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ABSTRACT 

 
 

    Empirical Investigation of Nonlinear  

                                         Asset Pricing Kernel with Human  

                                            Capital and Housing Wealth 

 
By Qing Mei Wang

Supervisor: Prof. Liam Gallagher 
Business School, 

Dublin City University 
 
 
 

In a traditional framework, asset returns are captured by simple linear asset pricing 

models. They include Capital Asset Pricing Model (CAPM) and Fama-French three-

factor model. However, the empirical study shows that the asset returns are fat tailed, 

that cannot be accurately predicted by normal distribution. Kurtosis and skewness 

should be considered when pricing those non-normal assets. Various literatures can be 

found focused on this topic. Bansal and Viswanathan (1993) and Chapman (1997) 

developed nonparametric model. They find that the nonparametric models perform 

better in explaining expected returns. Most recently, nonlinear asset pricing models 

developed by Dittmar (2002) shows more significantly improvements in return 

estimation, compared to the linear single and linear multi-factor models.  

In this study, I focus on an asset-pricing model of higher order risk factors and use 

polynomial pricing kernel to generate the empirical performance of a nonlinear 

model. This is an extension to both Bansal and Dittmar’s work, by extending the 

definition of the total wealth including human capital and housing wealth. This 

research work is novel and especially important to understand asset price behavior 

after year 2007, the credit crisis. Housing price growth rate is a very critical indicator 

for long-term investment, reflecting consumer confidence on the long-term global 

economy. It can be used to estimate the turning point for the recent economic down 

turn. In addition, since the credit crisis 2008 is triggered by liquidity shortage in 

banking systems, the level of housing price has direct impact on the balance sheet of 

those banking sectors. The higher the house price, the more willingness banks have to 
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release the credit to the market. The housing wealth factor can be used to estimate 

when the credit crunch will disappear and global economy gets fully recovered.  

In this study, the risk factors that represent the aggregate wealth in the economic are 

tested. The best possible proxy of return on the total wealth is discussed. The thesis 

can be divided into 2 parts. In the first part of my thesis, a higher order moment model 

to explain the asset price behaviour is developed. Similar to the work presented by 

Dittmar (2002), pricing kernel is approximated using Taylor Series expansion and 

Hansen-Jagannathan (1997) weighting matrix. The time-varying coefficients with 

respected sign of coefficients are estimated. Housing factor is added to extend the 

model, as we believe that housing plays an important role in the return on aggregate 

wealth. In the second part of my thesis, I test models in three time periods. They 

include Dittmar’s period from 1963 to 1995, the full sample period from 1963 to 2009 

and recent period from 1996 to 2009.  

Our results confirm that nonlinear models outperform than linear models in 

explaining the cross section of returns. The higher order risk factors give the 

magnitude improvement in model fitting. This is consistent with the result given by 

Dittmar (2002). Moreover, my results conclude that the models with the housing 

wealth included performs significantly better than the models with human capital 

only.  
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Chapter 1 

INTRODUCTION 

 

The topic of this thesis is to investigate non-normal asset price behaviour. In this 

research, I focus on nonlinear asset pricing models with higher order moment of risk 

factors. Especially, I am interested in the impact of housing wealth risk factor on 

modelling nonlinear asset price. Empirical historical data for returns and stock prices 

have proved that returns cannot be predicted accurately by normal distribution. In 

particular, when economic boom or crunch happens, prices and returns are highly 

changeable in the market. A large number of literatures have carried out 

investigations on nonlinear asset pricing models, which have more power in 

explaining large price fluctuations.  

 

Housing wealth is an important element in today’s market-oriented economic. In year 

2007, following house market collapse in the US, a liquidity crisis has started in the 

united banking system and expanded all over the world. Since year 2005, US 

mortgage lenders sell many expensive mortgages to customers even if they are with 

poor credit, high chance of default. To increase the profitability on mortgage, other 

financial companies bought mortgage debts as a package. The idea is to spread the 

risk, but it makes bigger problem as rating agencies gave these risky mortgages a low 

risk rating and hide these risks in financial system. Many of these housing mortgages 

had an introductory period of 1-2 years of very low interest rates. In 2007, interest 

rates increased at the end of this introductory period. In addition, due to inflation in 

2007, US had to increase interest rate and mortgage payments were getting more 

expensive. Many new house owners could not afford mortgage payments and they 

choose to default. Then US houses price started to fall, the bank couldn’t recoup the 

initial loan. It became a bad loop for US housing market and caused many medium 

sized mortgage companies to go bankrupt. Not only this, many banks were also facing 

big losses. To write off large losses, banks tighten their fund and became more and 

more reluctant to fund enterprises. There was not enough liquidity in the market. It 

affected many firms who have difficulty in borrowing money. The total volume of 
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money in the market shrinks and money movement velocity decreased significantly. It 

has direct impact on the GDP growth and slowed down the global economy. Thus, 

housing price growth rate becomes a very critical indicator, reflecting consumer 

confidence on the long-term global economy, which can be used to estimate the 

turning point for the recent economic down turn. In addition, the level of housing 

price has direct impact on the balance sheet of the banking sectors. The higher the 

house price, the more willingness banks have to release the credit to the market. It can 

be used to estimate when the credit crunch will disappear and global economy gets 

fully recovered. Therefore, it is very essential to include housing wealth into the 

model especially to understand asset price behavior after year 2007, the credit crisis. 

 

Previous empirical studies on asset pricing models use a linear single factor model 

(e.g. consumption based CAPM model) and multifactor models (such as Fama-French 

model). However, there are some limitations. Bansal and Viswanathan (1993), who 

observe that the pricing kernel from a linear model cannot price securities whose 

payoffs are nonlinear functions of the factors. Chapman (1997), using polynomial 

approximation shows that nonlinear model is more capable of explaining variations in 

small firm returns. Another example is by Dittmar (2002), that he investigates 

nonlinear pricing kernels in examining the impact of risk factors including market 

returns and human capital and comparing the results with Fama-French model and 

power utility model. Dittmar use Taylor Series approximation with return on 

aggregate wealth for each polynomial term. One of the advantages for using Taylor 

series approach is that it represents a link between linear and nonlinear model 

specifications, as the leading term of polynomial is linear, follows quadratic term and 

cubic term. Second, the preference theory applied to nonlinear models is better 

approach in solving the truncation and avoid over fitting problems. Thus, the 

nonlinear pricing kernel is a suitable basis for studying non-normal asset price 

behaviour. I follows Dittmar (2002), modifies the model by adding the additional 

proxies for the return on aggregate wealth. That means, we specify the priced factor 

as a function of the return on equity, the return on human capital and return on 

housing wealth. The model helps to extract the housing returns that are related to 

financial asset returns.   
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This research can be divided into two steps: one is the modelling, which explained as 

above. Second is the test. Our test method provided in this study has many important 

impacts and findings. We test the performance of the model in three sub periods so 

that our results provide a better view on behaviour of nonlinear asset pricing model 

with the proxy choice over both the long time horizon and short time horizon, 

including economic crisis period. We conduct analysis that covers recession period 

aim to find out that how important is the housing factor in the whole economic return 

in modelling the asset prices. 

 

In estimation, parameters of the polynomial series expansion are estimated using 

generalized method of moments (GMM), similar to the work presented by Hansen’s 

(1982). As the linear model and nonlinear model are not nested, we use Hansen and 

Jagannathan (1992) distance measure to compare the linear single pricing kernel, 

linear multiple pricing kernel and nonlinear pricing kernels in three different time 

series framework. The Hansen Jagannathan distance measure is the distance measure 

between the pricing kernel under study and the class of valid pricing kernels. A proxy 

that is valid pricing kernel will have a zero HJ distance. Therefore, a proxy with a 

smaller HJ distance is closer to the class of valid pricing kernels and can be 

considered a better pricing kernel than one with a larger HJ distance. 

 

The data we use are sampled on a monthly basis from July 1963 to December 2009. 

The raw data includes the returns on 17 industry-sorted portfolios and the instrument 

set { }ttttmt tbysdyrZ ,,,,1 ,= , where one denotes a vector ones, tmr ,  is the excess return 

on the CRSP value weighted index at time t, tys  is the yield on the three-month 

Treasury bill in excess of the yield on the one month Treasury bill at time t, and ttb  is 

the return on a Treasury bill closest to one month to maturity at time t. in addition, 

labor income at time t is computed as the per capita difference between total income 

and dividend income. The data cover the period July 1963, through December 2009, 

totalling 558 observations. All the data are taken from Kenneth R. French website. 

Our results confirm the findings in Dittmar (2002), who investigates nonlinear pricing 

kernels in describing cross sectional variation in equity returns and test models use 

aggregate wealth that includes market return and human capital as risk factors. 
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Dittmar (2002) finds that nonlinear pricing kernel improves upon the pricing kernel’s 

ability to describe the cross section of equity returns. Especially, when human capital 

is included into the measure of aggregate wealth, both quadratic and cubic pricing 

kernels are able to fit the cross section of industry sorted portfolio returns, and linear 

single or multi-factor models cannot. To extend Dittmar’s work, I add in a very 

important risk factor-return on housing wealth to the total of economic returns. Our 

results show that the nonlinear term of the housing risk factors fit the models very 

well, that means housing wealth is one of the important factors in economic returns. 

Second, we examine the nonlinear model specification by testing the total wealth 

including equity returns, human capital returns and housing wealth returns. We find 

that housing wealth in cubic and quadratic terms improve the fit of nonlinear asset 

pricing kernel. Finally, the test of augmented Fama-French four-factor model offers 

strong support of return relationship in housing. Similar result can be found in Case, 

Cotter and Gabriel (2010). 

 

For the linear model specification test, we examine and compare a set of linear single 

(CAPM) pricing kernels and a set of linear multi-factor (Fama-French) pricing kernels 

with respect to equity returns only, human capital returns only and housing wealth 

returns only. We find that the linear model specifications are not admissible for the 

cross section of industry portfolios, whereas a cubic and quadratic pricing kernel are. 

This result is consistent with Dittmar (2002), for details in comparison see Dittmar’s 

sample period from July 1963 to December 1995 in Chapter Five. 

 

For the nonlinear model specification test, we augmented polynomial model by 

examining the housing wealth risk factor in quadratic term and cubic term. The figure 

of distance measure obtained from nonlinear models with housing factor included has 

further improvement than Dittmar’s results. In addition, we examine the impact of 

other risk factors including size and book to market Fama-French factors. We find 

that the cubic term in the pricing kernel drives out the significance of both size and 

book to market factor in the augmented Fama-French model. This result is again 

consistent with those in Dittmar (2002). 

 

In the empirical applications of these model used in my research, I test the model in 

the recent period from July 1996 to December 2009 and compare with the results 
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obtained from sub period July 1963 to December 2009. Our results show that 

nonlinearity of the data that were observed in the most recent sample period, drive out 

the importance of the nonlinear model in explaining the cross section of returns. 

Furthermore, our results strongly support that the housing wealth factor improves the 

fit of the asset pricing model.  

 

The thesis is organized as follows:  In Chapter II, we discuss the methodology. 

Chapter III develops the asset pricing model. Chapter IV presents the detail regarding 

the data set used and instrument test. Chapter V, test and discuss the empirical 

performance of the model and compare it with those results obtained form Dittmar 

(2002) and Chapter IV concludes. 
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Chapter 2 

THE ASSET PRICING MODEL 

 

2.1 Models 

2.1.A The CAPM Model 

 
The static Capital Asset Pricing Model (CAPM) is the first important capital asset 

pricing model that developed by Sharpe (1964) and Lintner (1965) and generalized by 

Black (1972). The general idea behind CAPM is that expected return of a security or 

portfolio equals the rate on a risk-free security plus a risk premium. If the expected 

return does not meet required return, then the investment should not be undertaken. 

The CAPM model is widely cited in the asset pricing field. Jagannathan and Wang 

(1996) examine the conditional version of the CAPM model to explain the cross 

sectional variation in average returns in a large collection of stock portfolios. Their 

result shows that when human capital is included in measuring wealth, the 

unconditional CAPM is able to explain 50 percent of the cross sectional variation in 

average return and market portfolio in measuring wealth, which can only explain 30 

percent. The asset pricing model of portfolio choice problem also includes Flavin and 

Yamashita (2002). They uses mean-variance efficiency framework to examine the 

household’s portfolio choice problem with exogenous returns of an agent who invests 

in both financial assets and real estate. They assume covariance matrix and expected 

return vector are time invariant. They estimate the covariance matrix and expected 

return for housing and financial asset such as stocks, bonds, T-bills for solving the 

efficient frontiers and optimal portfolios. And their analysis shows that the housing 

constraint is relaxed over the life circle, the baby boom generation may have a 

systematic effect on asset price. Kullmann (2003) generates CAPM framework to test 

the importance of housing wealth in asset pricing. She applies linear models in her 

study: conditional CAPM model and assumes that both betas and expected returns are 

time invariant, it is: 

E Rit[ ]= c0 + cvwβi

vw + claborβi

labor + cREβi

RE + ctbillβi

tbill    (1) 
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And linear stochastic discount factor model, the model assume as long as the law of 

one price hold, there exist at least one random variable mt  that prices all assets in the 

economy. The formula as:  

mt +1 = b0 + bvwRt +1
vw + blabor Rt +1

labor + bRE Rt +1
RE + btbill Rt +1

tbill    (2) 

Both test results show that the proxy for the return to real estate improves the 

performance of the CAPM model. Most recently, Piazzasi, Schneider, Tuzel (2007) 

use consumption based asset pricing model (CCAPM) with housing factor to forecast 

excess return on stocks. The model motivates a two-factor model, which is the 

consumption growth rate and the growth rate ofα . The model predicts that the 

housing share can be used to forecast excess return on stocks. During recessions 

stocks have low payoffs, when non-housing consumptions is low, payoffs even lower. 

They use non-housing consumption as the numeraire and start with Euler equation, it 

is: 

E Mt +1
C Rt +1

$i Pt

Pt +1









 = 1       (3) 

The pricing kernel takes the form 

Mt +1
C = Mt +1

Pt +1

Pt

pt

c

pt +1
c

= β
Ct +1

Ct








−1 σ

    (4) 

where: 

 Ct  - the appropriate deflator for nominal dividends, 

 pt

c  - the price of non-housing consumption, 

 
Pt +1

Pt

 - the true inflation rate, 

In order to explain the cross section returns, they compare CAPM model with 

standard CCAPM model. They find that the CAPM model does poorly over the 

sample period (1936-2001) with 2R of 8%. The CCAPM explains much more than the 

CAPM in terms of 2R  58%. Moreover, the consumption-housing CAPM, which 

called CHCAPM, explains 71% of the cross section variation in returns. Their result 

also consistent with the results stated in Cochrane (1996) that real investment growth 

helps pricing the cross section of returns and residential real estate matters to 

consumers. Klinkowska (2008) used stochastic discount factor, which only depend on 

the current period information for modelling the coefficients of CAPM model. 
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However, there are two mayor difficulties in examining the empirical support for the 

static CAPM. One is the real world is dynamic and not static. The other one is the 

return on the portfolio of aggregate wealth is not observable. Thus these limitations 

drive researchers to look at the multifactor models of asset prices. 

 

The most recent paper by Case, Cotter and Gabriel (2010) investigate the risk-return 

relationship in determination of housing asset pricing.  They conduct aggregate US 

house price series into the Housing asset pricing model (HCAPM) by examining the 

impact of additional risk factors including aggregate stock market returns, 

idiosyncratic risk, momentum, and Metropolitan Statistical Area (MSA) size effects. 

They find that the basic housing CAPM results are robust to the inclusion of other 

explanatory variables, including standard measure of risk and other housing 

fundamentals. Moreover, their findings are supportive of the application of a housing 

investment risk-return framework in explanation of variation in metro-area cross-

section and time series US house price returns.  

2.1.B The Multifactor Models  

In the past study, the multifactor models have been noticed as successful in pricing 

the cross section of equity than single factor model, which developed by Eugene 

Fama and Kenneth French is called Fama-French three-factor model. Fama-French 

three-factor model expends on the Capital asset pricing model (CAPM) by adding 

size and value factors on addition to the market risk factor in CAPM. Through 

research they found that value stocks outperform growth stocks, small cap stocks tend 

to outperform large cap stocks. So this model includes two additional factors, SMB 

“small market capitalization minus big market capitalization” and HML “high book-

to-market ratio minus low book-to-market ratio”. The model is very often compared 

to other models in many papers. Ross uses multifactor model and argues that CAPM 

model ignores the fact that human capital is an important component of wealth. 

Jagannathan and Wang (1996) estimate the cross-sectional of returns by using factors 

from Fama and French (1993). That is 

1)]([ 0 =+++++ tHMLtSMB

labor

tlabor

prem

tprem

vw

tvwit HMLSMBRRRRE δδδδδδ (5) 

Where itR  is the return on portfolio i in month t , vw

tR  is the return on the value 

weighted index of stocks, prem

tR  is the yield spread between low and high grade 
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corporate bonds, labor

tR  is the growth rate in per capita labor income, and tSMB , 

tHML  denotes the respective Fama and French (1993) factors that are designed to 

capture the risk related to firm size and book-to-market equity.  They also compare 

this model with the model without human capita factor and bonds returns. The results 

show that Equation (5) fits the data set at least as well as the model without human 

capita factor and bonds returns. The results suggest that the two Fama-French factors 

SMB and HML may proxy for the risk associated with the return on human capital 

and beta instability. Piazzasi, Schneider, Tuzel (2007) compare the CHCAPM model 

(the consumption-housing CAPM) with Fama-French three factor model in terms 

of 2R . The result shows that F-F three factors model explains 86% of the cross section 

variation in excess returns, and the CHCAPM model explains 82%. Furthermore, 

Carhert (1997) constructed 4-factor model using Fama and French (1993) three-factor 

model plus the momentum factor. He estimates performance relative to the CAPM, 

three-factor model, and four-factor models. It shows as 

ittiTiTit eVWRFr ++= βα        t = 1, 2, …, T     (6) 

ittiTtiTtiTiTit eHMLhSMBsRMRFbr ++++= α        t = 1, 2, …, T (7) 

ittiTtiTtiTtiTiTit eYRPRpHMLhSMBsRMRFbr +++++= 1α          t = 1, 2, …, T (8) 

Where itr is the return on a portfolio in excess of the one-month T- bill return; VWRF 

is the excess return on the CRSP value weighted portfolio of all NYSE, Amex, and 

NASDAQ stocks; RMRF is the excess return on a value-weighted aggregate market 

proxy; and SMB, HML and PR1YR are returns on value weighted, zero-investment, 

factor-mimicking portfolios for size, book-to-market equity, and one year momentum 

in stock returns. He finds that the four-factor model substantially improves on the 

average pricing errors of the CAPM and the three-factor model.  

2.1.C The Nonlinear Pricing Model 

Dittmar (2002) use the similar approach as Jagannathan and Wang (1996) for testing 

Fama-French three-factor model. The difference is that he introduces nonlinear 

pricing kernel in estimating the cross sectional returns and compares it with 

augmented Fama-French in quadratic form and cubic form. The results turn out that 

the Fama-French model fares poorly in describing the cross section of industry returns 

compare with nonlinear pricing kernels. In other words, the nonlinear pricing kernels 
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outperform the Fama-French model in pricing the cross section of industry returns. 

Other examples are Bansal and Viswanathan (1993) and Bansal, Hsies and 

Viswanathan (1993). They use a nonlinear arbitrage-pricing model, a conditional 

linear model and an unconditional linear model to price international equities, bonds, 

and forward currency contracts. And their result shows that nonlinear arbitrage-

pricing model is the only model does the job in explaining the time series behaviour 

of cross section of international returns.  

Over all, the nonlinear asset pricing kernels become more and more important in 

explaining the time-varying behaviour of cross section of returns. Especially, during 

the economic crisis period, the returns of assets are non-normality distributed. The 

tails of this distribution become an important issue in considering the asset pricing.  

 

2.2 Aggregate Wealth 

2.2.A Measurement of the Human capital 

The asset pricing models are tested with the respect of the return on the wealth 

portfolio. The wealth portfolio is the total return of all the assets in the economy. The 

return on the market portfolio (value-weighted index of common stocks) is a 

commonly used proxy by financial economists to test the asset pricing model. 

However, it might not capture the return on human capital. Jagannathan and Wang 

(1996) note that stocks form only a small part of the aggregate wealth. The monthly 

per capita income in the United States from dividends during the period 1959:1-

1992:12 was less than 3 percent of the monthly personal income from all sources, 

whereas income from salaries and wages was about 63 percent during the same 

period. Diaz-Gimenez (1992) points that almost two thirds of nongovernment assets 

are owned by the household sector and only one-third is owned by the corporate 

sector. Approximately a third of the corporate assets are financed by equity. This 

suggests that the human wealth contribute significantly to the total wealth. This is 

why many researchers have considered the measure of the return on human capital as 

proxy of aggregate wealth and applied to asset pricing. 

 

Next, I will introduce the definition of human capital and the most commonly used 

expression. Human capital refers to the stock of competences, knowledge and 
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personality attributes embodied in the ability to perform labor so as to produce 

economic value. Many economists believe that there is a strong relation between 

human capital and labor income and it is not hard to see that an individual worker 

related to his productive skills, technical knowledge, experience and capabilities. The 

employee can use these skills to improve their productivity and increase their salary. 

They all take into account for the human capital. Klinkowska (2008) not agree with 

Jagannathan and Wang (1996)’s definition of human capital that includes the social 

benefit from government and pension after retirement and so on. These types of 

income should not account for the compensation for working. Only these types 

income that are reward form the work and can reflect the abilities and knowledge of 

the employees. Economists apply different measurements of the return on human 

capital in their research. The commonly used definitions are 

Rt  - growth rate in aggregate labor income 

and 

Rt  - growth rate in per capita labor income 

Data can be taken from the National Income and Product Account (NIPA) Table 2.6. 

Where labor income = wage income + proprietary income + personal interest income. 

 

The first people use the approach that to assess the effect of human capital upon 

pricing was Fama and Schwert (1977). In the observation, they test two models: 

Sharp-Lintner-Black model and Mayers model.  The difference of these two models 

was their systematic risk measure. So they estimate the difference between the 

Mayers and Sharp-Lintner-Black risk measures for various classes of financial 

securities (such as NYSE common stock, U.S. treasury bills and bonds) by using a 

measure of the return to aggregate human capital for the entire U.S. labor force. To 

measure the return on human capital, they assume that maintenance costs are not 

highly related to the returns on marketable assets so that net income, like gross 

income, is likely to be more or less unrelated to the returns on marketable assets. So 

they use the gross income per capita as the measure of the payoff to a unit of human 

capita when net income, that is: 

Net income = gross income – the maintenance cost  

They use data computed by the U.S. Department of Commerce and reported in the 

“Survey of Current Business”. The data is monthly frequency during the period of 
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1953-1972. Their result shows that the difference between the Mayers and Sharp-

Lintner-Black risk measures are very small. That means the human capital in 

aggregate wealth has little to do with capital market pricing. They suspect that the 

result is robust with respect to different definitions of income.  

Liberman (1980) follows Fama and Schwert (1977), but Liberman concentrates on 

individual human capital not on aggregate human capital. His proxy for the return on 

individual human capital is the growth rate in per capita earnings. In order to capture 

the diversity of individually held human capital, he uses three different sets of per 

capital earnings data: 

• To examine the effect of industry affiliation, he use the Bureau of Labor 

Statistics (BLS) data of monthly per capita production worker earnings for all 

eight industry classifications reported for in BLS’s “Employment and 

Earnings: United states, 1909-72”. The data consist primarily of wage 

disbursements to predominantly blue-collar-type employees and include only 

workers actually employed. To adjust the data to per capita for the entire 

industry labor force, he uses monthly industry unemployment rates as reported 

in the February 1973 issue of the monthly “Employment and earnings 

Journal”.  

• For the effect of occupation type, he uses a time series of median annual per 

capita labor earnings data for men classified by occupation collected from the 

annual issues of the Bureau of the Census’s “Current Population Reports: 

consumer Income” (Series P-60), beginning with 1958. All occupational 

classifications reported for the used except for those whose content was not 

consistent over time or was nor available for the entire period. 

• For the effect of level of educational attainment, he uses the Panel Study of 

Income Dynamics (PSID). PSID consists of annual longitudinal labor earnings 

data by individual from a representative sample of white male Americans for 

the years 1967 through 1974 arranged by years of school; attended. Being 

ungrouped, the data should be of special interest, for they should allow him to 

observe more directly the effect of individually held human capital than it is 

possible with the grouped industry and occupational data. 

Liberman’s results confirm those of Fama and Schwert (1977). He states that in the 

fact human capital is weakly related with the financial market (the changes in labor 
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earnings and the rate of return on financial assets is weakly correlated). But he also 

points out the future research directions on human capital and financial market: first, 

introducing the human capital in to a mutiperiod pricing model, as human capital is a 

mutiperiod commitment. Second, deem human capital as a purely exogenously 

determined human capital and use it in the pricing and portfolio composition. 

 

Campbell (1993b) derives a measure for the return on human capital, which is current 

growth rate of labor income, plus a term that depends on expected future growth rates 

of labor income and the expected future asset returns: 

Rm,t +1 = 1 − ν t( )Ra,t +1 + ν t Ry,t +1     (9) 

 where  

νt  is the ration of human wealth to total wealth,  

Ra,t +1  is the gross simple return on financial wealth (a, refers to financial 

assets), 

Ry,t +1  is the gross simple return on human wealth (y, refers to the stream of 

labor income) 

Campbell assumes that the average log return on financial wealth equals the average 

log return on human wealth, and then the result is: 

rm ,t +1 ≈ km + 1− ν( )ra,t +1 + νry,t +1              (10) 

where  

km  is a constant. 

V is the mean of νt  

The model is multifactor asset pricing model and he argues that CAPM model ignores 

the fact that human capital is an important component of wealth. 

Jagannathan and Wang (1996) base on Fama and Schwert (1977) and Campbell 

(1993b)’s observation, justify their work and follow Mayers’ suggestion that Human 

capital is the important factor in measuring the total capital in the economy and it also 

forms the aggregate wealth. They make a simple assumption that return on human 

capital is a linear function of the growth rate in per capita labor income. They make 

this assumption and construct a human capital wealth assume return on human capital 

is linear function of the growth rate in per capital labor income and per capita labor 

income tL  follows an autoregressive process of the form: 
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    ( ) ttt LgL ε++= +11     (11) 

Where: 

tL  - per capita labor income at time t, 

  g- the average growth rate of per capita labor income tL , 

 tε  - has mean zero and is independently distributed over time. 

Moreover, Jagannathan and Wang assume that the capital gain part of return on 

human capital is growth rate in per capita labor income and the per capital labor 

income is discounted at the constant rate r. under their assumptions above, the wealth 

due to human capital is given by: 

gr

L
W t

t
−

=       (12) 

So the rate of change in human capital wealth is then given by 
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However in their empirical work Jagannathan and Wang make a small change on the 

growth rate in per capita monthly labor income formula: 
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Where: 

     labor

tR  - growth rate in per capital labor income that becomes known at the end of 

period t, 

1−tL  - per capita labor income for period t-1 but which becomes known at the end 

of period t 

Jagannathan and Wang define the return in human capital as a two month moving 

average of the growth rate in labor income. The return on human capital is a function 

of lagged labor income since the data are published with a one-month delay. The 

reason he use this formula as a proxy to the return on human capital is to minimize 

consequence of measurement errors. The data on personal income and population are 

taking from Table 2.2 in the National Income and Product Account of the U.S.A. the 
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labor income used in their work is the difference between the total personal income 

and the dividend income, which is  

Labor Income = Personal Income – Personal dividend Income 

They define the labor income by the total population in U.S.  It includes wage 

compensation, proprietary income, rental income, net interest payments, social 

benefits and other types of income. 

Heaton and Lucas (2000) test the importance of proprietary income for asset returns 

using aggregate income measures and an extension of frame work developed by 

Jagannathan and Wang (1996) in which aggregate wealth is stock market wealth plus 

human capital.  The human capital is consisting by the value of future wage income 

and the value of future proprietary income (and the traditional approach to test asset 

pricing model is to use a stock market index alone as the proxy for the return to 

aggregate wealth). The returns of two elements of human capital are constructed using 

the growth in aggregate wage income wage

tR and the growth in aggregate nonfarm 

proprietary income prop

tR . The formula is defined below: 

 

21

1

−−

−

+

+
=

tt

ttwage
t

WW

WW
R     (16) 

21

1

−−

−

+

+
=

tt

ttprop

t
PP

PP
R     (17) 

Where: 

 tW  -  wage income at time t, 

 tP  – aggregate nonfarm proprietary income, 

 wage

tR – growth rate in aggregate wage income, 

 prop

tR  – growth rate in aggregate nonfarm proprietary income, 

In comparing to Jagannathan and Wang’s measure of the return to human capital, 

Heaton and Lucas distinguish two components of human capital in which JW look 

human capital as one whole (JW use growth rate in per capital labor income). 

Furthermore, in comparison to the timing used by JW, Heaton and Lucas‘s equation 

(see equation (17)) is not lagged relative to asset returns as was done in equation (15).  

The reason may due to the different models they choose. Under HL timing 

assumption for the returns to human capital and stock returns, whether wage

tR  exists 
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does not have significant effect in the GMM function. However the proprietary 

income factor turns to be more robust to the exact timing. The authors explain “the 

potential reason for the effect of timing on the importance of wage growth is the 

observed reaction of the stock market to announcement effect and not due to a direct 

link between wage income growth and the current wealth of stock holders”. 

Therefore, the results indicate that proprietary income may be a more important 

wealth factor for individuals holding stocks, thus the equation (18) in the value of this 

wealth is more important for the determination of asset returns. Heaton and Lucas, 

similar to Jagannathan and Wang, also use the monthly data from NIPA Table 2.6. 

Aggregate wage income is taken from line 2 and aggregate nonfarm proprietary 

income comes from line 9. 

Dittmar viewed human capital as endogenously determined human capital. He follows 

Jagannathan and Wang define the return on human capital as a two-month moving 

average of the growth rate in labor income: 

Rl ,t +1 =
Lt + Lt −1

Lt −1 + Lt −2

     (18) 

where  

 Lt  denotes the difference between total personal income and dividend income 

at t 

The data used to compute the labor income is obtained from the NIPA data. Labor 

income at time t is computed as the per capita difference between total personal 

income and dividend income. The data is monthly data and covers the period July 

31,1963 through December 31, 1995. Dittmar assumes that the cross products in 

higher order term of the return on wealth portfolio are zero. He defines the nonlinear 

pricing kernel as follows: 

mt +1 = (Ztδ0 )2 + In

n=1

3

 Ztδn,vw( )2
Rvw,t +1

n + Ztδn,lbr( )2
Rl ,t +1

n



  (19) 

where  

 tZ - a set of instrument, },,,,1{ , ttttmt tbysdyrZ =  

Rvw,t +1
n  - the return on the value weighted equity portfolio, 

Rl ,t +1
n  - the growth rate in labor income 

and  
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2' )( tnnn ZId δ=                   In = 1
−1

n=2
n=1,3{    (20) 

Where  

nd  is the value of coefficients corresponding to the thn order of the return on 

the market portfolio. 

Dittmar analyzes the linear, quadratic and cubic pricing kernel. And results are 

compared with and without human capital as a component of the return on aggregate 

wealth. The result shows that asset returns are affected by higher order moment 

coskewness and cokurtosis. Nonlinear terms improve the fit of asset pricing model, 

especially when human capital is added into the measure of aggregate wealth. 

 

2.2.B Measurement of the Housing wealth 

 

A liquidity crisis in the united banking system and overvaluation of assets are the 

main causes of the financial crisis, which starts from 2007 until now. However, the 

bubble in the booming house market is the one of the main triggers for this credit 

crunch. Since year 2005, US mortgage lenders sell many expensive mortgages to 

customers even if they are with poor credit, high chance of default. To increase the 

profitability on mortgage, other financial companies bought mortgage debts as a 

package. The idea is to spread the risk, but it makes bigger problem as rating agencies 

gave these risky mortgages a low risk rating and hide these risks in financial system. 

Many of these housing mortgages had an introductory period of 1-2 years of very low 

interest rates. In 2007, interest rates increased at the end of this introductory period. In 

addition, due to inflation in 2007, US had to increase interest rate and mortgage 

payments were getting more expensive. Many new house owners could not afford 

mortgage payments they choose to default. Then US houses price started to fall, the 

bank couldn’t recoup the initial loan. It became a bad loop for US housing market and 

caused many medium sized mortgage companies to go bankrupt. Not only this, many 

banks were also facing big losses. To write off large losses, banks tighten their fund 

and became more and more reluctant to fund enterprises. There was not enough 

liquidity in the market. It affected many firms who have difficulty in borrowing 

money. The total volume of money in the market shrinks and money movement 

velocity decreased significantly. It has direct impact on the GDP growth and slowed 

down the global economy. 
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Housing price growth rate becomes a very critical indicator, reflecting consumer 

confidence on the long-term global economy, which can be used to estimate the 

turning point for the recent economic down turn. In addition, the level of housing 

price has direct impact on the balance sheet of the banking sectors. The higher the 

house price, the more willingness banks have to release the credit to the market. It can 

be used to estimate when the credit crunch will disappear and global economy gets 

fully recovered. Therefore, it is very essential to include housing price into the model 

below especially to understand asset price behavior after year 2007, the credit crisis. 

 

In the past study, most researchers have focused on the inclusion of human capital as 

the proxy for the return of the total wealth. Such as Jagannathan and Wang find that 

human capital factor improves the fit of the CAPM model specification; however, the 

human capital is not the best proxy of the return for aggregate wealth such as Fama 

and Schwert (1977) point that the real estate accounts for a substantial portion of the 

total financial wealth. More recent papers are focus on housing return as an important 

component of aggregate wealth. Flavin and Yamashita (2002) state the housing plays 

an important role in both consumption bundle and the asset portfolio of the 

household. They estimate the risk and return to financial assets and housing, and 

address the optimise portfolios issue by using mean-variance efficiency framework. 

Flavin and Yamashita use the panel study of Income Dynamics (PSID) data on house 

prices to estimate the housing returns over the 1968 to 1992 period. Every year The 

PSID asks homeowners how much their house would sell for if the house were put on 

the market on the date of the interview. The responds enable to calculate the return to 

owner-occupied housing at the household level. The return to housing depends on the 

appreciation of the value of the house, the value of the housing services expressed by 

rental value, and costs of ownership and maintenance. However, there are no direct 

observations of the rental value of the house and the maintenance costs so Flavin and 

Yamashita model these components as below: 

( ) ttt opertyTaxPdrD Pr1 τ++= −    (21) 

( ) ttt opertyTaxdPCOM Pr11 τ−+= −    (22) 

Where: 

 r - short-term real interest rate, equals 5%, 

 d – the depreciation rate, 
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 τ -  the marginal income tax rate, equals 33%, 

topertyTaxPr – the property tax rate, equals 2.5%. 

The imputed annual rental value, denoted tD , reflects the assumption that property 

taxes are passed through into rents. Moreover in the absence of expenditures on 

maintenance and repairs, physical depreciation at the rate d  would be reflected in the 

real value of the house tP . However, Flavin and Yamashita assume that both landlords 

and house owners spend on maintenance and repair an amount equal to the annual 

depreciation of the house so that the physical condition of the house is constant. In 

addition the cost of ownership and maintenance tCOM includes the net property tax 

payment (the net of deduction against income taxes). In computing the real return to 

housing, the nominal house value and the nominal property tax payments as reported 

by the respondent are converted into real term using the CPI-U deflator to obtain tP  

and topertyTaxPr . The real return on housing tHR ,  (this return is on individual level) 

is then computed in the following way: 

 

1

1
,

−

−−−+
=

t

tttt
tH

P

PCOMDP
R  

                
1

11 Pr

−

−− −++
=

t

tttt

P

PopertyTaxrPP τ
 

            = 025.033.0
1

×++
−

r
P

P

t

t    (23) 

Kullmann (2003) follows the Jagannathan and Wang’s approach; use the same 

measurement of return to human capital. The measurement of income that she use is 

Labor income = the total personal income- dividend income 

Data is monthly frequency, which is taken from NIPA of the USA published by the 

BEA. Moreover, she uses an aggregate house price index to examine the impact of 

real estate risk on asset prices. The results indicate that including proxies for the 

return to real estate improve the performance of different empirical specifications of 

the CAPM. She uses two proxies for the return on the two types of real estate: 

residential real estate and commercial real estate.  

• To proxy for return to residential real estate, she applies the monthly 

percentage change in the median price of existing homes sold from the 
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National Association of Realtors (NAR) to proxy for the returns to residential 

real estate. Residential real estate assets have large impact on the household’s 

net worth and consumption possibilities. The total return to home ownership 

contains the price appreciation and the value of the consumption of house 

services.  The house price change does not take into account the consumption 

of housing services or implicit rent on owner occupied housing, as well as 

other house related costs and benefits. Kullmann assume that the implicit 

consumption benefit is a constant fraction of the return to home ownership. To 

examine this assumption, she tests whether the variance of real estate returns 

over time is driven primarily by house price changes. She also checks that 

most of the fluctuation in the total return to housing comes from house price 

changes and not from changes in the value of housing services received. 

• To proxy for return to commercial real estate, she uses the National 

Association of Real Estate Investment Trusts’ (NAREIT) equity REIT index 

(which is commonly used portfolio-based measure of commercial real estate 

returns). 

 

Davis and Heathcote (2005) measure house price changes from the different data 

source. The data are taken from the Freddie Mac Conventional Mortgage Home Price 

Index (CM HPI). This is a repeat sales index calculated using mortgage transaction 

data provided by Freddie Mac. They focus on individual one-family houses. 

Moreover not all single family residential properties are taken into account-only these 

that are financed by mortgages purchased by Freddie Mac. The index is published 

quarterly since 1970. However since 1975 exists the OFHEO Home Price Index 

which also by Fannie Mae. The OFHEO HPI is then superior to the CM HPI. They 

conduct a stochastic growth model to explain the dynamics of residential investment. 

They identify capital and labor as three different technologies: construction, 

manufactures and service and they index by the subscript b, m and s respectively. 

They assume that the representative sells household a constant acreage of new land 

suitable for residential development each period. The stochastic component of 

productivity shocks follows an autoregressive process: 

zt +1 = (log zb,t +1, log zm,t +1, log zs,t +1) = Bzt + ε t +1   (24) 

To derive the equilibrium changes in the price of land is the formula below: 
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E Ri,t δ0 + δvwRt

vw + δ premRt

prem + δ labor Rt

labor( )  = 1 (25) 

where: 

pdt - price of new structure purchased, if land’s share is zero pdt = pht . When land’s 

share is positive, house prices are increasing both in the price of structure and quantity 

of structure purchased. Their analysis results indicate that the volatile of residential 

investment is more than twice bigger as business investment, and non-residential 

investment co-move positively and the residential investment leads the business 

circle. One failure of this model is that it does not show the fact that residential 

investment leads GDP. Davids and Heathcote (2007) actually use the OFHEO Index 

to measure the returns on residential properties in US. They also show that the per 

capital income and interest rates systematically correlate with house prices only 

though their connection to the price of residential land. 

Qi and Wu (2006) create the return on housing by using the 1976 to 1997 waves of 

the Panel Study of Income Dynamics (PSID) Family Income Files and generate a time 

series of annual growth rates of housing value and take it as a measure of the return 

on residential properties. The housing value is based on the home equity and the home 

equity is defined as the net worth of self-reported market value of a house minus 

unpaid mortgage balance. Qi and Wu (2006) have only 21 observations on the return 

on housing, which is not a lot. Moreover, similar to Flavin and Yamashita (2002), the 

returns are at the household, individual level and not at the aggregate level and the 

two values may significantly differ from each other. 

 

Piazzasi, Schneider, Tuzel (2007) in their paper define housing both as an asset and 

consumption good. They use consumption-based asset pricing model (CCAPM) with 

housing factor to forecast excess return on stock. They define thee housing returns by 

the NIPA- based measurement. The real house return is given by the following 

formula: 

( ) ( ) 025.033.01
111

1 ×−−−
+

−−−

− δ
tt

h
t

tttt

h

t

hhp

hsqhp
  (26) 

Where:  

• t

h

t hp  is the real housing value, is taking from the NIPA Fixed Asset Table 2.1 

(line 59), called Current-Cost Net Stock of Private Fixed Assets, Equipment 

and Software, and Structures by Type. This housing value is calculated using 
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the current value method, which measure the current market value of the 

assets (as opposed to the historical value method, which measures the book 

value of assets). 

• To include the value of land, Piazzasi, Schneider, Tuzel assume that land 

prices are perfectly correlated with the price of structures. Using Census Data, 

they estimate that the value of the land is 36% of the total housing value. 

Therefore they adjust houses price to ( )36.01−h

tp . 

• tt sq  is dividends on housing which are the rent payments during that year. 

However, they do not specify which series from NIPA Table they are using. 

• Piazzasi, Schneider, Tuzel follow Flavin and Yamashita (2002) and assume 

that maintenance roughly equals depreciation, so that they subtract 11 −− t

h

t hpδ  

from dividends. Here they do not specify the value of δ . 

• They also subtract net property tax payments: ( ) ××− 025.033.01  11 −− t

h

t hp , 

where the marginal rate is about 33% and the property tax rate is 2.5% 

To compare the differences between Piazzasi, Schneider, Tuzel and Flavin and 

Yamashita: (i) Flavin and Yamashita calculate return on housing for individual level, 

as they use data from the Panel Study of Income Dynamics (PSID), this housing 

return is not accompanying rent. Piazzasi, Schneider, Tuzel and Flavin consider the 

rent data correspond to the house price series. They use aggregate housing returns. 

(ii)They also find out average returns on individual housing are more than three times 

as high as those on aggregate housing. The difference in standard deviation is even 

bigger: returns on individual houses are more than five times as volatile as return on 

the aggregate housing. (iii) Flavin and Yamashita use data range from 1968 to 1992 

period and Piazzasi, Schneider, Tuzel and Flavin and Yamashita use data range from 

year 1930 to 2000. 

Klinkowska (2008) construct the measures the return on human capital and residential 

properties. He introduces the dynamics into the asset pricing model CAPM and tests 

the CAPM model with these factors. The result shows that the CAPM augmented 

with human capital and housing can explain around 80% of the variation in the cross 

section of excess return. It works well than simple CAPM model. Fama-French three-

factor model is slightly less 79%. 
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Chapter 3 

NONLINEAR ASSET PRICING KERNEL WITH HUMAN 

CAPITAL AND HOUSING WEALTH 

 

Dittmar (2002) investigates the nonlinear pricing kernels in which the risk factor is 

endogenously determined. His analytical results show that the nonlinear pricing 

kernels perform significantly better than the linear model and multifactor models for 

the cross section of returns. This research modifies Dittmar’s nonlinear models by 

introducing owner-occupied housing. While Dittmar use the returns on the 20 

industry portfolios and human capital which is represented by labor income to obtain 

the empirical results of nonlinear pricing kernels. This paper also applies the 

intertemporal consumption based nonlinear asset pricing model. However, a unique 

feature of this model is that we consider owner-occupied housing into the analysis as 

the housing choice reflects household’s expectation about future asset returns, thus 

the housing factor contains information about financial asset returns. Moreover, 

purchasing a house reflect the householder’s income level or consumers’ confidence. 

The householder who has higher income that has potential to pay higher price for 

better property. At the same time, he also can get tax return benefit depends on how 

much he pays the income tax. So the housing has high relation with labor income. 

3.1 risk factors 

The model I in this research that is tested by three types of factors. The first is returns 

on market portfolio. Market portfolio is a portfolio consisting of a weighted sum of 

every asset in the market, with weights in the proportions that they exist in the market. 

The concept of a market portfolio plays an important role in many financial theories 

and models.  It is used to represent the world aggregate return in the world market. 

After Roll’s critique states that these proxies cannot provide an accurate 

representation of the entire market. Researchers have refined the definition of the total 

wealth, for instance human capital risk factor. 

 

The second is the returns on human capital. Human capital is the largest asset in any 

economy. It affects consumption decisions and the riskiness of assets and therefore 



 

their prices. However, it is a non-marketable asset and it’s not easy to define. Most 

economists use wages represents the return on human capital and the most commonly 

used formula is two month moving average of respective monthly income measures 

developed by Jagannathan and Wang (1996) (see equation (15)). Heaton and Lucas 

(2002) and Dittmar (2002) and Kullmann (2003) and Klinkowska (2008) follow 

Jagannathan and Wang ‘s measure of return on human capital that growth rates in per 

capita labor income, where labor income is defined as total personal income minus 

dividend income. But Klinkowska excludes the personal dividend income in his 

paper. The wage income accounts for most (more than 60%) of the labor income and 

proprietary income is the second largest component of labor income. No matter how 

you define the labor income, the results are similar stated by Fama and Schwert 

(1977). My approach also follows Jagannathan and Wang (1996). 

 

The third is the returns on housing wealth. Home equity constitutes roughly one fifth 

of total net wealth and the proportion of people own a home is much higher than the 

proportion of people own stocks. Heaton and Lucas (2000) use the survey of 

Consumer Finances to examine the cross-sectional variation in the composition of the 

household’s wealth. Their analysis shows that the real estate is an extremely large 

component of individuals’ financial wealth as well as total wealth. Housing as a 

component of household wealth that is indirect contributions to economic growth 

however, in recent years research, model estimates suggest that housing-related 

effects accounted for at least one quarter of the growth in personal consumption 

expenditures. For instance, consumers spend quicker in the gains of housing wealth 

rather than in the gains of stock wealth. That is because the consumers are cautions 

about making lifestyle changes based on near-term movements in stock prices that 

could well prove unsustainable. In addition the housing wealth composes a large 

proportion of national wealth that about six in ten homeowners had more home equity 

than stork wealth, the share was even larger among low-income homeowners reported 

by the Survey of Consumer Finances. The reason is that the housing wealth is far less 

volatile than the stock wealth that can rise or fall rapidly in one-day time, housing 

primary store of wealth for most households and is an important component of overall 

household wealth and the broader economy. Finally, housing is also a leveraged 

investment that even small percentage gains in home values can be large relative to 
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the down payment invested a home. So, investing on housing might become another 

resource of retirements saving.  

The real return of housing wealth is complicated and made more interesting. 

Kullmann (2003), that she examines the performance of the factor pricing model by 

introducing real estate risk as an additional risk factor. She differentiates between 

residential and commercial real estates. She uses two proxies for housing wealth.  

Kullmann finds that the inclusion of real estate risk can greatly improve the 

performance of linear factor pricing models in terms of the explanatory power for 

cross-sections of stock returns. However, she does not theoretical explain it. Also I 

think residential real estates are not highly related on home equity return of over all 

householders. So I don’t account for commercial real estates in return of housing 

wealth. 

Davis and Heathcote (2005,2006) and Klinkowska (2008) use the net change in the 

Office for Federal Housing Enterprise Oversight (OFHEO) House Price Index (HPI). 

The data measures the movement of single-family house price in the U.S. It reflects 

the cost of structure and land, and simultaneously controlling for the quality of the 

house. The structure can be priced as the replacement cost, after accounting for 

depreciation of the physical building. The land is shorthand for the size and 

attractiveness of the plot. In addition, the volatility in housing returns may due to the 

house price movements on the specific cities and regions, also discussed in Caplin et 

al. (1997). The H|PI is a weighted, repeat-sales index that it measures average price 

changes in repeat sales. The index is published quarterly since 1970. However, my 

sample period starts from 1963 and monthly frequency, thus I don’t use their 

measurement in my test. 

Another example of real estate risk as a common risk factor in asset pricing models by 

Flavin and Yamashita (2002), they estimate the risk and return to financial assets and 

housing, address the optimal portfolios issue by using mean-variance efficiency 

framework. Flavin and Yamashita calculate the return to owner-occupied housing at 

the household level. They consider the appreciation of the value of the house and the 

loss incurred on a home, like investing on a real estate involves maintenance 

expenditures, debt service and transaction costs to buy and sell. The calculations are 

under the assumption that the property taxes pass through into rents and they assume 

that the amount of spending on maintenance and repairs equals to the annual 

depreciation of the house. (see equation (23)). Piazzezi, Schneider and Yuzel follow 
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also Flavin and Yamashita (2002) that use the same method to calculate the real 

return of housing wealth but they consider the value of the land when calculate this 

real house price. In this paper, I use the same approach as Flavin and Takashi 

Yamashita (2002). One reason is that this return on housing is on individual level and 

the volatile is five times higher than the return on aggregate wealth. Second is the 

factor such as the depreciation rate that can be cancelled out in the calculation and it 

can reduce the computing error. (the calculation detail is in chapter 4) 

 

In the more recent paper, Case, Cotter and Gabriel (2010), examine the housing factor 

in CAPM framework. They find the basic housing CAPM results are robust to the 

inclusion of standard measures of risk and other housing market fundamentals. Their 

findings supports the application of a housing investment risk return framework in 

explanation of variation in time-varying US house price returns. They use quarterly 

house price indices from the Office of Federal Housing Enterprise Oversight 

(OFHEO) for the 1985-2007 timeframe. Our research goal is very similar. In this 

paper, as Case, Cotter and Gabriel, I model both market return and housing. I 

augment the Fama-French model by adding momentum factor. But I use different 

framework, my asset pricing model is non linear, because I focus on the higher order 

moment. Also I want to show the kurtosis has higher power to explain cross section of 

return than linear multifactor models. Dittmar (2002) use consumption based 

nonlinear asset pricing framework. I follow his model. Although my results are 

similar to the results in Dittmar (2002), some differences are needed to point out here. 

In his paper, his data is from July 1963 to Dec1995. While my models are tested by 

three time periods; first period is as same period as Dittmar’s, then I am able to 

compare the results to see whether our results are similar. The second time period 

covers the recession period from July 1963 to Dec 2009, as housing return is more 

volatile than before, it might become suitable data in examining the nonlinearities of 

the risk factors. The third period is from Jan1996 to Dec 2009. In Dittmar’s model, 

the two pricing factors are market return and human capital. While in my model the 

pricing factors are market portfolio return, human capital return and housing return. 

Further more, Dittmar focus on the preferences restricted pricing kernels and their 

nonlinearities driven out the importance of the factors in the linear multifactor 

models. I also establish the fitting results in this paper, but I focus more on the 

housing wealth contribution on cross section of aggregate returns. 
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3.2 Theoretical model set up 

In this section I introduce the nonlinear asset pricing model that used in Dittmar 

(2002) paper. In my research I also use this nonlinear model to conduct the empirical 

analysis. I describe the theory behind it and justify why I think this model may 

provide better results than linear single or multifactor models, such as CAPM and 

Fama French three factor model. 

The asset price equation that I use can understand as a state price weighted average of 

the payoffs in each state of nature that the ratio of state price multiplies the possibility 

for each state. The basic equation of asset pricing can be written in the term of 

conditional moments as follow: 

][ 1,1 ++= titit xmEp ,    (27) 

This formula represents the theory that there is the positive random discount factor 

that prices all the payoffs, if and only if this law of one price hold and no arbitrage 

exists. itp  is the price of an asset i at time t , 1, +tix  is the random payoff on asset i at 

time 1+t and 1+tm is the stochastic discount factor converts expected payoffs 

tomorrow into value today and always positive in reality.  

We use the utility function to capture what value of payoff the investor wants. The 

formula defined over current and future values of consumption: 

)],([)()( 11, ++ += tttt cuEcuccu β   (28) 

Where tc denotes consumption at time t . It’s random;  

We assume the investor is able to freely buy and sell asset i , at a price itp . The 

volume of the trade can be obtained by solving the problem 

max )]([)( 1++ tt cuEcu β ,   (29) 

let tc ξtt pe −= ; ξ111 +++ += ttt xec ; substitute the constraints into the objective, and 

setting the derivative with respect to ξ =0, then we get the first condition: 

])('[)(' 1,1 ++= tittit xcuEcup β ,   (30) 

or                                             
( )
( )

]
'

'
[ 1,

1
+

+= ti

t

t
it x

cu

cu
Ep β .   (31) 

Where )( 1
'

+tcu  is the marginal utility of consumption at time t; )(' tit cup  is the loss in 

utility if the investor buys another unit of the asset; 1,1)('[ ++ tit xcuE β ] is the increase in 
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utility the investor obtains from the extra payoff at 1+t . The investor continues to 

buy or sell the asset until the marginal loss equals the marginal gain. 

If the value of itp  is nonzero, we can also write the formula as 

)]1([1 1,1 ++ += tit RmE ,    (32) 

Where ittiti pxR 1,1, )1( ++ ≡+  is the nx1 vector of gross return. 1+tm = 
( )
( )t

t

cu

cu

'

' 1+β  

is the stochastic discount factor and generated from the consumption-based or 

utility-based asset pricing theory. β  is called the subjective discount factor. We 

could rewrite the marginal rate of substitution of
)(

)(
'

1
'

t

t

cu

cu + , 
)(

)(
'

1
'

t

t

Wu

Wu +  as the 

consumption and wealth are equivalent in this case. You will see this from is 

commonly used in my empirical work later. 

 

This asset pricing theory has been using and proving by many researchers. Leory 

(1973) and Lucas (1978) are the first one presenting Euler equation for asset pricing. 

Cox and Ross (1976) and Ross (1978) apply the Arrow-Debreu model of general 

equilibrium on option pricing. Harrison and Kreps (1979) provide this asset pricing 

model in continuous time. The first people who did the empirical study in discrete 

representation are Grossman and Shiller (1981). Hensen and Richard (1987) develop 

discrete time representation of this theory further, emphasizing the distinction 

between conditional and unconditional expectations. More recently, Hansen and 

Jagannathan (1991) use this expression to discuss the solution of an investor’s 

portfolio choice problem. Cochrane (1999) states the whole of asset pricing theory 

within this framework. Thus I continue to apply this theory on intertemporal 

consumption and portfolio choice problem in my research. 

                  

Next we discuss the pricing kernels. Many literature researches the standard 

choices for agent’s utility function U ⋅( ) and information for the investor’s risk 

aversion or the riskless rate is unrealistic (e.g., Dittmar (2002)). Thus, to 

mitigate this problem Dittmar (2002) express the pricing kernel as a nonlinear 

function of the return on aggregate wealth. He approximate the nonlinear 

pricing kernel using a Taylor series expansion: 
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 mt +1 = h0 + h1

U ''

U '
Rw,t +1 + h2

U '''

U '
Rw,t +1

2 + .....,    (33) 

Where 1, +twR  represents the return on end-of-period aggregate wealth. As show 

in equation (33), the marginal rate of substitution can be estimated by a 

polynomial of order n (includes an infinite number of terms). In practice, we 

can only take a finite number of terms, and there will be truncation error due to 

the contribution of the terms that are dropped. Dittmar (2002) let the preference 

theory to determine the order at which the expansion should be truncated. He 

stated that the preference theory is more powerful than let data determine the 

polynomial term of truncation in Bansal et al. (1993). Dittmar considers the 

four moments, which the fourth moment is cubic term. The reason he stated in 

his paper is that preference theory does not guide us in determining the sign of 

additional polynomial terms. Thus, under this assumption that the pricing 

kernel can be described by three terms (linear, quadratic and cubic) in aggregate 

wealth, it starts with lower order polynomial (linear pricing kernel) in aggregate 

wealth, imposing standard risk aversion on agents’ preferences and expand to 

nonlinear pricing kernels that quadratic and cubic polynomial in the return on 

aggregate wealth. The pricing kernel is decreasing in the linear term of the 

pricing kernel, increasing in the quadratic term and decreasing in the cubic 

term. Then he modifies this pricing kernel by imposing restrictions on the signs 

of the coefficients. Consequently, the pricing kernel that we investigate has 

form 

mt +1 = (δ '
0Zt )

2 − (δ1
' Zt )

2 Rw,t +1 + (δ2
' Zt )

2 Rw,t +1
2 − (δ3

' Zt )
2 R3

w,t +1   (34) 

Where 

δn
' Zt  is the value of coefficients corresponding to the thn order of the return on the 

market portfolio. δn
' is five elements vector. The number of element in δn

'  consist with 

a set of instrument Zt , Zt = {1,rmt ,dyt ysttbt } , where 1 indicates a vector of ones, rmt  is 

the excess return on the CRSP value-weighted index at time t, dyt  is the dividend 

yield on the CRSP value-weighted index at time t, yst  is the yield on the three-month 

Treasury bill in excess of the yield on the one month Treasury bill at time t, and tbt  is 

the return on a Treasury bill closest to one month to maturity at time t. 

Rw,t +1
n  is the return on the aggregate wealth with power of n. 
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3.3 Hansen-Jagannathan Estimator  

 
We follow Dittmar (2002) using the Hansen-Jagannathan estimator to estimate the 

parameter. There are three advantages to using H-J estimator rather than standard 

GMM estimator. First, the Hansen-Jagannathan approach provides better statistics on 

both nested models and nonnested models. Second, it can produce less volatile pricing 

errors in the calculation. Third, the results may be more robust. The orthogonally 

conditions are: 

[ ] tttt ZmZRE ⊗=⊗+ ++ 1))1(( 11           (35) 

Or                                        [ ] ]1[))1(( 11 tttt ZEmZRE ⊗=⊗+ ++     (36) 

Where tZ  is a vector of elements in the chose instrument and “ ⊗ ”denotes the 

Kronecker product operator. As Cochrane (1996) notes, equation (4) is an implication 

of (3), and if (4) holds for all choices of tZ , it implies equation (3). The vector of 

sample orthognality conditions can express as: 

[ ] 0)1)1(( 11 =⊗−+ ++ ttt ZmRE                                      (37) 

Or same as      Nt

T

t

t ZV
T

0'
1

)(g 
1

1T =⊗= 
=

+δ                                     (38) 

Where Vt +1 is the vector of errors. It generated from the Euler equation (32)  

Vt +1 = (1 + Rt +1)((Ztδ0 )2 − (Ztδ1)2 Rm,t +1 + (Ztδ2 )2 Rm,t +1
2 − (Ztδ3 )2 Rm,t +1

3 ) − 1N          (39) 

To solve equation (38), we rewrite it in the quadratic form and minimizing the 

quadratic form:   

 J(δ ) = gT(δ )'W HJ (δ )gT (δ )                                    (40) 

We obtain the HJ-distance is thus 

        DistT(δ ) = min gT(δ )'W HJ (δ )gT (δ )                         (41) 

Where  

W HJ = E ((1 + Rt +1) ⊗ Zt )((1 + Rt +1) ⊗ Zt )'[ ]                       (42) 

 

B Wald Tests 

The Wald statistic of the joint significance of the coefficients are calculated from   

    
)var(d

d
(n) Wald

n

2
n=  ,            n = 1,…, 5                        (43) 
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And )var(dn  is calculated from  
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We take derivatives to get  

          ( )tntn ZZd )var(||4)(d var '
n δ××=                               (45) 

Then we use the expression (16) as the covariance matrix for standard errors and 

apply it to delta method above for the parameters tests. 

       1''1' )()(
1

)(var −−= WDDWSWDDWDD
T

δ                    (46) 

Where D is the jacobian of the average moments with respect to the 

parameters, W is the Hansen and Jagannathan weighting matrix, S is the variance of 

the moments, and T is the sample size. 
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Chapter 4 

DATA AND INSTRUMENT STATISTICS 

 

4.1 Data Description 

 

Here I give the details of the datasets used in this study. Our data are monthly return 

data on 17 industry-sorted portfolios are Fama-French Portfolios, which are widely 

used in many empirical asset pricing literatures and taken from the Kenneth R. 

French’s webpage. I study and test the models across three time periods: first time 

period covered is from July 1963 to December 1995, which is the same period that 

Dittmar uses. This gives me 390 time series observations; Second time period covered 

from July 1963 to December 2009. This gives me 558 time series observations; Third 

time period coved from January 1996 to December 2009. This gives me 168 time 

series observations. They are described in Table I. 

 

In order to apply GMM estimation, here consider a set of instrument 

Zt = 1,rm,t ,dyt , yst , tbt{ }1, whose components also have predictable power. 1 denotes a 

vector of ones.  rmt  is the excess return on the CRSP (centre for research in Security 

Prices) value-weighted index at time t, dyt  is the dividend yield on the CRSP (centre 

for research in Security Prices)value-weighted index at time t, yst  is the yield on the 

three-month Treasury bill in excess of the yield on the one-month Treasury bill at 

time t, and tbt  is the return on a Treasury bill closest to one month to maturity time t. 

The excess return on the value-weighted CRSP (centre for research in Security Prices) 

index rmt and return on a Treasury bill closest to one month to maturity ttb  are taken 

from Fama factors file. Dividend yield tdy  is obtained from stock market data created 

by Princeton University Press. Yield on the Three month Treasury bill in excess of the 

yield on the one-month Treasury bill tys  are calculated by Three month Treasury bill 

minus risk free rate. In addition the group of factors in Fama-French four-factor 


Instruments rm,t ,dyt , yst ,tbt  are consistent with those adopted by Dittmar (2002). 



 

model used in testing asset are Rm − Rf , RSMB , RHML , RMom and are taken from Kenneth 

R. French website. Rm − Rf  is the return on market portfolios. RSMB  is the return on 

the portfolio of long small stock and short big stock, while RHML  is the return on the 

portfolio of long value stock and short growth stock. Moreover, RMom  is the average 

of the returns on two (big and small) high prior return portfolios minus the average of 

the returns on two low prior return portfolios, which formed using independent sorts  

on size and prior return of NYSE, AMEX, and NASDAQ stocks. Big means a firm is 

above the median market cap on the NYSE at the end of the previous month; Small 

firms are below the median NYSE market cap.  

 

4.2 Other Data 

 

A commonly used measure of the return on market portfolio is the return on a value-

weighted index, which includes all the assets traded in NYSE, AMEX, and 

NASDAQ. 

The data used to compute the labor return series is taken from DataStream. Follows 

Jagannathan and Wang (1996), we define the return on human capital as a two-month 

moving average of the growth rate in labor income.  

Rl ,t +1 =
Lt + Lt −1

Lt −1 + Lt −2

− 1  

Where Lt  is the labor income is computed as the per capita difference between total 

personal income and dividend income. The two month moving average of per capita 

labor income growth is used to reduce the influence of measurement error. 

 

The data used to measure the house price index is calculated from the median 

monthly figures from US census. I follow Flavin and Takashi Yamashita (2002) and 

define the return of house price index: 

1

11
,

025.033.0

−

−− −×++
=

t

ttt
tH

P

PrPP
R                                                   

Here the short interest r , is monthly interest rate. It obtains from a fixed 5 percent 

annual rate. 0.33 025.0×  is the income tax payment, where 0.33 is fixed marginal 

income tax rate and 0.025 is property tax rate. 
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4.3 Summary Statistics  

 

Table 1 is the sample statistics for the returns on 17 industry portfolios and the 

components of the market proxy. Panel A provides mean returns for the 17 industry 

portfolios and Panel B shows the standard deviation of the portfolios. The average 

returns over the sample period from July 1963 to December 1995 for the payoffs 

range from 85 basis points per month for steel industry to 128 basis points per month 

for the food industry. The average returns over the sample period from July 1963 to 

December 2009 for the payoffs range from 80 basis points per month for Durable 

good industry to 125 basis points per month for the mines industry. The average 

returns over the sample period from January 1996 to December 2009 for the payoffs 

range from 40 basis points per month for durable industry to 152 basis points per 

month for the mines industry and the next large return industry is oil, which is 116 

basis points per month.  As shown in the table, the average return for the row material 

such as oil, steel and mines are getting bigger in the most recent sample period.  

 

 

Table 1 

Summary Statistics: Industry Portfolio 

Table 1 presents statistics for monthly means and standard deviations of the payoffs 

on 17 industry-sorted portfolios that used in this paper. The returns on 17 industry-

sorted portfolios are equally weighted and the data cover three different sample 

periods: July 1963, through Dec 1995; July 1963, through Dec 2009; January 1996, 

through Dec 2009. Panel A and B presents statistics for the monthly returns on the 17 

sized-sorted portfolios. 

 

 

 

 

 

 

 



 

 

 

 

                                                Panel A: Mean Returns 

Industry     July 1963-Dec 1995       July 1963-Dec 2009     Jan 1996-Dec 2009 

Food      0.0123  0.0108   0.0073 

Mines      0.0106  0.0117   0.0143 

Oil      0.0109  0.0109   0.0110 

Cloths      0.0114  0.0099   0.0072  

Durbl      0.0092  0.0074   0.0033 

Chemicals     0.0098  0.0091   0.0075 

Cnsum      0.0118             0.0107   0.0082  

Construction     0.0102  0.0092   0.0070 

Steel      0.0078  0.0081   0.0087 

Fabricated Metals    0.0101  0.0092   0.0071 

Machinery     0.0097  0.0098   0.0100 

Autos      0.0093  0.0082   0.0058 

Transport Equipment    0.0106  0.0097   0.0076 

Utilities     0.0085  0.0082   0.0075 

Retail      0.0107  0.0101   0.0086 

Finance     0.0107  0.0094   0.0065 

Other      0.0098  0.0083   0.0047 
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Table 1-Continued 

 

                            Panel B: Standard Deviations 

Industry     July 1963-Dec 1995       July 1963-Dec 2009     Jan 1996-Dec 2009 

Food      0.0451  0.0444   0.0426  

Mines      0.0657  0.0731   0.0881  

Oil      0.0518  0.0538   0.0582  

Cloths      0.0610  0.0623   0.0655  

Durbl      0.0526  0.0559   0.0627 

Chemicals     0.0529  0.0557   0.0618  

Cnsum      0.0479  0.0470   0.0448 

Construction     0.0589  0.0602   0.0634  

Steel      0.0614  0.0737   0.0966  

Fabricated Metals    0.0503  0.0535   0.0602 

Machinery     0.0540  0.0656   0.0869 

Autos      0.0583  0.0630   0.0729 

Transport Equipment    0.0595  0.0583   0.0557 

Utilities     0.0391  0.0412   0.0457 

Retail      0.0561  0.0545   0.0506 

Finance     0.0518  0.0548   0.0614 

Other      0.0449  0.0489   0.0572 
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Table 2 

Summary Statistics: Instruments 

Table II displays a summary of the predictive power of the instrument variables, 

{ }ttttmt tbysdyrZ ,,,,= , Where tmr ,  is the excess return on the CRSP value weighted 

index at time t, tys is the yield on the three-month Treasury bill in excess of the yield 

on the one month Treasury bill at time t, and ttb is the return on a Treasury bill closest 

to one month to maturity at time t. The predictive power of the instruments is assessed 

by the linear projection 

101, ++ ++= ttti udZdR  

The column labelled 2
4χ presents Newey and West (1987a) Wald tests of the 

hypothesis 

0:0 =dH  

with p-values in parentheses. The statistics are computed using the Newey and West 

(1987b) heteroskedasticity and autocorrelation-consistent covariance matrix. 

 

Industry            July 1963-Dec 1995     July 1963-Dec 2009       Jan 1996-Dec 2009 

                                      2
4χ                                   2

4χ                                 2
4χ  

Food         10.065       11.201     8.135 

          (0.039)      (0.024)     (0.086)  

Mines             19.469       19.897     5.948 

          (0.000)      (0.001)     (0.203)  

Oil          9.534        2.793     1.4175 

          (0.049)       (0.593)     (0.841) 

Cloths            24.287       26.099      7.4259  

            (0.000)       (0.000)     (0.115) 

Durbl            12.531       22.171     13.504 

              (0.013)       (0.000)     (0.009)  

Chemicals            9.280       11.563     5.612 

             (0.054)       (0.021)     (0.230)  

Cnsum             5.883       7.541     8.250 

             (0.208)       (0.110)     (0.082)  
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Table 2- Continued 

 

Industry            July 1963-Dec 1995     July 1963-Dec 2009       Jan 1996-Dec 2009 

                                      2
4χ                                   2

4χ                                 2
4χ  

 

Construction     19.808      15.861     9.960                             

(0.000)        (0.003)    (0.041)  

Steel              5.455       6.825     5.540 

              (0.243)       (0.145)     (0.236) 

Fabricated Metals      21.204                  24.334     12.796 

                                   (0.000)       (0.000)     (0.012) 

Machinery            24.410       16.803     6.714 

                       (0.000)       (0.002)     (0.151) 

Cars             19.349       35.647     19.052 

                                   (0.000)       (0.000)     (0.000) 

Transport Equipment 23.349       20.447     10.882 

                                    (0.000)       (0.000)     (0.027) 

Utilities  13.879       7.273     5.292 

                         (0.007)       (0.122)     (0.258) 

Retail   12.921       12.315     7.875 

                                    (0.011)       (0.015)     (0.096) 

Finance  11.767       9.861     7.440 

                                    (0.019)       (0.043)     (0.114) 

Other   15.206       11.958     12.507 

                          (0.004)      (0.018)     (0.013) 

 

Table 2 is the summary statistics for the predictive power of the instrument variables 

in three sample periods. It is  

Ri,t +1 = b 'Zt + ut +1  

where Ri,t +1  is the return of the 17 industry portfolios.  

The results obtained from first sample period July 1963:December 1995 and the 

second sample period July 1963: December 2009 is consistent with those reported by 
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Dittmar (2002), which the information variables serve as good instruments for the 

payoffs. The P-value of Chi Square test in sample period January 1996:December 

2009 is large, it might due to the small sample size. 

 

Picture 1- represents the time series plot for the return on labor income in full 

sample period. The plot uses monthly data from July 1963 to Dec 2009.  

 

 

Picture 2- represents the time series plot for change rates on housing price in full 

sample period from July 1963 to Dec 2009. The house price variations are roughly 

around 20%. The recent data from 1996 to 2009 shows after 2005 the house price 

started to drop until early 2009. This is the time when the US housing market 

collapse. 
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Chapter 5 

EMPIRICAL ANALYSIS 

 

In this section, I use different wealth proxies across three sample periods in making 

comparisons among these models and the sample periods. The sample periods are: 

Dittmar’s period (from July 1963 to Dec 1995), the full sample (from July 1963 to 

Dec 2009), and the period after Dittmar (from Jan 1996 to Dec 2009). I run these 

sample periods and add in housing wealth risk factor to see whether the housing 

wealth factor has significant impact on the return to aggregate wealth. Then, I make 

comparison with the results in Dittmar (2002). I set up the tests on: asset pricing 

kernel with human capital only; asset pricing kernel with housing wealth only; asset 

pricing kernel with human capital and housing wealth included. In addition, I test 

Fama-French four-factor model by adding in momentum factor to Fama-French three-

factor model. I will explain more details later. This study not only confirmed a part of 

Dittmar’s report, it also furthered the knowledge on the factor that impact the model, 

such as us housing wealth contributes to aggregate wealth and momentum factor 

effects the test result of Fama-French model. 

 

5.1 Comparison of different wealth proxies- sample period from Jul 
1963 to Dec 1995 

 

5.1.A Model Specification Tests Using Different Wealth Proxies 

5.1.A.1 Specification Tests on Polynomial Pricing Kernels with Human Capital 
Excluded 

 
Using return data on the 17 industry portfolios described earlier, I first examine the 

linear model specification, when the measure of aggregate wealth does not include 

human capital: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm ,t +1     (47) 
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Table 3 

Specification Tests: Polynomial Pricing Kernels with Human Capital 

Excluded 

Table 3 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios 

augmented by the return on a one month Treasury bill.         

 

    Panel B: Quadratic 

 

 

 

 

 

                            tZd 0)(                 tZd 1)(               tZd 2)(            tZd 3)(                 Dist 

                                                      Panel A: Linear 

Coefficient           1.081                -4.158                                                                  0.6472 

P-Value               (0.000)               (0.000) 

Coefficient           1.026               -4.686               28.644                                         0.6406 

P-Value                (0.000)             (0.000)            (0.040) 

                                                       Panel C: Cubic 

Coefficient           1.019                -2.330               13.376              -13.619              0.6406 

P-Value                (0.000)              (0.002)            (0.044)              (0.284) 



 

And I assume the proxy for the return on the wealth portfolio is the return on the 

value weighted industry portfolio (see Jagannathan and Wang (1996)),  

Rw,t +1 = θ0 + θ1Rm,t +1      (48) 

The results of specification tests are presented in Panel A of Table 3. As show in the 

table, Panel A: the linear term is statistically significant at the 5% level for this data 

set, suggesting that Rm,t +1  play a significant role in constructing a stochastic discount 

factor in this study. In the GMM test that uses the Hansen-Jagannathan weighting 

matrix, the estimated distance is 0.6472. 

 

Second, I add in the quadratic term and use the 17-industry portfolio return as a proxy 

for the market return. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 + (Ztδ2 )2 Rm,t +1
2   (49) 

The results of specification tests are presented in Panel B of Table 3. As show in the 

table, Panel B: the quadratic term is statistically significant at the 5% level for this 

data set, suggesting that Rm,t +1  play a significant role in constructing a stochastic 

discount factor in this study. In the GMM test that uses the Hansen-Jagannathan 

weighting matrix, the estimated distance is 0.6406, indicating that distance has 

improvement from linear specification to a nonlinear specification. The quadratic 

pricing kernel reduces the distance measure from 0.6472 to 0.6406. That means the 

quadratic model specification reduce the pricing errors. 

 

I now add in the cubic term and use the 17-industry portfolio return as a proxy for the 

market return. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 + (Ztδ2 )2 Rm,t +1
2 − (Ztδ3 )2 Rm,t +1

3   (50) 

The results of specification tests are presented in Panel C of Table III. As show in the 

table, Panel C: The cubic term does not improve the performance of the pricing 

kernel. The p-value for the tests of significance of the coefficient of the cubic term is 

not significant (p-value 0.469). This result indicates that In the GMM test that uses 

the Hansen-Jagannathan weighting matrix, the estimated distance is 0.6406, 

indicating that distance does not have improvement from Quadratic to Cubic pricing 

kernels. These results are consistent with Dittmar (2002).  
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Table 4 

Specification Tests: Polynomial Pricing Kernels with Human Capital 

Included Only  

 

Table 4 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios 

augmented by the return on a one month Treasury bill.         

 

          Panel B: Quadratic 

 

 

 

 

                     tZd 0)(     vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(          Dist 

                                                      Panel A: Linear 

Coefficient     1.426      -3.775      -36.419                                                                     0.6187 

P-Value          (0.000)    (0.001)     (0.004) 

Coefficient     1.251       -5.473    -22.448     51.400    1396.395                                  0.5839                         

P-Value          (0.000)     (0.001)   (0.038)    (0.022)    (0.051) 

                                                      Panel C: Cubic 

Coefficient    1.251        -5.475    -22.384    51.424    1393.272   -0.582    -1.750        0.5839 

P-Value        (0.000)    (0.005)    (0.055)   (0.026)     (0.086)     (0.315)  (0.469) 
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5.1.A.2 Specification Tests on Polynomial Pricing Kernels with Human Capital 
Included Only 

 
Here, I analyze the impact of incorporating a measure of human capital in the return 

on aggregate wealth. And we assume the proxy for the return on the wealth portfolio 

is the return on the value weighted industry portfolio and labor income (see Dittmar 

(2002)),  

Rw,t +1 = θ0 + θ1Rm,t +1 + θ2Rl ,t +1     (51) 

First, I examine the linear model specification, when the measure of aggregate wealth 

with human capital included: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl,t +1     (52) 

The results of specification tests are presented in Panel A of Table 4. As show in the 

table, Panel A: The distance measure of the linear pricing kernel falls to 0.6187 and 

linear kernel without human capital is 0.6472, approximately dropped 2.85 percent. 

This result indicates that the human capital improves the performance of the linear 

pricing kernel (conditional CAPM). These results are consistent with Jagannathan and 

Wang (1996), who use human capital test conditional CAPM model, and Dittmar’s 

result. 

 

Second, I add in the quadratic term and use the 17-industry portfolio return as a proxy 

for the market return and use return of labor income as a proxy for human capital. 

This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2     (53) 

The results of specification tests are presented in Panel B of Table 4. As show in the 

table, Panel B: In the GMM test that uses the Hansen-Jagannathan weighting matrix, 

the estimated distance drops sharply to 0.5839, indicating that the quadratic 

specification of the pricing kernel has further improvement in the distance measure of 

3.48 percent relative to the linear kernel with human capital. In addition, the pricing 

errors of nonlinear model specification are not significantly different from zero. Both 

quadratic term on Rm,t +1  and Rl ,t +1  are significant in GMM test. Thus, the proxy of 

return on human capital and its higher order moment has a dramatic impact on the fit 
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of the pricing kernel. However, the coefficients are quite large in lZd 2)(  term. It 

might be driven by the size of the higher orders of the return on labor income.  

 

Last, I add in the cubic term and use the 17-industry portfolio return as a proxy for the 

market return and use return of labor income as a proxy for human capital. This gives 

the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl,t +1  

                          +(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2  

−(Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rl,t +1

3     (54) 

The results of specification tests are presented in Panel C of Table 4. As show in the 

table, Panel C: In the GMM test that uses the Hansen-Jagannathan weighting matrix, 

the estimated distance is 0.5839, indicating that distance does not have improvement 

from Quadratic to Cubic pricing kernels with human capital. This result is not 

consistent with those obtained from Dittmar (2002), as his result shows that there is 

further improvement in distance measure from Quadratic to Cubic.  

 

The results of Table 3 and 4 suggest that human capital is important proxy in 

estimating the pricing model. Model specifications tests show that the nonlinear 

model with human capital perform well in pricing the cross section of industry-sorted 

returns. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 5 

Specification Tests: Polynomial Pricing Kernels with Housing Wealth 

Included Only 

 

Table 5 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios 

augmented by the return on a one month Treasury bill.         

 

          Panel B: Quadratic 

 
 

 

 

                     tZd 0)(      vwZd 1)(     hZd 1)(     vwZd 2)(    hZd 2)(     vwZd 3)(    hZd 3)(          Dist 

                                                      Panel A: Linear 

Coefficient    1.104     -4.420      -2.134                                                                         0.6446 

P-Value        (0.000)   (0.001)     (0.027) 

Coefficient    0.909       -5.133      -1.443     31.630        94.409                                    0.6303                            

P-Value        (0.000)     (0.000)    (0.041)    (0.036)       (0.014) 

                                                      Panel C: Cubic 

Coefficient    0.856      -4.907      -0.198      33.803    131.608    55.779   -844.475     0.6269 

P-Value        (0.000)    (0.001)     (0.120)    (0.055)     (0.012)    (0.116)    (0.044) 
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5.1.A.3 Specification Tests on Polynomial Pricing Kernels with Housing Wealth 
Included Only 

 

I now analyze the impact of incorporating a measure of housing wealth in the return 

on aggregate wealth. I assume that the proxy for the return on the wealth portfolio is 

the return on the value weighted industry portfolio, and housing wealth. 

1,21,101, +++ ++= thtmtW RRR θθθ    (55) 

First, I examine the linear model specification, when the measure of aggregate wealth 

with housing factor only: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm ,t +1 − (Ztδ1)2 Rh,t +1   (56) 

The results of specification tests are presented in Panel A of Table 5. As show in the 

table, Panel A: The distance measures of the model specification test has improved 

from those obtained in Table 3. The coefficient corresponding to the growth rate of 

housing wealth is significant (p-value is 0.027) in linear model specification. 

However, the distance measure of linear model specification is larger than the 

nonlinear model specification tests below. 

  

I add in the quadratic term. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm ,t +1 − (Ztδ1)2 Rh,t +1  

+ (Ztδ2 )2 Rm ,t +1
2 + (Ztδ2 )2 Rh,t +1

2     (57) 

The results of specification tests are presented in Panel B of Table 5. As show in the 

table, Panel B: The quadratic pricing kernel reduces the distance measure from 0.6446 

to 0.6303 relative to linear pricing model. The quadratic term is statistically 

significant at the 5% level.  Both results indicate that the quadratic return on housing 

wealth contribute significantly to the fit of the pricing model. 

 

By  adding in the cubic term. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rh,t +1  

+ (Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rh,t +1

2  

− (Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rh,t +1

3    (58) 

The results of specification tests are presented in Panel C of Table 5. As show in the 

table, Panel C:  the performance of the pricing kernel has further improvement by the 
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cubic term, as the distance measure falls to 0.6269. Moreover, the housing wealth 

does improve the fitting of the pricing model and cubic return on housing wealth 

contribute significantly to the improvement in distance measure (the p-value of 

d3h term is 0.044). The coefficients corresponding to the return rate Rh,t +1
2  and 

Rh,t +1
3 are significant in model specification test. These results suggest that the housing 

wealth factor plays a significant role in this study. It has a significant impact on the fit 

of the pricing kernel. 

 

In Table 5, all three pricing kernels improve significantly relative to the case which 

housing wealth is not included in the measure of aggregate wealth. In table 4 and 5, 

we analyze human capital and housing wealth included in the measure of aggregate 

wealth individually with different model specification tests. The outcomes of the 

model specification tests suggest both proxies are important. Next, we analyze the 

impact of both return on human capital and housing wealth in the measure of 

aggregate wealth.  
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Table 6 

Specification Tests: Polynomial Pricing Kernels with Human Capital and Housing Wealth Included  

 

                       tZd 0)(       vwZd 1)(       lZd 1)(         hZd 1)(      vwZd 2)(       lZd 2)(        hZd 2)(        vwZd 3)(      lZd 3)(         hZd 3)(              Dist 

                                                                                                   Panel A: Linear 

Coefficient      1.460        -3.989       -38.819        -2.081                                                                                                                           0.6175 

P-Value          (0.000)      (0.001)        (0.005)        (0.031) 

Panel B: Quadratic 

Coefficient      1.113       -5.958       -21.262         -2.775      45.327       1183.006     108.094                                                                 0.5705 

P-Value          (0.000)     (0.001)       (0.039)        (0.038)       (0.034)       (0.074)       (0.012) 

                                                                                                   Panel C: Cubic  

Coefficient      1.116       -5.692       -24.879         -2.065      46.725       1006.232    118.488      -43.612      -48.825      -187.904           0.5685 

P-Value          (0.000)     (0.001)      (0.008)         (0.049)       (0.014)       (0.035)      (0.008)       (0.075)       (0.000)       (0.105) 
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5.1.A.4 Specification Tests on Polynomial Pricing Kernels with Human Capital and 
Housing Wealth Included 

 

Now, I consider the main model developed in this paper: first, I examine linear 
specification, 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1 − (Ztδ1)2 Rh,t +1   (59) 

 
And I assume the proxy for the return on the wealth portfolio is sum of the return on 
the value weighted industry portfolio, return on human capital and return on housing 
wealth. That is, 

1,31,21,101, ++++ +++= thtltmtW RRRR θθθθ    (60) 

 
The results of specification tests are presented in Table 6. As show in the table, Panel 

A: The estimated coefficients of Rm,t +1 (p-value 0.1%), Rl ,t +1 (p-value 0.5%), Rh,t +1  (p-

value 3.1%), is at significantly level for this data set.  

Next, I add in the quadratic term. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm ,t +1
2 + (Ztδ2 )2 Rl ,t +1

2 + (Ztδ1)2 R2
h,t +1      (61) 

The results of specification tests are presented in Panel B of Table 6. As show in the 

table, Panel B: The GMM test that uses the Hansen-Jagannathan weighting matrix, 

the estimated distance is 0.5705. It has further improvement compare to those results 

that estimated in the previous table III, IV and V.  The quadratic term of housing 

wealth factor perform significantly to the fit of the pricing kernel, with p-value 0.012. 

 

We now add in the cubic term. This gives the following specification: 

mt +1 = (Ztδ0 )2 − (Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl ,t +1

2 + (Ztδ1)2 R2
h,t +1  

−(Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rl ,t +1

3 − (Ztδ1)2 R3
h,t +1  (62) 

The results of specification tests are presented in Panel C of Table 6.  As show in the 

table, Panel C: The results suggesting that incorporating the quadratic return on 

wealth term is statistically significant at 5% level, as indicated by the test of the 

significance of the d2  terms (p-values 0.014, 0.035 and 0.008).  In the GMM test that 

uses the Hansen-Jagannathan weighting matrix, the cubic pricing kernel reduces the 



 

distance measure from 0.5705 to 0.5685.  These results suggest that nonlinear 

function of housing wealth risk factor has impact on the fit of the pricing kernel. 

Furthermore, the performance of the nonlinear asset-pricing kernel is further 

enhanced by higher order of return on human capital and higher order of return on 

housing wealth. Compare to Dittmar’s model, our model provides a better cross 

sectional fit for industry-sorted portfolio by adding in housing wealth factor. 

 

 

5.1.B Multifactor Alternative 

 

In this section I investigate the ability of the Fama-French factors to price the cross 

section of equity returns. I compare Multifactor Fama-French model and Fama-

French four-factor model (includes MRP, SMB, HML and momentum factor) with 

polynomial pricing kernel incorporating with human capital (see Table 8), housing 

capital (see Table 9) and human, housing capital (see Table 10).  

 

The momentum factor is the empirically observed tendency for rising asset prices 

further. This strategy assume that the past performance effect the futures performance 

such as the stocks with strong performance in the past will continue outperform with 

poor past performance in the next period. The investors who use this trading strategy 

will buy the stocks which are perform good in the past and sell the stocks with poor 

performance in the past. Carhart (1997) includes a momentum factor constructed by 

the month return difference between the returns on the high and low prior return 

portfolios, to capture the cross-sectional return patterns. Case, Cotter and Gabriel 

(2010) examine momentum factor in the housing asset pricing model as momentum 

trading has been found to have a positive influence on future real estate investment 

return. Here, I add momentum factor in this multifactor-pricing kernel as this factor 

has significant explanatory power for equity returns. 
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Table 7 

                           Specification Tests: Fama-French Pricing Kernel with Human capital Included 

Table 7 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 1995, augmented by the return on a one month Treasury bill. 

                   tZd 0)(       mrpZd )(      smbZd )(       hmlZd )(       vwZd 1)(       lZd 1)(       vwZd 2)(      lZd 2)(      vwZd 3)(     lZd 3)(            Dist 

                                                                  Panel A: Fama-French Factors Only 

Coefficient   1.185        -4.455        -1.902          -2.027                                                                                                                    0.5680 

P-Value      (0.000)       (0.000)       (0.029)        (0.024)  

                                                                 Panel B: Quadratic Augmented by Fama-French Factors 

Coefficient   1.397                           -1.173         -0.816       -5.673      - 16.016       20.273      552.593                                           0.5187 

P-Value        (0.000)                        (0.055)        (0.065)      (0.000)       (0.019)      (0.038)       (0.054)  

                                                                  Panel C: Cubic Augmented by Fama-French Factors 

Coefficient   1.402                           1.254          -1.075          -4.817         -16.745      19.292     550.187   -146.687    -177.846     0.5159    

P-Value        (0.000)                       (0.038)        (0.043)       (0.005)        (0.065)      (0.041)       (0.010)       (0.046)     (0.000) 



 

5.1.B.1 Specification Tests on Fama-French Pricing Kernel with Human capital 
Included 

 

To do this, I begin with Fama-French three-factor model.  

mt +1
FF = (Ztδ0 )2 + (ZtδMRP )RMRP,t +1 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML ,t +1 (63) 

The results for the estimation of the Fama-French model showed in Panel A of Table 

7.  The results show that three Fama-French factors are statistically significant. 

However, the distance measure of the Fama-French model is higher than quadratic 

pricing kernel and cubic pricing kernel.  Thus, the results suggest that the nonlinear 

model perform better than Fama-French three-factor model in explaining the cross 

section of industry returns. 

 

To further investigate the ability of the Fama-French factors. We consider the 

following nonlinear models, 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML ,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2   (64) 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML ,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2  

−(Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rl,t +1

3   (65) 

The results for the estimation of the polynomial model augmented SMB, HML and 

human capital are given in Table 7 Panel B and Panel C.  SMB is the return on the 

portfolio of long small stock and short big stock, while HML is the return on the 

portfolio of long value stock and short growth stock. The value of coefficients dn , 

n = 1,2,3  corresponds to the nth  order of time series regression of asset i on market 

return, SMB, HML and human capital. In Panel B: Quadratic Augmented by Fama-

French Factors, distance measure falls from 0.5680 to 0.5187, indicating the quadratic 

pricing kernel perform better than Fama-French model. However, neither the 

quadratic term in RHML,t +1  and RSMB,t +1  are significantly different than zero. In 

contrast, when Fama-French factors are included in the cubic pricing kernel (showed 
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in Panel C) the SMB factor, HML factor and human capital are significant. Cubic 

pricing kernel reduces the distance measure from 0.5187 to 0.5159.  In addition, once 

this model added in Fama-French HML and SMB factors, the coefficient on return to 

human capital become significant relative to the models in Table 4.  
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Table 8 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Human Capital Included 

Table 8 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) four-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 1995, augmented by the return on a one month Treasury bill. 

                      tZd 0)(     mrpZd )(  smbZd )(     hmlZd )(     momZd )(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(       vwZd 3)(     lZd 3)(                 Dist 

                                                                 Panel A: Fama-French with Momentum factor 

Coefficient   1.298     -5.110     -2.389       -5.236       -10.377                                                                                                                     0.5299 

P-Value       (0.000)   (0.028)    (0.001)      (0.004)      (0.000) 

                                                                  Panel B: Quadratic Augmented by Fama-French Four Factors 

Coefficient   1.155                   -0.481        -4.658       -11.296       -5.640       -16.491    3.750      882.118                                                 0.4720 

P-Value       (0.000)                 (0.106)      (0.011)       (0.000)       (0.001)      (0.050)     (0.116)    (0.085) 

                                                                  Panel C: Cubic Augmented by Fama-French Four Factors 

Coefficient   1.542                    0.105        -5.250       -12.031       -5.629       -17.051    3.948   1048.964     -7.534        18.269                0.4709 

P-Value       (0.000)                 (0.166)      (0.004)       (0.000)       (0.001)      (0.019)    (0.107)    (0.029)     (0.181)       (0.000) 
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5.1.B.2 Specification Tests on Fama-French Pricing Kernel with Momentum Factor 
and Human Capital Included 

 

In table 8 Panel A: Fama-French with Momentum factor. The model as 

mt +1
FF = (Ztδ0 )2 + (ZtδMRP )RMRP,t +1 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML,t +1 + (ZtδMOM )RMom,t +1

          (66) 

The results show that the Fama-French factors continuously significant. The p-value 

for the coefficient of momentum factor is 0.000, indicating RMom,t +1  is significant 

determinant of the cross section of returns. The distance measure of the Fama-French 

four-factor model falls to 0.5299 relative to the Fama-French three-factor model. 

However, it is still higher than that of either quadratic pricing kernel and cubic pricing 

kernel. 

In Panel B: Quadratic Augmented by Fama-French Four Factors. We test the model, 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2 (67) 

In the GMM test that uses the Hansen-Jagannathan weighting matrix, the estimated 

distance drops sharply to 0.4720. Once the momentum factor is added, the coefficient 

on equity return becomes insignificant in either quadratic term or cubic term.  

In Panel C: Cubic Augmented by Fama-French Four Factors 

                   mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rl,t +1

2  

−(Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rl,t +1

3 (68) 

The momentum factor is continuously significant with p-value 0.000. However, the 

coefficient on equity return becomes insignificant in cubic model with Fama-French 

HML and SMB factors (see Table 4). Overall results confirmed the findings in 

Carhart (1997) and Case, Cotter and Gabriel (2010). 
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Table 9 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Housing Wealth Included 

Table 9 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 1995, augmented by the return on a one month Treasury bill. 

 

                    tZd 0)(    smbZd )(   hmlZd )(   momZd )(    vwZd 1)(     hZd 1)(   vwZd 2)(    hZd 2)(   vwZd 3)(   hZd 3)(                                      Dist 

                                                                  Panel A: Quadratic Augmented by Fama-French Factors 

Coefficient   1.288     -1.772     -4.112     -9.204     -4.833       -0.528      6.442      31.549                                                                  0.4868 

P-Value       (0.000)   (0.004)    (0.100)    (0.024)   (0.007)     (0.019)   (0.406)    (0.146)  

                                                                  Panel B : Cubic Augmented by Fama-French Factors 

Coefficient   1.212      -2.610    -6.341    -10.625    -5.992      -0.326      20.578    120.940  -381.671  -1127.912                               0.4142 

P-Value       (0.000)    (0.042)   (0.010)   (0.003)    (0.012)     (0.098)    (0.089)     (0.015)   (0.045)     (0.024)   

 

 



 

5.1.B.3 Specification Tests on Fama-French Pricing Kernel with Momentum Factor 
and Housing Wealth Included 

 

Here I study the performance of Augmented Fama-French Model including housing 

as a risky asset class. The cross-sectional implications of the models are: 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rh,t +1

2 (69) 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm,t +1
2 + (Ztδ2 )2 Rh,t +1

2  

−(Ztδ2 )2 Rm,t +1
3 − (Ztδ2 )2 Rh,t +1

3 (70) 

 

The panel A of Table 9 shows the estimates for model (69). The quadratic term of 

return to equity and housing wealth are insignificant while the model add in Fama-

French SMB and HML factors. In contrast, the cubic terms become significant (see 

Panel B of Table 9).  
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Table 10 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Human Capital and Housing                           

Wealth Included 

Table 10 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 1995, augmented by the return on a one month Treasury bill. 

                     tZd 0)(    smbZd )(   hmlZd )(  momZd )(    vwZd 1)(   lZd 1)(    hZd 1)(   vwZd 2)(    lZd 2)(    hZd 2)(   vwZd 3)(  lZd 3)(  hZd 3)(        Dist 

                                                                  Panel A: Quadratic Augmented by Fama-French Factors 

Coefficient   1.361      -1.499     -5.777    -14.199    -7.094    -6.133    -0.130    0.558     494.342   89.997                                                0.3998 

P-Value       (0.000)    (0.068)   (0.013)    (0.000)    (0.001)   (0.086)  (0.102)   (0.137)    (0.089)   (0.015) 

                                                                  Panel B : Cubic Augmented by Fama-French Factors 

Coefficient 1.380    -0.441   5.459    -14.714   -6.131  -12.029  -0.308   0.382   1197.866   146.969  -590.208  -30842.032  -1058.834   0.3667 

P-Value     (0.000)  (0.117) (0.010)   (0.000)  (0.002)  (0.034)  (0.071) (0.127)   (0.020)     (0.007)    (0.010)      (0.000)        (0.012) 
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5.1.B.4 Specification Tests: Fama-French Pricing Kernel with Momentum Factor and 
Human Capital and Housing Wealth Included 

 

Now I study the performance of Augmented Fama-French Model including human 

capital and housing as two risky asset classes. The cross-sectional implications of the 

models are: 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML ,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm ,t +1
2 + (Ztδ2 )2 Rl ,t +1

2 + (Ztδ1)2 R2
h,t +1  (71) 

mt +1
FF = (Ztδ0 )2 + (ZtδSMB )RSMB,t +1 + (ZtδHML )RHML ,t +1 + (ZtδMOM )RMom,t +1  

−(Ztδ1)2 Rm,t +1 − (Ztδ1)2 Rl ,t +1 − (Ztδ1)2 Rh,t +1  

+(Ztδ2 )2 Rm ,t +1
2 + (Ztδ2 )2 Rl ,t +1

2 + (Ztδ1)2 R2
h,t +1  

−(Ztδ2 )2 Rm ,t +1
3 − (Ztδ2 )2 Rl ,t +1

3 − (Ztδ1)2 R3
h,t +1  (72) 

The empirical results are given in Table 10. The panel A of Table 10: Quadratic 

Augmented by Fama-French Factors with human capital and housing wealth, gives 

the estimates for model (71). Comparing with previous model specification tests, the 

distance falls sharply to 0.3998 in quadratic model and falls to 0.3667 in cubic model. 

The return on human capital and housing wealth are statistically significant in the 

cubic term. The coefficients of Rm,t +1 , Rl ,t +1  and Rh,t +1  in d3  term are playing a 

significant role in cross section of equity returns. Thus, the estimation results suggest 

that there is a strong relation between housing wealth returns and market risk, confirm 

the results in Case, Cotter and Gabriel (2010). In addition, it is interesting to note that 

while the model without human capital, the SML factor become significant (see Table 

9); while the model with human capital, the SML factor become insignificant. 
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5.1.C Summary of Distance Measure 

 

In this section I apply the least squares measures. The norm of a random variable can 

be decomposed into a mean component and a standard deviation component via the 

formula 

( )[ ] [ ] 2122
)(~ pstdpEp +=  

Where p~  is the measurement for distance, it is the specification error. Then, I use 

optimization problem to solve p~  (see Hansen and Jagannathan (1997)) 

[ ]qxyyE '2'22 2)(max λλδ −−−= . 

The first order conditions for this problem are 

0])
~

([ ' =−− qxyxE λ , 

Next I need to find the vector λ
~

such that xy '~
λ− is an admissible stochastic discount 

factor. The vector λ we can get from 

),()'(
~ 1 qxyEExx −= −λ  

As the proposition 2.1 stated in Hansen and Jagannathan (1997), under assumption 

that P is a closed linear subspace of 2L and the function π  is continuous and linear on 

P, and there exists a payoff Pp ∈ such that 1)( =pπ . The random variable 

p~ represents the approximation-error is given by 

xp '
~~ λ=  

Where x'
~
λ  is the “pricing factor”, is the smallest adjustment in a least squares sense 

required to make xy '~
λ− an admissible stochastic discount factor. The measurement 

for misspecification model is the norm of this random variable. It is 

p = [(Exy − Eq)'(Exx ')−1(Exy − Eq)]1 2  

As explained in Dittmar (2002) Hansen and Jagannathan distance captures the 

average and the variability of a proxy pricing kernel’s pricing errors. And most of the 

distance measure results from Std( p) . The results show in Table VII presents 

estimates of Mean( p)  and Std( p) . The cubic pricing kernel with human capital and 

housing wealth has the lowest value for Std( p) , which means this pricing kernel with 

a small distance measure requires the least adjustment to be admissible. Quadratic  
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Table 11 

Decomposition of Distance Measure 

Table 11 presents a decomposition of the Hansen-Jagannathan distance measure, 

p = E[ p]2 + Var[ p] . The variable p represents the adjustment to the model the 

pricing kernel needed to make it admissible. The column labelled 

“ Mean(p) ”represents the average of the estimated p, the column labelled “ Std( p) ” 

represents its standard deviation, and the column labelled “Distance” represents the 

Jagannathan distance. The row labelled “Linear: No HC, HW”, “Quadratic: No HC, 

HW”, and “Cubic: No HC, HW” represents the decomposition for the polynomial 

pricing kernels, omitting human capital and housing wealth. The row labelled 

“Linear: HC Only”, “Quadratic: HC Only”, and “Cubic: HC Only” represents the 

decomposition for the polynomial pricing kernels, including human capital only and 

housing wealth excluded. The row labelled “Linear: HW Only”, “Quadratic: HW 

Only”, and “Cubic: HW Only” represents the decomposition for the polynomial 

pricing kernels, including housing wealth only. The row labelled “Linear: HC+HW”, 

“Quadratic: HC+HW”, and “Cubic: HC+HW” represents the decomposition for the 

polynomial pricing kernels, including both human capital and housing wealth.  

     Model            Mean(p)               Std( p)   Distance 

Linear: No HC, HW  0.0003   0.6472   0.6472 

Quadratic: No HC, HW 0.0003   0.6406   0.6406 

Cubic: No HC, HW  0.0003   0.6406   0.6406 

Linear: HC Only  0.0004   0.6187   0.6187 

Quadratic: HC Only  0.0005   0.5839   0.5839 

Cubic: HC Only  0.0005   0.5839   0.5839 

Linear: HW Only  0.0004   0.6449   0.6449  

Quadratic: HW Only  0.0005   0.6303   0.6303 

Cubic: HW Only  0.0006   0.6269   0.6269 

Linear: HC + HW             0.0005   0.6175   0.6175 

Quadratic: HC + HW  0.0004   0.5705   0.5705 

Cubic: HC + HW  0.0004   0.5685   0.5685 
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Pricing kernel with human capital and housing wealth is the second smallest distance 

measure. 

 

5.1.D Other Model Specification Tests  

 

In this section I analyse power utility pricing kernel with and without human capital 

included. Also compare these results with Dittmar’s. 

The Table 12 panel A: specification tests on power utility pricing kernel without 

human capital, takes the form 

mt +1 = a0 (1 + Rw,t +1)−a1     (73) 

RW ,t +1 = Rm,t +1       (74) 

The Table 12 panel B: specification tests on power utility pricing kernel with human 

capital, takes the form 

mt +1 = a0 (1 + Rw,t +1)−a1     (75) 

RW ,t +1 = a2Rm,t +1 + (1 − a2 )Rl ,t +1    (76) 

Results of this estimation are represented in Table 12. Human capital does not 

improve the performance of power utility pricing kernel. As show in the table, Hansen 

and Jagannathan distance measure is 0.6896 with human capital excluded and is 

0.6873 with human capital included. And both form of perform worse than linear 

pricing kernel. It is consistent with Dittmar’s results.  

 

 

 

 

 

 

 

 

 

 

 



 

Table 12 

Specification Tests: Power Utility Pricing Kernel 

Table 12 presents results of GMM estimation of the Euler equation restriction 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by power utility. The coefficients are estimated using the Hansen-

Jagannathan (1997) weighting matrix. P-value for Wald tests of the joint significance 

of the coefficients are presented in parentheses. The final column presents the 

Hansen-Jagannathan distance measure. The set of returns used in estimation are those 

17 industry-sorted portfolios covering the period July 1963, through December 1995, 

augmented by the return on a one month Treasury bill. 

 

                                       a0                       a1                      a2                         Dist 

                                          Panel A: Human Capital Excluded 

Coefficient:                 1.008                 -1.747                                               0.6896 

                                          Panel B: Human Capital Included 

Coefficient:                 1.144                 -20.964               0.102                      0.6873  
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Table 13 

Specification Tests: Polynomial Pricing Kernels with Global 

Restrictions and Human Capital Included 

Table 13 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI            

In addition to constraining the signs of the coefficients, the following constraints are 

placed on the pricing kernel. 

mt +1 ≥ 0       m '
t +1 ≤ 0  

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios covering 

the period July 1963, through December 1995, augmented by the return on a one 

month Treasury bill. 

         Panel B: Quadratic 

          

                       tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(    Dist 

                                                      Panel A: Linear 

Coefficient     1.641       -5.004      -57.361                                                                    0.6003 

P-Value         (0.000)     (0.000)     (0.005)  

Coefficient     1.781      -5.134      -77.170      6.300       983.341                                 0.6003                            

P-Value         (0.000)     (0.001)    (0.011)    (0.032)      (0.013) 

                                                      Panel C: Cubic 

Coefficient    1.702      -4.067     -37.140 19.037   2090.599   -234.825  -27977.991   0.5846 

P-Value        (0.000)    (0.005)    (0.014)  (0.055)   (0.031)     (0.053)      (0.000) 
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(a) Linear Pricing Kernel          (b) Quadratic Pricing Kernel  

                
      (c) Cubic Pricing Kernel                                                                                  
    
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1.Estimated Pricing Kernels 
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The point estimates are calculated at the mean of the instrumental variables and with 

the return on human capital and value-weighted index to support for the graph. The 

Euler equation is used to generate the coefficient of the pricing kernels: 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

     2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI  

The set of returns used in estimation are those 17 industry-sorted portfolios 

augmented by the return on a one month Treasury bill.    

 

Over all, these results are consistent with those obtained from Dittmar 2002. The 

results indicate the nonlinear model perform well on explaining the cross section of 

returns. In contrast, linear models perform poorly according to the Hansen-

Jagannathan distance measure. In particular, when human capital returns add into the 

measure of the total wealth, nonlinearity term is important for improving the fit of the 

pricing kernel. In this thesis, I am not only testing human capital as a proxy of risk 

asset, also I am testing the impact of the measurement of return on the housing wealth 

in total wealth. My results show that housing wealth is highly correlated with 

aggregate return in the economic market. It further improves the fit of the pricing 

kernel. In addition, momentum factor plays an important role in predicting the asset 

returns. 
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5.2 Comparison across different sample Periods 

 

5.2.A Model Specification Tests Across Different Sample Periods 

 

5.2.A.1 Specification Tests on Polynomial Pricing Kernels with Human Capital 
Excluded 

 

Using return data on the 17 industry portfolios described earlier, I examine the linear, 

quadratic and cubic model specification in the case of when the measure of aggregate 

wealth does not include human capital (see equation (47)).  

 

The results of linear specification tests across three different sample periods are 

presented in Panel A of Table 14. In the GMM test that uses the Hansen-Jagannathan 

weighting matrix, the linear model specification test during the period July 1963 to 

December 2009 gives the smaller pricing error 0.5004, compare to Dittmar’s sample 

period (JH-dist 0.6472) and most recent period Jan 1996:Dec 2009 (JH-dist 1.1904). 

It is interesting to note that the distance measure for the sample period Jan 1996:Dec 

2009 is statistically significantly from zero.  As the results shown in Table 2, the chi-

square test for this sample period is insignificant due to the small sample size. In 

contrast, the full sample period, which covers the most rent data provide a better 

fitting of pricing kernel. 

 

The results of nonlinear specification tests across three different sample periods are 

presented in Panel B and C of Table 14. The full sample period continuously provide 

small distance measure in quadratic and cubic pricing kernel. However, the estimated 

coefficients of higher order equity return are insignificantly at 5% level. Those results 

suggest that return on value-weighted index portfolio does not play a significant role 

in explaining cross section of expected return.   
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Table 14 

Specification Tests: Polynomial Pricing Kernels with Human Capital 

Excluded 

Table 14 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure 

with p-values for the test of model specification in parentheses. The set of returns 

used in estimation are those 17 industry-sorted portfolios augmented by the return on 

a one month Treasury bill.    

      

Panel A: Linear Pricing Kernel without Human Capital 

 

 

 

           

                           tZd 0)(               tZd 1)(               tZd 2)(            tZd 3)(                 Dist 

Period from July 1963 to December1995 

Coefficient           1.081                -4.158                                                             0.6472 

P-Value               (0.000)               (0.000) 

Period from July 1963 to December 2009 

Coefficient           1.044                -2.331                                                             0.5004 

P-Value               (0.000)               (0.001) 

Period from January 1996 to December 2009 

Coefficient           1.037                -2.115                                                             1.1904 

P-Value               (0.000)               (0.012) 
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Panel B: Quadratic Pricing Kernel without Human Capital 

 

           

 

Panel C: Cubic Pricing Kernel without Human Capital 

 

 

 

 

 

                           tZd 0)(               tZd 1)(               tZd 2)(            tZd 3)(                 Dist 

Period from July 1963 to December1995 

Coefficient           1.026               -4.686               28.644                                    0.6406 

P-Value                (0.000)             (0.000)            (0.040) 

Period from July 1963 to December 2009 

Coefficient           1.044                -2.326               0.002                                     0.5004 

P-Value                (0.000)             (0.002)             (0.366) 

Period from January 1996 to December 2009 

Coefficient           1.044                -2.326               0.002                                      1.1904 

P-Value                (0.000)             (0.014)             (0.411) 

                           tZd 0)(               tZd 1)(               tZd 2)(            tZd 3)(                 Dist 

Period from July 1963 to December1995 

Coefficient           1.019                -2.330               13.376              -13.619         0.6406 

P-Value                (0.000)              (0.002)            (0.044)              (0.284) 

Period from July 1963 to December 2009 

Coefficient           1.044                -2.357               0.000              -0.502             0.5003 

P-Value                (0.000)              (0.004)            (0.472)            (0.258) 

Period from January 1996 to December 2009 

Coefficient           1.037                -2.103               0.000              -0.008             1.1904 

P-Value                (0.000)              (0.034)            (0.445)            (0.434) 
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Table 15 

Specification Tests: Polynomial Pricing Kernels with Human Capital 

Included Only 

Table 15 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are 

estimated using the Hansen-Jagannathan (1997) weighting matrix 

[ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The columns present the coefficients of the 

pricing kernel evaluated at the means of the instruments. The coefficients are 

modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

P-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios covering 

the period July 1963, through December 2009, augmented by the return on a one 

month Treasury bill. 

 

Panel A: Linear Pricing Kernel with Human Capital 

 

 

 

                       tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient     1.426      -3.775      -36.419                                                                     0.6187 

P-Value          (0.000)    (0.001)     (0.004) 

Period from July 1963 to December 2009 

Coefficient      1.212      -2.370      -9.145                                                                      0.4708 

P-Value          (0.000)    (0.000)     (0.029) 

Period from January 1996 to December 2009 

Coefficient      1.589      -2.705     -69.564                                                                     1.1213 

P-Value          (0.000)    (0.001)     (0.000) 
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Panel B: Quadratic Pricing Kernel with Human Capital 

 

           

Panel C: Cubic Pricing Kernel with Human Capital 

 

 

 

 

 

 

                     tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient     1.251       -5.473    -22.448     51.400    1396.395                                  0.5839                         

P-Value          (0.000)     (0.001)   (0.038)    (0.022)    (0.051) 

Period from July 1963 to December 2009 

Coefficient      1.173       -2.783    -57.515     4.766    7605.891                                   0.4543                            

P-Value          (0.000)     (0.001)    (0.016)    (0.093)    (0.006) 

Period from January 1996 to December 2009 

Coefficient      1.647       -2.798    -127.408   0.000   13899.038                                  1.1060 

P-Value          (0.000)     (0.002)    (0.002)    (0.136)    (0.004) 

                    tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient    1.251      -5.475    -22.384    51.424    1393.272   -0.582     -1.750        0.5839 

P-Value        (0.000)    (0.005)    (0.055)   (0.026)     (0.086)     (0.315)    (0.469) 

Period from July 1963 to December 2009 

Coefficient    1.174      -2.752    -59.288    12.678    7490.575   -55.560   -124.727     0.4484 

P-Value        (0.000)    (0.002)    (0.005)    (0.047)     (0.002)     (0.064)    (0.000) 

Period from January 1996 to December 2009 

Coefficient     1.817     -2.574    -218.432    0.000    24858.388   -0.002   -233.023     1.0856 

P-Value        (0.000)     (0.005)    (0.004)   (0.148)     (0.011)     (0.118)    (0.096) 
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5.2.A.2 Specification Tests on Polynomial Pricing Kernels with Human Capital 
Included Only 

 

Using return data on the 17 industry portfolios described earlier, I examine the linear, 

quadratic and cubic model specification across different sample periods in the case of 

when the measure of aggregate wealth include human capital (see equation (47), also 

Figure 2,3,4). 

 

The over all results of specification tests across three different sample periods are 

presented in Table 15, indicating that incorporating human capital improve the 

performance of all three model specifications and across three sample periods. 

Especially, in Panel C of Table 15, the cubic term of return on human capital is 

statistically significant at the 5% level, in which Dittmar’s period and most rent 

period are not. The full sample period has more observed data as it include both 

Dittmar’s period and most recent period. The data is more volatile during the 

recession time and better fit in nonlinear model. Thus, full sample period in this 

analysis provide better result.  

 

5.2.A.3 Specification Tests on Polynomial Pricing Kernels with Housing Wealth 
Included Only 

 

I assume that the proxy for the return on the wealth portfolio is the return on the value 

weighted industry portfolio, and housing wealth (equation (55), Figures 5, 6, 7).  

 

The results of specification tests across three different sample periods are presented in 

Table 16: The coefficients of return to housing wealth in different orders are 

estimated by using the mean return of the housing wealth. As shown in the Table 16, 

the higher order term of housing wealth is not statistically significant in the full 

sample period, and the higher order term of housing wealth in the other sub periods 

are significant. However, the results indicate that incorporating housing wealth 

improves the performance of three model specifications across three sample periods 

and the full sample period continuously provide less pricing kernel than that of either 

Dittmar’s period or most recent period. Thus, the housing wealth contributes 

significantly in explaining the cross section of expected return. 
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Table 16 

Specification Tests: Polynomial Pricing Kernels with Housing Wealth 

Included Only 

Table 16 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are 

estimated using the Hansen-Jagannathan (1997) weighting matrix 

[ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The columns present the coefficients of the 

pricing kernel evaluated at the means of the instruments. The coefficients are 

modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI             

P-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios covering 

the period July 1963, through December 2009, augmented by the return on a one 

month Treasury bill. 

 

Panel A: Linear Pricing Kernel with Housing Wealth 

 

 

                     tZd 0)(      vwZd 1)(     hZd 1)(     vwZd 2)(    hZd 2)(     vwZd 3)(    hZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient    1.104     -4.420      -2.134                                                                         0.6446 

P-Value        (0.000)   (0.001)     (0.027) 

Period from July 1963 to December 2009 

Coefficient    1.077     -2.255      -3.363                                                                        0.4845 

P-Value        (0.000)   (0.001)     (0.012) 

Period from January 1996 to December 2009 

Coefficient    1.087     -2.2538     -4.084                                                                       1.1724 

P-Value        (0.000)   (0.009)     (0.014) 
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Panel B: Quadratic Pricing Kernel with Housing Wealth 

 

           

 

Panel C: Cubic Pricing Kernel with Housing Wealth 

 

 

 

 

                   tZd 0)(      vwZd 1)(     hZd 1)(     vwZd 2)(    hZd 2)(     vwZd 3)(    hZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient    0.909       -5.133      -1.443     31.630        94.409                                    0.6303                            

P-Value        (0.000)     (0.000)    (0.041)    (0.036)       (0.014) 

Period from July 1963 to December 2009 

Coefficient    1.077       -2.256      -3.364     0.002         0.272                                      0.4845                            

P-Value        (0.000)     (0.002)    (0.014)    (0.391)      (0.255) 

Period from January 1996 to December 2009 

Coefficient    0.926     -2.354      -5.119     0.000        105.716                                    1.1613                           

P-Value        (0.000)     (0.011)    (0.012)    (0.448)      (0.011) 

                    tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(          Dist 

Period from July 1963 to December1995 

Coefficient    0.856      -4.907      -0.198      33.803    131.608    55.779   -844.475     0.6269 

P-Value        (0.000)    (0.001)     (0.120)    (0.055)     (0.012)    (0.116)    (0.044) 

Period from July 1963 to December 2009 

Coefficient    1.069      -2.547      -3.436      4.541       0.259     -15.712     -0.001       0.4816 

P-Value        (0.000)     (0.006)    (0.021)    (0.108)     (0.259)    (0.128)    (0.468) 

Period from January 1996 to December 2009 

Coefficient    0.714      -4.030      -1.112     0.001       38.933    -0.062    -1411.770     1.0647 

P-Value        (0.000)     (0.015)    (0.099)    (0.404)     (0.028)    (0.338)    (0.036) 
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(a) Linear Pricing Kernel        (b) Quadratic Pricing Kernel 

                                                                                                                                                                                                  

    

 

 

 

 

(c) Cubic Pricing Kernel 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Figure 2. Estimated pricing kernels for Dittmar’s period Jul 1963:Dec 1995 
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The point estimates are calculated at the mean of the instrumental variables and with the 

return on housing and value-weighted index to support for the graph. The Euler equation is 

used to generate the coefficient of the pricing kernels: 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the Hansen-

Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The columns 

present the coefficients of the pricing kernel evaluated at the means of the instruments. The 

coefficients are modelled as 

     2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI  

The set of returns used in estimation are those 17 industry-sorted portfolios augmented by the 

return on a one month Treasury bill. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5.2.A.4 Specification Tests on Polynomial Pricing Kernels with Human Capital and 
Housing Wealth Included 

 

Now, I compare the main model developed in this paper (see equation (59), (61) and 

(62)). I assume the proxy for the return on the wealth portfolio is sum of the return on 

the value weighted industry portfolio, return on human capital and return on housing 

wealth (see equation (60)).  

 

The overall results of specification tests across three sample periods are presented in 

Table 17, indicating that the housing factor has further improved the fit of the pricing 

kernel. The full sample period continuously provide less pricing kernel than that of 

either Dittmar’s period or most recent period. The distance measure implied by the 

full sample period falls sharply to 0.4396, a decline of 0.1291 relative to Dittmar’s 

period. Further more, the incorporating the cubic return on housing wealth in most 

recent sample period also improves the performance of the pricing kernel. And this 

cubic term is statistically significant at the 5% level (p-value 0.008).
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Table 17 

Specification Tests: Polynomial Pricing Kernels with Human Capital and Housing Wealth Included 

Table 17 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) four-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 2009, augmented by the return on a one month Treasury bill. 

 

Panel A: Linear Pricing Kernel with Human Capital and Housing Wealth 

 

                       tZd 0)(        vwZd 1)(        lZd 1)(         hZd 1)(         vwZd 2)(     lZd 2)(        hZd 2)(        vwZd 3)(    lZd 3)(         hZd 3)(              Dist 

 Period from July 1963 to December1995 

Coefficient      1.460        -3.989         -38.819        -2.081                                                                                                                           0.6175 

P-Value          (0.000)      (0.001)        (0.005)        (0.031) 

 Period from July 1963 to December 2009 

Coefficient      1.301         -2.719        -19.271        -3.858                                                                                                                            0.4596 

P-Value          (0.000)       (0.000)        (0.014)        (0.014) 
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Period from January 1996 to December 2009 

Coefficient      1.727         -2.438        -85.737        -5.836                                                                                                                           1.0918 

P-Value          (0.000)       (0.008)        (0.001)        (0.010) 

 

   Panel B: Quadratic Pricing Kernel with Human Capital and Housing Wealth 

 

                      tZd 0)(        vwZd 1)(        lZd 1)(         hZd 1)(         vwZd 2)(     lZd 2)(        hZd 2)(        vwZd 3)(    lZd 3)(         hZd 3)(              Dist 

 Period from July 1963 to December1995 

Coefficient      1.113       -5.958       -21.262         -2.775         45.327       1183.006     108.094                                                                 0.5705 

P-Value          (0.000)     (0.001)       (0.039)        (0.038)       (0.034)         (0.074)       (0.012) 

 Period from July 1963 to December 2009 

Coefficient      1.176         -3.432       -55.705         -2.912         8.744        7063.475     10.669                                                                  0.4437 

P-Value          (0.000)       (0.001)       (0.019)        (0.025)       (0.078)         (0.008)       (0.102) 

Period from January 1996 to December 2009 

Coefficient      1.780         -3.000      -194.443        -5.923         0.000      18746.690     76.053                                                                  1.0564 

P-Value          (0.000)       (0.003)       (0.002)        (0.025)       (0.008)       (0.378)       (0.006) 

 

 



 

   Panel C: Cubic Pricing Kernel with Human Capital and Housing Wealth 

 

                      tZd 0)(        vwZd 1)(        lZd 1)(         hZd 1)(         vwZd 2)(     lZd 2)(        hZd 2)(        vwZd 3)(    lZd 3)(         hZd 3)(              Dist 

 Period from July 1963 to December1995 

Coefficient      1.116       -5.692       -24.879         -2.065        46.725       1006.232   118.488      -43.612      -48.825      -187.904           0.5685 

P-Value          (0.000)     (0.001)      (0.008)         (0.049)       (0.014)         (0.035)     (0.008)      (0.075)         (0.000)       (0.105) 

 Period from July 1963 to December 2009 

Coefficient      1.200         -3.054       -65.044       -3.143        -12.712      -7659.569     5.947      -41.897      -197.211      -45.572           0.4394 

P-Value          (0.000)       (0.002)      (0.005)        (0.027)       (0.049)         (0.002)     (0.121)     (0.069)         (0.000)       (0.152) 

Period from January 1996 to December 2009 

Coefficient    1.794        -3.402        -200.330      -1.211        0.000      20878.778    132.141      -0.001     -16824.993     -1928.385        1.0261 

P-Value        (0.000)       (0.002)        (0.002)       (0.057)      (0.350)        (0.004)      (0.011)     (0.244)         (0.000)         (0.008) 
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5.2.B Comparison with Multifactor Model Across Different Sample Period 

 

5.2.B.1 Specification Tests on Fama-French Pricing Kernel with Human capital 
Included 

 

I begin with Fama-French three-factor model (see equation (63)). The results for the 

estimation of the Fama-French model in three sample periods showed in Panel A of 

Table 18. The results of distance measures indicate that the Fama-French factors do 

not provide significant explanatory power to the pricing kernel. 

 

To further investigate the ability of the Fama-French factors. I consider the nonlinear 

models (see equation (64) and (65)). The results for the estimation of the polynomial 

model augmented SMB, HML and human capital are given in Table 18 Panel B and 

Panel C. not surprisingly, once adding the return to human capital significantly 

improves the fit of the model.  All sample periods in nonlinear model specification 

reduce the pricing error with respected to linear model. Moreover, the full sample 

period has small pricing errors in linear, quadratic and cubic model. The SMB and 

HML factors in cubic model are significant with p-value of 0.038 and 0.043, except 

most recent period and neither the SMB nor the HML coefficients are significantly 

different from zero. These results suggest in most recent sample period pricing 

kernels captures much of the variation in returns. 
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Table 18 

                           Specification Tests: Fama-French Pricing Kernel with Human capital Included 

Table 18 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) four-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 2009, augmented by the return on a one month Treasury bill. 

 

   Panel A: Fama-French Three-Factor Model 

 

                     tZd 0)(       mrpZd )(        smbZd )(       hmlZd )(         vwZd 1)(       lZd 1)(       vwZd 2)(       lZd 2)(      vwZd 3)(     lZd 3)(            Dist 

Period from July 1963 to December1995 

Coefficient   1.185        -4.455        -1.902          -2.027                                                                                                                            0.5680 

P-Value      (0.000)       (0.000)       (0.029)        (0.024) 

Period from July 1963 to December 2009 

Coefficient   1.099       -3.843         -2.836           0.492                                                                                                                            0.4601 

P-Value       (0.000)      (0.000)        (0.009)        (0.079) 
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 Period from January 1996 to December 2009 

Coefficient      1.065        -3.246         0.773        5.018                                                                                                                            1.1571 

P-Value          (0.000)      (0.004)       (0.065)      (0.004) 

 

   Panel B: Quadratic Pricing Kernel with Fama-French Factors and Human Capital 

 

                    tZd 0)(       mrpZd )(        smbZd )(       hmlZd )(         vwZd 1)(       lZd 1)(       vwZd 2)(       lZd 2)(      vwZd 3)(     lZd 3)(            Dist 

Period from July 1963 to December1995 

Coefficient   1.397                            -1.173         -0.816           -5.673      - 16.016       20.273      552.593                                            0.5187 

P-Value        (0.000)                         (0.055)        (0.065)          (0.000)       (0.019)      (0.038)       (0.054) 

Period from July 1963 to December 2009 

Coefficient   1.215                            -1.385          -0.185          -3.177        -1.243       -9.707         3760.715                                         0.4120 

P-Value       (0.000)                          (0.041)         (0.131)         (0.003)       (0.125)      (0.056)         (0.012) 

 Period from January 1996 to December 2009 

Coefficient   1.583                            -0.333          -0.008          -0.004        -115.860       0.000       12398.722                                      1.0796 

P-Value       (0.000)                          (0.109)         (0.261)         (0.143)         (0.001)      (0.406)         (0.007) 
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   Panel C: Cubic Pricing Kernel with Fama-French Factors and Human Capital 

 

                    tZd 0)(       mrpZd )(        smbZd )(       hmlZd )(         vwZd 1)(       lZd 1)(       vwZd 2)(       lZd 2)(      vwZd 3)(     lZd 3)(            Dist 

Period from July 1963 to December1995 

Coefficient   1.402                             1.254        -1.075          -4.817         -16.745      19.292       550.187   -146.687    -177.846       0.5159    

P-Value       (0.000)                           (0.038)      (0.043)        (0.005)         (0.065)      (0.041)        (0.010)       (0.046)     (0.000) 

Period from July 1963 to December 2009 

Coefficient   1.215                            -1.342        -1.125         -2.485          -1.490       11.332       3724.93      -101.87    -175.98          0.4061     

P-Value       (0.000)                          (0.038)      (0.043)        (0.005)         (0.065)      (0.041)        (0.010)       (0.046)     (0.000) 

 Period from January 1996 to December 2009 

Coefficient    1.821                           -0.621        -2.873         -0.994          -198.127     0.000       23883.703  -107.725    -32.602        1.0472 

P-Value        (0.000)                         (0.090)      (0.021)        (0.019)         (0.004)      (0.293)        (0.010)       (0.070)     (0.000) 
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5.2.B.2 Specification Tests on Fama-French Pricing Kernel with Momentum Factor 
and Human Capital Included 

 

The results for the estimation of the polynomial model augmented SMB, HML, 

Momentum and human capital are given in Table 19. Panel A of table 19, estimate 

include the results for Fama-French four-factor model (see equation (66)). Very 

obviously, adding momentum factor improves the fit of the linear pricing kernel. 

However, this distance measure suggests that the Fama-French four-factor model is 

not better than nonlinear pricing kernel.  

 

In Panel B of Table 19, I compare the results for quadratic pricing kernel augmented 

by Fama-French Factors, momentum and housing wealth across three sample periods. 

The comparison results obtained from this table are similar to Table 18. The quadratic 

model in full sample period provides better fitting of pricing kernel, the estimated 

distance measure falls to 0.3785.  

 

 In Panel C of Table 19, I compare the results for cubic pricing kernel augmented by 

Fama-French Factors, Momentum and human capital. The cubic model for the full 

sample period reduces the pricing errors from linear to nonlinear pricing specification. 

In addition, the SMB, HML factors and cubic term of return to human capital are 

statistically significant in full sample period of cubic model specification test. These 

results suggest that Fama-French factors do add more information to our nonlinear 

pricing kernel. 
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Table 19 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Human Capital Included 

Table 19 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) four-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 2009, augmented by the return on a one month Treasury bill. 

 

   Panel A: Fama-French model with Momentum factor 

 

                    tZd 0)(    mrpZd )(  smbZd )(     hmlZd )(     momZd )(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(       vwZd 3)(     lZd 3)(                   Dist 

 Period from July 1963 to December1995 

Coefficient   1.298     -5.110     -2.389       -5.236       -10.377                                                                                                                     0.5299 

P-Value       (0.000)   (0.028)    (0.001)      (0.004)      (0.000) 

 Period from July 1963 to December 2009 

Coefficient   1.166     -4.240     -4.065       -0.901       -4.716                                                                                                                       0.4257 

P-Value       (0.000)   (0.000)    (0.003)      (0.055)       (0.002) 
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Period from January 1996 to December 2009 

Coefficient   1.102     -4.432     1.418         4.450       -2.687                                                                                                                       1.1486 

P-Value       (0.000)   (0.006)    (0.046)      (0.015)     (0.018) 

 

 

   Panel B: Quadratic pricing kernel with Fama-French Factors, Momentum and Human Capital 

 

                    tZd 0)(    mrpZd )(  smbZd )(     hmlZd )(     momZd )(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(       vwZd 3)(     lZd 3)(                   Dist 

 Period from July 1963 to December1995 

Coefficient   1.155                   -0.481        -4.658       -11.296       -5.640       -16.491    3.750      882.118                                                 0.4720 

P-Value       (0.000)                 (0.106)      (0.011)       (0.000)       (0.001)      (0.050)     (0.116)    (0.085) 

 Period from July 1963 to December 2009 

Coefficient   1.155                    -1.933        0.167        -0.997        -3.496       -3.504      -8.319    4702.514                                                0.3785 

P-Value       (0.000)                   (0.029)    (0.136)       (0.068)       (0.004)      (0.081)     (0.046)    (0.011)  

Period from January 1996 to December 2009 

Coefficient   1.822                   0.681          0.167          -2.540          -3.883     -3.380    -141.012       0.079                                               1.0433 

P-Value       (0.000)                (0.098)       (0.047)        (0.012)       (0.008)      (0.012)     (0.247)      (0.019)  
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   Panel C: Cubic pricing kernel with Fama-French Factors, Momentum and Human Capital 

 

                     tZd 0)(    mrpZd )(  smbZd )(     hmlZd )(     momZd )(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(       vwZd 3)(     lZd 3)(                   Dist 

 Period from July 1963 to December1995 

Coefficient   1.542                    0.105        -5.250       -12.031       -5.629      -17.051    3.948   1048.964     -7.534        18.269               0.4709 

P-Value       (0.000)                 (0.166)      (0.004)       (0.000)       (0.001)     (0.019)    (0.107)    (0.029)     (0.181)       (0.000) 

 Period from July 1963 to December 2009 

Coefficient   1.243                   -1.710       -2.179        -2.917        -2.844       -5.551     19.202   4233.398      -169.648    -267.089          0.3766 

P-Value       (0.000)                 (0.030)     (0.023)       (0.011)      (0.004)      (0.042)    (0.030)    (0.008)         (0.027)      (0.000) 

Period from January 1996 to December 2009 

Coefficient   1.821                   0.872       -2.407         -3.617        -3.459     -142.216     0.403     18706.098    -0.004     -5930.291          1.0429 

P-Value       (0.000)                (0.070)     (0.030)        (0.006)      (0.001)      (0.002)     (0.139)      (0.008)       (0.255)      (0.000) 
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Table 20 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Housing Wealth Included 

Table 20 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 2009, augmented by the return on a one month Treasury bill. 

 

   Panel A: Quadratic pricing kernel with Fama-French Factors, Momentum and Housing Wealth 

 

                    tZd 0)(    smbZd )(   hmlZd )(   momZd )(    vwZd 1)(     hZd 1)(   vwZd 2)(    hZd 2)(   vwZd 3)(   hZd 3)(                                      Dist 

 Period from July 1963 to December1995 

Coefficient   1.288     -1.772     -4.112     -9.204     -4.833       -0.528      6.442      31.549                                                                  0.4868 

P-Value       (0.000)   (0.004)    (0.100)    (0.024)   (0.007)     (0.019)    (0.406)    (0.146) 

 Period from July 1963 to December 2009 

Coefficient   1.157     -4.104     -0.449     -2.614     -1.935      -3.002     0.001       5.062                                                                     0.4213 

P-Value       (0.000)   (0.004)    (0.100)    (0.024)   (0.007)     (0.019)   (0.406)    (0.146)  
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Period from January 1996 to December 2009 

Coefficient   1.054      2.530     3.793       -4838      -1.071       -5.010     0.000       86.190                                                                   1.0915 

P-Value       (0.000)   (0.004)    (0.100)    (0.024)     (0.007)     (0.019)   (0.406)     (0.146) 

 

 

   Panel B: Cubic pricing kernel with Fama-French Factors, Momentum and Housing Wealth 

 

                    tZd 0)(    smbZd )(   hmlZd )(   momZd )(    vwZd 1)(     hZd 1)(   vwZd 2)(    hZd 2)(   vwZd 3)(   hZd 3)(                                      Dist 

 Period from July 1963 to December1995 

Coefficient   1.212      -2.610    -6.341    -10.625    -5.992      -0.326      20.578    120.940  -381.671  -1127.912                               0.4142 

P-Value       (0.000)    (0.042)   (0.010)   (0.003)    (0.012)     (0.098)    (0.089)     (0.015)   (0.045)     (0.024) 

 Period from July 1963 to December 2009 

Coefficient   1.169      -3.255     -0.124    -3.899      -3.552     -3.742      6.835      2.784    -13.316    -0.034                                       0.4130 

P-Value       (0.000)    (0.008)    (0.150)   (0.005)    (0.002)    (0.010)    (0.078)    (0.136)   (0.115)   (0.185) 

Period from January 1996 to December 2009 

Coefficient   1.034      3.057      4.127      -4.495      -0.787     -0.383      0.024      141.838    -0.001    -2169.637                               1.0765 

P-Value       (0.000)    (0.016)    (0.011)   (0.006)    (0.029)     (0.104)    (0.284)    (0.013)     (0.299)     (0.007) 
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5.2.B.3 Specification Tests on Fama-French Pricing Kernel with Momentum Factor 
and Housing Wealth Included 

 

Now I study the performance of augmented Fama-French Model including housing 

wealth as a risky asset class. The cross-sectional implications of the models have 

introduced in section 5.1 (see equation (69) and (70)). The empirical results are given 

in Table 20. 

 

The panel A and B of Table 20 gives the estimates for model (69) (70) across three 

sample periods. Not surprisingly, adding housing wealth improve the fit of pricing 

kernel. The distance measure of quadratic model specification in full sample period 

reduces to 0.4213; while in Dittmar’s period is 0.4868. Due to the small sample size, 

for the sub period January 1996 to December 2009, the distance measure of model 

specification is large. The same results apply to cubic model specification test. 

 

 

5.2.B.4 Specification Tests: Fama-French Pricing Kernel with Momentum Factor and 
Human Capital and Housing Wealth Included 

 

Now I study the performance of Augmented Fama-French Model including human 

capital and housing wealth as two risky asset classes. The cross-sectional implications 

of the models introduces in previous section 5.1 (see equation (71) and (72)). The 

empirical results are given in Table 21. Both human capital and housing wealth risk 

factor have further improvement on the performance of the augmented model. By 

comparing the distance measure across the different sample period, I find that the 

model specification test for full sample period perform well than other sample 

periods. 
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Table 21 

Specification Tests: Fama-French Pricing Kernel with Momentum Factor and Human Capital and Housing Wealth 

Included 

Table 21 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

mt +1  implied by the Fama and French (1993) three-factor model. The coefficients are estimated using the Hansen-Jagannathan (1997) weighting 

matrix. P-value for Wald tests of the joint significance of the coefficients are presented in parentheses. The final column presents the Hansen-

Jagannathan distance measure. The set of returns used in estimation are those 17 industry-sorted portfolios covering the period July 1963, 

through December 2009, augmented by the return on a one month Treasury bill. 

 

   Panel A: Quadratic pricing kernel with Fama-French Factors, Momentum, Human Capital and Housing Wealth 

 

                     tZd 0)(    smbZd )(   hmlZd )(  momZd )(    vwZd 1)(   lZd 1)(    hZd 1)(   vwZd 2)(    lZd 2)(    hZd 2)(   vwZd 3)(  lZd 3)(  hZd 3)(        Dist 

Period from July 1963 to December1995 

Coefficient   1.361      -1.499     -5.777    -14.199    -7.094    -6.133    -0.130    0.558     494.342   89.997                                                0.3998 

P-Value       (0.000)    (0.068)   (0.013)    (0.000)    (0.001)   (0.086)  (0.102)   (0.137)    (0.089)   (0.015) 
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Table 21-Continued  

 

                         tZd 0)(    smbZd )(   hmlZd )(  momZd )(    vwZd 1)(   lZd 1)(    hZd 1)(   vwZd 2)(    lZd 2)(    hZd 2)(   vwZd 3)(  lZd 3)(  hZd 3)(        Dist  

Period from July 1963 to December 2009 

Coefficient   1.156      -2.748     0.954      -1.959     -4.170    -4.448    -3.207    14.127   1917.188   25.726                                                0.3857 

P-Value       (0.000)    (0.017)   (0.068)    (0.043)    (0.001)   (0.087)   (0.028)   (0.065)    (0.037)   (0.069) 

Period from January 1996 to December 2009 

Coefficient   1.700      -2.559     4.215      -2.540     -3.443  -174.685  -0.010    0.000    19400.361  17.226                                                0.9295 

P-Value       (0.000)    (0.017)   (0.068)    (0.043)    (0.001)   (0.087)   (0.028)   (0.065)    (0.037)   (0.069) 
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Table 21-Continued  

 

   Panel B: Cubic pricing kernel with Fama-French Factors, Momentum, Human Capital and Housing Wealth 

 

                   tZd 0)(    smbZd )(  hmlZd )(  momZd )(  vwZd 1)( lZd 1)(  hZd 1)(   vwZd 2)(    lZd 2)(    hZd 2)(   vwZd 3)(    lZd 3)(      hZd 3)(        Dist 

Period from July 1963 to December 1995 

Coefficient 1.380    -0.441   5.459    -14.714   -6.131  -12.029  -0.308   0.382   1197.866   146.969  -590.208  -30842.032  -1058.834   0.3667 

P-Value     (0.000)  (0.117) (0.010)   (0.000)  (0.002)  (0.034)  (0.071) (0.127)   (0.020)     (0.007)    (0.010)      (0.000)        (0.012) 

Period from July 1963 to December 2009 

Coefficient 1.177    -4.262    1.216      -1.585    -2.323   -2.935    -0.433     3.636    2041.125   0.069  -229.604  -1.281      -446.060      0.3306 

P-Value     (0.000)  (0.005)  (0.058)    (0.044)  (0.008)   (0.057)   (0.067)   (0.069)  (0.028)     (0.168)  (0.017)   (0.000)     (0.048) 

Period from January 1996 to December 2009 

Coefficient 1.817   -1.953     5.354     -0.988    -4.064   -201.309   -0.670   4.365    24243.703 16.700  -0.001  -90.936     -1598.621     0.8900 

P-Value     (0.000)  (0.047)  (0.014)   (0.066)   (0.002)   (0.001)   (0.050)   (0.068)  (0.002)     (0.042)  (0.244)   (0.000)      (0.009) 
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Table 22 

Decomposition of Distance Measure 

Table 22 presents a decomposition of the Hansen-Jagannathan distance measure, 

p = E[ p]2 + Var[ p] . The variable p represents the adjustment to model pricing 

kernel needed to make it admissible. The column labelled “ Mean(p) ”represents the 

average of the estimated p, the column labelled “ Std(p) ” represents its standard 

deviation, and the column labelled “Distance” represents the Jagannathan distance. 

The row labelled “Linear: No HC, HW”, “Quadratic: No HC, HW”, and “Cubic: No 

HC, HW” represents the decomposition for the polynomial pricing kernels, omitting 

human capital and housing wealth. The row labelled “Linear: HC Only”, “Quadratic: 

HC Only”, and “Cubic: HC Only” represents the decomposition for the polynomial 

pricing kernels, including human capital only and housing wealth excluded. The row 

labelled “Linear: HW Only”, “Quadratic: HW Only”, and “Cubic: HW Only” 

represents the decomposition for the polynomial pricing kernels, including housing 

wealth only. The row labelled “Linear: HC+HW”, “Quadratic: HC+HW”, and 

“Cubic: HC+HW” represents the decomposition for the polynomial pricing kernels, 

including both human capital and housing wealth.  

Panel A: Sample Period from July 1963 to December 2009  

Model                        Mean(p)               Std(p)   Distance 

Linear: No HC, HW  0.0002   0.5004   0.5004 

Quadratic: No HC, HW 0.0002   0.5004   0.5004 

Cubic: No HC, HW  0.0003   0.5003   0.5003 

Linear: HC Only  0.0002   0.4708   0.4708 

Quadratic: HC Only  0.0000   0.4543   0.4543 

Cubic: HC Only  0.0009   0.4496   0.4496 

Linea: HP Only  0.0002   0.4845   0.4845 

Quadratic: HP Only  0.0002   0.4845   0.4845 

Cubic: HP Only  0.0009   0.4496   0.4496 

Linear: HC+HW             0.0003   0.4596   0.4596 

Quadratic: HC+HW  0.0016   0.4437   0.4437 

Cubic: HC+HW  0.0017   0.4394   0.4394 
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Table 22-Continued 

 

Panel B: Sample Period from January 1996 to December 2009 

Model            Mean(p)               Std(p)   Distance 

Linear: No HC, HW  0.0003   1.1904   1.1904 

Quadratic: No HC, HW 0.0003   1.1904   1.1904 

Cubic: No HC, HW  0.0003   1.1904   1.1904 

Linear: HC Only  0.0027   1.1213   1.1213 

Quadratic: HC Only  0.0048   1.1060              1.1060 

Cubic: HC Only  0.0080   1.0856   1.0856 

Linear: HW Only  0.0006   1.1724   1.1724  

Quadratic: HW Only  0.0022   1.1613                       1.1613     

Cubic: HW Only  0.0030   1.0647   1.0647 

Linear: HC + HW             0.0050   1.0918   1.0918 

Quadratic: HC + HW  0.0076   1.0563   1.0563 

Cubic: HC + HW  0.0088   1.0261   1.0261 

 

 

5.2.C Summary of Distance Measure  

 

The results show in Table 22 presents estimates of Mean(p)  and Std(p) . The cubic 

pricing kernel with human capital and housing wealth again has the lowest value for 

Std(p) , which means this pricing kernel with a small distance measure requires the 

least adjustment to be admissible. Quadratic pricing kernel with human capital and 

housing wealth is the second smallest distance measure 
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Table 24 

Specification Tests: Polynomial Pricing Kernels with Global 

Restrictions and Human Capital Included 

Table 24 presents results of GMM tests of the Euler equation condition, 

[ ] 01|)1(( 11 =−+ ++ ttt ZmRE  

Using the polynomial pricing kernels, 1+tm , the coefficients are estimated using the 

Hansen-Jagannathan (1997) weighting matrix [ ])')1)(()1(( 11 tttt ZRZRE ⊗+⊗+ ++ . The 

columns present the coefficients of the pricing kernel evaluated at the means of the 

instruments. The coefficients are modelled as 

2' )( tnnn ZId δ=           { 3,1,1
2,1
=−

== n

nnI            

In addition to constraining the signs of the coefficients, the following constraints are 

placed on the pricing kernel. 

mt +1 ≥ 0       m '
t +1 ≤ 0  

p-value for Wald tests of the joint significance of the coefficients are presented in 

parentheses. The final column presents the Hansen-Jagannathan distance measure. 

The set of returns used in estimation are those 17 industry-sorted portfolios covering 

the period July 1963, through December 2009, augmented by the return on a one 

month Treasury bill. 

          Panel B: Quadratic 

 

                       tZd 0)(      vwZd 1)(     lZd 1)(     vwZd 2)(    lZd 2)(     vwZd 3)(    lZd 3)(    Dist 

                                                      Panel A: Linear 

Coefficient     1.262      -2.475      -1.841                                                                      0.4598 

P-Value         (0.000)    (0.006)     (0.068)  

Coefficient     1.251       -2.566      -1.446      0.074       247.997                                 0.4583                            

P-Value         (0.000)     (0.007)    (0.102)    (0.274)      (0.121) 

                                                      Panel C: Cubic 

Coefficient    1.265      -2.156     -0.300      6.143      812.826   -35.584   -7702.968   0.4482 

P-Value        (0.000)    (0.016)    (0.113)    (0.085)     (0.058)     (0.098)      (0.000)  
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Chapter 6 

CONCLUSIONS 

In the study of asset pricing model of higher order risk factor, I follow an approach 

similar to Dittmar (2002), using polynomial pricing kernels to generate the empirical 

performance of a nonlinear model. I extend the polynomial model by examining the 

impact of additional risk factors including 17 industry portfolio returns, human capital 

and housing wealth. I also extend the Fama-French model by adding momentum 

factor.  

My initial modelling and test result is consistent with Dittmar (2002)’s findings. 

When examining the nonlinear asset pricing kernels, the higher order risk factors 

affect the empirical performance of the models significantly.  This conclusion is also 

valid when considering the housing wealth factor. In addition, the result presented in 

this thesis provides strong evidence that, including proxies for the return to housing 

wealth is very beneficial. It significantly improves the different empirical 

specification performance. This finding is robust for both nonlinear asset pricing 

models and linear pricing models.  

The main difficulty in this research is that, the total wealth is not observable. I extend 

total wealth and include human capital and housing wealth, as returns on both 

contribute the significant portion of the aggregate wealth. I follow Jagannathan and 

Wang (1996) and measure the returns on human capital by calculating two-month 

moving average of the growth rate in labour income. To estimate the returns on 

housing wealth, I follow Flavin and Yamashita (2002) and calculate the return to 

owner occupied household level, which is more volatile than the returns on aggregate 

wealth. The factors involved in the calculation including the real value of the house, 

the real interest rate, the marginal income tax rate and the net property tax payment. 

To simply the model for housing wealth calculation, the real interest rate, the 

marginal income tax rate and the net property tax payment are fixed in this thesis. 

They are 5%, 33% and 25% respectively. The resulting house returns are quite close 

to risk factor rate, which is around 2% to 3%.  The calculated variation of the housing 

returns is a bit smaller, when considering the recent real estate price trembling in US 

and Irish market. Even though, the models, including housing wealth, still performs 

much better as discussed below. 
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The models are tested in three different time periods. First period is Dittmar’s period, 

from July 1963 to December 1995. Obtained result is consistent with those obtained 

by Dittmar (2002) that, nonlinearity substantially improves upon the pricing kernel 

ability to explain the cross section of returns are better than Fama-French model. 

When the proxy for the return on human capital is included in measuring the return on 

aggregate wealth, a quadratic and cubic pricing kernels are able to fit the cross section 

of returns with reduced pricing errors. Moreover, when testing the model, that 

includes the proxy for the return on housing wealth, the fit of the pricing model are 

even better as the distance falls to 0.5685, the best distance measure from model 

specification tests without housing wealth risk factor is 0.5685. And the p-value 

obtained from higher order risk factors show that they are important for improving the 

fit of the pricing kernel. Further, I examine the augmented Fama-French three-factor 

model by adding in momentum factor. The result shows that the model performs 

substantially better than Fama-French three-factor model. In particular, when 

including the proxy for the return on housing wealth, the model further reduces the 

distance measure to 0.3667.  

Second period is from July 1963 to December 2009. As explained in the previous 

chapter, owner-occupied housing plays an important role in economic market. When 

doing the model specification test on pricing kernel obtained with housing wealth 

only and pricing kernel with human capital only, the result indicates that housing 

wealth is a relatively insufficient risk factor as human capital over this sample period. 

Similar conclusion can be drawn when testing the pricing kernel with both human 

capital and housing included. However, the results turn out oppositely when 

examining the size, book to market, human capital and housing wealth in the 

augmented Fama-French model. Both of the human capital and housing wealth are 

significant in the model. The performance of the nonlinear pricing kernel significantly 

improved, the cubic term perform better than quadratic term. Thesis results suggest 

that nonlinear measures of human capital and housing wealth are able to improve the 

performance of the pricing kernel. Further, we find that the cubic term in the pricing 

kernel drives out the significance of both size and book to market factor in the 

augmented Fama-French model. This finding is similar to the result presented by 

Dittmar (2002). 

Third period is the most recent period from January 1996 to December 2009, which 

covers the recession period. The results suggest that the housing wealth is sufficient in 
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this sample period. When estimating the model specification test on housing wealth 

only, both cubic and quadratic terms are rejected at the significant level. It is not the 

same case for the previous period from July 1963 to December 2009. The total sample 

size in this period is much smaller comparing to the previous two. In the future, a 

similar research can be done with more completed dataset.  

In summary, this thesis has important implications for future work in empirical asset 

pricing. It gives overview of the choice of proxy for the total return examined through 

the nonlinear asset pricing models. The empirical tests suggest that the measures of 

aggregate wealth should include housing wealth. It is worth to find a better definition 

for the housing wealth factor in the future research, to represent better the violate 

housing price behaviour observed in the recent credit crisis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

REFERENCES 
 

Bansal, Ravi, David A. Hsieh, and S. Viswanathan, 1993, A new approach to 

international arbitrage pricing, Journal of Finance 48, 1719–1747 

 

Bansal, Ravi, and S. Viswanathan, 1993, No-arbitrage and arbitrage pricing: A new 

approach, Journal of Finance 48, 1231–1262.  

 

Campbell, John, 1999, By force of habit: A consumption-based explanation of 

aggregate stock market behavior. Journal of Political Economy 107, 205–251.  

 

Caplin, A. 1997, Housing partnerships: A new approach to a market at a crossroads. 

Chapman, David, 1997, Approximating the Asset Pricing Kernel, Journal of Finance 

52, 1383–1410.  

 

Cochrane, John, 1996, A cross-sectional test of an investment-based asset pricing 

model, Journal of Political Economy 104, 572–621.  

 

Case, K. Cotter, J. and Gabriel, S., 2010, Housing Risk and Return: New Evidence 

from a Housing Asset Pricing Model, 

 

Diaz-Gimenez, Javier, Edward C. Prescott, Terry Fitzgerald, and Fernando Alvarez, 

1992, Banking in computable general equilibrium economies, Journal of Economic 

Dynamics and Control 16, 533–559. 

 

Davis, M. and J. Heathcote 2005. Housing and the business cycle, Inter- national 

Economic Review 46, 751-784. 

 

Davis, M. and J. Heathcote, 2007. The price and quantity of residential land in the 

United States, Forthcoming in Journal of Monetary Economics 

 

Dittmar, R.F. (2002), “Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence 

from the Cross Section of Equity Returns”, Journal of Finance 57, 369-403. 



 

Fama, Eugene, and Kenneth French, 1993. Common risk factors in the returns on 

stocks and bonds, Journal of Financial Economics 33, 3–56. 

 

Flavin, M. and T. Yamashita, 2002, Owner-occupied housing and the composition of 

the household portfolio, American Economic Review 92, 345-362 

 

Fama, Eugene, and William Schwert, 1977. Asset returns and inflation, Journal of 

Financial Economics 5, 115–146 

 

Ferson, Wayne E. & Constantinides, George M., 1991. Habit persistence and 

durability in aggregate consumption: Empirical tests. Journal of Financial 3, 369-375 

 

Hansen, Lars Peter, and Ravi Jagannathan, 1991, Implications of security market data 

for models of dynamic economies, Journal of Political Economy 99, 225–262.  

 

Hansen, Lars Peter, 1982, Large sample properties of generalized method of moments 

estimators, Econometrical, 50, 1029–1054. 

 

Heaton, J. and D. Lucas, 2000, Portfolio choice and asset prices: the importance of 

entrepreneurial risk, Journal of Finance 55, 1163-1198. 

 

Harrison, J. Michael, and David M. Kreps, 1979, Martingales and arbitrage in 

multiperiod securities markets, Journal of Economic Theory 20, 381–408. 

 

Harvey, Campbell, 1989, Time-varying conditional covariance in tests of asset pricing 

models, Journal of Financial Economics 24, 289–317 

 

Harvey, Campbell, and Akhtar Siddique, 2000, Conditional skewness in asset pricing 

tests, Journal of Finance 55, 1263–1295. 

 

Jagannathan, Ravi, and Zhenyu Wang, 1996, The conditional CAPM and the cross 

section of expected returns, Journal of Finance 51, 3–54. 



 

 

Karl Case, John Cotter, and Stuart Gabriel, 2010, Housing Risk and Return: Evidence 

From A Housing Asset-Pricing Model. 

 

Kullmann, C. 2003, Real estate and its role in asset pricing, Unpublished Working 

Paper University of British Columbia, Vancouver 

 

Lars Peter Hansen and Ravi Jagannathan, 1997, Assessing Specification Errors in 

Stochastic Discount Factor Models, Journal if Finance, 52, 557-590 

 

Lars Peter Hansen and Scott F. Richard, 1987, The role of conditioning in deducing 

testable restrictions implied by dynamic asset pricing models. Econometrica 55, 587-

613 

 

Liberman, J. 1980. Human capital and the financial capital market, Journal of 

Business 53(2), 165-191. 

 

Mark M. Carhart, 1997, On persistence in Mutual Fund Performance, Journal of 

Finance 52, 57-82. 

 

Method of Moments Estimation, International Economic Review, 28, 777-787 

 

Mayers, David, 1972, Nonmarketable assets and capital market equilibrium under 

uncertainty,in M. C. Jensen, ed.: Studies in the Theory of Capital Markets ~Praeger, 

New York!.  

 

Moskowitz, Tobias, and Mark Grinblatt, 1999, Do industries explain momentum? 

Journal of Finance 54, 1249–1290. 

 

Newey, Whitney, and Kenneth West, 1987a, Hypothesis testing with efficient method 

of moments estimation, International Economic Review 28, 777–787.  

 

Newey, Whitney, and Kenneth West, 1987b, A simple, positive semi-definite, 

heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica 55, 



 

703–708.  

 

Olga Klinkowska, 2008, Conditional tests of Factor Augmented Asset Pricing Models 

with Himan Capital and Housing: Some New Results. 

 

Piazzesi, M., M. Schneider and S. Tuzel, 2007, Housing consumption and the asset 

pricing, Journal of Political Economics 53, 531-569 

 

Qi, Y. and Y. Wu 2006. Background risks and limited stock market participation. 

Working Paper Rutgers Business School-Newark and New Brunswick. 

 

Robert F. Dittmar, 2002, Nonlinear Pricing Kernels, Kurtosis Preference, and 

Evidence from the Cross Section of Equity Returns, Journal of Finance, 57, 369-403 

 

Ross, S. A., 1978, A simplified approach to the valuation of risky streams, Journal of 

Business 51, 453-475. 

 

Ross, S. A., 1976, the valuation of options for alternative stochastic process. Journal 

of Finance Economics 3, 145-166 

 

Sanford J. Grossman and Robert J. Shille, The determinants of the variability of stock 

market prices, 1981. 

 

Whitney K. Newey and Kenneth D. West, Hypothesis Testing with Efficient, 1987. 

 

 

 

 

 

 

 

 

 



 

Appendix 
 
R-code for Table 1 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
## read data from file 
##30 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 ##write to file                                           
  write.table(p17, "p171.csv", sep=",", row.names=FALSE); 
   
##Calculate mean 
y = read.csv("p171.csv"); 
Mean <- mean(y) 
print(Mean) 
 
##calculate standard deviation 
SD <- var(y)^0.5 
print(SD) 
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R code for Table 2 
 
library(lmtest) 
library(sandwich) 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
  ##30 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
   
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  zt <- data.frame(rmrf = ff$rmrf,  
                   divyld = dy$Y, 
                   yldspr = tb3[,2] - ff$RF,  
                   tb = ff$RF); 
                      
 ##write to file                                           
write.table(p17, "p171.csv", sep=",", row.names=FALSE);  
y = read.csv("p171.csv");  #R{t+1}      
# get rid of "date" from y 
y$Date = NULL; 
#regress each column of y on zt 
n <- nrow(y)   
stopifnot(n==nrow(zt)) 
 
for(i in seq.int(ncol(y))){ 
 
ols<- lm(y[-1,i]~ rmrf + divyld + yldspr + tb, data = zt[-n,])    #regress y[,i] on zt with 
appropriate lead/lag 
 
w<-waldtest(ols,test="Chisq",vcov=NeweyWest)           #wald joint test with newey-
west covariance 
 
cat("---", names(y)[i], "---\n")                       #print  portfolio name 
                                                                   
print(w)                                               #print test result 
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R-code for Table 3 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
   ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
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} 
 
 
##gmm with hansen-jaganathan fixed weights 
gmm3 = function(vp, R, rm1, zt, pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    if (pow>1) m1 = m1 + (zt %*% vpar[11:15])^2*rm1^2 
    if (pow>2) m1 = m1 - (zt %*% vpar[16:20])^2*rm1^3 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization 
tab3a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, ncol(zt)*(1+pow));#starting values 
  ##polytope 
  gmm = gmm3(vp, R, rm1, zt, pow, method="optim", control=list(maxit=9000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm3(gmm$par, R, rm1, zt, pow, method="nlminb", control=list(trace=0, 
eval.max=9000, iter.max=9000)); 
cat(sprintf("fmin = %13.9f, info=%i, mesg=%s", gmm$objective, gmm$convergence, 
gmm$message), "\n"); 
  save(gmm, file=paste("tab3", pow, ".Rdata", sep="")); 
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print(gmm$par); 
} 
 
##test parameters at means 
tab3b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1)); 
 
  ##read estimated parameter values 
  load(paste("tab3", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    if (pow>1) m1 = m1 + (zt %*% vpar[11:15])^2*rm1^2; 
    if (pow>2) m1 = m1 - (zt %*% vpar[16:20])^2*rm1^3; 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt) 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
  dwd = solve(dw %*% grd);#(d'W*d)^{-1} 
#  dwd = solve(dw %*% grd, tol=1e-30);#(d'W*d)^{-1} 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
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  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  ##plot time-varying parameters 
  par(mfcol=c(2,2)); 
  pdx = seq.int(ncol(zt)); 
  for (i in seq(0, pow)) { 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col=gray(0.5)); 
    ##delta method 
    dzvar = 4*abs(dz)*crossprod(c(crossprod(zbar, pcov[pdx,pdx])), zbar); 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%it: %9.3f, s.e. = %9.3f, pval = %4.3f", i, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
    pdx = pdx + ncol(zt); 
  } 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
##---main 
#data(); 
#tab3a(1L); 
#tab3b(1L); 
#tab3a(2L); 
tab3b(2L); 
#tab3a(3L); 
#tab3b(3L); 
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R-code for Table 4 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##from MASS (but stripped arg checking) 
ginv = function (X, tol = sqrt(.Machine$double.eps)) { 
  sv = svd(X); 
  pos = (sv$d > max(tol*sv$d[1],0)); 
  if (all(pos)) sv$v %*% (1/sv$d * t(sv$u)) 
  else if (!any(pos)) array(0, dim(X)[2:1]) 
  else sv$v[,pos,drop=FALSE] %*% ((1/sv$d[pos]) * t(sv$u[,pos,drop=FALSE])) 
} 
 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
   
   ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
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  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
 
gmm4 = function(vp, R, rm1, rl1, zt, pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rl1; 
    if (pow>1) { 
      m1 = m1 + (zt %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[21:25])^2*rl1^2; 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[31:35])^2*rl1^3; 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with human capital 
tab4a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
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  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, ncol(z0)*(1+2*pow));#starting values 
  ##polytope 
  gmm = gmm4(vp, R, rm1, rl1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm4(gmm$par, R, rm1, rl1, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, mesg=%s", gmm$objective, gmm$convergence, 
gmm$message), "\n"); 
  save(gmm, file=paste("tab4", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab4b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1)); 
   
  ##read estimated parameter values 
  load(paste("tab4", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rl1; 
    if (pow>1) { 



 

      m1 = m1 + (zt %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[21:25])^2*rl1^2; 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[31:35])^2*rl1^3; 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
  #dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = solve(dw %*% grd, tol=1e-30);#(d'W*d)^{-1} 
  #dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam) {#delta method 
    dzvar = 4 * abs(dz) * crossprod(c(crossprod(zbar, pcov)), zbar); 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05,lower.tail=FALSE)), "\n"); 
  } 
  ##plot time-varying parameters 
  par(mfcol=c(2,2)); 
  pdx = seq.int(ncol(zt)); 
  ##constant 
  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t"); 
  for (i in seq.int(pow)) { 
    ##r{market} 
    pdx = pdx + ncol(zt); 



 

    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="blue", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep="")); 
    ##r{labor} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    lines(dt, col="red"); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="red", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep="")); 
  } 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
##pricing kernel surface 
fig1 = function() { 
  library(lattice); 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  ##evaluate at means of z0 
  zbar = colMeans(z0); 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
   
  stopifnot(length(zbar)==5); 
   
  ##evaluate pricing kernel 
  sdf <- function(vpar, rm1, rl1, pow=3L){ 
    m1 = crossprod(zbar, vpar[1:5])^2;#constant 
    m1 = m1 - crossprod(zbar, vpar[6:10])^2*rm1; 
    m1 = m1 - crossprod(zbar, vpar[11:15])^2*rl1; 
    if (pow>1) { 
      m1 = m1 + (zbar %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zbar %*% vpar[21:25])^2*rl1^2; 
    } 
    if (pow>2) { 
      m1 = m1 - (zbar %*% vpar[26:30])^2*rm1^3; 



 

      m1 = m1 - (zbar %*% vpar[31:35])^2*rl1^3; 
    } 
    return(m1) 
  } 
   
  x = seq(min(rm1), max(rm1), len=20);#rm 
  y = seq(min(rl1), max(rl1), len=20);#rg 
  g = expand.grid(x = x, y = y); 
  for (pow in seq.int(3)) { 
    load(paste("tab4", pow, ".Rdata", sep=""));#gmm 
    g[[paste("pow", pow, sep="")]] = sdf(gmm$par, g$x, g$y, pow) 
  } 
  #print(wireframe(pow1+pow2+pow3 ~ x*y, g, outer=TRUE, distance=0, 
col=gray(0.7), screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="kernel")) 
  print(wireframe(pow3 ~ x*y, g, outer=TRUE, distance=0, col=gray(0.7), 
screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="m")) 
  } 
   
 
 
#data() 
#tab4a(1L); 
#tab4b(1L); 
#tab4a(2L); 
#tab4b(2L); 
#tab4a(3L); 
#tab4b(3L); 
fig1() 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

R-code for Table 5 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##from MASS (but stripped arg checking) 
ginv = function (X, tol = sqrt(.Machine$double.eps)) { 
  sv = svd(X); 
  pos = (sv$d > max(tol*sv$d[1],0)); 
  if (all(pos)) sv$v %*% (1/sv$d * t(sv$u)) 
  else if (!any(pos)) array(0, dim(X)[2:1]) 
  else sv$v[,pos,drop=FALSE] %*% ((1/sv$d[pos]) * t(sv$u[,pos,drop=FALSE])) 
} 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
   
  ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
   
  ## human capital house price index  
  HP = read.table("house_price_index1.txt", header = TRUE); 
  hi = HP$real_return; 
   
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl, hi); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 



 

 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
 
gmm4 = function(vp, R, rm1, rh, zt, pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rh)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rh; 
 
    if (pow>1) { 
      m1 = m1 + (zt %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[21:25])^2*rh^2 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[31:35])^2*rh^3; 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with human capital 
tab4a = function(pow=3L) { 



 

  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  #rl = read.csv("zt.csv")[,c("rl")]; 
  #rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, ncol(z0)*(1+2*pow));#starting values 
  ##polytope 
  gmm = gmm4(vp, R, rm1,rh, zt, pow, method="optim", control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm4(gmm$par, R, rm1, rh, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, mesg=%s", gmm$objective, gmm$convergence, 
gmm$message), "\n"); 
  save(gmm, file=paste("tab4HPI", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab4b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  #rl = read.csv("zt.csv")[,c("rl")]; 
  #rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rh)); 
   
  ##read estimated parameter values 
  load(paste("tab4HPI", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 



 

 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rh; 
 
    if (pow>1) { 
      m1 = m1 + (zt %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[21:25])^2*rh^2 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[31:35])^2*rh^3; 
  } 
  ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
 } 
  ##for numeric derivatives 
  library(numDeriv); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  #dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  dwd = solve(dw %*% grd, tol=1e-30);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam) {#delta method 
    dzvar = 4 * abs(dz) * crossprod(c(crossprod(zbar, pcov)), zbar); 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
  ##plot time-varying parameters 
  par(mfcol=c(2,2)); 
  pdx = seq.int(ncol(zt)); 
  ##constant 



 

  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t"); 
  for (i in seq.int(pow)) { 
    ##r{market} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="blue", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep="")); 
 
    ##r{house} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    lines(dt, col="green"); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="red", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "h", sep="")); 
  } 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
##pricing kernel surface 
fig1 = function() { 
  library(lattice); 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  ##evaluate at means of z0 
  zbar = colMeans(z0); 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
   
  stopifnot(length(zbar)==5); 
   
  ##evaluate pricing kernel 
  sdf <- function(vpar, rm1, rh, pow=3L){ 



 

    m1 = crossprod(zbar, vpar[1:5])^2;#constant 
    m1 = m1 - crossprod(zbar, vpar[6:10])^2*rm1; 
    m1 = m1 - crossprod(zbar, vpar[11:15])^2*rh; 
    if (pow>1) { 
      m1 = m1 + (zbar %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zbar %*% vpar[21:25])^2*rh^2; 
    } 
    if (pow>2) { 
      m1 = m1 - (zbar %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zbar %*% vpar[31:35])^2*rh^3; 
    } 
    return(m1) 
  } 
   
  x = seq(min(rm1), max(rm1), len=20);#rm 
  y = seq(min(rh), max(rh), len=20);#rg 
  g = expand.grid(x = x, y = y); 
  for (pow in seq.int(3)) { 
    load(paste("tab4HPI", pow, ".Rdata", sep=""));#gmm 
    g[[paste("pow", pow, sep="")]] = sdf(gmm$par, g$x, g$y, pow) 
  } 
  #print(wireframe(pow1+pow2+pow3 ~ x*y, g, outer=TRUE, distance=0, 
col=gray(0.7), screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="kernel")) 
  print(wireframe(pow3 ~ x*y, g, outer=TRUE, distance=0, col=gray(0.7), 
screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="house", zlab="m")) 
  } 
   
 
 
#data(); 
#tab4a(1L); 
#tab4b(1L); 
#tab4a(2L); 
#tab4b(2L); 
#tab4a(3L); 
#tab4b(3L); 
fig1(} 
 
 
 
 
 
 
 
 
 



 

R-code for Table 6 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
   
   ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
   
  ## human capital house price index 
   
  HP = read.table("house_price_index1.txt", header = TRUE); 
  hi = HP$real_return; 
   
 
  one <- rep(1,558); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl, hi); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 



 

  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
 
gmm4 = function(vp, R, rm1, rl1, rh, zt, pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==length(rh)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rl1; 
    m1 = m1 - (zt %*% vpar[16:20])^2*rh; 
    if (pow>1) { 
      m1 = m1 + (zt %*% vpar[21:25])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[26:30])^2*rl1^2; 
      m1 = m1 + (zt %*% vpar[31:35])^2*rh^2 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[36:40])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[41:45])^2*rl1^3; 
      m1 = m1 - (zt %*% vpar[46:50])^2*rh^3; 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with human capital 
tab4a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
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  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, ncol(z0)*(1+3*pow));#starting values 
  ##polytope 
  gmm = gmm4(vp, R, rm1, rl1, rh, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm4(gmm$par, R, rm1, rl1, rh, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, mesg=%s", gmm$objective, gmm$convergence, 
gmm$message), "\n"); 
  save(gmm, file=paste("tab4", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab4b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==length(rh)); 
   
  ##read estimated parameter values 
  load(paste("tab4", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
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    ##pricing kernel (vectorized) 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    m1 = m1 - (zt %*% vpar[6:10])^2*rm1; 
    m1 = m1 - (zt %*% vpar[11:15])^2*rl1; 
    m1 = m1 - (zt %*% vpar[16:20])^2*rh; 
    if (pow>1) { 
      m1 = m1 + (zt %*% vpar[21:25])^2*rm1^2; 
      m1 = m1 + (zt %*% vpar[26:30])^2*rl1^2; 
      m1 = m1 + (zt %*% vpar[31:35])^2*rh^2 
    } 
    if (pow>2) { 
      m1 = m1 - (zt %*% vpar[36:40])^2*rm1^3; 
      m1 = m1 - (zt %*% vpar[41:45])^2*rl1^3; 
      m1 = m1 - (zt %*% vpar[46:50])^2*rh^3; 
  } 
  ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
 } 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam) {#delta method 
    dzvar = 4 * abs(dz) * crossprod(c(crossprod(zbar, pcov)), zbar); 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
  ##plot time-varying parameters 
  par(mfcol=c(2,2)); 
  pdx = seq.int(ncol(zt)); 
  ##constant 
  dt = (zt %*% vp[pdx])^2; 
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  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t"); 
  for (i in seq.int(pow)) { 
    ##r{market} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="blue", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep="")); 
    ##r{labor} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    lines(dt, col="red"); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="red", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep="")); 
    ##r{house} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    lines(dt, col="green"); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="green", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "h", sep="")); 
  } 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
##pricing kernel surface 
fig1 = function() { 
  library(lattice); 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  ##evaluate at means of z0 
  zbar = colMeans(z0); 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1}  
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  stopifnot(length(zbar)==5); 
   
  ##evaluate pricing kernel 
  sdf <- function(vpar, rm1, rl1, pow=3L){ 
    m1 = crossprod(zbar, vpar[1:5])^2;#constant 
    m1 = m1 - crossprod(zbar, vpar[6:10])^2*rm1; 
    m1 = m1 - crossprod(zbar, vpar[11:15])^2*rl1; 
    if (pow>1) { 
      m1 = m1 + (zbar %*% vpar[16:20])^2*rm1^2; 
      m1 = m1 + (zbar %*% vpar[21:25])^2*rl1^2; 
    } 
    if (pow>2) { 
      m1 = m1 - (zbar %*% vpar[26:30])^2*rm1^3; 
      m1 = m1 - (zbar %*% vpar[31:35])^2*rl1^3; 
    } 
    return(m1) 
  } 
   
  x = seq(min(rm1), max(rm1), len=20);#rm 
  y = seq(min(rl1), max(rl1), len=20);#rg   
  g = expand.grid(x = x, y = y); 
  for (pow in seq.int(3)) { 
    load(paste("tab4", pow, ".Rdata", sep=""));#gmm 
    g[[paste("pow", pow, sep="")]] = sdf(gmm$par, g$x, g$y, pow) 
  } 
  #print(wireframe(pow1+pow2+pow3 ~ x*y, g, outer=TRUE, distance=0, 
col=gray(0.7), screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="kernel")) 
  print(wireframe(pow2 ~ x*y, g, outer=TRUE, distance=0, col=gray(0.7), 
screen=list(z=20, x=-50), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="kernel")) 
  } 
#data(); 
#tab4a(1L); 
#tab4b(1L); 
#tab4a(2L); 
#tab4b(2L); 
#tab4a(3L); 
#tab4b(3L) 
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R-code for Table 7 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat3.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
   
  ##fama-french momentum factor (monthly %) 
  Mom = read.table("F-F_Momentum_Factor1.txt", header=TRUE); 
  Mom[,-1] = Mom[,-1]/100; 
   
  ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff,Mom, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = 
dy$Y, yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
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    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
#----------------------------------Fama-French Factors Only-----------------------------------
-------- 
##with fama-french factors 
gmm5 = function(vp, R, rm1, rl1, ff1, zt,pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
      ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
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      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with fama-french factors 
tab5a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML")]; 
  ff1 = as.matrix(ff[-1,]); 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, if (pow) ncol(zt)*(4+2*pow) else 5*ncol(zt));#starting values 
  ##polytope 
  gmm = gmm5(vp, R, rm1, rl1, ff1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm5(gmm$par, R, rm1, rl1, ff1, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
  save(gmm, file=paste("tab5", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab5b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
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  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML")]; 
  ff1 = as.matrix(ff[-1,]); 
  nz = ncol(zt); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1)); 
 
  ##read estimated parameter values 
  load(paste("tab5", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(y) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
   nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
      ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
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        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam, quad=FALSE) {#delta method 
    dzvar = crossprod(c(crossprod(zbar, pcov)), zbar); 
    if (quad) dzvar = 4 * abs(dz) * dzvar 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
 
  ##plot time-varying parameters 
  par(mfcol=c(3,2), mar=c(2, 2, 1, 1), mgp=c(1, 0.2, 0), tcl=-0.2); 
  ##constant 
  pdx = seq.int(nz); 
  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t", quad=TRUE); 
  if (pow==0) { 
    dnam = c("_rm", "smb", "hml"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 



 

      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
  } else { 
    dnam = c("smb", "hml"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
    for (i in seq.int(pow)) { 
      ##r{market} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="blue", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep=""), quad=TRUE); 
      ##r{labor} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      lines(dt, col="red"); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="red", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep=""), quad=TRUE); 
    } 
  } 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
##hansen-jagannathan bounds 
fig3 = function() { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
   zbar = colMeans(z0); 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
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  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML","Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
  ##evaluate at means 
  
 
  ##bounds 
  invc = solve( var(R) ); 
  rbar = 1+colMeans(R);#gross 
  mbar = seq(from=0.97, to=1.24, length.out=500);#E[m] 
  ones = rep(1, length(rbar));#price vector 
  hjbd = function(x, p, w, xbar) { 
    err = p - x*xbar; 
    sqrt(crossprod(err, w %*% err)[1,1]) 
  } 
  msdv = sapply(mbar, hjbd, p=ones, w=invc, xbar=rbar, USE.NAMES=FALSE); 
 
  ##evaluate pricing kernel 
  sdf <- function(vpar, rm1, rl1=NULL, pow=3L){ 
    stopifnot(pow==1 || pow==2 || pow==3); 
    nz = length(zbar); 
    idx = seq.int(nz); 
    m1 = crossprod(zbar, vpar[idx])^2;#constant 
    idx = idx + nz; 
    d1m = -crossprod(zbar, vpar[idx])^2 
     
    m1 = m1 - d1m*rm1; 
    if (!is.null(rl1)) { 
      idx = idx + nz; 
      m1 = m1 - crossprod(zbar, vpar[idx])^2*rl1; 
    } 
    if (pow>1) { 
      idx = idx + nz; 
      m1 = m1 + (zbar %*% vpar[idx])^2*rm1^2; 
      if (!is.null(rl1)) { 
        idx = idx + nz; 
        m1 = m1 + (zbar %*% vpar[idx])^2*rl1^2; 
      } 
    } 
    if (pow>2) { 
      idx = idx + nz; 
      m1 = m1 - (zbar %*% vpar[idx])^2*rm1^3; 
      if (!is.null(rl1)) { 
        idx = idx + nz; 
        m1 = m1 - (zbar %*% vpar[idx])^2*rl1^3; 
      } 
    } 
    return(m1) 
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  } 
  ##fama-french pricing kernel 
  sdf_ff <- function(vpar, ff1) { 
    nz = length(zbar); 
    idx = seq.int(nz); 
    m1 = crossprod(zbar, vpar[idx])^2;#constant 
    for (j in seq.int(ncol(ff1))) { 
      idx = idx + nz; 
      m1 = m1 + crossprod(zbar, vpar[idx])*ff1[,j]; 
    } 
    return(m1) 
  } 
  ##add (mean, sd) pair to plot 
  padd = function(fnam, pnam, pch, ..., rl1=NULL, pow=3L, isff1=FALSE) { 
    load(fnam);#gmm 
    m1 = if (isff1) sdf_ff(gmm$par, ff1) else sdf(gmm$par, rm1, rl1, pow) 
    mbar = mean(m1); 
    msdv = sd(m1); 
print(c(mbar, msdv))     
    points(mbar, msdv, pch=pch, ...); 
    text(mbar, msdv, pnam, pos=4, offset=0.2, xpd=TRUE, ...); 
  } 
   
  plot(mbar, msdv, type="l", ylim=c(0, 1.5), col=gray(0.5), xlab="mean", 
ylab="std.dev."); 
  ##exclude human capital 
  padd("tab31.Rdata", "pow=1", pch=21, col="blue", cex=0.8, pow=1L); 
  padd("tab32.Rdata", "pow=2", pch=21, col="green", cex=0.8, pow=2L); 
  padd("tab33.Rdata", "pow=3", pch=21, col="red", cex=0.8, pow=3L); 
  padd("tab50.Rdata", "fama-french", pch=21, col="brown", cex=0.8, isff1=TRUE); 
  ##include human capital 
  padd("tab41.Rdata", "hc=1", pch=22, col="blue", cex=0.8, rg=rg, pow=1L); 
  padd("tab42.Rdata", "hc=2", pch=22, col="green", cex=0.8, rg=rg, pow=2L); 
  padd("tab43.Rdata", "hc=3", pch=22, col="red", cex=0.8, rg=rg, pow=3L); 
   
} 
 
#data(); 
#tab5a(0L);  
tab5b(3L); 
 
#fig3() 
R-code for Table 8 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 



 

data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
  ##fama-french momentum factor (monthly %) 
  Mom = read.table("F-F_Momentum_Factor1.txt", header=TRUE); 
  Mom[,-1] = Mom[,-1]/100; 
 
  ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
   ## human capital house price index 
 
  HP = read.table("house_price_index1.txt", header = TRUE); 
  hi = HP$real_return; 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff,Mom, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = 
dy$Y, yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl, hi); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 



 

} 
 
#----------------------------------Fama-French Factors Only-----------------------------------
-------- 
##with fama-french factors 
gmm5 = function(vp, R, rm1, rl1, ff1, zt,pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
      ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
 
 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
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        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
 
 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with fama-french factors 
tab5a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML", "Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, if (pow) ncol(zt)*(4+2*pow) else 5*ncol(zt));#starting values 
  ##polytope 
  gmm = gmm5(vp, R, rm1, rl1, ff1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm5(gmm$par, R, rm1, rl1, ff1, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
  save(gmm, file=paste("tab5", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab5b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
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  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML","Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
  nz = ncol(zt); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1)); 
 
  ##read estimated parameter values 
  load(paste("tab5", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(y) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
   nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
       ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
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        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
  #dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam, quad=FALSE) {#delta method 
    dzvar = crossprod(c(crossprod(zbar, pcov)), zbar); 
    if (quad) dzvar = 4 * abs(dz) * dzvar 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
 
  ##plot time-varying parameters 
  par(mfcol=c(3,2), mar=c(2, 2, 1, 1), mgp=c(1, 0.2, 0), tcl=-0.2); 
  ##constant 
  pdx = seq.int(nz); 
  dt = (zt %*% vp[pdx])^2; 
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  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t", quad=TRUE); 
  if (pow==0) { 
    dnam = c("_rm", "smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
  } else { 
    dnam = c("smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
    for (i in seq.int(pow)) { 
      ##r{market} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="blue", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep=""), quad=TRUE); 
      ##r{labor} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      lines(dt, col="red"); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="red", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep=""), quad=TRUE); 
 
    } 
  } 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
 



 

#data(); 
#tab5a(0L); 
#tab5b(0L); 
#tab5a(2L); 
#tab5b(2L); 
#tab5a(3L); 
tab5b(3L); 
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R-code for Table 9 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
  ##fama-french momentum factor (monthly %) 
  Mom = read.table("F-F_Momentum_Factor1.txt", header=TRUE); 
  Mom[,-1] = Mom[,-1]/100; 
 
  ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
   ## human capital house price index 
 
  HP = read.table("house_price_index1.txt", header = TRUE); 
  hi = HP$real_return; 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff,Mom, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = 
dy$Y, yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl, hi); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
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  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
#----------------------------------Fama-French Factors Only-----------------------------------
-------- 
##with fama-french factors 
gmm5 = function(vp, R, rm1, rh, ff1, zt,pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==nrow(ff1), 
nrow(R)==nrow(rh)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
      ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rh; 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rh^2 
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      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rh^3; 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with fama-french factors 
tab5a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML", "Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, if (pow) ncol(zt)*(4+2*pow) else 5*ncol(zt));#starting values 
  ##polytope 
  gmm = gmm5(vp, R, rm1, rh, ff1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
  gmm = gmm5(gmm$par, R, rm1, rh, ff1, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
  save(gmm, file=paste("tab5", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab5b = function(pow=3L) { 
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  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML","Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
   hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  nz = ncol(zt); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==nrow(ff1), 
nrow(R)==nrow(rh)); 
 
  ##read estimated parameter values 
  load(paste("tab5", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(y) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
   nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
       ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rh; 
      if (pow>1) { 
        idx = idx + nz; 
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        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rh^2 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rh^3; 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam, quad=FALSE) {#delta method 
    dzvar = crossprod(c(crossprod(zbar, pcov)), zbar); 
    if (quad) dzvar = 4 * abs(dz) * dzvar 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
 
  ##plot time-varying parameters 
  par(mfcol=c(3,2), mar=c(2, 2, 1, 1), mgp=c(1, 0.2, 0), tcl=-0.2); 
  ##constant 
  pdx = seq.int(nz); 
  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
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  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t", quad=TRUE); 
  if (pow==0) { 
    dnam = c("_rm", "smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
  } else { 
    dnam = c("smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
    for (i in seq.int(pow)) { 
      ##r{market} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="blue", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep=""), quad=TRUE); 
      ##r{house price} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      lines(dt, col="red"); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="green", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "h", sep=""), quad=TRUE); 
    } 
  } 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
 
#data(); 
#tab5a(0L); 
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#tab5b(0L); 
#tab5a(2L); 
#tab5b(2L); 
#tab5a(3L); 
tab5b(3L); 
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R-code for Table 10 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
   
  ##fama-french momentum factor (monthly %) 
  Mom = read.table("F-F_Momentum_Factor1.txt", header=TRUE); 
  Mom[,-1] = Mom[,-1]/100; 
   
  ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
   ## human capital house price index 
   
  HP = read.table("house_price_index1.txt", header = TRUE); 
  hi = HP$real_return; 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff,Mom, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = 
dy$Y, yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl, hi); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
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  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
#----------------------------------Fama-French Factors Only-----------------------------------
-------- 
##with fama-french factors 
gmm5 = function(vp, R, rm1, rl1, rh, ff1, zt,pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1), nrow(R)==nrow(rh)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
      ##drop rmrf 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rh; 
      if (pow>1) { 
        idx = idx + nz; 
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        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rh^2 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rh^3; 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with fama-french factors 
tab5a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML", "Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
  hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
  vp = rep(0.1, if (pow) ncol(zt)*(4+3*pow) else 5*ncol(zt));#starting values 
  ##polytope 
  gmm = gmm5(vp, R, rm1, rl1, rh, ff1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
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  gmm = gmm5(gmm$par, R, rm1, rl1, rh, ff1, zt, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
  save(gmm, file=paste("tab5", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 
tab5b = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ff = read.csv("zt.csv")[,c("rmrf", "SMB", "HML","Mom")]; 
  ff1 = as.matrix(ff[-1,]); 
   hi = read.csv("zt.csv")[,c("hi")]; 
  rh = as.matrix(hi[-1]) #R{h,t+1} 
  nz = ncol(zt); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1), 
nrow(R)==nrow(ff1), nrow(R)==nrow(rh)); 
 
  ##read estimated parameter values 
  load(paste("tab5", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(y) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
   nz = ncol(zt); 
    ##pricing kernel (vectorized) 
    idx = seq.int(nz); 
    m1 = (zt %*% vpar[idx])^2;#constant 
    if (pow==0) { 
      for (j in seq.int(ncol(ff1))) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])*ff1[,j]; 
      } 
    } else { 
       ##drop rmrf 
      idx = idx + nz; 
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      m1 = m1 + (zt %*% vpar[idx])*ff1[,2]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,3]; 
      idx = idx + nz; 
      m1 = m1 + (zt %*% vpar[idx])*ff1[,4]; 
      ##linear 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rm1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rl1; 
      idx = idx + nz; 
      m1 = m1 - (zt %*% vpar[idx])^2*rh; 
      if (pow>1) { 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rm1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rl1^2; 
        idx = idx + nz; 
        m1 = m1 + (zt %*% vpar[idx])^2*rh^2 
      } 
      if (pow>2) { 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rm1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rl1^3; 
        idx = idx + nz; 
        m1 = m1 - (zt %*% vpar[idx])^2*rh^3; 
      } 
    } 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
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  ##average z 
  zbar = colMeans(zt); 
print(zbar) 
  tvpar = function(dz, pcov, dnam, quad=FALSE) {#delta method 
    dzvar = crossprod(c(crossprod(zbar, pcov)), zbar); 
    if (quad) dzvar = 4 * abs(dz) * dzvar 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
 
  ##plot time-varying parameters 
  par(mfcol=c(3,2), mar=c(2, 2, 1, 1), mgp=c(1, 0.2, 0), tcl=-0.2); 
  ##constant 
  pdx = seq.int(nz); 
  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t", quad=TRUE); 
  if (pow==0) { 
    dnam = c("_rm", "smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
  } else { 
    dnam = c("smb", "hml", "Mom"); 
    for (j in seq_along(dnam)) { 
      pdx = pdx + nz; 
      dt = zt %*% vp[pdx]; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", dnam[j], sep="")); 
      dz = crossprod(zbar, vp[pdx]); 
      abline(h=dz, col=gray(0.5)); 
      tvpar(dz, pcov[pdx,pdx], dnam[j]); 
    } 
    for (i in seq.int(pow)) { 
      ##r{market} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="blue", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep=""), quad=TRUE); 
      ##r{labor} 
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      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      lines(dt, col="red"); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="red", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep=""), quad=TRUE); 
      ##r{house price} 
      pdx = pdx + nz; 
      dt = (-1)^i * (zt %*% vp[pdx])^2; 
      lines(dt, col="red"); 
      dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
      abline(h=dz, col="green", lty="dashed"); 
      tvpar(dz, pcov[pdx,pdx], paste("_", i, "h", sep=""), quad=TRUE); 
    } 
  } 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
 
#data(); 
#tab5a(0L); 
#tab5b(0L); 
#tab5a(2L); 
#tab5b(2L); 
#tab5a(3L); 
tab5b(3L); 
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R-code for Table 12 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat3.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
   ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 
  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 



 

} 
 
gmm6a = function(vp, R, rm1, zt, method=c("optim", "nlminb"), control=list()) { 
  #stopifnot((length(vp)==2 && is.null(rl1)) || (length(vp)==3 && !is.null(rl1))); 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    m1 = vpar[1]*(1+rm1)^vpar[2]; 
    ##pricing error 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##power utility kernel 
tab6a = function(addhc=FALSE) { 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ##estimate power utility parameters 
  v0 = c(0.1, -0.1) 
  ##quasi-newton 
  gmm = gmm6a(v0, R, rm1, zt, method="nlminb"); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
#  save(gmm, file="tab60.Rdata"); 
print(gmm$par); 
  stopifnot(gmm$convergence==0); 
 
  ##standard errors 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
  ##sample moment conditions 
  fmom <- function(vp, means=TRUE){ 
    m1 = vp[1]*(1+rm1)^vp[2]; 
    ##pricing error 



 

    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  library(numDeriv); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, gmm$par);#d 
  dw = crossprod(grd, W);#d'W 
  dwd = solve(dw %*% grd);#(d'W*d)^{-1} 
#  dwd = solve(dw %*% grd, tol=1e-30);#(d'W*d)^{-1} 
  ss = cov( fmom(gmm$par, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=gmm$par, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
  temp$pvalue = 2*pnorm(abs(temp$t_ratio), lower.tail=FALSE); 
print(temp) 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(gmm$par)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 
 
 
gmm6b = function(vp, R, rm1, rl1, zt, method=c("optim", "nlminb"), control=list()) { 
  #stopifnot((length(vp)==2 && is.null(rl1)) || (length(vp)==3 && !is.null(rl1))); 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    m1 = vpar[1]*(1+vpar[3]*rm1+(1-vpar[3])*rl1)^vpar[2]; 
    ##pricing error 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##power utility kernel 
tab6b = function() { 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 



 

  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ##estimate power utility parameters 
  v0 = c(0.1, -0.1, 0.5) 
  ##quasi-newton 
  gmm = gmm6b(v0, R, rm1, rl1, zt, method="nlminb"); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$iterations, gmm$message), "\n"); 
#  save(gmm, file="tab60.Rdata"); 
print(gmm$par); 
  stopifnot(gmm$convergence==0); 
 
  ##standard errors 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
  ##sample moment conditions 
  fmom <- function(vp, means=TRUE){ 
    m1 = vp[1]*(1+vp[3]*rm1+(1-vp[3])*rl1)^vp[2]; 
    ##pricing error 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  library(numDeriv); 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, gmm$par);#d 
  dw = crossprod(grd, W);#d'W 
  dwd = solve(dw %*% grd);#(d'W*d)^{-1} 
#  dwd = solve(dw %*% grd, tol=1e-30);#(d'W*d)^{-1} 
  ss = cov( fmom(gmm$par, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=gmm$par, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
  temp$pvalue = 2*pnorm(abs(temp$t_ratio), lower.tail=FALSE); 
print(temp) 
 
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(gmm$par)); 
  n = length(pt);#undo df correction 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
} 



 

 
 
#tab6a(); 
tab6b(); 
 
 
 
 
 
 
 
R-code for Table 13 
 
##clear 
rm(list=ls()); 
graphics.off(); 
options(warn=1, htmlhelp=TRUE); 
 
##merge and write data file (monthly fractions) 
data = function(fnam="dat.csv") { 
 
  ##17 industry portfolio returns (monthly %) 
  p17 = read.table("17_Industry_Portfolios1.txt", header=TRUE); 
  p17[,-1] = p17[,-1]/100; 
 
  ##3 month treasury bill (annualized %) 
  tb3 = read.table("TB31.txt", header=TRUE); 
  tb3[,-1] = tb3[,-1]/12; 
  ##fama-french factors (monthly %) 
  ff = read.table("F-F_Research_Data_Factors1.txt", header=TRUE); 
  ff[,-1] = ff[,-1]/100; 
 
   ##Human capital 
  hc = read.table("HC1.txt", header=TRUE); 
  rl = hc$Rl       # net return 
 
  one <- rep(1,390); 
  ##dividend yield (monthly fractions) 
  dy <- read.table("dividend yield1.txt", header=TRUE); 
  ##combine all regressors into one data frame 
  dat <- data.frame(one, ff, rmrf = ff$rmrf, rm = ff$rmrf + ff$RF, divyld = dy$Y, 
yldspr = tb3[,2] - ff$RF, tb = ff$RF, rl); 
 
  ##write to file 
  write.table(p17, "p17.csv", sep=",", row.names=FALSE); 
  write.table(dat, "zt.csv", sep=",", row.names=FALSE); 
} 
 
##column-wise kronecker product 
ckron = function(A, B) { 



 

  stopifnot(nrow(A)==nrow(B)) 
  ca = ncol(A); 
  cb = ncol(B); 
  AB = matrix(NA, nrow(A), ca*cb); 
  jdx = seq.int(cb); 
  for (j in seq.int(ca)) { 
    AB[,jdx] = A[,j]*B; 
    jdx = jdx + cb; 
  } 
  return(AB) 
} 
 
 
##with human capital and shape restriction 
gmm8 = function(vp, R, rm1, rl1, zt, pow=3L, method=c("optim", "nlminb"), 
control=list()) { 
  stopifnot(pow==1 || pow==2 || pow==3); 
  method = match.arg(method); 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  W <- solve( crossprod( ckron(1+R, zt) )/nrow(R) ); 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1)); 
  ##gmm objective function to minimize 
  objf <- function(vpar){ 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    d1m = -(zt %*% vpar[6:10])^2; 
    d1l = -(zt %*% vpar[11:15])^2; 
    if (pow==1) { 
      m1 = m1 + d1m*rm1 + d1l*rl1; 
    } else if (pow>1) { 
      d2m = (zt %*% vpar[16:20])^2; 
      d2l = (zt %*% vpar[21:25])^2; 
      if (pow==2) { 
        d1m = pmin(d1m, -2*d2m*rm1); 
        d1l = pmin(d1l, -2*d2l*rl1); 
        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2; 
      } else {#pow==3 
        d3m = -(zt %*% vpar[26:30])^2; 
        tmp = -(d1m + 2*d2m*rm1)/(3*rm1^2); 
        idx = (d3m > tmp); 
        d1m = ifelse(idx, pmin(d1m, -d2m*rm1), d1m); 
        d3m = ifelse(idx, tmp, d3m); 
 
        d3l = -(zt %*% vpar[31:35])^2; 
        tmp = -(d1l + 2*d2l*rl1)/(3*rl1^2); 
        idx = (d3l > tmp); 
        d1l = ifelse(idx, pmin(d1l, -d2l*rl1), d1l); 
        d3l = ifelse(idx, tmp, d3l); 
 



 

        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2 + d3m*rm1^3 + 
d3l*rl1^3; 
      } 
    } 
    m1 = pmax(m1, 0);#impose m1>=0 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    g = colMeans(v);#(12) 
    return( crossprod(g, crossprod(W, g)) ) 
  } 
 
  if (method=="optim") optim(vp, objf, control=control) else nlminb(vp, objf, 
control=control) 
} 
 
##optimization with human capital and shape restriction 
tab8a = function(pow=3L) { 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
  ##fit gmm with hansen-jaganathan fixed weights 
#  vp = rep(0.1, ncol(z0)*(1+2*pow));#starting values 
  if (pow==1) { 
    load(paste("tab4", pow, ".Rdata", sep=""));#gmm 
  } else { 
    load(paste("tab8", pow-1, ".Rdata", sep=""));#gmm 
    gmm$par = c(gmm$par, rep(0, 2*ncol(zt))); 
  } 
  ##polytope 
  gmm = gmm8(gmm$par, R, rm1, rl1, zt, pow, method="optim", 
control=list(maxit=90000)); 
cat(sprintf("fmin = %13.9f, info=%i, iter=%i", gmm$value, gmm$convergence, 
gmm$counts[1]), "\n"); 
  ##quasi-newton 
#  gmm = gmm8(gmm$par, y, rm, rg, z0, pow, method="nlminb", 
control=list(trace=0, eval.max=90000, iter.max=90000)); 
#cat(sprintf("fmin = %13.9f, info=%i, mesg=%s", gmm$objective, 
gmm$convergence, gmm$message), "\n"); 
  save(gmm, file=paste("tab8", pow, ".Rdata", sep="")); 
print(gmm$par); 
} 
 
##test parameters at means 



 

tab8b = function(pow=3L) { 
  stopifnot(pow==1 || pow==2 || pow==3); 
  ##read data 
  y = read.csv("p17.csv");  #R{t+1} 
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1}) 
  ##check only once 
  stopifnot(nrow(R)==nrow(zt), nrow(R)==length(rm1), nrow(R)==length(rl1)); 
 
  ##read estimated parameter values 
  load(paste("tab8", pow, ".Rdata", sep=""));#gmm 
  vp = gmm$par; 
 
  ##optimal weigting matrix using E[(R*zt)(R*zt)'] 
  rz = ckron(1+R, zt); 
  W = solve( crossprod(rz)/nrow(R) ); 
 
  ##return sample moment conditions 
  fmom <- function(vpar, means=TRUE){ 
    m1 = (zt %*% vpar[1:5])^2;#constant 
    d1m = -(zt %*% vpar[6:10])^2; 
    d1l = -(zt %*% vpar[11:15])^2; 
    if (pow==1) { 
      m1 = m1 + d1m*rm1 + d1l*rl1; 
    } else if (pow>1) { 
      d2m = (zt %*% vpar[16:20])^2; 
      d2l = (zt %*% vpar[21:25])^2; 
      if (pow==2) { 
        d1m = pmin(d1m, -2*d2m*rm1); 
        d1l = pmin(d1l, -2*d2l*rl1); 
        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2; 
      } else {#pow==3 
        d3m = -(zt %*% vpar[26:30])^2; 
        tmp = -(d1m + 2*d2m*rm1)/(3*rm1^2); 
        idx = (d3m > tmp); 
        d1m = ifelse(idx, pmin(d1m, -d2m*rm1), d1m); 
        d3m = ifelse(idx, tmp, d3m); 
 
        d3l = -(zt %*% vpar[31:35])^2; 
        tmp = -(d1l + 2*d2l*rl1)/(3*rl1^2); 
        idx = (d3l > tmp); 
        d1l = ifelse(idx, pmin(d1l, -d2l*rl1), d1l); 
        d3l = ifelse(idx, tmp, d3l); 
 



 

        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2 + d3m*rm1^3 + 
d3l*rl1^3; 
      } 
    } 
 
    m1 = pmax(m1, 0);#impose m1>=0 
    ##pricing error (matrix) 
    v = ckron((1+R)*c(m1) - 1, zt); 
    if (means) v = colMeans(v);#(12) 
    return(v) 
  } 
 
  ##for numeric derivatives 
  library(numDeriv); 
  library(MASS); 
  print(vp) 
  ##evaluate parameter covariance matrix 
  grd = jacobian(fmom, vp);#d 
  dw = crossprod(grd, W);#d'W 
 
#  dwd = solve(dw %*% grd, tol=.Machine$double.eps);#(d'W*d)^{-1} 
  dwd = try(solve(dw %*% grd), silent=FALSE);#(d'W*d)^{-1} 
  if (inherits(dwd, "try-error")) dwd = ginv(dw %*% grd) 
  ss = cov( fmom(vp, means=FALSE) );#S 
  pcov = (dwd %*% (dw %*% tcrossprod(ss, dw)) %*% dwd) / nrow(zt); 
  ##print estimates and standard errors 
  temp = data.frame(par=vp, se=sqrt(diag(pcov))); 
  temp$t_ratio = temp$par/temp$se; 
print(temp) 
 
  ##average z 
  zbar = colMeans(zt); 
  print(zbar) 
  tvpar = function(dz, pcov, dnam) {#delta method 
    dzvar = 4 * abs(dz) * crossprod(c(crossprod(zbar, pcov)), zbar); 
    wald = dz^2 / dzvar; 
cat(sprintf("d(zbar)%s: %8.3f, s.e. = %9.3f, pval = %4.3f", dnam, dz, sqrt(dzvar), 
pchisq(wald, 0.05, lower.tail=FALSE)), "\n"); 
  } 
  ##plot time-varying parameters 
  par(mfcol=c(2,2)); 
  pdx = seq.int(ncol(zt)); 
  ##constant 
  dt = (zt %*% vp[pdx])^2; 
  plot(dt, type="l", col="blue", xlab="", ylab="d0t"); 
  dz = crossprod(zbar, vp[pdx])^2; 
  abline(h=dz, col=gray(0.5)); 
  tvpar(dz, pcov[pdx,pdx], "_0t"); 
  for (i in seq.int(pow)) { 
    ##r{market} 



 

    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    plot(dt, type="l", col="blue", xlab="", ylab=paste("d", i, "t", sep="")); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="blue", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "m", sep="")); 
    ##r{labor} 
    pdx = pdx + ncol(zt); 
    dt = (-1)^i * (zt %*% vp[pdx])^2; 
    lines(dt, col="red"); 
    dz = (-1)^i * crossprod(zbar, vp[pdx])^2; 
    abline(h=dz, col="red", lty="dashed"); 
    tvpar(dz, pcov[pdx,pdx], paste("_", i, "l", sep="")); 
  } 
  
   
  ##decompose hansen-jagannathan distance 
  pt = rz %*% crossprod(W, fmom(vp)); 
  n = length(pt);#undo df correction 
#  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$objective)), "\n"); 
  cat(sprintf("mean(pt) = %7.4f, sd(pt) = %7.4f, dist = %7.4f", mean(pt), 
sqrt(var(pt)*(n-1)/n), sqrt(gmm$value)), "\n"); 
} 
 
##restricted pricing kernel surface  
fig2 = function() { 
  library(lattice); 
  ##read data 
  y = read.csv("p17.csv");  
  y$Date = NULL; 
  z0 = read.csv("zt.csv")[,c("one", "rmrf", "divyld", "yldspr", "tb")]; 
  ##evaluate at means of z0 
  zbar = colMeans(z0); 
  R = as.matrix(cbind(y[-1,], z0$tb[-1]));#R{t+1} 
  zt = as.matrix(z0[-nrow(z0),]); #z{t} 
  rm = read.csv("zt.csv")["rm"]; 
  rm1 = as.matrix(rm[-1,]) #R{m,t+1} 
  rl = read.csv("zt.csv")[,c("rl")]; 
  rl1 = as.matrix(rl[-1]) #R{l,t+1} 
   
  stopifnot(length(zbar)==5); 
   
  ##evaluate pricing kernel 
  sdf <- function(vpar, rm1, rl1, pow=3L){ 
    stopifnot(pow==1 || pow==2 || pow==3); 
    m1 = crossprod(zbar, vpar[1:5])^2;#constant 
    d1m = -crossprod(zbar, vpar[6:10])^2; 
    d1l = -crossprod(zbar, vpar[11:15])^2; 
    if (pow==1) { 



 

      m1 = m1 + d1m*rm1 + d1l*rl1; 
    } else if (pow>1) { 
      d2m = crossprod(zbar, vpar[16:20])^2; 
      d2l = crossprod(zbar, vpar[21:25])^2; 
      if (pow==2) { 
        d1m = pmin(d1m, -2*d2m*rm1); 
        d1l = pmin(d1l, -2*d2l*rl1); 
        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2; 
      } else {#pow==3 
        d3m = -crossprod(zbar, vpar[26:30])^2; 
        tmp = -(d1m + 2*d2m*rm1)/(3*rm1^2); 
        idx = (c(d3m) > tmp); 
        d1m = ifelse(idx, pmin(d1m, -d2m*rm1), d1m); 
        d3m = ifelse(idx, tmp, d3m); 
         
        d3l = -crossprod(zbar, vpar[31:35])^2; 
        tmp = -(d1l + 2*d2l*rl1)/(3*rl1^2); 
        idx = (c(d3l) > tmp); 
        d1l = ifelse(idx, pmin(d1l, -d2l*rl1), d1l); 
        d3l = ifelse(idx, tmp, d3l); 
 
        m1 = m1 + d1m*rm1 + d1l*rl1 + d2m*rm1^2 + d2l*rl1^2 + d3m*rm1^3 + 
d3l*rl1^3; 
      } 
    } 
    return( pmax(m1, 0) );#impose m1>=0 
  } 
   
  x = seq(min(rm1), max(rm1), len=20);#rm1 
  y = seq(min(rl1), max(rl1), len=20);#rl1 
  g = expand.grid(x = x, y = y); 
  for (pow in seq.int(3)) { 
    load(paste("tab8", pow, ".Rdata", sep=""));#gmm 
    g[[paste("pow", pow, sep="")]] = sdf(gmm$par, g$x, g$y, pow) 
  } 
  print(wireframe(pow3 ~ x*y, g, outer=TRUE, distance=0, col=gray(0.7), 
screen=list(z=20, x=-40), colorkey=FALSE, drape=TRUE, 
default.scales=list(distance=c(1,1,1), arrows=FALSE), 
lattice.options=list(as.table=FALSE), xlab="market", ylab="labor", zlab="m")) 
 
 
 
 
 
 
 
 
 

 


