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ABSTRACT 

For micro-channel fabrication using laser micro-machining process, 

estimation techniques are normally employed to develop an approach for 

system behaviour evaluation. Artificial Neural Network (ANN) is one of 

the numerical methodologies that can be utilised as an estimation 

technique for these processes. This technique is used in this paper in order 

to develop predictive models that are capable of finding a set of laser 

processing parameters that provides the required micro-channel 

dimensions with the least possible cost. In this work, an integrated 

methodology is presented in which the ANN training data sets were 

obtained by Design of Experiments (DoE) methodology. A 3
3
 factorial 

design of experiments (DoE) was used to get the experimental data set. 

Laser power, P; pulse repetition frequency, PRF; and sample translation 

speed; U were the ANN inputs. The channel width and the produced 

micro-channel operating cost per metre were the measured responses. 

Eight ANN predictive models were developed on four different training 

data sets for internal micro-fabrication in PMMA using a Nd:YVO4 laser. 

These models were varied in terms of the selection and the quantity of 

training data and constructed using a multi-layered, feed-forward structure 

with a the back-propagation algorithm. The responses were adequately 

estimated by the ANN models within the set micro-machining parameters 

limits. Three carefully selected statistical criteria were used for comparing 

the performance of the ANN predictive models. The comparison showed 

that model that had the largest number of training data was the best. 

However, when only limited number of training data should be used, the 

model that used Face-Centred Cubic (FCC) Design for selecting the 

training data proven to be the most successful. 

 

Keywords: pulsed Nd:YVO4 laser; ANN; factorial DoE; predictive 

models; channel dimensions; PMMA. 

1 INTRODUCTION 

Laser micro-machining is a materials-processing technique that uses 

lasers to make managed thermal alterations to provide required micro-scale 

geometrical shape and dimensional ablations. Laser micro-machining 
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processes include the drilling, cutting, milling and engraving of materials 

with micro-dimensional tolerances. In spite of the fact that laser micro-

machining is a technically complex manufacturing process, research work 

has made the production of accurate, regular, and defect-free parts possible 

at high rate [1]. Laser micro-machining is employed in many micro-

machining applications in the domains of telecommunications, glass 

cutting, micro-sensors; micro-via, ink jet printer nozzles, biomedical 

catheter drilling, thin-film scribing; micro-fluidic channels for 

blood/protein analysis; optical vibration sensors; three-dimensional binary 

data storage; and novelty fabrications [2-5]. 

To get a set of laser operating parameters that provides the required 

micro-channel dimensions for a specific application under certain 

processing restrictions, predictive models can be used. Various statistical 

and numerical methodologies have been implemented to predict and 

optimise several laser manufacturing processes including Artificial Neural 

Networks (ANN) [6]; genetic algorithms [7], design of experiments [8], 

finite elements analysis [9], ant colony optimisation [10], and fuzzy logic 

[11].   

Due to their non-linear, adaptive and learning ability using collected 

data, ANN models have been successfully applied to a large number of 

problems in several domain applications. Many researchers have for 

example applied DoE, evolutional algorithms and ANN techniques in the 

area of laser welding [12].  

The prediction of the dimensions of the laser micro-machining 

channels is an important requirement for optimisation of the laser control 

parameters. A Nd:YVO4 laser micro-machining system was used by the 

current authors for the production of micro-channels [13].  

ANN predictive models were constructed, utilised and analysed for 

significance in this work. These predictive models relate the input laser 

processing parameters (power, traverse speed and pulse repetition 

frequency) to the output responses (machined channel width and micro-

machining cost). The ANN models may be used to select the input 

parameters for required output dimensions or to predict the dimensions of 

the channels based on set inputs. 

2 EXPERIMENTAL SET-UP 

2.1 Experimental work 

In this paper, a Nd:YVO4 laser system of 2 W maximum power and 

1064 nm wavelength was used for the micro-channel fabrication. These 

internal micro-channels were created in polymethyl methacrylate (PMMA) 

sheets of 10 mm thickness. In order to facilitate the measurement of the 

micro-channels’ widths, a 2 mm distance between each two micro-

channels was set. The PMMA sample work piece was positioned at the 

beginning of each experiment on the 3D positioning stage such that the 



laser spot is focused beyond its back surface. Afterwards, the laser source 

was turned on and the sample moved away from the stationary laser head. 

Figure 1 shows optical components setup and the work piece. This laser 

micro-machining processing technique enabled creating the internal micro-

channel from the back to the front of the sample Instead of creating the 

micro-channel on the surface of polymers’ samples with the difficult and 

rather fragile subsequent bonding.  

 
Figure 1:  Laser micro-machining optical components arrangement. 

2.2 Experimental design 

In order to study the relationship between the main Nd:YVO4 laser 

process parameters and the developed micro-channel width and 

corresponding micro-machining operating cost, an arranged series of 

information-gathering experiments was designed according to DoE 

strategy.  

In this paper, the examined laser process input parameters were laser 

power, P; pulse repetition frequency, PRF; and sample translation speed; 

U. Each of these parameters was analysed at the low, middle, and high 

levels, all of which were determined after initial screening experiments. 

This 3
3 

factorial design of experiments was prepared using Design-Expert 

V7 software. The low level is represented by -1, the middle by 0, and the 

high level by 1. The actual and coded experimental design levels of the 

laser input parameters are shown in Table 1.  

Table 1:  Design of Experiment set levels of power, pulse repetition 

frequency and sample speed used, as well as corresponding level coding. 

Variables 
Actual Coded 

Low Mid High Low Mid High 

P (W) 0.5 1.0 1.5 -1 0 1 

PRF (kHz) 13 23 33 -1 0 1 

U (mm/sec) 0.50 1.74 2.98 -1 0 1 

There are 27 possible combinations of the three process parameters 

at the three selected levels. The centre point of the design was repeated 

five additional times, where (P=1 W, PRF=23 kHz, U=1.74 mm/sec), to 

provide a measure of process stability and inherent variability. So that the 

total number of conducted experiments was 32. Two measured responses 

were carried out namely: the channel width and the micro-machining 

operating cost per metre of produced micro-channel. 



2.3 Micro-channel width measurement 

The micro-channel width (diameter) for each experiment was 

measured at three different locations along the produced channel and the 

average values were determined. Theses dimensional measurements were 

carried out using Leica optical microscope and OMNIMET image analysis 

software. The point pair, between which the width was measured, was 

picked using the cursors and by looking at all views of the channel. 

The measurement results of the repeated experiments were averaged 

with the original experiment reducing the overall number of results from 

32 to 27 unique experiments. These measurement results (27 for width and 

27 for micro-machining cost) provided the data set from which training 

sets were chosen for the subsequent ANN modelling.  

2.4 Micro-machining cost calculation 

Processing cost can be approximated as micro-machining cost per 

length for a specific laser micro-machining operation. In this approach, 

unplanned maintenances and breakdowns have not been taken into 

consideration. Furthermore, labour cost was not considered since the 

Nd:YVO4 laser was for experimental purposes. However, labour cost 

should be considered when dealing with operational systems. 

Assuming the relationship between the electrical consumption of the 

laser power supply and the laser power emitted by the laser head is linearly 

proportional, the total estimated operating cost per hour as a function of 

the output power can be expressed by 1.4723 + 0.064×P. Assuming 85% 

utilisation, and transforming all the variables to SI units, the total 

approximated operating cost per unit length (in €/m) is given by the 

following Equation (1). 

Micro-machining cost [€/m] 
(0.481 0.21 )P

U

+
=  (1) 

2.5 Artificial neural network models’ setup 

Four ANN predictive models were developed for the width and 

another four for micro-machining cost estimation using the three inputs P, 

U, and PRF. These models were developed in order to examine the 

influence of changing the number and the selection of training data on the 

prediction capability of the ANN model. These eight models were based 

on four different training data sets as follows: 

- Model I: 24 randomly selected experiments (from the total of 27) 

were used to train the   network;  

- Model II: 14 experiments, selected according to the Face-Centred 

Cubic (FCC) Design, were used to train the network;  

- Model III: 13 experiments, selected according to the Box-Behnken 

Design, were used to train the network. 

- Model IV: 14 randomly selected experiments were used to train the 

network. 



Each of these four models was used for two models, one for the 

width prediction and another for the operating cost per metre prediction. 

All 27 experimental data were employed for verification purposes in order 

to locate the best ANN structure within the various possible architectures 

for each model. 

In this work, the percentage of training data to overall data was set to 

a low level for models II, III and IV compared to model I. This percentage 

of models II, III and IV is much less than would normally be used for the 

generating of ANN predictive models. The training set of models II & III 

were selected according to two popular designs; FCC Design & Box-

Behnken Design respectively. These two designs along with model IV 

were selected in order to investigate which design should be chosen in case 

very limited number of experiments is allowed. This scenario could be 

when carrying out the experiments is lengthy, expensive, difficult, or 

dangerous. 

 

2.6 Configuration of ANN 

In this work, all the studied ANN models were of feed-forward 

structure and back-propagation algorithm. Moreover, they were designed 

and executed using the aNETka software. Due to the lack of a quantifiable 

procedure for theoretical appraisal of the best ANN architecture, 

exhaustive trial-and-error study was performed to find the best ANN 

configuration for each model. Two ASCII text input files were prepared 

for each model. The first one contained the training data inputs and 

corresponding outputs for the training stage. The second one contained all 

27 experimental data inputs and their corresponding outputs for the 

verification stage. In order to find the best ANN model, the number of 

hidden layers was changed up to three and the number of neurons in each 

hidden layer was varied up to 100 neurons.  

Due to its good generalisation capability, a transfer sigmoid function 

was used in all investigated ANN . schemas training time. Empirically the 

learning rate value was manually varied between 0.0001 and 6 depending 

on the progress of the aNETka execution during training process. To avoid 

and reduce the probability of the training runs being stuck in local optima, 

the momentum parameter was utilised and fixed at a medium value of 0.8 

for all ANN training runs. The programme repetitively presented the 

training data one by one to the ANN structure being developed, and the 

weights were automatically adjusted after each iteration. In an effort to 

minimise the training error and avoid over training, the training process 

was supervised during the ANN model formulation. The training part of 

the aNETka software provided the user with a graphical chart of the past 

and current RMS error value. This graphical chart was ceaselessly 

supervised so that ANN configurations with the highest prediction 

capability could be obtained for each model. Configurations for which the 



RMS error raised during training were dropped. Afterwards, the process of 

ANN structure formation was restarted and only structures with RMS error 

value below 0.001% were accepted. 

 

3 RESULTS 

3.1 Final ANN structures  

It was discovered that the best ANN schemas were obtained with one 

or two hidden layers. This was anticipated since only models of extremely 

complex nature need multiple hidden layers. Table 2 shows the number of 

neurons in the hidden layers that achieved best predictions of width and 

cost for models I, II, III and IV.  

Table 2: Number of neurons in the hidden layers for width and depth in 

I, II, III, and IV models. 

Model Hidden layers Micro-channel width Micro-machining cost 

I 1
st
 6 4 

II 1
st
 5 4 

III 1
st
 8 4 

IV 
1

st
 4 5 

2
nd

 4 - 

3.2 ANN predictive models’ comparison 

Comparison criteria are needed in order to quantify the difference 

between values produced by a model and the actual values. After a 

profound search in statistics, three statistical estimators were found to be 

the best criterions that together can do the required work. These statistical 

estimators are MSE (Mean Squared Error), R
2
 (The coefficient of 

determination), and MAPE (Mean Absolute Percentage Error). These 

estimators were employed to provide a measure of how well future 

outcomes are likely to be predicted by the investigated model. Practically 

these three estimators were used for the selection of the best ANN schemas 

for each model in the first place. Table 3 shows a side by side comparison 

between models I, II, III and IV in terms of the three chosen estimators. 

Table 3: Comparison criteria for width and depth models in I, II, III, 

and IV models. 

Estimator 
Width 

Estimator 
Cost 

I II III IV I II III IV 

MSE 21.5 77.3 87.5 112.2 MSE 0.01x10
-8

 9x10
-8

 270x10
-8

 3300x10
-8

 

R
2
 0.98 0.94 0.92 0.92 R

2
 0.99 0.99 0.99 0.99 

MAPE 0.6 1.7 2.3 2.2 MAPE 0.03 x10
-3

 0.4 x10
-3

 1 x10
-3

 12 x10
-3

 



It can be seen from the comparison drawn in Table 3 that model I 

was the best, II was the second best, and IV was the worst in terms of 

MSE, R
2
, and MAPE for both width and cost outcomes. The capability of 

the models to predict the whole data set signifies the generalisation ability 

of the models since part of  experimental data set were never presented to 

the predictive models in the training stage. The generalisation of model I 

can be found to be better than other models in that it has predicted the 

actual channels’ widths and productions’ cost more precisely.  

 

4 DISCUSSION 

Factorial DoE designed experiments were used to develop eight 

ANN predictive models of four different training data sets. ANN trials 

were performed using multilayered feed-forward structure and back-

propagation algorithm. These trials were carried out in order to construct 

ANN predictive models that predict laser machined micro-channel 

geometrical and economic parameters. The ANN architecture that 

achieved the lowest MSE and MAPE and the highest R
2
 for the whole data 

set was selected for each ANN predictive model, see Table 2. This 

selection was feasible by using aNETka software to get the outcomes 

predictions for whole data set for all studied architectures and then 

selecting the best in terms of the three statistical criteria. The estimated 

outcomes from the eight ANN predictive models were compared with the 

actual experimental data in terms of the three statistical criteria. 

Over time, the developed ANN predictive models may not predict as 

correct as when they were first developed as a result of the equipments’ 

deterioration. In this case, a simple re-training for the best ANN 

configuration with a re-captured experimental data using aNETka software 

is needed. 

Regarding the capability and limitations, ANN predicting models are 

productive in estimating the investigated micro-machining outcomes in 

addition to selecting micro-machining input values for a desired process 

outcome. However, these predictive models can be applied only to the 

examined laser and material, and within the studied ranges [14]. 

In this work, factorial DoE assisted in the selection of training data 

sets for the ANN predictive models. Furthermore, it was found that ANN 

predictive models have inherent capability to effectively re-produce the 

outcomes of a nonlinear, complex and dynamic system, like a laser micro-

machining system. This was established in other researchers’ works [15]. 

Ranking the models (I, II, III, and IV) according to the three 

statistical estimators, model I was the best for width and cost responses. 

This might be attributed to the great number of training data used in this 

model (24 out of 27 available data). This was the largest amount of 

training data compared to the other models (14 for model II and IV, and 13 



for model III). This enabled model I to predict the whole experimental data 

width and operating cost with a small margin of error. 

When limited number of training data is used, model II was the best, 

model III was the second best, and model IV came last, even though all 

having almost the same number of training data but different training data 

set. This might be due to the fact that the training data set in model II was 

chosen according to FCC Design which covers all the corner points from 

the experimental data space. While the rather worse prediction of model 

IIIs that used Box-Behnken Design, can be comprehended when the 

absence of the eight experimental data space corner points from the 

training set is taken into account. So due to the lack of these influential 

points, the estimation within the data ranges will not be adequately exact 

from this model. On the other hand, model IV the worst prediction might 

be due to the fact that the selection of training data set for this model was 

entirely arbitrary. Even though all experimental data available are provided 

using DoE methodology, the last point illustrates the significance of 

carefully selecting the training data set rather than at random. 

It can be seen clearly from Table 3 that statistical estimators for cost 

prediction are a lot better than their counterparts for width prediction.  This 

can be attributed to the fact that production cost is proportional to its inputs 

and it was originally estimated using Equation (1). Furthermore, this 

demonstrates the ability to utilise ANN as an arbitrary function estimation 

technique that uses experimentally observed data to “learn”. 

Another notice from Table 3 that all statistical estimators came to an 

agreement, model I was the best, model II the second, and model IV the 

worst with regards to both predictions, width and cost. This indicates that 

these estimators work together in harmony and have been well chosen. 

These results empirically establish their use as criteria for selecting both 

the best ANN configuration for a developed model and the best model that 

describes a system or a problem. 

Currently, modelling laser micro-machining process by traditional 

numerical or analytical techniques is not feasible. Practically, trial-and-

error approach is employed to set the process control parameters when 

starting a new laser micro-machining operation with specific dimension. 

This approach can be lengthy and expensive particularly for small lot 

production or prototyping, and generally does not guarantee best process 

control parameters’ selection for required manufacturing purposes [14]. 

Models presented in this work enabled the selection of laser control 

parameters for particular dimension within the investigated range of 

dimensions and with the least production cost. 

 



5 CONCLUSION 

DoE was used to design an arranged series of information-gathering 

experiments to characterise micro-channel formation using Nd:YVO4 

laser. The relationship between the main laser process parameters and the 

developed micro-channel width and corresponding micro-machining 

operating cost was examined using feed-forward, back-propagation ANN 

predictive models. The influence of changing the number and the selection 

of training data on the prediction capability of the developed ANN 

predictive model was investigated. MSE (Mean Squared Error), R
2
 (the 

coefficient of determination), and MAPE (Mean Absolute Percentage 

Error) were utilised as a basis for comparison between the developed ANN 

predictive models. 

The comparison showed that model I (which has the highest number 

of training data) was the best for the two studied responses. On the other 

hand, when an average number of training data is to be used, model II was 

the most excellent, model III was the second best, and model IV came last. 

This indicates that the more training data employed the better model fit 

acquired. However, when limited number of experiments (training data) is 

allowed, the outcomes of this work favoured using FCC Design over Box-

Behnken  design for the selection of training data. This result indicates that 

using FCC design for training data selection was found more efficient in 

predicting width and micro-machining cost and highlighted the importance 

of including all experimental data space corner points in any training data 

set. Furthermore, outcomes illustrated the significance of carefully 

selecting the training data set rather than at random, despite the fact that all 

experimental data available are provided using DoE. Moreover, this 

comparison showed that the ANN modelling technique can be smoothly 

employed to predict the laser machined micro-channel dimensions and 

production cost precisely. 

Automated systems control may demand producing micro-channels 

with exact dimensions and optimum (least) production cost. It was 

established in this work that the developed ANN predictive models are 

efficient at satisfying these demands and using ANN can be utilised as an 

effective predictive tool for laser micro-machining parameters’ selection. 
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