
Data Model Evolution

as a Basis of

Business Process Management

Volker Gruhn�� Claus Pahl�� Monika Wever�

� LION Gesellschaft f�ur Systementwicklung mbH� Universit�atsstra�e ����
D���	

 Bochum

� Universit�at Dortmund� Fachbereich Informatik� Baroper Stra�e ����
D������ Dortmund

Abstract� In this article we propose an approach to business process
management which meets the demands of business process evolution

This approach allows for on�the��y modi�cations of business processes

In contrast to many other approaches� we do not only concentrate on
activities to be carried out in business processes� but also on the data
created and manipulated by these activities
 We propose to apply data
model analysis and improvement strategies well�known from the infor�
mation system �eld in the context of business process management


Keywords

business processes� data model� data model analysis� evolution

� Motivation

Business process �re��engineering ���	� process innovation �
	 and continuous
process improvement are buzzwords meaning more or less the same� to organize
business processes in an e�cient way
 This may mean to completely redesign
processes in order to achieve breakthroughs in productivity or it may mean
to adapt an existing process to changing circumstances
 Software processes are
business processes in a software house
 The question how to manage software
processes has been addressed with increasing interest ���	 during the last decade



In the following we use the notion of process to denote general business
processes as well as software processes
 Process modeling� process model analy�
sis� and the enaction of process models �i
e
 to govern a real world process on
the basis of an underlying model� is summed up as process management


Analysis of process models turned out to be necessary in order to avoid
the enaction of faulty process models
 Process evolution turned out to be a
central issue in order to ensure that process models can be adapted to changing
circumstances
 A closer look at existing process management approaches reveals
that some provide analysis facilities for process models ��	 while others somehow
care for on�the��y modi�cations of activity models ��	
 Most however� do not

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


support the analysis of data models and evolution of data which has already
been produced by processes
 Thus� the process management perspective could
be called process�oriented �data models and database schemas underlying these
processes are usually considered less important�


In contrast� research in the �eld of information systems deals with questions
of what good data models should look like and how evolution of database schemas
can be managed ��	 without considering the business processes supported on top
of the data stored in the database
 Thus� in modeling information systems one
usually starts from a data�driven perspective �i
e
 what is the information to be
administrated� how can this data be organized e�ciently�
 Dynamic aspects of
information systems are either � if at all � expressed in the form of integrity
constraints or they are hard�wired in the form of application programs


In this article we describe how the Leu approach ��	 has been extended to
cover data model analysis� improvement� and schema evolution


In section �� we brie�y introduce our process management approach
 In sec�
tion �� we discuss an example of a Leu process model in detail
 Section � deals
with requirements related to data model analysis and schema evolution
 In sec�
tion 
� we discuss the improvement mechanisms implemented in Leu
 Section
� illustrates database evolution in relation to the example in section �
 Finally�
section � concludes this paper with a discussion of experiences


� The Leu approach to process management

In the Leu approach we consider activity models� data models and organization
models as constituent parts of process models ��	
 In detail this means�

Data modeling� In Leu� data models are used to describe the structure of
objects which are manipulated within a process
 Data models in Leu are
described by means of extended entity�relationship diagrams ��	


Activity modeling� In Leu� activity models are used to de�ne activities to be
executed in a process
 Moreover� activity models de�ne the order in which
activities of a process have to be carried out
 Activity models in Leu are
described by means of FUNSOFT nets ��	� which are high level Petri nets
�compare section �
��


Organization modeling�Organizationmodels in Leu are used to de�ne which
organizational entities are involved in a process
 Organization modeling is
based on a hierarchical role concept
 Roles are sets of permissions for the
execution of activities
 Roles can be attached to organizational entities
 Or�
ganization models in Leu are described by means of organizational diagrams
which identify organizational entities and their hierarchical relationships


Once these aspects of processes have been modeled� it is necessary to integrate
them
 A data model and an activity model are integrated by associating data
model entities and activity parameters in a typing relation
 An activity model
and an organization model are integrated by associating organizational entities
to those activities for which they are responsible




� Example of a process model

In this section we take a closer look at a data model and an activity model

This is illustrated by a simpli�ed process model from the building construction
administration area
 The organizational structure is not discussed here since it
is irrelevant for analysis� improvement and evolution of a data model


��� Data modeling in Leu

Data modeling in Leu is based on extended entity�relationship diagrams �ER
diagrams� ��	
 Figure � shows a simpli�ed data model for lease management


Relationships can be of the cardinalities ���� ��n� or n�m
 This is depicted in
single�ending and multi�ending edges
 Furthermore� they can be mandatory or
optional
 This is represented by solid and dashed lines


identification: STRING_N(10)
type: ENUM(buildings)

social state: ENUM(social states)

lift: BOOLEAN

plumber: TEXT
painter: TEXT

age: DATE

settlement: ENUM(settlements)

repairs: LIST(STRING(70))
electrician: TEXT

identification: STRING_N(10)

rooms: LIST(STRING_N(30))
floor: INTEGER(2)

dimension: REAL(6,2) rent: REAL(7,2)
incidentals: REAL(7,2)
bail: REAL(7,2)

street: STRING_N(30)

city: STRING_N(30)
postcode: INTEGER(4)
house number: STRING_N(5)

identification: STRING_N(10)
surname: STRING_N(30)
first name: STRING_N(30)
date of birth: DATE
marital status: ENUM(marital status)
account: INTEGER(10)
routing code: INTEGER(8)
bank: STRING_N(30)

identification: STRING_N(10)
begin: DATE
end: DATE

address building apartment costs

leasetenant

Fig� �� Data model for lease management

Some object�oriented features have been introduced into the entity�relation�
ship modeling as supported by Leu
 First of all� we understand entity types
as object types� i
e
 each entity has a unique object identity
 We use the term
object to denote an entity
 Objects can be of a prede�ned format �Postscript�
WordPerfect documents� etc
� or of a complex type
 Objects of these complex
types are described by means of their attributes
 Attributes can be mandatory or
optional
 Mandatory attributes can be used to compose a user�de�ned primary
key of an object type
 In �gure � the primary keys are underlined
 Non�primitive
attribute types are lists that can be composed of primitive types and enumeration
types which can be de�ned by the user




Another object�oriented feature of Leu data modeling is the encapsulation
of object types by means of user�de�ned operations
 Each object can only be
manipulated by means of operations attached to the corresponding object type

Moreover� we use the concept of delegation between object types ���	 in order to
de�ne relationships between closely related object types
 By means of delegation
it is possible to enforce the execution of certain operations to be delegated to
another object
 Thus� the concept of delegation is applied to the type level and
to the object level
 This is the main di�erence to the inheritance concept
 A
more detailed motivation for using the delegation concept is described in ���	


��� Generating a database schema

A data model in Leu is used to describe the structure of objects which are ma�
nipulated within processes
 To store these objects� a relational database schema
is generated from the data model which is accessed within running processes
interacting with process participants �compare �gure ��


data model

database schema

running process process participant

generation read/write

Fig� �� Generation and use of a database schema

For each object type at least one table is generated
 This table contains one
column for each attribute and one additional column for a primary key called
surrogate
 A surrogate is an automatically generated identi�er for an object

Several types of attributes o�ered by Leu are not supported by a relational
database
 For example� attributes like a list cannot be stored in one column of
a �at relational table
 Therefore� only the �rst element of a list is stored in the
column of the list attribute
 Additionally� a further table is generated to store
the whole list
 Attributes of enumeration or text types are treated similarly
 For
each n�m relationship one table is generated
 It contains two columns for the
surrogates of the two related object types
 For other relationships the table of
one object type contains an additional column to store the surrogates of the
other object type as foreign keys
 Figure � shows some of the tables generated
for the lease management


Basic operations for creation� update and deletion of objects are also gener�
ated out of the data model
 Thus� the internal representation of objects in the
database does not have to be known in order to store and retrieve objects
 These
operations �and some more sophisticated operations like get�all�objects�of�type�
build a programming interface up to the generated database schema




kitchen

living room

living room

element

BX3M_7V4

BX3M_7V4

FI51_YTC

apartment

list attribute: rooms

2

1

number

1 BX3M_7V4

FI51_YTC

L926_7BB

surrogate

a_08042

a_01929

a_01930

identification

Q29G_31W

SWR8_HA4

SWR8_HA4

surr_building

Q29G_31W

SWR8_HA4

surrogate

s_00375

b_01609

identification

object type: apartment object type: building

Fig� �� Database schema for lease management

��� Access paths

To manipulate the objects stored in the generated database the activities car�
ried out in the processes either use operations of the database programming
interface or they use database queries
 While the operations are su�cient for
simple retrievals� individual queries covering objects of several types are needed
for more complicated retrievals
 They are formulated on the abstraction level of
data models
 Details of the internal database schema do not have to be known

In order to avoid potential performance problems caused by too complicated
queries� the process modeler should describe object access paths
 We de�ne the
access path of an object query as the set of attributes used in the query together
with a quanti�cation specifying how frequent the access path is used


��� Activity modeling in Leu

In Leu� FUNSOFT nets are used to specify activities to be carried out and their
order
 FUNSOFT nets are high level Petri nets� of which semantics is de�ned
in terms of Predicate�Transition nets ��	
 In FUNSOFT nets� the T�elements
�represented as rectangles� are called agencies
 Agencies represent activities
 S�
elements �represented as circles� are called channels
 They are used to store
objects
 FUNSOFT nets are hierarchically structured by means of T�element
re�nement ���	
 FUNSOFT nets do not only contain a de�nition of activities
and their parameterization� but also an order of activities
 They allow to de�ne
that activities have to be carried out sequentially� concurrently or alternatively

For more details about FUNSOFT nets we refer to ��	


Figure � shows a FUNSOFT net which describes the activity model of agree�
ing on leases
 In the upper branch of the net an apartment is selected
 In the
lower branch a potential tenant is selected
 If an object of type apartment is
available in channel Apartment� and if an object of type tenant is available in
channel Cleared tenant� then agency Write lease can be started
 The result is a
lease which is then subject to the legal check


� The annotation above a channel symbol displays the type of objects to be stored in
this channel� the annotation below a channel symbol is the channel name




Instanz Instanz

Instanz

Instanz

Instanz

Instanz Instanz

Contract
request

Insert
address

Calculate
apartment

Rent
calculation

Write
leaseInsert

bank account

Insert
tenant

Tenant
request

Solvency
check

Cleared
tenant

Bank
account info

TEXT

TEXT

Address

address

Select apt

apartment apartment

Apartment

Lease

lease

Tenant info

tenant

tenant

tenant
Legal check

Fig� �� Activity model for agreeing on leases

� Related work

Process models used for governing real world processes are crucial for the e��
ciency of any business operation
 Thus� process model analysis is necessary in
order to avoid the enaction of ine�cient and�or inconsistent process models

The analysis of activity models and organization models has been discussed in�
tensively in the process management literature ���� ��	
 In the following we will
discuss some approaches which focus on data model analysis


In principle� we can distinguish between data model analysis that is indepen�
dent from an individual customer and customer�speci�c data model analysis

While the �rst kind of analysis can be realized without considering any details
of customer circumstances� the latter requires detailed knowledge of the customer
situation


In ���	 e�ciency of data models is identi�ed as one of the key success factors
of any information system
 Abstract properties of data models such as com�
pleteness� comprehensibility� simplicity� �exibility and others are considered as
substantial properties of data models
 The necessity to measure these properties
on the basis of metrics and to develop improvement strategies is illustrated


Unfortunately� properties like e�ciency and completeness can only be checked
with respect to individual customer situations
 A data model consisting of a set
of object types may� for example� be an e�cient basis for processes being carried
out at one company� while it can be awfully ine�cient as a basis of the same
processes carried out at another company
 This may be due to di�erences in exe�
cution frequencies of processes or it may be due to di�erent arrival frequencies of
objects to be processed
 Thus� information about the customer speci�c situation
is needed in order to detect such data model shortcomings


Once process models have been customized� the customer situation does not
remain completely stable
 Internal organization as well as legal changes and mod�
i�ed business targets demand process model �exibility
 This �exibility concerns
activity models� organization models� and data models as well as their integra�
tion
 We realize an additional problem regarding the evolution of data models�



once a database has been generated out of a data model and once data is stored
in this database� the evolution of a data model requires the transformation of
the data according to the data model evolution


Process conditions tend to change during the process� lifespan
 Reasons for
changes are� for example� availability of personnel� organizational changes� con�
centration on certain customers and markets
 In order to cope with such highly
dynamic circumstances� it is necessary that process models can be modi�ed
whenever required
 General tendencies like globalization of markets and empow�
erment of people reinforce the demand for �exible processes
 Flexible processes
allow to react to market opportunities very quickly and thus obtain competitive
advantages


While the evolution of activity models is intensively discussed in the software
process literature� the question how data models evolve is hardly considered in
this context
 In contrast� the question of schema evolution is discussed with
respect to information system design and maintenance ���� �	
 Some approaches
relevant to the work proposed in this article are discussed in the following


In ��
	 di�erent types of database schema evolutions for object�oriented data�
base schemas are distinguished
 Evolution of class de�nitions� evolution of re�
lationships between class de�nitions and evolution of the set of class de�nition
�add a class� delete a class� change name of a class� are identi�ed as typical kinds
of schema evolution
 In ��
	 it is pointed out that most object�oriented database
systems do not support the complete propagation of schema modi�cations to
the object level
 Mechanisms to manage this propagation are

� the use of an explicit convert operator which can be used to convert objects
concerned when modifying a data model ���	�

� an automatic start of propagation after each data model modi�cation ��	� or
� a propagation to an object as soon as this object is accessed ��	


The advantage of the manually started propagation is its e�ciency because only
objects actually needed in the future are converted
 Its disadvantage is the dan�
ger of inconsistencies because old and not converted objects may exist at any
time
 The advantage of automatic propagation to all objects is its consistency� its
disadvantage is its bad performance
 In the Leu approach some object�oriented
features like delegation between classes and objects �compare ���	� and asso�
ciation of object types and operations have been introduced into an entity�
relationship oriented modeling
 Thus� the types of modi�cations are obviously
the same as discussed in ��
	
 Our conversion strategy is to convert all objects
interactively in cooperation with the data modeler to ensure that information
loss and inconsistencies can be minimized �compare section ��




� Analysis and improvement of data models

In this section we describe what kinds of data model analysis facilities are avail�
able in the Leu approach and which improvements of data models turned out to
be typical in order to remove certain data model weaknesses
 The work presented
in this section is described in more detail in ���	�


The data model improvement consists of two steps
 First� the syntactical
completeness of the data model is analyzed
 It is examined whether all object
types have attributes� relationships and primary keys and whether they are used
by at least one access path
 If all object types satisfy these demands� the data
model is syntactically complete and its analysis will be continued
 Then� four
kinds of improvement are applied�

Removal of certain types of attributes� The representation of attributes of
list� text and enumeration types in the database demands the generation of
additional tables� as mentioned in section �
�
 Queries refering to attributes
of such types have to access more than one table
 The more tables a query
accesses� the longer its execution will take
 Therefore� the user should con�
sider whether some lists� texts� or enumerations can be replaced by other
types


New relationships to avoid long access paths� The more object types a
query uses� the more time takes its execution� because at least one addi�
tional table has to be accessed for each further object type
 Hence� an access
path should be as short as possible
 In order to cut a long access path short�
new relationships have to be added to the data model


Merge of object types� Object types with a ����mandatory�mandatory rela�
tionship are similar to one object type
 Just looking at the syntax� they could
be combined
 However� this may not be appropriate looking at the object
types� semantics
 Hence� the mergence of object types can be proposed but
the modeler must decide whether it is reasonable


Split of object types� There are two reasons to split an object type
 First� the
attributes of the object type may be divided into two groups
 Each of these
groups of attributes is used by a group of access paths
 There is no access
path using attributes of both groups
 In this case the unused attributes only
enlarge the object type and slow down the execution time
 Consequently� the
object type should be split into two disjoined object types with one group
of attributes belonging to each of them
 Secondly� the attributes of the ob�
ject type may also be divided into two groups but in a di�erent way
 One
of these groups consists of very frequently used attributes
 The attributes
of the second group are used very rarely
 In this case� the rarely used at�
tributes enlarge the object type for access paths using only the frequently
used attributes
 Therefore� the object type should be split� too


The user will be informed of all defects found by the analysis
 The improvement
only recommends certain data model changes to the modeler
 He has to decide
whether the proposed changes should be applied


� Schneider Monika Wever�s maiden name




In the data model for lease management ��gure �� all four types of improve�
ment can be applied
 First� the building has one list attribute� three enumeration
attributes and three text attributes
 According to the �rst type of data model
improvement �removal of certain types of attributes�� some of these attribute
types should be changed
 Assume the type STRING N���� is long enough to
store the names of the craftsmen
 Then the text attributes can be changed into
strings
 Secondly� the access path leading from tenant to address across lease�
apartment and building is too long
 Therefore a new n���mandatory�optional re�
lationship between tenant and address will be added
 Thirdly� apartment and
costs will be merged by adding the attributes of costs to apartment
 This way
the ����mandatory�mandatory relationship between them is dropped
 Finally�
the tenant will be split into tenant and bank account
 This is based on an analy�
sis of access paths implemented by the agencies of the activity model for agreeing
on leases ��gure ��


All changes discussed above are only performed on the data model in the
�rst instance
 They also have to be propagated to the database schema
 This
means the generation has to be started again to change the tables of the schema
according to the changes of the model
 It would also be possible to delete the
whole database schema and generate it again
 But in most cases only a part
of the data model is changed so that it takes less time to change the existing
database schema


� Evolution

Business process models are subject to modi�cations because of changing cir�
cumstances
 Sometimes� only activity models have to be changed
 In other situa�
tions data models are concerned
 Since modi�cations of the �rst kind have been
addressed in the process literature� we will restrict to modi�cations that cause
changes of data models


Potential changes of a data model are� adding new object types or relation�
ships� deleting object types or relationships� adding new attributes to object
types� removing attributes and changing the types of attributes


As an example four customer�speci�c changes are performed on the data
model for lease management
 A new text attribute called form is added to the
object type lease
 The attribute lift is removed from the object type building

The postcode is extended from a four�digit to a �ve�digit format
 And �nally�
the type of �rst name is changed from string into a list of strings


Further changes of data models can be due to additional or modi�ed process
models
 If� for example� a new process has to be established� requirements for
e�cient access to certain data may change substantially


When changes are performed on the data model� the generation procedure
has to be started again to propagate them to the object level
 This implements
an immediate coercion strategy


Whenever an attribute type is changed� the generation tries to minimize the
loss of information
 Loss of information can be avoided in the following cases�



� the length of an attribute type is extended
� an attribute type is changed from boolean� integer� real� time� or date to
string�

� an attribute type is changed from single�valued to multi�valued� or
� an attribute type is changed from multi�valued to single�valued �only the
�rst element of the list is kept�


In these cases the generation converts the values of the changed attributes auto�
matically according to the new type
 In all other cases an automatic conversion
is impossible and the values are lost


Besides the loss of information� the evolution of a data model causes other
problems
 Some of them are solved during the generation�

� Objects of optional attributes may contain null�values
 If such an attribute
is changed to mandatory� the generation will replace the null�values with
dummy values


� If a new attribute is added to an object type� all existing objects will have
null�values in the column of this attribute
 If the new attribute is mandatory�
the generation will also replace the null�values with dummy values


Other changes of data models are not automatically propagated to the object
level in order to avoid inconsistencies in the database
 Examples of such changes
are given in the following
 They all focus on the primary key of an object type�

� A new attribute is added to an object type without primary key
 This new
attribute must not be a primary key itself because its values are either null�
values or dummy values and neither of them is unique


� An existing attribute of an object type without primary key must not become
a primary key because its values may not be unique


� The number of attributes building the primary key of an object type must not
become smaller because the values of the remaining primary key attributes
may not be unique


� The attribute type of a primary key must not be changed with loss of values
because after the generation the lost values are replaced with dummy values
that are not unique


It is impossible to perform these changes on the database during the generation
because reasonable unique values can not be created automatically
 When some
of these changes are necessary� the data modeler has to perform them �by hand�
directly on the database


To sum up� the generation of database schemas out of modi�ed data models
tries to minimize the loss of information
 Whenever it cannot be avoided� the
data modeler has to give his explicit agreement in order to avoid unexpected
loss of information




� Conclusions

In our approach we deal with processes based on information systems
 One of
our main goals is a high degree of performance enacting these processes on
information systems
 E�cient storage and retrieval of data used by processes is
crucial for achieving this goal
 Therefore we presented methods for analysis and
improvement of data models


In this article we have motivated why evolution of data models is a prerequi�
site for �exible processes
 Coping with evolution means being concerned with the
problems of data integrity and loss of data
 We have analysed possible changes
in activity and data models and their e�ects on data
 Our experience is that the
bene�ts of graphical modeling of processes and the entailed easy modi�cation of
processes can only be fully exploited when data building the basis of processes
can evolve according to changing circumstances and modi�ed business goals


Acknowledgements� We would like to thank all members of the Leu team

for their cooperation in implementing these strategies� Moreover� we would

like to thank Ernst	Erich Doberkat for fruitful discussions about focus and

contents of the diploma thesis which contributed to this article�

References

�
 J
 Andany� M
 Leonard� and C
 Palissier
 Management of Schema Evolution in
Databases
 In Proceedings of the �	th Conference on Very Large Databases� pages
�����	�
 Morgan�Kaufmann� �

�


�
 F
 Bancilhon
 Object�oriented Database Systems
 In Proceedings of the �th ACM
Symposium on Principles of Database Systems� Austin� Texas� US� March �
�	


�
 S
 Bandinelli� A
 Fugetta� and S
 Grigolli
 Process Modelling In�the�Large with
SLANG
 In Proceedings of the �nd International Conference on the Software
Process � Continuous Software Process Improvement� pages 	����� Berlin� Ger�
many� February �

�


�
 J
 Banerjee� W
 Kim� H
J
 Kim� and H
F
 Korth
 Semantics and Implementation of
Schema Evolution in Object�Oriented Databases
 In Proceedings of the Conference
on Management of Data ����� �
�	


�
 T
 Davenport
 Process Innovation � Reengineering Work through Information
Technology
 Harvard Business School Press� Boston� US� �

�


�
 W
 Deiters and V
 Gruhn
 Managing Software Processes in MELMAC
 In Pro�
ceedings of the Fourth ACM SIGSOFT Symposium on Software Development En�
vironments� pages �
������ Irvine� California� USA� December �

�


	
 W
 Deiters� V
 Gruhn� and H
 Weber
 Software Process Evolution in MELMAC

In Daniel E
 Cooke� editor� The Impact of CASE on the Software Development Life
Cycle
 World Scienti�c� Series on Software Engineering and Knowledge Engineer�
ing� �

�


�
 G
 Dinkho�� V
 Gruhn� A
 Saalmann� and M
 Zielonka
 Business Process Model�
ing in the Work�ow Management Environment LEU
 In P
 Loucopoulos� editor�
Proceedings of the ��th International Conference on the Entity�Relationship Ap�
proach� pages ������ Manchester� UK� December �

�
 Springer
 Appeared as
Lecture Notes in Computer Science no
 ���






 H
J
 Genrich
 Predicate�Transition Nets
 In W
 Brauer� W
 Reisig� and
G
 Rozenberg� editors� Petri Nets	 Central Models and Their Properties� pages
������	� Berlin� FRG� �
�	
 Springer
 Appeared in Lecture Notes on Computer
Science ���


��
 M
 Hammer and J
 Champy
 Reengineering the Corporation
 Harper Business�
New York� US� �

�


��
 P
 Huber� K
 Jensen� and R
M
 Shapiro
 Hierarchies in Coloured Petri Nets
 In
Proc
 of the ��th Int
 Conf
 on Application and Theory of Petri Nets� pages �
��
��
� Bonn� FRG� �
�



��
 M
 Jarke� J
 Mylopoulus� J
W
 Schmidt� and Y
 Vassiliou
 DAIDA � An Envi�
ronment for Evolving Information Systems
 ACM Transactions on Information
Systems� ����������� January �

�


��
 M
I
 Kellner and G
A
 Hansen
 Software Engineering Processes	 Models and Analy�
sis
 In B
D
 Shriver� editor� Proceedings of the ��nd Annual Hawaii International
Conference on System Sciences� Vol
 II� �
�



��
 D
L
 Moody and G
G
 Shanks
 What Makes a Good Data Model
 Evaluating the
Quality of Entity Relationship Models
 In P
 Loucopoulos� editor� Proceedings of
the ��th International Conference on the Entity�Relationship Approach� pages 
��
���� Manchester� UK� December �

�
 Springer
 Appeared as Lecture Notes in
Computer Science no
 ���


��
 G
 Nguyen and D
 Rieu
 Schema Change Propagation in Object�Oriented Data�
bases
 In G
X
 Ritter� editor� Information Processing ��� pages �������
 Elsevier�
�
�



��
 A
 Oberweis� P
 Sander� and W
 Stucky
 Petri net based modelling of procedures
in complex object database applications
 In D
 Cooke� editor� Proceedings of the
COMPSAC ����� Phoenix� Arizona� US� �

�


�	
 W
 Sch�afer� editor
 Software Process Technology � Proceedings of the �th Euro�
pean Workshop on Software Process Modelling� Noordwijkerhout� The Netherlands�
April �

�
 Springer
 Appeared as Lecture Notes in Computer Science 
��


��
 M
 Schneider
 Werkzeuge zur Optimierung erweiterter Entity�Relationship Mod�
elle und deren Abbildung in ein relationales Datenbankschema �in German�
 Au�
gust �

�
 Diplomarbeit� University of Dortmund


�

 A
 Skarra and S
 Zdonik
 The Management of Changing Types in an Object�
Oriented Database
 In N
 Meyrowitz� editor� Object�Oriented Programming Sys�
tems� Languages and Applications �OOPSLA� ���� � Conference Proceedings�
pages �����
�� Portland� Oregon� USA� October �
��
 ACM Press


��
 R
 Wieringa� W
 de Jonge� and P
 Spruit
 Roles and dynamic subclasses	 a modal
logic approach
 In M
 Tokoro and R
 Pareschi� editors� Proceedings of the European
Conference on Object�Oriented Programming� Bologna� pages ����
� Berlin� �

�

Springer
 Appeared as Lecture Notes in Computer Science no
 ���


��
 W
 Wilkes
 Instance Inheritance Mechanisms for Object Oriented Databases
 In
K
 Dittrich� editor� Advances in Object�Oriented Database Systems� pages �	���	
�
Berlin� �
��
 Springer
 Appeared as Lecture Notes in Computer Science no
 ���


This article was processed using the LATEX macro package with LLNCS style


