematical difficulties. A number of reasons are possible: 

(1) Students possess insufficient mathematical knowledge; 

(2) The discipline-specific chemistry knowledge which is being modelled 

mathematically, impedes students’ ability to apply and interpret the relevant 

mathematical knowledge; or  

(3) Students’ have an inability to transfer mathematical knowledge to chemistry. 

This research aimed to: 1) investigate the extent to which the problems students have 

with mathematics in a chemistry context are due to students’ inability to transfer 

mathematical knowledge to chemistry; and 2) improve chemistry undergraduate 

students’ knowledge of mathematics in a chemistry context. More specifically, it was 

decided to investigate: 

Whether students can transfer mathematical knowledge relevant to chemical kinetics 

and thermodynamics from a mathematics context to a chemistry context? (hereafter 

referred to as the Transfer Question). 

Transfer in the context of this research was defined as getting correct answers to 

questions using the same mathematical concepts in both a mathematics context and a 

chemistry context. Such an approach resides, in terms of educational literature, in the 

domain of the traditional view of the transfer of learning. In addition to looking for 

evidence of transfer, the significance of the transfer observed (if there so happened to be 

any transfer observed) was investigated; ‘significance’ was in terms of whether it could 

be argued that the transfer observed was not due to chance alone. 

Some of the reasons why students can transfer were also explored. In the Pilot-Study 

aspect of the research, it was decided to investigate whether students could transfer 

conceptual mathematical knowledge more so than procedural mathematical knowledge 
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(the Conceptual versus Procedural Question).This Conceptual versus Procedural 

Question evolved into the following question: 

 Do students who evidence an ability to explain in a mathematics context associate 

with transfer? (Hereafter referred to as the Explaining and Transfer Question.) 

From a personal perspective, my undergraduate background in the field of science 

education dictated the manner in which this research was conducted. My undergraduate 

degree comprised of an emphasis on chemistry, physics, biology and mathematics, all 

embedded within an educational context. Thus, it could be argued that my background 

in science is one of being a generalist; this is very much the case.  

However, despite my generalist background, I adopted a mathematics-education 

approach in the undertaking of the research. I adopted this critical stance because of two 

significant reasons: 1) the findings from my 4
th

 year undergraduate research project; and 

2) my own personal experience of learning mathematics.   

In investigating chemistry undergraduate students’ difficulties in understanding the 

mole concept for my 4
th

 year undergraduate research project, one of the main findings 

from such a project was that the difficulties students have with the mole concept are due 

to students’ inability to transfer/use necessary mathematical knowledge. I anticipated 

that this may be the case with students’ difficulties in terms of chemical kinetics and 

thermodynamics. 

My own personal experience of learning mathematics was quite haphazard. In terms of 

my second-level schooling, despite completing the honours leaving certificate 

curriculum in mathematics, it was a number of years before I became aware of certain 

mathematical concepts in real-world contexts. For many concepts, such as exponential 

functions, logarithmic functions and integration, it was largely due to chance that I 

managed to develop an understanding of these concepts. Such ‘chance understanding’ 

materialised during my university studies.  

Could it be that this understanding resulted because of: 1) perseverance?; 2) eventually 

making connections (or transferring) between the world of abstraction and applied 

contexts?; or 3) the manner in which these concepts were explained during lectures, 

tutorials, and within  textbooks at university? I suspect that it was a combination of 
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these factors, but if so, then why do other students in Dublin City University appear not 

able to eventually develop this understanding, and thus apply it to mathematical 

concepts in chemical kinetics and thermodynamics? The research questions investigated 

in this project aimed to explain such an occurrence. 

The research comprised of two phases: 

• In Phase 1, the Transfer Question was investigated in the form of a Pilot Study; 

the findings from this Pilot Study grounded the investigation of both the 

Transfer Question and the Explaining and Transfer Question in the Main Study. 

The Main Study was comprised of two studies, Study 1 and Study 2. 

 

• In Phase 2, an Intervention was designed in order to improve students’ 

mathematical understanding. The findings from Phase 1 suggested that doing so 

would improve students’ ability to transfer. 

 

There are four chapters in the thesis. Chapter 1 reviews literature that is relevant to:1) 

chemistry education; 2) the mathematics problem; 3) learning mathematics; and 4) 

transfer studies. Such literature informed the Transfer Question and the Explaining and 

Transfer Question. In Chapter 2, the research methodology used to investigate the 

Transfer Question and the Explaining and Transfer Question in both the Pilot Study and 

the Main Study is discussed. The results that arose from the Pilot Study are also 

discussed in this chapter, and in particular how these results grounded the research 

methodology used in the Main Study.  

Chapter 3 presents and discusses the results from the Main Study. How these results 

grounded the development of an intervention designed to improve students’ 

mathematical understanding is described in Chapter 4. Lastly, the conclusions and 

implications which arose from: 1) the investigation of both the Transfer Question and 

the Explaining and Transfer Question; and 2) the implementation of the Intervention, 

are detailed.  
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Chapter 1 

A Review of the Literature which Informed the Transfer Question and 

the Explaining and Transfer Question 

1.1 Chapter Overview 

This chapter is composed of two parts. In Part 1, Relevant Literature, the Transfer 

Question and the Explaining and Transfer Question are discussed in terms of: 1) 

chemistry education; 2) the mathematics problem; 3) learning mathematics; and 4) 

transfer studies. In Part 2, the Transfer Question and the Explaining and Transfer 

Question, how such questions can be answered is described. The Transfer Question is 

described in terms of: 1) what is transfer; and 2) how can transfer be assessed.  

The precursor to the Explaining and Transfer Question—the Conceptual versus 

Procedural Question—is discussed in terms of: 1) the justification for asking such a 

question; and 2) the reasons why the question evolved into the Explaining and Transfer 

Question. 

Lastly, the Explaining and Transfer Question is dealt with in terms of the various 

theories of how students learn (in particular, theories on how students learn 

mathematics) that were analysed in order to see if a particular theory could be used to 

categorise the degree to which the students explained in a mathematics context. 

1.2 Relevant Literature 

1.2.1 Chemistry Education 

As has been stated in the Introduction, undergraduate chemistry students struggle with 

mathematics. Nicoll and Francisco have found that academics agree that mathematics 

proficiency is the keystone to success in physical chemistry [5]. Such a view may not 

seem surprising, but the same researchers have also found that it is not mathematics 

proficiency per se which embodies success in physical chemistry, but (more 

specifically) students’ ability to solve word problems and their ability to think logically. 
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Other researchers claim that while mathematical ability is more important than 

mathematical exposure as regards success in physical chemistry, the amount of 

mathematics taken by students cannot be underestimated [6]. The same researchers 

argue that including a mathematics review session near the beginning of a chemistry 

course may be an effective way of reminding students of what they have learned, thus 

helping them to complete the required mathematical elements of the forthcoming 

chemistry course.  

Looking at some of the specific difficulties which chemistry undergraduate students 

face, De Pierro and Garabala [7] have found that for many students the use of the 

irrational number ‘e’ as the base of the natural log (Ln) is deeply mysterious. In a 

chemistry context, the repercussions of this are obvious—failure to understand the 

fundamentals of chemical kinetics. Moreover, an inability to translate the symbolic 

representation of calculus operations is also a difficulty for students. In relation to 

integration, Bressoud [8] claims that research has always talked about the graphical 

meaning of the integral as being important in students’ development of the concept of 

integral, yet, it has not been, in many cases, traditional to give students questions 

examining their understanding of such a graphical depiction.  

Certain researchers advocate the teaching of mathematics in a chemistry context as a 

solution to the mathematical problems which chemistry students possess. For example, 

Witten [9] argues for adapting the current undergraduate mathematics course to become 

more contextual, demonstrating the mathematical technique in the applied context. 

However, there is little evidence that such an approach solves students’ mathematical 

difficulties [10]. Such findings lead to other questions: are the mathematical difficulties 

experienced by undergraduate students just confined to chemistry students, or do 

students from other disciplines experience mathematical difficulties?; and, if so,  how 

have such mathematical difficulties been addressed, or attempted to have been 

addressed? Such questions are hereafter referred to as The Mathematics Problem. 
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1.2.2 The Mathematics Problem 

Concerns with 1
st
-year students’ mathematical preparedness for undergraduate courses 

involving mathematics are nothing new [11,12,13,14,15]. In terms of economics courses 

which involve a mathematical element, the authors Evensky et al.[16] describe how 

many students (especially introductory economics students) do not possess the basic 

graph skills necessary to interpret the relevant economic, contextual information. 

In the UK, higher education lecturers reported that undergraduate students struggle with 

mathematics that is relevant to physics. Moreover, those students who do cope with the 

mathematics in the mathematics context show relatively little competency in being able 

to apply this mathematical knowledge to a physics context. An area of calculus which 

students particularly find difficult is integration.  

In order to try and understand these difficulties, a lecturer in mathematics education 

worked with a number of students at Kings College London [17]. The students were 

physical science and engineering students. A number of interesting findings emerged. In 

particular, students’ performance on questions concerned with graphs appeared to 

predict students’ success on later mathematics courses. The author, Gill, articulates that 

teachers at all levels of the education system in the UK tend to overestimate students’ 

abilities to interpret and understand graphs. He poses the question: if there is such a 

thing as ‘graphicacy’, should the primary concern of the mathematics educator be to 

focus on graphing when first introducing a concept? 

Gill also states that students see no relationship between their mathematics courses and 

their subject areas. This suggests that mathematics should be thought in the required 

context. However, for Gill, the counter-argument to this is that it doesn’t work because 

there are too many contexts, and even if it did work, the mathematics would be tied to 

that context, leaving, the students no better off. It can be inferred that what Gill means 

by the use of the words ‘no better off’ is that students will be unable to transfer if 

mathematics is taught in only one context. 

In a purely Irish context, international studies have indicated that Irish students perform 

relatively poor on questions that require abstraction or the presentation of mathematical 

tasks in non-routine formats [18,19]. At the university level, there is widespread 
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agreement that students enter mathematically-laden courses with few of even the most 

basic mathematical skills necessary to succeed on these courses. Hourighan and 

O’Donoghoue [20] sought to investigate why this is so. They set about with the aim of 

trying to identify factors in the pre-testing (or second-level schooling of students) 

mathematics education of students entering third level that explained students’ 

mathematical under-preparedness for tertiary education in Ireland. A number of 

interesting findings emerged: 

(1) Mathematics tends to be taught in a manner which is divorced from realistic 

settings; 

(2) Students are given little room, if any, to explore mathematical ideas; and 

(3) The mode of teaching appears to promote a ‘learned helplessness’ amongst 

students. 

It should be noted that mathematical under-preparedness is not just confined to Ireland, 

but appears to be a permanent feature of many educational systems in developed 

countries [21]. Importantly, Hourighan and O’Donoghue [20] state that mathematics-

intensive courses need independent learners possessing conceptual and transferrable 

skills required to solve unfamiliar problems, but that these skills were not fostered in the 

classrooms which the authors studied. If this is the case, the question of how should 

mathematics be learned is raised, and is subsequently discussed. 

1.2.3 The Learning of Mathematics 

Schoenfeld states that human memory, in general, is associative, and that memory 

contents are organised in chunks [22].  Memory for verbal information as opposed to 

visual/perceptual information has been found to be different. Anderson [23] in his 

comments on perception-based knowledge representations states that it has often been 

found that memory for pictorial material is superior to memory for verbal material. In a 

particular experiment, called Santa’s experiment, it was concluded that visual 

information such as geometrical objects tends to be stored according  to spatial position 

where as other information such as words tends to be stored according to linear order. 
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It is obvious that memory is a constituent of mathematical learning, and that without it, 

learning cannot occur. However, memory is not the only constituent of learning; 

mathematical learning, according to Romberg and Carpenter [24, p.868] “proceeds 

through construction not absorption [memory]”. Such a view raises the question: what 

does it mean to construct knowledge? Bruner [25] provides a partial answer in terms of 

describing how the active participation of a child in learning may improve their 

problem-solving ability, thus making material more readily accessible in memory. The 

very term ‘active participation’ is what Bruner means by the construction of knowledge. 

This active participation is improved by problem solving.  

Schoenfeld [22] also agrees that teaching for understanding should be done through the 

method of discovery/mathematical problem solving. For Schoenfeld, problems should 

serve as introductions to important mathematical ideas, and good problems in this 

regard are problems that lead to more problems. It is through problem solving that 

students will, according to Schoenfeld, come to know a body of mathematical 

knowledge and see the world through a mathematical lens. Such problem solving is all 

good and well, but how exactly are mathematics educators supposed to engender it?; 

more specifically, how can it be engendered for mathematics required in a calculus 

context? 

The authors Rasmussen and King [26] adopted the Realistic Mathematics Education 

(RME) approach in their design of a course designed to improve students’ 

understanding of first-order differential equations. The RME approach is used in the 

Netherlands. It situates mathematical concepts in contexts that are deemed to be 

experientially real for the students [27]. The approach taken is one of, where possible, 

guided reinvention. Mathematical concepts are situated in a manner which they would 

have first confronted mankind. This presentation of the concepts in terms of their 

historical evolution is designed to improve students’ formal mathematical knowledge. 

Rasmussen and King [26] presented students with a rate of change in a realistic setting. 

Questions were asked in such a way that students were guided (and in the process, 

expected) to construct an informal Euler method for approximating solution functions to 

differential equations. The authors found that using a rate-of-change equation to gain 

information about a quantity of interest was non-trivial for the students. However, the 
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RME approach is a constantly evolving theory, and the results from experiments, like 

those carried out by Rasmussen and King contribute to refining the theory. 

Perhaps the reasons why RME approaches are not always successful is due to what 

Hiebert et al. [28] term the distinction between acquiring mathematical knowledge and 

applying it. Such distinctions have in their view, influenced researchers conceptions of 

what it means to be able to solve mathematical problems. The authors pose the question: 

how much emphasis should be placed on acquiring the concepts and skills of 

mathematical knowledge in a mathematics context and how much emphasis should be 

placed on being able to apply these skills in realistic settings? 

In their view, starting with mathematical problems in realistic settings such as RME 

does not resolve the difficulties that are inherent in the distinction between acquiring 

knowledge and applying it. They recommend ‘problematising’ the acquisition of 

mathematical knowledge which will in their view influence students’ ability to apply 

it/transfer it. Previous studies on students’ ability to transfer mathematical knowledge 

and what has been learned from these transfer studies is now discussed. 

1.2.4 Transfer Studies 

According to Schoenfeld [29], the issue of transfer in education is important, so 

important that it deserves attention on its own. For him, the central question concerning 

transfer is: how do we make sense of the ways in which people use knowledge in 

circumstances different from the circumstances in which the knowledge was initially 

acquired? Transfer, in Schoenfeld’s eyes is frequent, yet when looked for in educational 

psychological literature, it appears to vanish. Schoenfeld posits that this is because 

researchers look for pre-determined transfer; in other words, the researchers do not 

investigate what students see as similar or dissimilar between the learning context and 

transfer context.  

Detterman [30] adopts a more pessimistic stance in respect of transfer. For him, little 

transfer occurs, and even when it is claimed that transfer was observed, Detterman feels 

that this transfer may have been prompted: students may have been told that previous 

material is useful in the solution of a new problem, and thus artificially transfer. 

Alternatively, reported transfer may be as a result of the transfer between the learning 
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context and transfer context, being an example of near transfer. Detterman concludes 

that it would be more worthwhile if educational researchers tried to understand how 

people acquire knowledge in a particular context, and thus tailor instruction 

appropriately. 

Evans [31] also agrees somewhat with the views of Detterman. They articulate how 

researchers in education expect the transfer of learning, e.g., from school to everyday 

situations to be relatively unproblematic. However, for Evans, the notion of the same 

mathematical task in different contexts is highly problematic. In a similar vein, Lave 

[32] states that students can use school-type questions but fail to show competency in 

applying these algorithms when a question becomes more context bound, or more like a 

question encountered  in the real world. Interestingly, Boaler [33] claims that no context 

can be assumed to enhance or inhibit understanding for all students. 

In their study of students’ abilities to use knowledge of slope to determine the steepness 

of a ramp, Lobato [34] found that what researchers considered similar between the 

learning situation and transfer situation, was, in fact, not so. In particular, Lobato found 

that students viewed the steepness of the ramp as changing. She underscored the need to 

provide instructional treatment/experiences that enable students to develop the type of 

general understanding that will help them to make sense of quantitative situations. Such 

instructional experiences are, in Lobato’s opinion, an important area in the field of 

mathematics education. 

Wagner[35] found that student reasoning which appears erratic, when that student is 

asked to transfer knowledge, can be understood and explained if close attention is paid 

to the contextual variations deemed important by the student. Their conclusion emerged 

from a case study analysis of an undergraduate student’s attempt to solve a series of 

problems related to an elementary statistical principle. The student in question, slowly 

yet eventually, came to identify problems as instances of a single principle. Such a 

finding, in Wagner’s View, challenges the mantra of situated learning/cognition 

theories which claim that transfer results from abstract instruction: on the contrary, 

Wagner found that abstraction is the consequence of transfer and the result of 

understanding, not the cause of it.   
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In terms of transfer studies related to the use of mathematics in a scientific context, 

Britton et al. [10] designed an instrument to measure students’ ability to transfer 

exponential and logarithms from a mathematics context to a range of scientific contexts. 

They found that transfer rarely occurs despite (from their perspective) the transfer 

questions containing enough discipline-specific information to enable students to use 

mathematical knowledge without any previous knowledge of the particular discipline. 

Perhaps, from the researcher’s perspective, the students needed discipline-specific 

knowledge of the transfer task in order to transfer. This certainly appeared to be the case 

in Bassok and Holyoak’s study[36] of students’ ability to transfer algebra from a 

mathematics context to a physics context (and vice-versa).  

Bassok and Holyoak found that transfer from algebra to physics word problems was 

impaired if the physics transfer problems were embedded in a discussion of motion 

concepts. When the discussion of motion concepts in a Physics concept was 

disregarded, most students were able to transfer the algebra problems to the isomorphic 

physics context. This was in contrast to students who had learned algebra in the physics 

context; they almost never exhibited detectable transfer to isomorphic algebra problems. 

Bassok and Holyoak concluded that content-specific knowledge limits transfer.  

Lastly, the authors Potgieter et al. [37] investigated undergraduate students’ ability to 

transfer mathematical knowledge relevant to the Nernst Equation (used in 

electrochemistry) from a mathematics context to a chemistry context. The authors 

wanted to see if the mathematically-related difficulties which students exhibit are due to 

deficiencies in students’ mathematical foundations or due to an inability to transfer. 

They exposed a group of students to an instrument which contained both algebraic and 

graphical information relevant to the Nernst Equation in a mathematics context and a 

chemistry context. A number of interesting findings emerged: 

1) Students experienced few problems with algebraic questions in both a 

mathematics context and chemistry context; 

2) Students performed poorly on graphical questions; and 

3) The problems students have with mathematics in a chemistry context appears to 

be a mathematical one, and not due to transfer. 
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In respect of the second findings, Scaife and Rogers [38] describe how little is known 

about the cognitive value of graphical representations. They stress that researchers need 

to:1) address issues such as the nature of the relationship between graphical 

representations and students’ mental, internal representations of such graphs; and 2) 

consider how graphical representations are used when students solve problems and 

make inferences. The research undertaken by Potgieter et al. [37] was another reason for 

investigating undergraduate students’ ability to transfer mathematical knowledge, 

relevant to chemical kinetics and thermodynamics, from a mathematics context to a 

chemistry context. Potgieter et al. state the extent to which the results from this study 

are relevant to non-logarithmic functions in chemistry needs to be investigated in the 

future. 

1.3 The Transfer Question 

Answering the Transfer Question meant that a number of other questions had to be 

asked, namely: what is transfer?; how can transfer be assessed?; and how has transfer 

been measured in the past? 

1.3.1 What is Transfer? 

The transfer of learning (hereafter referred to as transfer) for the purpose of this 

research was defined as the ability to use skills (or knowledge) in a context that is 

different from the learning context in which the skills (or knowledge) were initially 

acquired; such a definition agrees with the views of Evans, and Roberts et al. [31,39]. 

This statement appears to be a straightforward definition of transfer. However, Barnett 

and Ceci [40] state: “there is a lack of structure in the transfer debate and a failure to 

specify the various dimensions that may be relevant to determining whether and when 

transfer occurs” [40, p.614]. The authors provide clarity in answering such a question. 

They developed a taxonomy which can be used to classify whether transfer occurs. The 

taxonomy is composed of two factors: 1) the Content Factor; and 2) the Contextual 

Factor, the latter of which is first discussed. 

The Contextual Factor considers the degree to which the learning context and transfer 

context are different in terms of six dimensions which constitute what a context is. 

These six dimensions are: 1) the knowledge-domain dimension; 2) the physical 
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dimension; 3) the functional dimension; 4) the temporal dimension; 5) the social 

dimension; and 6) the modality dimension. Comparing and contrasting each dimension 

in the learning context and transfer context leads to a degree of difference. The degree 

to which each dimension is different is what determines whether transfer is near or far 

along that particular dimension. Looking at the degree to which all of the dimensions 

are different provides a qualitative view as to whether the transfer in question is near or 

far. It should be noted that determining the degree of difference for each dimension is 

subjective. 

The knowledge-domain dimension is a measure of the difference between the 

knowledge in the learning context and in the transfer context. The physical dimension is 

a measure of the difference between the learning-context environment and the transfer-

context environment. The functional dimension is a measure of the difference between 

the purpose for which the students are required to use a skill/knowledge in the learning 

context and the transfer context. The temporal dimension is a measure of the time 

duration between the acquiring of the knowledge/skill in a learning context and its 

application in a transfer context. The social dimension is a measure of the difference 

between the degree of social interaction involved in acquiring the knowledge in the 

learning context and the transfer context. The modality dimension is a measure of the 

difference between how the knowledge is communicated in the learning context and the 

transfer context. 

The Contextual Factor of Barnett and Ceci’s Taxonomy was applied to this research—

not to determine if the transfer of mathematical knowledge from a mathematics context 

to a chemistry context is near or far—but rather to determine if students do transfer 

when they use mathematical knowledge in a chemistry context. The application of this 

Contextual Factor, as pertaining to this research, can be seen in Figure 1.1. Because 

determining the degree to which each dimension is different is subjective, it was 

decided not to try and classify the degree of difference for each dimension as reflective 

of either near transfer or far transfer. Rather, Figure 1.1 shows that the six dimensions 

which make up a context are different in the mathematics context and chemistry 

context. Whether the degree of difference for each dimension is near or far transfer 

cannot be determined. 
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Figure 1.1. The Application of Barnett and Ceci’s Contextual Factor as Pertaining to 

this Research. Adapted from[40]. 

The Content Factor of Barnett and Ceci’s Taxonomy considers what it is that students 

transfer from the learning context to the transfer context. It comprises of three sub-

factors, all of which are shown in Figure 1.2. The Performance-Change Sub-Factor 

considers how transfer is assessed. It defines whether transfer is assessed in terms of 

speed, accuracy, or the approach taken by a student when they attempt to transfer. The 

Memory Demands Sub-Factor considers what it is that students have to remember in 

order to transfer. For example, do the students have to recall knowledge before 

transferring it, or are the students allowed to search for the knowledge that they need 

before attempting to transfer. Lastly, the Learned-Skill Sub-Factor considers what it is 

that the student transfers, be it a procedure or a more general problem-solving approach. 
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 The Content Factor 

Performance Change Speed Accuracy Approach 

Memory Demands Execute only Recognise and 

execute 

Recall, recognise and 

execute 

Learned Skill Procedure Representation Principle or heuristic 

Figure 1.2. The Application of Barnett and Ceci’s Content Factor as Pertaining to the 

Research. Adapted from [40].  

1.3.2 Assessing the Transfer Question 

Royer, Mestre and Dufresne [41] describe the different generational approaches that 

have evolved in terms of the assessment of transfer. They describe the first-generational 

approach, in psychological terms, as behaviourist. The behaviourist approach is one in 

which researchers define/identify common elements of similarity between a learning 

context and transfer context. The researchers seek evidence as to whether students can 

transfer these elements from the learning context to the transfer context, either entirely 

or not at all. The main limitation to such an approach is that  it misses out on trying to 

comprehend the mental processes that individuals employ in transferring prior 

learning—in other words, it misses out on what students transfer (if anything at all) and 

how students transfer. Such a limitation encouraged the second generational approach to 

understanding transfer—the cognitive approach. 

Essentially, the cognitive approach is concerned with trying to understand the change in 

learners’ conceptual thinking as they transfer. Both the behaviourist approach and 

cognitive approach are what Lobato [42] terms the traditional view of transfer. Such a 

view is predominately cognitive in focus and—like the behaviourist approach—

considers transfer an all-or-nothing affair. 

The third generation approach to assessing transfer stems from the limitations of the 

cognitive/traditional approach. Various third-generational theories have emerged which 

seek to investigate the “mediating factors by which individuals activate and apply prior 

learning, both productively and unproductively, during transfer tasks” [41, p.xvii]. 

Theories such as ‘consequential transitions’, ‘affordances and constraints’, and 

‘preparation for future learning’ [43] are what Lobato classifies as an ‘actor-oriented 
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approach’ to assessing transfer. This actor-oriented approach is often referred to as 

‘situative’ [44]. The two main features that distinguish the situative/actor-oriented 

approach from the cognitive/traditional approach are:1) the cognitive approach 

considers transfer from the researcher’s perspective whereas the situative approach 

considers transfer from the students’ perspective; and 2) the cognitive approach focuses 

on the complete transfer of knowledge whereas the situative perspective focuses on 

partial transfer as well as complete transfer. Both approaches, nonetheless, consider how 

and why transfer occurs. 

Royer et al. [41] point out that the different third generation theories 

[45,46,47,48,49,50] of transfer which come under the umbrella of the situative/actor-

oriented approach essentially talk about the same thing—transfer in terms of cognition 

and socio-cultural factors—using different terms. Lobato [42] contrasts the traditional 

view of transfer with the actor-oriented view, using a number of dimensions as can be 

seen in Table 1.1.  
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 Dimension   Traditional Transfer Actor-Oriented Transfer 

1. Definition 

 

The application of knowledge 

learned in one situation to a 

new situation. 

The personal construction of 

relations of similarity across 

activities, (i.e., seeing situations 

as the same). 

2. Perspective Observer’s (expert’s) 

perspective. 

Actor’s (learner’s) perspective. 

3. Research Method Researchers look for improved 

performance between learning 

and transfer tasks. 

Researchers look for the 

influence of prior activity on 

current activity and how actors 

construe situations as similar. 

4. Research Questions Was transfer obtained? What 

conditions facilitate transfer? 

What relations of similarity are 

created? How are they supported 

by the environment? 

5. Transfer Tasks Paired learning and transfer 

tasks share structural features 

but differ by surface features. 

Researchers acknowledge that 

what experts consider a surface 

feature may be structurally 

substantive for a learner. 

6. Location of Invariance Transfer measures a 

psychological phenomenon. 

Transfer is distributed across 

mental, material, social and 

cultural planes. 

7. Transfer Processes Transfer occurs if two 

symbolic mental 

representations are identical or 

overlap, or if mapping between 

them can be constructed. 

Multiple processes, such as an 

attunement to affordances and 

constraints, assimilation, 

language use, and ‘focusing 

phenomena’, influence transfer. 

8. Metaphor Static application of 

knowledge. 

Dynamic production of 

‘sameness’. 

Table 1.1 The Traditional and Actor-Oriented View of Transfer. Adapted from [42]. 

Again, looking at Figure 1.2, the second sub-factor of Barnett and Ceci’s Taxonomy 

[40] is the Memory Demands of the transfer task. In the context of this research, this 

factor describes the degree to which students had to remember knowledge in a 

mathematics context before transferring it. During the investigation of the transfer 

question in the Pilot Study and Study 1, students were expected to recall the appropriate 

mathematical knowledge in order to transfer it. In Study 2, the students were reminded 

of the necessary mathematical knowledge in a mathematics context before they were 
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presented with the transfer task. The results from this approach are presented and 

discussed in Sections 3.2 and 3.4 respectively in Chapter 3. 

1.4 The Explaining and Transfer Question 

In Figure 1.2, the third sub-factor that comprises the Content Factor of Barnett & Ceci’s 

Taxonomy [40] is the Learned Skill Sub-Factor. It has been mentioned that this sub-

factor refers to the type of skill/knowledge that is transferred.  Barnett and Ceci [40] 

refer to the learned skill/knowledge to be transferred as either a specific fact or 

procedure; a form of representation; or a more general problem-solving heuristic or 

principle. 

Hiebert and Lefevre, in their discussion of conceptual and procedural knowledge in 

mathematics [51, p.8], state: “rote learning [‘rote learning’ being the term they use for 

procedural knowledge] is knowledge that is absent in relationships, resulting in it being 

tied to the context in which it is learned”. Conversely, the same authors, when talking 

about conceptual knowledge, state: “it has long been recognised that if procedures are 

understood or learnt in a meaningful way, the procedures transfer more easily to 

structurally similar problems” [51, p.13].  In light of this, during the Pilot Study phase 

of this research, it was decided to investigate whether students could transfer conceptual 

mathematical knowledge more so than procedural knowledge. This Conceptual versus 

Procedural Question was the precursor to the Explaining and Transfer Question. 

Investigating the Conceptual versus Procedural Question raised a question of its own: 

what is conceptual and procedural knowledge in mathematics? Hiebert and Lefevre’s 

definition of ‘procedural’ and ‘conceptual understanding’ was reviewed; it has been 

cited frequently [52,53,54,55,56]. The authors define procedural knowledge as made up 

of two parts. The first part “is composed of the formal language or symbol 

representation system of mathematics” [51,p.6]. The second part “consists of rules, 

algorithms, or procedures used to solve mathematical tasks” [51, p.6]. In contrast, the 

authors define conceptual knowledge as “rich in relationships” which “can be thought of 

in terms of a connected web of knowledge” [51, p. 3]. 

Such definitions were considered vague, posing difficulties in terms of: 1) how can it be 

determined if a student has a procedural or conceptual understanding of a mathematics 
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concept; and 2) how can certain mathematical knowledge be classified as procedural or 

conceptual in nature. The views in respect of competency with graphs in a mathematics 

context (hereafter termed graphicacy) were considered in order to try and shed light on 

these difficulties. 

1.4.1 Graphicacy 

Numerous researchers equate conceptual understanding in a mathematics context with 

graphicacy [17,37,57]. Gill [17] hypothesises that graphicacy is a constituent of 

conceptual understanding, claiming that understanding graphs and slopes may underlie 

the ability to understand a number of higher-order concepts in mathematics. In respect 

of integration, Grundmeier et al. [58] advocate focusing on the verbal definition as well 

as the graphical aspect of a definite integral; not doing so, will, they claim, mean that 

students leave with nothing more than ‘procedural fluency’ in this area. Abboud and 

Habre [59] articulate that conceptual understanding is comprised of an emphasis not just 

on the symbolic aspect of a concept but also on the graphical aspect of the concept. 

Lastly, Potgieter et al. [37] argue that requiring students to visualise/graphically 

represent algebraic thinking is a means of cultivating ‘conceptual understanding’. 

During the Pilot Study (described in Section 2.3. in Chapter 2), students’ ability to 

transfer mathematical knowledge was investigated. Each distinct piece of mathematical 

knowledge was termed a mathematical item; these mathematical items are in Appendix 

A. The algebraic items were classified as procedural while the graphical items were 

classified as conceptual. One of the aims of the Pilot Study was to see if students could 

transfer these presupposed conceptual items more so than the presupposed procedural 

items. This was found not to be the case. More importantly, two of the main findings 

which emerged from the Pilot Study (the full findings of which can be seen by referring 

to Section 2.3.4 in Chapter 2), were: 1) mathematical knowledge cannot be objectively 

classified as either procedural or conceptual in nature; and 2) stating whether students 

have a conceptual or procedural understanding of a mathematical item is subjective. 

The Pilot Study findings were bolstered by the views of Anderson [23] who claims that 

classifying knowledge in mathematics as either procedural or conceptual is not absolute. 

If this is so, then perhaps knowledge of a particular mathematical concept can be a 

combination of both procedural and conceptual understanding? Such a question was 
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considered. It was found that numerous researchers support this view, for example, 

Hiebert and Lefervre state that it is “not easy to imagine conceptual knowledge that is 

not linked with some procedures” [51, p.8], while “procedures that are learnt with 

meaning are procedures that are linked to conceptual knowledge” [51, p.8]. 

Such views re-shaped the Conceptual versus Procedural Question into the form of the 

Explaining and Transfer Question. The Explaining and Transfer Question sought to 

investigate whether students who could explain what they are doing in a mathematics 

context associated with transfer (the 1
st
 aspect of the Explaining and Transfer 

Question). The analysis of such a question was always going to be subjective because 

classifying students as having or not having evidenced an ability to explain is 

subjective. Despite this subjective classification, various views on how students learn 

mathematics were reviewed in order to see if any of these views could be used to 

determine the degree to which a student explained (the 2
nd

 aspect of the Explaining and 

Transfer Question). It was anticipated that evidencing a certain degree of explanation 

for each item may associate with transfer. 

1.4.2 How Students Learn Mathematics 

The Explaining and Transfer Question was investigated during the studies subsequent 

to the Pilot-Study—Study 1 and Study 2. For the sake of brevity, the various views on 

how students learn mathematics, as detailed in this thesis, are referred to as theories. 

The theories that were reviewed are: the APOS theory [60]; the van Hiele theory [61] 

and Tall et al.’s Theory [62] (hereafter referred to as Tall’s Theory). Piaget’s theory of 

Cognitive Development [63] was also reviewed. While this theory is not a theory on 

how students learn mathematics, it was felt that such a theory might be capable of being 

used to categorise the degree to which students explained.  
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1.4.2.1 Piaget’s Theory 

In summarising Piaget’s Theory of Cognitive Development, the work of Wadsworth 

[63], in his book, Piaget’s Theory of Cognitive Development, is drawn upon. 

Introduction 

Piaget’s theory is focused primarily on the description and explanation of the growth 

and development of intellectual structures and knowledge. Wadsworth points out that 

the terms “intellectual, cognitive and mental are used interchangeably in Piaget’s 

theory” [63, p.1]. Concepts central to Piaget’s work are those of ‘assimilation’, 

‘accommodation’, ‘equilibrium’ and ‘schemata’. Piaget used these concepts to explain 

how mental development occurs. In a sense, the interplay between the concepts of 

assimilation, accommodation and equilibrium dictate the concept of ‘schema’. 

Schemata 

Piaget believed the mind to have ‘structures’ similar to the manner in which the body 

does. What constitute these cognitive structures are schemata. In essence, schemata can 

be defined in terms of the manner by which individuals intellectually adapt to the 

environment and also to the manner by which individuals intellectually organise the 

environment. 

Schemata evolve during the course of mental development and, in effect, dictate at what 

stage of cognitive development a person is at. For example, at birth, the schemata of a 

child are reflexive. Over time, these reflexive schemata become more differentiated and 

“less sensory” [63, p.12]. Piaget points out that because “schemata are structures of 

cognitive development that do change, allowance must be made for their growth and 

development” [63, p.13]. The processes or concepts which are responsible for this 

development are ‘assimilation’ and ‘accommodation’. 

Assimilation 

In essence, assimilation is “viewed as the cognitive process of placing new stimulus 

events into existing schemata” [63, p.15]. It is important to note that this process of 

assimilation allows for the growth of schemata and does not explain the change or 
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development of schemata. What explains the change of schemata is the concept of 

‘accommodation’. 

Accommodation 

For Piaget, when a child is faced with a new stimulus, they will endeavour to assimilate 

it into an existing schema of theirs. Oftentimes this is not possible, because there are no 

available schemata into which the stimulus can fit. This absence of an appropriate 

schemata, gives rise to one of two possible actions on the child’s part. 

Firstly, “the child can create a new schema into which they can place the stimulus” [63, 

p.16] or secondly “they can modify an existing schema so that the stimulus will fit into 

it” [63, p.16]. Both of these options result in a change in or development of cognitive 

structures (schemata). The last concept, which controls the development of schema, is 

that of ‘equilibrium’. 

Equilibrium 

Does a child continually assimilate new stimuli?; continually accommodate new 

stimuli?; or strike a balance (equilibrium) between assimilation and accommodation? 

For Piaget, the extent to which students strike a balance determines how the child’s 

cognitive structures (schemata) develop. He uses the term ‘equilibrium’ to describe the 

balance between assimilation and accommodation. 

Piaget’s View of Intelligence 

For Piaget, intelligence is comprised of three components: 

1) Content: This refers to the content of a student’s behaviour as they engage with 

‘new’ material to be learned. 

2) Function: This refers to those characteristics of intellectual activity—

assimilation and accommodation—that are stable and continual throughout 

cognitive development. 

3) Structure: This refers to the inferred, organisational properties (schemata) that 

explain the content of a student’s behaviour as they engage with ‘new’ material 

to be learned. 
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Piaget concerned himself with the ‘structural’ aspect of intelligence and made the claim, 

according to Wadsworth [63, p.22], that “structure, like content and unlike function, 

changes with age”. These developmental changes (structural changes) are the major 

focus of Piaget’s work. For him, these intellectual structures (schemata) are created 

through the function aspect of intelligence, which, as is already discussed, is the nature 

by which students assimilate and accommodate (or in essence equilibrate). 

Heredity 

For Piaget, structural/cognitive development is something that is not determined solely 

by genetic endowment or solely by a child’s experience. He asserts that properties other 

than neurological structures are inherited that affect cognitive development. He terms 

these properties ‘functional invariants’. 

These ‘functional invariants’ are, in essence, the relative amounts of ‘assimilation’ and 

‘accommodation’ inherent in an individual—or put simply, how well an individual 

equilibrates stimuli in their environment. For Piaget, this equilibration, or ‘mode of 

functioning’ for a child is fixed or inherited. It does not change. However, possessing 

this ‘mode of functioning’ does not ensure cognitive development unless the child 

interacts with the environment. How the child interacts with the environment is made up 

of a number of factors, each of which is discussed.  

Action: 

Piaget’s theory stipulates that the child must act in their environment if cognitive 

development is to proceed. For example, an infant cannot learn to differentiate between 

a nipple and an edge of their blanket unless they act on both. The child particularly 

needs to act on their environment in terms of physical and sensorial experience in the 

early years of life, because they “do not possess the power of symbolic representation 

[language]” [63, p.24].  

As cognitive development progresses, actions on the environment become mediated by 

“internalised symbols” [63, p.24]. Consequently sensory-motor experience becomes less 

relevant but may, nonetheless, be still important. 
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Physical Experience: 

Wadsworth [63, p.30] describes how Piaget’s theory stipulates that a child “must have 

experience with objects and stimuli in the environment” in order for them to develop 

cognitively. 

Social Interaction: 

Piaget uses this term to mean the interchange of ideas between people. Interestingly, he 

points out that concepts or schemata that people develop can be classified as one of 

either two types: 

1) Schemata/concepts that have sensory or physical referents in the form of 

referents that can be seen or heard. An example of such a referent is that for the 

noun ‘tree’. 

2) Schemata/concepts which do not have physical referents but instead rely on 

social interaction for their construction and validation. An example of such a 

concept would be the noun ‘honesty’. 

Before discussing the stages of Piaget’s Theory of Cognitive Development, it is 

important to highlight a number of points. According to Wadsworth: 

• “Piaget does not suggest that children move from discrete stage to discrete stage 

in development; rather, cognitive development flows along” [63, p.26]. 

• The age spans reflective of each stage of Piaget’s theory are normative and 

“only suggest the times during which most children can be expected to display 

the intellectual behaviours that are characteristic of the particular stage” [63, 

p.12]. Furthermore, the norms established by Piaget were deduced from the 

study of children in Geneva. 

• The age at which the stages occur “can vary with the nature of both the 

individual’s experience” and their “hereditary potential” [63, p.12]. The 

implication from this statement is: perhaps students can reach stages of cognitive 

development more quickly than they normally do by dint of having their 

environment manipulated.  
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Piaget’s Theory of Cognitive Development comprises of four main stages:1) The 

Sensory-Motor Stage; 2) The Preoperational Stage; 3) The Concrete-Operational Stage; 

and 4) The Formal-Operational Stage. The first two of these stages are summarised, 

with stage three and stage four discussed in comparatively more depth. A more detailed 

description of the Sensory-Motor Stage and the Preoperational Stage can be seen by 

referring to Appendix B. 

The Sensory-Motor Stage—A Summary 

This stage’s evolution is as a result of the child acting on the environment. They must 

do this in order to develop their concept of object and concept of causality. Completion 

of the stage means that the child’s intellectual development begins to take place 

“primarily in the conceptual-symbolic area rather than the sensory-motor area” [63, 

p.61]. The development takes place in the sense of language and symbolic 

development—a stage which Piaget calls the preoperational period. It should be pointed 

out that in subsequent stages of cognitive development relative to the sensory-motor 

period, it is not to be construed that “sensory-motor development ends; instead 

intellectual development is to be dominated by representational and symbolic activity 

rather than by motor activity” [63, p.63]. 

The Preoperational Stage—A Summary 

The child becomes no longer restricted to immediate perceptual and sensory-motor 

events. This does not necessarily imply that the child is absolutely free from such 

events. Their thought gradually becomes more representational and symbolic in nature. 

Language develops rapidly, and this, in turn, allows the child ‘to play out thought’ in 

their head as opposed to having to link it with physical events (sensory-motor 

experience). 

In terms of behaviour, the child moves from largely egocentric and non-social 

communication to conversations with their peers. This intercommunicative behaviour 

allows the child to develop cognitively. Despite these developments, the child remains 

restricted in certain ways. It is not until the end of the stage that they can reverse 

operations, follow transformations and become less egocentric in the process. Also, 

their conservational abilities will not have been developed until the end of the stage. 



26 

 

While the preoperational child’s behaviour at the start of this stage somewhat resembles 

the sensory-motor development, by age 7 there is little resemblance. The child now 

enters the period of concrete operations. 

The Concrete-Operational Stage 

During this stage, the child develops “logical thought processes (operations) that can be 

applied to concrete problems” [63, p.90]. This stage of development functions as “a 

transition between pre-logical (preoperational) thought and the completely logical 

thought of the older child”; it usually occurs during the ages of 7-11. [63, p.89]. 

During this stage, when faced with a disparity between thought and perception, as in 

conservation problems for example, a child’s thought process wins out—“they are no 

longer perception-bound” [63, p.89]. It should be stressed that “if the concrete-

operational child is presented with a purely verbal problem, they are typically unable to 

solve it correctly” [63, p.89]. However, if the same problem is presented “in terms of 

real objects, the child can apply their logical operations and solve the problem” [63, 

p.89]. Wadsworth [63] describes how concrete-operational thought differs from 

preoperational thought in a number of ways: 

Egocentrism and Socialisation 

The child is able “to look at something from another’s viewpoint” [63, p.92], question 

their reasoning and seek validation from others. All of these acts are considered by 

Piaget to be acts of accommodation. 

Centration 

The child’s thought becomes decentred and thus allows them to deal with conservation-

type problems. 

Transformations 

The aforementioned change in egocentrism and centration allows the child to deal with 

and understand the relationships between successive perceptual events. 
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Reversibility 

In contrast to the preoperational child, the child exhibits no difficultly in reversing 

operations. 

Conservation 

Wadsworth [63, p.94] states that the “hallmark of preoperational thought is the inability 

of the child to conserve”. In contrast, concrete-operational children possess this ability 

due to their related abilities to decentre, follow transformations and to reverse 

operations. 

In addition to the child’s understanding of these aforementioned concepts changing 

during the concrete-operational stage, the child acquires two other concepts: 

Seriation 

This concept refers to the ability to mentally arrange elements on a scale according to 

increasing or decreasing size. It, according to Wadsworth [63, p.95], occurs at different 

ages for objects such as length, weight and volume. Interestingly, the child invariably 

seriates length at around age 7, weight at around age 9 and volume at around age 12. 

Classification 

This involves the child being able to classify something such as beads into two kinds of 

classes. For example, a student may so happen to be presented with beads of two 

different colours such as brown and white. For argument sake, all of the beads happen 

to be wooden. When asked the question: are there more wooden beads than brown 

beads?, the concrete-operational child is able to answer. In contrast, the preoperational 

child would not. 

Notably, a child’s idea of time and speed develops in terms of a ratio concept of the two 

dimensions during this period. Prior to this period, the child is unable to understand the 

relationship. 

The Concrete-Operational Period—A Summary 

Wadsworth [63, p.100] stresses that the important concept attained during this period is 

that of reversibility. Piaget considers this an “essential quality in all operations” [63, 
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p.45]. An additional two operations/concepts developed during this period are those of 

‘seriation’ and ‘classification’. To re-stress the important point in respect of this stage of 

cognitive development: 

“The concrete-operational child can use logical operations to solve problems involving 

‘concrete’ objects and events. They cannot solve hypothetical problems; problems that 

are entirely verbal and some problems requiring more complex operations” [63, 

p.100]. This ability only emerges during the period of Formal Operations. 

The Formal-Operational Stage  

When a child (now an adolescent) reaches this stage of thought, (usually between the 

age of 11- 15) they typically possess “the cognitive structural equipment to think as well 

as adults’” [63, p.101]. From a Piagetian perspective, formal thought and concrete 

thought are the same, as they “both employ logical operations” [63, p.44]. 

However, “concrete thought is limited to solving tangible problems of the present” [63, 

p.102]. This is in contrast to formal-operational thought, where the child/adolescent can 

“deal with all classes of problem: the present, past, future, the hypothetical and the 

verbal” [63, p.102]. Moreover, the child/adolescent becomes free from the ‘content of 

problems’. What this means is best explained by example. If a logical argument happens 

to be “prefixed by the statement: ‘suppose coal is white. . .’, the concrete-operational 

child when asked to solve the problem, declares that coal is black and they cannot 

answer the question” [63, p.104]. The formal-operational child/adolescent would not 

declare this. 

The concept/schemata of proportion develops at all stages of cognitive development, 

but it is not until the formal-operational stage, that the child will have a fully-fledged 

understanding of it. Likewise, during the formal-operational period, the child/adolescent 

is able to deal with the concept of conservation of movement more fully. 

The distinction between a child’s formal-operational thought and an adult’s formal-

operational thought is: an adult is less egocentric. The adult—if they have reached the 

formal-operational stage—is able to separate reality from idealism. A child/adolescent 

is not; they are idealists. 



29 

 

1.4.2.2 The APOS Theory 

APOS is an acronym for the four stages involved in Dubinskey et al.’s [60] theory, 

namely Action, Process, Object and Schema. Each of these stages is discussed. 

Action: 

The ‘action stage’ is concerned with the “transformation of objects perceived by the 

individual as essentially external and as requiring, either explicitly or from memory, 

step-by-step instructions on how to perform an operation [the transformation of 

objects]” [60, p.2]. After reflecting and repeating the ‘action stage’ for a length of time 

(the exact duration of which is not stated), students reach a ‘process stage’. 

Process: 

Once in the ‘process stage’, students can “perform the same kind of action but no longer 

with the need of external stimuli; they can think of performing the action without 

actually doing it, and can reverse and compose the action with other processes” [60, 

p.3]. Reflecting on and repeating the ‘process stage’, students reach the ‘object phase’. 

Object: 

Once students become aware of a process as a totality, such as realising transformations 

acting on it (the object), the students are considered to be at an ‘object stage’ of APOS 

Development [60]. 

Schema: 

Lastly, when a student integrates actions, processes and objects with some general 

principles to form a framework which “may be brought to bear upon a problem situation 

involving that concept” [60, p.3], from an APOS perspective, the student is deemed to 

have reached the Schema Stage of APOS theory. 

An example where the APOS theory has been applied may make it more clear. The 

authors Briendenbach et al. [64] used the theory to categorise students’ understanding of 

function. They articulate that the distinction between a student at an ‘action stage’ and a 

student at a  ‘process stage’ is not clear-cut. Notwithstanding this, the authors claim that 

an indicator of an ‘action conception’ of function is one where students require an 
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explicit formula for calculating a value of the dependent variable, given a value of the 

independent variable. On the other hand, students who possess a ‘process conception’ of  

function are, when presented with a graph, able to see the graph as a function even 

though there may not be an explicit formula defining the function. 

Interestingly, drawing inspiration from the APOS theory, Oehrtmann et al. [65] define 

what they consider to be an ‘action view’ and ‘process view’ of function.  This is shown 

in Table 1.2. 

Tall et al. [66] discuss the APOS theory in the context of the distinction between 

‘process’ and ‘object’. They articulate that it is problematic to explain precisely what is 

meant by the term ‘object’. Nonetheless, Tall et al. [66] use the development of number 

concept as an example to demonstrate the ‘object aspect’ of the APOS theory. 

They articulate that different ways of counting a set of objects which number ‘5’ is very 

much indicative of the ‘process stage’ a person goes through when developing their 

concept of number. This ‘process stage’ aids the development of a ‘cognitive structure’ 

which in turn allows the individual to use the symbol ‘5’ as if it refers to an ‘object’. 

The fact that there may be no absolute object corresponding to the number ‘5’ is 

irrelevant. 

In effect, when a student reaches the ‘object phase’ of APOS, it does not matter what 

the ‘object’ is, but what a student can do with the object. By ‘acting upon’ such an 

object, new processes are generated, which, in turn, generate new objects, which, in 

turn, generate new schema. Thus, mathematical schemas become more advanced. 
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Action View Process View 

A function is tied to a specific rule, 

formula, or computation and requires the 

completion of specific computations 

and/or steps. 

A function is a generalised input-output 

process that defines a mapping of a set of 

input values to a set of output values. 

A student must perform or imagine each 

action. 

A student can imagine the entire process 

without having to perform each action. 

The “answer” depends on the formula. The process is independent of the 

formula. 

A student can only imagine a single value 

at a time as input or output (e.g., x stands 

for a specific number). 

A student can imagine all input at once or 

“run through” a continuum of inputs. A 

function is a transformation of entire 

spaces. 

Composition is substituting a formula or 

expression for x. 

Composition is a coordination of two 

input-output processes; input is processed 

by one function and its output is 

processed by a second function. 

Inverse is about algebra (switch y and x, 

then solve) or geometry (reflect across y 

= x). 

Inverse is the reversal of a process that 

defines a mapping from a set of output 

values to a set of input values. 

Finding domain and range is conceived at 

most as an algebra problem (e.g., the 

denominator cannot be zero, and the 

radicand cannot be negative). 

Domain and range are produced by 

operating and reflecting on the set of all 

possible inputs and outputs. 

Functions are conceived as static. Functions are conceived as dynamic. 

A function’s graph is a geometric figure. A function’s graph defines a specific 

mapping of a set of input values to a set 

of output values. 

Table 1.2 Action and Process Views of Functions. Adapted from [65] 
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1.4.2.3 The Van Hiele Theory  

Van Hiele’s Theory [61] of mathematics education is concerned with how children (or 

students) learn to reason in geometry. Van Hiele postulates that there are five levels 

which describe how students develop their understanding of geometry. In order to move 

between these levels, a ‘crisis of thinking’ is necessary. The memorisation of structures 

in each level avoids this ‘crisis’. There are multiple levels in van Hiele’s theory, the first 

three of which are briefly discussed. These three levels were deemed most applicable to 

the Explaining and Transfer Question because the levels beyond level three become 

more concerned with mathematical proof, a type of understanding that was not 

investigated in any of the mathematical items administered to the students. The three 

levels are discussed in the context of how students might develop an understanding of 

the theorem of Pythagoras. 

Level 1 

This level is concerned with what confronts students in a visual sense. In respect of 

Pythagoras’s theorem, a student might be presented with the image of a right-angled 

triangle superimposed on a grid, as shown in Figure 1.3. As can be seen in Figure 1.3, 

the square on each side of the triangle is drawn. 

Level 2 

Students describe what they see in terms of formulating and manipulating symbols. The 

students must be aware of the properties attributed to these symbols, and that the 

symbols represent different content in different contexts. In the second level, attention is 

called to shape.  

Relating Level 2 to Pythagoras’s theorem, students’ attention could be called to the area 

in terms of square units that is encompassed by each of the squares on the right-angled 

triangle in Figure 1.3. Students could be asked to count the square units encompassed 

by each of the squares on the right-angled triangle, thus producing the following image, 

as shown in Figure 1.4.  
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                           Figure 1.3 A Right-Angled Triangle Superimposed on a Grid. 

 

Level 3 

Level 3 is concerned with students’ ability to mentally manipulate symbols in order to 

construct mathematical theories. Students can accomplish this without necessarily 

having to be aware of what it is the symbols refer to. In essence, what van Hiele terms 

‘deductive coherence’ becomes present. Simply put, van Hiele defines deductive 

coherence as an ability to use symbolic expressions to formulate theories both from an 

algebraic and geometric perspective.  

Relating this level to Pythagoras’s theorem, the students would be expected to deduce 

and symbolise the relationship that they observed (or should have observed) in Figure 

1.4, namely, the area of the square on the hypotenuse of a right-angled triangle is equal 

to the sum of the area of the squares on the opposite two sides. Furthermore the students 

operating in this level would be able to determine the length of one of the sides of a 

right-angled triangle, if they knew the length of the other two sides. Going beyond this 

level, students would be able to use the relationship in an algebraic sense for more 

advanced mathematics such as producing the equation of a circle. 
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                           Figure 1.4 A Right-Angled Triangle Superimposed on a Grid. 

 

For educators, not being cognisant of van Hiele’s levels may mean that mathematical 

information is presented to students at too high a level. Van Hiele articulates that the 

first and second levels are as important as the more advanced levels. He stresses that 

starting at the first level gives students a better introduction to the deduction method 

(the third level and beyond).  

1.4.2.4 Tall’s Theory 

To understand Tall’s theory, it is necessary to understand the distinction between 

embodied mathematical objects and mathematical objects—terms used in the theory. 

For Tall and Gray [66], there are two types of mathematical object, the distinction 

between the two being best illustrated by way of example. A triangle or the graph of a 

function can be called an embodied mathematical object because these are objects 

which begin with perception using the fundamental senses such as sight and which 

become more mentally based over time. Embodied mathematical objects manifest 

themselves in the geometrical aspect of mathematics or the graphical aspect of 

mathematics. 

In contrast, mathematical objects manifest themselves in the aspect of mathematics 

concerned with symbols. For example, the symbol for the number 5 can be called an 

object, whereas a mental image of 5 fingers can be considered to be an embodied 

mathematical object that embodies the idea/concept of ‘five-ness’. 
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Tall articulates that there are three aspects to mathematics [67], namely: 

• Geometric 

• Symbolic 

• Axiomatic 

Other terms that Tall uses for these aspects are: The 1
st
 World; the 2

nd
 World and the 3

rd
 

World respectively. 

The 1
st
 World  

This is what Tall also terms the Conceptual-Embodied World, which consists of a 

student’s thinking about things that they perceive and sense (embodied mathematical 

objects) not only in the Physical World but in their own mental world of meaning; it is, 

in essence, concerned with a students’ visual-spatial imagery. 

The 2
nd

 World  

In this World, the student works with symbols used for calculations and manipulation. 

A student begins with actions such as pointing and counting that are encapsulated as 

mathematical objects in the form of symbols. The symbols allow the student to switch 

effortlessly from a procedure or process-to-do in mathematics to a procedure or process-

to-think-about. For Tall et al. [62, p. 7], a procedure is a “specific sequence of steps 

carried out a step at a time”, while a process is “any number of procedures which 

essentially have the same effect”—supposedly the same effect as a single procedure. 

The 3
rd

 World  

Students work not with familiar objects of experience (embodied mathematical objects 

or mathematical objects) but with axioms. The axioms then act as a bridge to building 

theorems.  

Each of these mathematical aspects/worlds is associated with a cognitive development. 

Tall et al. [62, p.1] term this cognitive development “how people build from activities in 

the environment to developing highly subtle abstract concepts”. They claim that this 

comprises various combinations of ‘perception’, ‘action’ and ‘reflection’. Tall et al. [62] 

represent diagrammatically these activities as shown in Figure 1.5. 
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                       Figure 1.5 Reflection, Perception and Action. Adapted from [62] 

A focus on one or more of these activities more so than the others leads to the 

construction (from the students’ perspective) of different aspects of mathematics, as 

seen in Figure 1.6. Looking at Figure 1.6, the Space and Shape mathematics is similar to 

Tall’s 1
st
 World or Conceptual Embodied World of mathematics [67]. The Symbolic 

Type Mathematics is reflective of Tall’s 2
nd

 World of mathematics, also known as the 

Proceptual Symbolic World [67]. Lastly, the Axiomatic Mathematics is reflective of 

Tall’s 3
rd

 World of mathematics [67]. Figure 1.7 represents these similarities; the figure 

also shows examples of mathematical concepts which are encompassed by each of these 

three mathematical aspects/worlds. 
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                      Figure 1.6 Different Aspects of Mathematics. Adapted from [62]. 

 

Figure 1.7 Mathematical Concepts Encompassed by Each of the Three Aspects of 

Mathematics. Adapted from [62]. 

 

It is useful to note the distinction that Tall and his fellow researchers make between the 

terms ‘mathematical concept’ and ‘mathematical object’. According to Tall, the two 

terms are used in different contexts to “express appropriate ideas” [67, p.9]. The term 

‘mathematical concept’ is used colloquially. In contrast, the term ‘mathematical object’ 

is used in formal mathematics. 
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Tall [62] postulates that each of the three aspects of mathematics is accompanied by a 

different type of cognitive development. This cognitive development is highlighted in 

the purple arrows in Figure 1.7. For example, acting on mathematical objects (symbols) 

and perceiving these actions would be deemed to be indicative of the cognitive 

development associated with symbolic mathematics. Furthermore, reflection on these 

symbolic actions would be considered a precursor to formal mathematics.  

1.5 Chapter Summary 

Four key strands were identified in the literature as being relevant to this research, 

namely: 1) chemistry education; 2) the mathematics problem; 3) learning mathematics; 

and 4) transfer studies. Each of these strands informed the asking of the Transfer 

Question and the Explaining and Transfer Question. It was found that transfer is 

considered, in its basic sense, to be the transfer of skills/knowledge from a learning 

context to a transfer context. A number of approaches can be taken in assessing the 

transfer of learning, namely a behaviourist and cognitive approach (referred to as the 

traditional view of transfer) or the ‘situative’ approach which is referred to as the actor-

oriented view of transfer.   

The precursor to the Explaining and Transfer Question—the Conceptual versus 

Procedural Question—stemmed from research which claims that conceptual 

mathematical knowledge transfers more easily than procedural mathematical 

knowledge. It was felt that mathematical knowledge cannot be classified objectively as 

either procedural or conceptual in nature. Consequently, the Conceptual versus 

Procedural Question evolved into the form of the Explaining and Transfer Question. 

Various theories on how students learn mathematics—the APOS theory,  the van Hiele 

theory and Tall’s theory—were reviewed in order to determine if one of these theories 

could be used to categorise the degree to which students explained in a mathematics 

context. Piaget’s theory of cognitive development was also reviewed. The research 

methodology used to answer both the Transfer Question and the Explaining and 

Transfer Question is the subject of the next chapter. 
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Chapter 2 

The Research Methodology Used to Investigate the Transfer Question 

and the Explaining and Transfer Question 

2.1 Chapter Overview 

This chapter discusses the research methodology used to answer the Research Questions 

as outlined in Chapter 1. The Transfer Question and the Explaining and Transfer 

Question (undertaken in the Main Study) were informed/grounded in results which 

emanated from a Pilot Study. 

The theoretical framework chosen to investigate the Transfer Question in both the Pilot 

Study and Main Study is discussed in terms of its strengths and weaknesses. The 

rationale behind the Conceptual Versus Procedural Question (the precursor to the 

Explaining and Transfer Question) is also articulated. The theoretical framework which 

supported the investigation of the Explaining and Transfer Question is also discussed in 

terms of the framework’s strengths and weaknesses. The findings which resulted from 

the Pilot Study, and in particular, how these findings grounded the evolution of the 

Conceptual versus Procedural Question into the Explaining and Transfer Question are 

detailed. 

Lastly, the validity and reliability of the instruments used in the Main Study, the sample 

profile in both the Pilot Study and the Main Study, and the ethical and implementation 

issues are all described. 
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2.2 Overall Research Methodology  

The question of which approach was the most appropriate to use to answer the Transfer 

Question during the Pilot Study, Study 1 and Study 2 was raised. Lobato [68; p.187] 

states: “there is no one best approach to conceive of the transfer of learning”. 

Nonetheless, it was decided that the traditional view of transfer would be the best 

approach to adopt in order to investigate the Transfer Question. The reasons for using 

such an approach were:  

1) The aim of the Transfer Question was to determine if students could transfer 

(apply mathematics knowledge/skills in a chemistry context)—as opposed to 

investigating more general questions of transfer which the actor-oriented view 

allows. 

2) The Transfer Question was investigated using relatively large numbers of 

students (30 and 45 students in the thermodynamics, and kinetics aspects 

respectively of the Pilot Study; 30 students in Study 1 and 24 students in Study 

2) Time-wise; using an actor-oriented approach would have been impractical, 

and is more suitable for clinical studies as opposed to group studies. 

3) The methods used in the traditional approach are well established [68], whereas 

“the methods used to document most of the alternative transfer perspectives are 

emerging” [68 p. 168].  

The downside to using the traditional view of transfer lies in the fact that such an 

approach misses out on what students do transfer to learning situations (if anything at 

all) when predetermined transfer has not been observed by the researcher. 

It can be seen from the ‘Research Question dimension’ in row four of Table 1.1 that 

both the Transfer Question and the Explaining and Transfer Question are respectively 

reflective of the traditional-view-of-transfer questions, namely: was transfer obtained?; 

and what conditions facilitate transfer?  

During the Pilot Study, it wanted to be determined if students could transfer conceptual 

mathematical items more so than procedural mathematical items—The Conceptual 

versus Procedural Question. The reason for this stemmed from previous research (as 
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discussed in Section 1.4 in Chapter 1) which suggests that conceptual knowledge 

transfers more easily than procedural. This raised the question: how is conceptual 

knowledge distinguished from procedural knowledge?  

There is some debate in the literature as to what exactly this distinction is. Anderson 

[23] claims that the distinction is not absolute. Nonetheless, in this study, it was decided 

to accept the argument (discussed in Sections 1.4 and 1.4.1 in Chapter 1) that procedural 

knowledge is found in the symbolic aspect of mathematics while conceptual knowledge 

is found in the geometric aspect. Consequently, the Pilot-Study Items were classified as 

procedural or conceptual, depending on whether they were symbolic or graphical in 

nature; this is shown in Table 2.1. 

Item 

Number 

Mathematical Item Item Type 

1 Calculation of Slope. Procedural 

2 Determining which Line has 

the Greatest Rate of Change. 

Conceptual 

3 Differentiation. Procedural 

4 Graphical Interpretation of the 

Meaning of Derivative. 

Conceptual 

5 Multiplication of Fractions. Procedural 

6 Usage of Exponent Laws. Procedural 

7 Graphing a Function. Conceptual 

8 Evaluation of an Integral. Procedural 

9 Graphing an Integral. Conceptual 

   Table 2.1   The Pilot-Study Mathematical Items and their Classification as either     

Procedural or Conceptual in Nature. 

During the Main Study, to determine the degree to which students explained in the 

Explaining and Transfer Question, Tall’s theory was chosen for three reasons, the last 

of which was considered most important. 
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1) Van Hiele’s theory is only directly relevant to geometry. In contrast, Tall’s 

theory encompasses both the symbolic and geometrical aspect of mathematics, 

as well as the axiomatic. 

2) The APOS theory does not make it explicit how exactly a researcher can 

determine if a student is at an action, process, object or schema stage for any 

mathematical concept. 

3) In Tall’s theory, there is a cognitive development which is explicitly described. 

This cognitive development is shown in Figure 1.7. Being aware of this 

cognitive development, it was felt that probing students’ explanations could 

unlock the degree to which student’s explained. How this was accomplished is 

described in Section 2.4.3.2 in Chapter 2. 

The validity of the mathematical items used in the Main Study, as measuring students’ 

ability to carry out particular mathematical tasks in a mathematics context, (e.g. Item 14 

dealing with the evaluation of an integral), could not be determined by means of an 

average inter-item correlation [69] because there was only one item in this regard in a 

mathematics context. Likewise, there was only one corresponding item in the chemistry 

context. Despite not being able to measure an average inter-item correlation for any of 

the items (this not being the focus of the research), it was determined if the items in a 

mathematics context were appropriate in terms of preparing students to answer a similar 

item, which they would encounter in a chemistry context. Such a determination 

involved input from chemistry lecturers and mathematics lecturers from the School of 

Chemical Sciences and the School of Mathematical Sciences respectively. 

It was not possible to measure the internal reliability of each item across both studies. 

To do so would have involved using a two-sample t-test for performance on each item 

across both studies in either a mathematics context or chemistry context. This would 

have required multiple measures of the students’ performance in Study 1 on the same 

item (via different questions in respect of this item) in both the mathematics context and 

chemistry context; the results of which would then have to be compared for statistically-

significant difference between the students’ performance in Study 2 (using measures 

similar to those used in Study 1) in both the mathematics context and chemistry context. 
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Instead, a more qualitative approach was taken towards assessing the reliability of the 

items across both studies. 

The sample of students involved in both the Pilot Study and Main Study were second-

year undergraduate chemistry students, coming from a variety of science undergraduate 

degrees. In terms of ethics, all of the students were given an opportunity to participate, 

on a voluntary basis. The students were informed as to the purpose of the research, 

namely improving chemistry undergraduate students’ understanding of mathematics. 

Also, all of the students were allowed to stop participating in the research at any time. 

Lastly, the students were informed that information used from such research would be 

stored in accordance with relevant Data Protection Acts. The research was implemented 

in Dublin City University lecture halls. 

2.3 The Pilot Study  

A Pilot Study was undertaken during the 07/08 academic year. The Transfer Question 

was: can students transfer mathematical knowledge from a mathematics context to a 

chemistry context? The Conceptual versus Procedural Question was: do students 

transfer conceptual mathematical knowledge more so than procedural mathematical 

knowledge? 

2.3.1 The Pilot-Study Sample 

The study was conducted amongst a sample of second-year university students. All of 

the participants were completing a core module in chemical kinetics and 

thermodynamics as part of their science degree. The students were drawn from degree 

programmes in the field of Chemical and Pharmaceutical Science, Analytical Science, 

Environmental Science and Health, and Science Education. All of the students had 

completed and passed a calculus module during the first-year of their studies. The 

calculus module was taught by lecturers from the School of Mathematical Sciences. All 

of the calculus concepts were presented in an abstract manner, using mathematical 

notation in terms of x and y. This module was designed to equip the students with basic 

calculus concepts that they could use in later parts of their studies such as in chemical 

kinetics and thermodynamics.  
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2.3.2 Diagnostic Tools 

To determine the students’ mathematical knowledge and transfer ability, diagnostic 

tools were developed. There were four Diagnostic Tools. Two of the tools were based 

on knowledge of mathematical items in a mathematics context, and two were based on 

these mathematical items in a chemistry context.  The mathematical items contained in 

each of the tools are shown in Tables 2.2 and 2.3. The items were chosen on the basis of 

their importance in chemical kinetics and thermodynamics.  

Diagnostic Tool 1 contained an array of mathematical items relevant to chemical 

kinetics asked within a mathematics context, while Diagnostic Tool 2 replicated these 

items, but asked them within a chemistry context. Diagnostic Tool 3 contained 

mathematical items relevant to thermodynamics asked within a mathematics context, 

while Diagnostic Tool 4 contained the same mathematical items, but asked within a 

chemistry context. The items in the Diagnostic Tools are given in Appendix A. 

A mathematics context was defined in terms of containing a mathematical concept 

represented in an abstract sense, using the symbolic notation x and y: for example, 

finding the derivative of the expression: 1−
= xy . A chemistry context was defined in 

terms of containing the same mathematical concept in chemistry-notational form. A 

backdrop as to the origin of the chemistry concept, which the mathematical concept in 

chemistry-notational form represented, was also present e.g. in the form of an 

explanatory sentence. However, despite the backdrop, it was deemed that students did 

not necessarily have to understand it in order to answer the mathematical concept in 

chemistry-notational form. For example: given that the volume (V) of a gas is inversely 

proportional to the pressure (P) of the gas, find the derivative of the expression: 

1−
= VP : this question does not require an understanding of the gas laws to answer. 

An example of an item (Item 9) used in the Pilot Study is shown in Figure 2.1. All of 

the items contained a Part A and a Part B both in the mathematics context and chemistry 

context. The Part A gave data to address the Transfer Question and the Conceptual 

versus Procedural Question.  
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The Kinetics Mathematical Items 

Tools 

Diagnostic Tool 1: Mathematical Items in a Mathematics Context 

Diagnostic Tool 2: Mathematical Items in a Chemistry Context 

Items:                                                                                                                             

� Item 1:   Calculation of slope.                                                                      

� Item 2:   Determining which Line has the Greatest Rate of Change.                                   

� Item 3:   Differentiation.                                          

� Item 4:   Graphical Interpretation of the Meaning of Derivative.                                   

� Item 5:   Multiplication of Fractions.                                                             

� Item 6:   Usage of Exponent Laws.      

                                                                                             

        Table 2.2   The Kinetics Mathematical Items Used in the Pilot Study.  

 

 

 

The Thermodynamics Mathematical Items 

Tools 

Diagnostic Tool 3: Mathematical Items in a Mathematics Context 

Diagnostic Tool 4: Mathematical Items in a Chemistry Context 

Items:                                                                                                                             

� Item 7:   Graphing a Function.                                                                      

� Item 8:   Evaluation of an Integral.                                    

� Item 9:   Graphing an Integral.                                                                                                                                     

        Table 2.3   The Thermodynamics Mathematical Items Used in the Pilot Study.  
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Item 9: Graphing an Integral 

Mathematics Context Chemistry Context 

 (A) Draw a diagram (in Figure 1) that 

represents the area corresponding to 

the integral: 

dx
x

1
3

1

∫  

(A)  The relationship:  

                               P = 
V

1
, 

where P is the pressure of a gas and V is 

its volume represents the ideal gas law 

applied to an isothermal system.  Indicate 

in Figure 1, the area corresponding to the 

integral:  

 

          w = ∫
2

1

V

V

dV
V

1

 
 

which represents the work done by the 

system (the gas) in expanding from an 

initial volume:  

 (V1 = 1m
3
 ) to a final volume (V2 = 3m

3
), 

for a reversible isothermal gas expansion. 

       

                   Figure 1                   Figure 1 

Figure 2.1 The Pilot Study Mathematical Item for the Graphing of an Integral. 

The students were administered all of the Diagnostic Tools separately. Each tool, in a 

mathematics context, was spaced a week apart from its matching chemistry-context 

tool, so as to avoid, for example, the possibility of Diagnostic Tool 1 helping students to 

answer the same items in Diagnostic Tool 2 due to a training or recognising-of-patterns 

effect [10]. All of the students were allowed approximately half an hour to complete 

each tool. The tools were administered separately to all of the students during a lecture. 

The number of students attending lectures varied: because of this, if a student was 
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present when Diagnostic Tool 1 was administered, but not when the corresponding 

Diagnostic Tool 2 was administered, their information was not able to be used to answer 

the Transfer Question and the Conceptual versus Procedural Question. Thus, for the 

chemical kinetics mathematical items (Items 1-6), there were 45 students who 

completed both Diagnostics Tool 1 and Diagnostic Tool 2. For the thermodynamics 

items (Items 7-9), there were 30 students who completed Diagnostic Tool 3 and 

Diagnostic Tool 4. 

It was determined if each item in a mathematics context was appropriate, in terms of 

preparing students to answer the similar, matching item in a chemistry context. Such a 

determination involved input from chemistry lecturers and mathematics lecturers from 

the School of Chemical Sciences and the School of Mathematical Sciences respectively. 

2.3.3 Data Analysis 

2.3.3.1 The Transfer Question 

Students’ responses to Part A for each item in each tool were marked as correct or 

incorrect. The students were considered to have transferred a mathematical item if they 

answered that mathematical item correctly in the mathematics context and correctly in 

the corresponding chemistry context. 

For each item, categorical-statistical tests were used to determine if there was 

statistically-significant transfer (that is, an association between answering correctly in a 

mathematics context and correctly in a chemistry context). Depending on the data set, 

either the Chi-Squared Test or Fisher’s Exact Test was used. For example, considering 

Item 7—Graphing a Function—the manner in which students responded determined 

which cell they were positioned within, as shown in Table 2.4. 
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Chemistry Context Mathematics Context 

 Correct Incorrect Total 
Correct 6(3) 4(7) 10 

Incorrect 3(6) 17(14) 20 

Total 9 21 30 

 

 

p = 2
100.3

−
×  

Table 2.4. How the Significance of Observed Transfer was Investigated for Item 7 in 

the Pilot Study: The frequencies of students falling into each cell were the observed 

frequencies. The values adjacent to these (in parentheses) were the expected 

frequencies. 

From Table 2.4, of the nine students who answered Item 7 correctly in a mathematics 

context, six of these answered correctly in the corresponding chemistry context. Of the 

ten students who answered correctly in the chemistry context, six of these students 

answered correctly in the corresponding mathematics context. The basic laws of 

probability dictate that the number of students that would be expected to answer 

correctly in both the mathematics context and chemistry context due to chance alone is 

determined from multiplying the probability of being correct in a mathematics context 

by the probability of being correct in a chemistry context and then multiplying this 

value by the sample size. The value obtained (shown in parentheses in Table 2.4) was 

three—the expected number of students answering correctly in both contexts due to 

chance alone. The actual value observed was six which raised the question of whether 

this value was significant. Using the relevant categorical-statistical test—in this case, 

Fisher’s Exact Test— for the two-by-two contingency table, it was found that six was 

statistically significant at a confidence level of 95%. Thus, the conclusion was: if a 

student answers the item correctly in a mathematics context, the likelihood of them 

answering the same item in a chemistry context correctly not due to chance alone is 

strong. A more detailed discussion of the theory behind Fisher’s Exact Test and the Chi-

Squared Test can be found in Appendix C. 
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2.3.3.2 The Conceptual versus Procedural Question 

For the mathematical items classified as procedural and conceptual during the Pilot 

Study (as shown in Table 2.1) it was investigated if instances of the transfer of 

conceptual items were more commonplace than instances of the transfer of procedural 

items. 

2.3.4 Results 

2.3.4.1 The Transfer Question  

The observed and expected values in the contingency tables that were used to probe 

whether the transfer observed for each mathematical item was significant are given (in 

row form) in Table 2.5. In reading the table, it is clear, for example, for Item 1, the 

calculation of slope, that 22 students transferred the item (answered the item correctly in 

both a mathematics context and chemistry context).  

The number adjacent to twenty-two (in parentheses) is twenty which is the number of 

students that would have been expected to answer correctly in both the mathematics 

context and chemistry context due to chance alone. In column five of the table, the p-

value for the observed number of students who transferred is equal to 0.11. Thus, the 

transfer observed for this item was deemed not to be statistically significant. In other 

words, because the p-value was not less than or equal to 0.05, it could not be concluded 

that answering this item correctly in a mathematics context meant a student is likely to 

associate with answering it correctly in a chemistry context. Nonetheless, transfer was 

observed for the item because 22 students answered the item correctly in both contexts. 

As can be seen from column three, transfer was observed for all Items 1-7, but not for 

Items 8-9.   

In terms of the significance of the transfer observed, for Item 7—the graphical 

representation of a function— the p-value for the transfer observed in column three was 

found to be 0.03, less than a p-value of 0.05, thus suggesting that the transfer observed 

was significant. In other words if a student answers this item correctly in a mathematics 

context, they are likely to associate with answering the item in a chemistry context, not 

due to chance alone. 
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2.3.4.2 The Conceptual versus Procedural Question  

The procedural items in Table 2.5 were Items 1, 3, 5, 6 and 8. Forty-five students 

answered Items 1, 3, 5 and 6 in both the mathematics context and chemistry context. Of 

these students, 22 transferred Item 1; 4 transferred Item 3; 25 transferred Item 5 and 3 

transferred Item 6.  Thirty students answered Item 8 in both the mathematics context 

and chemistry context. Of these students, none transferred Item 8.        

The conceptual items in Table 2.5 were Items 2, 4, 7 and 9. Forty-five students 

answered Items 2 and 4 in both the mathematics context and chemistry context. Of these 

students, 15 transferred Item 2 and 9 transferred Item 4.  Thirty students answered Items 

7 and 9 in both the mathematics context and chemistry context. Of these students, 6 

transferred Item 7 but none transferred Item 9. The percentage of students who 

answered the items correctly in a mathematics context is shown in Table 2.6. 

Because conceptual items did not appear to be transferred by students any more so than 

procedural items, it was concluded that: 

1) conceptual knowledge may be no more transferrable than procedural knowledge; 

or  

2) the view that conceptual mathematical knowledge is graphical in nature, while 

procedural mathematical knowledge is symbolic in nature, is not correct. 
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 Item 

Number 

Mathematical 

Item 

Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Tables. 

Transfer 

(p-values) 

Correct 

in MC* 

and 

CC** 

Correct 

in MC 

and 

Incorrect 

in CC 

Incorrect 

in MC 

and 

Correct 

in CC 

Incorrect 

in MC 

and CC 

1 Calculation of 

Slope. 

  22(20.0)    0(2.0)   19(21.0)    4(2.0)     0.11 

2 Determining which 

Line has the 

Greatest Rate of 

Change. 

15(16.8)   21(19.2)     6(4.2)      3(4.8)     0.27
 

3 Differentiation.  4(3.1)     0(0.9)   31(31.9)   10(9.1)     0.56
 

4 Graphical 

Interpretation of the 

Meaning of 

Derivative. 

9(9.8)     8(7.2)   17(16.2)   11(11.8)     0.61     

5 Multiplication of 

Fractions. 

 25(23.2) 4(5.8)   11(12.8)      5(3.2)     0.24
 

 
6 Use of Exponent 

Laws. 

3(1.2) 1(2.8)   10(11.8)   31(29.2)     0.06
 

7 Graphical 

Representation of a 

Function. 

    6(3.0)     3(6.0)     4(7.0)   17(4.0)     0.03 

8 Evaluation of an 

Integral. 

    0(0.0)   5(5.0)    0(0.0)   25(25.0)     1.00
 

9 Graphical 

Representation of 

an Integral. 

    0(0.2)     1(0.8)      5(4.8)   24(24.2)     1.00 

MC* - Mathematics Context; CC** - Chemistry Context. 

Table 2.5  Results from the Pilot-Study Contingency Tables that Were Used to Investigate the 

Significance of Observed Transfer for Each Item. 
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 Item 

Number 

Mathematical Item Item Type %* of Correct Students 

in a Mathematics Context 

1 Calculation of Slope. Procedural 85% 

2 Determining which Line has 

the Greatest Rate of Change. 

Conceptual 53% 

3 Differentiation. Procedural 74% 

4 Graphical Interpretation of 

the Meaning of Derivative. 

Conceptual 54% 

5 Multiplication of Fractions. Procedural 76% 

6 Use of Exponent Laws. Procedural 29% 

7 Graphical Representation of 

a Function. 

Conceptual 31% 

8 Evaluation of an Integral. Procedural 16% 

9 Graphical Representation of 

an Integral. 

Conceptual 9% 

* The % figures are rounded to the nearest whole number. 

Table 2.6  The Percentage of Students who Answered Each Item Correctly in a Mathematics 

Context in the Pilot Study. 
 

2.3.5 Implications for Main Study 

The main findings from the Pilot Study are: 

• In terms of the Transfer Question, transfer was observed for Items 1-7, but not 

for Items 8-9. In respect of statistically significant transfer, it was observed for 

one item only, namely Item 7. A possible reason for the lack of statistically 

significant transfer observed may be that for certain items, low percentages of 

students answered correctly in a mathematics context, as can be seen from Table 

2.6. 

• Looking at Table 2.6, the percentage of students who could answer the items 

correctly in a mathematics context ranged from 9% to 85%. This suggested that 

the problems students have with mathematics in a chemistry context may not be 

due to transfer, but instead due to an absence of mathematical knowledge in a 

mathematics context. The low percentages of students who answered correctly 

in a mathematics context for certain items (especially Items 8 and 9) also 
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suggested that students cannot be expected to transfer mathematical knowledge 

to a chemistry context if they do not possess the knowledge in a mathematics 

context. 

Furthermore, the performance of students in the mathematics context for the 

majority of items indicated the need for mathematical interventions in order to 

improve students’ mathematical ability, with a view that doing so, would 

improve students’ ability to transfer. The design and impact of such 

mathematical interventions are discussed in Chapter 4. 

• In terms of the Conceptual versus Procedural Question, it was found that, based 

on the presupposition that procedural knowledge is symbolic in nature and 

conceptual knowledge is graphical in nature, conceptual knowledge does not 

transfer any more so than procedural knowledge. This suggested:1) the view that 

conceptual knowledge transfers more easily than procedural knowledge may be 

wrong; or 2) classifying conceptual knowledge as graphical in nature, and 

procedural knowledge as symbolic in nature, may not be correct.  

Thus, conceptual mathematical knowledge may be transferred more easily by 

students than procedural mathematical knowledge if the definition as to what 

constitutes conceptual mathematical knowledge is re-defined. However, as 

Anderson [23] articulates: the difference between conceptual and procedural 

knowledge is not absolute. Consequently, it was decided not to investigate the 

Conceptual versus Procedural Question further.  

Rather, in the Main Study it was decided to investigate:1) whether students who 

explained their mathematical reasoning in a mathematics context associated with 

transfer (the 1
st
 aspect of the Explaining and Transfer Question); and 2) whether 

students who evidenced a certain degree of explanation in terms of Tall’s theory 

[62] associated with transfer more so than other students (the 2
nd

 aspect of the 

Explaining and Transfer Question). 
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The main findings from the Pilot Study informed the development of the Main Study as 

follows: 

• The Transfer Question remained the same; 

 

• The Conceptual versus Procedural Question evolved into the Explaining and 

Transfer Question because of the difficulty in classifying mathematical items as 

reflective of procedural knowledge or conceptual knowledge; and 

 

• The mathematical items in the Diagnostic Tools for the Main Study (given in 

Appendix D) were modified to be more realistic in terms of how the 

mathematics necessary for the chemistry context is replicated in the 

corresponding mathematics context. 

2.4 The Main Study 

Informed by the Pilot Study, the Main Study comprised of two studies—Study 1 and 

Study 2. Study 1 and Study 2 were conducted with two samples of second-year 

undergraduate students during the academic years 08/09 and 09/10 respectively. The 

Transfer Question was: can students transfer mathematical knowledge from a 

mathematics context to a chemistry context? In Study 2, students were reminded of the 

mathematical knowledge (in a mathematics context) that they needed to be able to 

transfer. The effect of this reminder was investigated to determine if there were: 1) 

improved instances of transfer; and 2) if it had an effect on the statistical significance of 

the transfer observed. There were two aspects to the Explaining and Transfer Question: 

1) do students who evidence an ability to explain their reasoning in a mathematics 

context associate with transfer?; and 2) do students who evidence a certain degree of 

explanation for a particular item in a mathematics context in terms of Tall’s theory [62] 

associate with transfer more so than other students. 

2.4.1 The Samples 

Thirty students participated in Study 1, while 24 students participated in Study 2. All of 

the participants were volunteers. All of the participants were completing a core module 

in chemical kinetics and thermodynamics as part of their science degree at the time the 
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studies were undertaken. Like the students in the Pilot Study, the students were drawn 

from degree programmes in the field of Chemical and Pharmaceutical Science, 

Analytical Science, Environmental Science and Health and Science Education. The 

participants had completed and passed a calculus-based mathematics module during the 

first year of their studies. This mathematics module was designed to equip the students 

with basic calculus concepts applicable to their courses. In order to answer the Transfer 

Question and the Explaining and Transfer Question, the Diagnostic Tools used in the 

Pilot Study were re-designed, as already referred to in Section 2.3.5. 

2.4.2 The Diagnostic Tools 

There were four Diagnostic Tools. Two of the tools were based on determining 

knowledge of mathematical items in a mathematics context, and two were based on 

these mathematical items in a chemistry context.  The mathematical items contained in 

each of the tools are shown in Tables 2.7 and 2.8. Diagnostic Tool 1 contained twelve 

mathematical items relevant to chemical kinetics asked within a mathematics context, 

while Diagnostic Tool 2 replicated these items, but within a chemistry context. 

Diagnostic Tool 3 contained three mathematical items relevant to thermodynamics 

asked within a mathematics context, while Diagnostic Tool 4 contained the same 

mathematical items, but within a chemistry context. The items in the diagnostic tools 

are given in Appendix D. 

The Thermodynamics Mathematical Items 

Tools 

Diagnostic Tool 3: Mathematical Items in a Mathematics Context 

Diagnostic Tool 4: Mathematical Items in a Chemistry Context 

Items:                                                                                                                             

� Item 13: Graphing a Function.                                                                      

� Item 14: Evaluation of an Integral.                                    

� Item 15: Graphing an Integral.                                                                                                                                     

        Table 2.7 The Thermodynamics Mathematical Items Used in the Main Study. 
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The Kinetics Mathematical Items 

Tools 

Diagnostic Tool 1: Mathematical Items in a Mathematics Context 

Diagnostic Tool 2: Mathematical Items in a Chemistry Context 

Items:                                                                                                                             

� Item 1:   Calculating Slope. 

� Item 2:   Sketching a Line with Positive Slope. 

� Item 3:   Sketching a Line with Positive Slope.                                    

� Item 4:   Sketching a Line with Negative Slope.                                          

� Item 5:   Generating an Expression for Slope.                                    

� Item 6:   Generating an Expression for Derivative. 

� Item 7:   Interpreting Derivative. 

� Item 8:   Usage of Exponentials. 

� Item 9:   Usage of Natural Logarithms. 

� Item 10: Proportionality. 

� Item 11: Graphing an Exponential Function. 

� Item 12: Graphing a Natural Logarithmic Expression.     

        Table 2.8 The Kinetics Mathematical Items Used in the Main Study.  

 

An example of one of the items used in the Main Study is shown in Figure 2.2. Students 

need to be able to calculate rate of change in a chemistry context in order to understand 

chemical kinetics. Calculating the rate of change is similar to calculating the slope of a 

line in a mathematics context. It can also be seen that the item in Figure 2.2 contains a 

Part A and a Part B. The Part A allowed the answering of the Transfer Question. The 

Part B in the mathematics context was used to answer the Explaining and Transfer 

Question in terms of: 1) whether students who explained their reasoning in a 

mathematics context associated with transfer; and 2) whether a certain degree of 

explanation given by students in terms of Tall’s theory [62] in a mathematics context, 

associated with students being able to transfer.  
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Item 1: Calculating Slope 

Mathematics Context Chemistry Context 

(A)  Calculate the slope of the straight line 

from the two points given in Figure 1. 

(A) Calculate the rate of change of 

the concentration of the reactant 

with respect to time over the 

time interval  (∆t ) from the two 

points given in Figure 1. 

  

             Figure 1           Figure 2 

(B) Explain what this number means. (B) Explain what this value means. 

Figure 2.2 Item 1 Used in the Main Study. 

It can be seen in Appendix D that each item (except Item 6) contained a Part B. Item 6 

did not contain a Part B because the item did not require a calculation or a graphical 

representation to be performed by the student, but instead only an explanation. Thus, 

looking for evidence of transfer for this item also represented looking for evidence of 

students’ ability to explain in a mathematics context and transfer. It should be noted that 

during Study 1, Items 2-5 and Item 11 did not contain a Part B. In the case of Items 2-5, 

it was felt that such questions would lead to a significant amount of repetition in student 

answers. It was thought that the Part B data from Items 2-5 would be similar to the Part 

B data from Item 1.  

The chemistry items in both Study 1 and Study 2 were analogous to the items in the 

mathematics context, containing both Part A and Part B questions. While information in 

the form of Part Bs for the chemistry items did not address the research questions, it was 

felt that garnering such information could be useful nonetheless. 
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The Students were administered all of the Tools separately and were allowed 

approximately thirty minutes to complete each one. Each tool was administered a week 

apart so as to again avoid the possibility of, for argument sake, Diagnostic Tool 1 

helping students to answer the same items in Diagnostic Tool 2 due to a training or 

recognising-of-patterns effect [10]. By doing this with all of the Diagnostic Tools, it 

was envisaged that this would provide a more accurate investigation of students’ ability 

to transfer. The percentage of students who answered each item correctly across both 

studies can be seen in Table 2.9. 

Looking at Table 2.9, it can be seen that for Items 1-3, 6-7, 9-11 and 13, students’ 

performance on those items across both studies did not vary much (less than or equal to 

10%) in a mathematics context. For Items 4-5, 12-13 and 15, the variation was greater, 

ranging from 13% to 36%. One of the possible reasons for a large degree of variation in 

these items could be due to the fact that during Study 2, students were reminded at the 

start of their chemical kinetics and thermodynamics module of ‘how to do’ these 

mathematical items in a mathematics context. This reminder may be the reason why, 

overall, the correct answering of the mathematical items in a mathematics context 

increased more so in Study 2 than the correct answering of the mathematical items in a 

chemistry context.   

For the mathematics in the chemistry context, the variation appears greater than the 

variation in the mathematics context. Only for Items 2 and 6 is it less than 10%, while 

for the remainder of the items, the variation ranges from 11% to 31%, although it should 

be noted that for 10 out of 13 of these items, the variation is only between 11% to 16%. 
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Main Study: Percentage of Students who Answered Each Item Correctly 

 Mathematics Chemistry 

 Context Context 

Item Study 1 Study 2 Study 1 Study 2 

Item 1: Calculating Slope. 90% 96% 93% 79% 

Item 2: Sketching a Line with     

 Slope. 83% 92% 70% 63% 

Item 3: Sketching a Line with     

 Slope. 80% 87% 70% 58% 

Item 4: Sketching a Line with     

 Slope. 76% 96% 53% 63% 

Item 5: Generating an Expression for      

 Slope. 66% 67% 53% 42% 

Item 6: Generating an Expression for      

 Derivative.     20% 17% 26% 33% 

Item 7: Interpreting Derivative.     73% 67% 83% 96% 

Item 8: Usage of Exponentials.     43% 58% 33% 8% 

Item 9: Usage of Natural Logarithms.     43% 46% 40% 29% 

Item10: Proportionality.     43% 38% 56% 79% 

Item 11: Graphing an Exponential      

 Function       3% 13% 13%  0% 

Item 12: Graphing a Natural     

 Expression.     10% 46% 13% 29% 

Item 13: Graphing a Function.     33% 37% 7% 29% 

Item 14: Evaluation of an Integral.     16% 29% 10% 25% 

Item 15: Graphing an Integral.     13% 29% 10% 25% 

Table 2.9 The Percentage of Students who Answered Each Item Correctly in the Main  

Study.  
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2.4.3 Data Analysis 

2.4.3.1 The Transfer Question 

Like the Pilot Study, students were considered to have transferred if they answered the 

item correctly in the mathematics context and in the corresponding chemistry context. 

For each Item, testing for statistically significant transfer (that is, an association 

between answering correctly in a mathematics context and correctly in a chemistry 

context) was investigated using categorical statistical tests.  

For example, for Item 1, students were placed in a contingency table as shown in Table 

2.10. The number of students who were correct in both the mathematics context and 

chemistry context was 25. The p-value of 1 indicated that this number was not 

significant at a confidence level of 95%. Thus, the conclusion was: if a student answers 

Item 1 correctly in a mathematics context, they are no more likely to answer it correctly 

in a chemistry context than a student who answers the item incorrectly in a mathematics 

context. This type of analysis was carried out for all of the items. 

Chemistry Context Mathematics Context 

 Correct Incorrect Total 
Correct 25(25.2) 3(2.8) 28 

Incorrect 2(1.8) 0(0.2)  2 

Total 27 3 30 

         p = 1 

Table 2.10.  Testing for an Association between Being Correct in a Mathematics 

Context and Being Correct in a Chemistry Context for Item 1 in Study 1. 
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2.4.3.2 The Explaining and Transfer Question 

Ability to Explain in a Mathematics Context and Transfer 

The first aspect of the Explaining and Transfer Question, namely, do students who can 

explain their reasoning in a mathematics context associate with transfer, was 

investigated using the principles of qualitative data analysis as described by Cohen [70]. 

This type of analysis is used to distil key categories of explanation from students’ Part B 

responses.  

The approach comprised of a number of stages: 1) reading students’ qualitative 

responses; 2) identifying the themes/meanings running through these responses; and 3) 

organising the themes/meanings into categories. 

Examples of student responses for Item 1 in Study 1 are shown in Table 2.11; the 

category allocated to each response is also shown.  

Students’ Responses for Item 1—

Calculating Slope.  

Category 

Change in y increases 4 for every 1 in x. Refer to how much y increases by for a     

unit increase in x. 

It means the rate at which the line 

increases. 

Refer to the rate at which the line    

increases. 

Is the slope of the line so the value is 4. Refer to the slope value being 4. 

The slope of the line is positive and 

increasing at a rate. 

Refer to the slope as increasing 

How much the line increases/decreases. Refer to the slope as how much the line  

increases/decreases. 

Table 2.11.Examples of Students’ Responses and Examples of the Categories 

Allocated to Students’ Responses. 

 

The resultant categories that emerged from Study 1 for Item 1 are shown in the first 

column of Tables 2.12 and 2.13.  
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Category Frequency 

 

       

Type of 

Understanding 

1.    Refer to how much y increases 

for a unit increase in x. 

 

10 

 

 

 

 

 

 

Ability to Explain 

2.    Refer to slope as a measure of 

steepness.                                               

1 

 
3.    Refer to the rate at which the line 

increases. 

3 

4.    Refer to the slope value being 4. 4 

5.    Refer to the slope being positive. 1 

6.    Provide no reason. 1  

 

 

 

 

Inability to 

Explain 

7.    Refer to the slope as rising. 1 

8.    Refer to the slope as the distance 

between data points. 

1 

9.    Refer to the slope as increasing. 3 

10.  Refer to the slope as how much 

the line increases/decreases. 

1 

11.  Interpret slope as meaning for a 

y-unit increase, there is a 4 unit x 

increase. 

1 

Table 2.12 The Resultant Categories for the Students in Study 1 who Answered Item 

1, Part A Correctly. 

 

Category Frequency 
 

 

Type of 

Understanding 

1.  Label the data points incorrectly 

with respect to their insertion into 

the slope formula and refer to slope 

as being an angle. 

1 

 

 

 

Inability to 

Explain. 

 

 
2. Use the inverse of the slope. 2 

Table 2.13 The Resultant Categories for the Students in Study 1 who Answered 

Item 1, Part A Incorrectly. 
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It should be noted that an inter-rater reliability approach [70] was used to decide what 

the categories were. An inter-rater reliability approach involves a number of researchers 

to analyse qualitative data for ‘categories of meanings’ that appear to emerge from the 

data. The researchers compare what they consider to be categories of meaning with 

other researchers in order to reach a consensus. A researcher from the School of the 

Chemical Sciences and a researcher from the School of Mathematical Sciences worked 

in conjunction with me to reach this consensus. Once the categories were decided upon, 

an inter-rater reliability approach was again used to decide whether each category was 

reflective of either an ability to explain or an inability to explain. The categories which 

were reflective of either an ability to explain or an inability to explain for Item 1 in 

Study 1 are shown in Tables 2.12 and 2.13. For each Item, testing for the presence of an 

association between evidencing an ability to explain in a mathematics context and being 

able to transfer was carried out using categorical statistical tests.  

For example, for Item 1, students were placed in a contingency table as shown in Table 

2.14. The number of students who evidenced an ability to explain in a mathematics 

context and who also transferred was 13. Because this number was greater than the 

expected number of 11.7, an association ‘appeared’ present. However, the p-value of 

0.34 indicated that this ‘apparent association’ was not significant at a confidence level 

of 95%. Thus, the conclusion was: if a student evidences an ability to explain their 

reasoning for the calculation of slope in a mathematics context, they do not associate 

with the transfer of that item any more so than students who do not evidence an ability 

to explain their reasoning. This type of analysis was carried out for all of the items 

which had a Part B.    

Ability to Transfer Explanation in a Mathematics Context 

 Ability to Explain Inability to Explain Total 

Transferred 13(11.7) 12(13.3) 25 

Did not Transfer 1(2.33) 4(2.7)  5 

Total 14 16 30 

 

 

     p = 0.34 

 Table 2.14.Testing for an Association between Evidencing an Ability to Explain in a 

Mathematics Context for Item 1 in Study 1 and Being Able to Transfer that Item.  
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Degree of Explanation in a Mathematics Context and Transfer 

To determine the degree to which students explained in a mathematics context, Tall’s 

theory was used. Tall’s theory is summarised in Figure 2.3. The cognitive aspect of the 

theory is highlighted in purple. The theory was used to classify the nature of the 

mathematical items in Diagnostic Tools 1 and 3 that were used in the Main Study. It 

was found that all of the mathematical items fell into either one of four categories, 

namely:  

• 1
st
 World; 

• 2
nd

 World; 

• Movement from the 1
st
 World to 2

nd
 World; or 

• Movement from the 2
nd

 World to the 1
st
 World. 

 

The classification of the mathematical items used in Diagnostic Tools 1 and 3 is shown 

in Table 2.15. Why each item was classified as such is described in Section 3.5 in 

Chapter 4. 

Figure 2.3 Mathematical Concepts Encompassed by Each of the Three Aspects of 

Mathematics. Adapted from [62] 
 

 



65 

 

Item 

Number 

Mathematical Item Type of Item [62] 

1 Calculating Slope. 2
nd

 World 

2 and 3 Sketching of Lines with 

Positive Slope (two items in 

this regard). 

Movement from the 2
nd

 

World to the 1
st
 World 

4 Sketching of a Line with a 

Negative Slope. 

Movement from the 2
nd

 

World to the 1
st
 World 

5 Generating an Expression for 

Slope. 

Movement from the 1
st
 

World to the 2
nd

 World 

6 Generating an Expression for 

Derivative. 

Movement from the 1
st
 

World to the 2
nd

 World 

7 Interpreting Derivative.                 1
st
 World 

8 Usage of Exponentials. 2
nd

 World 

9 Usage of Natural Logarithms. 2
nd

 World 

10 Proportionality. 2
nd

 World 

11 Graphing an Exponential 

Function. 

Movement from the 2
nd

 

World to the 1
st
 World 

12 Graphing a Natural 

Logarithmic Expression. 

Movement from the 2
nd

 

World to the 1
st
 World 

13 Graphing a Function. Movement from the 2
nd

 

World to the 1
st
 World 

14 Evaluation of an Integral. 2
nd

 World 

15 Graphing an Integral. Movement from the 2
nd

 

World to the 1
st
 World 

   Table 2.15  The Mathematical Items Used in the Main Study Classified in Terms of 

Tall’s Theory [62]. 
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The cognitive aspect of Tall’s theory (highlighted in purple arrows in Figure 2.3.) was 

then used to classify the category of explanation which students ‘fell into’ during the 

analysis of the first aspect of the Explaining and Transfer Question. For the 

mathematical items that were classified as belonging to the 1
st
 World, or requiring 

Movement from the 1
st
 World to the 2

nd
 World, it was felt that the students’ explanations 

used during the first aspect of the Explaining and Transfer Question, could be re-

categorised in terms of Tall’s theory as:  

 A Perception-Action Category of Explanation — students evidence an ability 

to explain how perceptions of embodied mathematical objects can be linked with 

mathematical objects/symbols that can be acted on. For example, they are able to 

evidence how a linear graph (embodied mathematical object) can be linked with 

its symbolic expression: y = mx + c (mathematical object).  

 

For the mathematical items that were classified as belonging to the 2
nd

 World, or 

requiring Movement from the 2
nd

 World to the 1
st
World, it was felt that students’ 

explanations used during the first aspect of the Explaining and Transfer Question could 

be re-categorised in terms of Tall’s theory as:  

 An Action-Perception Category of Explanation — students evidence an ability 

to explain how actions on mathematical objects/symbols can be linked with 

embodied mathematical objects or referents that can be perceived. For example, 

they are able to link a derivative function (mathematical object) with its 

derivative graph (embodied mathematical object). 

Because the Part B for each mathematical item in Diagnostic Tools 1 and 3 required 

students to explain their reasoning, the case could be made that students were not 

explicitly asked to explain their reasoning in terms of A Perception-Action Explanation 

or An Action-Perception Explanation. Therefore, the emergence of Perception-Action 

Categories of Explanation or Action-Perception Categories of Explanation would be 

limited.   

Thus, for the mathematical items which could be explained with A Perception-Action 

Explanation (Item 5-7 in Table 2.15), it could be argued that the students were asked to 

explain their reasoning in terms of An Action-on-Perception Explanation where the 
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students described how they acted on perceptions. To ask for A Perception-Action 

Explanation, would have required phrasing the Part B as: ‘Link the graphical images 

with precise or general mathematical symbols that explain your answer to Part A’. 

Table 2.16 gives an example of what was deemed to be the difference between An 

Action-on-Perception Category of Explanation and a Perception-Action Category of 

Explanation for Item 7—interpreting where the derivative is greater for two points on a 

graph. However, the difference between An Action-on-Perception Category of 

Explanation and A Perception-Action Category of Explanation was for many items not 

clear-cut and open to interpretation.  

Students’ Category of Explanation Tall Category of 

Explanation 

Refer to there being a greater change in y for a 

certain change in x at this point compared to the 

alternative point. 

Perception-Action 

Refer to the curve being sharper at this point. Action-on-Perception 

Table 2.16. Examples of Perception-Action and Action-on-Perception Categories of 

Explanation  for Item 7. 

For the mathematical items which could be explained with An Action-Perception 

Explanation, (Items 1-4 and Items 8-15 in Table 2.15),  it could be argued that students 

were asked to explain their reasoning in terms of An Action-on-Action Explanation 

where the students described how they acted on symbols/objects. To ask for An Action-

Perception Explanation, would have required phrasing the Part B as: ‘Link the symbols 

in your answer to Part A with precise or general graphical images that explain your 

answer to Part A’.  

Table 2.17 shows an example of what was deemed to be the difference between An 

Action-on-Action Category of Explanation and An Action-Perception Category of 

Explanation for Item 1— the calculation of slope. However, like the difference between 

Action-on-Perception Category of Explanations and Perception-Action Category of 

Explanations, categorising a student’s category of explanation as either an Action-on-

Action Category of Explanation or an Action-Perception Category of Explanation was 

difficult and open to interpretation.  
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Student’s Category of Explanation Tall Category of 

Explanation 

Refer to how much y increases for a unit increase in 

x. 

Action-Perception 

Refer to the slope being positive. Action-on-Action 

Table 2.17. Examples of Action-Perception and Action-on-Action Categories of 

Explanation for Item 1. 

The categorisation of students’ explanations in terms of a Tall’s category of explanation 

was independently rated by two other researchers, one from the School of Mathematical 

Sciences and one from the School of Chemical Sciences. These categories of 

explanation represented the degree to which students explained in terms of Tall’s 

theory. For each mathematical item, if a high number of students’ explanations were in 

a certain category of explanation, it was investigated to see if these students: 1) 

associated with the transfer of the item more so than the other students; and 2) (in 

certain cases) associated with the correct answering of similar items in a mathematics 

context and with the transfer of these similar items more so than other students.  

For example, during Study 1, for Item 1 (the calculation of slope) ten students fell into 

the category of: Refer to how much y increases for a unit increase in x. This was 

categorised as an Action-Perception Category of Explanation in terms of Tall’s theory 

as can be seen in row one of Table 2.17. To see if the students who evidenced this 

Action-Perception Category of Explanation associated with the transfer of the item, 

more so than students who did not, categorical statistical tests were used. The students 

were placed in a contingency table as shown in Table 2.18 
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Ability to Transfer Explanation in a Mathematics Context 

 Action-

Perception 

Other Types of 

Explanation 

Total 

Transferred 9(8.33) 16(16.7) 25 

Did not Transfer 1(1.67) 4(3.33)  5 

Total 10 20 30 

 

 

     p = 0.64 

 Table 2.18.Testing for an Association between Evidencing an Action-Perception 

Category of Explanation in a Mathematics Context for Item 1 in Study 1 and Being 

Able to Transfer. 

The number of students who evidenced an Action-Perception Category of Explanation 

and who also transferred was nine. Because this number was greater than the expected 

number of 8.33, an association ‘appeared’ present. However, the p-value of 0.64 

indicated that this number was not significant at a confidence level of 95%. Thus, the 

conclusion was: if a student evidences this Action-Perception Category of Explanation 

in a mathematics context, they do not associate with the transfer of that item any more 

so than students who do not evidence this category of explanation.  

2.5 Chapter Summary 

In this chapter, the design and findings from the Pilot Study were discussed. In respect 

of the Transfer Question, using the traditional view of transfer, instances of transfer 

were observed. However, statistically significant transfer was rare.  The lack of any 

difference in the degree to which presupposed conceptual items were transferred in 

comparison to presupposed procedural items, suggested that classifying a mathematical 

item as either procedural or conceptual in nature is not clear-cut. Therefore, the 

Conceptual versus Procedural Question evolved into the Explaining and Transfer 

Question which was investigated in the Main Study. 

An additional finding from the Pilot Study was: the problem students have with 

mathematics in a chemistry context does not appear to be due to an inability to transfer; 

instead, the problem is most likely due to lack of mathematical knowledge in a 

mathematics context. 
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In relation to the Main Study, how the design of these studies was grounded by the 

results from the Pilot Study was discussed at length, the main changes being the 

modification of the mathematical items in the diagnostic tools that were used. The 

Transfer Question investigated in the Main Study was of the same form as during the 

Pilot Study. Moreover, it was investigated in the same manner. The first aspect of the 

Explaining and Transfer Question was investigated using the principles of qualitative 

data analysis as described by Cohen [70]. The second aspect of the Explaining and 

Transfer Question was investigated using Tall’s theory [62]. In the next Chapter, the 

findings from the Main Study are described and discussed. 
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Chapter 3 

The Results from the Investigation of the Transfer Question and the 

Explaining and Transfer Question during the Main Study. 

3.1 Chapter Overview 

This chapter discusses the results from the Main Study in terms of the Transfer 

Question and the Explaining and Transfer Question. The results from the first aspect of 

the Explaining and Transfer Question (do students who explain their mathematical 

reasoning in a mathematics context associate with transfer) are discussed in tandem with 

the results from the Transfer Question. The second aspect of the Explaining and 

Transfer Question (do students who evidence a certain degree of explanation in terms of 

Tall’s theory [62] associate with transfer more so than others) is discussed separately. 

3.2 The Transfer Question 

Table 3.1 shows students’ performance during Study 1 for each of the mathematical 

items. It can be seen that for Items 2-4, 6, 8-10, 13 and 15, (9 out of 15 items), 

statistically significant transfer was observed (p-value < 0.05). For Item 14, the 

significance of the transfer observed was borderline (p-value = 0.06). For the five 

remaining items (Items 1, 5, 7, 11 and 12), while non-statistically significant transfer 

was observed, certain students did indeed transfer the knowledge, as can be seen from 

column three of Table 3.1. 

What emerged from Study 1 was the conclusion that transfer can be observed for all of 

the items. Looking at column three and four in Table 3.1, the percentage of students 

answering some of the mathematical items correctly in a mathematics context was low. 

It was surmised that this might be due to students not remembering the mathematics 

they had learned from the previous year. Thus, during Study 2, students were reminded 

of the mathematics they needed to be able to use in a chemistry context. As discussed in 

the Research Methodology it wanted to be seen if this reminder:1) improved instances 

of transfer; and 2) had an effect on the statistical significance of the transfer observed. 

Table 3.2 shows students’ performance during Study 2. Transfer was observed for every 

item (except Item 11). Thus, the instances of transfer observed did not appear to have 
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improved in comparison to the instances observed in Study 1. Also, the instances of 

statistically significant transfer did not improve (nine instances in Study 1 versus three 

instances in Study 2. Item 6 was the only item that was transferred, statistically-

significant wise, in both Studies). 

 Mathematical Item Observed Frequencies and Expected 

Frequencies (in Parentheses) in the 

Contingency Tables. 

Transfer  

p-values 

Correct 

in MC* 

and 

CC** 

Correct 

in MC 

and 

Incorrect 

in CC 

Incorrect 

in MC 

and 

Correct 

in CC 

Incorrect 

in MC 

and CC 

1.   Calculating Slope.   25(25.2)    2(1.8) 3(2.8)   0(0.2)     1.00 

2.   Sketching a Line  

      with Positive Slope. 

20(17.5)    5(7.5) 1(3.5)     4(1.5) 0.02
 

3.   Sketching a Line  

      with Positive Slope. 

  20(16.8)    4(7.2)    1(4.2)     5(1.8) 0.01
 

4.   Sketching a Line  

      with Negative Slope. 

16(12.3)    7(10.7) 0(3.7) 7(3.3) 0.02 

5.   Generating an Expression  

      for Slope. 

13(10.7)    7(9.3) 3(5.3) 7(4.7) 0.12
 

 

 

6.   Generating an Expression  

      for Derivative. 

4(1.7)    2(4.3) 5(7.3)   20(17.7) 0.04
 

7.   Interpreting Derivative.   19(18.3)    3(3.7) 6(6.7)     2(1.3)     0.60 

8.   Usage of Exponentials. 10(4.3)    3(8.7) 0(5.7)   17(11.3)     0.00
 

9.   Usage of Natural Logarithms.  9(5.2)    4(7.8) 3(6.8)   14(10.2)    0.01
 

10. Proportionality.   11(7.4)    2(5.6) 6(9.6)   11(7.4)     0.01
 

11. Graphing an Exponential  

      Function. 

 1(0.4)    2(2.6) 3(3.6)   24(23.4)     0.36 

12. Graphing a Natural Log  

      Expression. 

 1(0.4)    2(2.6) 3(3.6)   24(23.4)     0.36 

13. Graphing a Function.  4(1.7)    6(8.3) 1(3.3)   19(16.7) 0.03 

14. Evaluation of an Integral.  2(0.5)    3(4.5) 1(2.5)   24(22.5) 0.06
 

15. Graphing an Integral.  2(0.4)    2(3.6) 1(2.6)   25(23.4) 0.04
 

MC* - Mathematics Context; CC** - Chemistry Context. 

Table 3.1 Results from the Contingency Tables in Study 1 that Were Used to Investigate the 

Significance of Observed Transfer for Each Item. 
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in Parentheses) in the 

Contingency Tables. 

Transfer  

p-values 

Correct 

in MC* 

and 

CC** 

Correct 

in MC 

and 

Incorrect 

in CC 

Incorrect 

in MC 

and 

Correct 

in CC 

Incorrect 

in MC 

and CC 

1.   Calculating Slope.   19(18.2)   4(4.8)  0(0.8)    1(0.2)    0.21 

2.   Sketching a Line  

      with Positive Slope. 

13(13.1)     8(7.9)     2(1.9)      1(1.1)    1.00 

3.   Sketching a Line  

      with Positive Slope. 

  13(11.7)     7(8.3)     1(2.3)      3(1.7)    0.27 

4.   Sketching a Line  

      with Negative Slope. 

15(13.8)     7(8.3)     0(1.2)      2(0.8)    0.10 

5.   Generating an Expression  

      for Slope. 

10(6.7)     6(9.3)     0(3.3)      8(4.7)    0.01
 

6.   Generating an Expression  

      for Derivative. 

4(1.7)     0(2.3)     6(8.3)   14(11.7)    0.02
 

7.   Interpreting Derivative.   15(15.3)    1(0.7)     8(7.7)     0(0.3)    1.00 

8.   Usage of Exponentials.   2(1.2) 12(12.8)   0(0.8) 10(9.2)    0.49 

9.   Usage of Natural Logarithms.   10(7.8)    1(3.2)     7(9.2)     6(3.8)    0.08
 

10. Proportionality.   11(10.3)    2(2.7)     8(8.7)     3(2.3)    0.63 

11. Graphing an Exponential  

      Function. 

    0(0.0)    3(3.0)     0(0.0)   21(21.0)    1.00 

12. Graphing a Natural Log  

      Expression. 

    6(4.6)    6(7.5)     5(6.5)   12(10.6)    0.44 

13. Graphing a Function.     4(2.6)    5(6.4)     3(4.4)   12(10.6)    0.36 

14. Evaluation of an Integral.     4(1.7)    3(5.3)     2(4.3)   15(12.8)    0.04
 

15. Graphing an Integral.     3(1.8)    4(5.3)     3(4.3)   14(12.8)    0.31 

MC* - Mathematics Context; CC** - Chemistry Context. 

Table 3.2 Results from the Contingency Tables in Study 2 that Were Used to Investigate the 

Significance of Observed Transfer for Each Item. 
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3.3 The Explaining and Transfer Question 

During Study 1, students were required to explain their reasoning for eleven out of the 

fifteen mathematical items (Item 1 and Items 6-15). Table 3.3 shows that for eight out 

of the eleven items requiring an explanation, students who evidenced any type of correct 

explanation for these items in a mathematics context associated with the transfer of 

them.  

During Study 2, students were required to explain their reasoning for all of the 

mathematical items. Students who evidenced any form of correct explanation for eleven 

of the fifteen items in a mathematics context associated with the transfer of them. This 

is shown in Table 3.4.  

 Mathematical Item Observed Frequencies and Expected 

Frequencies (in Parentheses) in the 

Contingency Tables. 

Transfer  

p-values 

Ability 

to 

Explain 

and 

Transfer 

Ability 

to 

Explain 

but not 

Transfer 

Inability 

to 

Explain 

and 

Transfer 

Inability 

to 

Explain 

and not 

Transfer 

1.   Calculating Slope.   13(11.7)   1(2.3)   12(13.3)     4(2.7)   0.34 

6.   Generating an Expression  

      for Derivative. 

    4(0.8)     2(5.2)      0(3.2)  24(20.8)   0.00
 

7.   Interpreting Derivative.   17(12.0)    1(6.0)     3(8.0)      9(4.0)   0.00
 

8.   Usage of Exponentials. 10(5.7)   7(11.3)   0(4.3)  13(8.7)   0.00
 

9.   Usage of Natural Logarithms.     9(3.9)    4(9.1)     0(5.1)   17(11.9)   0.00
 

10. Proportionality.     8(3.3)    1(5.7)     3(7.7)   18(13.3)   0.00
 

11. Graphing an Exponential  

      Function. 

 0(0.0) 0(0.0)   0(0.0)   30(30.0)   1.00 

12. Graphing a Natural Log  

      Expression. 

   1(0.4)    2(2.6)     3(3.6)   24(23.4)   0.36 

13. Graphing a Function.    4(1.7)    6(8.3)     1(3.3)   19(16.7)   0.03 

14. Evaluation of an Integral.    2(0.3)    3(4.7)     0(1.7)   25(23.3)   0.02
 

15. Graphing an Integral.    2(0.3)    2(3.7)     0(1.7)   26(24.3)   0.01
 

Table 3.3 Results from the Contingency Tables in Study 1 that Were Used to Investigate the 

Significance of Evidencing an Ability to Explain and Transfer. 
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in Parentheses) in the 

Contingency Tables. 

Transfer  

p-values 

Ability 

to 

Explain 

and 

Transfer 

Ability 

to 

Explain 

but not 

Transfer 

Inability 

to 

Explain 

and 

Transfer 

Inability 

to 

Explain 

and not 

Transfer 

1.   Calculating Slope.   19(17.4)    3(4.6)    0(1.6)     2(0.4)    0.04
 

2.   Sketching a Line  

      with Positive Slope. 

13(11.4)      8(9.6)      0(1.6)      3(1.4)    0.08
 

3.   Sketching a Line  

      with Positive Slope. 

  12(9.5)      7(9.5)      0(2.5)     5(2.5)    0.04
 

4.   Sketching a Line  

      with Negative Slope. 

 7(6.2)      3(3.7)      8(8.7)      6(5.3)    0.68
 

5.   Generating an Expression  

      for Slope. 

10(6.3 )      5(8.8)      0(3.8)      9(5.3)    0.00
 

6.   Generating an Expression  

      for Derivative. 

  4(0.7)      0(3.3)      0(3.3)   20(16.7)    0.00
 

7.   Interpreting Derivative.   11(6.9)     0(4.1)     4(8.1)     9(4.9)    0.00
 

8.   Usage of Exponentials.   1(0.8)   9(9.2)   1(1.2)   13(12.8)    1.00 

9.   Usage of Natural Logarithms.     7(3.3)     1(4.7)     3(6.7)   13(9.3)    0.00
 

10. Proportionality.   11(6.0)     2(7.0)     0(5.0)   11(6.0)    0.00
 

11. Graphing an Exponential  

      Function. 

  0(0.0)   1(1.0)   0(0.0)   23(23.0)    1.00 

12. Graphing a Natural Log  

      Expression. 

    3(1.3)     2(3.7)     3(4.7)   16(14.2)    0.08
 

13. Graphing a Function.     4(1.0)     1(4.0)     1(4.0)  18(15.0)    0.00
 

14. Evaluation of an Integral.     3(0.8)     2(4.2)     1(3.2)   18(15.8)    0.02
 

15. Graphing an Integral.     3(0.7)     3(5.3)     0(2.2)   18(15.8)    0.01
 

Table 3.4 Results from the Contingency Tables in Study 2 that Were Used to Investigate the 

Significance of Evidencing an Ability to Explain and Transfer. 
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3.4 Discussion 

In terms of the Transfer Question, the traditional-view-of-transfer approach used in 

Study 1 and Study 2 showed that many students can transfer mathematical knowledge.  

These findings are at odds with the view of Detterman [71], who according to Lobato 

[72] describes transfer as rare. Furthermore, the findings do not support the view of 

Krishner and Whitson [73], who claim that classical/traditional approaches to transfer 

studies often fail to demonstrate transfer in the laboratory. 

In terms of the significance of the transfer observed, for Study 1, statistically significant 

transfer (p-value < 0.05) was observed for nine out of the fifteen items, borderline 

transfer (0.05≤ p-value ≤0.1)  was observed for two out of the fifteen items while non-

statistically significant transfer (0.1≤ p-value ≤1) was found for four out of the fifteen 

items.   

For Study 2, statistically significant transfer (p-value < 0.05) was observed for four out 

of the fifteen items; borderline transfer (0.05≤ p-value ≤0.1) was observed for two out 

of the fifteen items, while non-statistically significant transfer (0.1≤ p-value ≤1) was 

observed for nine out of the fifteen items. 

Despite students being reminded of ‘how to do’ the mathematical items in a 

mathematics context during Study 2, less statistically significant transfer was observed. 

There are a number of possible reasons for this:  

1) The number of participants in Study 2 was 24 as opposed to 30 in Study 1.  

2) Perhaps, in each Study, participants had different mathematical understanding 

and/or chemistry understanding. Such differences, if they did exist, were not the 

focus of this research. 

It should be noted that the observance of statistically significant transfer for certain 

items in both studies could be considered to be fallacious. It is well known that a 

statistically significant association between two variables can be caused by a third 

variable that influences both of the variables. Even if this is the case (and it was 

something that the research was not concerned with) the question of what other possible 

variables could be at play arises. Perhaps the students who transferred had more 
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schooling in mathematics? Perhaps the students who transferred are better than others 

about quantitative reasoning and representations? Or perhaps the successful students 

had recently dealt with identical questions where the others had not. Even if this is the 

case, would such alternative variables be divorced to a large degree from the variable of 

being correct in a mathematics context? Such a question certainly represents a possible 

avenue for future research. 

In terms of the Explaining and Transfer Question, evidencing an ability to explain in a 

mathematics context may well be a factor in enabling students to transfer this 

mathematical knowledge to not just a chemistry context but to others. Arguments of a 

fallacy aside, the findings would very much agree with the view of Bishop [74], who 

proposes that students will only be able to transfer mathematics if they have developed 

an appreciation of mathematical meaning, which is dependent on the mathematical 

environment of which the student is a part. Boaler [33] adds further impetus to the 

second finding, where she claims that understanding which allows for the development 

of links between different contexts will most likely develop if students are encouraged 

to communicate and challenge mathematics.  

3.5 Degree to which Students Explained 

As stated in Section 2.4.3.2 in Chapter 2, to determine the degree to which students 

explained, Tall’s theory [62] was used. It was found that each of the mathematical items 

could be classified as: 1
st
 World; 2

nd
 World; Movement from the 1

st
 World to the 2

nd
 

World; or Movement from the 2
nd

 World to the 1
st
 World.  Why each mathematical item 

was categorised as such is described in this section.  

During the first aspect of the Explaining and Transfer Question, students’ explanations 

were categorised. These categories were then categorised in terms of Tall’s theory as 

reflective of one of the following categories of explanation: an Action-Perception 

Category of Explanation; a Perception-Action Category of Explanation; an Action-on-

Perception Category of Explanation; or an Action-on-Action Category of Explanation. 

The categories are abbreviated to AP, PA, P and A respectively in the tables of data 

categorising students’ explanations in terms of Tall’s theory for each item. How such 

categories were distinguished is discussed in Section 2.4.3.2 in Chapter 2.  
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3.5.1  Item 1— Calculating Slope 

Item 1: Calculating Slope 

Mathematics Context Chemistry Context 

(A)  Calculate the slope of the straight line 

from the two points given in Figure 1. 

(A) Calculate the rate of change of 

the concentration of the reactant 

with respect to time over the 

time interval   (∆t ) from the 

two points given in Figure 1. 

             Figure 1             Figure 1 

(B) Explain what this number means. (B) Explain what this value means. 

  Figure 3.1 Item 1 Used in the Main Study 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

1. Calculating Slope 90% 96% 93% 79% 

               Table 3.5 Students’ Performance for Item 1 in the Main Study 

  

Item 1, in both contexts, requires students to recall the formula/technique for calculating 

slope in a mathematics context (or rate of change in a chemistry context). Upon 

recollection of the technique, determining the answer requires students to manipulate 

the symbols/numbers accordingly. Therefore, the item in both contexts could be 
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considered to belong to Tall’s 2
nd

 World. The percentage of students who answered this 

item correctly in a mathematics context can be seen in Table 3.5. Relating Tall’s Theory 

to Item 1, the correct students demonstrated that they could competently act on their 

environment in terms of manipulating symbols, once they recalled the formula for slope. 

Part B of the item in the mathematics context required students to explain what the 

number for slope means; thus, in a sense, evidencing whether they were able to reflect 

upon their actions.  

Tables 3.6 and 3.7 show the categories of students’ explanations, ascertained during the 

first aspect of the Explaining and Transfer Question. These categories were deemed be 

reflective of an ability to explain (ATE) or an inability to explain (IATE), as shown in 

column three and seven in Tables 3.6 and 3.7. The column heading for columns three 

and seven in Tables 3.6 and 3.7 is ‘Exp.’, which is an abbreviation for Explanation. The 

categories were then deemed to be reflective of a category of explanation in terms of 

Tall’s theory as shown in column four and eight in Tables 3.6 and 3.7. The column 

heading for columns four and eight is ‘Tall’ which refers to the category of explanation 

in terms of Tall’s theory. 

It should be noted that for the correct students who were in the ‘provide no reason 

category’, they were deemed to have evidenced an action-on-action category of 

explanation in terms of Tall’s theory because this was the type of understanding they 

illustrated when they answered Part A correctly. Indeed, this was the type of 

understanding all the correct students evidenced before answering Part B. However, the 

correct students who provided a Part B answer had an opportunity to show whether they 

could evidence a category of explanation that was more than just an action-on-action 

category of explanation.  

Looking at Table 3.7, for the students who answered correctly in Study 1, eleven 

categories of explanation emerged. Three of these categories were deemed to be 

reflective of an ability to explain. Fourteen students were in these three categories. In 

terms of Tall’s theory, the three categories were each classified in terms of an action-

perception category of explanation. For the other eight categories (of which thirteen 

students were apart), they were each deemed to be evidence of an inability to explain. 

Six of these categories were classified in terms of an action-perception category of 
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explanation, while the other two were classified in terms of an action-on-action category 

of explanation.  

In Study 2, for the students who answered correctly, nine categories of explanation 

emerged. Five of these categories were deemed to be reflective of an ability to explain. 

Thirteen students were in these categories. In terms of Tall’s theory, the five categories 

were each categorised in terms of an action-perception category of explanation. For the 

other four categories (of which ten students were apart), they were each deemed to be 

evidence of an inability to explain. Two of these categories were classified in terms of 

an action-perception category of explanation, while the other two were classified in 

terms of an action-on-action category of explanation. Looking at Table 3.6, for the 

students in Study 1 who answered the item incorrectly (three students), two categories 

of explanation emerged. Both of these categories were deemed to be reflective of an 

inability to explain. In terms of Tall’s theory, category one was categorised as an action-

perception category of explanation because the student in this category referred to slope 

as being an angle. Category two was categorised as an action-on-action category of 

explanation because of the reference made by students to use of a formula, similar to the 

inverse of the slope formula. For the student in Study 2 who answered the item 

incorrectly their category of explanation was deemed to be reflective of an inability to 

explain, and, in terms of Tall’s theory, was categorised as an action-on-action category 

of explanation. 

  Item 1: Calculating Slope 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Use the inverse of the 

slope formula. 

 

2 IATE AA 1.  -4; slope decreases. 

 

1 IATE AA 

2.  Label the data points 

incorrectly in terms of 

the slope formula. 

Also refer to the slope 

as an angle. 

 

1 IATE AP     

Table 3.6. The Incorrect Students’ Categories of Explanation for Item 1 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AA—action-on-action; AP—

action-perception). 
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 Item 1: Calculating Slope 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to how much y 

increases for a unit 

increase in x. 

 

10 ATE AP 1.  Refer to how much y 

increases for a unit 

increase in x. 

 

3 ATE AP 

2.  Refer to slope as a 

measure of steepness. 

1 ATE AP 2.  The slope represents 

the rate of increase of 

the line. 

5 ATE AP 

3.  Refer to the rate at 

which the line 

increases. 

3 ATE AP 3.  The bigger the 

number, the steeper 

the slope is. 

2 ATE AP 

4.  Refer to the slope 

value being 4. 

4 IATE AA 4.  The change of x 

relative to y, how 

steep a line is. 

1 ATE AP 

5.  Interpret slope as 

meaning for a y-unit 

increase, there is a 4 

unit x increase. 

1 IATE AP 5.  It is the difference 

between the heights 

over the difference 

between the two 

length points. 

2 ATE AP 

6.  Provide no reason. 1 IATE AA 6.  Provide no reason. 1 IATE AA 

7.  Refer to the slope as 

Rising. 

1 IATE AP 7.  It means the gradient 

to the horizontal = 4. 

5 IATE AP 

8.  Refer to the slope as 

the distance between 

data points. 

1 IATE AP 8.  Slope of a line is 4; 

this is the angle at 

which the line passes 

through the 2 points. 

1 IATE AP 

9.  Refer to the slope as 

increasing. 

3 IATE AP. 9.  Means the slope of 

the line is increasing 

because it’s positive. 

3 IATE AA 

10. Refer to the slope as 

how much the line 

increases/decreases. 

1 IATE AP     

11. Refer to the slope 

being positive. 

1 IATE AA     

Table 3.7 The Correct Students’ Categories of Explanation for Item 1 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to Explain; 

IATE—inability to explain; Tall.—degree of explanation in terms of Tall’s theory; AA—

action-on-action; AP—action-perception). 
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Questions Raised 

In light of using Tall’s theory to categorise a student’s category of explanation, a 

number of questions were raised: 

Q.1  For the students who evidenced a correct action-perception category of explanation 

for the meaning of slope in the mathematics context for Item 1(Categories 1-3 in 

Study 1 and Categories 1-5 in Study 2), do they associate with the transfer of Items 

1-7 and Item 10 more so than the students who did not evidence a correct action-

perception category of explanation?  

The question was investigated for two reasons: 

1) All of the students who answered the item correctly in both Study 1 and Study 2, 

and who were deemed to have evidenced an ability to explain, evidenced a 

category of explanation which was categorised as an action-perception category 

of explanation in terms of Tall’s theory. This was in contrast to the students who 

answered the item correctly but who were deemed to have not evidenced an 

ability to explain their reasoning. The categories of explanation for these 

students were categorised either in terms of an action-on-action category of 

explanation or an action-perception category of explanation in terms of Tall’s 

theory, even though these were deemed to be incorrect action-on-action and 

action-perception categories of explanation. 

2) The correct action-perception categories of explanation in both Study1 and 

Study 2 could be considered (in terms of Tall’s theory) to be reflective of an 

embodied mathematical object-type understanding of slope. If so, it was 

anticipated that such an explanation may associate with the transfer of slope to 

other contexts. 

The question was investigated for Items 1-7 and Item 10 because these items were 

considered to have a slope-type element in their makeup. The results from the 

contingency tables used to investigate this question are shown in Tables 3.8 and 3.9. In 

these tables, students who evidenced a Correct Action-Perception Category of 

Explanation are referred to as CAP, while the Other Categories of Explanation are 

referred to as OCE. 



83 

 

It should be noted that for this question and all the questions raised, categorical 

statistical tests were used when testing an association (if it appeared present) for 

significance. How the tests were used is described in Section 2.4.3.2 in Chapter 2. 

 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

CAP    

in MC* 

and 

Transfer 

CAP    

in MC 

and No 

Transfer 

OCE    

in MC 

and 

Transfer 

OCE    

in MC 

and No 

Transfer 

1.   Calculating Slope.  13(11.7) 1(2.3)  12(13.3)   4(2.7)      0.34 

2.   Sketching a Line    

      with Positive Slope. 

 10(9.3)    4(4.7)  10(10.7)     6(5.3)      0.71 

3.   Sketching a Line  

      with Positive Slope. 

 10(9.3)    4(4.7)  10(10.7)   6(5.3)      0.71 

4.   Sketching a Line  

      with Negative Slope. 

 10(7.0)    4(7.0)    5(8.0)   11(8.0)      0.03     

5.   Generating an Expression  

      for Slope. 

   8(6.1)    6(7.9)    5(6.9)   11(9.1)      0.15 
 

 

6.   Generating an Expression  

      for Derivative. 

   3(1.9)  11(12.1)    1(2.1) 15(13.9)      0.32
 

7.   Interpreting Derivative.  13(8.9)    1(5.1)    6(10.1)   10(5.9)      0.00 

10. Proportionality.    8(5.1)    6(8.9)    3(5.9)   13(10.1)      0.03
 

MC* - A Mathematics Context 

Table 3.8  Study 1 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Correct Action-Perception Category of Explanation (Referred to 

as ‘CAP’) in a Mathematics Context Associated with the Transfer of  Items 1-7 and Item 10 

more so than the Students who Evidenced Other Categories of Explanation (Referred to as 

‘OCE’).  
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

CAP    

in MC* 

and 

Transfer 

CAP    

in MC 

and No 

Transfer 

OCE    

in MC 

and 

Transfer 

OCE    

in MC 

and No 

Transfer 

1.   Calculating Slope.  11(10.3)   2(2.7)   8(8.7)     3(2.3)  0.63 

2.   Sketching a Line    

      with Positive Slope. 

    8(7.0)     5(6.0)     5(6.0)      6(5.0)       0.43 

3.   Sketching a Line  

      with Positive Slope. 

    8(6.5)     5(6.5)     4(5.5)      7(5.5)       0.22 

4.   Sketching a Line  

      with Negative Slope. 

   9(8.1)     4(4.9)     6(6.9)      5(4.1)       0.67    

5.   Generating an Expression  

      for Slope. 

   7(5.4)     6(7.6)     3(4.6)      8(6.4)       0.24
 

 

 

6.   Generating an Expression  

      for Derivative. 

   4(2.2)    9(10.8)     0(1.8)    11(9.2)       0.10
 

7.   Interpreting Derivative.   11(8.1)     2(4.9)     4(6.9)     7(4.1)       0.03 

10. Proportionality.     7(5.2)     5(6.8)     3(4.8)     8(6.2)       0.21
 

MC* - A Mathematics Context 

Table 3.9  Study 2 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Correct Action-Perception Category of Explanation (Referred to 

as ‘CAP’) in a Mathematics Context Associated with the Transfer of  Items 1-7 and Item 10 

more so than the Students who Evidenced Other Categories of Explanation (Referred to as 

‘OCE’).  

For the students in Study 1 (shown in Table 3.8) it can be seen that if students 

evidenced a Correct Action-Perception Category of Explanation for the meaning of 

slope in a mathematics context, they associated (p-value less than or equal to 0.05) with 

the transfer of Items 4, 7 and 10, more so than students who evidenced other categories 

of explanation.  

In Study 2 (shown in Table 3.9), students who evidenced a Correct Action-Perception 

Category of Explanation for the meaning of slope in a mathematics context associated 

with the transfer of Item 7 more so than students who evidenced other categories of 

explanation.  
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Q.2    For the students who evidenced a correct, action-perception category of 

explanation for the meaning of slope in the mathematics context for Item 1 

(Categories 1-3 in Study 1 and Categories 1-5 in Study 2), do they associate with 

the correct answering of Items 1-7 and Item 10, in a mathematics context more so 

than the students who did not evidence a correct action-perception category of 

explanation? 

The question was investigated for two reasons: 

1) Items 1-7 and Item 10 were considered to be similar in the sense that they have a 

slope-type element in their makeup. 

2) The correct action-perception categories of explanation evidenced by students in 

both Study 1 and Study 2 could be considered (in terms of Tall’s theory) to be 

reflective of an embodied mathematical object-type understanding of slope. If 

so, it was anticipated that students who evidenced such an explanation may 

associate with the correct answering of Items 1-7 and Item 10 in a mathematics 

context more so than students who evidenced other categories of explanation. 

The results from the contingency tables used to investigate this question are shown in 

Tables 3.10 and 3.11. In these tables, students who evidenced a Correct Action-

Perception Category of Explanation are referred to as CAP, while the Other Categories 

of Explanation are referred to as OCE. 

For the students in Study 1(shown in Table 3.10) it can be seen that if these students 

evidenced a correct action-perception category of explanation for the meaning of slope 

in a mathematics context, they associated (p-value less than or equal to 0.05) with the 

correct answering of Items 7 and 10 in a mathematics context, more so than students 

who evidenced other categories of explanation. 

In Study 2 (shown in Table 3.11), students who evidenced a correct action-perception 

category of explanation for the meaning of slope in a mathematics context appear to 

associate (if borderline significance [0.05 ≤ p-value ≤ 0.1] is accepted), with the 

answering of Items 6 and 7 in a mathematics context.  



86 

 

Thus, in both Studies, if students evidenced a correct action-perception category of 

explanation for the meaning of slope in a mathematics context, they appear to associate 

with the answering of Item 7(interpreting derivative) in a mathematics context, more so 

than students who evidenced other categories of explanation. There was no evidence (p-

values greater than 0.1) of this association for the other items. 

 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

CAP     

in MC* 

and 

Correct 

CAP     

in MC 

and 

Incorrect 

OCE    

in MC 

and 

Correct 

OCE    

in MC 

and 

Incorrect 

1.   Calculating Slope.   14(12.6)   0(1.4)  13(14.4)   3(1.6)      0.23 

2.   Sketching a Line    

      with Positive Slope. 

11(11.7)     3(2.3)  14(13.3)     2(2.7)      0.64 

3.   Sketching a Line  

      with Positive Slope. 

  11(11.2)     3(2.8)  13(12.8)     3(3.2)      1.00 

4.   Sketching a Line  

      with Negative Slope. 

12(10.7)     2(3.2)  11(12.3)     5(3.7)      0.39    

5.   Generating an Expression  

      for Slope. 

  10(9.3)     4(4.7)  10(10.7)     6(5.3)      0.71
 

 

6.   Generating an Expression  

      for Derivative. 

    4(2.8)  10(11.2)    2(3.2)   14(12.8)      0.38
 

7.   Interpreting Derivative.   13(10.3)     1(3.7)    9(11.7)     7(4.3)      0.04 

10. Proportionality.   10(6.1)     4(7.9)    3(6.9)   13(9.1)      0.04
 

MC* - A Mathematics Context 

Table 3.10  Study 1 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Correct Action-Perception Category of Explanation (Referred to 

as ‘CAP’) in a Mathematics Context Associated with the Correct Answering of  Items 1-7 

and Item 10 in a Mathematics Context more so than the Students who Evidenced Other 

Categories of Explanation (Referred to as ‘OCE’).  
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

CAP     

in MC* 

and 

Correct 

CAP     

in MC 

and           

Incorrect 

OCE    

in MC 

and 

Correct 

OCE    

in MC 

and 

Incorrect 

1.   Calculating Slope.   13(12.5)  0(0.5)  10(10.5)   1(0.5)      0.46 

2.   Sketching a Line    

      with Positive Slope. 

11(11.4)    2(1.6)  10(9.6)     1(1.4)      1.00 

3.   Sketching a Line  

      with Positive Slope. 

  11(10.3)    2(2.7)   8(8.7)     3(2.3)      0.63 

4.   Sketching a Line  

      with Negative Slope. 

13(11.9)    0(1.1)   9(10.1)     2(0.9)      0.20    

5.   Generating an Expression  

      for Slope. 

  10(8.7)    3(4.3)   6(7.3)     5(3.7)      0.39
 

 

6.   Generating an Expression  

      for Derivative. 

4(2.2)    9(10.8)   0(1.8)   11(9.2)      0.10
 

7.   Interpreting Derivative.   11(8.7)    2(4.3)   5(7.3)     6(3.7)      0.10 

10. Proportionality.     9(7.0)    4(6.0)   4(6.0)     7(5.0)      0.12
 

MC* - A Mathematics Context 

Table 3.11  Study 2 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Correct Action-Perception Category of Explanation (Referred to 

as ‘CAP’) in a Mathematics Context Associated with the Correct Answering of  Items 1-7 

and Item 10 in a Mathematics Context more so than the Students who Evidenced Other 

Categories of Explanation (Referred to as ‘OCE’).  

 

 

 

 

 

 

 

 



88 

 

Q.3 For the students who evidenced a Category 1, Action-Perception Category of 

Explanation for the meaning of slope in a mathematics context for Item 1 (shown in 

Table 3.7) do they associate with the transfer of Items 1-7 and Item 10 more so than 

the students who evidenced other categories of explanation? 

The question was investigated for two reasons: 

1) The category 1 action-perception category of explanation occurred on ten 

occasions during Study 1 and on three occasions during Study 2. 

2) The inference drawn from such an explanation was that of how these students 

might be visualising or embodying the meaning of slope in terms of Tall’s 

theory. For example, these students might be embodying, for argument sake, a 

slope value of -3, in terms of 3 units down on the y-axis for every 1 unit across 

on the x-axis, as shown in Figure 3.2. If so, it wanted to be seen if such an 

explanation meant that the students associated with transferring Items 1-7 and 

Item 10 (which all contain a slope-type element in their makeup) more so than 

students who evidenced other categories of explanation. 

                                                                             

Figure 3.2 The Inferred Embodied Mathematical Object-Type Understanding of Slope 

Evidenced by Students in Category 1 of Table 3.7. 

 



89 

 

The results from the contingency tables used to investigate this question are shown in 

Tables 3.12 and 3.13. The Category 1 Action-Perception Category of Explanation is 

referred to as C1, while the Other Categories of Explanation are referred to as Other. 

 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

C1       

in MC* 

and 

Transfer 

C1        

in MC 

and No 

Transfer 

Other    

in MC 

and 

Transfer 

Other    

in MC 

and No 

Transfer 

1.   Calculating Slope.    9(8.3)   1(1.7)  16(16.7)   4(3.3)      0.64 

2.   Sketching a Line    

      with Positive Slope. 

8(6.7)     2(3.3)  12(13.3)     8(6.7)      0.42
 

3.   Sketching a Line  

      with Positive Slope. 

8(6.7)     2(3.3)  12(13.3)     8(6.7)      0.42
 

4.   Sketching a Line  

      with Negative Slope. 

8(5.3)     2(4.7)    8(10.7) 12(9.3)      0.06
 

5.   Generating an Expression  

      for Slope. 

7(4.3)     3(5.7)     6(8.7) 14(11.3)      0.06
 

6.   Generating an Expression  

      for Derivative. 

2(1.2)     8(8.8)     2(2.8)  22(21.2)      0.06 

7.   Interpreting Derivative.   10(6.3)     0(3.7)    9(12.7)   11(7.3)      0.00 

10. Proportionality.     7(3.7)     3(6.3)    4(7.3)   16(12.7)      0.02
 

MC* - A Mathematics Context 

Table 3.12  Study 1 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Category 1 Action-Perception Category of Explanation 

(Referred to as ‘C1’) in a Mathematics Context Associated with the Transfer of  Items 1-7 

and Item 10 more so than the Students who Evidenced Other Categories of Explanation 

(Referred to as ‘Other’).  
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

C1       

in MC* 

and 

Transfer 

C1        

in MC 

and No 

Transfer 

Other    

in MC 

and 

Transfer 

Other    

in MC 

and No 

Transfer 

1.   Calculating Slope.  3(2.4)  0(0.6)   6(16.6)     5(4.4)      1.00 

2.   Sketching a Line    

      with Positive Slope. 

   3(1.7)    0(1.3)  11(12.2)    10(8.8)      0.24
 

3.   Sketching a Line  

      with Positive Slope. 

3(1.6)    0(1.4)  10(13.4)    11(9.6)      0.22
 

4.   Sketching a Line  

      with Negative Slope. 

   3(1.8)    0(1.1)  12(13.1)     9(7.9)      0.27
 

5.   Generating an Expression  

      for Slope. 

   3(1.3)    0(1.7)     7(8.8)   14(12.2)      0.06
 

6.   Generating an Expression  

      for Derivative. 

   2(0.5)    1(2.5)     2(3.5)   19(17.5)      0.06
 

7.   Interpreting Derivative.   3(1.8)    0(1.1)  12(13.1)     9(7.9)      0.27 

10. Proportionality.   3(1.4)    0(1.6)     8(9.6)   13(11.4)      0.08
 

MC* - A Mathematics Context 

Table 3.13  Study 2 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Category 1 Action-Perception Category of Explanation 

(Referred to as ‘C1’) in a Mathematics Context Associated with the Transfer of  Items 1-7 

and Item 10 more so than the Students who Evidenced Other Categories of Explanation 

(Referred to as ‘Other’).  

 

Looking at Table 3.12, for students in Study 1 who gave—what was interpreted as—an 

embodied mathematical explanation for the meaning of slope, they were more likely to 

transfer Items 4, 5, 7 and 10, compared with the students who did not evidence an 

embodied mathematical explanation. It should be noted that the p-values for Items 4 and 

5 are borderline (0.05 ≤ p-value ≤ 0.1). 

In Study 2 (shown in Table 3.13), Items 5, 6 and 10 were deemed to have been 

transferred by students evidencing an embodied mathematical explanation for the 

meaning of slope more so than students who did not, even though the p-values were 

borderline. The p-values for Items 4 and 7 (items which were transferred in Study 1), in 
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addition to the p-values for Items 1-3, suggest that the likelihood of transferring these 

items, if a student evidenced an embodied mathematical explanation for the meaning of 

slope was no greater than if a student did not evidence an embodied mathematical 

explanation. However, in Study 2, the sample was smaller (24 participants as opposed 

to 30). Moreover, looking at columns three and four of Table 3.13, it can be seen that 

there were only three students who evidenced the embodied mathematical explanation 

for the meaning of slope in a mathematics context. Interestingly though, all of these 

students transferred every item—apart from one of the three students who did not 

transfer Item 6. Thus, if the sample size was larger, statistically-significant transfer 

might have been observed. 

 

Q.4 For the students who evidenced a Category 1, Action-Perception Category of 

Explanation for the meaning of slope in a mathematics context for Item 1 (shown 

in Table 3.7) do they associate with the correct answering of Items 1-7 and Item 

10 in a mathematics context more so than the students who evidenced other 

categories of explanation? 

The question was investigated for reasons similar to the investigation of question three. 

The results from the contingency tables used to investigate this question are shown in 

Tables 3.14 and 3.15. The Category 1 Action-Perception Category of Explanation is 

referred to as C1, while the Other Categories of Explanation are referred to as Other. 
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

C1        

in MC* 

and 

Correct 

C1        

in MC 

and 

Incorrect 

Other    

in MC 

and 

Correct 

Other    

in MC 

and 

Incorrect 

1.   Calculating Slope.   10(9.0)   0(1.0)  17(8.0)    3(2.0)      0.53 

2.   Sketching a Line    

      with Positive Slope. 

   8(8.3)     2(1.7)  17(16.7)      3(3.3)      1.00 

3.   Sketching a Line  

      with Positive Slope. 

    8(8.0)     2(2.0)  16(16.0)      4(4.0)      1.00 

4.   Sketching a Line  

      with Negative Slope. 

    9(7.7)     4(2.3)  14(15.3)      6(4.7)      0.37    

5.   Generating an Expression  

      for Slope. 

    9(6.7)     1(3.3)  11(13.3)      9(6.7)      0.10
 

 

6.   Generating an Expression  

      for Derivative. 

    3(2.0)     7(8.0)     3(4.0)   17(16.0)      0.37
 

7.   Interpreting Derivative.   10(7.3)     0(2.7)  12(14.7)     8(5.3)      0.03 

10. Proportionality.     7(4.3)     3(5.7)     6(8.7)   14(11.3)      0.06
 

MC* - A Mathematics Context 

Table 3.14  Study 1 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Category 1 Action-Perception Category of Explanation 

(Referred to as ‘C1’) in a Mathematics Context Associated with the Correct Answering of  

Items 1-7 and Item 10 in a Mathematics Context more so than the Students who Evidenced 

Other Categories of Explanation (Referred to as ‘Other’).  
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 Mathematical Item Observed Frequencies and Expected 

Frequencies (in parentheses) in the 

Contingency Table. 

Transfer 

(p-values) 

C1        

in MC* 

and 

Correct 

C1        

in MC 

and 

Incorrect 

Other    

in MC 

and 

Correct 

Other    

in MC 

and 

Incorrect 

1.   Calculating Slope.  3(2.8)   0(0.1)  20(20.1)   1(0.8)     1.00 

2.   Sketching a Line    

      with Positive Slope. 

3(2.6)     0(0.4)  18(18.4)     3(2.6)     1.00 

3.   Sketching a Line  

      with Positive Slope. 

   3(2.4)     0(0.6)  16(16.6)     5(4.4)     1.00 

4.   Sketching a Line  

      with Negative Slope. 

   3(2.8)     0(0.3)  19(19.2)     2(1.8)     1.00    

5.   Generating an Expression  

      for Slope. 

   3(2.0)     0(1.0)  13(14.0)     8(7.0)     0.53
 

 

6.   Generating an Expression  

      for Derivative. 

   2(0.5)     1(2.5)    2(3.5)   19(17.5)     0.06
 

7.   Interpreting Derivative.    3(2.0)     0(1.0)  13(14.0)     8(7.0)     0.53 

10. Proportionality.    3(1.62)     0(1.4)  10(11.4)   11(9.6)     0.22
 

MC* - A Mathematics Context 

Table 3.15  Study 2 Results from the Contingency Tables Used to Investigate Whether 

Students who Evidenced a Category 1 Action-Perception Category of Explanation 

(Referred to as ‘C1’) in a Mathematics Context Associated with the Correct Answering of  

Items 1-7 and Item 10 in a Mathematics Context more so than the Students who Evidenced 

Other Categories of Explanation (Referred to as ‘Other’).  

 

Table 3.14, for the students in Study 1, suggests that the students who evidenced a 

category 1, action-perception category of explanation for the meaning of slope, did not 

associate with the answering of Items 1-6 in a mathematics context any more so than the 

students who did not evidence this type of explanation. However, for Items 7 and 10, 

students did associate with answering them correctly if they evidenced the category 1 

action-perception category of explanation: was this the case for the students in Study 2? 

Looking at Table 3.15, this did not seem to be the case for Study 2. However, it should 

be noted that for the three students who evidenced a category 1 action-perception 

category of explanation, all of these students answered Items 7 and 10 correctly in a 
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mathematics context despite the fact that this was not found to be significant; perhaps 

the smaller sample size in Study 2 was the reason. 

Summary: 

Q.1  For the students who evidenced a Correct Action-Perception Category of 

Explanation for the meaning of slope in the mathematics context for Item 

1(Categories 1-3 in Study 1 and Categories 1-5 in Study 2), do they associate with 

the transfer of Items 1-7 and Item 10 more so than the students who did not 

evidence a Correct Action-Perception Category of Explanation?  

• In Study 1, students who evidenced this category of explanation were likely to 

transfer Items 4, 7 and 10 more so than other students. In Study 2, the students 

who evidenced this category of explanation were likely to transfer Item 7 more 

so than other students. Thus, across both studies, students who evidenced this 

category of explanation were likely to transfer Item 7 (interpreting derivative). 

Q.2 For the students who evidenced a Correct, Action-Perception Category of 

Explanation for the meaning of slope in the mathematics context for Item 1 

(Categories 1-3 in Study 1 and Categories 1-5 in Study 2), do they associate with 

the correct answering of Items 1-7 and Item 10, in a mathematics context more so 

than the students who did not evidence a Correct Action-Perception Category of 

Explanation? 

• In Study 1, students who evidenced this category of explanation were likely to 

answer correctly Items 7 and 10 in a mathematics context more so than other 

students. In Study 2, the students who evidenced this category of explanation 

were likely to answer correctly Items 6 and 7 in a mathematics context more so 

than other students if borderline significance is accepted (0.05 ≤ p-value ≤ 0.1). 

Thus, across both studies, students who evidenced this category of explanation 

were likely to answer correctly Item 7 (interpreting derivative) in a mathematics 

context. 
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Q.3 For the students who evidenced a Category 1, Action-Perception Category of 

Explanation for the meaning of slope in a mathematics context for Item 1 (shown in 

Table 3.7) do they associate with the transfer of Items 1-7 and Item 10 more so than 

the students who evidenced other categories of explanation? 

• In Study 1, students who evidenced this category of explanation were likely to 

transfer Items 7 and 10, and Items 4 and 5 more so than other students, if 

borderline significance is accepted (0.05 ≤ p-value ≤ 0.1). In Study 2, the 

students who evidenced this category of explanation were likely to transfer 

Items 5, 6 and 10 more so than other students, if borderline significance is 

accepted (0.05 ≤ p-value ≤ 0.1). Thus, across both studies, students who 

evidenced this category of explanation were likely to transfer Item 5 (generating 

an expression for slope) and 10 (proportionality) more so than other students, if 

borderline significance is accepted. 

Q.4 For the students who evidenced a Category 1, Action-Perception Category of 

Explanation for the meaning of slope in a mathematics context for Item 1 (shown in 

Table 3.7) do they associate with the correct answering of Items 1-7 and Item 10 in 

a mathematics context more so than the students who evidenced other categories of 

explanation? 

• In Study 1, students who evidenced this category of explanation were likely to 

answer correctly Items 7 and 10 in a mathematics context more so than other 

students. In Study 2, the students who evidenced this category of explanation 

were found not likely to answer correctly any of the items in a mathematics 

context more so than other students.  

The findings from these questions inevitably raised the question as to how do the 

findings fare in the context of existing mathematics-educational literature? Previous 

literature highlights the importance of a deep understanding of slope. [75, 76, 77, 78].  

Aspinwall and Miller [75] argue that a concept image of slope, and indeed derivative, 

that is limited to a representation involving the manipulation of a formula, could mean 

that students will find it difficult to understand instantaneous rates of change. As can be 

seen from the questions raised (Questions 1-4) it was found that the students who 
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evidenced a correct action-perception category of explanation for slope tended to 

associate with the answering of the item on the interpretation of the meaning of 

derivative (Item 7) in a mathematics context, and also with the transfer of this item. 

Gordon [76] found that students who had trouble in interpreting the meaning of slope 

also had trouble using the general formula for the equation of a line: y = mx + c, for 

predictive questions. For example, when students were faced with the following 

question: 

Brookville College enrolled 2546 student in 1996 and 2702 students in 1998. Assume 

the enrolment follows a linear growth pattern. 

(a) Write a linear equation that gives the enrolment in terms of the year t (let t = 

0 represent 1996). 

 (b) If the trend continues, what will the enrolment be in the year 2016? 

 (c) What is the slope of the line you found in part (a)? 

(d) Explain, using an English sentence, when will the enrolment reach 3500 

students? 

 (e) If the trend continues, when will the enrolment reach 3500 students? 

those students which had trouble in answering part (d), also had trouble in answering 

part (b) and part (e) — the predictive questions. None of the items in this research 

probed students’ understanding of the general formula for the equation of a line or the 

students’ ability to answer predictive questions. The same author also argued, like 

Aspinwall and Miller [75], that without an understanding of slope, students will have 

difficulty—if not, be unable—to interpret the significance of the meaning of the 

derivative of a function.  

Again, echoing the findings of Questions 1 and 3, Lobato [34] states that children 

transfer most successfully when they understand events at a causal level, rather than 

simply memorising them. Clearly, a deep understanding of slope is important. Is such 

an understanding taken to be one which is indicative of a correct action-perception 

category of explanation in terms of Tall’s theory? 
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Previous work [76] has found, as supported by the findings in Table 3.5 of this study, 

that most students can calculate slope with little difficulty. However, in terms of 

interpreting the significance of the slope value, research indicates that students interpret 

the meaning of slope as a difference (the difference in y-values divided by the 

difference in x-values) rather than a ratio of differences — more specifically, the ratio 

of the change in value of the dependent variable, for each one unit change in the 

corresponding independent variable [42, 68, 77]. If the latter type of explanation 

indicates a deep understanding of slope, then it may not be surprising why so few 

students evidenced it during both Study 1 and Study 2, as can be seen from Tables 3.6 

and 3.7. 

Stump [78] found that only one student gave a specific numerical response for the 

meaning of slope, a response—from Stump’s perspective—indicative of realising that 

‘m’ is the ratio of the change in values of the dependent variable for each one unit 

change in the corresponding independent variable. The response was as follows: “say up 

1, over . . .” Interestingly, Stump also found that students could mention ratios and rates 

in their responses for what a slope value means without using any specific numbers—

perhaps the usage of the words ‘ratios’ and ‘rates’, by these students, were used without 

any deep understanding of what these words stand for in the context of explaining the 

meaning of slope. Such uncertainty was the reason why it was decided to classify 

students in Categories 2-3 for Study 1, and students in Categories 2-5 for Study 2 (as 

seen in Table 3.7), as evidencing a correct action-perception category of explanation for 

the meaning of slope, and thus ask Questions 1 and 2. 

The findings of this study, and the literature on slope, suggested that students’ 

understanding of slope must be improved. In the Intervention Chapter, Section 5.2.2.1, 

it can be seen that students’ attention was directed, in visual terms, to a unit per unit 

comparison as to what it is a slope value means. Simply focusing on the calculation of 

the quotient in the slope formula does not suffice in ensuring that students interpret 

slope as a ratio [34]. Also, Lobato [68] puts forward the case for directing students’ 

attention to the co-ordination of co-varying quantities, for to do so, will mean that 

students are more likely to generalise slope as a ratio.  
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3.5.2 Item 2—Sketching a Line with Positive Slope 

  Item 2: Sketching a Line with Positive Slope 

Mathematics Context Chemistry Context 

     L1 as shown in Figure 1, passes through 

the Point ‘P’ and has a slope = 2.  

     The Line L1 in Figure 1 shows the graph 

of the concentration of product with 

respect to time over a certain time 

interval (∆t ). It has a value for the rate 

of change = 3. 

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L2) that 

passes through the point P and has 

slope = 3. 

(A) Sketch in Figure 1: a line (L2) that 

passes through the point P and has a 

value for the rate of increase of the 

product with respect to time = 4.  

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.3 Item 2 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

2. Sketching a Line with  

Positive Slope. 

83% 92% 70% 63% 

               Table 3.16 Students’ Performance for Item 2 in the Main Study. 
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Item 2 requires students to interpret a value for slope (or rate of change in a chemistry 

context) and sketch what this value represents graphically. Therefore, the item in both 

contexts could be considered to be similar to movement from Tall’s 2
nd

 World to 1
st
 

World. The percentage of students in both studies who answered the item correctly in a 

mathematics context can be seen in Table 3.16. Thus, the students who answered 

correctly demonstrated that they could competently translate a value for slope/rate of 

change, into an ‘embodied mathematical object’. The categories of explanation for the 

students who answered the item correctly in Study 2 are shown in Table 3.17. The Part 

B responses for the students who answered the item incorrectly in Study 2 are shown in 

Table 3.18 in tandem with the graphs these students drew for Part A. The graphs that 

the incorrect students drew in Study 1 are also shown in Table 3.18.   

  Item 2: Sketching a Line with Positive Slope                                                               

For the Students who Sketched the Line Correctly in a Mathematics Context 

Study 2 

Category No. Exp. Tall.  

1.  Because the slope is 3, the line will 

increase at a steeper angle. 

1 ATE AP 

2.  L2 has a greater slope, so its rate of 

increase will be higher, therefore the line 

will be steeper. 

10 ATE AP 

3.  In L1, the rate of increase of y with 

respect to x is 2. In L2, it is higher (3), 

which implies a steeper slope. 

2 ATE AP 

4.  Higher gradient than L1 3 ATE AP 

5.  More increasing than L1 as L2 has a 

higher slope. 

2 ATE AP 

6.  Tan-1 3 = 71.56◦ 1 ATE AP 

7.  Slope is sharper; quicker change;                

     larger=
∆

x

y
. 

2 ATE AP 

Table 3.17 The Correct Students’ Categories of Explanation for Item 2 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to Explain; 

Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception). 
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  Item 2: Sketching a Line with Positive Slope 

For the Students who Sketched the Line Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.   

 
 

3 IATE AP 1.  Refer to L2 passing 

through P and as 

increasing from L1. 

 

 

1 IATE AP 

2.   

 

1 IATE AP 2.  Refer to the line 

being steeper when 

the slope value is 

smaller. 

 

 

2 IATE AP 

3.  No graph drawn. 1 IATE N/A     

Table 3.18. The Incorrect Students’ Categories of Explanation for Item 2 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception). 

 

Looking at Table 3.17, for the students who answered the item correctly in Study 2, all of 

these students evidenced an ability to explain their answer, and were deemed to have 

evidenced an action-perception category of explanation in terms of Tall’s theory. The most 

frequent of these categories of explanation was that of referring to the rate of increase for L2 

as greater than for L1 (Category 2). In Table 3.18, the incorrect students demonstrated that 

they clearly were unable to interpret the value for the slope and sketch what this value 

meant. However, because the incorrect students in Categories 1 and 2 in both Study 1 and 

Study 2 drew a graph, the categories were deemed to be evidence of an action-perception 

category of explanation in terms of Tall’s theory, albeit an incorrect action-perception 

category of explanation. Interestingly, two of the students in Category 2 of Study 2, 

articulated that a line is steeper when its slope value is ‘lower’. 
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3.5.3 Item 3—Sketching a Line with Positive Slope 

  Item 3: Sketching a Line with Positive Slope 

Mathematics Context Chemistry Context 

       L1 as shown in Figure 1, passes through   

the Point ‘P’ and has a slope = 2.  

     The Line L1 in Figure 1 shows the graph 

of the concentration of product with 

respect to time over a certain time 

interval (∆t ). It has a value for the rate 

of change = 3. 

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L3) that 

passes through the point P and has 

slope = 1. 

(A) Sketch in Figure 1: a line (L3) that 

passes through the point P and has a 

value for the rate of increase of the 

product with respect to time = 1.  

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.4 Item 3 Used in the Main Study. 

 

                      

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

3. Sketching a Line with  

Positive Slope. 

80% 87% 70% 58% 

               Table 3.19 Students’ Performance for Item 3 in the Main Study. 
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Similar to Item 2, Item 3 requires students to interpret a value for slope (or rate of 

change in a chemistry context) and sketch what it represents graphically. Therefore, like 

Item 2, the item in both contexts could be considered to be similar to movement from 

Tall’s 2
nd

 World to 1
st
 World. The percentage of students in both studies who answered 

the item correctly in a mathematics context can be seen in Table 3.19. Thus, the students 

who answered correctly demonstrated that they could competently translate a value for 

slope/rate of change, into an ‘embodied mathematical object’. The categories of 

explanation for the students who answered the item correctly in Study 2 are shown in 

Table 3.20. The categories of explanation for the students who answered the item 

incorrectly in Study 2 are shown in Table 3.21 in tandem with the graphs these students 

drew. The graphs that the incorrect students drew for Part A in Study 1 are also shown 

in Table 3.21.   

Looking at Table 3.20, for the students who answered the item correctly in Study 2, all 

of these students — bar one — evidenced an ability to explain their answer, and were 

deemed to have evidenced an action-perception category of explanation in terms of 

Tall’s theory. The most frequent of these categories of explanation was that of referring 

to the slope of L3 as less steep (Category 6). The second most frequent categories of 

response were: Category 3; referring to the rate of increase of L3 as less when compared 

with the rate of increase for L1 and Category 5; referring to the gradient of L3 as less 

when compared with the gradient of the line L2 which they drew in Item 2. 

Interestingly, the explanation: less change in y per x-value (Category 1) was similar to 

the Category 1 Action-Perception Category of Explanation, observed for Item 1 (as can 

be seen in Table 3.7). 

In Table 3.21, the incorrect students demonstrated that they clearly were unable to 

interpret the value for the slope and sketch what this value meant for the line in 

question. However, because the students in Categories 1-3 in Study 1 and in Categories 

1-4 in Study 2 drew a graph, the categories were deemed to be evidence of an action-

perception category of explanation in terms of Tall’s theory, albeit an incorrect action-

perception category of explanation. Two of the students in Category 3 of Study 2, 

articulated that a line is steeper when its slope value is ‘lower’. These students were the 

same students who provided the same category of explanation for Item 2 in Study 2. 
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  Item 3: Sketching a Line with Positive Slope                                                               

For the Students who Sketched the Line Correctly in a Mathematics Context 

Study 2 

Category No. Exp. Tall.  

1.  Less change in y per x-value 1 ATE AP 

2.  The line will decrease at a less steeper 

angle than the +2 line. 

 

1 ATE AP 

3.  It has a lower slope so its rate of increase 

is lower, therefore the line will be less 

steep. 

3 ATE AP 

4.  +1 so it again goes up from left to right 

and is more gradual than L1 and L2. 

2 ATE AP 

5.  Lesser gradient than that for L2. 3 ATE AP 

6.  L3; slope is less; should be less steep. 4 ATE AP 

7.  L3 has lower slope so increases slower 

than L1 and L2. 

1 ATE AP 

8.  The line (L3) passes through P, but has a 

lower slope of +1. 

1 ATE AP 

9.  Because slope is +1, the degree of 

incline of L3 should be smaller than L1; 

and because L3 must pass ‘p’, the y-

intercept must change again to 

accommodate for this. 

1 ATE AP 

10. Its slope is lower so the line has a 

shallower rise as the values for y are 

lower and/or the x-values are higher. 

1 ATE AP 

11. No reason 1 IATE AP 

Table 3.20 The Correct Students’ Categories of Explanation for Item 3 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

Explain; IATE—Inability to Explain; Tall. — degree of explanation in terms of Tall’s 

theory; AP—action-perception). 
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  Item 3: Sketching a Line with Positive Slope 

For the Students who Sketched the Line Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1. 

 
 

2 IATE AP 1.  Refer to L3 passing 

through P and 

increasing but not as 

far as L1. 

 

1 IATE AP 

2.   

 

1 IATE AP 2.  Refer to L3 as lying 

beneath +2 as its 

slope is not as steep. 

 

1 IATE AP 

3. 

 

1 IATE AP 3.  Refer to L3 as steeper 

which means it has a 

lower slope than L1. 

 

2 IATE AP 

4.  No graph drawn. 2 IATE N/A 4. Refer to Tan 45
◦
=1 

 

1 IATE AP 

Table 3.21.The Incorrect Students’ Categories of Explanation for Item 3 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception). 
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3.5.4 Item 4 — Sketching a Line with Negative Slope 

       

  Item 4: Sketching a Line with Negative Slope 

Mathematics Context Chemistry Context 

     L1 as shown in Figure 1 passes through 

the Point ‘P’ and has a slope = 2.  

   The line in Figure 1 shows the graph of 

concentration of reactant with respect to 

time over a certain interval (∆t) . Its rate 

of decrease over this interval is equal to 2.  

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L4) that 

passes through the point P and has 

slope = -1. 

(A) Sketch in Figure 1: a line (L4) that 

passes through the point P and has a 

value for the rate of decrease of the 

reactant with respect to time = 1.  

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.5 Item 4 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

4. Sketching a Line with  

Negative Slope. 

77% 96% 53% 63% 

               Table 3.22 Students’ Performance for Item 4 in the Main Study. 
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Similar to Items 2 and 3, Item 4, requires students to interpret a value for slope (or rate 

of change in a chemistry context) and sketch what it represents graphically. Therefore, 

like Items 2 and 3, the item in both contexts could be considered to be similar to 

movement from Tall’s 2
nd

 World to 1
st
 World. The percentage of students in both 

studies who answered the item correctly in a mathematics context is shown in Table 

3.22. Thus, like for Items 2-3, certain students evidenced that they could not 

competently translate a value for slope/rate of change, into an ‘embodied mathematical 

object’. The categories of explanation for the students who answered the item correctly 

in Study 2 are shown in Table 3.20. The categories of explanation for the students who 

answered the item incorrectly in Study 2 are shown in Table 3.23 in tandem with the 

graphs these students drew. The graphs that the incorrect students drew for Part A in 

Study 1 are also shown in Table 3.24.   

Looking at Table 3.23, for the students who answered the item correctly in Study 2, all 

of these students in Categories 1-6 were deemed to have evidenced an ability to explain, 

and to have evidenced a correct action-perception category of explanation in terms of 

Tall’s theory. The most frequent of these categories (Category 5) was that of referring to 

the slope of L4 as a reversed gradient because it [the slope value] is negative. 

Interestingly, the explanation: decrease in y per x-value (Category 1) was provided by 

the same student who provided the explanation: less change in y per x-value when they 

answered Item 3 correctly, as can be seen in Category 1 of Table 3.20.  

The students in Categories 7-11 were deemed to have evidenced an inability to explain, 

and to have evidenced an incorrect action-perception category of explanation in terms of 

Tall’s theory. The most frequent of these categories of explanation (Category 7) was 

that of referring to the slope of L4 as decreasing, suggesting that the students do not 

have a deep understanding of the meaning of slope, or perhaps they do, and this 

explanation was just a figure of speech.  

In Table 3.24, the incorrect students demonstrated that they clearly were unable to 

interpret the value for the slope and sketch what this value meant for the line in 

question. However, because the students in Categories 1-3 in Study 1 and the student in 

Category 1 in Study 2 drew a graph, the categories were deemed to be evidence of an 
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action-perception category of explanation in terms of Tall’s theory, albeit incorrect 

action-perception categories of explanation.  

 Item 4: Sketching a Line with Negative Slope                                                               

For the Students who Sketched the Line Correctly in a Mathematics Context 

Study 2 

Category No. Exp. Tall.  

1.  Decrease in y for increase in x. 1 ATE AP 

2.  When slope is minus, the rate of change 

is a decrease. 

 

1 ATE AP 

3.  Would have the same angle as L3, only 

inverted as slope is negative. 

2 ATE AP 

4.  Negative slope, so is decreasing at the 

same rate as L3 is increasing. 

1 ATE AP 

5.  Reversed gradient as its negative. 4 ATE AP 

6.  Negative slope implies: NE� SW 1 ATE AP 

7.  The slope of the line will be decreasing. 8 IATE AP 

8.  The slope is negative and must have a 

negative value on either axis at some 

point. 

1 IATE AP 

9.  Point 2 is before point p. The x2-x1 value 

is negative, giving the slope a negative 

answer. 

1 IATE AP 

10. Slope is decreasing as it’s a negative 

value i.e., the degree of incline must be 

smaller than zero. Also, the y-intercept 

must change to accommodate for this. 

1 IATE AP 

11. No reason 1 IATE AP 

Table 3.23 The Correct Students’ Categories of Explanation for Item 4 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

Explain; IATE—Inability to Explain; Tall. — degree of explanation in terms of Tall’s 

theory; AP—action-perception). 
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  Item 4: Sketching a Line with Negative Slope 

For the Students who Sketched the Line Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1. 

 
 

1 IATE AP 1.  Refer to L4 as 

decreasing but still 

passing through P. 

 

1 IATE AP 

2.   

 

2 IATE AP 2.  Provide no drawing 

and no reasoning. 

1 IATE N/A 

3. 

 

1 IATE AP     

4.  No graph or 

reasoning provided  

3 IATE N/A     

Table 3.24.The Incorrect Students’ Categories of Explanation for Item 4 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 
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3.5.5 Item 5—Generating an Expression for Slope 

  Item 5: Generating an Expression for Slope 

Mathematics Context Chemistry Context 

(A)  Using the notation in the diagram in 

Figure 1, write down an expression for 

the slope of a line connecting B-C. 

(A) Figure 1 shows the change of 

concentration of product (P) over time 

(t). Using the notation in the diagram, 

write down an expression for the average 

rate of change of product (P) between B 

and C. 

  
                Figure 1                    Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.6 Item 5 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

5. Generating an Expression 

for Slope. 

66% 67% 53% 42% 

               Table 3.25 Students’ Performance for Item 5 in the Main Study. 

 

Item 5 requires students to recall the embodied mathematical object-type image for 

slope (or average rate of change in a chemistry context), and then symbolise this image 

appropriately. Therefore, the item in both contexts could be considered to resonate with 

movement from Tall’s 1
st
 World to 2

nd
 World. The percentage of students in both 
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studies who answered the item correctly in a mathematics context can be seen in Table 

3.25. Thus, many students could not competently recall the embodied mathematical 

object-type image for slope/rate of change, and then translate this image into the 

symbols which represent it. The categories of explanation provided by the students who 

answered the item correctly in Study 2 are shown in Table 3.26. The categories of 

explanation provided by the students who answered the item incorrectly in Study 2 are 

shown in Table 3.27; the incorrect students’ responses for Part A in Study 1 are also 

shown in this table. 

  Item 5: Generating an Expression for Slope                                                               

For the Students who Answered Correctly in a Mathematics Context 

Study 2 

Category No. Exp. Tall.  

1.  Slope is the difference of the y-values 

divided by the difference of the x-values. 

4 ATE PA 

2.  The slope equation: 
12

12

xx

yy

−

−
simplifies to              

     
∆x

∆y
. 

2 ATE PA 

3.  Slope formula is:  

              
∆x

∆y

xx∆x

yy∆y

xx

yy

12

12 =
−+

−+
=

−

−
 

7 ATE PA 

4.  Slope = 
∆x

∆y

xinChange

yinChange

xx

yy

12

12 ==
−

−
 

2 ATE PA 

5.  No reason. 1 IATE PA 

Table 3.26 The Correct Students’ Categories of Explanation for Item 5 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

Explain; IATE—Inability to Explain; Tall. — degree of explanation in terms of Tall’s 

theory; PA—perception-action). 

 

Looking at Table 3.26, for the students who answered the item correctly in Study 2, all 

of these students in Categories 1-4 were deemed to have evidenced an ability to explain, 

and to have evidenced a correct perception-action category of explanation in terms of 

Tall’s theory. The most frequent of these categories (Category 3) was that of referring to 

the slope formula in order to explain how to generate an expression for slope. The 

second most frequent category (Category 1) was that of referring to slope as the 
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difference of the y-values divided by the difference of the x-values.  The student in 

Category 5 provided no reason despite answering Part A correctly. They were deemed 

to have evidenced an inability to explain, but as having evidenced a perception-action 

category of explanation in terms of Tall’s theory because they demonstrated this when 

they answered Part A correctly. 

 Item 5: Generating an Expression for Slope 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  m = 1 IATE PA 
1.  The equation:

cx

by

1

1

−

−
 

would give values 

that include B & C, 

that would give the 

slope of a line. 

 

1 IATE PA 

2.  ∆y∆x +  1 IATE PA 2.   ∆x is the relative 

change in respect to 

∆y (the change of y); 

x, y factor of change. 

1 IATE PA 

3.  
∆xx

∆yy

+

+
 

1 IATE PA 3.  Differentiation 

implies finding slope 

1 IATE PA 

4.  
∆y

∆x
 

1 IATE PA 
4.   m= 

yx

∆yy∆xx

−

+−+
 

1 IATE PA 

5. 
x-∆x)(x

y-∆y)(y

+

+
 

1 IATE PA 5.  Refer to the two 

points corresponding 

to two points on the 

graph, so the slope 

can be worked out to 

be those two points. 

1 IATE PA 

6.  derivative;
dx

dy
 

1 IATE PA 6.  Did not answer Part 

A or provide a reason 

in Part B. 

3 IATE N/A 

7.  
y-∆y)(y

x-∆x)(x

+

+
 

1 IATE PA     

8.  Did not answer Part 

A or provide a reason 

in Part B. 

3 IATE N/A     

Table 3.27 The Incorrect Students’ Categories of Explanation for Item 5 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; PA—perception-action; 

N/A—not applicable). 
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In Table 3.27, for Study 2, the incorrect students’ categories of explanation evidenced 

that these students could not explain how the embodied mathematical object-type image 

for slope, in a mathematics context, can be symbolised appropriately. Despite this 

inability to explain, the students’ categories of explanation were each classified as 

perception-action in terms of Tall’s theory, albeit incorrect perception-action categories 

of explanation.  

The incorrect students’ responses to Part A in Item 1 for Study 1, also demonstrated that 

they were unable to recall the embodied mathematical object-type image for slope in a 

mathematics context and symbolise it appropriately. However, because these students 

attempted to symbolise an expression for slope, they were considered to have evidenced 

a perception-action category of explanation in terms of Tall’s theory, even though these 

categories were incorrect perception-action categories of explanation.  

The percentage of students who answered Item 5 correctly in a mathematics context, in 

both studies, in comparison to the higher percentage of the same students who could 

answer Items 1-4, raises the question of why this is so. Perhaps, with respect to Item 1, 

correctly performing ‘actions on the symbols relevant to calculating slope’ is easier for 

the students in comparison to moving from an embodied mathematical object-type 

understanding of slope to a symbolic one (Item 5). However, such a claim is at odds 

with the findings for Items 2-4, which all required actions to be linked with embodied 

mathematical objects in the form of a graph. Even though the correct response rates for 

each of Items 2-4 were less compared to Item 1, they were still greater than the correct 

response rate for Item 5. Perhaps, through familiarity, students can remember the 

answer for Items 2-4, in terms of the shape of the appropriate graph—or hazard a guess? 

Or perhaps the students considered Items 1-5 to be similar, and by the time they 

answered Item 5, they had lost interest. 
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3.5.6 Item 6—Generating an Expression for Derivative 

  Item 6: Generating an Expression for Derivative 

Mathematics Context Chemistry Context 

       Using the notation in the diagram in 

Figure 1, write down an expression for 

the slope of a line connecting B-C. 

      Figure 1 shows the change of 

concentration of product (P) over time 

(t). Using the notation in the diagram, 

write down an expression for the average 

rate of change of product (P) between B 

and C. 

  
               Figure 1                    Figure 1 

  (A) Using your answer, explain how you 

could generate the derivative 








dx

dy
at B. 

(A) Using your answer, explain how you 

could generate the instantaneous rate of 

change 








dt

dP
at B. 

  Figure 3.7 Item 6 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

6. Generating an Expression 

for Derivative. 

20% 17% 26% 33% 

               Table 3.28 Students’ Performance for Item 6 in the Main Study. 
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Item 6 in the mathematics context requires students to explain the generation of the 

derivative at the point in question, in one of either two ways: 1) state that finding the 

limit of the quotient 
∆x

∆y
 as ∆x approaches zero and the related∆y approaches zero, 

produces a value for the slope of the tangent/derivative at the point B; or 2) state that the 

derivative can be found by finding the slope of a tangent at the point B. In a similar 

vein, in a chemistry context, the same type of explanations could be evidenced in 

respect of how the instantaneous rate of change 
dt

dP
 is generated. 

Therefore, the item in both contexts could be considered to be similar to movement 

from Tall’s 1
st
 World to 2nd World. The percentage of students in both studies who 

answered the item correctly in a mathematics context can be seen in Table 3.28. Thus, 

many students demonstrated that they could not competently recall the embodied 

mathematical object for derivative/instantaneous rate of change, and describe, in 

symbolic terms, how such an object is generated. The categories of explanation for the 

students who answered the item correctly in Study 1 and Study 2 are shown in Table 

3.29. The categories of explanation for the students who answered the item incorrectly 

in Study 1 and Study 2 are shown in Table 3.30. 

  Item 6: Generating an Expression for Derivative 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to 

differentiating. 

2 ATE PA 1.  The instantaneous 

rate has to be 

obtained. This is the 

rate of change of y 

with respect to x at a 

point P. 

1 ATE PA 

2.  Refer to finding the 

slope of a tangent at 

the point. 

4 ATE PA 2.  Find the slope of the 

tangent to the curve 

at B. 

3 ATE PA 

Table 3.29 The Correct Students’ Categories of Explanation for Item 6 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to Explain; 

Tall. — degree of explanation in terms of Tall’s theory; PA—perception-action). 
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Looking at Table 3.29, for the students who answered the item correctly in both studies, 

the categories of explanation which reflected these students’ responses, were each 

deemed to be reflective of a perception-action category of explanation in terms of Tall’s 

theory. The most frequent of these categories (Category 2) which emerged in both 

studies was that of referring to finding the slope of the tangent to the curve at B.  

  Item 6: Generating an Expression for Derivative 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Allude to what a 

derivative is but not 

how to generate it. 

3 

 

IATE PA 
1.  Bat

dx

dy

x∆xx

y∆yy
=

−+

−+
 

5 IATE PA 

2.  Refer to Integration 1 IATE PA 2.  Refer to filling the 

point B into the 

equation for the slope. 

1 IATE PA 

3.  Do not know. 1 IATE N/A 
3.  

12

12

xx

yy

−

−
 

1 IATE PA 

4.  Do not remember. 2 IATE N/A 4.  At B, go across to the 

y-axis to find dy, then 

down to the x-axis to 

find dx. 

1 IATE PA 

5.  Refer to substituting 

∆y  with the y-value 

at B and the ∆x with 

x-value at B. 

3 IATE N/A 5.  Refer to using the  

equation of the line. 

2 IATE PA 

6.  Inability to 

distinguish between 

dx

dy
 and 

∆x

∆y
. 

1 IATE PA 
6.  =

2

2

dx

yd
 Quotient rule  

 

1 

 

IATE 

 

PA 

7.  Did not provide an 

answer to Part A or 

provide a reason. 

13 IATE N/A 7.  Did not provide an 

answer to Part A or 

provide a reason. 

8 IATE N/A 

    8.  If the origin is treated 

as x,y,  B becomes x 

+ ∆x, y +∆y; slope 

becomes derivative. 

1 IATE PA 

Table 3.30 The Incorrect Students’ Categories of Explanation for Item 6 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; PA—perception-action; 

N/A—not applicable). 
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In both studies, some of the most frequent categories which emerged (Categories 3-4 

and Category 7 in Study 1, and Category 7 in Study 2) as a result of the students 

answering the item incorrectly indicated that students were unable to provide any kind 

of answer for Part A of the item. These categories can be seen in Table 3.30. The 

remainder of the categories in Table 3.30 indicated that students were unable to explain 

how to generate the derivative at the point in question. Despite these categories not 

being evidence of an ability to explain, they were classified as perception-action 

categories of explanation in terms of Tall’s theory, albeit incorrect perception-action 

categories of explanation.  

3.5.7 Item 7 

Item 7 (shown in Figure 3.8) requires students to recall the embodied mathematical 

object, in graphical terms, for the derivative /instantaneous rate of change at a particular 

point, and subsequently interpret the meaning behind this object (namely, the slope of 

the tangent) in order to answer the item correctly. Therefore, the item in both contexts 

could be considered to reside within Tall’s 1
st
 World, and may or may not require 

students to move into the 2
nd

 World when comparing the slopes of the tangents in either 

a mathematics context or chemistry context. The percentage of students in both studies 

who answered the item correctly in a mathematics context can be seen in Table 3.31. 

The categories of explanation for the students who answered the item correctly in Study 

1 and Study 2 are shown in Table 3.32. The categories of explanation for the students 

who answered the item incorrectly in Study 1 and Study 2 are shown in Table 3.33. 

Looking at Table 3.32, for the students who answered the item correctly, the most 

frequent category of response (Category 2 in both studies) was that of referring to the 

point having a bigger slope and/or greatest rate of change. The second most frequent 

category of response (Category 1 in both studies) referred to the slope of the tangent at 

the point as greater. All of the categories which were deemed as evidence of an ability 

to explain were classified as perception-action categories of explanation in terms of 

Tall’s theory. In Study 1, Categories 4-5 were deemed as evidence of an inability to 

explain. One of these categories (Category 4) was classified as an action-on-perception 

category of explanation. In Study 2, Category 4 was deemed as evidence of an inability 
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to explain, but was classified as an incorrect perception-action category of explanation 

in terms of Tall’s theory. 

 Item 7: Interpreting Derivative 

Mathematics Context Chemistry Context 

 (A)   Figure 1 shows the graph of y against 

x. At which point, A or B, does the 

greatest value of 
dx

dy
occur? 

 (A) For a particular reaction: 

PBA →+  

        where A and B are reactants and P is 

product, Figure 1 shows the graph of 

concentration of product (P) against 

time (t). At which point, E or F, does 

the greatest increase in concentration of 

product with respect to time occur? 

  
              Figure 1                   Figure 1 

 (B)  Explain your reasoning.  (B) Explain your reasoning. 

  Figure 3.8 Item 7 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

7. Interpreting Derivative. 73% 67% 83% 96% 

               Table 3.31 Students’ Performance for Item 7 in the Main Study. 
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 Item 7: Interpreting Derivative 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to the slope of 

the tangent at this 

point being greater. 

4 ATE PA 1.  Refer to the 

derivative meaning 

the tangent to the line 

at a particular point, 

and state the tangent 

at A has a greater 

slope than the tangent 

at B. 

4 ATE PA 

2.  Refer to the point 

having a bigger slope 

and/or the greatest 

rate of change. 

11 ATE PA 2.  Refer to the slope 

being steeper, and 

that this is why the 

value [slope value] 

will be higher. 

6 ATE PA 

3.  Refer to there being a 

greater change in y 

for a certain change in 

x at this point, 

compared to the 

alternative point. 

3 ATE PA 3.  Refer to the 

derivative 

representing the rate 

of change. The A 

value has a higher 

rate of change 

compared to B. 

1 ATE PA 

4.  Refer to the curve 

being sharper at this 

point. 

1 IATE P 4.  Refer to the line 

increasing more at the 

Point A, from 0 to A 

than from A to B. 

5 IATE PA 

5.  Refer to guessing 

and/or provide no 

reason. 

3 IATE N/A     

Table 3.32 The Correct Students’ Categories of Explanation for Item 7 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to Explain; 

IATE—Inability to Explain; Tall. — degree of explanation in terms of Tall’s theory; PA—

perception-action; P—action-on-perception; N/A—not applicable). 

In Table 3.33, for the students who answered the item incorrectly in both studies, the 

categories of explanation which these students evidenced were all deemed to be 

evidence of an inability to explain. In Study 1, Categories 1-2 and Category 5 were 

deemed to be evidence of action-on-perception categories of explanation, while 

Category 4 was considered to be evidence of a perception-action category of 

explanation. In Study 2, all of the categories, apart from Category 3, were considered to 

be evidence of perception-action categories of explanation in terms of Tall’s theory.   
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  Item 7: Interpreting Derivative 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to the point 

being a greater 

distance from the x-

axis and/or the origin. 

4 IATE P 1.  Refer to B having a 

higher slope than A,  

and refer to B’s 

gradient being much 

larger. 

4 IATE PA 

2.  Refer to the graph 

slowly levelling off. 

1 IATE P 2.  Refer to the 

derivative as the 

slope m. 

1 IATE PA 

3.  Provide no answer 

and no reason 

1 IATE N/A 3.  Provide no answer 

and no reason. 

2 IATE N/A 

4.  State that the slope is 

increasing at the same 

rate at both points. 

1 IATE PA 4.  Refer to the 

derivative being 

normally associated 

with a small change, 

and state that there is 

less of a change with 

B. 

1 IATE PA 

4.  State that the graph is 

more curved at this 

point. 

1 IATE P     

Table 3.33 The Incorrect Students’ Categories of Explanation for Item 7 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; PA—perception-action; P—

action-on-perception; N/A—not applicable). 

In both studies, the percentage of students who answered Item 7 correctly in a 

mathematics context was greater than the percentage of students who answered Item 6 

correctly in a mathematics context. This raises the question of why, especially since 

Items 6 and 7 both test students’ understanding of derivative.  

Aspinwall and Miller [75] argue that for the majority of students, their understanding of 

derivative is limited to a representation involving the manipulation of a formula; the 

findings in respect of Item 6 (which does not test a students’ ability to differentiate a 

function) would uphold this point of view. Cetin [79] also agrees with this, describing 

how students, who can only differentiate an algebraic function, and not link this 

differentiation to anything, will not be aware that the derivative of the function 

represents the instantaneous rate of change of the function at any particular point. 

Thompson [80] found that many students interpret the derivative as how fast the 

function is changing, without, more importantly, interpreting the derivative as 



120 

 

representative of the amount of change in one quantity in relation to a change in 

another. Perhaps the reason for this is that many students are only able to think in terms 

of amounts, rather than in terms of rates of change of amounts [81]. 

Another reason for the majority of students not being able to answer Item 6 may be 

because the item can be interpreted as implicitly requiring the explanation of the 

limiting process behind the generation of the derivative at a particular point. Students’ 

difficulties with understanding limits, in the context of calculus, are well documented 

[57,82,83]. The term dy/dx also causes serious problems for students, with a large 

percentage of students failing to realise that dy/dx is the ratio of the quotient of two 

infinitesimally small increments [81]. If such difficulties may explain students’ 

performance in respect of Item 6, then why the comparatively better performance for 

Item 7? 

Two possible reasons for this may be: 1) the absence of a need to understand the 

limiting process involved in generating a derivative in order to explain and 2) students 

possess the ability to recall that the derivative at any particular point is equivalent to 

finding the slope of a tangent at that point without necessarily being able to explain how 

to generate the slope of the tangent at that point. This type of explanation is implicitly 

required (although not necessarily) for the answering of Item 6. 

Looking at Tables 3.3 and 3.4, it can be seen that for Items 6 and 7, students who 

evidenced an ability to explain correctly in the mathematics context in both studies, 

associated with the transfer of these items.  In Table 3.29, it can be seen that for Item 6, 

the most frequent perception-action category of explanation, in both studies, was that of 

referring to finding the slope of the tangent at the point. It could be argued that this is an 

embodied mathematical object-type image of derivative, which allows the students to 

transfer. For Item 7, in both studies, the two most frequent perception-action categories 

of explanation are those in Categories 1-2, (as can be seen in Table 3.32). These 

categories highlight the importance of understanding the significance of the derivative 

at a particular point in terms of the slope of the tangent at that point.  
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3.5.8 Item 8—Usage of Exponentials 

  Item 8: Usage of Exponentials 

Mathematics Context Chemistry Context 

Given:  

mxcyLn −=  

 (A)  Derive an expression for y. 

 A student is studying the chemical reaction: 

P,BA →+  

where A and B are reactants and P is the 

product. After graphing the Ln of the 

concentration of A, obtained at different 

times (i.e. the graph of Ln[A]t against time 

(t)), the student finds that the graph 

corresponds to the relation given below, 

showing that the rate of the reaction is 1
st
 

order with respect to A. 

 

ktLn[A]Ln[A] 0t −=
 

 

 (A) Derive an expression for t[A]  

 (B)  Explain your reasoning.  (B) Explain your reasoning. 

  Figure 3.9 Item 8 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

8. Usage of Exponentials 43% 58% 33% 8% 

               Table 3.34 Students’ Performance for Item 8 in the Main Study. 

 

Item 8 requires students to recall the inverse relationship that exists between an 

exponential function to the base e and its corresponding, inverse natural logarithmic 

function. The item resides within Tall’s 2
nd

 World. Such a classification does not 
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necessarily imply that the students do not need an embodied mathematical object-type 

image of the inverse relationship; instead, such an understanding is not required to be 

evidenced by the students in order to answer the item. The percentage of students in 

both studies who answered the item correctly in a mathematics context can be seen in 

Table 3.34. The categories of explanation for the students who answered the item 

correctly in Study 1 and Study 2 are shown in Table 3.35. The categories of explanation 

for the students who answered the item incorrectly in Study 1 and Study 2 are shown in 

Table 3.36.  

  Item 8: Usage of Exponentials 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to ‘exponential’ 

as the opposite of 

Ln/Log 

2 ATE A 1.  Refer to getting y on 

its own by  

multiplying both 

sides by e. 

8 ATE A 

2.  State that the Ln can 

be cancelled by 

getting the exponent 

of both sides. 

5 ATE A 2.  State that Ln and e
x
 

are inverses of each 

other, and that this 

makes it possible to 

get y on its own. 

3 ATE A 

3.  Refer to using the log 

and/or indice rules. 

5 ATE A 3.  Provide no reason. 1 IATE A 

4.  Word the 

exponential-natural 

logarithmic 

relationship 

incorrectly. 

1 IATE A     

5.  Provide no reason  1 IATE A     

Table 3.35 The Correct Students’ Categories of Explanation for Item 8 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to explain; 

IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; A—

action-on-action). 

 

Looking at Table 3.35, in both studies the majority of students were deemed to have 

evidenced an ability to explain their reasoning, apart from the student in Category 5 in 

Study 1 and the student in Category 3 in Study 2. All of the correct categories of 

explanation were deemed to be evidence of an action-on-action type of explanation in 

terms of Tall’s theory. The two most frequent categories of explanation in Study 1 were 
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Categories 2-3, and in Study 2, Categories 1-2. All of these categories either referred to 

the fact that e
x
 and Ln x are inverses or that y can be obtained by use of ‘e’. 

 Item 8: Usage of Exponentials 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Realise that it is 

necessary to 

‘exponentiate’; 

however, they make 

errors in the symbolic 

manipulation. 

4 ATE A 1.  Realise that applying 

‘exponentiation’  

removes Ln but 

produce the 

following: 

y = e
c
 - e

mx
 

4 IATE A 

2.  Divide the right-

hand-side of the 

expression by Ln. 

4 IATE A 2.  Refer to Ln’s and e’s 

cancelling, and 

produce the 

following: 

y = e (c-mx) 

4 IATE A 

3.  Refer to getting the 

natural log of both 

sides in order to 

cancel each log out. 

1 IATE A 3.  Refer to rearranging 

into the following:   

y = 
Ln

mxc −
 

1 IATE A 

4.  Refer to dividing the 

right-hand-side by Ln, 

believing ‘Ln’ to 

become Log when 

brought across the 

equal sign. 

2 IATE A 4.  Refer to Ln & e as the 

inverses of each 

other, and produce 

the following: 

y = e
c
 + e

-mx 

1 IATE A 

5.  Refer to multiplying 

the right-hand-side by 

Ln. 

2 IATE A 5.  Refer to using the 

exponential in order 

to get rid of the y, 

and produce the 

following: 

e
y 

= -mx + c 

1 IATE A 

6.  Provide no workings 

and no reason. 

3 IATE A 6.  State the inverse of 

Ln is e, and produce 

the following: 

y = e
c 
- e

mx
 

1 IATE A 

Table 3.36 The Incorrect Students’ Categories of Explanation for Item 8 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; ATE—Ability to Explain; Tall.—degree of explanation in terms of Tall’s theory; A—

action-on-action). 

      

Looking at Table 3.36, for the students who answered incorrectly in both studies, in 

only one of these categories (Category 1) during Study 1, did students evidence an 

ability to explain. All of the other categories suggested an inability to explain and were 

categorised in terms of Tall’s theory as action-on-action categories of explanation.  
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3.5.9 Item 9 — Usage of Natural Logarithms 

  Item 9: Usage of Natural Logarithms 

Mathematics Context Chemistry Context 

Given:  

2x
0eyy −

=
 

 

 (A)  Derive an expression for x in terms  

        of y and y0. 

For a reaction: 

P,BA →+  

where A and B are reactants and P is 

product, the concentration of reactant B 

after a certain time ([B]t) is given as a 

function of time in the following expression: 

 

kt
0t e[B][B] −

=  

 

where [B]0 and k are the initial 

concentration of reactant B and rate constant 

respectively. 

  

(A) Derive an expression for k. 

 (B)  Explain your reasoning. (B) Explain your reasoning. 

  Figure 3.10 Item 9 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

9. Usage of Natural 

Logarithms. 

43% 46% 40% 71% 

               Table 3.37 Students’ Performance for Item 9 in the Main Study. 
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Like Item 8, Item 9 requires students to recall the inverse relationship that exists 

between an exponential function to the base e and its corresponding, inverse natural 

logarithmic function. Therefore, the item resides within Tall’s 2
nd

 World. Again, such a 

classification does not necessarily imply that the students do not need an embodied 

mathematical object-type image of the inverse relationship; instead such an 

understanding is not required to be evidenced by the students in order to answer the 

item.   

The percentage of students in both studies who answered the item correctly in a 

mathematics context can be seen in Table 3.37. Thus, the majority of students 

demonstrated that they do not know the inverse relationship which exists between an 

exponential function to the base e and its corresponding, natural logarithmic function. 

The categories of explanation for the students who answered the item correctly in Study 

1 and Study 2 are shown in Table 3.38. The categories of explanation for the students 

who answered the item incorrectly in Study 1 and Study 2 are shown in Table 3.39. 

Looking at Table 3.38, for the students who answered the item correctly in Study 1, the 

only category of explanation to emerge was that of referring to the insertion of ‘Ln’ or 

using log rules (Category 1). This was deemed to be evidence of an ability to explain, 

and considered to be evidence of an action-on-action category of explanation in terms of 

Tall’s theory. In Study 2, of the five categories of explanation to emerge, three of these 

(Categories 1-3), were considered evidence of an ability to explain; all of these 

categories referred to the use of natural logs to reach the answer, and were considered to 

be evidence of an action-on-action category of explanation in terms of Tall’s theory. 

Categories 4-5, while considered not to be evidence of an ability to explain, were 

classified as action-on-action categories of explanation in terms of Tall’s theory because 

the students in these categories clearly evidenced this type of explanation when they 

answered Part A correctly. 

In Table 3.39, for the students who answered the item incorrectly in both studies, the 

categories of explanation which these students evidenced were all deemed to be 

evidence of an inability to explain. In Study 1, the most frequent category of 

explanation (Category 1) suggested that students realised that ‘Ln’ had to be used, but 

were unable to do so. The explanation was categorised as an action-on-action category 
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of explanation in terms of Tall’s theory; Categories 3-4 were also classified as such. In 

Study 2, Categories 1-3 suggested that students in these categories realised that natural 

logs had to be used but were unable to do so, while Categories 4-6 suggested that 

students did not realise that natural logs had to be used. All of these categories of 

explanation (except Category 5) were classified as an action-on-action category of 

explanation in terms of Tall’s theory. 

  Item 9: Usage of Natural Logarithms 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to inserting 

‘Ln’ or using log rules 

to isolate the power, 

thus allowing one to 

derive an expression 

for x using algebraic 

methods. 

13 ATE A 1.  Refer to how the 

exponential function 

can be removed by 

applying the natural 

log function. 

5 ATE A 

    2.  Refer to:  

     e
ln(a)

 = a ; Ln
ea

 = a 

     Ln xy = Ln x + Ln y 

     Ln x/y = Ln x – Ln y 

2 ATE A 

    3.  Refer to applying 

simple division of yo 

to both sides to make 

the equation as simple 

as possible; apply the 

inverse of natural log 

to isolate -2x; and to 

get x, on its own, 

divide by -2 . 

1 ATE A 

    4.  Refer to not 

understanding the 

formula, and just 

putting x on the left 

on its own. 

1 IATE A 

    5.  No reason. 2 IATE A 

Table 3.38 The Correct Students’ Categories of Explanation for Item 9 (Abbreviations: No.—

number of students in each category; Exp.—form of explanation; ATE—ability to explain; 

IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; A—

action-on-action). 
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 Item 9: Usage of Natural Logarithms 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.    Realise that ‘Ln’ 

must be inserted to 

isolate the x; 

however, they make 

manipulation errors, 

most notably in 

relation to using the 

laws of logarithms. 

10 IATE A 1.  Refer to: 

      x =   
2

LnyLny0 −
 

         =  
y

y

2

1 0  

     

 

1 IATE A 

2.    Provide no workings 

and no reason. 
2 IATE N/A 2.  Refer to using log 

rules. 

1 IATE A 

3.    Try to solve the 

expression 

algebraically, 

without the insertion 

of natural 

logarithms. 

3 IATE A 3.  Refer to:  

     Ln y = Ln y0. 

     Ln e
-2x

 ;  

     Ln y = Ln y0 -2x. 

       

1 IATE A 

4.    Refer to having 

learned how to solve 

the expression, but 

having never really 

understood why it 

worked. 

2 IATE A 4.  Refer to: 

     x
2y

1

0

= , and stated 

that x is rearranged in 

order to be left on its 

own. 

1 

 

IATE A 

    5.  Provide no answer 

and no reason. 

6 IATE N/A 

    6.  Refer to the square 

root letting the power 

‘go’. 

3 IATE A 

Table 3.39 The Incorrect Students’ Categories of Explanation for Item 9 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; A—action-on-action; N/A—

not applicable). 

 

Item 8 and Item 9 can be considered to be related to each other. It was observed that the 

students in Study 1 who evidenced an ability to explain their reasoning for Item 8 in a 

mathematics context associated with the transfer of that item; the students who 

evidenced an ability to explain their reasoning in a mathematics context for the same 

item in Study 2 did not. For Item 9, students in both Study 1 and Study 2 who evidenced 

an ability to explain in a mathematics context associated with the transfer of that item. 

The results for both Items 8 and 9 can be seen in Tables 3.3 and 3.4. 
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Ignoring the lack of a statistically-significant association between evidencing an ability 

to explain in a mathematics context and transfer for Item 8 in Study 2, for the students 

who evidenced an ability to explain Items 8 and 9 in a mathematics context, the 

categories of explanation which these students evidenced in terms of Tall’s theory 

suggested that evidencing an action-on-action category of explanation appears to be a 

sufficient explanation in order to transfer. 

Despite this, the majority of students in both studies were unable to answer the items 

correctly in a mathematics context. Weber [84] articulates that not much is known about 

the way in which students come to a meaningful understanding of the usage of 

exponential and logarithmic functions. Despite this, Weber articulates that exponential 

and logarithmic expressions play a critical role in mathematics courses necessary for 

college. If this is the case, then why did the students in Study 1 and Study 2 appear 

unable to describe the inverse relationship which exists between an exponential function 

and its natural logarithmic function in terms of an embodied mathematical object-type 

understanding? (where the embodied mathematical object is the graph of the two 

functions showing the mirror image of one in respect of the other—or in other words, 

the inverse relationship between the two). 

Perhaps the reason was because of the fact that this type of explanation was not 

explicitly asked for in the Part B of Items 8 and 9. Or, perhaps the focus of students’ 

learning in respect of the two functions, resides too much in Tall’s 2
nd

 World/symbolic 

branch of mathematics? The authors De Pierro and Garafala [7] would support this 

view. They articulate that the majority of students are unable to describe the symbols: 

LNLogb =   in terms of the question: what power (L) the base (b), has to be raised to in 

order to produce the number (N)— in other words, the logarithm of L to the base b. 

Furthermore, students are unable to describe the symbols: Nb
L

=  in terms of the 

question: what number (L) the number (b) has to be raised to in order to produce N—in 

other words, the antilog of N to the base b. Re-iterating what was stated in the 

Introduction, the authors state that the usage of the irrational number e as the base for 

the natural logs is a mystery to students. 
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3.5.10 Item 10—Proportionality 

  Item 10: Proportionality 

Mathematics Context Chemistry Context 

  The derivative of a particular function: 

y = f(x) 

  with respect to x is denoted: 

dx

dy

 

 
2ytoalproportionis

dx

dy
thatfoundisIt

 

 

2ky
dx

dy
Thus =

 

 

 where k is the constant of proportionality. 

 

The rate law for a particular reaction: 

P,BA →+  

where A and B are reactants and P is 

product is given as: 

 

2]A[kRate =  

 

when the concentration of B is held 

constant. ‘k’ is the rate constant. 

  

 

(A) What happens to the value of the 

derivative if y is doubled? 

(A) What happens to the value of the rate if 

[A] is doubled? 

(B) Explain your reasoning. (B) Explain your reasoning. 

  Figure 3.11 Item 10 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

10. Proportionality 43% 38% 56% 79% 

               Table 3.40 Students’ Performance for Item 10 in the Main Study. 

 

Item 10 requires students to move from Tall’s 2
nd

 World to 1
st
 World, embodying the 

symbols as numbers in order to operate/act on them. The students have to interpret 

dy/dx, and rate, as a number which is related to y and [A] respectively—the terms y and 

[A] also having to be interpreted as numbers. The students must then realise: 1) the 
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dy/dx number and rate number are affected by changes in y and [A] respectively; 2) due 

to the nature of the functional relationship between dy/dx and y or the rate number and 

[A], the doubling of y or [A] will respectively result in dy/dx or the rate quadrupling.  

The percentage of students in both studies who answered the item correctly in a 

mathematics context can be seen in Table 3.40. The categories of explanation for the 

students who answered the item correctly in Study 1 and Study 2 are shown in Table 

3.41. The categories of explanation for the students who answered the item incorrectly 

in Study 1 and Study 2 are shown in Table 3.42. 

Looking at Table 3.41, for the students who answered the item correctly in Study 1, 

seven categories of explanation emerged, four of which (Categories 1-4) were 

considered evidence of an ability to explain. These four categories were deemed to be 

evidence of action-perception categories of explanation in terms of Tall’s theory. The 

most frequent category (Category 2) referred to the fact the y is squared.  Categories 5-7 

were deemed to be evidence of an inability to explain, and were each classified as 

action-on-action categories of explanation in terms of Tall’s theory. In Study 2, four 

categories of explanation emerged, the first three of which were considered to be 

evidence of an ability to explain, and were in turn classified as action-perception 

categories of explanation in terms of Tall’s theory. The most frequent of these 

categories (Category 1) referred to the quadrupling satisfying the conditions of the 

equation. 

In Table 3.42, for the students who answered incorrectly in Study 1, the seven 

categories that emerged were each considered as evidence of an inability to explain. All 

of these categories (except Category 6) were classified as action-on-action categories of 

explanation in terms of Tall’s theory. The most frequent category of explanation 

(Category 5), which students evidenced, referred to the derivative doubling because it is 

directly proportional to y. This indicated that the students do not understand the term 

‘directly proportional’. The second most frequent category of explanation (Category 1), 

which students evidenced, referred to the derivative as doubling because the other side 

of the equation doubled.  

For the incorrect students in Study 2, the four categories of explanation which emerged 

were all considered as evidence of an inability to explain, and classified as action-on-
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action categories of explanation in terms of Tall’s theory. The most frequent of these 

categories (Category 2) referred to the derivative as doubling because it is proportional 

to y squared. Thus, somewhat like the incorrect students in Category 5 of Study 1, these 

students indicated that they do not understand proportionality in the context of this 

question. 

 Item 10: Proportionality 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to the 

quadrupling as 

satisfying the 

conditions of the 

equation. 

1 ATE AP 1. Refer to the 

quadrupling as 

satisfying the 

conditions of the 

equation. 

8 ATE AP 

2.  Refer either directly 

or indirectly to the 

fact that y is squared. 

 

6 ATE AP 2.  Refer to y being 

squared as the reason 

for the derivative   

increasing. 

3 ATE AP 

3.  State the derivative is 

proportional to y
2

. 

1 ATE AP 3.  Produce the 

following:  

      y
2
,  2

2 
= 4;  4 

dx

dy
α ; k 

constant. 

1 ATE AP 

4.  Refer to thinking of 

the law of indices. 

1 ATE AP 4.  State that the reaction 

is second order. 

1 IATE A 

5.  Provide no reason. 2 IATE A     

6.  Refer to ‘it’ being a 

second-order reactant. 

1 IATE A     

7.  Refer to the 

derivative of 2y
2
 as 

4y. 

1 IATE A     

Table 3.41 The Correct Students’ Categories of Explanation for Item 10 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

A—action-on-action; AP—action-perception). 
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 Item 10: Proportionality 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that if one side 

of the equation is 

doubled, the other 

side must be doubled. 

4 IATE A 1.  State that if the 

derivative is doubled, 

the value of k is 

halved. 

1 IATE A 

2.  State that the 

derivative is 

proportional to y
2
 but 

are unable to translate 

this statement into the 

correct answer. 

2 IATE A 2.  State that if the 

derivative is 

proportional to y
2
, it 

will double, as k 

remains constant. 

8 IATE A 

3.  State that it will 

double and provide no 

reason. 

1 IATE A 3.  State that the 

derivative depends on 

k. 

1 IATE A 

4.  State that it will half 

and provide no 

reason. 

1 IATE A 4.  State the bigger y 

gets, the smaller the 

derivative gets. 

1 IATE A 

5.  State that it will 

double because the 

derivative is directly 

proportional to y. 

6 IATE A     

6.  Provide no workings 

and no reason. 

3 IATE N/A     

Table 3.42 The Incorrect Students’ Categories of Explanation for Item 10 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; A—action-on-action; N/A—

not applicable). 

The categories of explanation for the correct students (shown in Table 3.41) suggest that 

evidencing an action-perception category of explanation in terms of Tall’s theory is 

necessary in order to transfer. The analysis of Item 1 (Section 3.5.1) revealed that 

students who evidenced a Category 1, Action-Perception Category of Explanation for 

the meaning of slope in a mathematics context (as shown in Table 3.7) associated with 

the transfer of Item 10 more so than students who did not evidence this category of 

explanation. Perhaps this suggests that these students have thought of the slope in terms 

of two numbers (for example, a slope value of two meaning two units up for every one 

unit across), and somehow used this object-type understanding of slope to answer Item 

10. 
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3.5.11 Item 11—Graphing an Exponential Function 

  Item 11: Graphing an Exponential Function 

Mathematics Context Chemistry Context 

Given: 

x2
0eyy −

=  

 

(A) Draw a graph that represents the 

relationship in Figure 1. Label the axis 

accordingly. 

For a reaction: 

P,BA →+  

where A and B are reactants and P is 

product, the concentration of reactant B 

after a certain time ([B]t) is given as a 

function of time in the following 

expression: 

kt
0t e[B][B] −

=  

 

where [B]0 and k are the initial 

concentration of reactant B and rate 

constant respectively. 

 

(A) Draw a graph that represents this 

expression in Figure 1. Label the axis 

accordingly. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.12 Item 11 Used in the Main Study. 
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Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

11.  Graphing an   

Exponential Function 

3% 13% 13% 0% 

               Table 3.43 Students’ Performance for Item 11 in the Main Study. 

Item 11 requires students to move from Tall’s 2
nd

 World to 1
st
 World. The percentage of 

students in both studies who answered the item correctly in a mathematics context can 

be seen in Table 3.43. The categories of explanation for the students who answered the 

item correctly in Study 1 and Study 2 are shown in Table 3.44. The categories of 

explanation for the students who answered the item incorrectly in Study 1 and Study 2 

are shown in Tables 3.45 and 3.46. 

Looking at Table 3.44, for the one student in Study 1 and the two students in Study 2 

who were in the ‘no reasoning’ category of explanation, they were categorised as 

having evidenced an inability to explain but as having evidenced an action-perception 

category of explanation in terms of Tall’s theory. Such a category was classified as 

‘action-perception’ because when the students answered Part A correctly, they 

evidenced the possession of an action-perception category of explanation in terms of 

Tall’s theory irrespective of whether they explained their reasoning in Part B.  

  Item 11: Graphing an Exponential Function 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  No reasoning. 1 IATE AP 1.  Any positive number 

(excluding zero) 

introduced into the 

formula will give a 

rapidly decreasing y-

value. 

1 ATE AP 

    2.  No reasoning. 2 IATE AP 

Table 3.44 The Correct Students’ Categories of Explanation for Item 11 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

AP—action-perception). 
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Looking at Tables 3.45 and 3.46, it is clear from the categories of explanation that 

emerged, that these students were unable to graph the exponential function or explain 

how to do so. The most frequent category in both studies was Category 1 (as seen in 

Table 3.45); students in this category did not draw a graph or explain how to do so.  

  Item 11: Graphing an Exponential Function 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Do not draw a graph 

and do not provide a 

reason. 

12 IATE N/A 1.  Do not draw a graph 

and do not provide a 

reason. 

8 IATE N/A 

2.  Draw the following 

graph, and provided 

indecipherable 

reasoning. 

 

5 IATE AP 2.  State that if y = y0e
-2x

  
it means they’re 

proportional. 

 

 

2 IATE AP 

3.  Draw the following 

graph, and provided 

indecipherable 

reasoning. 

 

1 IATE AP 3.  Draw the following 

graph and state they 

have no idea. 

 

 

2 IATE AP 

4.  Draw the following 

graph, and provide 

reasoning in the form 

a natural logarithmic 

expression. 

 

1 IATE AP 4.  Draw the following 

graph and state that 

slope is exponential. 

 

 

 

2 IATE AP 

Table 3.45 The Incorrect Students’ Categories of Explanation for Item 11 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 
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  Item 11: Graphing an Exponential Function 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

5.  Labelled the x-y axes 

inappropriately, did 

not draw a graph and 

provided an 

indecipherable reason. 

2 IATE N/A 5.  State that the formula   

is a line. 

 

2 IATE AP 

6.  Did not draw a graph 

and stated that they 

forget ‘how to do’ 

graphs. 

 

3 IATE N/A 6.  Draw the following 

graph and provide no 

reasoning. 

 

2 IATE AP 

7.  Stated that the graph 

they drew was a 

guess. 

 

 
 

3 IATE AP 7.  Draw the following 

graph and state that 

the other graphs were 

like that. 

 

1 IATE AP 

8.  Stated that y-values 

drop as x-values 

increase. 

 
 

2 IATE AP 8.  Draw the following 

graph and say it’s to a 

minus power. 

 

2 IATE AP 

Table 3.46 The Incorrect Students’ Categories of Explanation for Item 11 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 

The student in Category 4 in Table 3.45 evidenced an ability to represent the 

relationship, but was deemed to have answered incorrectly because they did not graph 

an exponential function — the answer that was looked for. 
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3.5.12 Item 12 – Graphing a Natural Logarithmic Expression 

  Item 12: Graphing a Natural Logarithmic Expression 

Mathematics Context Chemistry Context 

Given the relationship: 

mxcyLn −=  

 

 

(A)  Draw a graph that represents the 

relationship in Figure 1. Label the axis 

accordingly. 

A student is studying the chemical reaction: 

P,BA →+  

where A and B are reactants and P is the 

product.  After graphing the Ln of the 

concentration of A, obtained at different 

times: (i.e. the graph of Ln[A]t against time 

(t)), the student finds that the graph 

corresponds to the relationship:  

 

kt-]A[LnLn[A] 0t =
 

 

showing that the rate of the reaction is 1
st
 

order with respect to A. 

 

(A)  Sketch the relationship in Figure 1. 

Label the axis appropriately. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.12 Item 12 Used in the Main Study. 
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Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

12.  Graphing a Natural 

Logarithmic Expression 

10% 46% 13% 29% 

               Table 3.47 Students’ Performance for Item 12 in the Main Study. 

 

Item 12 requires students to move from Tall’s 2
nd

 World to 1
st
 World. The students have 

to be competent in interpreting a number of things: 1) interpret: Ln y / Ln [A] t  as 

similar to y (in terms of a Generalised Dependent Variable); 2) interpret c / Ln [A] 0  as 

similar to c (in terms of a Generalised Constant); 3) Interpret –m / -k as similar to m (in 

terms of a Generalised Slope); and 4), interpret x / t as similar to x (in terms of a 

Generalised Independent Variable).  

Once students interpret the above, they then have to interpret the linear relationship that 

exists between Ln y and x, or Ln [A] t  and t, where Ln y or Ln [A] t  is similar to a 

dependent variable, while x or t is similar to an independent variable. Upon interpreting 

all of this, the students should be able to graphically represent the item in both contexts. 

The percentage of students in both studies who answered the item correctly in a 

mathematics context can be seen in Table 3.47. The categories of explanation for the 

students who answered the item correctly in Study 1 and Study 2 are shown in Table 

3.48. The categories of explanation for the students who answered the item incorrectly 

in Study 1 and Study 2 are shown in Tables 3.49 and 3.50. 

Looking at Table 3.48, for the students who answered the item correctly in Study 1, all 

of these students evidenced the same category of explanation (Category 1). It is 

interesting to note that the students in this category drew the correct graph because they 

interpreted the value for the slope as negative. The category was classified as evidence 

of an ability to explain, and classified as an action-perception category of explanation in 

terms of Tall’s theory. For the students in Study 2, three categories of explanation 

emerged. Two of these categories (Categories 1-2) were deemed to be evidence of an 

ability to explain, and classified as action-perception categories of explanation in terms 
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of Tall’s theory. Interestingly, in these categories, like in Category 1 of Study 1, the 

students referred to the slope of the line as negative.  

  Item 12: Graphing a Natural Logarithmic Expression 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that the slope of 

the expression is 

negative. 

3 ATE AP 1.  State the slope is a   

minus. 

 

1 ATE AP 

    2.   State that Ln y is an 

integer; c is a point at 

which the line crosses 

the x-axis; and -m is 

the coefficient of x, 

so the slope is 

negative. 

 

4 ATE AP 

    3.  Provide no reason. 

 

1 IATE AP 

Table 3.48 The Correct Students’ Categories of Explanation for Item 12 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

AP—action-perception). 

     

In Tables 3.49 and 3.50, the categories of explanation evidenced by the incorrect 

students in Study 1 and Study 2 were all considered as an inability to explain.  All of 

these categories, (apart from Category 3 in both studies) were classified as evidence of 

an action-perception category of explanation in terms of Tall’s theory, albeit the 

categories were incorrect action-perception categories of explanation. Interestingly, in 

both studies, certain students drew the correct shape of the graph, but labelled the axes 

incorrectly. This can be seen in Category 1 for Study 1 and in Categories 4-8 and 

Category 12 for Study 2. Other students in both studies drew a linear graph with 

positive slope, as can be seen in Category 2 in Study 1 and in Categories 1 and 11 for 

Study 2. Lastly, in both studies, certain students drew a decreasing exponential function, 

as can be seen in Category 4 for Study 1, and in Categories 9 and 10 for Study 2.  
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  Item 12: Graphing a Natural Logarithmic Expression 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Graph the 

expression; however, 

the axes are not 

labelled 

appropriately. 

 

4 ATE AP 1.  Draw a linear-type 

graph with a positive 

slope. 

 

1 IATE AP 

2.  Equate the 

expression with a 

linear-type 

expression that has a 

positive slope. 

 

6 IATE AP 2.  State that the 

equation in terms of 

y means the graph is 

exponential. 

 

1 IATE AP 

3.  Provide no graph 

and  no reason. 

13 IATE N/A 3.  Provide no graph 

and  no reason. 

3 IATE N/A 

4.  Graph a decreasing 

exponential function. 

 

3 IATE AP 4.  State that they only 

understand that the 

slope is negative. 

 

1 IATE AP 

5.  Describe the 

expression as curved 

in nature. 

 

1 IATE AP 5.  State that:              

Lny = y-axis; and,       

c-mx = x-axis. 

 

2 IATE AP 

Table 3.49 The Incorrect Students’ Categories of Explanation for Item 12 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall.—degree of explanation in terms of Tall’s theory; 

AP—action-perception; N/A—not applicable). 
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  Item 12: Graphing a Natural Logarithmic Expression 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

6.  State that y = c - mx 

is a straight line and 

Ln y would be on 

the y-axis while -mx 

would be on the x-

axis. 

 

2 IATE AP 10. Refer to the 

expression as similar 

to the expression for 

the equation of a line. 

 

 

3 IATE AP 

7.  State: the inverse of 

x for Ln. 

 

1 IATE AP  11. State that ‘y = mx 

+ c’ implies a straight 

line. 

 

1 IATE AP 

8.  Refer to the 

negative slope being 

equal to   -mx. 

 

1 IATE AP 12. State that if the 

graph is exponential 

it becomes a straight 

line. 

 

1 IATE AP 

9.  Draw a decreasing 

exponential function 

and provide no 

reason. 

 

2 IATE AP     

Table 3.50 The Incorrect Students’ Categories of Explanation for Item 12 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall.—degree of explanation in terms of Tall’s theory; 

AP—action-perception; N/A—not applicable). 
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4.5.13 Item 13 — Graphing a Function 

 Item 13: Graphing a Function 

Mathematics Context Chemistry Context 

(A)  Sketch in Figure 1, the graph of the  

function: 

0xfor
x

1
y >=  

(A)  Sketch  in Figure 1, the graph of P 

versus  V, for: 

                        0m3 < V < 5m3 

       given the relationship: 

V

1
P =  

       This relationship comes from the ideal 

gas law applied to an isothermal 

system. For this example, nRT has the 

constant value of 1kJ. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.14 Item 13 Used in the Main Study. 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

13.  Graphing a Function. 33% 37% 17% 29% 

               Table 3.51 Students’ Performance for Item 13 in the Main Study. 
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Like Items 11-12, Item 13 requires students to move from Tall’s 2
nd

 World to 1
st
 World. 

The students must interpret the functional relationship between y and x, and transform it 

into its graphical representation (embodied mathematical object). The percentage of 

students in both studies who answered the item correctly in a mathematics context can 

be seen in Table 3.51. The categories of explanation for the students who answered the 

item correctly in Study 1 and Study 2 are shown in Table 3.52. The categories of 

explanation for the students who answered the item incorrectly in Study 1 and Study 2 

are shown in Tables 3.53 and 3.54. 

Looking at Table 3.52, the students in Category 2 for Study 1, and the students in 

Categories 3-4 for Study 2, evidenced an inability to explain. However, they were 

deemed to have evidenced an action-perception category of explanation in terms of 

Tall’s theory because they answered Part A correctly.  

  Item 13: Graphing a Function 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that as x 

increases, y decreases 

and/or insert x-values 

into the function in 

order to calculate the 

corresponding y-

values. 

9 ATE AP 1.  State that the function 

passes through the 

point (1, 1) and that 

the x and y axes are 

asymptotes. 

2 ATE AP 

2.  Draw the correct 

graph but provide no 

reason. 

1 IATE AP 2.  Refer to x increasing 

while y decreases. 

Also refer to x and y 

as inverses; as one 

increases, the other 

decreases. 

3 ATE AP 

    3.  State that y is the 

opposite of x. 

1 IATE AP 

    4.  Provide No reason. 2 IATE AP 

Table 3.52 The Correct Students’ Categories of Explanation for Item 13 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

AP—action-perception). 
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  Item 13: Graphing a Function 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that y and x 

are inversely 

proportional and/or 

as x increases, y 

decreases. 

 

5 IATE AP 6. State that as x 

increases, y 

decreases. 

 

 

3 IATE AP 

2.  State that the graph 

has a negative 

slope. 

 

2 IATE AP 7. State that they do 

not really understand 

graphs. 

 

2 IATE AP 

3.  Provide no reason. 

 

3 IATE AP 8. State that x is 

greater than zero, 

unknown and 

somewhere along the 

y-axis. 

 

1 IATE AP 

4.  State that the slope 

of the function 

given is positive 

and therefore the 

graph is increasing. 

 

2 IATE AP 9. State that the 

relationship is 

logarithmically 

proportional. 

 

 

1 IATE AP 

5.  No graph or reason. 1 IATE N/A     

Table 3.53 The Incorrect Students’ Categories of Explanation for Item 13 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 
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  Item 13: Graphing a Function 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that 1/x will   

never reach zero. 

 

2 IATE AP 6. Provide no reason. 

 

2 IATE AP 

2.  Provide no reason. 

 

2 IATE AP 7. State that they are not 

sure. 

 

1 IATE AP 

3. State that the greater x 

becomes, the lower the 

value of y becomes. 

 

2 IATE AP 8. Provide no reason. 

 

2 IATE AP 

4. Provide no reason. 

 

1 IATE AP 9. Provide no reason. 

 

1 IATE AP 

5. Provide no graph or  

reason. 

3 IATE N/A     

Table 3.54 The Incorrect Students’ Categories of Explanation for Item 13 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 

 

Tables 3.53 and 3.54 show the categories of explanation provided by the students who 

answered the item incorrectly. All of these categories were deemed to be evidence of an 

inability to explain, and all of the categories (apart from Category 5 in both Study 1 and 

Study 2) were categorised as evidence of an action-perception category of explanation 
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in terms of Tall’s theory, even though, these were incorrect action-perception categories 

of explanation. In both studies: 

• Certain students drew a linear graph with a negative slope. This can be seen in 

Categories 1-2 of Table 3.53 for Study 1 and in Category 3 of Table 3.54 for 

Study 2; 

• Certain students drew a linear graph with positive slope. This can be seen in 

Categories 3-4 and in Category 6 of Table 3.53 for Study 1 and in Category 2 of 

Table 3.54 for Study 2; and  

• Certain students provided no graph or reason, as can be seen in Category 5 of 

Table 3.53 for Study 1 and in Category 5 of Table 3.54 for Study 2. 

Items 11-13 all require an ability to move from Tall’s 2
nd

 World to 1
st
 World. The 

majority of students in both studies were unable to answer these items correctly in a 

mathematics context which raises the question: why? 

Perhaps the teaching focus for Items 11-13 is too algebraic in nature. Research by 

Leinhardt et. al [85]supports this view. They articulate that the formal definition of a 

function (or algebraic expression) is algebraic in spirit, with its graphical depiction 

taking a minor role. Potgieter et. al [37] also found that the majority of students’ work 

with functions is restricted to the algebraic domain. If this is so, then it might be 

expected that students would perform better on items that are algebraic in nature. 

Clearly, this was found not always to be the case for the algebraic (2
nd

 World) items in 

this study; for example, students’ performance for Items 8 and 9 in comparison to 

students performance for Items 2 and 3. 

 

 

 

 

 



147 

 

3.5.14 Item 14—Evaluation of an Integral 

  Item 14: Evaluation of an Integral 

Mathematics Context Chemistry Context 

(A) Evaluate the integral: 

dx
x

1
3

1

∫  

 (A) Calculate the work done when the 

volume of a gas in a reversible 

isothermal gas expansion increases 

from:1m
3
(V1) to 3m

3
(V2), given that 

the work will be equal to the 

expression: 

 

∫−=

2

1

V

V

dv
V

1
w  

 

where V1 (1m
3
) is the initial volume of 

the gas and V2 (3m
3
) is the final 

volume of the gas. The minus sign is 

used to denote the fact that the work 

leaves the system. 

 (B) Explain your reasoning (B) Explain your reasoning. 

  Figure 3.15 Item 14 Used in the Main Study. 

     

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

14.  Evaluation of an 

Integral. 

16% 29% 10% 25% 

               Table 3.55 Students’ Performance for Item 14 in the Main Study. 

 

Item 14 requires students to work within Tall’s 2
nd

 World because the students must be 

able to act on symbols; they must realise that the integral of 1/x is Ln x and that the 
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integral of 1/V is Ln V. The percentage of students in both studies who answered the 

item correctly in a mathematics context can be seen in Table 3.55. The categories of 

explanation for the students who answered the item correctly in Study 1 and Study 2 are 

shown in Table 3.56. The categories of explanation for the students who answered the 

item incorrectly in Study 1 and Study 2 are shown in Table 3.57 

Looking at Table 3.56, the students who were deemed to have evidenced an ability to 

explain in both studies evidenced the same category of explanation (Category 1). This 

category was deemed to be evidence of an action-on-action category of explanation in 

terms of Tall’s theory. The two students who did not provide a reason in Study 2 (those 

in Category 2) were still considered to have evidenced an action-on-action category of 

explanation in terms of Tall’s theory because they answered Part A correctly. 

  Item 14: Evaluation of an Integral 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1. State that the integral 

of ‘1/x’ is ‘Ln x’. 

4 ATE A 1. State that the integral 

of ‘1/x’ is ‘Ln x’. 

5 ATE A 

    2.  Provide no reason. 2 IATE A 

Table 3.56 The Correct Students’ Categories of Explanation for Item 14 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

A—action-on-action). 

For the students who answered the item incorrectly (shown in Table 3.57) the categories 

of explanation provided by these students were considered to be evidence of an inability 

to explain. In both studies: 

• Certain students substituted the values for the limits into the integrand and 

subtracted the lower-limit integrand value from the upper-limit integrand value. 

This can be seen in Category 1 for both Study 1 and Study 2; 

• Certain students evidenced that they realised they had to integrate but were 

unable to do so. This can be seen in Category 2 for Study 1 and in Category 5 

for Study 2; and 
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• Certain students provided no working or explanation, as can be seen in Category 

4 of Table 3.57 for both Study 1 and Study 2. 

  Item 14: Evaluation of an Integral 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Substitute the values 

for the limits into the 

integrand and subtract 

the lower-limit 

integrand value from 

the upper-limit 

integrand value. 

4 IATE A 1.  Substitute the values 

for the limits into the 

integrand and 

subtract the lower-

limit integrand value 

from the upper-limit 

integrand value. 

4 IATE A 

2.  Use the power rule 

for differentiation in 

various, incorrect 

forms to integrate the 

integrand. 

8 IATE A 2.  State that the integral 

is Log x + c. When 

the values one and 

three are added in, 

this is the result 

obtained. 

2 IATE A 

3.  Try to differentiate 

the integrand. 

2 IATE A 3.  Refer to finding the 

curve of the graph. 

1 IATE AP 

4.  No workings and no 

reason. 

9 IATE N/A 4.  Provide no answer 

and no reason. 

6 IATE N/A 

5.  Subtract 1 from 3—

perhaps indicating 

that they perceive the 

anti-derivative for the 

integrand in question 

to be x. 

2 IATE A 5.  Integrate incorrectly; 

sub-in the limits, and 

take the lower away 

from the upper to give 

a value of 0.5. 

3 IATE A 

6.  Realise the integral is 

Ln x but do not 

substitute for the 

limits; instead, they 

state that they forget 

how to do integration. 

1 IATE A 6.  Refer to the Integral 

changing the equation 

given. 

1 IATE A 

Table 3.57 The Incorrect Students’ Categories of Explanation for Item 14 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; A—action-on-action; AP—

action-perception; N/A—not applicable). 
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3.5.15 Item 15 – Graphing an Integral 

 Item 15: Graphing an Integral 

Mathematics Context Chemistry Context 

(A)  Indicate in Figure 1, the area 

corresponding to the integral: 

dx
x

1
3

1

∫  

(A)  The relationship:  

                               P = 
V

1
, 

where P is the pressure of a gas, and V is its 

volume, represents the ideal gas law applied 

to an isothermal system. For this example, 

nRT has the constant value of 1kJ. Indicate 

in Figure 1, the area corresponding to the 

integral:  

 

          w = − ∫
2

1

V

V

dV
V

1

 
 

which represents the work done by the 

system (the gas) in expanding from an 

initial volume:  

    (V1 = 1m
3
 ) to a final volume (V2 = 3m

3
), 

for a reversible isothermal gas expansion. 

The minus sign is used to denote the fact 

that the work leaves the system. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

 Figure 3.16 Item 15 Used in the Main Study. 

 



151 

 

Mathematical Item % Correct in a 

Mathematics 

Context 

% Correct in a 

Chemistry  

Context 

 Study 1 Study 2 Study 1 Study 2 

15.  Graphing an Integral. 13% 29% 10% 25% 

               Table 3.58 Students’ Performance for Item 15 in the Main Study. 

 

Item 15 requires students to move from Tall’s 2
nd

 World to 1
st
 World. The students must 

interpret the symbolic expression in terms of how it relates to finding an area between 

the function and the x-axis, bounded by the limits in question. The percentage of 

students who answered the item correctly in a mathematics context can be seen in Table 

3.58. The categories of explanation for the students who answered the item correctly in 

Study 1 and Study 2 are shown in Table 3.59. The categories of explanation for the 

students who answered the item incorrectly in Study 1 and Study 2 are shown in Table 

3.60 and 3.61 

 Item 15: Graphing an Integral 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Draw the correct 

diagram, and are able 

to state the integral is 

representative of the 

area within the limits 

in question. 

4 ATE AP 1.  Refer to the integral 

meaning the area 

under the curve 

between the limits 1 

and 3. 

7 ATE AP 

    2.  Refer to the slope of 

the graph as already 

being determined; 

and that all one needs 

to do is put in the 

limits, which only 

apply to the x-axis. 

1 IATE AP 

Table 3.59 The Correct Students’ Categories of Explanation for Item 15 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; ATE—ability to 

explain; IATE—inability to explain; Tall. — degree of explanation in terms of Tall’s theory; 

AP—action-perception). 

Looking at Table 3.59, the category of explanation provided by the students in Study 1 

who answered the item correctly in a mathematics context was considered to be 
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evidence of an ability to explain. A similar category (Category 1) was provided by the 

correct students in Study 2. The student in Category 2 of Study 2 was deemed not to 

have evidenced an inability to explain. All of the categories of explanation were 

classified as action-perception categories of explanation in terms of Tall’s theory 

because this was the type of explanation students evidenced when they answered Part A 

correctly. 

  Item 15: Graphing an Integral 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 1 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  Refer to the integral 

as the area shown: 

 

2 IATE AP 5.  Refer to the integral 

as the area shown: 

 

2 IATE AP 

2.  Refer to the integral 

as the area shown: 

 

1 IATE AP 6.  Refer to the integral 

as the area shown: 

 

1 IATE AP 

3.  Appear to think the 

integral is the area of 

a rectangle with 

dimensions similar to 

the limits of the 

integral in question. 

 

 

2 IATE AP 7.  Refer to the integral 

as the area shown: 

 

1 IATE AP 

4.  Provide no graph and 

no reason. 

17 IATE N/A     

Table 3.60 The Incorrect Students’ Categories of Explanation for Item 15 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 
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  Item 15: Graphing an Integral 

For the Students who Answered Incorrectly in a Mathematics Context 

Study 2 

Category No. Exp. Tall. Category No. Exp. Tall. 

1.  State that the answer 

is equal to 0.5. 

 

1 IATE AP 6.  State that the integral 

is equal to the area 

under the curve. 

 

1 IATE AP 

2.  Refer to the integral 

giving the area under 

the curve y = 1/x.  

 

1 IATE AP 7.  State that the integral 

is from 1-3. 

 

 
 

2 IATE AP 

3.  State that the integral 

is the area between 3 

and 1. 

 

1 IATE AP 8.  Refer to the integral 

as the area under the 

curve, just between 1 

and 3. 

 

1 IATE AP 

4.  State that the area 

corresponding to the 

integral is equal to the 

area below the curve. 

 

1 IATE AP 9.  Refer to Integration 

as finding the area 

under the curve. 

 

 
 

1 IATE AP 

5.  Provide no graph and 

no reason. 

 

7 IATE N/A     

Table 3.61 The Incorrect Students’ Categories of Explanation for Item 15 (Abbreviations: 

No.—number of students in each category; Exp.—form of explanation; IATE—inability to 

explain; Tall.—degree of explanation in terms of Tall’s theory; AP—action-perception; 

N/A—not applicable). 
 

 Looking at the categories of explanation which the incorrect students provided, (as 

shown in Tables 3.60 and 3.61), it is clear that most of the students realised that an area 

had to be highlighted for Item 15. However, in Categories 6-7 for Study 1, students 
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highlighted an area between a graph and the y-axis. Also, most of the categories 

evidenced that students were unable to depict the graph relevant to the depiction of the 

integral for the function 1/x. This was not a surprise given that the majority of the 

students were unable to answer Item 13 which required the depiction of the function 

1/x. 

In respect of Items 14 and 15 (items concerned with integration) previous research [53, 

55,58] has found that most students can perform integration routinely, and yet not 

realise what they are doing. Looking at Table 3.56, it can be seen that the majority of 

the students who correctly evaluated the integral in Item 14 gave an explanation for 

what they did but not why they did it. Students’ performance in evaluating the integral 

appears to be at odds with the view that students can perform the technique of 

integration routinely, irrespective of whether they can explain why they use integration 

[86]. Perhaps the reason for this was simply due to students being unable to remember 

the integral of 
x

1
. The findings of De Pierro and Garafala would uphold this view: they 

state that students rarely understand why the integral of xLndt
t

1
x

1

=∫ . 

Students’ performance for Item 15 suggests that the majority of students are unable to 

graphically represent a definite integral. Previous research has also found this to be true 

[53, 86,87]. However, looking at students’ categories of response for the Item (Tables 

3.60 and 3.61), it can be seen that many students realised that the integral is concerned 

with evaluating an ‘area’; however, the students were unable to draw the correct graph. 

Perhaps this is again due to poor awareness of functions in terms of graphs, as is 

indicated by students’ results for Items 11-13. Even if this is the case, Bressoud [8] 

claims that it has not been traditional to test students’ graphical meaning of integrals so 

this could be an equally valid reason as to why the majority of the students could not 

answer Item 15 correctly. 
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3.6 Chapter Summary 

In terms of the Transfer Question, transfer was observed for the majority of items in 

both studies. For certain items, more so in Study 1 than in Study 2, the instances of 

transfer observed was found to be significant. For Study 2, the reminder of the 

mathematics that students need to use in a chemistry context did not improve the 

instances of transfer observed when compared to Study 1. Neither did the reminder 

improve the instances of statistically significant transfer.  

In terms of the 1
st
 aspect of the Explaining and Transfer Question, for many of the 

items, in both studies, those students who evidenced an ability to explain in a 

mathematics context, associated with the transfer of the item more so than the students 

who did not. 

In terms of the 2
nd

 aspect of the Explaining and Transfer Question, the main findings 

that emerged were:  

1)  The students who evidenced an action-perception category of explanation for the 

meaning of slope (Item 1) in a mathematics context were likely to answer Item 7 

(Interpreting Derivative) in a mathematics context, more so than students who did 

not evidence the same category of explanation. These same students were likely to be 

able to transfer Item 7 to a chemistry context, more so than students who did not 

evidence the same action-perception category of explanation. 

2)  The students who evidenced a category 1 action-perception category of explanation 

for the meaning of slope (Item 1) in a mathematics context, tended to associate with 

the transfer of Items 5 and 10, in both studies. These same students appear to be able 

to answer Items 7 and 10 in a mathematics context more so than other students. 

3)  For Item 6, the most frequent perception-action category of explanation, in both 

studies, was: find the slope of the tangent at the point. It could be argued that perhaps 

this is an embodied mathematical object-type image of derivative, which allows the 

students to transfer.  

4)  Evidencing an action-on-action category of explanation for Items 8 and 9 appears to 

be a sufficient explanation in order to transfer these items. 
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5)  Many students were unable to answer Items 11-13 in a mathematics context 

correctly. One of the reasons proposed for this, was: the focus of functions/algebraic 

expressions is often divorced from the graphical nature of such functions/algebraic 

expressions. However, it was found that for many of the algebraic items, students’ 

performance for these items was not much different from their performance in 

‘graphicacy-type’ items. 

6) Many students were unable to answer Items 14-15 (Integration Items) correctly in a 

mathematics context, irrespective of whether the item was algebraic or graphic in 

nature. 

Overall, for the majority of the Items, certain students appear to be able to transfer them, 

suggesting that the problems students have with mathematics in a chemistry context, 

may not be a transfer one, but instead be because of insufficient mathematical 

knowledge in a mathematics context.  

In the next chapter, how these results informed the design of an Intervention aimed at: 

1) improving students’ understanding of Slope, Derivative and Integral, in a 

mathematics context; and 2) improving students ability to transfer Slope, Derivative and 

Integral, is discussed. Also, the evaluation of the impact of the Intervention programme 

is discussed. 
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Chapter 4 

The Development of an Intervention Designed to Improve Students’ 

Mathematical Understanding, and Ability to Transfer. 

4.1 Chapter Overview 

The results from Study 1 and Study 2, discussed in Chapter 3, suggested that the 

problem students have with mathematics in a chemistry context is not necessarily a 

transfer problem, but rather due to insufficient mathematical knowledge. Consequently, 

mathematical interventions aimed at improving students understanding of slope, 

derivative and integration were designed. The interventions were trialled over two 

years. Trial 1 occurred during the academic year 09/10 and Trial 2 occurred during the 

academic year 10/11. 

This chapter discusses Trial 1 in terms of: 1) the sample of students involved; 2) the 

design of the four mathematical interventions which were implemented with students 

(one intervention on slope, two interventions on derivative and one intervention in 

respect of integration); 3) the evaluation of the trial; and 4) the conclusions which arose 

from the trial. 

Trial 2 is also discussed in terms of: 1) the sample of students involved; 2) the 

evaluation of the trial; and 3) the conclusions which arose from the trial. Lastly, the 

conclusions which arose from both Trial 1 and Trial 2 are discussed in a chapter 

summary. 

4.2 The Intervention — Trial 1 

In the Main Study (discussed in Chapter 3) it was observed that if students were able to 

explain their reasoning for an item in a mathematics context, they tended to associate 

with transferring it. Thus, it was decided to design mathematical interventions which 

aimed to improve students’ understanding in a mathematics context. It was envisaged 

that so doing would: 1) improve students’ ability to answer a particular item correctly; 

2) improve students’ ability to explain their reasoning; and 3) improve students’ ability 

to transfer. 



158 

 

4.2.1 The Sample 

First-year science students were asked to participate voluntarily in four workshops 

(which contained the mathematical interventions) aimed at improving students’ 

understanding of certain mathematical concepts. All of the students were undertaking 

one of the following science programmes: Chemical and Pharmaceutical Science, 

Analytical Science, Environmental Science and Health, Common Entry into Science, 

Biotechnology or Genetics and Cell Biology. Eighteen students agreed to participate. 

Each of the workshops contained an intervention in the form of a series of ‘guided 

worksheets’ for the students to complete by themselves. Each workshop was of an hour 

duration, and the students received a nominal payment for participation. My role in the 

workshops consisted of dealing with questions in respect of difficulties which the 

students may have had in the interpretation of the worksheets. 

4.2.2 Methodology 

The mathematical interventions were designed in such a way that required students to 

explain their reasoning in a mathematics context. But what constitutes evidencing an 

ability to explain? Tall’s theory [62] was used in this regard. The mathematical 

intervention focused on improving students’ understanding of Items 1-7 and Items 14-

15 (shown in Appendix D); the reasons for the focus on these items are discussed in 

Section 3.5 in Chapter 3. The design of the interventions was focused on developing the 

cognitive process associated with Tall’s theory. This is highlighted in Figure 1.5 in 

Chapter 1.  

Insofar as was possible, all of the interventions aimed to embed mathematical concepts 

such as slope, derivative and integration in an environment/context that was 

visual/graphical in nature. This embedding aimed to embody the mathematical concept 

in the form of an embodied mathematical object, which in turn could be perceived by 

the students and then acted upon in the form of symbols – in effect, moving from Tall’s 

1
st
 World to 2

nd
 World. It was thought that utilising such an approach would improve 

students’ ability to explain in the form of Action-Perception explanations or Perception-

Action explanations. While this approach constituted the essence of the design of the 

mathematical interventions, other views on how to teach calculus, as deduced from 

mathematics-educational literature in general, were analysed for relevance.  
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A view shared by some researchers [26, 27] is that the teaching of calculus concepts 

should be one that is driven by the re-invention / historical evolution of the concepts. 

Such a re-invention does not necessarily have to mirror the exact historical evolution of 

the concept [27]. Instead, when deciding on how to introduce a concept, it is more 

important to be aware that while such an introduction may be experientially real from 

the researchers’ perspective, it may in fact, be not so from the students’ perspective 

[27]. For example, when introducing the definition of electric current in terms of it 

meaning the quantity of charge (Q) passing a point in a circuit per second, a teacher (or 

researcher) might consider using the flow of water in the form of a diagram as an 

experientially real analogy. However, the students looking at such a diagram might not 

experience it as similar to the definition of current. They might just see water flowing, 

as opposed to what the teacher wants them to see: namely, a number of units of water 

(akin to units of charge (Q)) flowing past a point within a one second interval (akin to 

the quantity of charge (Q) flowing past a point in a circuit per second). Also, a certain 

number of assumptions have to be made as to what the students know — or should 

know — when designing any mathematical intervention. Assumptions in this regard 

were made for the design of all the interventions. 

Embedding the mathematical concepts in a context/environment that allowed students to 

develop a qualitative idea of the concept before it was introduced more formally (in the 

form of symbols) echoes with the views of Gravemeijer and Doorman [27]. They 

highlight the importance of encouraging students to develop qualitative notions about 

mathematical concepts in order to promote understanding of them.  

By using an environment/context that was not strictly mathematical in nature to 

introduce each of the concepts, it was envisaged that this would allow the concept to be 

understood better in an abstract mathematical context, thus making it more transferable.  

Lobato and Siebert [34] argue that being able to do this is important, but at the same 

time challenging and oftentimes difficult. 

In all the interventions, students were asked ‘guiding questions’ so as to allow them to 

construct the knowledge of the mathematical concept for themselves. Such ‘guiding-

without-telling’ questions [88] were balanced by summary sections of each intervention, 

summary sections which summarised what the students had learned—or should have 
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learned. This balancing act, which Wagner et al. [88] describe as not typically a part of 

an instructor’s repertoire, was challenging to strike. 

Lastly, the author Orton [89] underscores the importance of a lengthy focus on graphs 

and rates of change, before attempting to introduce calculus. This focus was 

accomplished with the design of the Slope Intervention. Its design was informed not just 

by the views of Orton, but also by the results from the Main Study and previous 

literature. The four mathematical interventions are each discussed separately. The 

intervention on slope is discussed in Section 4.2.2.1, the two interventions on the 

meaning of derivative are discussed in Sections 4.2.2.2 and 4.2.2.3, while the 

intervention on integration is discussed in Section 4.2.2.4. 

4.2.2.1 The Slope Intervention 

The slope-type items used in the Main Study were Items 1-7 and Item 10 (these items 

can be seen in Appendix D). During Study 1 of the Main Study, it was observed that for 

the items related to slope, those students who evidenced an ability to explain Items 6-7 

and Item 10 in a mathematics context associated with the transfer of these items more so 

than students who did not. Items 2-5 did not require students to explain their answer. 

During Study 2 of the Main Study, those who evidenced an ability to explain Items 1-3, 

5-7 and 10, associated with the transfer of them. The overall conclusion from the Main 

Study was that if a student explains their reasoning for these items in a mathematics 

context, they will tend to transfer them. Tall’s theory was used in an attempt to 

understand the degree to which students explained the slope-type items. 

In respect of students’ categories of explanation for Item 1 (shown in Table 4.1), it was 

found (as discussed in Section 3.5.1 of Chapter 3) that for the students who evidenced 

an action-perception category of explanation in terms of Tall’s theory for the meaning 

of slope, they were likely to answer Item 7 (Interpreting Derivative) in a mathematics 

context more so than other students. They were also more likely to transfer Item 7.  

Table 4.1 shows the correct action-perception categories of explanation which emerged 

for Item 1. Looking at the Category 1, Action-Perception Category of Explanation for 

the meaning of slope, the students who evidenced such a category of explanation in the 

Main Study associated with the transfer of Items 5 and 10 more so than other students. 
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These students also associated with the answering of Items 7 and 10 in a mathematics 

context and (if statistical significance is ignored for Study 2) all of the Study 2 students 

in this category answered Item 7 and 10 correctly in a mathematics context. Thus, these 

findings encouraged an intervention on improving students’ understanding of slope in 

an action-perception way, with a particular emphasis on the Category 1, Action-

Perception Category of Explanation. It was felt that such an emphasis may improve 

students’ understanding of Items 5, 7 and 10. During the Main Study, these items were 

answered not so well in a mathematics context.  

 Item 1: Calculating Slope 

For the Students who Answered Correctly in a Mathematics Context 

Study 1 Study 2 

Category No. Und. Tall. Category No. Und. Tall. 

1.  Refer to how much y 

increases for a unit 

increase in x. 

 

10 ATE AP 1.  Refer to how much y 

increases for a unit 

increase in x. 

 

3 ATE AP 

2.  Refer to slope as a 

measure of steepness. 

1 ATE AP 2.  The slope represents 

the rate of increase of 

the line. 

5 ATE AP 

3.  Refer to the rate at 

which the line 

increases. 

3 ATE AP 3.  The bigger the 

number, the steeper 

the slope is. 

2 ATE AP 

    4.  The change of x 

relative to y, how 

steep a line is. 

1 ATE AP 

    5.  It is the difference 

between the heights 

over the difference 

between the two 

length points. 

2 ATE AP 

Table 4.1 The Correct Action-Perception Categories of Explanation for Item 1. 

 

The interesting findings in relation to the students who evidenced a Category 1, Action-

Perception Category of Explanation for the meaning of slope were the main reasons for 

a mathematical intervention on slope. Other reasons included the views of Rasmussen 

and King [26] who, as stated in the literature review, found that if students have to 

conceptualise a situation in a way that involves a rate, it is non-trivial for the students. 

Thompson and Silvermann [90] articulate that students’ success in terms of integration 

can only begin in secondary school if rate of change is taught substantively, while 

Lobato and Siebert [34]  argue that the mathematical concept of slope has not been 

effectively taught to students in a manner which allows them to generalise it. The 
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mathematical intervention in respect of slope is shown in Appendix E. The intervention 

consisted of three sections. 

Section 1 

The first section aimed to encourage students to think about the meaning of slope in the 

context of a measure of steepness. Questions 1-9 were designed to foster this and thus 

echo with the sentiments of Stump [78, p. 87] who articulates that an essential question 

to ask students as they observe the graphs of linear functions is “what does the slope 

represent in the context of the situation?” Even if the students were unable to fully 

answer Section 1, they were instructed to complete Section 2, and then return to Section 

1. 

Section 2  

Section 2 emphasised the definition of slope and the meaning of steepness. In order to 

do this, a real-world context was chosen, namely a function representing the volume of 

water in a tank at different times. It was stressed that the slope gives a measure of how 

much a line increases or decreases in the vertical direction ( ∆ y) for an increase of ∆ x 

in the horizontal direction. This focus would be supported by the work of Lobato [72, p. 

297], who states that in respect of slope: “papers indicate that revised curricula materials 

tend to focus attention on the co-varying quantities rather than on the location of 

something vertical and something horizontal in each new problem”. This focusing was 

undertaken in tandem with the embodied object aspect of Tall’s theory in mind.  

The Category 1 Action-Perception Category of Explanation (shown in Table 4.1) 

unearthed during the Main Study was built upon in Section 2. As can be seen from 

Figure 4.1 (the figure used in Section 2) the slope calculated between the Points A and 

B was visually represented in an embodied mathematical object-type manner; in effect 

linking the symbolic actions needed to calculate the slope value with visual referents in 

the form of squares. The meaning of the slope value was further emphasised in terms of 

ratio, as shown in Figure 4.2. This emphasis on slope in terms of a ‘ratio as measure’ 

has been encouraged by previous researchers [72, 91]. The meaning of slope was then 

divorced from the real-world context and abstracted into a mathematics context, as can 

be seen from Figures 5 and 6 in Appendix E. 
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              Figure 4.1 The Embodied Mathematical Object-Type Visualisation of Slope        

Used in the Trial 1 Intervention. 

 

 

            Figure 4.2 The Embodied Mathematical Object-Type Visualisation of Slope as     

Ratio Used in the Trial 1 Intervention. 
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The idea of slope being equal to steepness with a sign was also covered in Section 2. 

Question 10 was included as an exercise to enforce the embodied mathematical object-

type understanding of slope developed in Section 2. The students were presented with a 

graphical description of a walker descending in height 0.25 metres for every one metre 

they moved forward—the graphical depiction of which is shown in Figure 4.3. The 

students were asked to highlight the change in the walker’s horizontal direction, (the 

walker being initially at Point A), when the walker descended one metre in the vertical 

direction. The highlighting that students were expected to produce is shown in Figure 

4.4. 

 

 
 Figure 4.3 The Graphical Depiction of a Walker Descending in Height 0.25 Metres for 

Every Metre they Move Forward. 

 

Section 3 

Lastly, Section 3, similar to Section 1, albeit in a different context, was designed for 

students to re-enforce their understanding of slope in light of Section 2. It was hoped 

that the section would enable the students to explain the meaning of slope in an 

embodied mathematical object-type way for Questions 3-8. 
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  Figure 4.4 The Embodied Mathematical Object-Type Depiction of a Walker Descending 

in Height One Metre for Every Four Metres they Move Forward.  

 

4.2.2.2 The Meaning-of-Derivative Intervention 

Students’ performance for Items 6 and 7 (which can be seen in Tables 3.1 and 3.2. in 

Chapter 3) was the reason for the design of an intervention aimed at improving 

students’ understanding of derivative. As is discussed in Section 3.5.7 in Chapter 3, for 

Items 6 and 7 (items on generating an expression for derivative and interpreting 

derivative respectively), students who evidenced an ability to explain the items in a 

mathematics context, associated with the transfer of those items. This was observed 

during both Study 1 and Study 2 in the Main Study.  

It was found that one of the most frequent perception-action categories of explanation 

for Item 6, in both studies, was that of referring to finding the slope of the tangent at a 

point. It was speculated that such a perception-action category of explanation is an 

embodied mathematical object-type image of derivative which allows students to 

transfer Item 6.  A similar perception-action category of explanation was found to be 

given by students for Item 7, thus allowing them to transfer that item. In light of these 

findings, it was decided to improve students’ understanding of derivative in terms of:  

1) the meaning of derivative in respect of an embodied mathematical object-type 

image of slope; and  
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2) the meaning of derivative as a function in respect of the derivative function 

allowing the determination of the slope of a tangent at any particular point on 

the function that was differentiated.  

This two-pronged approach to the intervention was situated in a real-life context, 

focusing on the underlying quantities being modelled: Rasmussen [92] claims that this 

type of approach generates more flexible, notational [algebraic] schemes for important 

mathematical concepts amongst students. The intervention on the Meaning of 

Derivative can be seen in its entirety in Appendix F; the three sections in this 

intervention are described. 

Sections 1 and 3 

Like the intervention on slope, Section 1 aimed to encourage the students to think about 

the meaning of derivative; Questions 1 and 2 were used in this regard. Section 2 was 

designed to help the students answer the questions in Section 1 if they were unable to do 

so. Section 3 re-enforced the ideas in Section 2, by way of requiring students to apply 

the ideas to a chemistry context. 

Section 2 

The relationship between the surface area of a balloon and its radius was used as a real-

world context to promote students’ understanding of derivative. The graph of the 

relationship produces a curve. Care was taken that a real-world functional relationship 

be chosen which was not linear in nature. A linear relationship has a constant rate of 

change, and, as Orton [89] articulates, the distinction between an average rate of change 

and instantaneous rate of change at a point (or derivative at a point), if a linear 

relationship is used, has little meaning to some students. 

In order to answer Question 1 in the intervention, it was stressed that students need to 

estimate the slope of a tangent at the point in question. Such estimation was (without 

being made explicit), an exercise in finding the limiting value for the slope of a set of 

secants as ∆x approached zero). Rasmussen [92] articulates that students need 

considerable help in this area. This was accomplished through making such a process 

visual in nature, as can be seen in Figure 4.5 which was one of the figures used. The 
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visual nature is in effect an embodied mathematical object-type image of slope, building 

on the slope intervention. 

 

 

                               Figure 4.5 Emphasising the Visual Nature for the                           

Estimate of the Slope of the Tangent at the Point (5,314). 

 

The requirement of a function as only being differentiable at a point if its right-hand 

derivative at the point is equal to its left-hand derivative at the point was incorporated in 

Section 2, as can be seen from Figure 5 in Appendix F. The students had to estimate the 

slope of the tangent line at the point in question, as positive values of ∆ x approach zero 

and negative values of ∆ y approach zero, as shown in Tables 4.2 and 4.3. 
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 Figure ∆x  ∆y  Value for Slope 

4 2cm 301cm
2 

151 

6 1cm 138cm
2
 138 

- 0.0001cm 0.0125cm
2 

125.6649 

- 0.00001cm 0.00125cm
2 

125.6637 

- 0.000001cm 0.0001256cm
2 

125.6632 

- - - - 

- - - - 

8 Approaches zero, yet 

does not reach zero. 

Approaches zero, yet 

does not reach zero. 

 

   Table 4.2 The Table Used to Show that as a Positive Value of ∆x Becomes Extremely Small  

(Infinitesimal), ∆y Becomes Extremely Small (Infinitesimal), and thus, the More Accurate 

Becomes the Estimate for the Value of the Slope of the Tangent Line at the Point (5, 314) 

 

 

 Figure ∆x  ∆y  Value for Slope 

5 -2cm -201cm
2
 101 

- -1cm -113cm
2
 113 

- -0.0001cm -0.012566cm
2 

125.6624 

- -0.00001cm -0.0012566cm
2 

125.6637 

- -0.000001cm -0.00012566cm
2 

125.6635 

- - - - 

8 Approaches zero, yet 

does not reach zero. 

Approaches zero, yet 

does not reach zero. 
 

 Table 4.3 The Table Used to Show that as a Negative Value of ∆x Becomes Extremely Small  

(Infinitesimal), ∆y Becomes Extremely Small (Infinitesimal), and thus, the More Accurate 

Becomes the Estimate for the Value of the Slope of the Tangent Line at the Point (5, 314) 

 

The summary section dealt with the estimation process the students were using in terms 

of Tall’s 2
nd

 World. The technique of estimation was now referred to as finding the 

limiting value of the expression: 
∆x

∆y
Lim

dx

dy

0∆x5cmx →=

= , 

at the point: x = 5cm. The shape of the tangent at the point: x = 5cm was now referred to 

as the derivative at this point. 
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4.2.2.3 The Derivative-as-a-Function Intervention 

Items 6 and 7, as shown in Appendix D, did not explicitly test students’ understanding 

of the derivative of a function in terms of the derivative being a function in its own 

right. Nevertheless, it was decided to make students aware of this. Previous research 

encouraged this stance. Asiala et al. [93] found that some students equate the derivative 

of a function with the equation for the line tangent to the graph of the function at a 

given point. Furthermore, Rasmussen [92] claims that for students to conceptualise the 

derivative of a function as a function in its own right, is by no means trivial. Bearing 

these findings in mind, an intervention was designed. The Derivative-as-a-Function 

Intervention can be seen in its entirety in Appendix G; the three sections in this 

intervention are described. 

Sections 1 and 3 

Question 1 in Section 1 asked students to differentiate a function and explain its 

meaning. Question 2 asked the students to choose which graph represented the 

derivative which they found in Question 1. These two questions tested whether the 

students realised that the derivative they calculated was: 1) a function that allows the 

calculation of a derivative at any particular point and 2) a function which can be 

represented graphically. 

Section 2 was designed to help the students answer the questions in Section 1 if they 

had been unable to do so. Section 3, similar to Section 1, reinforced the ideas in Section 

2 by way of requiring students to apply these ideas to a chemistry context. 

Section 2 

Like in the intervention on the meaning of derivative, the relationship between the 

surface area of a balloon and its radius was used as the context to embed the 

intervention within. The intervention revolved around Question 1: by how much is the 

surface area of the balloon increasing when the radius of the balloon is instantaneously 

passing through any particular value? It was stressed that a function would be 

generated by taking a number of points on the function:  y = 2x4π  in order to find out 

how much the surface area of the balloon increased ( ∆ y), when the radius of the 

balloon instantaneously passed through a particular radius value; Sections 2.1-2.3 
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required students to do this. The same sections also reinforced what students should 

have learnt in the intervention on the meaning of derivative, by way of re-iterating the 

estimation/limiting process associated with finding the slope of a tangent at any 

particular point on a function. Section 2.4 tabulated the results of the work that the 

students should have garnered from Section 2.1-2.3 – as shown in Table 4.4. The results 

were plotted in the form of dy/dx against r, and it was shown that what appeared to be a 

linear relationship, was indeed so, as shown in Figure 4.6.  

 Point Radius of the Balloon 

(cm) dx

dy
 

(2,50) 2 50 

(4,201) 4  100  

(6,452) 6 150 

Table 4.4 The Tabulation of the Results the Students Should have Garnered from the 

Completion of Sections 2.1-2.3. 

 

 

                         Figure 4.6 The Plotting of the Results the Students should have            

Garnered from Sections 2.1-2.3 
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Questions 5-6 were designed to reinforce the idea that the derivative of a function is a 

function in its own right. The emphasis of the questions was one in which the derivative 

function allows the calculation of the rate of change of one quantity with respect to 

another for any particular point of the function that was differentiated. The graph of the 

function and the graph of its derivative function were shown side-by-side, as can be 

seen in Figure 4.7, in order to stress the visual nature of the derivative function. Lastly, 

what a derivative function is used for was re-iterated. 

 

 

Figure 4.7 The Graph of the Function: y=
2

x4π , and the Graph of its Derivative Function. 

 

4.2.2.4 The Integration Intervention 

In the Main Study, Items 14 and 15 tested students’ understanding of the evaluation of 

an integral, and the graphical representation of an integral respectively. Students’ results 

for these items can be seen in Tables 3.1 and 3.2 in Chapter 3; such results were the 

reason for the design of an intervention aimed at improving students’ understanding of 

integration. As discussed in Section 3.5.15 in Chapter 3, students who evidenced an 

ability to explain these items in a mathematics context tended to associate with 

transferring them.  
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The design of the integration intervention can be seen in Appendix H. It should be noted 

that Sections 1 and 3 of the intervention were not in the same form as Sections 1 and 3 

of both the slope and derivative interventions. The Section 1 and Section 3 for the slope 

and derivative interventions encouraged students to think about the concept the 

interventions sought to improve students’ understanding of. Such an approach was not 

used for the integration intervention as it was felt that doing so would make the 

intervention too long.  

Section 1 

Dijksterhuis [94] cited in Gravemeijer and Doorman [27], is quoted as saying that 

fundamental theorems are understood intuitively before they are proven. Fostering this 

intuitive approach in terms of the fundamental theorem of calculus was undertaken 

using the physical quantities of velocity, distance and time. These physical quantities 

were expressed graphically because the authors Gravemeijer and Doorman argue that 

the use of visual referents helps students to focus on the mathematics in question [27].  

The connection between velocity, distance and time was thought to offer the students a 

meaningful context to interpret the significance of integration. In many respects, it 

sought to re-invent the way in which mathematicians first unearthed an intuitive idea of 

the fundamental theorem of calculus by dint of obtaining/recovering information about 

a quantity of interest through its rate-of-change equation [26]. Because the authors 

Rasmussen and King [26] articulated that it takes today’s students some thought and 

reflection to deal sensibly with using rate-of-change equations to obtain a quantity of 

interest, guiding questions (or what were deemed to be guiding questions) were 

incorporated in both Sections 1 and 2. 

The velocity function in Section 1 was linear so as to avoid the need to calculate lower 

and upper bounds in order to estimate the ‘perceptual area’ between the graph, the x-

axis, and the limits in question. The avoidance of lower and upper bounds during the 

introductory stage (Section 1) of the intervention was considered to be of importance in 

order for students to be ‘intuitively struck’ in terms of what integration is. 

The term ‘perceptual area’ refers to the everyday interpretation of area, be that in terms 

of square centimetres, square metres or square kilometres for example. The term does 
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not refer to the physical quantities produced by integrating this ‘perceptual area’ which 

could be work if the integral of pressure as a function of volume is integrated or (as in 

the case of the context used in this intervention) displacement — produced as a 

consequence of integrating velocity as a function of time.  

Question 2: In terms of a physical interpretation, what does the value for the area you 

have calculated mean? Does it give you the displacement of the body (the distance the 

body travels in a certain direction) between t = 0 seconds and t = 6 seconds?, was 

included to make the students realise that the value they calculated was a physical 

quantity, namely displacement as opposed to a perceptual area. This approach was 

further justified by the authors Thompson and Silvermann [90], as they stress that 

students must see the perceptual area under a curve as representing a quantity other than 

an area.  

The students’ tabulation of the perceptual area between the graph and the x-axis for the 

velocity function: v = 2t, as time varies (shown in Table 4.5) and its graphical depiction 

(shown in Figure 4.8) aimed to:  

1) make the students aware that a new functional relationship had been generated 

—displacement versus time; and  

2) this functional relationship, when differentiated, produced the original function 

which the students had integrated (albeit the students had not been explicitly told 

that they were integrating it) over specific intervals. 

 Figure Length of the base of 

the triangle. 

Height of the 

triangle 
Area/ displacement 

2 6 seconds 12 metres per second 36 metres 
3 5 seconds   
4 4 seconds   

5 3 seconds   

6  2 seconds    

7 1 seconds   

Table 4.5 The Table Students Tabulated for the Perceptual Area between the Graph and the X-

Axis for the Velocity Function: v = 2t, as Time Varied. 
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 Figure 4.8 The Graphical Depiction of the Perceptual Area between the Graph and the 

X-Axis for the Velocity Function: v = 2t, as Time Varies. 

 

The summary of Section 1 re-iterated what the students had been doing and observing. 

More importantly, it put forward an inference:  

If given any function f(x), such as the one shown in Figure 4.9, then perhaps the shaded 

area is found by using a function F(x) that satisfies : 
dx

dF(x)
f(x) = . 
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                 Figure 4.9 The Function Students were Shown in Light of the                          

Suggested Inference Concerning the Integration of any Function. 

 

Section 2  

Section 2 considered the aforementioned inference/proposition put forward in Section 1 

in more depth, this time through the form of a function that produced the shape of a 

curve when graphed. Question 5: Can you calculate the area underneath the graph 

between time t = 0 seconds and time t = 4 seconds, as highlighted in Figure 12 (the 

figure can be seen in Appendix H)?, was inquiry in nature. How such an area could be 

estimated by way of rectangles was described.  

Questions 7-11 were included in order for students to realise that when the base width 

of the rectangles involved in both the lower-sum and upper-sum estimates approach 

zero, the numbers of rectangles increases (approach an infinite number), and the 

estimate for the area between the curve and the x-axis becomes more accurate.  

Such an emphasis was deemed important because Orton [86] observed that in respect of 

an integral evaluating the area between a curve and the x-axis, many students do not 

understand the limiting process involved.  Aspinwall and Miller [75] also found that 

many students are able to respond with correct answers to problems involving integrals 

[supposedly evaluating definite integrals], yet they do not understand how upper and 

lower sums create bounds for the value of an integral. 
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Students used the expression: Area = b
3
 + b to evaluate the area between the curve and 

the horizontal axis for the function: v = 3t
2
 + 1, as b varied. The curve is shown in 

Figure 4.10 .  

 

                        Figure 4.10 The Area between the Graph: v=3t
2
+1, and the x-axis over        

any Interval from t = 0 Seconds to t = b Seconds. 

The exact generation of the expression: Area = b
3
 + b, was not completely shown, for 

to do so would have involved a lengthy explanation, involving the use of series which 

was beyond the scope of the intervention. Instead, it was stated that the expression for 

the upper-sum estimation of the area could be shown to be: 

2

33
3

2n

b

2n

3b
bb +++ , 

which in turn produced the expression: b
3
 + b, as n approached infinity. Students were 

then instructed to calculate the area between the function shown in Figure 4.10 and the 

horizontal axis, between: zero seconds and three seconds; zero seconds and two 

seconds; and zero seconds and one second. Subsequent to this, the students had to 

tabulate the results and were instructed to plot the results in the form of a graph as 

shown in Figure 4.11.  
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                            Figure 4.11 The Graphical Depiction of the Perceptual Area the Students 

Calculated between the Function: v = 3t
2
 + 1 and the Horizontal Axis. 

 

Like in Section 1, the tabulation and graphing of results was designed to make the 

students realise:  

1) they had generated a new functional relationship — displacement versus time; 

and  

2) the new functional relationship, when differentiated, produced the original 

function which the students had integrated. 
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Section 3  

Section 3 (or the summary section) generalised what the students should have observed 

in Sections 1 and 2. They should have realised that given any function (f(x)), it is 

possible to generate a function (F(x)) which can be used to evaluate the perceptual area 

between the function (f(x)) and the x-axis, bounded by limit values. Furthermore, they 

should have realised that the technique used to generate this function (F(x)) is referred 

to as integration, and that when this function (F(x)) is differentiated, it produces the 

function (f(x)) that was integrated.   

The notation used to symbolise integration was introduced and explained in Section 3. 

Taking an example of a function in a mathematics context, its anti-derivative function 

was shown. It was then emphasised that the anti-derivative function could be used to 

calculate the area highlighted between the function and the x-axis within certain limits. 

Lastly, the equation: 

∫
b

a

f(x)dx = F(b) – F(a), 

was stated to emphasise how to calculate the area of a function f(x) between any limit 

values, a and b. Such an algebraic emphasis of integration was only made explicit in 

Section 3, because previous research articulated that for some students, the introduction 

of the meaning of integration can be obscured by algebraic manipulation [86]. 
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4.2.3 Evaluation of Trial 1 

The following questions were used to evaluate Trial 1:  

1) What were the students’ opinions about the usefulness of the mathematical 

interventions?  

2) What was the students’ understanding of slope, derivative and integration in a 

mathematics context?  

3) Were students able to transfer to a chemistry context? 

Ascertaining the students’ opinions and the students’ mathematical understanding in 

respect of slope, derivative and integration in a mathematics context took place through 

the form of student interviews during the academic year 09/10. Determining students’ 

ability to transfer to a chemistry context was investigated through the form of a 

questionnaire, conducted during the academic year 10/11. 

4.2.3.1 Opinions and Mathematical Understanding 

Method of Investigation 

Of the 18 students who completed the mathematical interventions, three students agreed 

to be interviewed. Students’ opinions as to whether the interventions improved the 

students’ understanding of slope, derivative and integration more so than when the 

students encountered the concepts in school, university lectures and university tutorials, 

were garnered. These thoughts were garnered by asking questions one to six and 

questions ten to twelve, as can be seen in Table 4.6. To investigate the students’ 

mathematical understanding, students were asked to complete a number of questions 

(shown later in this section). Upon completing these questions, students were asked 

questions seven to nine and questions thirteen to fifteen as shown in Table 4.6. These 

questions were asked to ascertain the students’ opinions in terms of whether the 

interventions helped them to answer questions related to slope, derivative and 

integration more so than what the students learnt in school, university lectures and 

university tutorials.  
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 Interview Questions to Determine Students’ Opinions 

Q.1    Did your understanding of slope change from what you learnt in school to what you 

learnt in lectures during your first year at University? If so, how? If not, why not? 

 

Q.2    Did your understanding of slope change from what you learnt in lectures at University 

compared to what you learnt in tutorials at University? If so, how? If not, why not? 

 

Q.3    Did your understanding of slope change from what you learnt in lectures & tutorials 

compared to what you learnt in the mathematics-intervention workshops? If so, how? If 

not, why not? 

 

Q.4    Did your understanding of derivative change from what you learnt in secondary school 

to what you learnt in lectures during your first year at University? If so, how? If not, 

why not? 

 

Q.5  Did your understanding of derivative change from what you learned in lectures at 

University compared to what you learned in tutorials at University? If so, how? If not, 

why not? 

 

Q.6  Did your understanding of derivative change from what you learned in lectures & 

tutorials compared to what you learned in the mathematics-intervention workshops? If 

so, how? If not, why not? 

 

Q.7    Did what you learnt at school help you answer questions 1-3? 

 

Q.8    Did what you learnt in lectures and tutorials at university help you to answer    

questions 1-3? 

 

Q.9    Did what you learnt in the interventions help you to answer questions 1-3? 

 

Q.10  Did your understanding of integration change from what you learnt in school to what 

you learnt in lectures during your first year at University? If so, how? If not, why not? 

 

Q.11  Did your understanding of integration change from what you learnt in lectures at 

University compared to what you learnt in tutorials at University? If so, how? If not, 

why not? 

 

Q.12  Did your understanding of integration change from what you learnt in lectures & 

tutorials compared to what you learnt in the mathematics-intervention workshops? If 

so, how? If not, why not? 

 

Q.13  Did what you learnt at school help you answer questions 1-5? 

 

Q.14  Did what you learnt in lectures and tutorials at university help you to answer   

questions 1-5? 

 

Q.15  Did what you learnt in the integration intervention help you to answer questions 1-5? 

Table 4.6 The Questions asked to Garner Students’ Opinion. 
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The interviews were undertaken individually by a postgraduate student not directly 

involved in the intervention, and unfamiliar to the students, so as to make the interviews 

as objective as possible. All the interviews were recorded and independently rated for 

reliability of interpretation by two independent researchers—one from the School of 

Mathematical Sciences and one from the School of Chemical Sciences. An interview-

evaluation rubric was designed to ensure that: 1) the interviews were close to ideal; and 

2) the interview analysis determined students’ opinions. The interview-evaluation rubric 

was applied to each question when analysing the recorded interviews; it is shown in 

Figure 4.12.  

The criteria that is italicised in Figure 4.12 were used to evaluate if the interview was 

close to ideal. Cohen et al. [70] specify some of the criteria that can be used to gauge 

whether an interview is ideal, i.e.; 1) the extent of spontaneous, rich, specific and 

relevant answers from the interviewee; 2) the shortness of the interviewer’s questions; 

3) the length of the interviewee’s answers; and 4) the degree to which the interviewer 

follows up, and clarifies the meaning of relevant aspects of interviewee’s answers.  

The interview-evaluation rubric was used to analyse the interviews in parallel with a 

number of other stages described by Cohen et al. [70], namely:  

I. Bracketing—what it is that the interviewee is saying. 

II. Listening to the interviewee for a sense of whole. 

III. Delineating units of meaning relevant to the research question [students’ 

opinions in this case]. 

IV. Verifying the units of relevant meaning—getting other researchers to 

carry out the above procedures. 

V. Clustering units of relevant meaning. 

VI. Determining themes from clusters of meaning. 

VII. Writing a summary of each individual interview. 

VIII. Writing up a composite summary of all the interviews which accurately 

captures the essence of the phenomenon being investigated. 

The criteria highlighted in bold in Figure 4.12, enabled the carrying out of Stages I - 

VIII. The last stage of this analysis (Stage VIII) is discussed in respect of each question 

asked. 
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 The Interview-Evaluation Rubric 

Criteria Observations 

Facial  & Bodily Expression 

of Interviewee 

 

Language of Interviewer 

Understandable 

 

Interviewee at Ease 

throughout 

 

Specific and relevant 

answers given by Interviewee 

 

Interviewee Answers—Short 

or Long 

 

Did the Interviewer Look for 

Clarification of Certain 

Answers 

 

Did the Interviewer Interpret 

the Student’s Answer 

Throughout 

 

Was the Answer ‘Self-

Communicating’ (contain a 

story within itself) 

 

Units of Meaning to 

Emerge from this Question 

 

What was Said on the 

Whole 

 

Illuminating Quotations  

The Interpersonal, 

Interactional, 

Communicative and 

Emotional Aspect 

 

Figure 4.12 The Interview-Evaluation Rubric that was Applied to the Interview Process. 
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Results 

Students’ Opinions: Slope 

Tables 4.7 summarises what were deemed to be the main points which emerged from 

the three students’ answering of Questions 1-3 (shown in Table 4.6).  

 Q. Student 1 Student 2 Student 3 

1 • “Kind of developed a 

little bit”. 

• Understood it more. 

• “School—here’s a slope; 

calculate it. Actually 

understood what slope 

meant here”. 

 

• Understanding of slope 

did not really change. 

• “It was all the same”; 

“We used a lot of the 

same formulas”; “ I 

already know this.” 

• Understanding of slope 

changed. 

• “In secondary school, it 

was just: y = mx+ c or 

something like that. I’ve 

a different perspective 

now” 

 

2 • “Methods in lectures sink 

in more after you go to 

tutorials”. 

• “Learnt way more in 

tutorials”. 

• Understanding of slope 

did not really change. 

• “Don’t remember doing 

anything that I don’t 

already know”. 

 

• Understood more. 

• Doing questions meant 

that they got a better 

understanding of it. 

 

3 • They moved from 

understanding of slope, 

calculation wise, to what 

it actually means. 

•  “More so in the 

interventions that I learnt 

what the slope was”. 

 

•  “Looking at the graph 

and actually seeing if it’s 

steep or not — never 

really thought of slope 

that way”. 

• “All I saw was a formula: 

never related it to 

pictures”. 

 

•  “Why you do it this way 

[calculation]—found this 

helpful.” 

•  “In secondary school, 

you’re just told how to do 

it, but you don’t 

understand why you do 

it.” 

Table 4.7 Summary of Students’ Opinions in Respect of the Slope Intervention. The points 

which are surrounded by quotation marks are what were deemed to be illuminating 

quotations. The points which do not contain quotation marks represent the essence of what it 

was that the students were deemed to be saying. 

 

 

 



184 

 

Looking at Table 4.7, for Question 1, two out of the three students (Students 1 and 2) 

thought that their understanding of slope changed in lectures compared to what they 

learned at school; the other student, Student 2, said that their understanding remained 

the same. 

For Question 2, Students 1 and 3 considered their understanding to have changed in 

tutorials when compared with lectures. However, for these students, from the summary 

of their responses, it can be argued that they equate a change in understanding with an 

ability ‘to do questions’ and ‘use methods’. Student 2 felt that their understanding did 

not really change. 

In respect of Question 3, all of the students agreed that their understanding of slope 

changed from what they learned in lectures and tutorials, compared to what they learned 

in the mathematics-intervention workshop. What the students consistently reported 

when asked this question was that they understood more of the ‘why’—in terms of why 

slope is used, and what slope means. 

Students’ Opinions: Derivative 

Tables 4.8 summarises what were deemed to be the main points which emerged from 

the three students’ answering of Questions 4-6 (shown in Table 4.6).  

Looking at the students’ answers for Question 4 in Table 4.8, Students 2 and 3 thought 

that their understanding of derivative changed from what they learnt in secondary 

school to what they learnt in lectures. Student 3 said that they understood more of the 

‘why’ as opposed to the ‘how’; however, while Student 2 claimed that their 

understanding improved, they did not qualify what they meant by improved. Student 1 

felt that their understanding in lectures did not improve. 

For Question 5, Students 2 and 3 articulated that they felt their understanding changed 

in tutorials from what they learnt in lectures. It is interesting to note that what the 

students consider to be a change in understanding is equated with ‘how to do’ questions 

or ‘put things into practice’. Student 1 felt their understanding did not improve; they 

“already knew how to do it”. 
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In respect of Question 6, for Students 2 and 3, their understanding improved in the 

mathematics-intervention more so than in lectures and tutorials. They articulated that 

they understood more of the ‘why’. Student 1 felt that their understanding did not 

improve. 

 Q. Student 1 Student 2 Student 3 

4 •  “In Leaving Cert, I 

understood how to do 

it.” (derivative). 

• “Nobody done anything 

new here in comparison 

to what we would have 

done for Leaving Cert.” 

• Did not really 

understand 

differentiation or 

derivatives in secondary 

school. 

• “I thought they did 

everything kind of 

differently in lectures.” 

 

• Understood ‘why’ as 

opposed to ‘how’. 

•  “In secondary school, 

it was just finding: 

dx

dy
.” 

• “I understand what I’m 

doing and why I’m 

doing it.” 

5 • Their understanding of 

derivative did not 

improve in tutorials 

compared with lectures. 

• “Already knew how to 

do it”; “Didn’t really 

learn anything”. 

• Thought the tutorials 

were really helpful; 

people were helpful. 

• “I suppose I learned 

how to do the questions 

in the tutorials”. 

 

• In tutorials, you put   

things into practice; in 

lectures it was just 

about the notes. 

•   Learnt more in tutorials. 

 

6 • Understanding of 

derivative did not 

improve in the 

intervention compared 

with lectures and 

tutorials. 

 

•  “I think the maths 

intervention was about 

teaching you how it all 

began”. 

• “I really only knew the 

formulas and how to do 

it before the maths 

intervention”. 

• Understanding slightly 

improved. 

•  “Never knew that: 

dx

dy
= m in secondary 

school. 

 

Table 4.8 Summary of Students’ Opinions in Respect of the Derivative Interventions. The 

points which are surrounded by quotation marks are what were deemed to be illuminating 

quotations. The points which do not contain quotation marks represent the essence of what it 

was that the students were deemed to be saying. 
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Summary: Students’ Opinions; Slope and Derivative 

In respect of the slope intervention, all of the students found it beneficial in terms of 

why slope is used as opposed to how it is used. Students’ ‘how-type of understanding’ 

was the type of understanding that they felt changed throughout lectures and tutorials. 

In respect of the derivative interventions, two out of the three students felt that it was 

beneficial—beneficial in terms of understanding why derivatives are used, as opposed to 

how. Thus, in terms of students’ opinions, it would appear that the interventions on 

slope and derivative were, on the whole, found to be of use by the students. Whether the 

interventions improved students’ ability to answer questions relevant to slope and 

derivative in a mathematics context is discussed. 

Mathematical Understanding: Slope and Derivative 

The three questions used to probe students’ understanding of slope and derivatives are 

shown in Appendix I. Table 4.9 shows the students’ performance in respect of these 

questions. 

 Question Student 1 Student 2 Student 3 

1 ×; Graph A. f(x) is an x
2
 

graph; when 

differentiated, it becomes 

2x. 

√; Because of the slope 

of the curve, I would 

assume the slope is 

positive and the line has 

a positive slope. 

×; Graph A, because 

from what I remember 

from lectures, the U-

curve is positive so the 

slope would be positive. 

2 ×; B < C < A ×; B < C < A ×; B < C < A 

3 √ It means it is a straight 

line (not a curve). 
× 0

dx

dy
= . It is at the 

origin (point 0, 0). 

×; It means that on a 

graph, the point is equal 

to the x-axis. 

Table 4.9 Students’ Results in Respect of the Trial 1 Slope and Derivative Mathematical 

Understanding Questions. Answering Correctly is Denoted as √, while answering incorrectly 

is denoted as ×. 

For question one, two of the students did not provide a correct answer. Student 2 may 

have understood why Graph A in Figure 2 (in Appendix I) is the correct answer. Their 
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statement/reason: “because of the slope of the curve, I would assume the slope is 

positive and the line has a positive slope”, could be interpreted as meaning the slope of 

the derivative function for the graph in Figure 1 (shown in Appendix I) is positive and 

therefore Graph B is the correct answer. Alternatively, it could be interpreted to mean 

the slope of the curve in Figure 1 is positive [which it clearly isn’t], and therefore, 

because Graph B has a positive slope, it is the correct answer. Such reasoning is clearly 

flawed. 

For question two, all of the students provided the same, incorrect answer. However, 

they may have confused the definition of slope with the definition of steepness, dealt 

with in Section 2 of the slope intervention. If the question was worded: rank the 

steepness of the tangents to the graph of f(x) at Points A-C in Figure 1, in increasing 

order, then all the students would have answered the question correctly. Contradictory 

as it may seem, all of the students answering question two incorrectly was nonetheless 

encouraging because the primary focus of the slope intervention was not on the 

distinction between slope and steepness, but on the visual representation of the ∆y 

increase or decrease for a line, for an increase of ∆x, in the horizontal direction. 

For question three, Student 1 answered it correctly. Students 2 and 3 provided incorrect 

answers, surprising, given that these students were able to answer question two in terms 

of ranking the tangents in increasing order of steepness. The argument, as to why this 

was so, may be that the slope of a line with a value equal to zero was not explained in 

the slope intervention. However, the purpose of the slope intervention was for students 

to be able to deduce what any particular slope value means, even a slope value of zero. 

It would appear that the slope and derivative interventions did not help students to 

answer questions one to three very well. In spite of this, all the students agreed (when 

they answered opinion Questions 1-6) that the slope intervention could improve a 

students’ understanding, while two out of the three students agreed that the derivative 

intervention could do likewise. Students were asked an additional three questions 

(Questions 7-9) in light of completing the slope-and-derivative questions in Appendix I. 

These questions were asked in order to ascertain the students’ opinions in terms of 

whether the interventions improved students’ mathematical understanding in respect of 

questions related to slope and derivative more so than what the students learnt in school, 
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university lectures and university tutorials. The results from Questions 7-9 are 

summarised in Table 4.10. 

 Q. Student 1 Student 2 Student 3 

7 • Understanding did not 

improve more at 

university compared to 

what it was in school. 

 

• What they learnt at 

school did not help 

them. 

 

• What they learnt at 

school did not really 

help to answer the 

question. 

• “Can’t really 

remember secondary 

school.” 

8 • No improvement. 

 

• Did not help. • Lecture and tutorials 

helped. 

9 • In lectures, nothing 

stuck. 

• Meaning of slopes and 

derivatives was not 

covered. 

•  “We never did graphs 

like this in terms of 

explaining slopes and 

derivatives.” 

• “Looked at graphs 

more in the maths 

intervention”. 

• “I still really wouldn’t 

know the answers to 

those questions”. 

 

 

 

• “I can’t really recall.”; 

“I don’t know any 

specifics.”;  

• “Think it was kind of 

going over what we 

did in lectures and 

tutorials.” 

 

 

Table 4.10 Summary of Students’ Opinions in Respect of the Intervention’s Effect on Their 

Mathematical Understanding in Terms of Slope and Derivative.  

Looking at Table 4.10, in respect of Question 7, all of the students felt that what they 

learnt at school did not help them to answer the slope-and-derivative questions. For 

Question 8, two out of the three students felt that what they learnt in lectures and 

tutorials was of no help. Student 1, when answering Question 6 (shown in Table 4.8), 

articulated that the intervention on derivative did not improve their understanding. 

However, interestingly, they articulated otherwise when answering Question 9 (as can 

be seen in Table 4.10). Student 2, who felt that the slope intervention and derivative 

interventions improved their understanding, stated “I still really wouldn’t know the 

answers to those questions [the questions used to probe students’ understanding of slope 

and derivative, located in Appendix I ]”. Student 3, while agreeing that the slope and 

derivative interventions improved their understanding before they answered the slope-
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and-derivative questions, now stated that they “can’t really recall, I don’t know any 

specifics”.  

Students’ Opinions: Integration 

Table 4.11 summarises what were deemed to be the main points which emerged from 

the three students’ answering of Questions 10-12 (shown in Table 4.6).  

Looking at the students’ answers for Question 10 in Table 4.11, Students 2 and 3 had 

not covered integration in school; Student 1 stated that their understanding improved; 

however, they appeared to equate a change in understanding with learning different 

methods. 

For Question 11, Students 1 and 3 conveyed that their understanding changed, but they 

equated this change in understanding with ‘doing questions’. Student 2’s understanding 

did not change much in the tutorials; however, they too equated understanding with 

practising questions. 

In respect of Question 12, Students 2 and 3 felt that their understanding of integration 

changed in the intervention compared to what they learnt in lectures and tutorials. 

Student 2 stated that they “should have learnt the maths intervention before going into 

the formulas”, implying that lectures and tutorials were perhaps too algebraic in focus. 

However, the same student found it hard to relate the integration intervention to the 

“paper” and “stuff” [their tutorial questions and examination]. Student 3 found the 

intervention to be like a “kind of review”, stating that it was similar to what was already 

covered. Student 1’s understanding of integration did not change throughout the 

intervention. They stated that their understanding of the integration intervention was not 

checked—however, the intervention was designed to be self-directed in nature. 

To summarise: It would appear that during lectures and tutorials, the students’ 

understanding of integration improved in terms of ‘how to do it’. Only one student 

(Student 2) thought that the integration intervention was beneficial. Student 3 saw it as a 

review, and Student 1 did not consider it to be of any benefit. Whether the interventions 

improved students’ ability to answer questions relevant to integration in a mathematics 

context is discussed.  
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 Q. Student 1 Student 2 Student 3 

10 • Understanding of 

integration changed. 

• “Learnt different 

methods of integration.” 

 

• Understanding changed, 

because she did not do 

integration in school. 

 

• They had no idea of 

what integration was in 

school—did not cover 

it. 

 
11 • Learnt more in tutorials. 

• “Learnt more in tutorials 

because I’m actually 

doing the question 

myself.” 

• Understanding did not 

change much in 

tutorials. 

• Practising questions 

made them understand 

them more. 

 

• Understanding 

improved. 

• “Could not understand 

why u-substitution went 

the way it did until 

tutorials.” 

 12 • No difference in their 

understanding of 

integration during the 

intervention. 

• “I just had my 

understanding of it.” 

• Their understanding of 

the integration 

intervention wasn’t 

checked.  

• “I don’t remember the 

maths intervention 

because we weren’t 

being graded.” 

• “I don’t know if what I 

was thinking was right 

or wrong.” 

 

• Understanding changed. 

• “Basics are probably 

important [referring to 

intervention] because 

you’ll understand the 

formulas better.” 

• “Should have learnt the 

maths intervention 

before going into the 

formulas”. 

•  “Suppose I should 

know the basics but I 

didn’t really”. 

• “Found it difficult to 

relate the maths-

intervention questions 

to the paper and stuff”. 

 

• For the first couple of 

weeks they just could 

not understand 

integration. 

• Intervention helped. 

• Intervention was 

similar to what was 

already covered. 

• Tend to forget certain 

parts from lectures and 

tutorials. 

• “Intervention was kind 

of a review.” 

 

Table 4.11 Summary of Students’ Opinions in Respect of the Integration Intervention. The 

points which are surrounded by quotation marks are what were deemed to be illuminating 

quotations. The points which do not contain quotation marks represent the essence of what it 

was that the students were deemed to be saying. 
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Mathematical Understanding: Integration 

The five questions used to probe students’ understanding of integration are shown in 

Appendix J. Table 4.12 shows the students’ performance in respect of these questions. 

 Question Student 1 Student 2 Student 3 

1 ×; 

 

×; no diagram ×; 

 

2 ×: B; Graph B, as the y-

value must be twice the 

x-value. 

×: B; F(x) is positive, so 

it cannot be Graph D.  

f(x) = y, which is not = 

0, so it cannot be Graph 

C. The formula is 

similar to a graph, so it 

cannot be Graph A, so it 

must be Graph B. 

× C; 2
2

=
dx

xd
 

)(xf
dx

dy
=  would mean 

that it would be the same, 

so I think it is C, a 

straight line. 

3 √ ;The anti-derivative of 

f(x) between x-values b 

and a. 

×; It represents
dx

dy
, 

which is the slope. 

×; ∫ ∫− .)()( dxafdxbf  

4 ×; The function to be 

integrated. 

×; The x-value signifies 

where the graph meets 

the x-axis. 

×; x is a constant seen as 

b-a from the above 

equation. 

5 ×; derivative. ×; a constant. ×; the derivative of x. 

Table 4.12 Students’ Results in Respect of the Trial 1 Integration Mathematical Understanding 

Questions. Answering Correctly is Denoted as √, while answering incorrectly is denoted as ×. 
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It would appear that the integration intervention did not improve students’ mathematical 

understanding in this regard. The question that arises is: why? A possible reason may be 

the fact that during the integration intervention, students were not asked questions 

similar to the five questions in Appendix J. The counter-argument to this is: the 

integration intervention should have prepared the students to answer such questions. 

Further, suggested reasons as to the students’ poor performance are articulated in the 

Conclusions and Implications. 

Students were asked an additional three questions (Questions 13-15) in light of 

completing the integration questions in Appendix J. These questions were asked to 

ascertain the students’ opinions in terms of whether the interventions improved 

students’ mathematical understanding in respect of questions related to integration more 

so than what the students learnt in school, university lectures and university tutorials. 

The results from the asking of Questions 13-15 are summarised in Table 4.13. 

 Q. Student 1 Student 2 Student 3 

13 • What they learnt at 

school did not help. 

•  “At school, we never 

did area with anti-

derivatives.” 

• What they learnt at 

school did not help. 

 

 

 

• They did not cover 

integration at secondary 

school. 

 

 

14 • Tutorials helped them 

to answer the question. 

 

• “Lectures did not help 

in any of the graph 

questions.” 

• “The only question the 

lectures helped in was 

question three.” 

• “Thought it did, until I 

did that question.”; 

“better understanding in 

tutorials.” 

 

 

15 • The intervention did 

not really help. 

• “I don’t remember 

doing anything in the 

maths intervention that 

I could use.” 

 

•  “The intervention 

should have helped me 

with the graphs.” 

• “ Don’t remember how 

to graph the integration 

thing.” 

 

• “It helps but I haven’t 

answered the 

question.” 

 

 

 
Table 4.13 Summary of Students’ Opinions in Respect of the Intervention’s Effect on Their 

Mathematical Understanding in Terms of Integration. 
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Looking at Table 4.13 in respect of Question 13, for Student 1, they felt that what they 

learnt in school did not help them to answer the integration questions in Appendix J. For 

Students 2 and 3, their response was similar; however, they were not exposed to 

integration in school. For Question 14, Student 1 felt that what they learnt in tutorials 

was of help in answering the integration questions. However, Student 2 did not think 

this. Student 3 thought they had a better understanding in tutorials, but as can be seen in 

Table 4.12, they answered none of the integration questions correctly. Lastly, for 

Question 15, Student 1 felt that the integration intervention did not help them to answer 

the questions. Somewhat on a positive note, Students 2 and 3 articulated that the 

intervention should have helped them, but it did not. Possible reasons as to why this was 

so are articulated in the Conclusions and Implications. 

Summary: Opinions and Mathematical Understanding 

In terms of the students’ opinions about the usefulness of the mathematical 

interventions: 

• all of the students found the slope intervention to be beneficial;  

• two out of the three students considered the derivative intervention to be beneficial; 

and  

• in respect of the integration intervention, one student considered it to be useful, one 

student seen it as a review of what they had already done, while the other did not 

find it to be of benefit. 

In terms of what was the students’ understanding of slope, derivative and integration in 

a mathematics context: 

• the results in Tables 4.9 and 4.12 suggest that the interventions did not have an 

impact in this regard.  

However, all of the students articulated that the interventions on slope and derivative 

improved their understanding despite not being able to answer correctly, the slope and 

derivative questions in Appendix I. As shown in Table 4.13, two out of the three 

students articulated that the intervention on integration should have helped with the 
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answering of the integration questions in Appendix J. Students’ ability to  transfer to a 

chemistry context in light of the intervention is now discussed. 

4.2.3.2 Transfer Ability 

Method of Investigation 

Of the eighteen students who completed the mathematical interventions during the first 

year of their studies, fifteen of these students were successful in progressing to second 

year. Of these fifteen students, eight had to complete a chemical kinetics and 

thermodynamics module. These eight students were approached in order to complete a 

questionnaire. Four of the students agreed to do so. None of the four students had 

participated in the interviews that were used to ascertain the students’ opinions about 

the usefulness of the interventions.  

Determining students’ transfer ability took place over two assessments. The 

questionnaire used in the assessments contained some of the items used in the Main 

Study (as can be seen in Appendix D). Items 1-7 were used to investigate the students’ 

ability to transfer items relevant to slope and derivative. Items 14-15 were used to test 

students’ transfer ability in respect of integration. The items in the mathematics context 

were administered separately from the items in the chemistry context, over the space of 

a week, in order to avoid a recognising-of-patterns effect [10].  Because only four 

students completed the questionnaire, transfer (if there so happened to be any) was not 

tested for significance. Instead, the study was more qualitative in nature. The four 

students’ ability to transfer each item was compared with the transfer that was observed 

for these items in Study 1 and Study 2 in the Main Study. 

Results 

The results for the four students’ ability to transfer Items 1-7 and Items 14-15 are shown 

in Table 4.14.  
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  Mathematical Item Correct in 

MC* and 

CC** 

Correct in 

MC and 

Incorrect in 

CC 

Incorrect in 

MC and 

Correct in 

CC 

Incorrect in 

MC and 

CC 

1.   Calculating Slope. 4 0 0 0 

2.   Sketching a Line  

      with Positive Slope. 

4 0 0 0 

3.   Sketching a Line  

      with Positive Slope. 

3 0 1 0 

4.   Sketching a Line  

      with Negative Slope. 

3 1 0 0 

5.   Generating an Expression  

      for Slope. 

4 0 0 0 

6.   Generating an Expression  

      for Derivative. 

1 1 0 2 

7.   Interpreting Derivative. 2 1 1 0 

14. Evaluation of an Integral. 1 0 0 3 

15. Graphing an Integral. 1 0 1 2 

MC* - Mathematics Context; CC** - Chemistry Context. 

Table 4.14 Results for the Trial 1 Students’ Ability to Transfer Each Item. 

Certain students were able to transfer certain mathematical items.  However, because 

only four students completed the questionnaire, it was difficult to conclude whether the 

interventions improved students’ ability to transfer in comparison to the transfer 

observed in Study 1 and Study 2. It was found: 

• In terms of the Items related to slope — Items 1-5 — three out of the four students 

transferred Items 3-4, while all of the students transferred Items 1, 2 and 5. It could 

be surmised that the intervention on slope was successful in promoting transfer. 

However, these items were transferred better than any other items in both Study 1 

and Study 2, so it is difficult to gauge whether the slope intervention made any 

difference. 

• For Item 6— the item on the generation of an expression for derivative — only one 

student transferred. Low numbers of students also transferred this item in both 

Study 1 and Study 2. Thus, it would appear that the intervention on derivative had 

limited success in improving students’ ability to transfer.  
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• Item 7 was transferred by an extra student when compared with Item 6. Similarly, 

during Study 1 and Study 2, more students transferred Item 7 than Item 6. On the 

whole, for Items 6-7: the interventions on derivative were of limited success in 

improving students’ ability to transfer. 

• For Items 14 and 15, the intervention on integration was also of limited success in 

improving students’ ability to transfer when compared with the transfer observed 

for these items during Study 1 and Study 2.  

4.2.4 Conclusion: Trial 1 

The conclusion that arose from Trial 1 is discussed in the context of the questions that 

were used to evaluate it: 

• In terms of: what were the students’ opinions about the usefulness of the 

mathematical interventions?, the majority of the students articulated that the 

interventions were of benefit in improving their understanding. 

• In terms of: what was the students’ understanding in respect of slope, derivative 

and integration in a mathematics context?, the students appeared unable to answer 

the questions in respect of slope, derivative and integration despite claiming that the 

interventions should have helped them to do so.  

• In terms of: were the students able to transfer to a chemistry context?, one year on,   

certain students did transfer certain items. However, it was difficult to determine 

whether the intervention improved transfer in comparison to the transfer observed 

for these items during Study 1 and Study 2. 

Despite the findings in respect of students’ mathematical understanding, it was decided 

to trial the intervention again—Trial 2. The reasons for this were: 

• The sample of students used in the evaluation of Trial 1 was small. Therefore, the 

results from the evaluation may not have reflected the general impact of the 

intervention. 

• All of the students who participated in Trial 1 agreed that the interventions were 

beneficial. 
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4.3 The Intervention — Trial 2 

For Trial 2, it was decided to trial the mathematical interventions amongst first-year 

students with average mathematical knowledge. The term ‘average mathematical 

knowledge’ was defined as those students who obtained Grades A-C3 in Ordinary-Level 

Mathematics in the Irish Leaving Certificate examination. It was felt that if the 

interventions produce an impact in terms of: 1) students’ mathematical understanding 

and; 2) students’ ability to transfer, then, they would have the most effect on these 

students. 

4.3.1 The Sample 

60 students were classified as possessing average mathematical knowledge. All of the 

students were undertaking one of the following science programmes: Chemical and 

Pharmaceutical Science, Analytical Science, Environmental Science and Health, 

Common Entry into Science, Biotechnology or Genetics and Cell Biology. All of the 

students were asked to participate in the intervention. Six students agreed to do so. Of 

these six students, all of them completed the interventions in respect of slope and 

derivative, while five of them completed the integration intervention. The students were 

paid a nominal amount for their participation.  

4.3.2 Methodology 

The design of the slope, derivative and integration interventions remained unaltered 

from the design used in Trial 1; the rationale behind the design of the interventions can 

be seen by referring to Section 4.2.2. All of the students undertook the four 

interventions a week apart, over the space of a month. Students were given an hour to 

complete each intervention. The evaluation of the interventions took place separately 

from the administration of the interventions. Each student who completed the 

interventions was evaluated separately. The evaluation of each student took no longer 

than an hour. 
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4.3.3 Evaluation of Trial 2 

The following questions were used to evaluate Trial 2: 

1) What were the students’ opinions about the usefulness of the mathematical 

interventions?  

2) What was students’ understanding in respect of slope, derivative and integration 

in a mathematics context? Additionally: Were the students able to link their 

mathematical actions in a mathematics context with referents—be that embodied 

mathematical objects or mathematical objects? 

3) Were students able to transfer to a chemistry context? Additionally: For the 

students who were able to link their mathematical actions with objects, were 

they more likely to transfer to a chemistry context? 

Garnering students’ opinions in Trial 2 was probed using a questionnaire in respect of 

each mathematical intervention.  The questionnaire focused on establishing the 

students’ opinions about each of the interventions in their own right. This approach was 

in contrast to the approach taken in Trial 1. In Trial 1, students’ opinions as to whether 

each intervention improved the students’ understanding of slope, derivative and 

integration more so than when the students encountered the concepts in school, 

university lectures and university tutorials was probed.  

The students’ mathematical understanding and transfer ability in light of the 

interventions was investigated using a combination of mathematical questions and a 

Think-Aloud Protocol [95]. This investigation was slightly different from how students’ 

mathematical understanding and transfer ability was investigated in Trial 1. An insight 

of students’ understanding of slope, derivative and integration in terms of Tall’s theory 

wanted to be gained. It wanted to be seen if students were able to link mathematical 

actions in respect of slope, derivative and integration to referents—be that in terms of 

embodied mathematical objects or mathematical objects; this was of course the main 

aim of the mathematical interventions (to improve students’ ability to explain the 

concepts). Furthermore, it wanted to be seen if students who could link mathematical 

actions to referents/objects had greater transfer ability in comparison to students who 

could not. 
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4.3.3.1 Opinions 

Method of Investigation 

In order to gauge the students’ opinions in respect of the interventions, a series of 

questions in the form of a questionnaire were formulated for each of the interventions. 

The questions asked for each intervention were similar, and can be seen in Table 4.15. 

The questions in Table 4.15 pertain to the evaluation of the slope intervention. Question 

1: The workshop increased my understanding of slope, would have been worded 

similarly when gauging the students’ opinions in respect of the derivative interventions 

or the integration intervention—the word ‘slope’ being replaced with the word 

‘derivative’ or the word ‘integration’. These slight adjustments were made to all of the 

questions, depending on the nature of the mathematical intervention that was evaluated.  

 The Questions Used in the Slope Questionnaire 

Q.1  The workshop increased my understanding of slope. 

Q.2  I had a good understanding of Slope before the workshop and therefore I learnt very           

little from it. 

Q.3  Before the workshop, I could only apply the slope formula in problems, but now, I 

understand why I apply the slope formula. 

Q.4  The workshop was clear and it could be a useful resource for students to access 

themselves. 

Q.5  The time allocated to the workshop on slope was: too short, about right or too long. 

Q.6  Any other comments. 

Table 4.15 The Questions Asked in the Slope Questionnaire. 

The questions incorporated a Likert scale, where the scale included the categories of: 

Strongly Disagree, Disagree, Undecided, Agree and Strongly Agree. Questions 1 and 2 

were linked. The reason for this is discussed in the context of the questions used for the 

evaluation of the slope intervention.  

For Question 1: The workshop increased my understanding of slope, some of the 

reasons why students might Disagree or Strongly Disagree when answering this 

question were anticipated; Question 2: I had a good understanding of slope before the 

workshop and therefore I learnt very little from it, was one of these anticipated reasons. 
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For the students who answered Strongly Disagree, Disagree or Undecided for Question 

1, it was anticipated that they would answer Agree or Strongly Agree for Question 2. 

For the students who Agreed or Strongly Agreed for Question 1, it was anticipated that 

these students would answer Strongly Disagree or Disagree for Question 2.  

Question 3 focused on probing whether the intervention cultivated students’ 

understanding in terms of why they use a slope formula. Question 4 was designed to 

gauge the students’ opinions as to whether the workshop could be a useful resource, 

while Question 5 gauged the students’ views on whether enough time was allocated to 

the intervention. Lastly, Question 6 was an any-other-comments type question. 

Results  

Students’ Opinions: Slope 

The results from Questions 1 and the results form Question 2 are shown in Figure 4.13. 

Of the six students who completed the intervention, five agreed that the workshop 

increased their understanding while one student was undecided. Of the five students 

who agreed, three of them disagreed with Question 2, as was anticipated, while the 

other two were undecided; despite these two students being undecided, at least they 

were not in the Agree or Strongly Agree category, which would have meant that they 

contradicted their answer to Question 1. For the student who answered undecided when 

answering Question 1, they answered Agree for Question 2, thus explaining their 

answer of Undecided for Question 1. 

Looking at the results for Questions 3 to 5 in Figure 4.14, the majority of students 

agreed that: 1) the slope intervention improved their understanding of why they apply 

the slope formula; 2) the intervention could be a useful resource for students to access 

by themselves; and 3) the time allocated to the intervention was about right. 

For the any-other-comments type question, shown in Figure 4.15, one student found the 

intervention extremely beneficial, while another deemed it to be revision—even though 

this was not the aim of the intervention.  



201 

 

 Slope Questionnaire: Results from Questions 1 and 2 

Q. 1  The workshop increased my understanding of slope. 

 

Q.2   I had a good understanding of Slope before the workshop and therefore I learnt very       

little from it. 

For the Students who Answered Undecided in Question 1 

 

For the Students who Answered Agreed in Question 1 

 

Figure 4.13 The Results from the Slope Questionnaire for Questions 1 and 2. 
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 Slope Questionnaire: Results from Questions 3-5 

Q. 3  Before the workshop, I could only apply the slope formula in problems, but now, I 

understand why I apply the slope formula. 

 

Q.4  The workshop was clear and it could be a useful resource for students to access 

themselves. 

 

Q.5 The time allocated to the workshop on slope was: 

 

Figure 4.14 The Results from the Slope Questionnaire for Questions 3-5. 
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 Slope Questionnaire: Results from Question 6 

Q. 6 Any other comments: 

• The workshop helped me in my maths and physics labs. It was extremely beneficial. 

• If it was on twice a week, I would have gone. The slope was revision but still helpful. 

Figure 4.15 The Results from the Slope Questionnaire for Question 6. 

Students’ Opinions: Derivative 

The results from Question 1 and the results from Question 2 are shown in Figure 4.16. 

Of the six students who completed the intervention, when answering Question 1, four 

agreed that the workshop increased their understanding while two were undecided. Of 

the four students who agreed, they all answered either Strongly Disagree, Disagree or 

Undecided for Question 2, as was anticipated. For the two students who were undecided 

for Question 1, these students were in the Disagree category for Question 2, suggesting 

that they may really be in the Agree category for Question 1. 

The results for Questions 3-5 are shown in Figures 4.17. For Question 3, only three out 

of the six students either Agreed or Strongly Agreed that they understood why they find 

a derivative; the other three students were in the Undecided category. For Question 4, 

the majority of the students agreed that the workshops on the derivative could be a 

useful resource for students to access, while four out of six students found the time 

allocated to the workshops on derivative to be about right, with—interestingly—the 

other two students stating that they found it too short. 

For the any-other-comments type question (shown in Figure 4.18), a response that was 

not to be expected in light of the intervention was:  

It was a help but I’m still slightly confused with the topic. 

Such a statement is perhaps not a surprise given the results that emerged from the 

evaluation of Trial 1 in respect of students’ ability to answer questions related to 

derivatives. These results can be seen by referring to Section 4.2.3.1. 
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 Derivative Questionnaire: Results from Questions 1 and 2 

Q. 1  The workshop increased my understanding of Derivative. 

 

Q.2   I had a good understanding of derivative before the workshops and therefore I learnt 

very little from them. 

For the Students who were Undecided in Q. 1 

 

For the Students who Agreed in Q.1 

 

Figure 4.16 The Results from the Derivative Questionnaire for Questions 1 and 2. 



205 

 

 Derivative Questionnaire: Results from Questions 3-5 

Q. 3  Before the workshops, I could only apply the technique of finding a derivative in 

problems, but now, I understand why I find a derivative. 

 

Q.4   The workshops were clear and it could be a useful resource for students to access 

themselves. 

 

Q.5 The time allocated to the workshop on slope was: 

              

Figure 4.17 The Results from the Derivative Questionnaire for Questions 3-5. 
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 Derivative Questionnaire: Results for Question 6 

Q. 6 Any other comments: 

• I found this harder than the slope problems but once it was explained to me, I 

understood. 

• It was a help but I’m still slightly confused with the topic. 

Figure 4.18 The Results from the Derivative Questionnaire for Question 6. 

 

Students’ Opinions: Integration 

The results from Questions 1 and the results from Question 2 are shown in Figure 4.19. 

Of the five students who undertook the intervention, four agreed that the workshop 

increased their understanding while one student was undecided. Of the four students 

who agreed, three of these either disagreed or were undecided for Question 2. For the 

student who was undecided for Question 1, they were in the Disagree category for 

Question 2, suggesting that they probably should have been in the Agree category for 

Question 1. 

Looking at the results for Questions 3-5 in Figure 4.20, for Question 3, only two out of 

five students agreed that they understood why they apply the technique of integration. 

Nonetheless, for Question 4, all the students agreed that the workshop on integration 

was a useful resource for students to access by themselves. For Question 5, all agreed 

that the time allotted to the workshop was about right.  

No striking comments emerged from the asking of the any-other-comments type 

question (Question 6), the results of which are shown in Figure 4.21. 
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 Integration Questionnaire: Results from Questions 1 and 2 

Q. 1  The workshop increased my understanding of Integration. 

 

Q.2   I had a good understanding of integration before the workshop and therefore I learnt 

very little from it. 

For the Students who were Undecided in Q. 1 

 

For the Students who Agreed in Q.1 

 

Figure 4.19 The Results from the Integration Questionnaire for Questions 1-2. 
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 Integration Questionnaire: Results from Questions 3-5 

Q. 3  Before the workshops, I could only apply the technique of integration in problems, but 

now I understand why I use this technique. 

 

Q.4   The workshops were clear and it could be a useful resource for students to access 

themselves. 

 

Q.5 The time allocated to the workshop on slope was: 

              

Figure 4.20 The Results from the Integration Questionnaire for Questions 3-5. 
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 Integration Questionnaire: Results from Question 6 

Q. 6 Any other comments: 

• I understand integration much better after doing these workshops. 

• I found the gap was too big between each session; I would have benefited more from 

it, if it was all covered in the same week. 

Figure 4.21 The Results from the Integration Questionnaire for Question 6. 

 

Summary: Students’ Opinions 

• In terms of Questions 1-2, which were basically asking the students the same 

question, namely: did the intervention improve their understanding, this was 

found, in general terms, to be the case for all the interventions.  

• In terms of Question 3, the majority of the students agreed that their 

understanding in relation to why they use slope improved, but in respect of the 

interventions on derivative and integration, this was not the case.  The latter 

result was somewhat surprising as the majority of students conveyed in 

Questions 1-2 that their understanding improved in respect of these concepts. 

Perhaps what they equated with understanding for Questions 1-2 was ‘a how- to-

do type of understanding’ as opposed to a ‘why-type of understanding’. 

• For Question 4, the majority of the students either agreed or strongly agreed that 

all the interventions could be a useful resource for students to access by 

themselves. 

• For Question 5, in terms of the interventions on slope and integration, the 

majority of the students considered the time allocated to each of the 

interventions to be ‘about right’. For the interventions on derivative, two of the 

students felt that the time allocated was too short. 

• In relation to the any-other-comments type question (Question 6), one notable 

comment emerged from the intervention on derivative: a student found the 

intervention to be a help but was still slightly confused with the topic. 

 



210 

 

4.3.3.2 Mathematical Understanding 

As stated in Section 4.3.3., students’ understanding of questions relevant to slope, 

derivative and integration in a mathematics context in light of the interventions was 

determined. Also, students’ ability to link mathematical actions in a mathematics 

context with referents—be that embodied mathematical objects or mathematical 

objects—was determined. To investigate these questions, a series of mathematical 

questions were designed, and administered to the students.  

Method of Investigation 

Students’ understanding of slope, derivative (in terms of the meaning of a derivative 

value and the meaning of a derivative function) and integration was investigated in a 

mathematics context. Four questions were designed in order to do so. The questions are 

located in Appendix K. Each of the questions contained a Part A and a Part B. The Part 

A allowed the investigation of whether the mathematical interventions improved 

students’ understanding in respect of questions relevant to slope, derivative and 

integration in a mathematics context, while the Part B allowed the investigation of 

whether the students were able to link their mathematical actions in a mathematics 

context with referents—be that embodied mathematical objects or mathematical objects.   

Using Tall’s theory, the Part A of each question was classified as belonging to Tall’s 2
nd

 

World. Therefore, the ability of students to answer each Part A was reflective of 

performing actions in a mathematical environment (as highlighted by the blue arrow in 

Figure 4.22). Students’ ability to reflect on these mathematical actions (as highlighted 

by the green arrow in Figure 4.22) in terms of objects was probed in the Part B of each 

question.  

For the Part B of each question, a Think-Aloud Protocol [95] was used to analyse the 

students’ answers. When using the Think-Aloud Protocol, students are asked to explain 

what it is that they are doing and/or thinking, to themselves. An example of how to 

‘think-aloud’ must be demonstrated to the students. Using a Dictaphone, the students’ 

explanations were recorded. By not interrupting the students as they ‘thought-aloud’, 

the interviewer avoided interfering with the students’ thought process. 
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For each Part B, there were a series of images which students had to explain. These 

images were considered to be embodied mathematical objects which the students could 

relate their mathematical actions in Part A to. It could be argued that these images 

guided the students towards linking their actions with objects, and this is true. However, 

the logic behind such a step was: the avoidance of interrupting the students’ ‘think-

aloud’ process by way of the  students not having to ask the researcher questions such 

as how many diagrams they should draw. The analysis of the recorded interviews was 

undertaken using an inter-rater reliability approach [70]. 

 

                        Fig. 4.22 The Cognitive Stages of Tall’s Theory that were Probed 

(Highlighted in Blue and Green Arrows ).               

 

The Slope Question 

The Part A aspect of the slope question is shown in Figure 1 in Appendix K. For the 

Part B aspect of the question, it wanted to be seen if students could link their actions 

(the calculation of slope) with mathematical objects/images as shown in Figures 2 and 3 

in Appendix K. An example of the distinction between a student who was deemed to 

have evidenced an ability to link their actions with objects, from a student who did not, 

is shown in Table 4.16 

Students were expected to link the slope value of three with three units up on the y-axis 

for every one unit across on the x-axis; and realise that this ratio of 3:1 was preserved in 

both Figures 2 and 3. Determining if students could do so involved an inter-rater 

reliability approach [70]. 
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  Part B Response 

 

Linked Actions with 

Objects? 

Am, both figures have the same value for the slope because no matter 

what two points you choose on the same line, they’ll always give you 

the same value for the slope. 

× 

Although Figure 2 and Figure 3 . . . the points between  . . . the 

distance between the two points are different, the ratio in the change 

of x and y is the same, so therefore in Figure 2, the change for y = 9 

and the change for y is 3 and the change for x equals 1, giving the 

same slope and . . . the same answer. 

√ 

Table 4.16 The Distinction between a Student who Evidenced an Ability to Link their Actions 

with Objects, from a Student who Did Not. 

There were two questions in respect of the derivative. The first question probed 

students’ understanding of the meaning of derivative, while the second question probed 

the students’ understanding of the meaning of a derivative function.  

The Meaning-of-Derivative Question 

The Part A aspect of the question was:  

Given the function:
2

x0.5y = , find the derivative 
dx

dy
 when 3x .0= . 

The Part B aspect required students to link the mathematical actions involved in finding 

the derivative value for the function: 2x0.5y =  when 3x .0= , to the limiting process 

involved in such an action, namely: finding the limit of the quotient 
∆x

∆y
 as ∆x  

approaches zero and the related∆y approaches an infinitesimally small value, thus 

producing a value for the slope of the tangent/derivative at the point which has an x-

coordinate equal to 0.3. The mathematical objects/images deemed suitable for 

explaining the process behind generating the derivative in Part A are shown in Figures 

4-7 in Appendix K. Determining if students could do so involved an inter-rater 

reliability approach [70]. Examples of some of the students’ responses for Part B are 

shown in Table 4.17. None of the students were judged to have evidenced an ability to 

link mathematical actions in Part A with objects in Part B. 
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 Part B Response 

 

Linked Actions with 

Objects? 

To get the slope of a curve, you have to draw a line because you 

can’t . . . am . . . get the slope . . . of a curve,  so that’s why you 

have to draw a tangent to the line and by doing that you find . . . am 

. . . the slope and the derivative. 

 × 

  

I’m looking at four figures of curves on line graphs. Each of these 

curves includes a red line, cutting the curves at either one or more 

places. The derivative of the red . . . the derivative for each of the 

curves in these figures can be found by locating the slope for the 

red lines that intersect them. 

× 

Table 4.17 Two Student Responses for Part B of the Meaning-of-Derivative Question. 

 

The Derivative-as-a-Function Question 

The Part A aspect of the question was:  

Find the derivative function
dx

dy
 for the function: 2

x0.5y = . 

The Part B aspect required students to: describe how and why the graph of the 

derivative function which they found in Part A (shown in Figure 8 in Appendix K ) 

could be used to find the slope of the tangents: L1, L2 and L3 (shown in Figures 9-11 

respectively in Appendix K) on the function: 2
x0.5y = . The Figures 8-11 were 

considered to be mathematical objects/images which explain the significance of the 

actions required to find the derivative function for the function: 2
x0.5y = . Determining 

if students could do so involved an inter-rater reliability approach [70].Examples of 

some of the students’ responses for Part B are shown in Table 4.18. None of the 

students were judged to have evidenced ability to link mathematical actions in Part A, 

with objects in Part B. 
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 Part B Response 

 

Linked Actions with 

Objects? 

By drawing the tangent on the curve and picking two points on the 

tangent . . . ah, you can get the slope of . . . the . . . am . . . 

derivative function. 

× 

The graph of the derivative function can be used to find the slope of 

the tangents as the slopes touch the lines in each figure L1, L2, L3 in 

one position. This is due to the constant change in 
dx

dy
. . . when 

graphed gives a constant curve and no straight line. 

× 

Table 4.18 A Sample of Student Responses for Part B of the Derivative-as-Function Question. 

 

The Integration Question 

The Part A aspect of the question was:  

Evaluate the integral: )dx15010xx(

6

1

2∫ +−−  

The Part B aspect of the question required the students to: 1) link the evaluation of the 

integral by drawing a sketch of its graphical representation in Figure 12, as shown in 

Appendix K; and 2) describe how the area is evaluated using the graph of the anti-

derivative function (shown in Figure 13 in Appendix K).Because the Part B did not 

require the students to think-aloud, there was no need to use an inter-rater reliability 

approach. None of the students were able to answer Part B, so there are no examples of 

their responses. 
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Results 

The students’ results for the slope, derivative and integration questions are shown in 

Tables 4.19-4.22. 

 The Slope Question 

Student Part A: Ability to Perform the 

Correct Mathematical Actions 

Part B: Ability to Link the Part A 

Mathematical Actions with Referents 

1 √ × 

2 √ × 

3 √ √ 

4 √ √ 

5 √ √ 

6 √ √ 

Table 4.19 Students’ Performance in Respect of the Slope Question. 

 

 The Meaning-of-Derivative Question 

Student Part A: Ability to Perform the 

Correct Mathematical Actions 

Part B: Ability to Link the Part A 

Mathematical Actions with Referents 

1 √ × 

2 √ × 

3 √ × 

4 √ × 

5 √ × 

6 √ × 

Table 4.20 Students’ Performance in Respect of the Meaning of Derivative Question. 
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 The Derivative-as-Function Question 

Student Part A: Ability to Perform the 

Correct Mathematical Actions 

Part B: Ability to Link the Part A 

Mathematical Actions with Referents 

1 √ × 

2 √ × 

3 √ × 

4 √ × 

5 √ × 

6 √ × 

Table 4.21 Students’ Performance in Respect of the Derivative-as-Function Question. 

 

 The Integration Question 

Student Part A: Ability to Perform the 

Correct Mathematical Actions 

Part B: Ability to Link the Part A 

Mathematical Actions with Referents 

1 × × 

2 × × 

3 × × 

4 × × 

5 × × 

6 × × 

Table 4.22 Students’ Performance in Respect of the Integration Question. 

 

In terms of the slope question, meaning-of-derivative question and derivative-as-a-

function question, all of the students were able to answer the Part A of the questions—

the mathematical action-type questions. An ability to answer Part B for these 

questions—link mathematical actions with referents/objects—was only evidenced by 

four students for the slope question. None of the students evidenced understanding in 

terms of being able to link mathematical actions with referents/objects for the meaning-

of-derivative question and the derivative-as-a-function question. In terms of the 

integration question, none of the students were able to complete the Part A or the Part 

B.  
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4.3.3.3 Transfer Ability  

Students’ ability to transfer, and whether students who linked mathematical actions with 

objects were more likely to transfer than other students, was determined. To investigate 

these questions, a series of transfer questions were used. These transfer questions were 

similar to the questions used to investigate students’ mathematical understanding in a 

mathematics context; however, the questions were now in the form of a chemistry 

context. The transfer questions were administered to the students a week after they 

completed the questions used to investigate their mathematical ability. Thus, in contrast 

to Trial 1, where students’ ability to transfer was evaluated one year later, during Trial 

2, students’ transfer ability was evaluated within the same year as when they 

participated in the intervention. 

Method of Investigation 

The transfer questions on slope, derivative (in terms of the meaning of a derivative 

value and derivative function) and integration mirrored the Part A aspect of these 

questions in a mathematics context (the questions used to investigate the effect of the 

interventions on students’ mathematical understanding). Students who answered the 

Part A aspect of the questions in both the mathematics context and chemistry context 

correctly were deemed to have transferred. Because the number of students who 

completed the intervention was small, transfer—if it so happened to be observed—was 

not tested for significance.  

The Slope Transfer Question 

Students were presented with a question in the following form: Figure 4.23 shows the 

graph of the ‘Volume of a Gas in Litres’ against ‘Temperature in Degrees Celsius’. The 

graph stems from the Ideal Gas Law which states that for an ideal gas, when the number 

of moles (n) of the gas, and the atmospheric pressure (P) remain constant, the volume 

(V) of the gas, in litres, is directly proportional to the temperature (T) of the gas, in 

Degrees Celsius or Degrees Kelvin. The relationship can be expressed with the 

following functional relationship: 

P

nRT
V ====  
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where R is the universal gas constant. Students were then presented with the graph in 

Figure 4.23 and were asked to calculate the slope of the line using the two points in 

question. 

 

     

      Figure 4.23 The Graph Students were Shown for the Transfer Question on Slope. 
 

The Meaning-of-Derivative Question 

Students were presented with a question in the following form: Figure 4.24 shows the 

graph of the ‘Volume of a Gas in Litres’ against its ‘Pressure in Atmospheres’. The 

graph stems from the ideal gas law, which states that for an ideal gas, when the number 

of moles (n) of the gas and the temperature (T) remain constant, the volume (V) of the 

gas is inversely proportional to the pressure (P) of the gas. The relationship can be 

expressed with the following functional relationship: 

P

nRT
V ====  

Students were then presented with the graph of the function in Figure 4.24. They were 

told ‘nRT’ is equal to 1 and that the functional relationship could be written as follows:      
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1P
P

1
V −−−−======== . Subsequent to this, the students were then asked to find the derivative 

dP

dV
, 

when P = 0.5. 

 

      Figure 4.24 The Graph Students were Shown for the Meaning-of-Derivative Question. 

 

The Derivative-as-a-Function Question 

Students were presented with the same functional relationship and graph, shown in 

Figure 4.24. However, this time, the students were asked to calculate the derivative 

function 
dP

dV
 for the function: 1P

P

1
V −−−−========  

The Integration Question 

Students were presented with Expression 1. They were told: 1) the pressure (P) of a gas 

inside an ideal cylinder (which allows for expansion due to it being frictionless) is 

inversely proportional to the volume (V) of the gas; and 2) it can be shown that:  P = 

k
V

1
, where ‘P’ is the pressure of the gas (in Newtons per square metre);‘V’ is the 
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volume (in metres cubed) of the cylinder which the gas occupies, and k is a constant 

equal to ‘nRT’ with, in this case, a value equal to 1 . The students were asked to 

evaluate the integral in Expression 1. Furthermore, they were told that Ln V is the 

integral of 
V

1
. 

dV
V

1
0.006

0.002

∫∫∫∫  

Expression 1 

Results  

The results in respect of students’ ability to transfer are shown in Tables 4.23-4.26. 

 The Calculation of Slope 

Student Correct in a Mathematics Context Correct in a Chemistry Context 

1 √ × 

2 √ × 

3 √ √ 

4 √ √ 

5 √ √ 

6 √ √ 

Table 4.23 Students’ Ability to Transfer the Calculation of Slope. 

 

 The Calculation of a Derivative Value 

Student Correct in a Mathematics Context Correct in a Chemistry Context 

1 √ × 

2 √ √ 

3 √ √ 

4 √ × 

5 √ × 

6 √ √ 

Table 4.24 Students’ Ability to Transfer the Calculation of a Derivative Value. 
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 The Calculation of a Derivative Function 

Student Correct in a Mathematics Context Correct in a Chemistry Context 

1 √ × 

2 √ √ 

3 √ √ 

4 √ × 

5 √ × 

6 √ √ 

Table 4.25 Students’ Ability to Transfer the Calculation of a Derivative Function. 

 

 The Evaluation of an Integral 

Student Correct in a Mathematics Context Correct in a Chemistry Context 

1 × × 

2 × × 

3 × √ 

4 × × 

5 × × 

Table 4.26 Students’ Ability to Transfer the Evaluation of an Integral. 

For the calculation-of-slope question, four out of the six students transferred it. All of 

the students answered the question on the calculation of derivative correctly in a 

mathematics context; with three of these students being able to transfer. Similarly, all of 

the students could calculate the derivative function in a mathematics context correctly; 

with three of these students being able to transfer. None of the students could answer 

the question on the evaluation of an integral in a mathematics context correctly; 

however, one of the students answered it correctly in a chemistry context. 

The results in respect of whether students who were able to link their mathematical 

actions with objects were more likely to transfer than students who could not are shown 

in Tables 4.27-4.30. 
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 The Calculation-of-Slope Question 

Student Part B: Ability to Link 

Mathematical Actions with 

Referents 

Transfer 

1 × × 

2 × × 

3 √ √ 

4 √ √ 

5 √ √ 

6 √ √ 

Table 4.27 Students’ Ability to Transfer the Calculation of Slope in Light of Linking 

Mathematical Actions with Referents. 

 

 

 The Calculation of Derivative Value 

Student Part B: Ability to Link 

Mathematical Actions with 

Referents 

Transfer 

1 × × 

2 × √ 

3 × √ 

4 × × 

5 × × 

6 × √ 

Table 4.28 Students’ Ability to Transfer the Calculation of Derivative Value in Light of 

Linking Mathematical Actions with Referents. 
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 The Calculation of Derivative Function 

Student Part B: Ability to Link 

Mathematical Actions with 

Referents 

Transfer 

1 × × 

2 × √ 

3 × √ 

4 × × 

5 × × 

6 × √ 

Table 4.29 Students’ Ability to Transfer the Calculation of a Derivative Function in Light 

of Linking Mathematical Actions with Referents. 

 

 The Evaluation of an Integral 

Student Part B: Ability to Link 

Mathematical Actions with 

Referents 

Transfer 

1 × × 

2 × × 

3 × × 

4 × × 

5 × × 

Table 4.30 Students’ Ability to Transfer the Evaluation of an Integral in Light of Linking 

Mathematical Actions with Referents. 

 

Interestingly, looking at Table 4.27, for the four out of six students who were able to 

link mathematical actions with referents for the calculation of slope in a mathematics 

context, all of these students transferred. The two students who were not able to link 

mathematical actions with referents were correct in the mathematics context, but unable 

to transfer. 

For the calculation-of-derivative-value question and the calculation-of-derivative-

function question (shown in Tables 4.28 and 4.29 respectively), all of the students were 

not able to link mathematical actions with referents. However, for both questions, the 
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students answered the question correctly in a mathematics context, with three students 

being able to transfer.  

For the evaluation-of-integral question (shown in Table 4.30), all of the students were 

not able to link mathematical actions with referents, and none of the students were able 

to transfer. Furthermore, none of these students were able to calculate the integral 

correctly in a mathematics context or the chemistry context. 

4.3.4 Conclusion: Trial 2 

The conclusion that arose from Trial 2 is discussed in the context of the questions used 

to evaluate it: 

• In terms of: what were the students’ opinions about the usefulness of the 

mathematical interventions, the majority of the students articulated that the 

interventions were of benefit in improving their understanding. However, what 

they appear to equate understanding with is ‘how to do’ as opposed to ‘why’. 

• In terms of: what was students’ understanding in respect of slope, derivative and 

integration in a mathematics context, the results were mixed. All of the students 

were able to answer the Part A of the slope question, the meaning-of-derivative 

question and the derivative-as-a-function question. None of the students were 

able to answer the Part A of the integration question. It should be noted that the 

Part A of all these questions were classified as belonging to Tall’s 2
nd

 World, 

thus requiring students to perform mathematical actions. 

• In terms of: were the students able to link mathematical actions in a 

mathematics context with referents, only four students were able to do so for one 

of the questions, namely the slope question.  

• In terms of: were the students able to transfer to a chemistry context, the 

interventions on slope, meaning of derivative and derivative as a function may 

or may not have been of help. For the integration intervention, the students were 

unable to answer in a mathematics context and therefore could not be expected 

to transfer. 
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• Lastly, in terms of: did students who were able to link their mathematical 

actions with objects, transfer more so than students who did not link their 

mathematical actions with objects, this appeared to be the case for only one of 

the items—the item on slope. 

4.4 Chapter Summary 

It can be seen that the design of the mathematical interventions was informed by Tall’s 

theory of mathematics education. Particular attention was paid to the cognitive aspect of 

Tall’s theory. Insofar as was possible, the starting points for the introduction of each 

intervention was an image/embodied mathematical object. The images/embodied 

mathematical objects were embedded in what were deemed to be real-world contexts. 

The results from the evaluation of Trial 1 of the Intervention were mixed. Students’ did 

not appear to understand questions in respect of slope, derivative and integration, in a 

mathematics context. Certain students were able to transfer items related to slope, 

derivative and integration. However, it was not possible to determine whether the 

interventions played a part in students’ transfer ability, as transfer for items related to 

slope, derivative and integration was observed in Study 1 and Study 2. 

The results from Trial 2 of the Intervention were somewhat similar to those from Trial 

1. The majority of the students agreed that the interventions were beneficial. The 

majority of the students were able to answer questions related to slope and derivative, 

but were unable to answer the integration question. Whether the interventions had an 

effect in this regard is not possible to determine. 

In Trial 2, the interventions did not appear to have an effect on students’ ability to link 

mathematical actions with referents for derivative and integration questions. However, 

for the slope question, certain students were able to link their actions with referents; 

furthermore, all of these students were able to transfer this question, so the intervention 

on slope may have had a positive effect on students’ understanding of slope.  

Lastly, in Trial 2, certain students were able to transfer questions related to slope and 

derivative, but not the integration question. Whether students’ ability to transfer slope 

and derivative was a consequence of the interventions, was not possible to determine.   
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Conclusions and Implementations 

The research was undertaken in two phases. In Phase 1, the Transfer Question and the 

Explaining and Transfer Question were investigated. In Phase 2, the effect of an 

Intervention programme designed to improve students’ mathematical ability, with a 

view that this would improve students’ ability to transfer, was investigated. Overall, the 

research undertaken contributes to knowledge in the field of mathematical transfer in a 

number of ways. Firstly, the research design behind the investigation of the research 

questions can be used to investigate undergraduate students’ ability to transfer other 

mathematical knowledge in chemistry. Such a design could also be used to investigate 

undergraduate students’ ability to transfer mathematical knowledge to contexts other 

than a chemistry context. The results from such investigations can be used to inform the 

design of interventions aimed at improving students’ mathematical understanding, as 

was the case in Phase 2 of this project. 

In terms of the Transfer Question, it was found that transfer can occur, and for certain 

mathematical items this transfer is significant. During the Pilot Study, students’ ability 

to transfer nine mathematical items was probed. Transfer was observed for Items 1-7 

but not for Items 8-9. Statistically significant transfer was only observed for one of 

these items (Item 7). During Study 1 in the Main Study, students’ ability to transfer 

fifteen mathematical items was investigated. Transfer was observed for all of these 

items. For nine of the items, the transfer observed was significant, while the 

significance of the transfer observed for one of the items was borderline (0.05 < p-value 

< 0.1).   

The observation of transfer in this study is at odds with the views of Detterman [71], 

and Krishner and Whitson [73] who claim that traditional approaches to transfer studies 

often fail to demonstrate transfer. However, transfer was consistently observed across 

both the Pilot Study and Main Study. From a Barnett and Ceci perspective [40], perhaps 

the reason why transfer was observed is because the transfer was near as opposed to far? 

Or, perhaps transfer is context and concept dependant? The investigation of the Transfer 

Question also raised a number of other questions:  

• For the students who were able to answer correctly in a mathematics context but 

not in a chemistry context, why was this so? Perhaps the students made minor 
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errors in a chemistry context?; or perhaps the students need an understanding of 

the chemistry concepts in the chemistry context?   

• For the students who were able to answer correctly in a chemistry context but 

not in a mathematics context, why was this so? The Part B results for the 

students who answered incorrectly in a mathematics context would suggest that 

this was not because these students made minor errors in a mathematics context. 

Perhaps the students simply remembered the mathematical knowledge which 

they were exposed to in a chemistry context without any real understanding of 

it?  

Future research could use the actor-oriented view of transfer to investigate these 

questions. The overall conclusion reached from the investigation of the Transfer 

Question was: the problem which students have with mathematics in a chemistry 

context may not always be due to an inability to transfer. Instead, the problem is due, in 

significant part, to a lack of mathematical knowledge in a mathematics context, thus 

agreeing with the main conclusion of Potgieter et al. [37] in their investigation of 

undergraduate students’ ability to transfer mathematical knowledge, relevant to the 

Nernst equation, from a mathematics context to a chemistry context. 

During Study 2, when students were reminded of ‘how to do’ the mathematical items in 

a mathematics context before being presented with the mathematical items in a 

chemistry context, transfer was observed for fourteen out of fifteen of the items. 

Statistically significant transfer was observed for two of the items. Less instances of 

statistically significant transfer was observed in Study 2, when compared with Study 1. 

Moreover, reminding students of ‘how to do’ mathematics in a mathematics context, 

before investigating if the students can transfer the knowledge, does not appear to be a 

factor which improves students’ ability to transfer. Such a finding contradicts the 

sentiments of Hann and Polik [6] who argue that including a mathematics review 

session near the beginning of a chemistry course improves students’ ability to transfer. 

In terms of the Explaining and Transfer Question, the precursor to this question (the 

Conceptual versus Procedural Question) was investigated during the Pilot Study. It was 

found that based on the presupposition that procedural knowledge is symbolic in nature 

and conceptual knowledge is graphical in nature, conceptual knowledge is not 
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transferred by students any more so than procedural knowledge. This suggests that the 

views that conceptual knowledge in a mathematics context is graphical in nature while 

procedural knowledge is symbolic in nature [17,37,57] may not be correct. It may be 

not possible to objectively classify knowledge in a mathematics context as procedural or 

conceptual. Also, the view by Hiebert and Lefevre [51] that conceptual knowledge 

transfers more easily than procedural knowledge is open to question. If conceptual 

mathematical knowledge and procedural mathematical knowledge were defined 

differently during the Pilot Study, then conceptual mathematical knowledge might have 

been found to transfer more easily than procedural. Nonetheless, the Conceptual versus 

Procedural Question evolved into the Explaining and Transfer Question.  

In terms of the 1
st
 aspect of the Explaining and Transfer Question, in Study 1, it was 

found that students who explained their reasoning in a mathematics context for eight out 

of the eleven mathematical items requiring an explanation associated with the transfer 

of these items. In Study 2, students were required to explain their reasoning for all of 

the mathematical items in a mathematics context. Students who evidenced any form of 

explanation for eleven of these fifteen items in a mathematics context associated with 

the transfer of them. Thus, it was concluded that a possible reason as to why students 

can transfer is because they can explain their reasoning in a mathematics context. This 

finding adds to knowledge in the field of transfer, in terms of determining, what Barnett 

and Ceci [40] would term the factors which influence students’ ability to transfer. 

To determine the degree to which students explained (the 2
nd

 aspect of the Explaining 

and Transfer Question) Tall’s theory [62] was used. A number of interesting findings in 

respect of Item 1 (Calculating Slope) emerged. It was found that during Study 1 and 

Study 2, students who evidenced a correct action-perception category of explanation for 

the meaning of slope in a mathematics context (Categories 1-3 for Study 1 and 

Categories 1-5 for Study 2, as shown in Table 1) were more likely to transfer Item 7 

(Interpreting Derivative) than other students; furthermore, they were more likely to 

answer Item 7 correctly in a mathematics context. Could it be that explaining the 

calculation of slope in such a manner is necessary to transfer Item 7 (which is related to 

slope) to not just a chemistry context but to other contexts such as physics and business 

for example? Also, could it be that such an understanding is a key ingredient in 

developing what Gill [17] terms ‘Graphicacy’, which he found to be an apparent factor 
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in explaining students’ ability to transfer in mathematics? Future research could 

investigate this. 

 Study 1 Study 2 

Category Frequency Category  Frequency 

1.  Refer to how much y 

increases for a unit increase 

in x. 

10 1.  Refer to how much y 

increases for a unit increase 

in x. 

3 

2.  Refer to slope as a measure 

of steepness. 

1 2.  The slope represents the rate 

of increase of the line. 

5 

3.  Refer to the rate at which 

the line increases. 

3 3.  The bigger the number, the 

steeper the slope is. 

2 

  4.  The change of x relative to 

y, how steep a line is. 

1 

  5.  It is the difference between 

the heights over the 

difference between the two 

length points. 

2 

Table 1 The Correct Action-Perception Categories of Explanation Furnished by Students for 

Item 1. 

In both Study 1 and Study 2, the Category 1 students (as can be seen in Table 1) were 

likely to transfer Item 5 (Generating an Expression for Slope) and Item 10 

(Proportionality) more so than other students (if borderline significance is accepted 

[0.05 < p-value < 0.1]). For the students who evidenced this category of explanation in a 

mathematics context, in Study 1, these students were likely to answer Item 7 

(Interpreting Derivative) and Item 10 (Proportionality) in a mathematics context more 

so than other students. In Study 2, students were not likely to transfer any of the items 

related to slope more so than other students. Thus, it would appear that these correct 

categories of explanation (action-perception categories of explanation in terms of Tall’s 

theory) may indicate what previous literature would term a deep understanding of slope 

[75,76,77,78]. However, it is important to note that when applying Tall’s theory, such 

an application was subjective. External validation of such an application would be 

needed. 
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In Phase 2, mathematical interventions in respect of slope, derivative and integration 

were designed to improve students’ mathematical understanding. The findings from 

Phase 1 of the research project informed the design of these interventions. It was 

anticipated that the interventions would improve students’ ability to transfer. The 

mathematical interventions, in Trial 1 and Trial 2, were evaluated in terms of: 1) did the 

students find the interventions useful; 2) what was the students’ understanding of slope, 

derivative and integration in a mathematics context and 3) were the students able to 

transfer to a chemistry context. 

During both Trial 1 and Trial 2, the students articulated that they found the Intervention 

to be of benefit. In terms of the Intervention having an effect on students’ understanding 

of slope, derivative and integration in a mathematics context, this appeared not to be the 

case in Trial 1. For Trial 2, the intervention may have had an effect on students’ 

understanding of slope and derivative (many students answered questions in respect of 

these concepts correctly in a mathematics context). In Trial 2, the interventions did not 

have an effect on students’ understanding of integration. How such interventions could 

be redesigned in light of these results is discussed. In many ways, modifying the 

interventions as a result of their implementation is reflective of the Realistic 

Mathematics Education (RME) movement in mathematics education [27]. Indeed, the 

following suggested modifications of the mathematical interventions add to existing 

knowledge in the field of RME. 

In respect of the Slope Intervention which appeared to have a limited impact on the 

understanding of some students, perhaps redesigning the intervention, with an emphasis 

on developing the idea that rate (or slope) can vary, would be beneficial. This would 

have involved using curves as well as lines. Oehrtman et al. [65] state that students are 

slow to develop an ability to interpret varying rates of change over intervals of a 

function’s domain. If a focus was put on this, perhaps students would have been able to 

understand both the slope question and derivative questions better? Confrey and Smith 

[91] also stress the importance of developing the idea that rate can vary, believing that 

ability to recognise variation in a rate of change is essential for the transition to calculus. 

The slope intervention only focused on what Confrey and Smith [91] would term the 

ratio concept of slope (the slope of a line as opposed to the slopes at various points on a 

curve). 
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For the students who did not appear to benefit from the derivative and integration 

interventions, perhaps designing an intervention aimed at improving these students’ 

understanding of function before the students are exposed to the derivative and 

integration interventions would be beneficial. Oehrtman et al.[65, p.151] state that “a 

strong understanding of the function concept is essential for any student hoping to 

understand calculus”. The idea of variable and co-variation could also be targeted if 

such an intervention were to be designed. Confrey and Smith [91] believe that a co-

variation approach is central to the rate concept. Furthermore, Oehrtman et al. [65] 

articulate that a co-variation view of function has been found to be essential for 

understanding critical concepts of calculus, for example; average and instantaneous 

rates of change. Carlson [96, p.141] also states that “function constructs among students 

develop slowly and their development appears to be facilitated by reflection and 

constructive activities”. 

In respect of the students who did not benefit from the derivative interventions, perhaps 

emphasising the idea that rate can vary, in a redesigned slope intervention, and exposing 

these students to an intervention on function, would be beneficial for these students. 

Also, there may be a need to design a separate intervention on the meaning of limit. Elai 

et al. [97] argue that the limit concept is a fundamental concept, and a failure to grasp it 

will mean that students will not have an understanding of continuity and derivative. 

Moreover, Orton [86] states that the topic of limits seems to be neglected in spite of the 

fact that they are “important to a real understanding of integration and differentiation” 

[86, p.5]. 

In relation to the integration intervention, the fact that there was a lack of emphasis on 

the variation of rate, function and limits may have had a knock-on effect in terms of 

students not being able to engage with the integration intervention, and apply it to 

questions. Also, the use of the terms velocity, speed and displacement may have 

confused students. Rowland and Jovanoski [81], in their research on student 

understanding of kinematics graphs, velocity and acceleration, found that many students 

cannot distinguish between distance, velocity and acceleration. Thus, in a future 

integration intervention, it would be wise to ascertain whether students are able to 

distinguish the terms velocity, displacement and time. 
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All of the interventions were insofar as possible visual in nature. Such an emphasis was 

due to the views of various theories on how students learn mathematics, claiming that 

visualisation is important in improving students’ understanding. Despite this emphasis, 

the impact of the interventions was limited; Piaget’s theory of Cognitive Development 

may explain why. 

From a Piagetian perspective, the interventions would require students to be at a formal-

operational stage of cognitive development in order to complete them. Work by 

McCormack [98] in respect of measuring the cognitive development levels/stages of a 

sample of 1
st
 year university science students, showed that almost 70% of students were 

at a level capable of formal operational thought. However, only a very small minority of 

the sample of students (7%) showed capability of late formal operational thought 

necessary for meaningful engagement and understanding of many scientific and 

mathematical concepts such as proportionality and modelling. 

Perhaps the students who participated in the Intervention were at an early level of 

formal operational thought or a concrete stage of cognitive development? If so, it would 

suggest that concrete referents (referents which students can physically manipulate) in 

respect of each of the concepts may have needed to be designed. Studies have shown 

[99] that a pictorial and visual focus does not improve students’ understanding of 

abstract mathematical ideas any more than a symbolic approach; instead, it is concrete 

referents over an extended period of time which improves students’ understanding of 

mathematical concepts. Designing such ‘manipulatives’ could be an avenue for future 

research. It is important to note that such a development does not preclude the symbolic 

aspect of mathematics. Rather, it is important for students to see the two-way 

relationship between concrete materials/manipulatives and the symbolic systems which 

they represent [100]. How exactly, such referents could be designed is an area that could 

be researched. Also, whether such manipulatives improve students’ ability to transfer 

could be investigated. 

In respect of the interventions effecting students’ ability to transfer, during both Trial 1 

and Trial 2, certain students were able to transfer mathematical items related to slope 

and derivative. However, it is not possible to say whether the interventions had a direct 
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impact on students’ ability to transfer these items because during the Main Study, many 

students were able to transfer items related to slope and derivative. 

For the questions related to integration, only one student transferred during Trial 1 and 

no student transferred during Trial 2. It would appear that the intervention on 

integration had a limited effect in this regard. However, during the Main Study, few 

students transferred the items related to integration, so it is difficult to gauge the 

effectiveness of the integration intervention. Future research could take an actor-

oriented approach in terms of ascertaining what it is that the students see as similar or 

different between the mathematics context and chemistry context for each transfer item. 

Such an approach could also allow the investigation of what the students’ views are in 

terms of the interventions helping the students to see two contexts as similar in order to 

transfer. 

During Trial 2, there was a particularly interesting finding that emerged during the 

investigation of students’ ability to transfer slope. All of the students who evidenced an 

ability to link their mathematical actions with referents associated with transfer. From a 

Lobato perspective [34], the intervention on slope may be an effective instructional 

treatment that enables students to transfer to different contexts, thus adding to literature 

in the field of mathematical instructional materials that aim to promote such an 

occurrence.  Perhaps if students could have linked their mathematical actions for items 

on derivative and integration, they may have transferred? How exactly this can be 

accomplished, remains the preserve of future research. 

To summarise, the key findings from this research are: 

• The problems which undergraduate students have with mathematics in a 

chemistry context appear not to be due solely to students’ inability to transfer. 

Instead, the problems are due, to a significant degree, to a lack of mathematical 

knowledge. 

• Students can successfully transfer some mathematical knowledge and skills. 

• Evidencing an ability to explain in a mathematics context appears to be a factor 

which underpins successful transfer by students. 
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• Designing mathematical interventions that are strongly visual in nature may have 

an effect on students’ understanding of slope and derivative questions in a 

mathematics context. They may also have an effect on students’ ability to transfer 

slope and derivative questions. In terms of the intervention having an effect on 

students’ understanding of integration in a mathematics context, and students’ 

ability to transfer integration, the interventions did not appear to have an effect 

during this research. 
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Appendices
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Appendix A – Pilot Study Mathematical Items 

Mathematical Items Used in Diagnostic Tools 1 and 2 

 Item 1: Calculating Slope 

Mathematics Context Chemistry Context 

 

 

 

(A)  Calculate the slope for the line between 

the point (x, y) = (1,75) and the point       

(x, y) = (5,55). 

(A) Determine the rate of change of reactant 

between one second and five seconds. 

Express your answer using appropriate 

units. 
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 Item 2: Determining which Line has the Greatest Rate of Change 

Mathematics Context Chemistry Context 

 

 

 

(A) Which of the two lines has greater slope, 

L1 or L2? 

(A) The line L1 represents the rate of change 

of product with respect to time, while the 

line L2 represents the rate of change of 

reactant with respect to time. Which line 

L1 or L2 has the greatest rate of change 

with respect to time? 

 

 

 

 Item 3: Differentiation 

Mathematics Context Chemistry Context 

(A) By differentiating the expression: 

1x3)x(f 2
+=  

     find the derivative of f(x) at x = 3. 

(A) The change in the concentration of a 

reactant with respect to time is given by 

the following expression: 

1t3)t(R 2
+−=  

 

Using differentiation, find the 

instantaneous rate of change of reactant 

after four seconds. 
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 Item 4: Graphical Interpretation of the Meaning of Derivative 

Mathematics Context Chemistry Context 

 

 
(A) Chose a value from the list of values 

given (A, B or C) for the derivative of 

the graph at the point X2. 

 

 (A) = 1            (B) = 3.5                (C) 1.75 

(A)Using the graph shown, rank the 

instantaneous rates of change of product 

after one second, two seconds and three 

seconds in order of increasing magnitude. 

Use the notation: )3('Pand)2('P),1('P to 

represent the instantaneous rate after 1, 2 

and 3 seconds respectively. 
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 Item 5: Multiplication of Fractions 

Mathematics Context Chemistry Context 

(A)  Express the following in its simplest 

form: 

?
4

1

3

2
=×  

(A)  Express the following in its simplest 

form: 

?
]O[

]NO[

k

]O[kk2

2

2

b

2ba =×  

 

 

 Item 6: Use of Exponent Laws 

Mathematics Context Chemistry Context 

(A)  Express the following in its simplest  

form: 

?
a

c

b

a

2

2/5

=×  

 

Rate of formation of HBr: 

[ ][ ]

[ ] [ ]HBr
k

k
Br

BrH
k

k
k2

b
'
c

2

2/3
22

2/1

b

a
b

+










 

(A) Derive an expression for the initial rate 

of formation of HBr if the concentration 

of [HBr] becomes much smaller than 

[Br2], so much so that the value for the 

term: 














]HBr[

k

k

'
b

c  

      can be taken to be zero in comparison 

with [Br2].  
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Mathematical Items Used in Diagnostic Tools 3 and 4 

 

 Item 7: Graphing a Function 

Mathematics Context Chemistry Context 

 (A)  Sketch (in Figure 1), the graph of the 

function: 

0xfor
x

1
y >=  

 

(A)  Sketch (in Figure 1), the graph of P 

versus V, for 0 m3 < V < 5 m3 given the 

relationship: ,
V

nRT
P = where nRT has 

a constant value = 1kJ. 

       

                   Figure 1                   Figure 1 
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 Item 8: Evaluation of an Integral 

Mathematics Context Chemistry Context 

 (A) Evaluate the integral: 

dx
x

1
3

1

∫  

(A)  According to the ideal gas equation, the 

pressure of a gas is given by: 

 

V

nRT
P =   Eqn. 1 

 

For a reversible isothermal gas expansion, 

the variable in Eqn.1 is volume (V), while 

nRT remains constant. When nRT is equal to 

1kJ, the relationship in Eqn. 1 can be written 

as follows: 

                               P = 
V

1
. 

Calculate the work done when the volume 

of a reversible isothermal gas increases 

from: 

1m
3
 to 3m

3
, 

 

given that the work will be equal to the 

integral of the expression: 

 

          w = ∫
2

1

V

V

dV
V

1

 
 

where: 

V1 = 1m
3
 and V2 = 3m

3
,  

and the minus sign is used to denote the fact 

that the work leaves the system. 

 

 



VII 

 

 Item 9: Graphing an Integral 

Mathematics Context Chemistry Context 

 (A) Draw a diagram (in Figure 1) that 

represents the area corresponding to the 

integral: 

dx
x

1
3

1

∫  

(A)  According to the ideal gas equation, the 

pressure of a gas is given by: 

 

V

nRT
P =   Eqn. 1 

 

For a reversible isothermal gas expansion, 

the variable in Eqn.1 is volume (V), while 

nRT remains constant. When nRT is equal to 

1kJ, the relationship in Eqn. 1 can be written 

as follows: 

                               P = 
V

1
. 

 

Indicate in Figure 1, the area corresponding 

to the integral:  

 

          w = ∫
2

1

V

V

dV
V

1

 
 

which represents the work done by the 

system (the gas) in expanding from an 

initial volume:  

    (V1 = 1m3 ) to a final volume (V2 = 3m3), 

for a reversible isothermal gas expansion. 

The minus sign is used to denote the fact 

that the work leaves the system. 

       

                   Figure 1                   Figure 1 
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Appendix B – Piaget’s Theory of Cognitive Development 

The Sensori-Motor Period — The First Stage of Cognitive Development:  

The Sensori-Motor Period underlies all subsequent stages of cognitive development. It 

occurs over the space of the first two years of a child’s life. Piaget divides it into six 

sub-stages. Within these sub-stages, a child’s ‘object concept’ and ‘concept of causality’ 

undergo development. For Piaget, the evolution of these concepts are “two of the most 

important indicators of intellectual development during this period” [63, p.35]. 

Stage 1 

Object Concept 

During this stage, a child has no awareness of objects, and is unable to differentiate 

between him/her and their environment. For example, any object presented to the child 

encourages a similar reflexive response such as sucking or grasping—the responses are 

undifferentiated. 

Concept of Causality 

Interestingly, the child is “totally egocentric” [63, p.35] during this stage, being not 

aware of causality. 

Sage 2 

Object Concept 

A child begins to look at objects which they hear. For Piaget, this indicates that the 

child is beginning to co-ordinate their vision and hearing schema. Furthermore, the 

child may continue to follow the path of an object with their eyes after it has 

disappeared from view.  

Concept of Causality 

Wadsworth does not describe explicitly what happens a child’s concept of causality 

during this stage. However, he draws attention to the ‘concept of intentionality’ which 

may implicitly be describing an aspect of the concept of causality at this stage. For 

Piaget, at this stage, a child’s behaviour still lacks ‘intention’ whereby they imitate 
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behaviour of their own accord in order to attain ‘certain ends’. Perhaps what could be 

inferred from this statement is that the child is still egocentric and may not be able to 

see how they can cause something to happen. 

Stage 3 

Object Concept 

The child is capable of anticipating or predicting the “positions [that] objects will pass 

through while they are moving” [63, p.46]. In addition, their awareness of objects as 

possessing a degree of permanence is developing. 

Concept of Causality 

The child still remains egocentric, but to a lesser degree than in previous stages. They 

see themselves as the primary cause of all activity. 

Stage 4 

Object Concept 

At this stage, the shape and size of objects develop a sense of stabilisation for the child. 

This new awareness of object permanence is different from that of early stages. 

Wadsworth [63, p.48] describes how Piaget uses the example of a rattle to explicate the 

point. If a rattle is placed under a carpet or rug in front of a child before Stage 4, they 

will not look for it; however, at Stage 4, they will.  In spite of this will to search, the 

child may only search for objects where they are habitually observed to disappear, as 

distinct from where they have been observed by the child at a specific moment in time 

to disappear. 

Concept of Causality 

A child’s concept of causality is becoming less egocentric. They begin to “discover that 

a spatial contact exists between cause and effect” [63, p.52]. Any object can be “a 

source of activity” [63, p.52], as distinct from a child’s body, which was deemed by the 

child to be the cause of all activity in their previous stages of development. 
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Stage 5 

Object Concept 

A child learns to account for sequential displacements of an object. A child can search 

for objects in the position resulting from their last visible displacement, as distinct from 

an habitual displacement. For example, when a rattle is hidden in A, it is searched for in 

A, as distinct from place B, where it might habitually be viewed to be hidden. 

While this sequential displacement comes to the fore at this stage, it is not yet fully 

developed. It is limited in the sense that the child is only competent in following 

displacements that appear visible, as distinct from displacements which appear 

invisible. Put simply, if a child views an object to be hidden in A, they will search for it 

in A. If they do not find it there, they may not realise that it could have moved to a new 

location called B, [displaced to B] — a displacement which they did not observe. 

Concept of Causality 

A child’s concept of causality becomes aware that people apart from themselves can 

affect activity. They also retain the view that other objects can cause activity. 

Stage 6 

Object Concept 

The child maintains ‘images’ of objects when they are absent [63, p.59]. In addition to 

following sequential displacements, they are now in a position to follow invisible 

displacements. In summary, the child knows that objects are permanent. 

Concept of Causality 

The child possesses the means to reconstruct causes “in the presence of their effects 

alone without having perceived the action of those causes” [63, p.59]. Just as they are 

able to infer the causation of effects from observing effects alone, they become capable 

of predicting the effects of objects acting in a certain way. In summary, they are capable 

of causal deduction [supposedly in the physical-object sense] and are as Wadsworth 

describes, [63, p60] “no longer restricted to perception or sensori-motor utilisation of 

the relations of cause to effect”. 
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The Preoperational Thought Period — The Second Stage of Cognitive 

Development  

This period is characterised by the development of symbolic representation, which, as 

Wadsworth describes, [63, p.65] facilitates “the very rapid conceptual development that 

takes place during this period”. The period typically lasts from age two to age seven. 

Piaget views the development of language during the preoperational period “as a 

gradual transition from egocentric speech to intercommunicative speech” (the 

distinction between the two terms being described later on). 

Furthermore, as language develops and its use becomes intercommunicative by the 

child, its use helps to add impetus to the development of conceptual activity more 

rapidly than sensori-motor operations allow. “Language permits the child to 

simultaneously handle many elements in an organised manner” [63, p.68], as compared 

with sensori-motor intelligence, which “proceeds in a one-step-at-a-time fashion” [63, 

p.68]. 

The reason Piaget creates/has found this ‘preoperational stage’ is because, based on his 

observations, it accounts for the transition children undergo in moving from the sensori-

motor stage of cognitive development to the concrete operational stage of cognitive 

development (the third stage of cognitive development), which encompasses logical 

development. 

For Piaget, there are obstacles, which have to be overcome before students can reach the 

concrete-operational stage. These obstacles and how they are overcome are described in 

the preoperational stage of cognitive development. 

Egocentrism 

The egocentricity of the preoperational child means that they do not reflect on their 

thoughts. Their style of communication is egocentric. It is only with the development of 

intercommunicative behaviour amongst their peers that their cognitive egocentrism 

dissolves.  
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It should be noted that Wadsworth states that Piaget views egocentrism as a 

“characteristic that pervades thought, in some way, in all periods of development” [63, 

p.71] [presumably all periods of cognitive development]. 

The knock-on effect of their egocentrism is that it encourages students/children to 

assimilate more so than accommodate and thus prevents cognitive development. Thus, it 

is an obstacle that must be overcome by the child if he/she is to transition him or herself 

from the sensori-motor period to the period of concrete operations. 

Transformation 

This is characterised by an inability amongst the child to “move from a particular 

perceptual event to a particular perceptual event” [63, p.73] via integrating the “series of 

events in terms of any beginning-end relationship” [63, p.73]. This raises the question 

of what is a perceptual event? Perhaps a definition of the verb ‘to perceive’ may go 

some way towards answering this question. To perceive is defined as: to become aware 

of, know, or identify by means of the senses; to recognise, discern, envision or 

understand. This deficiency in pursuing transformations, in terms of linking them, 

“inhibits the development of logic in thought” [63, p. 73], within children. 

Centration 

This obstacle manifests itself in the form of when a “child is presented with a visual 

stimulus and they tend to centre or fix their attention on a limited perceptual aspect of 

the stimulus” [63, p.74]. It is best explained with an example that Piaget uses. 

For example, if a child is asked to compare two rows of like objects in which one row 

contains nine objects and the other (a longer row) contains only seven objects, albeit 

spread further apart, the child of four to five years of age, typically selects the 

perceptually longer row as having more objects. Interestingly, Wadsworth points out 

that “this will occur even when the child knows cognitively that nine is more than 

seven” [63, p.74]. Perceptual evaluation [supposedly in this sense, whereby the child 

focuses on length as opposed to objects in each row] dominates cognitive evaluation. 
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According to Piaget, it is only when the child reaches the age of six or seven, that they 

are able to solve such a problem and thus “reach the point where cognitions assume 

their proper position with respect to perceptions in thought” [63, p.74]. 

Reversibility 

When thought is reversible, it means that the child can follow a line of reasoning back 

to its origin. This type of thought has been observed by Piaget as lacking “in all 

cognitive activity of the preoperational child” [63, p.76]. 

An example which explains a child’s inability to reverse is as a follows: a child without 

reversible thought, when shown two equal-length rows of eight coins each, will agree 

that each row has the same number of coins. When one of the rows becomes 

lengthened, they will no longer agree that each of the rows contains the same number of 

coins in each row. Lack of reversibility is part of the problem— “they cannot maintain 

the equivalence of number in the face of perceptual change” [63, p.76]. 

The reason why Wadsworth states that ‘lack of reversibility is part of the problem’, as 

opposed to ‘lack of reversibility is the problem’ in solving the above scenario is because        

“Piaget’s concepts of egocentrism, centration, transformation and reversibility are 

closely related” [63, p.76]. 

A lessening in egocentrism requires the child to decentre more and attend to 

transformations. “All this, in turn, makes thought more reversible” [63, p.76]. 

Therefore, the term ‘lack of reversibility is part of the problem’, as opposed to ‘lack of 

reversibility is the problem’, is warranted. 

Conservation 

Wadsworth [63, p.76] defines conservation as the “conceptualisation (schematisation) 

that the amount or quantity of a matter stays the same regardless of any changes in 

shape or position”. For the preoperational child, they typically cannot conserve, that is 

to say, they cannot hold one dimension invariant (be that in terms of number, mass, 

area, and volume) in the face of changes in other dimensions. However, by the end of 

the preoperational period, some conservation structures are usually developed. 
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Interestingly, Wadsworth states that Piaget’s theory in tandem with research in 

connection to ‘conservation learning’ makes evident that “the application of 

conservation principles to different types of problems usually follows a sequence” [63, 

p.84] of the form, whereby students conserve number first (5-6 years), mass second (7-8 

years), area third (7-8 years), weight fourth (9-10 years) and volume fifth (11-12 years). 

A brief description of these conservational abilities follows. 

Conservation of Number 

A four to five-year-old who is presented with a row of checkers, and who is asked to 

construct a row that is the same, will typically construct a row of the same length. 

However,  the row may not correspond to the number of checkers in the previous 

model. On the other hand, a five to six-year-old will use one-to-one correspondence to 

make each row equal in number and length. Interestingly, if they see one row 

lengthened or transformed, without any change in the number of elements, the child 

declares they are no longer equivalent. In a nutshell, the preoperational child holds the 

view that “the rows are equivalent only as long as there is visual correspondence in the 

length of arrays/columns” [63, p.79]. 

At the end of the preoperational period, the child will have learned to conserve number 

while simultaneously being able to decentre their perceptions [supposedly in terms of 

not solely focusing on what has changed], attending to transformations and reversing 

operations. 

Conservation of Area 

As with conservation-of-number problems, the preoperational child fails to conserve 

area in the face of perceptual change, due to not being able to decentre. However, 

around the age of seven or eight, conservation of area is usually attained. 

Conservation of Volume 

As with conservation of number and conservation of area, the preoperational child is not 

able to focus on, for example, the constant volume of a liquid while the container that it 

is placed in varies in terms of shape. It is not until the concrete-operational period is 

reached (ages seven to eleven) that volume conservation is acquired by the child. 
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Appendix C – Statistical Tests 

In order to test whether a student who was correct in a mathematics context for a 

particular item tended to correctly answer (or was associated with correctly answering) 

the corresponding item in a chemistry context, categorical statistical tests were used.  

The Chi-Squared Test 

The workings of the test are explained in the context of Item 10 (Proportionality) which 

was used in the research. 

Chemistry Context Mathematics Context 

 Correct Incorrect 
Correct C C I C 

Incorrect C  I I  I 

               Table 1. The Contingency Table for Item 10 (Proportionality). 

Table 1 is representative of the number of possible outcomes that can occur when we 

investigate if students can answer a mathematical item correctly in a mathematics 

context and in its corresponding chemistry context. A student can either: 

• answer correctly in a mathematics context and a chemistry context (denoted ‘C 

C’) 

• answer correctly in a mathematics context and incorrectly in a chemistry context 

(denoted ‘C I’) 

• answer incorrectly in a mathematics context and incorrectly in a chemistry 

context (denoted ‘I I’) 

• answer incorrectly in a mathematics context and correctly in a chemistry context  

(denoted ‘I C’) 

Figure 1 represents these four possible outcomes in a sample space. 

 

Figure 1. Possible Outcomes in Table 1 in the Form of a Sample Space. 
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It can be seen that with random answering, the following probabilities would be 

expected: 

Event (A): Probability that a student answers correctly in a mathematics context: 
2

1

4

2
=  

Event (B): Probability that a student answers correctly in a chemistry context: 
2

1

4

2
=  

Event (A & B):  Probability that a student answers both correctly in a mathematics 

context and in the corresponding chemistry context:
4

1
 

The probability of Event A & B is also equal to the probability of Event A multiplied by 

Event B, which is equal to: 
4

1

2

1

2

1
=×  

There are probabilities for other events, which can be deduced from the sample space in 

Figure 1. However, these other events were not of concern. 

The probabilities for Event A, Event B and Event A & B are what would be expected if 

the outcomes shown in Figure 1, for Table 1, occur randomly. However, the outcomes 

will probably not occur randomly, primarily because students will have some 

mathematical knowledge and chemistry knowledge, which, for argument sake, should 

affect the probability of Event A & B occurring. Because of this in-built non-

randomness, we took a sample of the population (in our case 30 students) and looked 

for a frequency distribution of possible outcomes amongst that sample. Such an 

approach yielded Table 2. 

Chemistry Context Mathematics Context Total 

 Correct Incorrect  
Correct 11 6 17 

Incorrect 2 11 13 

 13 17 30 

Table 2. Frequency Distribution of Possible Outcomes for a Sample of 30 Students. 

The visualisation of the frequency of the possible outcomes, which we observed 

amongst our sample is shown in Figure 2. 
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Figure 2. Visualisation of the Frequency                                                   

of Possible Outcomes Observed. 

From Figure 2, it can be seen that for the 30 outcomes, in 13 of these outcomes, 

students answered the mathematical item correctly; this is highlighted in blue in Figure 

3.                                                     

 

                                    Figure 3. The 13 Students who Answered Item 10               

Correctly in a Mathematics Context (Highlighted in Blue). 

Looking at Figure 3, we can see that the probability of answering correctly in a 

mathematics context (Event A) is now: 
30

13
 

Likewise, the probability of answering correctly in a chemistry context (Event B, as 

shown in red in Figure 4) is now: 
30

17
 

 

                                    Figure 4. The 17 Students who Answered Item 10                      

Correctly in a Chemistry Context (Highlighted in Red). 
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To summarise thus far: 

From our sample of students, we expected the probability of the following events to be 

representative of the entire population of students: 

Event (A): Probability that a student answers correctly in a mathematics context: 
30

13
 

Event (B): Probability that a student answers correctly in a chemistry context: 
30

17
 

Event (A & B):  Probability that a student answers both correctly in a mathematics 

context and in the corresponding chemistry context is equal to the 

probability of Event A multiplied by Event B, which is equal to: 

24.0
30

17

30

13
=×  

If the probability of Event A & B are independent (or can both occur by chance alone), 

then we expected 0.24 times the sample of 30 students to answer correctly in the 

mathematics context and chemistry context, due to chance alone.  

Therefore in Figure 5, we would have expected (0.24 x 30) students to answer correctly 

in both the mathematics context and chemistry context, due to chance alone; this 

number of students is approximately 7. If we look at Figure 5, we see that 11 students 

(as highlighted in green) actually answered correctly in both a mathematics context and 

chemistry context. 

                                                                  

Figure 5 The 11 Students (Highlighted in Green) who Answered Item 10 

Correctly in both a Mathematics Context and Chemistry Context. 

The following question arose: Do the 11 students who answered correctly in both 

contexts, show that there is an association between students answering correctly in a 

mathematics context and in the corresponding chemistry context?; in other words, if 
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you can answer the item in a mathematics context, are you also likely to answer the item 

in its corresponding chemistry context more so than by chance alone? 

Perhaps our observed frequency of 11 (instead of the expected frequency of 7) was due 

to sampling variation? If so, then there must be some sampling distribution, which takes 

account of the variability of expected frequencies; furthermore, this sampling 

distribution must have a mean. This sampling distribution is called a chi-squared 

distribution. It depends, not just on the sample size in question but also on the degrees 

of freedom. The degrees of freedom depend on the number of cells within a table. The 

formula for calculating such degrees of freedom is: 

df = (r-1) (c – 1) 

where df is the degrees of freedom; 

r is the number of rows in the table; 

and c is the number of columns in the table. 

In a nutshell, the degrees of freedom indicate how many parameters are needed to 

determine all the comparisons for describing the table.  For example, in our table, if we 

know the value in Cell 1 (Highlighted in Table 3) in tandem with the row totals and 

column totals, then we can deduce the value for Cell 2 (Highlighted in Table 3)—the 

cell value we compare the Cell-1 value against, when looking for significance. 

Likewise, for a three by two table, if we know the value in Cell 1 and Cell 2, in tandem 

with the row totals and column totals, then we can deduce the value for Cell 3; thus a 

three-by-two table has two degrees of freedom and two-by-two table has one degree of 

freedom. Chi-squared distributions for various degrees of freedom are shown in Figure 

6. 
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     Figure 6. Chi-Squared Distributions for various degrees of freedom. Adapted       

from  [101]. 

The approximate shape of the chi-squared distribution that was applicable to our study 

is shown in Figure 7.  

                                                        

Figure 7. The Approximate Shape of the Chi-Squared                                                      

Distribution Applicable to our Research. 

Looking at Figure 7, we can see that the value for the chi-squared distribution varies—

the larger the value, the more likely that the observed frequency is not due to chance 

alone; or in other words, the likelihood of an association is greater. In our investigation 

of a possible association, we looked for a chi-squared value with a probability of less 

than or equal to 0.05. This is shown in Figure 8. 
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             Figure 8. Visual Depiction of a Chi-Squared Value with a Probability                                  

of less than or equal to 0.05, for a Table with Degrees of Freedom Equal to One. 

 

The next question that arises is how do we calculate the chi-squared statistic for Table 

2?  

Firstly, we must calculate the expected frequencies for each cell (labelled Cell 1, Cell 2, 

Cell 3 and Cell 4) as shown below in Table 3. 

Chemistry Context Mathematics Context Total 

 Correct Incorrect  
Correct Cell 1 Cell 2 17 

Incorrect Cell 3 Cell 4 13 

 13 17 30 

Table 3. The Cell 1, Cell 2, Cell 3 and Cell 4 in Table 2.  

The methodology for finding the expected frequency in each cell is the same. For Cell 

1, this is equivalent to finding the probability of being correct in the maths context and 

chemistry context, and multiplying this probability by our sample number (namely 30). 

The probability for Cell 1 is: 

24.0
30

17

30

13
=×  

We then multiply this probability by the population total to give us the expected 

frequency of students in that cell: 

36.7
30

17

30

13
30 =××  
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Our calculations can be shortened into the following formula for expected cell count for 

any cell: 

Expected cell count for any cell = 
SizeSampleTotal

total)(Columntotal)(Row ×
 

Thus, Table 4, shows the observed counts and expected counts (in parentheses) for 

Table 2. 

Chemistry Context Mathematics Context Total 

 Correct Incorrect  
Correct 11(7.37) 6(9.63) 17 

Incorrect 2(5.63) 11(7.37) 13 

 13 17 30 

Table 4. Observed Counts and Expected Counts (in Parentheses) for Table 2. 

The next step in determining whether there is an association between being correct in 

the mathematics context and the corresponding chemistry context is to sum the square 

of the difference between the observed frequency and expected frequency in each cell of 

the table. This sum is the chi-squared statistic for the table. Its formula is as follows: 

∑ −
=

countexpected

count)expected(observed
χ

2
2

 

Thus, for our table: 

7.37

7.37)(11

5.63

5.63)(2

9.63

9.63)(6

7.37

7.37)-(11
χ

2222
2 −

+
−

+
−

+=∑  

                             =1.78 + 1.36 + 2.34 + 1.78 = 7.26   

 

The final step is to determine where this chi-squared value lies on the chi-squared 

distribution and the probability of being at or beyond this value. As it transpired, this 

chi-squared value happened to have a p-value of: 8.1E-03, thus indicating significance. 

The conclusion that was reached for this Item was: there is strong evidence to suggest 

that if a student answers Item 10 correctly in a mathematics context, they will associate 

with answering the equivalent mathematical item in a chemistry context correctly. 

This type of analysis was performed for each of our items. If any of the expected 

frequencies in our two-by-two table happened to be less than five, we used a more 
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precise categorical test, called Fisher’s Exact Test.  The principles of both the Chi-

Squared Test and Fisher’s Exact Test are summarised. 

Chi-Squared Test 

Assumptions:  

• We have two categorical variables; in our case, being correct or incorrect in the 

mathematics context is the first variable, while being correct or incorrect in the 

chemistry context is the second. 

• We have a random sample. 

• The expected frequencies are greater than or equal to five in all cells (if not, we 

use Fisher’s Exact Test). 

Hypotheses: 

0H : The two variables are independent; in other words, one will answer 

correctly in both contexts (or whatever possible outcome you want to 

chose) due to chance alone. 

aH :  The two variables are dependent (associated); for example, the likelihood 

that a student will answer correctly in both contexts is greater than chance 

alone. 

Test Statistic: 

∑ −
=

countexpected

count)expectedcount(observed
χ

2
2  

            where expected count = (row total x column total)/total sample size. 

 P-value:    A Right-tail probability above the observed 2χ value for the chi-squared 

distribution  with df = (r-1) (c-1). 

Conclusion: Reject H0 when the p-value ≤≤≤≤  the significance level (such as 0.05). 
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Fisher’s Exact Test 

Assumptions:  

• We have two categorical variables; in our case, being correct or incorrect in the 

mathematics context is the first variable, while being correct or incorrect in the 

chemistry context is the second. 

• We have a random sample. 

• The expected frequencies are less than or equal to five in one cell or more [102]. 

Hypotheses: 

0H :  The two variables are independent. 

aH :  The two variables are dependent (associated). 

Test Statistic [103]: 

( ) ∑∑ ×=
!d!c!b!a

1

)!sizesample(

!total2column)!total1column()!total2row()!total1row(
p

 

where p is probability, a! is the Cell 1 total, b! is the Cell 2 total, c! is the Cell 3 

total and d! is the Cell 4 total. 

The test statistic is the summation of the probabilities of all possible two-by-two 

contingency tables with a cell frequency equal to or smaller than the smallest 

expected frequency observed (keeping the row and column totals fixed, as 

above). 

 P-value:     The test statistic is the p-value. 

Conclusion: If the ∑p is less than the significance level chosen, we may reject the 

null hypothesis—independence between the two categorical variables. 
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Appendix D – Main Study Mathematical Items 

Mathematical Items Used in Diagnostic Tools 1 and 2 

 Item 1: Calculating Slope 

Mathematics Context Chemistry Context 

(A)  Calculate the slope of the straight line 

from the two points given in Figure 1. 

(A) Calculate the rate of change of the 

concentration of the reactant with 

respect to time over the time interval   

(∆t ) from the two points given in 

Figure 1. 

  
             Figure 1             Figure 1 

(B) Explain what this number means. (B) Explain what this value means. 
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 Item 2: Sketching a Line with Positive Slope 

Mathematics Context Chemistry Context 

     L1 as shown in Figure 1, passes through 

the Point ‘P’ and has a slope = 2.  

     The Line L1 in Figure 1 shows the graph 

of the concentration of product with 

respect to time over a certain time 

interval (∆t ). It has a value for the rate 

of change = 3. 

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L2) that 

passes through the point P and has 

slope = 3. 

(A) Sketch in Figure 1: a line (L2) that 

passes through the point P and has a 

value for the rate of increase of the 

product with respect to time = 4.  

(B) Explain your reasoning (B) Explain your reasoning. 
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 Item 3: Sketching a Line with Positive Slope 

Mathematics Context Chemistry Context 

       L1, in Figure 1, passes through the point 

‘P’, and has a slope = 2.  

     The Line L1 in Figure 1 shows the graph 

of the concentration of product with 

respect to time over a certain time 

interval (∆t ). It has a value for the rate 

of change = 3. 

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L3) that 

passes through the point P, and has 

slope = 1. 

(A) Sketch in Figure 1: a line (L3) that 

passes through the point P, and has a 

value for the rate of increase of the 

product with respect to time = 1.  

(B) Explain your reasoning (B) Explain your reasoning. 
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 Item 4: Sketching a Line with Negative Slope 

Mathematics Context Chemistry Context 

     L1, as shown in Figure 1, passes through 

the Point ‘P’ and has a slope = 2.  

   The line in Figure 1 shows the graph of 

concentration of reactant with respect to 

time over a certain interval (∆t) . Its rate 

of decrease over this interval is equal to 2.  

  
                Figure 1                Figure 1 

(A)  Sketch in Figure 1: a line (L4) that 

passes through the point P, and has 

slope = -1. 

(A) Sketch in Figure 1: a line (L4) that 

passes through the point P, and has a 

value for the rate of decrease of the 

reactant with respect to time = 1.  

(B) Explain your reasoning (B) Explain your reasoning. 
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 Item 5: Generating an Expression for Slope 

Mathematics Context Chemistry Context 

(A)  Using the notation in the diagram in 

Figure 1, write down an expression for 

the slope of a line connecting B-C. 

(A) Figure 1 shows the change of 

concentration of product (P) over time 

(t). Using the notation in the diagram, 

write down an expression for the average 

rate of change of product (P) between B 

and C. 

  
                Figure 1                    Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 

 

 

 

 



VI 

 

 Item 6: Generating an Expression for Derivative 

Mathematics Context Chemistry Context 

       Using the notation in the diagram in 

Figure 1, write down an expression for 

the slope of a line connecting B-C. 

      Figure 1 shows the change of 

concentration of product (P) over time 

(t). Using the notation in the diagram, 

write down an expression for the average 

rate of change of product (P) between B 

and C. 

  
               Figure 1                    Figure 1 

  (A) Using your answer, explain how you 

could generate the derivative 








dx

dy
at B. 

(A) Using your answer, explain how you 

could generate the instantaneous rate of 

change 








dt

dP
at B. 
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 Item 7: Interpreting Derivative 

Mathematics Context Chemistry Context 

 (A)   Figure 1 shows the graph of y against 

x. At which point, A or B, does the 

greatest value of 
dx

dy
occur? 

 (A) For a particular reaction: 

PBA →+  

        where A and B are reactants and P is 

product, Figure 1 shows the graph of 

concentration of product (P) against 

time (t). At which point, E or F, does 

the greatest increase in concentration of 

product with respect to time occur? 

  
              Figure 1                   Figure 1 

 (B)  Explain your reasoning.  (B) Explain your reasoning. 
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 Item 8: Usage of Exponentials 

Mathematics Context Chemistry Context 

Given:  

mxcyLn −=  

 (A)  Derive an expression for y. 

 A student is studying the chemical reaction: 

P,BA →+  

where A and B are reactants, and P is the 

product. After graphing the Ln of the 

concentration of A, obtained at different 

times (i.e. the graph of Ln[A]t against time 

(t)), the student finds that the graph 

corresponds to the relation given below, 

showing that the rate of the reaction is 1
st
 

order with respect to A. 

 

ktLn[A]Ln[A] 0t −=
 

 

 (A) Derive an expression for t[A]  

 (B)  Explain your reasoning.  (B) Explain your reasoning. 
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 Item 9: Usage of Natural Logarithms 

Mathematics Context Chemistry Context 

Given:  

2x
0eyy −

=
 

 

 (A)  Derive an expression for x in terms  

        of y and y0. 

For a reaction: 

P,BA →+  

where A and B are reactants and P is 

product, the concentration of reactant B 

after a certain time ([B]t) is given as a 

function of time in the following expression: 

 

kt
0t e[B][B] −

=  

 

where [B]0 and k are the initial 

concentration of reactant B and rate constant 

respectively. 

  

(A) Derive an expression for k. 

 (B)  Explain your reasoning. (B) Explain your reasoning. 
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 Item 10: Proportionality 

Mathematics Context Chemistry Context 

  The derivative of a particular function: 

y = f(x) 

  with respect to x is denoted: 

dx

dy
 

 
2ytoalproportionis

dx

dy
thatfoundisIt

 

 

2ky
dx

dy
Thus =

 

 

 where k is the constant of proportionality. 

 

The rate law for a particular reaction: 

P,BA →+  

where A and B are reactants and P is 

product is given as: 

 

2]A[kRate =  

 

when the concentration of B is held 

constant. ‘k’ is the rate constant. 

  

 

(A) What happens to the value of the 

derivative if y is doubled? 

(A) What happens to the value of the rate if 

[A] is doubled? 

(B) Explain your reasoning. (B) Explain your reasoning. 

 

 

 

 

 

 

 



XI 

 

 Item 11: Graphing an Exponential Function 

Mathematics Context Chemistry Context 

Given: 

x2
0eyy −

=  

 

(A)  Draw a graph that represents the 

relationship in Figure 1. Label the axis 

accordingly. 

For a reaction: 

P,BA →+  

where A and B are reactants and P is 

product, the concentration of reactant B 

after a certain time ([B]t) is given as a 

function of time in the following 

expression: 

kt
0t e[B][B] −

=  

 

where [B]0 and k are the initial 

concentration of reactant B and rate 

constant respectively. 

 

(A)  Draw a graph that represents this 

expression in Figure 1. Label the axis 

accordingly. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 
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 Item 12: Graphing a Natural Logarithmic Expression 

Mathematics Context Chemistry Context 

Given the relationship: 

mxcyLn −=  

 

 

(A)  Draw a graph that represents the 

relationship in Figure 1. Label the axis 

accordingly. 

A student is studying the chemical reaction: 

P,BA →+  

where A and B are reactants, and P is the 

product.  After graphing the Ln of the 

concentration of A, obtained at different 

times: (i.e. the graph of Ln[A]t against time 

(t)), the student finds that the graph 

corresponds to the relationship:  

 

kt-]A[LnLn[A] 0t =
 

 

showing that the rate of the reaction is 1st 

order with respect to A. 

 

(A)  Sketch the relationship in Figure 1. 

Label the axis appropriately. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 
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Mathematical Items Used in Diagnostic Tools 3 and 4 

 

 Item 13: Graphing a Function 

Mathematics Context Chemistry Context 

(A)  Sketch in Figure 1, the graph of the  

function: 

0xfor
x

1
y >=  

(A)  Sketch  in Figure 1, the graph of P 

versus  V, for: 

                        0m3 < V < 5m3 

       given the relationship: 

V

1
P =  

       This relationship comes from the ideal 

gas law applied to an isothermal 

system. For this example, nRT has the 

constant value of 1kJ. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 
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 Item 14: Evaluation of an Integral 

Mathematics Context Chemistry Context 

(A) Evaluate the integral: 

dx
x

1
3

1

∫  

 (A) Calculate the work done when the 

volume of a gas, in a reversible 

isothermal gas expansion, increases 

from:1m
3
(V1) to 3m

3
(V2), given that 

the work will be equal to the 

expression: 

 

∫−=

2

1

V

V

dv
V

1
w  

 

where V1 (1m
3
) is the initial volume of 

the gas, and V2 (3m
3
) is the final 

volume of the gas. The minus sign is 

used to denote the fact that the work 

leaves the system. 

 (B) Explain your reasoning (B) Explain your reasoning. 
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 Item 15: Graphing an Integral 

Mathematics Context Chemistry Context 

(A)  Indicate in Figure 1, the area 

corresponding to the integral: 

dx
x

1
3

1

∫  

(A)  The relationship:  

                               P = 
V

1
, 

where P is the pressure of a gas, and V is its 

volume, represents the ideal gas law applied 

to an isothermal system. For this example, 

nRT has the constant value of 1kJ. Indicate 

in Figure 1, the area corresponding to the 

integral:  

 

          w = − ∫
2

1

V

V

dV
V

1

 
 

which represents the work done by the 

system (the gas) in expanding from an 

initial volume:  

    (V1 = 1m
3
 ) to a final volume (V2 = 3m

3
), 

for a reversible isothermal gas expansion. 

The minus sign is used to denote the fact 

that the work leaves the system. 

  
                  Figure 1                   Figure 1 

(B) Explain your reasoning (B) Explain your reasoning. 
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Appendix E – Slope Intervention 

Section 1: 

A walker crosses a hill, as shown in the graph in Figure 1. They move from Point A to 

Point B and so forth, all the way to Point G. 

 
Figure 1 

 

The x-y co-ordinates for the Points A, B, C, D, E, F and G, in Figure 1, are as follows: 

 

A: (0.2km, 10m) B: (0.4km, 50m) C: (0.6km, 40m) D: (1km, 120m) 

E: (1.1km, 80m) F: (1.3km, 140m) G: (2.1km, 0m) 

 

Q.1   Between which points on the graph does the walker move uphill? 

__________________________________________________________________ 

Q.2   Between which points on the graph does the walker move downhill? 

__________________________________________________________________

__________________________________________________________________ 
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Q.3   Which is steeper, the line CD or the line DE? 

__________________________________________________________________ 

         Please explain your reasoning. 

__________________________________________________________________

__________________________________________________________________ 

Q.4   Is the slope of the line AB the same as the slope of the line CD? 

__________________________________________________________________

__________________________________________________________________ 

         Please explain your reasoning. 

__________________________________________________________________

__________________________________________________________________ 

Q.5   Calculate the slope of the line FG. 

 __________________________________________________________________ 

 Please explain what your answer means. 

 __________________________________________________________________

__________________________________________________________________ 

Q.6   Calculate the slope of the line FG at the Point P, as shown in Figure 1. 

 __________________________________________________________________ 

 Please explain your reasoning. 

 __________________________________________________________________

__________________________________________________________________ 
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Q.7 Read the following conversation between two students, Tom and Kate. 

  Kate:   Tom, what value did you get for the slope of the line DE? 

  Tom:   I got minus 400 metres per kilometre — and you? 

       Kate:  Plus 400 metres per kilometre. Your answer must be wrong. This is how I 

calculated the value for slope:  

        Change in the walker’s height:  

120m – 80m = 40m 

 Change in the horizontal distance that the walker moves forward:  

1.1km – 1.0km = 0.1km 

Therefore, the value for slope is: 

400m/km
0.1km

40m

forwardmoveswalkerthedistancehorizontaltheinChange

heightswalker'theinChange
==  

Do you agree with my reasoning, Tom? 

 

 Tom:  Not quite. This is how I did it:  

Change in the walker’s height:  

80m – 120m = -40m 

 Change in the horizontal distance that the walker moves forward:  

1.1km – 1.0km = 0.1km 

Therefore, the value for slope is: 

400m/km
0.1km

40m

forwardmoveswalkerthedistancehorizontaltheinChange

heightswalker'theinChange
−=

−
=  

 Agree? 

Kate: I’m not sure if I do. 
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After reading the above conversation, what is the value for the slope of the line 

DE? 

__________________________________________________________________

__________________________________________________________________ 

Q.8  In terms of the slope of the line DE, how can you ensure that your value will be 

interpreted as meaning that the walker moves downhill in Figure 1? 

 __________________________________________________________________ 

 Please explain your reasoning. 

 __________________________________________________________________

__________________________________________________________________ 

 

Q.9   Rank the lines AB, BC, CD, DE, EF, and FG in increasing order of steepness. 

        

___________________________________________________________________ 

Please explain your reasoning. 

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________

___________________________________________________________________ 
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Section 2: 

Review of Part I in terms of the Definition of Slope and the Meaning of ‘Steepness’ 

Definition and Meaning of Slope: 

We use the formula: 

∆x

∆y

xx

yy
m

12

12 =
−

−
=                                                                               

to calculate the slope of a line, where (x1,y1) and (x2,,y2) are any two points on the 

line. 

The slope gives us a measure of how much the line increases or decreases in the 

vertical direction (∆y ) for an increase of ∆x in the horizontal direction                   

(NB an increase of ∆x always means an increase moving from left to right.). 

Any points on a line can be used to calculate the slope of that line. 

Figure 2 shows the graph of a function that represents the volume of water in a tank 

at different times. The slope of the line AB in Figure 2 is calculated as follows: 

Taking the Points A and B to be the points )y,(x 11 and )y,(x 22 respectively. 

∆Time

 Waterof ∆Volume

hours2

m6

2hours4hours

3m9m
m

333

==
−

−
=  

 

 
    Figure 2 
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The visual meaning of 
hours2

m6 3

∆Time

 Waterof ∆Volume
=  is shown in Figure 3.  

We can see in Figure 3 that for: 

      hours 2Time =∆ ,  

the corresponding change in the volume of water = 6 3m .  

 
Figure 3 

 

We can see in Figure 4 that for: 

      hour 1Time=∆ ,  

the corresponding change in the volume of water = 3 3m .  
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Figure 4 

 

In the formula for slope:  

                          
∆x

∆y

xx

yy
m

12

12 =
−

−
=  

By taking 1∆x = , we see that: 

m = 
1

∆y
= Change in y corresponding to a 1 unit increase in x. 

The line L1, in Figure 5, which has a slope of m = 0.5, represents the above description 

of slope in a visual sense. We can see in Figure 5 that for a unit increase on the x-axis, 

there is a corresponding increase of 0.5 units in the value of y.  

In contrast, looking at the line L2 in Figure 6 which has a slope of m = -3, we see that 

for a unit increase on the x-axis, there is a corresponding decrease of 3 units in the 

value of y.  
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Figure 5 

 

 
Figure 6 
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Slope is Equal to Steepness with a Sign: 

By looking at Figure 5 and Figure 6, we can clearly see that L2 is steeper than 

L1. However, 

Slope of L2 < Slope of L1 

 because:                  -3 < 0.5 

To measure steepness rather than slope, we look at the magnitude or absolute 

value of the slope. For example, we have already seen in Figure 5, that the line 

L1 has a value for slope equal to +0.5.  

In contrast, the slope of the line L2 in Figure 6 has a value for slope equal to -3.  

Then, we see:  

The magnitude of the slope of L1 

= L1ofslope  

= 5.0+  

= + 0.5 

The magnitude of the slope of L2 

= L2ofslope  

= 3−  

= + 3 

Thus, taking the absolute values for the slopes of line L1 and line L2 reflects the 

fact that L2 is steeper than L1.  

For the line L1, in Figure 5, we can see that for a unit increase on the x-axis, a 

corresponding 0.5 unit change occurs in the value of y. However, for the line L2 

in Figure 6, for a unit increase on the x-axis, a corresponding 3 unit change 

occurs in the value of y.  

In other words, the change in y for a unit increase on the x-axis is greater for the 

line L2 than for the line L1; this makes L2 steeper than L1. 
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Q.10  

A walker’s change in height (in metres) per unit distance that they move forward is 

found to be minus 0.25 metres per metre. This can be interpreted from Figure 7.   

The walker is at Point A in Figure 7. They continue moving along the hill, moving -
1metre in the vertical direction. What is their corresponding change in the horizontal 

direction? 

______________________________________________________________________ 

Highlight this change in metres that the walker moves forward along with the 

corresponding change of minus 1 metre in their height, on the graph in Figure 7. 

 

 
Figure 7 
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Section 3: 

The temperature ( C° ) inside a room was recorded during a certain period of time (in 

hours). The data was plotted as shown in Figure 8. 

 
Figure 8 

 

The x-y co-ordinates for the Points A, B, C, D, E, F and G in Figure 8 are as follows: 

A: (1hr, 15 ° C)    B: (3hrs, 20 ° C) C: (4hrs, 30 ° C)  D: (5hrs, 25 ° C) 

E: (6hrs, 5 ° C)     F: (7hrs, 25 ° C) G: (9hrs, 15 ° C) 

 

Q.1 Between which points on the graph does the temperature increase? 

 ___________________________________________________________________ 

 

Q.2 Between which points on the graph does the temperature decrease? 

 ___________________________________________________________________ 

 

Q.3 Which is steeper, the line BC or the line CD? 

 ___________________________________________________________________ 
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Please explain your reasoning 

 ___________________________________________________________________

___________________________________________________________________ 

Q.4 Is the slope of the line AB the same as the slope of the line BC? 

 ___________________________________________________________________ 

 Please explain your reasoning. 

 ___________________________________________________________________

___________________________________________________________________ 

Q.5 Calculate the slope of the line FG. 

 ___________________________________________________________________

___________________________________________________________________ 

 Please explain what your answer means. 

___________________________________________________________________

___________________________________________________________________ 

Q.6 Calculate the slope of the line FG at the Point P, as shown in Figure 8. 

      __________________________________________________________________ 

      Please explain your reasoning. 

____________________________________________________________________

____________________________________________________________________ 

Q.7 What is the slope of the line DE? 

     ___________________________________________________________________ 

     In terms of this value, how can you ensure that it will be interpreted as meaning that 

the temperature decreases between the Points D and E? 

    ___________________________________________________________________ 
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     Please explain your reasoning. 

____________________________________________________________________

____________________________________________________________________ 

Q.8 Rank the lines AB, BC, CD, DE, EF, and FG in increasing order of steepness. 

     

____________________________________________________________________ 

     Please explain your reasoning. 

____________________________________________________________________

____________________________________________________________________ 
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Appendix F – Meaning-of-Derivative Intervention 

Section  1: 

 

 
      Figure 1 

 

Figure 1 shows the graph of y against x.  

 

Q. 1 At which Point, A or B, is the value for y the greatest? 

  ________________________________________________________________ 

Q. 2 At which Point, A or B, does the greatest value of 
dx

dy
occur? 

     ________________________________________________________________ 

     

     Give a reason for your answer. 

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________ 
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Section 2: 

As a balloon is inflated or deflated, its surface area (in centimetres squared (cm
2

)) is 

proportional to the square of the radius of the balloon (in centimetres (cm)). This relationship is 

plotted in Figure 2. Its algebraic representation is of the form: 

          y= 2x4π   

Expression 1 

Where ‘y’ is equal to the surface area of the balloon and ‘x’ is equal to the radius of the balloon. 

Let us consider when the balloon is inflating: 

We can see, for example, from Figure 2, that when the radius of the balloon is 5cm, the 

corresponding surface area of the balloon is approximately (all such figures in this exercise are 

rounded-off to the nearest whole number) _____cm
2

. We can also see that the surface area of 

the balloon changes as its radius changes. 

Consider Question 1:  

Q.1 By how much is the surface area of the balloon increasing ( ∆y ) at the instant 

that the radius of the balloon passes through 5cm? 

Answering such a question is equivalent to finding the slope of a straight line ‘touching’ the 

graph at the point (5cm, 314cm2), as shown in Figure 3. Such a straight line is called the tangent 

line at the point in question.  

Finding the slope of such a tangent line involves a process of estimation. 

 
                                     Figure 2 
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                                   Figure 3 

For our first estimate, let’s find the slope of the line extending from the point (5, 314) to the 

point (7, 615), as shown in Figure 4. The slope of this line estimates the slope of the tangent 

line at the point (5, 314).  

 
                                 Figure 4 
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Finish off the calculation for the slope of this line in Expression 2 and the conclusion, 

which follows from it: 

____============
−−−−

−−−−
====

−−−−

−−−−
====

∆x

∆y

2cm

cm _____ 

5cm7cm

cm314615cm

xx

yy
m

222

12

12    Expression 2 

Conclusion: 

This means that at the point (5, 314), we estimate the surface area of the balloon to 

increase by/change by _____cm
2  for a 1cm increase in the radius. 

Notice how the value for ∆ x in Expression 2 is positive (namely 2cm). The value for ∆ x can 

also be negative; Figure 5 shows an example of when this can be the case. 

 
                                Figure 5 

 

Again, let’s estimate the slope of the tangent line at the point (5, 314) by finding the slope of the 

line extending from the point (5, 314) to the point (3, 113), as shown in Figure 5. The slope of 

this line estimates the slope of the tangent line at the point (5, 314).   

Finish off the calculation for the slope of this line, in Expression 3, and the conclusion which 

follows from it: 

____============
−−−−

−−−−
====

−−−−

−−−−
====

∆x

∆y

2cm-

cm _____ 

5cm3cm

cm314113cm

xx

yy
m

222

12

12    Expression 3 
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Conclusion: 

This means that at the point (5, 314), we estimate the surface area of the balloon to increase 

by/change by _____cm
2

 for a 1cm increase in the radius. 

Let’s return to estimating the slope of the tangent line at the point (5, 314), when ∆ x remains a 

positive value, but decreases in size.   

In Figure 6, we find the slope of the line extending from the point (5, 314) to the point (6, 452) 

so that ∆ x is now 1cm instead of 2cm. Calculating the slope of this line estimates the slope of 

the tangent line at the point (5, 314) more accurately than calculating the slope of the previous 

line, as shown in Figure 4.  

 
 Figure 6 

 

Finish off the calculation for the slope of this line, in Expression 4, and the conclusion 

which follows from it: 

____============
−−−−

−−−−
====

−−−−

−−−−
====

∆x

∆y

1cm

cm____

5cm6cm

m_______cm_______c

xx

yy
m

222

12

12   Expression 4 

Conclusion: 

This means that at the point (5, 314), we estimate the surface area of the balloon to increase 

by/change by _____cm
2

 for a 1cm increase in the radius. 
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Figure 7 

 

Let’s try to find the slope of the line extending from the point (5, 314) to a point where the 

difference between the starting x-point and the ‘new x-point’ is infinitesimally small, as shown 

in Figure 7.  

Likewise, the corresponding difference between the starting y-point and the ‘new y-point’ is 

infinitesimally small, as shown in Figure 7. The slope of this line best estimates the slope of the 

tangent line at the point (5, 314).  

Instead of attempting to calculate the slope of the tangent line at the point (5, 314), it is easier to 

use our previous estimations, as summarised in Table 1* and Table 2* to predict what the value 

of this slope is.  

 

*It should be noted that there are extra values which have been calculated for the estimate of 

the slope of the tangent line at the point (5, 341), as ∆ x ‘approaches zero’/ ‘an infinitesimally 

small value’. For the sake of brevity, these estimates have not been shown graphically.  
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Table 1 shows us that as a positive value of ∆x becomes extremely small (infinitesimal), ∆y 

becomes extremely small (infinitesimal).  The smaller ∆x and ∆y become, the more accurate 

becomes the estimate for the value of the slope of the tangent line at the point (5, 314).  

Fill in the missing value for the estimate of the slope (correct to the nearest whole number) in 

the last row of column four of Table 1. 

Figure ∆x  ∆y  Value for Slope 

4 2cm 301cm
2 

151 

6 1cm 138cm
2
 138 

- 0.0001cm 0.0125cm
2 

125.6649 

- 0.00001cm 0.00125cm
2 

125.6637 

- 0.000001cm 0.0001256cm
2 

125.6632 

- - - - 

- - - - 

8 Approaches zero, yet 

does not reach zero. 

Approaches zero, yet 

does not reach zero. 

 

    Table 1 

Table 2 shows us that as a negative value of ∆x becomes extremely small (infinitesimal), ∆y 

becomes extremely small (infinitesimal). Again, the smaller ∆x and ∆y become, the more 

accurate becomes the estimate for the value of the slope of the tangent line at the point (5, 314). 

Fill in the missing value for the estimate of the slope (correct to the nearest whole number) in 

the last row of column four of Table 2. 

Figure ∆x  ∆y  Value for Slope 

5 -2cm -201cm
2
 101 

- -1cm -113cm
2
 113 

- -0.0001cm -0.012566cm
2 

125.6624 

- -0.00001cm -0.0012566cm
2 

125.6637 

- -0.000001cm -0.00012566cm
2 

125.6635 

- - - - 

8 Approaches zero, yet 

does not reach zero. 

Approaches zero, yet 

does not reach zero. 

 

  Table 2 

Q.2 How does the value for the estimate of the slope of the tangent line at the point (5, 314), as 

positive values of ∆ x approach zero compare with the value for the estimate of the slope of the 

tangent line at the same point, as negative values of ∆ x approach zero? 

_____________________________________________________________________________

_____________________________________________________________________________ 

As can be seen in Table 1 and Table 2, we predict the slope of the tangent line at the point (5, 

314), to be approximately (correct to the nearest whole number) ________, as positive or 

negative values of ∆ x ‘approach zero’/ ‘become infinitely small’. 
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The geometrical representation of the tangent line at the point (5, 314), is shown in Figure 8. 

The slope of the tangent line in Figure 8 is also known as the derivative 
dx

dy
at this point.  

 

                                 Figure 8 

 

Thus, in Figure 8, ‘the slope of the tangent line at the point (5, 314)’/ ‘derivative at the point (5, 

314)’ has a value of ______. We ask what does this mean in the context of our original 

question, namely: 

Q.1 By how much is the surface area of the balloon increasing ( ∆y ), at the instant that the 

radius of the balloon passes through 5cm?  

Answer:  

We see from Table 1 and Table 2 that as the radius of the balloon ‘passes through’ /‘increases 

through’ the value r = 5cm, we predict the surface area of the balloon to increase by 126cm
2
 per 

cm. In other words, we predict the slope of the tangent line at the point (5, 314) to be 126. 
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Summary: 

The technique, which we used in this section in order to find the slope of the tangent line 

touching the graph at the point (5cm, 314cm
2
) and which thus allowed us to find the derivative 

at this point can be written in mathematical symbols as follows: 

∆x

∆y
Lim

dx

dy

0∆x5cmx →=

=  

 

where: 

• 
dx

dy
 at the point x = 5cm refers to the value for the slope of the tangent line touching the 

graph at the point (5cm, 314cm
2
). 

 

• The expression 
∆x

∆y
Lim

0∆x→
refers to the process of finding the limiting value for our 

estimate of the slope of the tangent line (equals the derivative) at the point (5cm, 

314cm
2
), as either positive or negative values of ∆x approach zero. The limiting value 

in our case was determined by predicting the value for slope in the last row of the 

fourth column in both Table 1 and Table 2. 
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Section 3:  

 
                                          Figure 9 

 

For a particular reaction: A+B →P, where A & B are reactants, and P is product, 

Figure 9 shows the graph of concentration of product (P) against time (t).  

 

     Q.1 At which point, E or F, does the concentration of product (P) have a greater 

value? 

 ____________________________________________________________________ 

Q. 2 At which point, E or F, does the greatest value of 
dt

dP
occur? 

____________________________________________________________________ 

 

Give a reason for your answer. 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

If you struggled to complete Section 1 before completing Section 2 and Section 3, 

perhaps attempt Section 1 again. 
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Appendix G – Derivative-as-a-Function Intervention 

Section 1: 

Q. 1  Find the derivative with respect to x for the following function: 

        y = 2x 

      =
dx

dy
________ 

Explain your reasoning: 

______________________________________________________________________

______________________________________________________________________ 

Q.2 Which of the following graphs (Graph A, B or C) in Figure 1 represents
dx

dy
? 

 
Figure 1 

 

Explain your reasoning: 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 
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Section 2: 

As a balloon is inflated or deflated, its surface area (in centimetres squared (cm
2

)) is 

proportional to the square of the radius of the balloon (in centimetres (cm)). This relationship is 

plotted in Figure 2. Its algebraic representation is of the form: 

y=
2

x4π   

where ‘y’ is equal to the surface area of the balloon, and ‘x’ is equal to the radius of the balloon. 

We can see, for example, from Figure 2, that when the radius of the balloon is 2cm, the 

corresponding surface area of the balloon is approximately (all such figures in this exercise are 

rounded-off to the nearest whole number) ________cm
2

. We can also see that the surface area 

of the balloon changes as its radius changes. 

Consider Question 1:  

Q.1 By how much is the surface area of the balloon increasing, when the radius of the 

balloon is instantaneously passing through any particular value? 

or, in other words, 

we want a function, where the x-inputs are the ‘radius of the balloon’ and the y-outputs 

are ‘how much the surface area of the balloon is increasing ( ∆y ) when the radius of 

the balloon is instantaneously passing through any particular radius value’. 

We can attempt to generate such a function by taking a number of points on our original 

function—the first of which is graphically shown in Figure 3—and finding out: how much the 

surface area of the balloon is increasing ( ∆y ) when the radius of the balloon is instantaneously 

passing through a particular radius value. 

 
                                                 Figure 2 
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Section 2.1 — 1
st
 Point: 

Q.2 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 2cm? 

_____________________________________________________________________________ 

Answering such a question is equivalent to finding the slope of a straight line ‘touching’ the 

graph at the point (2cm, 50cm
2
), as shown in Figure 3. The line at the point in question is called 

the tangent line.  

Finding the slope of such a tangent involves a process of estimation. 

 Figure 3  
The process of estimating the slope of the tangent line at the point (2, 50), is summarised in both 

Table 1 and Table 2. Table 1 shows us that as a positive value of ∆x becomes extremely small 

(infinitesimal), ∆y becomes extremely small (infinitesimal). The smaller ∆x and ∆y become, the 

more accurate becomes the estimate for the value of the slope of the tangent line at the point (2, 

50). Fill in the missing value for slope (correct to the nearest whole number) in the last row of 

column three of the table. 

 

∆x  ∆y Value for Slope 

1cm 62.8318 62.8318 

0.0001cm 31002665 −
×.  50.2667 

0.00001cm 4
1002655

−
×.  50.2656 

- - - 

- - - 

Approaches zero, yet does 

not reach zero. 

Approaches zero, yet does 

not reach zero. 

 

                 Table 1 

Table 2 shows us that as a negative value of ∆x becomes extremely small (infinitesimal), ∆y 

becomes extremely small (infinitesimal). Again, the smaller ∆x and ∆y become, the more 
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accurate becomes the estimate for the value of the slope of the tangent line at the point (2, 50). 

Fill in the missing value for slope (correct to the nearest whole number) in the last row of 

column three of the table. 

∆x  ∆y Value for Slope 

-1cm -37.6991 37.6991 

-0.0001cm -50.2642 50.2642 

-0.00001cm -50.2653 50.2553 

- - - 

- - - 

Approaches zero, yet does 

not reach zero. 

Approaches zero, yet does 

not reach zero. 

 

               Table 2 

From the value for slope predicted in the last row of column three in both Table 1 and Table 2, 

we predict the value of the slope of the tangent line at the point (2, 50) to be, approximately, 

(correct to the nearest whole number) ________ as positive or negative values of ∆x ‘approach 

zero’/ ‘become infinitely small’.  

The geometrical representation of the tangent line is shown in Figure 4. The slope of the tangent 

line in Figure 4 is also known as the derivative 
dx

dy
 at this point. 

 

 Figure 4 
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In Figure 4, the slope of the tangent line/derivative at the point (2, 50) has a value of _____. We 

ask what this means in the context of question two, namely: 

 

Q.2 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 2cm?  

 

Answer:  

We see from  both Table 1 and Table 2 that as the radius of the balloon passes 

through/increases through the value r = 2cm, we predict the surface area of the balloon to 

increase by 50cm
2
 per cm. In other words, we predict the slope of the tangent line at the point 

(2, 50) to be 50. 

 

Summary: 

The technique which we used in this section in order to find the slope of the tangent line 

touching the graph at the point (2cm, 50cm
2
), and which thus allowed us to find the derivative at 

this point, can be written in mathematical symbols, as follows: 

∆x

∆y
Lim

dx

dy

0∆x2cmx →=

=  

Where: 

• 
dx

dy
 at the point x = 2cm refers to the value for the slope of the tangent line touching the 

graph at the point (2cm, 50cm
2
). 

• The expression 
∆x

∆y
Lim

0∆x→
refers to the process of finding the limiting value for our 

estimate of the slope of the tangent line (equals the derivative) at the point (2cm, 

50cm
2
), as either positive or negative values of ∆x approach zero. The limiting value in 

our case was determined by predicting the value of the last row in the third column of 

both Table 1 and Table 2. 
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Section 2.2 — 2
nd

 Point: 

Q.3 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 4cm?  

_____________________________________________________________________________ 

Answering such a question is equivalent to finding the slope of a straight line ‘touching’ the 

graph at the point (4cm, 201cm
2
), as shown in Figure 5. Again, such a straight line is called the 

tangent line at the point in question.  

Again, finding the slope of such a tangent line involves a process of estimation. 

 

 
       Figure 5 
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Such a process of estimation is, for the sake of brevity, summarised in Table 3. Fill in the 

missing value for slope (correct to the nearest whole number) in the last row of column two and 

column four of the table. 

∆x  Value for Slope ∆x  Value for Slope 

1cm 113.0973 -1cm 87.9645 

0.0001cm 100.5322 -0.0001cm 100.5297 

0.00001cm 100.5310 -0.00001cm 100.5309 

- - - - 

- - - - 

- - - - 

Approaches zero, yet 

does not reach zero. 

 Approaches zero, yet 

does not reach zero. 

 

     Table 3 

  

From the value for slope predicted in the last row of column two and four in Table 3, we predict 

the value of the slope of the tangent line at the point (4, 201) to be, approximately (correct to the 

nearest whole number) ________, as positive or negative values of ∆x ‘approach zero’/ 

‘become infinitely small’.  

The geometrical representation of the tangent line is shown in Figure 5. Again, the slope of the 

tangent line in Figure 5 is also known as the derivative 
dx

dy
 at this point.   

In Figure 5, the slope of the tangent line/derivative at the point (4,201) has a value of 

________. Again, we ask, what does this mean in the context of question three, namely: 

Q.3 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 4cm?  

Answer:  

We see from Table 3 that as the radius of the balloon passes through/increases through the 

value r = 4cm, we predict the surface area of the balloon to increase by 100cm
2

 per cm. In 

other words, we predict the slope of the tangent line at the point (4, 201) to be 100.  
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Section 2.3 — 3
rd

 Point: 

Q.4 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 6cm?  

_____________________________________________________________________________ 

Again, answering such a question is equivalent to finding the slope of a straight line ‘touching’ 

the graph at the point (6cm, 452cm
2
), as shown in Figure 6. Again, such a straight line is called 

the tangent line at the point in question.  

Again, finding the slope of such a tangent involves a process of estimation. 

 

                         Figure 6 

  

Such a process of estimation is, for the sake of brevity, again summarised, as shown in Table 4. 

Fill in the missing value for slope (correct to the nearest whole number) in the last row of 

column two and column four of the table. 
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∆x  Value for Slope ∆x  Value for Slope 

1cm 163.3628 -1cm 138.2300 

0.0001cm 150.7977 -0.0001cm 150.7951 

0.00001cm 150.7964 -0.00001cm 150.7964 

- - - - 

- - - - 

- - - - 

Approaches zero, yet 

does not reach zero. 

 Approaches zero, yet 

does not reach zero. 

 

     Table 4 

From the value for slope predicted in the last row of column two and four in Table 4, we predict 

the value of the slope of the tangent line at the point (6, 452) to be, approximately (correct to the 

nearest whole number) ________, as positive or negative values of ∆x ‘approach zero’/ 

‘become infinitely small’.  

 

The geometrical representation of the tangent line is shown in Figure 6. Again, the slope of the 

tangent line in Figure 6 is also known as the derivative 
dx

dy
 at this point.   

In Figure 6, we can see that the slope of the tangent line/derivative at the point 6, 452) has a 

value of _______. Again, we can ask what does this mean in the context of question four, 

namely: 

Q.4 By how much is the surface area of the balloon increasing ( ∆y ) at the instant the radius of 

the balloon passes through 6cm?  

 

Answer: 

We see from Table 4 that as the radius of the balloon passes through/increases through the 

value r = 6cm, we predict the surface area of the balloon to increase by 151cm
2

 per cm. In 

other words, we predict the slope of the tangent line at the point (6, 452) to be 151.  
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Section 2.4—Returning to Our Original Question: 

Q.1 By how much is the surface area of the balloon increasing when the radius of the balloon is 

instantaneously passing through any particular value? 

or, in other words, 

How do we generate a function, where the x-inputs are the ‘radius of the balloon’ and the y-

outputs are ‘how much the surface area of the balloon is increasing ( ∆y ) when the radius of 

the balloon is instantaneously passing through any particular value’. Let’s tabulate our work 

from Section 2.1-2.3 in Table 5. 

Point Radius of the Balloon (cm) 

dx

dy
 

(2, 50) 2 50 

(4, 201) 4  100  

(6, 452) 6 150 

Table 5 

Plotting the results of the 2
nd

 and 3
rd

 columns of Table 5 produces the following as shown in 

Figure 7. 

 

         Figure 7 
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We can see that the points appear to be in a line; this raises the question of whether or not the 

derivative of the surface area of the balloon with respect to the radius is linear. Let’s return to 

the function for the surface area of the balloon, as shown in Expression 1. 

 

y = 
2x4π          Expression 1 

 

Finding the derivative of y with respect to x produces: 

x8π
dx

dy
====        Expression 2 

 

From the points plotted in Figure 7, it is clear that we are plotting the derivative of the surface 

area of the balloon against its radius. What appears to be a linear relationship is confirmed after 

we differentiate Expression 1 to produce Expression 2. Expression 2 is analogous to y = mx: 

where m is equivalent to 8π; x is equivalent to x and 
dx

dy
is equivalent to y. 

Thus, the ‘apparent’ linear relationship in Figure 7 is, in fact, so, and can be graphed as shown 

in Figure 8. 

 
       Figure 8 
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Q.5 By how much is the surface area of the balloon increasing per cm when the radius of the 

balloon is instantaneously passing through 5cm? 

_____________________________________________________________________________ 

Q.6 Using Expression 2, can you calculate how much the surface area of the balloon is 

increasing when the radius of the balloon is instantaneously passing through 8cm? 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

Let’s compare Figure 8 with the graph of the surface area of the balloon as a function of its 

radius. (Figure 2). Such a comparison yields Figure 9. 

 
Figure 9 

 

We can see more clearly that Figure 8 in Figure 9 is the graph of the derivative of the 

expression: y= 2x4π . The algebraic expression for the derivative of the expression in Figure 2 

is ====
dx

dy
 8πx.  

The derivative graph in Figure 8 can be read in order to tell us: How much the surface area of 

the balloon is increasing when the radius of the balloon is instantaneously passing through any 

particular radius value; the algebraic part of the derivative (Expression 2), namely ====
dx

dy
 8πx 

also tells us this when we substitute the radius value in question into the expression. 
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Section 3: 

Q. 1 Find the derivative of the following function with respect to T: 

        p = 
v

nrT
 

where 
v

nr
is a constant, with a value equivalent to 2. 

      =
dT

dp
________ 

Explain your reasoning: 

_________________________________________________________________________

_________________________________________________________________________ 

Q. 2 Which of the following graphs (Graph A, B or C), in Figure 10, represents
dT

dp
? 

 
      Figure 10 

 

Explain your reasoning: 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 
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Appendix H – Integration Intervention 

Section 1: 

 
        Figure 1 

 

Figure 1 shows the velocity of a moving body as a function of time: v=2t, where velocity v is in 

units of metres per second and time t is in seconds. 

 

Q.1 Calculate the area underneath the graph between time t = 0 seconds and time t = 6 

seconds, as highlighted in Figure 2. As the area to be calculated has the shape of a triangle, you 

can use this formula: 

Area of a triangle = height)larperpendicu(base
2

1
×  

where: 

• The base of the triangle is the length of time from t = 0 seconds to t = 6 seconds; 

namely it is 6 seconds (6s). 

• The perpendicular height of the triangle is the velocity at time t = 6 seconds; namely, it 

is 12 metres per second (12m/s). 
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          Figure 2 

 

Thus:  

The area = _____)________(
2

1
=×  

Q.2 In terms of a physical interpretation, what does the value for the area you have calculated 

mean? Does it give you the displacement of the body (the distance the body travels in a certain 

direction) between t = 0 seconds and t = 6 seconds? 

_____________________________________________________________________________

_____________________________________________________________________________ 

Find the area underneath the graph and between the horizontal axis as time varies, as shown in 

Figures 3, 4, 5, 6 and 7. Use the units ‘m/s’ for the height of the triangle and ‘s’ for the base. 

 
                                    Figure 3 

The area in Figure 3 = _____)________(
2

1
=×  
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The area in Figure 4 = _____)________(
2

1
=×  

The area in Figure 5 = _____)________(
2

1
=×  

 

 

 

The area in Figure 6 = _____)________(
2

1
=×  

The area in Figure 7 = _____)________(
2

1
=×  
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Tabulate your results in Table 1 for the ‘area underneath the graph and between the horizontal 

axis’ as time varies, which you calculated for the Figures 3, 4, 5, 6 and 7. 

 

Figure Length of the base of the 

triangle. 

Height of the triangle Area/ displacement 

2 6 seconds 12 metres per second 36 metres 

3 5 seconds   

4 4 seconds   

5 3 seconds   

6 2 seconds   

7 1 seconds   

Table 1 

 

Plotting the results of the ‘area’ of the triangle in Figure 1, as the base of the triangle (time) 

varies, will produce the following set of points highlighted in Figure 8. 

 
                                                                            Figure 8 

 

Observing Figure 8, we can join the points and thus produce the shape of the graph which 

represents the areas of the triangles in Figures 1-7, as a function of the base of the triangle (time) 

varying. This graph is shown in Figure 9. 
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                                                                              Figure 9 

 

Because the area in Figure 9 is representative of the displacement of the body as a function of 

time, the graph is labelled accordingly. The displacement is denoted s and time t, where t is in 

seconds. The shape of the graph in Figure 9 appears to be reflective of a squared-type relationship 

between the displacement of the body and time. Thus, the functional relationship in Figure 9 is of 

the form: s = t
2
.            

 

To summarise: 

Finding the area underneath our original function: v=2t in Figure 1, as a function of the base/time 

varying, generates the following function:  

s = t
2
, 

where s = displacement and t = time. 

 

Q.3 Find the derivative of s with respect to t for the function: 

s = t
2
, 

____=
dt

ds
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dt

ds
 can also be written as v. 

You should see that after differentiating we get the function graphed in Figure 1, namely the 

function which we aimed to find the area underneath as the value for the base/time varied. 

Summary: 

• We started with the function v=2t 

• We found that the area under the graph for the above function as t varies is given by the  

function s = t
2
. 

• v=2t and s = t
2
 are related by the fact that v = 

dt

ds
 

• Inference Thus Far: 

If we are given any function f(x), such as the one shown in Figure 10, then maybe the 

shaded area is found by using a function F(x) that satisfies: 
dx

dF(x)
f(x) =  

 
         Figure 10 
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Section 2: 

Next, we consider a different case where the function in Figure 11 is of the form:  

13 2
+= tv .     Expression 1 

 
                                                                Figure 11 

 

Q.5 Can you calculate the area underneath the graph and between time t = 0 seconds and time t 

= 4 seconds, as highlighted in Figure 12?  

_____________________________________________________________________________________

_____________________________________________________________________________________ 
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                                                                  Figure 12 

 

As the area to be calculated does not have the shape of a triangle, we must use a different 

approach to calculate the area.  

 

Q.6 How do you think we might find the area? 

_____________________________________________________________________________

_____________________________________________________________________________ 

We can do this by finding the area of a number of rectangles which touch the graph from either 

above or below. This statement is now made more explicit. 
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Section 2.1: 

The Upper-Sum Estimation: 

 

                                                                   Figure 13 

 

Figure 13 shows four rectangles that together contain the region whose area we want to 

estimate.The purple part of each rectangle lies outside the area. Each rectangle has width of 1 

second. The height of each rectangle is obtained by evaluating the function at the right endpoint 

of the base of each rectangle*. The total area of the sum of the 4 rectangles over-estimates the 

area of the region we want to find. 

The area is approximately equal to:  

            Σ Area of the rectangles 

           = [(4m/s).(1s) + (13m/s).(1s) + (28m/s).(1s) + (49m/s).(1s)]  

           = ? 

where the symbol ‘Σ’ (pronounced ‘sigma’) signifies the fact that we are summing the area of a 

finite number of rectangles; in this case four. 

* We note that in this case, this is the maximum value of v over the base of the rectangle. 
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                                                                   Figure 14 

 

Figure 14 shows eight rectangles that together contain the region whose area we want to 

estimate.The purple part of each rectangle lies outside the area. Each rectangle has width of 0.5 

seconds. The height of each rectangle is obtained by evaluating the function at the right 

endpoint of the base of each rectangle. The total area of the sum of the eight rectangles over-

estimates the area of the region we want to find. 

The area is approximately equal to:  

           Σ Area of the rectangles 

                    = [(1.75m/s).(0.5s) + (4m/s).(0.5s) + (7.75m/s).(0.5s) + (13m/s).(0.5s) + 

(19.75m/s).(0.5s) + (28m/s).(0.5s) + (37.75m/s).(0.5s) + (49m/s).(0.5s)]  

                       = ? 
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                                                                   Figure 15 

Figure 15 shows 16 rectangles that together contain the region whose area we want to 

estimate.The purple part of each rectangle lies outside the area. Each rectangle has width of 0.25 

seconds. The height of each rectangle is again obtained by evaluating the function at the right 

endpoint of the base of each rectangle.  

 

Q.7 Which of the estimates will be the best: Figure 13, Figure 14 or Figure 15? 

_____________________________________________________________________________ 

Explain 

_____________________________________________________________________________

_____________________________________________________________________________ 

Q.8 Will the best estimate, identified in question 7, be an overestimate or an underestimate? 

_____________________________________________________________________________ 

Explain 

_____________________________________________________________________________

_____________________________________________________________________________ 
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Section 2.2: 

The Lower-Sum Estimation: 

 
                                                             Figure 16 

 

Figure 16 shows four rectangles inside the region whose area we want to estimate.The purple 

area in the figure is the area which our rectangles fail to enclose. When the rectangles are 

summed together, they underestimate the area of the region we want to find. Each rectangle has 

a width of one second. The height of each rectangle is obtained by evaluating the function at the 

left endpoint of the base of each rectangle*. The total area of the sum of the four rectangles 

under-estimates the area of the region we want to find. 

The area is approximately equal to:  

           Σ Area of the rectangles 

         = [(1m/s).(1s) + (4m/s).(1s) + (13m/s).(1s) + (28m/s).(1s)]  

         = ? 

* We note that in this case, this is the minimum value of v over the base of the rectangle. 
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                                                            Figure 17 

 

Figure 17 shows 8 rectangles inside the region whose area we want to estimate. When the 

rectangles are summed together, they again underestimate the area of the region we want to 

find. Each rectangle has width of 0.5 seconds. Again, the height of each rectangle is obtained by 

evaluating the function at the left endpoint of the base of each rectangle.  

The area is approximately equal to:  

           Σ Area of the rectangles 

       = [( 1m/s).(0.5s) + (1.75m/s).(0.5s) + (4m/s).(0.5s) + (7.75m/s).(0.5s) + 

(13m/s).(0.5s) +  (19.75m/s).(0.5s) + (28m/s).(0.5s) + (37.75m/s).(0.5s)]  

       = ? 
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                                                      Figure 18 

 

Figure 18 shows 16 rectangles that when summed together again underestimate the area of the 

region  whose area we want to estimate. Each rectangle has width of 0.25 seconds. The height of 

each rectangle is obtained by evaluating the function at the left endpoint of the base of each 

rectangle.  

 

Q.9   Which of the estimates will be the best: Figure 16, Figure 17 or Figure 18? 

_____________________________________________________________________________ 

Explain 

_____________________________________________________________________________ 

Q.10 Will the estimate identified in Question 9 be an overestimate or an underestimate? 

_____________________________________________________________________________ 

Explain 

_____________________________________________________________________________

_____________________________________________________________________________ 
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Conclusion: 

The estimate for the area of the region in Figure 12 is somewhere between the lower and upper-

sum estimations for the area: 

Lower-sum estimation < area of the region < Upper-sum estimation 

Table 2 shows the values of the lower and upper-sum estimations for the area of the region in 

Figure 12 using up to 1000 rectangles. 

Number of 

subintervals/rectangles 

Base Width of 

Each Rectangle 

Lower Sum / 

Under-Estimate 

Upper Sum/Over-

Estimate 

Area of the region 

4 1 46.00m 94.00m Between 46m and 

94m 

8 0.5 56.50m 80.50m Between 56.50m and 

80.50m 

16 0.25 62.12m 74.12m Between 62.12m and 

74.12m 

50 0.08 66.09m 69.93m Between 66.09m and 

69.93m 

100 0.04 67.04m 68.96m Between 67.04m and 

68.96m 

1,000 0.004 67.90m 68.09m Between 67.90m and 

68.09m 

Table 2 

Q.11 How do you think we could get a precise value for the area of the region in Figure 12? 

_____________________________________________________________________________

_____________________________________________________________________________ 

Q.12  Would taking a value for the limit, as the base width of each rectangle goes to zero and 

the number of rectangles goes to infinity, give us the precise value for the area of the region in 

Figure 12? 

_____________________________________________________________________________

_____________________________________________________________________________ 

Explain 

_____________________________________________________________________________

_____________________________________________________________________________ 

Let’s investigate Question 12 further; more specifically let’s investigate the value for the limit 

of the upper-sum estimation as the base width of each rectangle goes to zero and the number of 

rectangles goes to infinity. 

With n rectangles, the upper-sum estimation can be shown to be equal to:  

2

33
3

2n

b

2n

3b
bb +++      Expression 2 
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where b is the value in seconds for which the area between the velocity function and the 

horizontal axis from time t = 0 seconds to time t = b seconds is to be calculated. In our case b 

has a value of four seconds; this is shown in Figure 19. 

 

 
            Figure 19 

Q.13As n increases without bound, what do you think happens to the value of the terms 
2n

3b2

 

and 
2

3

2n  

b
? 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

Thinking about this question should make you realise that the value for each term becomes very 

small and approaches zero. Thus, the value for expression 2 leads to: 

Area = b
3
 + b     Expression 3 

Expression 3 allows us to calculate the area under the graph of v = t
2
 and the horizontal axis 

over any interval from t = 0 seconds to t = b seconds, where b can be any positive number (see 

Figure 19). In our case, we wanted to calculate the value for the area from 0 seconds to 4 

seconds. 

The area (in units of metres) is equal to 4
3
 + 4 = ___m 
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Q.14 How do you think you might calculate the area between the function and the horizontal 

axis between 0 seconds and 3 seconds, 2 seconds or 1 second, as shown in Figure 20, 21 and 22 

respectively? 

_____________________________________________________________________________

_____________________________________________________________________________ 

Tabulate your results in Table 3. 

Figure Length of interval Area/ displacement 

11 4 seconds 68 metres 

20 3 seconds  

21 2 seconds  

22 1 seconds  

               Table 3 

 

 

 

Plotting the ‘area values’ between the function: 13 2
+= tv  and its horizontal axis as time varies, 

produces the following set of points in Figure 23. 
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                                                                           Figure 23 

 

We can now, with more certainty, feel that the shape of the graph produced by joining the points 

will be of the form governed by the function which we generated in Expression 3—the result of 

finding the limit of the area of an infinite number of rectangles as their base width became 

infinitely smaller—namely: 

Area = b
3
 + b 

Such a function is graphed in Figure 24, where b is replaced with t. We are only concerned with 

the shape of the graph in the 1
st
 quadrant of the Cartesian plane. 
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                                                                       Figure 24 

 

Because the area in Figure 24 is representative of the displacement of the body as a function of 

time, the graph is again labelled accordingly. The displacement is denoted s and time t.  

Thus, the functional relationship in Figure 24 is of the form: s = t
3
 + t  

Q.15 Differentiate:  

    s = t
3
 + t 

_____==
dt

ds
v  

You should find that after differentiating the above function with respect to time, we get the 

function in Expression 1, namely the function we wished to find the area underneath as the 

value for the base (b)/time (t) varied. 

Thus, it would appear that our inference in Section 1 is justified, namely: 

If we are given any function such as the one shown in Figure 25, then the shaded area is 

found by using a function F(x) that satisfies: 
dx

dF(x)
f(x) = . 
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         Figure 25 

 

Section 3 — Summary: 

In general terms, if we are given a function: y = f(x) — for argument sake, y = 2x — as shown 

in Figure 26, to calculate the area between the graph of the function and the horizontal axis over 

any particular interval, (as in Figure 27 for example), we must integrate the function. 

 
                             Figure 26 
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                                  Figure 27 

 

We use the symbols: 

∫
4

2

dx2x  

to represent calculating the area in Figure 27. 

• The word integrate refers, as we have seen in Section 2, to finding the sum of the area 

of an infinite number of rectangles between the function and the horizontal axis of the 

interval in question. The elongated ∫ signifies the sum of this infinite number of 

rectangles. 

• The numbers ‘2’ and ‘4’ are the limits of integration or the interval over which we want 

to find the area of between the function and its horizontal axis. 

• The ‘2x’, or in more general terms, f(x), gives us the height of each individual 

rectangle. 

• ‘dx’ signifies the infinitesimal width of each of the infinite number of rectangles. 

 

The integral of ∫
4

2

2xdx  is equivalent to subtracting the red region in Figure 28 from the entire 

region (both red and blue in Figure 28). This is also shown in Figure 29 and Figure 30. 
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               Figure 28 

 

 

 

 

 

 

 

 

 

 

 



XXIII 

 

Using our work from Section 1 and Section 2 we can find, algebraically, the area for the integral 

in Figure 27. 

We want to calculate: 

∫
4

2

dx2x  

 

• In this case, the function to be integrated is f(x) = 2x, also known as the integrand. 

• The limits are x = 2 and x = 4. This means that the area to be calculated lies between x=2 

and x = 4. 

• We want to find a function F(x) such that x2
dx

dF(x)
= . 

We can use F(x) = x
2
; such a function is also known as the anti-derivative or the integral. 

• When we put in the limits x = 2 and x = 4 into F(x) = x
2
, and subtract the lower-limit 

value from the upper-limit value, we get the following result: 

[ ] 1241624x 22
4

2

2
=−=−=    Expression 4 

where 12 is the value for the area between the function 2x and the horizontal axis within 

the limits of x=2 and x=4. Figure 32a and Figure 32b make this more explicit. 
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In more general terms, for any function to be integrated, as shown: 

∫
b

a

f(x)dx  

• The function/integrand to be integrated is f(x). 

• The limits are x = a and x = b, where a and b represent any number. 

• The area lies between the function f(x) and the x-axis, bounded by the limits x = a and x 

= b. 

• We want to find a function F(x) such that: f(x)
dx

dF(x)
= . Using such a function allows us 

to calculate the area in question whereby we input a and b into the function and subtract 

the lower-limit value (a) from the upper-limit value (b).  

Thus: 

∫
b

a

f(x)dx = F(b) – F(a), 

 

Where F(x) is a function such that:   f(x)
dx

dF(x)
= . 
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Appendix I – Questions Used to Probe Students’ 

Understanding of Slope and Derivative              

in Trial 1 

 

Q.1   Let f(x) be a function that is graphed in Figure 1. Which of the graphs in Figure 2 

represents the graph of the derivative of f(x)? 

 _________________________________________________________________ 

 
                                              Figure 1 

   

 
Figure 2 
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Explain your answer to Question 1. 

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________ 

 

Q.2 Rank the slope of the tangents to the graph of f(x) at the Points A-C in Figure 1 in 

increasing order. 

______________________________________________________________________

______________________________________________________________________ 

 

Q.3 What does it mean for a line to have a slope equal to zero? 

 ______________________________________________________________________

______________________________________________________________________

______________________________________________________________________

______________________________________________________________________ 
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Appendix J – Questions Used to Probe Students’  

Understanding of Integration in Trial 1 

A = ∫
4

1

xdx  

Expression 1 

Q.1  Sketch on the coordinate diagram in Figure 1, the area represented by 

Expression 1. 

 

                                                 Figure 1 

 

 

Q.2   Let f(x) = 2x.  

            Which graph in Figure 2 is the graph of a function F(x) that 

satisfies f(x)
dx

dF(x)
= ? 

      ______________________________________________________________________ 

Explain your reasoning. 

________________________________________________________________

________________________________________________________________

________________________________________________________________

________________________________________________________________ 
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 Figure 2 

Q.3 What does the definite integral: f(x)dx

b

a
∫ represent? 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 
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Q.4 What does the ‘x’ signify in Expression1? 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 

Q.5 What does the ‘dx’ signify in Expression 1? 

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________

____________________________________________________________________ 
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Appendix K – Questions Used to Probe Students’ 

Understanding of Slope, Derivative and 

Integration in Trial 2 

 

 

Q.1 (A) Using the values for the two points on the line in Figure 1, calculate the slope 

of the line. 

 

                   
      Figure 1 

 

(B)  Looking at Figure 2 and Figure 3, describe why both figures have the same 

value for slope. 



II 

 

 
Figure 2 
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 Figure 3 
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Q.2 (A) Given the function: 2
x0.5y ==== , find the derivative 

dx

dy
 when 30x .==== . 

 

(B) Looking at Figures 4, 5, 6 and 7, describe how these Figures can be used to 

explain the meaning of  the derivative found in Part A. 

 

                           
 Figure 4 
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             Figure 5 

                           
              Figure 6 
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Figure 7 
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Q.3 (A) Find the derivative function
dx

dy
 for the function: 2

x0.5y = . 

 

 (B) Figure 8 shows the graph of the derivative function for the 

function: 2
x0.5y = . Describe how and why the graph of the derivative 

function can be used to find the slope of the tangents: L1, L2 and L3 on the 

function 2
x0.5y = , as shown in Figure 9, 10 and 11 respectively. 

     

Figure 8 
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                            Figure 9 

                                                                
                                 Figure 10 
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                               Figure 11 
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Q.4 (A) Evaluate the integral:  

)dx15010xx(

6

1

2
∫∫∫∫ ++++−−−−−−−−  

 

(B)  Use Figure 12 to graphically depict the integral:  

)dx15010xx(

6

1

2
∫∫∫∫ ++++−−−−−−−−  

       Use Figure 13 to illustrate how the function: c150x10x
3

x
F(x)

3

++++++++−−−−
−−−−

==== , 

where we assume ‘c’ to be equal to zero, allows us to evaluate the integral:                

)dx15010xx(

6

1

2
∫∫∫∫ ++++−−−−−−−− . 
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