View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by DCU Online Research Access Service

Data Model Evolution
as a Basis of
Business Process Management

Volker Gruhn!, Claus Pahl?, Monika Wever!

! LION Gesellschaft fiir Systementwicklung mbH, Universititsstrafie 140,
D-44799 Bochum
2 Universitit Dortmund, Fachbereich Informatik, Baroper StraBe 301,
D—44221 Dortmund

Abstract. In this article we propose an approach to business process
management which meets the demands of business process evolution.
This approach allows for on—the—fly modifications of business processes.
In contrast to many other approaches, we do not only concentrate on
activities to be carried out in business processes, but also on the data
created and manipulated by these activities. We propose to apply data
model analysis and improvement strategies well-known from the infor-
mation system field in the context of business process management.

Keywords
business processes, data model, data model analysis, evolution

1 Motivation

Business process (re—)engineering [10], process innovation [5] and continuous
process improvement are buzzwords meaning more or less the same: to organize
business processes in an efficient way. This may mean to completely redesign
processes in order to achieve breakthroughs in productivity or it may mean
to adapt an existing process to changing circumstances. Software processes are
business processes in a software house. The question how to manage software
processes has been addressed with increasing interest [17] during the last decade

In the following we use the notion of process to denote general business
processes as well as software processes. Process modeling, process model analy-
sis, and the enaction of process models (i.e. to govern a real world process on
the basis of an underlying model) is summed up as process management.

Analysis of process models turned out to be necessary in order to avoid
the enaction of faulty process models. Process evolution turned out to be a
central issue in order to ensure that process models can be adapted to changing
circumstances. A closer look at existing process management approaches reveals
that some provide analysis facilities for process models [3] while others somehow
care for on—the—fly modifications of activity models [7]. Most however, do not

https://core.ac.uk/display/11310434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

support the analysis of data models and evolution of data which has already
been produced by processes. Thus, the process management perspective could
be called process—oriented (data models and database schemas underlying these
processes are usually considered less important).

In contrast, research in the field of information systems deals with questions
of what good data models should look like and how evolution of database schemas
can be managed [1] without considering the business processes supported on top
of the data stored in the database. Thus, in modeling information systems one
usually starts from a data—driven perspective (i.e. what is the information to be
administrated, how can this data be organized efficiently). Dynamic aspects of
information systems are either — if at all — expressed in the form of integrity
constraints or they are hard—wired in the form of application programs.

In this article we describe how the Leu approach [8] has been extended to
cover data model analysis, improvement, and schema evolution.

In section 2, we briefly introduce our process management approach. In sec-
tion 3, we discuss an example of a Leu process model in detail. Section 4 deals
with requirements related to data model analysis and schema evolution. In sec-
tion 5, we discuss the improvement mechanisms implemented in Leu. Section
6 illustrates database evolution in relation to the example in section 3. Finally,
section 7 concludes this paper with a discussion of experiences.

2 The Leu approach to process management

In the Leu approach we consider activity models, data models and organization
models as constituent parts of process models [8]. In detail this means:

Data modeling: In Leu, data models are used to describe the structure of
objects which are manipulated within a process. Data models in Leu are
described by means of extended entity-relationship diagrams [8].

Activity modeling: In Leu, activity models are used to define activities to be
executed in a process. Moreover, activity models define the order in which
activities of a process have to be carried out. Activity models in Leu are
described by means of FUNSOFT nets [6], which are high level Petri nets
(compare section 3.4).

Organization modeling: Organization models in Leu are used to define which
organizational entities are involved in a process. Organization modeling is
based on a hierarchical role concept. Roles are sets of permissions for the
execution of activities. Roles can be attached to organizational entities. Or-
ganization models in Leu are described by means of organizational diagrams
which identify organizational entities and their hierarchical relationships.

Once these aspects of processes have been modeled, it is necessary to integrate
them. A data model and an activity model are integrated by associating data
model entities and activity parameters in a typing relation. An activity model
and an organization model are integrated by associating organizational entities
to those activities for which they are responsible.

3 Example of a process model

In this section we take a closer look at a data model and an activity model.
This is illustrated by a simplified process model from the building construction
administration area. The organizational structure is not discussed here since it
is irrelevant for analysis, improvement and evolution of a data model.

3.1 Data modeling in Leu

Data modeling in Leu is based on extended entity-relationship diagrams (ER
diagrams) [8]. Figure 1 shows a simplified data model for lease management.

Relationships can be of the cardinalities 1:1, 1:n, or n:m. This is depicted in
single—ending and multi-ending edges. Furthermore, they can be mandatory or
optional. This is represented by solid and dashed lines.

identification: STRING_N(10)
type: ENUM (buildings)

age: DATE

social state: ENUM (social states)
settlement: ENUM (settlements)
lift: BOOLEAN ——
street: STRING_N(30) repairs: LIST(STRING(70)) identification: STRING_N(10)
house number: STRING_N(5) electrician: TEXT dimension: REAL(6,2)
postcode: INTEGER(4) plumber: TEXT rooms: LIST(STRING_N(30))
city: STRING_N(30) painter: TEXT floor: INTEGER(2)

rent: REAL(7,2)
incidentals: REAL(7,2)
bail: REAL(7,2)

— building

identification: STRING_N(10)
surname: STRING_N(30)

first narme: STRING.N(30) identification: STRING_N(10)
marital status: ENUM (marital status) tenant lease begin: DATE

account: INTEGER(10) end: DATE
routing code: INTEGER(8)
bank: STRING_N(30)

Fig. 1. Data model for lease management

Some object—oriented features have been introduced into the entity—relation-
ship modeling as supported by Leu. First of all, we understand entity types
as object types, i.e. each entity has a unique object identity. We use the term
object to denote an entity. Objects can be of a predefined format (Postscript,
WordPerfect documents, etc.) or of a complex type. Objects of these complex
types are described by means of their attributes. Attributes can be mandatory or
optional. Mandatory attributes can be used to compose a user—defined primary
key of an object type. In figure 1 the primary keys are underlined. Non—primitive
attribute types are lists that can be composed of primitive types and enumeration
types which can be defined by the user.

Another object—oriented feature of Leu data modeling is the encapsulation
of object types by means of user—defined operations. Each object can only be
manipulated by means of operations attached to the corresponding object type.
Moreover, we use the concept of delegation between object types [20] in order to
define relationships between closely related object types. By means of delegation
it is possible to enforce the execution of certain operations to be delegated to
another object. Thus, the concept of delegation is applied to the type level and
to the object level. This is the main difference to the inheritance concept. A
more detailed motivation for using the delegation concept is described in [21].

3.2 Generating a database schema

A data model in Leu is used to describe the structure of objects which are ma-
nipulated within processes. To store these objects, a relational database schema,
is generated from the data model which is accessed within running processes
interacting with process participants (compare figure 2).

data model running process process participant

=5 L e %
generation T readiwrite

Fig. 2. Generation and use of a database schema

For each object type at least one table is generated. This table contains one
column for each attribute and one additional column for a primary key called
surrogate. A surrogate is an automatically generated identifier for an object.
Several types of attributes offered by Leu are not supported by a relational
database. For example, attributes like a list cannot be stored in one column of
a flat relational table. Therefore, only the first element of a list is stored in the
column of the list attribute. Additionally, a further table is generated to store
the whole list. Attributes of enumeration or text types are treated similarly. For
each n:m relationship one table is generated. It contains two columns for the
surrogates of the two related object types. For other relationships the table of
one object type contains an additional column to store the surrogates of the
other object type as foreign keys. Figure 3 shows some of the tables generated
for the lease management.

Basic operations for creation, update and deletion of objects are also gener-
ated out of the data model. Thus, the internal representation of objects in the
database does not have to be known in order to store and retrieve objects. These
operations (and some more sophisticated operations like get—all-objects—of-type)
build a programming interface up to the generated database schema.

list attribute: rooms object type: apartment object type: building

apartment | number | element surrogate |identification| -~~~ |surr_building surrogate | identification| -
BX3M_7v4| 1 kitchen BX3M_7V4| a 08042 Q29G 31W |®—®| Q29G 31W | s 00375

BX3M_7v4| 2 Iivingroomq FIS1_YTC | a 01929 SWR8_HA4 SWR8_HA4| b 01609
; ; ; ; L926 7BB | a 01930 SWR8_HA4 j : ;

FI51_YTC 1 living room

Fig. 3. Database schema for lease management

3.3 Access paths

To manipulate the objects stored in the generated database the activities car-
ried out in the processes either use operations of the database programming
interface or they use database queries. While the operations are sufficient for
simple retrievals, individual queries covering objects of several types are needed
for more complicated retrievals. They are formulated on the abstraction level of
data models. Details of the internal database schema do not have to be known.
In order to avoid potential performance problems caused by too complicated
queries, the process modeler should describe object access paths. We define the
access path of an object query as the set of attributes used in the query together
with a quantification specifying how frequent the access path is used.

3.4 Activity modeling in Leu

In Leu, FUNSOFT nets are used to specify activities to be carried out and their
order. FUNSOFT nets are high level Petri nets, of which semantics is defined
in terms of Predicate/Transition nets [9]. In FUNSOFT nets, the T—elements
(represented as rectangles) are called agencies. Agencies represent activities. S—
elements (represented as circles) are called channels. They are used to store
objects. FUNSOFT nets are hierarchically structured by means of T—element
refinement [11]. FUNSOFT nets do not only contain a definition of activities
and their parameterization, but also an order of activities. They allow to define
that activities have to be carried out sequentially, concurrently or alternatively.
For more details about FUNSOFT nets we refer to [6].

Figure 4 shows a FUNSOFT net which describes the activity model of agree-
ing on leases. In the upper branch of the net an apartment is selected. In the
lower branch a potential tenant is selected. If an object of type apartment is
available in channel Apartment’ and if an object of type tenant is available in
channel Cleared tenant, then agency Write lease can be started. The result is a
lease which is then subject to the legal check.

3 The annotation above a channel symbol displays the type of objects to be stored in
this channel, the annotation below a channel symbol is the channel name.

TEXT address apartment apartment

O—ill—CO— il —O—Fi—O

Contract Insert Address Select apt Calculate Rent Apartment
request address apartment 5 cylation

tenant

O

Bank
account info

lease
Q .
Lease

Legal check

Insert
bank account

tenant

O

Tenant info

Fig. 4. Activity model for agreeing on leases

4 Related work

Process models used for governing real world processes are crucial for the effi-
ciency of any business operation. Thus, process model analysis is necessary in
order to avoid the enaction of inefficient and/or inconsistent process models.
The analysis of activity models and organization models has been discussed in-
tensively in the process management literature [13, 16]. In the following we will
discuss some approaches which focus on data model analysis.

In principle, we can distinguish between data model analysis that is indepen-
dent from an individual customer and customer—specific data model analysis.
While the first kind of analysis can be realized without considering any details
of customer circumstances, the latter requires detailed knowledge of the customer
situation.

In [14] efficiency of data models is identified as one of the key success factors
of any information system. Abstract properties of data models such as com-
pleteness, comprehensibility, simplicity, flexibility and others are considered as
substantial properties of data models. The necessity to measure these properties
on the basis of metrics and to develop improvement strategies is illustrated.

Unfortunately, properties like efficiency and completeness can only be checked
with respect to individual customer situations. A data model consisting of a set
of object types may, for example, be an efficient basis for processes being carried
out at one company, while it can be awfully inefficient as a basis of the same
processes carried out at another company. This may be due to differences in exe-
cution frequencies of processes or it may be due to different arrival frequencies of
objects to be processed. Thus, information about the customer specific situation
is needed in order to detect such data model shortcomings.

Once process models have been customized, the customer situation does not
remain completely stable. Internal organization as well as legal changes and mod-
ified business targets demand process model flexibility. This flexibility concerns
activity models, organization models, and data models as well as their integra-
tion. We realize an additional problem regarding the evolution of data models:

once a database has been generated out of a data model and once data is stored
in this database, the evolution of a data model requires the transformation of
the data according to the data model evolution.

Process conditions tend to change during the process’ lifespan. Reasons for
changes are, for example, availability of personnel, organizational changes, con-
centration on certain customers and markets. In order to cope with such highly
dynamic circumstances, it is necessary that process models can be modified
whenever required. General tendencies like globalization of markets and empow-
erment of people reinforce the demand for flexible processes. Flexible processes
allow to react to market opportunities very quickly and thus obtain competitive
advantages.

While the evolution of activity models is intensively discussed in the software
process literature, the question how data models evolve is hardly considered in
this context. In contrast, the question of schema evolution is discussed with
respect to information system design and maintenance [12, 1]. Some approaches
relevant to the work proposed in this article are discussed in the following.

In [15] different types of database schema evolutions for object—oriented data-
base schemas are distinguished. Evolution of class definitions, evolution of re-
lationships between class definitions and evolution of the set of class definition
(add a class, delete a class, change name of a class) are identified as typical kinds
of schema evolution. In [15] it is pointed out that most object—oriented database
systems do not support the complete propagation of schema modifications to
the object level. Mechanisms to manage this propagation are

— the use of an explicit convert operator which can be used to convert objects
concerned when modifying a data model [19],

— an automatic start of propagation after each data model modification [2], or

— a propagation to an object as soon as this object is accessed [4].

The advantage of the manually started propagation is its efficiency because only
objects actually needed in the future are converted. Its disadvantage is the dan-
ger of inconsistencies because old and not converted objects may exist at any
time. The advantage of automatic propagation to all objects is its consistency, its
disadvantage is its bad performance. In the Leu approach some object—oriented
features like delegation between classes and objects (compare [20]) and asso-
ciation of object types and operations have been introduced into an entity—
relationship oriented modeling. Thus, the types of modifications are obviously
the same as discussed in [15]. Our conversion strategy is to convert all objects
interactively in cooperation with the data modeler to ensure that information
loss and inconsistencies can be minimized (compare section 6).

5 Analysis and improvement of data models

In this section we describe what kinds of data model analysis facilities are avail-
able in the Leu approach and which improvements of data models turned out to
be typical in order to remove certain data model weaknesses. The work presented
in this section is described in more detail in [18]*.

The data model improvement consists of two steps. First, the syntactical
completeness of the data model is analyzed. It is examined whether all object
types have attributes, relationships and primary keys and whether they are used
by at least one access path. If all object types satisfy these demands, the data
model is syntactically complete and its analysis will be continued. Then, four
kinds of improvement are applied:

Removal of certain types of attributes: The representation of attributes of
list, text and enumeration types in the database demands the generation of
additional tables, as mentioned in section 3.2. Queries refering to attributes
of such types have to access more than one table. The more tables a query
accesses, the longer its execution will take. Therefore, the user should con-
sider whether some lists, texts, or enumerations can be replaced by other
types.

New relationships to avoid long access paths: The more object types a
query uses, the more time takes its execution, because at least one addi-
tional table has to be accessed for each further object type. Hence, an access
path should be as short as possible. In order to cut a long access path short,
new relationships have to be added to the data model.

Merge of object types: Object types with a 1:1/mandatory:mandatory rela-
tionship are similar to one object type. Just looking at the syntax, they could
be combined. However, this may not be appropriate looking at the object
types’ semantics. Hence, the mergence of object types can be proposed but
the modeler must decide whether it is reasonable.

Split of object types: There are two reasons to split an object type. First, the
attributes of the object type may be divided into two groups. Each of these
groups of attributes is used by a group of access paths. There is no access
path using attributes of both groups. In this case the unused attributes only
enlarge the object type and slow down the execution time. Consequently, the
object type should be split into two disjoined object types with one group
of attributes belonging to each of them. Secondly, the attributes of the ob-
ject type may also be divided into two groups but in a different way. One
of these groups consists of very frequently used attributes. The attributes
of the second group are used very rarely. In this case, the rarely used at-
tributes enlarge the object type for access paths using only the frequently
used attributes. Therefore, the object type should be split, too.

The user will be informed of all defects found by the analysis. The improvement
only recommends certain data model changes to the modeler. He has to decide
whether the proposed changes should be applied.

4 Schneider Monika Wever’s maiden name.

In the data model for lease management (figure 1) all four types of improve-
ment can be applied. First, the building has one list attribute, three enumeration
attributes and three text attributes. According to the first type of data model
improvement (removal of certain types of attributes), some of these attribute
types should be changed. Assume the type STRING_N(70) is long enough to
store the names of the craftsmen. Then the text attributes can be changed into
strings. Secondly, the access path leading from tenant to address across lease,
apartment and building is too long. Therefore a new n:1/mandatory:optional re-
lationship between tenant and address will be added. Thirdly, apartment and
costs will be merged by adding the attributes of costs to apartment. This way
the 1:1/mandatory:mandatory relationship between them is dropped. Finally,
the tenant will be split into tenant and bank account. This is based on an analy-
sis of access paths implemented by the agencies of the activity model for agreeing
on leases (figure 4).

All changes discussed above are only performed on the data model in the
first instance. They also have to be propagated to the database schema. This
means the generation has to be started again to change the tables of the schema
according to the changes of the model. It would also be possible to delete the
whole database schema and generate it again. But in most cases only a part
of the data model is changed so that it takes less time to change the existing
database schema.

6 Evolution

Business process models are subject to modifications because of changing cir-
cumstances. Sometimes, only activity models have to be changed. In other situa-
tions data models are concerned. Since modifications of the first kind have been
addressed in the process literature, we will restrict to modifications that cause
changes of data models.

Potential changes of a data model are: adding new object types or relation-
ships, deleting object types or relationships, adding new attributes to object
types, removing attributes and changing the types of attributes.

As an example four customer—specific changes are performed on the data
model for lease management. A new text attribute called form is added to the
object type lease. The attribute lift is removed from the object type building.
The postcode is extended from a four—digit to a five—digit format. And finally,
the type of first name is changed from string into a list of strings.

Further changes of data models can be due to additional or modified process
models. If, for example, a new process has to be established, requirements for
efficient access to certain data may change substantially.

When changes are performed on the data model, the generation procedure
has to be started again to propagate them to the object level. This implements
an immediate coercion strategy.

Whenever an attribute type is changed, the generation tries to minimize the
loss of information. Loss of information can be avoided in the following cases:

— the length of an attribute type is extended

— an attribute type is changed from boolean, integer, real, time, or date to
string,

— an attribute type is changed from single—valued to multi—valued, or

— an attribute type is changed from multi-valued to single-valued (only the
first element of the list is kept).

In these cases the generation converts the values of the changed attributes auto-
matically according to the new type. In all other cases an automatic conversion
is impossible and the values are lost.

Besides the loss of information, the evolution of a data model causes other
problems. Some of them are solved during the generation:

— Objects of optional attributes may contain null-values. If such an attribute
is changed to mandatory, the generation will replace the null-values with
dummy values.

— If a new attribute is added to an object type, all existing objects will have
null-values in the column of this attribute. If the new attribute is mandatory,
the generation will also replace the null-values with dummy values.

Other changes of data models are not automatically propagated to the object
level in order to avoid inconsistencies in the database. Examples of such changes
are given in the following. They all focus on the primary key of an object type:

— A new attribute is added to an object type without primary key. This new
attribute must not be a primary key itself because its values are either null-
values or dummy values and neither of them is unique.

— An existing attribute of an object type without primary key must not become
a primary key because its values may not be unique.

— The number of attributes building the primary key of an object type must not
become smaller because the values of the remaining primary key attributes
may not be unique.

— The attribute type of a primary key must not be changed with loss of values
because after the generation the lost values are replaced with dummy values
that are not unique.

It is impossible to perform these changes on the database during the generation
because reasonable unique values can not be created automatically. When some
of these changes are necessary, the data modeler has to perform them “by hand”
directly on the database.

To sum up, the generation of database schemas out of modified data models
tries to minimize the loss of information. Whenever it cannot be avoided, the
data modeler has to give his explicit agreement in order to avoid unexpected
loss of information.

7 Conclusions

In our approach we deal with processes based on information systems. One of
our main goals is a high degree of performance enacting these processes on
information systems. Efficient storage and retrieval of data used by processes is
crucial for achieving this goal. Therefore we presented methods for analysis and
improvement of data models.

In this article we have motivated why evolution of data models is a prerequi-
site for flexible processes. Coping with evolution means being concerned with the
problems of data integrity and loss of data. We have analysed possible changes
in activity and data models and their effects on data. Our experience is that the
benefits of graphical modeling of processes and the entailed easy modification of
processes can only be fully exploited when data building the basis of processes
can evolve according to changing circumstances and modified business goals.

Acknowledgements: We would like to thank all members of the Leu team
for their cooperation in implementing these strategies. Moreover, we would
like to thank Ernst—Erich Doberkat for fruitful discussions about focus and
contents of the diploma thesis which contributed to this article.

References

1. J. Andany, M. Leonard, and C. Palissier. Management of Schema Evolution in
Databases. In Proceedings of the 17" Conference on Very Large Databases, pages
161-170. Morgan-Kaufmann, 1991.

2. F. Bancilhon. Object-oriented Database Systems. In Proceedings of the 7th ACM
Symposium on Principles of Database Systems, Austin, Texas, US, March 1987.

3. S. Bandinelli, A. Fugetta, and S. Grigolli. Process Modelling In-the-Large with
SLANG. 1In Proceedings of the 2"? International Conference on the Software
Process - Continuous Software Process Improvement, pages 75—83, Berlin, Ger-
many, February 1993.

4. J. Banerjee, W. Kim, H.J. Kim, and H.F. Korth. Semantics and Implementation of
Schema Evolution in Object-Oriented Databases. In Proceedings of the Conference
on Management of Data 1987, 1987.

5. T. Davenport. Process Innovation - Reengineering Work through Information
Technology. Harvard Business School Press, Boston, US, 1993.

6. W. Deiters and V. Gruhn. Managing Software Processes in MELMAC. In Pro-
ceedings of the Fourth ACM SIGSOFT Symposium on Software Development En-
vironments, pages 193-205, Irvine, California, USA, December 1990.

7. W. Deiters, V. Gruhn, and H. Weber. Software Process Evolution in MELMAC.
In Daniel E. Cooke, editor, The Impact of CASE on the Software Development Life
Cycle. World Scientific, Series on Software Engineering and Knowledge Engineer-
ing, 1994.

8. G. Dinkhoff, V. Gruhn, A. Saalmann, and M. Zielonka. Business Process Model-
ing in the Workflow Management Environment LEU. In P. Loucopoulos, editor,
Proceedings of the 13" International Conference on the Entity-Relationship Ap-
proach, pages 46-63, Manchester, UK, December 1994. Springer. Appeared as
Lecture Notes in Computer Science no. 881.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

H.J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and Their Properties, pages
208-247, Berlin, FRG, 1987. Springer. Appeared in Lecture Notes on Computer
Science 254.

M. Hammer and J. Champy. Reengineering the Corporation. Harper Business,
New York, US, 1993.

P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri Nets. In
Proc. of the 10" Int. Conf. on Application and Theory of Petri Nets, pages 192—
209, Bonn, FRG, 1989.

M. Jarke, J. Mylopoulus, J.W. Schmidt, and Y. Vassiliou. DAIDA - An FEnvi-
ronment for Evolving Information Systems. ACM Transactions on Information
Systems, 10(1):1-50, January 1992.

M.I. Kellner and G.A. Hansen. Software Engineering Processes: Models and Analy-
sis. In B.D. Shriver, editor, Proceedings of the 22nd Annual Hawaii International
Conference on System Sciences, Vol. 11, 1989.

D.L. Moody and G.G. Shanks. What Makes a Good Data Model? Evaluating the
Quality of Entity Relationship Models. In P. Loucopoulos, editor, Proceedings of
the 13" International Conference on the Entity-Relationship Approach, pages 94—
111, Manchester, UK, December 1994. Springer. Appeared as Lecture Notes in
Computer Science no. 881.

G. Nguyen and D. Rieu. Schema Change Propagation in Object-Oriented Data-
bases. In G.X. Ritter, editor, Information Processing 89, pages 815-820. Elsevier,
1989.

A. Oberweis, P. Sander, and W. Stucky. Petri net based modelling of procedures
in compler object database applications. In D. Cooke, editor, Proceedings of the
COMPSAC 1993, Phoenix, Arizona, US, 1993.

W. Schifer, editor. Software Process Technology - Proceedings of the 4" Euro-
pean Workshop on Software Process Modelling, Noordwijkerhout, The Netherlands,
April 1995. Springer. Appeared as Lecture Notes in Computer Science 913.

M. Schneider. Werkzeuge zur Optimierung erweiterter Entity—Relationship Mod-
elle und deren Abbildung in ein relationales Datenbankschema (in German). Au-
gust 1994. Diplomarbeit, University of Dortmund.

A. Skarra and S. Zdonik. The Management of Changing Types in an Object-
Oriented Database. In N. Meyrowitz, editor, Object-Oriented Programming Sys-
tems, Languages and Applications (OOPSLA) 1986 - Conference Proceedings,
pages 483-495, Portland, Oregon, USA, October 1986. ACM Press.

R. Wieringa, W. de Jonge, and P. Spruit. Roles and dynamic subclasses: a modal
logic approach. In M. Tokoro and R. Pareschi, editors, Proceedings of the European
Conference on Object-Oriented Programming, Bologna, pages 32-59, Berlin, 1994.
Springer. Appeared as Lecture Notes in Computer Science no. 821.

W. Wilkes. Instance Inheritance Mechanisms for Object Oriented Databases. In
K. Dittrich, editor, Advances in Object-Oriented Database Systems, pages 274-279,
Berlin, 1988. Springer. Appeared as Lecture Notes in Computer Science no. 334.

This article was processed using the ITEX macro package with LLNCS style

